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Preface

This book is the outgrowth of a course given for a number of years in the
Division of Applied Mathematics at Brown University. Most of the students
were in their first and second years of graduate study in applied mathematics,
although some were in engineering and pure mathematics. The purpose of the
book is threefold. First, it is intended to familiarize the reader with some of
the problems and techniques in ordinary differential equations, with the
emphasis on nonlinear problems. Second, it is hoped that the material is
presented in a way that will prepare the reader for intelligent study of the
current literature and for research in differential equations. Third, in order
not to lose sight of the applied side of the subject, considerable space has
been devoted to specific analytical methods which are presently widely
used in the applications.

Since the emphasis throughout is on nonlinear phenomena, the global
theory of two-dimensional systems has been presented immediately after
the fundamental theory of existence, uniqueness, and continuous depen-
dence. This also has the advantage of giving the student specific examples
and concepts which serve to motivate study of later chapters. Since a satis-
factory global theory for general n-dimensional systems is not available, we
naturally turn to local problems and, in particular, to the behavior of solu-
tions of differential equations near invariant sets. In the applications it is
necessary not only to study the effect of variations of the initial data but also
in the vector field. These are discussed in detail in Chapters III and IV in
which the invariant set is an equilibrium point. In this way many of the basic
and powerful methods in differential equations can be examined at an elemen-
tary level. The analytical methods developed in these chapters are immediately
applicable to the most widely used technique in the practical theory of non-
linear oscillations, the method of averaging, which is treated in Chapter V.
When the invariant set corresponds to a periodic orbit and only autonomous
perturbations in the vector field are permitted, the discussion is similar to
that for an equilibrium point and is given in Chapter VI. On the other hand,
when the perturbations in the vector field are nonautonomous or the invari-
ant set is a closed curve with equilibrium points, life is not so simple. In
Chapter VII an attempt has been made to present this more complicated
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and important subject in such a way that the theory is a natural generaliza-
tion of the theory in Chapter IV. Chapter VIII is devoted to a general method
for determining when a periodic differential equation containing a small
parameter has a periodic solution. The reason for devoting a chapter to this
subject is that important conclusions are easily obtained for Hamiltonian
systems in this framework and the method can be generalized to apply to
problems in other fields such as partial differential, integral, and functional
differential equations. The abstract generalization is made in Chapter IX
with an application to analytic solutions of linear systems with a singularity,
but space did not permit applications to other fields. The last chapter is
devoted to elementary results and applications of the direct method of
Lyapunov to stability theory. Except for Chapter I this topic is independent
of the remainder of the book and was placed at the end to preserve continuity
of ideas.

For the sake of efficiency and to acquaint the student with concrete
applications of elementary concepts from functional analysis, I have pre-
sented the material with an element of abstraction. Relevant background
material appears in Chapter 0 and in the appendix on almost periodic
functions, although I assume that the reader has had a course in advanced
calculus. A one-semester course at Brown University usually covers the
saddlepoint property in Chapter III; the second semester is devoted to
selections from the remaining chapters. Throughout the book I have made
suggestions for further study and have provided exercises, some of which are
difficult. The difficulty usually arises because the exercises are introduced
when very little technique has been developed. This procedure was followed
to permit the student to develop his own ideas and intuition. Plenty of time
should be allowed for the exercises and appropriate hints should be given
when the student is prepared to receive them.

No attempt has been made to cover all aspects of differential equations.
Lack of space, however, forced the omission of certain topics that contribute
to the overall objective outlined above; for example, the general subject of
boundary value problems and Green's functions belong in the vocabulary of
every serious student of differential equations. This omission is partly justi-
fied by the fact that this topic is usually treated in other courses in applied
mathematics and, in addition, excellent presentations are available in the
literature. Also, specific applications had to be suppressed, but individuals
with special interest can -easily make the correlation with the theoretical
results herein.

I have received invaluable assistance in many conversations with my
colleagues and students at Brown University. Special thanks are due to
C. Olech for his direct contribution to the presentation of two-dimensional
systems, to M. Jacobs for his thought-provoking criticisms of many parts of
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the original manuscript, and to W. S. Hall and D. Sweet for their comments.
I am indebted to K. Nolan for her endurance in the excellent preparation of
the manuscript. I also wish to thank the staff of Interscience for being so
efficient and cooperative during the production process.

Jack K. Hale

Providence, Rhode Island
September, 1969

Preface to Revised Edition

For this revised edition, I am indebted to several colleagues for their assis-
tance in the elimination of misprints and the clarification of the presentation.
The section on integral manifolds has been enlarged to include a more detailed
discussion of stability. In Chapter VIII, new material is included on Hopf bi-
furcation, bifurcation with several independent parameters and subharmonic
solutions. A new section in Chapter X deals with Wazewski's principle. The
Appendix on almost periodic functions has been completely rewirtten using
the modern definition of Bochner.

Jack K. Hale

April1980
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CHAPTER 0

Mathematical Preliminaries

In this chapter we collect a number of basic facts from analysis which
play an important role in the theory of differential equations.

0.1. Banach Spaces and Examples

Set intersection is denoted by n, set union by u, set inclusion bye and
x e S denotes x is a member of the set S. R (or C) will denote the real (or
complex) field. An abstract linear vector space (or linear space) £' over R (or C)
is a collection of elements {x, y, ... } such that for each x, yin X, the sum x + y
is defined, x + y e 27, x + y = y + x and there is an element 0 in E' such that
x + 0 = x for all x e X. Also for any number a, b e R (or C), scalar multiplica-
tion ax is defined, ax a E' and 1 x = x, (ab)x = a(bx) = b(ax), (a + b)x =
ax + by for all x, y e X. A linear space E is a normed linear space if to each x
in E', there corresponds a real number jxj called the norm of x which satisfies

(i) jxj >0 for x 0, 101 =0;.
(ii) Ix + yl < jxj + jyj (triangle inequality);

(iii) laxl= lai lxlfor all a in R (or C) and x in X.

When confusion may arise, we will write I x for the norm function on X.
A sequence {xn} in a normed linear space E' converges to x in X if
lim, I xn - xi = 0. We shall write this as lim xn = x. A sequence {xn} in
X'is a Cauchy sequence if. for every e > 0, there is an N(s) > 0 such that
jxn - x,nl < e if n, m >_ N(s). The space 2' is complete if every Cauchy se-
quence in X converges to an element of X. A complete normed linear space
is a Banach space. The s-neighborhood of an element x of a normed linear
space E' is {y in X: y - xj < e}. A set S in ° ' is open if for every x e S, an
e-neighborhood of x is also contained in X. An element x is a limit point of
a set S if each e-neighborhood of x contains points of S. A set S is closed if
it contains its limit points. The closure of a set S is the union of S and its
limit points. A set S is dense in E' if the closure of S is X. If S is a subset of E',

I



2 ORDINARY DIFFERENTIAL EQUATIONS

A is a subset of R and Va, a e A is a collection of open sets of X such that
Ua E A Va S. then the collection Va is called an open covering of S. A set S
in . ' is compact if every open covering of S contains a finite number of open
sets which also cover S. For Banach spaces, this is equivalent to the following:
a set S in a Banach space is compact if every sequence {xn}, xn E S, contains
a subsequence which converges to an element of S. A set S in . 1 ' is bounded if
there exists an r > 0 such that S c {x e 2C: IxI < r}.

Example 1.1. Let Rn(Cn) be the space of real (complex) n-dimensional
column vectors. For a particular coordinate system, elements x in Rn(Cn) will
be written as x = (xi, ... , xn) where each xj is in R(C). If x = (xl, ... , xn),
y = (yl, ..., yn) are in Rn(Cn), then ax + by for a, b in R(C) is defined to be
(axl + by,, ..., axn + byn). The space Rn(Cn) is clearly a linear space. It is a
Banach space if we choose IxI, x = col(xl, ..., xn), to be either supilxil,
Yi Ixil or [Ei IxiI2]4. Each of these norms is equivalent in the sense that a
sequence converging in one norm converges in any of the other norms. Rn(Cn)
is complete because convergence implies coordinate wise convergence and
R(C) is complete.

A set S in Rn(Cn) is compact if and only if it is closed and bounded.

EXERCISE 1.1. If E is a finite dimensional linear vector space and I I,
are two norms on E, prove there are positive constants m, M such that

m I xI < jjxjj < M I xI for all x in E.

Example 1.2. Let D be a compact subset of Rm [or Cm] and %(D, Rn)
[or '(D, Cn)] be the linear space of continuous functions which take D into
Rn [or Cn]. A sequence of functions (On, n =1, 2, ... } in W(D, Rn) is said
to converge uniformly on D if there exists a function 0 taking D into Rn
such that for every e > 0 there is an N(e) (independent of n) such that
l

n(x) - O(x)l < e for all n >_ N(e) and x in D. A sequence Jon) is said to be
uniformly bounded if there exists an M > 0 such that 10n(x)I <M for all x
in D and all n = 1, 2. .... A sequence is said to be equicontinuous if,
for every e > 0, there is a 8 > 0 such that

I - gn(y)I < e, n =1 , 2, ... ,

if Ix - yi < 8, x, y in D. A function f in '(D, Rn) is said to be Lipschitzian
in D if there is a constant K such that I f (x) - f (y)I < KI x - yI for all
x, y, in D. The most frequently encountered equicontinuous sequences
in '(D, Rn) are sequences {tbn} which are Lipschitzian with a Lipschitz
constant independent of n.

LEMMA 1.1. (Ascoli-Arzela). Any uniformly bounded equicontinuous
sequence of functions in r(D. Rn) has a subsequence which converges uni-
formly on D.
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LEMMA 1.2. If a sequence in '(D, Rn) converges uniformly on D, then
the limit function is in '(D, Rn).

If we define

101 =maxIO(x)I,
2 E D

then one easily shows this is a norm on W(D, Rn) and the above lemmas show
that '(D, Rn) is a Banach space with this norm. The same remarks apply to
'(D, Cn).

EXERCISE 1.2. Suppose m = n = 1. Show that le (D, R) is a normed
linear space with the norm defined by

III II = f IO(x)I dx.

Give an example to show why this space is not complete. What is the com-
pletion of this space?

0.2. Linear Transformations

A function taking a set A of some space into a set B of some space will
be referred to as a transformation or mapping of A into B. A will be called
the domain of the mapping and the set of values of the mapping will be called
the range of the mapping. If f is a mapping of A into B, we simply write
f : A -* B and denote the range off by f (A). If f : A -* B is one to one and
continuous together with its inverse, then we say f is a homeomorphism of A
onto B. If .s, GJ are real (or complex) Banach spaces and f: , ' -* ON is such that
f (alxl + a2 x2) = al f (xi) + a2 f (x2) for all xl, x2 in . and all real (or complex)
numbers al, a2, then f is called a linear mapping. A linear mapping f of . ' into
°J is said to be bounded if there is a constant K such that if (x)I u < KI xI, for
all x in ..

LEMMA 2.1. Suppose ', 9 are Banach spaces. A linear mapping
f: -->9 is bounded if and only if it is continuous.

EXERCISE 2.1. Prove this lemma.

EXERCISE 2.2. Show that each linear mapping of Rn (or Cn) into
R"n (or Cm) can be represented by an m x n real (or complex) matrix and is
therefore necessarily continuous.

The norm I f I of a continuous linear mapping f: '-*OJ is defined as

IfI =sup{Ifxiu: IxIX =1}.

It is easy to show that I f I defined in this way satisfies the properties (i)-(iii)
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in the definition of a norm and also that

IfxIy<If for alix in T.

If a linear map taking an n-dimensional linear space into an m-dimensional
linear space is defined by an m x n matrix A, we write its norm as IAI.

EXERCISE 2.3. If ', OY are Banach spaces, let L(X, 9) be the set of
bounded linear operators taking T into 9. Prove the L(.T, qi) is a Banach
space with the norm defined above.

Example 2.1. Define f: W([0, 1], R) -R by f (q) = f o 0(s) ds. The map

f is linear and continuous with I f = 1.

Example 2.2. Define S = {q in 1([O, 1], R) which have a continuous
first derivative}. S is dense in W([O, 1], Rn). For any 0 in S, define fq(t) =
do(t)Jdt, 0 <_ t < 1. The function f is linear but not bounded. In fact, the se-
quence of functions On(t) = tn, 0 <_ t < 1, satisfies 114 u 11 = 1, but lI f f n 11 = n.
Another way to show unboundedness is to prove f is not continuous. Consider
the functions On(t) = to - to+1 0<_ t< 1, n >_ 1. In 16([0, 1], R), On --0 as
n-* oo, but fon(t) = to-1[n - (n + 1)t] and ffn(1) = -1, which does not
approach zero as n - oo.

Another very important tool from functional analysis which can be used
frequently in differential equations is the principle of uniform boundedness.
In this book, we have chosen to circumvent this principle by using more
elementary proofs except in one instance in Chapter IV.

Principle of uniform boundedness

Suppose sd is an index set and Ta , a in sd, are bounded linear maps
from a Banach space e' to a Banach space OJ such that for each x in ',

sups in ,I T. xI < oo. Then sup. in TaI < oo.

0.3 Fixed Point Theorems

A fixed point of a transformation T: X ->.t is a point x in X such that
Tx = x. Theorems concerning the existence of a fixed point of a transforma-
tion are very convenient in differential equations even though not absolutely
necessary. Such theorems should be considered as a tool which avoids the
repetition of standard arguments and permits one to concentrate on the essen-
tial elements of the problem.

One standard tool in analysis is successive approximations. The basic
elements of the method of successive approximations have been abstracted
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into the so called contraction mapping principle by Banach and Cacciopoli.
If F is a subset of a Banach space 2' and T is a transformation taking ,F
into a Banach space -4 (written as T: .F - -4), then T is a
F if there is a A, 0 <_ A < 1, such that

I Tx - Tyl <_ AIx - yI, x, y e .F.

The constant A is called the contraction constant for T on F.

contraction on

THEOREM 3.1. (Contraction mapping principle of Banach-Cacciopots).
If . is a closed subset of a Banach space f and T: .If -* F is a contraction
on F, then T has a unique fixed point .-Z in F. Also, if xo in.F is arbitrary, then
the sequence {xn+1 = Txn, n = 0, 1, 2, ... } converges to x as n -- oo and
I .-Z - xnI < An Ixi - xoI /(1 - A), where A < 1 is the contraction constant for T
on F .

PROOF. ' Uniqueness. If 0 < A < 1 is the contraction constant for T on
.F, x = Tx, Y= Ty, x, y e ,0F, then lx - yl = I Tx - TyI < AI x - yI. This
implies Ix - yj < 0 and thus I x - yI = 0 and x = y.

Existence. Let xo be arbitrary, and xn+1 = Txn, n = 0, 1, 2, .... _By
hypotheses, each xn, n = 0, 1, ... , is in -F. Also, I xn+1 - xnI <_ A I xn - xn-11
< < An l xi - xoi, n = 0, 1, .... Thus, for m > n,

I xm - xnI < I xm - xm-il + I xm-1 - xm-2I + ... + I xn+1 - xnI

<[Am-1 +Am-2+...+An]Ixi -xoi

An[1 - Am-n] An

1-A Ixi-xo1 Ixi-xol.

Thus the sequence {xn} forms a Cauchy sequence and there is an x in ' such
that limn. xn = x. Since ,F is closed, x is in F. Since T is continuous and
I - I

is continuous (the latter because I xI - I xn - xI < I xnI < I xn - xI + I xI ),
it follows that

0=limIxm+i-Txml = lim[xrri+i-Txm]I =Ii -T2I,
m--s M m-s co

which implies Tx =x. This gives the existence of a fixed point.
To prove the last estimate, take the limit as m -* oo in the previous

estimate of I xm - xnI. This completes the proof of the theorem.

ExERCisE 3.1. Suppose ' is a Banach space, T: 'X ' -> °ir' is a continuous
linear operator with I TI < 1. Show that I - T, I the identity operator, has a
bounded inverse; that is, prove that the equation (I - T)x = y has a unique
solution x in ' which depends continuously upon y in X.
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Let X, 1 be Banach spaces and D be an open set in X. A function
f: D-9 is said to be (Frechet) differentiable at a point x in D if there is a
bounded linear operator A (x) taking , ' --* such that for every he ' with
x+h e D,

If(x+h) -f(x) -A(x)hl <p(IhI, x),
where p(IhI, x) satisfies p(jhI, x)/jhI ->0 as IhI -*0. The linear operator A(x)
is called the derivative off at x and A(x)h the differential off at x.

EXERCISE 3.2. Suppose ', & are Banach spaces, d is an open subset
of ', f : al--> °J, and

lim f (xo + th) - f (xo) - w(xo)h
t-.o t

exists for every x0 a d, h e X, where the limit is taken for t real. Suppose
w(xo) is a continuous linear mapping for all xo a sal and suppose w con-
sidered as a mapping from d into L(X, °1J) is continuous, where L(X, ')
is defined in Exercise 2.3. Prove that f is (Frechet) differentiable with
derivative w(xo) at xo a d.

EXERCISE 3.3. Prove that w(xo) of the previous exercise can exist for
every h, be a continuous linear mapping and not be the Frechet derivative
off at xoesal.

EXERCISE 3.4. Let 1I([0, 1], Rn) denote the space of continuously
differentiable functions x: [0, 1] -* Rn, with addition and scalar multiplication
defined in the usual way and let IxI =supo<t<I Ix(t)I +supo<t<I Ii(t)I where
x(t) = dx/dt. Prove "I([0, 1], Rn) is a Banach space.

EXERCISE 3.5. Let w: 'I([0, 1], Rn) X [0, 1] Rn be the evaluation
mapping, w(x, t) = x(t). Prove that w is continuously differentiable and com-
pute its derivative. Do this exercise two ways, using the definition of the
derivative and also Exercise 3.2.

If f: Rm -* Rn is differentiable at a point x, then A(x) = 8f (x)/8x =
(eft(x)/axj, i = 1, 2, ..., n, j = 1, 2, ..., m), is the Jacobian matrix of f with
respect to x.

For later reference, it is convenient to have notation for order relations.
We shall say a function f (x) = O(jxj) as IxI -*0 if If (x)I /jxI is bounded for x
in a neighborhood of zero and f (x) = o(lxl) as IxI ->0 if If (x)I /lxl -*0 as
(xI -*0.

Suppose 3 is a subset of a Banach space T, 9 is a subset of a Banach
space °J and {T, y e 9) is a family of operators taking F -* T. The perator
T y is said to be a uniform contraction on F if T y: F -* F and there is a
A, 0 < A < 1 such that

ITyx-TyxI<Aix-xI forallyinW,x,xin,F.
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In other words, Ty is a contraction for each y in 9r and the contraction con-
stant can be chosen independent of y in 9.

. THEOREM 3.2. If F is a closed subset of a Banach space ', 9F is a subset
of a Banach space ON, Ty: , - .F, y in 9 is a uniform contraction on ,F and
Tyx is continuous in y for each fixed x in .F, then the unique fixed point
g(y) of Ty, y in 4, is continuous in y. Furthermore, if F, 9 are the closures of
open sets F°, #° and Tyx has continuous first derivatives A(x, y), B(x, y) in
y, x, respectively, then g(y) has a continuous first derivative with respect to
yin 9°.

COROLLARY 3.1. Suppose ' is a Banach space, T is a subset of a
Banach space J, Ay: ' are continuous linear operators for each y in
9, IAyI < 8 < 1 for all y in G and Ay x is continuous in y for each x in X. Then
the operator I -A y has a bounded inverse which depends continuously
upony, I(I-Ay)-1I <(l -6)-1

PRooFs. Since Ty:.F -a ,F is a uniform contraction, there is a A,
0:5A<1 such that I T y x - T y x1 5 A I x - xl for all yin 9r, x, x in .F. Let
g(y) be the unique fixed point of Ty in ,F which exists from Theorem 3.1.
Then

g(y+h) -g(y) =Ty+hg(y+h) -Tyg(y)
=Ty+hg(y+h) -Ty+hg(y)+ Ty+ag(y) -Tyg(y),

and

I g(y + h) - g(y) I < A g(y + h) - g(y)I + I Ty+a g(y) - Ty g(y)I

This implies

Ig(y+h) -g(y)I < (1 -A)-lITy+hg(y) - Tyg(y)I
Since T y x is continuous in y for each fixed x in F, we see that g(y) is contin-
uous. This proves the first part of the theorem.

The proof of Corollary 3.1 is now almost immediate. In fact, we need to
show that the equation x - Ay x = z has a unique solution for each z in et and
this solution depends continuously upon y, z. This is equivalent to finding the
fixed points of the operator T y, z defined by T y, , x = A y x + z, x in T. Since
Ay is a uniform contraction, (I -Ay)-1 exists, is bounded and continuous in y.
Also, if (I - Ay )x = y, then y I > (1 - S) Ix I and the proof of Corollary 3.1 is
complete.

To prove the last part of the theorem, suppose T y x has continuous
first derivatives A(x, y), B(x, y) with respect to y, x, respectively, for y e 99°,
x e F°. Let us use the fact that g(y) =Tyg(y) and try to find the equation
that the differential z = C(y)h, h in OJ of g will have to satisfy if g has a
derivative C(y). If the chain rule of differentiation is valid then

z = B(g(y), y)z + A(g(y), y)h
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where h is an arbitrary element of Y. It is easy to show that T y being a uni-
form contraction implies I B(x, y) I < S < 1 for x in 97°, y in 1°.

Since I B(x, y) I < S < 1 for x in .V, y in '9°, an application of Corollary
3.1 implies, for each y in (9°, h in 4', the existence of a unique solution z(y, h)
of (3.1) which is continuous in y, h. From uniqueness, one observes that
z(y, ah + flu) = az(y, h) + Pz(y, u) for all scalars a, P and h, u in 9; that is,
z(y, h) is linear in h and may be written as C(y)h, where C(y): 9 - X is a con-
tinuous linear operator for each y is also `continuous in y. To show that
C(y) is the derivative of g(y), let w = g(y + h) - g(y), B(g(y),y) = B(y),
A (g(y),y) = A (y) and observe that w satisfies the equation

w-B(y)w-A(y)h+ f(w,h,y)= 0

where, for any e >. 0, there is a v > 0 such that I f(w, h, y) I < e(I w l + I hl) for
I hi < v, y in W°. From Corollary 3.1,

w- [I-B(y)]-'A(y)wtF(w,h,y)= 0

where IF(w,h,y)I < e(1 - 6)-1(Iwl + Ihl) for Ih1 < v,y in (g°. But, this
implies

Iwl <-µ1h1,. 1= 21[I-B(y)]-'A(E')I + 1

iy- [I-B(y)]-'A(y)hl 5-e(1
±s)

Ihl .

for Ihl < v. This shows that g(y) is continuously differentiable in y and the
derivative is given by C(y) satisfying Equation (3.1). This completes the proof
of the theorem.

To illustrate the contraction principle, we prove the following important
theorem of implicit functions. In the statement of this result det A for an
m x m matrix A denotes the determinant of A.

THEOREM 3.3. (of Implicit Functions). Suppose F: Rm x Rn --> Rm has
continuous first partial derivatives and F(0, 0) = 0. If the Jacobian matrix
8F(x, y)/8x of F with respect to x satisfies det 8F(0, 0)/8x 0, then there
exist neighborhoods U, V of 0 in Rm, Rn, respectively, such that for each
fixed y in V the equation F(x, y) = 0 has a unique solution x in U. Further-
more, this solution can be given as x = g(y), where g has continuous first
derivatives and g(O) = 0.

PROOF: Let us write
F(x, y) = Ax - N(x, y),

A - 9F(0, 0)
8x
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N(x, y) =
aF(0, 0)

x - F(x, y), N(0, 0) = 0.

FromFrom the expression for N, we have

aN(x, y) aF(0, 0) aF(x, y)
ax ax ax

The hypothesis of continuity of aF(x, y)/ax implies bN(x, y)/ax - 0 as x -* 0,
y -- 0. We therefore have the existence of a function k(y, p) which is con-
tinuous in y e Rn and p >_.0 such that k(0, 0) = 0 and

IN(x, y) - N(x, y)I < k(y, p)I x - xI

for all y in Rn and x, x with IxI, IxI < p. Since the matrix A is assumed to be
nonsingular, finding a solution to F(x, y) = 0 is equivalent to finding a
solution of the equation x = A-1N(x, y), where A-1 is the inverse of A. This
is equivalent to finding a fixed point of the operator T y: Rm --* Rm defined
by Tyx = A-1N(x, y). We now show that Ty is a contraction on an appropri-
ate set. There is a constant K (see Exercise 2.2) such that I A-1xi < KIxj for
all x in Rm and therefore

ITyxI =IA-1N(x, y)I <KIN(x,y)I

= K I N(x, y) - N(0, y) + (0, y)I

<Kk(y, p)Ixi +KIN(0, y)I
ITyx-Tyxl <Kk(y, p)Ix-x1

for IxI, IxI < p and all y. Choose e, S positive and so small that

Kk(y, p)p + K I N(0, y)I < s f o r Iyl < S, p < E,
sup{Kk(y, p), I yI < S, p < e} < 1,

and let U = {x in Rm: IxI < e}, V = {y in Rn: IyI < S}. It follows that Ty is
a uniform contraction of U into U for y in Vo. Therefore Ty has a unique
fixed point g(y) in U from Theorem 3.1. It is clear that g(0) = 0. Since Ty x
is continuous in y for each x it follows from Theorem 3.2 that g(y) is con-
tinuous in y. Also T y x has continuous first derivatives with respect to x
and y with the derivative with respect to x being given by A-1 aN(x, y)/ax.
Theorem 3.2 implies therefore the continuous differentiability of g(y) in y and
completes the proof of the implicit function theorem.

EXERCISE 3.6. State and prove a generalization of Theorem 3.3 for
Banach spaces. Hint: Redo the steps in the proof of Theorem 3.3 for Banach
spaces making appropriate changes and hypotheses where necessary.

The contraction mapping principle can be regarded as a fixed point
theorem. Other fixed point theorems of a more sophisticated type are very
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useful in differential equations. We formulate two more which are used in
this book.

An obvious fixed point theorem in one dimension is the following: any
continuous mapping of the closed interval [0, 1] into itself must have a fixed
point. The proof is obvious if one simply observes that the existence of a
fixed point is equivalent to saying that the graph of the function in 2-space
must cross the diagonal of the unit square with vertices at (0, 0), (1, 0),
(0, 1), (1, 1). After some thought it seems plausible that a similar result should
hold in higher dimensions but the proof is difficult. This is the celebrated

BRouwER FIXED POINT THEOREM. Any continuous mapping of the
closed unit ball in Rn into itself must have a fixed point.

If a subset A of Rn is homeomorphic to the closed unit ball in Rn and f
is a continuous mapping of A into A, then the Brouwer Fixed Point Theorem
implies f has a fixed point in A.

Suppose f : Rn -* Rn is a continuous mapping. The zeros of the function
f coincide with the fixed points of the mapping g defined by g(x) = x + f (x).
If we can show that there is a set D in Rn which is homeomorphic to the closed
unit ball in Rn such that g takes D into D, then the Brouwer fixed point
theorem implies that g has a fixed point in D and f has a zero in D. This is a
very important application of the Brouwer fixed point theorem.

The Brouwer fixed point theorem has been generalized to Banach
spaces by Schauder and even more general spaces by Tychonov. We formulate
this result for Banach spaces. Recall that a subset d of a Banach space is
compact if any sequence {qn}, n =1, 2, ... in rat has a subsequence which
converges to an element of a. A subset sad is convex if for x, y in ,sd it follows
that tx + (1 - t)y is in sad for 0 < t < 1; that is, sl contains the " line seg-
ment " joining x and y. A mapping f of a Banach space ' into a Banach space
'J is said to be compact if for every bounded set ,0' in ' the closure of the
set {f (x), x in sad} is compact. If, in addition, f is continuous, it is called
completely continuous.

SCHAUDER FIXED POINT THEOREM. If d is a convex, compact subset
of a Banach space
in sad.

' and f : sd -> sl is continuous, then f has a fixed point

COROLLARY: If sad is a closed, bounded, convex subset of a Banach
space ' and f : d -* d is completely continuous, then f has a fixed point in d.

The proof of the corollary proceeds as follows: Since f (sad) a d and sat
is closed, the closure of f (d) belongs to sad and is compact by hypothesis.
Furthermore, the convex closure -4 off (,u?) [the smallest closed convex set
containing f (,d)] belongs to sad since sad is convex. A theorem f Mazur
states that ad is compact. Since . c si, f (9) e f (sat) c 9 and the previous
result implies the existence of a fixed point in -4 e sad.
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As remarked earlier, the Schauder theorem was extended to more general
spaces (locally convex linear topological spaces) by Tychonov. We do not
wish to introduce all of the terminology of locally convex linear topological
spaces. In fact, the only such space for which we need the extended form of
this theorem is for the space of continuous functions f: R --* Cn for which
convergence in the space is equivalent to uniform convergence on compact
subsets. A set is bounded in this space if all elements of the set are uniformly
bounded continuous functions. The statement of the extended form of this
theorem is now exactly the same as before. We will refer to the fixed point
theorem in this situation as the Schauder-Tychonov theorem.

EXERCISE 3.7. Show the Schauder theorem is false if either the com-
pactness or the convexity of A is eliminated.

A very useful compact, convex subset of (I,' Rn), I a closed bounded
interval of R1, is obtained in the following manner. Suppose M, f are positive
constants and sat is the subset of W(1, Rn) such that 0 in .sd implies 101 < P,
10(t) - ¢(t)l < M It -11, fort, 1 in I. The set ,sat is obviously convex and closed.
Furthermore, any sequence {0n} in d is uniformly bounded and equi-
continuous. Lemmas 1.1 and 1.2 imply the existence of a 0 in '(I, Rn) such
that limn.w 0. = 0. But d is closed so that ¢ belongs to ,sat. This proves
compactness of d.

The following books are standard references on analysis and functional
analysis.

Dunford, N., and J. T. Schwartz, Linear Operators, Part I: General Theory, Interscience,
New York, 1964.

Graves, L. M., The Theory of Functions of Real Variables, 2nd Edition, McGraw-Hill,
New York, 1956.

Hurewicz, W., and H. Walman, Dimension Theory, Princeton University Press,
Princeton, N.J., 1941.

Liusternik, L. A., and V. J. Sobolev, Elements of Functional Analysis, Ungar, New York,
1965.

Rudin, W., Real and Complex Analysis, McGraw-Hill, New York, 1966.
Yoshida, K., Functional Analysis, Springer-Verlag, Berlin, 1965.



CHAPTER I

General Properties of Differential Equations

The purpose of this chapter is to discuss those properties of differential
equations which are not dependent upon the specific form of the vector field.
The basic existence theorem of Section 1 shows that a differential equation
does define a family of functions and Sections 2 and 3 discuss the dependence
of this family upon the initial values and parameters. Section 4 contrasts the
concept of stability with the concept of continuous dependence upon initial
values. Section 5 is concerned with differential equations with vector fields
that are only Lebesgue integrable in t. Section 6 is devoted to differential
inequalities and their application to the problem of obtaining upper and lower
bounds for solutions of differential equations. Sections 7 and 8 deal with
some properties of the solution of differential equations which are character-
istic of the fact that the vector field is independent of time; namely, the
existence of cylinders of orbits near regular points and the concepts of
invariant and minimal sets.

I.I. Existence

Let t be a real scalar; let D be an open set in Rn+1 with an element of
D written as (t, x) ; let f : D -. Rn, be continuous and let x = dx/dt. A differen-
tial equation is a relation of the form

(1.1) i(t) = f(t, x(t)) or, briefly t = f(t, x).

We say x is a oluti of (1.1) on an interval I e R if x is a continuously
differentiable function defined on I, (t, x(t)) a D, t e I and x satisfies (1.1)
on I. We refer to f as a vector field on D.

Example I.I. Let D = R2, f (t, x) = x2. The function 4(t)
t } c'

c an arbitrary real number, c 0 0, is a solution of i = x2 for t e (-c, oo) if
c>0; t e (-co, -c) if c <0. (See Fig. 1.1).

12
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x

Figure 1.1.1

Example 1.2. Let D = R2, f (t, x) = Jx for x 0, = 0 for x < 0. The
function 0(t) = (t - c)2/4, t >_ c, is a solution of i = Jx, x >_ 0. Notice x = 0
is also a solution (see Fig. 1.2).

uation 1.1Suppose (to, xo) e D is given. An initial value problem or eq
consists of finding an interval I containing to and a solution x of (1.1)

Figure 1.1.2
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satisfying x(to) = xo . We write this problem symbolically as

(1.2) x=f(t, x), x(to) =x0, t C- I.

If there exists an interval I containing to and an x satisfying (1.2), we refer
to this as a solution of (1.1) passing through (to, xo).

For the initial value problem, i = x2, x(0) = -c, c real, Example 1.1
shows the interval .1 may depend upon c and may not be the whole real line.

The initial value problem i = /x, x >_ 0, x(0) = 0, has the solution
x = 0 on (- oo, oo). The function

t c 2

X(t) 4

0, t < c.

is also a solution. Therefore there need not be a unique solution of (1.2) for
every continuous function f.

Our first objective in this chapter is to discuss existence, uniqueness,
continuation of solutions, and continuous dependence of solutions on initial
data and parameters.

First, notice that consideration of vector equations makes it unnecessary
to consider nth order equations. In fact, if y is a scalar, y(f) denotes dfy/dtf and

y(n) = F(t, y, y' . , y(n-1))

y(f) (to) = xf+i, o, j = 0, 1, ..., n -1,

then, letting x = (y, y(1), y(n-1)), f = (X2, ... , xn , F), we obtain the
equivalent problem

i =f (t, x), x(to) = xo = (x10 , ... , xno)

Also, complex valued differential equations of the real variable t are
included in the discussion of (1.1) since one can obtain a real system by
taking the real and imaginary parts.

LEMMA 1.1. Problem (1.2) is equivalent to

(1.3) x(t) = x0 + f
t
f (T, x(T)) dr

to

provided f (t, x) is continuous.
The proof of this lemma is obvious.

1THEOREM.1.1. Peano (Existence d If f is continuous in D, then for
any (to, xo) e D, there is at least one solution of (1.1) passing through (to , xo).

PROOF. Suppose a, fl are positive numbers chosen so that the closed
rectangle B(a, P, to, xo) =B(a,f) ={(t,x):teIJ x - xol <fl}, Ia=1 (to) =
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{t: It - tol < a}, belongs to D. Let M = sup{I f (t, x)I , (t, x) e B(a, fl)}. Choose
a, P so that 0 <& 5 «, 0 <g S,8, M& 5 and define the set d =sad(&. g)
of functions 0 in '(Id, R71) which satisfy 0(to) = xo, I0(t) -xoI 5 g for all
t in Iz I. From Chapter 0 the set d is convex, closed and bounded.

For any 0 in d define the function To by the relation

t

To(t): xo+ f f (s, 6(s)) ds, t o Ia,
to

From Lemma 1.1 finding fixed points of T is equivalent to solving the above
initial value problem for (1.1). We now apply the Schauder fixed point
theorem to assert the existence of a fixed point of T in sad.

Obviously To, 0 in sf, is in '(I-, Rn) and T¢(to) = xo. Also, for t e Ia,

t

I TO(t) - xoI f If (s, 0(s))I ds
to

<M&

since B(&, P) c B(oe, f). Thus T: sd->a. Also

<MIt -toI

I Tc(t) - TO(1)I < I f
t

If (s, 0(s))I ds 15 M It -11
t

for all t, t in I. This implies the set T(sW) is an equicontinuous family and
tlNerefore the closure of T(si) is compact.

Finally, for any 0, c in sad, it follows from the uniform continuity of
f (t, x) on B(x, P) that for any E > 0 there is a 8 > 0 such that

I TO(t) - I 5 f (s, q(s)) -f (s, (s)) Ids 15 e&,
t

fto

for all tin Ia provided that S for all s in I« . But this is precisely
the statement that T is a continuous mapping; that is, for any s > 0, there
is a S > 0 such that I TO - TAI 5 E& if 10 - I 5 S.

All of the conditions of the Schauder theorem are satisfied and we can
assert the existence of a fixed point of sad. This completes the proof of the
theorem.

COROLLARY 1.1. If U is a compact set -of D, U c V, an open set in D
with the closure f of V in D, then there is an a > 0 such that, for any initial
value (to, xo) e U, there is a solution of (1.1) through (to, xo) which exists at
least on the interval to - a 5 t 5 to + cc.

PROOF. One merely repeats the proof of Theorem 1.1 with the further
restriction on &, g to ensure that B(&, g, to, xo) e V for all (to, xo) e U.
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Other proofs of the Peano theorem can be given without using the
Schauder theorem. We illustrate the idea for one special construction, the
Euler method of numerical analysis. This method consists of dividing the
interval Ia = {t: It - tol < (x} into equal segments of length h and then on
each of these small segments approximating the "solution" by a straight
line. 1\Iore specifically, for a given h, define the function Oh on Ia by

/h(t) = xo +f (to, xo)(t - to), to 5 t< to + h,

011(t) = 01(t0 + h) +.f (to + h, 0h(to + h))(t - to - h), t0 + h t to + 2h,

and so forth. One may have to choose « small in order for (t, Oh(t)) to be in
D. Pictorially, we will have a polygonal function defined which for h small
should approximate a solution of (1.1) if it exists. One now chooses a sequence
{hk} such that hk -* 0 as k --* oo and uses the Ascoli-Arzela theorem to show
that a subsequence of the sequence 0hk converges to a solution of (1.1).

EXERCISE I.I. Supply all details of the proof of the Peano theorem of
existence using polygonal line segments.

EXERCISE 1.2. State an implicit function theorem whose validity will
be implied by the existence Theorem I.I.

1.2. Continuation of Solutions

If is a solution of a differential equation on an interval I, we say
is la continuation of if is defined on an interval 1 which properly contains I,

coincides with 0 on I and $ satisfies the differential equation on I. A
solution 0 is noncontinuable if no such continuation exists; that is, the interval
I is the maximal interval of existence of the solution .

LEMMA 2.1. If D is an open set in Rn+I, f : D Rn is continuous and
bounded on D, then any solution q(t) of (1.1) defined on an interval (a, b) is
such that /(a + 0) and /(b - 0) exist. If f (b, q(b - 0)) is or can be defined
so that f(t, x) is continuous at (b, /(b -0)), then qf(t) is a solution of (1.1)
on (a, b]. The same remark applies to the left endpoint a.

PROOF. We first show that the limits (a + 0), 0(b - 0) exist. For any
to in (a, b),

q(t) = ¢(to) + f f (s, c(s)) ds,
to

and, for a < tI < t2 < b,

a<t<b,

I0(t2) - 0(ti)I < f
is

If (s, ¢(e))l ds < M02 - t1),
t,
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where M is a bound off (t, x) on D. Therefore ¢(t2) - 0(t1) - 0 as ti, t2 --* a + 0,
which implies (a + 0) exists. A similar argument shows that 0(b - 0) exists.

The last conclusion of the lemma is obvious from the integral equation
for 0.

THEOREM 2.1. If D is an open set in Rn+I, f : D -> Rn is continuous and
0(t) is a solution of (1.1) on some interval, then there is a continuation of 0
to a maximal interval of existence. Furthermore, if (a, b) is a . maximal
interval of existence of a solution x of (1.1), then (t, x(t)) tends to the boundary
of D as t -*a and t -* b.

PROOF. Suppose x(t) is a solution of (1.1) on an interval I. If I is not
a maximal interval of existence, then x can be extended to an interval
properly containing I f Therefore, we may assume I is closed on one end, say
to the right. We first show that x can be extended to a maximal right interval
of existence and, therefore,, may assume that I = [a, b] and that x has no
extension over [a, co). The proof of the extension to the left is very similar.

Suppose U is a compact set of D, U c V, an open set in D with the
closure V of V in D. From Corollary 1.1 for any initial value in U there is a
solution of (1.1) existing over an interval of length a depending only on
U, V and the bound of f on V. Therefore, if x(t), a < t< b, belongs to U,
then there is an extension of x to an interval [a, b + a]. Since U is compact,
one can continue this process a finite number of times to conclude there is an
extension of x(t) to an interval [a, bu] such that (ba, x(bu)) does not belong
to U.

Now choose a sequence V. of open sets in D such that Un 1 Vn = D,
Vn closed bounded, 1% c Vn+i for n = 1, 2, .... For each Vn, there is a
monotone increasing sequence {bn} constructed as above so that the solution
x(t) of (1.1) on [a, b] has an extension to the interval [a, bn] and (ba, x(bn))
is not in Vn . Since the bn are bounded above, let co = limn. bn . It is clear
that x has been extended to the interval [a, co) and cannot be extended any
further since the sequence (bk, x(bk)) is either unbounded or has a limit
point on the boundary of the domain of definition of f.

If w = -, the last assertion in the theorem is trivial. Suppose w is finite,
U is a compact set of D and there is a sequence (tk,x(tk)),y in R",(w,y) in
U, such that tk - w, x(tk) - y ask -> -. The fact that f is bounded in a
neighborhood of (w, y) implies x is uniformly continuous on [a, w) and x(t) -*y
as t - c o-. Thus, there is an extension of x to the interval [a, co + a]. Since
w + a > co, this is a contradiction and shows there is a tU such that (t,x(t)) is
not in U for tp < t < w. Since Uis ap arbitrary compact set, this proves (t,x(t))
tends to the boundary of D. The proof of the theorem is complete.

EXERCISE 2.1. For t, x scalars, give an example of a function f (t, x)
which is defined and continuous on an open bounded connected set D and
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yet not every noncontinuable solution 0 of (1.1) defined on (a, b) has 0(a + 0),
0(b - 0) existing.

The above continuation theorem can be used in specific examples to
verify that a solution is defined on a large time interval. For example, if it
is desired to.show that a solution is defined on an interval [to, 00), it is sufficient
to proceed as follows. If the function f (t, x) is continuous for t in (t1, 00),
tl<to, jxj <a, and one can by some means ascertain that a certain
solution x(t) must always satisfy jx(t)j < f < a for all values of t >_ to for
which x(t) is defined, then necessarily x(t) is defined on [to, 00). In fact, choose
any T >_ to and y such that P < y < a and define the rectangle Dl as
Dl ={(t, x): to < t < T, jxj < y}. Then f (t, x) is bounded on Dl and the
continuation theorem implies that the solution x(t) can be continued to the
boundary of Dl. But y > S implies that x(t) must reach this boundary by
reaching the face of the rectangle defined by t = T. Therefore x(t) exists
for to < t < T. Since T is arbitrary, this proves the assertion.

1.3. Uniqueness and Continuity Properties

A function f (t, x) defined on a domain D in Rn+I is said to be locall
li schitzian in x if for any closed bounded set U in D there is a k = kU such
that If (t, x) -f (t, y)j < k Ix - y for (t, x), (t, y) in U. If f (t, x) has continuous
first partial derivatives with respect to x in D, then f (t, x) is locally lipschitzian
in x.

If f (t, x) is continuous in a domain D, then the fundamental existence
theorem implies the existence of at least one solution of (1.1) passing through
a given point (to, xo) in D. Suppose, in addition, there is only one such solu-
tion x(t, to, xo) through a given (to, xo) in D. For any (to, xo) e D, let (a(to, xo),
b(to, xo)) be the maximal interval of existence of x(t, to, xo) and let E c Rn+2
be defined by

E = {(t, to, xo) : a(to, xo) < t < b(to, xo), (to, xo) a D}.

The trajectory through (to, xo) is the set of points in Rn+I given by (t, x(t, to, xe))
for t varying over all possible values for which (t, to, xo) belongs to E. The
set E is called the domain of definition of x(t, to, xo).

The basic existence and uniqueness theorem under the hypothesis that
f (t, x) is locally lipschitzian in x is usually referred to as the Picard-Lindeld f
theorem. This result as well as additional information is contained in

THEOREM 3.1. If f (t, x) is continuous in D and locally lipschitzian with
respect to x in D, then for any (to, xo) in D, there exists a unique solution
x(t, to, xo), x(to, to, xo) = xo, of (1.1) passing through (to, xo). Furthermore,
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the domain E in Rn+2 of definition of the function x(t, to, xo) is open and
x(t, to, xo) is continuous in E.

PROOF. Define Ia = Ia(to) and B(a, f, to, xo) as in the proof of Theorem
1.1. For any given closed bounded subset U of D choose positive a, P so
that B(a, S, to, xo) belongs to D for each (to, xo) in U and if

V = u {B(a, P, to, xo) ; (to, xo) in U),

then the closure of V is in D. Let M = sup{I f (t, x) I , (t, x) in V} and let k
be the lipschitz constant of f (t, x) with respect to x on V. Choose &, P so
that 0 < & < a, 0 < P, M& <_ P, k& < 1 and let F = {0 in 6(Ia(0),
Rn): 0(0) = 0, 1O(t)I for tin la(0)}. For any 0 in ,F, define a continuous
function To taking Ia(0) into Rn by

t+to
(3.1) TO(t) = f f (s, q(s - to) + xo) d8, t in 1,2(0).

to

By Lemma 1.1, the fixed points of T in F coincide with the solutions
x(t) = 4(t - to) + xo of (1.1) which pass through (to, xo) and are such that
(t, x(t)) is in B(&, P, to, xo). Obviously, TO(0) = 0 and it is easy to see that
TO(t)[< M& < $ for all t in Ia(0). Therefore, TF c ,F. Also, I TO(t) - Tc(t) I
< k& JO - J for tin Ia(0) or ITO - k& I ¢ -. Since k& < 1, T is a
contraction mapping of .F into ,F. Since F is closed, there is a unique fixed
point 9c(t, to, xo) of T in F and therefore there is a unique solution of (1.1)
passing through (to, xo) and such that (t, x(t)) belongs to B(&, 9, to, xo).

If the mapping T is considered as a function of (to, xo); that is, T =
T (to, X0) , then the above argument shows that T (to, xo) is a uniform contraction
on . for (to, xo) in U. Therefore, to, xo) is continuous in (to, xo) from
Theorem 0.3.2. This means q(t, to, xo) is continuous in to, xo uniformly with
respect to t. But ¢(t, to, xo) is obviously continuous in t and therefore
O(t, to, xo) is jointly continuous in (t, to, xo) for t in Ia(0), (to, xo) in U.
Finally, the function x(t, to, xo) = O(t - to, to, xo) + xo is a continuous func-
tion of (t, to, xo) for tin Ia(to), (to, xo) in U.

The above proof of local uniqueness implies global uniqueness. In fact,
if there exist two solutions x(t), y(t) of (1.1) with x(to) = xo, y(to) = yo and a
number s such that x(s) = y(s) and, in any neighborhood of s, there exist an
s such that x(s) y(s), then we can enclose the trajectories defined by x(t),
y(t) for t in a neighborhood of s in a compact set U contained entirely in D.
The above proof shows there is a unique solution of (1.1) passing through
any point in U. This is a contradiction.

Now suppose (s, to, xo) is any given point in the domain of definition
E of x(s, to, xo). For ease in notation suppose s >_ to. The case s < to is treated
in the same manner. This implies the closed set U = {(t, x(t, to, x0), to < t< s }
belongs to E. Therefore, we can apply the previous results to see that x(t, , , )
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is a continuous function of (t, , q) for It - fI < a, (6, -q) in U. There exists
an integer k such that to + k& > s >_ to + (k - 1)&. From uniqueness, we have
x(t + to + &, to, xo) = x(t + to + &, to + &, x(to + a, to, xo)) for any t. But the
previous remarks imply this function is continuous for Itl < a. Therefore,
x(e, to, xo) is continuous for 16 -toI <_ 2«, (to, xo) in D as long as (6, to, xo)
is in E. An obvious induction argument proves the continuity of x(s, to, xo)
at s. The previous argument also implies E is open. This proves the theorem.

THEOREM 3.2. If in addition to the hypotheses of Theorem 3.1 the
function f =f (t, x, A) depends upon a parameter A in a closed set G in Rk,
is continuous for (t, x) in D, A in G, and has a local lipschitz constant with
respect to x independent of A in G, then for each (to, xo) in D, A in 0, there
is a unique solution x(t, to, xo, A), x(to, to, xo, A) = xo, passing through
(to, xo) and it is a continuous function of (t, to, xo, A) in its domain of defini-
tion.

PROOF. The proof is essentially the same as the proof of Theorem 3.1
except one chooses M = sup{ I f (t, x, A )1 : (t, x, A) in V x GI} and k independent
of A to be a local lipschitz constant with respect to x on V x GI, where GI
is an arbitrary closed bounded set in G.

Since the contraction principle was used in Theorems 3.1 and 3.2 to
prove the local existence and uniqueness of the solution passing through
(to, xo) the solution can be obtained by the method of successive approxima-
tions

(3.2) x(n+I) = Tx(n), n = 0, 1, 2, ...,
t

Tx(t) = xo + f f (s, x(s)) ds, it -to I < a,
to

where x(0) is an arbitrary continuous function taking the interval It - tol <__ a
into Rn with I x(o) (t) - xo I < g for I t - to I < a. The constants a, g were chosen
so that M& <_ $ and kP < 1 where M and k were bounds on f (t, x) and its
lipschitz constant with respect to x over a certain compact set. An obvious
choice for x(o)(t) is the constant function xo. Now, if one works directly with
the successive approximations (3.2), one can prove the iterations converge
and the equation (1.1) has a unique solution on the interval It -to I < &
under only the assumption M& < g with the restriction k& < 1 being un-
necessary. This makes it appear that the contraction principle is not as
effective as successive approximations whereas we implied in Chapter 0 that
this principle was introduced so as to replace successive approximations.
The discrepancy is resolved by simply observing there are many equivalent
norms on the space of continuous functions satisfying Ix(t) - xoI for t in
[to, to + &]. In fact, with the constants as above, the norm defined by

IxI = sup {{'2k(t-tu)Ix(t)I},
to5t5Vo+2F
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is equivalent to the supremum norm used earlier. In this norm, one shows
easily that T is a contraction only r under the assumption M&< 9, which is
the same result obtained by successive approximations. How do you resolve
the above discrepancy on [to - &, to]?

Another remark on successive approximations is the fact that one can
obtain convergence of the sequence defined by (3.2) for any initial x(0)
satisfying appropriate bounds. The sequence obviously would converge more
rapidly by a more clever choice of x(o)(t) depending upon f since choosing
x(o)(t) as the solution itself would yield the, fixed point in one iteration.
Effective use of such a procedure would require tremendous ingenuity.

EXERCISE 3.1. Prove directly that the sequence of successive ap-
proximations (3.2) converges for M&::5 R where M is a bound for f on
{(t, x): I t - tol < i x , I x -xol < g).

In the following, we need other results on the dependence of solutions
on parameters and initial data.

THEOREM 3.3. If f (t, x, A) has continuous first derivatives with respect
to x, A for (t, x) E D, A in an open set G e Rk, then the solution x(t, to, xo, A),
x(to , to) xo, A) = X0, of

(3.3) x=f(t,x;A),
is continuously differentiable with respect to t, to, xo, d in its domain of
definition. The matrix ax(t, to, xo, A)/aA, ax(to , to, xo, A)/aa = 0, satisfies the
matrix differential equation

A), A)
(3.4) y =

of (t, x(t, to, X0, A), A) + of (t, x(t, to, X0,
ax

y
as

The matrix ax(t, to, xo, A)/axo, ax(to, to, xo , A)/axo = I, the identity, satisfies
the linear variational equation,

(3.5)
of (t, x(t, to, X0, A), A)

y = ax
y.

Furthermore,

(3.6)
ax(t, to, XO, A) ax(t, to , xo , A)

- - I (to, xo, a).
ato axo

PROOF. As in Theorem 3.2, we apply Theorem 3.2, Chapter 0. If y =
(xo, A), and T = TV is defined by (3.1), then we must compute the derivatives
A(y, B(y, of TV 0 with respect to y, 0, respectively. One shows easily
that A(y, ) can be represented by the n x (n + k) matrix

f(to+t(af(s, 0(s -to) + X0, d
A)s,

A(y> )(t) =
L fto \ ax 1

o+t(faf(s/(s - to) + xo), a
JaA

ds
e
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and the differential B(y, O)o is given by

eo+c of (s, 0(s - to) + xo , A)
0(8) ds.

to

As in the proof of-Theorem 3.2, the constants M, k are chosen as before
relative to the set V x GI with GI a closed bounded set in G. The proof of
the differentiability of 0(t, to, xo, A) with respect to xo, A now proceeds
exactly as in the proof of Theorem 3.1. The function x(t, to, xo
0(t - to, to, xo, A) + xo is obviously differentiable in (t, xo, A).

Knowing the differentiability immediately implies relations (3.4) and
(3.5). To obtain relation (3.6) observe that uniqueness of the solution implies
x(t, to, xo, A) = x(t, to + h, x(to + h, to, X0, A), A) for any h sufficiently small
since at to + h, these two functions satisfy the equation and take on the same
values. Therefore,

x(t, to + h, xo, A) - x(t, to, xo, A)

= x(t, t o + h, xo, A) - x(t, to + h, x(to + h, to, X0, A), A)

and this implies x(t, to, xo, A) is differentiable in to and relation (3.6). The
proof of the theorem is complete.

By repeated application of the above theorem, one can obtain higher
order derivatives of x(t, to, xo, A) under appropriate hypotheses of f.

EXERCISE 3.2. If f (t, x) has continuous partial derivatives with respect
to x up through order k, show that the solution x(t, to, xo), x(to, to, xo) = xo,
of (1.1) has continuous derivatives of order k with respect to xo. Find the
differential equation for the jth derivatives with respect to xo and observe
that the Taylor series for x(t, to, y) in y in a neighborhood of xo is obtained
by solving only nonhomogeneous linear equations.

EXERCISE 3.3. If f (t, x) is analytic in x in a neighborhood of xo, show
there is an interval around to such that the function x(t, to, xo) of Exercise 3.2
is analytic in a neighborhood of xo.

EXERCISE 3.4. If f (t, x, A) has continuous partial derivatives with
respect to x, A up through order k, show that the solution x(t, to, xo , A),

x(to , to, xo, A) = xo, of (3.3) has continuous derivatives of order k with respect
to xo, A. Find the differential equations for the partial derivatives with
respect to A. Discuss the determination of the Taylor series in the neighbor-
hood of some point.

EXERCISE 3.5. As in Exercise 3.2, discuss the analyticity properties of
x(t, to, xo, A) in A when f (t, x, A) satisfies some analyticity conditions.
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EXERCISE 3.6. Show that the solutions of the equation x = (A(t)
+ AB(t))x where IB(t)1, I A (t) I are continuous and bounded are entire functions
of A. Can you generalize your result?

EXERCISE 3.7. Suppose f (t, x, y) is continuous and has continuous first
derivatives with respect to x, y for 0 < t < 1, x, y c- (- oo, 00), and the
boundary value problem

x =f (t, x, x), x(0) = a, x(1) = b,

has a solution 0(t), 0 <_ t < 1. If of (t, x, y)/ax > 0 for t e [0, 1] and all x, y,
prove there is an e > 0 such that the boundary value problem

x = f (t, x, x), x(0) = a, x(1) = 9,

has a solution for 0 < t < 1 and P - b1 e. Hint: Consider the solution
0(t, a) of the initial value problem

a x = f (t, x, x), x(0) = a, i(0) = a,

and let 0(t, ao) = 0(t). For a - ao sufficiently small, 0(t, a) exists for
0< t < 1. If u(t) = as/i(t, ao)/aa, then

at), fi(t)) u _ of (t, axt)> fi(t)) u = o,
y

with u(0) = 0, it(O) =1. Show that u is monotone nondecreasing and, thus,
u(1) > 0. Use the implicit function theorem to solve s,i(l, a) - P = 0 for a as
a function of P.

Equation (3.5) is called the linear variational equation for the following
reason. If x(t) = z(t) + x(t, to, xo, A) is a solution of (3.3), then

ax(t, to, xo, A)
z(t) + at = f (t, z(t) + x(t, to, xo , A), A).

This implies

z(t) =f (t, z(t) + x(t, to, xo , A), A) -f (t, x(t, to, xo , A), A)

= of (t, x(t, to, X0, A), A)
z(t) + o(I z(t))I )ax

as Iz(t) I approaches zero. Equation (3.5) therefore represents the first approxi-
mation to the variation z(t) of the true solution of (3.2) from a given solution
x(t, to, xo, A). The linear variational equation is obtained by neglecting the
terms of order higher than the first in the equation for z.

The conclusions of Theorems 3.1 and 3.2 concerning the continuity
properties of x(t, to, xo, A) are valid under much weaker hypotheses than
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stated. In fact, if we assume the uniqueness of the solution x(t, to, xo) (which
is implied when you have a local lipschitz condition in x) then one can prove
directly that it must be continuous in (t, to, xo). We need one such result in
the study of differential inequalities which we now formulate.

LEMMA 3.1. Suppose {fn}, n = 1, 2, ... , is a sequence of functions
defined and continuous on an open set D in Rn+I with limn- fn =fo uni-
formly on compact subsets of D. Suppose (tn, xn) is a sequence of points in D
converging to (to , xo) in D as n oc and let O ,(t), n = 0, 1 , 2, ... , be a solu-
tion of the equation x = fn(t, x) passing through the point (tn, xn). If 00(t)
is defined on [a, b] and is unique, then there is an integer no such that each
an(t), n >_ no, can be defined on [a, b] and converges to Oo(t) uniformly on
[a, b].

PROOF. Let U be a compact subset of D which contains in its interior
the set {(t, Oo(t), a t < b} and suppose I fol <M on U. Then necessarily
Ifn I < M on U if n no where no is sufficiently large. Choosing a, 9 as in the
proof of the basic existence theorem such that Ma < 9, one can be assured
for n sufficiently large that all the On(t) are defined on [tn , to + &]. If [8, y] =
nn [tn , to + &], then the fact that to to implies 8 < y. Also, all the 0. for
n sufficiently large are defined on [8, y]. The sequence {din} is uniformly
bounded and equicontinuous since I fn I < M. Therefore, there exists a sub-
sequence which we label again as On which converges uniformly to a function
0 on [8, y]. Using the integral equation, we see that is Oo. Since every
convergent subsequence of On on [8, y] must also converge to qo (by unique-
ness of 00) it follows that On converges to 00 on [8, y]. Due to the compact-
ness of the set {t, O(t)j, t in [a, b], one completes the proof by successively
stepping intervals of length y - 8 until [a, b] is covered.

THEOREM 3.4. Suppose f (t, x, A) is a continuous function of (t, x, A) for
(t, x) in an open set D and A in a neighborhood of A0 in RP. If x(t, to, xo, A0),
x(to, to, xo, A0) = xo, is a solution of (3.3) on [a, b] and is unique, then there
is a solution x(t, s, 71, A), x(s, s, -q, A) ='7, of (3.3) which is defined on [a, b]
for all s, -q, A sufficiently near to, xo, A0 and is a continuous function of
(t, s,,q, A) at (t, to, xo, A0)

PROOF. Lemma 3.1 implies that x(t, s, -q, A) is a continuous function of
s, 77, A at to, xo, A0 uniformly with respect to t in [a, b]. Thus, for any s > 0
there is a 81 > 0 such that

E
Ix(t, s, A) -x(t, t0, x0, Ao) I <2

if 1(8, 77, A) - (to, X0, A0) I < 81. Since x(t, to, xo, A0) is a continuous function
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of t for tin [a, b], there is a 82 such that

s
I x(t, to, xo, Ao) - x(T, to, X0, Ao) I <

2

if It - T I < 82. Let 8 = min(8i, 82). Then

I x(t, s, -q, A) - x(r, to, xo, Ao) I

<_ I x(t, s, 77, A). - x(t, to, X0, Ao) I + Ix(t, to, X0, Ao) - x(T, to, X0, Ao) I

< e,

provided that I (s, 71, A) - (to, xo, Ao) I + It - rI < S. This proves Theorem 3.4.
Under appropriate hypotheses, the solutions of differential equations

define homeomorphisms of subsets of Rn into Rn. In fact, let us assume for any
(to, xo) in D, the equation (1.1) has a unique solution x(t, to, xo) which is
jointly continuous in (t, to', xo) in its domain of definition. If x(t, to, xo) exists
on an interval [a, b], then there is a neighborhood U(xo) of xo for which the
solution x(t, to, xI) exists for tin [a, b] and xI in U(xo). For fixed to and each
tin [a, b], the function x(t, to, ) can be considered as a mapping Tt of U(xo)
into a neighborhood of x(t, to, xo). The mapping Tt is one to one and con-
tinuous by hypothesis and Tt 1x* = x(to, t, x*). Therefore the inverse function
is also continuous which implies Tt is a hoineomorphism.

We are now in a position to define a general solution of (1.1). Let U be
an open connected set in Rn and 0: R X U - Rn be such that: (a) for any c
in U, 0(t, c) is a solution of (1.1); (b) for any to in R, the mapping 0(to, ):

U - . Rn is a homeomorphism on its range. Such a function 0 will be referred
to as a (local) general solution of (1.1).

1.4. Continuous Dependence and Stability

Consider the equation z =f (t, x) with f (t, 0) = 0 for all tin (- oo, oo)
and the function f (t, x) defined for all (t, x) in Rn+i. For any (to, xo) in
Rn+I, we suppose this equation has a unique solution x(t, to, xo), x(to, to, xo) =
xo, which is jointly continuous in (t, to, xo) in its region of definition. Since
f (t, 0) = 0 for all t, it follows that x = 0 is a solution on (- oo, co). The hypo-
thesis of continuous dependence implies. that given any real numbers to in
(- oo, oo), T >_ 0, there exists a 8(T) > 0 such that the solution x(t, to, xo),
Ixo I < 8(T) exists on Ito, to + T]. Furthermore, I x(t, to, xo) I --0 uniformly in t
on [to , to + T] as Ixol -* 0. In other words, given any T > 0 and any.e > 0,
there is a 8 = 8(s, T, to) such that the solution x(t, to, xo) exists on I =
[to, to+T], Ix(t, to, xo)I <s on I provided that IxoI <8(e, T, to) (see the
accompanying figure).
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Figure 1.4.2

Let us discuss in detail the meaning of continuous dependence on initial
data for the equation z = x2. Choose to = 0 and let xo = c. A solution
x(t, to, xo) = x(t, 0, c) of this equation is x(t, 0, c) _ -c/(ct - 1). Uniqueness
implies this is the solution with x(0) = c. It is clear that x(t, 0, c) is continuous
in t, c in-the domain of definition of x(t, 0, c). Since x(t, 0, 0) = 0, this implies
for any T > 0 and any e > 0, there is a 8 = 6(e, T) > 0 so that Ix(t, 0, c)I < e

if I cI < 8. The largest value of 8 is 8/(1 - 8T) = e. As T increases, 8 must
decrease and, in fact, 8 must approach zero as T -* oo. This implies the
continuity of x(t, 0, c) in c is not uniform with respect to t in the infinite
interval 10, ool. For this equation, it is even true that no solution with
x (O) = c > 0 exists on [0, oo .

Even though continuous dependence on parameters and initial data is
important, it gives information only on finite intervals of time as the above
remarks show. An even moreimxnnrta.nt nnncent is nnn4.innrnis de endence
on initial data on infinite intervals of time. This is the concept oastabilitvj
in the remainder of this section we assume f smooth enough to ensure exist-
ence, uniqueness and continuous dependence on parameters.

Definitions. Suppose f : [0, oo) x Rn - Rn. Consider t =f (t, x),
f (t, 0) - 0, t e [0, oo). The solution x = 0 is called L'aa.p u. o v stable. if for
any e > 0 and any to >_ 0, there is a 8 = 8(e, to) such that I xoI < 8 implies
jx(t, to, xo) I < e for t e [to, oo). The solution x = 0 is uniformly stable if it is
stable and 8 can be chosen independent of to >_ 0. The solution x = 0 is called
asl/mvtotically stable if it is stable and there exists a b = b(to) such that
ixol < b implies- l x(t, to, xo) I -*0 as t -moo. The solution x = 0 is 4niformly,
asymvtotically stable if it is uniformly stable, b in the definition of s,srmptotic
stability can be chosen independent of to >_ 0, and for every rl > 0 there is a
T(i) > 0 such that Ixol < b implies jx(t, to, xo)j <, if t >_ to + T(-q). The
solution x = 0 is unstable if it is not stable.
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Pictorially, stability is the same as in the above diagram except the
solution must remain in the infinite cylinder of radius e for t ? to.

We can discuss the stability and asymptotic stability of any other
solution x(t) of the equation by replacing x by x + y and discussing the zero
solution of the equation y =f (t, x + y) -f (t, x). The definitions of stability
of an arbitrary solution t(t) are the same as above except with x replaced by
x - x(t).

LEMMA 4.1. 1 If f is either independent of t or periodie in t, then the
solution x = 0 of (1.1) being stable (asymptotically stable) implies the solu-
tion x =0 of (1.1) is uniformly stable (uniformly asymptotically stable).

EXERCISE 4.1. Prove Lemma 4.1.

EXERCISE 4.2. Discuss the stability and asymptotic stability of every
solution of the equations z = -x(1 - x), x + x = 0, and .x + 2-1[x2 +
(x4 + 4x2)'/2]x = 0. The latter equation has the family of solutions x =
c sin(ct + d) where c, d are arbitrary constants.

Does stability defined in the above way depend on to in the sense that a
solution x = 0 may be stable at one value of to and not at another? The
answer is no! For tl <_ to, this follows immediately from continuity with
respect to initial data. In fact, stability of x = 0 implies the existence of a
8(t0 , e) > 0 such that ixol < 8(to, e) implies jx(t, to, xo) < e, t >_ to. Conti-
nuity with respect to initial data implies the existence of a 81 = 81(t1, e, to, S)
> 0 so small that 1xl < 81(t1, e) implies Ix(t, ti, xl) < 8(to, e), t1 < t< to.
Then ix(t, ti, xl)l < e fort >_ t1, provided that 1xii <_ 81(tl, e); that is, stability
at t1. For tl >_ to, it is not quite so obvious. Let V(ti, e) _ {x in Rn: x =
x(ti, to, xo) for xo in the open ball of radius 8(to, s) centered at zero}. Since
the mapping x(tl, to, ) is a homeomorphism, there exists a 81(t1, e) such that
{x: Ixj <_ 81(t1, e)} e V(tl, E). With this 81(t1, s) we have jx(t, ti, xi) I < e for
t > ti and 1xiI < 8(t1, e); that is, stability at t1.

EXERCISE 4.3. In the above definition of asymptotic stability of the
solution x = 0, we have supposed that x = 0 is stable and solutions with
initial. values neighborhood of zero approach zero as t ---> oo. Is it possible
to have the latter property and also have the solution x = 0 unstable? Show
this cannot happen if x is a scalar. Give an example in two dimensions where
all solutions approach zero as t --> oo and yet the solution x = 0 is unstable.
Is it possible to give- such an example in two dimensions for an equation
whose right hand sides are independent of t?

It is not appropriate at this time to have a detailed discussion of
stability, but we will continually bring out more of the properties of this
concept.
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1.5. Extension of the Concept of a Differential Equation

In Section 1.1, a differential equation was defined for continuous vector
fields f. As an immediate consequence, the initial value problem for (1.1) is
equivalent to the integral equation

c

(5.1) x(t) = xo +

f
f (s, x(s)) ds.

to

For f continuous, any solution of this equation automatically possesses a
continuous first derivative. On the other hand, it is clear that (5.1) will be
meaningful for a more general class of functions f if it is not required that x
have a continuous first derivative. The purpose of this section is to make
these notions precise for a class of functions f.

Suppose D is an open set in Rn+1 and f : D - . Rn is not necessarily con-
tinuous. Our problem is to find an absolutely continuous function x defined
on a real interval I such that (t, x(t)) e D for t, in I and

(5.1) x(t) =f (t, x(t))

for all t in I except on a set of Lebesgue measure zero. If such a function x
and interval I exist, we say x is a solution of (5.1). A solution of (5.1) through
(to, xo) is a solution x of (5.1) with x(to) = xo . We will not repeat the phrase
"except on a set of Lebesgue measure zero" since it will always be clear that
this is understood.

Suppose D is an open set in Rn+1. We say that f: D - Rn satisfies the
Caratheodory conditions on D if f is measurable in t for each fixed x, con-
tinuous in x for each fixed t and for each compact set U of D, there is an
integrable function mu(t) such that

(5.2) I f (t, x)I < 'mv(t), (t, x) e U.

For functions f which satisfy the Caratheodory conditions on a domain
D, the conclusions of Sections 1 and 2 carry over without .change. If the
function f (t, x) is also locally Lipschitzian in x with a measurable Lipschitz
function, then the uniqueness property of the solution remains valid. These
results are stated below, but only the details of the proof of the existence
theorem are given, since the other proofs are essentially the same.

THEOREM.5.1. (Caratheodory). If D is an open set in Rn+1 and f
satisfies the Caratheodory conditions on D, then, for any (to, xo) i1f D, there
is a solution of (5.1) through (to, xo).

PROOF. Suppose a, 9 are positive numbers chosen so that the rectangle
B(a, jS) {(t, x): It - to a, I x - xol </3} is in D. LetIa={t: I t - toI <a},
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M = mB(a, d) , M(t) = Jto m(s) ds. Choose «, $ so that 0 < « S a, 0 </ S
I M(t) I < R, t e Ia . Let .sad be the set of functions 0 in 9(Ia , Rn) which satisfy
4(to) = xo, Iq(t) - xo1 < g for all t in Ia . The set sad is a closed, bounded,
convex subset of '(In , Rn).

For any 0 in sd, define the function To by the relation
t

Ti(t) = xo + f f (s, 0(s)) ds, t e la.
to

The fixed points of T in d coincide with the solutions in d of (5.1). We now
apply the Schauder theorem to prove the existence of a fixed point of T in s4.

For any 0 in sl, the operator T is well defined since f (s, q(s)) is inte-
grable for 0 in d. Also, To(to) = x0, and Ti(t) is continuous for t e I&. Using
(5.2), we have

I Ti(t) -xoI < f If(s, 0(s))I ds
to

c

f m(s) ds
t.

=IM(t)I

for all tin la . Therefore, T: d -*
The operator T is continuous on sl. In fact, if 0. e A, 9n in ,4, then

f (t, x) continuous in x for each fixed t implies f (t, 9n(t)) -- f (t, 0(t)) as n -* oo
for each tin 1, 2. Since If (t, 9n(t))I < m(t), the Lebesgue dominated conver-
gence theorem implies

ft f(S, On(s)) ds -- ff (s, 0(s)) ds>
to to

as n --> oc for each tin Ia. This proves the assertion.
For any ¢ in .l,

I TO(t) - I M(t) -M(T)I
for all t, r in Ia . Since M is continuous on Id, it is uniformly continuous
and, thus, the set Tsar is an equicontinuous set of t(I-, Rn). It is also uni-
formly bounded, This proves T,d is relatively compact and, thus, T is
completely continuous. The Schauder fixed point theorem implies the exist-
ence of a fixed point in .4 and the theorem is proved.

THEOREM 5.2. If D is an open set in Rn+l, f satisfies the Caratheodory
conditions on D and 0 is a solution of (5.1) on some interval, then there is a
continuation of 0 to a maximal interval of existence. Furthermore, if (a, b) is
a maximal interval of existence of (5.1), then x(t) tends to the boundary of
Dast --* a andt--b.
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PROOF. The proof is essentially the same as the proof of Theorem 2.1
and is left to the reader.

THEOREM 5.3. Suppose D is an open set in Rn+l, f satisfies the Carathco-
dory conditions on D and for each compact set U in D, there is an integrable
function ku(t) such that

(5.3) If (t, x) -f (t, y) I <_ ku(t) Ix - yI , (t, x) e U, (t, y) e U.

Then, for any (to, xo) in U, there exists a unique solution x(t, to, xo) of (5.1)
passing through (to, xo). The domain E in Rn+2 of definition of the function
x(t, to, xo) is open and x(t, to, xo) is continuous in E.

PROOF. This proof is essentially the same as the proof of Theorem 3.1
and the details are left to the reader. One only needs to choose M(t) as in
the proof of Theorem 5.1, let K(t) = f co kB(,fi)(s) ds and choose «, $ so that

e

0<&<_a,0<P<P, IM(t)I <fl,KI(t)I<1forteIe.
Any linear system

(5.4) x =A (t)x + h(t),

where A(t) is an n x n matrix, h(t) is an n-vector whose elements are in-
tegrable on every finite interval satisfies the Caratheodory conditions and
(5.3). Therefore, the initial value problem has a unique solution.

1.6. Differential Inequalities

Let Dr denote the right hand derivative of a function. If cu(t, u) is a
scalar function of the scalars t, u in some open connected set 0, we say a
function v(t), a < t < b, is a solution of the differential inequality

(6.1) Drv(t) < w(t, v(t))

on [a, b) if v(t) is continuous on [a, b) and has a right hand derivative on [a, b)
that satisfies (6.1).

LEMMA 6.1. If x(t) is a continuously differentiable n-vector function
on a < t< b, then Dr Ix(t)I exists on a < t < b and I Dr(Ix(t)I )I < P(01 ,

a<t<b.
PROOF. For any two n-vectors x, u and 0 < 0 < 1, h > 0, we have

Ix+ehul - lOx+ehul < (1 -0) IxI.
Therefore,

Ix+Bhul -IxI < Ix+hul - IxI.
Bh h
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that is, the difference quotient

Ix+hul -Ixi
h

is a nondecreasing function of h. Furthermore, this difference quotient is
bounded below by -Jul. Consequently,

lim Ix+hul -Ixi
h-so+ h

exists.
If x(t) is continuously differentiable for a< t .S b, then this latter

relation implies

lim Ix(t) + hx(t)I - I x(t)I
h-o, h

exists. Since

I [I x(t + h)I -I x(t)J] -[lx(t) + hx(t)l -I x(t)I ]I

=I[Ix(t+h)I -Ix(t)+hi(t)I]I
< I x(t + h) - x(t) - hx(t)I = o(h)

as h -* 0+, it follows that Dr(I x(t) 1) exists and

Dr I x(t)) =
(x(t) + hx(t)I - lx(t)llim

hh->o+

It is clear that l Dr(Ix(t)I )l <_ lx(t)I and the lemma is proved.
The same proof also shows that the conclusion of Lemma 6.1 is valid

for absolutely continuous functions in the sense that Dr(lx(t)I) exists and
satisfies l Dr(I x(t)I )I _< l i(t)l almost everywhere for a< t < b.

THEOREM 6.1. Let w(t, u) be continuous on an open connected set
S2 C R2 and such that the initial value problem for the scalar equation

(6.2) is = w(t, u)

has a unique solution. If u(t) is a solution of (6.2) on a < t< b. and v(t) is a
solution of (6.1) on a <_ t < b with v(a) <_ u(a), then v(t) < u(t) for a < t S b.

PROOF. Consider the family of equations

1
(6.3) co(t, u) + -

n

for n = 1, 2, .... We now apply Lemma 3.1 to (6.3).
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If un(t) designates the solution of (6.3) with un(a) = u(a), then Lemma
3.1 implies there is an no such that un(t), n > no, is defined on [a, b] and
un(t) -> u(t) uniformly on [a, b]. We show v(t) < un(t), for n >_ no, a < t< b.
If this is not so, then there exist t2 < tI in (a, b) such that v(t) > un(t) on
t2 < t < t1, v(t2) = un(t2). Therefore, v(t) - v(t2) > un(t) - un(t2), t2 < t < tI,
which implies

D,-V(t2) in(h) = w(t2 , un(t2)) + 1n
1

= w(t2 , v(t2)) + -n

>.v(t2, v(t2)),

which is a contradiction. Consequently, v(t) < un(t) for t in [a, b], n >_ no.
Since un(t) > u(t) uniformly on [a, b], this proves the theorem.

COROLLARY 6.1. A solution of Dr v(t) < 0 on [a, b) is nonincreasing on
[a, b).

COROLLARY 6.2. Suppose w(t, u) and u(t) are as in Theorem 6.1. If
x(t) is a continuous n-vector function with a continuous first derivative on
[a, b] such that I x(a)I < u(a), (t, Ix(t)j) e 0, a:5 t<_ b, and

I x(t)I 5 w(t, Ix(t)j), a< t < b,

then I x(t)I < u(t) on a< t< b.

PROOF. This is immediate from Lemma 6.1 and Theorem 6.1.

COROLLARY 6.3. Suppose w(t, u) satisfies the conditions of Theorem 6.1
for a < t < b, u >_ 0, and let u(t) >_ 0 be a solution of (6.2) on a < t < b. If
f: [a, b) x Rn > Rn is continuous and

If(t,x)I :!5; w(t,Ixl), a<t<b, xeRn,
then the solutions of

x =f (t, x), I x(a)I < u(a),

exist on [a, b) and Ix(t)I < u(t), tin [a, b).

PROOF. From Corollary 6.2, I x(t)I < u(t) as long as x(t) exists. From
Theorem 2.1, the solution x(t) can fail to exist on [a, b) only if there is a
c, a < c < b, such that x(t) is defined on [a, c) and urn I x(t) I = oo as t -, c - 0.
On the other hand, this is impossible since I x(t)I < u(t), t e [a, c) and tim u(t)
exists as t > c - 0.
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Notice that Corollary 6.3 gives existence of the. solution on [a, b), as well
as upper bounds on the solutions.

Another simple application of Corollary 6.2 yields

COROLLARY 6.4. Suppose D is an open connected set in Rn+I, f: D -* Rn
is continuous and f (t, x) is locally lipschitzian in x. If K is any compact set
in D and L is the lipschitz constant of f in K, then

Ix(t, to, xo) - x(t, to, xi) I < eL(t-to) I xo - xiI

as long as the solutions x(t, to, xo), x(t, to, xi) of (1.1) are such that
(t, x(t, to, xo)), (t, x(t, to, xi)) remain in K.

PROOF. If z(t) = x(t, to, xo) - x(t, to, xi), then jz(t)j < L jz(t)I as long as
(t, x(t, to, xo)), (t, x(t, to, xi)) remain in K and Corollary 6.2 gives the result.

As a first illustration of the above results, we prove a result on existence
in the large. Suppose f: (a, oo) x Rn - Rn is continuous

(6.4) If (t, x)I _<_ 0(t)&(IxI),

where q(t) > 0 is continuous for all t > a and 0(u) is continuous for u >_ 0 and
positive for all u > 0. Suppose u(t, to, uo ), to > a, is a solution of it = 0(00(u),
u(to) = uo > 0 and this solution is unique for any uo > 0. If

f
°° du
0(u) _ +00,

then the solution u(t, to, uo) exists for all t > a. In fact, u satisfies the equation

u dv t

fuo (v) = f 4(S) d8,

and if it did not exist for all t > a, then the continuation theorem implies
there would exist a .r and a sequence {tn },tn --)-,r as n - oo such that u(tn) -+ co

as n --* oo. But this is impossible since
J

tTo
< oo and

J
dv/,(v) _+ co.

o uo

For any given xo. 0 in Rn, choose uo = I xoI and for xo = 0 choose. any
uo > 0. From-Corollary 6.3, it follows that any solution

x(t, to, xo), x(to , to, xo) = xo , to > a.

of x =f (t, x) exists and satisfies jx(t, to, xo)I < u(t, to, uo) on [to, oo) provided
f satisfies (6.4) and -(6.5).

As a special case suppose that f (t, x) = A(t)x + h(t) where A(t), h(l) are
continuous for all values of t. Then any solution of the linear equation

(6.6) z = A(t)x + h(t)
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exists on (- oo, eo ). In fact,

IA(t)x + h(t)I I A(t)I I xI + Ih(t)I
max{IA(t)I, I h(t)}(I xI + 1)

_ fi(t) (I xI),

: (u) u+ 1.

Since 0(t) is continuous and f o du/o(u) = +,o, we have the desired result.
Another interesting special case is when If (t, x) I < K I xI for all t in

(-oo, oo) and x in R. For 0(t) =1 and ,&(u) =Ku, the above example
shows that all solutions of i =f (t, x) exist on (- oo, co).

For later reference, part of these results are summarized in

THEOREM 6.2. If f: (a, oo) x Rn - Rn is continuous, satisfies (6.4) and
(6.5) and the solution of u = 0(t)o(u), u(to) = uo > 0, to > a exists and is unique
in (a, oo), then any solution of the equation (1.1) through (to, xo) exists on
(a, oo). In particular, every solution of (6.6) exists on (-oo, oo) provided
that A(t), h(t) are continuous.

As another illustration, we prove a simple result on stability. Suppose
f: Rn+1 __* Rn and there exists a continuous function A(t), - oo < t < oo,
such that x f (t, x) < -A(t)x x where " " denotes the scalar product of
two vectors. Notice this implies f (t, 0) = 0. If we let IxI2 = x x and suppose
x is a solution of z =f (t, x) on an interval I containing to, then

d Ix12 dt
(x x) 2x f (t, x) < -2X(t) I XI 2.

If cu(t, u) = -2A(t)u and u is the solution of ie = w(t, u), u(to) = Ix(to)I2 then

u(t) = {exp(-2 Jto A(s) ds)} Ix(to)I2exists for all tin (- co, oo). Therefore, Corol-

lary 6.2 and the continuation theorem implies that the solution x(t) not
only exists on I but exists for all tin (- oo, co) and

I x(t) I <_ exp
(-

feo A(s) s) I x(to)I , t >_ to .

If A(t) >_ 0, then the solution x = 0 of i =f (t, x) is stable and actually uni-
formly stable. If A(t) > 0 and f

t'Q
A(s) ds = + oo, then the solution x = 0 is

asymptotically stable.

EXERCISE 6.1. If A(t) > 0 and f ooA(s) ds = + co for all to , is the` solution
to

x = 0 of the previous discussion uniformly asymptotically stable? Discuss
the case where A(t) is not of fixed sign.
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EXERCISE 6.2. Suppose f: Rn+1--> Rn is continuous and there exists a
positive definite matrix B such that x Bf (t, x) < -A(t)x x for all t, x where
A(t) is continuous for tin (- oo, oo). Prove that any solution of the equation
z =f (t, x), x(to) = xo, exists on [to, oo) and give sufficient conditions for
stability and asymptotic stability. (Hint: Find the derivative of the function
V(x) = x Bx along solutions and use the fact that there is a positive con-
stant a such that x Bx >_ zx - x for all x.)

EXERCISE 6.3. Consider the equation x =f (t, x), If (t, x)I < 0(t) Ix) for
all t, :c in R X R, f - 0(t) dt < oo.

(a) Prove that every solution approaches a constant as t - oo.
(b) If, in addition,

f(t, x) -f (t, y)I < 4(t) IX - yl for all x, y,

prove there is a one to one correspondence between the initial values and the
limit values of the solution.

(c) Does the above result imply anything for the equation

x = -x + a(t)x, f o Ia(t)I dt < oo?

(Hint: Consider the transformation x = e-ty.)
(d) Does this imply anything about the system

xl = X2,

x2 = - xl + a(t)xl, f 00 Ia(t)j dt < co,

where xj, x2 are scalars?

EXERCISE 6.4. Consider the initial value problem

z + a(z, z)z + P(z) = u(t), z(0) _ 6, z(0) = 71,

with a(z, w), g,(z) continuous together with their first partial derivatives for
all z, w, u continuous and bounded on (- oo, co), a > 0, zf(z) >_ 0. Show
there is one and only one solution to this problem and the solution can be
defined on [0, oo). Hint: Write the equation as a system by letting z = x,
z = y, define V (X, y.) = y2/2 + f o f(s) ds and study the rate of change of
V(x(t), y(t)) along the solutions of the two dimensional system.

COROLLARY 6.5. Let w(t, u) satisfy the conditions of Theorem 6.1 and
in addition be nondecreasing in u. If u(t) is the same function as in Theorem
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6.1 and v(t) is continuous and satisfies

(6.6) v(t) < va + fa w(s, v(s)) &, a <_ t<_ b, Va < u(a),

then v(t) < u(t), a <_ t< b.

PROOF. Let V(t) be the right hand side of (6.6) so that v(t) < V(t).
Then V(t) = w(t, v(t)) < w(t, V(t)), V(a) = Va < u(a). Theorem 6.1 implies
V(t) < u(t) for a < t _< b and this proves the corollary.

COROLLARY 6.6. (Gronwall's inequality). If a is a real constant,
fl(t) >_ 0, and 4(t) are continuous real functions for a < t < b which satisfy

4(t) S a+ f3(s)0(s) ds, a 5 t S b,

then

0(t) < (exp fa fl(s) ds)a, a <_ t b.

PROOF. We apply Corollary 6.5 with Va = a, w(t, u) = fl(t)u. Then
is = fl(t)u, u(a) = a is given by u(t) _ (exp f a fl(s) ds) a, which proves the
corollary.

Actually, Gronwall's inequality is easily proved by other techniques.
In the applications to follow, we actually need a generalization of this
inequality so we state and prove it without using Theorem 6.1.

LEMMA 6.2. (Generalized Gronwall inequality). If 0, a are real valued
and continuous for a < t < b, fl(t) >_ 0 is integrable on [a, b] and

fi(t) a(t) + ft p(s)o(s) ds, a < t < b,

then

4)(t) < a(t) + f t fl(s)a(s) (exp
ft

,8(u) du) ds, a _< t _< b.

PROOF. Let R(t) = ft g(8)0(s) ds. Then
a

tB(t)
dt = fl(t)4)(t) < fl(t)a(t) H- R(t)R(t)

except for a set of measure zero. Thus,

dB(t)

dt -fl(t)R(t) < fl(t)a(t),

ds
(exp - $8 p(u) dul R(s) _< (exp - f 8 p(u) dul fl(s)a(s),
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except for a set of measure zero. Integrating from a to t, we obtain

(exp - f fl(u) du) R(t) f
t
(exp - f fl(u) ds.

¢ ¢ a

and thus

R(t) < f¢ (exp f ts(u) du)S(s)a(s) d3.t

This estimate proves the lemma.
If a is continuous with its first derivative a > 0, then integrating by parts

in Lemma 6.2 gives

`p(t)<a(a)exp Js) +
ft.&(s)exp (5 i )ds

<[exp fa(3'[a(a)+ fa&(s)ds]
ft

< a(t) exp
a

since 0 >_ 0. Gronwall's inequality is now a special case.

1.7. Autonomous Systems-Generalities

If x(t) is a solution of (1.1) defined on an interval (a, b), we have previously
introduced the concept of a trajectory associated with this solution as the
set in Rn+1 defined by Ua<t<b(t, x(t)). The path or orbit of a trajectory is the
projection of the trajectory into Rn, the space of dependent variables in (1.1).
The space of dependent variables is usually called the state space or phase
space. The phase coordinates for a scalar nth order equation in x is the
vector (x, x('), x(2), ..., x(n-1)). System (1.1) is called autonomous if the vector
field, that is, the function f in (1.1), is independent of t. In this section we
consider some general properties of autonomous systems; namely, the dif-
ferential system

(7.1) x=f(x)
where f : 52--- Rn is continuous and S2 is an open set in Rn. A basic property
of autonomous systems is the following: if x(t) is a solution of (7.1) on an
interval (a, b), then for any real number T, the function x(t - T) is a solution
of (7.1) on the interval (a + T, b + T). This is clear since the differential
equation remains unchanged by a translation of the independent variable.
Thus, from a single solution of (7.1) one can define a one parameter family
of solutions.
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We shall henceforth assume that for any p in S2, there is a unique
solution q(t, p) of (7.1) passing through p at t = 0. The function 0(t, p) is
defined on an open set E e Rn+1 and satisfies the properties:

(i) 0(0, p) =p;
(ii) 0(t, p) is continuous in E;

(iii) 0(t + r, p) = 0(t, 0(-r, p)) on
In fact, it follows from Theorem 3.4 that ¢(t, p) is continuous. Relation

(iii) holds since both functions satisfy the equation, are equal for t = 0 and
we have assumed uniqueness.

From the above definition, the path or orbit V'-- y(p) through a fixed
p e S2 is the set in Rn defined by y(p) = {x a Rn: there exist (t, 0) e E with
0(t, p) = x}. It is clear that 0(t, p) and q(t + z, p) are different parametriza-
tions of the same orbit y(p).

There is a unique path y through a given p in 0. Indeed, paths through p
are projections of all solutions of (7.1) which pass through any of the points
on the line (r, p), -oo <,r < oo. But, /(t + r, p) is the unique solution of
(7.1) passing through (r, p) and we have seen above these functions are all
parametrizations of the same curve. Notice this last conclusion implies that
no two paths can intersect.

An a uilibrium point or critical point r singular point of an n-dimensional
vector field (x is a point such that f (p) = 0. If p is a critical point, then
x(t) = p, - oo < t < oo, satisfies (7.1). The trajectory of the critical point p
is the line in Rn+l given b x = p, - oo < t < ao and the orbit of a critical
point is the point itself A re ulcer point is a point which is not critical.

If p is a critical point of (7.1), then no trajectory other than x(t) =p
can reach the line x = p, - oo < t < oo by the process of continuation for
this would violate uniqueness. This implies: if p is a critical point and x(t) p
tends to p, then either t - * + co or t -* - oo.

A curve A in Rn is the range of a continuous mapping of an interval
I c R into Rn. The curve is said to be differentiable if the associated mapping
is differentiable. Given a continuous f: S2 --> Rn, 0 open in Rn, f = (fl, ... , f.),
we say a curve A is a solution of the equations

dxl dx2 dxn

fl(x) f2(x) fn(x)

if A is differentiable and the differential dx along A is parallel to f (x) when
f (x) = 0, and A is a point when f (x) = 0.

LEMMA 7.1. The solution of (7.2) at any point p of L is the orbit of
(7.1) through p.

PROOF. If p = (pl, ... , pn) is a critical point, then y and A are both
equal to p. If p is not a critical point, then one of the components of f say fl
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is such that fi(p) * 0. Therefore, fi(x) 0 for x in a neighborhood U of p.
In U system (7.2) is therefore equivalent to the ordinary differential- system

dxa = .fa(x) , xa(pi) =pa, 2, 3, ..., n.
dxi fi(x)

From the existence Theorem 1.1, these equations have a solution xa(xi)
which exists for Ixi -pil sufficiently small. We parametrize A in the following
way. Consider the autonomous scalar equation

dx1

dt
=f1(xl, x2(x1), ... , xn(x1))

This equation has a solution xi(t), xi(0) =pi, which exists for Itl small.
One now easily shows that xi(t), xa(xi(t)), a = 2, ..., n, is a solution of (7.1).
Since the orbit of (7.1) through any point of 0 is a solution of (7.2), this
proves A = y and the lemma.

A homeomorphic image of a closed or open line segment is called an arc.
A homeomorphic image of the circumference of a circle is called a Jordan
curve. A path y is said to be closed if it is a Jordan curve.

LEMMA 7.2. A necessary and sufficient condition for a path of (7.1) to
be closed is that it corresponds to a nonconstant periodic solution of (7.1).

PROOF. If y is a closed path of (7.1) and p is a point of y, there
is a T = 0 such that Or, p) = 0(0, p) = p. By uniqueness of solutions
0(t + r, p) _ 0(t, p) for all t which says q(t, p) has period T. Conversely,
suppose q(t, p) = 0(t + T, p) for all t, 0(t, p) nonconstant, and r is the least
period of 0(t, p); i.e. p :A 0(t, p), 0 < t < T. As t varies in [0, r), 0(t, p) de-
scribes a curve in Rn which is the homeomorphic image of the segment [0, r)
with 0(0, p) = 0(T, p). On the other hand, the line segment [0, r] with 0 and
r identified is homeomorphic to the unit circle. This completes the proof.

EXERCISE 7.1. Suppose the autonomous'equation i = f (x) has a non-
constant periodic solution xc(t). Define stability of this solution. Can the
stability ever be asymptotic? What is the strongest type of stability that
you would expect in such a situation?

We now give a few examples to illustrate the above concepts.

Example 7.1. If x is a real scalar, i = x, then 0(t, p) = etp, the trajec-
tory through p is the set (t, etp), - co < t < oo and the path through p is the
set {x > 0} if p >0, {x = 0} if p =0 and {x < 0} if p <0. See Fig. 7.1 where
the arrow on a curve in phase space denotes the manner in which the path
is described with increasing time.

