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The Semantic Web Rule Language 

(SWRL) is based on a combination of the 

OWL DL and OWL Lite sublanguages of 

the OWL Web Ontology Language with the 

Unary/Binary Datalog RuleML 

sublanguages of the Rule Markup 

Language.  



SWRL includes a high-level abstract 

syntax for Horn-like rules in both the OWL 

DL and OWL Lite sublanguages of OWL. 
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The proposed rules are of the form of an 

implication between an antecedent (body) 

and consequent (head). The intended 

meaning can be read as: whenever the 

conditions specified in the antecedent 

hold, then the conditions specified in the 

consequent must also hold. 
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Both the antecedent (body) and 

consequent (head) consist of zero or more 

atoms. An empty antecedent is treated as 

trivially true (i.e. satisfied by every 

interpretation), so the consequent must 

also be satisfied by every interpretation. 
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An empty consequent is treated as trivially 

false (i.e., not satisfied by any 

interpretation), so the antecedent must 

also not be satisfied by any interpretation. 

Multiple atoms are treated as a 

conjunction. 
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Atoms in these rules can be of the form 

C(x), P(x,y), sameAs(x,y) or 

differentFrom(x,y), where C is an OWL 

description, P is an OWL property, and x,y 

are either variables, OWL individuals or 

OWL data values. 
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Abstract Syntax 

The abstract syntax is specified here by 
means of a version of Extended BNF. 
Terminals are quoted; nonterminals are 
bold and not quoted. Alternatives are 
either separated by vertical bars (|) or are 
given in different productions. 
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Components that can occur at most once 

are enclosed in square brackets ([…]); 

components that can occur any number of 

times (including zero) are enclosed in 

braces ({…}). Whitespace is ignored in the 

productions here. 
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Names in the abstract syntax are RDF URI 

references. These names may be 

abbreviated into qualified names, using 

one of the namespace names shown on 

the next slide. 
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Namespace                          Namespace 
name 

 

rdf  http://www.w3.org/1999/02/22-rdf-syntax-ns# 

rdfs  http://www.w3.org/2000/01/rdf-schema# 

xsd  http://www.w3.org/2001/XMLSchema# 

owl  http://www.w3.org/2002/07/owl# 
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Rules 

An OWL ontology in the abstract syntax 

contains a sequence of axioms and facts. 

Axioms may be of various kinds, e.g., 

subClass axioms and equivalentClass 

axioms. It is proposed to extend this with 

rule axioms. 

axiom ::= rule 

 

12 



A rule axiom consists of an antecedent 

(body) and a consequent (head), each of 

which consists of a (posibly empty) set of 

atoms. A rule axiom can also be assigned 

a URI reference, which could serve to 

identify the rule. 
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rule ::= 'Implies(' [ URIreference ]  

   { annotation } antecedent consequent ')' 

antecedent ::= 'Antecedent(' { atom } ')' 

consequent ::= 'Consequent(' { atom } ')' 
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Informally, a rule may be read as meaning 

that if the antecedent holds (is "true"), then 

the consequent must also hold. An empty 

antecedent is treated as trivially holding 

(true), and an empty consequent is treated 

as trivially not holding (false). 
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Rules with an empty antecedent can thus 

be used to provide unconditional facts; 

however such unconditional facts are 

better stated in OWL itself, i.e., without the 

use of the rule construct. Non-empty 

antecedents and consequents hold iff all of 

their constituent atoms hold, i.e., they are 

treated as conjunctions of their atoms. 
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atom ::= description '(' i-object ')' 

 | dataRange '(' d-object ')' 

 | individualvaluedPropertyID '(' i-
object i-object ')' 

 | datavaluedPropertyID '(' i-object  

   d-object ')' 

 | sameAs '(' i-object i-object ')' 

 | differentFrom '(' i-object i-object ')' 

 | builtIn '(' builtinID { d-object } ')' 
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builtinID ::= URIreference 

 

Atoms can be of the form C(x), P(x,y), 

sameAs(x,y) differentFrom(x,y), or 

builtIn(r,x,...) where C is an OWL description 

or data range, P is an OWL property, r is a 

built-in relation, x and y are either variables, 

OWL individuals or OWL data values, as 

appropriate. 
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In the context of OWL Lite, descriptions in 

atoms of the form C(x) may be restricted to 

class names. 

