
SWRL: A Semantic Web

Rule Language

Abstract Syntax, Human

Readable Syntax, Interpreting

Rules

2

The Semantic Web Rule Language

(SWRL) is based on a combination of the

OWL DL and OWL Lite sublanguages of

the OWL Web Ontology Language with the

Unary/Binary Datalog RuleML

sublanguages of the Rule Markup

Language.

SWRL includes a high-level abstract

syntax for Horn-like rules in both the OWL

DL and OWL Lite sublanguages of OWL.

3

The proposed rules are of the form of an

implication between an antecedent (body)

and consequent (head). The intended

meaning can be read as: whenever the

conditions specified in the antecedent

hold, then the conditions specified in the

consequent must also hold.

4

Both the antecedent (body) and

consequent (head) consist of zero or more

atoms. An empty antecedent is treated as

trivially true (i.e. satisfied by every

interpretation), so the consequent must

also be satisfied by every interpretation.

5

An empty consequent is treated as trivially

false (i.e., not satisfied by any

interpretation), so the antecedent must

also not be satisfied by any interpretation.

Multiple atoms are treated as a

conjunction.

6

Atoms in these rules can be of the form

C(x), P(x,y), sameAs(x,y) or

differentFrom(x,y), where C is an OWL

description, P is an OWL property, and x,y

are either variables, OWL individuals or

OWL data values.

7

Abstract Syntax

The abstract syntax is specified here by
means of a version of Extended BNF.
Terminals are quoted; nonterminals are
bold and not quoted. Alternatives are
either separated by vertical bars (|) or are
given in different productions.

8

Components that can occur at most once

are enclosed in square brackets ([…]);

components that can occur any number of

times (including zero) are enclosed in

braces ({…}). Whitespace is ignored in the

productions here.

9

Names in the abstract syntax are RDF URI

references. These names may be

abbreviated into qualified names, using

one of the namespace names shown on

the next slide.

10

Namespace Namespace
name

rdf http://www.w3.org/1999/02/22-rdf-syntax-ns#

rdfs http://www.w3.org/2000/01/rdf-schema#

xsd http://www.w3.org/2001/XMLSchema#

owl http://www.w3.org/2002/07/owl#

11

Rules

An OWL ontology in the abstract syntax

contains a sequence of axioms and facts.

Axioms may be of various kinds, e.g.,

subClass axioms and equivalentClass

axioms. It is proposed to extend this with

rule axioms.

axiom ::= rule

12

A rule axiom consists of an antecedent

(body) and a consequent (head), each of

which consists of a (posibly empty) set of

atoms. A rule axiom can also be assigned

a URI reference, which could serve to

identify the rule.

13

rule ::= 'Implies(' [URIreference]

 { annotation } antecedent consequent ')'

antecedent ::= 'Antecedent(' { atom } ')'

consequent ::= 'Consequent(' { atom } ')'

14

Informally, a rule may be read as meaning

that if the antecedent holds (is "true"), then

the consequent must also hold. An empty

antecedent is treated as trivially holding

(true), and an empty consequent is treated

as trivially not holding (false).

15

Rules with an empty antecedent can thus

be used to provide unconditional facts;

however such unconditional facts are

better stated in OWL itself, i.e., without the

use of the rule construct. Non-empty

antecedents and consequents hold iff all of

their constituent atoms hold, i.e., they are

treated as conjunctions of their atoms.

16

atom ::= description '(' i-object ')'

 | dataRange '(' d-object ')'

 | individualvaluedPropertyID '(' i-
object i-object ')'

 | datavaluedPropertyID '(' i-object

 d-object ')'

 | sameAs '(' i-object i-object ')'

 | differentFrom '(' i-object i-object ')'

 | builtIn '(' builtinID { d-object } ')'

 17

builtinID ::= URIreference

Atoms can be of the form C(x), P(x,y),

sameAs(x,y) differentFrom(x,y), or

builtIn(r,x,...) where C is an OWL description

or data range, P is an OWL property, r is a

built-in relation, x and y are either variables,

OWL individuals or OWL data values, as

appropriate.