Example 7.2. If x is a real scalar, i = -x(1 -- x), then 0(t, p) _
pe-t f [1 -,p + pe-t]. The paths are the sets {x > 1}, {x =1}, {0 < x < 1},
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{x = 0}, {x < 0}. See Fig. 7.2. The equilibrium point x =1 is unstable and
x = 0 is asymptotically stable.

Example 7.3. If y is a real scalar, then the equation y + y = 0 is
equivalent to the system x1= X2, x2 = -X1 where xi = y. The phase space
is R2. For any real constants a, b one verifies that 01(t) = a sin(t + b),
02(t) = a cos(t + b) is a solution of this system and any solution of the equa-
tion can be written in this form. Any trajectory lies on a circular cylinder
and the path through any point is a circle passing through this point with
center at the origin. See Fig. 7.3. An equilibrium point of a two dimensional
autonomous system which has the property that every neighborhood of the
point contains an orbit which is a closed curve (periodic solution) is"called a
center. Thus, the solution x1 = x2 = 0 of this example is a center.

In this example, we did not need to integrate the equations to obtain the
parametric representation of the orbits in phase space. In fact, Lemma 7.1
implies that the orbits are the solutions of the scalar equation
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Figure 1.7.3
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which has the solutions x2 + x2 = constant; the constant of course being
determined by the initial values. The manner in which the orbits are described
with increasing time is easily obtained from the original equations.

Example 7.4. Suppose E > 0 is given, x1, x2 are real scalars, r2 =
xi + x2 and consider the system

xi = -X2 + Exi(1 - r2),
x2 = xi + ex2(1 - r2).

The phase space for this system is R2. If XI = r cos 0, x2 = r sin 0, then the
system is equivalent to the system

=1,
er(1 - r2).

One easily verifies that the trajectories and paths are as in Fig. 7.4. In this
case, the paths are spirals outside and inside the circle of radius one and the
equilibrium point (0, 0) together with the circle of radius one. The equilibrium

x2

X2

x1

Figure 1.7.4
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point (0, 0) is called a focus; that is, solutions in a neighborhood of it spiral
toward it as t - + oo (or - oo). To say a solution spirals toward zero as
t -* + oo (or - co) is to say that any ray emanating from zero is crossed by
the orbit of the solution an infinite number of times and the solution
approaches zero as t - + oo (or - oo). The orbit (r = 1) which is a closed
curve in this example is called a limit cycle, the reason for the terminology
becoming clear in later discussions.

Notice that, for e = 0 this example is the same as Example 7.3. How-
ever, for any e > 0, no matter how small, the phase portrait of the two
equations are completely different.

Example 7.5. In this example, we illustrate that the solutions of a
differential equation may be much more complicated than any of the previous
examples. A torus is the homeomorphic image of the cross product of two
circles. Suppose 0, 0 are the angles shown in Fig. 7.5 describing a coordinate

Figure 1.7.5

system on the torus, If 0, 0 satisfy the differential equation 8 = 1, = w,
where w is a constant, then a solution corresponding to an orbit y goes around
the torus traversing the angle 0 with period 2ir/w and the angle 0 with period
21r. Therefore, for w irrational, the path is not closed, but it does have the
property that the closure of y is the whole torus!

EXERCISE 7.2. Prove the statement in Example 7.5 concerning the
closure of y for w irrational. Can you describe the behavior when to is
rational?

Example 7.6. In this example, we show in R3 that the complicated
behavior in Example 7.5 can be shared by all solutions of an equation in a
solid torus. A solid torus is the homeomorphic image of the cross product
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of a circle and a disk. Suppose the region is that depicted in Fig. 7.5 and the
coordinate system (r, 0, 0) is as shown with 0 < r < 2 and 0 <_ 0, 0 < 27r.
The value r = 0 is a circle C which lies in a plane P and the surface r =
constant, 0 0, 0 < 27r is a torus, which has C at its center.

For the differential. equations, choose

A=1,

r = r(1 - r),

where w is a constant. The torii r = 0 and r =1 are invariant in the sense that
any solution with initial value in these surfaces remain in them for all t in
(-oo, oo). Except for the periodic solution corresponding to C, all other
solutions approach the torus described by r = 1. Therefore, from Example
7.5, the closure of every orbit except C contains the torus r = 1 if co is
irrational.

EXERCISE 7.3. Discuss the phase portrait of the solutions of the second
order equation

x2 = -xl(x2 - x1).

What are the orbits and the equilibrium points? Which equilibrium points
are stable? What does the application of Lemma 7.1 yield for this system?

Suppose b: Sa -- Rn is a given continuously differentiable function on
the ball Sa = {u in Rn-1, Jul < a} with r(0) = p and rank [8o(u)/8u] = n -1
for all u in Sn . The set {x in Rn, x = ali(u), u in S«} is called a differentiable
(n -1)-cell En-1 through p. Such an En-1 is said to be transverse to the path
yp of (7.1) at p if for each p' E EP-1, the path yp, through p' is not tangent to
En-1 at p'. This is equivalent to saying that dx along yp, at the point p' is
not a linear combination of the columns of 8+1i(u)/8u for Jul < a and this in
turn is equivalent to saying that

11defD(x u) = det [-;-, f (x)] :0,

for u < a. Suppose D(p, 0) 0. Since D(x, u) is continuous, there is an a
sufficiently small so that D(x, u) :0 for Ix - pl < a, Jul < a. For this a,
E'-1 is transverse to yp at p. If p is a regular point of (7.1), there always
exists an E'-' transverse to y at p. A closed transversal through y at p is
defined in the same way using the closed ball of radius a.

An open path cylinder of (7.1) is a set which is homeomorphic to an
open cylinder (the cross product of an open ball in Rn-1 and an open interval)
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and consists only of arcs of paths of (7.1). A closed path cylinder of (7.1) is
a set which is homeomorphic to a closed cylinder and consists only of arcs of
paths of (7.1.) The bases of a closed path cylinder are the images under the
homeomorphism of the bases of the closed cylinder. If C is a path cylinder
(either open or closed) the arcs of paths of (7.1) lying in C will be called the
generators of C.

LEMMA 7.3. Suppose f has continuous first partial derivatives in SZ.
If p is a regular point of (7.1) and En-1 is a differentiable (n -1)-cell'trans-
verse at p to the path y of (7.1) through p, then there is a path cylinder C
containing p in its interior. In particular, every path y' of (7.1) with a point
in C must cross En-1 at a p' where En-1 is transverse to y'.

PROOF. Let En-1 have a parametric representation given by En-1 =

{x in Rn: x = a/i(u), u in Sn), where Sa = {u in Rn-1: Jul < a}, and /i has a
continuous first derivative. Let 0(t, p'), q(0, p') =p', be the solution of (7.1)
which describes the path y' through p'. There is an interval I containing
zero in its interior such that each 0(t, p'), p' e En-1 is defined for t e I. The
function 0(t, p') = 0(t, i(u)) can therefore be considered as a mapping T of
I x Sa into Rn. From Theorem 3.3, this mapping is continuously differen-
tiable in I x Sa . If we define

F(x, t, u) x + 0(u) +
J f (O(s, (u)) ds

0

for x e Rn, (t, u) e I x Sn, then the fact that 0(t, 0(u)) is a solution of (7.1)
implies F(O(t, 0(u)), t, u) = 0 for (t, u) e I x Sa . We now consider the relation
F(x, t, u) = 0 as implicitly defining t, u as a function of x. Since

det
[aF(x, t, u)

a(t, u)

equals D(p, 0) for (x, t, u) = (p, 0, 0), this determinant must be different
from zero in a neighborhood of (p, 0, 0). The implicit function theorem there-
fore implies that the inverse mapping of T exists and is continuously differ-
entiable in a neighborhood of p. This shows there area > 0, r > 0 such that
the mapping T is a continuously differentiable homeomorphism (or diffeo-
morphism) of It x S, , I= = {t: Itl <'r), into a neighborhood of p. Furthermore,
{T(t, u), tin It} coincides with the are of y' described by the solution 0(t, p'),
-T < t < T. The range of T is an open path cylinder. It is clear there is also
a closed path cylinder. This proves the lemma.

We now extend this local result to a global result in the sense that the
time interval involved in the description of the path may be arbitrarily large
as long as it is. finite. First we prove a result for paths which are not closed.
More precisely, we prove
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LEMMA 7.4. Suppose f has continuous first partial derivatives in 0, y is
any path, p is a regular point, pq is an are of y, E", EQ-1 are differentiable
(n -1)-cells transverse to y at p, q, respectively. Then there is a closed path
cylinder whose axis is pq and whose bases are in EP-1, EQ-1

PROOF. We can assume that Ep-1 r EQ -1 is empty. Relative to
Ep' 1, EQ-1, we can construct local open path cylinders C,, CQ . Let t?, be
the time to traverse the path y from p to q; i.e. 0(tp, p) = q. From continuity
with respect to initial data, one can choose an open (n -1)-cell Ep-1 in
Ep1 such that 4(tp , p') belongs to CQ for every p' in Ep-1.

Lemma 7.3 implies that each point 0(tp, p') must lie on an arc in Cq of
a trajectory of (7.1) and must cross Eq-1 at a point q'. Let the time to
traverse the arc yp from p' to q' be tp'. The mapping p' - tp' is continuously
differentiable and an application of the implicit function theorem similar to
the above implies the mapping p' - cb(tp-,p') is a homeomorphism. Since f
in (7.1) is bounded on Cq and Cp, there is a v > 0 such that the time to
leave Cp along an arc of a path through p' E Ep-1 as well as to leave Cq
along an arc of a path through q' e EQ -1 is greater than v. Choose v < t p .

Let us show that p'q' is a closed arc if the diameter of Ep-1 is sufficiently
small. If p'q' is not an are, then yp. must be a closed curve. Thus, there is a
Tp , V < Tp < tp, - v such that q (Tp , p') = p'. If no such Ep exists so
that p'q' is an are, then there is a sequence of pti e Ep-1, Y < r1,. <
tp.k- v, pk -*p as k - - co such that pk) = p'. The must be
bounded since tp k -* tp as k -->- oo and v < Tp.k < tp.k - v. Therefore, there is a
subsequence which we label the same as before such that Tp.k -*TO as
k -+ oo and 0 < To < tp - v/2. But this clearly implies that the path yp
described by 0(t, p) satisfies 0(7-o, p) = p. This is a contradiction since pq
was assumed to be an arc.

The path cylinder C is obtained as the union of the arcs of the trajectories
p'q' with p' in Ep-1. It remains only to show that this is homeomorphic to a
closed cylinder. For I = [0, 1], define the mapping G: Ep-1 x I -> Rn by
G(p', s) = 0(stp , p'), where tp is defined above. It is clear that this mapping
is a homeomorphism and therefore C is a closed path cylinder. This proves
the lemma.

Now suppose y is a closed-path. Lemma 7.2 implies y is the orbit of a
nonconstant periodic solution O(t,p) of (7.1) of least period t > 0. Take a
transversal En-1 at p. There is another transversal E"- at p,En-i C E"-1

p 1 p p p
such that, for any q1E Ep- , there is a tq > 0, continuously differentiable
in q,x(ltq,q) in En- ,x(t,q) not in En--' for 0 < t < tq, and the mapping
F: E"pp` X1 [0,1) -+ R' defined by F(q,s) = x(stq,q) is a diffeomorphism. The
set F(Ep X [0,1)) is called a path ring enclosing y. We have proved the
following result.
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LEMMA 7.5. If y is a closed path, there is a path ring enclosing y.

It may be that a solution of an autonomous equation is not defined for
all t in R as the example x = x2 shows. In the applications, one is usually
only interested in studying the behavior of the solutions in some bounded set G
and it is very awkward to have to continually speak of the domain of defini-
tion of a solution. We can avoid this situation by replacing the original
differential equation by another one for which all solutions are defined on
(- oo, oo) and the paths defined by the solutions of the two coincide inside G.
When the paths of two autonomous differential equations coincide on a set
G, we say the differential equations are equivalent on G.

LEMMA 7.6. If f in (7.1) is defined on Rn and G c Rn is open and
bounded, there exists a function g: Rn -* Rn such that z = g(x) is equivalent
to (7.1) on G and the solutions of this latter equation are defined on (- co, co).

PROOF. If f = (fl, ... , fn), we may suppose without loss of generality
that G c {x: I f j(x)I < 1 , j =1, 2, ... , n}. Define g = (gj, ... , gn) by gf = fj oi ,
where each Oj is defined by

1 if I fj(x)I < 1,

1

qj(x) = fj(x)
1

f1(x)

if fj(x) > 1,

if fj(x)< -1.

Corollary 6.3 implies that g satisfies the conditions of the lemma since
lg(x)I is bounded in B.

1.8. Autonomous Systems-Limit Sets, Invariant Sets

In this section we consider system (7.1) and suppose f satisfies enough
conditions on Rn to ensure that the solution 0(t, p), (O, p) = p, is defined
for all tin B and all p in Rn and satisfies the conditions (i)-(iii) listed at the
beginning of Section 1.7.

The orbit y(p) of (7.1) through p is defined by y(p) = {x: x = 0(t,p),
-oo <t < co}. If q belongs to y(p), then y(q) = y(p) as remarked earlier.
The positive semiorbit through p is y+(p) = {x: x = q(t, p), t >_ 0} and the
negative semiorbit through p is y -(p) = {x: x = q(t, p), t < 0). If we do not
wish to distinguish a particular point on an orbit, we will write y, y+, y for
the orbit, positive semiorbit, negative semiorbit, respectively.

The positive or w-limit set of an orbit y of (7.1) is the set of points in
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Rn which are approached along y with increasing time. More precisely, a
point q belongs to the w-limit set or positive limit set co(y) of an orbit. y if
there exists a sequence of real numbers {tk}, tk -a oo as k -->- oo such that
0(tk, p) -*q as k - oo. Similarly, a point q belongs to the ce-limit set or
negative limit set a(y) if there is a sequence of real numbers {tk}, tk - - - 00 as
k -* oo such that 4,(tk, p) -* q as k -* oo.

It is easy to prove that equivalent definitions of the w-limit set and
a-limit set are

w(Y) = n Y+(p) = n u c(t, p)
pEV 7 E(-00,00)tZT

«(Y) = n Y -(P) = n u o(t, p)
P E Y T E (- 00, 00) t:9 T

where the bar denotes closure.
A set M in Rn is called an invariant set f (7.1) if, for any p in M, the

solution (t, p) of (7.1 through belongs to M for tin - oo, oo .Any orbit
of (7.1) is obviously an invariant set of (7.1). A set M is called positively
(negatively) invariant if for each p in M, 0(t, p) belongs to M for t > 0 (t < 0).

THEOREM 8.1. The a- and w-limit sets of an orbit y are closed and
invariant. Furthermore, if y+(y-) is bounded, then the w-(a-) limit set is
nonempty compact and connected, dist(4(t, p), w(y(p))) --0 as t -> oo and
dist( (t, p), a(( ))) -* 0 as t--> -oo.

PROOF. The closure is obvious from the definition. We now prove the
positive limit sets are invariant. If q is in w(y), there is a sequence {tn},
to - . ao as n -> oo such that q(tn , p) -* q as n -* oo. Consequently, for any
fixed tin (- oo, 00), c(t + to , p) = 0(t, On, p)) -' 0(t, q) as n co from the
continuity of 0. This shows that the orbit through q belongs to w(y) or w(y)
is invariant. A similar proof shows that a(y) is invariant.

If y+ (y) is bounded, then the co- (a-) limit set is obviously nonempty
and bounded. The closure therefore implies compactness. It is easy to see that
dist(q(t, p), w(y(p))) -->0 as t * oo, dist(o(t, p), a(y(p))) -a0 as t --> - oo. This
latter property clearly implies that w(y) and a(y) are connected and the
theorem is proved.

COROLLARY 8.1. The limit sets of an orbit must contain only complete
paths.

A sit M in Rn is called a minimal set of (7.1) if it is nonempty, closed
and invariant and has no proper subset which possesses these three properties.

LEMMA 8.1. If A is a nonempty compact, invariant set of (7.1), there is
a minimal set M C A.
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PROOF. Let F be a family of nonempty subsets of Rn defined by F =
{B: B c A, B .compact, invariant}. For any B1, B2 in F, we say B2 < B1 if
B2 c B1. For any F1 c F totally ordered by " < ", let C = nB E F.B. The
family F1 has the finite intersection property. Indeed, if B1; B2 are in F1,
then either B1 < B2 or B2 < B1 and, in either case, B1 o B2 is nonempty
and invariant or thus belongs to Fl. The same holds true for any finite
collection of elements in Fl. Thus, C is not empty, compact and invariant
and for each B in F1, C < B. Now suppose an element D of F is such that
D < B for each B in Fl. Then D c B for each B in F1 which implies D C C
or D < C. Therefore C is the minimum of Fl. Since each totally ordered
subfamily of F admits a minimum, it follows from Zorn's lemma that there
is a minimal element of F. It is easy to see that a minimal element is a
minimal set of (7.1) and the proof is complete.

Let us return to the examples considered in Section 1.7 to help clarify
the above concepts. In example 7.1, the co-limit set of every orbit except
the orbit consisting of the critical point {0} is empty. The cc-limit set of every
orbit is {0}. The only minimal set is {0}. In example 7.2, the w-limit set of
the orbits {0 < x < 1}, {x < 0}, is {0}, the cc-limit set of {x > 1}, {0 < x < 1} is
{0} and {0} and {1} are both minimal sets. In example 7.3, the w- and x-limit
set of any orbit is itself, every orbit is a minimal set and any circular disk
about the origin is invariant. In example 7.4, the circle {r =1} and the point
{r = 0} are minimal sets, the circle {r =1} is the w-limit set of every orbit
except {r = 0}, while the point {r = 01 is the x-limit set of every orbit inside
the unit circle. In example 7.6, the torus r = 1 is a minimal set as well as
the circle r = 0, the w-limit set of every orbit except r = 0 is the torus r = 1
and the x-limit set of every orbit inside the torus r = 1 is the circle r = 0.

Let us give one other artificial example to show that the w-limit sets
do not always need to be minimal sets. Consider r and 0 as polar coordinates
which satisfy the equations

sin20+(1-r)3,
r(1 - r).

The w-limit set of all orbits which do not lie on the sets {r =1} and {r = 01
is the circle r =1. The circle r =1 is invariant but the orbits of the equation
on r =1 consist of the points {O = 0}, {0 = rr} and the arcs of the circle
{0 < 0 < 7r}, {7r < 0 < 2rr}, The minimal sets on this circle are just the two
points {0 = 0}, {0 = 7T}.

EXERCISE 8.1. Give an example of a two dimensional system which
has an orbit whose w-limit set is not empty and disconnected.

THEOREM 8.2. If K is a positively invariant set of system (7.1) and
K is homeomorphic to the closed unit ball in Rn, there is at least one equili-
brium point of system (7.1) in K.
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PROOF. For anyrI > 0, consider the mappingtaking p in K into 0(rI, p)
in K. From Brouwer's fixed point theorem, there is a pI in K such that
0(rI, pi) =pz, and, thus, a periodic orbit of (7.1) of period ri. Choose a
sequence rm > 0, rm -*0 as m -)- oo and corresponding points pin such that
q(rm, pm) = pm . We may assume this sequence converges to a p* in K
as m -* oo since there is always a subsequence of the pm which converge.
For any t and any integer m, there is an integer km(t) such that km(t)rm 5 t <
km(t)rm + rm and 0(km(t)rm, pm) =pm for all t since 0(t, pm) is periodic of
period rm in t. Furthermore,

l0(t, p*) -p*I < I0(t, p*) - #(t, pm)I + I,(t, Pm) -Pm! + Ipm -p*I
= 10(t, p*) - 0(t, pm)I ± 10(t - km(t)rm, pm) -pm1

+ I pm -P*I,

and the right hand side approaches zero as m oo for all t. Therefore, p* is
an equilibrium point of (7.1) and the theorem is proved.

Some of the most basic problems in differential equations deal with the
characterization of the minimal sets and the behavior of the solutions of the
equations near minimal sets. Of course, one would also like to be able to
describe the manner in which the w-limit set of any trajectory can be built
up from minimal sets and orbits connecting the various minimal sets. In the
case of two dimensional systems, these questions have been satisfactorily
answered. For higher dimensional systems, the minimal sets have not been
completely classified and the local behavior of solutions has been thoroughly
discussed only for minimal sets which are very simple. Our main goal in the
following chapters is to discuss some approaches to these questions.

1.9. Remarks and Suggestions for Further Study

For a detailed proof of Peano's theorem without using the Schauder
theorem, see Coddington and Levinson [1], Hartman [1]. When uniqueness
of trajectories of a differential equation is not assumed, the union of all
trajectories through a given point forms a type of funnel. For a discussion of
the topological properties of such funnels, see Hartman [1].

There are many other ways to generalize the concept of a differential
equation. For example, one could permit the vector field f (t, x) to be con-
tinuous in t, but discontinuous in x. Also, f (t, x) could be a set valued function.
In spite of the fact that such equations are extremely important in some
applications to control theory, they are not considered in this book. The
interested reader may consult Flugge-Lotz [1], Andre and Seibert [1],
Fillipov [1], Lee and Marcus [1].

The results on differential inequalities in Section 6 are valid in a much
more general setting. In fact, one can use upper right hand derivatives in
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place of right hand derivatives, the assumption of uniqueness can be elimi-
nated by considering maximal solutions of the majorizing equation and even
some types of vector inequalities can be used. Differential inequalities are
also very useful for obtaining uniqueness theorems for vector fields which
are not Lipschitzian. See Coppel [1], Hartman [1], Szarski [1], Laksmikantham
and Leela [1].

Sections 7 and 8 belong to the geometric theory of differential equations
begun by Poincare [1] and advanced so much by the books of Birkhoff [1],
Lefschetz [1], Nemitskii and Stepanov [1], Auslander and Gottschalk
[1]. The presentation in Section 7 relies heavily upon the book of Lefschetz [1].
A function : R X Rn into Rn which satisfies properties (i-iii) listed at the
beginning of Section 7 is called a dynamical system. Dynamical systems can
and have been studied in great detail without any reference to differential
equations (see Gottschalk and Hedlund [1], Nemitskii and Stepanov [1]).
All results in Section 7 remain valid for dynamical systems. However, the
proofs are more difficult since the implicit function theorem cannot be
invoked. The concepts of Section 8 are essentially due to Birkhoff [1].

The definitions of stability given in Section 4 are due to Liapunov [1].
For other types of stability see Cesari [1], Yoshizawa [2].



CHAPTER II

Two Dimensional Systems

The purpose of this chapter is to discuss the global behavior of solutions
of differential equations in the plane and differential equations without
critical points on a torus. In particular, in Section 1, the w-limit set of any
bounded orbit in the plane is completely characterized, resulting in the famous
Poincare-Bendixson theorem. Then this theorem is applied to obtain the
existence and stability of limit cycles for some special types of equations.
In Section 2, all possible w-limit sets of orbits of smooth differential equations
without singular points on a torus are characterized, yielding the result that
the w-limit set of an orbit is either a periodic orbit or the torus itself.

Differential equations on the plane are by far the more important of the
two types discussed since any system with one degree of freedom is described
by such equations. On the other hand, in the restricted problem of three
bodies in celestial mechanics, the interesting invariant sets are torii and,
thus, the theory must be developed. Also, as will be seen in a later chapter,
invariant torii arise in many other applications.

M. Planar Two Dimensional Systems-The Poincare-Bendixson Theory

In this section, we consider the two dimensional system

(1.1) z =f (x)

where x is in R2, f : R2 -a R2 is continuous with its first partial derivatives and
such that the solution 0(t, p), 0(0, p) =p, of (1.1) exists for -oo <t Goo.
The solution 0(t, p) is the unique solution through (0, p) and, therefore, is
continuous for (t, p) in R3. For each fixed t, recall that the mapping
0(t, ): R2 ---> R2 is a homeomorphism.

The beautiful results for 2-dimensional planar systems are made possible
because of the Jordan curve theorem which is now stated without proof.
Recall that a Jordan curve is the homeomorphic image of a circle.
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JORDAN CURVE THEOREM. I Any Jordan curve J in R2 separates the
plane; more precisely, R2\J = Se u Si where Se and Si are disjoint open sets,
Se is unbounded and called the exterior of J, Si is bounded and called the
interior of J and both sets are arcwise connected.

A set B is arcwise connected if p, q in B implies there is an arc pq joining
p and q which lies entirely in B.

Let p be a regular point, L be a closed transversal containing p, L° be
its interior,

V = {p in L°: there is a tp > 0 with 7!(t, p) in L° and
0(t, p) in R2\L for 0 < t < tp},

and let W =h-1(V) where h: [-1, 1] -3 L is a homeomorphism. Also, let
g: W -* (-1, 1) be defined by g(w) = h-1c6(th(,,,) , h(w)). See Fig. 1.1.

Figure II.I.I

LEMMA 1.1. The set W is open, g is continuous and increasing on W
and the sequence {gk(w)}, k = 0, 1, ... , n < oo is monotone, where gk(w) _
g(gk-1(w)), k = 1, 2, ... , g°(w) = w.

PROOF. For any p in V c L° let q = 0(tp, p) in L°. From Section 1.7,
we have proved that the are pq of the path through p can be enclosed in an
open path cylinder with pq as axis and the bases of the cylinder lying in the
interior L° of the transversal L. This proves W is open. From continuity
with respect to initial data, tp is continuous and we get continuity of g.

To prove the last part of the lemma, consider the Jordan curve J given
by C = {x: x = 0(t, p), 0 <_ t < tp} and the segment of L joining p and q.
If p = q, then y(p) is a periodic orbit and the sequence {gk(w)}, w = h-1(p),
consists of only one point. Thus, suppose for definiteness h-1(p) <h-1(q);
that is, g(w) > wo , w° =h-'(p), w = h-1(q). Let Sj, Se denote the intefior and
exterior of J, respectively. From the definition of a transversal L, paths can
cross L in only one direction. Therefore, that part of L° given by h[(g(w), 1)]
must be completely in either Si or Se since otherwise an orbit would cross the
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segment pq of Lo in a direction opposite to the direction the orbit through p
crosses L. Therefore, if g2(w) is defined, it must belong to (g(w), 1) which by
induction shows that the sequence above is monotone. Suppose wI > w, wI
in W. If g(wi) is defined, then g(wl) > g(w) for the same reason as before. This
completes the proof of the lemma.

We used the differentiability of f (x) in the above proof when we proved
the existence of a path cylinder in Section 1.7. As remarked at the end of
Chapter I, this assumption is unnecessary and one can prove the existence
of a path cylinder only under the assumption of uniqueness of solutions. In
all of the proofs that follow in this section, this is the only place differenti-
ability of f (x) is used. In particular, the Poincare-Bendixson theorem below
is valid without differentiability off (x).

COROLLARY 1.1. The w-limit set w(y) of an orbit y can intersect the
interior Lo of a transversal L in only one point. If w(y) n Lo =po, y = y(p),
then either w(y) = y, and y is a periodic orbit or there exists a sequence
{tk}, tk -> oo ask 00 such that p(tk,p) is in Lo, ¢(tk,p) + po monotonically;
that is, the sequence h-' (O(tk, p)) is monotone.

PROOF. Suppose w(y) n Lo contains a point po. From the definition
of w-limit set, there is a sequence {tk}, tk oo as k -* oo such that
0(tk , p) -po as k -> oo. But from Section 1.7, there must be a path cylinder
containing po such that any orbit passing sufficiently near po must contain
an are which crosses the transversal L at some point. Therefore, there exist
points qk = 0(tk, p) in Lo, tk -> co as k -*. oo such that qk -> po as k --> oo.
But Lemma 1.1 implies that the qk approach po monotonically in the sense
that h-I(qk) is a monotone sequence. Suppose now po is any other point in
w(y) n Lo. Then the same argument holds to get a sequence qk -->p0 mono-
tonically. Lemma 1.1 then clearly imples that po = po and the corollary is
proved.

COROLLARY 1.2. If y+ and w(y+) have a regular point in common, then
y+ is a periodic orbit.

PROOF. If po in y+ n w(y+) is regular, there is a transversal of (1.1)
containing po in its interior. From Corollary 1.1, if w(y+) 0 y+, there is a
sequence qk = 0A, p) -->po monotonically. Since po is in y+, this contradicts
Lemma 1.1. Corollary 1.1 therefore implies the result.

THEOREM 1.1. If M is a bounded minimal set of (1.1), then M is either
a critical point or a periodic orbit.

PROOF. If y is an orbit in M, then a(y) and w(y) are not empty and
belong to M. Since a(y) and w(y) are closed and invariant we have a(y) =
w(y) = M. If M contains a critical point, then it must be the point itself
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since, it is equal to w(y) for some y. If M = w(y) does not contain a critical
point, then y c w(y) implies y and w(y) have a .regular point in common which
implies by Corollary 1.2 that y is periodic. Therefore y = w(y) = M and this
proves Theorem 1.1.

LEMMA 1.2. If w(y+) contains regular points and also a periodic orbit
yo, then w(y+) = yo.

PROOF. If not, then the connectedness of w(y+) implies the existence
of a sequence p in w(y+)\yo and a po in yo such that p. ->po as n --,. oo.
Since po is regular, there is a closed transversal L such that po is in the interior
Lo of L. From Corollary 1.1, w(y+) r Lo = {po}. From the existence of a
path cylinder in Section 1.7, there is neighborhood N of po such that any orbit
entering N must intersect Lo. In particular, y(p.n) for n sufficiently large must
intersect Lo. But we know this occurs at po. Thus p,a belongs to yo for n
sufficiently large which is a contradiction.

THEOREM 1.2 (Poincare-Bendixson Theorem). If y+ is a bounded
positive semiorbit and w(y+) does not contain a critical point, then either

(i) Y+ = w(Y+),

or

(ii) w(Y+) = Y+\Y+,

In either case, the w-limit set is a periodic orbit. The same result is valid
for a negative semiorbit.

PROOF. By assumption and Theorem 1.8.1, w(y+) is nonempty, compact
invariant and contains regular points only. Therefore, by Lemma 1.8.1, there
is a bounded minimal set M in w(y+) and M contains only regular points.
Theorem 1.1 implies M is a periodic orbit yo. Lemma 1.2 now implies the
theorem.

An invariant set M of (1.1) is said to be stable if for every e-neighborhood
U, of M there is a 8-neighborhood U6 of M such that p in U6 implies y+(p)
in U,. M is said to be asymptotically stable if it is stable and in addition there
is a b > 0 such that p in Ub implies dist(q,(t, p), M) --)- 0 as t -goo. If M is a
periodic orbit, one can also define stability from the inside and outside of M
in an obvious manner.

COROLLARY 1.3. For a periodic orbit yo to be asymptotically stable it
is necessary and sufficient that there is a neighborhood 0 of yo such that
w(y(p)) =yo for any p in G.

PROOF. We first prove sufficiency. Clearly dist(o(t, p), yo) --)-0 as t ->oo
for every p in G. Suppose L is a transversal at po in yo and suppose p is in
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G n Se , q is in G n S$ , where Se and Si are the exterior and interior of yo,
respectively. From Corollary 1.1, there are sequences p), qk=
4 (tk , q) in L approaching po as k -* oo. Consider the neighborhood Uk of Yo
which lies between the curves given by the are pkpk+l of y(p) and the segment
of L between pk and Pk+1 and the are gkgk+l of y(p) and the segment of L
between qk and qk+1. Uk is a neighborhood of yo. The sequences {tk}, {tk}
satisfy tk+l - tk --* a, tk+1 -t; --> a as k-* oo where a is the period of yo. This
follows from the existence of a path ring around yo. Continuity with respect
to initial data then implies for any given e-neighborhood Ue of yo, there is a
k sufficiently large so that p in Uk implies q(t, p) in Ue for t >_ 0 and yo is
stable.

To prove the converse, suppose yo is asymptotically stable. Then there
must exist a neighborhood G of yo which contains no equilibrium points and
G\yo contains no periodic orbits. The Poincare-Bendixson theorem implies
the w-limit set of every orbit is a periodic orbit. Since yo is the only such orbit
in G, this proves the corollary.

COROLLARY 1.4. Suppose yl, Y2 are two periodic orbits with Y2 in the
interior of yl and no periodic orbits or critical points lie between yl and Y2.

Then both orbits cannot be asymptotically stable on the sides facing one
another.

PROOF. Suppose yl, y2 are stable on the sides facing one another. Then
there exist positive orbits yl, y2 in the region between yl, Y2 such that yl =
Yi\Yl, Y2 = 2\ Ys For any pl in yl, P2 in Y2 construct transversals L1, L2 .
There exist pj 0 pi in yl n L1, p2 0 p2 in y2 n L2. Consider the region S
bounded by the Jordan curve consisting of the arc pip" of y, and the segment
of the transversal L1 between pi and pi and the curve consisting of the are
peps of y2 and the segment of the transversal L2 between p2 and p2 (see
Fig. 1.2). The region S contains a negative semiorbit. Thus, the Poincare-
Bendixson Theorem implies the existence of a periodic orbit in this region.
This contradiction proves the corollary.

THEOREM 1.3. Let y+ be a positive semiorbit in a closed bounded subset
K of R2 and suppose K has only a finite number of critical points. Then one
of the following is satisfied:

(i) w(y+) is a critical point;
(ii) w(y+) is a periodic orbit;

(iii) w(y+) contains a finite number of critical points and a set of orbits
yi with a(Vi) and w(ya) consisting of a critical point for each orbit y{ . See
Fig. 1.3.

PROOF. co(y+) contains at most a finite number of critical points. If
co(y+) contains no regular points, then it must be just one point since it is
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Figure 11.1.2

(i) (ii)

Figure 11.1.3

connected. This is case (i). Suppose w(y+) has regular points and also contains
a periodic orbit yo. Tlien w(y+) = yo from Lemma 1.2.

Now suppose w(y+) contains regular points and no periodic orbits. Let
yo be an orbit in w(y+). Then w(yo) c w(y+). If po in w(yo) is a regular point
and L is a closed transversal to po with interior Lo, then Corollary 1.1 implies
w(y+) r Lo = w(yo) n Lo = {p0} and yo must meet Lo at some qo. Since yo
belongs to w(y+) we have qo = po which implies by Corollary 1.2 that yo is
periodic. This contradiction implies w(yo) has no regular points. But, w(yo)
is connected and therefore consists of exactly one point, a critical point. A
similar argument applies to the a-limit sets and the theorem is proved.

COROLLARY 1.5. If y+ is a positive semiorbit contained in a compact set
in S2 and w(y+) contains regular points and exactly one critical point po,
then there is an orbit in w(y+) whose a- and w-limit sets are {po}.

We now discuss the possible behavior of orbits in a neighborhood of a
periodic orbit. Let yo be a periodic orbit and Lo be a transversal at po in yo,
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h: (-1, 1) -. Lo be a homeomorphism with h(0) = po. If g is the function
defined in Lemma 1.1, then g(O) =0 since yo is periodic. Since the domain W
of definition of g is open, 0 is in W, g is continuous and increasing, there is an
E > 0 such that g is defined and g(w) > 0 for w in (0, e) and g(w) < 0 for w
in (- e, 0). We discuss in detail the case g(w) > 0 on (0, e) and the case
g(w) < 0 on (- e, 0) is treated in a similar manner. Three possibilities present
themselves. There is an rI, 0 < eI < e, such that

(i) g(w) < w for w in (0, El);
(ii) g(w) > w for w in (0, el);

(iii) g(w) =w for a sequence wn >0, W n -* 0 as n-* oo.

In case (i), gk(w) is defined for each k > 0, is monotone decreasing and
gk(w) -* 0 as k -* oo. In fact, it is clear that gk(w) is defined for k > 0.
Lemma 1.1 states that gk(w) is-monotone and the hypothesis implies this
sequence is decreasing. Therefore, gk(w) -awo > 0 as k -* oo. But, this
implies g(wo) = wo and therefore wo = 0. Similarly, in case (ii), if we define
g-k(w) to be the inverse of gk(w) then g-k(w), is defined for each k > 0, is
decreasing and g-k(w) --> 0 as k --> oo.

If we interpret these three cases in terms of orbits and limit sets, we have

THEOREM 1.4. If yo is a periodic orbit and G is an open set containing
yo, Ge = G n Se , Gi = G n Si where Se and Si are the interior and exterior
of yo, then one of the following situations occur:

(i) there is a G such that either yo = cu(y(p)) for every p in Ge or yo =
a(y(p)) for every p in Ge;

(ii) for each G, there is a p in Ge, p not in yo, such that oc(y(p)) = y(p)
is a periodic orbit.

Similar statements hold for Gi.
We call yo a limit cycle if there is a neighborhood G of yo such that either

w(y(p)) = ,yo for every p E G or a(y(p) = ,yo for every p E G.
The Poincare-Bendixson theorem suggests a way to determine the

existence of a nonconstant periodic solution of an autonomous differential
equation in the plane. More specifically, one attempts to construct a domain
D in R2 which is equilibrium point free and is positively invariant; that is,
any solution of (1.1) with initial value in D remains in D for t z 0. In such a
case, we are assured that D contains a positive semiorbit + and thus a
periodic solution from the Poincare-Bendixson theorem Furthermore, if we
can ascertain that there is only one periodic orbit in D, it will be asymptot-
ically stable from Theorem 1.4 and Corollary 1.3.

These ideas are illustrated for the Lienard type equation

(1.2) ii + g(a)it + u = 0



58 ORDINARY DIFFERENTIAL EQUATIONS

where g(u) is continuous and the following conditions are satisfied:

(1.3) (a) G(u) = def fog(s) ds is odd in u,

(b) G(u) oo as Jul --± oo and there is a > 0 such that G(u) > 0
for u> S and is monotone increasing.

(c) There is an a > 0 such that G(u) <0 for 0 < u < a, G (a) = 0.

Equation 1.2 is equivalent to the system of equations

(1.4) is = v - G(u),

v=-u.
System (1.4) is a special case of system (1.1) with x = (u, v) and has a unique
orbit through any point in R2 since 0 has a continuous first derivative.
System (1.4) has only one critical point; namely, u = 0, v = 0, and the orbits
of (1.4) are the solutions of the first order equation

dv u
(1.5)

du v - G(u)

From (1.4), the function u = u(t) is increasing for v > G(u), decreasing if
v < G(u) and the function v = v(t) is decreasing if u > 0, increasing if u < 0.
Also, the slopes of the paths v = v(u) described by (1.5) are horizontal on the
v-axis and vertical on the curve v = G(u). These facts and hypothesis (1.3b)
on G(u) imply that a solution of (1.4) with initial value A = (0, vo) for vo
sufficiently large describes an orbit with an arc of the general shape shown in
Fig. 1.4.

Figure 11.1.4
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Observe that (u, v).a solution of (1.4) implies (-u, -v) is also a solution
from hypothesis (1.3a). Therefore, if we know a path ABECD exists as in
Fig. 1.4, then the reflection of this path through the origin is another path.
In particular, if A = (0, vo), D = (0, -vi), vi < vo, then the complete positive
semiorbit of the path through any point A' = (0, vo), 0 < vo < vo must be
bounded. In fact, it must lie in the region bounded by the arc ABECD, its
reflection through the origin and segments on the v-axis connecting these
arcs to form a Jordan curve. The above symmetry property also implies
that (1.4) can have a periodic orbit if and only if vI =vo.

We show there exists a vo > 0 sufficiently large so that a solution as in
Fig. 1.4 exists with A = (0, vo), D = (0, -vi), vi < vo. Consider the function
V(u, v) _ (u2 + v2)/2. If u, v are solutions of (1.4) and (1.5), then

(1.6) (a) W _ -uG(u),

dV _ uG(u)
(b)

du v - G(u)

(c)
dV

= G(u).

Using these expressions, we have

V(D) - V(A) = f dV = (fAB + f l -uG(u) du + f G(u) dv
ABECD CDJ V - G(u) BEC

along the orbits of (1.4). It is clear that this first expression approaches zero
monotonically as vo -a oo. If F is any point on the u-axis in Fig. 1.4 between

(P, 0) and E, and #(vo) = f
BEC

0(u) dv, then

G(u) dv > f G(u) dv > FJ x FK- 0(vo) = - fBEG
CE

G(u) dv = f
B ER

where FJ, FK are the lengths of the line segments indicated in Fig. 1.4. For
fixed F, FK oo as vo -* oo and this proves q(vo) -- - oo as vo -± oo. Thus,
there is a vo such that V(D) < V(A). But this implies vI <vo and the semi-
orbit through A must be bounded. On the other hand, this semiorbit must
also be bounded away from the origin since (1.6a) and hypothesis (1.3c)
implies that dVIdt >_ 0 along solutions of (1.4) if Jul < a. Finally, the Poincare-
Bendixson Theorem implies the existence of a periodic solution of (1.4) and
we have

THEOREM 1.5. If G satisfies the conditions (1.3), then equation (1.2)
has a nonconstant periodic solution.
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Figure 11.1.5

If further hypotheses are made on G, then the above method of proof
will yield the existence of exactly one nonconstant periodic solution. In
fact, we can prove

THEOREM 1.6. If 0 satisfies the conditions (1.3) with a = fl, then equa-
tion (1.2) has exactly one periodic orbit and it is asymptotically stable.

PROOF. With the stronger hypotheses on 0, every solution with initial
value A = (0, vo), vo > 0, has an are of an orbit as shown in Fig. 1.5.

With the notations the same as in the proof of Theorem 1.5 and with
E = (uo, 0), we have

V(D) - V(A) = f G(u) dv > 0,
ABECD

if uo < a. This implies'no periodic orbit can have uo < a.
For uo > a, if we introduce new variables x = G(u), y = v to the right of

line BC in Fig. 1.5 (this is legitimate since G(u) is monotone increasing in this
region), then the are BEC goes into an arc B*E*C* with end points on the
y-axis and the second expression 0(vo) = L

EC
G(u) dv = fB*E*C* x dy is the

negative of the area bounded by the curve B*E*C* and the y-axis. Therefore,
0(vo) is a monotone decreasing function of vo. It is easy to check that
fAB + fBCG(u)du is decreasing in vo and so V(D) - V(A) is decreasing in vo.

Also, in the proof of Theorem 1.5, it was shown that V(D) - V(A) approaches
-- as vo - °°. Therefore, there is a unique vo for which V(D) = V(4) and
thus a unique nonconstant periodic solution. Theorem 1.4 and Corollary 1.3
imply the stability properties of the orbit and the proof is complete.

An important special case of Theorem 1.6 is the van der Pol equation

(1.7) ii-k(1-u2)u+u=0, k>0.
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In the above crude analysis, we obtained very little information con-
cerning the location of the unique limit cycle given in Theorem 1.6. When a
differential equation contains a parameter, one can sometimes discuss the
precise limiting behavior as the parameter tends to some value. This is
illustrated with van der Pol's equation. (1.7). Suppose k is very large; more
specifically, suppose k = e-1 and let us determine the behavior of the periodic
solution as a -->0+. Oscillations of this type are called relaxation oscillations
System (1.7) is equivalent to

(1.8) eu = v - G(u),
v= - eu,

where G(u) = u3/3 - u. From Theorem 1.6, equation (1.8) has a unique
asymptotically stable limit cycle P(e) for every e > 0. From (1.8), if a is
small and the orbit is away from the curve v = G(u) in Fig. 1.6, then the u

Figure 11.1.6

coordinate has a large velocity and the v coordinate is moving slowly. There-
fore, the orbit-has a tendency to jump in horizontal directions except when
it is very close to the curve v = G(u). These intuitive remarks are made
precise in

THEOREM 1.7. As s -> 0, the limit cycle of (1.8) approaches the Jordan
curve J shown in Fig. 1.6 consisting of arcs of the curve v = G(u) and hori-
zontal line segments.

To prove this, we construct a closed annular region U containing J
such that dist(U, J) is any preassigned constant and yet for a sufficiently
small, all paths cross the boundary of U inward. U will thus contain (from
the Poincare-Bendixson theorem) the limit cycle r(e). The construction of
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U is shown in Fig. 1.7 where h is a positive constant. The straight lines 81
and 45 are tangent to v = G(u) + h, v = G(u) - h respectively and the lines
56, 12, 9-10, 13-14, are horizontal while 23, 67, 11-12, 15-16 are vertical.
The remainder of the construction should be clear. The inner and outer

Figure 11.1.7

boundaries are chosen to be symmetrical about the origin. Also marked on
the figure are arrows designating the direction segments of the boundaries
crossed. These are obtained directly from the differential equation and
are independent of e > 0. It is necessary to show that the other segments of
the boundary are also crossed inward by orbits if a is small. By symmetry, it
is only necessary to discuss 34, 45 and 10-11.

At any point (u, G(u) - h) on 34, along the orbits of (1.8), we have

dv - e2 e2u e2u(3)

du v -G(u)

_
h < h

where u(3) is the value of u at point 3. Hence for s small enough, this is less
than g(4) < g(u) which is the slope of the curve G(u) - h. Thus, v < 0 on this
arc implies the orbits enter the region along this arc.

Along the are 45, we have Iv - G(u) I > h and, hence, the absolute value
of the slope of the path ldv/dul = I -e2u/[v - G(u)]l < e2u(4)/h approaches
zero as s -> 0. For s small enough this can be made < g(4) which is the slope
of the line 45. Thus, v < 0 on. this are implies the orbits enter into U if e
is small enough.
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LetK be the length of the arc 11-12. ForK small enough, Iv - G(u) I > K
along the arc 10-11. Hence, Idv/dul along orbits of (1.8) is less than
e2,./K < E2u(11)/K, which approaches zero as s --* 0. Thus, for a small,
the orbits enter U since is > 0 on this arc.

This shows that given a region U of the above type, one can always
choose a small enough to ensure that the orbits cross the boundary of U
inward. This proves the desired result since it is clear that U can be made to
approximate J as well as desired by appropriately choosing the parameters
used in the construction.

EXERCISE 1.1. Prove the following Theorem. Any open disk in R2 which
contains a bounded semiorbit of (1.1) must contain an equilibrium point. Hint:
Use the Poincare-Bendixson Theorem and Theorem I.8.2.'

EXERCISE 1.2. Give a generalization of Exercise 1.1 which remains valid
in R3? Give an example.

EXERCISE 1.3. Prove the following Theorem. If div f has a fixed sign
(excluding zero) in a closed two cell 1, then S2 has no periodic orbits. Hint:
Prove by contradiction using Green's theorem over the region bounded by a
periodic orbit in 0.

EXERCISE 1.4. Consider the two dimensional system z =f (t, x),
f (t + 1, x) = f (t, x), where f has continuous first derivatives with respect
to x. Suppose L is a subset of R2 which is homeomorphic to the closed unit
disk. Also, for any solution x(t, xo), x(0, xo) = xo, suppose there is a T(xo) such
that x(t, xo) is in 0 for all t >_ T(xo). Prove by Brouwer's fixed point theorem
that there is an integer m such that the equation has a periodic solution of
period m. Does there exist a periodic solution of period I?

EXERCISE 1.5. Suppose f as in exercise (1.4) and there is a A > 0 such
that x f (t, x) < -A I X12 for all t, x. If g(t) = g(t + 1) is a continuous function,
prove the equation t = f (t, x) + g(t) has a periodic solution of period 1.

EXERCISE 1.6. Suppose yo is a periodic orbit of a two dimensional
system and let- G, and Gi be the sets defined in Theorem 1.4. Is it possible for
an equation to have a(y(p)) = yo for all noncritical points p in Gi and
co (y(q)) = yo for all q in Ge? Explain.

EXERCISE 1.7. For Lienard's equation, must there always be a periodic
orbit which is stable from the outside? Must there be one stable from the
inside? Explain.
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EXERCISE 1.8 Is it possible to have a two dimensional system such
that each orbit in a bounded annulus is a periodic orbit? Can this happen for
analytic systems? Explain.

11.2. Differential Systems on a Torus

In this section, we discuss the behavior of solutions of the pair of first
order equations

(2.1) 0),

where

(2.2) 4(q + 1, 0) _ t(c6, 0 + 1) _ 0(0, 0),

O(0 + 1, 0) = 0(0, 0 + 1) = 0(0, 0).

We suppose (D, 0 are continuous and there is a unique solution of (2.1)
through any given point in the 0, 0 plane. Since (D, 0 are bounded, the
solutions will exist on (- oo, oo).

If opposite sides of the unit square in the (0, 0)-plane are identified, then
this identification yields a torus g- and equations (2.1) can be interpreted
as a differential equation on a torus. An orbit of (2.1) in the (0, 0)-plane when
interpreted on the torus may appear as in Fig. 2.1.

Figure 11.2.1

We also suppose that (2.1) has no equilibrium points and, in particular,
that b(q, 0) 0 0 for all 0, 0. The phase portrait for (2.1) is then determined by

(2.3)
TO

= A(0, 0),
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A(0 +1, 0)=A(c6, 0+1)=A(O, 0),

where A(0, 0) is continuous for all 0, 0. The discussion will center around the
sohitions of (2.3).

The torus 9- can be embedded in R3 by the relations

x = (R + r cos 27rO) cos 27rq.

y = (R + r cos 21rO) sin 27r9,

z = r sin 21r0,

0< <1,0<0<1,0<r<R.
This embedding is convenient for the sake of terminology only. We shall
refer to the circle = constant as a meridian and 0 = constant as a parallel.

Example 2.1. In (2.1), if 4) =1, 0 = w, a constant, then A(8, 0) = w
in (2.3). The solution 0(4, Oo, Oo), 0(oo, 'o , Oo) = Bo of (2.3) is 0(0, Oo, 00) _
w(O-'o)+00

Case (i). If w is rational, say w = p/q, p, q integers, then 0(0o + q,
00, Bo) = Oo + p But, on the torus 9-, the point (00, 00) is the same as
(qo+q, Oo + p) for any integers p, q. Thus, the orbit through (0o, Oo) on
9- is a closed curve for every initial point (0o, Oo). This implies that the
functions in (2.4) expressed as a function of t with the parametric represen-
tation of 0, 0 being given by (2.1) are periodic in t.

Case (ii). If w is irrational, there do not exist integers p, q such that
0(qSo + q, 4o , Oo) = p + 00 for any 60. Therefore, no orbit on 9- will be closed
and the functions in (2.4) will not be periodic. We show in this case that
every orbit on 9- is dense in 9-. It is sufficient to show that the orbit is dense
in the meridian 0 = 0 since the trajectories in the plane all have constant
slope w. There is a constant S > 0 such that for any y in [0, 1), there is a
sequence of integer pairs (qk, pk), qk -* co as k oo such that Iw - pk/
qk - y/qkl < S/gq . On 9-, (qk, 0(qk, 0, 0)) = (0, wqk) = (0, pk + y + rlk) _
(0, y + 71k) where -qk --> 0 as k -* oo. This proves the orbit through (0, 0) is
dense but the same is obviously true for any other orbit. The functions (2.4)
will be quasiperiodic in t (for the definition, see the Appendix) with the
parametric representation of 0, 0 being given by (2.1) since for any initial
point (0o, 00) they are obviously representable in the form x(t) = 81(t, wt),
y(t) = 52(t, wt), z(t) = 53(t, wt) where each Ss is periodic in each argument of
period 1.

Example 2.2. If. A(0, 0) = sin 21rO, there are two closed orbits 0 = 0,
0 = 1/2 on 9-. It is clear that for any 00, 0 < 00 < 1, the corresponding orbit
on 9- has w-limit set as the closed orbit 0 = 1/2 and a-limit set the closed orbit
0 = 0 since the sets 0 = 0 and 0 = 1 on 9- are the same.
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There are two striking differences in these examples. In example 2.1
and co irrational, the a- and w-limit set of any orbit on 9- is 9- itself. In
example 2.1 with co rational, every orbit is closed whereas in example 2.2,
there are isolated closed orbits which are the limit sets of all other orbits.
For smooth vector fields, it will be shown below that the w-limit and a-limit
sets of any orbit of a general equation (2.3) on 9- must either be 9- itself or a
closed orbit.

Since every solution of (2.3) exists on - oo < 0 < oo, it follows that every
orbit on 9- must cross the meridian C given by 0 = 0 and therefore it is
sufficient to take the initial values as (0, f). Let 6), 0(0, e) = f, designate
the solution of (2.3) that passes through (0, 6). From the assumption of
uniqueness of solutions of (2.3), the function 0(0, 6) is a monotone increasing
function in e for each 0. Also, the mapping e -* 0(1, f) is a homeomorphism
of the real line onto itself and thus induces a homeomorphism T of C onto
itself. In fact,

TP = P1, P = (0, f), P1= (1, 0(1, e)) = (0, 0(1, e)).

From the uniqueness of solutions of (2.3), 0(1, 6) is a monotone increasing
function and thus T preserves the orientation of C. Also, periodicity of (2.3)
and uniqueness of solutions imply

(2.5) e + m) = e) + m

for any integer m.
It is easy to see that

def
TnP = T(Tn-1P) = (0, 0(n, i)); Tm+n(P) = Tm(TnP), TOP = P,

for. all m, n = 0, ±1, .... First of all, the definition makes sense for negative
values of the integers since 0(1, P) is a homeomorphism and TOP = P imply
that P = T(T-1P) uniquely defines T=1. One then inductively defines
T-2, T-3, etc. To prove the stated assertions, notice that periodicity in (2.3)
and uniqueness of solutions imply that

0(m, 0(n, e)) = 0(n, 0(m, )) = 0(m + n,

for all integers m, n. This relation immediately yields the above assertions.

THEOREM 2.1. The rotation number of (2.3),

def 0(n, )p= lim ,

Inl->co n

exists and is independent of e. Also, p is rational if and only if some power of
T has a fixed point; that is, there is a closed orbit on the torus.

The rotation number can be interpreted as the average rotation about
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the meridian for one trip around the parallel or the average slope of the line
in the (0, 0)-plane which passes through the origin and the point (n, 0(n, ))

on the trajectory through (0, e).

PROOF OF THEOREM 2.1. The proof is in four parts.
(i) If p exists for a E, then it exists for every and is independent of e.

We need only consider 0 5 e, e < 1 since 0(¢, 6) satisfies (2.5). For 0 <
< 1, relation (2.5) and the monotonicity of 0(0, 6) in e imply that

0(0, 1) -1 = 0* 1 -1) < 0* e) < 0(0, E + 1) = 0(i, 1) + 1,
and this gives the desired result.

(ii) p always exists. The following proof was communicated to the
author by M. Peixoto. From (i), we need only consider 6 = 0. For any real e
there is an integer m such that 0 m < 1 and thus 0(#, 0) < 0(0, e - m)
_< 0(¢, 1) and (2.5) implies

0(0,0) <0(0, e)-m<0(,, 0)+1.
If y = e - m, then 0 < y < 1, and this last relation implies 0(0, 0) - y <

f < 0(0, 0) + 1 - y. Since 0 < y < 1, we have

04, 0) -1 <- 0 (0, 6) 0(0, 0) + 1

for all 0, f. In particular, for any integer m,

(2.6) 0(m, 0) -1 < 0(m, ) - e< 0(m, 0) + 1.

From this relation, we have 0(2m, 0) = 0(m, 0(m, 0)) satisfies 20(m, 0) - 2:5
20(m, 0) -1 <_ 0(2m, 0) 5 20(m, 0) + 1 _< 20(m, 0) + 2.

By successively applying (2.6), we obtain

nO(m, 0) - n < 0(nm, 0) < nO(m, 0) + n

for all n >_ 0, and

n0(-m, 0) - n <_ 0(-nm, 0) < n0(-m, 0) + n
for all n >_ 0. Thus,

0(nm, 0) 0(m, 0)

nm m

1< -

for all n, m r 0: Interchanging the role of n, m, we have

0(nm, 0) 0(n, 0) 1 1

nm n J=JnJ

for all n, m 0. The .triangle inequality implies

0(n, 0) 0(m, 0)

n m
1 1

<=nJ +ml

and thus p exists with p - 0(m, 0)/ml < 1/Iml for all m.
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We now give another proof.
The reader may go immediately to part (iii) of the proof of the theorem

if he so desires. The idea is best illustrated by another example. The slope of
a line L through the origin of the (0, 8)-plane is uniquely determined by the
manner in which this line partitions the integer pairs (m, n). More specifically,
if Ro is the set of rationals n/m such that the pair (m, n) is below L and B1
the set of rationals such that (m, n) is above L, then one shows that all
rational numbers with the possible exception of one are included in R0 or
R1, R0 r Rl = o, and therefore the cut defined by R0 and Rl defines a real
number which is the slope of the line in question.

This same idea can be used to show that the rotation number p exists.
Let L(m, n) be the trajectory of (2.3) through the point (m, n) in the (0, 0)-
plane and let L = L(0, 0). The curve L(m, n) is the same as L except for a
translation. We say L(m, n) is above L if 0(0, in. n) > 0 and below L if
0(0, in, n) < 0, where 8(q, m, n) is the solution of (2.3) with 0(m, m, n) = n.
It is clear from uniqueness that this is equivalent to saying that L(m, n) is
above (below) L if 0(¢, in, n) > 0(0, 0, 0) (< 0(0,0, 0)). If L(m, n) is above
L, then L(km, kn), k a positive integer, is also above L. In fact, L(2m, 2n)
is above L(m, n) since L goes to L(m, n) and L(m, n) goes to L(2m, 2n) by the
translation (m, n). An induction process gives the result. Applying the trans-
lation (-m, -n) to the same curves L and L(m, n), we see that L(-m, -n)
is below L and in general L(-km, -kn), k > 0 is below L if L(m, n) is
above L. These remarks show there is no ambiguity to the classification of
R0 and Rl as before. Namely, n/m belongs to R0 (RI) if L(m, n) is below
(above) L. The classes R0 and R1 are nonempty because if n > 0 is sufficiently
large, then L(1, n) is above L and L(1, -n) is below L. If n/m is not in R0,
and s/r > n/m, then s/r is in R1. In fact, L(rm, rn) is either above L or coin-
cides with L and L(rm, sm) is above L(rm, rn) since it is obtained from it by
the translation (0, sm - rn) and sm - rn > 0. Therefore L(rm, sm) is above
L which implies rm/sm = r/s belongs to Rl. Similarly, if n/m is not in Rl and
s/r < m/n, then s/r is in R0 . Thus, all rational numbers .with possibly one
exception are included in R0 or in Rl and Ro and R1 define a real number p.

It remains to show that p is the rotation number defined in the theorem.
Suppose m is a given integer and let n be the largest integer such that n/m is
in Ro. Then n < pm <_ n + 1 and every point of L(m, n) is below L and every
point of L(m, n + 1) is not below L. Therefore, since the points on L(m, n)
are (0 + m, 8(0, 0) + n), we have

0(0, 0)+n< 0(0+m, 0) < 0(0, 0)+n+ 1.

In particular, for 0 = 0,

n<0(m,0)<n+1,
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and

M p
n -p

One can approximate p by a sequence of rationals n/m, Iml oo, such that
l p - n/ml < K/Iml for some constant K. Thus,

0(m, 0)

M p

This clearly implies that p =lim,ml-m 0(m, 0)/m.
(iii) If some power of T has a fixed point, then p is rational. In fact, if

there is an integer m and a 6 in [0, 1) such that T -e = C, there is also an
integer k such that 0(m, C) =C+ k. Since p =limlm, -. 0(m, C)/m exists we
have

p = lim 0(nm,
lim

+ nk = k
InI-iao nm Inj-a nm m

and p is rational.
(iv) If p is rational, some power of T has a fixed point. Suppose p =

k/m, k, m integers, m > 0, and Tm has no fixed points. Then, for every C,
0 < f < 1, 0(m, e) 0 C + k. If we suppose 0(m, 6) > C + k for 6 in [0, 1), then
there is an a > 0 such that 0(m, C) - C - k >_ a > 0, 6 in [0, 1). For any C
in (- oo, oo), there are an integer p and a e in [0, 1) such that C = p + C.
Relation (2.5) then implies 0(m, C) - C - k ? a for all in (-co, oo). A
repeated application of this inequality yields 0(rm, 6) - >_ r(k + a) for any
integer- r. Dividing by rm and letting r - oo we have p > k/m + a/m which
is a contradiction. This completes the proof of the theorem.

COROLLARY 2.1. Among the class of functions A(o, 0) which are
Lipschitzian in 0, the rotation number p = p(A) of (2.3) varies continuously
with A; that is, for any e > 0 and A there is a 8 > 0 such that I p(A) - p(B) I <
e if max050,esi IA(0, 0) - B(o, 0)I < S.

PROOF. If OA(s6, 0) and 0B(¢, 0) designate the solutions of (2.3) for
A and B, respectively, z(O) = OA(¢, 0) - No, 0), and L is the Lipschitz
constant for A, then

dz

do = [A(0, z(o) + No, 0)) -A (0, OB(4', 0))]

and

0(m, 0)

[B(o, OB(o, 0)) - A(0, No, 0))J,

dz
DrJzl< < L Izl + sup I B(0, 0) - A(#, 0)I

0;9010;91
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for all 0. Thus,

0A(0, 0) - BB(/, 0)I < L-18L0 sup I B(t, B- A(0, 0'!
osO, 0;51

for all ¢ > 0.

In the proof of part (ii) of Theorem 2.1, an estimate on the rate of ap-
proach of the sequence OA (MI 0)/m to the rotation number p(A) was obtained;
namely, I0A(m, 0)/m - p(A)l < 1/Imj for all m. Therefore,

JP(A) - P(B) I < I P(A) - m

OA(m, 0) - OB(m, 0)

+
m

I

OA( M, 0) - OB(m, 0)

m

OB(m 0) - p(B)
M

for all integers m. For any s > 0, choose Iml so large that 1/Imi < e/3. For
any such given but fixed m, choose 8 > 0 such that I BA(m, 0) - OB(m, 0)1 < 1
if maxose,msi J A(0, 0) - B(¢, 0)I < 8. This fact and the preceding. inequality
prove the result.

The conclusion of Corollary 2.1 actually is true without assuming A(0, 0)
is Lipschitzian in 0. The proof would use a strengthened version of Theorem
1.3.4 on the continuous dependence of solutions of differential equations on
the vector field when uniqueness of solutions is assumed. It is an interesting
exercise to prove these assertions.

THEOREM 2.2. If the rotation number p is rational, then every tra-
jectory of (2.3) on the torus is either a closed curve or approaches a closed

curve.

PROOF. (Peixoto). Since p is rational, there exists a closed trajectory
y on which intersects every meridian of .l. Therefore, \y is topologically
equivalent to an annulus F. The differential equation (2.3) on J\y is equiv-
alent to a planar differential equation on F. Since there are no equilibrium
points, the Poincare-Bendixson Theorem, Theorem 1.2, yields the conclusion
of the theorem.

The remainder of this chapter is devoted to a discussion of the behavior
of the orbits of (2.3) when the rotation number p is irrational.

Let T : C -> C be the mapping induced by (2.3) which takes the meridian
C of into itself. For any P in C, let

D(P) = {TnP, n =0, ±1, +2, ...},

and D'(P) be the set of limit points of D(P). Also, let 0 be the empty set.
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LEMMA 2.1. Suppose p is irrational, m, n are given integers, P is a
given point in C and a, fi are the closed arcs of C with a n fl = {TmP, TnP},
a u $ = C. Then D(Q) n 0 ° ¢ o, D(Q) n #° 0 0 for every Q in C, where
a°, 90 are the interiors of a, P respectively.

PROOF. The set UkTk(m-n)ao covers C. For, if not, the sequence
{Tk(m-n)(TnP)} would approach a limit Po and T(m-n)Po = P0 which, from

Theorem 2.1, contradicts the fact that p is irrational. Consequently, for any
Q in C, there is an integer p such that Q is in TP(m-n)ao; that is, TP(n-m)Q

is in a° and D(Q) n 0 ° o. The same argument applies to S.

THEOREM 2.3. If p is irrational, D'(P) = F is the same for all P,
TF = F and either

(i) F = C (the ergodic case)

or

(ii) F is a nowhere dense perfect set.

PROOF. If S belongs to D'(P), there is a sequence {Pk} c D(P) ap-
proaching S as k -*co. For any pointsPk, Pk+I of this sequence and Q in C, it
follows from Lemma 2.1 that there is an integer nk such that TnkQ belongs
to the shortest of the arcs cc, 9 on C connecting these two points. Therefore
TnkQ ->S as k --> oo and D'(P) c D'(Q). The argument is clearly the same to
obtain D'(Q) c D'(P) which proves the first statement of the theorem.

If Q is in F, then there is a sequence nk and a P such that Tnk P _*Q as
n oo. This clearly implies TQ belongs to F and T-1Q belongs to F. There-
fore T F = F.

If R is an arbitrary element of F, then the fact that F = D'(Q) for every
Q implies for any Q e F there is a sequence of integers nk such that TnkQ -. R.
Therefore, the set of limit points of F is F itself and F is perfect.

Suppose F contains a closed arc y of C. Then y contains a closed subarc
a with endpoints TnP, TmP for some integers n, m and P in C. Therefore,
by Lemma 2.1, Uk Tka covers C and since Ta, T2a, ... belong to F we have
F = C. This proves the theorem.

Our next objective is to obtain sufficient conditions which will ensure
that T is ergodc; that is, the limit set F of the iterates of T is C.

Let Pn = TnP, n = 0, ±1, ±2, .... If p is irrational and a is any closed
are of C with P as an endpoint, Lemma 2.1 implies there is an integer n
such that either Pn or P_n is the only point Pk in the interior a° of a for
Ikj < n. Since no power of T has a fixed point, for any N > 0, a can be chosen
so small that n >_ N. For definiteness, suppose P_n is in 0°. Let P0 P_n
denote the are of C with endpoints P°, P_n and which also belongs to cc. We
associate an orientation to this are which is the same as the orientation of
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C. Also, let Pk Pk-n , k = 0, 1, ... , n - 1, designate the are of C joining Pk,
Pk-n which has the same orientation as C.

LEMMA 2.2. The arcs Pk Pk-n, k = 0, 1, ... , n -1, are disjoint.

PROOF. If the assertion is not true, then there exists an /' from the
set {-n, -n + 1, ..., n-1} and a k from {0, 1, ..., n -1 } such that Pe
belongs to the interior Pk Pk _ n of Pk Pk _ n . Therefore, Pe _ k is in Po P'
from the orientation preserving nature of powers of T. This is impossible in
case -n < l - k < n from the choice of n. Suppose -2n + 1 < 1- k < -n.
Since Pe belongs to Pk Pk_n , it follows that Pe+n Pe and Pk Pk_n inter-
sect and, in particular, Pk is in Pe+n P° . Thus P._n_ e is in PO P° n which
is impossible since 0 < k -,f - n < n. This proves the lemma.

THEOREM 2.4. Let sJ(e) = 0(1, 6), 0 < 6 < 1. If p is irrational and
possesses a continuous first derivative 0' > 0 which is of bounded variation,
then T is prgodic.

PROOF. Let 6k = cok(e), k =0, +1, be recursively de-
fined by choosing /-1(e) as the unique solution of 0(e) = Then
TkP = (0,.:/ik(e)), P = (0, e). From the product rule for differentiation, we
have

dY k( ) =
11 0'(es), dw-k( ) _

L
h 0'(eJ-k)J

1

de J=o de i=o

where :I'(e) = do(e)/de. Suppose P and n are chosen as prior to Lemma 2.2.
Since Pk Pk-n , k = 0, 1, ..., n - 1, are disjoint we have

(don(s)
ds/i-n(e)

log
de de

)

log(f '(ef)) -log\
n-1

[log '(61) -log=o
<V

where V is the total variation of log ilr'. This function has bounded variation
from the hypothesis on &'. Therefore,

e-V < din(e) do-n(e)
< eVd de =

uniformly on n and 6.
Suppose a is any are on C of length S. If Sk is the length of Tka, then

(d 0k d0-k) (d k d tkl
Sk + S-k = f + d d 2 f

dS dS /
d > 2 Se-vyz

and, therefore, Sk + S-k does not approach zero as k -- oo.
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If C\F is not empty (that is, T is not ergodic), then take an open are
a in C\F with end points in F. This can be done since F is nowhere dense
and perfect. Since TF = F and T preserves orientation, all of the arcs
Tka, k =0, +1, ... are in C\F. Also Tka o Vex = 0, k =A j, since the end
points of these arcs are in F and if one coincided with another the end points
would correspond to a fixed point of a power of T. Therefore, compactness of
C yields 8k + S_k -. 0 as k --> oo. This contradiction implies C\F is empty
and proves the theorem.

Remark. The smoothness assumptions on 0 in Theorem 2.4 are satisfied
if A (0, 8) in (2.3) has continuous first and second partial derivatives with
respect to 0. In fact, Theorem 1.3.3 and exercise 1.3.2. imply that 0'(6), 1"(C)
are continuous and, in particular, &'(C) is of bounded variation for 0 < 6 < 1.
Also, this same theorem states that 80(¢, C)/8e is a solution of the scalar
equation

dy 8A(#, 0)
do 80

with initial value 1 at = 0. Thus, O'(C) = 80(1, e)/8e > 0, 0 _< C < 1.
Denjoy [1] has shown by means of an example that Theorem 2.4 is false

if the smoothness conditions on 0 are relaxed.
There is no known way to determine the explicit dependence of the

rotation number p of (2.3) on the function A(q, 0), and, thus, in particular, to
assert whether or not p is irrational. However, the result of Denjoy was the
first striking example of the importance of smoothness in differential equa-
tions to eliminate unwanted pathological behavior.

Suppose the notation is the same as in Theorem 2.4 and the proof of
Theorem 2.4.

LEMMA 2.3. If p is irrational and a is a fixed real number, then the
function g(Cn + m) = np + m, en = On (e), n, m integers, is an increasing func-
tion on the sequence of real numbers {en + m}.

PROOF. Throughout this proof,. n, m, r, s will denote integers. The order
of the elements in {C + m} does not depend upon e; that is, en + m < $r + s
implies 4. + m < + s for any C. This is equivalent to saying that
fn - Cr < s - m implies n - r < s - m for any C. If this were not true, there
would be an 71 such that '']n -'fir is an integer which in turn implies some
power of T has a fixed point, contradicting the fact that p is irrational. It
suffices therefore to choose e = 0.

Recall that 0m(0) = 0(m, 0). If p < 0(m, 0) < r, then a repeated applica-
tion of (2.6) yields

0(m, 0) + (k -1)p < 0(km, 0) < 0(m, 0) + (k - 1)r,
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for any k > 0. Thus,

e(k
0) + (1

- k) P:5 m
0(kk

'
0)

< e(k
0) + (1 - k I r.

Taking the limit as k oo, we obtain p < mp < r. Since p is irrational,
p<mp<r.

Now suppose 0(n, 0) + m < 0(r, 0) + 8, that is, 0(n, m) < 0(r, s). Then
0(n - r, m) < 0(0, s) or 0(n - r, 0) + m < 8. From the preceding paragraph,
this implies p(n - r) < s - m, or pn + m < pr + 8, which was to be proved.

THEOREM 2.5. If T is ergodic with (irrational) rotation number p, then
T is topologically equivalent to a rotation of the circle C by an angle tarp;
that is, there is a homeomorphism G of C onto C such that GT = RG where B
is the rotation of C through the angle 21rp.

PROOF. Let g be the increasing function defined in Lemma 2.3, A =
{np + m}, B = {6n + m}, n, m integers. Since T is ergodic, B is dense on the
real numbers and since p is irrational, A is also dense on the real numbers.
The function g is continuous from B to A. Since B is dense, g has a unique
continuous increasing extension to all of the reals. We again designate this
function by g.

If al = en + m, g(al) = np + m, then

(2.7) g("J+ 1) =np+m+ 1 =g(i) + 1,
g(0(71)) = m)) = g(o(en) + m) = g(en+1 + m)

=(n+1)P+m=g(al)+p.
Since B is dense and g is continuous, it follows that g(al + 1) = g(al) + 1,
g(o(al)) = g(al) + p for all real al. The homeomorphism G: C -*C is defined by
G(al) = g(al), 0 < j < 1. The relation g(o(al)) = g(al) + p implies that GT = RG
and the theorem is proved.

THEOREM 2.6. (Bohl). If T is ergodic, there exists a function w(y, z)
which is continuous in y, z and

w(y + 1, z) = w(y, z + 1) = w(y, z)

for all y,-z such that every solution 0 of (2.3) satisfies

(2.8) B(¢)= P0 + c + w(#, P0 + c),

where c is a constant and p is the rotation number. Conversely, for any
constant c, 0(') given in (2.8) satisfies (2.3). Each c in [0, 1) corresponds to a
unique 0(0) (mod 1).

PROOF. Let e be any real number and 0(0, e) be the solution of (2.3)



TWO DIMENSIONAL SYSTEMS 75

with 0(0, ) _ . We know that

0(¢, e + 1) = 0(s6, e) +

0(0 + 1, &(e)),

where as before ir(e) = 0(1, e). Let g be the function given in the proof of
Theorem 2.5 and let h denote the inverse of g. From the properties (2.7) of
g, we have

h(c + 1) = h(c) + 1,

S(h(c)) = h(c + p).

If 6(0, c) = 0(¢, h(c)), then

8(0, c + 1) = 0(S6, h(c + 1)) = 0(S6; h(c) + 1) = 0(S6, h(c)) + 1 = 8(S, c) + 1,

and

8(0 + 1, c) = 0 (0 + 1, h(c)) = 0(S6, &(h(c))) = 0(S6, h(c + p)) c + p).

If w(y, z) = O(y, z - py) - z for all real y, z, then one easily observes that
w(y, z + 1) = w(y + 1, z) = w(y, z). Therefore,

0(0 h(c))
aef

G(,, e) = ps6 + c + w(S6, psb + c),

which proves the theorem.

EXERCISE 2.1. All functions below are continuous, periodic in 0, S6
of period 1 and smooth enough to ensure a unique solution of the equations
for any initial values.

(a) What is the rotation number of dO/do = sin 21TO?
(b) If Ig(0)I < 1, 0 < 0 < 1, what is the rotation number of dO/d56 _

sin 2irO + g(0)?
(c) Using the Poincare-Bendixson theorem, prove that the rotation

number of dO/do = sin 27x0 + eg(0, 0) is rational if I el is small
enough.

(d) Use the Brouwer fixed point theorem and the construction used in
part (c) to show that the rotation number of the equation in (c)
is zero if I el is small enough.

EXERCISE 2.2. Suppose to is irrational. For any e > 0, show there
exists a function g(0, 0) continuous in 0, 0 of period 1 such that max{Ig(0, S6)1,
0 < 0, 0 < 1 } < e and the rotation number of dO/d56 = co + g(0, 0) is rational
and not all orbits are closed on the torus. Hint: Choose sequences of integers
{pk}, {qk}, qk-oo as k, oo such that I w -pklgkl <y/qk for some constant
y and consider g(0, 0) = a sin 21r(b0 + co) for appropriate constants a, b, c.
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EXERCISE 2.3. In Exercise 2.1, arbitrarily small changes in the vector
field did not change the rotation number, whereas in Exercise 2.2, an appropri-
ate small change in the vector field did change this number. Can you explain
why this is so? Can you give a general result for equation (2.3) which will
exhibit the same properties relative to the rotation number as Exercises
2.1 and 2.2? What would you say is the most typical behavior among all
vector fields (2.3)?

EXERCISE 2.4. (a) For any continuous function f (0) of period 1,
show that the equation dO/do = 27r0 + f (0) has a unique periodic solution
of period 1. (Hint: Look at f0

e2n(0-s)f (s) ds).

(b) Designate this unique solution by Kf. If P is the Banach space of
continuous periodic functions of period 1 with the topology of uniform con-
vergence, show that K: P --* P is continuous and linear.

(c) Suppose g(O, 0) has period 1 in 0, 0, is continuous in 0, 0 and
lipschitzian in O. Using the contraction principle and part (b), show there is
an Eo > 0 such that the equation dO/dc = 27TO + (sin 27rO - 27r0) + eg(O,
has a solution which is periodic in 0 of period 1 if JEI < Eo.

II.3. Remarks and Suggestions for Further Study

For many more details on the general theory of two dimensional systems,
see Hartman [1], Lefschetz [1], Sansone and Conti [1]. The book of Sansone
and Conti [1] also contains a wealth of applications of the Poincare-Bendixson
theory to the existence of periodic solutions of a second order autonomous
equation. Finding periodic solutions of nonautonomous equations by exten-
sions of the ideas in Exercises 1.4 and 1.5 can be found, for example, in
Cartwright [1], Levinson [1], Lefschetz [1], Sansone and Conti [1]. An interest-
ing discussion of the global stability of the origin in the plane is given by
Olech [1].

One result obtained for two dimensional systems in the plane was that
the only compact minimal sets are points and closed curves. For a singularity
free " smooth " vector field on the torus, the only minimal sets on the torus
are closed curves and the torus itself. An outstanding problem for many years
was the characterization of the minimal sets of " smooth " vector fields on an
arbitrary compact two dimensional manifold. This problem was solved by
Schwartz [1] when he proved that the only possible minimal sets are points,
closed curves and a torus, the latter being possible only when the manifold
is itself a torus.

It is difficult to pose questions in n dimensions with answers as elegant
as the ones given in this chapter. One problem that has been studied in
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considerable detail arises from a more careful study of Theorems 2.5 and 2.6.
Consider a differential equation on an n-dimensional torus

f (x)

where x = (xi, ... , xn), f (xl, ... , xn) is periodic in each variable of period 1.
Problem: When does there exist a transformation of variables x = g(y) such
that the new equation for y is y = w where w is a constant n-vector? If such
a transformation exists, then the resulting flow is easy to analyze and one has
a generalization of Theorem 2.6. For f (x) = co + eh(x) where a is small and
co belonging to a certain class of irrationals,- some results along this line
are available (see Arnol'd [1]). The techniques of proof are currently the most
important tools in the study of stability in celestial mechanics (see Kol-
mogorov [1], Arnol'd [2], Moser [1]).

In Section 1, the van der Pol equation (1.7) was discussed when the
parameter k was large. In the coordinates described by (1.8), it becomes clear
that the asymptotically stable periodic orbit has the property that the system
moves along its orbit at a reasonable pace as long as it remains close to a given
curve and then moves at a very rapid pace away from this curve. Such
relaxation oscillations are very important in the applications and the reader
may consult van der Pol [1, 2], LaSalle [1], Minorsky [1], Pontryagin and
Mishchenko [1].



CHAPTER III

Linear Systems and Linearization

In the previous chapter, much information concerning the qualitative
behavior of solutions of two dimensional autonomous systems was obtained
without using any particular properties of the vector field. In higher dimen-
sions and even in two dimensions when more specific information is desired,
one must resort to techniques which are more analytical in nature and yield
information only in a neighborhood of some solution or an invariant set of
solutions.

If 0(t) is a solution of

(1) x = f (x)>

where f has continuous first derivatives, then x = 0(t) + y in (1) implies

(2) y = A(t)y + g(t, y)

where A(t) = 8f (q(t))/2x and g(t, 0) = 0, ag(t, 0)/ay = 0. It is quite natural to
study the linear equation

(3) i =A (t)z,

and to inquire about the relationship between the solution z of (3) and the
solution y of (2) in a neighborhood of y = 0. More specifically, is the linear
equation (3) a good "approximation" to equation (2) near y = 0? Some
questions of this type are considered in this chapter.

More precisely, the theory of general linear systems is given in Section 1
with Section 2 being devoted to characterizations of the concepts of stability
for linear systems and the preservation of these stability properties for
special perturbations of a linear system. Section 3 is a specialization of the
general theory to nth order equations. In Section 4, the fundamental solution
of linear autonomous systems is characterized in terms of the elementary
functions with the phase portrait of the two dimensional systems iscussed
in Section 5. Section 6 is devoted to an autonomous equation (2) with no
eigenvalue of A on the imaginary axis. It is shown in this section that many of
the qualitative properties of the solutions of the linear and nonlinear equation

78
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are the same near y = 0. Section 7 gives the theory of linear equations with
periodic coefficients with the Fli quet representation included. Sections 8, 9
and 10 are devoted to stability theory for special classes of linear equations
with periodic coefficients.

IIl.1. General Linear Systems

Consider the linear system of n first order equations
n

(1.1) zf = E ajk(t)xk + h9(t), j=1,2, ... , n,
k=1

where the ajk and h1 for j, k = 1, 2, ... , n are continuous real or complex
valued functions on the interval (- oo, + co). In matrix notation, equation
(1.1) can be written in more compact form as

(1.2) x = A(t)x + h(t)

where A = a k), j, k = 1, 2, ..., n; h = col hl, ..., ha The basic character-
istic property of linear systems of the form (1.2) is the IPrinci le of Super-
position 1 If x is a solution of (1.2) corresponding to the " forcing function " or
" input " h and y is a solution corresponding to g then cx + dy is a solution
corresponding to the forcing or input function ch + dg for any real or complex
numbers c and d.

This principle is verified by direct computation.
In particular, if c = - d = 1, h = g, then x and y being solutions of (1.2)

corresponding to the forcing function h implies that x - y is a solution of the
homogeneous equation

(1.3) x = A(t)x.

If 0(t, c) is a general solution of the homogeneous equation (1.3) and xp(t)
is any particular solution of (1.2), then this latter property states that any
solution of (1.2) is of the form 0(t, c) +xp(t) for some c. Below, we describe
theoretically how to obtain the general solution of (1.3) and then show that a
particular solution of (1.2) can be found from the knowledge of the general
solution of (1.3) and a quadrature.

From the properties of the coefficient matrix A and the forcing function
h in (1.2), the basic existence and uniqueness theorem in Chapter I implies
that the initial value problem for (1.2) has a unique solution which exists on
an interval containing- the initial time. Theorem 1.6.2 also asserts that every
solution of (1.2) exists on the infinite interval (- oo, + oo). -

A set of vectors x1, ..., xn are said to be linearly independent if
1 cp x1 = 0 for any complex constants c2 implies c, = 0 for j = 1, ... , n.
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The vectors x1, . . . , xn are said to be linearly dependent if they are not linearly
independent. The proof of the following lemma is left as an exercise.

LEMMA 1.1. The vectors x1, ..., xn are linearly independent if and
only if det[xl, ... , xn] z/-- 0.

An n x n matrix X (t), t > 0, is said to be an n x n matrix solution of
(1.3) if each column of X(t) satisfies (1.3). A fundamental matrix solution
of (1.3) is an n x n matrix solution X(t) of (1.3) such that det X(t) =0. A
principal matrix solution of (1.3) at initial time to is a fundamental matrix
solution such that X(to) = I, the identity matrix. The principal matrix solu-
tion at to will be designated by X(t, to).

From the above definition of a fundamental matrix solution it is clear
that a fundamental matrix solution is simply a matrix solution of (1.3) such
that the n columns of X(t) are linearly independent. An elementary but useful
property of a matrix solution of (1.3) is

LEMMA 1.2. If X(t) is an n x n matrix solution of (1.3), then either
detX(t)zA 0 for all t or det X(t) = 0 for all t.

PROOF. If there exists a real number r such that the matrix X(r) is
singular, then there exists a nonzero vector c such that X (-r)c = 0. For this
vector c, linearity of (1.3) implies the function x(t) = X(t)c is a solution of
(1.3). Since the function x = 0 is obviously a solution of the equation, unique-
ness implies X(t)c = 0 for all t in (- oo, oo) and thus det X (t) = 0 for all t
in (- oo, oo ). This proves the lemma.

COROLLARY I.I. If Xo is an n x n nonsingular matrix and if X(t) is
the matrix solution of (1.3) with X(0)=Xo, then X(t) is a fundamental
matrix solution of (1.3).

Corollary 1.1 shows that the determination of a fundamental matrix
solution consists only of selecting n linearly independent initial vectors and
finding the corresponding n linearly independent solutions of the system
(1.3). The fact that the matrix X(t) is nonsingular for all t yields the following
important

LEMMA 1.3. If X(t) is any fundamental matrix solution of (1.3), then
a general solution of (1.3) is X(t)c where c is an arbitrary n vector.

PROOF. It is clear that the function x(t) = X(t)c is a solution of (1.3)
for any constant n-vector c. Furthermore, if to and xo are given, then X(t)c,
c =X-1(to)xo, is the solution of (1.3) which passes through the point (to, xo).

LEMMA 1.4. If X(t) is a fundamental matrix solution of (1.3), then the
matrix X-1(t) is a fundamental matrix solution of the adjoint equation

(1.4) 9 = -yA(t)
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where y is a row n-vector; that is, each row of X-1 satisfies (1.4) and
det X-1(t) 0.

PROOF. Let Y(t) = X-1(t). Since YX = I, the identity, it follows that
1X + YAX = 0. Since X is non-singular this implies that Y = X-1 is a
matrix solution of the adjoint equation (1.4). This is equivalent to saying that
each row of the matrix X-1 is a solution of (1.4). X-1 is obviously nonsingular.

I THEOREM 1.1. If X is a fundamental matrix solution of (1.3) then every
solution of (1.2) is given by formula

X(t) = X(t) [X-1(T)x(T) + f X-1(s)h(s) &
T

for any real number r in (- oo, + co).

Formula (1.5) is referred to as the variation of constants formulalfor
(1.2). The reason for this is clear since it implies that every solution has the
form X(t)c(t) where c(t) is the function given in the brackets in (1.5). This is
the same form as the general solution of (1.3) given by Lemma 1.3 except that
the vector c now depends upon the independent variable t.

PROOF OF THEOREM 1.1. If we rewrite equation (1.2) as z - Ax = h
and use the fact that X-1 is a matrix solution of the adjoint equation (1.4),
then equation (1.2) is equivalent to

d [X-1(s)X(s)] = X-1(s)h(8).

Integrating this expression from r to t for any real numbers r and t,
we obtain

c

X-1(t)x(t) - X-1(T)x(T) = f X-1(s)h(s) ds.
T

A rearrangement of the terms in this expression yields equation (1.5) and the
theorem is proved.

We give another proof of this theorem. Since X(t) is nonsingular for
each t, it follows that the transformation of variables x = X(t)y defines a
homeomorphism of Rn into Rn for each 't. If this transformation is applied
to (1.2), then by Lemma 1.4,

dt
[X-ix] = X-'(Ax + h) - X-1Ax = X-1h.

This implies that
t

y(t) =X-1(T)x(T) + f X-1(s)h(S)
T
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since y(T) =X-1(T)x(T). The formula x(t) = X(t)y(t) yields relation (1.5).
If for any given r in (-oo, co), we let X(t, T), X(T, T) = I, designate the

principal matrix solution of (1.3) at T, then

(1.6) X(t, T) =X(t, S)X(S, r)

for all t, T, s. In fact, considered as functions of t, both sides of this relation
satisfy (1.3) and coincide for t = 8. Uniqueness yields the result. This formula
leads to a simplification of the variation of constants formula; namely

t
(1.7) x(t) = X (t, T)x(T) + f X (t, s)h(s) ds.

LEMMA 1.5. If X(t) is an n x n matrix solution of (1.3), then

(1.8) det X(t) =[det X(to)] exp(f t tr A(s) ds)

for all t, to in (-oo, oo), where tr A is the sum of the diagonal elements of A.

The proof is easily supplied by showing that det X(t) satisfies the scalar
equation z = [tr A(t)]z and is left as an exercise for the reader.

The above theory is valid for linear systems with A(t), h(t) integrable in t.
If the elements of the matrix A(t) and the components of h(t) are only
Lebesgue integrable on every compact subset of R, then the results of Section
1.5 imply that the initial value problem for (1.2) has a unique solution. If
x(t) = x(t, to, xo), x(to, to, xo) = xo, is a solution of (1.2) then

to JA(s)I Ix(s)I (18, t > to,Ix(t)I 5 kxo! + f Ih(S)I ds + f
to

as long as x(t) is defined. The generalized Gronwall inequality (Lemma
1.6.2 and an integration by parts implies

Ix(t) I <_ (expjtIA)lds)[xoI + f tt l h(s) I ds]
0

for all t >_ to for which x(t) is defined. The continuation theorem implies x(t)
is defined for t >_ to. Replacing t by to - u and using similar estimates one
obtains existence of x(t, to, xo) fort < to. The general structure of the solutions
of the homogeneous equation (1.3) and the variation of constants formula
are proved exactly as before.

We also need some estimates on the dependence of the solutions of
(1.2) on the right hand side of the differential equation. Suppose A, B are
n x n integrable matrix functions and h, g are n-vector integrable functions
on compact subsets of R and consider the equations

(1.9) (a) x = A(t)x + h(t),

(b) y = B(t)y + g(t)
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If x, y are solutions of (1.9a), (1.9b) respectively, then x - y satisfies
the equation

z=Az+(A-B)y+h-g.
Thus,

IX(t) - y(t)I < IX(to) - y(to)J + ft [IA(s)I Ix(s) - y(s)I + JA(s) - B(S)I Jy(s)I
t0

+ Ih(s) - g(s)j] ds, t >_ to.

Using the generalized Gronwall inequality (Lemma 1.6.2), we have

(1.10) Ix(t) -y(t)1 (exp f
t

IA(s)I ds)Ix(to) -y(to)I
to

+ ft (exPftlA(u)I du)[IA(s) - B(s)I Iy(s)J
s

+ Ih(s) -g(s)I] ds.

In particular, if XA(t, to), XA(to to) = I, XB(t, to), XB(to, to) = I, are
fundamental matrix solutions of x = A(t)x, y = B(t)y, respectively, then

(1.11) IXA(t, to) -XB(t, to)I < sup IXB(u, to)J(exp f IA(s)J ds)
to5u<t to

x f JA(s) - B(s)I ds,
to

for all t > to. Relation (1.11) implies that the principal matrix solution of
x-=Ax is a continuous function of the integrable matrix functions A defined
on [0, t] with JAI = f t IA(s)J ds.

When a linear differential equation contains general time varying
coefficients, the remarks in this section essentially comprise the theory
concerning the specific structure of the solutions. For special equations,
much more detailed information is available. For equations with constant or
periodic coefficients, the general structure of the solutions is known and
discussed in Sections 4 and 7.

M.2. Stability of Linear and Perturbed Linear Systems

In this section, characterizations of stability for linear systems are given
and the results applied to stability of perturbed linear systems. We first
remark that the stability of any solution of homoveneous linear equation ii..
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determined by the stability of the zero solution. Therefore, for linear systems,
it is'permissible to say system (1.3) is stable, uniformly stable, etc.

THEOREM 2.171 Let X(t) be a fundamental matrix solution of (1.3) and
let S be any number in (-co, oo). The system (1.3) is

(i) I stabl for any to in (- oo, co) if and only if there is a K = K(to) > 0
such that

(2.1) IX(t)I < K, to < t < oo;

(ii) I- uniformly stable for to >_ P if and only if there is a K = K(fl) > 0
such that

(2.2) IX(t)X-1(8)1 < K, to < s < t < co;

asymptotically for any to in (- oo, oo) if and only if

IX(t)I--*0 ast --* oo;

(iv) uniforml asymptotically stable
exponentially asymptotically stable; that
a(p) > 0 such that

for to Z P if and only if it is
is, there are K = K(fl) > 0, c x=

(2.4) IX(t)X-1(s)I < Ke-«(t-s) fi < s < t < oo.

PROOF. (i) Suppose to is any given real number in (- oo, oo) and (2.1)
holds. Any solution x(t) satisfies x(t) =X(t)X-1(to)x(to). Let IX-1(to)I = L.
Then I x(t)I < KL I x(to)I < e if I x(to)I < s/KL and the zero solution of (1.3)
is stable. Conversely, if for any e > 0 there is a 8 = S(e, to) > 0 such that
IX(t)X-1(to)x(to)I < e for Ix(to)I <8, then

IX(t)X-1(to)I = sup IX(t)X-1(to)6I

sup IX(t)X-1(to)S-1x(to)I < e8-1
IX(to)1<8

for t >_ to. This proves (i).
(ii) If (2.2) is satisfied, then x(t) =X(t)X-1(to)x(to) for any to >_ f3 and

I x(t)I <_ K I x(to)I < e, t >_ T, if I x(to)I < e/K which is uniform stability. The
converse follows as in (i) with the observation that S is independent of to.