 

Informally, an atom C(x) holds if x is an 

instance of the class description or data 

range C. 
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An atom P(x,y) holds if x is related to y by 

property P, an atom sameAs(x,y) holds if x 

is interpreted as the same object as y, an 

atom differentFrom(x,y) holds if x and y are 

interpreted as different objects, and 

builtIn(r,x,...) holds if the built-in relation r 

holds on the interpretations of the 

arguments. 
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Note that the sameAs and differentFrom 

two forms can be seen as "syntactic 

sugar": they are convenient, but do not 

increase the expressive power of the 

language (i.e., such (in)equalities can 

already be expressed using the combined 

power of OWL and rules without explicit 

(in)equality atoms). 
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Atoms may refer to individuals, data 

literals, individual variables or data 

variables. Variables are treated as 

universally quantified, with their scope 

limited to a given rule. As usual, only 

variables that occur in the antecedent of a 

rule may occur in the consequent (a 

condition usually referred to as "safety"). 
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This safety condition does not, in fact, 

restrict the expressive power of the 

language (because existentials can 

already be captured using OWL 

someValuesFrom restrictions). 
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Human Readable Syntax 

While the abstract EBNF syntax is 

consistent with the OWL specification, and 

is useful for defining XML and RDF 

serialisations, it is rather verbose and not 

particularly easy to read. In the following 

we will, therefore, often use a relatively 

informal "human readable" form similar to 

that used in many published works on 

rules. 
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In this syntax, a rule has the form: 

 antecedent ⇒ consequent 

where both antecedent and consequent 

are conjunctions of atoms written  

a1 ∧ ... ∧ an. 
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Variables are indicated using the standard 

convention of prefixing them with a 

question mark (e.g., ?x). Using this syntax, 

a rule asserting that the composition of 

parent and brother properties implies the 

uncle property would be written: 

 parent(?x,?y) ∧ brother(?y,?z) ⇒ 

uncle(?x,?z) 
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In this syntax, built-in relations that are 

functional can be written in functional 

notation, i.e.,  

 op:numeric-add(?x,3,?z)  

can be written instead as  

 ?x = op:numeric-add(3,?z) 
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Direct Model-Theoretic Semantics 

The model-theoretic semantics for SWRL 

is a straightforward extension of the 

semantics for OWL. The basic idea is that 

we define bindings, extensions of OWL 

interpretations that also map variables to 

elements of the domain. 
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A rule is satisfied by an interpretation iff 

every binding that satisfies the antecedent 

also satisfies the consequent. The 

semantic conditions relating to axioms and 

ontologies are unchanged, e.g., an 

interpretation satisfies an ontology iff it 

satisfies every axiom (including rules) and 

fact in the ontology. 
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Interpreting Rules 

Given a datatype map D, an abstract OWL 

interpretation is a tuple of the form 

 I = <R, EC, ER, L, S, LV> 

 where R is a set of resources, LV ⊆ R is a set of 

literal values, EC is a mapping from classes and 

datatypes to subsets of R and LV respectively, ER 

is a mapping from properties to binary relations on 

R, L is a mapping from typed literals to elements of 

LV, and S is a mapping from individual names to 

elements of EC(owl:Thing).  
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To handle the built-in relations, we 

augment the datatype map to map the 

built-in relations to tuples over the 

appropriate sets. That is, op:numeric-add 

is mapped into the triples of numeric 

values that correctly interpret numeric 

addition. 