 18

In the context of OWL Lite, descriptions in

atoms of the form C(x) may be restricted to

class names.

Informally, an atom C(x) holds if x is an

instance of the class description or data

range C.

19

An atom P(x,y) holds if x is related to y by

property P, an atom sameAs(x,y) holds if x

is interpreted as the same object as y, an

atom differentFrom(x,y) holds if x and y are

interpreted as different objects, and

builtIn(r,x,...) holds if the built-in relation r

holds on the interpretations of the

arguments.

20

Note that the sameAs and differentFrom

two forms can be seen as "syntactic

sugar": they are convenient, but do not

increase the expressive power of the

language (i.e., such (in)equalities can

already be expressed using the combined

power of OWL and rules without explicit

(in)equality atoms).

21

Atoms may refer to individuals, data

literals, individual variables or data

variables. Variables are treated as

universally quantified, with their scope

limited to a given rule. As usual, only

variables that occur in the antecedent of a

rule may occur in the consequent (a

condition usually referred to as "safety").

22

This safety condition does not, in fact,

restrict the expressive power of the

language (because existentials can

already be captured using OWL

someValuesFrom restrictions).

23

Human Readable Syntax

While the abstract EBNF syntax is

consistent with the OWL specification, and

is useful for defining XML and RDF

serialisations, it is rather verbose and not

particularly easy to read. In the following

we will, therefore, often use a relatively

informal "human readable" form similar to

that used in many published works on

rules.

 24

In this syntax, a rule has the form:

 antecedent ⇒ consequent

where both antecedent and consequent

are conjunctions of atoms written

a1 ∧ ... ∧ an.

25

Variables are indicated using the standard

convention of prefixing them with a

question mark (e.g., ?x). Using this syntax,

a rule asserting that the composition of

parent and brother properties implies the

uncle property would be written:

 parent(?x,?y) ∧ brother(?y,?z) ⇒

uncle(?x,?z)

26

In this syntax, built-in relations that are

functional can be written in functional

notation, i.e.,

 op:numeric-add(?x,3,?z)

can be written instead as

 ?x = op:numeric-add(3,?z)

27

Direct Model-Theoretic Semantics

The model-theoretic semantics for SWRL

is a straightforward extension of the

semantics for OWL. The basic idea is that

we define bindings, extensions of OWL

interpretations that also map variables to

elements of the domain.

28

A rule is satisfied by an interpretation iff

every binding that satisfies the antecedent

also satisfies the consequent. The

semantic conditions relating to axioms and

ontologies are unchanged, e.g., an

interpretation satisfies an ontology iff it

satisfies every axiom (including rules) and

fact in the ontology.

29

Interpreting Rules

Given a datatype map D, an abstract OWL

interpretation is a tuple of the form

 I = <R, EC, ER, L, S, LV>

 where R is a set of resources, LV ⊆ R is a set of

literal values, EC is a mapping from classes and

datatypes to subsets of R and LV respectively, ER

is a mapping from properties to binary relations on

R, L is a mapping from typed literals to elements of

LV, and S is a mapping from individual names to

elements of EC(owl:Thing).

30

To handle the built-in relations, we

augment the datatype map to map the

built-in relations to tuples over the

appropriate sets. That is, op:numeric-add

is mapped into the triples of numeric

values that correctly interpret numeric

addition.

31

Given an abstract OWL interpretation I, a

binding B(I) is an abstract OWL

interpretation that extends I such that S

maps i-variables to elements of

EC(owl:Thing) and L maps d-variables to

elements of LV respectively.

32

An atom is satisfied by an interpretation I

under the conditions given in the

Interpretation Conditions Table, where

C is an OWL DL description, D is an OWL

DL data range, P is an OWL DL

individualvalued property, Q is an OWL DL

datavalued property, f is a built-in relation,

x,y are variables or OWL individuals, and z

is a variable or an OWL data value.