(iii) If (2.3) is satisfied, then for any to in (-oo, oo) there is a
K = K(to) such that IX(t)I < K, t ? to and (i) implies stability. Since x(t) _
X(t)X-1(to)x(to) we have Ix(t)I -* 0 as too. The converse is trivial.

(iv) If (2.4) is satisfied, then (1.3) is uniformly stable from (ii).. Suppose
I x(to)I < 1. For any n > 0, 0 <,] < K, let T = -'log(/K). Then

Ix(t)I = I X(t)X-1(to)x(to)I < Ke-«ct-to)Ix(to)I < 71,
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if t >_ to + T, to >_ fi; that is, uniform asymptotic stability of the zero solution
of (1.3).

Conversely, suppose the solution x = 0 is uniformly asymptotically
stable for to > P. There is a b > 0 such that for any 71, 0 < q < b, there is
a T = T(-q) > 0 such that

(2.5) IX(t)X-1(to)x(to)I <,q for t >_ to + T,

and all to >_ P, I x(to)I < b. Thus, IX(t)X-1(to)I <'qb-1 for t >_ to + T, to
In particular,

(2.6) IX(t + T)X-1(t)I <'qb-1 < 1, t >_ P.

Since the solution x = 0 is uniformly stable, we have from (ii) that there is
an M = M(P) such that IX(t)X-1(s)I < M, f < s < t < 00. Suppose

a = -T-1 log(7tb-1),
K = MeaT.

For any t >_ to, there is an integer k >_ 0 such that kT < t - to < (k + 1)T.
Thus, using (2.6),

IX(t)X-1(to)I <IX(t)X-1(to+kT)I 'IX(to+kT)X-1(to)I

< M - IX(to+kT)X-1(to)I
< M(rb-1)IX (to + (k -1)T)X-1(to)I
< M(,7b-1)k = Me-akT

= Ke-a(k+1)T < Ke-a(t-to).

This proves (iv) and Theorem 2.1.
Using the variation of constants formula and Gronwall's inequality

(Corollary 1.6.6), it is very easy to obtain the following stability results for
perturbed linear systems.

THEOREM 2.2. Suppose P is given in (- oo, oo) and the system (1.3) is
uniformly stable for to >_ P. If the n x n continuous matrix function B(t)
satisfies f

oo

a
IB(t)I dt < oo, then the system

(2.7) x = [A(t) + B(t)]x

is uniformly stable.

PROOF. If X(t) is a fundamental matrix solution of (1.3), then the
variation of constants formula implies that any solution of (2.7) has the form

(2.8) x(t) =X(t)X-1(to)x(to) + ft X(t)X-1(s)B(s)x(s) ds,
to
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for all t, to in (- oo, oo). If to >_ fl, then Theorem 2.1 implies there is a constant
K = K(,8) such that IX(t)X-1(to)I < K for all t >- to. Consequently,

Ix(t)I < KIx(to)I + ft K IB(s) I. Ix(s)Ids, t >_ to .
to

Gronwall's inequality implies
t

Ix(t)I < K expK
fto

B(s)1 ds Ix(to)I, t >_ to.
to

This clearly implies uniform stability of (2.7) and the theorem.

THEOREM 2.3. Suppose f is given in (-oo, oo) and system (1.3) is
uniformly asymptotically stable for to If the n x n continuous matrix
function B(t) satisfies

(2.9) f I B(s)1 (IS < Y(t - to) + T, t >- to >_ P
co - -

for some constants T = T(f ), y = y(fl), then there is an r > 0 such that
system (2.7) is uniformly asymptotically stable if y <r.

PROOF. If X(t) is a fundamental matrix solution of (1.3) and (1.3) is
uniformly asymptotically stable for to >_ f, then Theorem 2.1 implies there
are constants K = K(fl) > 0, a = oc(fl) > 0 such that (2.4) is satisfied. Using
(2.8), one observes that the solution x(t) of (2.7) satisfies

I x(t)I < Ke-a(t-to) I x(to) I + K f e-a(t-8) I B(s)I - Ix(s)I ds, t > to.
to

If z(t) = earl x(t)I , this inequality implies
t

z(t) < Kz(to) + f K I B(s) I z(s) ds, t -> to.
- to

An application of Gronwall's inequality and (2.9) yield
t

z(t) < K(exp K ft. I B(s)I ds)z(to) < K1exv(t-to)z(to), KI = KeKr,
to

which in turn implies Ix(t)I < Ki I x(to)I exp[-(a - Ky)(t - to)], t >_ to. If
r = ocK-1 and y < r, then system (2.7) is uniformly asymptotically stable
and the theorem is proved.

THEOREM 2.4., Suppose f is given in (-oo, oo) and system (1.3) is
uniformly asymptotically stable for to >_ S. If f (t, x) is continuous fcr (t, x)
in B x Rn and for any e > 0, there is a a > 0 such that

(2.10) If (t, x)I < elxl for IxI < a, tin R,
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then the solution x = 0 of

(2.11) x = A(t)x + f (t, x)

is uniformly asymptotically stable for to >_ P.

PROOF. The hypothesis of uniform asymptotic stability for to of
the system (1.3) implies there are constants K = K(fl) > 0, a(f) > 0
such that (2.4) is satisfied. Any solution x of (2.11) satisfies

(2.12) x(t) = X(t)X-1(to)x(to) + f X(t)X-1(s) f (s, x(s)) ds.
to

Choose s so that EK < a and let a be chosen so that (2.10) is satisfied. For
those values of t >_ to for which x(t) satisfies I x(t)I < a, we have

t

I x(t)I < Ke-a(t-to) I x(to)I + f EKe-a(t-s) I x(s)I ds.
to

Proceeding exactly as in the proof of the previous theorem, we obtain

(2.13) I x(t )I < K I x(to)I e-(a-rx) (t-to)

for all values of t >_ to for which I x(t) I < a. Since a - EK > 0, this inequality
implies I x(t)I < a for all t >_ to as long as I x(to)I < a/K. Consequently (2.13)
holds for all t >_ to provided I x(to) I < a/K. Relation (2.13) clearly implies
uniform asymptotic stability of the solution x = 0 and the theorem is proved.

Theorem 2.4 is a generalization of the famous theorem of Lyapunov
on stability with respect to the first approximation. The reason for the
terminology is the following: Suppose g: Rn+1 _ Rn is continuous, g(t, x)
has continuous first partial derivatives with respect to x and g(t, 0) = 0 for
all t. If A(t)x = [ag(t, 0)/8x]x and f (t, x) = g(t, x) - A(t)x, then f (t, 0) = 0,
af(t,x)lax approaches zero as x approaches zero uniformly in t and the condi-
tions of Theorem 2.4 are satisfied. The function A(t)x is clearly the linear
approximation to the right hand side of the eqatuion z= g(t,x).

There are many more results available on stability of perturbed linear
systems and clearly many variants that could be obtained by abstracting the
essential elements of the proofs given above. The exercises at the end of this
section indicate some of the possibilities.

In spite of the fact that the proofs of the above theorems are extremely
simple and the results are not surprising to the intuition, extreme care must
be exercised in treating arbitrary perturbed linear systems.

The example ii - 2t-' + u = 0 has a fundamental system of solutions
sin t - t cos t, cos t + t sin t and is therefore unstable. This equation can be
considered as a perturbation of the uniformly stable system ii + u = 0.

The following example is an equation (1.3) which is asymptotically
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stable, but not uniformly, and system (2.7) is unstable for an appropriate
B(t) such that f* IB(s)j ds < co and JB(t)j -*0 as t--> oo. Consider the system
(1.3) with

(2.14) A(t) 0a 0
sin log t + cos log t - 2a

and 1 < 2a < 1 + e-n. The solutions of (1.3) are

xl(t) =c1 exp(-at),
x2(t) = C2 exp(t sin log t - 2at),

where cl, c2 are arbitrary constants. For any cl, C2, x1(t), x2(t) -.0 as t -* 00
exponentially. If B(t) is defined by

0

B(t) = Leot 011

then f
'

I B(s)j ds < co and I B(t)u -* 0 as t -* oo. The solutions of the perturbed

equation (2.7) with initial time to = 0 are

xi(t) = cl exp(-at),
t
exp(-s sin log s) ds] exp(t sin log t - 2at).x2(t) = [62 + Ci f0

J

If a is chosen so that 0< a < Ir/2, to = exp[(2n -1/2)rr], n = 1, 2, ..., then
sin logs < -cos a for to < s< to ea. Hence,

tne"

f exp(-s sin log s) ds > f exp(-s sin log s) ds
0 t

ftAea
> exp(s cos a) ds

tR

> tn(ea - 1) exp(tn cos oz).

Choose c2 = 0, c1 =1. Since sin log(tn en) = 1, we have

Ix2(tnen)1 > tn(ea - 1) exp(btn),

where b = (1 - 2a)en + cos «. If we choose a so that b > 0, then I x2(tn en)) - 00
as n -* oo and the system is unstable.

EXERCISE 2.1. Suppose there is a constant K such that a fundamental
matrix solution X of the real system (1.3) satisfies JX(t)j < K, t >_ P and
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t
lim inf f tr A(s) ds > -co.

. t oo $

Prove that X-1 is bounded on [fl, oo) and no nontrivial solution of (1.3)
approaches zero as t -> oo.

EXERCISE 2.2. Suppose A satisfies the conditions in Exercise 2.1 and
B(t) is a continuous real n x n matrix for t >_ P with f IA(t) - B(t)I < oo.
Prove that every solution of B(t)y is bounded on [f, oo). For any solu-
tion x of (1.3), prove there is a unique solution y of B(t)y such that
y(t) - x(t) 0 as t oo.

EXERCISE 2.3. Suppose system (1.3) is uniformly asymptotically stable,
f satisfies the conditions of Theorem 2.4 and b(t) --0 as t -> oo. Prove there is
a T > 9 such that any solution x(t) of

x = A(t)x +. f (t, x) + b(t)

approaches zero as t -->- oo if I x(T) I is small enough.

EXERCISE 2.4. Generalize the result of Exercise 2.3 with b(t) replaced
by g(t, x) where g(t, x) -*0 as t -* oo uniformly for x in compact sets.

EXERCISE 2.5. Suppose there exists a continuous function c(t) such that
ft+1

c(s) ds < y, t >_ 8, for some constant y = y(fl) and f: Rn+1 -->Rn is con-

tinuous with If (t, x) I < c(t)IxI. Prove there is a constant r > 0 such that the
solution x = 0 of (2.11) is uniformly asymptotically stable if y < r.

EXERCISE 2.6. Generalize Exercises 2.3 and 2.4 with f satisfying the
conditions of Exercise 2.5.

III.3. n1h Order Scalar Equations

Due to the frequency of occurrence of nth order scalar equations in the
applications, it is worthwhile to transform the information obtained in
Section 1 to equations of this type. Suppose y is a scalar, al, ... , an and g are
continuous real or complex valued functions on (- oo, + oo) and consider the
equation

(3.1) Dny + al(t)Dn-ly + ... + an(t)y = g(t),

where D represents the operation of differentiation with respect to t. The
function D2y is the second derivative of y with respect to t, and so forth.
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Equation (3.1) is equivalent to

(3.2) (z ='Ax + h

y 0 1 0 0 0

Dy 0 0 1 0 0
X A= h=

Dn-2y 0 0 0 1 0
Dn-ly -an -an-1 -an-2 ... -al -9

From this representation of (3.1), a solution of (3.2) is a column vector
of dimension n, but the (j + 1)th component of the solution vector is obtained
by differentiation of the first component j times with respect to t and this
first component must be a solution of (3.1). Consequently, any n x n matrix
solution [61, ..., en], fj an n-vector, of (3.2) must satisfy cj = col(4)j, D4)j,

Dn-l4j),where OJ, j =1, 2, ..., n, is a solution of (3.1).
If 01, ..., On are n-scalar functions which are (n -1)-times continuously

differentiable, the Wronskian A(01, ... , On) of 01, ..., On is defined by

(3.3) 0(4)1, ... , on) = det

01 02 "' 0.
Dot D02 ... Don

Dn-14)1 Dn102 ... Dn-lon

A set of scalar functions 01, ... , On defined on a <_ t b are said to be
linearly dependent on [a, b] if there exist constants cl, ... , cn not all zero
such that cl4l(t) + + cn 4n(t) = 0 for all tin [a, b]. Otherwise, the functions
are linearly independent on [a, b].

I LEMMA 3.1. I If 01, ..., 0. are n - 1 times continuously differentiable
scalar functions on an interval I, then 01, ..., 0. are linearly independent on
I if the Wronskian A defined in (3.3) is different from zero on I.

PROOF. Suppose there is a linear combination of the Oj which is zero
on I. More precisely, suppose that

n
el ¢j(t) = 0, tin I,

j=o

where the cj are constant. By repeated differentiation of this relation, the
following system of equations for the constants cj is obtained:

cjDk4j(t)=0, k=0,1,2,...,n-1.
j=1

Or, in matrix form,
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01 02 on c1

Dot D02 ... D¢n = 0.

D-101 D-102 ... Dn-l0n Cn1 11]
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This latter relation must be satisfied for all t in I. On the other hand, by
hypothesis, the determinant of the coefficient matrix is different from zero
for all tin I which implies that the only solution of this system of equations
is cl = = cn = 0; that is, the functions 01 are linearly independent.

The converse of this statement is not true. In fact, there can be n-
functions with n -1 continuous derivatives on an interval I such that the
Wronskian is identically zero for all tin I and yet the functions are linearly
independent. For n = 2, one merely has to choose two differentiable functions
01, 02 on [0, 3] such that 01(t) = 0, tin [0, 2], 02(t) = 0, tin [1, 3] and the
functions are 0 otherwise.

On the other hand, it is clear from the proof of Lemma 3.1 that linear
dependence of 01, ... , On on I implies A - 0 on I.

If 01, ..., 0. are solutions of the homogeneous equation

(3.4) Dny + a1(t)Dn-ly + ... + an(t)y = 0,

then A(q1, ..., on) is the determinant of an n x n matrix solution of the
homogeneous system (3.2); that is, system (3.2) with h =0. Lemmas 1.2,
1.5, formula (3.2) and the remarks above imply

THEOREM 3.1. If 01, ..., 0. are n solutions of (3.4), then 0(01,
0n)(t) is 0 for all tin (-oo, oo) or identically zero. More specifically,

t
0(01, ..., 0n)(t) = 0(¢1, ..., On)(0) exp(- fo al(s) ds).

\\

Thus, the n solutions 01, ... , On of (3.4) are linearly independent if and
only if 0{q1, ... , on) (0) 0.

Let us determine the variation of constants formula for the solutions
of equation (3.1). Since (3.1) is equivalent to (3.2), it is sufficient to determine
only the variation of constants formula for the first component of the vector
solution of (3.2). If X(t, T), X(-r, T) = I, is the principal matrix solution of
x = Ax, then any solution of (3.2) satisfies relation (1.7). If the first row of
the matrix X(t, -r) is designated by (01(t, r), ... , 0n(t, T)), then the first
component y of the vector x in (1.7) is given by

t

(3.5) y(t) = [D9-1y(T)]01(t, T) + f 00, s)9(s) ds,
1=1

where g is the function given in (3.1). The reason for such a simple expression
is due to the fact that the vector h in (2.2) has all components zero except
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the last which is g. Since the function 0n(t, s) together with its derivatives
up through order n -1 form the last column of the matrix X (t, s) it follows
that #n(t, s) is the solution of the homogeneous equation (3.4) which for
t = s vanishes together with all its derivatives up through order n - 2,
and the derivative of order n -1 with respect to t is equal to one. This is
summarized in

THEOREM 3.2. For any real number s in (- oo, + co), let 4(t, s) be
the unique solution of the homogeneous equation (3.4) which satisfies the
initial data

(3.6) y(s) = Dy(s) = ... = Dn-2y(s) = 0, Dn-iy(s) =1.

Then the unique solution of equation (3.1) which vanishes together with all
derivatives up through order n - 1 at t = z is given by

(3.7) y(t) =
J

t c(t, s)g(s) ds.

Another relation which is easily obtained from the general theory of
Section 1 is the equation adjoint to equation (3.4). This is derived from the
general definition of the adjoint equation given in Section 1. The adjoint to
equation (3.2) with h = 0 is given by w = -wA, w = (wl, ... , wn), or, equi-
valently,

Dw1 -an wn
Dw2 = -wl + an-i wn

Dwn = -wn-1 + al wn .

It is not obvious that equation (3.8) is equivalent to an nth order scalar
equation of any type. However, if each of the functions ak, k =1, ..., n,
has a sufficient number of continuous derivatives, this is the case. In fact,
differentiation of the (k + 1)th equation in (3.8) k-times with respect to t
yields the equivalent set of equations

(3.9) Dw1 =an wn ,

Dk+lwk+l = -Dkwk + Dk(an-k wn), k = 1, 2, ... , n -1.

If z = wn, then one easily concludes from (3.9) that

(3.10) Dnz - Dn-1(aiz) + ... + (-1)nanz =0.

Equation (3.10) is referred to as the adjoint to equation (3.4). If the a's are
constant this is the same differential equation as the original one except
for some changes in sign in the coefficients.
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I1L4. Linear Systems with Constant Coefficients

In this section, we consider the homogeneous equation

(4.1) z= Ax

and the nonhomogeneous equation

(4.2) z ; Ax + h(t)

where A is an n x n real or complex constant matrix and h is a continuous
real or complex n-vector function on (- co, oo).

The principal matrix solution P(t) of (4.1) at t = 0 is such that each
column of P(t) satisfies (4.1) and P(0) = I, the identity. The matrix P(t)
satisfies the following property: P(t + s) = P(t)P(s) for all t, s in (- oo, oo).
In fact, for each fixed s in (- oo, oo), both P(t + s) and P(t)P(s) satisfy
(4.1) and for t = 0 these matrices coincide. Thus, the uniqueness theorem
implies the result. This relation suggests that P(t) behaves as an exponential
function. Therefore, we make the following

Definition 4.1. Then x n matrix eAt, - oo <t < oo, eO = I, the identity,
is defined as the principal matrix solution of (4.1) at t = 0.

The matrix eAt satisfies the following properties:
(i)
(ii)

(iii)

eA(t+3) = eAteA8
(eAt)-I = e-At

Wt eat = AeAt = eAtA

(iv) eAt = I + At +
2)

A2t2 + ... + 1

n)
Antn + .. .

(v) a general solution of (4.1) is eAtc where c is an arbitrary constant
n-vector.

(vi) If X(t), det X(0) 0 is an n x n matrix solution of (4.1), then
eAt = X(t)X-1(0).

Property (i) was proved above and (ii) is a consequence of (i). Property
(v) is Lemma 1.3 for this special case. (iii) follows from uniqueness and the
observation that both AeAt and eAtA are matrix solutions of (4.1). This
same argument proves (vi).

Before proving (iv), it is necessary to make a few remarks about the
meaning of a matrix power series. If f (z) is a function of the complex variable
z which is analytic in a neighborhood of z = 0, the power series f (A) is defined
as the formal power series obtained by substituting for each term in the
power series of f (z) the matrix A for the complex variable z. Of course, such
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an expression will be meaningful if and only if for the particular matrix A
each element of the power series matrix converges. One can actually use such
a series as a definition for matrix functions f (A) when f (z) is an analytic
function of the complex variable z. On the other hand, it should be noted
that property (iv) above is not a definition of eAt but is going to be derived
from the fact that At is the principal matrix solution of (3.1) at t = 0.

defPROOF OF (Iv). Since P(t) = eAt is the principal matrix solution of
(4.1) at t = 0 it follows that P(t) must satisfy the integral equation

(4.3) P(t) =I+ f AP(s) ds.
0

If one attempts to solve equation (4.3) by the obvious method of
successive approximations

(4.4) p(o) =I,
t

p(k+1)(t) =I+ f AP(k)(s) dg
0

k=0,1,2,...,

then one observes that the expression for P(k) is given by the formula

P(k) (t) = I + At + 2I A2t2 -{- ... + kI Aktk.

In the proof of the Picard-Lindelof Theorem in Chapter I, it was shown that
this sequence converged for Iti < a and a small. We now wish to show that,
the sequence of matrices P(k)(t) converge uniformly for all t in a compact set
in (-co, oo). If we let I(t) be the (ij)th element of the matrix P(k)(t), then
there is a constant P > 0 independent of k such that I P;;)(t)I <_

P-1IP(k)(t)I.

Thus,
1 1

1I ,;)( )I = at +
211

a2t2 + ... + k I aktk < eatI

where for simplicity we have put a = IAl. Furthermore,

and the sequence (P< )(t)) converges uniformly for all t in a compact set of
(-oo, oo). This shows that the power series in property (iv) is well defined
and thus the sequence of matrices {P(k)(t)} converges uniformly on all compact
subsets of (-oo, oo). From (4.4), it follows that the limit is the principal
matrix solution P(t) = eAt of (4.1). This proves property (iv).

In spite of the above apparent simplicity, the matrix eAt is a rather
complicated individual. Many of the operations that are valid for the scalar
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exponential function are also true for the matrix function eAt. However,
other operations do not behave in the same way as for scalars since in general
matrix multiplication is not commutative. The following two exercises
indicate that caution must be exercised in operating with eAt.

EXERCISE 4.1. Prove that BeAt = eAtB for all t if and only if BA = AB.

EXERCISE 4.2. Prove that eAtest = e(A+s)t for all t if and only if
BA =AB.

With a general solution of equation (4.1) being given by eAtc, where c
is a constant n-vector and the matrix eAt having the power series representa-
tion given in property (iv), one might ask if there is anything left to discuss
about linear equations with constant coefficients. Unfortunately, the previous
notation is very misleading and we have not answered the following questions:
In what precise sense does the function x(t) = eAtc where c is a constant
n-vector behave as the scalar exponential function? What is an effective
means for computing eAt?

Both of the questions are very closely related and reduce to a detailed
discussion of the eigenvalues and eigenvectors of a matrix. The general
structure of the solutions of the differential equation (3.1) is determined
completely from the solution of an algebraic problem. This fact expresses
the simplicity of linear systems of differential equations with constant
coefficients and also explains why there is always a definite attempt in the
applications to simulate models of physical systems by using equations with
constant coefficients.

A complex number A is called an eigenvalue (proper value, characteristic
value) of an n x n matrix A if there exists a non-zero vector v such that

(4.5) Av = Av or (A - AI)v = 0.

If A is an eigenvalue of the matrix A and v is any non-zero solution of
equation (4.5), then v is called an eigenvector (proper value, characteristic
vector) associated with the eigenvalue A. Hence, A is an eigenvalue of the
matrix A if and only if A is a solution of the characteristic equation

(4.6) det(A - AI) = 0.

The characteristic equation is a polynomial of degree n in A and, therefore,
has n solutions, not all of which may be distinct. On the other hand, if
Al, ... , Ak are distinct eigenvalues of the matrix A and VI, ... , vk are cor-
responding eigenvectors, then v1, ... , vk are linearly independent. The
following lemma is" obvious.

LEMMA 4.1. If A is an eigenvalue of the matrix A and v is an eigenvector
associated with A, then the function x(t) = exty is a solution of the differential
equation z = Ax.
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LEMMA 4.2. If A is an n x n matrix with n-distinct eigenvalues
Al, ... , A. and v1, ..., vn are the corresponding eigenvectors, then a general
solution of equation (4.1) is given by

V(t)c = clvleAlt + ... + en vneAnt,

where V(t) = (vlel1t, ... , vnexnt) and c = (cl, ... , cn) is an arbitrary complex
n-vector. Furthermore, eAt = V(t)V(0)-1.

PROOF. If we let V(t) be defined as above, then Lemma 1.3 implies
it is sufficient to show that V(t) is a fundamental matrix solution of equa-
tion (4.1). Since V(0) = (v', ..., vn) and the vectors v1, ..., vn are linearly
independent, V(0) is non-singular. This fact, JJemma 4.1 and Corollary 1.1
imply that V(t) is a fundamental matrix solution of (4.1). A general solution
is therefore V(t)c where c is an arbitrary n-vector. The last assertion of the
lemma is precisely property (vi) above of eAt.

If the matrix A has real elements then the eigenvalues will occur in
complex conjugate pairs. This will imply that the corresponding eigenvectors
can be chosen as complex conjugates. Therefore, if only real solutions of (4.1)
are desired, the constants cl, ..., cn given in the general solution will need to
satisfy some restriction of complex conjugacy. In fact, if Al and A2 are com-
plex conjugates, then the eigenvectors v1, v2 can be chosen as complex
conjugates. In the general solution the constants cl and c2 then may be
chosen as complex conjugates to obtain a real solution of equation (4.1).

We now describe the general procedure for obtaining eAt. To do this we
need some elementary concepts from linear algebra. Let Cn be complex
n-dimensional space and let Sl, S2 be linear subspaces of Cn. The subspaces
Si and S2 al . linearly independent if ClYl + c2 y2 = 0, yl in S1,112 in S2,
implies that c1 = C2 = 0. The direct sum, Si Q S2, of independent subspaces
S1, S2 is a subspace S of Cn whose elements y are given by y = yl + y2, yl in
S1, Y2 in S2. If A is an n x n matrix and S is a subspace of Cn, then S is
invariant under A if for any y in S the vector Ay is in S. If A is an n x n
matrix the null space of A, denoted by N(A), is the set of all y in Cn such that
Ay = 0. If A is an eigenvalue of the n x n matrix A, r(A) is the least integer k
such that N(A - AI )k+1 = N(A - AI )k. The set N(A - AI)r(A) is a subspace
of Cn and is called the generalized eigenspace of A corresponding to the
eigenvalue A. This generalized eigenspace is denoted by the symbol MA(A).
The dimension of MA(A) is equal to the algebraic multiplicity of the eigen-
value A ; that is, the multiplicity of the eigenvalue as a zero of the charac-
teristic polynomial det(A - Y). We say an eigenvalue A of A has simple
elementary divisors if MA(A) = N(A - Al). The following result is basic and
a proof can be found in any book on linear algebra.

LEMMA 4.3. If A is an n x n matrix and A,_., A8 are the distinct
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eigenvalues of A, then the corresponding generalized eigenspaces MA,(A),
... , MA,(A) are linearly independent, are invariant under the matrix A and
C" = MA,(A) O+ ... ( MAe(A).

Since the generalized eigenspaces Mx,(A),... , MA,(A) are linearly
independent if Al, ..., A$ are the distinct eigenvalues of A, it follows that
any vector xO in C" can be represented uniquely as

(4.7) xO = Y x0,1, xO,1 in MAM(A).
j=1

Since the generalized eigenspaces MAM(A) are invariant under the matrix A,
any solution of the differential equation (4.1) with initial value in MA,(A)
will remain in M.,(A) for all values of t. This is immediately obvious since
the tangent vector to the curve described by the solution of the differential
equation in the phase space lies in the subspace MA,(A).

For any xO in C" and any complex number A,

eAtxO = e(A-AI)textxO

= e(A-.I)txOext

oo tk
_ E (A - AI)k _/ xOeAt

k=0 kt J

If A is an eigenvalue of A and MA(A) is the corresponding generalized eigen-
space, then x0 in MA(A) implies that the above infinite series. is actually
only a polynomial since (A - AI)kx0 = 0 for all k >_ r(A). Therefore, for any
x0 in MA(A), eAtxO is given by

r(A)-1 tk
(4.8) eAtxO = [ E (A -AI)k -1 xOext.

k=0 k(

In summary, if A is an eigenvalue of the matrix A and MA(A) is the
corresponding generalized eigenspace, then any solution of the differential
equation with its initial value in MA(A) must lie in MA(A) for all values of t
and the solution of the differential equation is a polynomial in t with vector
coefficients times eAt. Furthermore, this polynomial in t can be obtained by a
direct evaluation of the infinite series for e(A-AI)t.

These remarks together with Lemma 4.3 and the decomposition (4.7)
yield

THEOREM 4.1. If A1, ..., A$ are the distinct eigenvalues of the n x n
matrix A and MA,(A), ..., MA,(A) are the corresponding generalized eigen-
spaces, then the solution of the initial value problem

(4.9) i = Ax, x(0) = xO,
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is given by
tk

(4.10) x(t) [ E (A - Ajl)k -J xc, Je,ft,
1=1 k=O k!

where the vector xc, 1 belongs to the generalized eigenspace Mx,(A) and is
determined by the unique decomposition of the initial vector xo according
to equation (4.7).

The specific manner in which one applies this result is as follows. The
dimension of the generalized eigenspace MA(A) of an eigenvalue of A is equal
to the algebraic multiplicity of the eigenvalue A. For a given eigenvalue A
of the matrix A one first obtains the null space of the matrix A - Al. If the
dimension of this null space is not equal to the algebraic multiplicity of
the eigenvalue A, one proceeds to calculate the null space of (A - AI)2. If
the dimension of this subspace is equal to the algebraic multiplicity of the
eigenvalue A, the subspace is MA(A). This process is continued until a sub-
space is obtained which has the dimension of the algebraic multiplicity of
the eigenvalue A. In this process, one also has obtained a basis for the general-
ized eigenspace Mx(A). Having done this for each eigenvalue A of the matrix
A, one has a basis for C4. In terms of this basis the element xc can be expanded
uniquely, which determines the xc.1 and therefore the solution x(t) by
formula (4.10). The general solution of equation (4.1) is obtained by replacing
xc> J in (4.10) by an arbitrary linear combination of the basis vectors for the
generalized eigenspaces M. ,(A), j =1, 2, ..., s.

EXERCISE 4.1. Using Theorem 4.1, find the general real solution of the
equation t = Ax with

(a) A= L-0 o1

] ;

(b) A=
[0

0];

(c) A=

1 2

(d) A =
ro

1 0 ;

,
1 -1

0 1 0

(e) A= 4 3 -4 .

1 2 -1

Theorem 4.1 gives a complete description of the general form of the
solution of a linear equation with constant coefficients; namely. any solution
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of (4.1) is a sum of exponential terms with coefficients which are polynomials
in t. The exponents of the exponential terms involve the eigenvalues of A.
The degree of the corresponding polynomial in t is no more than one less
than the dimension of the generalized eigenspace of the eigenvalue. A more
complete description of the number of linearly independent solutions of
(4.1) of the form p(t)ext, where p(t) is a polynomial of a given degree is given
by the Jordan canonical form: For an n x n matrix A, there is a nonsingular
matrix Q such that

(4.11) Q-'AQ = diag(Cl, . . . , Cp);

Cp=AjI+Rp;

0 1 0 ... 0 0
0 0 1 . 0 0

Rp =

0 0 0 ... 0 1I
0 0 0 ... 0 0

and Ap, j =1, 2, ..., p, is an eigenvalue of A. The A1, ..., A are not neces-
sarily distinct and the dimension np of Cj is not necessarily equal to the
r(Aj) mentioned above.

If Q, A are related by (4.11), then

(4.12) Q-1eatQ = e[diag(c,.....c,)]t = diag(ecit... , ect),

t2 tn,-1
1 tr

2! (np - 1)t

eC,t = ei jteR,t, erR,t = 0 1 t ...
tn.t-2

(np - 2)!

L0 0 0 1 J

The representation (4.12) gives more specific information about eAt, but
depicts the same general structure of the solutions of (4.1) as Theorem 4.1.

A similarity transformation is a transformation which takes a matrix A
into a matrix' Q-'AQ, Q nonsingular. Similarity transformations are very
important in differential equations. In fact, if Q is nonsingular and x = Qy
in (4.1), then y =Q-'AQy. The Jordan canonical form implies that such
transformations can be used to reduce a differential equation to a very
simple form.

THEOREM 4.2. (i) A necessary and sufficient condition that the system
(4.1) be stable is that the eigenvalues of A have real parts <_ 0 and those with
zero real parts have simple elementary divisors.
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(ii) A necessary and sufficient condition that the system (4.1) be asymp-
totically stable is that all eigenvalues of A have real parts < 0. If this is the
case, there exist positive constants K, a such that

(4.13) JeAtl < Ke-at t > 0.

PROOF. Since (4.1) is autonomous, stability implies uniform stability,
asymptotic stability implies uniform asymptotic stability. Theorem. 2.1
implies that stability and boundedness of (4.1) are equivalent and asymptotic
stability and exponential asymptotic stability are equivalent.

(i) If all solutions of (4.1) are bounded, then there can be no eigenvalue
of A with positive real parts from Lemma 4.1. Furthermore, if there are
eigenvalues with zero real part and M,&(A) 0 N(A - Al), then Theorem 4.1
implies there is a solution with a term text times a nonzero constant vector.
Such a solution would not be bounded. Conversely, if all eigenvalues have
nonpositive real parts and M t(A) = N(A - Al) for those eigenvalues with
zero real parts, then the general representation theorem, Theorem 4.1, implies
that no powers of t occur except when multiplied by an eat with Belt < 0.
Therefore, the solutions are bounded.

(ii) This part is proved in the same manner using Theorem 4.1 and
Theorem 2.1.

Since (eAt)-1 = e-At formula (1.7) implies the variation of constants
formula for (4.2) is

t
(4.14) x(t) = eA(t-T)x(T) + ( eA(t-8)h(s) ds.

JT

As a particular illustration of this relation, consider the scalar equation

il±u=g(t)
This equation is equivalent to the system

?I V,

v=-u±g(t).
If x = (u, v),

then

A= [-1 1], f = [0],

cost sin teAt =
-sin t cost '

and the first component of (4.14) is

+ ftu(t) = u(T) cos(t - T) + 2G(T) sin(t - T) +
J

sin(t - 8)g(s) ds,
T

a well known formula in elementary differential equations.
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I11.5. Two Dimensional Linear Autonomous Systems

As an application of Theorem 4.1, we classify the different behaviors of
the solutions of

(5.1) i = Ax, A = [a
d]

, det A 0.

where a, b, c, d are real constants. If Al, A2 designate the eigenvalues of A,
there are many cases to consider.

Case 1. Al, A2 real, A2 < Al- Let v1, v2 designate unit eigenveetors of A
associated with the eigenvalues Al, A2, respectively. A general real solution
of (5.1) is

(5.2) x(t) = c1el1tvl + c2eA2tv2,

where c1, c2 are arbitrary real constants. For a given c1, e2 , ci + c2 > 0, the
unit tangent vector to the orbit y described by (5.2) approaches a vector parallel
to of as t - ° if cl 0 0 and ±v2 as t -> - oo if c2 0 0.

Case la. Negative roots, A2 < Al < 0 (Stable node). All solutions ap-
proach zero as t -> oo and the above information on asymptotic directions
allows one to sketch the orbits as in Fig. 5.1. The straight lines LI and L2 are
the lines that contain the eigenvector v1 and v2, respectively. The origin is
stable and called a stable node.

Figure 111.5.1 Stable node (A2 < Aj < 0).
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Figure 111.5.2 Unstable node (0 < A2 < A).

Case Ib. Positive roots, 0 < A2 < Al (Unstable node). This is similar to
Case la except for reversing the arrows and changing the lines of tangency
of the curves. See Fig. 5.2. The origin is unstable and called an unstable nope.

Case Ic. One positive and one negative root, A2 < 0 < Al(Saddle point).
From (5.2), those orbits which lie on L2 approach zero as t - + oo and those
which lie on L1 approach zero as t -+ - oo. All other orbits are unbounded.
The zero solution is unstable and the orbits are depicted in Fig. 5.3. The origin
is called a saddle point.

Figure 111.5.3 Saddle point A2 < 0 < Al .
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Case 2. Complex roots. Since A is real, we have Al = a + i,8, A2 =
a - ifl, a, S real, P > 0. If v1 and v2 are chosen as complex conjugate, a
general solution for the real solutions of (5.1) is

x(t) = eie(a+¢R)tvl + -le(a-tp)tvl = 2Re(c1e(a+tl6)tvl),

where cl is an arbitrary complex number and b designates the complex
conjugate of a vector b.

If vl = u + iv, u, v real, then u, v are linearly independent and if
cl = aet5 where a, a are real, then a general real solution of (5.1) is

(5.3) x(t) = 2aeat[u cos(pt + 8) - v sin(flt + 8)].

The expression (5.3) gives all of the essential properties of the solutions.
If Pt + 8 = k ir, k an integer, then the orbit of the solution crosses the line U
generated by u and if Pt + 8 = (2k + 1)a/2, k an integer, it crosses the line
V generated by v. The components of the solution curve in the direction u
and v oscillate and are 7r/2 radians out of phase. Therefore, the orbit must
resemble a spiral.

Case 2a. Purely imaginary roots (Center). If the eigenvalues of A are
±iP, a general real solution of (5.1) is

x(t) = a[u cos(fit + 8) - v sin(fit + 8)],

where a, 8 are abitrary real constants and u, v are as above. The orbits are
closed curves and every solution is periodic of period 21r/0. These curves are
ellipses with center at (0,0) (see Fig. 5.4). The origin is stable and called a center.

Figure 111.5.4 Center Al = \2 , Re Al = 0, Im A 0 0.
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Case 2b. Complex roots with negative real parts (Stable focus). If
« < 0, it follows from (5.3) that all solutions approach zero as t - oo and
the orbits are spirals. The equilibrium point is called a stable focus (see
Fig. 5.5).

}

Figure 111.5.5 Stable focus.

Case 2c. Complex roots with positive real parts (Unstable focus). If
a > 0, then solutions approach zero as t - . - oa and the equilibrium point
is called an unstable focus (see Fig. 5.6).

Case S. Both eigenvalues equal (Improper node). The eigenvalues are
real. If there are two real linearly independent eigenvectors v1, v2 associated
with the eigenvalue A (i.e., A has simple elementary divisors), then a general
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solution is
x(t) = (clvl + c2 v2)0

where Cl, c2 are arbitrary real constants. The unit tangent vector to the
orbit of x is constant for any c1, c2. Therefore, all orbits are on straight lines
passing through the origin (see Fig. 5.7).

Figure III. 5.7 Stable improper node.

If there is only one linearly independent eigenvector v1 of A, then the
general solution given by Theorem 4.1 is

x(t) = (Cl + C2 t)extvl + C2 extvZ,

where V2 is any vector independent of v1. By direct computation, one shows
that the tangent to the orbit becomes parallel to v1 oo and t - oo.
A typical situation is shown in Fig. 5.8.

I

Figure 111.5.8 Stable improper node.
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M.6. The Saddle Point Property

In the previous section, we have given a rather complete characteriza-
tion of the behavior of the solutions of a two dimensional linear system with
constant coefficients. It is of interest to study the conditions under which the
behavior of the solutions near an equilibrium point of a particular type is not
" changed " by " small " perturbations of the right hand side of the differential
equation. By considering only linear perturbations Bx with BI small, it is
easy to see that the only types of equilibrium points for two dimensional
linear systems which are preserved are the focus proper node and saddle point.
On the other hand, the limiting behavior at co is insensitive to small perturba-
tions for all types except the center. In this section, we discuss for linear
systems of arbitrary order a special type of equilibrium point which is
insensitive to perturbations in the differential equation. The classification
of the equilibrium point is crude in the sense that it does not take into
account the "fine" structure of the trajectories but only general asymptotic
properties of the trajectories. The questions discussed here are treated in a
much more general context in a later chapter, but, in spite of the duplication
of effort, it seems appropriate to consider the special case at this time.

The equilibrium point x = 0 of (4.1) is called a saddle point of type (k)
of (4.1) if the eigenvalues of the matrix A have nonzero real parts with
k > 0 eigenvalues with positive real parts. For n = 2, this definition of a
saddle point does not coincide with the one in Section 5. In fact, an equi-
librium point which is completely stable (k = 0) as well as one which is
completely unstable (k = 2) is referred to in this section as a saddle point.

If x = 0 is a saddle point of (4.1) of type (k), the space Cn can be
decomposed as

(6.1) Cn =C+ ®G"
Cn Gn, Cn+ _it+ = it-C",

where a+, ,7r_ are projection operators, or++ 1r_ = I, C+ has dimension k, C'
has dimension n - k, C"+, Cn are invariant under A and there are constants
K > 0, a > 0 such that

(6.2) (a) JeAt7r+xl < Keatllr+xl, t < 0,

(b) IeAt7r_xl < Ke-atln._xI, t Z 0,

for all x in C". These relations are immediate from the observation that there
exists a nonsingular matrix U such that U-'A U = diag(A+, A-) where A+
is a k x k matrix whose eigenvalues have positive real parts and 'A_ is an
(n - k) x (n - k) matrix whose eigenvalues have negative real parts. From
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Theorem 4.2, there are constants K1 > 0, a > 0 such that IeA+tl <_ Kleat
t < 0 and IeA-11 <K1e-at, t >_ 0. The first relation is obtained by replacing
t by -t in the equation fi = A+ U. Let Cn+ = {x in C' such that x = Uy,
y = (u, 0), u a k-vector} and Cn = {x in Cn such that x = Uy, y = (0, v), v
an (n - k)-vector}. Since U is nonsingular Cn+ Q Cn = C" and this defines
the projection operators Tr+, 7r_ above. It is clear that (6.1) and (6.2) are
satisfied.

The subspace Cn+ defined in (6.1) is called the unstable manifold passing
through zero and Cn is called the stable manifold passing through zero. The
orbits of solutions on the unstable manifold approach zero as t --- > - 00 and
the orbits of solutions on the stable manifold approach zero as t --. 00.
Furthermore, the construction of C+, Cn clearly shows that the only solutions
of (4.1) whose orbits remain in a given neighborhood of the origin for all
t >_ 0 (t < 0) must have their initial values on Cn (C+).

What type of behavior is expected when a linear system with x = 0 as
a saddle point is subjected to perturbations which are small near x = 0? The
following example is instructive. Consider the second order system

xl = X1,

x2=- x2+xi,
whose general solution is

x1(t) = eta,

a3 a3
x2(t) = e-t(b - 4 I + 4 e3t,

where a, b are arbitrary constants. It is easily seen that x1(t), x2(t)-0
as t oo if and only if a = 0 and b is arbitrary. Also, xl(t), x2(t) - .0 as
t - oo if and only if b = a3/4 and a is arbitrary. If b = a3/4, then the cor-
responding orbit in the phase plane is x2 = xi/4. The phase plane portrait
is shown in Fig. 6.1. Notice that the stable and unstable manifolds near
x = 0 are essentially the same as the ones for the linear system. This example
motivates the following definition of a saddle point for nonlinear equations.

Suppose xo is an equilibrium point of the equation

(6.3) z =Ax +f (x),

where f is continuous on Cn. We say xo is a saddle point of type (k) of (6.3)
if there is a bounded, open neighborhood V of xo and two sets Uk, S,-k,
in Cn, Uk n Sn_k = {xo}, of dimensions k and n - k, respectively, Uk nega-
tively invariant, Sn_k positively invariant with respect to (6.3), such that the
orbit of any solution of (6.3) which remains in V for t < 0 (t >_ 0) must have
initial value in Uk(Sn_k) and the orbit of any solution with initial value in



108 ORDINARY DIFFERENTIAL EQUATIONS

X2

Figure III. 6.1

Uk(Sn_k) approaches xo as t oo (+ oo). The set Uk is called the unstable
manifold and Sn_k the stable manifold.

If x = 0 is a saddle point of (4.1) of type (k), we say that the saddle point
property is preserved relative to a given class ,F of functions if, for each f in
.°F, the system (6.3) has an equilibrium point xo = xo(f) which is a saddle
point of type (k).

Our main interest centers around the preservation of the saddle point
property when the family ,F is a family of " small " perturbations and the
equilibrium point xo = xo(f) satisfies xo(O) = 0. If f has continuous first de-
rivatives and we measure f by specifying that the norm of f in a bounded
neighborhood V of x = 0 as

I f I = supIf (x)I + sup
xeV xeV

Of (x)

8x

then there is no loss in generality in assuming that f (x) =o(Ixi) as IxI -*0.
In fact,'there is a 8 > 0 such that the matrix A + 8f (x)/8x as a function of
x has k eigenvalues with positive real parts, n - k with negative real parts
for IxI < S. From the implicit function theorem, the equation Ax +f (x) = 0
has a unique solution xo in the region IxI < S. The transformation x = xo + y
yields the equation

[A+-_- )] y +f (xo + y) -f (xo) - - - )yax Ox

def= By + g(y),

where B has k eigenvalues with positive real parts, n - k with negative real
parts and g(y) =o(Iyl) as IyI-p.0.
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On the strength of this remark, we consider the preservation of the saddle
point property for equation (6.3) for families of continuous functions f which
at least satisfy f (x) =o(IxI) as Ixl -* 0.

LEMMA 6.1. If f : Cn -± Cn is continuous, x = 0 is a saddle point of type
(k) of (4.1), or+, ,r_ are the projection operators defined in (6.1), then, for
any solution x(t) of (6.3) which exists and is bounded on [0, oo), there is an
x_ in 7r-Cn such that x(t) satisfies

(6.4) x(t) =
eAtx-

+ f eA(t-s)ir-f (x(s)) ds + f a-As r+f Wt + s)) cts,:
o

for t >_ 0. For any solution x(t) of (6.3) which exists and is bounded on
(-oo, 0], there is an x+ in 7r+Cn such that

0

(6.5) x(t) = eAtx+ + f
t

eA(t-8)7r+ f (x(s)) ds + f e-As r_ f (x(t + s)) ds
o

forfor t<_ 0. Conversely, any solution of (6.4) bounded on [0, oo) and any
solution of (6.5) bounded on (-co, 0] is a solution of (6.3).

PROOF. Suppose x(t) is a solution of (6.3) which exists for t Z 0 and
Ix(t)I < M for t >_ 0. There is a constant L such that Iir+xl <_ Llxi for all x
in Cn and, thus, Ia+x(t)I <_ML for all t >_ 0. Since f is continuous there is a
constant N such that I f(x(t))I :!9. N, t >_ 0. For any a in [0, oo), the solution
x(t) satisfies

t
it+x(t) = CA(t-a)ir+x((7) + f eA(t-s)ir+ f (x(s)) ds, tin [0, cc),

since Aor+ = or+ A, Air_ = 7r_ A.
Since the matrix A satisfies (6.2),

IeA(t-a),r+x(a)I <_ Kea(t-a)I,r+x(a)I < KLMea(t-a),

for t <_ a and, therefore, approaches zero as a -- oo. Also, fort <_ a,

o

eA(9-8)ir+ f(x(s)) ds <_ K f
ea(e-8)l1r+

f (x(s))I dSf
o

< KLN f ea(t-8) ds
t

- KLN [1 _ ea(t-a>],
a

KLN
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Therefore, the integral f t
eA(t-s),+f (x(s)) ds exists. From the above integral

equation for it+x(t), this implies
0

it+x(t) = f e-Asr+.f (x(t + s)) ds.

Since x(t) = it+x(t) + 7r_ x(t), this relation and the variation of constants
formula yield (6.4). Relation (6.5) is proved in a completely analogous manner.
The last statement of the lemma is verified by direct computation to complete
the proof.

Notice that x-, x+ in (6.4), (6.5) are not the initial values of the solutions
at t = 0, but are determined only after the solution is known.

LEMMA 6.2. Suppose «> 0, y > 0, K, L, M are nonnegative constants
and u is a nonnegative bounded continuous solution of either the inequality

(6.6) u(t) < Ke-at + L ft
e-OW-s)u(s) ds + M f

,
e-Vsu(t + s) ds, t >_ 0,

0 0

or the inequality
0

(6.7) u(t) < Keat + L f 00-8)u(s) ds + M f
0

evsu(t + s) ds, t _< 0.
t -OD

If

def L M
(6.8) + - < 1,

y

then, in either case,

(6.9) u(t) < (1- ) IKe [a-(I-a) 'Lnti

PROOF. We only need to prove the lemma for u satisfying (6.6) since
the transformation t - . -t, s -* -s reduces the discussion of (6.7) to (6.6).
We first show that u(t) - 0 as t -± oo. If 8 = limt_, u(t), then u bounded
implies 8 is finite. If 0 satisfies f <0 < 1, then 8 > 0 implies there is a
t1 >_ 0 such that u(t) < 0-18 for t >_ t1. From (6.6), for t >_ t1, we have

(6.10) u(t) < Ke-at + Le-at f
o

easu(s) ds +
\a

+
Y J

Since the lim sup of the right hand side of (6.10) as t -* oo is < 8, this is a
contradiction. Therefore, 8 = 0 and u(t) --0 as t -- oo.

If v(t) = supszt u(s), then u(t) -* 0 as t - . oo implies for any t in [0, oo),
there is a t1 >_ t such that v(t) = v(s) = u(t1) for t < s < t1, v(s) < v(t1) for
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s > t1. From (6.6), this implies

tv(t) = u(ti) < Ke-ate + L f e-01-0v(s) ds
0

+ L f ti
e-a(t,-s)v(s) ds + M 00 e-vsv(t'+ s) ds

t fo

t
Ke-ate + L f e-a(4-8)V(s) ds + flv(t),

0

where P = L/a + M/y < 1. If z(t) = eatv(t), then t1 >_ t implies
t

z(t) < (1 - f)-1K + (1 - p)-1L f z(s) ds.
0

From Gronwall's inequality, we obtain z(t) < (1 - fl)-1K exp(1 -8)-1Lt
and, thus, the estimate (6.9) in the lemma for u(t).

EXERCISE 6.1. Suppose a, b, c are nonnegative continuous functions on
[0, oo), u is a nonnegative bounded continuous solution of the inequality

u(t) < a(t) + ft b(t - s)u(s) ds + f
oo

c(s)u(t + s) ds, t >_ 0,
0 0

and a(t) -->0, b(t) -*0 as t --> oo, f o'* b(s) ds < ee, f ."o c(s) ds < oo. Prove that

u(t) --> 0 as t -* oo if

f, ob(s)ds+ fc(s)ds<1.
0 0

If r is any subset in Cn which contains zero, and Cn = Ir+Cn Q+ a_Cn,
7r+, 9r_ projection operators with 7r+ v'- = ?r_ 7r+ = 0, we say F is tangent to
1r_Cn at zero if 17T+ xI /I a_ xI -* 0 as x 0 in P. Similarly, we say r is tangent
to Tr+Cn if I7r_xI/Iir+xI --> 0 as x--> 0 in P.

THEOREM 6.1. Suppose -q is a continuous, nondecreasing, nonnegative
function on [0, oo) with 71(0) = 0 and let designate the family of
continuous functions f : Cn Cn such that

(6.11) (a) f(0) = 0,

(b) If(x)-f(y)I <'i(o,)Ix-yl, IxI,IyI<a.

If x = 0 is a saddle point of type (k) of (4.1), then the saddle point property
is preserved relative to the family 2'i k('r)). If, for any f in
Uk = Uk(f ), Sn-k = Sn-k(f) are the unstable and stable manifolds of the
equilibrium point x = 0 of (6.3), then Uk is tangent to 7r+Cn at x = 0 and
Sn_k is tangent to it-Cn at x = 0, where lr+Cn and it-Cn are the unstable
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and stable manifolds of the saddle point x = 0 of (4.1). Furthermore, there
are positive constants M, y such that

(6.12) (a) Jx(t)l < Me-Ytlx(0)I, t >_ 0, x(0) in Sn_k,

(b) Jx(t)l < McYtix(0)1, t < 0, x(0) in Uk.

It is worthwhile to consider the following schematic representation
Fig. 6.2 of Theorem 6.1. The picture for f = 0 is global whereas for f 0,
it is local. In the diagram, we have indicated orbits of (6.3) other than the
ones on Uk and Sn_k. Actually, we do not prove that the orbits which do not
intersect Uk or Sn_k behave as shown but only assert that these orbits must
leave a certain neighborhood of zero with increasing t.

7r+Cn

Figure. 111.6.2

PROOF OF THEOREM 6.1. From Lemma 6.1, for any solution x of (6.3)
which is bounded on [0, co), there is an x_ in a_Cn such that x(t) satisfies
(6.4). We first discuss the existence of solutions of (6.4) on [0, oo) for any
x- in ir_Cn sufficiently small. Since ir_, ir+ are projections, there is a constant
K1 such that I1r+xl < K1JxI, 17r_x) < K1JxJ for all x in Cn. Suppose K, « are
the constants given in (6.2) and rl(a), a >_ 0, is the function given in (6.11).
Choose 8 so that

(6.13) 4KK1,q(8) < a, 8K2Kirl(8) < 3a-

With this choice of 8 and for any x_ in 7r_Cn with Ix_1 < 8/2K, define
I(x_, 8) as the set of continuous functions x: [0, oo)--Cn such theit JxJ _
supost<. Ix(t) 1 < 6 and 7r_ x(0) =x_. 5(x_, 6) is a closed bounded subset
of the Banach space of all bounded continuous functions taking [0, oo) into
Cn with the uniform topology. For any x in !§(x_, 8), define Tx by
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t
(6.14) (Tx)(t) = eAtx-+ f eA(t s)) ds,

6 ao

for t >_ 0. Since x is in 9(x_, 8), it is easy to see that Tx is defined and con-
tinuous for t ? 0 with [a_ Tx](0) = x-. From (6.2), (6.11), (6.13), we obtain

I (Tx)(t)I < Ke-atIx_I + j:Ke.n(ts)IlT_f(x,(8))I ds + Ke-a8,r+,f (x(t + s))I
0

< Ke-atJ x-I +
KKl

71(8)IxI [2 - e-at]
a

<KI x-I +
2KK1

a(s)sa

8 8<2+2 =8,

fort >_ 0. Thus, I TxI < 8 and T : 8) -> I(x_, 8).
Furthermore, the same type of estimates yields'

(Tx)(t) - (TY)(t)I <
2K aKl'7(8)lx

- yI <
1

Ix - Y1,

for t >_ 0. Thus T is a contraction on 5(x_, 6) and there is a unique fixed
point x_) in 9(x-, 6) and this fixed point satisfies (6.4).

Using the same estimates as above, one shows that the function x*( , x_)
is continuous in x_ and 0) = 0. However, more precise estimates
of the dependence of x_) on x_ are needed. If we let x* = x*( , x_),
x* = x*( , then, from (6.4),

t

Ix*(t) -i*(t)I < Ke-011x_ -z-)I +KK1'h(8) f e-a(t_8)Ix*(s) -x*(s)I ds
0

+KK1 (8) f , e-a8I x*(t+s) -x*(t-+-8))I ds
0

for t 0. We may now apply Lemma 6.2 to this relation. In Lemma 6.2,
let y = a, M = L = KK177(8). If u(t) = I x*(t) - x*(t)I , 8 satisfies (6.13) and
appropriate identification of constants are made in Lemma 6.2, then

(6.15) I x*(t, x-) - x*(t, x_)I < 2K(exp - 2) Ix_ -:9-1, t >_ 0.

Since x*( , 0) = 0, relation (6.15) implies these solutions satisfy a relation
of the form (6.12a) and approach zero exponentially at t - . oo.

Let B612K denote the open ball of radius 812K in C'" with center at the
origin. Let S,7,-,t designate the initial values of all those solutions of (6.3) which
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remain inside B6 for t > 0 and have ir_ x(0) in B6/2K . From the above proof,
S.*-k =1x: x = x*(0, x_), x- in (7r-C") n B812K}. Let 9(x_) = x*(0, x-), x-
in (a_Cn) n B612K The function g is a continuous map of (ir_Cn) n B612K
onto Sn_k and is given by

(6.16) 9(x-) = x- +
J

o

e-A87r+ f (x* (s, x-)) d s.

From (6.2), (6.11), (6.13), (6.15), we have

I9(x-) - 9(x-)I > Ix- -x"-I -
J

x*(s, x-) - x*(s, z-))I ds
0

>_Ix_-x_I(1- 4K2K17](8)1

3« J

> 1 Ix- -x-I,

for all x-, x"_ in (1r_Cn) n B6/2K . Therefore g is one-to-one. Since g-1 = ir-
is continuous it follows that g is a homeomorphism. This shows that Sn_k
is homeomorphic to the open unit ball in C. and, in particular, has dimen-
sion n - k. However, S*_k may not be positively invariant. If we' extend
S*-k to a set Sn_k by adding to it all of the positive orbits of solutions with
initial values in Sn-k , then Sn-k is positively invariant and also homeo-
morphic to the open unit ball in C,4-k from the uniqueness of solutions
of the equation.' The set Sn_k coincides with Sn-k when x in Sn_k implies
I7r_ xI < 812K.

From (6.14), (6.15) and the fact that 0) = 0, we also obtain

Iir+x*(0, x-)I < KK1 f, e-a8.q(Ix*(s, x-)I )Ix*(s, x-)I ds
0

< KKl
J

,
e-a8n(2KIx-I )2KI x_I ds

0

2K2K1_ I(2KIx-I)Ix Ia

Consequently Iir+x*(0, x_)I1Ix-I -->.0 as Ix-1 0 in Sn_k which shows that
Sn_k is tangent to it-Cn at x = 0.

Using relation (6.5), one constructs the set Uk in a completely analogous
manner. This completes the proof of the theorem.

In the proof of Theorem 6.1, it was actually shown that the mapping g
taking it-Cn n B812K into Sn_k is Lipschitz continuous [see relatiofs (6.15)
and (6.16)]. Since the solutions of (6.3) also depend Lipschitz continuously
on the initial data if (6.11) is satisfied, it follows that the stable manifold
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Sn_k and also the unstable manifold Uk are Lipschitz continuous; that is,
Sn_k(Uk) is homeomorphic to the unit ball in Cn-k(Ck) by a mapping which
is Lipschitz continuous. It is also clear from the proof of Theorem 6.1 that
the Lipschitz condition of the type specified in (6.11b) was unnecessary. One
could have assumed only that

If (x) -f (A <vIx - yI,
where y satisfies (6.13) with 7)(S) replaced by y. Of course, the assertion of
tangency in the theorem may not hold in this more general situation.

An even weaker version of Theorem 6.1 can be proved for functions
which may not be lipschitzian but satisfy

(6.17) If(x)I <ILIxI

for x in some neighborhood V of x = 0 and p satisfies (6.13) with -q(a) replaced
by 1z. In fact, let S be chosen such that Ixi < S implies x in V and let 9(x_, 8)
be defined as before as all continuous functions taking [0, oo) into Cn which
are bounded by 8, but use the topology of uniform convergence on compact
subsets of [0, eo). If the mapping T is defined as in (6.14), one can show
that T : I (x_ , 8) - (x_ , S) in the same manner as before. For any a > 0,
choose r so large that

t

I (Tx)(t) - (Ty)(t)I < KK1 f e-a(t78)If(x(s)) -f (y(s))I ds
0

e-OS lf (x(t + s)) -,f (y(t + s))I ds+ KK1 f"
0

+ e/2

for any x, y in I(x_, 8). Therefore, given any compact set 0 in [0, oo),
one can always choose a 8 > 0 such that I x(t) - y(t) I < S on G implies
I (Tx)(t) - (Ty)(t)i < e on G. This implies T is continuous on 8) in the
topology of uniform convergence on compact sets. Since (Tx)(t) is a solution
of the equation z = Az +f (x(t)), and I TxI < 8 for all x in S), it follows
that I d(Tx)(t)ldtl is uniformly bounded and T is a completely continuous map
of I(x_, 8) into 9(x-, S). Using the Schauder-Tychonov theorem, one can
assert the existence of a fixed point x_) of T in W(x_, S). Furthermore,
since x_) satisfies (6.4), it follows that

t

I x*(t, x-)1 < Ke-atix-1 + KK1 f e-act-8)ix*(s, x-)I ds
0

+ KKij
f,

e-a8)x*(t + s, x-) I ds.
0
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Again, using Lemma 6.2, one obtains

(6.18) Ix*(t, x_)I < 2K(exp - 2) IX-1, t >_ 0.

Also, exactly as in the proof of Theorem 6.11, one obtains

(6.19) 17r+x*(0, x-)I
2K2K1

AX-1.a
Thus, all solutions x(t) of (6.3) such that Ix(t)I < 8, t >_ 0 and 1ir_x(0)1 < 8/2K
approach zero as t -* oo exponentially and in fact satisfy (6.19) for an
appropriate x-. If we designate S* as the set of initial values of such solu-
tions and extend S* to a set S by adding to it all of the positive orbits of
solutions with initial values in S*, then it is reasonable to call S a stable
manifold of (6.3).

If f satisfies the stronger condition

(6.20) f (x) =o(lxl) as 1xi-0,
then there is an.,q(a) continuous f o r a >_ 0, ,q(0) =0, such that I f (x)I < n(a)Ixl
for IxI < a. The estimate (6.19) can then be improved to

(6.21) I7r+x*(0 x_)I <
2K2KI, (2K x_I)jx_I

Relation (6.21) shows that S is tangent to 7r-Cn at x = 0. In the same manner,
one obtains an unstable manifold U which is tangent to 1r+Cn at x = 0.
One will still have the property S n U = {0}, but cannot assert that S has
dimension n - k and U has dimension k.

If f satisfies the condition (6.17), the estimate (6.19) shows that the stable
manifold must lie in a region containing a_C, the region being bounded by
two planes which approach a-C as µ--0. The same remark applies to the
unstable manifold.

If f satisfies (6.20), then the tangency of the stable and unstable mani-
folds of (6.3) to the stable and unstable manifolds of (4.1) at x = 0 implies the
following: For any neighborhood N of (7r_Cn) intersected with the ball of
radius one with center at the origin, there is a neighborhood V of x = 0 such
that the stable manifold of (6.3) relative to the neighborhood V lies in N.
The same remark applies to the unstable manifold. An important con-
sequence of this remark is the following corollary, the first part of which is
a special case of Theorem 2.4.

COROLLARY 6.1. Suppose f : Cn is continuous and f (x) = oIxl) as
IxI -+ 0. If the eigenvalues of A have negative real parts, then the, solution
x = 0 of (6.3) is uniformly asymptotically stable. If one eigenvalue of A has a
positive real part, then the solution x=0 is unstable.
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The next example due to C. Olech shows that the dimension of the stable
and unstable manifolds may increase under perturbations which are con-
tinuous and o(I xI) as lxi -* 0, but which are not differentiable at x = 0. Let
fi(x), - oo < x < oo, be any function with continuous second derivatives in a
neighbprhood of x = 0, 6(0) = e'(0) =0, c(x) 0 for x 0 and c(x) +

x --0. For any a, let :&(a, y) be any continuously differentiable
function, 0 <_ i,i(a, y) < 1, - oo < y < oo, 0(a, 0) = 1, 0(a, -a) = 0. Consider
the second order equation

(6.22) -ti = -xl,
x2 = X2 - b(e(xl), x2 -

r
S(x1))[e(x1) + xlc'(xl)]

Under the above hypotheses on 6, 0, we see that the perturbation is o(Ixi) as
Ixi -* 0, x = (x1, x2). Also, x2 = 0, x1 a-ta, and x2 = &(xl), xl = e-ta, where
a is arbitrary, are solutions of (6.22). These solutions approach zero as t -* oo,
the corresponding orbits belong to the stable manifold of x = 0, and obviously
these orbits are distinct. The fan near x = 0 consisting of the orbits of the
solutions whose initial values are between the curve x2 = 0 and x2 = e(x1)
in Fig. 6.3 must also belong to the stable manifold of the solution x = 0 of
(6.22). In fact, one easily shows that the perturbation being o(Ixl) as Ixi -*0
implies there is a cone enclosing the positive x1-axis so that near x = 0 the
tangent vector to any orbit cannot be perpendicular to the x1-axis. This
immediately yields the result.

X2

X2 = k(xl)

1

X2 = (xl)

Figure 111.6.3

111.7

(7.1)

Linear Periodic Systems

Consider the homeogeneous linear periodic system

t = A(t)x, A(t + T) = A(t), T > 0
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where A(t) is a continuous) n x n real or complex matrix function of t. Our
first objective in this section is to give a complete characterization of the
general structure of the solutions of (7.1).

!matrix B such that C = eB.

PROOF. If P is nonsingular and there is a matrix B such that C = eB,
then P-1CP = eP-'BP. Therefore, we may assume that C is in Jordan
canonical form; that is,

C = diag(C1, ... , Cv),

Cp=A5I+R5,
0 1 0 ... 0

0 0 1 ... 0

Rp= .

0 0 0 1

0 0 0 ... 0

By hypothesis, each a1 0 0, j = 1, 2,' ... , p. To prove the lemma, it is suffi-
cient to show that each Cf can be written as Cp = eB'. Therefore, we drop the
subscripts and suppose C = Al + R where A 0 and R is a matrix of the
same type as the Bg above; in particular, Bk = 0 for all k >_ m, for some
integer m. Since A = 0, C = A(I + B/A). Let

B A (log A)I + S,
m-1(-R)1

S=-Y_
5=1

jA1

The matrix S is the matrix power series obtained by taking the power series
for log(1 + t) near t = 0 and replacing t by Rya. Since ilk = 0 for k >_ m,
there is no problem of convergence. On the other hand, one can show directly
by substitution in the power series for eB that C = eB. The lemma is proved.

EXERCISE 7.1. For any real matrix D, det D 0- 0, show there is a real
matrix B such that eB = D2. If C is a real matrix in Lemma 7.1 and there is a
real matrix B such that eB = C, must there exist a real matrix D such that
C=D2?

THEOREM 7.1. Fl0 uet Every fundamental matrix solution X(t) of
(7.1) has the form

(7.2) X(t) = P(t)eBt

where P(t), B are n x n matrices, P(t + T) = P(t) for all t, and B is a constant.

LEMMA 7.1.1 If C is an n x n matrix with det C 0, then there is a

1 This assumption is for simplicity only. The theory is valid for A(t) which are periodic
and Lebesgue integrable if (7.1) is required to be satisfied except for a set of Lebesgue
measure zero. No changes in proofs are required.
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PROOF. Suppose X(t) is a fundamental matrix solution of (7.1). Then
X(t + T) is also a fundamental matrix solution since A(t) is periodic of
period T. Therefore, there is a nonsingular matrix C such that

X(t + T) = X(t)C.

From Lemma 7.1, there is a matrix B such that C = eBT. For this matrix
B, let P(t) = X(t)e-Bt. Then

P(t + T) = X(t + T)e-B(t+T) = X(t)eBTe-B(t+T) = P(t),

and the theorem is proved.

COROLLARY 7.1.1 There exists a nonsingular periodic transformation of
variables which transforms (7.1) into an equation with constant coefficients.

PROOF. Suppose P(t), B are defined by (7.2) and let x = P(t)y in (7.1).
The equation for y is

y = P-I(AP - P)y.

Since P = Xe-Bt, it follows that P = AP - PB and this proves the result.

EXERCISE 7.2. Prove that B in the representation (7.2) can always be
chosen to be a real matrix if A (t) in (7.1) is real and it is only required that
P(t + 2T) = P(t).

Theorem 7.1 states that any solution of (7.1) is a linear combination of
functions of the form eAtp(t) where p(t) is a polynomial in t with coefficients
which are periodic in t of the same period as the period of the coefficients in
the differential equation.

The eigenvalues p of a monodromy matrix are called the
multi liers of (7.1) and any A such that p = e.T is called a characteristic

If (7.1). Notice that the characteristic exponents are not uniquely
defined, but the multipliers are. The real parts of the characteristic exponents
are uniquely defined and we can always choose the ex onents A as the
eigenvalues of B, where B is any matrix so that C = eBT. The characteristic
multipliers do not depend upon the particular monodromy matrix chosen;
that is, the particular fundamental solution used to define the monodromy
matrix. In fact, if X (t) is a fundamental matrix solution, X (t + T) = X(t)C
and Y(t) is any other fundamental matrix solution, then there is a nonsingular
matrix D such that Y(t) = X(t)D. Therefore, Y(t + T) = X(t + T)D =
X(t)CD = Y(t)D-ICD and the monodromy matrix for Y(t) is D-ICD. On the
other hand, matrices which are similar have the same eigenvalues. We shall
usually use the term monodromy matrix for X(T) where X(t), X(O) =I is
a fundamental matrix solution of (7.1).
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LEMMA 7.2. A complex number A is a characteristic exponent of '(7.1)
if and only if there is a nontrivial solution of (7.1) of the form extp(t) where
p(t + T) = p(t). In particular, there is a periodic solution of (7.1) of period T
(or 2 T but not T) if and only if there is multiplier = +1 (or -1)

PROOF. If eAtp(t), p(t + T) = p(t) 0, satisfies (7.1), Theorem 7.1 implies
there is an xo 0 0 such that extp(t) = P(t)eBtxo . Thus, P(t)eBt[eBT - eATI ]xo
= 0 and, thus, det(eBT - eATI) = 0. Conversely, if there is a A such that
det(eBT - e%TI) = 0, then choose x0 0 such that (eBT - eATI)xo = 0. One
can choose the representation (7.2) so that A is actually an eigenvalue of B.
Then eBtxc = extx0 for all t and P(t)eBtxo = P(t)xo ext is the desired solution.
The last assertion is obvious.

LEMMA 7.3. If P1= ea1T, j =1, 2, ..., n, are the characteristic multi-
pliers of (7.1), then

T
(7.3) f 1 pi = exp(f tr A(s) ds

0

A, = T J0T tr A(s) ds (mod
1=

PROOF. Suppose C is the monodromy matrix for the matrix solution
X(t), X(0) = I, of (7.1). Then Lemma 1.5 implies

T
tr A(s) ds).det C = det X(T) = exp(f0

1

The statements of the lemma now follow immediately from the definitions of
characteristic multipliers and exponents.

TII 7.2 (i) A necessary and sufficient condition that the system
(7.1) be uniformly stable is that the characteristic multipliers of (7.1) have
modulii <_ 1 (the characteristic exponents have real parts <0) and the ones
with modulii =1 (the characteristic exponents with real parts =0) have
simple elementary divisors.

(ii) A necessary and sufficient condition that the system (7.1) be
uniformly asymptotically stable is that all characteristic multipliers of (7.1)
have modulii <1 (all characteristic exponents have real parts <0). If this
is the case and X(t) is a matrix solution of (7.1), there exist 'K > 0, «> 0
such that

IX(t)X-1(s)I < Ke-act-s), t > s.

PROOF. The proof is essentially the same as the proof of Theorem 4.2
if one uses Corollary 7.1.

At first glance, it might appear that linear periodic equations share the
same simplicity as linear equations with constant coefficients. However, there
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is a very important difference-the characteristic exponents are defined only
after the solutions of (7.1) are known and there is no obvious relation between
the characteristic exponents and the matrix A (t). The following example
illustrates that the eigenvalues of the matrix A(t) cannot be used to determine
the asymptotic behavior of the solutions.

Example 7.1. (Markus and Yamabe [1]). If

(7.4) A(t) =

1+ 2 cost t 1- 3 cost sin t

-1-2sintcost -1+2sin2t

then the eigenvalues Al(t), A2(t) of A(t) are )q(t) = [-1 +i J7]/4, A2(t) =
al(t) and, in particular, the real parts of the eigenvalues have negative real
parts. On the other hand, one can verify directly that the vector

(-cos t, sin t) exp (1)

is a solution of (7.1) with A(t) given in (7.4) and this solution is unbounded
as t - oo. One of the characteristic multipliers is ea. The other multiplier is
e-22i since (7.3) implies that the product of the multipliers is e-x.

The problem of determining the characteristic multipliers or exponents
of linear periodic systems is an extremely difficult one. Except for scalar
second order equations and, more generally, Hamiltonian and canonical
systems, very little is known at all. Even the equations of the form z = Ax
+ e I (t)x where a is a small parameter, A is a constant matrix and x is a
vector of dimension >2 are extremely difficult and exhibit very striking
behavior. This shall be illustrated in a later chapter by means of examples.

Hill's Equation

In this section, we give a rather detailed discussion of the stability
properties of the Hill equation,

(8.1) y + (a + ¢(t))y = 0, 0(t + Tr)

where a is constant and is assumed real and continuous. Actually, there is
no change in the theory if is integrable and bounded, but in such a situa-
tion, we have to say the equation is satisfied almost everywhere.

The ultimate goal is to characterize the values of the parameter a for
which there is stability of the equation The previous section implies this is
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equivalent to determining the qualitative structure of the characteristic
multipliers of (8.1) as a function of a.

Equation (8.1) is equivalent to the system

(82) x = [C(a) + A(t)]x, A(t) = -0 01

L0(t) 0 , x = y
L J

C(a) = [-a 0,.

Suppose

(8.3) X(t)a' Y1(t) Y2(01 _X(0) =I,
1y1(0 y2(t)]

is the principal matrix solution of (8.2) at t = 0. The characteristic multipliers
of (8.2) are the eigenvalues of the matrix X(ir); that is, the roots of the
equation

det(X(a) - pI) =0.

Since tr [C(a) + A(t)] = 0, (7.3) implies that the characteristic multipliers are
the roots of the equation

(8.4) p2-2B(a)p+1=0,
2B(a) = tr X (7T) = yi(70 + y2(7r)

where ul,,y2 are the solutions of 8.1 efined above. From Chapter I, the
function B (a) is entire in the parameter a.

In view of Lemma 7.2 and the fact that the multipliers p1i p2 of (8.4)
satisfy plp2 = 1, the equation (8.1) can be stable only if lpll = Ip21 = 1. The
next lemma shows this can never be the case if a is complex.

LEMMA 8.1. If a is complex, Im a 0 0, equation (8.1) is unstable and
no characteristic multiplier of (8.4) has modulus 1.

PROOF. As remarked above, equation (8.1) can be stable only if both
characteristic multipliers have modulii one. Therefore, the lemma is proved
if we show no characteristic multiplier has modulus one if a is complex.
If a characteristic multiplier has modulus one, then Lemma 7.2 implies
there must be a solution of (8.1) of the form eiAtp(t) where A is real and
p(t + ir) = p(t) # 0. If etAtp(t) = u + iv, a = a + ifi, u, v, a, fi, real, then

u+[a+¢(t)lu=Rv,
ti+[a+0(t)lv=-flu.

This implies

iiv - ft = N(u2 + v2)
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and, thus, upon integrating,

f lp(s)12 ds
aef S

o [u2(s) + v2(s)] ds = u(t)v(t) -v(t)u(t) + c>
0 0

where c is a constant. Since the right hand side is bounded for all t and p is
periodic of period it this gives a contradiction unless either = 0 or p = 0.
This proves the lemma.

LEMMA 8.2. The equation B2(a) = 1 can have only real solutions.
B(a) =1 (or -1) is equivalent to the statement that there is a periodic
solution of (8.1) of period it (or 27r). If a is real, then B2(a) < 1 implies all
solutions of (8.1) are bounded and quasiperiodic on (-oo, oo). If a is real
and B2(a) > 1, there is an unbounded solution of (8.1).

PROOF. The roots pl, P2 of (8.4) are pl = B(a) + B2(a) (a)p2 = B(a)
- B2(a) -1. If B2(a) = 1, then p1 = p2 = B(a) = ±1 and Lemma 7.2
yields the statement concerning periodic solutions. This implies B2(a) =1
can have only real solutions from Lemma 8.1. If a is real, then B(a) is real
and B2(a) < 1 is equivalent to pI = p2, pi 0 p2, Ip11 =. 1. Lemma 7.2 implies
the existence of two linearly independent solutions which are quasiperiodic.
Thus, every solution is quasiperiodic. If B2(a) > 1, then one characteristic
multiplier is > 1 and one is < 1. Theorem 7.2 completes the proof of the lemma.

Lemmas 8.1 and 8.2 imply that system (8.1) can never be asymptotically
stable. In the remainder of the discussion, the parameter a is taken to be real.
An interval I will be called an a-interval of stability (instability) of (8.1) if for
each a in I, equation (8.1) is stable (unstable). Lemma 8.2 implies that the
transition from an a-interval of stability to an a-interval of instability can
only occur at those values of a for which B2(a) = 1. Therefore, the basic
problem is to find those values of a for which B2(a) =1 and discuss the be-
havior of the function B(a) in a neighborhood of such values. Theorem 8.1
below gives a qualitative description of the manner in which the a-stability
and a-instability intervals of (8.1) are situated on the real line. The following
lemmas lead to a proof of this theorem.

LEMMA 8.3. If a + 0(t) <_ 0 for all tin [0, Tr], then there is an unbounded
solution of (8.1). If, in addition, a + 0(t) is not identically zero, then B(a) > 1.

PROOF. As before, let yi(t) be the solution of (8.1) with yl(0) = 1,
91(0) = 0, and let :/i(t) = -(a + q(t)) >_ 0. From (8.1),

(8.5) (y1(t))2 = 2 f0(s)yl(s)yl(s) ds

for all t>_ 0. Since yj(0) = 1, 91(0) = 0(0)yj(0) >_ 0. Thus, y1(t) >_ 0 on an
interval 0 <_ t < q. If y1(t) = 0 for all t Z 0, then yi(t) = 1 is a solution of
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(8.1) which implies a + q(t) = 0 for all t and conversely. In this case, there are
unbounded solutions since y(t) = t is a solution. Suppose a + q(t) is not
identically zero and let 71 be such that y1(t) = 0 for 0 <_ t <_ 71 and, for any
r > 0, there is a tin (71, 77 + r) such that yi(t) 0 0. Such an i always exists.
One can choose r so small that yi(s) > 0 for 0 <_ 8:5 'q + T. Since i/r(s) >_ 0,
it follows from (8.5) that yi(t) > 0 on (ii, -7 + T). The right hand side of (8.5)
is a nondecreasing function of t and, therefore, y1(t) > 0 for all t >'1 and
yi(t) is monotone increasing for t >_ i . Finally

yi(t)=1+ ftyi(s)ds>l+f yi(s)ds>1+yi(71+r)(t-7) -r)
t0 7 7+7

for t Z77 + T, r > 0. Since yi(' + r) > 0, this shows yi(t) is unbounded and
proves the first part of the lemma.

To prove the second part of the lemma, we first recall the fact that we
have just proved that y1(t) Z 0 for all t and, also, yi(1r) > 1. Now, consider
the solution y2(t) of (8.1) with y2(0) =0, 92(0) =1. The function y2(t) will
satisfy

t

(y2(t))2 = 1 + 2 f /(s)y2(s)y2(8) ds.
0

Since a/r(s) >0 and is not identically zero, it follows that 92(7r) > 1. There-
fore, 2B(a) = yi(ir) + y2(1r) >2 and the lemma is proved.

Lemma 8.3 shows that a +O(t) must take on some positive values if the
solutions of (8.1) are to remain bounded. Since 0 is bounded, there is an a*
such that a* + i(t) <0. Thus B(a) >1 and the equation (8.1) is unstable
for - oo < a <a*. We show below that this a- instability interval is bounded
above.

LEMMA 8.4. The functions B(a) - 1, B(a) + 1 have an infinite number
of real zeros {ao < ai < a2 }, {ai < az < }, respectively, and ak, ak
approach + oo as k oo.

PROOF. We actually show that B(a) is an entire function of order 1/2,
that is, B(a) is an entire function and, for any e > 0, JB(a)J exp[lale+1/2] _*0
as Jal-aoo and, for <0, this function is unbounded. Sinceanyentirefunction
of fractional order must have an infinite number of zeros, it follows that the
functions B(a) - 1, B(a) + 1 must have an infinite number of zeros. Lemma
8.2 implies these zeros are real. The only possible accumulation point of the
zeros is + oo, but the remark after Lemma 8.3 implies the accumulation
point must be ±oo.

If X(t) is defined as in (8.3), then

X(t) = I + f [C(a) +A(s)]X(s) ds.
0
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Denote the right hand side of this integral equation by (TX)(t) and define the
sequence {X (k)} of functions by X (O) = I X(k+i) = TX(k), k = 0, 1, ... .
Each function X (k) is an entire function of a. Suppose a belongs to a compact
set V and t is in a compact set U. Exactly as in the proof of the power series,
representation of eAt (see Section 4), one shows the sequence X(k)(t) _
X(k)(t, a) converges uniformly to X(t) =X(t, a) for tin U, a in V. Therefore,
X(t, a) is an entire function of a and B(a) is an entire function of a.

To show the order relation, let cue =a and consider the variation of
constants formula for (8.2) treating A(t)x as the forcing function. If y1, y2
are defined as above, then

t(8.6) yi(t, a) = cos cot - f-' sin co(t - s)4(s)y1(s, a) ds,
0

t

Y20, a) =w-1 sin wt - f-1 sin co(t-8)0(s)y2(s, a) ds.
0

Since I(A)-1 sin cotI <eIwtt, Icos cotI _<el wl t, t >_ 0, if jwl 1, it follows that
t

I y?(t, a)I < ekwit +K f e1wI(t-8)jy9(s, a)I ds, j =1, 2,
0

for 0< t<_ Tr, where K is a bound on 0. If z(t) =e-IwItlyj(t, a)j, then
t

z(t) < 1 + K f z(s) ds.

0

Gronwall's inequality implies z(t) < eKt < e1 , 0 < t < ir, and, therefore,
I yj(t, a)l <_ eKneiwlt, 0:5 t< ir, j =1, 2. Since y2(t, a) satisfies

t

y2(t, a) =cos cot - cos w(t - s)0(s)y2(s, a) ds,
0

we have the existence of a constant L such that I y2(t, a)l <Leiwit 0:5 t <n..
Therefore, the order of B(a) is <_ 1/2.

To prove the order is >_ 1/2, it is no loss in generality to assume that
q(t) < -1 for all t. In fact, we can always replace 0 by 0 - M -1, a by
a + M + 1, where M is a bound on I0(t)i . Also, choose a < 0 so that ,/a-a- = iN,

with p. > 0. For a < 0, 0(t) < -1, it was shown in the proof of Lemma 8.3
that y1(t, a) > 1, y2(t, a) > 1 for t > 0. This fact, -q(t) >_ 1 and (8.6) imply
that

t
y1(t, a) >_ f cosh µ(t -s)y1(s, a) d8

0

t
>_ f cosh µ(t - s) ds

0

sinh µt

p.
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Thus, yi(t, a) (out -1)/2µZ + 1 for all t in [0, vr]. Since 92(1r, a) >_ 0, it
follows that B(a) is of order at least 1/2. This completes the proof of the
lemma.

def
LEMMA 8.5. If b is a root of B(a) = 1 such that B'(b) =dB(b)/db 5 0

then B'(a) <0 for b <a<c* provided B(a) > -1 on this interval. If b*
is a root of B(a) = -1 such that B'(b*) > 0, then B'(a) > 0 for b* < a < c
provided B(a) < 1 on this interval.

PROOF. Let X(t, a)= X(t) be defined as in (8.3). From Lemma 1.5,
det X(t) = 1 for all t, and, thus,

X_1(t) = 92(t) -y2(t)
-yi(t) yi(t)

Also, from Theorem 1.3.3 and the variation of constants formula for a linear
system,

8X(t, a)
= X(t, a) f

o

a)
aC(a)

X(s, a) ds,
as o

X
as

where C(a) is the matrix in (8.2). Thus,

8aa) - [-01

01

In the same way,

82X(1, a)
- 2X (t a

tX-i
t a aC(a) aX(s, a)

0 as 8a

From the definition of B(a), these relations imply

(8.7) 2B'(a) _ (a f yiy2 ds f y2 ds + ac fo

ds,

0 0 0

B"(a) = a f y2 aai ds - fi Cyi ads + a f y2 2 ds - ds,
0 0

where for simplicity in notation a = a(a) = yi(ir, a), #(a) = y2(7r, a),
a = &(a) = y1(1r, a), g(a) = y2(1r, a). Using the fact that det X(t) =1
for all t, we have

(8.8) 4(B2 -1) = (a+P)2 4(ap -Sa) = (a -P)2+4afi.

Suppose b is such that B(b) =1 and B'(b) < 0. We wish to prove there
is a 8 > 0 such that B'(a) < 0 for b < a < b + S. If B'(b) < 0, it is clear that
such a 6 exists. Suppose B'(b) = 0, B(b) = 1. For this value of b, Relation (8.8)
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implies 4&0 = -(a - a)'. From (8.7), we have

2&B'(b) = fo [ay2 +(a-a)y2 =0

and thus, 42(s) + (a - (3)yl(s)/2 = 0 for 0 < s < Tr. Since y1, y2 are linearly
independent, we have a = 0, a = (i. Since B'(b) = 0, relation (8.7) implies
0 = 0. The fact that a + (3 = 2B(b) = 2 implies a = li = 1. Also, direct evaluation
in (8.7) and an integration by parts yields

n 2 n n

B"(b) =
J yl y2 ds -

J yi ds f y2 ds.
0 0 0

The Schwarz inequality implies B"(b) < 0 since the functions yl, y2 are
linearly independent. Therefore, there must be a 8 such that B'(a) < 0 for
b<a<b+S.

Suppose now there is a c* such that B'(a) < 0 for b < a < c*
and B'(c*) = 0 with B(c*) > -1. Then B2(c*) -1 < 0 and (8.8) implies
&(c*)fl(c*) < 0 and, in particular, &(c*) zA 0. One easily shows from (8.7)
and (8.8) that

2 (
2&B'(a) =

,r

1 (aye +
1

2 (a - R)yl) ds - I (B 2 - 1) J0 y12ds

for any a such that &(a) 0 0. Since B2(c*) < 1, ci(c*) 0, it is clear that
B'(c*) zA 0, which is a contradiction. This proves the lemma for the case
B(b) =1. The case B(b) = -1 is treated in essentially the same manner to
complete the proof of the lemma.

In the middle part of the proof of this lemma, the following relationship
was proved.

LEMMA 8.6 If for a particular b, B2(b) = 1, B'(b) =0, then B"(b) <0
if B(b) = 1, and B"(b) > 0 if B(b) = -1. In particular, a root of B2 (b) = 1 can
be at most double. A necessary and sufficient condition for a double root at b is

yt(n, b) = y2(7T, b) = I (or -1), yi(ir, b) = Y2(7T, b) = 0.

LEMMA 8.7. If ao is the smallest root of the equation B2(a) = 1, then
a0 is simple and B'(ao) < 0.

PROOF. From Lemma 8.3, B(a) > 1 for a < a0 . If a0 were a double
root of B(a) = 1, then Lemma 8.6 would imply it is a maximum, which is
impossible. This proves the lemma.

By combining the information in the above lemmas we obtain
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THEOREM 8.1. There exist two sequences {ao < a1 < a2 < }, {al
a2 < a3 < ..} of real numbers, ak , oo as k -> co,

ac<a* <az <a, <a2<a3 <a4* <a3

such that equation (8.1) has a periodic solution of least period 7r (or 27r) if
and only if a = ak for some k = 0,1,2, ... (or ak for some k =1,2, ...). The
equation (8.1) is stable in the intervals

(ao , a1), (a2 , al), (a2 , a3 ), (a4*, a3), ....

and unstable in the intervals

(- oo, ao], (ai , a2 ), (a1, a2), (a* , a4*), (a3, a4), ... .

The equation (8.1) is stable at a2k+1 or a2k+2 (or a2k+1 or a2k+2) if and only if

a2k+1 = a2k+2 (or a2k+1 = a2k+2), k >_ 0. Equation (8.1) is always unstable
if a is complex.

PROOF. We remark first of all that (8.1) is unstable if a is complex
(Lemma 8.1). Lemma 8.4 implies the existence of the two infinite sequences
{ak}, {ak }. Lemma 8.3 implies ao # - oo. Lemma 8.3 and 8.7 imply that the
first zero of B2(a) = 1 is ac, it is simple and (- oo, ao] is an interval of in-
stability. Lemma 8.5 implies ac < ai and Lemmas 8.5 and 8.2 imply (ao, a*)
is an interval of stability. If the equation (8.1) is stable at a*, then B(a) _ -1
would have a double root at at. Lemma 8.6 would imply B(a) has a minimum
at at and then Lemma 8.5 implies at = a2 . If a* <a* then B(a) < -1 for
ai < a <a2 and Lemma 8.2 implies (a*, a2) is an interval of instability.
Lemma 8.5 implies a2 < a1 and the argument proceeds inductively to yield
the theorem.

The accompanying Fig. 8.1 is a possible graph of the function B(a).
The previous analysis of the general equation (8.1) has shown that it is

extremely difficult to decide whether or not the solutions of (8.1) are bounded
for a given a and 0. On the other hand, the general theory has pinpointed the
computations that are necessary to decide this question; namely, the deter-
mination of those special values of a for which there exist solutions of period
7r or 27r and the number of such linearly independent solutions for these
values.

One very important special case of (8.1) for which we can give some
explicit conditions on the coefficients for which there is stability is the
Mathieu equation

(8.9) d72+(a2+2gcoswr)y=0,
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Figure 111.8.1
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where a > 0, q, w are real constants. If we let wT = 2t, this equation is
equivalent to

(8.10)

B(a)

((2a 8q
cos 2ty +

2
+

w2 /Co /
ly = 0,

which is a special case of (8.1) with a = (2a/w)2, 0 = (8q/w2) cos 2t. Let us
investigate this equation for q near 0. The equation for the characteristic
multipliers is

p2-2Bp+1=0,
where B = B(a, q, w) is a continuous function of a, q, co-. 1For q = 0, a
principal matrix solution of (8.10) is

2a w 2a
cos - t - sin -t

w 2a Co

X=
2a 2a 2a- - sin - t cos - t
Co w w

Therefore, B(a, 0, w) = cos lira/w and B2(a, 0, w) < 1 if 2a 0 kw [or
a k2], k = 0, 1, 2, .... Thus, for any a and co for which 2a 0 kw, there
is a q = q(a, co) such that B2(a, q, co) < 1 and the equation (8.9) is stable
(Lemma 8.2). These stability regions are shown in the (a2,q)-plane in Fig. 8.2.

One can give a very geometric proof of this stability result in the



130

)2 w 2(2 z

following way. If Pi' P2 are characteristic multipliers of (8.9), then pi 1, p21
are also characteristic multipliers since p1p2 = 1. Also, since a, q, w are real
p1, p2 are multipliers. Therefore, if P1 =A P2, Ip1I = Ip2I =1 for q =0, then
IPII = Ip2I =1, p1 P2 for q sufficiently small since the multipliers are
continuous functions of q.

To determine whether or not (8.9) is stable or unstable for a2 = (kcu/2)2,
k an integer, is extremely difficult. Analytical methods applicable to this
problem will be discussed in a later chapter. For equation (8.9), in any neigh-
borhood of any of the points (0, [kcu/2]2), k an integer, it can actually be
shown there are values of (a2, q) such that (8.9) is unstable.

There are a large number of results in the literature which are concerned
with the estimation of the stability regions in Theorem 8.1 in terms of the
function a+ q(t) in (8.1). We give a theorem of Borg [1] on the first
stability region which generalizes a result of Liapunov [1].

THEOREM 8.2. If p(t + a) = p(t) 0 for all t, op(t) dt 0, p(t) is con-

inuous, real and

CIp(t)Idt4,
then all solutions of the equation

(8.11) ii + p(t)u = 0,

are bounded on (-oo, oo).

PROOF. It is only necessary to show that no characteristic multiplier
of (8.11) is real. If a characteristic multiplier p of (8.11) is real, then there is a
real solution u(t) 0, u(t + rr) = pu(t) for all t. Either u(t) 0 0 for all t or it
has infinitely many zeros with two consecutive zeros a, b, 0 < b -a S IT.
In the first case u(ar) = pu(0), k(7T) = p2i(0) and 2i(7r)/u(7r) = u(0)/u(0). Since
ii/u + p = 0, an integration by parts yields

ORDINARY DIFFERENTIAL EQUATIONS

u2,&2 M

fc t dt + f
o

p(t) dt = 0,
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which is impossible from the hypothesis on p. In the second case, we may
assume that u(t) > 0 on a < t < b. Let u(c) = maxa «<b Iu(t)I. The hypothesis
on p implies

O4
Ip(t)I dt >

u t_ fb
l

dtf
IT 0 a I u(t)I

b

>u(c) fa Iii(t)I dt
u(c)

Iii(«) -u(fl)I,

for any a, f4 in (a, b). From the mean value theorem, there exist a, S such that
ic(a) = u(c)/(c - a), -ii(fl) = u(c)/(b - c). Therefore,

4 1 1 b-a 4 4

Ir c-a-c (c-a)(b-c) b-a-7T

since 4xy < (x + y)2 for all x, y. This contradiction shows that the character-
istic multipliers are complex and proves the result.

EXERCISE 8.1. Consider the equation

(8.12) ii + [a - 2qS(t)]u = 0,

where S(t)=+l if -7T/2< t < 0, = -1 if 0< t < or/2, S(t + Tr) = S(t)
for all t. Show that every neighborhood of a point (ao, 0), ao > 0, in the
(a, q) plane where cos a ao = ±1 contains points for which (8.12) has
unbounded solutions. Hint: If a > 12ql, r2 = a + 2q, s2 = a - 2q, one can
show that A = (p1 + p2)/2 is given by

V 7'
A Ors

[(s + r)2 cos
2

(s + r) - (s - r)2 cos
2

(s - r)] .

M.9. Reciprocal Systems

Consider the system

(9.1) z=A(t)x, A(t+T)=A(t), -co<t<co,

where A(t) is a continuous real or complex n x n matrix and T > 0 is a
constant. Following Lyapunov, system (9.1) is called reci rocal if for every
characteristic multiplier p of (9.1) the number --1 is also a characteristic
multiplier. If its real, the characteristic multipliers occur in complex
conjugate pairs and (9.1) will be reciprocal if p a characteristic multiplier
implies p-1 is a characteristic multiplier. Let sad designate the Banach space
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of continuous real or complex valued n x n matrix functions A(t),
- oo < t < oo, A(t + T) = A(t) with JAI =sup A(t)I.2

If A in sad is reciprocal, then Theorem 7.2 implies that (9.1) is stable if
and only if all characteristic multipliers of (9.1) have simple elementary
divisors and modulii equal to 1. Therefore, stability of reciprocal systems
(9.1) is equal to boundedness of the solutions on (-oo, oo). We shall say
(9.1) is stable on (- oo, oo) when all solutions are bounded on (- oo, oo). An
element A of sad is said to be strongly stable on (-oo, oo) relative to a set
-4 in sad if there is a S > 0 such that the system

(9.2) z = B(t)x,

is stable on (-oo, oo) for all B in -4 with I A - BI < S. We let 2.4 designate
the set of A in d for which (9.1) is reciprocal.

LEMMA 9.1. If A is in Rd and po =po(A), Ipol =1, is a simple char-
acteristic multiplier of (9.1), then there is a So > 0 such that the system (9.2)
has a simple characteristic multiplier po(B), jpo(B)I = 1, for every B in 9,4
withIA - BI < So.

PROOF. Suppose A in gtd and po = po(A) is a simple characteristic
multiplier of (9.1), Ipol = 1. Formula (1.11) implies that the matrix solution
XA(t); XA(0) = I, of (9.1) is a continuous function of A in d. In particular,
the characteristic multipliers of (9.1) are continuous functions of A in a.
Therefore, there is a disk DE(po), E > 0, in the complex plane of radius s
and center po and a SI > 0 such that (9.2) has exactly one characteristic
multiplier pp(B) in DE(po) for all B in Rsaf, I A - BI < S1. Since (9.2) is
reciprocal, p 1(B), is also a characteristic multiplier. But, po 1(B) _
po(B)II po(B)I2 po(B) unless Ipo(B)I = 1. On the other hand, the hypo-
thesis Ipo(A)I =1 implies po 1(A) = p0(A) and by continuity of p0(A) in A,
we can find a So < S1 such that po 1(B), p0(B) belong to DE(p0) if I A - BI
< So , B in 9si. This implies Ipo(B)I = 1 for I A - BI < So, B in gtsad, and
proves the lemma.

THEOREM 9.1. If A is in 3tsad and all of the characteristic multipliers
of (9.1) are distinct and have unit moduhi, thenA is strongly stable relative to 3tsa1.

PROOF. This is immediate from Lemma 9.1 and the Floquet representa-
tion of the solutions of a periodic system.

LEMMA 9.2. If A in .4 is real and there exists an n x n nonsingular

2 If A is not continuous but only Lebesgue integrable, then the results below are valid
with JAS = fo JA(8)J d8.
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matrix D such that either

(i) DA(t) = -A(-t)D
or

(ii) DA(t) = -A'(t)D, (A' is the transpose of A)

then A is in PAd. In (i) the principal matrix solution X(t) satisfies
X-1(-t)DX(t) = D and in (ii) it satisfies X'(t)DX(t) = D for all t.

PROOF. Let X(t), X(O) =I, be a matrix solution of (9.1). If Y(t),
Y(O) = Yo is an n x n matrix solution of the adjoint equation y = -yA(t),
then Y(t)X(t) = Yo for all t.

Case i. If DA(t) = -A(-t)D, then Y(t) =X-1(-t)D satisfies the
adjoint equation. In fact, -V(t) = -$-1(-t)D =X-1(-t)A(-t)D =
-X-1(-t)DA(t) = - Y(t)A(t). Therefore, X-1(-t)DX(t) = D which implies
X(t) is similar to X(-t) for all t. If X(t) =P(t)eat, then P(O) = I and X(t)
similar to X (-t) implies the roots of det (eBT - pI) = 0 and det (e-BT - j l )
= 0 are the same. Obviously, these roots are the reciprocals of each other
and this proves case (i).

Case ii. If DA(t) = -A'(t)D, then Y(t) = X'(t)D is a solution of the
adjoint equation. In fact, I' = J 'D = X'A'D = -X'DA = -YA. Thus,
X'(t)DX(t) = D for all t and X'(t) is similar to X-1(t) for all t. The remainder
of the argument proceeds as in case (i).

By far the most important reciprocal systems ar
namely, the systems

(9.3) Ex = H(t)x,

where H' = H is a real 2k x 2k matrix of period T,

and Ik is the k x k unit matrix Since E2 = -I2k, E' = -E system (9.3) is
a special case of system (9.1) with A = -EH and EA = H = H' =A'E' =
-A'E. Thus, (9.3) is reciprocal since this is a special case of case (ii) of
Theorem 9.2 with D = E. Furthermore, the matrix solution X(t), X(0) = I
of (9.3) satisfies

(9.4) X'(t)EX(t) =E.

The set of all matrices which satisfy (9.4) is called the real symplectic group
or sometimes such a matrix is called E-orthogonal.

A general class of complex reciprocal systems consists of the canonical
systems,

(9.5) Jx = H(t)x,
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where H is Hermitian (i.e. H* = H, where H* is the conjugate transpose of
H) and

r
(9.6) J = iI O' -I ]' i =V -1,

L q

To prove this system is reciprocal, let X(t), X(O) =I, be a principal matrix
solution of (9.5). Then A = -JH is the coefficient matrix in (9.5) and

dt X*(t)JX(t) = -X*(t)H*(t)J*JX(t) - X*(t)J2H(t)X(t) = 0,

and X*(t)JX(t) is a constant. Since X(O) =I, we have

(9.7) X*(t)JX(t) = J,

for all t. Thus X(T) is similar to X*-I(T) and the result follows immediately.
Matrices which satisfy (9.7) are called J-unitary. Notice that J-unitary mat-
rices are nonsingular.

System (9.5) includes as a special case system (9.3) for the following
reason. Any two skew Hermitian matrices A, B with the same eigenvalues
with the same multiplicity are unitarily equivalent; that is, if A* = - A,
B* = -B, then there is a matrix U such that U*U = UU* = I and
U*A U = B. If, in addition, A and B are real, there is a real unitary (ortho-
gonal) matrix U such that U'A U = B. Since E is skew Hermitian with the
eigenvalue i of multiplicity k there is a unitary U such that UE U* = J,
where J is given in (9.6) with p = q = k. If we let x = U*y then (9.3) is
transformed into (9.5) with H replaced by UHU*. A matrix U which accom-
plishes this is

(9.8)
1 Ik -ilk

U [-ilk Ik]

A special case of (9.5) is the second order system

(9.9) ii +Qu+P(t)u=0,
where u is a k-vector, Q is a constant matrix, Q* = -Q, P*(t) = P(t). In
fact, system (9.9) can be written in the form

Kx = H(t)x,
where

X
is

' K Ik 0 , H(t) - [P(t)
0 Ik]=[U _ {-Q Ik 0

There is a nonsingular matrix P such that PKP* = J and, therefore, the trans-
formation x = P*y reduces (9.9) to a special case of (9.5).
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Case (i) in Lemma 9.2 expresses some even and oddness properties of
the coefficient matrix A(t). To illustrate, consider the second order matrix
system

(9.10) u + P(t)u = 0,

where P(t + T) = P(t) is a k x k continuous real matrix. This is equivalent
to the system of order 2k,

(9.11) x = A(t)x, A(t) = [-P(t)
Ok]

If P =(PPk), j, k =1, 2 is partitioned so that P11 is an r x r matrix and P22
is an s x s matrix with PJk(t) = (-1)1+kPtk(-t), then (9.11) is reciprocal.
In fact, case (i) of Lemma 9.2 is satisfied with D = diag(Ir, -Is , -Ir, Is).

An even more special reciprocal system is the system

(9.12) ii + Fu = 0,
F=diag(aI, ..., an), aj >0.

The matrix F is periodic of any period. For any period T > 0, the character-
istic multipliers of (9.12) are p2J-1 = p2J, p2t_1 = eia,T, j =1, 2, ..., n.
These multipliers are distinct if and,only if

(9.13) 2ap 0 0 (mod w), aj ± ak 0 (mod co), j k,

where T = 2a/w. Consequently, if (9.13) is satisfied, Theorem 9.1 implies
there is a S >'O such that all solutions of (9.2) are bounded in (-oo, oo)
provided that B is in 9 d and

JB-Aj <8, A=[-0 Il
F 0 '

and F is defined in (9.12). In particular, if'(t) = c(t + 7) is real, symmetric or
satisfies the even and oddness conditions above and (9.13) is satisfied, there is
an co > 0 such that all solutions of the system

(9.14) 4 +(F+sI(t))u=0
are bounded in (- oo, oo) for all sl < so. Compare this result with the one
at the end of Section 8 for a single second order equation.

If some of the conditions (9.13) are not satisfied, it is very difficult to
determine whether there is an so > 0 such that solutions of (9.14) are bounded
for 1el < eo. For Hamiltonian systems, some general results are available
(see Section 10) but, for the other cases, only special equations have been
discussed. Iterative schemes for reaching a decision are available and will
be discussed in a subsequent chapter.
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If system (9.14) is not a reciprocal system, it can be shown by example
(see Chapter VIII) that even when (9.13) is satisfied, solutions of (9.14) may
be unbounded for any e ; 0.

EXERCISE 9.1. Suppose B(t) is an integrable T-periodic matrix such
that the characteristic multipliers of x = B(t)x are distinct and have unit
modulii. If A(t) is an integrable T-periodic matrix such that z =A (t)x is
reciprocal, then there is a S > 0 such that f o JA(s) - B(s)1 ds < S implies
the equation x=A(t)x is stable on (-oo, oo). Hint: Use the continuity of
the fundamental matrix solution of z =A (t)x in A which is implied by
formula (1.11).

II1.10. Canonical Systems

As in Section 9, let sl be the Banach space of n x n complex integrable
matrix functions of period T with JAI = fo IA(t)Idt. Let Wof be the sub-
space consisting of those matrices of the'form -JH, H* = H and

(10.1) J=i [Op -0Q].
1

If A belongs to 'd, then the associated periodic differential system is a
canonical system

(10.2)- Jz = H(t)x, H* = H,

Our main objective in this section is to give necessary and sufficient con-
ditions in order that system (10.2) be strongly stable on (-oo, oo) relative
to 9d.

We have seen in Section 9 that a canonical system (10.2) is reciprocal
and, therefore, stable on (- oo, co) if and only if all characteristic multi-
pliers of (10.2) are on the unit circle and have simple elementary divisors;
or, equivalently, that all eigenvalues of the monodromy matrix S have simple
elementary divisors and modulii 1. This latter statement is equivalent to
saying there is a nonsingular matrix U such that

U-1SU = diag(eivi, ... , ON), of real.

It was also shown in Section 9 that the monodromy matrix S of a
principal matrix solution of (10.2) is J-unitary; that is,

(10.3) S*JS = J.

Since the stability properties of (10.2) depend only upon the eigenvalues
of S, we use the following terminology: A J-unitary matrix S i8 stable if all
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eigenvalues have modulii 1 and simple elementary divisors. A J-unitary
matrix S is strongly stable if there is a 8 > 0 such that every J-unitary matrix
R for which R - SI < 8 is stable.

Preliminary to the discussion of stability, we introduce the following
terminology. For any x, y in Cn, define the bilinear form

<x, y> = i-ly*Jx.

For Hamiltonian systems, the expression <x, y> is related to the La-
grange bracket. In fact, if U is given in (9.8) and x = U*u, y* = v* U, then
<u, v> = i-lv*Eu. For real vectors v, u, v*Eu is the Lagrange bracket.

Since i-1J is Hermitian, it is clear that <x, y> = <y, x> and <x, x> is
real. The J-norm of x is <x, x)'. A subspace V of Cn is called non-negative if
<x, x> >_ 0 for all x in V and positive if <x, x> > 0 for all x 0 0 in V. Two
vectors x, y are called J-orthogonal if <x, y> = 0. If <x, y> = 0 for all y, then
Jx = 0 which implies x = 0. This immediately implies that S is J-unitary
if and only if <Sx, Sy> = <x, y> for all x, y. It is immediate from the
definition of J that the vectors e1 = (1, 0, ..., 0), e2 = (0, 1, ... , 0), ... ,
en = (0, 0, ..., 1) satisfy

(10.4) <e1, ek> = 0, j k,

<eJ, eJ> =1,

<eI,eI>=-1,
1 < j 5 p,
p<j<n.

LEMMA 10.1. Eigenvectors associated with distinct eigenvalues of a
stable J-unitary matrix are J-orthogonal. The eigenvectors of a stable
J-unitary matrix span Cn.

PROOF. If x, y are eigenvectors associated with A, p, respectively,
A µ and JAI = 1, then <x, y> = <Sx, Sy> = Aµ<x, y>. If AA 0 1, then
<x, y> = 0. Since the system is assumed stable 4-1 = a and A p imply
A11= A/p 1. This proves <x, y> = 0. The proof that the eigenvectors of a
stable J-unitary matrix span the space is now supplied in exactly the same
way that one proves the corresponding result for unitary matrices in linear
algebra.

LEMMA 10.2. A nonnegative eigenspace V of a stable J-unitary matrix
is positive. A nonpositive eigenspace of a stable J- unitary matrix is negative.

PROOF. Suppose V is nonnegative. If x is in V and <x, x> = 0, then
for any y in V and any complex number A,

0:!9 <y + Ax, y + Ax> = <y, y> + 2ReA<x, y>.

We must have <x, y> = 0 for otherwise A could be chosen in such a manner
as to make this expression negative. Therefore, <x, y> = 0 for all y in V. This
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fact together with Lemma 10.1 imply (x, y) = 0 for all y. Thus, x = 0.
A similar argument applies when V is nonpositive and proves the lemma.

THEOREM 10.1. A matrix S is a stable J-unitary matrix if and only if
there is a J-unitary matrix U such that

(10.5) U-1SU = diag(ei''i, ..., etti.),

where each v1 is real.

PROOF. Let 0 = diag(e{Vi, ... , e{rn). If S = UGU-1 and U is J-unitary,
it is clear that S is stable and J-unitary.

Conversely, suppose S is a stable J-unitary matrix and A = etv is an
eigenvalue of multiplicity r. One can choose a J-orthonormal basis v1, ..., yr
for the eigenspace VA so that <vi, vk> = 0, j 0 k, = ±1 if j = k; j, k =1, 2,
.... r. For if not, there would be an eigenvector v such that v is J-orthogonal
to VA. This is impossible from Lemma 10.1 since it would imply v is J-
orthogonal to the whole space Cn. Some of the v1 may have <vi, vi> = +1
and some may have this expression equal -1. From Lemma 10.1, we can
choose a J-orthonormal basis u1, ..., un of eigenvectors for the whole space
and we can order these vectors in such a way that <ui, nk> = 0, j : k,
<ul, u1) = 1, j:5 p' and = -1 for p' < j 5 n. But the law of inertia for
Hermitian forms and (10.4) imply that p' = p. If U = (u1, , un), then
(10.5) is satisfied. Furthermore, for the vectors e1 in (10.4), <Uei, Uek> =
<u1, uk> = <ei, ek> for all j, k. Thus, <Ux, Uy> = <x, y> for all x, y and
U is J-unitary. This proves the theorem.

It was shown in the proof of the above theorem that for any stable
J-unitary matrix, a complete set of J-orthonormal eigenvectors u1 and
corresponding eigenvalues A1= es " can' be obtained. We shall say that the
eigenvalue Al is of positive type (or negative type) if <ui, ul> =1 (or -1). In
the Russian literature, the terminology is first kind (or second kind). There are
p eigenvalues of positive type and n -p of negative type. The following
theorem asserts that a stable J-unitary matrix is strongly stable if and only if
a multiple eigenvalue is not of both positive and negative type.

THEOREM 10.2. A stable J-unitary matrix is strongly stable if and only
if each of its eigenspaces is definite (that is, either positive or negative).

PROOF. Suppose S is a stable J-unitary matrix and has an eigenvalue
A, JAS = 1, whose eigenspace is not definite. Lemma 10.2 implies there are
eigenvectors v1, v2 such that <v1, v2> =0, <v1, v1> = 1, <v2, v2 = -1.

Choose v3, ... , vn, J-orthogonal to v1, v2 so that v1, ..., vn form a basis for
Cn. For any a Z 0, define the linear transformation R: Cn-> Cn by
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Rv1 = S[(cosh oc)vl + (sinh x)v2],

Rv2 = S[(sinh a)vl + (cosh (X)v2],

Rvk = Svk, k = 3, ... , n.

One easily verifies that <Rv1, Rvk> = <vi, vk> for all j, k and, thus, the
matrix associated with the transformation R is J-unitary. Also, v1 + v2 is an
eigenvector of R associated with the eigenvalue .lea, and R has an eigenvalue
with modulus > 1 for any x > 0. Thus, B is not stable on (- oo, oo ). Since B
approaches S as x - 0, this implies S is not strongly stable.

Conversely, suppose S is a stable J-unitary matrix whose eigenspaces
are definite. Let Ak, k =1, 2, ..., r, be the distinct eigenvalues of S with
multiplicity nk and let Vk of dimension nk be the corresponding eigenspaces.
Then

Cn = V1 (D V2 ED ... G) Vr,

and we let Pk denote the corresponding projection operators of Cn onto Vk;
that is, for any x in Cn, Pk x is in Vk and Pk x = x if x is in Vk. These projec-
tion operators satisfy Pk Pp = 0, j 0 k, Pk = Pk, and can be defined by the
formula

(10.6) Pk =
J

-S)-i dC,
Yk

where yk is a positively oriented circumference of a circle with center Ak
and radius so small that it contains no other eigenvalue of S. If R is any
n x n matrix with R - SI sufficiently small, then each of circumferences yk
encloses exactly nk eigenvalues (counted with their multiplicities) of R.
Therefore, the integrals

Qk = 21ri J
R)-i dC,

Yk

define projection operators Qk of Cn onto subspaces Wk of dimension nk
such that the Wk are invariant under R and Cn = W1(D W2 ® "' O Wr
The subspace Wk is the algebraic sum of the generalized eigenspaces of B
associated with the eigenvalues of R enclosed by yk. Also, this formula shows
that Qk is a continuous function of B and I Qk - PkI --->0 as R -*S.

Our next objective is to show that <x, x> is definite on each Wk. For x
in Wk,

<x, x> = <Qk x, Qk x>

= <Pk X, PkX> + <(Qk - Pk)x, (Qk - Pk)x>
+ 2Re<Pkx, (Qk - Pk)x>.
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From the definition of <x, y>, we have I <x, y>I < IJI ' IxI ' Iyi for all x, yin
Cn. Also. since S is definite on eigenspaces, there is an « > 0 such that
I <x, x>I z aclxI2 for all x in Vk and each k =1, 2, ... , r. Therefore, for x
in Wk,

I<x,x>I ?alPkXI2-IJI'IQk-PkI2'IxI2-21JI'IPkIIQk-Pk121XI2

[0c(1-IQk-PkI)2-IJI'IQk-Pk12-2IJI'IPki'IQk-Pkl]Ix12.

Consequently, if IS - RI is small enough, the continuity of the projections
Qk in B implies that

I <x, x>I z o IxI2, x in Wk, k =1, 2, ..., r.

Since each Wk is invariant under B, for any integer m, it follows that

I RMx12 5 2«-1 I <Rmx, Rmx>I = 2a-1I <x, x>I < 2a-1 IJI ' Ix12,

f o r all x in Wk, k =1, 2, ... , r, if B is J-unitary. For any x in Cn we have
x = Q1x + + Qr x and, thus,

IRmx12 <_2a-1IJI [IQiI +... +
IQrI]2IxI2.

It is easy to see this implies all eigenvalues must have simple elementary
divisors and modulus 1. Thus, B is stable which in turn implies S is strongly
stable. This proves the theorem.

THEOREM 10.3. System (10.2) is strongly stable on (- oo, oo) if and
only if the monodromy matrix is strongly stable.

PROOF. It was remarked at the beginning of this section that (10.2)
is stable on (- oo, oo) if and only if the monodromy matrix is stable. Since
the solutions of (10.2) depend continuously upon A in s4, then (10.2) is
strongly stable on (- oo, co) if the monodromy matrix is strongly stable.

Suppose now that the monodromy matrix S of the solution X(t),
X(0) = I, of (10.2) is stable and not strongly stable. In the proof of Theorem
10.2, it was shown that any neighborhood of S contains a J-unitary matrix B
which has an eigenvalue with modulus >1. Since S-1R is nonsingular,
Lemma 7.1 implies there is a matrix F such that S-1R = eF. For I R - SI
sufficiently small, one can show directly from the power series representation
of eF or from the implicit function theorem that F can be chosen to be a
continuous function of R which vanishes for R=S. Furthermore, S-1R
being J-unitary implies e-F =J-1eF'J=eJ-' F'J and we can choose F so
that -F = J-1F*J. Therefore, F can be written as F = TJ-1G where G
is Hermitian and T is the period.

If we define Y(t) = X(t)etJ-'G, then Y(O) = I, Y(T) = R, and Y(t) is a
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fundamental matrix solution of the canonical system

Jz = L(t)x,

where L = H + X*-1GX-1. However, L(t) may not be periodic of period T.
On the other hand, we can alter L(t) by a symmetric perturbation Li(t)
such that L(t) + L1(t) is periodic of period T, f T I L1(t)I dt < S for any pre-
assigned S. If we let Y1(t), Y1(0) = I, be the fundamental matrix solution
with L replaced by L + L1, then formula (1.11) implies there is a constant K
such that

I Y1(T) - Y(T)l < SK.

Therefore, for S sufficiently small the monodromy matrix Yi(T) will have
an eigenvalue with modulus >1 and (10.2) is not strongly stable. This
proves the theorem.

If the eigenvalues a{", of S in the representation (10.5) are ordered so
that the first p are of positive and the remaining n -p are of negative type,
then Theorem 10.2 states that a stable J-unitary matrix S is strongly stable
if and only if

(10.7) vp0vk(mod 21T), 1<j<p<k<_n.

If S is the monodromy matrix of a stable canonical system (10.2) and the
eigenvalues of S are denoted by e10iT, j = 1, 2, ..., n, and ordered in the
same way as above, then Theorem 10.3 implies that the canonical system is
strongly stable on (- oo, oo) if and only if

(10.8) 05 Ok (mod 21r/T), 15j<_p<k<_n.

EXERCISE 10.1. Show that inequalities (10.8) are equivalent to the
inequalities

(10.9) a y + ak 0 0 (mod w), j, k =1, 2, ... , n,

for system (9.12), and, thus, (9.12) is strongly stable if and only if (10.9) is
satisfied. Compare these inequalities with (9.13).

Theorem 10.3 answers many of the questions concerned with the quali-
tative properties of the stability of canonical systems. It states very clearly
the critical positions of the characteristic multipliers for which one can
always find a canonical system that is unstable and yet arbitrarily near to
the original one. One of the basic remaining problems is the determination of
an efficient procedure to obtain these critical positions of the multipliers.
A method for doing this for equations which contain a small parameter is
given in Chapter VIII.
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M.11. Remarks and Suggestions for Further Study

The reader interested in more results for the stability of perturbed
linear systems may consult Bellman [1], Cesari [1], Coppel [1].

In the case of linear systems with constant or periodic coefficients, the
stability properties of the linear system were completely determined by the
characteristic exponents of the equation. Furthermore, if all characteristic
exponents have negative real parts, then the linear equation is uniformly
asymptotically stable. Consequently, the linear system can be subjected to a
perturbation of the type given by relation (2.9) and the property of being
uniformly asymptotically stable is preserved for the perturbed system. If
the coefficients of the matrix A(t) in (1.3) are bounded, then every solution
of (1.3) is bounded by an exponential function. Therefore, it is possible to
associate with each solution x of (1.3) a number A = Ax defined by

A=lim sup logx(t)l.
t_.0 t

This number A was called by Lyapunov [1] the characteristic number of the
solution x. If A < 0, then I x(t) I -> 0 as t -- oo. If Ax < 0 for all solutions x of
(1.3), then all solutions approach zero exponentially. On the other hand,
the example of Perron for A(t) as in (2.14) has the property that perturbations
satisfying (2.9) can lead to unbounded solutions in contrast to the above
remarks for periodic systems. There is an extensive theory of the character-
istic numbers of Lyapunov and their application to stability (see Cesari [1],
Malkin [1], Nemitskii and Stepanov [1], Lillo [1]).

In the discussion of the preservation of the saddle point property in
Theorem 6.1, we were only concerned with the orbits on the stable and
unstable manifolds. Of course, one could consider the following problem:
Suppose x = 0 is a saddle point of (4.1) and f : Rn Rn has continuous first
derivatives such that f (0) = 0, 8f (0)/8x = 0. Does there exist a neighborhood
V of x = 0 such that for any f of the above class, there is a transformation h
which takes the trajectories of (4.1) onto the trajectories of the perturbed
equation (6.3) in the neighborhood V? This problem has a long and interesting
history. The reader may consult Poincare [1] and Lyapunov [1] for the
analytic case, Sternberg [11, Chen [11 for the case where h may have a finite
number of derivatives and Hartman [1] for the general case.

The problem posed in the previous paragraph in a local neighborhood
of a critical point can be made much more general. In fact, one can say two
n-dimensional differential equations

(11.1) x=f(x),
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(11.2) l = g(y),

are equivalent in a region G of Rn if there is a homeomorphism h which takes
the trajectories of (11.1) onto the trajectories of (11.2) in G. Suppose the
vector fields f, g belong to some topological space -4. A system (11.1) is said
to be structurally stable if there is a neighborhood N(f) off in .4 such that
(11.1) and (11.2) are equivalent for every g in N(f). The study of structural
stability and equivalent systems of differential equations is at present one of
the most exciting topics in differential equations. All of the concepts are
equally meaningful for vector fields on arbitrary n-dimensional manifolds.
The reader is referred to the basic paper of Peixoto [1] for two-dimensional
systems and the paper of Smale [1] for the general problem. See also the book
of Netecki [1].

The presentation of the stability theory of Hill's equation given in
Section 8 relies very heavily upon the book of Magnus and Winkler [1], but
does not begin to indicate the tremendous number of results that are available
for this equation. The precise determination of the a-intervals of stability
and instability for a given function q(t) is extremely important in the applica-
tions. Each function 0(t) defines a class of functions depending upon a and
the particular of, a* of Theorem 8.1 yield special periodic functions of period
TT or 27r. It is important to discuss the expansion of arbitrary functions in
terms of these special periodic functions in the same way that one develops
a function in a Fourier series. For a more complete discussion as well as many
references, see Arscott [1], Cesari [1], Magnus and Winkler [1], McLachlan [1].

The presentation in Section 10 follows the thesis of Howe [1 ] and should
be considered only as introduction to the theory of stability of Hamiltonian
and canonical systems. The topological characteristics of the class of strongly
stable systems have been discussed as well as the regions of stability and
instability for given equations. Computational methods also have been
devised for equations with a small parameter. The reader is referred to
Gelfand and Lidskii [1], Yakubovich [1, 2], Krein [1], Diliberto [2], Coppel
and Howe [1] for results as well as further references.



CHAPTER IV

Perturbations of Noncritical Linear Systems

It is convenient to have

Definition 1. If A(t) is an n x n continuous matrix function on (- oo, oo )
and -9 is a given class of functions which contains the zero function, the
homogeneous system

(1) x = A(t)x,

is said to be noncritical with respect to -9 if the only solution of (1) which
belongs to .9 is the solution x = 0. Otherwise, system (1) is said to be critical
with respect to .9.

Throughout the following, M(- oo, co) _ {f: (- co, oo) -- Cn, f con-
tinuous and bounded} and for any f in R(- oo, co), I f I =sup,,t<.I f (t)j.
The subset .slY of .4(- co, oo) denotes the set of almost periodic functions
(for definition, see Appendix) and for any fin s 1g, m[f] denotes the module
of f. If f, g are in sdY, then m[f, g] denotes the smallest module containing
m[f] u m[g]. The subset 93T of s19 denotes the set of periodic functions of
period T. The spaces .4(-co, oo), WY and 9T with I I defined as above are
Banach spaces. An n x n matrix function on (-oo, co) is said to belong to
one of these spaces if each column belongs to the space.

This chapter centers around the study of the existence and stability
properties of solutions of

(2) z = A(t)x +f (t, x),

which belong- to one of the classes .(- oo, oo), s19 or 9DT for the case in
which the matrix A is in YT, system (1) is noncritical with respect to the
class under discussion and f is " small " in a sense to be made precise later.

The presentation will proceed as follows.' The nonhomogeneous linear
system is studied first in great detail. It is shown that system (1) being
noncritical with respect to -9, one of the classes 9(-oo, oo), .49 or 93T,
implies that the nonhomogeneous linear equation has a unique solution in -9
which depends linearly and continuously upon the forcing function in .9.

144
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For f in (2) "small," the contraction principle yields the existence of a
solution of (2). By extending the saddle point property of Chapter III,
Section 6, to nonautonomous equations, one obtains the stability properties
of the solution of (2). Some generalizations of the results are given in Section 4
together with some elementary properties of Duffing's equation with large
forcing and large damping in Section 5. At the end of Section 1, there is also
a stability result for the case when A is not in IT .

LEMMA 1. (a) System (1) with A in 1T is noncritical with respect to
_V(-oo, oo) [or s19] if and only if the characteristic exponents of (1) have
nonzero real parts. (b) System (1) with A in9T is noncritical with respect to
9T if and only if I - X(T) is nonsingular, when X(t), X(O) = I, is a fundamental
matrix solution of (1).

PROOF. (a) If the characteristic exponents of (1) are assumed to have
nonzero real parts, then the Floquet representation of the solutions implies
that the only solution of (1) in M(- oo, co) is x = 0 and (1) is noncritical
with respect to -4(- co, oo) and, therefore, also with respect to d . Con-
versely, if there is no solution x 0 of (1) in -4(- oo, oo), then the Floquet
representation implies there cannot be a characteristic exponent A of (1)
with A = iO since equation (1) would then have a nonzero solution edetp(t),
p(t + T) =p(t).

(b) With X(t) defined as in the lemma, the general solution of- (1) is
X (t)xo , where xc is an arbitrary constant vector. System (1) has a nonzero
periodic solution of period T if and only if there is an xc 0 0 such that
[X(t + T) - X(t)]xo = 0 for all t. Since A is assumed to belong to 97', this
is equivalent to the existence of an xc 0 0 such that [X (T) - I]xo = 0;
that is, X (T) - I is singular. This proves the lemma.

Remark 1. If A in equation (1) is a constant, then (1) is noncritical
with respect to 9(-oo, co) or dY if and only if all eigenvalues of A have
nonzero real parts. The equation (1) is noncritical with respect to 9T if and
only if all eigenvalues A of A satisfy AT 0 (mod 2ai).; or equivalently, the
purely imaginary eigenvalues iw of A satisfy co 0 (mod 2a/T).

IV. 1. Nonhomogeneous Linear Systems

Basic to any discussion of problems concerned with perturbed linear
systems is a complete understanding of the nonhomogeneous linear system

(1.1) x = A(t)x +f (t),

where f is a given function in some specified class.
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Let us recall that the equation adjoint to (1) is y = -yA(t) and X-1(t)
is a fundamental matrix solution of this equation if X (t) is a fundamental
matrix solution of (1). Since A belongs to YT, it follows that the adjoint
equation has a nontrivial solution y with y' in eT (' is the transpose of y)
if and only if y(0)[X-1(T) - I] = 0; that is, if and only if X-1(T) - I is
singular. Equation (1) has a solution x in 'T if and only if [X(T) - I]x(0) = 0.
Since the matrices X-1(T) - I and X(T) - I are the same except for multi-
plication by a nonsingular matrix, it follows that the dimensions of the set
of yo such that yo[X-1(T) - I] = 0 and the set of xo such that [X (T) - I]xo = 0
are the same. Therefore, the adjoint equation and equation (1) always have
the same number of linearly independent T-periodic solutions.

LEMMA 1.1. (Fredholm's alternative). If A is in -q T and f is a given
element of 9T, then equation (1.1) has a solution in PiT if and only if

T
(1.2) f y(t) f (t) dt = 0,

0

for all solutions y of the adjoint equation

(1.3) y = -yA(t),

such that y' is in PT . If (1.2) is satisfied, then system (1.1) has an r-parameter
family of solutions in PiT , where r is the number of linearly independent
solutions of (1) in PiT .

PROOF. Since A and f belong to PiT, x(t) is a solution of (1.1) in PiT
if and only if x(0) = x(T). If X(t, r), X(T, -r) = I, is a matrix solution of (1),
and x(0) = x0, then

x(t) = X(t, O)xo + f X(t, s) f (s) ds.
0

Since X(t, T)X(T, S) = X(t, s) for all t, T, s, the condition x(T) =xo is equiva-
lent to

(1.4) [X-1(T 0) - I]xo = f X-1(s, 0)f (s) ds.T
0

If B = X-1(T, 0) - I, b = f o X-1(s, O) f (s) ds, then (1.4) is equivalent to

Bx0 = b. From elementary linear algebra, this matrix equation has a solution
if and only if ab = 0 for all row vectors a such that aB = 0. Since X-1(t, 0)
is a principal matrix of (1.3), the set of vectors a for which aB = 0 coincides
with the set of initial values of those solutions y of (1.3) which are T-periodic;
that is, the solution y(t) =aX-1(t, 0) is a T-periodic solution of (1.3) if and
only if aB = 0. Using the definition of b, we obtain the first part of the lemma.
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If (1.2) is satisfied and q(t) is a solution of (1.1) in 9T, then any other solu-
tion in 91T must be given by x = z + 0, where z is a solution of (1) in elT .
This proves the lemma.

ExERCIsE 1.1. What is the analogue of Lemma 1.1 for the case in which
Ais in YT and fis in s4Y?

Example I.I. Consider the second order scalar equation

(1.5) ii+u=coscot, w>0.
If xl = u, an equivalent system is

(1.5)' z1 = x2,
x2 = -x1 + COs wt, co > 0.

The adjoint equation is yl = Y2, y2 = -yl which has the general solution
yl = a cost + b sin t, y2 = -a sin t + b cost where a, b are arbitrary con-
stants. If w 1, there are no nontrivial solutions of the adjoint equation of
least period T = 27r/w. Thus, (1.2) is satisfied. Since the homogeneous
equation has no nontrivial periodic solutions, the equation (1.5) has a unique
periodic solution of period 27r/w. If co =1, then every solution of the adjoint
equation has period 2ir. On the other hand relation (1.2) is not satisfied since

2n 2n
f y(t) f (t) dt = f

o
sin t cost + b cos2 t) dt = 1Tb

0 0

and this is not zero unless b = 0. Therefore, the equation (1.5) has no solution
of period 27r and, in fact, all solutions are unbounded since the general
solution is u = a sin t + b cost + (t sin t)/2.

Example 1.2. Consider the system (1.1) with

(1.6)
1

A=-
-1
-1

2

0
1

-1
f (t)

=sin t
-i
-1

l2 -1 2 1 l

1 1+cost-sint 2sint -1+cost+sint
(1.7) cAt=2 1-cost-sint

-1+cost-sint
2cost
2sint

-1+cost-sint
1+cost+sint

Since the rows of a-At are solutions of the adjoint equation, it follows that all
solutions of the adjoint equation have period 27r, the same period as the
forcing function f, and the solutions are linear combinations of the rows of
e-At. To check the orthogonality condition (1.2), we need to verify that
f one-At f (t) dt = 0. One easily finds that e-Atf (t) =z sin t, z= (-1, -1, 1)
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and the orthogonality condition is satisfied. Therefore, system (1.1) with A
and f given in (1.6) has a periodic solution of period 21r, and, in fact, every
solution has period 21r.

ExERCISE 1.2. In example 1.2, is there a unique solution of period 27r
which is orthogonal over [0, 2Tr] to all of the 21r-periodic solutions of the
homogeneous equation-which is orthogonal to all of the 27r-periodic solutions
of the adjoint equation? How does one obtain such a solution?

EXERCISE 1.3. Show that every solution of (1.1) is unbounded if
relation (1.2) is not satisfied and A, f are in 9T .

THEOREM I.I. Suppose A is in YT and -9 is one of the classes
(-co,aoo), dPi or PT. The nonhomogeneous equation (1.1) has a solution

Y f in -9 for every f in .9 if and only if system (1) is noncritical with respect
to -9. Furthermore, if system (1) is noncritical with respect to -9, then M f
is the only solution of (1.1) in .' and is linear and continuous in f; that is,
.%((af + bg) = a. ' f + bYg for all a, b in C, f, g in -9 and there is a constant
K such that

(1.8) I tf1 <KIfI ,

for all f in -9. Finally, if -9 = xlPi, then m[.7l' f ] c m [f, A].

PROOF. Case 1.21 = PiT . If f belongs to YT, then Lemma 1.1 implies
that equation (1.1) has a solution in 9T if and only if f is orthogonal in the
sense of (1.2) to all T-periodic solutions of (1.3). But i = A(t)x and y = -yA(t)
have the same number of linearly independent T-periodic solutions. There-
fore, equation (1.1) has a solution in 5T for every f in 2T if and only if
equation (1) has no nontrivial solutions in Pip; that is, (1) is noncritical with
respect to Y!,. If system (1) is noncritical with respect to 9T, then Lemma
1.1 implies system (1.1) has a unique solution V 'f in YT for every f in 2T .

It is clear from the uniqueness that if is a linear mapping of PiT into PiT .

If X(t, -r), X(T, T) = I, is, the principal matrix solution of (1), then the
function Y f f can be written explicitly as

(1.9) (if f)(t) = f [X-1(t + T, t) - I]-IX(t, t + 8)f (t + s) ds.
0

The kernel function in this expression is known as the Green's fun$ion for
the boundary value problem x(O) = x(T) for (1.1). The explicit computations
for obtaining (1.9) proceed as follows.

If we let (i f)(0) _ xo, then
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(i(f)(t) = X(t, 0)xo + f X(t, 8)f (S) ds.t
0

Since (i f)(t + T) = (. 'f)(t), and X(t,s) = X(t,r)X(r,s) for any t,r,s, we
have

[I - X(t + T,t )]X (t, 0)xo = -[I - X (t + T, t)] f 'X(t, 8)f (s) ds
0

t +T
+ X(t + T,t) f X(t, s) f(8) ds.

t

Multiplication by [I - X(t + T, f)] -1 and a substitution in the formula for
(it'f)(t) yields (1.9).

Formula (1.9) obviously implies there is a constant K such that (1.8)
is satisfied. In fact, K can be chosen as

T-1K = sup I [X-1(t + T,t) - I]-IX(t, t + s)
05s,t5T

This proves Case 1.

Case 2. -' = -I(- oo, oo). Let X (t) be a fundamental matrix solution
of (1). The Floquet representation implies X(t) = P(t)eBt where P(t + T) =
P(t) and B is a constant. Furthermore, the transformation x = P(t)y applied
to (1.1) yields

(1.10) By + P-I(t)f (t) def By
+ g(t),

where g is in - 4 ( - oo, oo) (or 19a) if f is in 9 ( - oo, oo) (or .sat °./). Since P(t)
is nonsingular, it is therefore sufficient for the first part of the theorem to
show that (1.10) has a solution in -4(- oo, oo) for every g in 9(- oo, co) if
and only if y = By is noncritical with respect to I(-oo, oo); that is, no
eigenvalues of B have zero real parts.

By a similarity transformation, we may assume that

B = diag(B+, Bo, B_)

where all eigenvalues of B+(Bo)(B_) have positive (zero) (negative) real
parts. If y = (u, v, w), g = (g+, go, g_) are partitioned so that block matrix
multiplication will be compatible with the partitioning of B, then (1.10)
is equivalent to the system

(1.11) (a) it = B+u + g+,

(b) v=Bov+go,
(c) th=B-w+g-
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There are positive constants K, a so that

(1.12) (a) leB+tl < Keat, t < 0,

(b) IeB:tl < Ke-at t > 0.

Equations (1.lla), (1.11c) have unique bounded solutions on (-oo, oo)
given, respectively, by

0
(1.13) (a) ( + g+)(t) = f e B+8g+(t + s) ds,

00

0

(b) (i(- g_)(t) = f e-B-Bg-(t + s) ds.
- OD

One can either verify this directly or apply Lemma III.6.1. These remarks
show that if y = By is noncritical'with respect to _V(-oo, oo) then there is
a unique solution Y f of (1.10) in 9(-oo, oo). Furthermore, using (1.12) we
see that J.'r+ g+J < (K/a) Ig+J, Iir_ g-1 < (K/-) Ig-J. Therefore, Y f satisfies
(1.8).

If the matrix B has any eigenvalues with zero real parts; that is, the
vector v in (1.11b) is not zero dimensional, we show there is ago in _V(- 00, 00)
such that all solutions of (1.10) are unbounded in (- co, oo). This will com-
plete the proof of Case 2. Without loss in generality, we may assume that
B0 = diag(Bol, ..., Bo8), where Bog = icop I + Rg and Rg has only zero as
an eigenvalue. It is enough to consider only one of the matrices Bog since
icug may be eliminated by the multiplicative transformation exp(iwg t).
Thus, we consider the equation

z=Rx+g,
where R has only zero as an eigenvalue and g is in M(- oo, co). For any row
vector a,

az = aRx + ag,

for all t. If a # 0 is chosen so that aR = 0 and g = a*, where a* is the con-
jugate transpose of a, then ax = Ia12 > 0 which implies ax(t) oo for every
solution x(t). Therefore, every solution is unbounded as t -* 00. This completes
the proof of case 2. Notice that the g chosen in (1.10) to make all solutions
unbounded if B has eigenvalues with zero real parts was actually periodic
and, therefore, f = P(t)g is an almost periodic (quasiperiodic) function
which makes all solutions of (1.1) unbounded if (1) has purely imaginary
characteristic exponents.

Case 3. -9 =.49. The previous remark implies that (1.1) has a
solution in -I(- oo, oo) for all f in d1 if and only if no characteristic expon-
ents of (1) have zero real parts or, equivalently, (1) is noncritical with respect
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to .sd9. If (1) is noncritical with respect to .0'9, then the unique solution
''f in 9(-oo, cc) is a periodic transformation of the functions given in

(1.13) where g+, g_ are almost periodic with their modules contained in
m[f, A] Therefore, it remains only to show that the functions in (1.13) are
in sdY and their modules are in m[f, A]. We make use of Definition 1 of the
Appendix.

Suppose a' = {4} is a sequence in R. Since g is almost periodic there is a
subsequence a = {a1,} of a' such that {g(t + a,)} converges uniformly on

Since is a continuous linear operator on (-°°,°°), this implies
{(. '+g+)(t + N)}, converges uniformly on (-00,00). Thus, Definition 1 of the
Appendix implies .%'+g+ is almost periodic. Theorem 8 of the Appendix implies
m[.'+g+] C m[g+] C m[f,A]. The same argument applies to. g_ to com-
plete the proof of Case 3 and the theorem.

EXERCISE 1.4. Let -*'be the operator defined in Theorem 1.1. Prove or
disprove the relation m[_ff ] = m[f, A] for every f in sig.

Theorem 1.1 clearly illustrates that requiring a certain behavior for
some solutions of the nonhomogeneous equation (1.1) for forcing functions f
in a large class of solutions imposes strong conditions on the homogeneous
equation (1). For the case in which A does not belong to 9T, similar con-
clusions can be drawn but the analysis becomes more difficult. Preliminary
to the statement of the simplest result of this type are some lemmas of
independent interest.

LEMMA 1.1. If A(t) is a continuous n X n matrix, IA(t)I<M, 0 <-- t < oo,
and X(t, T), X(T, T) = I, is the principal matrix solution of (1), then there is a
8 > 0 such that

X(t, S) - X(t, T) I
2

IX(t, T)I ,

forallt, T, sy'0and Is - TI

PROOF. Since X(t, s) = X(t, T)X(T, s) for all t, T, s in [0, oo), it is
sufficient to show there is a 8 > 0 such that IX(T, S) - 11 < 1/2 for T, s >_ 0,
I T - sI < S. Since

X(T, s) _1= f A(u)[X(u, s) - I] du+ f A(u) du,T T

8 8
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an application of Gronwall's inequality yields I X(r, s) - II < M I -r - sI eMi t-81
for all T, s. If S is such that MSeMO < 1/2, the lemma is proved.

LEMMA 1.2. With A and X(t, T) as in Lemma 1.1, the condition
f t I X (t, s)I ds < c, a constant, for all t 0 implies I X(t, s)I uniformly bounded

for 0 < s <_ t < oo; that is, the equation (1) is uniformly stable for to >_ 0.

PROOF. Since X(t, s)X(s, t) = I for all s, t, it follows that X(t, s) as a
function of s is a fundamental matrix solution of the adjoint equation.
Therefore,

tX(t, s) =I + f X(t, 6)A(e)de
S

for all t, s. In particular, for o < s < t, the hypotheses of the theorem imply
I X(t, s) I < 1 + Mc. The uniform stability follows from Theorem 111.2. 1. This
proves the lemma.

THEOREM 1.2. If A(t) is a continuous n x n matrix, IA(t)I <M,
0 < t < oo, then every solution of (1.1) is bounded on [0, oo) for every con-
tinuous f bounded on [0, oo) if and only if system (1) is uniformly asymptotic-
ally stable.

PROOF. We first prove that if every solution of (1.1) is bounded on
[0, oo) for every continuous f bounded on [0, oo), then

r

o
I X(t, s) I ds < c, a

constant, for t >_ 0. The solution of (1.1) with x(O) = 0 is given by

x(t) = f X (t, s) f (s) ds.
0

Let -4[0, oo) be the class of functions f : [0, oo) -.Cn, f continuous and bounded
and let if I = supo<t<. I f (t)I . For any fixed tin [0, oo), consider the mapping
Tt :. [0, oc) --> ..[0, oo) given by

f°X(«,s)f(s)ds, 0<a_<t
(Tt f)(a) = o

t
X(t,s)f(s)ds, t_<a< of o.

For each fixed t, Tt is a continuous linear map. Furthermore, by hypothesis,
for each f in _V[0, oo), there is a constant N such that I Tt f I <_ N, 0 < t < co.
Consequently, the principle of uniform boundedness implies there is a
constant K such that I T t f I< K.1 f I for all t in [0, oo), f in 9[0, &). In
particular,

t

f X(t,s)f(s)ds <KIfI, 0_ t<oo.
o
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If X = (xjk), let f/' k(s) be the function which is the sign of xfk(t, s),
j, k = 1, 2, ..., n, for a fixed t. Choose a sequence of uniformly bounded
continuous functions (s) which approach f/ ' k(s) pointwise almost every-
where on [0, t]. Choose the norm of a vector x = (xi, ... , to be IxI =
max1 I xrl. . For any given j, k, let ft(s), ft, r(s) be the n-vectors with all com-
ponents zero except the kth which is fti' k(s), f t'; (s), respectively. Then

tlim f X(t, s) ft, r(s) ds = tX(t, s)ft(s) ds.
T 100 0 fo

From the above definition of the norm of a vector and the fact that
t

f X (t, s)ft, r(s) ds I < K I ft, rI _<< Ki, 0 < t < oo,
0

it follows that
t

f (xlk(t, 8)1 ds <
0

t

f0 X(t, s) fi(s) ds < Ki,

for all t >_ 0 and j, k = 1, 2, ... , n. Since all norms in Cn are equivalent, this
clearly implies there is a constant c such that f. I X(t, s)1 ds < c, 0 _< t < oo.

From Lemma 1.2, this relation implies X(s, T) is uniformly bounded by
a constant N for 0 < T <s < oo and, thus, equation (1) is uniformly stable
for to >_ 0. Therefore,

ftX(t, s)X(s, T) ds
T

t

f IX(t, s)I IX(s, T)I ds < Nc,

for all t > T. But the first expression in this inequality is equal to

(t -T) IX(t, T) . Therefore, IX(t, T) I approaches zero as t -* co uniformly and
equation (1) is uniformly asymptotically stable.

Conversely, suppose system (1) is uniformly asymptotically stable for
to > 0. From Theorem 111.2.1, there are positive constants K, a such that

IX(t, T)I < Ke-act-a), 0 < T < t < oo.

The general solution of (1.1) is

tx(t) =X(t, 0)x(0) + f X(t, 8)f (s) ds, t Z 0.
0

If f is in 9[0, co), then Ix(t)I < K Ix(0)I + If I (K/x) for all t >_ 0 and thus
every solution of (1.1) is in l[0, oo). This proves the theorem.

Theorem 1.2 is due to Perron [1] and was the first general statement
dealing with the determination of the behavior of the solutions of a homo-
geneous equation by observing the behavior of the solutions of a nonhomo-
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geneous equation for forcing functions in a certain given class of functions.
Investigations along this line have continued to this day with the most
significant recent contributions being made by Massera and Schaffer [1]. For
a better appreciation of the problem, we rephrase it in another way. Let
(9, 9) be two Banach spaces of functions mapping [a, co) into On where a
may be finite or infinite. The pair (9, -9) is said to be admissible for equation
(1.1) if for every f in .9, there is at least one solution x of (1.1) in a. Theorem
1.1 states that (M(-oo, co), M-co, oo)), (d9, sir)), (YT, 9T) are admis-
sible for equation (1.1) if and only if equation (1) is noncritical with respect
to l(-eo. OD), sad-0, YT, respectively. Theorem 1.2 shows that (-4[0, co),
-4[0, oo)) is admissible-for (1.1) if equation (1) is uniformly asymptotically
stable. The further investigation of such admissible pairs is extremely interest-
ing and the reader is referred to Coppel [1, Chap. V], Hartman [1, Chap. 13]
and Massera and Schaffer [1], Antosiewicz [2].

IV.2. Weakly Nonlinear Equations-Noncritical Case

Throughout this section, it will be assumed that A is a continuous n x n
matrix in 9T, S2(p, a) ={x in On, s in Cr: jxj < p, jsi <_ a}, 7)(p, a), M(a),
p >_ 0, a >_ 0, are continuous functions which are nondecreasing in both
variables, 71(0, 0) = 0, M(0) = 0, and 2'i fi(ij, M) = {q: R X S2(po, so) -*
On: q continuous, jq(t, 0, s)l < M(I el ), jq(t, x, e) - q(t, y, e)l <_ ,i(p, a)l x - yl,
for all (t, x, e), (t, y, e) in R X SZ(p, u), 0 < p < pc, 0 < a < ec and q(t, x, e) is
continuous in x,e uniformly for t in R}.

If q is in'ifi(7], M), then automatically x, e) is in . (-co, oo). In
factjq(t, x, a)l < al(p, a) jxj + M(1sl) for (t, x, a) in B x S2(p, a). A function q
will be said to be in sd9i fl9'il?(?), M) if q is in2i fi(,j,M) and, for each fixed a,
q(t,x,8) is almost periodic in t uniformly with respect to x for x in compact sets.
A function q will be said to be in 1T n 2'i/l(71, M) if q is in 2i/a(71, M) and
q(t + T, x, a) = q(t, x, a) for all (t, x, a) in B x S2(po, so).

A function q will clearly be in 2'i h(rt, M) for some -q, M if q(t, x, a) -*0
and eq(t, x, a)/&x-*0 as x-*0, a-*0 uniformly in t.

In this section, results are given concerning the existence of bounded,
almost periodic and periodic solutions of the nonlinear' equation

(21) z = A(t)x + q(t, x, a),

where q is in 2i/l(rl, M) and the homogeneous equation (1) is noncritical.
More specifically, we prove

THEOREM 2.1. Suppose -9 is one of the classes _4(- oo, oo), or
.9T. If q is in -9 n 2ifi(q, M) and system (1) is noncritical with respect
to -9, then there are constants pi > 0, 81 > 0 and a function x*(t, a) con-
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tinuous in t, a for -oo <t < oo, 0 < Iel < ei, x*(t, 0) =0, x*(-, s) in -9,
lx*(-, e)I < pi, 0 < Iel < e1, such that x*(t, e) is a solution of (2.1) and
is the only solution of (2.1) in -9 which has norm <pl. If - _ jVY then
m[x*(., e)] - m[q, A], 0:5 1sl <ei.

PROOF. For a given pi, 0 < pl < po, let 9p, ={x in 9: IxI pi}. Then
9p, is a closed, bounded subset of the Banach space -9. For any x in 9p,, the
function e) belongs to .9. Since system (1) is assumed to be non-
critical with respect to -9, we may consider the transformation w =.Tx,
x in -9, defined by

(2.2) w =PJ-x e),

where AA' is the operator uniquely defined by Theorem 1.1. From Theorem 1.1,
9-: 9p, -> -9. Furthermore, the fixed points of 9- in -9p, coincide with the
solutions of (2.1) which are in -9p,. We now use the contraction principle to
show that has a unique fixed point in -9p, for pi and Iki sufficiently small.

Since q is in M),

(2.3) jq(t, x, e)l < jq(t, x, e) - q(t, 0, s)I -I- jq(t, 0, e)I

'q(pl, e1) IxI + M(el),

for (t, x, s) in R x S2(pi, ei). Let K be the constant defined in (1.8) and choose

pi < po, ei <so positive and so small that

K[,q(pi, e1)pl + M(el)] <p1.

For this choice of pi, ei, it follows from relations (1.8), (2.2), (2.3) and the
fact that q is in Yi h(q, M) that

I.jxl < K j q(-, x(.), e)I < K['7(pi, ci) IxI + M(e1)]
< pi,

I.°Tx -.Tyl < K j q(-, x('), e) - q(', y('), e)I

< K-](p1, si) Ix - Ill
<0Ix-,I,

for all x, y in -9p,, 0 < Ici < si and 0 < 1 is a positive constant. Therefore,
J is a uniform contraction on 9p, for I eI _< ei and has a unique fixed point
x*(t,e) in IfFIPl. Since q(t,x,e) is continuous in x,e uniformly in t, x*(t,e) is con-
tinuous in t,81 - oo < t < oo, 0 < 181 < si. For e = 0, x = 0 is obviously a
solution of (2.1) and, therefore, 0) = 0. To prove the last statement of the
theorem, suppose a' _ {an } is a sequence in (-cc, 00). Let M be a compact set
containing {x*(t, e), te(-oo, 00), I e < el }. Theorem 11 of the Appendix implies
there is a subsequence a = {a, } of a such that {q(t + an, x,e)} converges
uniformly for te(-oo,oo),xeMandeach fixed e. Since x*(t, e) _ .Vq(,x*(,e),e)



156 ORDINARY DIFFERENTIAL EQUATIONS

and .*'is continuous and linear on R(--, 00), this implies {x*(t + a,,, e)} con-
verges uniformly for tin (--, -) for each fixed e. The fact that

m[x*(-, e)j C m[q,A]

follows from Theorem 8 of the Appendix.
Theorem 2.1 has interesting implications for the equation

(2.4) z = A(t)x + b(t) +eh(t, x, e),

where e is a scalar, h belongs to jZ99, s (ri, tlf), b is in kr and system (1)
is noncritical with respect to _4Vj. Of course, as before ' is one of the classes
M(-oo, oo), sang or 9T. Under these hypotheses, Theorem 1.1 implies that
the equation

x = A(t)x + b(t),

has a unique solution .7E''b in .9. If I , 'bj < po and x = y + .fb in (2.4), then

y = A(t)y +ah(t, y + Y b, e)'!-'-f A(t)y + q(t, y, s).

The function q is in Yifi(q, M) with 9(p, a) =arjl(p, a), where qj(p, a) is a
continuous function of p, a, since q(t, y, a) approaches zero as a -* 0 at least
as fast as a linear function in a. Therefore, Theorem 2.1 implies the existence
of a solution x*(t, e, b) of (2.4), s, b) in -9, 0, b) =. ''b and this
is the only solution of (2.4) which is in 9 and at the same time in a pl-neigh-
borhood of A b.

IV.3. The General Saddle Point Property

Theorem 2.1 of the previous section asserts the existence of a dis-
tinguished solution a) of (2.1) in a class 9 of functions. What are the
stability properties of the solution e)? If the real parts of the character-
istic exponents of the linear system (1) have nonzero real parts, one would
expect the stability properties of a) to be the same as those of the
solution x = 0 of (1). The purpose of this section is to prove this is actually
the case and also to discuss some of the geometrical properties of the
solutions of (2.1) near x*(., s) in the same manner as the saddle point
property was treated in Section 111.6. The proofs will follow the ones in
Section 111.6. very closely but are slightly more complicated due to the fact
that the differential equations depend explicitly upon t.

To reduce the equations to a simpler form, let

(3.1) x =x*(., a) + y,

where a) is the function given in Theorem 2.1. If x is a solution of
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equation (2.1), then y is a solution of

(3.2) y = A(t)y + p(t, y, s),

where p(t, y, E) = q(t, x*(t, s) + y, E) - q(t, x*(t, s), E). Consequently, if q
is in 2ili(n, M), then p is in .'i 0). To simplify the equations even further
let X(t) = P (t)eBt, P(t + T) = P(t), B a constant matrix, be a fundamental
matrix solution of (1) and let y = P(t)z. If y is a solution of (3.2), then z is a
solution of

(3.3) z= Br+f(t,z,E),

where f (t, z, s) = P-1(t)p(t, P(t)z, E).,Finally, we can assert that if -9 is one
of the classes - 4 ( - oo, oo), s49 or 00T, and q is in -9 n Ti1i(q, M), then f is
in -9 n 2'i/i(7), 0). Any assertions made about system (3.3) yield implications
for system (2.1) which are easily traced through the above transformations.

The remainder of the discussion centers around (3.3) under the hypo-
thesis that f is in 2'i il(q, 0) and the eigenvalues of the matrix B have non-
zero real parts, k with positive real parts and n - k with negative real parts.
As in Sect on 111.6, the space Cn can be decomposed as

(3.4) Cn = C+ (±-) C!_

Cn+ =Tr+Cn, Cn =,r_Cn,

where 'r+ , 7r_ are projection operators, C+ , Cn have dimensions k, n - k,
respectively, are invariant under B and there are positive constants K, a
such that

(3.5) (a) lest +zl S Keat IiT+zl , t < 0,

(b) I eBt7r_zI S Ke-«t I7T_zI , t >_ 0.

For any a in (-oc, oo), let z(t, a, za, s) designate the solution of (3.3)
satisfying z(a, a, za, s) = za, let K designate the constant in (3.5) and, for
any 5 > 0, define

(3.6) (a) S(a, 8, E) _ {za in Cn: I7r_zal <2, IZ(t, a, za, E)I < tK >_ a}>

(b) U(a, 8, s) _ {za in Cn: ITr+zal <
2K'

Iz(t, a, za, E)I < t5 a

Also, let BP designate {z in Cn: Izl < p}.

THEOREM 3.1. If f is in 2i/(, 0) and the eigenvalues of B have non-
zero real parts, then there are 5 > 0, el > 0, S > 0 such that for any a in
(-oo, oo), 0<_ IEI < el, the mapping Tr- is a homeomorphism of S(a, 8,
onto (a_Cn) n B61 2%, S(a, 5, 0) is tangent to 7r_Cn at zero and
fq 71 I'l.(f 5.6 P11 < 9R' I ar raI o-R(t-a). t > rr
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for any zo in S(a, 8, E). The mapping ir+ is a homeomorphism of U(a, 8, E)
onto (rr+Cn) n BN, , U(a, 8, 0) is tangent to 7r+Cn at zero and

(3.8) I z(t, a, za, e) I 5 2K 17T+ zal el(t-a), t 5 a,

for any za in U(a, 8, s).
Furthermore, if a, s): (rr_Cn) n Ba12K --S(a, e) is the inverse of

the homeomorphism IT-, then g(z_, a, E) is lipschitzian in z_ with lipschitz
constant 2K. If f is in dY n Yile(rl, 0), then g(z_, a, E) is almost periodic in a
with module contained in m[f ]. If f is in YT n 2i fi(ri, 0), then g(z_, or, E) is
periodic in a of period T. The same conclusions hold for the inverse of the
homeomorphism ?r+ of U(a, 8, E) onto (7r+Cn) n Ba12K .

Before proving this theorem, let us make some remarks about its
geometric meaning and some of its implications. The accompanying Fig. 3.1

X2

-at

(a) x U(o,S,E)

U(a, e)

S(S1 e)

Figure IV.3.1

may be useful in visualizing the following remarks. For any a e (- co, oo),
the set {a} x S(a, 8, s) is a subset of Rn+i. For any Tin [a; t], z(t, a, za, E) _
z(t, T, z(T,a, za, E), s), and, therefore, any solution of (3.3) with initial value in
{a} x S(a, 8, E) must cross {T} x S(r, 8, E) for any T > 0 for which 7r- z(7-,
a, za, e) has norm less than 8/2K. Since this may not occur for all r >- a,
the set consisting of the union of the {a} x S(a, 8, e) for all Cr in (-c0, co)
may not be an integral manifold in the sense that the trajectory of any
solution with initial value (-r, zT) on the manifold remains on the manifold
for all t > r. On the other hand, this set can be extended to an integral
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manifold by extending the set {a} X S(a, 8, e) to a set {a} X S*(a, 8, e) where
S*(a, 8, e) =S(a, $, e) u {z: z =z(a, r, zT, e), (T, zT) in {T} x S(T, 8, e) for
some T _<a}. The set S(8, e) consisting of the union of the {a} X S*(a, 8, e)
is then an integral manifold of (3.3) and is rightfully termed a stable integral
manifold since all solutions on this manifold approach zero as t -> oo and
these are the only solutions which lie in a certain neighborhood of zero
for increasing, time. In the same way one defines the corresponding sets
U*(a, 5, e) = U{6, 5", e) U {z: z = z(a, r, zT, s), (T, zT) it ?'U(7-, 5, e) for some
T >_ a} and an unstable integral manifold U(5, e). The sets S(5, e) and
U(5, e) are hypersurfaces homeomorphic to R X B'-k and R X .Bi, respec-
tively, and S(5, e) n U(5, e) is the t-axis.

If k >_ 1 the above remarks imply the solution z = 0 of (3.3) is unstable
for IsI < el and any a in (-co, oo). From (3.7), if k =0, the solution z =0
of (3.3) is uniformly asymptotically stable for IeI < sl and to >_ a for any a
in (-oo, oo).

If B and f are real in (3.3), then the sets S(a, 5, e), U(a, 6, e) defined by
taking only real initial values are in Rn. If system (3.2) is real, then the
decomposition X(t) = P(t)eBt of a fundamental matrix solution of (1) may
not have P(t), B real if it is required that P(t + T) = P(t) for all T (see
Section 111.7). On the other hand, this decomposition can be chosen to be
real if it is only required that P(t + 2T) = P(t) for all t. In such a case,
system (3.3) will be real, butt f belongs to Y2T r i1i(rl, 0) if p is in 9T n

0). This implies that the sets S(a, 6, e), U(a, 5, e) will be periodic in
a of period 2T rather than T.

It is not asserted in the statement of the theorem that S(a, 5, e) is
tangent to 7r-Cu at zero. This may not be true since f (t, y, e) could contain
a term which is linear in y and yet approaches zero when e 0. Theorem 3.1
is clearly a strong generalization of Theorem 111.6.1 due to the fact that the
perturbation term f (t, z, e) may depend explicitly upon t.

PROOF OF THEOREM 3.1. Since this proof is so similar to the proof of
Theorem 111.6.1, it is not necessary to give the details but only indicate the
differences. In the same way as in the proof of Lemma 6.1, one easily shows
that, for any solution z(t) of (3.3) which is bounded on [a, oo), there must
exist a z_ in C'z such that

(3.9) z(t) = eB(t-a)z- + I eR(t-s)Tr- f (s, z(s), s) ds

+ r: a-Bs7r+ f (t + s, z(t + s), e) ds, t ? a,

and for any solution z(t) of (3.3) `which is bounded on (-oo, a], there is a
z+ in C+ such that z(t) satisfies the relation
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t

(3.10) z(t) =eB(t-a)z++ f eB( 8),r+ f(s, z(s), s) ds
0

o

+ f e-Bs7r_ f (t + s, z(t + s), e) ds, t <- or.

We first discuss the existence of solutions of (3.9) on [a, oo) for any z_
in ir_Cn. There is a constant K1 such that I7r+zl <_ Ki IzI , I9r-z! <_ K1 I zj for
any z in Cn. If K, a are the constants given in (3.5), and -] is the lipschitz
constant off (t, z, s) with respect to z, choose 8, sl, so that

(3.11) 4KK1-q(8, eI) < cc, 8K2K1,(5, El) <3a.

With this choice of 5, sl and for any z_ in ir_C' with Iz-I <_ 8/2K, define
5(a, z_, 8) as the set of continuous functions z: [a, oo) --Cn such that
IzI = sups s t <w I z(t) I < 8 and l'r_ z(a) = z_. 5(a, z- , 8) is a closed bounded sub-
set of the Banach space of all bounded continuous functions taking [a, oo)
into Cn with the uniform topology. For any z in z_, 8) define .Tz by

t

(3.12) ( z)(t) = 8B(t-v)z_ + f eB(t-8)7T_ f(s, z(s), e) ds

0
+ f e-Bs7T+ f (t + s, z(t + s), e) ds, t > a.

Exactly as in the proof of Theorem 111.6.1, one uses the contraction prin-
ciple to show that ,T has a unique fixed point a, z_, e) for Isl <EI,

a, 0, s) = 0, z*(t, a, z-, s) depends continuously upon t, a, z-, s and

- -
(3.13) I z*(t, a, z_ s) - z*(t, a, z_, s)I _< 2K

a(t a)1
exp 2 J 1z_ z_I

for t > a.
From the definition of S(a, 5, e) and the above construction of
a, z_, s), it follows that

(3.14) S(a, 8, 8) ={z: z =z*(o, a, z-, s), z_ in (7T- C") n Bal2A

for Iel < El. Relation (3.14), (3.13) and the fact that a, 0, s) = 0 implies
relation (3.7) with S = a/2. If we let g(z_, a, s) = z*(a, a, Z_' s), then

o(3.15) 9(z-, a, e) =z_+ f e-Bs'a+ f(a+s, z*(a+s, a, z-, s), s) ds.

As in the proof of Theorem 111.6.1,

I9(z-, a, s)1 -g(z-, a, s)I >
Iz-- z_I

2
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for any a in (-oo, oo) and Iel :!gel. This shows that a, E) is a one-to-one
map of (7r_Cn) n B812K into S(a, S, e). Since the inverse of this map is ir-
and therefore is continuous, it follows that it is a homeomorphism. The
following estimate is also easy to obtain:

2

17r+z*(a, a, z-, e)I < 4
Ki

q (2K Iz-J , Isl) Iz-I.

Since 7r- z* (a, a, z-, s) = z_ ; it follows from the properties of 77 that
S(a, S, 0) is tangent to 7r_Cn at zero. Relation (3.13) implies that the set
S(a, 6, 0) is a lipschitzian manifold.

Now suppose f is in s19 r) 2'Ilk(7), 0). We now prove the representation
g(z_, a, s) of S(a, S s) is almost periodic in a with module contained in m[f ].
From (3.15), it will be necessary to estimate z*(a + 8, a, z_, e) as a function
of a and s. To simply the notation, let z(t, a) = z*(t, a, z_, E), f (t, z) =f (t, z, e).
The equation for z(a + t, a) becomes

t
(3.16) z(a + t, a) = eBtz_ + f eB(t-s)7r_ f (a + s, z(a + 8, a)) C18

0

0
+ f e-ssa+f(a+t+s, z(a+t+s, a)) ds.

The objective is to show that z(a + t, a) is almost periodic in a if f is in
sib n 0). Suppose a' = {ab} is a sequence in (-,oo). There is a sub-
sequence a = {at} of a' such that {f(t + an,z)} converges uniformly for
te(-°°, 00), Iz I < 6. For any n, m, let

^tn,m =Sup-.'<s<e,Iz1SSIf(S+an,z)-f(s+am,z)I
un,m(t,a)= Iz(a+t+c ,a+an)-z(a+t+am,a+an)I

Then (3.16) implies that

a) <KK1 f te 0t(t-s)il(6,
E1)un,m(S, a)

f 2KK1
+KK1 fpe as T(s,el)un,m(t+s,a)+ a Ym,

Using the inequalities (3.11), one easily observes that un,m(t, a) < 4KKlym/a
for all m. Since ym -+ 0 as m -* 00, it follows that un,m (t, a) -+ 0 as m -+ oo and,
therefore, z(a + t, a) is almost periodic in a with module contained in the
module of f. In particular, g(z_, a, e) = z*(a, a, z_, e) is almost periodic with
module contained in m[ f J .

If f is in YT n Yi h(q, 0), then g(z_, a + T, s) = g(z_, a, e) for all a,
since one sees directly from the uniqueness of the solution of (3.16) that
z(a+t+T, a + T) = z(a + t, a) for all a, t.
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In the same manner as above, one uses (3.10) to prove the assertions on
U(a, S, e) to complete the proof of the theorem.

A simple example illustrating the above results is the forced van der Pol
equation

(3.17) it = x2,

i2 = -xl + k(1 - x12)x2 + e9(t),

'where k 0 0, e are real parameters and g is in dg. If x = (xl, x2), this system
is of the form (2.1) with

A= 0
q(t, x, e) _ -kxix2 + e9(t)]

.

Since k ; 0, the eigenvalues of A have nonzero real parts and q is in V9 n
with j(p) = Kp2 for some constant K and M = e sups jg(t)j.

Therefore, Theorem 2.1 implies there are pi > 0, ei > 0 such that system
(3.17) has an almost periodic solution x*(t, e) with m[x*(., e)] a m[g],

0) = 0 and this solution is unique in the pi-neighborhood of xl = x2 = 0.
Since the eigenvalues of A have negative real parts if k < 0 and positive real
parts if k > 0, Theorem 3.1 asserts that the solution x*(t, e) is asymptotically
stable if k < 0 and unstable if k > 0.

For e = 0, we have seen in Theorem H. 1.6 that the van der Pol has a
unique asymptotically orbitally stable limit cycle for any k > 0. This implies
geometrically that the cylinder generated by the limit cycle in (xl, X2, t)-
space is asymptotically stable. Therefore it is intuitively clear (and could be
made very precise). that for s small there must be a neighborhood of this
cylinder in which solutions of (3.17) enter and never leave. This " stable "
neighborhood. is certainly more interesting than the almost periodic e)
determined above since e) is unstable for k > 0. A discussion of what
happens in this neighborhood is much more difficult than the above analysis
for almost periodic solutions and will be treated in Chapter VII.

IV.4. More General Systems

The first interesting modifications of the results of the previous sections
are obtained by considering the parameter a as appearing in the system in a
different manner than in (3.1).

Consider the system

(4.1) ei = A(t)x,

where e > 0 is a real parameter and A belongs to 9T . In general, it is almost
impossible to determine necessary and sufficient conditions on the matrix A
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which insure that system (4.1) is noncritical with respect to one of the classes
- 4 ( - oo, oo), s.19 or 9DT for all e in some interval 0 < s < so. On the other
hand, if A is a constant matrix, the following result is true.

LEMMA 4.1. If A is a constant matrix and so > 0 is given, then system
(4.1) is noncritical with respect to R(- oo, oo) (or .49) (or .#T) for 0 < e <_ so
if and only if the eigenvalues of A have nonzero real parts.

PROOF. The assertions concerning R(- oo, oo) or s19 are obvious from
Lemma 1 since the eigenvalues of Ale are 1/e times the eigenvalues of A.
Also, from Lemma 1, (4.1) is noncritical with respect to 9PT if and only if
det[I - exp(A/e)T] 0 0; that is, if and only if AT/e 0 2k7ri, k =±1, ±2, .. .
for all eigenvalues A of A. If Re A zA 0 for all A, this relation is satisfied. If
there is a A = iw, w real, then these relations become e 0 wT/2kir, k =0, +1,
.... It is clear these relations cannot be satisfied for all e in an interval
(0, so]. This completes the proof of the lemma.

LEMMA 4.2. If A is a constant matrix, -9 is one of the classes g(- oo, oo),
sd.9 or YT, and system (4.1) is noncritical. with respect to 9 for 0 < e < eo ,
then the system

(4.2) ez = Ax +f (t), fin -9,

has a unique solution ir f in !2, 0 < e _< so, ', :.9 -*-9 is a continuous
linear map and there is a K > 0 (independent of e) such that Ii(e f I <_ K If I
for 0<s<so.

PROOF. The hypothesis and Lemma 4.1' imply the eigenvalues of A
have nonzero real parts. If t = er, y(T) = x(c r), g(-r) =f (cr), and x is a
solution of (4.2)1* then

dy

dT
Ay --I-- g(T),

where g e 9(- oo, oo). Theorem 1.1 implies the existence of a unique V'g e
9(-oo, oo) satisfying this equation, with 1,1'gl < .x'' IgI. Since IgI = If I , it
follows that A'E fdeei(g satisfies the properties of the lemma.

EXERCISE 4.1. Discuss the manner in which the solutions of (4.2)
approach the solution of the equation Ax + f (t) = 0 as e -* 0 under the
hypothesis that the eigenvalues of A have negative real parts (positive real
parts). What happens if A has eigenvalues of both positive and negative real
parts?

Lemma 4.2 and the same proofs as used in Theorems 2.1 and 3.1 yield
an immediate extension of those results to the system

(4.3) Ex = Ax +f (t, x, E),
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where f satisfies the same conditions as stated in those theorems.
This result is stated in detail for further reference. Suppose the eigen-

values of A have nonzero real parts, let 7r+, Tr_ be the projection operators
taking Cn onto the invariant subspaces of A corresponding to the eigenvalues
with positive, negative real parts, respectively, and let K, « be positive
constants so that

(4.4) Ieata_xI < Ke-at t > 0,

Teats+xl < Keat, t < 0.

For any a. in (-oo, oo), let x(t, a, xa, E) designate the solution of (4.3)
satisfying x(a, a, xa, e) = xa and, for any S > 0 and any function VR --)- Cn,
let

(4.5) (a) S(#, a, S, E) _ {x = xa - ai(a) in Cn: I ir_[xa - 0(a)]I <
2K

I x(t, a, xa, e) - 0(t)I < 5, t > a}>

(b) U(O, or, 8, e) _ x = xa - 0(a) in Cn: I ir+[xa - q(a)]I < 2K

I x(t, a, Xe, E) - 0(t)I < 6, t < a},

In words, the set S(0, a, S, E) is the set of initial values at Cr of those solu-
tions of (4.3) which have their ,r_ projections in a 8/2K neighborhood of
ir_ 0(a) and remain in a 8-neighborhood of the curve qi(t) for all t >_ a. A
similar statement concerns U(4, a, 8, e) for ir+ and t <_ a. If BP designates
the set {x in Cn: ixi < p}, then the following proposition holds.

THEOREM 4.1. Suppose .9 is one of the classes 9 ( - oo, oo), d or YT.
If f is in -9 n M) and the eigenvalues of A have nonzero real parts,
then there are 8 > 0, el > 0, P > 0

and.

function x*(t, E) continuous in t, s
for . -oo <t < oo, 0 < e < eI, x*(t, 0) = 0, x*( , e) in -9, Ix*(-, E)I < 8,
0 < e <_ El, such that x*(t, e) is a solution of (4.3) and is the only solution of
(4.3) in .9 which has norm < S. If -9 = sdY, then e)] e m[f ],
0<s :!9 El.

Furthermore, the mapping ar- is a homeomorphism of e), a, 8, E)
onto (nr_Cn) n B812A and

(4.6) I x(t, a, xe, E) - x*(y, e) l < 2K Ia_[xe - x*(a, e)]I a-e-1 /3(t-a) t > a

for any xa - x*((7, e) in s), a, S, e), 0 < e < el. The mapping rr+
is a homeomorphism of e), or, 5, E) onto (or+Cn) n B812x,

(4.7) I x(t, a, xa, E) - x*(t, e)I < 2K I7r+[xa - x*(a, E)]I ee ' R(t-a) t < a

for any xe - x*(a, e) in e), (7, 8, e), 0 < e < El.
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The dependence of the stable and unstable manifolds of E) upon a
is exactly the same as in the statement of Theorem 3.1.

The only part of the proof of the above theorem which is not exactly
the same as the proofs of Theorem 2.1 and 3.1 is the fact that the statements
are asserted to be true on the closed interval 0:5- E < El rather than the
interval 0 < E <_ El. The proof for the interval 0 < E < EI is the same as
before and from the proof itself one observes that x* E)->0 as E->0. If
one defines 0) = 0, it will obviously be a continuous function on
0<E<El.

LEMMA 4.3. If A is constant matrix and so > 0 is given, then the
system

(4.8) i = EAx,

is noncritical with respect to -4(- oo, oo) or x ,1Y 0 < E < so if and only
if the eigenvalues of A have nonzero real parts. There is an so > 0 such that
system (4.8) is noncritical with respect to YT for 0 < E < so if and only if
det A 00.

PROOF. The first part is a restatement of Lemma 1. Also, Lemma 1
implies (4.8) is noncritical with respect to 9T if and only if EwT 0 2kir for
all k = 0, ±1, ... and all real w such that A = iw is an eigenvalue of A. If
to = 0 is not an eigenvalue of A, there is always an so > 0 such that these
inequalities are satisfied for 0 < s < so. If w = 0 is an eigenvalue, there is
never such an so and the lemma is proved.

ExERCISE 4.2. For what values of E in [0, co) is system (4.8) non-
critical with respect to 9T ? For what complex values of E is system (4.8)
noncritical with respect to eT ?

LEMMA 4.4. If A is a constant matrix, .9 is one of the classes 9(- oo, oo ),
slY or 9T, and system (4.8) is noncritical with respect to -9 for 0 < e:!!9 so,
then the system

(4.9) i = E(Ax +1(t)), f in -9,

has a unique solution .31''8 fin -9, 0 < e <_ so, .f8 : -9 ->2 is a continuous
linear map and there is a K > 0 (independent of E) such that 31' 8 f <
Kjfj forO<E<_Eo.

If, in addition, f is in ci9a (or GOT) and f f f is in WY (or GOT) then
I.31''8fI-0as E->0.

PROOF. Since (4.8) is assumed to be noncritical with respect to 2,
Theorem 1.1 implies the existence of the continuous linear operators .91''8 ,

0 < e < so. The existence of a K as specified in the lemma for the case when
-9 is (-co,-4co) or sig is verified exactly as in the proof of Lemma 4.2. If
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-9 = YT, then formula (1.9) yields .71''E for the special case (4.9) as

(4.10) (i(e f)(t) = fe[e- EAT - I]-le-eAsf (t + 8) de, 0 < e < eo .T
0

Since [e-EAT - I]-l is a continuous function of e on 0 < e <_ so, 1'E f is
continuous for 0 < e < so. We now show that Y, f defined by (4.10) has
a limit as s -* 0. Since system (4.8) is noncritical with respect to YT, Lemma
4.3 implies A is nonsingular. Also, lim8,o+ e[e-EAT -I]-l = -(AT)-l.
This shows Y,, has a uniform bound on (0, so] and completes the first part
of the lemma.

To prove the last part of the lemma, let x = y + e f
'
f and y will satisfy

the equation

y=Ae y +e f f).

An application of the first part of the lemma to this equation shows that the
unique solution of s19 (or GT) approaches zero as a --* 0 and the lemma is
proved.

The condition that f
cf be in d for f in d1 is equivalent to saying that

the integral of f is bounded and in particular, implies
e

(4.11) M[ f] aer lim 1 f f (s) ds = 0.
t- co t o

In Chapter V, we show that (4.11) is sufficient to draw the same conclusion
as in the last part of Lemma 4.4.

EXERCISE 4.3. Discuss the manner in which the solutions of (4.9)
approach the solutions of the equation x = 0. Can you give any reason in
the almost periodic or periodic case besides the one discussed in Lemma 4.4

for why all solutions approach the zero solution of x = 0 if f
t
f is bounded ?

Lemma 4.4 and the same proofs as used in Theorems 2.1 and 3.1 yield
an immediate extension of those results to the system

(4.12) x = e(Ax + f (t, x, e)),

where f satisfies the same conditions 4s stated in those theorems.
This result is the basis for the method of averaging given in the next

chapter and is therefore stated in detail ,for further reference. The operators
7r+, ,r_, constants K, a and sets S(0, a, 8, e), U(O, a, 8, e) are assumed to
be the same as the ones given in (4.4) and (4.5).

THEOREM 4.2. Suppose 0 is one of the classes 9(-oo, oo), slY or YT
and system (4.8) is noncritical with respect to -9 for 0 < e <_ so. If f is in
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r M), then there are S > 0, ei > 0, 9 > 0 and a function x*(t, e)
continuous in t, e for -oo <t < oo, 0 < e :!gel, x*(t, 0) =0, x*(-, e) in
:a, e)1 < S, 0 5 e 5 ei, such that x*(t, e) is a solution of (4.12)
and is the only solution of (4.12) in .9 with norm < S. If -' = a g, then
m[x*(., e)] C m[f ],0 < e < e1.

Furthermore, if the eigenvalues of A have nonzero real parts, then the
mapping ?r- is a homeomorphism of e), a, S, s) onto (ir_Cn) r Bales
and

(4.13) jx(t, a, xa, e) - x*(t, e)I < 2K 17r-[xa - x*(a, eli eeP(t-a), t >_ a,

for all xa -x*(a, e) in S(x*(., e), a, S, e), 0 < e _< e1. The mapping ir+ is a
homeomorphism of e), a, S, e) onto (or+Cn) n Ba$2s and

(4.14) jx(t, a, xa, e) - x*(t, e)I < 2K 1Nr+[xa - x*(a, e)]I eePt-a), t:!!9 a,

for any xa -x*(a, e) in e), a, S, e), 0 < E < E.
The dependence of the stable and unstable manifolds of e) upon a

is exactly the same as in the statement of Theorem 3.1.
Using the remark following Lemma 4.4, one easily sees that the con-

clusions of Theorem 4.2 remain valid in the periodic and almost periodic
case for the system

(4.15) z = s(Ax + h(t) +f (t, x, e)),
r

provided that f h is bounded. Extensions of Theorem 4.2 to the case where
f = f (t, x, e,tt) and the vector e' (e,µ) is small are also easily given.

EXERCISE 4.4. Consider the equation

(4.16) z = Ax + h(wt) +f (wt, x, e),

where w is a large parameter, the eigenvalues of A have negative real parts,
h is in 9T, f T h(s) ds = 0, and f is in elT n 2i 4(rj, M). Assuming Theorem
4.2 is valid when f depends upon more than one small parameter, prove there
is an col > 0, ei > 0 such that (4.16) has an asymptotically stable periodic
solution cr; e) in 9T/w for to >_ w1, 0 < 1e1 < el and co, e) -*0
as co -* oo, e --* 0. In particular, consider the forced van der Pol equation

xl = x2,

x2 = -x1 + k(1 - xi)x2 + e9(wt),

where k 0, g is in PIT and f t g(s) is bounded.

Using Lemmas 1, 4.2 and 4.4 and the proof of Theorem 2.1, one can
prove the following general result for systems which are coupled versions of
the above types.
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THEOREM 4.3. Suppose 9 is one of the classes . (-oo, oo), .49 or
9T, u is an n-vector, u = (x, y, z) where x, y, z are ni-, n2-, n3-vectors
respectively, f =f (t, u, e) = (X, Y, Z) is in -9 n M), e = (µ, v), tt a
real scalar, B is an n2 x n2 matrix in 9T, and A, C are constant ni x ni,
n3 x n3 matrices, respectively, such that the system

(4.17) x =tzAx, y = B(t)y, µz =Cz,

is noncritical with respect to - for 0 < µ < po Then there are constants
pi > 0, µi > 0, vi > 0 and a function u*(t, e) continuous in t, s for - oo <
t < oo, 0 <µ < µi, 0 <_ I vl < vi, u*(t, 0) =0, u* e) in !2, Iu*(., e)1 < pi,
such that u*(t, e) is a solution of the equations

(4.18) z = µ[Ax + X(t, x, y, z, s)]

= B(t)y + Y(t, x, y, z,, s),
µz =Cz + Z(t, x, y, z, e),

and is the only solution of (4.18) in -9 which has norm < pl. If -9 = .2f q,
then e)] a m[f, B], 0 <µ <_ µi, 0 <_ 1 v1 < vi.

The stability properties of the solution e) of (4.18) are discussed
exactly in the same manner as in Section 3. The stable and unstable manifolds
of the solution e) can be characterized as in Theorems 4.1 and 4.2. In
particular, if all eigenvalues of A, C have negative real parts and all character-
istic exponents of y = B(t)y have negative real parts, then the solution

e) is exponentially asymptotically stable. If at least one of the eigen-
values of A or C or the characteristic exponents of B(t)y have a positive
real part, then the solution s) is unstable.

As mentioned earlier, it is difficult to remove the restriction in (4.18)
that A be constant. On the other hand, it is possible to allow C to be a func-
tion of t, say C = C(t), provided either that the eigenvalues A(t) of C(t) have
real parts bounded away from zero or, more generally, that

C(t) =diag(D(t), E(t))

where the eigenvalues of both D(t) and E(t) have real parts (not necessarily
of the same sign) bounded away from zero. For references concerning problems
in the spirit of this section, see Hale [6].

IV.5. The Duf ng Equation with Large Damping and Large Forcing

Consider the equation

(5.1) y + cy + y + eby3 = B cos vt,

where c > 0, b, e, B and v > 0 are constants. The equivalent second order
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system is

(5.2) = z,

i = -y - cz - eby3 + B cos vt.

The methods of this chapter and some elementary facts about quadratic
forms will be used to prove there is an ro > 0 such that for any r >_ ro, there is an
eo e0(r) > 0 such that, for Iel < e0(r), system (5.2) has a unique periodic
solution of period 21r/v in the disk 112, with center zero and radius r. This
solution is uniformly asymptotically stable and any solution of (5.2) with initial
value in B; , must approach this periodic solution as t -+ oe.

Consider the linear nonhomogeneous system

(5.3) y = z,

i= -y-cz+BBoos vt.

Since the eigenvalues of the coefficient matrix of the homogeneous equation

(5.4) =Z,

= -y - cz,

have negative real parts, Theorem 1.1 implies there is a unique periodic
solution of (5.3) of period 27r/v. If this solution is designated by yO(t), zo(t),
then the transformation of variables y = yO(t) + u, z = zo(t) + v applied to
(5.2) yields the equivalent system

(5.5) v + efj(t, u, v),

-u - CV + of 2(t, U, v),

where fl, f2 are periodic in t of period 2a/v, continuous in t, u, v and con-
tinuously differentiable in u, v. Actually, fI - 0, f2 = -b(yo(t) + u)3, but it is
convenient for notational purposes to consider the more general system (5.5).

Since c > 0, Theorem 2.1 implies there is it pi > 0 and eI > 0 such that
system (5.5) has a unique periodic solution (u*(t, e), v*(t, e)), jej <ej of
period 27r/v in the disk BPI, this periodic solution is uniformly asymptotically
stable, and u*(t, 0) = 0 = v*(t, 0). To prove the above mentioned result for
(5.2), it is sufficient to show that, for any two disks B2 and Br, rI < r,there
exists an e2 > 0 such that, for I e I < e2, any solution of (5.5) with initial value in
B2 must eventually enter and remain in the ball B;,. In fact, suppose ro is
such that the periodic solution (y*(t, e), z*(t, e)) of (5.2) given by y*(t, e) _
yo(t) + u*(t, e), z*(t, e) = zo(t) + v*(t, e), lies in B;, for 0:9t5 2ir/v and
Iel 5 el. Choose ri < pl. For any r >_ ro, the choice' eo(r) = min(e2, cI)
gives the desired result.

We now prove the assertion about (5.5). Since the linear system (5.4)
is asymptotically stable, it is intuitively clear that there should be a family
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of ellipses encircling the origin so that the solutions of (5.4) cross the bound-
aries of these ellipses from the outside to the inside with increasing time. If
this is the case, then for any given ellipse one can choose s small so that the
solutions of (5.5) also cross the boundary of this ellipse in the same direction
as for the linear system (5.4). These ideas are now made precise by actually
constructing such a family of ellipses.

Consider the quadratic form
-{- 2

(5.6)
V (U,

v) =
c2

u2 + 2uv +
2
2 v2.

c c

This quadratic form is positive definite and therefore the level curves of this
function are ellipses with center at the origin. The derivative of V along the
solutions of (5.5) is

2 1

(5.7) V (u, v) = -2(u2 + v2) + 2E [c
2

ufl + uf2 + vfl +
2

vf2J .
c

For any positive r, r1, r1 < r, choose positive constants c1 >.c2 so that the
region U contained between the curves V (u, v) = cl and V (U, v) = C2 contains
the region between the boundaries of the disks B, , B;, (see Fig. 5.1). Suppose

Figure IV.5.1

min(u2 + v2) = a for u, v ranging over the set V (U, v) = C2. Then a > 0 and
one can find an E2 > 0 such that the right hand side of (5.7) is less than -a/2
for 0 < 1 el < E2, - oo < t < oo and all (u, v) in U. For any (uc, vc) in U, the
solution u(t), v(t), u(0) = uc, v(0) = vc, of (5.5) remains in the interior of the
ellipse V(u, v) = cl and satisfies

V(u(t), v(t)) < V(u(0), v(0)) +
J

l7(u(s), v(s)) ds
u

V(u(0), v(0)) -22 2 t.

Since V is positive in U, and the solution cannot reach the ellipse V (u, v) = cl,
there must be a to > 0 such that (u(t), v(t)) remains in the interior of the
ellipse V (U, v) = C2 for all t >_ to. This proves the result.
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IV.6. Remarks and Extensions

The technique presented in this chapter is applicable to many other types
of problems. To illustrate this, let us give a brief abstract summary of the basic
ideas.

Suppose I is an interval in Rn, A(t) is an n X n matrix function continuous
on I and ., 9 are given Banach spaces of continuous n-vector functions on I.
For every f E=- -9, suppose the equation

(6.1) = A(t) x + f(t)

has a unique solution .*'.f in .7 and.*': '9 is a continuous linear operator.
At the end of section 1, we said (W, 9).was admissible if, for every f E 2, there
is at least one solution of Eq. (6.1) in .T. Here, we are requiring uniqueness of
the solution in .47. In this case, we say (.V, 2) is strongly admissible.

Let 'fI(I X Rn,Rn) = {f:I X Rn -> Rn,f(t,x) continuous and continu-
ously differentiable in x}. Let

I f I I = sup { If(t, x) I + Iaf(t,x)/8x1,(t,x) inIXRn}.

If 0 is in T, let us suppose the function is in -9 and consider the
problem of the existence of solutions in ' of the equation

(6.2) .z =A(t)x+ f(t,x)

If there exists a solution x of Eq. (6.2) in .T, then x must satisfy the
equation

(6.3) G(x,f)d-/x -.fF(x,f) = 0

where.V-: -9 - A is the continuous linear operator defined above and

F:-TX 1PI(IXRn,Rn)- 9
(6.4)

F(x, f) (t) = f (t, x (t)), t E I.

Let us suppose the function F(x,f) is continuous together with its Frechet
derivative.