33

Interpretation Conditions Table

Atom Condition on Interpretation

C(x) S(x) ∈ EC(C)

D(z) S(z) ∈ EC(D)

P(x,y) <S(x),S(y)> ∈ ER(P)

Q(x,z) <S(x),L(z)> ∈ ER(Q)

sameAs(x,y) S(x) = S(y)

differentFrom(x,y) S(x) ≠ S(y)

builtIn(r,z1,...,zn) <S(z1),...,S(zn)> ∈ D(f)

34

A binding B(I) satisfies an antecedent A iff

A is empty or B(I) satisfies every atom in

A. A binding B(I) satisfies a consequent C

iff C is not empty and B(I) satisfies every

atom in C. A rule is satisfied by an

interpretation I iff for every binding B such

that B(I) satisfies the antecedent, B(I) also

satisfies the consequent.

35

Note that rule annotations have no

semantic consequences and neither do the

URI references associated with rules. This

is different from the situation for OWL

itself, where annotations do not have

semantic consequences.

36

The semantic conditions relating to axioms

and ontologies are unchanged. In particular,

an interpretation satisfies an ontology iff it

satisfies every axiom (including rules) and

fact in the ontology; an ontology is consistent

iff it is satisfied by at least one interpretation;

an ontology O2 is entailed by an ontology O1

iff every interpretation that satisfies O1 also

satisfies O2.

 37

Example Rules

Example 1

A simple use of these rules would be to assert

that the combination of the hasParent and

hasBrother properties implies the hasUncle

property. Informally, this rule could be written

as:

hasParent(?x1,?x2) ∧ hasBrother(?x2,?x3) ⇒

 hasUncle(?x1,?x3)

38

In the abstract syntax the rule would be written

like:

Implies(Antecedent(hasParent(I-variable(x1)

 I-variable(x2))

 hasBrother(I-variable(x2)

 I-variable(x3)))

 Consequent(hasUncle(I-variable(x1)

 I-variable(x3))))

39

From this rule, if John has Mary as a

parent and Mary has Bill as a brother then

John has Bill as an uncle.

40

Example 2

An even simpler rule would be to assert

that Students are Persons, as in

 Student(?x1) ⇒ Person(?x1)

Implies(Antecedent(Student(I-variable(x1)))

 Consequent(Person(I-variable(x1))))

 41

However, this kind of use for rules in OWL

just duplicates the OWL subclass facility.

 It is logically equivalent to write instead

 Class(Student partial Person)

 or

 SubClassOf(Student Person)

 which would make the information directly

available to an OWL reasoner.

 42

Usage Suggestions

Extensibility and Interoperability Cautions

If users are making extensive use of rules, they

may want to restrict the form or expressiveness

of the rules they employ, in order to increase

interoperability, reusability, extensibility,

computational scaleability, or ease of

implementation.

43

A useful restriction in the form of the rules

is to limit antecedent and consequent

classAtoms to be named classes, where

the classes are defined purely in OWL (in

the same document or in external OWL

documents).

44

Adhering to this format makes it easier to

translate rules to or from existing (or future)

rule systems, including:

 1. Prolog;

 2. production rules (descended from OPS5);

 3. event-condition-action rules; and

 4. SQL (where views, queries, and facts are

all rules).

45

Adhering to this form also maximises

reuse and interoperability of the ontology

knowledge in the rules with other OWL-

speaking systems that do not necessarily

support SWRL.

46

Users also may want to restrict the

expressiveness of the OWL classes and

descriptions appearing in rules. One useful

restriction on expressivity is Description

Logic Programs which, e.g., prohibits

existentially-quantified knowledge in

consequents.

47

Suitably-restricted SWRL rules can be

straightforwardly extended to enable

procedural attachments and/or

nonmonotonic reasoning (negation-as-failure

and/or prioritised conflict handling) of the

kinds supported in CCI rule systems. Such

adherence may thus facilitate combining

SWRL knowledge with knowledge from

those other rules languages.

48