To solve Eq' (6.3) for IfII small, one can use the contraction mapping
principle to obtain a generalization of Theorem 2.1.Or, one can use the Implicit
Function Theorem in Banach spaces observing that G(0,0) = 0, aG(0,0)/ax = I,
where G is defined in Eq. (6.3). The results may then be summarized as

THEOREM 6.1. Suppose (',9) is strongly admissible for system (6.1) and
the function F defined in Relation (6.4) is continuous together with its Frechet
derivative. Then there is a 6 > 0, 17 > 0, and a unique function
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x*:{fEW1(IXR n,Rn): If I1 <S}' .iw

such that x*(f) is continuous together with its derivative in f, x*(0) = 0, x*(f )
satisfies Eq. (6.2) and is the only solution of Eq. (6.2) in with norm less
than rl.

Theorem 6.1 includes Theorem 2.1 in the case where f(t,x) has a con-
tinuous first derivative in x. We give a few examples of other applications of
Theorem 6.1.

Suppose I = [0,1] , M,N are n X n constant matrices, A(t) is an n X n
continuous matrix on I, f is a continuous n-vector function on I and consider
the boundary value problem

x = A(t)x + f (t), tin I,

Mx(0) +Nx(1) = 0

If X(t) is the fundamental matrix solution of the homogeneous equation,
X(0) = I, then

x(t) = X(t)x(0) + fo X(t)X-1(s)f(s)ds

satisfies the boundary conditions if and only if

[M+NX(1)] x(0) = -X(1) fo, X-1(s)f(s)ds

If f (s) = -X(s)X- 1 (1)b for a given vector b in R', then

-X(1) ffX-1(s)f(s)ds=b

This implies that Eq. (6.7) has a unique solution for every continuous function
f on I if and only if [M + NX(1)] -1 exists. If this inverse exists, then the
boundary value problem (6.5) has a unique solution .t''f given by

()] -1X(1)Jo X-1(s)f(s)ds(X'f)(t) = -X(t) [M + NX1 ( 1

+ f5X(t)X -1(S)f(s)

These results are summarized in the following:

LEMMA 6.1. Let

- _ {f: [0,1] ->R",fcont.},IfI = supsIf(t)I,

'_ {x E 9 :Mx(0) +Nx(l) = 0}.
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If X(t),X(0) = I, is a fundamental matrix solution of,z = A (t)x, then (, ,

is strongly admissible for the equation

x=A(t)x+f(t)
if and only if [M + NX (1)] exists.

With this lemma, one can obtain the existence of a solution of the boundary
value problem

x=A(t)x+f(t,x)
Mx(O) +Nx(1) = 0

if the matrix [M + NX (1)] exists and I f (t, x) 1, I a f (t, x)/a x 1 are small.
As another illustration, let us briefly. indicate how the saddle point property

may be obtained in this way. Consider the equation

(6.7) x=Ax+ f(t)
where the eigenvalues of A have nonzero real parts and f is in VY.T([0,-)),
the space of continuous bounded n-vector functions on [0,o). We know Eq.
(6.7) has at least one solution in -9 for every fin 147. However, the equation

(6.8) x =Ax

has a finite dimensional subspace .9S of solutions which are in AT and so the
solutions in of Eq. (6.7) are not unique unless 9"S = {0}. The pair ( r, )
is admissible but generally not strongly admissible. On the other hand, we can
d e f i n e , IF so that (,21,0) is strongly admissible. In fact, let 7 r , : T- . 411, be
a continuous projection operator and define ,21 = (I - 7r,)kl. The pair (,21,x)
is then strongly admissible and there is a continuous linear operator-IV: x[.21
such that.Y/'f is the unique solution of Eq. (6.7) with rrr'f = 0. The operator
,7/,' of sourse, depends on the projection 7r,., but one can clearly choose 7r, so
that,X-f consists of the sum of the two integrals in Formula (6.4) of Chapter
III. With this definition of J, every solution of Eq. (6.7) in is given by

(6.9) x = 7re''xo +
Let us now consider the nonlinear problem

(6.10) x=Ax+f(x)
where f (O) 0, of (0)/a x = 0 and try to prove the existence of a saddle point
at x = 0. In particular, let us obtain the stable manifold. We know from. Eq.
(6.9) that every solution in . must satisfy

x = 7rseA - xo +,7f (x)

If y = x - 7T eA' xo, then y E ,21 and we have
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(6.11) G(y,f, xof (y -. f(y + irseA,x0) = 0.

One can now use the Implicit Function Theorem to determine y*(f, x0) in
as a continuously differentiable function of f, xo, y*(0,0) = 0,

G(y*(f, xo), f, xo) = 0. This shows there is a family of solutions for each f,
which are bounded and remain in a neighborhood of zero. The dimension of the
family is the dimension of the family 7reA-x0; that is, the dimension of the
stable manifold of x = Ax. To show these solutions approach zero, one can
put more restrictions on the space -0 and repeat the same argument.

This idea can be generalized to the abstract case where (.Q7,o is admissible
and not strongly admissible (see, for example, Antosiewicz [2] , Hartman [I] ).



CHAPTER V

Simple Oscillatory Phenomena and the

Method of Averaging

In Chapter II, it was shown how the Poincare-Bendixson theory could
be used to determine the existence and stability properties of periodic orbits
of autonomous two dimensional systems. For systems of higher dimension and
even for nonautonomous two dimensional systems, the methods of Chapter II
are of no assistance in the discussion of the existence of periodic or almost
periodic solutions.

In Chapter IV, the existence of periodic and almost periodic solutions
were discussed for systems of differential equations which were perturbations
of linear systems of arbitrary order. On the other hand, it was assumed that
the trivial solution was the only solution of the linear system which belonged
to the class of desired solutions; that is, the system was noncritical. Applica-
tions are very common for which the linear part of the system contains non-
trivial periodic solutions and the system is critical with respect to some class
of forcing functions. The methods of Chapter IV are not applicable directly to
such problems. However, there may be appropriate transformations of vari-
ables which bring a critical system into the framework of Chapter IV. This is
precisely the basis for the method of averaging discussed in Section 3 below.
The method of averaging is a general method for determining sufficient condi-
tions for the existence and stability of periodic and almost periodic solutions
of a class of nonlinear vector differential equations which contain a small
parameter. It is possible to discuss the existence of periodic solutions without
invoking the results of Chapter IV. In fact, a much more general theory is
given in Chapter VIII for the periodic case.

Before discussing the method of averaging, general properties of conser-
vative systems and simple nonconservative systems are treated in Sections 1
and 2. The remaining sections of the chapter are devoted to specific applica-
tions.

175
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V.I. Conservative Systems

Suppose f : Rn -± Rn is continuous and for any xe in Rn the system

(1.1) z =f (x),

has a unique solution x (t) = x (t, xo) with x(0, xe) = x0. A function E: D C
Rn R is said to be an inte ral of 1.1 on a region D e Rn if E is contin-
uous together with its first partial derivatives, E is not constant on any
open set in D, and E(x t) = constant along the solutions of (1.1).I Since E is
assumed to have continuous first derivatives, the last property is equivalent
to [8E(x(t))/8x] f (x(t)) = O. System (1.1) is said to be onservative if it has an
integral E on Rn. The orbits in Rn of a conservative system must therefore
lie on level curves of the integral E.

Suppose x = (xi, ..., xn), E is an integral of (1.1) on D and xe in D is such
that 8E(xe)/axn ; 0. Let c = E(xO). From the implicit function theorem, it
follows that the equation E(x) = c can be solved for xn as a function xn of the
xk, k < n, xe and x in a sufficiently small neighborhood U of x0. Since E is
assumed to be a first integral, E(x(t)) = c if x(t) is the solution of (1.1.) with
x(0) = xc. Substituting xn in (1.1) results in a system of (n - 1) equations for
the determination of the solution of (1.1) through xA. The dimension of (1.1) is
therefore decreased by one on U. In particular, if n = 2, the existence of an
integral reduces the solution of the equation to a quadrature.

In the following, the notation introduced in Chapter I is employed by
letting y+ = y+(x), y = y -(x) denote respectively the positive, negative orbit
of (1.1) through x, co(y+) and a(y) denote the w- and a-limit sets, respec-
tively, of the orbit y+, y-.

LEMMA 1.1. Suppose E is an integral of (1.1) on an open set D contain-
ing an equilibrium point xO of (1.1). There is no neighborhood U of xO for
which x° belongs to one of the sets co(y+(x)) or oc(y (x)) for all x in U.

PROOF. If there are a sequence of {tn}, to - . oo as n -* oo, and an xI
in D such that x(tn , xI) -* xe as n -* oo, then continuity of E implies
E(x(t, x1)) = E(xc) for all t. The same statement is true for to -. - oo. There-
fore, if there were a neighborhood U of xe such that xe belongs to one of
the sets cw(y+(x)) or a(y (x)) for all x in U, then E would be constant on U.
Since this is contrary to the definition of an integral, the lemma is proved.

Lemma 1.1 implies in particular that an equilibrium point of a conserva-
tive system can never be asymptotically stable.

LEMMA 1.2. Suppose B is an integral of (1.1) in a bounded, open neigh-
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borhood D of an equilibrium point x = 0 of (1.1). If E(0) = 0 and E(x) > 0 for
x 0 0 in D, then x = 0 is a stable equilibrium point.

PROOF. If E(0) = 0, E(x) > 0 for x = 0 in D, then for any e > 0,
def

a = min1XI = E, x in D E(x) > 0. Choose 0<8<s so that {x: xJS S} c D,
maxJXJ 58 E(x) < a. Since E is an integral this implies I x(t, xo)I < e, t Z 0, if
Jx°! < S. Thus, x = 0 is stable and the lemma is proved.

LEMMA 1.3. For n = 2, all orbits in a neighborhood of a stable isolated
equilibrium point of a conservative system must be periodic orbits and the
equilibrium point is a center.

PROOF. In this proof, a bar over a set denotes closure. Suppose x = 0
is an isolated stable equilibrium point of (1.1) for n = 2. Then there are
neighborhoods U, V, of zero such that F\{0) is equilibrium point free and
for every x in U, the positive orbit y+ = y+(x) through x belongs to 17. From
the Poincare-Bendixson theory, the co-limit set w(y+(x)) of y+(x) must be
either {0} or a periodic orbit. Lemma 1.1 implies w(y+(x)) cannot be {0} for
'every x in U. If there is an x in U such that P = w(y+(x)) = y+(x)\y+(x) is a
periodic orbit, then P is asymptotically stable from either the inside or out-
side and, thus, there is an open set on which the integral E is constant. This
ccntradiction shows that any trajectory which does not approach zero is a
periodic orbit. Since every periodic orbit obviously has zero in its interior,
this proves the lemma.

A very important class of conservative systems are Hamiltonian systems
with n degrees of freedom. If q = (ql, ..., are the generalized position
coordinates of n-particles and p = (p1, ..., pn) are the generalized momentum,
H(p, q) = T(p) + V(q) where T is the kinetic energy and V is the potential
energy, then the equations of motion are

(1.2)
8H 8H

q=ap , p _ -
aq

This is a special case of system (1.1) with x = (q, p). The Hamiltonian H(p, q)
is an integral of the system (1.2). The kinetic energy T(p) is assumed always
positive if p 0 with T(0) = 0, 8T(0)/8p = 0. If 8T(p)/8p 0 0 for p = 0, the
extreme points q° of V(q) therefore yield the equilibrium points (qc, 0) of (1.2).

For Hamiltonian systems, we can prove

LEMMA 1.4. Suppose q = 0 is an extreme point of the potential energy
V(q) with V(0) = 0. If zero is locally an absolute minimum of V(q), then (0,0)
is a stable point of equilibrium of (1.2): The equilibrium point (0,0) is unstable
if zero is not a minimum of V(q) if T(p) and V(q) have the form T(p) = T2(p)
+ T3(p), V(q) = Vk(q) + Vk+ 1(q) where T2 is a positive definite quadratic
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form, Vk is a homogeneous polynomial of degree k > 2, T5(p) = o(1p12),
Vk+ 1(q) = o(I q I k) as l p 1, I q I - 0 and there is a neighborhood U of (0,0) such
that

92U = {(p,q) E U:H(p,q) < 0} 0 0

and Vk(q) < 0 if (p,q) is in S2u.
PROOF. The assertion concerning stability is an immediate consequence

of Lemma 1.2. Suppose zero is not a minimum of V(q). Let W(p,q) = p'q.
The point (0,0) is a boundary point of 92 u. Using the fact that His an integral
of (1.2), the derivative W(p,q) along the solutions of (1.2),is easily seen to be

W(p,q) = 2T2(p) - kVk(q) + ... ,

where designates terms which are o(1 p 12) and o(I q I k) as I p 1, 'I q I -+ 0. In
92U, T2(p) > 0 and Vk(q) < 0. Furthermore, one can choose the neighborhood
U of (0,0) sufficiently small that W(p,q) > 0 in S2U. Since W(p,q) > 0,
W(p,q) > 0 in S2U, any solution with initial value in &2U must leave the set S2U
through the boundary of U since the boundary of S2U in the interior of U
consists of points where W(p,q) = 0, or H(p,q) = 0. Since (0,0) is in the
boundary of S2U, this proves instability and the lemma.

More specific information on the nature of the integral curves for second
order conservative systems can be given. Consider the second order scalar
equation

(1.3) ii -}- g(u) = 0,

or the equivalent system

(1.4) uv,
v = -g(u),

where g is continuous and a uniqueness theorem holds for (1.4). System (1.4)
is a Hamiltonian system with the Hamiltonian function or total energy given

by E(u, v) = v2/2 + G(u) where G(u) = fu g(s)ds. The orbits of solutions of
(1.4) in the (u, v)-plane must lie on the level curves of the function E(u, v);
that is, the curves described by E(u, v) = h, a constant. The equilibrium
points of (1.4) are points (uc, 0) where g(ua) = 0. If G(u) has an absolute
minimum at uc, then (uc, 0) is stable (Lemma 1.2) and all orbits in a neigh-
borhood of (u°, 0) must be periodic orbits (Lemma 1.3); that is, (u°, 0) is a
center. Since the solutions of E(u, v) = h, a constant, are

(1.5) v = 2[h - G(u)],

it follows that any isolated equilibrium point (uc, 0) such that uc is not a
minimum of G must be unstable. In fact, the curves v = + 2[h - G(u)],
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v = --,/2[h - G(u)] are homeomorphic images of a segment of the real line in
a neighborhood of (u°, 0). -If a solution starting on these curves does not leave
a neighborhood of (u°, 0), then the w-limit set of the solution curve would be
an equilibrium point. Since (u°, 0) is assumed isolated, this immediately gives
a contradiction.

A point u° is a local absolute minimum of G(u) if g(u) < 0 for u < u°
and g(u) > 0 for u > u° and u in a neighborhood of u°. The reverse inequalities
apply for a local absolute maximum of G(u). If G(u) has a local absolute
maximum at u°, then the equilibrium point (u°, 0) is a saddle point in the
sense that the set of all solutions which remain in a small neighborhood of
(0, 0) fort >_ 0 (t:5 0) must lie on an arc passing through (0, 0). This follows
directly from formula (1.5). We can therefore state

LEMMA 1.5. The stable equilibrium points of (1.4) are centers and all
of the unstable equilibrium points of (1.4) are saddle points if the only
extreme points of G(u) are local absolute minimum and local absolute
maximum.

Particular examples illustrate how easily information about a two
dimensional conservative system is obtained without any computations what-
soever. The sketch of the level curves of E are easily deduced using (1.5).

Example 1.1. Suppose the function G(u) has the graph shown in Fig. L la
with A, B, C, D being extreme points of G. The orbits of solution curves are
sketched in Fig. 1.1b, all curves of course being symmetric with respect to the
u-axis. The equilibrium points corresponding to A, B, C, D are labeled as
A, B, C, D on the phase plane also. The points A, C are centers, B is a saddle
point and D is like the coalescence of a saddle point and a center. The curves
joining B to B and D to D in Fig. 1.lb are called separatrices. A separatrix is

G (U).

T

(a)

Figure V.1.1
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a curve consisting of orbits of (1.3) which divides the plane into two parts and
there is a neighborhood of this curve such that not all orbits in this neigh-
borhood have the same qualitative behavior. Separatrices must therefore
always pass through unstable equilibrium points.

,Example 1.2. Suppose equation (1.3) is the equation for the motion
of a pendulum of length l in a vacuum and u is the angle which the pen-
dulum makes with the vertical. If g is the acceleration due to gravity, then
g(u) = k2 sin u, k2 = g/l, G(u) = k2(1 - cos u) and G(u) has the graph shown
in Fig. 1.2a. The curves E(u, v) = h clearly have the form shown in Fig. 1.2b.
Explain the physical meaning of each of the orbits in Fig. 1.2b.

G(u)

t
I

!_---1--- 2%0-1 -----a_ u
-2r -ir 01 a

(a)
V

1

(b)

Figure V.1.2

It is not difficult to determine implicit formulas for the periods of the
periodic solutions of equation (1.3) for an arbitrary g(x). Any periodic solution
has an orbit which must be a closed curve and conversely. From (1.5), it
follows that a closed orbit must intersect the u axis at two points (a, 0),
(b, 0), a < b, and must be symmetrical with respect to the u-axis. If T is the
period of the periodic solution, then T = 2w where co is the time to traverse
that part of the orbit where v > 0. Since v is given by (1.5) it follows from (1.4)
that

rb du
(1.6) T=21

a 2(h - G(u))

If 0(u) is even in u and the periodic orbit encircles the origin, then
symmetry implies a = -b and
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b du
7

_4 ((1) T
Jo J2(h G(u))

For the pendulum equation, example 1.2, g(u) = k2 sin u, G(u) =
k2(1 - cos u), and if u(O) = b < ir, v(O) = 0, then h = E(u(t), v(t)) = E(u(0),
v(0)) = E(b, 0) = k2(1 - cos b). Consequently, the period T of the periodic
orbit passing through this point (b, 0) is

b du 2 b duT=4
jo [2k2(cos u - cos b)]'/2 k Jo I (b) u) 1'/a

sing -sine 2 1

If sin(u/2) = (sin 0) sin(b/2), then

4 n,2 dab
(1.8) T=kJ

° 1 - sing - sing 1I'

This integral cannot be evaluated in terms of elementary functions, but if b is
sufficiently small, then it is easy to find an approximate value of the period.
Expanding in series, we obtain

T = k [1+ 4 sins
(2-b) + ...l

= [1+ I b2+...1,
k 16

if b is sufficiently small. To

theLLfirst

approximation T = 27r/k; that is, the
frequency k is approximately g/l, which is almost the first lesson in every
course in elementary mechanics. From this example and the above computa-
tion, it is seen that the period of a periodic solution of an autonomous differen-
tial equation may vary from one solution to another (contrast this fact to the
linear equation).

EXERCISE 1.1. For g(u) = u + yo u3, show that the period T(b, yo) given
by formula (1.7) is a decreasing function of b (increasing function, of b) if
yo > 0 (yo < 0). The first situation is called a hard spring and the second a
soft spring. Hard implies the frequency increases with the amplitude b. Soft
implies the frequency decreases with the amplitude b.

In the general case, if (u°, 0) is a stable equilibrium point of (1.3), then
the restoring force g(u) is said to correspond to a hard spring (soft spring) at uc
if the frequency of the periodic solutions in a neighborhood of (u°, 0) is an
increasing (decreasing) function of the distance of the periodic orbit from
(u°, 0).
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Example 1.3. Consider a pendulum of mass m and length l constrained
to oscillate in a place rotating with angular velocity w about a vertical line.
If u denotes the angular deviation of the pendulum from the vertical line
(see Fig. 1.3), the moment of centrifugal force is mw212 sin u cos u, the

Figure V.1.3

moment of the force due to gravity is mgl sin u and the moment of inertia is
I = m12. The differential equation for the motion is

(1.9) Iii - mw212 sin u cos u + mgl sin u = 0.

If µ = mw212/I and A = g/w21, then this equation is equivalent to the system

(1.10) u=v,
v = µ(cos u - A) sin u,

which is a special case of (1.4) with g(u) = g(u, A) = -µ(cos is - A)sin u. The
dependence of g upon A is emphasized since the number of equilibrium points
of (1.10) depends upon A. The equilibrium points of (1.10) are points (uc, 0)
with g(uc, A) = 0 and are plotted in Fig. 1.4. The shaded regions correspond
to g(u, A) < 0. For any given A, the equilibrium points are (0, 0), (7T, 0) and
(cos-1A, 0), the last one of course appearing only if JAI < 1. For IAA 1,

Lemma 1.5 implies the points on the curves labeled in Fig. 1.4 with black dots
(circles) are stable (unstable), the stable points being centers and the unstable
points being saddle points. From this diagram one sees that when 0 A < 1,
the stable equilibrium points are not (0, 0) or (77, 0) but the points (c6s-1A, 0).
Physically, one can have A < 1 if the angular velocity co is large enough.
Analyze the behavior of the equilibrium points for A = 1, A = -1.
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g(u, A)> 0 g(u, a)<0

U= -T

Figure V.1.4

- u

An integral for this system is easily seen to be

2

E(u, v) = 2 - i sine u cos U.

Suppose 0 < A < 1. The equilibrium points (0, 0) and (0, IT) are saddle points
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and the level curves of E(u, v) passing through these points are, respectively,

v2 = 11[sin2 u + 2A(cos u - 1)],

v2 = µ[sin2 u + 2A(cos u + 1)].

Both of these curves contain the points (cos-1 A, 0) in their interiors and the
latter one also passes through (-7r, 0). A sketch of the orbits is given in
Fig. 1.5. The two centers correspond to the two values of u for which cos u = A.
Interpret the physical meaning of all of the orbits in Fig. 1.5 and also sketch the
orbits in the phase plane when A > 1.

V.2. Nonconservative Second Order Equations-Limit Cycles

Up to this point, three different types of oscillations which occur in
second order real autonomous differential systems have been discussed. For
linear systems, there can be periodic solutions if and only if the elements of
the coefficient matrix assume very special values and, in such a situation, all
solutions are periodic with exactly the same period. For second order con-
servative systems, there generally are periodic solutions. These periodic
solutions occur as a member of a family of such solutions each of which is
uniquely determined by the initial conditions. The period in general varies with
the initial conditions but not all solutions need be periodic. In Section 1.7,
artificial examples of second order systems were introduced for which there
was an isolated periodic orbit to which all solutions except the equilibrium
solution tend as t - oo. In Chapter II, as an application of the Poincare-
Bendixson theory, it was shown that the same situation occurs for a large
class of second order systems which include as a special case the van der Pol
equation. Such an isolated asymptotically stable periodic orbit was termed a
limit cycle and is also sometimes referred to as a self-sustained oscillation. The
phenomena exhibited by such systems is completely different from a conserva-
tive system since the periodic motion is determined by the differential equa-
tion itself in the sense that the differential equation determines a region of
the plane in which the w-limit set of any positive orbit in this region is the
.periodic orbit.

In many applications, these latter systems are more important since the
qualitative behavior of the solutions is less sensitive to perturbations in the
differential equation than conservative systems. To illustrate how the struc-
ture of the solutions change when a conservative system is subjected to small
perturbations, consider the problem of the ordinary pendulum subjected to a
frictional force proportional to the rate of the change of the angle u with
respect to the vertical. The equation of motion is

(2.1) ii+Piu+k2sinu=0,
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where P > 0 is a constant. The equivalent system is

(2.2) is = v,

v = -k2 sin u - $v.

If E(u, v) = v2/2 + k2(1 - cos u) is the energy of the system, then dE/dt along
the solution of (2.2) is dE/dt = -,v2 < 0.

We first show that v(t) -* 0 for all solutions of (2.2). Since dE/dt < 0, E is
nonincreasing along solutions of (2.2) and v(t) is bounded. Equation (2.2) and
the boundedness of sin u(t) implies v(t) is bounded. If v(t) does not approach
zero as t --> oo, then there are positive numbers s, S and a sequence to , n = 1,
2, ... , t,a -- oo as n -* oo such that the intervals I,a = [tn, - S, t,a + S] are non-
overlapping and v2(t) > e for tin In, n = 1, 2, .... Let p(t) be the integer such
that to < t for all n < p(t). Then,

\
E(u(t), v(t)) -E(u(0), v(0))

dE= fc I t f ds

t
<_ - f Pv2(8)ds

0

< -2PSrp(t).

Since p(t) -- co as t oo and E(u(t), v(t)) is bounded, this contradicts the fact
that v(t) does not approach zero as t eo. Thus, v(t) 0 as t oo.

With E(u(t), v(t)) nonincreasing and v(t) --> 0 as t - eo, the nature of the
level curves of E implies that every solution of (2.2) is bounded. Also, since
the energy is nonincreasing and bounded below, it must approach a constant
as t -* co. Since E is continuous and the limit set of any solution is invariant,
the limit set must lie on a level curve of E; that is, the limit set of each solu-
tion must have .9 = 0 and, therefore, v = 0. Since the limit set of each solution
is invariant and must have v = 0, it follows that u is either 0, ±ir, ±2ir, etc.
All solutions of (2.2) bounded implies they have a nonempty limit set and,
therefore, each solution of (2.2) must approach one of the equilibrium points
(0, 0), (a, 0), (-7r, 0), etc. To understand the qualitative behavior of the
solutions, it remains only to discuss the stability properties of the equilibrium
points and use the properties of the level curves of E(u, v) depicted in Fig. 1.2b.

The linear variational equation relative to (0, 0) is

u=v,
v = -k2u - Bv,

and the eigenvalues of the coefficient matrix have negative real parts. There-
fore, by the theorem of Liapunov (Theorem 111.2.4), the origin for the
nonlinear system is asymptotically stable. The linear variational equation
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relative to the equilibrium point (or, 0) is

eu=v,
v = k2u - Sv,

and the eigenvalues of the coefficient matrix are real, with one positive and
one negative. Since the saddle point property is preserved (Theorem 111.6.1),
this equilibrium point is unstable and only two orbits approach this point as
t -* oo. Periodicity of sin u yields the stability properties of the other equilib-
rium points.

This information together with the level curves of E(u, v) allows one to
sketch the approximate orbits in the phase plane. These orbits are shown in
Fig. 2.1 for the case fg < 2k.

U

-u

Figure V.2.1

This example illustrates very clearly that a change in the differential
equation of a conservative system by the introduction of a small nonconserv-
tive term alters the qualitative behavior of the phase portrait of the solutions
tremendously. It also indicates that a limit cycle will not occur by the intro-
duction of a truly dissipative or frictional term. In such a case, energy is
always taken from the system. To obtain a limit cycle in an equation, there
must be a complicated transfer of energy between the system and the external
forces. This is exactly the property of van der Pol's equation where the dissi-
pative term 0 is such that 0 depends upon u and does not have constant
sign.

Basic problems in the theory of nonlinear oscillations in autonomous
systems with one degree of freedom are to determine conditions under which
the differential equation has limit cycles, to determine the number of limit
cycles and to determine approximately the characteristics (period, amplitude,
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shape) of the limit cycles. One useful tool in two dimensions is the Poincar< -
Bendixson theory of Section II.1. Other important methods involve pertur-
bation techniques, but can be proved to be applicable in general only when the
equation contains either a small or a large parameter. The great advantage of
such methods is the fact that the dimension of the system is not important and
the equations may depend explicitly upon time in a complicated manner.

One general perturbation technique known as method of averaging will
be described in the next section. As motivation for this theory, consider the
van der Pol equation

(2.3) it - e(1 - u2)ic + u = 0,

where e > 0 is a small parameter. From Theorem 11.1.6, this equation has a
unique limit cycle for every e > 0. Our immediate goal is to determine the
approximate amplitude and period of this solution as a -->. 0. Equation (2.3) is

equivalent to the system

(2.4) u = v,
v= -u+e(1 -u2)v.

For e = 0, the general solution of (2.4) is

(2.5) u = r cos 0, v = -r sin 0,

where 0 = t + 0, 0 and r are arbitrary constants. If the periodic solution of
(2.4) is a continuous function of e, then the orbit of this solution should be
close to one of the circles described by (2.5) by letting r = constant and 0 vary
from 0 to 21T. The first basic problem is to determine which constant value of r
is the candidate for generating the periodic solution of (2.4) for e 0.

If r, 0 are new coordinates, then (2.4) is transformed into the system

(2.6) (a) = 1 + e(1 - r2 COS2 0) sin 0 cos 0,

(b) r = e(1 - r2 cos2 0)r sin2 0.

For r in a compact set, a can be chosen so small that 1 + e(1 - r2 cos2 0)
- sin 0 cos 0 >, 0 and the orbits of the solutions described by (2.6) are given
by the solutions of the scalar equation

(2.7)
d0 - e9(r, 0, e)

where

(1 - r2 cos2 0)r sin2 0
(2.8) g(r, 0, e) =

1 + e(1 - r2 cos2 0) sin 0 cos 0
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The problem of determining periodic solutions of van der Pol's equation
for a small is equivalent to finding periodic solutions r*(O, e) of (2.7) of period
21r in 0. In fact, if r*(6, e) is such a 2a-periodic solution of (2.7) and 8*(t, e),
8*(0, e) = 0, is the solution of the equation

(2.9) b = 1 + e(1 - [r*(8, E)]2 cost 8) sin 6 cos 6,

then u(t) = r*(8*(t, e), e) cos 8*(t, s), v(t) = -r*(8*(t, e), e) sin 8*(t, e) is a
solution of (2.4). Let T be the unique solution of the equation 8*(T, e) = 27r.
Uniqueness of solutions of equation (2.9) then implies 8*(t + T, e) _
8*(t, e) + 2a for all t. Therefore, u(t + T) = u(t), v(t + T) = v(t) for all t and
u, v is a 'periodic solution of (2.4) of period T. Conversely, if u, v is a periodic
solution of (2.4) of period T, then r(t + T) = r(t) and one can choose 0 so that
8(t + T) = 6(t) + 2a for all t. The functions r and 0 satisfy (2.6) and, for e
small, t can be expressed as a function of 8 to obtain r as a periodic function of
21r in 8. Clearly, this function satisfies (2.7).

Let us attempt to determine a solution of (2.7) of the form

(2.10) r = p + er(1)(0, p) + e2r(2)(8, p) + .. .

where each r(1)(8, p) is required to be 27r-periodic in 8, and p is a constant. If
this expression is substituted into (2.7) and like powers of a are equated then

8r(1)(8, P)
= g(P, 8, 0).

88

This equation will have a 2.7r-periodic solution in 8 if and only if f o lTg(p, 8, 0)d8 =

0. If this expression is not zero, then it is called a secular term. If a secular term
appears, then a solution of the form (2.10) is not possible for an arbitrary
constant p. The constant p must be selected so that it at least satisfies the

2equation fc +rg(p, 0, 0)d8 = 0. Having determined p so that this relation is
satisfied (if possible), then r(1)(8, p) can be computed and one can proceed to
the determination of r(2)(9, p). However, the same type of equation results for
r(2)(6, p) and more secular terms may appear. One way to overcome these
difficulties is to use a method divised by Poincar6 which consists in the
following: let r be expanded in a series as in (2.10) and also let p be expanded
in a series in a as p = po + ep, + e2p2 + - - and apply the same process as
before successively determining po, pi, P2, in such a way as to eliminate all
secular terms. If the pj can be so chosen, then one obtains a periodic solution
of (2.7). This method will be discussed in a much more general setting in a
later chapter.

We discuss in somewhat more detail another method due to Krylov and
Bogoliubov which is generalized in the next section. Consider (2.10) as &
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transformation of variables taking r into p and try to determine r(1)(0, p),
r(2)(0, p), ... and functions R(1)(p), R(2)(p), ... so that the differential equa-
tion for p is autonomous and given by

(2.11)
d0 = eR(1)(p) + e2R(2)(P) + .. .

If such a transformation can be found, then the 2a-periodic solutions of (2.7)
coincide with the equilibrium points of (2.11). Also, the transient behavior of
the solutions of (2.7) will be obtainable from (2.11).

If (2.10) is substituted into (2.7), p is required to satisfy (2.11) and

00

g(r, 0, e) _ Y ekg(k)(r, 0),
k=0

then

(2.12)
er(1)(0, p)R(i)(P) +

L90
= g(o)(p, 0),

B(2) (P)
ar(2)(0, p) _ - Or(l)

a0 ap
(0, P)R(1)(P) + 9(1)(p, 0)

ag(o>

+ a (p, 0)r(1)(0, p).

Since g(o)(p, 0) = g(p, 0, 0), the first equation in (2.12) always has a
solution, given by

1 f2,T

(2.13) R(i)(P) = 2rr J
g(0, p, 0) d0,

0

r(i)(0, P) = f [g(P, 0, 0) - R(1)(P)] d0,

where " f " denotes the 27r-periodic primitive of the function of mean value
zero. Similarly, the second equation can be solved for R(2)(p) as the mean
value of the right hand side and r(2)(0, p) defined in the same way as r(1)(0, p).
This process actually converges for e sufficiently small, but this line of investi-
gation will not be pursued here.

Let us recapitulate what happens in the first approximation. Suppose
R(l)(p), r(1)(0, p) are defined by (2.13) and consider the exact transformation
of variables

(2.14) r = p + er(1)(0, p)

applied to (2.7). For a small, the equation for p is

ar(a

\1
+ e ap ) p = e(g(P + er(1), 0, s) - g(p, 0, 0) + R(1)(P)],
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and thus,

(2.15) p = eR(1)(P) + e2R(2)(p, 0, e)

where R(2)(p, 0, e) is continuous at e = 0. Consequently, the transformation
(2.14) reduces (2.7) to a higher order perturbation of the autonomous equation

(2.16) p = eR(1)(P),

where R(1)(p) is the mean value of g(p, 0, 0).
Suppose R(1)(pc) = 0, dR(1)(pc)/dp <0 for some pc. Then pc is a stable

equilibrium point of (2.16) and the equation (2.15) satisfies the conditions of
Theorem IV.4.3 with x = p and the equations for y and z absent. Consequently,
there is an asymptotically stable 21T-periodic solution of (2.15) and therefore
an asymptotically stable 27r-periodic solution of (2.7) given by (2.15).

If this is applied to van der Pol's equation where g is given by (2.8), then

1 2n ).R(1)(P) = J
g(p, 0, 0) d0 = (1 -

This function R(1)(p) is such that R(1)(2) = 0, dR(1)(2)/dp = -1 <0. There-
fore, the van der Pol equation (2.3) has an asymptotically stable periodic
solution which for e = 0 is u = 2 cos t. Zero is also a solution of R(1)(p) = 0
and dR(1)(0)/dp > 0. An application of Theorem IV.4.3 implies that zero
corresponds to the unstable equilibrium point u = 0 of (2.3).

V.3. Averaging

One of the most important methods for the determination of periodic
and almost periodic solutions of nonlinear differential equations which
contain a small parameter is the so-called method of averaging. The method
was motivated in the last section by trying to determine under what condi-
tions one could perform a time varying change of variables which would have
the effect of reducing a nonautonomous differential equation to an autono-
mous one. This idea will be developed to a further extent in this section, but
our main interest will lie in the information that can be obtained from only
taking the first approximation.

Suppose x in an, e >_ 0 is a real parameter, f: R x an x [0, co) -* Cn is
continuous, f (t, x, e) is almost periodic in t uniformly with respect to x in
compact sets for each fixed e, has continuous first partial derivatP+es with
respect to x and f (t, x, e) - f (t, x, 0), af(t, x, e)/a x - af(t, x, 0)/a x ass -> 0
uniformly for t in x in compact sets. Along with the system of
equations,
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(3.1) z=ef(t,x,e),
consider the " averaged " system,

(3.2)

where

z = efo(x),

T
(3.3) fo(x) = lim 1 f f (t, x, 0) dt.

T-ao 0

The basic problem in the method of averaging is to determine in what
sense the behavior of the solutions of the autonomous system (3.2) approxi-
mates the behavior of the solutions of the more complicated nonautonomous
system (3.1). There are two natural types of interpretations to give to the
connotation "approximates ". One is to ask that the approximation be
valid on a large finite interval and the other is to ask that it be valid on an
infinite interval. The results given here deal only with the infinite time interval.

Every solution of the equation x = 0 is a constant. Therefore, system
(3.1) is a perturbation of a system which is critical with respect to the class
of periodic functions of any period whatsoever and, in particular, with respect
to the class of almost periodic systems. On the other hand, it will be shown
below that there is an almost periodic transformation of variables which takes
x -* y and system (3.1) into a system of the form

y = e[ fo(y) + fi(e, t, y)]

where fl(0, t, y) = 0. If there is a yo such that fo(yo) = 0 and y = yo + z, then
this system can be written as

E [ afo(yo) z + {fo(yo + z) -fo(yo)- afo(yo) zl +f 1(e, t, yo + z)l .[
8y 8y J J

Therefore, in a neighborhood of yo the methods of Chapter IV can be applied
if the linear system

afo(yo)z=e
a

z
y

is noncritical with respect to the class of functions being considered. In this
way, we obtain sufficient conditions for the existence and stability of periodic
and almost periodic solutions of (3.1). The reasoning above is the basic idea
in the method of averaging. Throughout the remainder of this chapter, we
assume the norm in Cn is the Euclidean norm.

The following lemma is fundamental in the theory.

LEMMA 3.1. Suppose g: R X Cn -*Cn is continuous, g(t, x) is almost
periodic in t uniformly with respect to x in compact sets, has continuous first
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derivatives with respect to x and the mean value of g(t, x) with respect to t is
zero; that is,

1 T
(3.4) lim f g(t, x) dt = 0.

T o

For any e > 0, there is a function u(t, x, e), continuous in (t, x, e) on
B x C++ x (0, co), almost periodic in t for x in compact sets and e fixed,
having a continuous derivative with respect to t and derivatives of an arbi-
trary specified order with respect to x such that, if

h(t, x, e) (tat
, e)

-g(t, x),

then all of the functions h, 8h/8x, eu, Bu/8x approach 0 as a -> 0 uniformly
with respect to tin R and x in compact sets.

This lemma is proved in Lemma 5 of the Appendix. It is advantageous
at this point to discuss the meaning of Lemma 3.1 when the function g(t, x)
satisfies some additional properties. Suppose g(i, x) is a finite trigonometric
polynomial with coefficients which are entire functions of x. Then

g(t, x) _ y ak(x)e&Akt, Ak =A 0,
15k5N

where the Ak are real and each ak(x) is an entire function of x. If

ak(x) ilkt(3.6) u(t, x) = Y e ,
15k5N iAk

then u satisfies all of the conditions stated in the lemma. In addition, u is
independent of a and

2u(t, x)
- g(t, x) = 0.

8t

In most applications, the manner just indicated is the method for the con-
struction of a function u with the properties stated in the lemma. For a
general function g, one may not be able to solve (3.7) in spite of the fact that
the mean value of g is zero. In fact, there are almost periodic functions g(t)
(see the Appendix) such that M[g] = 0 and f tg is an unbounded function.
The lemma states that, even in this case, one can "approximately " solve
(3.7) by an almost periodic function u(t, e). Of course, u(t, e) will become
unbounded as a - 0, but eu(t, e) -> 0 as a -- 0.

LEMMA 3.2. Suppose f satisfies the properties stated before equation
(3. 1), fo is defined in (3.3) and f2 is any compact set in Cn. Then there exist an
eo > 0 and a function u(t, x, e) continuous for (t, x, s) in R x Cn x (0, co],
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almost periodic in t for x in compact sets and e fixed and satisfying the con-
clusions of Lemma 3.1, with g(t, x) =f (t, x, 0) - fo (x) such that the trans-
formation of variables

(3.8) x = y + eu(t, y, e), (t, y, e) e B X 0 X [0, 80]

applied to (3.1) yields the equation

(3.9) y = efo(y) + eF(t, y, e),

where F(t, y, e) satisfies the same conditions as f (t, y, e) for (t, y, e) e B X S2
X [0, so], and, in addition, F(t, y, 0) - 0.

PROOF. If g(t, x) =f (t, x, 0) -fo(x), then the conditions of Lemma 3.1
are satisfied. Let u(t, x, e) be the function given by that lemma. Since
eu(t, y, e), eau(t, y, _-)/ay, f (t, y, 0) -f (y) - au(t, y, e)fat -+0 as e -->. 0 uni-
formly with respect to t in R and y in compact sets, we define eu(t, y, e),
eau(t, y, e)fay, f (t, y, 0) -fo(y) - au(t, y, e)fay at e = 0 to be zero. For any
ei > 0, let c be a compact set in Cn containing the set {x: x = y + eu(t, y. E),
(t, y, e) e R x S2 x [0, sl]}. Choose e2 > 0 so that I + e au(t, y, e) f ay has a
bounded inverse for (t, y, a) e R X S2 x [0, e2]. This implies (3.8) can have at
most one solution y e S2 for each (t, x, e) C*-' R X 921 x [0, e2]. For any xo e 9211,
the contraction mapping principle implies there is an a3(xo) > 0 such that (3.8)
has a unique solution y = y(t, x, a) defined and continuous for I y - x0I < a3(xo),
IX - X01:_5 e3(xo), 0 < e < a3(x0). Since L21 is compact, we can choose an e4 > 0
independent of xo such that the same property holds with e3(xo) replaced
by e4 . If so = min(e1, e2, 84), then (3.8) does define a homeomorphism.
Therefore, the transformation (3.8) is well defined for 0 <_ s< to, y e S2,
t e R. If x = y + su(t, y, e), then

( au au
+ a ay)y = e My) + s f (t, y, o) -fo(y) -

at

+ elf (t, y + eu, e) -f (t, y, 0)].

From the properties of u in Lemma 3.1 and the continuity of f, the indicated
property of the equation for y follows immediately.

Lemma 3.2 is most important from the point of view of the differential
equations since it shows that the transformation of variables (3.8), which is
almost the identity transformation for a small, when applied to (3.1) yields
a differential equation which is the same as the averaged system (3.2) up
through terms of order e. We emphasize again that for functions f (t, x, e)
which are trigonometric polynomials with coefficients entire functions of x,
the expression for the transformation (3.8) is obtained by taking u to be given
by (3.6) where g(t, x) =f (t, x, 0) -fo(x).

Let Re A(A) designate the real parts of the eigenvalues of a matrix A.
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THEOREM 3.1. Suppose f satisfies the conditions enumerated before
(3.1). If there is an x° such that fo(x°) = 0, and Re A[8fo(x°)/8x] 0 0, then
there are an so > 0 and a function x*(-, e): R -*Cn, satisfying (3.1), x*(t, E)
is continuous for (t, s) in R x [0, so], almost periodic in t for each fixed
e, s)] c m[f ( , x, e)], x*(-, 0) = x°. The solution x*(-, e) is also
unique in a neighborhood of x°. Furthermore, if Re .1[8 fo(x°)/8x] < 0, then
x* ( , e) is uniformly asymptotically stable for 0 < E < so and if one eigen-
value of this matrix has a positive real part, x*(-, e) is unstable.

THEOREM 3.2. Suppose f satisfies the conditions enumerated before
(3.1). If f (t + T, x, e) = f (t, x, e) for all (t, x, E) in R x Cn X [0, co) and there
is an x° such that fo(x°) = 0, det[efo(x°)/8x] 0, then there are an so > 0
and a function x*(t, s), continuous for (t, E) in R X [0, so], x*(-, 0) = x°,
x*(t + T, e) = x*(t, e), for all t, a and x*(t, e) satisfies (3.1). This solution
X*(-, e) is also unique in a neighborhood of x°.

The proofs of both of these theorems are immediate consequences of
previous results. In fact, choose any compact set S2 in Cn containing x° in its
interior. Lemma 3.2 implies that we may assume equation (3.1) is in the form
(3.9) for (t, x, E) e R X 92 x [0, so]. If x° is such that fo(x°) = 0, then
y = x° + z in (3.9) implies

z = eAz + sF(t, x° + z, e) + e[fo(x° + z) -fo(x°) - Az]
der EAz

+ Eq(t, z, E),

where A = e fo(x°)/8x. One can now apply Lemma IV.4.3 and Theorem IV.4.2
directly to the equation for z to complete the proofs of Theorems 3.1 and 3.2.

In the applications, many problems cannot be phrased in such a way that
the equations of motion are equivalent to a system of the form (3.1). However,
the underlying ideas in the proof of Theorems 3.1 and 3.2 can be used effec-
tively in more complicated situations. One should therefore keep in mind
these basic principles and look upon the discussion here as a possible method
of attack for the treatment of oscillatory phenomena in weakly nonlinear
systems. Another application is now given to a class of equations which seems
to occur frequently in the applications.

Consider the system

(3.10) x = e f (t, x) + Eh(et, x),

where e > 0 is a real parameter, ,f (t, x), h(t, x) are continuous and have
continuous first derivatives with respect to x, h(t,x) has continuou ..second
partial derivatives with respect to x for (t, x) in R X Cn, f (t, x) is almost
periodic in t uniformly with respect to x in compact sets and there is a T > 0
such that h (t + T, x) = h(t, x) for all t, X.

System (3.10) contains both a "fast" time t and a "slow" time at. The
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averaging procedure is applied to only the fast time to obtain the non-
autonomous " averaged " equations

def
(3.11) e fo(x) + Eh(Et, x) = EG(et, x),

where

1 fT
(3.12) fo(x) = lim -

J
f (t, x) dt.

T-«,T o

If system (3.11) has a periodic solution x°(et) of period TIE, then the linear
variational equation for x°(et) is given by

(3.13)
dy _ aG(T, x0(r))

y
dr ax

where T = Et.
The next result states conditions under which the equation (3.10) has an

almost periodic solution which approaches the periodic solution of the aver-
aged equation (3.11) as E-*O.

THEOREM 3.3. Suppose f, h satisfy the conditions enumerated after
(3.10). If x°(et) is a periodic solution of (3.11) of period T/E such that no
characteristic exponents of the linear variational equation (3.13) have zero
real parts, then there are an so > 0 and a function x*( , e): R -*Cn, satis-
fying (3:10), x*(t, E) is continuous for (t, s) in R x [0, so], almost periodic in t
for each fixed E, e)] e m[f ( , x), h(e , x)]; and x*(t, s) - x°(st) -*0
as e 0 uniformly on R. This solution is also unique in a neighborhood of
x°( ). Furthermore, if all characteristic exponents of (3.13) have negative real
parts, x*(-, e) is uniformly asymptotically stable and if one exponent has a
positive real part, it is unstable.

The proof of this result proceeds as follows. Choose any compact set S2
in Cn which contains x°(t), 05 t <_ T, in its interior. If g(t, x) =f (t, x) -fo(x)
and u(t, x, s) is the function given by Lemma 3.1, then as in the proof of
Lemma 3.2, there is an so > 0 such that the transformation of variables
x = y + eu(t, y, e) is well defined for (t, y, e) e R x 1 x [0, so]. This trans-
formation applied to system (3.10) yields the equivalent equation

y = EG(Et, y) + EH(t, Et, y, e),

where H(t, T, y, 0) = 0 and H(t, -r, y, e) satisfies the same smoothness proper-
ties in y as f, h, is almost periodic in t and periodic in T of period T. If
y(t) = x°(et) + z(t), then

z = EA(Et)z + EZ(t, Et, z, e),
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where A(r) = t^G(r, xo(-r))/8x and Z(t, et, z, E) satisfies the conditions of
Theorem IV.4.2. Suppose P(r)eBr is a fundamental matrix solution of (3.13)
with P(r + T) = P(r) and B a constant matrix. From the hypothesis of the
theorem, the eigenvalues of B have nonzero real parts. If z = P(et)w, then

ab = sBw + sW (t, et, w, e)

where W(t, Et, w, e) satisfies the conditions of Theorem IV.4.2. The proof of
Theorem 3.3 is completed by a direct application of-this result.

Another type of equation that is very common is the system

(3.14) x = eX(t, x, y, e),

y = Ay + eY(t, x, y, e),

where e is a real parameter, x, X are n-vectors, y, Y are m-vectors, A is a
constant n X n matrix whose eigenvalues have nonzero real parts, X, Y are
continuous on R X Cn X Cm x [0, oo), have continuous first derivatives with
respect to x, y and are almost periodic in t for x, y in compact sets and each
fixed E. The "averaged" equation for (3.14) is defined to be

(3.15) eXo(x),

where
1 T

(3.16) Xo(x) = lim - f X(t, x, 0, 0) dt.
o

THEOREM 3.4. Suppose X, Y satisfy the conditions enumerated after
(3.14). If there is an x0 such that Xo(x0) = 0 and Re A(8Xo(x0)/8x) 0 0, then
there are an eo > 0 and vector functions x*(-, e), y*(-, e) of dimensions n, m
respectively, satisfying (3.14), continuous on R x [0, eo], almost periodic in t
for each fixed e, x*(-, 0) = x0, y*(-, 0) = 0. This solution is also unique in a
neighborhood of (x0, 0). Furthermore, if Re A(8Xo(x0)/8x) <0, Re A(A) <0,
then this solution is uniformly asymptotically stable for 0 < e <_ so and if
one eigenvalue of either of these matrices has a positive real part, it is unstable.

The proof follows the same lines as before. Suppose 0 is a compact set of
Cn containing x0 in its interior. If g(t, x) = X(t, x, 0, 0) - Xo(x) and u(t, x, e)
is the function given in Lemma 3.1, then as in the proof of Lemma 3.2, there
is an eo > 0 such that the transformation

x-*X +eu(t, x, e), y-)-y,

is well defined. for (t, x, y, e) e R x L x Cm x [0, eo]. This transformation
applied to (3.14) yields the equivalent system

x = eXo(x) + eX1(t, x, y, e) + eX2(t, x, y, e),

= Ay + eYI(t, x, y, e),
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where X1(t, x, y, 0) = 0 and X2(t, x, 0, 0) = 0 and all functions have the same
smoothness and almost periodicity properties as before. If the further trans-
formation x x, y -. /sy is made, then the equations become

x = eXo(x) + EX*(t, x, y, s),

y = Ay + Y*(t, x, y, e),

where X*(t, x, y, 0) = 0, Y*(t, x, y, 0) = 0. If x-.xo + x, yy, then
Theorem IV.4.3 with the variable z absent applies directly to the resulting
system to yield Theorem 3.4.

Using the same proof, one also obtains

THEOREM 3.5. If X, Y satisfy the conditions enumerated after (3.14),
are periodic in t or period T and there is an xo such that Xo(xo) = 0 and
det[8Xo(xo)/8x] zA 0, then there are an ro > 0 and vector functions x*( , e),
Y*(-, e) of dimensions n, m, respectively, satisfying (3.14), continuous on
B x [0, eo], periodic in t of period T and x*(-, 0) = xo, y*(-, 0) = 0. Further-
more this solution is unique in a neighborhood of (xo, 0).

An interesting application of Theorem 3.4 to stability of linear systems is

THEOREM 3.6. Suppose D = diag(B, A) where B is n x n, A is m x in,
all eigenvalues of B have simple elementary divisors and zero real parts and
all eigenvalues of A have negative real parts. If the (n + m) x (n + m) almost
periodic matrix (D is partitioned as (D _ (Ijk), j, k = 1, 2, where 011 is n x n,
1b22 is m x m and if all eigenvalues of the matrix

(3.17)
T

E= lim fO

dt,
T-+oo T o

have negative real parts, then there is an co > 0 such that the system

(3.18) it = Du + e(D(t)u,

is uniformly asymptotically stable for 0 < 8<_ E0. If one eigenvalue of E has
a positive real part, then system (3.18) is unstable for 0 < e<_ Eo .

The proof of this result proceeds as follows. Let u = (x, y) where x is an
n-vector. The-matrix eBt is almost periodic in t and therefore the bounded linear
transformation x -> eBtx, y -- y yields the equivalent system

z = ee-Bttll(t)eBtx + 88-Bt(D12(t)y,

y = Ay + et21(t)estx + et22(t)y

This is a special case of system (3.14) and the averaged system (3.15) for this
situation is z = Ex. From the hypothesis on E, this averaged system satisfies
the hypotheses of Theorem 3.4. It is clear from uniqueness of the solution
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x*(-, e), y*(-, e) guaranteed by Theorem 3.4 that x*(-, e) = 0, y*(-, e) = 0,
0::!g e < so. This proves the result.

The remainder of this chapter is devoted to applications of the results in
this section.

V.4. The Forced Van Der Pol Equation

Consider the equation

(4.1) z1=z2,

z2= -zl+e(1 -z2l)z2+A sin wit +Bsin w2t,

where e > 0, wi > 0, w2 > 0, A, ,8 are real constants and

(4.2) m+miwi+m2w20' 0,

for all integers m, mi, m2 with ImI + Imi1 + Im2I < 4. For e = 0, the general
solution of (4.1) is

(4.3) zi = xi COS t + x2 sin t + Al sin wit + Bi sin w2 t,

z2 = -xi sin t + x2 cos t + Aiwi cos wit + Biw2 cos w2 t,

where A,= A(1 - wl)-i, Bi = B(1 - w22 )-l and xi, x2 are arbitrary constants.
To discuss the existence of almost periodic solutions of system (4.1) by using
the results of the previous section, consider relations (4.3) as a transformation
to new coordinates xi, X2. After a few straightforward calculations, the new
equations for xi, x2 are

(4.4) xi = - e(1 - zi)z2 sin t,

x2 = e(1 - z2l)z2 COS t,

where zi, z2 are the complicated functions given in (4.3). System (4.4) is a
special case of (3.1) and the quasi-periodic coefficients in the right hand sides
of (4.4) have basic frequencies 1, wi, w2.

The average of the right hand side of (4.4) with respect to t will have
different types of terms depending upon whether the frequencies 1, wi, w2
satisfy (4.2) or do not satisfy (4.2). If (4.2) is satisfied, then the averaged
equations of (4.4) are

(4.5) 8xi = exi[2(2 - Al - B2) - (xi + x2)],

8x2 = 6x2[2(2 - Al - B2) - (xi + x2)]

Equations (4.5) always have the constant solution xi = x2 = 0 and both
eigenvalues of the linear variational equation are 2(2 - Al - B2). If
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A2 + Bi 2, then Theorem 3.1 implies the existence of an almost periodic
solution of (4.4) with frequencies contained in the module of 1,wl, "2' which
is zero for s = 0, is uniformly asymptotically stable if A 1 + Bi > 2 and unstable
if A 1 + Bi < 2. This implies the original equation (4.1) has an almost periodic
solution which is uniformly asymptotically stable (unstable) for A 2 + Bi > (<)2
and this solution for s = 0 is given by

zi(t) = Al sin wit + Bl sin w2 t,

z2(t) = Zl(t).

Notice that the condition A2 + A2 > 2 can be achieved if either A or B
is sufficiently large for given wi, W2, or if either wi or w2 is sufficiently close to
1 (resonance) for a given A, B. Also, notice that A2 + A2 < 2 implies that the
averaged equations have a circle of equilibrium points given by x2i+ x2 =
2(2 -A 2 2)1 - Bi. There are very interesting oscillatory phenomena associated
with this set of equilibrium points, but the discussion is much more compli-
cated and is treated in the chapter on integral manifolds.

V.5. Dufrmg's Equation with Small Damping and Small Harmonic Forcing

Consider the buffing equation

(5.1) ii+ESk+u+Equ3=eBcoscot,

or the equivalent system

(5.2) u = v

(v = -u - Equ3 - ESv + EB cos wt.

where E > 0, y, 8 >_ 0, B, w 0 are real parameters. For w2 = 1 + Ef, we
wish to determine conditions on the parameters which will ensure that equa-
tion (5.1) has a periodic solution of period 21r/w. Since for E = 0, co = 1,
the forcing function has a frequency very close to the free frequency of the
equation. The free frequency is the frequency of the periodic solutions of
the equation (5.1) when s = 0. Such a situation is referred to as harmonic
forcing. We have seen previously that the linear equation ii + it = cos t has no
periodic solutions and in fact all solutions are unbounded. This is due to the
resonance effect of the forcing function. As we will see, the nonlinear equation
has some fascinating properties and, in particular, more than one isolated
periodic solution may exist. Contrast this statement to the results of
Section IV.5. To apply the results of Section 3, we make the van der Pol
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transformation

(5.3) (u = xi sin wt + X2 COS wt

v = w[xi cos wt - X2 sin wt]

in (5.2) to obtain an equivalent system

( E
(5.4) Ixi=-[Pu-yu3-Sv+Bcoscot] coswt

I co

z2 = - - [Pu - yu3 - Sv + B cos wt] sin wt
w

W2-
1

E

I

where u, v are given in (5.3). To average the right hand sides of these equations
with respect to t, treating xi, x2 as constant, it is convenient to let

(5.5) x2 = r cos 0, x1= r sin t&,

u= xi sin wt + x2 cos wt = r cos (wt

v = w[xi cos wt - X2 sin wt] = -wr sin(wt -

This avoids cubing u and complicated trigonometric formulas. The averaged
equations associated with (5.4) are now easily seen to be

(5.6) x1= 2w 3 4r2 x2 Swxl + BJ

x2 =
e [xi P3yr2

2w
-

4
x1 + Swx2

r2 = x2 + x2.
1 2

Since x2 = r cos 0, x1= r sin ,1,, the equilibrium points of (5.6) are the solu-
tions of the equations

3yr2
( -

4
r cos - Swr sin r + B = 0,

(3Yr2)-
4

r sin r + Swr cos 0.

These latter equations are equivalent to the equations

(5.7) G(r, CO)
wdef W2 - 1 -

3yo r2
+

Fe

cos = 0,

F(r, co)aefFcsin i/i-So wr=0,
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where we have put yo = ey, so = sS, Fo = eB, parameters which have a
good physical interpretation in equation (5.1).

If yo, So , Fo are considered as fixed parameters in (5.7); then (5.7) can be
considered as two equations for the three unknowns ,b, co, r._ If there exist
00, coo, ro such that the matrix

8F OF I

ar a,P J

has rank 2 for r = ro, 0 _ 00, w = wo, then Theorem 3.2 implies there is an
eo > 0 such that equation (5.1) has a periodic solution of period 21r/wo which
for e = 0 is given by u = ro cos(coo t - Rio) = ro cos(t - Oo) since coo = 1 for
e = 0. In the equations (5.7), one usually considers the approximate amplitude
r of the solution of (5.1) as a parameter and determines the frequency co(r) and
approximate phase e (r) of the solution of (5.1) as functions of r. The plot in
the co, r plane of the curve co(r) is called the frequency response curve.

The stability properties of the above periodic solution can sometimes be
discussed by making use of Theorem 3.1. Some special cases are now treated
in detail.

Case 1. S = 0 (No Damping). One solution of (5.7) for a = So = 0 is
given by 0 = 0 and

(5.9) co2
=1+3yoor2 + ro.

As mentioned earlier, relation (5.9) is called the frequency response curve. The
rank of the matrix in (5.8) is two if yo = 0, Fo 0 0 or yo 0, Fo/yo sufficiently
small. From Theorem 3.2, there is an CO > 0 such that for S = 0, 0 = a S eo, and
each value of w, r which lies on the frequency response curve, there is a &rr/w-
periodic solution of (5.1) which for e = 0 is u = r cos wt = r cos t since co = 1
for e = 0. There is also the solution of (5.7) corresponding to 0 = a, but this
corresponds to (5.9) with r replaced by -r. The uniqueness property guaran-
teed by Theorem 3.2 and the equation (5.2) for S = 0 imply this solution is the
negative of the one for +/i = 0.

If Fo < 0, the plots of the frequency response curves in a neighborhood
of co = 1 for both the hard spring (yo > 0) and the soft spring (yo < 0) are
given in Fig. 5.1. The pictures are indicative of what happens near w = 1.

The frequency response curves in Fig. 5.1 are usually plotted with Irl
rather than r and are shown in Fig. 5.2. Notice how the nonlinearity (yo :0)
bends the response curve for the linear equation. The curve F0 = 0 depicts the
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r

w

(yo > 0) (hard spring)

(a)

r

(yo < 0) (soft spring)

(b)

Figure V.5.1

relationship between the frequency co and the amplitude r of the periodic
solutions of the 'unforced conservative system ii + u + yo u3 = 0. For each
given w near w = 1, there is exactly one periodic solution of period 21;r/w. or a
given F0 0 0, there are three such periodic solutions for some values of w and
only one for others.
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Irl

Fo=0

r>0 r<0

1

(yo = 0)(linear equation)
(c)

w

Figure V.5.2

Let us emphasize another striking property of this example which is a
direct consequence of the fact that the equation is nonlinear. For e = 0,
system (5.1) has a free frequency which is equal to 1; that is, all solutions of
the linear equation are periodic of period 27r. On the other hand, it was shown
above that for w2 - 1 of order e there are periodic solutions of period 27r/w..
In other words, the free frequency is suppressed and has been " locked " with
the forcing frequency. This phenomena is sometimes referred to as the
locking-in phenomena or entrainment of frequency and, of course, can only
occur when the equations are nonlinear.

Case 2. 8 > 0 (Damping). If So > 0 and Fo = 0, then using the same
analysis as in the discussion of equation (2.1), one sees that equation (5.1)
has no periodic solution except u = 0. This is reflected also in equations
(5.7) which in this case, have no solution except r = 0. If So Fo 0, there
always exist values of r such that Iri < I Fo/So wl and the second of equations
(5.7) can be solved for :/s as a function of w6or/Fo. Using such a 0, the first
equation yields, up to terms of order e2,

(5.10) w2 = 1 + 3y4 r2
VF0 -82 .
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This frequency response curve for the hard spring (yo > 0) is shown in
Fig. 5.3. The dotted line corresponds to the curve cue = 1 + 3yo r2/4. Thus, as
for S = 0, for given Fo, So with F0 So 0, Theorem 3.2 implies there are three
periodic solutions of period 27r/w for some values of w and only one for others.
For a given w, which of these solutions are stable and which are unstable? To
discuss this, we investigate the linear variational equation associated with
these equilibrium points of the averaged equations and apply Theorem 3.1.
As is to be expected the analysis will be complicated. Another type of co-
ordinate system which is widely used in applying the method of averaging
turns out to be useful for this discussion.

r

--------r2b 2 = F02

w=1
(-to > 0)(haid spring)

Figure V.5.3

In (5.2), introduce new variables r, t/i by the relations

(5.11) u = r cos(wt - 0),

v = -rw sin(wt -

to obtain an equivalent set of equations (Ep = w2 - 1)

(5.12) r =
L

- 2 sin 2(wt - ) - e f sin(wt - a/i)]

W

=u, [2 +2 cos2(wt->1,)+ r fcos(wt- )],

where f = -yu3 - Sv + B cos wt and it, v are given in (5.11). The averaged
equations associated with (5.12) are

(5.13) r = - 2w [ESwr - EB sin :!i] = 2w F(r, w),

_ 1 3 eB l 1

2w I
E - 4 Eyr2 + r cos i/i I = 2w G(r, 0, w),
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where F, G are defined in (5.7). The equilibrium points of (5.13) are therefore
the solutions r, 0, w of (5.7). If the eigenvalues of the coefficient matrix of the
linear variational equation of any such equilibrium point have nonzero real
parts, then Theorem 3.1 gives not only the existence but the stability proper-
ties of a periodic solution of period 2ir/w of (5.1). The solution is uniformly
asymptotically stable if these eigenvalues have negative real parts and unstable
if one has a positive real part. A necessary and sufficient condition for the
eigenvalues of this matrix to have negative real parts is that the trace of this
matrix be negative and the determinant be positive. In terms of F, Gin (5.13),
one has an asymptotically stable solution if and only if

Fr+G+,<0,
Fr G,j' - Fp, Or > 0,

where the subscripts denote partial derivatives and, of course, the functions
are evaluated at the equilibrium point. These partial derivatives are easily seen
to be

Fr = -Sow, Fy, = F0 cos 0,

Gr = - 3
yor -Fo cos i, Gy_

-F0

sin sli.

Therefore, Fr + Gy, _ -250 w < 0 at an equilibrium point and the stability or
instability can be decided by investigating the sign of F,. G,, - Or F. as long
as it is different from zero.

It is possible to express this last condition for stability in terms of where
the point r, co is situated on the frequency response curve. To see this, consider
the equilibrium points of (5.13); that is, the solutions of F(r, 0, w) = 0 =
G(r, 0, co), as functions of co. Differentiating these equations with respect to a.
and letting subscripts denote differentiation, one obtains

-Fw=Frrw+FV0,
-GO) =Grrw+GV0.,

and thus,

(5.14) rw(FrGy,-GrF,)=GwF0-FwGy,.

The stability properties of the solution can therefore be translated into the
sign of rw(Gw Fw - F. O v). This expression being positive corresponds to
stability and this being negative corresponds to instability. Since F. = -S0 r,
Gw = 2w, it follows that

G, F,1, - F. G,1 = 2wF0 cos 0 + So F0 sin

= 2wr(v2 - w2) + SD wr.
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where v2 = I + 3yo r2/4. From (5.10), w2 - v2 = 0(e) and since So is 0(e2),
the sign of this expression is determined by w2 - v2 if a is sufficiently small.
Using (5.14), we finally have:

A periodic solution of Duf ng's equation (5.1) with 8 > 0 is stable if (dr/dw)
(v2 - (02) > 0 and unstable if (dr/dw)(v2 - w2) < 0, where v2 = 1 + 3yo r2/4

and r is given as a function of co by the frequency response curve (5.10).

Pictorially, the situation is shown in Fig. 5.4 for a hard spring. Solid
black dots represent unstable points. The arrows - represent a typical
manner in which the amplitude of the stable periodic motion would change
with increasing w and the backward F- depicts the situation for decreasing w.

r

w=1

Figure V.5.4

V.6. The Subharmonic of Order 3 for Duffling's Equation

Consider the equation

(6.1) ii +ecu+9u+eyu3 = B cos wt

or the equivalent system

(6.2) u = v,

1
Z7 = -

9
u -cCV - eyu3 + B cos wt,

w

where e >_ 0, c >_ 0, y, B and, co are constants, w -1 = 0(e) as e -* 0. The
problem is to determine under what conditions there exists a solution of (6.1)
which is periodic of period 667r/w and whose zeroth order terms in s are given by
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co
6.3) u = r sin

3
t+0 +A cos wt,

0

Such a solution if it exists is called a subharmonic solution of order 3.
If any such solution exists, then clearly A must equal -B/(w2 - 1/9). The
free frequency of equation (6.1) is (1/3) and the forcing frequency is w which is
approximately 1. Therefore, if a subharmonic solution exists, then the free
frequency is again suppressed and is locked with the forcing frequency w in
the sense that a solution appears which is periodic of period three times the
period of the forcing frequency. The form of (6.1) is important for the exist-
ence of a subharmonic solution. In fact, if the damping coefficient in (6.1) is a
constant el > 0 for all a >- 0, then it was shown in Section IV.5 that no such
subharmonic solution can exist.

If r, in (6.3) are chosen as new coordinates, the new equations are

(6.4) r=.- [rsin2(t+) -3(cv { yu3) cos(3 t+0)11

3

_ L-3sine(3t+0)+3(cv ryu)sin3t+0)J

w2-1=efl,
where u, v are given in (6.3).

The averaged equations are (except for some terms of order e2)

(6.5) r = 2w
L-c

+ 272rA
cos 30

JJ

¢ L - p + 272 (A - r sin 30) + 2
yrz

6w J

Using the fact that cot - 1 = so and letting yo = e'y, co = ec, the equations
for the equilibrium points of (6.5) are

2c
(6.6) (a) cos 30 = 27yAr'

(b) w2 =1
2

4 00 [r2
2A2]

[(27YOAr)2-cot] 1/z>

where up to terms of order e2, the latter expressions are evaluated with
A = -9B/8. For c = 0 (no damping), the formula for the frequency response
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curve (6.6b) simplifies to

(6.7)
27yoA2 27yow2+

4
+

4
(r±A)2.

A sketch of the frequency response curves is given in Fig. 6.1.

r

2

(-to > 0) (hard spring)

Figure V.6.1

W2-1

One now uses Theorem 3.2 and Theorem 3.1 exactly as in the previous
section to obtain the existence of an exact solution of (6.1) and the stability
properties of such a solution for values of to, r, c satisfying (6.6).

The frequency response curves suggest the fact confirmed in Section 1V.5
that the equation (6.1) may not have a subharmonic of order 3 if c gets too
large, since the above analysis has been shown to be valid only for e small and,
thus, co close to 1. Also, notice that once a subharmonic solution is known to
exist, two other distinct ones are obtained simply by translating time by 27r/w.

V.7. Damped Excited Pendulum with Oscillating Support

A linear damped sinusoidally excited pendulum with a rapidly vertically
oscillating support of small amplitude can be represented approximately by
the equation

1
(7.1) ii -{- cic + 1 + E

d2h(dt2vt)
/f sin u - F cos wt = 0,

where u is the angular coordinate measured from the bottom position,
h(T) = h(T + 27r), v = E-I, 0 <,- << 1 and c, F, co are real positive parameters
independent of E.

To transform (7.1) into a form (3.10) for which Theorem 3.3 is applicable,
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it is convenient to treat all but the term in c as derivable from the Hamil-
tonian

r ()2
(7 .2) H(v, u, t) = v- 2EV sin u - E2 cost u

+ (1 - cos u) - uF cos wt,

where v is the momentum conjugate to u and the argument of h is vt. The
equations of motion are, therefore,

dh
(7.3) u =v - s

dt
sin u,

r 2 2

v = - L - ev dt cos u +
2

(_) sin 2u +- sin u - F cos wt

dh-c(v-Edtsin u),

where the argument of h is vt.
If vt = T and differentiation with respect to r is denoted by prime, then

equations (7.3) become

(7.4) u' = s[v - h' sin u],

V, = s [vh' cos u - 2 (h')2 sin 2u - sin u - cv + ch' sin ul

+ EF Cos EWT.

where the argument of h is T. Equations (7.4) are a special case of the system
(3.10), the expressions in the square brackets being periodic in fast time T and
the other expression is periodic in the slow time ET.

Considering the special case where h(r) = A sin T and A is a constant,
the averaged equations (3.11) corresponding to equations (7.4) are

(7.5) u' = Ev,

1v' = -8 [A2
2 sin u cos u + sin u + cv] + EF cos 8w r.

In terms of the original time t, these equations are equivalent to the equation

(7.6) u = v,
A2v=-(1+- 2 cos u) sin u - cv±Fcoscot,

or the single second order equation
z

(7.7) ii + cic + (1 +- 2 Cos u) sin u = F cos wt.
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If equation (7.7) has a periodic solution of period 21r/w such that the character-
istic exponents of its linear variational equation have negative real parts, then
Theorem 3.3 implies the original equation (7.1) has an asymptotically stable,
almost periodic solution which approaches this solution as a - 0. To find
conditions under which (7.7) has such a periodic solution, one can use the
results of Chapter IV or the method of averaging (Theorems 3.1 and 3.2)
directly on (7.7). For example, if F is small, one can use the results of Chap-
ter IV very efficiently as follows: For F = 0, the equilibrium solutions of (7.7)
are u = 0, u = ir and u = cos-1(2/A2) if A2 > 2. If u = 7r + w, then (7.7)
becomes

2

(7.8) ib + ctb + (T cos w -1
J

sin w = F cos wt,

and this may be rewritten as

iG+ctb+
l

22-1)w=Fcoswt+
\ 22-1)(w-sinw)l1 A2 \ //

+
2

(1 - cos w) sin w.

If A2/2 > 1 and F is small, this equation satisfies the conditions of Theorem
IV.2.1 and Theorem IV.3.1. One can therefore assert the existence of an
asymptotically stable periodic solution of (7.8) of period 2a/w. This implies in
turn that the pendulum described by (7.1) can execute stable motions in a
neighborhood of the upright position.

V.S. Exercises

EXERCISE 8.1. An infinite conductor through which there flows a
current of magnitude I attracts a conductor A B of length l and mass m along
which there flows a current i. In addition, the conductor AB is attracted
by a spring C whose force of attraction is proportional to its deflection with
proportionality constant k. With x = 0 chosen as the position of AB when
the spring is undeflected, the equations of motion of AB are

a-xM( __),
where A = 2lil/k. Discuss the behavior of the solutions of this equation along
the lines of example 1.3.

ExERcisE 8.2. For c >0, h >0, to - 1 =O(s) as a -* 0, find the periodic
solutions of

(8.2) z + x = e[-ct + hx3 + x cos 2wt].

Plot the frequency response curves, find the intervals on the w-axis for which
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there are one, two and three periodic solutions and discuss the stability
properties of these solutions.

EXERCISE 8.3. The equation of a plane pendulum with vertically
oscillating sinusoidal support can be written as

g - Iw2 sin cut
(8.3) + c

1

sin 0 = 0.

If T = wt, I/1= E, E2k2 = g/1w2, c/w = 2Ea we have

0" + 2Ea9' + (E2k2 - E sin T) sin 0 = 0, = d/dr.

Show that the system for E small has periodic solutions of-period 2irlw when 0
is in the neighborhood of either 0, it or 27r and cos I(-2k2). Determine the
stability properties as functions of a and k. Introduce variables 0 and Q by

0 = 0 - e sin r sin 0,

0'=ES2-s cosrsin 0,

and use averaging.

EXERCISE 8.4. Consider the second order system

(8.4) x + x = E[f (x) - ci + sin wt],

where c > 0, 0 < E < 1, f (x) is a continuous function of x and w -1 = O(E).
For e small, determine co so that the equation has periodic solutions of
period 27r/w. Determine the expression for the approximate frequency
response. Study the stability of the solutions. Show that if y = 6-1(C02 -1)
then the periodic solutions are asymptotically stable if c > 0 and

d [y + G(a) + O(E)] < 0,

where G(a) = (1/Tra) f
12v

f (a cos ) cos 0 do. Use the transformation x = A(t)
cos (wt + 0(t)), -wA(t) sin (wt + 0(t)). Note that y + G(a) = 0 is the
approximate relationship between the amplitude and frequency of the
periodic motion of the autonomous problem with c = 0.

V.9. Remarks and Suggestions for Further Study

The results of Section 1 on conservative systems are extremely simple but
at the same time not very informative except for dimension 2. For high
dimensional conservative systems, the theory has been and will continue to be
a challenge for many years to come. Recently, Palmore [1] and Palamodov [1]
have proved H(p,q) = p'p/2 + V(q) real analytic and q not a minimum of V
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implies the equilibrium point (0,0) is unstable. Laloy [1] gave a simple example
showing this result is false if one only assumes V is C°°. For further references
on this problem, see Rouche, Habets and Laloy [1]. For other fascinating
aspects of conservative systems, see Poincare [2] , Birkhoff [1] , Kolmogorov [1] ,
Arnol'd [2] , Moser [13] , Siegel and Moser [1] .

The method of averaging of Section 3 evolved from the famous paper of
Krylov and Bogoliubov [1] and is contained in the book of Bogoliubov and
Mitropolski [1]. The basic Lemma 3.1 is due to Bogoliubov [1]. Theorem 3.3
as well as the example in Section 7 are due to Sethna [1]. There are many
variants of the method of averaging and the reader may consult Mitropolski
[1] and Morrison [1] for further discussion as well as additional references.
Other illustrations of equations which exhibit interesting oscillatory pheno-
mena may be found in the books of Bogoliubov and Mitropolski [1], Malkin
[2], Minorsky [1], Andronov, Vitt and Khaikin [1], Hale [7].



CHAPTER VI

Behavior Near a Periodic Orbit

In Section III.6 and Chapter IV, a rather extensive theory of the behavior
of solutions of a system (and perturbations of a system) near an equilibrium
point has been developed. In this and the following chapter, we consider the
same questions except for a more complicated invariant set; namely, a closed
curve.

Suppose u: R - Rn is a periodic function of period w which is continuous
together with its first derivative, du(9)/df zA0 for all 0 in (-oo, oo) and
u: [0, co) -* Rn is one-to-one. If

(1) F={xeRn:x=u(O), 05O<w},
then F is a closed curve and is actually a Jordan curve.

Suppose f : Rn -- Rn is continuous and satisfies enough smoothness pro-
perties to ensure that a unique solution of

(2) x=f(x)
passes through any point in Rn.

Throughout this chapter, it will be assumed that the curve F is invariant
with respect to the solutions of (2); that is, any solution of (2) with initial
value on r remains on I' for all tin (-co, oo). If r is a periodic orbit of (2-),
then there is a periodic solution 0(t) of (2) such that

F={x: x=0(t), -oo <t < co}.

In this case, we may choose the parametric representation of r to be given by
the function ; that is, we may choose u = 0. For periodic orbits, such a
parametric representation always will be chosen in the sequel. If r is not a
periodic orbit, then it must contain equilibrium points and orbits whose
and w-limit sets are equilibrium points.

From the previous remarks, if x*(t), - oo < t < oo, is any solution of (2)
with x*(0) in r, then there are three possibilities: (i) there is a r > 0 such that
x*(t) is periodic of least period -r, (ii) x*(t) is an equilibrium point; (iii) x*(t) has
its a- and w-limit sets as equilibrium points. In the first case, the curve r can

213
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be represented parametrically by x = x*(0), 0 <_ 0 <T and any solution of (2)
on P [such a solution must be x*(t + a) for some constant a] defines a function
0(t), -co < t < co, such that B = 1. In either case (ii) or (iii) any solution
x*(t) of (1) on P defines a continuously differentiable function 0(t) _
u-1(x*(t)), - co < t < co, and B = g(8) where g(0) = [8u-1(u(0))/8x] f (u(8)) =
[du(0)1d0]-1f (u(0)). In particular, in case (ii), there must be a zero of g(0). In
all three cases, we can, therefore, assert the existence of a continuous function
g(0) such that

(3)

ddb)
g(0) =f (u(0)), g(0 + w) = g(B), 0 0 < w.

Furthermore, if r is generated by a periodic solution of (2), then g(0) can
be taken -1 and if P contains an equilibrium point of (2), there must be a
zero of g(0).

In this chapter, our main concern is the behavior of the solutions of (2)
near a periodic orbit (sufficient conditions for stability and the saddle point
property) and the existence of a periodic orbit for the system

(4) x = f (x) + F(x, t),

for the case in which F is a small perturbation independent of t. In the next
chapter, the discussion will allow r to be an arbitrary invariant curve and the
perturbations F to depend on t. In both cases, the first step will be the intro-
duction of a convenient coordinate system in a neighborhood of P. Such a
coordinate system is introduced in this chapter.

VI.1, A Local Coordinate System about an Invariant Closed Curve

By a moving orthonormat system along P is meant an orthonormal
coordinate system {e,(0), ..., en(0)} in Rn for each 0 in [0, w] which is
periodic in 0 of period w and one of the ej(0) is equal to [du(O)/dO]/ Jdu(0)/d0J.

The first objective is to show there are moving orthonormal systems for
P. For this purpose, the following lemma is needed.

LEMMA 1.1. If n',?: 3 and v(0) is a unit vector in Rn which has period w
and satisfies a lipschitz condition, then there exists a unit vector e (indepen-
dent of 0) such that v(O) =,;4-- ±6 for all 0.

PROOF. This lemma is a consequence of well known facts from real
variables. In fact, the set x = v(0), Jv(0)J = 1, 0 < 0 < w, is a curv'on the
unit sphere Sn-1 in Rn. Since v(0) is lipschitzian, this curve is rectifiable and a
rectifiable curve on a sphere in Rn, n > 3, covers a set of measure zero. There-
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fore, there always exists a vector 6 in Sn-1 which is not on this curve or the
curve defined by -v(O).

Rather than invoke this result, a proof is given here. If S is any set on the
unit sphere in Rn of diameter <d, then there is a constant K (independent of
S) and a spherical cap S, such that S e S, and the area of S, is less than
Kdn-1. If M is the lipschitz constant for v; that is, I v(0) - v(O')I < MI 0 - 0'1,
and if the interval [0, w) is divided into N equal parts, then the curve defined
by v(8), 0 < 0 < w, may be covered by spherical caps whose total area is less
than NK(Mw/N)n-1. Similarly, the curve defined by -v(0), 0 5 0 <w may
be covered by spherical caps whose total area is less than the same quantity.
Since n >_ 3, this upper bound on the area approaches zero as N -* 00, which
implies that the vector e can be chosen from " almost " any place on the unit
sphere. This proves the lemma.

For the statement of the next result, let'P(R, Rn) designate the space of
functions taking R -. Rn which are continuous together with all derivatives
up through order p.

THEOREM 1.1. If u e'P(R, Rn), p >_ 2, u(0 + w) = u(O), ->O,
du(0)/d0 0, 0 < 0 < w, and r is defined in (1), then there is a moving
orthonormal system along r which is 'P-'(R, Rn).

PROOF. Suppose n >_ 3. If v(0) = [du(0)/dO]/ Jdu(0)/d0J, then the hypo-
theses on u imply that v is periodic of period w and lipschitzian. Let eI be a
constant unit vector (the existence of which is assured by Lemma 1.1) such
that el = ± v(0), 0 < 0 < co. Adjoin to el any constant vectors e2, ..., en
such that {el, ..., en} is an orthonormal basis for Rn. The moving orthonormal
system along r is then obtained in the following manner: let S be the (n - 2)-
dimensional subspace of Rn orthogonal to the plane formed by el and v(0).
Rotate the coordinate system about S in the positive sense until el coincides
with v(0) (see Fig. 1.1). If e2(0), ... , n(0) are the rotated positions of e2, ... ,
e' n, then the moving orthonormal system is given by

(1.1) {v(0), 62(0),-, en(0)}, 0 < 0 < w.

If Y1(O), j = 1, 2, ..., n, are the direction angles of v(0), e1 v(0) = cos y1(B),
j = 1, 2, ... , n then one can show that the vectors are given by

(1.2) 0 = e
cos Y1(0)

e 2, 3, ..., n.
1 + Cosy, (0)

The derivation of (1.2) proceeds as follows. Suppose

e1=e1+A5ei+µ1z,

where e1 belongs to S. The final position of e1 is then

61=e1+A,ei+µ,v,
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Figure VI.1.1

where A', µ' are determined from A1,µ, by a rotation in the e1, v plane by an
angle y1 with cos y1 = Therefore

a;=-µ1,
and

µ = A. + 2p. cos yl,

e1 = e1 - (A1 + µ1)e1+ [A5 + 1xs(2 cos yl - 1)]v.

Since S is orthogonal to e1, v, it follows that

e1 [e1-A1e1-µ1v]=0,
v [e1-A1e1-µ1v]=0,

and this implies

cos 71 cos Y1 cos Y1
Al

sin2 y1 '
µ1 sin2

y1.

Substituting in the expression for 61, one obtains (1.2).
For the case n = 2, the moving orthonormal system is easily constructed

as

(1.3)

ORDINARY DIFFERENTIAL EQUATIONS

(v(e), e2(0)), 52(0) = +(-v2(0), v1(0)),

where the coordinates of v are v1, v2 .
The explicit formulas (1.1)-(1.3) for the moving orthonormal system
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along r clearly imply that the system is 'P-1(R, Rn) if u is'P(R, Rn). This
completes the proof of the theorem.

Once a moving orthonormal system along a closed curve r is known, it is
possible to use this system to obtain a coordinate system for a "tube " around
r. In fact, with u(0) as in Theorem 1.1, v(0) = [du(0)/d0]/ Jdu(0)/d0J, let
(v, e2 , ... , 6n) be a moving orthonormal system along r. Consider the
transformation of variables taking x into (0, p), p = COl(p2, ... , pn) given by

(1.4) x = u(0) + Z(0)p, Z = [62, ... , en], 0 <_ 0 < CO.

The matrix Z is the n x (n - 1) dimensional matrix whose columns are the
vectors 62 , ... , 6. .

To show that this transformation is well defined in a sufficiently small
neighborhood of r, that is, p sufficiently small, let

F(x, 0, P) def u(0) + Z(O)p - X.

The partial derivatives of F with respect to 0, p are

OF du(0) dZ(0)

80 d0 + d0 p'

OF
= z(e).

11P

For p = 0, det[8F/80, 8F/8p] = Jdu(0)/d0J det[v(0), Z(0)] 0 0 for 0 <_ 0 <_ w
since du(0)/d0 0 for all 0 and v(0), Z(0) is a moving orthonormal system.
Therefore, there is a 8 > 0 independent of 0 such that det[8F/80, 8F/8p] 0 0
for JpJ < 8, 0 < 0 < co. Since the closed curve r is compact, a finite number of
applications of the implicit function theorem shows that (1.4) is a well defined
transformation for 0 < 1p < pi, pi > 0, 0 < 0 < w.

We now make the transformation (1.4) on the differential equation (4)
using the fact that u satisfies (3) to obtain new differential equations for 0, p.
It is assumed that f has continuous first derivatives with respect to x and u
satisfies the conditions of Theorem 1.1.

If x(t) = u(0(t)) + Z(0(t))p(t) satisfies (4), then

du(O) dZ(0)
(1.5) L d0 + d0 P] + Z(0)P =f (u(0) Z(0)p) + F(t, u(0) + Z(0)P)

In a pi-neighborhood rp, of r, the coefficient matrix of 6, p is nonsingular.
Therefore, equation (1.5) can be solved for O, p as a function of 0, p, t. The
explicit form of the equations are obtained as follows. Using (4) and projecting
both sides of (1.5) onto v(0), one obtains

(1.6) 0 = 9(0) +fi(0, p) + h'(0, p)F(t, u(0) + Z(O)p),
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where h' is the transpose of h,
1

(1.7) h(0, p) _ [ I dd00) + V
,(O) dZ d(O)

P] v(8),

f1(0, p) = -h'(0, p) d d00) pg(O) + h'(0, P)[f (u(0) + Z(0)P) -f (u(0))],

By projecting both sides of (1.5) onto Z(0), and using the fact that
Z'(0) f (u(0)) = Z'(0)g(0) du(0)/d0 = 0, where Z' is the transpose of Z, one
obtains

l
(1.8) P = A(0)P +f2(0, p) + Z'(0) [I - d

d8) Ph'(0, P)] F(t, u(0) + Z(0)P)

where Z' is the transpose of Z and

(1.9) A(0) = Z'(0)
dZ(0)[-

d0
g(0) +

af(aux(0))
Z(0)

f2(0, p) = -Z'(0)
dZ(0)

d0 Pfi(0, P)

+ Z'(0) [f(u(0) + Z(0)P) -f (u(0)) -
of (a (0)) Z(0)P]

.

From the above expressions for these functions, it is easily seen that
f1(0, p), f2(0, p) have continuous partial derivatives with respect to p up
through order k >_ 1 if f (x) has continuous partial derivatives with respect to x
up through order k >_ 1. Furthermore, f1(0, p) = 0(I pI) as p -* 0 and f2(0, 0) =0,
af2(0, 0)/0p = 0. The number of derivatives of these functions with respect to
0 is one less than the minimum of the derivatives of f and du(0)/dO. Also, the
equations in 6, p contain F in a linear fashion multiplied by matrices which
have an arbitrary number of derivatives with respect to p and (p - 1) deriva-
tives with respect to 0 if u has p derivatives with respect to 0. These results
are summarized in

THEOREM 1.2. If u satisfies the conditions of Theorem 1.1 with p > 2
and f e WP-1(Rn, Rn), then there exist a 8 > 0, n-vectors f2(0, p), h(6, p) a
scalar f1(0, p), an (n - 1) x (n - 1) matrix A(0) and an (n - 1) x n matrix
B(0, p) with all functions being periodic in 0 of period co and having con-
tinuous derivatives of order p - 1 with respect to p and p - 2 with respect to
B for 0 < IpI <_ fi, - oo < 0 < co,

(1.10) fi(0, p) = O(IPI) as IPI -0,

f 2 ( 0 ,0 )=0,= 0 2 (e, 0)
0

ap
=
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such that the transformation (1.4) applied to equation (4) for IpI < S yields the
equivalent system,

(1.11) = g(0) +fi(0, p) + h'(0, p)F(t, u(0) + Z(0)p),

A(0)p +f2(0, p) + B(0, p)F(t, u(0) + Z(0)p),

where g(0) is given in (3).

VI.2. Stability of a Periodic Orbit

In this section, the case is discussed in which the closed curve r is
generated by a nonconstant cu-periodic solution xc of (2) and f has continuous
first derivatives with respect to x. As mentioned before, we can assume that
the parametric representation of r is x = x°(0), 0 < 0 < co; that is, u can be
chosen as xO and u satisfies (3) with g(0) =1 for 0 < 0 < w. Since f (x) has
continuous first derivatives in x, the function u(0) has continuous second
derivatives in 0. In terms of the local coordinate system (1.4), the behavior of
the solutions of (2) near r are given by the solutions of the differential system

(2.1) = 1 +fi(0, p),

A(0)p +f2(0, p),

A(0) =
Z,(0)

L_
d (O) + af(a (0)) Z(0))],

where fi(0, p), f2(0, p) are continuous in 0, p, have continuous first derivatives,
with respect to p, and have period w in 0. These functions satisfy (1.10); that
is,

(2.2) I fi(0, p)I = O(IPI ), as IpI - .0,

f2(0, 0) = 0,
af2(0, 0) = o.

ap

Also associated with the periodic solution u(0) of (2) is the linear varia-
tional equation

(2.3)
dy af(u(0))

d0 ax y.

This linear system with periodic coefficients always has a nontrivial
w-periodic solution. In fact, du(0)/d0 is a nontrivial w-periodic solution of
this equation since (2) implies d2u/d02 = [af (u(0))/ax] du/d0.- Therefore, at
least one characteristic multiplier of (2.3) is equal to unity.
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LEMMA 2.1. If the characteristic multipliers of the n-dimensional
system (2.3) are µl, ... ,µn_1 1, then the characteristic multipliers of the
(n -1)-dimensional system

(2.4)' de = A(B)p,

where A(O) is given in (2.1), are µl, ..., µn_1.

PROOF. Suppose Z is then x (n - 1) dimensional matrix defined in (1.4).
The vector du(0)/d0 and the columns of Z(O) are orthogonal since v(O), Z(B) is
a moving orthonormal system. Thus, for any n-vector y, there is uniquely
defined a scalar P and (n -1)-vector p such that y = P du(O)/d8 + Z(O)p. If y
is a sohition of (2.3), then using the fact that d2u/d62 = [8f (u(6))/8x] du/dO
and the columns of the matrix (v, Z) are orthogonal, one immediately deduces
that p satisfies (2.4). This shows that the normal component of the solution of
the linear variational equation coincides with the solution of the linear varia-
tional equation of the normal variation.

Now suppose w2, ..., wn are (n - 1) solutions of (2.3), Yl is then x n -1
matrix defined by Y1= [w2, ..., wn] and Y(O) = [du(O)/d6, Y1(0)] is a funda-
mental matrix solution of (2.3). If K is defined by Y(w) = Y(0)K, then the
eigenvalues of K are the characteristic multipliers of (2.3). From the definition
of Y, it follows immediately that K must be of the form

0 K1K= [1 K2J

and, therefore, the multipliers µl, ... , It,, of (2.3) defined in the statement of
the lemma are the eigenvalues of K1. If Y1= [du/dO]a + ZR, where
row(a2, ..., an) and R is an (n - 1) x (n - 1) matrix, then the remarks at
the beginning of this proof imply that R is a matrix solution of (2.4) with
R(w) = R(0)K1. The matrix R(0) is nonsingular. In fact, if there exists an
(n -1)-vector c such that R(0)c = 0, then Yl(0)c - [du(0)/d6]cac = 0. Since
Y(0) is nonsingular, this implies c = 0 and, therefore, R(0) is nonsingular.
Since R(0) is nonsingular, R(O) is a fundamental matrix solution of (2.4) and
K1 is the monodromy matrix of R. Thus, the eigenvalues of K1 are the multi-
pliers of (2.4) and the proof of the lemma is complete.

Let us recall some of the previous concepts of stability. If M is a set in
Rn, an 9-neighborhood U,(M) is the set of x in Rn such that dist(x, M) <7).
An invariant set M of (2) is said to be stable if for any e > 0, there is a a > 0
such that, for any xc in U5(M), the solution x(t, x°) is in UE(M) for all t >_ 0.
An invariant set M of (2) is said to be asymptotically stable if it is stable and in
addition there is b > 0 such that for any xO in Ub(M) the solution x(t, xc)
approaches M as t -i- oo. If u(t) is a nonconstant. periodic solution of (2), one
says the periodic solution u(t) is orbitally stable, asymptotically orbitally stable
if the corresponding invariant closed curve r generated by u is stable,
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asymptotically stable, respectively. Such a periodic solution is said to be
asymptotically orbitally stable with asymptotic phase if it is asymptotically
orbitally stable and there is a b > 0 such that, for any xo with dist(xo, F) < b,
there is a -r = T(xo) such that l x(t, xo) - u(t - T)l -- 0 as t --- oo.

THEOREM 2.1. If f is in '1(Rn, Rn), u is a nonconstant w-periodic solu-
tion of (2), the characteristic multiplier one of (2.3) is simple and all other
characteristic multipliers have modulus less than 1 (characteristic exponents
have negative real parts), then the solution u is asymptotically orbitally stable
with asymptotic phase.

PROOF. The solutions in a neighborhood of the orbit r of u can be
described by equation (2.1). The above hypotheses and Lemma 2.1 imply that
the characteristic multipliers of (2.4) have modulus less than 1. For a suffi-
ciently small neighborhood of r; that is, p sufficiently small, t may be elimina-
ted in (2.1) so that the second equation in (2.1) has the form

(2.5) d0 = A(O)p +f3(0, p),

where f3(0, p) has continuous first partial derivatives with respect to
p, f3(0, 0) = 0, ef3(0, 0)/8p = 0. Theorems 111.2.4 and 111.7.2 imply "there
are K > 0, a > 0, rl > 0 such that for lpol < rl the solution p(0, 0o , po),
p(Oo, 00, po) = po, of (2.5) satisfies

(2.6) l P(0, 0o , Po)l < Ke-ace-0d l pol, 0 > 00.

This proves the asymptotic stability of the solution p = 0 of (2.5). Since B > 1/2,
we have asymptotic orbital stability of F.

Equations (2.5) yield the orbits of (2) near F. The actual solutions of (2)
near r are obtained from the transformation formulas (1.4) and the vector
(0(t), p(O(t), Oo, po)) where p(0, 00 , po) satisfies (2.5) and 0(t), 0(to) = 00, is the
solution of the first equation in (2.1) with p replaced by p(0, 0o, po). To prove
there is an asymptotic phase shift associated with each solution of (2), it is
sufficient to show that 0(t) - t approaches a constant as t -i oo. If 0 = t + b,
then

(2.7) 0(t) =fi(t + r, P(t + +/r, to + +b0 , po)).

Since 4 > 1/2, the map taking t to 0(t) has an inverse. Making use of this
fact and recalling that 0(t) = t + /i(t), we have

1(t) = 0(t0) + f tofi (O(t), P(O(t), 0., Po))dt

0(t)
= q(to) + fe(to)fi(0,P(O),Oo,Po))dt do .
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Since if, (O,p) I < L I p 1, relation (2.6) and I dtfdO i < 2 imply

f1(0,p(0,0o,Po))dOI <2LKe '(0 -Bo)lpoI.

Since 0(t) -> 00 if and only if t -> 00 and

f 2LKe «(0-0o)IpoIdO <00,

we have

limt_- f .f'(0(t),P(0(t),00,P(,))dt
t0

exists. From (2.8), this implies fi(t) approaches a constant as t This
completes the proof of Theorem 2.1.

EXERCISE 2.1. Give an example of an autonomous system which has an
asymptotically orbitally stable periodic solution but there is no asymptotic
phase.

THEOREM 2.2. If u is a nonconstant w-periodic solution of (2) with
(n - 1) characteristic multipliers of (2.3) having modulii different from one,
then there exist a neighborhood Wr of the closed orbit F in (1) and two sets
Sr, Ur such that Sr n Ur = F and any solution of (2) which remains in Wr
for t >_ 0 (t < 0) must lie on Sr (Ur). If a solution x of (2) has its initial value in
Sr (Ur) then x(t) --a F as t -± oo (t -->- - oo). Furthermore, if p (q) characteristic
multipliers of (2.3) have modulii <1 (>1) then Sr (Ur) is either a p-dimen-
sional (q-dimensional) ball times a circle or a generalized Mobius band.

PROOF. In a neighborhood of the periodic orbit, r, the orbits of (2) are
given by the transformation (1.4) and the solutions p(O) of the real system of
differential equations (2.5). The Floquet representation theorem implies that
the principal matrix solution of (2.4) can be expressed as P(0)ea0 where P(0)
is periodic of period co. Furthermore, Exercise 111.7.2. asserts that P(0) can
always be chosen real if it is only required that P be periodic of period 2w. If P
has been chosen in this manner, the real transformation p = P(0)r applied to
(2.5) yields the equivalent real system

(2.9) r = Br +f4(0, r),

where f4(0, 0) = 0, ef4(0, 0)/8r = 0, f4(0, r) is periodic in 0 of period 2w, and
the eigenvalues of B have nonzero real parts. The conclusion of the theorem
now follows immediately by the application of Theorem IV.3.1 to (2.9) and
using the transformation p = P(0)r.
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It is reasonable to call Sr and Ur the stable and unstable manifolds,
respectively, of the periodic orbit F.

The following example illustrates that Sr may be a Mobius band. It
looks complicated, but actually isn't if one looks at the example in the
manner in which it was invented; namely, the development was from the
final result desired to the differential equation. Consider the equations

(2.10) (a) r = A(8)r,
(b) O = 1,

where r = (ri, r2), 0 are given in terms of the coordinates x, y, z in R3 by
x = (r1 + 1) cos 47r8, y = (rj + 1) sin 47r8, z = r2, and A(0 + 1/2) = A(8) with

A(8) = 2 r -cos 47r8 rr + sin 47T0
L -ir + sin 4ir8 cos 47r8

In R3, there is a periodic solution of period 1/2 and the periodic orbit r is
the circle of radius one in the (x, y)-plane with center at the origin. It will be
shown that this periodic orbit has stable and unstable manifolds which are
Mobius bands.

The principal matrix solution of the equation (2.10a) is P(O) exp BO
where

_ cos 27r8 sin 27r8P(8) -sin 27r8 cos 27r8 '

B 0
0].

The matrix A(8) has period 1/2 whereas the matrix P(8) has period 1 in 0.
Furthermore, it is easily seen that no Floquet decomposition of the principal
matrix solution can have real periodic part and at the same time have period
1/2. The characteristic multipliers of the system are the eigenvalues of
P(1/2) exp B which are -e-I, - e.

The stable and unstable manifolds of r are given by

Sr = {(x, y, z) : r = e-29 (cos 27r8, -sin 27r8)a, 0 <_ 0 < 1, -ac < a < ac},

Ur = {(x, y, z) : r = e20 (sin 27r8, cos 2rr8)b, 0 < 8 < 1, -bo < b < bo},

where ao, be are positive constants. It is clear that these surfaces are Mobius
bands.

EXERCISE 2.2. Prove that any solution of the stable (unstable) mani-
fold Sr(Ur) of F in Theorem 2.2 must approach the orbit r with asymptotic
phase as t --* co (t -- - oo).
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VI.3. Sufficient Conditions for Orbital Stability in Two Dimensions

Consider the real two dimensional system

(3.1) z = X(x, y),

y = Y(x, y),

where X, Y are continuous together with their first partial derivatives in R2.
Suppose xo(t), yO(t) is a nonconstant periodic solution of period w of (3.1) whose
orbit in the (x, y)-plane is P. The linear variational equations of this solution
are

ax ax
(3.2)

ax x + a y'y

ay ay
y ax x+-Y,y

where the functions are evaluated at xo(t), yo(t). Lemma III.7.3 implies that
the product of the characteristic multipliers of (3.2) is

exp [fr(ax/ax + aY/ay) dt] .

J

Since 1 is a characteristic multiplier of (3.2), this exponential must be the
other multiplier. Using Theorems 2.1 and 2.2, we can therefore state the
following sufficient conditions for stability and instability of P.

LEMMA 3.1. An w-periodic solutionxo(t), yo(t)of (3.1)has a multiplier of
(3.2) less than 1 and, thus, is asymptotically orbitally stable with asymptotic
phase if

fo [ax(xo8x
YOM) + aY(xO(t), YOM)

dt <0,

and has a multiplier of (3.2) greater than 1 and hence unstable if this integral
is positive.

To illustrate the application of this lemma, consider the scalar equation

(3.3) x+f(x)x+g(x)=0
or the equivalent system

(3.4) x=y,
y = -g(x) -f (x)y,

where f, g are continuous together with their first derivatives on R, and f
has isolated zeros.
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If E(x, y) = y2/2 + G(x), G(x) = fag(s) ds, then the derivative 2 of E
along the solutions of.(3.4) is given by

(3.5) E= -f(x)y2=2f(x)[G--E].
If x(t) is a nonconstant solution of (3.3), then there can be no I such that

z(1) = z(1) = 0. Ih fact, if this were the case, then xO = x(1) would be a zero of g
and uniqueness would imply x(t) = xc for all t. Suppose z(l) = 0 and z(1) 0.
Then the solution x(t) has a local extremum at I and must be either greater or
less than x(l) in a neighborhood of 1. Since the zeros off (x) are isolated, it
follows that f (x(t)) must be of constant sign near 1 and consequently E cannot
have an extremum at 1.

If P is a closed orbit of (3.4) determined by a periodic solution x°(t) of
(3.3), then E assumes a minimum value on r for t =I and the above remark
implies that f (x0(1)) = 0, y(1) = 0(1) 0. Therefore, if G(xs(t)) = h, then
E(t) > h for all t. From (3.5), it follows that

E
+2f

2(G - h) f
E-h

and integration over r yields

E-h

(3.6) fr f dt = fr (E hf dt.

From Lemma 3.1 and the special form of (3.4), the linear variational
equation of the orbit F will have a multiplier <1 if (3.6) is positive and >1
if (3.6) is negative. In particular, this multiplier will be <1 if G(x) takes the
same value y for all zeros of f (x) and [G(x) -y] f (x) is positive when f (x) 0 0.
As a particular case which will be useful in the sequel, we state

LEMMA 3.2. If f, g have continuous first derivatives in R a4d
(i) f (x) <0 for a < x < S, f (x) >0 for x < oc, x > p and a < 0 < P,

(ii) xg(x) > O for x zA 0,

(iii) G(a) = G(fl) where G(x) = fog(s) ds,

then any closed orbit of (3.4) has a characteristic multiplier in (0, 1) and is
thus asymptotically orbitally stable with asymptotic phase.

An important special case of Lemma 3.2 is the van der Pol equation
k(1 -x2)x+x=0, k>0.

VIA. Autonomous Perturbations

Consider the system of equations

(4.1) x =f (x) -4- F(x, s),
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where f : Rn - Rn, F: Rn+1- - Rn are continuous, f (x), F(x, E) have continu-
ous partial derivatives with respect to x and F(x, 0) = 0 for all x. If system (2)
has a'nonconstant periodic solution u(t) of period to whose orbit is r, then the
linear variational equation for u is

(4.2)
af(u(t))

y ax

THEOREM 4.1. If n - 1 of the characteristic multipliers µl, ... , µn_1 of
(4.2) are 1, then there is an so > 0 and a neighborhood W of P such that
equation (4.1) has a periodic solution u*( , e) of period w*(E), 0:5 181 :5 Eo,
such that 0) = u( ), w*(0) = to, u*(t, E) and w*(e) are continuous in t. E
for tin R,0 < is I < so. If none of µl , . . . , µn-1 is a root of one, then for any
constant k > 0, the neighborhood W can be chosen so that is the only
periodic solution of (4.1) of period <k in W. If µl, ... µ,.l_1 have modulii <1,
then is asymptotically orbitally stable with asymptotic phase and is
unstable if any µj has modulus > 1.

PROOF. Theorem 1.2 and the transformation (1.4) imply that system
(4.1) is equivalent to the system (1.11) with F(t, x) replaced by F(x, E) above.
Elimination of t in these equations yields a system

(4.3) LP =
dB

A(B)p + R(0, p, E),

where A(0), R(0, p, E) are co-periodic in 0 and R is in M) where
.Pili(rt, M) is defined in Section IV.2. Lemma 2.1 implies that the, charac-
teristic multipliers of dp/dO = A(0)p are the numbers µl, ... , µn_I. Theorem
IV.2.1 implies the existence of an so > 0, po > 0 and an to-periodic solution
p*(O, E) of (4.3) continuous in 0, E, 0 <_ Iel < so, p*(O, 0) = 0, and p*(0, E) is
the only to-periodic solution in the region jpj <po. Theorem IV.3.1 yields
the stability properties of p*(O, E) when µl, ..., µn_1 have modulii different
from one,. Using this p*(O, s) in the first equation in (1.11) and letting 0(t)
be the solution of this equation with 0(0) = 0, one finds there is a unique con-
tinuous w*(E), 0< IEI < Co, w*(0) =w, such that B(w*(E)) = co, 0 < IEI < Eo
The function 0(t), p*(0(t), e), and the transformation (1.4) yield the desired
periodic solution of (4.1) and the stability properties are as stated in the
theorem.

Suppose now that no j = 1, 2, ... , n - 1, is a root of 1. For any
integer k, the periodic solution u of (2) has period kw and, therefore, all of the
functions in the equations of the above proof can be considered as pperiodic
in 0 of period kw. The hypothesis on the µj imply by Theorem IV.2.1 that
there is a periodic solution of (4.3) of period kw for 0 < 1E1 < so and this
solution is unique in the region, I pi < po . Therefore, this solution must be the
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p*(0, e) given above. But, any periodic solution x of (4.1) which lies in a suffi-
ciently small neighborhood of F must define a closed curve in Rn with a
parametric representation of the form x = u(O) + Z(0)p(0, e) where p(0, e) is a
periodic solution of (4.3) of period kw for some integer k. This completes the
proof of the theorem.

EXERCISE 4.1. Suppose g(x, y) has continuous first derivatives with
respect to x, y. Show there is an so > 0 such that for I e I < eo the equation '

k(1 - x2)x + x = eg(x, x), k > 0,

has a unique periodic solution in a neighborhood of the unique periodic orbit
of the van der Pol equation

z- k(1 -x2)x+x=0.
Can you prove that this orbit is asymptotically orbitally stable with asymptotic
phase?

EXERCISE 4.2. Give an example of an autonomous system t = f (x)
which has an w-periodic orbit IF whose linear variational equation has 1 as a
simple multiplier and yet, in any neighborhood of r, there are other periodic
orbits.

EXERCISE 4.3. Is it possible for an equation x = f (x) to have an
isolated w-periodic orbit P whose linear variational equation has 1 as a simple
multiplier and yet, there is a perturbation sg(x) such that in any neighborhood
of F there is more than one periodic orbit?

VI.S. Remarks and Suggestions for Further Study

The particular construction of the moving orthonormal system given in
Section 1 is based on a presentation given by Urabe [1] for the case in which
the closed curve F is a periodic orbit. The manner in which the coordinate
system is used'to obtain a set of differential equations equivalent to (4) in a
neighborhood of r is different. Since Urabe discusses only the case of a
periodic orbit, it is possible to obtain the equations for the normal variation
explicitly in terms of t and not 0 as in (1.11). Lemma 1.1 was given by
Diliberto and Hufford [1]. Lemma 3.2 is due to Coppel [1, p. 86]. The stability
Theorem 2.1 was known to Poincare for analytic systems.

In general, it is very difficult to discuss the behavior of solutions of (2) in
a neighborhood of an orbit when more than one characteristic multiplier of
(2.3) has modulus equal to one. Hale and Stokes [1] have given the following
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result. If system (1) has a k-parameter family of periodic solutions, then the
linear variational equation has k characteristic multipliers equal to one. If the
remaining multipliers have modulus less than one, then every orbit in this
family is stable and, in fact, the solutions of (2) near this family approach a
member of this family asymptotically with asymptotic phase.

Autonomous perturbations of nonlinear systems which possess a k-para-
meter family of periodic solutions is extremely difficult and is discussed at
great length in the book of Urabe [1]. Under the hypothesis that only one
multiplier of the linear variational equation has modulus one, the behavior of
solutions near a periodic orbit of a nonautonomous perturbation of (2) will be
discussed in the next chapter. If the nonautonomous perturbation is " small "
for large t; that is, the system is " asymptotically " autonomous, then one can
discuss the qualitative relationship between all solutions of the nonauto-
nomous equation and the autonomous one without any hypotheses regarding
the solutions of the autonomous one (see Markus [1], Opial [1], Yoshizawa [1]).
For nonautonomous perturbations of k-parameter families of periodic solu-
tions, see Hale and Stokes [1], Yoshizawa and Kato [1].



CHAPTER VII

Integral Manifolds of Equations with a

Small Parameter

Assuming that system (VI.2) has an invariant set which is a smooth
Jordan curve r, it was shown in Chapter VI that a transformation of variables
could be introduced in such a way that the behavior near r of the solutions
of a perturbation of (VI.2), namely (VI.4), is reduced to a study of the
equations

6 = g(O) + 0(t, O, p),

P = C(O)p + R(t, 0, P),

where p represents the normal deviation from r and g(O) represents the
behavior of the solutions of the unperturbed equation on F. If g(O) -1,
the curve r corresponds to a periodic orbit and if g vanishes at some point,
then an equilibrium point lies on F.

For g(O) =1 and the perturbations independent of t, some specific results
were given in Chapter VI for the above equation. The analysis for this case
is extremely simple since the problem is easily reduced to the study of the
behavior near an equilibrium point of a nonautonomous system. On the
other hand, if 0, R contain t explicitly, then one cannot reduce the question
to such a local problem since t cannot be eliminated from the equations even
if g(O) - 1. One must study the behavior near the invariant set itself. If g(O)
has a zero for some value of 0, then the problem remains nonlocal even if
0, R are independent of t. Other difficulties also arise in this latter case and
will be discussed later.

The purpose of this chapter is to study such nonlocal problems for even
more general systems than the above. More specifically, we will be concerned
with equations of the form

(1) 6 = 0*(t, 0, x, y, e) = w(t, 0, e) + 0(t, 0, x, y, e),

x = A(O, e)x + F(t, 0, x, y, e),

y = B(O, e)y + G(t, 0, x, y, e),

090
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where (E, 0, x, y) is in R X Rk X Rn x R'n, the matrix A(0, E) is of such a
nature that the solutions of x =A (0, E)x approach zero exponentially as
t -a oo, the solutions of y = B(0, E)y approach zero exponentially as t -* - oo,
for some class of functions 0(t), and F, G, O are sufficiently small in some
sense for x, y, E small. These statements will be made more precise later.

It will not be assumed that the functions in (1) are periodic in the vector
0 although it will be assumed they are bounded for x, y in compact sets. In
specific applications, a frequently occurring special case of (1) does have all
functions periodic in 0. Such problems arise naturally from the study of the
local perturbation theory of differential equations near an invariant torus.
In many important situations, the flow on the invariant torus is parallel
in the sense that all solutions are either periodic or quasiperiodic and then
w(t, 0, E) in (1) is a constant vector. If equations (1) arise from the local
perturbation theory of a periodic orbit, then 0 is a scalar, w is a constant and
the Floquet theory for periodic systems permits one to take the matrices
A(0, e), B(0, E) independent of 0. For the general perturbation theory of
invariant torii with parallel flow, the matrices A(0, e), B(0, E) cannot be
taken independent of 0 because there is no Floquet theory for general almost
periodic systems. The exercises in Section 8 illustrate the many ways in which
equations of type (1) arise.

Definition 1. A surface S in (z, t)-apace is an integral manifold of a
system of ordinary differential equations z = Z(z, t) if for any point P in S,
the solution z(t) of the equation through P is such that (z(t), t) is in S for all
t in the domain of definition of the solution z(t).

Our interest in this chapter lies in determining in what sense the qualita-
tive behavior of the solutions of (1) and the system

(2) = w(t, 0, 0),

z = A(0, 0)x,

y = B(0, 0)y,

are the same. This system has an integral manifold S in B x Rk X Rn x R-
whose parametric representation is given by

S={(t, 0, x, y): x=0, y =0}.

Furthermore, under the stability properties alluded to earlier, the
manifold S has a ,type of saddle point structure associated with it. In fact,
there is an -R X Bk x Rn dimensional manifold of solutions of (2) which
approach S as t -* oo and an B x Bk x Bnl dimensional manifold of solutions
of (2) which approach S as t - - oo. Intuitively, one expects that O, F, and
G small enough for e, x, y small will imply the existence of some other integral
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manifold Sr of (1) which is close to S for s small and has the same type of
stability properties as the integral manifold S of (2).

Therefore, in this chapter, we determine conditions on 0, F, G which
ensure that (1) has an integral manifold of the form x =f (t, 0, s), y = g(t, 0, s),
(t, 0) in R x Rk, which for s = 0 reduce to x = 0, y = 0. For this specific
case,. such a surface will be an integral manifold for (1) if the triple of functions

[0(t) = 0(t, 00, to), x(t) =f (t, 0(t), s), y(t) = g(t, 0(t), e)],

is a solution of (1) for every to in R, 00 in Rk.
Section 1 consists of a historical and intuitive discussion of the problems

involved in determining integral manifolds for (1) as well as possible ap-
proaches to the solutions of these problems. The main theorems are stated
in Section 2 with the proof being delegated to Sections 3, 4, 5, 6. In Section 7,
applications of the results of Section 2 are given for equations which are
perturbations of equations possessing an elementary periodic orbit. Also,
in Section 7, the methdd of averaging of Chapter V is extended to averaging
with respect to t as well as the variables 0 in (1). The exercises in Section 8
illustrate more fully the implications of the results of this chapter.

Vll.1. Methods of Determining Integral Manifolds

This section is devoted to an intuitive discussion. of integral manifolds
as well as some methods that have proved successful in the determination
of-integral manifolds. We choose for our discussion the problem of perturbing
an autonomous system

(1.1) z = X(x),

which has a nonconstant coo-periodic solution u(t) such that n -1 of the
characteristic exponents of the linear variational equation

8X (u(t))
(1.2) y = 8x y

have negative real parts. As we have seen in Chapter VI, this implies the
orbit described by u is asymptotically stable and this in turn implies that the
cylinder

(1.3) S = {(t, x): x = u(0), 0 < 0 < coo, -oo < t < co},

in (t, x)-space is asymptotically stable. The cylinder S is an integral manifold
of (1.1) in R x Rn.

If we introduce the coordinate system

(1.4) x = u(0) + Z(0)p
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of Chapter VI, then in a neighborhood of S the solutions of the equation are
described by

A(0)p + R(0, p),

where 0(0, p) = Oflpl), R(0, p) = Oflp12) as JpJ --*0, all functions are too-
periodic in 0, and the characteristic exponents of dp/dO = A(0)p have negative
real parts. From the Floquet theory, a fundamental system of solutions of
this linear equation is of the form P(0)eBO, P(0+wo) = P(0). If we let
p(t) = P(0)z(t) and use the fact that 6 = 1 + O(I pl ), we obtain an equivalent
system

(1.6) = 1 + 01(0, z),

z = Bz +Z(O, z),

where 01(0, z) = Oflzl), Z(0, Z) = O(Iz12) as JzJ -*0 and the eigenvalues of B
have negative real parts.

For the sake of our intuitive exposition, we need the following elementary
result proved in Chapter X, Lemma 1.6. There is a positive definite matrix C
such that any solution of the linear system z = Bz with initial value on the
ellipsoid z'Cz = c > 0, a constant, must enter the interior of this ellipsoid
for increasing time. In Lemma X.1.6, it is shown that the matrix
C =

J0w

eB'teBtdt satisfies the desired properties. Since Z(0, Z) = O(Iz12) as

IzI ->0, there is a co > 0 sufficiently small such that any solution of (1.6)
with initial value on the set

U8(c) _ {(t, x): x = u(0) + Z(0)P(0)z, 0< 0< wo, z'Cz = c,

-0o<t<00},0<c_co,
must enter this set for increasing t (and therefore remain inside this set).
The set U8(c) projected into the x-space is a tube surrounding the closed
curve W = {x : x = u(0), 0 <_ 0:!9 wo}. In two dimensions, it is an annulus around
W. In this case, the geometry is very simple since U8(c) represents a cylinder
inside S and a cylinder outside S.

Now if the original differential equation (1.1) is perturbed to the form

(1.7) i = X(x) + EX*(t, x)

where X*(t, x) is bounded in a neighborhood of S, then for a given c > 0 and
E sufficiently small, the solutions will still be entering U8(c) as time increases.
Therefore, for a fixed c > 0, we would expect some kind of integral surface
inside U8(c) for s small and it should look similar to a cylinder. However,
even if such a surface exists we would not expect the solutions on this surface
to behave in a manner similar to the behavior of the solutions on the original
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S since these solutions have no strong stability properties associated with
them. This is precisely why we discuss the preservation of the structure and
stability properties of the set S rather than the preservation of any such
properties for a particular solution on S.

Some methods for asserting the existence of integral manifolds for the
perturbed equation are now given. If the transformation (1.4) is applied to
(1.7), the equivalent equations are

(1.8) =1 + 0(0,P) + E0*(t,0,P),

P = A(B)P + R(0, p) + ER*(t, 0, p).

Method 1 (Levinson-Diliberto). If we assume that the perturbation
term is to,-periodic in t, then the above discussion of the geometric implica-
tions of stability allows one to obtain an annulus map via the differential
equation (1.7) in the following way. Let U8i(c) be U8(c) n {t =T}; that is, the
cross section of U8(c) at t = T. Actually, all of these cross sections are the
same and equal to Ua0(c). If x(t, xo) is the solution of the perturbed equation
(1.7) with initial value xo at t = 0 and e is sufficiently small, 'then for any
T > 0, the function x(r, ) is a mapping of U8o(c) into the interior of U8z(c) =
U80(c); that is, a mapping of U8o(c) into itself. Because of the strong
stability properties of the curve le and the fact that solutions " rotate "
around this curve, one would suspect that there is a curve `FEZ such that
x(r, FEZ) = leET and fos = W. If this is true and if T is chosen to be wI,
then the periodicity in the equation implies x(kwl, We.)) = `0E(0, for every
integer k. By considering the " cylinder " generated by the solutions which
start on We,,,,, we obtain an invariant manifold of the equation. In this case,
the solutions on the cylinder can be described by the solutions of an equation
on a torus, the torus being obtained by identifying the cross sections of the
cylinder at t = 0 and t = col. The basis of this idea was proposed and ex-
ploited in a beautiful paper of Levinson (1950). Using the idea of the proof
of Levinson, Diliberto and his colleagues greatly simplified and improved
the work of Levinson as well as discussing integral manifolds of a much more
complicated type. In fact, if the perturbation-term X* in (1.7) is an arbitrary
quasi-periodic., function, then it can be written in the form F(t, t, ..., t, x)
where F(tl, ... , tp, x) is periodic in tf of period coy , j = 1, ... , p. The functions
0*, R* in (1.8) have this same periodicity structure in t. By artificially
introducing variables j such that = 1, we obtain from (1.8) a system

i=1, j=1,2,...,p,
= 1 + 0(0, p) + eP*(B, , p),

P = A(B)P + R(0, p) +eQ*(B, , p),

where P*(0, , p), Q*(0. , p), = gyp), are periodic in 0 and . This
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is a special case of (1) with 0 in (1) a (p + 1)-vector consisting of the scalar
0 above and the p-vector . Notice that the equations no longer contain t
explicitly. Diliberto has introduced an ingenious device to discuss integral
manifolds for such equations by generalizing the idea of the period map.
The interested reader may consult the references for the details of this method
as wells the applications.

Method 2 (Partial Differential Equations). Suppose we have a system

(1.9) (a) 0 = w(0) + 0(0, x),
(b) z = A(0)x + F(0, x),

where 0 in Rk, x in Rn are vectors, and all functions are periodic in 0 of
vector period w. If S = {(0, x) : x = f (Q), f (0 + co) = f (0), 0 in Rk} is to be an
integral manifold of this equation, then x(t) =f (0(t)), where 0(t) is a solution
of

(1.10) 0 = w(0) + 0(0, f (0)),

must satisfy (1.9b). Performing the differentiation, we find that f must
satisfy the partial differential equation

(1.11) Of
[w(0) + 0(0,f)] - A(0)f = F(0, f ), f (0+ u,) =f (0).

This method has not been completely developed at this time but a beginning
has-been made by Sacker [1]. The case where w, A are independent of 0 is not
too difficult with this approach since one can integrate along characteristics
to obtain essentially the same method presented below. If there are values
of 0 for which w(0) = 0, then the problem is much more difficult since the
solution will not in general be as smooth as the coefficients in the equation.
The smoothness properties depend in a delicate manner upon w, A. Another
difficulty that arises in this problem is that the usual iteration procedures
involve a loss of derivatives. To circumvent this difficulty, Sacker solves in
each iteration the elliptic equation

,[w(0)+0(0,f)]-A(0)f=F(0,f), f(0+w)=f(0),

for µ small and DB the Laplacian operator. The solutions then have as many
derivatives, as desired, but there is a delicate analysis involved in goosing
IL -* 0 in such a way as to obtain a solution of the original equation. Further
research needs to be done with this method to see if it is possible to obtain
results When the perturbation terms depend upon t in a general way and also
to discuss the stability properties of the manifold.
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Method 3. (Krylov-Bogoliubov=Mitropolski). Circa 1934, Krylov and
Bogoliubov made a significant contribution to this problem in the following
way. They defined a mapping of " cylinders " into " cylinders " via the
differential equation (1.8) such that the fixed points of this map are integral
manifolds of the equation which for E = 0 reduce to S. They also discussed
the stability properties of this manifold. These methods do not use any
particular properties of the dependence of the perturbation terms upon t.

To illustrate the ideas, consider the equation

6 = 1 = 0(t,0,p,e)
(1.12)

p =Ap +R(t,0,p,e)

where A is an n X n constant matrix, ReXA <0, 0(t,0,0,0) = 0, R(t,0,0,0) = 0,
8R(t,0,0,0)/8p = 0. We look for integral manifolds of (1.12) of the form
p = f(t,0,e) with If(t,0,e)I bounded for (t,0) ER2, f(t,0,e) lying in a small
neighborhood of p = 0 for a small.

Let S = {f:R X R -R" continuous and bounded) with the topology of
uniform convergence. Suppose (1.12) has an integral manifold f(t,0,e), with
f ( , , e) E S. If 0 (t, to , 0 0 , f) is the solution of the equation

(1.13) 8 =1 + 0(t, 0, f(t,0,6),e), 0(to,to,0o,f) = Oo,

then (0(t,t0,00, f), f (t,0(t,t0,00, f),e) must satisfy (1.12) for all (t0,00) ER2.
Therefore, the variation of constants formula implies

f(t,0(t,to,00,f),e) =
eA(t-1°)f(to,0o,E)

t
+ f eA(t-s)R(s,B(s,to,0o,f),f(s,0(s,t0,00,f),e),e)ds

to

and

eA(t-to)f(t,0(t,to,0o,f),e)
=f(to,00,e)

t
+ ,f eA (t0-f)R(S,0(s,t0,0o,f),

t°

f(s,0(s,t0,0o, f),e),e)ds.

Since f(t,O,e) is bounded and exp(-A(t - t0)) - 0 as t - -oo, we have a
formula for the function f(t0,00,e);namely,

(1
eA(t0_s)R(s,e(s,to,eo,f),f(s,e(s,ro,eo,f),E)ds.

.14) f(to,00,e)= f t

For a given f E S, the right hand side of Eq. (1.14) can be considered as a
transformation 3:S - S and the sought for integral manifolds are fixed points
of By careful estimation, one can apply the contraction mapping principle
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to obtain fixed points of .F in an appropriate bounded subset of S consisting
of functions with a sufficiently small lipschitz constant in 0.

VII.2. Statement of Results

In this section, we give detailed results on the existence and stability
of integral manifolds of (1). Let Q (or, so) = {(x, y, E): I xI < (7, I yI < a,
0 < E <_ Eo}. The following hypotheses on the functions in (1) will be used:

(Hl) All functions A, B, w, 0, F, G are continuous and bounded in R X
Rk X SZ(a, ED).

(H2) The functions A, B, w, 0, F, G are lipschitzian in 0 with lipschitz con-
stants r(ej), r(Ei), L(Ei), 9(p, El), y(p, El), y(p, El) respectively, in R X Rk
X S2(p, El) where r(El), L(E1), , (p, El), y(p, Ei) are continuous and non-
decreasing for 0 <_ p < a, 0 < el Eo.

(H3) The functions 0, F, G are lipschitizian in x, y with lipschitz constants
µ(p, El), 8(p, El), S(p, El), respectively, in R x Rk X S2(p, El), where µ(p, El),
S(p, El) are continuous and nondecreasing for 0 < p < a, 0 < ei < Eo

(H4) The functions IF(t, 0, 0, 0, s) 1, IG(t, 0, 0, 0, e) I are bounded by N(E) for
(t, 0) in R X Rk, 0 < E <_ Eo where N(E) is continuous and nondecreasing
for0<e<Eo.
(H5) There exist a positive constant K and a continuous positive function
a(E), 0 < E < eo, such that, for any continuous function 0(t) defined on
(-eo, co), and any real number r, the principal matrix solution t(t, T),
W(t, r) of z = A(0(t), E)x, y = B(0(t), E)y, respectively, satisfy

(2.1) I (D(t, T)I < Ke a(e)(t-z) t > T

I`F(t, T)I < Kea(e)(t-r), t < T.

(H6) Let p(1, D, s), q(0. D, E) be defined by

(2.2) p(A, D, E) = y(D, E) + S(D, E)0 +
Kr(E)

[S(D, E)D + N(E)],

q(0, D, E) = L(E) +,q(D, E) + µ(D, E)0,

and suppose that

(a) a(E) - q(0, D, E) > 0,
(b) S(D, E)D + N(E) < a(E)D/K,

(c) Kp(0, D, e) < [a(E) - q(0, D, E)]0,

(d) p(A, D, E)µ(D, E) + 5(D, E) < a(E),
a(E) - q(A, D, E) 2K
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for0<6S6o.
We are now in a position to state

THEOREM 2.1. If system (1) satisfies hypotheses (H1) - (H6), then there
exist functions f (t, 0, s) in Rn, g(t, 0, s) in Rm which are continuous in
R X Rk X (0, 61], bounded by D, lipschitzian in 0 with lipschitz constant A,
such that the set

SE = {(t, 0, x, y) : x = f (t, 0, s), y = g(t, 0, s), (t,0) in R X Rk)

is an integral manifold of (1). If the functions in (1) are periodic -in 0 with
vector period w, then f (t, 0, s), g(t, 0, s) are also periodic in 0 with vector
period w. If the functions in (1) are T-periodic in t then f (t, 0, s), g(t, 0, s) are
T-periodic in t. If the functions in (1) are almost periodic in t, then so are f, g.

Before proving this theorem, we state some immediate Corollaries
which we again state as theorems because of their importance in the applica-
tions.

THEOREM 2.2. Suppose system (1) satisfies (Hi)-(H5) even for E = 0
and a(s) = a a constant. If ,(0, 0) = y(0, 0) = 8(0, 0) = N(0) = 0 and
a - L(0) > 0, then there are sl > 0 and continuous functions D(s), 0(s),
0 < s < El, approaching zero as s -* 0 such that the conclusions of Theorem
2.1 are valid for this D(s), A(s).

PROOF. From the hypothesis of Theorem 2.2, a - L(0) > 0. Therefore,
we may take so such that a - L(s) > 0, 0 < s < so. Since q(0, 0) = 0, there
are positive 81, Al, D1 so that (2.3a) is satisfied for 0 < s< el, 0 < Al,
D < Di. Since 8(0, 0) = 0 and N(0) = 0, it follows that one can further
restrict El and choose D(s) so that D(s) -* 0 as s -* 0 and (2.3b) is satisfied
for 0 < s < El. Since y(0, 0) = 0, 8(0, 0) = 0 it follows that El and a function
0(s) ->0 as s -* 0 can be chosen so that (2.3c) is satisfied for 0 < s <_ El. Since
p(0(8), D(s), s), S(D(e), s) -* 0 as s -* 0 if 0(s), D(s) are chosen as above, it
follows that one can further restrict el > 0 such that (2.3d) is satisfied for
0 < e:5 81. Theorem 2.1 is therefore applicable to complete the proof of
Theorem 2.2.

If w(t, 0, s) is a constant in (1) then L = 0 and the condition a - L > 0
is automatically satisfied from (H5). The hypotheses (H1)-(H4) in Theorem 2.2
merely express smoothness and smallness conditions on the perturbation
functions 0, F, G.

COROLLARY 2.1. Suppose 8,F,G satisfy hypotheses (Hl) - (H4) even for
e = 0. Suppose w is a constant k-vector, A is an n X n constant matrix whose
eigenvalues have negative real parts, B is an m X m constant matrix whose
eigenvalues have positive real parts. Then the conclusions of Theorem 2.2 are
valid for the system
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0 = w + 0(t, 0, x, y, e)

x=Ax+F(t,O,x,y,e)

y= By+ G(t,O,x,y,e)

Consider the system

(2.4) = w + EO(t, 0, x, y, E),

EA(0)x + EF(t, 0, x, y, E),

EB(0)y + EG(t, 0, x, y, E),

where w is a constant.

THEOREM 2.3. Suppose A, B, w, 0, F, 0 in system (2.4) satisfy hypo-
theses (Hl)-(H4) even for e = 0 and y(0, 0) = 8(0, 0) = N(0) = 0. If a =eal,
al > 0, a constant, in (H5) and al - e) > 0, then the conclusions
of Theorem 2.2 are valid for system (2.4).

PROOF. It is sufficient to satisfy relations (2.3) with L = 0 and a(E)
replaced by al since the form of equation (2.4) implies that E is a common
factor of all functions in (2.3). The proof proceeds now exactly as in the proof
of Theorem 2.2.

Consider the system

E0 = w + 0(t, 0, x, y, E),

Ez = A(0)x + F(t, 0, x, y, E),

Ey = B(0)x + G(t, 0, x, y, E),

where w is a constant.

THEOREM 2.4. Suppose A, B, w, 0, F, G in system (2.5) satisfy (Hl)-(H4)
even for e = 0, y(0, 0) = 5(0, 0) = N(0) = 0. If a = al/E, al > 0, a constant in
(H5) and al - limEyer1(0. e) > 0, then the conclusions of Theorem 2.2 are
valid for system (2.5).

PROOF. The proof is essentially the same as the proof of Theorem 2.3.
The proof of Theorem 2.1 will be broken down into simple steps in order

to clarify the basic ideas. Some of these steps are of interest in themselves
and are stated as lemmas. One could use the same method of proof as given
below to state results on integral manifolds involving systems which are
combinations of systems (1), (2.4) and (2.5). These results are easily obtained
when the need arises and it does not seem worthwhile to state them in detail.
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VII.3. A "Nonhomogeneous Linear" System

In the proof of Theorem 2.1, we will use successive approximations in a
manner very similar to that used in Chapter IV for the results on the behavior
near an equilibrium point. Let Sn={f: (-oo, co) x Rk --> Rn which are
continuous and bounded). For any f in Sn, define Ilf II = sup{I If (t, 0)j, (t, 0)
in B x Rk}. The idea for successive approximations in (1) for an integral
manifold is to let x =f (t, 0), fin Sn, y = g(t, 0), g in Sm, in the first equation
in (1) to obtain an equation in 0 alone say A = h(t, 0, f, g). This equation can
be solved for 0(t, r, , f, g) where e(T) = C for any r, 4 in R x Rk. This
function of 0 is then substituted in the second and third eon-,tions in (1)
to obtain equations of the form

x = A(B(t))x + f (t, 0(t)),

y = B(e(t))y + §(t, 0(t)),

where f, g depend upon f, g, but, more importantly, the initial data for
0(t); namely r, . The problem is then to determine a bounded solution of
this system as a function of (r, C).

Thus, we are led to a type of " nonhomogeneous linear" system. We
refer to the equations in this manner because at each stage in the iteration
process the equations are linear in x, y; that is, linear in the coordinates
through which the integral manifold is defined. For simplicity in the notation,
we will assume that the y-equation in (1) is absent. The general case follows
along the same lines. For any P in Sk, Q in Sn, we first consider the " non-
homogeneous linear " system

(3.1) (a) = P(t, 0),

(b) t = A(0)x + Q(t, 0).

For any (T, in R x Bk, let 0*(t) = 0*(t, T, , P) be the solution of
(3.1a) with 0*(T) _ . Since P(t, 0) is bounded, such a solution always exists
on (- co, oo )."We wish to find a function X(-, , P, Q) in Sn such that

(0*(t), X(t, 0*(t), P, Q)), tin (- oo, oo),

is a solution (3.1) for tin (-oo, oo) and all (T, ) in R x Rk. If we can accom-
plish this, then the set 9 = {(t, 0, x) : x = X(t, 0, P, Q), (t, 0) in B X R k}
is an integral manifold of (3.1). To derive the equation for such a function X,
let D(t, r, , P) be the principal matrix solution of the linear system

(3.2) z = A(B*(t, r, , P))x
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The variation of constants formula applied to (3.1b) yields

X (t, 0*(t, T, , P), P, Q) = (D(t, T, C, P)X (T, , P, Q)
c

+ f 4)(t, s, , P)Q(s, 0*(s, r, , P)) ds, t e (-00, 00).

If A is independent of 0, then this relation is much simpler since I(t, r, , P)
= exp[A(t -T)]. Multiplying the above relation by-1(t, T, , P) and using
the properties of a principal matrix solution, one sees that the variation of
constants formula can be written as

X(r, , P, Q) = $(T, t, , P)X(t, 0*(t, T, , P), P, Q)
c- f (D(T, s, , P)Q(s, 0*(s, T, C, P)) ds, t e (-00, 00).

T

Since X is assumed to belong to Sn and, in particular, is bounded, we can
let t approach - co in this relation and use hypothesis (H5) to obtain

(3.3) X (t, 0, P, Q) = f
o

b(t, u + t, 0, P)Q(u + t, 0*(u + t, t, 0, P)) du,
00

where we have replaced T, C in the end result by t, 0.
In the manner in which relation (3.3) was obtained, it follows that (3.3)

defines an integral manifold of (3.1) and, furthermore, it is the only such
integral manifold which remains in a region for which the x-coordinate is
bounded. These facts are summarized in

LEMMA 3.1. If (H5) is satisfied, then for any P in Sk, Q in Sn, equation
(3.1) has an integral manifold defined parametrically by X(t, 0, P, Q) in
(3.3) and it is the only integral manifold of (3.1) for which the x coordinate
is bounded.

Our initial goal is to derive some properties of the function X(t, 0, P, Q)
defined by (3.3). In particular, we wish to discuss bounds and smoothness
properties of X as a function of the bounds and smoothness properties of
P, Q. The basic result for the " nonhomogeneous linear " system (3.1) is the
following:

LEMMA 3.2. Suppose A(0), P(t, 0), Q(t, 0) are lipschitzian in 0 with
lipschitz constants r, L(P), M(Q), respectively, and hypotheses (H5) is
satisfied with a > L(P). If X(-, , P, Q) is defined by (3.3), then X(-, , P, Q)
belongs to Sn, defines an integral manifold of (3.1) and satisfies

(3.4)

(a) jX(t, 0, P, Q) - X (t, 0, F, Q)I :! -KL(P) [M(Q) + ar IQ II] 10-01,
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(b)
a

(c) IIX(', , P, Q) 11

K<a(«-L(P))

X [M(Q) +
ar

I IQ
II] 11P- pill

for all tin R, 0, 8 in Rk, P, P in Sk, Q, Q in S". If P(t, 0), Q(t, 0) are periodic
in 0 with vector period co, then X(t, 0, P, Q) is periodic in 0 with vector
period w. If P(t, 8), Q(t, 8) are T-periodic (or almost periodic) in t, then
X(t, 8, P, Q) is T-periodic (or almost periodic) in t. If P(t, 0), Q(t, 0) are
independent of t, then X(t, 8, P, Q) is independent of t.

PROOF. Relation (3.4b) is almost immediate since Q) is
linear in Q and hypothesis (H5) implies that

KIIQII
IIX(, , ' , Q) it a

The relations (3.4a), (3.4c) are more difficult to obtain since 0, P)
depends in a nonlinear fashion on 0 and P. This nonlinear dependence is also
reflected in the function (D(-, , 8, P) if A depends on 8. Our first objective
is to obtain estimates of this dependence on 8, P.

Since P(t, 0) is lipschitzian in 0 with lipschitz constant L(P), a simple
application of differential inequalities to (3. la) yields the estimates

(3.5) (a) 8*(t, T, , P) - 8*(t, T, , P)I < 5L(P)It-tI1 - I

eL(P) I t-TI -I
(b) 8*(t, T, , P) - 8*(t, T, , p) L( p) lip - pill

for all t, r in R and P, P in Sk. In fact, both of these relations are easily
obtained from the relation

D+y(u) < L(P)y(u) + I I P -PII

where D+ is the right hand derivative, y(u) = 18*(u, T, , P) - 8*(u, T, P)J
to obtain (3.5b) and y(u)=10"(u, T, Z, P) - 8*(u, T, C, P)I, P = P to obtain
(3.5a)

We now obtain estimates for the dependence of D(t, r, 8, P) on 0, P.
If we use the fact that this is a principal matrix solution of (3.2) and the
difference I(u, T, 0, P) - $(u, T, 8, P) is a solution of the matrix equation

dx
A(8*(u, T, 8, P)) x + [A(8*(u, T, 8, P))

du

-A(8*(u, T, 8, P))] 1(u,, T, 8, P),
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then the variation of constants formula yields
0

(D(t, u + t, 0, P) - D(t, u + t, 8, P) = f (D(t, v + t, 0, P)
U

x [A(O*(v + t, u + t, 0, P)) - A(0*(v + t, u + t, 8, P)]

x D(v + t, u + t, 6, P) dv

for all u E R. Therefore, from (H5) and the lipschitzian hypothesis on A, we
obtain

(3.6) J I(t, u + t, 0, P) - D(t, u + t, 8, P)I
0

<K2reau fI0*(v+t,u+t,0,P)-0*(v+t,u+t,8,P)I du
u

for u < 0.

If we let P = P and use (3.5a) and (3.6), then

K2r
(3.7) 14)(t, u + t, 0, P) -'(t, u + t, 6, P) I <

L(P)
eau[e-L(P)u -1]I0 - 61

for all u <_ 0. If we let 0 = 0 and use (3.5b) and (3.6), then

(3.8) I D(t, u + t, 0, P) - (D (t, u + t,0, P)I < L2 2r eau[e-L(P)u -1

+L(P)u]IIP-PII
for allu<0.

From (3.3) and (H5) we have

X (t, 0, P, Q) - X (t, 8, P, Q)
fo

KeauM(Q) I B*(u + t, t, 0, P) - B* (u + t, t, 8, PI du- 00

+1° I(D(t, u+t, 0, P) -D(t, u+t, 8, P)I IIQII du.
- 00

Using (3.5a) and (3.7), we obtain relation (3.4a). Similar estimates using
(3.5b) and (3.8) give (3.4c). This completes the proof of the first part of the
lemma.

Now suppose that P, Q in (3.1) have vector period co in 0. The
uniqueness theorem implies 6*' , + to, P) = 0*(t, r, t;, P) + w and,
thus 4D(t, r, 0 + co, P) = (D(t, r, 6, re). From formula (3.3), one obtains
X(t, 0 + w, P, Q) = X(t, 0, P, Q). If P, Q in (3.1) are T-periodic in t, then
uniqueness of solutions yields 0*(t + r + T, T + T, , P) = 0*(t + r, r, , P).
This fact in turn implies cD(t + T, r, 0, P) is T-periodic in r. Since
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b(-r, t + -r, 0, P)4)(t +,r, T, 0, P) = I, the function 1(T, t + T, 0, P) is T-
periodic in T. Using (1.3), one has X(t, 0, P, Q) is T-periodic in t. If P(t, 0),
Q(t, 0) are independent of t, then the same argument yields X(t, 0, P, Q) is
periodic in t with an arbitrary period and, therefore, must be independent of t.

The case where P, Q are almost periodic in t is handled as follows. If a
is any real number, we define P6 in Sk, Q6 in Sn by P6(t, 0) = P(t + S, 0),
Q6(t, 0) = Q(t + S, 0). Using the same process as in the estimation of the
lipschitz function of 0*(t, T, , P) in P, one easily obtains

eL(P)lul - 110*(u+t+8,t+8, 6,P)-0*(u +

t,t,6,P)l L(P) IIP6-PII

for all u, t, 0. Now using the same type of argument that was used to obtain
(3.8), one obtains

J(D(t+8, u + t + 8, 0, P) -t(t, u + t, 0,'P)I

K2r< L2(P) e«u[e-L(P)u - I + L(P)u] IIP6 - P11

for all u< 0. Using these two relations in (3.3), we arrive at the following
inequality

X(t + 8, 0, P, Q) - X(t, 0, P, Q)

K IIQ6-QII+ K [M(Q)+Kr IIQII] IIP6-PIIa a(a - L(P)) a

for all t,8,0. This inequality and the same type of argument as used in the proof
of Theorems 1.1 and 2.1 of Chapter IV complete the proof of Lemma 3.2.

The constant a in the statement of Lemma 3.2 is a measure of the rate
of approach of the solutions of (3.1) to the integral manifold and the constant
L(P) is a measure in some sense of the maximum rate at which solutions on
the manifold can converge or diverge from one another. A natural question
to ask is whether the condition a - L(P) is necessary to obtain lipschitz
smoothness of the parametric representation of the manifold.

To understand some of the difficulties that might be encountered if
a - L(P) < 0, let us discuss the following example in the two-dimensional
(u, v)-space. If u = r cos 0, v = r sin 0, the system is

0=ksin0- cos

s.

0

(r-1)2r ,

r = r(1 - r).

The circle r = 1 is an integral manifold of this system. If r = 1 + p, then the
linear variational equation for the manifold r = 1 is p = -p and the constant
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a in hypothesis Hs) is +1. On the other hand, on the manifold r = 1, the
Liptschitz constant L(P) can be taken to be k. Also, on r = 1, there are
the stable node (-1, 0) and the saddle point (1, 0). The trajectories of this
system near r = 1 for k < 1 and >I are shown in Fig. 3.1. For k < 1 all

I

Figure VII.3.1

orbits enter the node (-1, 0) tangent to the circle r = 1 and for k > 1 all
orbits enter the node (-1, 0) perpendicular to the circle r = 1. A small per-
turbation in the equation for k > 1 could possibly lead to an invariant curve
which has a cusp at (-1, 0).

The following example shows that a cusp can arise. Consider the system

9=ksin0,
z= -x+f(0),
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where f has a continuous first derivative and f (8 + 27r) = f (8). The first
equation has the solution

8*(t, r, ) = 2 are tan(ek(t-z) tan l,
\\ 2l1

and therefore the integral manifold is given from (3.3) by

0 l
X(t, 8, k) - X(8, k) = f Of [2 are tan(eku tan

12/ J
du.

L \

For any closed interval in the interior of (-?r, 7r),

8X(8, k)

88 = f
0

e(i-k)u
d8

[sin2

2
+ e-2ku cost

2]-1

du

exists and is continuous for any k. If k > 1, this integral becomes unbounded
as 0-.7t or -7f if df/dB is different from zero in a neighborhood of these
points and X(8, k) is not lipschitzian.

VII.4. The Mapping Principle

To apply Lemma 3.2 to prove Theorem 2.1, we define a mapping whose
fixed points coincide with the integral manifold of (1) and prove this mapping
is a contraction. It is convenient to formulate this mapping in more general
terms and specialize it to system (1) later. For given constants A, D, let

(4.1) Sn(A, D) = {f in Sn : 11f 11 < D, I f (t, 8) -f (t, 9) 1 < Al b - 81

for all (t, 8, 0) in B x Rk x Rk}.

Let P : R x Rk x Sn(A, D) Rk, Q : R x Rk x Sn(A, D) Rn and for any
fin Sn(A, D) suppose that P(-, , f) is in Sk and Q(-, , f) is in Sn. For any
fin Sn(A, D), we know from the discussion of system (3.1) that the system

(4.2) A = P(t, 8, f ),

z = A(e)x + Q(t, 0, f),

has an integral manifold defined parametrically by (3.3). We rewrite (3.3)
again to emphasize the dependence upon f as

0

(4.3) X*(t, O,f) = f_ 01(t,u+t,8,f)Q(u+t,8i(u+t,t,8,.f))du,
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where we are using the simplified but hopefully not confusing notation

01(t,T,f)=0*(t,T,P(',
01(t, T, f) = (D(t, r, P(-, , f )),

X*(t, 0,f)=X(t, 0,
If there exists an f in Sn(A, D) such that f (t; 0) = X*(t, 0, f ), then f will

,define an integral manifold of (4.2). It is clear that such a procedure will be
applicable to system (1) without the y equation simply by defining

(4.4) P(t, 0, f) = w(t, 0, E) + 0(t, 0, f (t, 0), E),

Q(t, 0, f) = F(t, 0, f (t, 0), E).

We now derive some conditions on P, Q which will ensure that the map
X*(-, , f ), f in Sn(0, D) is a contraction.

Assume the following: there are constants f(D), M(0, D), L(0, D) and
a(D), b(D) such that

(4.5) IIQ(', f) II rg(D),

IIQ(', ,f)-Q(',f)IIa(D)IIf-fI,
f) -P(', f) 11 b(D) If 11,

IQ(t, 0, f) -Q(t, 0, f)I <M(0, D)I 0 - 6I ,
I P(t, 0,f) - P(t, 0,f)I < L(o, D)I0-8I,

for all (t, 0, 8) in R X Rk X Rk and f, f in S- (A, D).
If we now use (3.4) with M(Q), L(P) replaced by M(L, D), L(0, D),

respectively,

(IIX*. f)II Krg(D),a

IX*(t,O,f)-X*(t,O,f)I
KMI(o,D) I0-8I,
a - L(0, D)

K MI(A, D)b(D)
IIX*(, ,f)II a [ a-L(D,D) +a(D),Ilf-fl6

M1(A, D) = M(0, D) +
Kr

P(D)a

for all (t, 0, 8) in R X Rk X Rk and f, f in Sn(A, D) provided that
L(i, D) > 0. From these relations we can state the following

LEMMA 4.1. Suppose Q, P satisfy (4.5) and for any f in Sn(A, D), the
unique integral manifold X* f) of (4.2) is defined by (4.3). The mapping
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T : Sn(A, D) ->.Sn(A, D) defined by Tf = f) is a contraction pro-
vided that A, D satisfy the relations

(4.7) (a) a - L(0, D) > 0,
(b) KP(D) < aD,
(c) KMl(0, D) < [a - L(0, D)]0,

K MI(A,
(d) a [ a - L(A, D)) + a(D)1 < 2

If conditions (4.7) are satisfied, then X*(-, , f) has a unique fixed point
in Sn(&, D).

VII.5. Proof of Theorem 2.1

We are now in a position to prove Theorem 2.1 for the case when y is
absent. The only thing to do is to find the constants in (4.5) with P, Q
defined by (4.4) and substitute these in (4.7). From hypotheses (H2)-(H4),
one obtains, for 0 < e 5 Eo,

(5.1) (a) P(D) = S(D, E)D + N(E),
(b) a(D) = S(D, E),
(c) b(D) = µ(D, e),
(d) M(0, D) = y(D, E) + S(D, E)0,
(e) L(0, D) = L(e) +77(D, e) + µ(D, e)0.

If (5.1) is used in (4.7), one obtains relation (2.3) in hypotheses (Hs).
This completes the proof of Theorem 2.1 when the vector y is absent.

The case with y present follows along the same lines if use is made of the
fact that the equation

9 = P(t, 0),

x =A (O)x + Q(t, 0),

y = B(O)y + R(t, 0),

has a unique integral manifold given by X(t, 0, P, Q), Y(t, 0, P, R) with X
given by (3.3) and

o
Y(t, 0, P, R) = f 'Y(t, u + t, 0, P)R(u+t, 6*(u + t, t, 0, P)) du

0

where 'Y(t, r, , P) is the principal matrix solution of the linear system

y = B(0*(t, r, 4, P))y.
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VII.6. Stability of the Perturbed Manifold

For the unperturbed part of system (1), namely,

(6.1) 0 = w(t, 0, e),

x = A(0, e)x,

y = B(0, e)y,

there is a unique integral manifold with the x and y coordinates bounded and
this is given by x = 0, y = 0. This manifold has a saddle point structure in
the sense that any solution of (6.1) is such that x -- 0 exponentially as t -* 00
and y -a 0 exponentially as t -* - oo. One can prove that the saddle point
structure is also preserved for the perturbed manifold whose existence is
assured by Theorem 2.1.

We do not prove this fact in detail, but only indicate the proof for the
special case

8 = 1 + o(t,0,p,e)
(6.2)

P =Ap +R(t,O,p,e)

where O(t,0,p,e), R(t,0,p,e) are continuous, bounded and continuously dif-
ferentiable in 0,p in R X R X SZ(p, eo), periodic in 0 of period w, e(t, 0, 0, 0) = 0,
R(t,0,0,0) = 0, aR(t,0,0,0)/ap = 0, and the eigenvalues of A have negative
real parts.

Corollary 2.1 implies there exists an integral manifold SE = {(t,0,x):
x = f(t,0,e), (t,0) G R2}' 0 < Iel < eo, f(t,0,e) is periodic in 0 of period w
and ft,0,0) = 0. Our first objective is to show there is a neighborhood
V C R22 X R" of {(t,0,p):p = 0} such that if (to,00, po) E V, then the solution
(0(t),p(t)) of (6.2) through (t0,00,po) satisfies

I p(t) - f (t, 0 (t), e) I - > 0 as t - °°.

This shows that solutions go back to the integral manifold as t °°. We will also
show that this approach is at an exponential rate.

To do this, we consider all solutions of the equations (6.2). The variation
of constants formula gives

tp(t) = eA(t-to)po + f eA(t-s)R(s,0(s),p(s),e)ds
o(6.3)

to

8(t) = 1 + O(t,0(t),p(t),e), 0(t0) = 00.

We first show there is a function '(t,0,t0,P0,e), w-periodic in 0, such that the
solution of (6.3) can be represented as
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(6.4) P(t) = '(t, to, 0 (t),PO, e).

As in the proof of the existence of the integral manifold S, we transform
this to a problem of finding a fixed point of a certain mapping. Let

S 1 = { ' :{(t, to) : t > to } X R X R' -+ R', continuous, bounded,

together with first derivatives in 0, p}.

For 'I' in S1, let

I I= sup{14'(t,to,e,P)I + I a'P(t,to,o,P)/ae I

+I a'Y(t, to, 0, p)/ap I :t> to, (0, p) E R X R'}.

The smoothness assumptions here are only to make the notation simpler.
For 'Pin S1 and t <,r, let

(T4')(7-,t,0,p) = eA(T-t)p + (t7eA(-r-s)R(S,0*(S),`I'(S,t,0*(S),P),e)

6 *(s) = 1 + O(s, 0(s),J`I'(S, t, 0 *(s), p), e), 0 *(t) = 0.

One can now proceed as before to show that T is a contraction on an
appropriate subset of 91 to obtain a fixed point of T (or one can use the
implicit function theorem). If 'P = T'Y, we have shown that (6.4) is satisfied.
There is a continuous function M(o,eo), o > 0, lel <eo,M(0,0) = 0, constants
k> 0, u> 0 such that, for 1 po I < o, I e I < eo,

Ia`I'(t,to,e,Po,e)/a0I <M(Q,eo)

l a`P(t,to,0,po,e)/ap l <Ke«(t-to)l2 t> to

IeAtl <Ke at, t>0.
For po sufficiently small, we know that the solution of (6.2) through

(to,00,po) satisfies (6.4) for t > to. Thus, our integral manifold SE must also
have this property; that is, for any t > to, 0 E R, there is a 0' = 0o(t,0) such
that the solution (0'(s),p'(s)) of (6.2) through (to,0'o, f (to, 0'o, e)) satisfies
0'(t) = 0, p'(t) = f(t,0,e). To obtain this assertion, we have simply integrated
backwards from- t to to starting from the point (t,0,f(t,0,e)). Thus, if
po =f(to,0o,e), then

f(t,0,e) = `P(t,to,0,P',e)

for all t,0 and

If(t,0,e)-`F(t,to,0,Po,e)I <Ke-«(t-ta)/21Po-PoI.

If (0(t),p(t)) is any solution of (6.2) with 0(t0) = 00, p(to) = Po, PO sufficiently
small, we have
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I f (t,e(t), e) -'(t, t0,8(t),P0, e) I

<Kea(t-to)/2If(to,eo(t,e(t).e) - Pol

<2Ke "(t-t,)l2, t> to.

This proves the asserted stability of the integral manifold S.

VII.7. Applications

In this section, we give some applications of the theory of this chapter.
There is such a large variety of applications that it is impossible to do them
justice without devoting a treatise to the subject. However, it is hoped that
the few mentioned below together with the ones delegated to the exercises
in Section 8 may indicate the possible scope of the theory and stimulate
further reading in the literature.

Suppose the equation

(7.1) x =f (x)

where f has continuous first derivatives in Rn, has a nonconstant w-periodic
solution u whose linear variational equation

8f (u(t))
(7.2)

8x

has n -1 characteristic multipliers not on the unit circle. Suppose also that
g(t, x) is continuous for (t, x) in R x Rn, has continuous first derivatives
with respect to x and is bounded for tin B and x in any compact set.

THEOREM 7.1 Under the above hypotheses, there are a neighborhood
U of the periodic orbit T = {x : x = u(0), 0 < 0 < w} and an el > 0 such that
the system

(7.3) =f (x) + eg(t, x)

has an integral manifold SE in B x U, 0 < I e{ < eI, So = R x ' (a cylinder),
Sr is asymptotically stable if n - 1 multipliers of (7.2) are inside the unit
circle and unstable if one is outside the unit circle. The set SE has a parametric
representation given by

SE = {(t, x): x = u(0) + v(t, 0, e), (t, 0) in R X R},

where v(t, 0, 0) = 0, v(t, 0, e) = v(t, 0 + co, s) and is almost periodic (T-
periodic) in t if g(t, 0) is almost periodic (T-periodic) in t.

PROOF. This is a simple consequence of the previous results. In fact,
using the coordinate transformation in Chapter VI, one obtains a special
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case of system (1). The above hypotheses permit a direct application of
Theorem 2.2 to obtain existence of the manifold for the interval 0 < e < el.
Replacing e by -e one obtains the result on -el < -s <0. Defining the
manifold of (1) to be zero at e = 0 completes the proof of existence. Stability
is a consequence of the remarks in Section 6.

In case g in (7.3) is periodic in t of period T, then the integral manifold
SE given in Theorem 7.1 has a parametric representation which is periodic
in t of period T. The cross section of SE at t = 0 and t = T are therefore the
same and the fact that it is an integral manifold implies this cross section
is mapped into itself through the solutions of the differential equation.
Since the differential equation is T-periodic, following a solution x(t, xo),
x(0, xo) = xo, from t = 0 to t = 2T is the same as following the solution from
t = 0 to t = T and then following the solution x(t, x(T, xo)) from t = 0 to
t = T. The solutions of (7.3) on SE in this case can therefore be considered
as a differential equation without critical points on the torus obtained by
taking the section of the surface SE from t = 0 to t = T and identifying the
ends of this section. The theory of Chapter II then gives the possible behavior
of the solutions on SE .

THEOREM 7.2. Suppose f (x) satisfies the conditions of Theorem 7.1 and
let,g(t, x) be continuous and uniformly bounded together with its first
partial derivatives with respect to x in a neighborhood of W. If g(t, x) is almost
periodic in t uniformly with respect to x and

1 fTx)] = lim -J g(t, x) dt = 0,
T- co T o

then there are a neighborhood U of f and an coo > 0 such that the system

(7.4) x =f (x) -+- g(wt, x)

has an integral manifold So) in R X U, co >_ coo, S. -* R x' as w -a oo, S.
is asymptotically stable if n - 1 multipliers of (7.2) are inside the unit circle
and unstable if one is outside the unit circle. The set S. has a parametric
representation given by

S, = {(t, x): x = u(0) + v(cut, 0, cI), (t, 0) in R X R},

where v(t, 0, 0) = 0, v(t, 0, a) = v(t, 0 + co, a) and is almost periodic in t.

PROOF. From Lemma 5 of the Appendix, for any -9 > 0, there are a
function w(t, x, 71) with as many derivatives in x as desired and a function

0 as 0 such that

Iaw(t, x, 7))/at-g(t, x)I <a(n)

for all t e R and x in a neighborhood of W. Also 77w, qaw/ax -* 0 as q -* 0.
Therefore, as in the proof of Lemma V.3.2, there is an coo > 0 such that
the transformation
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x=y+-w(wt,y,-

is a homeomorphism in a neighborhood of W. If this transformation is applied
to (7.4) one obtains a system

y =f (y) + G(wt, y, w_1),

where G(T, y, w-1) is continuous in r, y, w together with its first derivative
with respect to y, is uniformly bounded for r in R, y in a neighborhood of '
and w _> wo, and G(r, y, 0) = 0. If one uses the coordinate transformation
in Chapter VI and lets wt = T, ca-1 = s, then the new system is a special case
of system (1) for which Theorem 2.3 applies directly. This will complete the
proof of existence of an integral manifold. The stability follows from Section 6.

Another application of the previous results concerns a generalization
of the method of averaging. Consider the system

(7.5) i/r = e + sT(0, p),

P = eR(sf, P),

where :(r is in Rk, p is in RP, e = (1, ..., 1), and T(0, p), R(/i, p) are multiply
periodic in :/ of period w and have continuous first derivatives with respect
to p. Let

(7.6) 'Yo(r, P) = lim
T-oo

1 fT,J W(/i+et, p) dt,
0

T
Ro(:/i, p) = lim - R(s/i + et, p) dt.

T- w T Jo

From the Appendix, for any q > 0, there are functions u(/i, p, ,),
p, q) with as many derivatives in 0, p as desired and a function

v(q) -* 0 as q -- 0 such that

aF e -'F(0, p) + Wo(o, p)

av

< Q(-7),

I

ao e - R(:/r, p) + Ro(+b, p) I < Q('7),

and the functions nu, qv, i9au/az/i, -qav/a s, -qau/ap, i7av/ap-'0 as 19-*0
uniformly for 0 in Rk, p in a bounded set. Therefore, as in the proof of
Theorem V.3.2, there is an so > 0 such that the transformation

(7.7) +/i = 0 + su(o, r,s),

p = 0 + ev(0, r, e),
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is a homeomorphism for Is I < so, :u, 0 in Rk and p, r is a bounded set.
If the transformation (7.7) is applied to (7.5), then a few simple computa-

tions yield

(7.8) = e + e'Fo(o, r) + e'l(o, r, e),
r = ERo(o, r) + eR1(o, r, e),

where'F1, R1 have the same smoothness properties as 'F, B, but now satisfy
'F1(o, r, 0) = 0, R1(o, r, 0) = 0. In other words, by a transformation (7.7)
which is essentially the identity transformation near E = 0, the system
(7.5) is transformed into an equation which is a higher order,, perturbation
of the averaged equations

(7.9) = e + E'Fo(0, p),

eRo(0, p).

One is now in a position to state results concerning the existence of
integral manifolds by asserting the averaged equations have certain proper-
ties. For example, suppose there is a po such that Ro(0, po) = 0 and further-
more,

(7.10) Ro(0, po + z) = C(O)z + H(0, z),

A
O(0)

- L 0(B) B(0)1' H(B, z) - 1G(0' z)]' z - lyr],
'Fo(0, po + z) = 0(0, z),

where all matrices are partitioned so that any matrix operations will be
compatible. As an immediate consequence of Theorem 2.3 and the form of
transformed equations (7.8), one can state

THEOREM 7.3. Suppose A, B in (7.10) satisfy hypothesis (H5) in Section 1
with a = Eal, al > 0, a constant. If the lipschitz constant L of 0(0, 0)
satisfies al - L > 0, then there are el > 0, continuous functions D(E),
0(E), 0 < E < El, approaching zero as E - 0 and a function f (0, E) in RP
which is continuous in Rk x [0, El],

If (0, e) -poI <D(E),

If (0, e)I <A(e)I/- k
such that f (0, e) is multiply periodic in 0 of vector period co and the set

e),0inRk)
is an integral manifold of (7.5). If the y component of z is present in (7.10),
then the manifold is unstable and if it is absent, the manifold is stable.
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A simple corollary of Theorem (7.3) which is useful for the applications is

COROLLARY 7.1. Suppose the averaged equations (7.9) are independent
of s ; that is, the averaged equations are

(7.11) 8 = e + E'1°o(P),

ERo(P)

Also, suppose there is a po such that Ro(po) = 0 and the real parts of the
eigenvalues of the matrix C = Mo(po)/8p are nonzero. Then the conclusions
of Theorem 7.3 remain valid with the manifold being stable if all eigenvalues
of C have negative real parts and unstable if one eigenvalue has a positive
real part.

VII.8. Exercises

Some of the exercises listed below are rather difficult and a complete
discussion of some could lead to interesting new results in the theory of
oscillations.

EXERCISE 8.1. Use Section VI.3 to show that the hypotheses of Theorem
7.1 imposed on (7.1) are satisfied for the van der Pol equation

(8.1)

x2 = -x1 + k(1 -x 2)x2 , k>0.
Use Theorems 7.1 and 7.2 to discuss the existence and stability of integral
manifolds of the system

(8.2) x1 = X2,

x2= -x1+k(1 -x1)x2+Esin tot,

when either E is small or co is large.
Use the theory of Chapter IV to discuss the existence and stability

properties of a periodic solution of (8.2) of period 2a/w for either IEI small or
w large.

In Chapter II it was shown that every solution of (8.1) except the zero
solution approaches the periodic orbit 'I as t -* oo. Can you use the previous
discussion to give the qualitative behavior of all solutions of (8.2) in some
large domain of R2 for IEI small? Hint: Show there is an open set U in R2
such that the tangent vector to the solution curves of (8.1) on the boundary
of U point toward the interior of U. This implies that the tangent vector to
the solutions of (8.1) in (t, x)-space is pointing toward the interior' of the
"cylinder" R x W. Therefore for JEI small or w large, the same will be
true of the solutions of (8.2). Now use continuity with respect to the vector
field.
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EXERCISE 8.2. Suppose both of the vector systems t = f (x), y = F(y)
satisfy the condition of Theorem 7.1. What types of integral manifolds does
the system

x=f(x)+eg(t,x,y),
F(y) + eG(t, x, y)

possess fore small if g, G are bounded for t in R and x, y in compact sets?
What are the stability properties of each of the manifolds? Generalize this
result. Hint: Use the coordinate system of Chapter VI for each periodic
orbit.

EXERCISE 8.3. For co large, discuss the existence and nature of in-
tegral manifolds of the system

xl = x2,

x2 = -xl +'k[1 - (x 1 + B sin wt)2]x 2,

as a function of B.

EXERCISE 8.4. For w large, discuss the question of the existence and
the dependence of integral manifolds of the system

x+2x+x+Kf(x+Bsincot) =0
on the constants K and B for odd functions f (x) which are monotone non-
decreasing and approach a limit as x --> oo. This problem is difficult and one
could never solve it in this general context. Take special functions f.

EXERCISE 8.5. Discuss the existence of integral manifolds of the
equation

x1= X2,
x2 = -xl s(1 -X i)x2 + A sin wt,

fore small and various values of A and co. Let

x1 = p sin 01 + A(1 - (02)-1 sin wt

x2 = p COS 01 + Aw(1 - w2)-1 COS wt

and 02 = t to obtain a system of differential equations for 01, 02, p and then
apply Corollary 7.1. What are the stability properties of the manifolds?
What happens geometrically as A, co vary?

EXERCISE 8.6. Fore small, discuss the existence and stability proper-
ties of integral manifolds of the system

x -s(1 -x2 -ay2)x+x=0,
y - e(1 - y2 - ax2)y + 0r2y = 0,
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as a function of a, a, a. Let x = p1 cos 01, x = - p1 sin 01, y = p2 cos a02 ,
y = -ape sin a02 to obtain a system of the same form as system (7.8). Now
apply the method of averaging described above and, in particular, Corollary
7.1 for the case when k + la 0 for all integers k, l for which Jkl +I11 < 3.
What are the periodic solutions? Can you describe geometrically what
happens when the stability properties of the periodic orbits change under
variation of the constants a and a ? What happens when k + la = 0 for some
integers k and 1 with I kI + Ill < 3 ? In the equation, change 1 - x2 - aye
to 1 - x2 - ay2 + bx2y2 and discuss what happens as a function of a, b, a.

EXERCISE 8.7. Carry out the same analysis as in Exercise 8.6 for the
equations

x3
41 -e(x-3 +ax+Py=0,

y-E(y- 3- vy=0,

for those values of the parameters a, µ, v for which the characteristic roots
of the equation for e = 0 are simple and purely imaginary, say ±iwl, ±ico2.
Under this hypothesis, this system can be transformed by a linear trans-
formation to a system which for e = 0 is given by ii + wiu = 0, v + w2 v = 0.
Now apply the same type of argument as in Exercise 8.6.

VII.9. Remarks and Suggestions for Further Study

Detailed references to the method of Krylov-Bogoliubov may be found
in the books of Bogoliubov and Mitropolski [1] or Hale [3]. The original
results on integral manifolds using this method considered only the case in
which the flow on the unperturbed manifold was a parallel flow; that is,
w(t, 0, e) in (1) is a constant. 11owever, the method of proof given in the text
is basically the same as the original proof for parallel flow except for the
technical details. Other results along this line were obtained by Diliberto
[3] and Kyner [1]. Kurzweil [1, 2] has given another method for obtaining
the existence of integral manifolds and has the problem formulated in such a
general framework as to have applications to partial differential equations,
difference equations and some types of functional differential equations.
Further results may be found in Pliss [1 ].

It is not assumed in system (1) that the functions are periodic in t he vector
0. The results have implications to the theory of center manifolds and stability
theory (Puss [21, Kelley [1]) and the theory of bifurcation (Chafee [11,
Lykova [1] ).
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Hypothesis (H5) in Section 2 is too strong. For example, if w(t, 0, e) = 1,
one need only assume the exponential estimates are valid for functions 0(t)
= t + Bp (see Montandon [1] ). For a more general case, see Coppel and Palmer
[11, Henry [1].

The basic result in the proof of the theorems on integral manifolds was
Lemma 3.2. The proof of this lemma shows that the Lipschitz constant
L(P) was used only to obtain estimates on the dependence of the solution
B*(t, r, 0, P) of 6 = P(t, 0) upon 6. There are many ways to obtain estimates
of this dependence without using the lipschitz constant of P. For example,
if P(t, 0) has continuous partial derivatives with respect to 0, then
86*(t, T, 0,,P)/80 is a solution of the equation

r8P(t, 6*)1t=l ae

Consequently, one can use the eigenvalues of the symmetric part of 8P/86
to estimate the rate of growth of C. The hypothesis (H5) can also be verified
by using the eigenvalues of the symmetric part of the matrices A(6), B(6).
Using the method of partial differential equations mentioned in Section 1,
Sacker [1] has exploited these concepts to great advantage to discuss the
existence and smoothness properties of integral manifolds for equations (1)
winch are inaepenctent oft and periodic in 0. Diliberto [3] has also used these
same concepts and the method of the text to find integral manifolds.

The first example in Section 3 after Lemma 3.2 is due to McCarthy [1]
and the second to Kyner [1]. The generalized average defined in relation

was first introduced by Diliberto [1]. Some of the exercises in Section 8
can be found in Hale [7].



CHAPTER VIII

Periodic Systems with a Small Parameter

In Chapter IV, we discussed the existence of periodic solutions of equa-
tions containing a small parameter in noncritical cases; that is systems

(1) z=Ax+e f(t,x),
where f (t + T, x) =f (t, x) and no solution except x = 0 of the unperturbed
equation

(2) z = Ax,

is T-periodic. In Chapter V, the method of averaging was applied to some
systems for which (2) has nontrivial T-periodic solutions. The basis of this
method is to make a change of variables which transforms the system into
one which can be considered as a perturbation of the averaged equations. If
the averaged equations are noncritical with respect to the class of T-periodic
functions, then the results of Chapter IV can be applied. If the averaged
equations are critical with respect to T-periodic functions, then the process can
be repeated. In addition to being a very cumbersome procedure, it is very
difficult to use averaging and reflect any qualitative information contained in
the differential equation itself into the iterative scheme. For example, if
system (1) has a first integral, what is implied for the iterations?

For periodic systems, other more efficient procedures are available. The
present chapter is devoted to giving a general method for determining periodic
solutions of equations including -(1) which may be critical with respect to
T-periodic functions. This method gives necessary and sufficient conditions
for the existence of a T-periodic solution of (1) fore small. These conditions
consist of transcendental equations (the bifurcation or determining equations)
for the determination of a T-periodic function which is a solution of (2). The
bifurcation equations are given in such a way as to permit a qualitative dis-
cussion of their dependence upon properties of the right hand side of ,(j). This
is illustrated very well when f in (1) enjoys some even and oddness properties
or system (1) possesses a first integral. In general, such systems have families
of T-periodic solutions.

258
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In addition to the advantage mentioned in the previous paragraph, the
method of this chapter can be generalized to arbitrary nonlinear systems. This
topic as well as a more general formulation of the method in Banach spaces
will be treated in the next chapter.

For A = 0, the, basic ideas are very elementary and easy to understand
geometrically. For this reason, this case is treated in detail in Section 1. Also,
in Section 1, it is shown how to reduce the study of periodic solutions of many
equations as well as the determination of characteristic exponents of linear
periodic systems to this simple form. Section 2 is devoted to a discussion of
the general system (1) as well as results on systems possessing either sym-
metry properties or first integrals. In Section 3, we reprove a result of Chapter
VI using the method of this chapter rather than a coordinate system around
a periodic orbit.

VIII.!. A Special System of Equations

Suppose f: R x an ->Cn is a continuous function with 8f (t, x)lax also
continuous, f (t + T, x) =f (t, x), a is a parameter and consider the system of
equations

(1.1) e f(t,x).

Our problem is to determine whether or not system (1.1) has any T-periodic
solutions fore small. For E = 0 all solutions of (1.1) are T-periodic; namely,
they are constant functions. The basic question is the following: if there are
T-periodic solutions of (1.1) which are continuous in e, which solutions of
the degenerate equation do they approach as a -* 0? One precedure was
indicated for attacking this question in Chapter V. Another method is due
to Poincare in which a periodic power series expansion is assumed for the
solution as well as the initial data. The initial data is then used to eliminate
the secular terms that naturally arise in the determination of the coefficients
in the power series of the solutions.

In this section, we indicate another method for solving this problem which
seems to have some qualitative advantages over the method of Poincare. Let
YT = {g: R -*Cn, g continuous, g(t + T) = g(t)}, 1 1 9 For
any g in 9T, define Pg to be the mean value of g; that is,

T
(1.2) Pg = T fo 9(t) dt, IIP911 < 11g11.

If g is T-periodic, then the system

(1.3) i = g(t)
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has a T-periodic solution if and only if Pg = 0. Furthermore, if Pg = 0, let
.(g be the unique T-periodic solution of (1.3) which has mean value zero; that
is,

(1.4) .7(g = (I - P)J g(s) ds, II. (g II < K IIg II, K = 2T.
0

Every T-periodic solution of (1.3) can then be written as

x=a+.Y(g
where a is a constant n-vector and a = Px.

These simple remarks imply the following:

LEMMA 1.1. Suppose P and .7£r are defined in (1.2), (1.4). Then
(i) x(t) is a T-periodic solution of (1.1) only if Pf ( , x(-)) = 0; that is,

only
(ii) System (1.1) has a T-periodic solution x if and only if x satisfies the

system of equations

(1.5) (a) x=a+e.''(I-P)f(-,xy,
(b) EPf (, 0,

where a is a constant n-vector given by a = Px.

PROOF. If x is a T-periodic solution of (1.1), let g(t) =f (t, x(t)) and
assertion (i) follows immediately. The fact that x satisfies (1.5) is just as
obvious. If x is a solution of (1.5), then f ( , x) = (I - P) f ( , x) and, there-
fore, x is a T-periodic solution of (1.1). This proves the lemma.

LEMMA 1.2. For any a > 0, there is an eo > 0 such that for any a in Cn
with jai < a, Jel <_ co, there is a unique function x* = x*(a, E) which satisfies
(1.5a). Furthermore, x*(a, E) has a continuous first derivative with respect to
a, E and x*(a, 0) = a. If there is an a = a(E) with la(E)l <_ a for 0<_ let <_ co and

dof
(1.6) G(a

e)=

then x*(a, e) is a T-periodic solution of (1.1). Conversely, if (1.1) has a
T-periodic solution x(e) which is continuous in s and has Pg(E) = a(E),
la(E)l 5 a, 0:5 kEJ < eo, then x(e) = x*(a(e), E) where x*(a, E) is the function
given above and a(e) satisfies (1.6) for 0 <tEJ < Eo.

PROOF. Suppose a > 0 is given, P is any number >0 and a is an n-vector
with jai < a. Define .5"(f) = {y in 9T: IIy II < f, Py = 0) and the operator
F: So(p) -> 9T by

(1.7) .may = e.''(1 - P)f y + a)
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for y in V(p). If y is a fixed point of °F, then y + a satisfies (1.5a). Let M, N
be bounds on If (t, x)I, Ief(t, x)18xl, respectively, for t in R, IxI < P + a
and choose e so that 4ei TM < P, 4si TN < 1/2. One easily shows that
,F: 9(P) -*,'(P) and is a uniform contraction with respect to a, s for jai < at,
I sl < ei. Let y*(a, s) be the unique fixed point of F in 9(P). The existence and
properties of x*(a, s) = y*(a, s) + a stated in the lemma are now a consequence
of the uniform contraction principle. If a(s) satisfies (1.6), then x*(a(s), s) is a
solution of (1.1) from Lemma 1.1. Conversely, if x(E) satisfies the properties in
the statement of the lemma, then there is a # > a. such that I x(s) - a(s)I < P
for 0 <_ I el <_ si. For this S choose so < El so that ,F ° is a contraction on
9'(P) for 05 sl < so. Then x(s) - a(s) = y*(a(s), s) and x(s) = x*(a(s), s).
The conclusion of the lemma follows from Lemma I.I.

Lemma 1.2 asserts the following: one can specify an arbitrary n-vector
a and then determine uniquely a T-periodic function x*(a, e) with mean
value a in such a way that all of the Fourier coefficients of the function
x*(t) -f (t, x*(t)) are zero except for the constant term (this is the same as say-
ing (1.5a) is satisfied). The n-vector a is then used to try to make the constant
term equal to zero (that is, satisfy (1.6)). Equations (1.6) are sometimes
referred to as the determining equations or bifurcation equations of (1.1).

As a consequence of the above proof, the function x*(a, e) can be
obtained as the limit of the sequence {x(k)}, x(k) = y(k) + a where the y(k)
are defined successively by y(k+1) = Fy(k> k = 0, 1, 2, .. ., y(0) = 0, and PF is
defined in (1.7). Using only the first approximation, one arrives at

THEOREM I.I. Suppose x*(a, s) is defined as in Lemma 1.2 and let
G(a, s) be defined by (1.6). If there is an n-vector ao such that

(1.8) G(ao, 0) = 0, det
W (a0

0)1

a
:A 0,

L 8a

then there are an el > 0 and a T-periodic solution x*(s), E < ei, of (1.1),
x*(0) = ao, and x*(s) is continuously differentiable in s.

PROOF. The hypothesis (1.8) and the implicit function theorem imply
there is an El, 0 < El < E0, such that equation (1.6) has a continuously differ-
entiable solution a(s), la(s)i < a, 0< IEI. < si. Lemma 1.2 implies the remain-
ing assertions of the theorem.

Notice that
1 T

G(a,0)=T fo f(t,a)dt,

and therefore can be calculated without knowing anything about the solu-
tions of (1.1). Compare Theorem 1.1 with Theorem V.3.2. Can you prove
Theorem V.3.2 by the above method?
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In the applications, Theorem 1.1 is not sufficiently general even for
equation (1.1). More specifically, it is sometimes necessary to take the terms
in the Taylor expansion of G(a, e) in (1.6) of the first, second, or even higher
order in a. Except for the numerical computations involved, there is con-
ceptually no difficulty in obtaining these terms. To obtain the first order
terms of G(a, e) in e, one must compute the first order terms in a in x*(a, a),
etc. This is accomplished by the iteration procedure x(k) = y(k) + a, yak+I> =
,Fy(k), k = 0, 1, 2, ..., y(O) = a, where the mapping F is defined in (1.7).

It is easy to generalize the above results to a system of the form

(1.10) z = Bz + ah(t, z),

where h(t + T, z) = h(t, z), h and 8h/8z are continuous in R X Cm+n, B =
diag(0n , BI), On is the n x n zero matrix, BI is an m X m constant matrix
such that eBiT -I is nonsingular. This latter condition states that the
system y = Bly is noncritical with respect to 9T . If z = (x, y), h = (f, g)
where x, f are n-vectors, then the above system is equivalent to

(1.10)' x = of (t, x, y),

y = BIy + ag(t, x, y)

For any h = (f, g) in 9T define Ph to be the (n + m)-dimensional constant
vector given by

1 fT

J
f (t) dtPh= T o
0

The nonhomogeneous linear system

(1.12) z=Bz+h(t)
has a T-periodic solution if and only if Ph = 0. Furthermore, if Ph = 0, let
.%('h be the unique solution z of (1.12) with Pz = 0. For any h in 9T , one can
therefore define , ' (I - P)h and there is a constant K > 0 such that

(1.13) il.xr(I-P)hII <KIIhII;
that is .Y (I - P) is a continuous linear mapping of YT into YT. Every
T-periodic solution of (1.12) can be written as

z=a*+e.th,a*= [0a],

where a is a constant n-vector with a* = Pz.

LEMMA 1.3. Suppose P is defined by (1.11), H is in T and .7Y (I -P)H
is the unique T-periodic solution z of

z=Bz+(I-P)H
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with Pz = 0. Then z(t) is a T-periodic solution of (1.10) only if z(-)) = 0;
that is, only if h(-, z! )) = (I - z(-)). Also, system (1.10) has a
T-periodic solution z if and only if the system of equations

(1.14) (a) z = a* + e ((I - z(-)), a* = (a, 0),

(b) z( )) = 0,

is satisfied, where a is a constant n-vector given by a* = Pz.

LEMMA 1.4. For any a > 0, there is an CO > 0 such that for any a in Rn
with at < a, IEl < Eo, there is a unique function z* = z*(a, E) which satisfies
(1.14a). Furthermore, z*(a, E) has a continuous first derivative with respect to
a, e and z*(a, 0) = a*. If there is an a(e) with la(E)l < a for 0S 181 < so and

T
(1.15) G(a, E) = T fo

f (t, z*(a, E)(t)) dt = 0,

then z*(a, E) is a T-periodic solution of (1.10). Conversely, if (1.10) has a
T-periodic solution z(E) which is continuous in E and has Pi(E) = a*(E),
a* = (a, 0), la(E)I < a, 0< let < Eo, then z(E) = z*(a(E), E) where z*(a, E) is
the function given above and a(E) satisfies (1.15) for 0 < let < Eo

THEOREM 1.2. Suppose z*(a, e) is defined as in Lemma 1.4 and G(a, E) is
defined as in (1.15). If there is an n-vector ao such that

G(ao, 0) = 0, det
8G(ao, 0)1

01
i 8a II

then there is an El > 0 and a T-periodic solution z*(E), let < Cl, of.(1.10),
z*(0) = ap, ap = (ao,O) and z*(E) is continuously differentiable in E.

EXERCISE 1.1 Verify all statements made above concerning system
(1.10) and prove in detail Lemmas 1.3, 1.4, and Theorem 1.2.

EXERCISE 1.2. Consider the equations

x1 = x2,

x2 = -xl + E(1 - xi)x2 + EP COS(wt + a),

where p zA 0, E > 0, co, a are real numbers with w2 =1 + ES, P 0 0. Find con-
ditions on p, co, a which will ensure that this equation has a periodic solution
of period 27r/w for E small. Draw the frequency response curve. Let

xl = zl sin wt + z2 COS wt,

x2 = w(zl cos wt - Z2 sin wt),

and apply Theorem 1.1.
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EXERCISE 1.3. Discuss the possibility of the existence of a subhar-
monic solution of order 2 (that is, a solution whose period is twice the
period of the vector field) for the equation

(1.16) x1=x2,
X2 = -a2Xj + e(3v cos 2t - xi) - e2(Ax2 + µx1) - E3µx1,

where a = 1. Let

x1 = z1 sin t + Z2 Cos t,

x2=zlCOSt-Z2sint,

and apply Theorem 1.1.

EXERCISE 1.4. For a=2/3, A = eAi in (1.16) discuss the existence of a
subharmonic solution of order 3 of (1.16). Let

x1= zl sin at + z2 COS at,

x2 = a(z1 cos at - z2 sin at),

and determine the Taylor expansion of G(a, e) in (1.6) up through terms of
order a and apply an appropriate implicit function theorem.

EXERCISE 1.5. For a= 2/n, n a positive integer, show that (1.16)
possessing a subharmonic of order n implies that A must be O(en-2) as a -. 0.
You cannot possibly find n terms in the Taylor expansion of G(a, e) so you
must discuss the qualitative properties of the expansion.

EXERCISE 1.6. Using the method of Exercise 1.5, show that the Duffing
equation

xl = X2,

x2 = -(2n + 1) 2x1 - e8cx2 + eax1 + ebxl + B cos t,

can have a subharmonic solution of order 2n + 1 only ifs > n.

EXERCISE 1.7. Suppose f (x, y) is a continuously differentiable scalar
function of the scalars x, y, f (0, 0) = 0 and either f (x, -y) =f (x, y) or
f (-x, y) = -f (x, y) for all x, y. Given any a > 0, show there is an eo > 0 such
that for any (xo , yo) with xo + yo G a2, there is a periodic solution of the
system

(1.17) y,

y = -x + of (x, y),

for I e 1 <_ so. This implies the equilibrium point (0, 0) is a center. Let
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x = p sin 0, y = p cos 0 to obtain the equation

d0 =
eF(p, 0, e)

for the orbits of (1.17). If f (-x, y) = f (x, y), observe that F(p, -0, e) _
-F(p, 0, e). Show that the transformation F in (1.7) in this special case maps
even 27r-periodic functions of 0 into even functions of 0 and, therefore, the
fixed point must be even. This implies G(a, e) = 0. If f (x, -y) = f (x, y), then
let 0 = + 7r/2 and apply the same argument.

EXERCISE 1.8. Consider the system

x1=x2,
3x2 = -µx1 ,

where µ > 0 is a small parameter. A first integral of this equation is
E(x1, x2) = x2/2 + µx1/4 and, thus, all of the orbits are periodic orbits. For
µ = 0, the only periodic orbits are the equilibrium points which lie on the
xl-axis. Can you deduce this result by using the above perturbation theory?
If e = x1= z1, and x2 = ez2, then z1= ez2, z2 = -ezi which is a special
case of system (1.1).

The above theory is also useful for determining the characteristic
exponents of certain types of linear systems with periodic coefficients, More
specifically, consider the system of equations

(1.18) zv=Cw+eD(t)w

where e is a parameter, 0 < jej < eo, w is an (n + m)-vector, b(t) _ I(t + T),
T = 27r/w, is a continuous) (n + m) x (n + m) matrix and C = diag(Cl, C2)
is an (n + m) x (n + m) constant matrix such that all eigenvalues of the
n x n matrix eC1T are po and no eigenvalue of eCeT is po. The problem is to
determine the characteristic multipliers of (1.18) which are close to po for
e00.

Suppose Al is an eigenvalue of Cl and then po =, 01T. From the con-
tinuity of the principal matrix solution of (1.18) in a and the Floquet theory,
it follows that there is a multiplier p(e) = eM(e)T which is continuous in a and
µ(0) = A. Furthermore, to this multiplier there must exist a T-periodic
(n + m)-vector p(t, e) such that eu(E)tp(t, e) is a solution of (1.18). Conversely,
any such solution of (1.18) yields a characteristic exponent of (1.18). There-
fore, if one makes the transformation w = eutp in (1.18), then

(1.19) p = (C - pI)p + eI(t)p,

10 could be an integrable function.
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and the problem is to determine p in such a way that (1.19) has a T-periodic
solution.

In order to make the previous theory directly applicable, suppose that
the eigenvalues of C1 have simple elementary divisors. Then the matrix
e(c=-AlI)t is T-periodic. If w = (u, v), where u is an n-vector, v is an m-vector,
and P is any complex number, the transformation

(1.20) u = e(A,+e,6)te(C1-A1I)tx,

v = e(A1+eP)ty,

in (1.18) yields

(1.21) i = - Esx + Ail)tx + Ee-(C1-Ail)t(I12 y,

y = [C2 - (Al + EN)I]y + e(t21(t)e(C1-AiI)tx + eD22(t)y,

where we have partitioned 4) as (D = ((Dtp).
Since e(Cl-A,I)t is T-periodic, system (1.21) can be written as

(1.22) i = Bz + eT(t, P)z,

where B = diag(0,, C2 - A1I), z = (x, y) and ¶(t + T, P) ='1'(t, fi) for all
t, P. The explicit expression for 'F is easily obtained from (1.21). If P can be
determined in such a way that system (1.22) has a T-periodic solutionp(t),
then this solution yields from (1.20) a solution of (1.18) of the form

w(t) = e(A,+EQ)tp(t), p(t + T) = p(t).

Therefore, Al + ep is a characteristic exponent of (1.18). Conversely, we have
seen above that every such characteristic exponent can be obtained in this
way.

Since system (1.22) is a special. case of system (1.10), we may apply the
preceding theory. The function z* given in Lemma 1.4 will now be a function
of a, P and a and the linearity of (1.22) implies that z*(a, S, e) = Z*(19, e)a,
where Z*(p, s) is a T-periodic (n + m) x n matrix. If Z* = col (X*, Y*)
where X* is n x n then the function G(a, P, e) in (1.15) is also linear in a; that
is, G(a, P, E) = D(S, e)a, where D(fl, e) can be computed directly from (1.22)
as

T
(1.23) D(P, E) =

T fo
{'F11(t, fl)X*(fl, E)(t) +'F12(t, P) Y*(P, e)(t)] dt,

where 'F is partitioned as 'F = ('Ftg). Lemma 1.4 then implies that any fl for
which det D(P, e) = 0 will yield a characteristic exponent Al + efi of (1.18).

EXERCISE 1.9. Suppose D(P, e) is given in (1.23). Prove that the n
characteristic multipliers of (1.18) which for e = 0 are equal to po are
the n roots of the equation det D(fl, e) = 0.
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EXERCISE 1.10. Consider the system

(1.24) 2b = Ow + s'D(t)w,

where I (t + T) = (D (t) is continuous, C = diag(ar, ..., An) and for some
fixed j,

e. iT L exkT, k = 1, 2, ..., n, k j.

Show that the characteristic multiplier p(e) of (1.24) such that p(O) = eA,T is
given by

p(e) = eu(E)T, f Oyt(t)dt+o(e) as E,0,
0

where I = (Ok), i, k =1, 2, ... , n.

EXERCISE 1.11. Suppose that the system

x + x = sf (x, y, y),
+ v2y = sg(x, y, y),

has a periodic solution of period 21r/w(8), w(0) = 1, which for s = 0 is given
by x = a sin t, y = 0. Prove that this solution is asymptotically orbitally stable
with asymptotic phase if

tar a
E f a- (a sin t, a cos t, 0, 0) dt < 0,o

2n ag
s f (a sin t, a cos t, 0, 0) dt < 0,

o dy
and a 0 an integer. The characteristic multipliers. of the linear variational
equation relative to this periodic solution are given by 1, 1, e2nha e-2nia for
s = 0. The hypothesis on a implies that the roots e2nia and e-2nia are simple.
Therefore, Exercise 1.10 can be applied to obtain the first order change in
these multipliers with s provided the constant part of the variational equation
is transformed to a diagonal form. Since one multiplier remains identically one
for ,E V- 0 and the product of the multipliers is given by a well known formula,
one can evaluate the first order change in the other multiplier.

EXERCISE 1.12. Generalize the result of Exercise 1.11 to a system of
n-second order equations.

EXERCISE 1.13. Show that the system

x+x=s(1 -x2-y2)x,
y+2y=s(1 -x2 -y2)y, 6 >0,
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has two nonconstant periodic solutions both of which are asymptotically
orbitally stable with asymptotic phase.

EXERCISE 1.14. Consider the Mathieu equation

(1.25) x1 = x2,

x2 = -a2x1 - e(cos 2t)xi,

where a = a(e) and a(O) = m, a nonnegative integer. From the general
theory of this equation in Chapter III, we know that these values of a are
precisely the ones which may give rise to instability. In fact, the instability
zones are determined from those values of or for which equation (1.25) has a
periodic solution of period 7r or 27r; that is, the multipliers are +1 or -1.
Determine approximately these values of a(e) as a function of a for the case
when a(O) = 1, a(0) = 2. Are the solutions unbounded in a neighborhood of
the points (1, 0), (2, 0) in the (a, e)-plane? Let

x1= z1 sin mt + z2 cos mt, -

X2 = m[z1 cos mt - z2 sin mt],

and m2 - a2 = EP and apply the above theory for determining P in such a way
that the resulting equations have a periodic solution.

EXERCISE 1.15. For a(0) = m in Exercise 1.14, show that a2(e) = m2
+0(em) as 6 -+0.

EXERCISE 1.16. Discuss as in Exercise 1.14 the equation (1.25) with
a(0) = 0. Suppose e >_ 0, let a2 = Efl, X1 = Z1, x2 = . JEZ2 and analyze the
resulting equations for periodic solutions.

EXERCISE 1.17. For what values of w are all of the solutions of the
equation

+ a2x = e(sin a,t)y,

y + µ2y = e(cos wt)x,

bounded for s small and 0 0?
Let us use the same ideas as above to discuss the existence of periodic

solutions for equations which may contain several independent parameters rather
than just a single parameter e as in (1.1), (1.10). Consider the equation

(1.26) ac = f (t, x, A)

where A in R k is a parameter, x is in R', f (t, x, A) is continuous in t, xs A together
with at least first derivatives in x, A, f (t + T, x, A) = f (t, x, A),

(1.27) f(t,0,0) = 0, af(t,o,0)/ax = 0



PERIODIC SYSTEMS WITH A SMALL PARAMETER 269

Equation (1.26) is a generalization of (1.1) since, for example, for
A = (A1,A2), it could be of the form

x = Alf(1)(t,x) + A2f(2)(t,x)

which makes (1.1) correspond to f (2)(t, x) = 0. Equation (1.26) could also be
of the form

f(o)(x) + . 1 W(')(t, x)

where f(0)(0) = 0, af(0)(0)/ax = 0. If f (0)(x) 0, this latter equation cor-
responds to an f (t, x, A) which can be made small together with its first deriva-
tive by choosing A small and x small. In problems of this type, we will be
interested in T-periodic solutions with small norm.

Lemmas 1.1, 1.2 have an analogue for system (1.26), (1.27) which we
state without proof since the proof will be the same.

LEMMA 1.3. Suppose P,.9Yare defined in (1.2), (1.4). Then x(t) is a T-periodic
solution of (1.26) if and only if

(a) x=a+9Y(I-P)f(',x('),A)
(1.28)

(b) Pf(',x(-),A) = 0

where a is a constant n-vector given by a = Px.

LEMMA 1.4. If (1.27) is satisfied, then there are A0 > 0, ao > 0 such that,
for any a in Rn, Ial < ao, any A in Rk, IAI < Ap, there is a unique T-periodic
function x* = x*(a,A) continuous together with its first derivatives, satisfying
(1.28a), x*(0,0) = 0. If there exist (a,A) such that lal < ao, Al I< A0 and

(1.29) G(a,A)def 6 $Tf(t
x*(a, X)(t), A)dt = 0

0

then x*(a,A) is a T-periodic solution of (1.26). Conversely, if (1.26) has a
T-periodic solution x(A) which is continuous in A and has Px(A) = a(A),
la(A)l < ao, Al I< Xo,. then x(A) = x*(a(A),A) where x*(a,A) is the function
given above and a(A) satisfies (1.29) for 0 < I A I < A0.

One can also give an analogous extension of Lemmas 1.1, 1.2 to a system
of the form

x=f(t,x,y,A)
(1.30)

y=B1y+g(t,x,y,A)
where eB 1 T - I is nonsingular if one supposes f,g and - their derivatives with
respect to x, y vanish at x = 0, y = 0, A = 0. We do.state the results explicitly.
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Having the method formulated so as to apply to (1.26) and (1.30) gives
the opportunity to discuss more general problems as well as to discuss old
problems more completely. We illustrate this with some examples.

The simplest example is the so-called Hopf bifurcation. Suppose A is a
scalar, A(A) is a x X 2 matrix continuously differentiable in A with the eigen-
values of A(O) being ±i. Then there is a neighborhood of A = 0 for which
the matrix A(A) has two complex conjugate eigenvalues µ(A) ± iv(A), continu-
ous and continuously differentiable in A such that µ(0) = 0, v(0) = i. Let us
suppose dµ(0)/dA 0 0. This hypothesis implies that we may redefine the
eter A in a neighborhood of zero by replacing A by µ(A), j3(A) = f v(p-1(X))] 2
and assume A(A) has the form

A (3(A)
(1.31) A(A) = ,

-(3(A) A
0(0) = 1

Consider the second order equation

(1.32)

where

(1.33)

x=A(A)x+f(x,A)

f(o,A) = 0, af(o,A)/ax = 0

andA(A) is given in (1.31).
The Hopf Bifurcation Theorem is stated explicitly in the following way.

THEOREM 1.3. Consider system (1.31), (1.32), (1.33) and suppose f has con-
tinuous second derivatives in x. Then there are Ao > 0, ao > 0, So > 0, scalar
functions A*(a), w*(a) and an w*(a)-periodic function x*(a) with all functions
being continuously differentiable in a for I a I < ao such that x*(a) is a solution
of the equation

z = A (A*(a))x + f (x, A*(a))

and

A*(0) = 0, w*(0) = 2A,

x*(a) =
(_acost)

+ o(lal).
a sin t

Furthermore, for IAI < A0, Iw - 21rI < So, every w-periodic solution of (1.32)
with norm <S0 must be of the above type except for a translation in phase.

PROOF. Since we are in the plane, every periodic orbit of (1.32) must encircle
an equilibrium point. The hypothesis on A(A) implies detA(A) 0 0 for A close
to zero. Thus, the solution x = 0 of (1.32) is isolated for I A I sufficiently small



PERIODIC SYSTEMS WITH A SMALL PARAMETER 271

and any solution of (1.32) with sufficiently small norm must encircle x = 0.
This justifies the introduction of polar coordinates

(1.34) x1 = pcos 0, x2 = -psin 0

to obtain the equivalent system

8 =Q(a)-p [.fisin0 +f2cos0]
(1.35)

,o=Xp+f1cos0-f2sin0

For I X I , I p I small, B >0 and so we can eliminate t to obtain

(1.36) dd = a(X)p + R(0,p,X)

where R(0 + 27r,p,X) = R(0,p,X), R(0,0,X) = 0, aR(8,0,X)/ap = 0, a(0) = 0,
a'(0) = 1.

Finding periodic solutions of period 27r of (1.36) is equivalent to finding
periodic orbits of the original equation (1.32). If p(O) is a 27r-periodic solution
of (1.36), one obtains the period of the periodic orbit x1 = p(0)cos 0,
x2 = -p(O)sin 0 by finding that value of co for which 0(w) = 21r where
0(t), 0(0) = 0, satisfies the first equation in (1.35) with p = p(O).

Lemma 1.4 is applicable directly to (1.36). Let p*(0,a,X) be the unique
solution for a. X small of the equation

p = a +,7 (I -P)[a(X)p +R(-, p,X]

Then p*.(0,0, X) = 0 since x = O is a solution of (1.32). The bifurcation function
GH(a,X) in (1.29) is

J0p*o,a,x2

GH(a,X) 27r ) +R(0,p*(O,a,X),X)] dB.

Since p*(0,0,X) = 0, we have GH(0,X) = 0. If we define the function
GH(a,X) = GH(a,X)la, then GH(0,0) = 0, aGH(0,0)/aX = 1. The Implicit
Function Theorem implies there is a unique X*(a), Ial <ao such that X*(O) = 0
and GH(X *(a), a) = 0. The fact that this function X*(a) leads to functions
w*(a), x*(a) as stated in the theorem is left for the reader to verify.

EXERCISE 1.18. Verify that GH(a,X) in (1.37) is an odd function of a.

From Exercise 1.18, GH(a,X) = agH(a2, X). Suppose A(A), f (x, X) in (1.32)
have derivatives continuous up through order four and

(1.38) gH(r,X)=a(X)-y(X)r+o(Irl) as Irl-+0

where y(0) = yo # 0; that is, GH(a,X) = a(X)a - y(X)a3 + o(I al3) as lal - 0.
Then, gH(r,X) satisfies gH(0,0) = 0, agH(0,0)/ar = -yo : 0. The Implicit
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Function Theorem implies there is a unique r*(X), I A I < A0 , continuously dif-
ffrentiable in A, r*(0) 0, r*(A) * 0 for 0 < I A I < Ao and gH(r*(A), A) = 0.
If r*(X) > 0 for 0 < I AI < Ao, then we can define a*(X) by the relation a2 = r*(X)
to obtain GH(a*(X),X) = 0 for I A I < Ao. Furthermore, ± r*(A) and a = 0 are
the only solutions of G(a, A) = 0 for I A I < Ao, I a I < ao. The condition r*(A) > 0
for 0 < I A I < Ao is equivalent to (sgn70)A > 0, 0 < I A I < Ao. Furthermore,
+V/r (A) and -./r*(A) correspond to the same periodic orbit of (1.32). Con-
sequently, there is a unique nonconstant periodic solution of (1.32) in a
neighborhood of x = 0 if the following conditions are satisfied

(1.39)
70>0, 0<A<A0

70 <0, -Ao <A<o

Let us now investigate the stability of this periodic orbit. It is sufficient
to investigate the stability of the corresponding 27r-periodic solution p*(a*(A),A)
of Equation (1.36). We will use averaging to determine the stability properties.

Make a 21r-periodic transformation of variables in (1.36) of the form

(1.40) p = s + u1(8)s2 + u2(6)s5

and choose u10), u2(8) to be 27r-periodic and choose a constant 70 so that the
differential equation for s has the form

(1.41) dB = As-70s3 +S(a,s,A)

where S(6,s,A) = o(IsI(IAI + s2)) as IAI - 0, 1 s I - 0. This is always possible.
To be specific in the discussion of stability suppose 70 > 0. Equation (1.41)

can be considered as a perturbation of the equation

(1.42) y = -7oy3

which has y = 0 uniformly asymptotically stable. Thus, there is a neighborhood
of y = 0 say l y l < S such that for I A I < X0(6), every solution y(O) of (1.41)
with initial value satisfying l y(0) I < S must satisfy l y (B) I < S for t> 0. Suppose
ly(0)I .<S. Since (1.41) is 27r-periodic, y(O + 21r) is also a solution and
y(O) <y(2Tr) implies y(2Trk) < y(27r(k + 1)) for k = 0,1,2, ... . Thus,
y(21rk) - y,o as k - - and it is easy to show that the solution of (1.41) with
initial value yo is 2,7r-periodic. A similar argument holds if y(O) > y(27r). Since
the equation is 27r-periodic, this implies that, for every solution y(t) of (1.41)
with ly(0)I < S, IAI < Ao, there is a 27r-periodic solution cy(O) such that
y(O) - 4y(O) -a 0, as 0 This means the corresponding periodic orbit of
(1.32) in R2 corresponding to Oy(O) is attracting the orbit corresponding to
y(O). Since 70 0 0, there is only one nontrivial periodic orbit. Since 70 > 0,
the trivial solution is always unstable for 0 < A < Ao and we have the nontrivial
periodic orbit is asymptotically orbitally stable.
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If y0 < 0, one argues in a similar way to obtain the nontrivial periodic
orbit is unstable. We summarize these remarks as follows.

COROLLARY 1.1. Suppose A(A), f (z,A) have derivatives continuous up
through order four and suppose GH(a,A) in (1.37) satisfies GH(a,A) = agH(a2,A)
where gH(r,A) satisfies

gH(r,A)=A-y(A)r+o(Irl) asr-*0

y(0) = yo # 0.

Then there is a neighborhood of A = 0, x = 0 in which equation (1.32) has the
following properties:

(i) y0 > 0, -A0 < A < 0, x = 0 is asymptotically stable and
there is no periodic orbit.

0 < A < A0, x = 0 is unstable and there is an
asymptotically orbitally stable
periodic orbit.

(ii) 70 < 0, -A0 < A < 0, x = 0 is asymptotically stable and
there is an unstable periodic orbit.

0 < A < A0, x = 0 is unstable and there is no
periodic orbit.

EXERCISE 1.19. Prove there exists asymptotic phase in Corollary I.I.
Hint: Show the characteristic exponent for the solution s of (1.41) is not zero.

EXERCISE 1.20. Suppose GH(a,A) in (1.37) satisfies GH(a,A) = agH(a2,A)
with g(r,0) = crm + o(I rl m) as r - 0 for some c * 0 and integer m> 1. State
and prove the analogue of Corollary I.I.

EXERCISE 1.21. Generalize the Hopf bifurcation theorem to a system

A (A)x + f (x, y, A)

B(A) y + g(x, y, A)

where f,g, and their partial derivatives vanish for x = 0, y = 0, x in R2, y in R.
Suppose A(A) as before and det [I - expB(0)27r] = 0. Give conditions which
will ensure there is a unique nonconstant period orbit for a given A sufficiently
small. Discuss the stability properties of this orbit.

EXERCISE 1.22. Consider the scalar equation x2 + f (t, x, A) where
f (t + 1, x, A) = f (t, x, A) has continuous derivatives up through order two in
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x, A; f (t, x, 0) = o(1x12) as Ix I - 0, f (t, O, A) = 0 (I A I) as X -0. Prove there is a
Ap > 0, So > 0, and a continuously differentiable function 'y(A), I X I < Ap,
y(0) = 0, such that the following properties hold with respect to 1-periodic
solutions of the above equation with norm <50:

(i) y(A) > 0 implies no 1-periodic solution
(ii) y(A) = 0 implies one 1-periodic solution

(iii) y(X) < 0 implies two 1-periodic solutions.

Note that your results are true for X a parameter in a Banach space. Discuss the
stability properties in case (ii). In case (iii), if x1(t,A) < x2(t,A) are the 1-
periodic solutions, show that xl(t,A) is uniformly asymptotically stable and
x2(t,A) is unstable. Hint: Obtain the bifurcation function G(a,X) from (1.29)
and observe that G(a, 0) = a2 + o(1a12) as 1 a I -0. Thus, G(a, A) has a minimum
at some a*(X) for IAI small, a*(0) = 0. Let y(X) = G(a*(X),X). For case (ii),
note that every bounded solution of the differential equation must approach
a 1-periodic solution. At a zero a of G(a, X), note that the sign of aG(a,A)/aa is
the same as the sign of the characteristic exponent of the corresponding periodic
solution if this characteristic exponent is not zero. If two distinct periodic solu-
tions exist and one characteristic exponent is zero, show that an appropriate
small perturbation of the vector field will yield at least three periodic solutions
near zero, which is a contradiction.

EXERCISE 1.23. Give an appropriate generalization of Exercise 1.22 to
the equation in R2,

x2+f(t,x,y,A)

y = -y + g(t, x,y, A)

EXERCISE 1.24. Consider the scalar equation

= -x3 + A1f1(t, X) + A2.f2(t, x)

where A = (XI, A2) is in R 2, f (t + 1, x) = f (t, x) for all t, x, j = 1, 2,

1

yI = fo f2(t,0)dt0 0

f1(t,0) = 0, 72 = 10 [af1(t,0)/ax] dt* 0

Discuss the existence of 1-periodic solutions in a neighborhood of x = 0, X = 0.
Show there is a cusp F in X-space such that on one side of r there is one 1-
periodic solution and the other side there are three. Show the cusp is,rapproxi-
mately given by A2 = (4, /27y2)X . Hint: Show that the bifurcation' function
G(a,X) is approximately given by -a3 + X272a + Alyl and determine those
AI, A2 as functions of a so that G(a,X) = 0, aG(a,X) = 0.
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EXERCISE 1.25. Discuss the stability of the periodic solution in Exercise
1.24.

EXERCISE 1.26. Generalize Exercise (1.24) to the equation

x = -x3 + f (t, x, A)

where A is a parameter varying in a Banach space.

EXERCISE 1.27. Generalize Exercise (1.24) to the planar system

-x3 + f (t, x, A)

-y + g(t, x,A)

where A = (A1,A2) is in R2.

VM.2. Almost Linear Systems

In this section, the general perturbation scheme given in Section 1 will be
generalized to the system

(2.1) x = B(t)x + of (t, x),

where B(t -}- T) = B(t), f (t + T, x) = f (t, x) and 8f (t, x)/8x are continuous for
all tin R, x in Cn.

Let the columns of '(t), a matrix of dimension n x p, be a basis for the
T-periodic solutions of

(2.2) x =. B(t)x,

and let the rows of 'Y(t), a matrix of dimension p x n, be a basis for the
T-periodic solutions of the adjoint equation

(2.3) y = -yB(t).

The p x p matrices (' denotes transpose)

(2.4) C = fT L'(t)'(t) dt, D = fT 'F(t)'F'(t) dt
0 0

are nonsingular. In fact, if q(t) ='(t)a and Ca = 0, then f o q'(t)q(t) dt = 0
which implies q(t) = 0 for all t in [0, T]. But this implies a = 0. The same
argument holds for the matrix D.

As before, let 1T be the space of continuous T-periodic n-vector func-
tions with the uniform topology. The fact that C, D in (2.4) are nonsingular
allows one to define two projection operators P, Q on 1T in the following way:
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T
(2.5) Pf = I ( )a, a = C-1 f D'(t) f (t) dt,

0

Qf = W'(' )b, b = D-1 (T 1F(t)f (t) dt.
0

It is easy to check that these are projections. Notice that P takes 'T onto the
subspace of 1T spanned by the T-periodic solutions of (2.2) and Q takes 9T
onto the subspace of 1T spanned by the transpose of the T-periodic solutions
of (2.3). The justification for these definitions lies in the following lemma.

LEMMA 2.1. If f is a given element of 9T, then a necessary and suffi-
cient condition that the equation

(2.6) z = B(t)x + f (t)

has a T-periodic solution is that Qf = 0. If Qf = 0, then there is a unique
T-periodic solution Y(f such that P.Y(f = 0. Furthermore, -''(I - Q) is a
continuous linear operator taking 9T into MIT.

PROOF. The first part of the lemma is a restatement of Lemma IV.1.1.
If Qf = 0, then there is a solution of (2.6) in PiT . If x0 is the initial value
of any solution in 9T, then x0 must satisfy the equation Ex0 = b, where
E = X(T) - I, b fo X(T)X-1(s)f(s)ds and X(t) is the principal matrix

solution of x = B(t)x. Let E* be a right inverse of E; that is, a matrix taking
the range of E into Cn such that EE* = I. Since Qf = 0 implies b is in the
range of E, the vector x0 = E*b corresponds to the initial value of a solution
x*(f) of (2.6) in 9T . If , ' f = (I - P)x*(f) then the operator J f takes PIT into
PiT and is clearly linear and continuous. Also, P.1' f = 0 and Yf is the only
solution of (2.6) in 9T whose P-projection is zero. This completes the proof
of Lemma 2.1.

COROLLARY 2.1. If f is in PIT and a is a given p-dimensional vector, then
the unique solution of B(t)x + (I - Q) f with Px = (D( - )a is given by
(Da+ '(I - Q)f

Example 2.1. Suppose B = B(t) is a constant n x n matrix, B =
diag(0p , B1) where Op is the p-dimensional zero matrix and eB1T _I is non-
singular. Then D, `F may be chosen as

(D = [,P], `I''=(D'=[Ip,O],

where Ip is the p x p identity matrix. It is easy to see that the matrices C, D
in (2.4) and operators P, Q in (2.5) are given by C = D = TIp
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Tf fp(t) dtPf=Qf= T o
0

where f p denotes the first p components of f. This is the same operator defined
in Section 1 for equation (1.10). If Qf = 0, then the explicit expression for
.''f is

f
tfp(s)

ds

where
tp

f fp

(i(f)(t) = T
(e-BiT - I)-1 f e-111f.-p(t + s) ds

0

is the unique primitive of fp of mean value zero, and fn-p
denotes the last n -p components of f.

Example 2.2. Suppose B =B(t) is constant and

B= [0 10].

We may choose 4) = col(1, 0) and IF = row(0, 1). Then C = D = T and

T

Pf=ID(-)a= [0]CT f fl(s)ds)>
0

((1
T

Q.f )b = [0] `T f( f2(s) d-9),

where f = (fl, f2). If Qf = 0, one easily computes .'£'f to be

f, [fi(s) T f0Tfl+ f f2] ds

(ff)(t) _
T t-T

f0fl+ f2

where It t ".again denotes the primitive of the integrand of mean value zero.

LEMMA 2.2. If the operators P, Q and . '' are defined as in (2.5) and
Lemma 2.1, then system (2.1) has a T-periodic solution x if and only if
x satisfies the system of equations

(2.7) (a)

x) =0.
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PROOF. Suppose x is any element of YT T. We first show that
Q(x - Bx) = 0. In fact, from (2.5),

T
Q(z - Bx) =`F'D-1 f 'F(t)[x(t) - B(t)x(t)] dt

0

=1y"D-1 f
T['v(t)x(t)

+4(t)x(t)l dt
0

= T'D-1['F(t)x(t)]o = 0.

An element x of 9T is a solution of (2.1) if and only if

Q(z - Bx) =eQf ( , x),
(I -Q)(x - Bx) =e(I -Q) f ( , x).

Since Q(x - Bx) = 0, these equations are equivalent to (2.7b) and x - Bx =
(I - Q) f ( , x). Corollary 2.1 implies this latter equation is equivalent to
(2.7a) and this proves the lemma.

LEMMA 2.3. For any a > 0, there is an to > 0 such that for any con-
stant p-vector a, jal < a, Isl < to, there is a unique function x* = x*(a, e)
which satisfies

(2.8) x* = (Da + eir(I -Q)f (', x*).
Furthermore, x*(a, e) has a continuous first derivative with respect to a, a and
x*(a, 0) = a. If there is an a = a(e) with I a(e)I 5 a, 0 <_ Is <_ to and

(2.9) G(a,
e)aefQf(,, x*(a, s)) = 0,

then x*(a, e) is a T-periodic solution of (2.1). Conversely, if (2.1) has a
T-periodic solution x(e) which is continuous in a and has P2(e) = (Da(s),
ja(e)l < a, 0< Iel < to, then x(e) = x*(a(e), e) where x*(a, e) is the function
defined above and a(e) satisfies (2.9) for 0 < 181:!9 Co.

PROOF. Suppose a > 0 is given and a is anyp-vector with jal ;Sot. Let
be a positive number such that I11 a 11 < P for jal < a. For any y > 0, define
,So(y) = {y in YT: Py = 0, 11y11 :5 y} and the operator. : So(y) -*9T by

(2.10) .$Fy=e.''(I -Q)f(.,y+(Da)

for y in 5o(y). If y*(a, e) is a fixed point of .F in So(y), then x*(a, e)
(Da + y*(a, e) is a solution of (2.8). The proof now proceeds exactly as in the
proof of Lemma 1.2.

From the point of view of applications, it is convenient to observe that
relation (2.5) implies that G(a, e) = 0 in (2.9) is equivalent to

(2.11) F(a, e)de Tf f 'F(t)f(t, x*(a, e)(t)) dt=0.
0
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Lemma 2.3 asserts the following: one can arbitrarily preassign an element
xp = fia of the subspace of 9T defined by If in YT: Pf = f} and then uniquely
determine a solution of (2.7a) with Px replaced by xp. The element xp is then
used to attempt to solve the remaining equation (2.7b).

Equations (2.9) or (2.11) are called the determining equations or bifurca-
tion equations of (2.1) and can be determined approximately by successive
approximations since ,F in (2.10) is a contraction operator. Taking only the
first approximation fia for x*(a, e) and using the implicit function theorem,
one arrives at

THEOREM 2.1. Suppose x*(a, e) is defined as in Lemma 2.3 and let
F(a, e) be defined by (2.11). If there is a p-vector ao such that

F(ao, 0) = 0, det
8F(ae, 0)

L 8a J
0 0,

then there are an el > 0 and a T-periodic solution x*(e), 0 <_ IsI < el, of
(2.1), x*(0) = five and x*(e) is continuously differentiable in e.

EXERCISE 2.1. If f is in cT and Qf = 0, give a constructive procedure
for determining the function i f in /T given in Lemma 2.1.

EXERCISE 2.2. State and prove the appropriate generalizations of the
results of this section for the equation

x = B(t)x +f (t, x, e),

where B(t + T) = B(t), f (t + T, x, e) = f (t, x, e) are continuous for (t, x, e) in
R x Cn x C, and

f(t,6,0)=0,
If(t, x, e) -f(t, y, e)I 7)(Ie1, a)Ix-YI,

for tin R, s in C, x, y in Cn, IxI < a, jyj < a and q(a, v) is a continuous non-
decreasing function for a >- 0, a >_'0, ,(0, 0) = 0.

EXERCISE 2.3. Consider the system

(2.12) xl = x2,
x2 = e[(a + a cos 2t)xl + bxi + cx2],

where a, a, b, c are constants. Find conditions on these constants which
will ensure that a-periodic solutions exist. What are their stability properties?

EXERCISE 2.4. Find conditions on a so that (2.12) for b = c = 0 has
a 7r-periodic solution. Interpret your result in the light of the theory of the
Mathieu equation.
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If the system (2.1) possesses some additional properties, it is sometimes
possible to make qualitative statements about the bifurcation equations (2.9)
or (2.11) without any successive approximations. The next few pages are
devoted to this question.

Definition 2.1, A system of differential equations g(t, x) where x,
g are n-vectors is said to have property (E) with respect to S if there exists a
symmetric, constant n x n matrix S such that 82 = I and

Sg(-t, Sx) = -g(t, x)

for all t, x.
If x(t) is a solution of a system which has property (E) with respect to S,

notice that Sx(-t) is also a solution. In fact, if x is a solution of such a system
and w(t) = Sx(t), then

w(t) = Sx(t) = Sg(t, x(t)) = Sg(t, S-1w(t)) = Sg(t, Sw(t)) = -g(-t, iv(t)).

This implies w(-t) = Sx(-t) is a solution of the original equation.

LEMMA 2.4. Suppose S is an n x n symmetric matrix, S2 = I,
B(t) = B(t + T) is an n X n continuous matrix and f (t) = f (t + T) is a con-
tinuous n-vector such that

(2.13) (a) SB(-t) = -B(t)S,
(b) Sf (-t) = f (t).

Let the columns of the n x p matrix (D be a basis for the T-periodic solutions
of (2.2), if be defined as in Lemma 2.1 and Q as in (2.5). Then

(2.14) (a) St (-t)a = b(t)a for all t if SD(0)a = (D(0)a,

(b) S(Qf)(-t) = -(Qf)(t),
(c) -Q)f](-t) =['(I -Q)f](t)

PROOF. The fact that B satisfies (2.13) implies that system (2.2) has
property (E) with respect to S and thus, if S b(0)a = 4)(0)a, then uniqueness
of the solutions implies S(D(-t)a = (D(t)a for all t. This proves (2.14a). The
matrix SD(-t) is a basis for the T-periodic solutions of (2.2) and, conse-
quently, there is a p x p nonsingular matrix r such that Sb(-t) = (D(t)P
for all t. In the same way, there is a p x p nonsingular matrix M such that
`F(-t)S = MT(t) for all t.

For any f satisfying (2.13b), we have from (2.5), and S' = S that

S(Qf)(-t) = ST'(-t)D-1 f
T

o(a)f (a) do
0

='F'(t)M'D_1 fTW(-a)f (-a) da
0



PERIODIC SYSTEMS WITH A SMALL PARAMETER 281

_ -T'(t)M'D-1 f T(-a)Sf (a) da
0

_ -'F'(t)M'D-1Mf

TW(a)f
(a) da

0

On the other hand, from (2.4) and S' = S, S2 = I, one shows that MDM' = D.
Therefore, M'D-1M = D-1 and

T
S(Qf)(-t) = -'F'(t)D-1 f T(a)f(a) doe

0

_ -(Qf)(t).

This proves (2.14b).
If f satisfies (2.13b), then (2.14b) implies that (I -Q) f satisfies

8(1 - Of (-t) = -(I -Q)f (t)
Therefore, to prove (2.14c), it is sufficient to show that (2.14c) is satisfied with
(I - Q) f replaced by f and Qf = 0. We first show that PS(.V' f)(- ) = 0.
From (2.5), this is true if and only if

0 = f
T

(D'(t)S(. ''f)(-t) dt
0

= P f T V(-t)(.*f)(-t) dt
0

= r' f
T

(D'(t)(,'Cf)(t) dt.
0

Since PA' f = 0 it follows that f o I'(t)(A f)(t) dt = 0. Therefore, PS(it' f)(- )
= 0. Since -V;f is the unique solution of (2.6) with PA 'f = 0 and S.f f (- )
is also a solution of this same equation with P-projection zero, it follows
that (2.14c) is true. This proves the lemma.

THEOREM 2.2. Let the columns of the n x p matrix c be a basis for the
T-periodic solutions of (2.2) and let the rows of the p x n matrix 'F be a basis
for the T-periodic solutions of (2.3). Let x*(a, e) be the function determined in
Lemma 2.3 and suppose system (2.1) has property (E) with respect to S. Then

(2.15) Sx*(a, e)(-t) = x*(a, e)(t)

for all t provided that (I - S)4)(0)a = 0. In addition, if F(a, e) is defined as
in (2.11), -then

(2.16) (I + M)F(a, e) = 0.

where M is the matrix such that'F(-t)S = M'F(t).
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PROOF. Suppose ScD(0)a = Z(0)a; let So(y) be defined as in the proof of
Lemma 2.3 and b'*(y) be the subset of So(y) consisting of those y in .9'(y)
which satisfy Sy(-t) = y(t). From Lemma 2.4, .may = e.Y((I - Q) f (-, y + (Da)
belongs to 9*(y) for 181 < eo where co is given in Lemma 2.3. Since this
operator has a unique fixed point y*(a, e) in S(y),Sy*(a, e)(-t) = y*(a,e) (t).
Therefore (2.14a) implies x*(a, e) = y*(a, e) + Fa satisfies relation (2.15).
Using (2.15), property (E) and the fact that 'F(-t)S = M'F(t), one obtains

T
F(a, e) = f 'F(t) f (t, x*(a, E)(t)) dt

0

=
T

f 'F(t) f (t, Sx*(a, e)(-t)) dt
0

T
f 'F(t)Sf (-t, x*(a, e)(-t)) dt

0

fT
= -M 'F(-t) f (-t, x*(a, e)(-t)) dt

0

= -MF(a, e).

This proves the theorem.
In the applications, Theorem 2.2 can be very useful and especially the

conclusion expressed in (2.16). This relation says that the bifurcation func-
tions given by the components of the vector F in (2.11) are dependent pro-
vided that the p-vector a satisfies (I - S)t (0)a = 0. This can lead to results
for (2.1) involving the existence of families of periodic solutions. The following
exercises illustrate this point and involve situations in which property (E)
expresses some even and oddness properties of the functions in (2.1).

EXERCISE 2.5. Suppose f (-t, x) = f (t, x) for all t in R, x in Rn. Show
that the system x = of (t, x) has an n-parameter family of periodic solutions
for e small. If f (t, x) = A(t)x and A(-t) _ -A(t), this implies in particular all
characteristic multipliers are 1.

EXERCISE 2.6. Reconsider Exercise 1.7 in the light of Theorem 2.2.

EXERCISE 2.7. Show that all solutions of the equation

y+a2y=eg(y,y, y), a:A 0,

in a neighborhood of y = y = y = 0 are periodic for e small if g(y, -y, y) _
-g(y, y, y). Write the equation as a third order system x = A(a2)x + of (t, x),
let x = [exp A(.r2)t]z, T2 = a2 + ep and apply the previous results to the
equation for z using P as one of the undetermined parameters.

EXERCISE 2.8. Consider the system of second order equations
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ii + a2u = egl(u, u, v, ti),

v + µ2v = eg2(u, v, v),

where a mµ,µ * ma for m = 0, +1, ... and

gI(-u,,&, v, -gi(u, u, v, v),
g2(-u, u, v, -v) = g2(u, u, v, v).

Show that this system has two 2-parameter families of periodic solutions.
Let x1= u, x2 = afi, x3 = V, v4 = µv to obtain a fourth order system t =
A(a, µ)x + of (x) where A(a, µ) = diag(B(a), B(µ)), x = (y, z), y, z two-vectors
and let y = [exp B(-r)t] Y, z = Z, z = a + e/3 and apply Theorem 2.2 to the
equation for (Y, Z) using f as one of the undetermined parameters. Generalize
this result to other types of symmetry as well as a system of n-second order
equations.

Definition 2.2. 1 A first integral of a system

(2.17) z = g(t, x)

is a function u: R X Cn - C which has continuous first partial derivatives
such that

x)
g(t,

x)+auet x)

=0

for all t, x.

If x(t, to, xo), x(to, to, xo) = xo is a solution of (2.17) and u is a first
integral of (2.17), then u(t, x(t, to, xo)) = u(to, xo) for all t for which x(t, to, xo)
is defined. If to = 0, we write x(t, xo), x(0, xo) = xo, for a solution of (2.17).

Let V (t, xo) = ax(t, xo)/axo. In Chapter I, we have seen that V is a
principal matrix solution of the equation

(2.18) z = Hz, H = H(t, xo) = ag(t, x(t, xo))/ax.

LEMMA 2.5. If u is a first integral of (2.17) which has continuous second
partial derivatives, then uz(t, xo) defau(t, x(t, xo))/ax is a solution of the adjoint
equation

(2.19) w = -wH,

where H is defined in (2.18).

PROOF. Since u(t, x(t, xo)) = u(0, xo) for all t and all xo, it follows that
ux(t, x(t, xo)) V(t, xo) = ux(0, xo) for all t. Differentiating this relation with
respect to t, one obtains
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0=uxV+uxV=[ux+uxH]V

for all t. Since V is nonsingular, ux must satisfy (2.19) and the lemma is
proved.

LEMMA 2.6. If u(t + T, x, s) = u(t, x, e) is a first integral of (2.1) which
has continuous second partial derivatives with respect to t and x and x*(a, s)
is the T-periodic function given in Lemma 2.3, then

T
(2.20) f [uxQf]x=x.(a, e)(t) dt = 0

0

for e 0, where Q is defined in (2.5).

PROOF. Since u is a first integral of (2.1), we have in particular that

T
f [ux(Bx + sf) + nt]x=x.(a, 8)(t) dt = 0.

0

Since x*(a, e)(t) and u(t, x, e) are T-periodic in t, we also have

T

0 = fo dt [u(t, x*( , E) (t), e)] dt

T
= Lux* + Ut]x=x+(a, )(t) dt

= f [ux(Bx + of - eQf) + Ut]x=x.(a, 8)(t) dt.

Subtracting these two expressions gives (2.20) and proves the lemma.
Suppose x*(a, s) is the T-periodic function given in Lemma 2.3 and

suppose u(t, x, e) = u(t + T, x, e) is a first integral of (2.1) with ux(t, 0, 0) 0.
From Lemma 2.5, it follows that ux(t, 0, 0) is a nontrivial T-periodic solution
of tv = -wB(t). Since x*(0, 0) = 0, ux(t, x*(0, 0)(t), 0) = ux(t, 0, 0) 0 0 is a
T-periodic solution of the adjoint equation t8 = -wB(t). With the rows of the
p x n matrix `F defining a basis for the T-periodic solutions of this equation,
this implies there is a p-dimensional row vector h zi6 0 such that ux(t, 0, 0) =
h'F(t). Obviously, there is a continuous function µ(t, a, e) = µ(t + T, a, e) such
that µ(t,0,0)=0 and

ux(t, x*(a, s)(t), s) = ux(t, 0, 0) + µ(t, a, e)

= h1F(t) + µ(t, a, --)-

If F(a, s) is defined as in (2.11), then (2.5) implies that equation (2.20) can be
written as
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T
0 [h`F(t) + µ(t, a, s)]W'(t)D-1F(a, E) dt

T
µ(t, a, E)W'(t)D-1 dt]F(a, e)= rh + fo

JJL

for 0 < I EI <_ Eo : Since h is nonzero and p (t, 0, 0) == 0, it follows there are

al 0, El 0 such that h + f T µ(t, a, E)'F'(t)D-1 dt = hl is zA 0 for Jai < al,
EI El. Therefore, there is a linear relation among the components of F;
that is, a linear relation among the bifurcation functions of (2.1). One of the
bifurcation functions is therefore redundant if there is a first integral u(t, x, E) _
u(t + T, x, E) of (2.1) with ux (t, 0, 0) zA 0.

If ul, ... , uk are first integrals of (2.1), we say they are linearly inde-
pendent if the matrix uz(t, 0, 0) = 8u(t, 0, 0)/8x, u = (u1, ... , uk) has rank k.
Using the same argument as above, one obtains

THEOREM 2.3. Let u= (ul, ... , uk) be k <p p linearly independent first
integrals of (2.1), u(t + T, E) = u(t, x, E) be continuous and have continuous
second partial derivatives with respect to t, x. Then there are an al > 0,
el > 0 and a k x p matrix H of rank k such that HF(a, e) = 0 for jai < al,
JEJ < El and F(a, e) defined in (2.11). If k = p, then there exists a p-parameter
family of T-periodic solutions x*(a, e), Jai < al, JEJ < El, where x*(a, e) is
given in Lemma 2.3.

The proof of the first part of this theorem is essentially the same as the
above argument for k = 1. If k = p, then H is a nonsingular matrix and
HF(a, E) = 0 implies F(a, E) = 0 for jai < al, I el < el; that is, the bifurcation
equations are automatically satisfied. An application of Lemma 2.3 completes
the proof of the theorem.

EXERCISE 2.9. (Liapunov's theorem) Suppose the system

(2.21) xl = Qx2 + fl (X1, X2, Y),

x2 = -axl +f2(xl, X2, y),
y = Cy + 9(xl, X2, y),

where a > 0, x1, x2 are scalars, y is an m-vector, fl, f2, g are analytic in
a neighborhood of x1= 0 = X2, y = 0 with the power series beginning with
terms of degree at least two. Suppose this system has a first integral
W (XI, X2, y) which has continuous second derivatives with respect to x1, X2, y
and the eigenvalues A1, ..., Am of the constant matrix C satisfy Ak :56 ion
for k = 1, 2, ..., m, and every integer n. Prove that this system has a two
parameter family of periodic solutions. Introduce polar type coordinates
XI = p cos aB, x2 = -p sin aB in (2.21) and eliminate tin the resulting equa-
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tions to obtain differential equations for p, y as functions of 0. Let p -* ep,
y -* ey and apply Theorem 2.3. If all eigenvalues of C are purely imaginary, do
there exist other families of periodic solutions? What additional conditions
are sufficient for the existence of other families of periodic solutions? Is it
necessary to assume that f1, f2, g are analytic?

EXERCISE 2.10. Interpret the general theory of this section for the par-
ticular nth order scalar equation

dny
dtn-ef(t,y)

EXERCisE 2.11. Consider the system

(2.22) th = Ao w + eD(t)w,

where 1(t + T) _ b(t) is a continuous n x n matrix and A0 is a constant
matrix. Give a constructive procedure which is in the spirit of this section for
obtaining a principal matrix solution of (2.22) of the form U(t, e) exp[B(e)t]
with U(t + T, s) = U(t, e), U(t, 0) = I, B(0) = Ao. Consider then x n matrix
equation

(223) W=AW+eb(t)W

and, for any given n x n constant matrix A1, let W = U exp[Ao - Ai]t. The
differential equation for U is

(2.24) U = Ac U - UAc + UAi + e(D(t) U.

Determine necessary and sufficient conditions that the nonhomogeneous
matrix equation

U = Ac U - UAo + F(t).
F(t + T) = F(t),

have a T-periodic solution. Use this fact to obtain a set of matrix equations
P(A1i s) = 0 whose solution is necessary and sufficient for obtaining a
T-periodic matrix solution of (2.24). Show there is always a matrix function
A1(e) such that I'(A1(e), e) = 0 for a small.

EXERCISE 2.12. Generalize exercise 2.11 to a class of almost periodic
matrix perturbations D(t).

EXERCISE 2.13. If Ae in (2.22) is a T-periodic matrix function, how
could the procedure of exercise (2.11) be modified to obtain the principal
matrix solution?

In Exercise 2.2, the reader was supposed to prove that one could use the
methods of this chapter to obtain T-periodic solutions for equations which con-
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tained nonlinear terms when e = 0. Of course, one must then discuss those
solutions which remain in a sufficiently small neighborhood of e = 0, x = 0.
As in Section 1, a further generalization is needed to discuss equations which
contain several independent parameters. In the next pages, we give this generali-
zation and a few illustrations.

Consider the T-periodic system

(2.25) B(t)x + f(t, x, X)

where B(t + T) = B(t) is a continuous n X n matrix, A is in Rk, f(t + T,x,A)
= f (t, x, A) has continuous derivatives up through order one in x, A,

(2.26) f (t,0,0) = 0, af(t,0,0)/ax = 0.

The analogue of Lemma 2.3 is the following which is stated without proof.

LEMMA 2.7. If P, Q are defined in (2.5), . :. T -> T in Lemma 2.1,
and (2.26) is satisfied, then there are Ap > 0, ao > 0, such that, for any a in
R' lal < ao; any A in Rk, IAI < Ap, there is a unique T-periodic function
x* = x*(a,A) continuous together with its first derivative satisfying x*(0,0) = 0,

x* _ 'Da +.7(I - Q )f (', x*, A).

If there exist a,A such that

G(a,A)def.I *(t)f(t,x*(a,A)(t),A)dt= 0

then x*(a,X) is a T-periodic solution of (2.25). Conversely, if (2.25) has a
T-periodic solution x(X) which is continuous in A and has Px(A) = (Da(A),'
ja(A)I < ao, IAI < A0, then x(X) = x*(a(X), X) where x*(a, X) is the function
given above and a(X) satisfies (2.27) for 0 < I A I G A0.

Let us illustrate the use of this lemma for Duffmg's equation. In Section
V.5, we have discussed Duffing's equation with a small harmonic forcing by the
method of averaging. In order to do this, we assumed all of the parameters were
multiples of a single small parameter e. Also, because of the nature of averaging,
we could only discuss a periodic solution if its characteristic multipliers were
not on the unit circle. This implies that the information obtained is incomplete
in the neighborhood of the points in parameter space where the number of
periodic solutions changes from one to three. A more complete discussion can be
given based on Lemma 1.4. We give an indication of the procedure below for
the case of no damping.

Consider the equation

2
(2.28) du + u + yu3 = Fcos wr

dr2

where y * 0 is a fixed real number, F, w - 1 are small real parameters-The
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objective is to obtain the 27r/w-periodic solutions of (2.28) which have small
norm. If

w2=1+R,

then

wT = t, XI = a y F
1+0 1+0

2
(2.29) dt2 +U=-µ0u3 +Alu+µ2COSt

and we determine 27r-periodic solutions of (2.29) of small norm. Since y * 0,
the transformation u = 1µ0l-112x for 0 small can be made to obtain

(2.30) x+ x = -(sgny)x3 + Aix + A2cos t,

where X2 = Iµ011/2µ2. Therefore, we must analyze the existence of small 27r-
periodic solutions of (2.30) for the parameter X = (A1,A2) varying in a neighbor-
hood of X= 0.

We could transform (2.30) to a system of two first order equations, but
it is actually more convenient to work directly with (2.30). Let .412 = {x :R -> R,
continuous, 27r-periodic} with the usual norm. If

P:. '2,r-Y2a
(2.31) 2a 2ir

(Ph)(t)=cost fo h(s)cossds+!sin tfo h(s)sinsds

then P is a continuous projection and the equation

(2.32) x + x = h(t)

for h in 912.E has a 27r-periodic solution if and only if Ph = 0. If Ph = 0, then
we can obtain a unique 27r-periodic solutionXh of (2.32) which is orthogonal
to sin t, cos t. The general 27r-periodic solution of (2.32) is

(2.32) x (t) = a cos (t - 0) + (Yh)(t)

where a,0 are arbitrary real numbers.
Therefore, a 27r-periodic solution of (2.30) is given by

x(t) = acos (t - 0) +.Y(I - P) [-(sgny)x3 + Al X + A2 cos ] (t)

P[-(sgn =0

for some a,4. The parameters a,0 must be determined through the bifurcation
equations P[ ] = 0. For the method, it is convenient to put the parameter 0 in
the perturbation term by replacing t by t + 0; that is, consider the equation

(2.33) x +x=-(sgny)x3 +A1x+A2cos(t+0)
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and a 21r-periodic solution x so that Px = a cos t for some a. Such a solution x
must satisfy

(a) x(t) = acos t +. V(I -P)[-(sgny)x3 + AIx + A2 COs(' + ¢)] (t)
(2.34)

(b) P[-(sgn 7)x3 + AIx + A2 COs(' + 0)] = 0

In the usual way, solve equation (2.34a) for a 27r-periodic function, x*(¢,a,A)
for a,Asmall, x*(O,a,A)=acost+o(lal)asa-0.

Then the bifurcation equations are
2n

(a) A2 cos0 +
O

[AI x*(t) - (sgn y)x*3(t)] cos tdt = 0

2n

(b) A2sin0+ Io [AIx*(t)-(sgny)x*3(t)]sintdt=0

EXERCISE 2.14. Prove x*(O, a,A) is an even function oft.

From Exercise (2.14), Equation (2.35b) is equivalent to A2sino = 0 or
= 0 if A2 0. If A2 = 0, then the only 27r-periodic solution of (2.33) near

x = 0, AI = 0 is x = 0. Thus, we may assume 0 = 0 and have the result that there
is a 21r-periodic solution of Equation (2.30) near x = 0, A = 0 if and only if this
solution is even, x(t) = x*(O,a,A)(t) and (a,A) satisfy the equation

def

fo

2n
(2.36)

G(a,A)=X2+ [AIx*(0,a,A)(t)-(sgny)x*3(0,a,A)(t)]costdt=0

It remains to analyze Equation (2.36). It is not difficult to show that

G(a,A) = a0(A) + aI(A)a + a2(A)a2 + a3(A)a3 + o(1a13)
where

ao(A) = A2 + o(IAII + IA21)

a1(A) = AI + o(IAI I + IA21)

a2(A) = 0(IAI)

a3(0)=-4sgn 7

The first objective is to obtain the values of A which give rise to multiple
solutions of G(a, A) = 0; that is, those values of A for which

(2.37) G(a,A) = 0, aG(a,A)/aa= 0

The Jacobian of these two functions with respect to A is given by

det
1 0
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Consequently, there are unique solutions Xl(a),X2(a) of (2.37) near a = 0 and
they are given approximately by

(2.38) Xi (a) =
4

(sgn y)a2 + o(la 12), X20) 2 (Sgn y)a3 + o(la l

Formulas (2.38) are the parametric representation of a cusp given approximately
by X2 = (16/81)(sgny)Xi in the (X1,X2)-plane. Since aG(0,0)/aX2 = 1, it
follows that there is one solution on one side of this cusp and three on the other.
This analysis gives a complete picture of the small 27r-periodic solutions in a
neighborhood of x = 0 for X = (X1,X2) varying independently over a full
neighborhood of zero.

EXERCISE 2.15. (General) Analyze all the exercises in this chapter in the
spirit of the above discussion for Duffing's equation.

Let us consider another example which will illustrate in a more dramatic
way the importance of considering independent variations in the parameters.
Suppose g(x) has continuous derivatives up through order 2 in the scalar variable
x and the equation

(2.39) x + g(x) = 0

has a family of periodic solutions O(w(a)t+ a,a) for a in R, la - a0,1 < S, for
some fixed ao,6,w(ao) = 1, ((0,a) = 0(0 + 21r,a); that is, the solutions have
period 27r/w(a) where a can be considered as the amplitude of the solution and
a the phase. We assume the period 27r/w (a) is the least period. Suppose f (t) is a
continuous 27r-periodic function (27r is not necessarily the least period), ?1,X2
are small real parameters and consider the equation

(2.40) x + g(x) = -X + X2 f (t).

Let r = tin R} be the 27r-periodic orbit in the phase
space (x, x) corresponding to the amplitude a0. The problem is to determine all
the 21r-periodic solutions of (2.40) which lie in a neighborhood of IF for
X = (X1,X2) in a neighborhood of zero. If the least period of F is 27r and the
least period of f is 21r, then we are looking for harmonic solutions near r. If the
least period of r is 27r and the least period off is 21r/k for some integer k > 1,
we are looking for subharmonics of order k near P.

We need the following pypotheses:

(H1) w(ao) = 1, w'(ao) * 0

a(H2) If p(t) = 0(t, a0) and h(a) = f p(t) f (t - a)dt/ f p2(t)dt

then h(a) has a unique maximum at aM in [0,21r), a unique minimum
at a, in [0,27r), V (am) 0 0, h" (am) 0.
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We can then state

THEOREM 2.4. If (HI), (H2) are satisfied, then there exist enighborhoods
U of P, V of X = 0 and curves Cm C V, CM C V, defined respectively by
NI = cm(X2), Xi = cM(X2) with cm, CM continuously differentiable in X2,
Cm,CM respectively are tangent to the lines XI = h(am)X2, Xi = h(aM)X2
at AI = X2 = 0, these curves intersect only at zero, the sectors between these
curves containing X2 = 0 has no 21r-periodic solutions and the other sectors
contain at least two solutions. If the least period of f (t) is k, k > 1 an
integer, then x(t) a 27r-periodic solution implies x(t + m/k), m = 0,1, ... ,
k - I is also a 27r-periodic solution.

PROOF. Our first objectivels-to. obtain a convenient coordinate system
near P. The vector -r(6) = (p(O), p(O)) is tangent to r and y(9) = (p(8),-p(O))
is orthogonal to r(O). For a fixed a0, an application of the Implicit Function
Theorem shows that the mapping

x = p(a) + ap(a)
(2.41)

y = p(a) - ap(a)

is a homeomorphism of a neighborhood of (a0,0) into a neighborhood of
(p(a0),b(a0)). By using the compactness of r and further restricting the size
of a, one easily concludes that there is an a0 > 0 such that the set

U= {(x, y) given by (2.41) for 0 <a < 27r, lal <a0}

is an open neighborhood of r and, for any (x,y) E U, there is a unique (a,a)
such that (x,y) satisfies (2.41); that is, (a,a), 0 < a < 27r, lal < a6, serves as a
coordinate system for a neighborhood of P.

If (x(t), y(t)), y(t) = z(t), is a 27r-periodic solution of (2.40) which lies in a
sufficiently small neighborhood of r, then the initial value (x(0), y(0)) uniquely
determines an (a, a) such that (x(0), y(0)) is given by (2.41). Therefore, it is
sufficient to consider only those 27r-periodic solutions of (2.41) of the form

x(t)=p(t+a)+z(t+a)
y(t)=p(t+a)+z(t+a)

where (z(a),z(a)) = ay(a)for some constant a; that is,(z(0),z(0)) is orthogonal
to T(a) = (vi(a), p(a)). If x(t + a) = p(t + a) + z(t + a), t + a is replaced by t
and f«(t) = f (t - a), then

(2.42) z+, (p)z=X1. +XIp+X2f«(t)+G(t,z)

where G(t + 27r, z) = G(t, z) and G(t, z) = 0(Iz 12) as I z I -+ 0.
We now apply our basic method to Equation (2.42).
Hypothesis (HI) implies that all 27r-periodic solutions of the linear equation
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(2.43) v +,g'(p)v = 0

are constant multiples of p. Let us define f "132 = 17 and define the continuous
projection P:. 2,r -. 2a by the relation

(2.44)
,rP0foob117.

For a given 0 E ,912,8, the Fredholm alternative implies that the nonhomog-
eneous equation

(2.45) v + (p)v = 0(t)

has a 21r-periodic solution if and only if P0 = 0. If P0 = 0 and vo(t) = vo(t;¢)
is any particular solution of (2.45), then each 27r-periodic solution of (2.45) is
given by

v(t) = PA(t) + vo(t,0)

for some constant P. The solution v will have (v(0), a(0)) orthogonal to
(13(0), 13(0)) if and only if

(2.46) Q[p(0)2 +13(0)2] = -P(0)vo(0;O) -p(0)vo(0;0)

This relation uniquely defines 0 = f3(0) as a function of 0. If we define

(2.47) (a0)(t) = R(o)p(t) + vo(t,0), 0 E (I -P). '2,T,

then one can easily verify that X: (I - P).912, -> Y2, is a continuous linear
operator.

With this definition of X, (2.40) will have a solution of the form, x = p + z,
if and only if the following equations are satisfied:

(2.48a) z='(I-P)[-Ajz-Xi
(2.48b) 0.

An application of the Implicit Function Theorem to (2.48a) shows there is a
neighborhood U C ,912,, of zero and a neighborhood V C R 2 of A= 0 such that
(2.48a) has a solution z*(a,X) for A in V, 0 < a < 21r, this solution is unique
in U, has continuous second derivatives with respect to a,A and z*(a,0) = 0
for all a. Therefore, (2.40) will have a 27r-periodic solution in a sufficiently
small neighborhood of I' for A in a sufficiently small neighborhood of zero if
and only if (a, A) satisfy Equation (2.48h) with z replaced by z*(a,X); that is,
if and only if (a, A) satisfy the bifurcation equation

27r

(2.49)
F(a,A)aef fo

Alp + A2fa + /fn = 0.

The function F(a,A) satisfies F(a, 0) = 0 and
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(2.50) F(a,X) = -XI + h(a)X2 + h.o.t.

where h(a) is given in (H2) and h.o.t. designates terms which are 0(1X12) as
IXI-+0.

For any X2 0 0, the Bifurcation Equation (2.50) is equivalent to

(2.51) h(a)-X2+Q(a,2,X) =0

where Q(a,(3, X) has continuous derivatives up through order two and Q(a, (3, 0) = 0.
It remains to analyse the bifurcation equation (2.51). Finding all possible

solutions of (2.51) in a neighborhood of X = 0 is equivalent to finding all
possible solutions of the equation

(2.52)
H(a,a,X2)defh(a)

- (3 + Q(a,f3,X2) = 0

for all a E R, (i E R, and X2 in a small neighborhood of zero. For X2 = 0, the
only possible solutions (a0,f30) are those for which h(a0) = go. If ao is such
that h'(ao) * 0, then the Implicit Function Theorem implies there is a

6(a0,00)> 0 and unique solution a*(f3, X2) of (2.52) for 10 - (301,1 X21 < 6(a0, 00),
a*(f3n, 0) = a 0 .

It h'(a0) = 0, then Hypothesis (H2) implies h"(ao) 0 0. Therefore, there is
a 6(a0,(30) > 0 and a function a*((3,X2), a*((30,0) = a0, such that

aH(a*(0,A2),Q,X2)/aa = 0

for I0 - 1301,1X21 < S(ao,(3o) and a*((3,X2) is unique in the region la - aol
< S(a0,p0). Thus, the function M((3,X2)fPH(a*((3,A2),f3,X2) is a maximum or
a minimum of H(a,(3,X2) with respect to a for (3,X2 fixed. A few elementary
calculations shows that M(f30,0) = 0, aM(f30,0)/ai = -1. Therefore, the Im-
plicit Function Theorem implies there is a 6((3o) and a unique function
0*(A2),f*(0) = (3p, such that M(6*(X2),X2) = 0 for IX21 < 8(f3o). There are
two simple solutions of (2.52)' near ao on one side of the curve 13 = 0*(A2) and
no solutions on the other. In terms of the original coordinates A, this implies
there are two solutions of (2.51) near ao on one side of the curve XI. = (3*(X2)A2
and none on the other. The curve AI = R*(A2)X2 is a bifurcation curve and is
tangent to the line XI =130A2 at A = 0.

The above analysis can be applied to each of the points aj in Hypothesis
(112). One can choose a S > 0 such that all solutions of (2.51) for I a - a I <
1 X I < S are obtained with the argument above.

The complement of these small regions I a - a1I < S in [0,27r] is compact
and h'(a) = 0 in this set. A repeated application of the Implicit Function
Theorem now shows that no further bifurcation takes place and all solutions
are obtained for I A I, I X21 < S. This shows there exist two 27r-periodic solutions
in the sectors mentioned in the theorem. If the least period of f(t) is 1/k, k> 1
an integer, then we can obtain other 27r-periodic solutions by replacing t by
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t + m/k, k = 0, 1, 2, ... , k - 1. This completes the proof of the theorem.

EXERCISE 2.16. Let S be a sector in Theorem 2.4 which contains 21r-
periodic solutions. Suppose y is a continuous curve in S defined parametrically
by A = 0 < 0 < 1, X (R) + X2((3) = 0 implies Q = 0 and let x(t,13) be a
27r-periodic solution of (2.40) for Xi = A1(6) which is continuous in 0 for
0 < 0 < 1. Prove that x( , j3) is continuous at 0 = 0 if and only if

limp,0A1(Q)/A20)

exists. If this limit is h0 then p( + ao) where a0 is a solution of
h(ao) = ho.

Exercise 2.16 shows the difference between considering parameters inde-
pendently and considering them varying only along some straight line in X-space.
In fact, if one considers Ao = fixed in p 2, puts A = eAo and considers
Equation (2.40) for e small, then the most interesting part of the qualitative
behavior of the solutions is lost.

EXERCISE 2.17. Generalize Theorem 2.4 to the case where h(a) has a
finite number of extreme values aj on [0,27r] with h"(a1) * 0.

EXERCISE 2.18. Generalize Theorem 2.4 to the equation

x +g(x) = AIf1(t)x + A2.f2(t)

VIII.3. Periodic Solutions of Perturbed Autonomous Equations

In this section, part of Theorem VI.4.1 is reproved by using the methods
of this chapter rather than a coordinate system near a periodic orbit. Consider
the equation

(3.1) x = f (x) + F(x, e),

where f : Rn -* Rn, F: Rn+1 Rn are continuous, f (x), F(x, e) have continuous
first partial derivatives with respect to x and F(x, 0) = 0 for all x. If the
system

(3.2) z =f W

has a nonconstant periodic solution u(t) of period co whose orbit is W, then the
linear variational equation for u is

(3.3) ?! = A(t) y, A(t) = af(u(t))
8x
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and this linear periodic system always has at least one characteristic multi-
plier equal to 1.

T$rOREM 3.1. If 1 is a simple multiplier of (3.3), then there are an
eo 0 and a neighborhood W of ' such that equation (3.1) has a periodic
solution u*(-, e) of period w*(e), 0< lel < so, such that u*(-, 0) = u(-),
w*(0) = to, u*(t, e) and w*(e) are continuous in t, a for t in R, 0 <_ 1 81 <_ so.

PROOF. Let -0. be the space of continuous w-periodic n-vector functions
with the supremum norm. For any real number P, consider the transforma-
tion t = (1 + f)T in (3.1). If x(t) = y(T), then y satisfies the equation

(3.4)
dy

= (1 + 8)[f (y) + F(y, e)].

If (3.4) has a solution in go), then (3.1) has a solution in 9(1+,6)w. If y(r) _
u(T) + z(T), then z satisfies the equation

(3.5) dz = A(T)z + G(T, z, e, )>

G(T, z, e, P) = (1 + fl)[f (u + z) + F(u + z, e)] - A(T)z -f(u).

Since 1 is a simple characteristic multiplier of (3.3), it follows that u is a basis
for the w-periodic solutions of (3.3) and there is an w-periodic row vector 0
which is a basis for the w-periodic solutions of the system adjoint to (3.3).
Also, it can be assumed that f o I Ii(t) 1 2 dt = 1. We now apply the preceding

theory to determine w-periodic solutions of (3.5). For any h in 9Q, , let

y(h) = f b(t)h(t) dt.
0

From Section 2, for any h in Y, we know that the equation

dz = A(T)z + h(T) -
y(h),'(T)

dT

has a unique solution Iih in 9. such that f o u'(t),#h(t) dt = 0 and
A": 9,,-* 9w is a continuous linear operator. Let .°F: -0.--* -0. be defined by

.Fz = #G(-, z, e, P).

In the usual way, one shows there are el > 0, fl, > 0, 8i > 0 such that ,F is
uniformly contracting on 9.(0 ) = {z in Y.: 11:11 < SI}. Therefore, .F has a
unique fixed point z*(e, f) which is continuous in e, 9 and continuously
differentiable in P. Also z*(0, 0) = 0. This fixed point z*(e, P) is a solution of
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the relation

(3.6)
WT

A(T)z + G(-r, z, E, ) - B(E, P)+&'(T),

B(E, R) = Y(G(T, z*(E,

The function B(e, 9) is continuous in E,,8 and satisfies B(0, 0) = 0. Also, since
z*(E, is continuously differentiable with respect to 6, it follows that
B(E, 6) is continuously differentiable with respect to fi. Furthermore, one can

conclude that 9B(e, fl)/816= f o O(T)ic(T) dT for e = 0, 9 = 0. This last integral

must be different from zero for otherwise the equation

dz

dT
A(T)z +,4(,r)

would have a solution in 9.. This is impossible since this equation always has
the solution z(T) = Tu(r). Since B(0, 0) = 0 and 0B(0, 0)/8P 0, the implicit
function theorem implies the existence of a P _,6(E) such that B(e, P(E)) = 0
for IEl < so. Thus, the function z*(E, fl(e)) is an w-periodic solution of (3.1)
and the theorem is proved.

VIll.4. Remarks and Suggestions for Further Study

Poincare [2], in his famous treatise on celestial mechanics, was the
first to describe a systematic method for the determination of periodic
solutions of differential equations containing a small parameter. In 1940,
Cesari [3] gave a method for determining characteristic exponents for linear
periodic systems which is in the spirit of the presentation given in this
chapter although different in detail. The method of Cesari was extended by
Hale [1] and Gambill and Hale [1] to apply to periodic solutions of nonlinear
differential equations with small parameters. Further modifications of this
basic method by Cesari [3] and [5] led to the presentation given in this
chapter. Concurrent with this development, Friedrichs [1], Lewis [1] and
Bass [1, 2] gave methods which are very closely related to the above.

Exercise 1.3 is due to Reuter [1]; Exercises 1.5 and 1.6 to Hale [6];
Exercise 1.15 to Hale [7]; Exercise 1.17 to Bailey and Cesari [1]. The Hopf
bifurcation theorem was first stated by Hopf [1] although the phenomena was
known to marry people (see, for example, Poincare: [2], Minorsky [1], [2]).
For a recent book on Hopf bifurcation, see Marsden and MacCracken [1]. The
result is also known for equations with delays (see Hale [10]). Exercises 1.22
through 1.27 are in the spirit of bifurcation problems discussed from the general
point of view. An extensive literature is available (see, for example, Andronov,
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Leontovich, Gordon and Maier [ 1 ], Sotomayor [ 1 ], Newhouse [ 1 ] ). Except
for notational changes, Lemma 2.3 is due to Lewis [1]. A less general form of
property (E) of Section 2 is given by Hale [7]. Theorem 2.3 was.stated by
Lewis in [1]. Exercises 2.7 and 2.8 are special cases of'results by Hale [2].
Exercise 2.9 is due to Lyapunov [1] for analytic systems. Exercise 2.10 is due
to Bogoliubov and S`adovnikov [1] while Exercises 2.11 and 2.12 to Golomb
[1 ]. The treatment of Duffmg's equation in Section 2 follows Hale and Rodrigues
[1]. For the case where damping is also considered, see Hale and Rodrigues
[2]. The discussion of periodic solutions near a periodic orbit in Section 2
follows Hale and Taboas [1] (see also Loud [2]). For the case where hypothesis
(HI) is violated, see Hale and Taboas [2]. For an abstract version of this
problem, see Hale [11].

An interesting extension of the idea of periodicity as well as property (E)
is contained in the theory of autosynartetic solutions of differential equations
of Lewis [2]. For small perturbations of nonlinear second order equations see
Loud [1].



CHAPTER IX

Alternative Problems for the Solution of

Functional Equations

To motivate the discussion in this chapter, let us interpret the procedure
of the previous chapter in a more general setting. Let °. AT be the Banach
space of T-periodic n-vector functions with the supremum norm; let A be an
n x n matrix whose columns are in 9'T; let L be the linear operator defined
on continuously differentiable functions in 9T by (Lx)(t) = i(t) -A (t)x(t);
let N: 91T - 91T be defined by (Nx)(t) = Ef (t, x(t)) where f is a continuously
differentiable function of x and T-periodic in t. The problem of finding a
solution of the differential equation

z - A(t)x = Ef (t, x)

in YT is then equivalent to finding an x in PT which is in the domain of L
such that Lx = Nx. With P, Q, A' defined as in relation (VIII.2.5) and
Lemma VIII.2.1, the Lemma VIII.2.2 asserts that the equation Lx = Nx
is equivalent to the equations

(1) (a) x = Px -}- Y (I -Q)Nx
(b) QNx = 0.

Equations (1) have a distinct advantage over the original differential equation.
In fact, for N " small " and a fixed xo with Pxo = xo, one can determine a
solution x*(xo) of (la) such that Px*(xo) = xo. The existence of a solution
of Lx = Nx is then equivalent to the determination of an xo such that
QNx*(xo) = 0. We have referred to the equations for xo as the determining
or bifurcation equations, but, more appropriately, we are going to say that
these equations represent an alternative problem for Lx = Nx.

It is the purpose of this chapter to determine larger classes of equations
which are equivalent to Lx = Nx for x in a Banach space and then specify
alternative problems when N is not necessarily small. This general approach
is taken because the ideas are applicable to problems in fields other than

298
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ordinary differential equations; for example, integral equations, functional
differential equations and partial differential equations. However, our
applications are confined to ordinary differential equations.

IX.1. Equivalent Equations

If X, Z are Banach spaces and B is an operator which takes a subset
of X into Z, we let 1(B), c(B), .K(B) denote the domain, range and null
space respectively of B. If E is a projection operator defined on a Banach
space Z we denote AP(E) by ZE and ZE will always denote a subspace which
is obtained through a projection operator E in this way. The symbol I will
denote the identity. If L: -9(L) c X Z is a linear operator, then K is said
to be a bounded right inverse of L if K is a bounded linear operator taking
3P(L) onto -9(L) and LKz = z for z in GP(L).

Let X, Z be Banach spaces; let N: X --> Z be an operator which may be
linear or nonlinear; let L: -9(L) c X -* Z be a linear operator which may have
a nontrivial null space and may have range deficient in Z.

LEMMA 1.1. Suppose .N'(L) and AP(L) admit projections, .N'(L) = Xp,
A(L) = ZI_Q and suppose L has a bounded right inverse K with PK = 0.
The equation

(1.1) Lx = Nx

is equivalent to the equations

(1.2) (a) x=Px+K(I-Q)Nx,
(b) QNx = 0.

PROOF. Equation (1.1) is clearly equivalent to the equations

(1.3) (a) (I -Q)(Lx - Nx) = 0,
(b) Q(Lx - Nx) = 0.

Since LX = (I -Q)Z and Q is a projection, QL = 0. Therefore, (1.3b) is
equivalent to (1.2b) and (1.3a) is equivalent to Lx = (I -Q)Nx. Since
(I - Q)Nx belongs to the range of L and K is a bounded right inverse of L,
this latter equation is equivalent to x = xo + K(I - Q)Nx where xo is in
.K(L). But, PK = 0 implies x0 = Px and the lemma is proved.

The condition PK = 0 in Lemma 1.1 is no restriction. In fact, if M is
any bounded right inverse of L, then K = (I - P)M is also a bounded right
inverse and PK = 0.

Even with these few elementary remarks, one is in a position to state
some alternative problems for (1.1). More specifically, if N were small
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enough in some sphere so that the contraction principle is applicable to
(1.2a) with Px = xo fixed, then (1.2a) can be solved for an x*(xo) and an
alternative problem for (1.1) is QNx*(xo) = 0.

In other words, one can fix an arbitrary element xo of .N'(L), solve
(1.2a) for x*(xo) and try to determine xo so that (1.2b) is satisfied. The alter-
native problem has the same "dimension" as the null space of L. In many
cases, this dimension is finite whereas the original equation Lx - Nx is
infinite dimensional. This result will be stated precisely in the next section,
but now we want to obtain other sets of equations which are equivalent to
(1.1) and at the same time permit the discussion of cases when N is not small.
The idea is quite simple. If one wishes to apply the contraction principle to
(1.2a), then K(I - Q)N must be small in some sense. However, if N is large
on the whole space, then one should be able to make the product small by
choosing the projection operator Q so that fewer values of x are being con-
sidered. This is the idea which now will be made precise.

The accompanying Fig. 1 is useful in visualizing the next lemma.

XI-P
ZI-a"

K

ZJ(I-Q)

(L) = X, /Z

Figure IX.1.1

LEMMA 1.2. Suppose P, Q, K are as in Lemma 1.1 and let S be any
projection operator on X such that Xs c M(K), SP = 0. The following
conclusions are then valid:

(i) P = P + S is a projection operator.
(ii) The preimage in ZI_Q under K of Xs, XI_Pn21(L) induces a

projection J: ZI_Q -- ZI_Q. If Xs = KZJ(I_Q), let I - Q = (I - J)(I - Q).
Then Q: Z-* Z is a projection and XI_pn 21(L) = K(ZI_Q).
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(iii) For any x in -9(L),

(1.4) x=K(I -Q)Lx+Px.
(iv) QL = LP.

PROOF. (i) Since CB(S) e I(K) and PK = 0 it follows that PS = 0.
A direct computation now shows that P = P + S is a projection.

(ii) K is a one-to-one map of ZI_Q onto XI_P n -9(L) since Kz1= Kz2
implies K(z1 - z2) = 0 and 0 = LK(zl - z2) = z1 - z2 . If Z1, Z2 are the
primages under K of XS, XI_,; n _Q(L), respectively, then Z1 n Z2 = {0}
and ZI_Q = Z1 Q Z2 . If zn E Z2, zn -- - z as n -* oo, then Kzn -±Kz as n -± oo

since K is continuous. Furthermore, there are xn e XI_P n 2(L) and x e 21 (L)
such that Kzn = xn , Kz = x. Since xn - x and XI_P is closed, we have
x e XI-P. Thus x e XI-,p n -9(L) and Z2 is closed. In the same way or using
the fact that XS is closed and K is continuous, one sees that Zl is closed.
Therefore, a projection J is induced on ZI_Q. If we let XS = KZJ(I_Q) and
I -Q = (I -J)(I -Q) and use the fact that (I -Q)(I -J) = (I -J), it is
it is clear that I -Q is a projection. Since XS = KZJ(I_Q), it is also obvious
that XI_P n 21 (L) = KZI_Q .

(iii) For any x in 21(L), x = KLx + Px. Since Q is a projection operator,

(1.5) x=K(I-Q)Lx+KQLx+Px.

From property (ii), K(I - Q)Lx belongs to XI_S since XI_P e XI-S. Also,
a direct computation shows that Q(I - Q) = J(I - Q) and, therefore,
KQLx = KQ(I -Q)Lx belongs to Xs. Operating on (1.5) with S and using
the fact that SP = 0, we obtain Sx = SKQLx = KQLx. Since P = P + S,
this proves relation (iii).

(iv) Applying L to (1.4) and using the fact that K is a right inverse for
L, we have Lx = (I - Q)Lx + LPx. Therefore, property (iv) is satisfied.

This completes the proof of the lemma.

LEMMA 1.3. Suppose X, Z are Banach spaces, L: 21(L) c X --* Z is a
linear operator with 3B(L), X(L) admitting projections by I -Q, P, re-
spectively, L has a bounded right inverse K, PK = 0, and P, Q are the
operators defined in Lemma 1.2. For any operator N: X -* Z, the equation
Lx - Nx = 0 has a solution if and only if

(1.6) (a) x=Px+K(I-Q)Nx,
(b) Q(Lx-Nx)=0.

PsooF. With P, Q as in Lemma 1.2, the equation Lx - Nx = 0 is
equivalent to the equations Q(Lx - Nx) = 0, (I - Q)(Lx - Nx) = 0. If
(I -Q)(Lx - Nx) = 0, then relation (1.4) implies that K(I -Q)Nx =
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K(I - Q)Lx = (I - P)x and, thus, (1.6a) is satisfied. If Lx - Nx = 0,
then (1.6b). is automatically satisfied. Conversely, if (1.6a) is satisfied, then
L(I - P)x = (I - Q)Nx. Since relation (iv) of Lemma 1.2 is satisfied, this
implies (I - Q)(Lx - Nx) = 0. If (1.6b) is also satisfied, then Lx - Nx = 0.
This proves the lemma.

IX.2. A Generalization

As we have seen in Lemma 1.3, the geometric Lemma 1.3 permits the
establishment of many sets of equations which are equivalent to equation
(1.1). Some assumptions on the linear operator L were imposed in order to
obtain these results. However, once the basic relations between the operators
P, Q are obtained, one can give an abstract formulation of the basic processes
involved. To do this, let X, Z be Banach spaces; let N: 21 (N) c X - - Z
be an operator which may be linear or nonlinear; let L: 21(L) c X -* Z be a
linear operator and let F = L - N. A solution of Fx = 0 will be required to
belong to 21(L) n °1(N). The following hypotheses are made:

H1: There are projection operators P: X -- X, Q: Z -* Z such that QL = LP.
H2: There is a linear map K: ZI_Q - XI- p such that

(i) K(I -Q)Lx = (I - P)x, x in 2' (L),
(ii) LK(I - f )Nx = (I - ()Nx, x in 21 (N).

H3: All fixed points of the operator A =P + K(I - Q)N belong to
21(L) n 2(N).

For the operators L, N satisfying the hypotheses of Lemma 1.3, it was
demonstrated that the hypotheses H1-H3 can be satisfied by a large class of
operators P, Q. In fact, hypothesis H1 is just relation (iv) of Lemma 1.2
and the operators P, Q depend upon a rather arbitrary subspace of X.
Hypothesis H2 (ii) corresponds to the existence of a right inverse of L.
Hypothesis H2 (i) is relation (1.4) of Lemma 1.2. Hypotheses H3 was auto-
matically satisfied for the particular P, Q constructed and the bounded right
inverse considered. If L, N are, as specified above and K, P, Q exist so that
H1-H3 are satisfied, then it is not true that P, Q can be obtained by the con-
struction of Lemma 1.2. In fact, in that construction it was assumed that L
had a bounded right inverse and AP(L), X (L) admitted projections. There is
no way to deduce these properties from H1-H3. Of course, in the applications,
Lemma 1.2 is a rather natural way to obtain P, Q.

LEMMA 2.1. If hypotheses H1-H3. are satisfied, then the equation
Fx = 0 has a solution x in 21(L) n 21(N) if and only if

del(2.1) (a)
x=Ax= Px+K(I-Q)Nx,

(b) QFx=0.
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PROOF. The relation Fx = 0 implies QFx = 0, (I - Q)Fx = 0. There-
fore, (I - Q)Lx = (I - Q)Nx and hypothesis H2 (i) implies

K(I -Q)Nx = K(I -Q)Lx = (I - P)x.

Thus, x = Ax. Conversely, suppose (2.1) is satisfied. If x = Ax, then
(I - P)x = K(I - Q)Nx. Hypothesis H3 implies x in .9(L) n -q(N) and H2 (ii)
implies that

L(I - P)x = LK(I - Q)Nx = (I - Q)Nx.

But this fact together with Hl implies that (I - Q)Fx = 0. By hypothesis,
QFx = 0 and the lemma is proved.

IX.3. Alternative Problems

In addition to the hypotheses Hl-H3 imposed on the operators P, Q,
K, L, N of the previous section, we also suppose -q(N) = X and

H4: There exist a constant p. and a continuous nondecreasing function
a(p), 0< p < oo such that

I K(I - Q)Nxi - K(I - Q)Nx21 < a(P)Jxi - x21,

K(I -Q)NxiI < a(P)kxiI + jL for Ixi1, Ix21<P.

For any positive constants c, d with c < d, let

(3.1) (a) V(c) = {x in XP: jxj < c}.

(b) 9(x, c, d) = {x in X: Px = i, x in V(c), jxj < d}.

where x" is a fixed element of V(c).

THEOREM 3.1. Suppose !2(N) = X, V(c), Y(x, c, d), c <d, are defined
by (3.1), the hypotheses Hl-H3 of the previous section and hypothesis H4
above are satisfied with a(d) < 1, a(d) d < d - c - p.. Then there exists a
unique continuous function 0: V(c) -±X, Gx in Y(x, c, d) such that Gx
satisfies the equation

(3.2) X = zx de=Px + K(I - Q)Nx.

If there is an x in V(c) such that

(3.3) QFGf = 0,

then FGx = 0. Conversely, if there is an x such that Fx = 0, jxj < d,
Pxj < c, then x = GPx and :Z = Px is a solution of (3.3).
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PROOF. For any 2 in V (c) and x in X, let H(x, x) = x + K(I - Q)Nx.
For any x in 9(2, c, d), PH(x, x) = 2,

IH(x,x)l <c+«(d)Ixi+ <c+a(d)d+µ<d,
and

I H(xi, E) - H(x2, 2)I < «(d)I xi - x21

Therefore, H(, x): ,°(x`, c, d) -* 6'(x, c,d) is a contraction and there is a
unique fixed point Gx of H(, x) in 9(x, c, d). The function G is obviously
continuous and satisfies (3.2) since x = P2. If x satisfies (3.3), then Lemma 2.1
implies that FGx = 0.

Conversely, if x is a solution of Fx = 0, x = Px, jxj < d, 1x1 < c, then
Lemma 2.1 implies that x = Ax and QFx = 0. But the proof of the first part
of the lemma showed that A had a unique fixed point with Px = x. Therefore,
the solution x of Fx = 0 must satisfy x = Gx, x = Px. Since x must also
satisfy QFx = 0, it follows that x satisfies (3.3). This completes the proof of
the theorem.

In the sense of Theorem 3.1, finding a solution x in V(c) of (3.3) is
equivalent to finding a solution of equation (1.11 with jxj < d, jPxl < c.
Therefore, we refer to equation (3.3) as an alternative problem for equation
(1.1).

IX.4. Alternative Problems for Periodic Solutions

In this section, we go into some detail on the construction and more
detailed meaning of alternative problems in connection with the existence
of periodic solutions of ordinary differential equations.

Suppose g: (-oo, oo) X Cn-*Cn is continuous, g(t, u) is locally lip-
schitzian in u, g(t, u) = g(t + 27r, u) for all t e (- oo, oo), u e C. Our problem
is the determination of 21r-periodic solutions of the equation

(4.1) is = g(t, u).

Let us reformulate this problem in terms of our previous notation.
Let Y be the Banach space of continuous functions taking [0, 2ir] into

Cn with the uniform norm and let B: 21(B) c Y-* Y be the linear operator
whose domain -9 (B) = {y e Y such that y e Y} and By(t) = y(t), 0 < t < 2ir,
for y e .9(B). Let M: Y - Y be the operator defined by (My)(t) = g(t, y(t)),
0 < t <21r, y e Y; P: Y-*Cn be the bounded linear operator defined by
Py = y (0) - y(27r), y e Y. Finding a 21r-periodic solution of (4.1)i s now equi-
valent to solving the boundary value problem

(4.2) By = My,
Py = 0, y e Y.
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If X =X(r)and L, N are the restrictions of B, M to X, then the boundary
value problem (4.2) is equivalent to finding a solution of the equation

(4.3) Lx = Nx, x e X.

Let P: X -* X be the projection operator defined by
1 2w

(4.4) Px = _ f x(t) dt;
0

that is, Px is the mean value of the 27r-periodic function x in X. With this
notation, .N'(L) = Xp = {all constant functions in X}, gt(L) = XI_p = {all
27r-periodic . functions with mean value zero}. Therefore, the operator Q
in Section 1 is P. If z e XI-p, then the equation Lx(t) = z(t) = z(t)
has a solution in X and a unique solution with mean value zero which
depends continuously upon z. If we designate this solution by Kz, then
K: X I_ p - XI-P, PK = 0, and K is a bounded right inverse of L.

Any x in X has a Fourier series
ao 1 2.

(4.5) x ak etkt ak = - f e-tktx(t) dt.
k= - co 21r o

For any given integer m > 0, let Sm: X -* X be defined by
S. x = E ak etkt.

o<Ikl <m

One easily checks that Sm is a projection operator and Lemma 1.2 implies
Pm , Q. of that lemma are given by Pm = P + Sm , Qm = Pm. Equation
(4.3) is then equivalent to the equations

(4.6) (a) x = Pm x + K(I - Pm)Nx,
(b) P,,,(Lx - Nx) = 0,

for every integer m > 0.

From the definitions of Pm, K and the form of x in (4.5),

K(I - Pm)x(t) _
ak etkt.

JkI>m ik

Recall that Parseval's relation implies that o n Jx(t)12 dt = Ek - Jakl2. Since

ak lla h/21

k
ak I2

IkI>m IkI>m I Ikl>m'
2n

2
'/a 1 3/9

< (f I x(t)I
d/t)

(kE1>Mk2)

1 'I
G (2a)'la x

IkI>m k2

def= y(m)I xI
,
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it follows that the Fourier series for K(I - Pm)x(t) is absolutely convergent
and

IK(I - Pm)xl <- y(m)l xl

or all x e X.* Note that y(m) -+0 as m -- - oo since the series _k k_2 < oo.
Since g(t, u) is assumed to be locally lipschitzian in u, there is a constant

v > 0 and a continuous nondecreasing function fl(p), 0 < p < oo, such that
Nx(t) = g(t, x(t)) satisfies

I Nxl - Nx2I <- S(p) I xl - x2I

I Nxll <fl(p)IxiJ + v
for all Ixll < p, Ix2I < p.

For any constant d > 0 and any m, it follows that

I K(I - Pr)(Nxl - Nx2)I < y(m)P(d)I xl - x2I

I K(I Pm)Nxll < y(m)fl(d)I xiJ + y(m)v

for all I xl I < d, Ix2I < d. Suppose 0 < c < d are arbitrary constants and m
is chosen so large that

y(m)S(d) < 1, y(m)fl(d) d + y(m)v <d - c

The operator A defined by (3.2) is then a contraction mapping of the set
.°(x, c, d) in (3.1) into itself. This implies that the equation

(4.7) x =.f + K(I - .L m)Nx'

has a solution G z f o r every x e {x in X : Ixi < c}. An alternative problem
for (4.1) is then the equation

(4.8) P,n(L - N)Gx = 0.

In words, the existence of this alternative problem implies the following.
If (4.1) is to have a 21r-periodic solution u, then all of the Fourier coefficients
of the function v(t) =,&(t) - g(t, u(t)) must be zero. Let

u(t) = um(t) + um(t),

um(t) = akeikt
IkI <m

um(t) _ Y akefkt.
Iki>m

The above remarks imply there is always an integer m such that one can
fix x = um and determine Gx = u*m(uyn) in such a way that the Fourier
series for v(t) contains only the harmonics e{kt, I kI < m (this is the meaning
of the solution Gii of (4.6a)). The alternative problem then involves the
determination of u. (t) in such a way that the remaining Fourier coefficients
of v(t) vanish.
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There are two serious questions remaining concerning the determination
of periodic solutions of (4.1) by this method. First, the size of the finite
dimensional problem cannot be determined a priori but involves very careful
estimates of the norm of the operator K(I - Pm). Also, the finite dimensional
problem (4.8) involves a function G which is only implicitly known and
trying to assert the actual existence of an x is extremely difficult.

In fact, one cannot hope to solve (4.7) directly, but must use some
approximation scheme. Let us write Gx = x + y" where y" is in (I - Pm)X
and is given by y = K(I - Pm)NGx. It is impossible to determine y, but if
the existence of Gx is proved by the contraction principle, then one has
obtained a priori estimates on y" as

(4.9) IYI <Sm,

for some constant Sm . The alternative problem (4.8) will certainly have a
solution if one can show that the equation

(4.10) Pm(L - N)(x +- y) = 0

has a solution x for every given y which satisfies the bounds (4.9). To show
this latter property, one would naturally look first at the approximate
equation obtained by setting y" = 0; namely,

(4.11) P.m(L - N)x"" = 0.

Equation (4.11)'is the mth Galerkin approximation for the solution of Lx = Nx.
Methods for the determination of explicit solutions of (4.11) and for showing
that (4.10) has a solution for every y satisfying (4.9) would take us too far
afield. The interested reader may consult the references for the practical
applicability of this method.

IX.5. The Perron-Lettenmeyer Theorem

In this section, we illustrate how the techniques of Sections 1 and 3 can
be used to give a proof of a theorem of Perron and Lettenmeyer concerning
the number of analytic solutions of a system of linear differential equations
of the form

(5.1) t'/zj=Nj(t)x, j=1,2,...,n,
where x = col(xl, ... , xn), Ng = row(Njl, ... , Npn), the N1k(t) are analytic
for I t S, S > 0, and each of is a nonnegative integer.

THEOREM 5.1. If µ = n - _la1 Z 0, then there are at least p linearly
independent solutions of (5.1) which are analytic for Itl < S.



308 ORDINARY DIFFERENTIAL EQUATIONS

PROOF. Let -4 be the set of all scalar functions which are analytic for
Itl < S. If b is in -4, then b(t) and we define JbI =Ym=olbmJ8-.
The function I I is a norm on -4 and -4 is a Banach space. For any nonnegative
integer a, let la : -4 -> 9 be the linear operator defined by

(5.2) la b(t) = tadb(t)/dt.

It is clear that
,N'(la) = {constant functions in M},

A(la)={cin9: c=tab, bin9}.

If the projection operators p, qa on -4 are defined by
a-1

(5.3) pb=bo, qab=ybtm,

m=0

then p, 1 - qa are projections onto .K(la), R(la), respectively. The right
inverse ka of la on Q(la) such that pka = 0 is given by

00

(5.4) ka(1 - ga)b(t) _ y bm+a tm+1,

m=om+1

and I ka(1 -qa)bl < 81-al(1 -qa)bl. This proves ka is continuous.
Let X be the Banach space which is the cross product of n copies of -4

with JxJx = maxp lxjl,, x = col(xl, ... , xn), xf in R. We write JxJ for JxJx
since no confusion will arise. Let a1i ... , an be the nonnegative integers in
(5.1), a = (al, ..., an) and define operators La, P, Qa, Ka, N by

(5.5) Lax = col(la, x1, , la, xn),

Px = col(px1, ... , pxn),

Qa x = col(ga, xl, ... , qa xn),

Ka x = col(ka, x1, ... , ka xn),

Nx = col(Nlx, ... , Nn x),

where the lay are defined by (5.2), the p, q, by (5.3), ka, by (5.4), and Nj x
in (5.1). Equation (5.1) may now be written as

(5.6) Lax = Nx, x in X,

and from Lemma 1.1 is equivalent to the linear equations

(5.7) x = Px + Ka(I -Qa)Nx,

QaNx=O, xinX.

If the linear operator Ka(I -Qa)N were a contraction operator, then one
could fix a constant n-vector x0 and determine a unique solution x* = x*(xo),
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Px* = x0, of the equation x = xo + Ka(I - Q,,)Nx. Equations (5.7) would
then have a solution if and only if xo satisfied the equations Q, Nx*(xo) = 0.
It is clear that such an x*(xo) is linear in x0. Thus there would be Yj
homogeneous linear equations for n unknown scalars (the components of xo)
and, therefore n -Y-3_,a, solutions of (5.7). This explains the possible
appearance of µ in the statement of the theorem except for the fact that the
operator Ka(I -Qa)N may not be contracting. On the other hand, there is a
natural way to use Lemma 1.2 to circumvent this difficulty.

For any given nonnegative integer r, let P = Pr+I be the projection
operator on X which takes each component of x in X into the polynomial
of degree r consisting of the first (r + 1) terms of its power series expan-
sion. The operator Q in Lemma 1.2 is easily seen to be Qr+a, r + a =
col(r + al, ..., r + an). Thus, Lemma 1.3 implies that (5.6) is equivalent to
the equations

(5.8) x = Pr+1x + Ka(I -Qr+a)Nx,

Qr+a(La - N)x = 0.

Furthermore from the definition of Ka, it follows immediately that there is
a P > 0 independent of r such that I Ka(I -Qr+a)Nxl <_ PIxJ/(r+ 1) for all
x in X. Consequently, the operator K(I - Qr+a)N is contracting for r suffi-
ciently large. Finally, fixing an n-vector polynomial f (t) of degree r, one can
determine a unique solution x* = x*(f) of x = f +Kc(I - Qr+a)Nx which is
linear and continuous in f. Therefore, the equations (5.8) have a solution if
and only if f satisfies Qr+a(La - N)x*(f) = 0. These represent nr + aj
homogeneous linear equations for the n(r + 1) coefficients of the polynomial f.
Therefore there are always µ = n - E, =1aj solutions. This proves the
theorem.

If all ay -1 in (5.1), the equation is said to have a regular singular point
at t = 0. In this case, the above theorem says nothing.

31.6. Remarks and Suggestions for Further Study

For the case in which P = P, Q = Q and N in (1.1) is small and has a
small lipschitz constant, Theorem 3.1 has appeared either explicitly or
implicitly in many papers; in particular, Cesari [5, 6], Cronin [1], Bartle [1],
Graves [1], Nirenberg [1], Vainberg and Tregonin [1], Antosiewicz [1].
However, Cesari [5, 6] injected a significant new idea when he observed that
finite dimensional alternative problems could always be associated with
certain types of equations (1.1) even when the nonlinearities N are not small.
The construction of P, Q given in Section 1 follows Bancroft, Hale and
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Sweet [1] and was motivated by Cesari [6]. The abstract formulation in
Section 2 was independently discovered by Locker [1] proceeding along the
lines of Section 4.

Cesari has applied the methods of Section 4 to prove in [5] the existence
and bound of a 27r-periodic solution of

x+x3=sint
by using the second Galerkin approximation x = a sin t + b sin 3t and to
show in [6] that the boundary value problem

z+x+ax3=Pt, 0<t<1,
x(0) = 0, x(1) + z(1) = 0,

has a solution by using the first Galerkin approximation. Borges [1] has
applied the same process to obtain the existence and bounds for periodic
solutions of nonlinear (periodic or autonomous) second order differential
equations by using only the first Galerkin procedure. Knobloch [1, 2] has
also used the method for existence of periodic solutions of second order
equations. The papers of Urabe [2] discuss similar procedures for multipoint
boundary value problems. Williams [1 ] has discovered interesting connections
between Section 4 and the Leray-Schauder degree when the alternative
problem is finite dimensional.

When N is small enough to make K(I - Q)N a contraction operator on
some subset of the basic space X, Theorem 3.1 is applicable to hyperbolic
partial differential equations; see Cesari [7], Hale [9], Rabinowitz [1],
Hall [1]. Cesari [8] has also obtained results for elliptic partial differential
equations. For applications to functional differential equations, see Perello
[1, 2] and to integral equations, see Vainberg and Tregonin [1].

The idea for the proof of the Perron-Lettenmeyer Theorem of Section 5
was communicated to the author by Sibuya. Amplifications of this idea
appear in Harris, Sibuya and Weinberg [1]. A paper which is not unrelated
to the approach of this chapter is the paper of McGarvey [I] on asymptotic
solutions of linear equations with periodic coefficients.



CHAPTER X

The Direct Method of Liapunov

In the previous chapters, we have repeatedly asserted the stability of
certain solutions or sets of solutions of a differential equation. The proofs of
these results in most cases were based upon an application of the variation of
constants formula, and, as a consequence, the analysis was confined to a
small neighborhood of the solution or set under discussion. In his famous
memoir., Liapunov gave some very simple geometric theorems (generally
referred to as the direct method of Liapunov) for deciding the stability or
instability of an equilibrium point of a differential equation. The idea is a
generalization of the concept of energy and its power and usefulness lie in the
fact that the decision is made by investigating the differential equation itself
and not by finding solutions of the differential equation. These basic ideas
of Liapunov have been exploited extensively with many books in the refer-
ences being devoted entirely to this subject. The purpose of the present
chapter is to give an introduction to some of the fundamental ideas and
problems in this field. There is also one section devoted to a generalization
known as the principle of Wazewski.

X.1. Sufficient Conditions for Stability and Instability in Autonomous Systems

Let 0 e Rn be an open set in Rn with 0 in Q. A scalar function V(x), x in
S2, is positive semidefinite on 0 if it is continuous on S2 and V(x) _> 0, x in Q. A
scalar function V(x) is positive definite on S2 if it is positive semidefinite,
V(0) = 0, V(x) > 0, x 0. A scalar function V(x) is negative semidefinite
(negative definite) on S2 if - V(x) is positive semidefinite (positive definite)
onI2.

The function V(xl, x2) = xi + x2 is positive definite on R2, V(xl, x2) _
X

1
+ x2 - A is positive definite on a sufficiently small strip about the x1-axis,

V (X1' x2) = x2 + xi/(1 + xi) is positive definite on R2. In each of these cases,
there is a co > 0 such that {(x1, x2): V(x1, x2) = c} is a closed curve for every
nonnegative constant c< co. Near (x1, x2) = (0, 0), each of these functions
have the qualitative properties depicted in Fig. 1.1. Any positive definite

311
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function in Rn has some of these same qualitative properties, but a poecise
characterization of the level curves of V has not yet been solved. However,
the following lemma holds.

LEMMA 1.1. If V is positive definite on S2, then there is a neighborhood
U of x = 0 and a constant co > 0 such that any continuous curve from the
origin to 8U must intersect the set {x: V(x) = c} provided that 0 < c < co.

PROOF. Let U be a bounded open neighborhood of 0 in U with U c Q.
If

1 = mini in 8U V(x),

then l > 0. Since V(0) = 0, V(x) >_ l for x in 2U, and V is continuous, it
follows that the function V(x) must take on all values between 0 and I along
any continuous curve going from 0 to W.

LEMMA 1.2. If V(x) = VP(x) + W(x) where W(x) =o(IxIP) as Ixl --> 0 is
continuous and V. is a positive definite homogeneous polynomial of degree p,
then V(x) is positive definite in a neighborhood of x = 0.

PROOF. If minjxj=,VP(x) = k, then k > 0. Therefore

VP(x) = I xI PV(xl I xl) > klxl P

for x 0. For any e > 0, there is a S(e) > 0 such that I W(x)I < el xI P for
I xl < S(e). If e = k/2, then

V(x)VP(x)-IW(x)I >kIxIP-(2k) IxIP=()IxIP2if
0 < Ixl < 8(k/2). This proves the lemma.

LEMMA 1.3. Suppose VP(x) is a homogeneous polynomial of degree p. If
p is odd, then VP cannot be sign definite.

PROOF. If x = (x1, ... , xn), x1 0, let x = x1u. Then VP(x) = xi VP(u).
For a given value of u for which VP(u) = 0, say positive, the function VP(x)
has the sign of xi. If p is odd, this implies VP(x) must change sign in every
neighborhood of x = 0.

General criteria for determining the positive definiteness of an arbitrary
homogeneous polynomial of degree p are not known, but for p = 2, we have

LEMMA 1.4. (Sylvester). The quadratic form x'Ax = y_;`. , =I ai xi x, ,
A' = A, is positive-definite if and only if

det(ajj,i,j=1,2,...,s)>0, s=1,2,...,n.
A proof of this lemma may be found in Bellman [2].
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Consider the differential equation
(1.1) z =f (x),

where f : Bn -* Bn is continuous and satisfies enough smoothness conditions
to ensure that a solution of (1.1) exists through any point, is unique and
depends continuously upon the initial data.

For any scalar function V defined and continuous together with 8V18x
on an open set SZ of Rn, we define 17 = V(1.1) as

(1.2) 17(x) =
0

axx) f (X)-

If x(t) is a solution of (1.1), then dV(x(t))/dt = lf(x(t)); that is, V is the deriva-
tive of V along the solutions of (1.1). Notice that V can be computed directly
from f (x) and, therefore, involves no integrations.

The theory below also remains valid for scalar functions V defined and
only continuous on an open set 0 of Bn provided that 17 is given as

( ) = Jim 1 [V(x(h, e)) - V(e)],
h-s O+ h

where x(h, ) is the solution of (1.1) with initial value 6 at h = 0. If V is locally
lipschitz continuous, then this latter definition can be shown to be equivalent
to

V(e) = lim 1 [V (f + hf (f)) - fl e)].
ha0+h

In the applications, it is sometimes necessary to consider functions V (x) which
do not have continuous first partial derivatives at all points x. On the other
hand, the functions V(x) are usually piecewise smooth with the sets of dis-
continuities in the derivatives of V occurring on surfaces of lower dimension
than the basic space R.

Since the proofs of the theorems below do not use the differentiability of
V, they are stated without this hypothesis. However, in the majority of the
applications, V will be given by (1.2).

THEOREM 1.1. If there is a continuous positive definite function V(x) on
0 with V <_ 0,.then x = 0 is a solution of (1.1) and it is stable. If, in addition,
is negative definite on Q, then the solution x = 0 is asymptotically stable.

PROOF. Let B(r) be the ball in Rn of radius r with center at the origin.
There is an r > 0 such that B(r) c Q. For 0 < 8 < r, 0 < k = min xl V(x).
Suppose that 0 < 8<_ s is such that V(x) < k for JxJ < S. Such a S always
exist since V(0) = 0 and V is continuous. If xo is in B($), then the solution
x(t) of (1.1) with x(0) = xo is in B(e) for t >_ 0 since V(x(t)) 5 0 implies
V(x(t)) < V(xo), t >_ 0. This proves x = 0 is a solution and it is stable.
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x1

Figure X.1.1

Since x = 0 is stable, there is a bo > 0, H > 0, such that the solution x(t)
exists and satisfies jx(t)l <H for t >_ 0 provided that Ixol <bo. Also, for any
E > 0, there is a S(s) > 0 such that jx(t)l <E for t >_ 0, Ixol < S(e). To prove
asymptotic stability, it is sufficient to show there is a T > 0 such that
1x(t)l < S(E) for t >_ T, Ixol <bo. Suppose there is an xo with ixol <bo and
Ix(t)1 >_ S(E) fort > 0. If y > 0 is such that TY(x(t)) < - y for S(e) 5 x < Hi; t
0, then

V(x(t)) < V(xo) - yt.

If fl > 0, k satisfy 0 < P 5 V (x) 5 k for S(e) <_ Cxj< H, choose T = (k - j9 )/y.
For t >_ T, V(x(t)) < P. Thus, there must exist a to, 0 5 t o ;S T such that
jx(to)l < S(e). Stability implies jx(t)l <E for t >_ to and, in particular, for
t Z T. This completes the proof of the theorem.

THEOREM 1.2. Suppose x = 0 is an equilibrium point of (1.1) contained
in the closure of an open set U and let f2 be a neighborhood of x = 0. Suppose
V is a scalar function on f2 which satisfies:

(i) V, V positive on U n f2\{0}, V(0) = 0,
(ii) V = 0 on that part of the boundary of U inside Q.

Then the solution x = 0 of (1.1) is unstable. More specifically, if Do is any
bounded neighborhood of x = 0 with .0o in f2, then any solution with initial
value in (U n flo)\{0} leaves f2o in finite time.

PROOF. Let r > 0 be such that B(r) a K2. For any 0 < s 5 r, there is an
xo 0 in U n B(s) and thus V(xo) > 0. Since V >_ 0 in U n 0, it follows that
the solution x(t) with x(0) = xo satisfies V(x(t)) > V(xo) > 0 for x(t) in U fl 92.
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If a = min{V(x): x in U n 0 with V(x) >_ V(xo)}, then a > 0 and
t

V(x(t)) = V(xo) + f V(x(t)) dt > V(xo) {- at
o

for all t for which x(t) remains in U n 0. If ffo is any bounded neighborhood
of x = 0 which is contained in n, this implies x(t) reaches eL2o since V(x) is
bounded on U n 12o . This completes the proof of the theorem.

Theorems 1.1 and 1.2 give an indication of a procedure for determining
stability or instability of the equilibrium point of an autonomous equation
without explicitly solving the equation. On the other hand, there is no general
way for constructing the functions V and the ingenuity of the investigator
must be used to its fullest extent. For linear systems (1.1), the following
lemma is useful. In this lemma, Re A(A) designates the real parts of the
eigenvalues of a matrix A.

LEMMA 1.5. Suppose A is a real n matrix. The matrix equation

(1.3) A'B + BA = -C

has a positive definite solution B for every positive definite matrix C if and
only if Be A(A) < 0.

PuooF. Consider the linear differential equation

(1.4) x = Ax,

and the scalar function V(x) = x'Bx where B is a symmetric matrix.

(1.5) V(I.4)(x) = x'[A'B + BA]x.

If there exists a positive definite B such that B satisfies (1.3) with C positive
definite, then Theorem 1.1 implies that all solutions of (1.4) approach zero as
t - oo. Of course, this implies Be A(A) < 0.

Conversely, if Be A(A) < 0 and C is a positive definite matrix, define
o

(1.6) B = f eA'tCeAt dt.
0

The matrix B is well defined since there are positive constants K, a such that
I eAtj < Ke-at, t">_ 0. Furthermore, it is clear that B is positive definite. Also,

A'B + BA = fo dt (eA'tCeAt)dt

_ -C.
This proves the lemma.

From the proof of Lemma 1.5, it is clear that we have proved the follow-
ing converse theorem of asymptotic stability for the linear system (1.4).
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LEMMA 1.6. If the system (1.4) is asymptotically stable, then there is a
positive definite, quadratic form whose derivative along the solutions of (1.4)
is negative definite.

Let us now apply Lemma 1.5 to the equation

(1.7) x=Ax+f(x)
where f has continuous first derivatives in Rn with f (0) = 0, Of (0)/8x = 0.

If Re A(A) < 0 then Lemma 1.5 implies there is a positive definite matrix
B such that A'B + BA = -I. Let V(x) = x'Bx. Then V = V (1,?) is given by

V = -x'x + 2x'Bf (x).

Lemma 1.2 implies that - V is positive definite in a neighborhood of x = 0 and
Theorem 1.1 implies the solution x = 0 of (1.7) is asymptotically stable. This
is the same result as obtained in Chapter III using the variation of constants
formula.

If Re A(A) 0 0 and an eigenvalue of A has a positive real part, then we can
assume without loss of generality that A = diag(A _ , A+) where Re A(A_) < 0,
Re A(A+) > 0. Let BI be the positive definite solution of A' B1 + B1 A_ _ -I
and B2 be the positive definite solution of (-A') B2 + B2(-A+) = -I which
are guaranteed by Lemma 1.5. If x = (u, v) where u, v have the same dimen-
sions as B1, B2, respectively, let V (x) = -u'B1u + v'B2 v. Then 17(x) =
V(l.?)(x) = x'x+o(Jx12) as jxj -'0. Lemma 1.2 implies V(x) is positive definite
in a neighborhood of x = 0. On the other hand, the region U where V is
positive obviously satisfies the conditions of Theorem 1.2. Thus, the solution
x = 0 of (1.7) is unstable if there is an eigenvalue of A with a positive real
part. This result was also obtained in Chapter III using the variation of
constants formula.

The above results are easily generalized. To simplify the presentation,
we say a scalar function V is a Liapunov function on an open set G in Rn if V is
continuous on 0, the closure of G, and V (x) = [2V (x)/8x] f (x) < 0 for x in G.
Let

S = {x in 0: V (x) = 0},

and let M be the largest invariant set of (1.1) in S.

THEOREM 1.3. If V is a Liapunov function on G and y+(xo) is a bounded
orbit of (1.1) which lies in G, then the w-limit set of y+ belongs to M; that is,
x(t, xo) --M as t -* oo.

PROOF. Since y+(xo) is bounded, V(x(t, xo)) is bounded below for
t >_ 0 and V(x(t, xo)) < 0 implies V(x(t, xo)) is nonincreasing. Therefore,
V(x(t, xo)) -*a constant c as t -* oo and continuity of V implies V (y) = c for
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any y in w(y+). Since w(y+) is invariant, V(x(t, y)) = c for all t and y in w(y+).
Therefore, w(y+) belongs to S. This proves the theorem.

COROLLARY 1.1. If V is a Liapunov function on G = {x in Rn: V(x) < p}
and G is bounded, then every solution of (1.1) with initial value in 0 ap-
proaches M as t -* oo.

COROLLARY 1.2. If V(x) -, oo as Ixl -* oo and V<_ 0 on Rn, then every
solution of (1.1) is bounded and approaches the largest invariant set M of (1.1)
in the set where V = 0. In particular, if M = {0}, then the solution x = 0 is
globally asymptotically stable.

PROOF. For any constant p, V is a Liapunov function on the bounded
set 0 = {x: V(x) < p}. Furthermore, for any xo in Rn there is a p such that xo
belongs to G. Corollary 1.1 therefore implies the result.

Notice that r < 0 in G\{0} implies M = {0} and one obtains from
Theorem 1.3 the asymptotic stability theorem in Theorem 1.1.

THEOREM 1.4. Suppose x = 0 is an equilibrium point of (1.1) contained
in the closure of an open set U and let S2 be a neighborhood of x = 0. Assume
that

(i) V is a Liapunov function on G = U n 0,
(ii) M n G is either the empty set or zero,

(iii) V(x)<77on Gwhen x:0,
(iv) V(0) _ 71 and V(x) =,q when x is on that part of the boundary of 0

in Q.
Then x = 0 is unstable. More precisely, if S2o is a bounded neighborhood of
zero with S20 contained in S2, then any solution with initial value in
(U n co)\{0} leaves K20 in finite time.

PROOF. If x0 is in (U n S2o)\{0}, then V(xo) <,q. Furthermore, V <_ 0
implies V(x(t, xo)) < V(xo) < 77 for all t >_ 0. If x(t, x0) does not leave 00, then
w(y+(xo)) is not empty and in S2o. As in the previous proof, w(y+(xo)) e M.
Since w(y+(xo)) is nonempty, this implies w(y+(xo)) = {0} and belongs to the
set where V(x) _ ,7. This contradicts the fact that V(x(t, xo)) < V(xo) < ,7 and
proves the theorem.

Example 1.1. Consider the van der Pol equation

(1.8) x + e(x2 - 1)x + x = 0,

and its equivalent Lienard form

x3i=y-s (_3 _ X),

y = -x.
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In Chapter II, it was shown that this equation has a unique asymptotically
stable limit cycle for every e > 0. The exact location of this cycle in the
(x, y)-plane is extremely difficult to obtain but the above theory allows one
to determine a region near (0, 0) in which the limit cycle cannot lie. Such a
region can be found by determining the stability region of the solution x = 0
of (1.8) with t replaced by -t. This has the same effect as taking a <0.

Therefore, suppose a <0 and let V(x, y) be the total energy of (1.9); that
is, V(x, y) = (x2 + y2)/2. Then

2

V(x,y)=-ex2(3 -1)

and V (X, y) 5 0 if x2 < 3. Consider the region G = {(x, y) : V (x y) < 3/2}.
It is clear that G is bounded and V is a Liapunov function on G. Furthermore,
S = {(x, y): V = 0} = {(0, y), y2 < 3}. Also, from (1.9), M = {(0, 0)} and Corol-
lary 1.1 implies every solution starting in the circle x2 + y2 < 3 approaches
zero as t -* oo. Finally, the limit cycle of (1.8) for e > 0 must be outside this
circle.

Example 1.2. Consider the equation

(1.10) x +f (x)x + h(x) = 0,

where xh(x) > 0, x 0 0, f (x) > 0, x 0 0 and H(x) = f o h(s) ds - oo as 1xI --* oo.

Equation (1.10) is equivalent to the system

(1.11) x=y,
-h(x) -f (x)y

Let V(x, y) be the total energy of the system; that is, V(x, y) = y0/2 + H(x).
Then V(x, y) = f (x)y2 < 0. For any p, the function V is a Liapunov function
on the bounded set G = {(x, y): V(x, y) < p}. Also, the set S where V = 0
belongs to the union of the x-axis and y-axis. From (1.11), this implies M =
{(0, 0)} and Corollary 1.2 implies that x = 0 is globally asymptotically stable.

EXERCISE 1.1. Use Theorems 1.1 and 1.2 to prove Lemmas' V.1.2 and
V.1.4.

ExERCISE 1.2. Consider the second order system

x=y-xf(x,y),
y= -x-yf(x, y)

Discuss the stability properties of this system when f has a fixed sign.

EXERCISE 1.3. Consider the equation

x+ax+2bx+3x2=0, a>0, b>0.
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Determine the maximal region of asymptotic stability of the zero solution
which can be obtained by using the total energy of the system as a Liapunov
function.

EXERCISE 1.4. Consider the system i = y, y = z - ay, z = -cx - F(y),
F(0)=0, a>0, c>0, aF(y)/y>c for y00 and fo [F(e)-ce/a]de- oo
as IyI - co. If F(y) = ky where k >.c/a, verify that the characteristic roots of
the linear system have negative real parts. Show that the origin is asymptoti-
cally stable even when F is nonlinear. Hint: Choose V as a quadratic form
plus the term f o F(s) ds.

EXERCISE 1.5. Suppose there is a positive definite matrix Q such that
J'(x)Q + QJ(x) is negative definite for all x 0, where J(x) is the Jacobian
matrix of f (x). Prove that the solution x = 0 of x = f (x), f (0) = 0, is globally
asymptotically stable. Hint: Prove and make use of the fact that f (x) =
fl

J(sx)x ds.
0

EXERCISE 1.6. Suppose you have the function V = y2e_z defined in the
whole (x, y)-plane and that relative to some differential equation V = -y2V.
Can one conclude anything about the solutions of the original differential
equation? If not, what is the trouble?

EXERCISE 1.7. Suppose h(x, y) is a positive definite function such that
h(x, y) -> - as x2 + y2 Discuss the behavior in the phase plane of the
solutions of the equations

x=ex+y-xh(x,y),
Ey - x - yh(x, y),

for all values of e in (-oo, oo).

EXERCISE 1.8. Consider the n-dimensional system x = f (x) + g(t) where
x'f (x) < -kIx12, k > 0, for all x and Jg(t)J < M for all t. Find a sphere of
sufficiently large radius so that all trajectories enter this sphere. Show
this equation has a T-periodic solution if g is T-periodic. If, in addition,
(x - y)'[f (x) -f (y)] < 0 for all x y show there is a unique T-periodic solu-
tion. Hint: Use Brouwer's fixed point theorem.

EXERCISE 1.9. Suppose f, g are as in Exercise 1.8 except g(t) is almost
periodic. Does the equation. =f (x) + g(t) have an almost periodic solution?

EXERCISE 1.10. Prove the zero solution of (1.7) is unstable if there is
an eigenvalue of A with a positive real part even though some eigenvalues
may have zero real parts.
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X.2. Circuits Containing Esaki Diodes

In this section, we give an example which illustrates many of the
previous ideas. Consider the circuit shown in Fig. 2.1. The square box in this
diagram represents an Esaki diode with the characteristic function f (v)
representing the current flow as a function of the voltage drop v. Kirchoff's

i = f (V)

R

Figure X.2.1

laws imply that the relation between the current i and voltage v are given by

di
(2.1) L W=E-Ri-v=I(i,v),

dv
- C

Clt
=f (v) - i aef

V(i, v),

where E, B, C, L are positive constants and of (v) >_ 0 for all v.

LEMMA 2.1. If there is an A > 0 such that xf (x) > E2/R for jx>A,
then every solution of (2.1) is bounded. In fact, every solution is ultimately in
a region bounded by a circle.

PROOF. If W(i, v) = (Li2 + Cv2)/2, then the derivative of W along solu-
tions of (2.1) is

Ri(i -R) + V f (v)l.

Let We = [L(E/R)2 + CA2]/2. If W(i, v) > We, then either I it > E/R or
jvj >A. If lil > E/R, then W < 0 and if jil < E/R, Ivi >A, then

[Bi2
2

Ei+ R1 = - [Ri2 - E(i -Rl < -Ri2 <0,

For i = 0, 1 vI > A, we have also W < 0. Therefore, W < 0 in the region
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W(i, v) > Wo. Since the region W < p is bounded for any p and W(i, v) -* 00
as Jil, IvJ 00, it follows that every solution of (2.1) is bounded. This proves
the lemma.

The problem at hand is to find conditions on f and the parameters in
(2.1) which will ensure that every solution of (2.1) approaches an equilibrium
point as t -a o0. Let f '(v) = df (v)/dv.

LEMMA 2.2. If the conditions of Lemma 2.1 are satisfied and f'(v) > 0
for all v, then every solution of (2.1) approaches the unique equilibrium point
of (2.1).

PROOF. First of all, it is clear there is only one equilibrium point of (2.1)
if f'(v) > 0 for all v. If

1 1

Q(i, v) = 2L
12

+ 2C V
2

then the derivative of Q along the solutions of (2.1) is

(2.3) Q = -(BL-212 .+ f'C-2V2) < 0.

Since Lemma 2.1 implies all solutions of (2.1) are bounded and Q = 0 only at
the equilibrium point, it follows from Theorem 1.3 that the assertion of
Lemma 2.2 is true.

The most interesting cases in the applications are when f' changes sign
and, in fact, can take on values <-R-1 so that equation (2.1) has three
equilibrium points. However, if f' > -B-1(only one equilibrium point), then
a limit cycle may appear unless there are other restrictions on f. In fact, one
can prove

THEOREM 2.1. If -f' < R-1, f'/C) > R/L, then there is a value
of E such that equation (2.1) has at least one periodic orbit.

PROOF. Choose E so that the equilibrium point (io, vo) is such that
f'(vo)/C > R/L. From Lemma 2.1, there is a circle S2 with center at (0, 0)
such that the trajectories of (2.1) cross S2 from the outside to the inside. If
i=io+u, v=vo+w, x= (u, w), then

(2.4) z = Ax ... A = L-RL-1 -L-1
1JL C- foC- '

where ... represents higher order terms in x and fo = f '(vo). The hypotheses of
the theorem imply that the eigenvalues of A have positive real parts. Replacing
t by -t in (2.4) has the same effect as replacing A by -A, a matrix whose
eigenvalues have negative real parts. Lemma 1.6 implies there exist a positive
definite matrix B such that the derivative of W(x) = x'Bx along the solutions
of (2.4) satisfies Ta(x) = -x'x + o(Ix12) as JxJ ->0. Returning to the original
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time scale and using Lemma 1.2, one sees that the trajectories of (2.4) are
crossing the ellipses x'Bx = c for c > 0 sufficiently small from the inside to the
outside. The annulus bounded by one of these ellipses and the circle SZ contains
a positive semiorbit of (2.1). The Poincar6-Bendixson theorem implies the
result.

To obtain more information for the case when f' changes sign, observe
first that system (2.1) can be written as

di 2P
(2.5) L

dt

dv 2P
-cat -TV '

where

(2.6) - iv + f f (s) dsP(i, v) = Ei - 2Z2
v

0

12

and

2R + U(v)

U(v) _ (E2Rv)2 + f
o

f (s) ds.

THEOREM 2.2. If there is an A >_ 0 such that of (v) >_ 0, of (v) > E2/R for
JvJ >A and

'v R
C)+L>0

for all v, then each solution of (2.1) approaches an equilibrium point of (2.1)
as t -- co.

PROOF. Consider the function S = Q + AP where Q is defined in (2.2), P
is defined in (2.6) and

C
L

Some straighforward but tedious calculations show that P along the solu-
tions of (2.1) is given by

(2.10) P = L-112 -C-1V2.

Thus, relation (2.3) and (2.10) imply that 89 = Q + AP satisfies

_ -[(R - AL)L-212 + (f' + AC)C-2V2] < 0
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V

by our choice of A. Furthermore = 0 if and only if I = 0, V = 0; that is,
only at the equilibrium points of (2.1). Since all solutions of (2.1) are bounded
from Lemma 2.1, the conclusion of the theorem follows from Theorem 3.1.

It is of interest to determine which equilibrium points of (2.1) are stable.
Let S be defined as in the proof of Theorem 2.2. If A satisfies (2.9), then one
can show that the extreme points of S are the equilibrium points of (2.1). Since
9<_ 0, it follows from Theorems 1.1 and 1.2 that the stable equilibrium points
of (2.1) are the minima of S and the unstable equilibrium points are the other
extreme points of S.

LEMMA 2.3. If A satisfies (2.9), A = 0, then the extreme points of S(i, v)
coincide with the extreme points of U(v) in the sense that the extreme points
of S coincide with the solutions of I = 0, eU/8v = 0. Every strict local
minimum of U(v) represents a local minimum of S and hence a stable equilib-
rium point of (2.1).

PROOF. A few elementary calculations yields

as = _ (BL-1- A)I C-1 V,
at

av=-R-1(RL-1-A)I-f'C-IV+Aav .

If 8U/av = 0 then R-1(E - v) =f (v). If I = 0, then i = R-1(E - v). Thus,
I = 0, aU/8v = 0 implies V = 0 and this in turn implies an extreme point of S.
If 8S/ai = 0, aS/av = 0, then I = V = 0 and this in turn implies aU/av = 0.
This proves the first part of the lemma.

The proof of the second part of the lemma is left as an exercise and
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involves showing that a2U/av2 > 0 implies the quadratic form

a2S
62+

a2S t a2s
2

ai2 0
2

ai av SO 1 +
av2

evaluated at an equilibrium point is positive definite.

EXERCISE 2.1. Interpret the above results for f (v) having the shape
shown in Figs. 2.2a,b.

X.3. Sufficient Conditions for Stability in Nonautonomous Systems

In this section, we state some extensions of the results in Section 1 to
nonautonomous systems

(3.1) i=f(t,x)
where f : [-r, oo) x Rn --* Rn, r a constant, is smooth enough to ensure that
solutions exists through every point (to, xo) in [T, oo) x Rn, are unique and
depend continuously upon the initial data. Let SL be an open set in Rn con-
taining zero. A function V : [T, oo) x 1 --* R is said to be positive definite
if V is continuous, V(t, 0) = 0, and there is a positive definite function
W: 0 -* R such that V(t, x) > W(x) for all (t, x) in [T, co) x Q. V(t, x) is
said to possess an infinitely-small upper bound if there is a positive definite
function W(x) such that V(t, x) < W(x), (t, x) in [T, co) x K1. If V: [T, 00) X S2
-* R is continuous, we define the derivative V(t, 6) of V along the solutions
of (3.1) as

V (t, ) = lim 1 [V(t + h, x(t + h, t, )) - V(t, c)],
h

where x(t, a, e) is the solution of (3.1) passing through (a, e) e [T, co) x Rn.
If V(t, 6) has continuous partial derivatives with respect to t, e, then

aV(t, av(t,
at ae

THEOREM 3.1. If V: [T, oo) x SZ R is positive definite and V(t, x) < 0,
then the solution x = 0 of (3.1) is stable. If, in addition, V has an infinitely
small upper bound then the solution x = 0 is uniformly stable. If, furthermore,
- V is positive definite, then the solution x = 0 of (3.1) is uniformly asymp-
totically stable.

PROOF. Since V(t, x) is positive definite, there exists a positive definite
function W(x) such that V(t, x) >: W(x) for all (t, x) a [T, co) x Q.. Let B(r)
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be the ball in Rn of radius r with center at the origin. There is an r > 0 such
that B(r) c I. For 0 < e <r, 0 <k = minjxj_EW(x). For any to e [r, oo), let
0 < S < s be a number such that V(to, x) < k for (xI <_ S. Such a S always
exists since V(to, 0) = 0 and V is continuous. If xo is in B(S), then the solution
x(t) of (3.1) with x(to) = xo is in B(e) for t >_ to since P(t, x) S 0 implies
V(t, x(t)) < V(to, xo), t > to. This proves stability of x = 0.

If, in addition, V has an infinitely small upper bound, then there is a
positive definite function Wl(x) such that V(t, x) < WI(x) for all (t, x) c
[T, oo) x 0. With e, k as above, choose S > 0 with Wl(x) < k for IxI < S. Then,
for any to e [r, oo), xo in B(S), the solution x(t) of (3.1), x(to) = xo, is in B(e)
for t >to since V(t, x(t)) < V(to, xo) < WI(xo) for all t. This proves uniform
stability of x = 0.

If, furthermore, -V(t, x) is positive definite, then there is a positive
definite function W2(x) such that -V(t, x) >_ W2(x) for all (t, x) e [r, oo) x S2.
The proof now proceeds in a manner similar to the proof of Theorem 1.1.

Let R+ _ [0, oo ), V (t, x): R+ x Rn -* R be continuous, G be any set in Rn
and 0 be the closure of G. We say V is a Liapunov function of (3.1) on 0 if

(i) given x in 7 there is a neighborhood N of x such that V(t, x) is
bounded from below for all t >_ 0 and all x in N n G.

(ii) V(t, x) < -W(x) < 0 for (t, x) in R+ x 0 and W is continuous
on 0.

If V is a Lyapunov function for (3.1) on G, we define

E={x in 0: W(x)=0}.

THEOREM 3.2. Let V be a Liapunov function for (3.1) on 0 and let x(t)
be a solution of (3.1) which is bounded and'remains in 0 for t >_ to >_ 0.

(a) If for each p in 0, there is a neighborhood N of p such that If (t, x)I
is bounded for all t >_ 0 and all x in N n G, then x(t) -* E as t -* oo.

(b) If W has continuous first derivatives on 0.r and l ' = (8W/8x) f (t, x)
is bounded from above (or from below) along the solution x(t), then x(t) -* E
ast - oo.

PROOF. Let p be a finite positive limit point of x(t) and {tn} a sequence of
real numbers, oo as n oo such that x(tn) -> p as n -* oo. Conditions
(i) and (ii) in the definition of a Liapunov function imply that V(tn, x(tn)) is
nonincreasing and bounded below. Therefore, there is a constant c such that
V(tn, x(tn)) -* c as n -* oo and since V(t, x(t)) is nonincreasing, V(t, x(t)) -.c as

t-. oo. Also, V(t, x(t)) < V(to, x(to)) - f t W(x(s)) ds and hence
to

f W(x(s)) ds < co.
to
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Part (a). Assume p is not in E. Let 8 > 0 be such that W(p) > 28 > 0.
There is an s > 0 such that W(x) > S for x in S2s(p) = {x: Ix -PI < 2E}. Also
e can be chosen so that S28(p) N, the neighborhood given in (a). If x(t)
remains in S2E(p) for all t >_ tI to, then W(x(s)) ds = +,o which is a
contradiction. Since p is in the limit set of x(t), the only other possibility is
that x(t) leaves and returns to S2E(p) an infinite number of times. Since
If (t, x)I is bounded in Sze(p), this implies each time that x(t) returns to
S2E(p), it must remain in S2E(p) at least a positive time T. Again, this implies

ftW(x(s)) ds = + oo and a contradiction. Therefore W(p) = 0 and E contains
o

all limit points.

Part (b). Since
J

'o W(x(s)) ds < co and W(x(t)) is bounded from above
to

(or from below), it follows that W(x(t)) -* 0 as t-* oo. Since W is continuous
W(p) = 0 and this proves (b).

Example 3.1. Consider the equation

(3.2) y,

-x -p(t)y,
where p(t) >_ 8 > 0. If V(x, y) = (x2 + y2)/2, then

V = -p(t)y2 < -8y2,
and V is a Liapunov function on R2 with W(x, y) =-Sy2. Also, W
-28(xy + p(t)y2) < -28xy. Every solution of (3.2) is clearly bounded and,
therefore, condition (b) of Theorem 3.2 is satisfied. The set E is the x-axis and
Theorem 3.2 implies that each solution x(t), y(t) of (3.2) is such that y(t) -* 0
as t -* co. On the other hand, if p(t) = 2 + et, then there is a solution of (3.2)
given as x(t) = 1 + e-t, y(t) = -e-t. Since the equation is linear, every point
on the x-axis is a limit point of some solution. This shows that the above
result is the best possible without further restrictions on p.

Notice that the condition in (a) of Theorem 3.2 is not satisfied in
Example 3.1 unless p(t) is bounded.

A simple way to verify that a solution x(t) of (3.1) remains in G for
t >_ to is given in the following lemma whose proof is left as an exercise.

LEMMA 3.1. Assume that V(t, x) is a continuous scalar function on
R+ x Rn and there are continuous scalar functions a(x), b(x) on Rn such that
a(x) < V(t, x) _<b(x) for all (t, x) in R+ x Rn. For any real number p, let
Ap = {x in Rn: a(x) < p} and let G0 be a component of A.. If G is the com-
ponent of the set Bp = {x in Rn: b(x) < p} contained in Go and V<_ 0 on Go,
then any solution of (3.1) with x(to) in G remains in Go for all t >_ to:

Notice that a(x) -* oo as IxI -* oo in Lemma 3.1 implies boundedness of
the solutions of (3.1).
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X.4. The Converse Theorems for Asymptotic Stability

In this section, we show that a type of converse of Theorem 3.1 for
uniform asymptotic stability is true. If V(t, x) is a continuous scalar function
on R+ x Rn and x(t, to, xo) is the solution of (3.1) with x(to, to, xo) = xo, we
define the derivative T1(3.1)(t, e) along the solutions of as in Section 3;
namely,

Y(3.1)(t, ) hi h[V(t+h, x(t + h, t, )) - V(t,t)]

Our first converse theorem deals with the linear system since the essential
ideas emerge without any technical difficulties.

THEOREM 4.1. If A(t) is a continuous matrix on [0, oo) and the linear
system

(4.1) i = A(t)x

is uniformly asymptotically stable, then there are positive constants K, a and
a continuous scalar function V on R+ x R'n such that

(4.2) (a) Ixi<_V(t,x)_<KIxi,

(b) Tr(4.1)(t, x) < -«V(t, x),

(c) IV(t,x)-V(t,y)l <KIx-yi,
for all tin R+, x, y in Rn.

PROOF. From Theorem 111.2. 1, there are positive constants K, « such
that the solution x(t, to, xo) of (4.1) with x(to, to, xo) = xo satisfies

(4.3) I x(t, to, xo)l < Ke-a(t-to) Ixol

for all t >_ to >_ 0 and all xo in Rn. Define for t >_ 0, xo in Rn

(4.4) V(t, xo) = sup I x(t + -r, t, xo)Iear.
TZo

It is immediate from (4.3) that V(t, xo) is defined for all t, xo and satisfies
(4.2a).

To verify (4.2c) observe that

I V(t, xo) - V(t, yo)l < suplx(t+T, t, xo) -x(t+T, t, yo)IeaT
TZO

=sup lx(t+T, t, xo -yo)leaT
TZo

= V(t, xo - yo) < K I xo - yol.
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The proof of (4.2b) proceeds as follows:

V(4.1)(t, xo) = urn sup I x(t + T + h, t + h, xo) I ear - sup I x(t + T, t, xo) I earl
h.0+ Tzo JJ

up I x(t + T, t, xo)l ea(r-h) - sup I x(t + T, t, xo)IeaT1= lira
Lhh-O+h TZo

< F IM- I x(t + T, t, xo) I ea(T-h) - supl x(t + T, t, xo) IeaT]
h-O+h Tzo , o J

< lim sup I x(t + T, t, xo)IeaT(e-ah - 1)
h-,o+ Lh Tzo

_ -aV(t, xo).

It remains only to show that V(t, xo) is continuous. Notice that

V(t+s, xo+yo) - V(t, xo)I < I V(t + 8, x0±yo) - V(t+s, x(t+s, t, xo+yo))I
+IV(t+8,x(t+8,t,xo+yo))-V(t,xo+yo)I
+IV(t,xo+yo)-V(t,xo)I.

The fact that the first and third terms can be made small if s, y are small
follows from (4.2c). The continuity of the solution of (4.1) in t and an argu-
ment similar to that used in proving that V(4.I1 existed shows the second term
can be made small if s is small. This proves right continuity. Left continuity is
an exercise for the reader.

Theorem 4.1 is a converse theorem for exponential asymptotic stability.
In fact, if there is a function V satisfying (4.2), and x(t) = x(t, to, xo) is a
solution of (4.1), then

V(t, x(t)) < e-act-1o) V(to, xo) < Ke-a(t-to) Ixol.

The fact that V(t, x) > IxI implies that x(t) satisfies (4.3).
The basic elements of the proof of the above theorem are the estimate

(4.3) and the lifting of the norm of x in the definition of V. If the lifting factor
ear had not been applied one would have only obtained V< 0.

Our next objective is to extend Theorem 4.1 to the nonlinear equation
(3.1). We need

LEMMA 4.1. Suppose f (t, 0) =0. The solution x = 0 of (3.1) is uniformly
stable if and only if there exists a function p(r) with the following`properties:

(a) p(r) is defined, continuous and monotonically increasing in an
interval 0 < r:5 r1,

(b) p(0) = 0,
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(c) For any x in Rn, jxj <ri and any to >_ 0, the solution x(t, to, xo),
x(to, to, xo) = xo, of (3.1) satisfies

Ix(t, to, xo)l P(ixo1) for t > to.

PROOF. The sufficiency is obvious. To prove necessity, suppose e > 0 is
given and let S(e) be the least upper bound of all numbers S(e) occurring in
the definition of uniform stability. Then, for any x in Rn, jxj S S(e), and any
to >_ 0, the solution x(t, to, xo) of (3.1) satisfies lx(t, to, xo) < e fort >_ to. For
every S1 > S, there is an xo in Rn, 1xo1 < S1 such that jx(t, to, x"ofl exceeds a for
some value of t. Consequently, S(e) is nondecreasing, positive for e > 0, and
tends to zero as a tends to zero. However, S(e) may be discontinuous. Now
choose S(e) continuous, monotonically increasing and such that S(e) < S(e)
for s > 0. Let p be the inverse function of b. For any xo in Rn, Ixol < S(e),
there exists an e1 such that Ixo1 = S(el) and, thus, jx(t, to, xo)l < e1= AxoD.

This proves the lemma.

LEMMA 4.2. The solution x = 0 of (3.1) is uniformly asymptotically
stable if and only if there exist functions p(r), 0(r) with p(r) satisfying the
conditions of Lemma 4.1 and 0(r) defined, continuous and monotonically de-
creasing in 0<_ r < oo, 0(r) -* 0 as r-* oo such that, for any xo in Rn, ixo! <rr,
and every to >_ 0, the solution x(t, to, xc) of (3.1) satisfies

I x(t, to, X0) j < P(I xoI)O(t - to), t > to.

The proof of this lemma is left as an exercise.

THEOREM 4.2. If f (t, 0) = 0, f (i, x) is locally lipschitzian in x uniformly
with respect to t and the solution x = 0 of (3.1) is uniformly asymptotically
stable, then there exist an r1 > 0, K = K(r1) > 0, a positive definite function
b(r), a positive function c(r) on 0 < r <_ r1 and a scalar function V(t, x) defined
and continuous for t >_ 0, x in Rn, jxj < rl, such that

(4.5) (a) jxj <_ V(t, x):5 b(lxl),

(b) V(3.1)(t, x) < -c(lxl) V(t, x) < -Ixj c(lxf ),

(6) jV(t,x)-V(t,y)I <_Kjx-yj,

for all t >_ 0, x, y in Rn, I xj < r1i jyi < r1.

PROOF. From Lemma 4.2, there exist functions p(r), 0(r), defined,
continuous and positive on 0 <_ r < r1, 0 <_ r < oo, such that p(r) is strictly
increasing in r, p(O) = 0, 0(r) is strictly decreasing in r, 0(r) -* 0 as r--> co and
for any x in Rn, jxj < r1, the solution x(t, to, xo) of (3.1) satisfies

Ix(t, to, xo)l < P(IxoI)0(t - to), t > to > 0.
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One can also assume that 0(T) has a continuous negative derivative, and
0(0) = 1. From the properties of 0(r), there exists a function a(T) defined,
continuously differentiable and positive on T > 0, a(0) = 0, a(r) strictly
increasing, a(r) - oo as T -> co such that

0(r) = e-a(t), r >_ 0.

Suppose q(T) is a bounded continuously differentiable function on 0 <_ T < oo,
such that q(0) = 0, q(r) > 0, q'(r) < a'(T) for T > 0, q' monotone decreasing,
and define

V(t, xo) = sup Ix(t+ r, t, xo)I eq(t).
TZO

Tne function V(t, xo) is defined for t >_ 0, xo in Rn, Ixol < ri and satisfies

Ixol < V (t' xo) < P(I xol) sup e-a(t)+q(t) = P(I xoI) def b(I xoI )
Tao

Furthermore, since there exists a continuous positive nondecreasing function
P(r), 0 < r 5 rI such that

p(x)e(t)+(T) < I xI for r >_ P(I xI ),

it follows that

V (t' xo) = sup I x(t + T, t, xo)I eq(=).
0;97;9P(1X01)

Consequently, for any h > 0, there is a rh , 0 < Th < P(I x(t + h, t, xo) I) such
that rh is continuous in h and

V(t + h, x(t + h, t, xo)) = I x(t + h + rh , t, xo)Ieq(tt).

If h + rh = rh, then

V(t + h, x(t + h, t, xo)) = I x(t +'r, , t, xo)I

V(t, xo)e-Q(tn)eq(t,,-h).

Therefore,
1

V(3.1)(t, xo) < -V(t, xo) Jim - [eq(Th) -
h

_ -V(t, xo)q'(ro) < -V(t, xo)q'(P(Ixol ))
def
= -c(I xol )V (t, x0)

- -Ixol c(Ixol),
which proves (4.5b). Since f in (3.1) is locally Lipschitzian in x uniformly in t,
for any ro > 0, there is a constant L = L(ro) such that

I x(t, to, xo) - x(t, to, yo)I s eL(t-to) Ixo - yol,
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for all t >_ to and xo, yo for which I x(t, to, xo) 15 ro, I x(t, to, yo) l <_ ro. Choose
ro = p(ri). Since P(r) is nondecreasing in r, it follows that

V (t, xo) - V (t, yo) 15 sup I x(t + T, t, xo) - x(t + T, t, yo) l eq(T)

09T5P(r)

< eLTeq(T)1 Ixo -yol
TsP(r) JJ

derK(r)
I xo - yo I)

for Ixol, Iyol <_ r. For r = ri, K = K(ri), this proves V satisfies the inequalities
of the theorem.

To prove V(t, xo) is continuous in t, xo we observe that

I V (t + h, xo + yo) - V (t, xo)I

< I V(t + h, xo+yo) - V(t + h, x(t + h, t, xo+yo))I

+ I V(t + h, x(t + h, t, xo+yo)) - V(t, xo+yo)I
+IV(t,xo+yo)-V(t,xo)I.

The fact that the first and third terms can be made small if h, yo are small
follows from the lipschitzian property of V and the continuity of the solution
of (3.1). The second term can be seen to be small if h is small by an argument
similar to that used in showing that r existed.

This shows right continuity. Left continuity is an exercise for the reader.
In Section 2, it was shown that a function V satisfying (4.5) implies that

the solution x = 0 of (3.1) is uniformly asymptotically stable. Therefore,
Theorem 4.2 is the converse theorem for uniform asymptotic stability.

X.5. Implications of Asymptotic Stability

In most of the applications that arise in the real world, the differential
equations are not known exactly. Therefore, specific properties of the solu-
tions of these equations which are physically interesting should be insensitive
to perturbations in the vector field with, of course, the types of perturbations
being dictated by the problem at hand. Therefore, one reasonable criterion on
which to judge the usefulness of a definition of stability is to test the sensitive-
ness of this property to perturbations of the vector field. In this section, we
use the converse theorem of Section 4 to discuss the sensitiveness of uniform
asymptotic stability to arbitrary perturbations as long as they are "small."
We need

LEMMA 5.1. Suppose f satisfies the conditions of Theorem 4.2, V is the
function given in that theorem, g(t, x) is any continuous function on R+ x Rn
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intoRn and consider the equation

(5.1) =f (t, x) + g(t, x).

Then

(5.2) 11(5.1)(t, x) < -c(I xi)V(t, x) -f- K I9(t, x)I

for all t >_ 0, I x) < r1.

PROOF. Let x*(t, to, xo), x*(to , to, xo) = xo, be a solution of (5.1) and
x(t, to, xo), x(to, to, xo) = xo, a solution of (3.1). Using the definition of
V(51) and relations (4.5b), (4.5c), one obtains

1,y [V(t + h, x*(t + h, t, xo)) - V(t, xo)lhV (5.1)(t, xo) i0
h

- 1
= lim - [V(t + h, x(t + h, t, xo)) -V (t, xo)

h-s0+h

+ V(t+h, x*(t + h, t, x0)) - V(t+Ti, x(t + h, t, xo))]

V (3.1)(t, xo) + K lim 1 I x*(t + h, t, xo) - x(t + h, t, xo)I
h-,o+h

Tr(3.1)(t, xo) + K I g(t, xo)I

<_ -C (I xol )V (t, xo) + K I g(t, xo)I

This proves the lemma.
Many results now follow directly from Lemma 5.1. In fact, if (3.1) is

linear, then equation (5.1) is

(5.3) x = A(t)x + g(t, x),

and Theorem 4.1 states that c(IxI) in (4.5) can be chosen as a > 0. Therefore,
the inequality (5.2) becomes

(5.4) r(5.3)(t, x) < -ocV(t, x) + K I g(t, x)I

If w(t, r) is a continuous function on R+ x B+, nondecreasing in r, such that

(5.5) I9(t, x)I < W(t, I xI ),

then one sees that (4.2a) and (5.5) imply

(5.6) 'V(5.3):!5; -aV + KW(t, V).

Using our basic result on differential inequalities in Section 1.6 and relation
(4.2), one can state
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THEOREM 5.1. Suppose w(t, u) in (5.5) is such that for any to > 0,.uo >_ 0,
the equation

(5.7) is = -au + Kw(t, u)

has a solution passing through to, uo which is unique. If u(t, to, uo),
u(to, to, uo) = uo, is a solution of (5.7) which exists for t > to and uo >_ Kl xo!,
xo in Rn, Ixol < r1, then the solution x(t, to, xo), x(to, to, xo) = xo, of (5.3)
satisfies

Ix(t, to, xo)I < u(t, to, uo), t > to.

Another application of Lemma 5.1 is

THEOREM 5.2. If f satisfies the conditions of Theorem 4.2 and the
solution x = 0 of (3.1) is uniformly asymptotically stable, then there is an
r1 > 0 such that for any e, 0 < e < r1 and any r2, e < r2 < rl, there is a S > 0
and a T > 0 such that for any to > 0 and any xo in Rm, a <_ Ixol < r2, the
solution x(t, to, xo), x(to , to, xo) = xo of (5.1) satisfies I x(t, to, xo) I < e for
t >_ to + T provided that I g(t, x)I < S for all t > 0, I xl < r1.

PROOF. The hypotheses of the theorem imply there is a function V (t, x)
satisfying the conditions (4.5) of Theorem 4.2. Choose rl as in Theorem 4.2.
Without loss of generality, we may assume the functions b(s), c(s) in (4.5) are
nondecreasing. For any e, r2 as in the theorem, we know that a < Ixl < r2
implies c(s) > 0 and e < V(t, x) < b(r2). Furthermore, Lemma 5.1 implies

V(5.1)(t, x) < -c(e)V(t' x) +KIg(t, x) I
< -c(e)e+Klg(t, x) I

for all t >_ 0, a <_ I xl <_ r2 . Consequently, if x = x(t) represents a solution of
(5.1) with x(to) = xo, s :!g Ixol < r2 and KS < 6c(s)f2 with I g(t, x)l < S for all
t >_ 0, 1 XI < r1, then 'P (5.1)(t, x(t)) < -ec(e)/2 as long as s:5 lx(t)I < r2. This
clearly implies that I x(to + t, to, xo) I < e for t >_ T > 2b(r2)/ec(s). This com-
pletes the proof of the theorem.

One could continue to deduce other more specific results but Theorems
5.1 and 5.2 should indicate the usefulness of the converse theorems of
Liapunov.

X.6. Wazewski's Principle

The purpose of this section is to give an introduction to a procedure known
as Wazewski's principle for determining the asymptotic behavior of the solutions
of differential equations. This principle is an important extension of the method
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of Liapunov functions. To motivate the procedure and to bring out some of the
essential ideas, we begin with a very elementary example.

Let us consider the scalar equation

(6.1) x=x+f(t,x)
where f (t, x) is continuous, smooth enough to ensure the uniqueness of solu-
tions and there is a continuous, nondecreasing function K(a), a > 0, constants
k E [0,1), a0 > 0, such that

aK(a) < ka2 for a > ao

If(t,x)I < K(a) fort>0, IxI <a.

The objective is to show that hypotheses (6.2) imply that Eq. (6.1) has a
solution which exists and is bounded for t > 0.

If V(x) = x2/2, then the derivative V of V along the solutions of Eq. (6.1)
satisfy

(6.3) V(x)=x2 +xf(t,x)>(1 -k)Ix12

if Ixl > ao. Consequently, on the set IxI = a0, the vector field behaves as
depicted in the accompanying figure.

If x(t,x0) designates the solution of Eq. (6.1) satisfying x(0,x0) = x0, let

S+ = {xo E R : I xo I < ao and there is a r with x (r, x0) = ao }

S_* = {xo E R : I xo I < ao and there is a r with x (r, x0) _ -a0]

S* =S+ US__*
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The set S* represents the initial values of all those solutions with initial value
xo in { I x I < go} which leave the region { I x I < ao } at some time, S* the ones
which leave at the top of the rectangle and S_* those that leave at the bottom
of the rectangle.

Clearly ao E S+, -ao E S_*. It is also intuitively clear that S* [-ao,ao]
by the way some paths want to go to the top and some to the bottom. Let us
make this precise.

We prove first that St are open in [-ao,ao] . If xo, E S*, let r be chosen
so that Ix(r,xo)I = ao. Inequality (6.3) implies there is an e > 0 such that
Ix(t,xo)I > ao for r < t < r + e. Choose a neighborhood Uof x(r + e,xo)
such that y E U implies IyI > ao. By continuous dependence on initial data,
there is a neighborhood V of xo, V C [-ao,ao] of xo such that, for every z in
V, there is a T(z) such that the solution x(t,z) satisfies x(r(z),z) in U. In
particular, Ix(T(z), z) I > ao. Consequently, there is a r(z) such that I x(r(z), z) I
= ao. This proves S* are open in [-ao,00] .

Obviously, S+ rl S_* _ . Thus, [-uo, ao ] \S * is not empty. This is equi-
valent to saying that there is an xo E [-ao,ao] such that the solution x(t,xo)
exists and satisfies I x (t, xo) I < ao for t > 0, as was to be shown.

Let us now generalize these ideas to n-dimensions. Suppose c is an open
set in R x R", f : s2 R12 is continuous and the solution o(t, to, xo), o(to, to, xo)
= xo, of the n-dimensional system

(6.4) x = At' x)

depends continuously upon (t, to, xo) in its domain of definition.
For notation, let P designate a representative point (t, x) of E2, (a(P),13(P))

designate the maximal interval of existence of the solution ((t,P) through
P,I(t,P) = (t,O(t,P)) be the point on the trajectory through P at time t, and
for any interval I C (a(P),(3(P)), let fi(I,P) = 0(t,P) = (t,ct(t,P)), t E I} be that
part of the trajectory through P corresponding to t in I. Let co C 12 be a fixed
open set, w be the closure of w in 92, and let aw denote the boundary of co in 92.

Definition 6.1. A point Po E aw is a point of egress from w with respect
to Eq. (6.4) and the set 0 if there is a S > 0 such thatcF([to -5,to),Po) C co.
An egress point Po is a point of strict egress from w if there is a 5 > 0 such that
I((to, to + 5 ] , Po)' C S2\ w. The set of points of egress is denoted by S and the
points of strict egress by S *.

Definition 6.2. If A C B are any two sets of a topological space and
K:B -A is ' continuous, K(P) = P for all Pin A, then K is said to be a retraction
from B to A and A is a retract of B.

With these definitions, we are in a position to prove the following result
known as the principle of Wazewski.
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THEOREM 6.1. If S =S* and there is a set Z C w U S such that Z C S
is a retract of S but not a retract of Z, then there exists at least one point PO
in Z\S such that([t0,a(P0)),P0) C w.

PROOF. For any point P0 in w for which there is a r E [t0,(i(P0)] such
that (D(r,PO) is not in w, there is a first time tpo for whichd)(tpo ,P0) is in S,

4)(t, PO) is in w for t in [t0, tpo ). The point (D(tp0 ,P0) is called the consequent
of P0 and denoted by C(P0). The set of points in w for which a consequent
exists is designated by G, the left shadow of S.

Suppose now S = S * and define the map K :G U S - S, K(P) = C(P) for
P E G, K(P) = P for P E S. We prove K is continuous. If P E w and C(P)
= (tp,¢(tp,P)), then S = S* implies there is a S > 0 such thatc((tp - S,tp),P )
C w, (D((tp,tp + S),P) C SZ\w. Since O(s,P) is continuous in (s,P), for any
e> 0, there is an 11 > 0 such that 10(s Q) - O(s,P) I < e for s E (tp - S, tp + S)
if I Q - P I < t . This clearly implies that C(Q) - C(P) if Q -> P. If P is in S = S *,
then one repeats the same type of argument to obtain that K is continuous.

Since K is continuous, K is a retract of G U S into S.
If the conclusion of the theorem is not true, then Z\S C G, the left shadow

of S. Thus, Z C G U S. Since Z n S is a retract of S, there is a mapping
H:S-+Zfl S such thatH(P) =P ifPis in ZfS.ThemapHK:GUS-+ZnS
is continuous, (HK)(P) = P if P is in Z n S. Thus G U S is a retract of Z fl S.
Since Z C G U S, the map HK : Z - Z fl S is a retraction of Z onto Z fl S. This
contradiction proves the theorem.

As an example, consider the second order system

x = f (t, x, y)
(6.5)

y = g(t, x, y)

for (t, x, y) E 92 = {t> 0, x, y in R }. Let w= { (t, x, y) : t > 0 , I x I < a, l y l <b} ,
where a > 0, b > 0 are fixed constants. Suppose

xf(t,x,y)>0 on Ixl =a, IyI <b,

yg(t, x, y) < 0 on I x I <a, IyI = b.

For the set w, we have S = S * = {(t, x, y) : t > 0, I x I = a, IyI < b}. Let
Z = {(t, x, y) : t = 0, y = 0, Ix I < a}. Then Z fl S is clearly a retract of S. How-
ever, Z fl S is not a retract of Z. Thus, Theorem 6.1 implies there is a solution
of Eq. (6.5) which remains in w for t > 0.

EXERCISE 6.1. Generalize the previous example by replacing the conditions
(6.6) on f,gby the following:

co = {(t, x, y) : t > 0, I x I < u(t), IyI < V( t), u, v continuous
together with their first derivatives u', V1}
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xf(t,x,y)>u(t)u'(t) on Ixl = u(t), lyl <v(t)

yg(t,x,y) <v(t)v'(t) on IxI <u(t), lyl = v(t).

Give some examples of u, v, f, g which satisfy these conditions and interpret
your results in these special cases.

EXERCISE 6.2. Let H j :R X R" -+ R, j = 1,2, ... , m be continuous to-
gether with (heir first derivatives and let Hj (t0, x0) be the derivative of
Hj(t, x(t, x(t, t0, x0)) at (to, x0) along the solutions of the Eq. (6.4). Define

w= {(t,x)inR"+1:Hj(t,x)<0, j= 1,2, ... ,m}

Fk={(t,x)inR'+':Hk(t,x)=O,Hj(t,x)<0, j= 1,2,...,m}.
The I'k are called the faces of w. Suppose for each k = 1,2, . . . ,m, and each
(t, x) E Fk, either

(a) Hk(t, x) > 0

O'

(b) (t, x) is not a point of egress.

Let Lk = {(t, x) in Fk satisfying (a)}, Mk = {(t, x) in Fk satisfying (b)}. Prove

S=S*=Uk 1Lk\Uk=1Mk

EXERCISE 6.3. One can use the results in Exercise 6.2 to prove results on
the asymptotic equivalence of systems. Consider the two systems

(6.7)

(6.8)

x j = f (t)xj + gj(t, x), j = 1,2, ... , n,

yj=f(t)yj, j= 1,2,...,n.
Suppose g= (gl' g.), f = (fl, . . fn) are continuous for t> T,(t,x)ES2
= {(t, x) : T < t < -,x in R'} and a unique solution of Eq. (6.7) exists
through each point in S2. If there exists a continuous function F: [T,°°) - [0,°°)
and constant K such that

f tv f (s) ds, v > t > T,

t
f F(t)exp(1t f(s)ds)dt<o, j= 1,2,...,n,

I g(t, x) I< I x IF(t) on SZ

then, for every solution y of Eq. (6.8), there is a solution x of Eq. (6.7) such
that
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limt+ [x(t) - y(t)] = 0.

EXERCISE 6.4. Consider the second order equation

(6.9) x + f(t, x, x) = 0

where f (t, x, y) is continuous for t > 0, x, y in R'2 and a uniqueness result holds
for the initial value problem for Eq. (6.9),

x At' x, y) + y y > 0 for all t > 0, x in R", y O 0 in R" .

Then there exists a family of solutions of Eq. (6.9) depending on at least n
parameters such that, for any solution x in this family, there is a to > 0 such
that x (t) x (t) is nonincreasing for t > t0. Hint: Let b > 0, wb = {(t, x, y) in
R21 x, y) < 0, m(t, x, y) < 0} where Q (t, x, y) = x y - b, m(t, x, y) _ -t-
Let Zb be a line segment joining points (t0, i '71),(t0,t2,n12) in distinct compo-
nents of the set {(t, x, y) in R n+ I :x , y = b, t > 0} with (t0,0,0) not in Zb.
The principle of Wazewski yields a solution such that x(t)z(t) < b for t > to.
To show x(t)x(t) <0, take a sequence bm - 0.

X.7. Remarks and Suggestions for Further Study

The main topic in the previous pages has been the application of the
direct method of Liapunov to the determination of the stability of solutions
of specific differential equations as well as the application of this method to
the deduction of qualitative implications of the concept of stability. This
chapter should serve only as an introduction and more extensive discussions
may be found in Hahn [1], Krasovskii [1], LaSalle and Lefschetz [1], Halanay
[1], Yoshizawa [2], Zubov [1]. The definition of Liapunov function used in
Sections 1 and 3 may be found in LaSalle [2]. Theorem 1.1, Lemma 1.5 and
Theorem 3.1 are due to Liapunov [1], Theorem 1.2 is essentially due to
Cetaev [1], Exercise 1.5 to Hartman [2]. Section 2 is based on the paper of
Moser [1]. The idea for the proofs of the converse theorems in Section 4 is due
to Massera [1].

The basic idea of the direct method of Liapunov is applicable to systems
described by functional differential equations as well as partial differential
equations. For a discussion of functional differential equations as well as
further references, see Krasovskii [1], Halanay [1], Hale [8], Cruz and Hale [1].
For partial differential equations, see Zubov [1], Infante and Slemrod [1].

The formulation of the topological principle in Section 6 was given by
Wazewski [ 1 ] although the idea had been used on examples before (see Hartman
[1] for more details). Exercise 6.2 is due to Onuchic [1], Exercise 6.3 to
Onuchic' [2]. Further extensions of the ideas of Wazewski and a more general
theory of isolating blocks may be found in Conley [1].



Appendix. Almost Periodic Functions

In this appendix, we have assembled the information on almost periodic
functions which is relevant for. the discussion in the. text. Only the most ele-
mentary results are proved. More details may be found in the following books.

[A.1] H. Bohr, Almost Periodic Functions, Chelsea, New York, 1947.
[A.2] A. S. Besicovitch, Almost Periodic Functions, Dover, New York,

1954.
[A.3] J. Favard, Fonctions presque-periodiques, Gauthier-Villars, Paris,

1933.
[A.4] A. M. Fink, Almost Periodic Differential Equations, Lecture Notes

in Math., Vol. 377(1974), Springer-Verlag.
[A.5] B. M. Levitan, Almost Periodic Functions (Russian) Moscow, 1953.
[A.6] T. Yoshizawa, Stability Theory and the Existence of Periodic Solu-

tions and Almost Periodic Solutions, Applied Mathematics Sciences,
Vol. 14(1975), Springer-Verlag.

The books of Fink and Yoshizawa are very good presentations of the theory
of almost periodic functions and differential equations. The presentation below
follows these two books.

Notation. a,0.... will denote sequences {an}, {(3,n}, ... in R. The nota-
tion 0 C a denotes R is a subsequence of a, a + 0 = {an + (ifz }, -a = {-an }.
We say a,3 are common subsequences of a',/3' if an = an(k), On =1n(kj for some
function n(k), k = 1,2, .... If f,g are functions on R and a is a sequence in
R, then Taf = g means limn, f (t + an) exists and is equal to g(t) for all
t E R. The type of convergence (uniform, pointwise, etc.) will be specified
when used. For example, we will write Ta f = g pointwise, Ta f = g uniformly,
etc. All functions considered will be continuous and complex valued functions
on R unless explicitly stated otherwise.

Definition 1. f is almost periodic if for every a' there is an a C a' such
that T, ,,f exists uniformly.

If AP = {f :f is almost periodic}, If[ = sups If(t) I if f E AP, then AP with
this norm is a normed linear space. It will be shown to be complete later.

339
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LEMMA 1. Every periodic function is AP.

PROOF. If T is the period of f and a' is a sequence, then there exists an
a C a such that a(mod 7) = {o (mod 7)} converges to a point S. Then
T , f = f(- + S) uniformly.

LEMMA 2. Every almost periodic function is bounded.

PROOF. If not, there is a sequence a C'R such that If(an)I - - as
n - -. But f E AP implies there is an a C a' such that Taf exists uniformly.
In particular, f (an) converges which contradicts our supposition.

THEOREM 1. (Properties of almost periodic functions)
(1) AP is an algebra (closed under addition, product and scalar multi-

plication).
(2) If f E AP, F is uniformly continuous on the range of F, then F f E AP.
(3) If fEAP, inftlf(t) I > 0, then 1/fEAP.
(4) If f,gEAP, then Ifl, f, min(f,g), max(f,g) EAP.
(5) AP is closed under uniform limits on R.
(6) (AP, I.1) is a Banach space.
(7) If f E AP and df/dt is uniformly continuous on R, then d f/dt E AP.

PROOF. We prove this theorem in detail since it is simple and illustrates
the way subsequences are used in Definition 1.

(1) If f,g E AP and a" C R, there exists a' C a" such that Ta,f exists
uniformly, Ta ; of exists uniformly for any complex number a. Also there exists
a C a' such that Tg exists uniformly. Thus, Ta(f + g) exists uniformly,
Ta(fg) = (Taf)(Tag) exists uniformly.

(2) If f E AP and F is uniformly continuous on the range of f, then,
for any a' C R, there exists a C a' such that uniformly.

(3) If inft l f(t) I > 0, then 1/z is uniformly continuous on the range of f
and 1/fEAP.

(4) The same argument proves If I ,f E AP if f E AP by using the function
F(z) = IzI,z, respectively. Since

n-dn (f, g) = 2 [(f +9) - If -g1l , max(f,g)= 2 [(f+g)+ If-g1],

the remainder of (4) is proved by using (1).
(5) Suppose {fn } C AP, f continuous, I fn - f I -+ 0 as n -> co. For any

a' C R, there exists a' D /3' D D jr D such that Wn exists uniformly,
n = 1, 2, ... . Use the diagonalization process to obtain /3 C a' such tlat Tp fn
exists uniformly for all n = 1,2, ... .

For any e > 0, three is a ko(e) such that, for n = 1,2, ... , k > k0(e), t E R

If(t+fn)-fk(t +On)I <e/3.
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For a fixed k> ko(e) choose N(k,e) such that, for n, m >N(k, e), t E R

Ifk(t+Qn)-.fk(t+Rm)I <e/3.

Then, for n, m > N(k, e), t E R,

If(t+Rn)-f(t+am)I <If(t+ 3n)-fk(t+On)I
+ Ifk(t+On)-fk(t+am)I+ Ifk(t+Rm)-f(t+0)I <e.

Thus, TRf exists uniformly and f E AP.
(6) This is obvious from (1) and (5).
(7) If fn(t) = n[f(t + 1/n) - f(t)] , then the mean value theorem implies

f'(t) -fn(t) = f'(t) - f'(t + 9(t, n))
for some t < 6(t, n) < t + 1/n. Since f'(t) is uniformly continuous, we have
fn(t) - f'(t) uniformly on R. Since each fn CAP, we have from (5) that f'EE AP.
This completes the proof of the theorem.

The space AP contains all periodic functions. Theorem 1 shows that it
contains all functions which are sums of periodic functions and thus all trigo-
nometric polynomials. It also contains the uniform limit of trigonometric
polynomials. One can actually show (but the proof is not trivial) that AP
consists precisely of functions which are uniform limits of trigonometric
polynomials.

To obtain other characterizations of almost periodic functions, we need
the following concept.

Definition 2. The hull of f,H(f), is defined by

H(f) = {g: there is an a C R such that TQ f = g uniformly}

If f is periodic, then H(f) consists of all translates of f; that is,

H(f)= {fr:ff(t)=f(t+ r), tER,TER}

and thus, H(f) is a closed curve in AP if f is periodic. If f E AP, then H(f) may
contain elements which are not translates of f. In fact, if f (t) = cos t + cost,
then f E AP since it is the sum of periodic functions, but is not periodic since
it takes the value 2 only at t = 0. Also, f (t) > -2 for all t and there is an
a' = {an } C R such that f (an) - -2. If a C a and TQ f = g uniformly, then
g(0) = -2 and g cannot be a translate off.

THEOREM 2. f E AP if and only if H(f) is compact in the topology of
uniform convergence on R. Furthermore, if f E AP then H(g) = H(f) for all
gEH(f).
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PROOF. If H(f) is compact, then for any a CR, there is an a C a' such
that Ta f exists uniformly and, thus f E AP.

Conversely, if f E AP, {.5n } C H(f), then there is an a' such that
I f (' + an) - gn I < 1/n (we have used the diagonalization process here). Also,
there is an a C a' such that Ta f = g exists uniformly. If a = {an } = {akn }, then
If( +an) -gknI - 0asn- -.Thus,

Ig-gknl <Ig-f(' +an)I + If(' +an) -gknI ->0
as n . Thus, H(f) is compact.

To prove the last part of the theorem, if g E H(f) and h E H(g); that is,
there is an a = {an} C R such that Tag = h uniformly, then there is a 0 = {on}
such thatI If ( + (3n) - g( + an)I < 1/n. Thus, Tpf = h and hEH(f); that
is, H(g) C H(f). Conversely, if g E H(f), Taf = g, then T_ag= f by the change
of variables t + an = s. Thus, f E H(g). Since H(g) is compact, this implies
H(f) C H(g). Finally, we have H(f) = H(g) and the theorem is proved.

To obtain another characterization of an almost periodic function, we need
the following definitions.

Definition 3. A subset S C R is relatively dense if there is an L > 0 such
that [a, a+ L] fl S 0 for any a E R.

Definition 4. If f is any continuous complex valued function on R, the
e-translation set of f is defined as

T(f,e)= {r:If(t+T)-f(t)I <e for tER}.

Definition 5. A continuous complex valued function f on R is Bohr almost
periodic if for every e> 0, T(f,e) is relatively dense.

Lemma 3. A Bohr almost periodic function is bounded and uniformly
continuous.

PROOF. If f (t) is almost periodic, then for any 7) > 0, there exist an 1
and a r in every interval [t -1, t] such that

If (t) -f (t -T)l <,7 for all t in (-oo, co).

If we let V= t - T then 0:!9 t'< 1 and If (t) -f (t')j <,q. If If (t')l < B for
0 <- t' <_ l then I f (t) I < B + 71 for all t in (-oo, oo). This proves boundedness.

Suppose q7, l are as above. Since f is continuous, it is uniformly contin-
uous on [-1, 1] and we can find a 8 <1 such that

f (tl) - f (t2)I <'? if I ti - tl < 8, ti, tZ E [ -1, 1].

For any ti, t2 with tl < t2, I ti - t2 l < S, consider the interval [t1, tr + 1]. Let T be
an almost period relative to 77 in this interval. Then t',= tl - T, t2 = t2 - T are
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in'[-l, l] and I f (ti) -f (ti)I <7), ( f (t2) -f (t2)1 < "1. The triangle inequality
shows that I f (tl) - f (t2)I < 3-q and this proves uniform continuity.

THEOREM 3. The following statements are equivalent:

(i) f E AP
(ii) H(f )'is compact in the topology of uniform convergence on R.
(iii) f is Bohr almost periodic.

PROOF. We have already proved (i) - (ii). We next prove (iii) - (i). Suppose
a C R. We first show that, for any e > 0, there is an a C a' such that

If(t+an)-f(t+am)I <e foralln,m

Let L be as in the definition of relatively dense for T(f, " ), and choose S from
Lemma 1 so that I f (t) - f (s) I < e if I t - s I < 28. We may write the sequence

a = { an } as an = On + y., an E T(f, 6 ), 0 < 7n < L, 7n - 7 as n - °°,
y-S <,yn <y+S. Then

If(t+an)-f(t+am)I <If(t+(3n-am +7n-7m)-f(t-13m +7n-7ml
+ I f(t-Rm +7n -7m)-f(t+7n -yml
+ If(t+7n -7m)-f(t)I <e VtER.

Now use the diagonalization process to get a" C a C a' such that Ta " f exists
uniformly.

We now prove (ii) - (iii). H(f) compact is equivalent to H(f) totally
bounded is equivalent to (f (t + 7-):7- E R} totally bounded is equivalent to, for
any e > 0, there are al, . . . an and a function i(t) from R to {1, . . . ,n} such
that I f (t + af (,)) - f (t + r) I < e for all t, r. This is equivalent to

If W -At +,r -ai(.r))I <e for all t.

If L = max Ia I , then r - L <,r - a;(,) < r + L and r - ai(,r) E T(fe).Thus,
T(f,e) is relatively dense with constant 2L.

This completes the proof of the theorem.

THEOREM 4. f E AP if and only if

(iv) For any a', /3' C R, there are common subsequences a C a', 0 C (3'
such that

Ta+pf = T«Tpf pointwise.

PROOF. Suppose f E AP, a', 0' C R are given and choose 0" C /3' such that
T f = g uniformly. Since g E AP, for a" C a' common with Q", there is an
a" C a" such that T«'.-g = h uniformly. Let C 9" be common with a"'.
Then we can find common subsequences, a C al", 0 C R"' such that Ta+ p f = k
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uniformly and also note Tgf = g, Tag = h uniformly. If e > 0 is given, then,
there is a no such that, for all n > no and all t,

Ik(t)-f(t+an +i3 )I <e, Ig(t) -f(t+On)I <e, I h(t) - g(t + an) I <e

Thus, for n > no,

I h(t) - k(t) I < I h(t) - g(t + an) I + Ig(t+an)-f(t+an +(3n)I

+ I f(t+an +(3n)-k(t)I <3e

Since a is arbitrary, h = k; i.e. Ta+Rf = TaTTf uniformly and, in particular,
pointwise.

To prove (iv) implies f E AP, suppose y' C R. Then there is a y C 'y' such
that Tyf exists pointwise. In fact, for a' = {0}, 0' = y', we know there are
common subsequences a C a', y C y' such that Ta+yf = TaTyf pointwise.
Since a = {0}, this proves the assertion. Suppose that Tyf does not exist
uniformly. Then there exist a' C (3, (31' C y, r' C R, e > 0

(*) I ffart +Tn) -f(3n +Tn)I > C.

Apply condition (iv) to a',r to obtain common subsequences a' C a', T" C r
such that TT"+a"f = T,""Ta"f pointwise. Choose (3" C /3' common to a",r" and
apply (iv) to /3",T" to find 0 C /3", r C T" such that T,+Rf = T,TRfpointwise.
Choose a + a" common to 0j.. Then T,+a f = T, Ta f pointwise from above.
But Ta f = Tyf = TR f pointwise, since a C y, /3 C 'y. Thus, T,+af = TTTJ.f
= T,TRf = T,+o f pointwise. At t = 0, this contradicts (*) since T + 0 C T' + /3"
T + a C T' + a'. Thus, the convergence is uniform.

This completes the proof of the theorem.
A remarkable consequence of Theorem 3 is that almost periodicity can be

decided by discussing only pointwise convergence as in (iv). This is generally
easier to check than uniform convergence on R.

From Proposition 1 and Theorem 1, the space AP contains all trigonometric
polynomials and all uniform limits of trigonometric polynomials. The converse
is also true and is stated without proof.

THEOREM 5. f E AP if and only if f can be uniformly approximated by
trigonometric polynomials.

It is natural to investigate the problem of the existence of a theory of
trigonometric series for almost periodic functions analogous to the theory of
Fourier series for periodic functions. The first fundamental result is

THEOREM 6. If f EAP, then the mean value
f tt+T

M[f] = limT-3- Tf
(s) ds
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exists, is independent of t and the convergence is uniform in t.
If fEAP, then fexp E AP for any real number A. Define

a(A,f)=M[fe-''']
0

The set

A(f)_{AER:a(A,f)#0}
is called the set of Fourier exponents of f, the numbers a(A,f), A E A(f), the
Fourier coefficients and the Fourier series off is designated by

.f(t) ^'
ExEAV)a(A,f)e:u.

Then, one can prove

THEOREM 7. A(f) is denumerable. If f,g E AP, then f = g if and only if
A(f) = A(g) and a(X, = a(X,g) for A E A(f). If f ExEA;(f)a(A,f)exp(iAt),
then ExCA(f)Ia(A,f)I < -. The usual operations on Fourier series are valid.

For any sequence {X,,} C R, the module of {X,,} is the set consisting of all
real numbers which are finite linear combinations of the {An} with integer co-
efficients. We say {aj} C R is linear independent over the rationals if, for every
N > 1 , ZkN= Irkajk = 0 for each r k rational implies r k = 0, k = 1, 2, ... N. The
sequence {aj} is said to be an integral base for {An} if {aj} is linearly inde-
pendent over the rationals and if each element of {An} is a finite linear com-
bination of the {aj} with integer coefficients. If f E AP, the module m[f] of
f is the module of A(f). A function f E AP is called quasiperiodic if there exist
an integer N > 1, positive real numbers TI, . . . ,TN and a function F on RN
such that F(x1,... xN) is periodic in xj of period Tj, j = 1,2, ... N such
that f (t) = F(t, . . . , t).

Example 1. If f is periodic of period 27r/w, then m[f] _ {nw,n=0,±1, ...}
and an integral base for m[f] in {w}.

Example 2. If f(t) = cost + cos2t + cost, then A(f) _ {1,2,\},
m[f] = {n + m om, n, m = 0,±1, ... } and an integral base for m[f] is {1, V}.
This function f is quasiperiodic with

f(t)=F(t,t),F(xl,x2)=cosxl +cos2xl +cosV'x2.
Example 3. If En= I I an I < -, an *0 for all n, then

f(t) _ zn°°= 1eitIn+
is in AP, A(f) = {1/n, n = 1,2.... }. What is m[f] and what is an integral base
for m[f] ?
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The following result is basic for differential equations. The proof is com-
plicated and contained in Fink, p. 61. In the statement of the theorem, "con-
vergence in any sense" may be interpreted as "pointwise-convergence," "uniform
convergence on compact sets," "uniform convergence" or "mean convergence";
that is, fn converges to fin the mean if M(I fn _f 12) -+ 0 as n -+ eo.

THEOREM H. For f,gCAP, the following statements are equivalent:

(i) m[.f] D mfg]
(ii) for any e >0, there is a b >0 such that.T(f,6) C T(g,e)

(iii) Ta f exists implies T«g exists (any sense)
(iv) Ta f = f implies Tag = g (any sense)
(v) Ta f = f implies there exists a' C a such that T, ,,g = g (any sense).

In the study of almost periodic differential equations, one encounters
frequently the simple equation y = f(t) where f EAP,M[f] = 0. For f periodic,
this equation always has a periodic solution. However, when f E AP, M[f] = 0,
this may not be the case. In fact,

f(t)
e:tln'

n=1 n2

is in AP, M [A = 0. However, if f t f is in AP, then

ftf -(constant) + I- (-z)e:t/n'

However, this latter funtcion is not in AP since the sum of squares of the
Fourier coefficients does not exist.

The following result is known about the integral of an almost periodic
function.

THEOREM 9. If f E AP, then ftf is in AP if and only if it is bounded.

In the applications to differential equations, this proposition generally can-
not be applied.

The next result due to Bogoliubov [I ] is concerned with an AP approxi-
mation to the solution of the equation y - f(t) = 0 when f is AP, has M[f] = 0
and does not necessarily have a bounded integral.

LEMMA 4. Suppofe f is in AP, M[f] = 0. For every ri > 0, there
is a continuous scalar function C(71), 0 <'] < oo, (,q) -* 0 as q -* 0 such that
the almost periodic function fn defined by

(1)

satisfies

(2)

AM = f
t

e-270-8)f(8) CIS

(a) I fn(t)I <

(b) I dfn(t)Idt -f (t)I (,7),
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for all tin B. Also, m[fn] C m[f ].

PROOF. Since M[f ] = 0, there is a continuous nonincreasing scalar
function E(T), 0 < T < oo, e(T) -* 0 as T - oo such that I T-1 fe+T f(s)

c sl <
e

E(T) for all tin B. Furthermore, for any T > 0,

fn(t) = f e-118f (t - s) ds
0

co (k+l)T
-nkT f f (t - S)e-n(s-kT) ds.

k=0 kT

If B is a bound for If (t) I on (-oo, co), then the above relation yields
Co (k+1)T

I fn(t)I < e nxT f f (t - s) ds
k=0 kT

Co (k+1)T
+ B e nkT f (1 - e-n(s-kT)) ds

k=0 kT

00

T< O e-nkTE(T)T + B f (1 - e-w) ds > e-nkT
k=0 0 k=0

< E(T) T[l - e-?IT]-1 + BT.

Since a (T) -- 0 as T -* oo and is nonincreasing, there always exists a unique
solution to the equation 1 - e-nT = E(T). Suppose Tn is chosen to be this
solution. Since e(T) > 0 for all T, it is clear that Tn oo as "l - 0 and this
together with the fact that E(T) -* 0 as T -* oo imply that 71 Tn --* 0 as 77 --)'0.
The solution Tn is obviously continuous in q. If we let (B+ 1)-q Tn,
then relation (2a) is proved.

From (1), it follows that

(3) dfdtt) -f (t) _ -Jfn(t),

and therefore, (2b) follows from (2a).
It remains to show that f1 E AP. Suppose a C R. Since f E AP, there is a

sequence a C 'd such that Taf exists uniformly. Thus, for any e > 0, there is
an N(e) such that

Ifn(t+ l)-fl(t+am)I< fo_en'lf(t+s+an)-f(t+s+a,..)Ids

0
<E f le11S = E/'n

for n, m > N(e). This shows f1 E AP. The fact that m [f,71 C m [f] follows
from Theorem 8. This proves the lemma.
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We want to study almost periodic solutions of an almost periodic dif-
ferential equation x = f (t, x). Thus, we need to know when f (t,o(t)) is almost
periodic if 0 E AP. In general, this is not true. One can see this from the
example f (t, x) = sin x t by showing that f (t, sin t) = sin (t sin t) is not uniformly
continuous. The difficulty arises from the fact that the e-translation set for
sin x t is not well behaved in x.

An appropriate generalization of the definition of an almost periodic func-
tion depending on parameters is the following one.

Definition 6. A continuous function f:R X D -* C, where D is open in
C', is said to be almost periodic in t uniformly for x E D if for any e > 0,
the set9"(f,e) = x n is relatively dense in R for each compact set

K C D. Equivalently, if for any e > 0, and any compact set K C D, there exists
L(e,K) > 0 such that any interval of length L(e,K) contains a z with

If(t+r,x)-f(t,x)I <e for all tER,xEK.

One can then prove the following results (see Fink or Yoshizawa).

THEOREM 10. If f (t, x) is AP in t uniformly for x ED, then f is bounded
and uniformly continuous on R X K for any compact set K C D.

THEOREM 11. If f (t, x) is AP in t uniformly for x E D, then, for any
a C R, there is an a C a' and a function g(t, x) which is AP in t uniformly for
x E D such that f (t + an, x) - g(t, x) uniformly on R X K for any compact
set K C D.

Conversely, if f : R X D - C' is continuous and for any a' C R, there is
an a C a' such that, for any compact set K C D, f (t + o , x) converges uni-
formly on R' X K, then f (t, x) is AP in t uniformly for x E D.

In general, functions AP in t uniformly for x E D satisfy the same properties
as before if convergence is always uniform on compact sets K C D.

THEOREM 12. If f (t, x) is AP in t uniformly for x E D, and E AP,
t(t) E K, a compact set of D, then f(-)) E AP.

In the applications to differential equations, it is desirable to have an im-
provement of Lemma 4 in this more general situation. More specifically, one
wants an approximating solution of the equation

8y

at f (t, x) = 0,

which is very smooth in x. One can apply Lemma 4 and more or less classical
smoothing operators to achieve this end result. If M[f ( , x)] denotes the
mean value of f (t, x) with respect to t, then we have
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LEMMA 5. Suppose f (t, x) is AP in t uniformly with respect to x in
a set D containing the closed ball Ba = {x in Ck: Ix I <_ a}. If M [f x)] = 0
for x in Ba then for any aI < a, there are an rip > 0 and a function w(t,x,rj)
defined and continuous for t in R, x in Bal , 0 < r) < r7o, which is almost
periodic in t uniformly with respect to x in BQ, and r7 in any compact set of
(0,O ), C w(t,x,ri) has derivatives of any desired
order with respect to x and is such that, if

g(t, x, g) =
8w(t, x, ,)

at -f (t, x),

then g(t, x, rt),,qw(t, x, 17) and -q8w(t, x, 77)/8x approach zero as'7 0 uniformly
with respect to t in R, x in Bal. If, in addition, f (t, x) has continuous first
partial derivatives with respect to x, then ag(t, x, q)/ex ---> 0 as 71 -* 0 uniformly
with respect to tin R, x in Bal.

PROOF. From Lemma 4, it follows that there is a function fn(t, x)
defined by (1) which is a.p. in t uniformly with respect to x in Ba and 17 in any
compact set such that

(4) 1 fn(t,-x)l '7-1N),
bfn(t, x)

at
-f (t, x) 1Ifn(t, x),

where x(17) -)- 0 as q - 0.
For a fixed a > 0 and some fixed integer q >_ 1, consider the function

Aa(x) defined by

Aa(x)= f da(1 - a-2Ix12)2q for Ixl < a
l0 for jxj >a

where the constant da is determined so that f
B

Da(x) dx = 1. Define
a

w(t, x, -q) by

(5) w(t, X, 77) = f Be Da(x - y)fn(t, y) dY.

It is easy to see that w(t, x, 71) is a.p. in t uniformly with respect to x in Ba and
-q in any compact set since fn(t, x) has the same property.

The function Da(x - y) possesses continuous partial derivatives up
through order 2q -1 with respect to x which are bounded in norm by a func-
tion G(a)/(area of integration) where G(a), 0 <a< oo, is continuous. The
function G(a) may approach co as a -> 0. Therefore, from (4), the function
w(t, x, i7) defined by (5) has partial derivatives with respect to x up through
order 2q - 1 which are bounded by Since q is an arbitrary
integer, the number of derivatives with respect to x may be as large as desired.

Choose a = a, as a function of -q in such a way that an -30, ->0
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as ,7 -* 0. The conclusion of the lemma concerning qw(t, x, q) is therefore
valid since ,7w, 778w/8x are bounded by G(a,,)t;(,7).

For any ai < a, choose ,lo so small that al + an < a for 0 < 77 <,70 .

From the definition of Da(x), it follows that fB. 1 a (x - y) dy = 1 for every x
in Bal, 0 <77 <'o. Therefore, from relations (4) and (5), it follows that

(6) 9(t, x, 77) = fB. Aa,,(x - Of (t, y) -f (t, x)] dy,

where g +,7w. From the definition of Da(x), it follows that

jg(t, x, 'q)! < sup If (t, y) -f (t, x)l.
05 Jx-y15a

Since an --> 0 as '] -* 0 and f (t, x) is uniformly continuous for t in R, x in Be,,
there is a continuous function 8(77), 0 <,7 < 77o, 8(,7) -> 0 as ,7 -* 0 such that

sup If (t, y) - f (t, x)j < 8(7)).
0s-Ix-yl sa,,

Consequently, 1g(t, x, 77)1 < 8(7)) and jg(t, x, 771 < 8(r7) + and g satis-
fies the properties stated in the first part of the lemma.

If, in addition, f (t, x) has continuous first partial derivatives with respect
to x, then an integration by parts in relation (6) yields

1ag(tax 7)

= fBa Da (x - y) [af
8x y)

of (axx) I

.l

dy.

The same. type of argument as before shows that this expression is bounded by
a function 81(,7) which approaches zero as ,7 -±0. This completes the proof of
the lemma.

If, in Lemma 5, the function f (t, x) is periodic in some of the components
of x, then the function w(t, x, 7)) can also be chosen periodic in these com-
ponents with the same period.

If g is an n-vector and 0 is an r-vector, then g(c) is said to be multiply
periodic in 0 with vector period w = (wi, ... , wr), wj > 0, j = 1, 2, ..., r, if
the function g is periodic in the jth component of 0 with period wj. If g(O) is
multiply periodic, then the function g(951 + t, ... , Or + t) is AP in t uniformly
with respect to 0. It is therefore meaningful to define the mean value of this
function with respect to t. This concept of mean value was first used in
differential equations by S. Diliberto [1]. To simplify notations, let + t =
(0i + t, ... , Or + t) and designate the above mean value by

T
(7) M0[&)] = lim 1 f g(c + t) dt.

m_a m T o

To understand this concept a little better, consider the case where 0 is a
two-vector, 0 = (0i, 02) and
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E ajket(ka01+Jc)o2).
j, k

In usual treatises on multiply periodic functions, the mean value of g is the
constant term in the Fourier series of g; that is, aoo. According to defini-
tion (7),

M0[9(o)] _ Y_ ajkei(kU01+Jwm2)
j, k: kµ+j o=0

and this could be a function of 0 if the frequencies p, w are such that µ/w is
rational.

Lemma 5 has an appropriate generalization to the case of functions of
the form g(t, 0, x) which are multiply periodic in the vector 0, AP in t,
uniformly with respect to 0. in Cr and x in Ba and Mt,0[g(t, 0, x)] = 0.
Under these conditions, for any al < a, there are an -qo > 0 and a function
W(t, 0, x, r)), 0 < 7) < 77o, multiply periodic in 0, AP in t such that the
function

aW r aW
G(t, 0, x, q) = - + y - - 9(t, 0, x)

at j-o aIj

as well as sjW, 7)aW1asb, r W/ax -*0 as q -3,-0 uniformly with respect to t in R,
95 in Cr, x in Ba1. If g(t, 0, x) has continuous first partials with respect to x,
then the partial derivatives of G(t, 0, x, q) with respect to 0, x also approach
zero as q -* 0 uniformly with respect to t, 0, x. The proof of this fact is very
similar to the proof of Lemma 5 and may be found in Hale [3].
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INDEX
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of invariant set, 54, 221, 240
of solution, 26
orbital, 221
under constant disturbances, 333

Stable on 132
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Subharmonic, 206
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Van der Pol equation, 60, 198, 254, 263
Variation of constants formula, 81
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