 

31 



Given an abstract OWL interpretation I, a 

binding B(I) is an abstract OWL 

interpretation that extends I such that S 

maps i-variables to elements of 

EC(owl:Thing) and L maps d-variables to 

elements of LV respectively. 
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An atom is satisfied by an interpretation I 

under the conditions given in the 

Interpretation Conditions Table, where 

C is an OWL DL description, D is an OWL 

DL data range, P is an OWL DL 

individualvalued property, Q is an OWL DL 

datavalued property, f is a built-in relation, 

x,y are variables or OWL individuals, and z 

is a variable or an OWL data value. 
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Interpretation Conditions Table 

Atom    Condition on Interpretation 

C(x)     S(x) ∈ EC(C) 

D(z)     S(z) ∈ EC(D) 

P(x,y)     <S(x),S(y)> ∈ ER(P) 

Q(x,z)     <S(x),L(z)> ∈ ER(Q) 

sameAs(x,y)    S(x) = S(y) 

differentFrom(x,y)   S(x) ≠ S(y) 

builtIn(r,z1,...,zn)   <S(z1),...,S(zn)> ∈ D(f) 
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A binding B(I) satisfies an antecedent A iff 

A is empty or B(I) satisfies every atom in 

A. A binding B(I) satisfies a consequent C 

iff C is not empty and B(I) satisfies every 

atom in C. A rule is satisfied by an  

interpretation I iff for every binding B such 

that B(I) satisfies the antecedent, B(I) also 

satisfies the consequent. 
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Note that rule annotations have no 

semantic consequences and neither do the 

URI references associated with rules. This 

is different from the situation for OWL 

itself, where annotations do not have 

semantic consequences. 
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The semantic conditions relating to axioms 

and ontologies are unchanged. In particular, 

an interpretation satisfies an ontology iff it 

satisfies every axiom (including rules) and 

fact in the ontology; an ontology is consistent 

iff it is satisfied by at least one interpretation; 

an ontology O2 is entailed by an ontology O1 

iff every interpretation that satisfies O1 also 

satisfies O2. 
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Example Rules 

Example 1 

A simple use of these rules would be to assert 

that the combination of the hasParent and 

hasBrother properties implies the hasUncle 

property. Informally, this rule could be written 

as: 

hasParent(?x1,?x2) ∧ hasBrother(?x2,?x3) ⇒ 

 hasUncle(?x1,?x3) 
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In the abstract syntax the rule would be written 

like: 

Implies(Antecedent(hasParent(I-variable(x1)  

             I-variable(x2)) 

                         hasBrother(I-variable(x2)  

                                                  I-variable(x3))) 

      Consequent(hasUncle(I-variable(x1) 

                                                 I-variable(x3)))) 
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From this rule, if John has Mary as a 

parent and Mary has Bill as a brother then 

John has Bill as an uncle. 
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Example 2 

An even simpler rule would be to assert 

that Students are Persons, as in 

 Student(?x1) ⇒ Person(?x1) 

 

Implies(Antecedent(Student(I-variable(x1))) 

      Consequent(Person(I-variable(x1)))) 
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However, this kind of use for rules in OWL 

just duplicates the OWL subclass facility. 

 It is logically equivalent to write instead 

 Class(Student partial Person) 

 or 

 SubClassOf(Student Person) 

 which would make the information directly 

available to an OWL reasoner. 
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Usage Suggestions 

Extensibility and Interoperability Cautions 

If users are making extensive use of rules, they 

may want to restrict the form or expressiveness 

of the rules they employ, in order to increase 

interoperability, reusability, extensibility, 

computational scaleability, or ease of 

implementation. 
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A useful restriction in the form of the rules 

is to limit antecedent and consequent 

classAtoms to be named classes, where 

the classes are defined purely in OWL (in 

the same document or in external OWL 

documents). 
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Adhering to this format makes it easier to 

translate rules to or from existing (or future) 

rule systems, including: 

 1. Prolog; 

 2. production rules (descended from OPS5); 

 3. event-condition-action rules; and 

 4. SQL (where views, queries, and facts are 

all rules). 
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Adhering to this form also maximises 

reuse and interoperability of the ontology 

knowledge in the rules with other OWL-

speaking systems that do not necessarily 

support SWRL. 
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Users also may want to restrict the 

expressiveness of the OWL classes and 

descriptions appearing in rules. One useful 

restriction on expressivity is Description 

Logic Programs which, e.g., prohibits 

existentially-quantified knowledge in 

consequents.  
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Suitably-restricted SWRL rules can be 

straightforwardly extended to enable 

procedural attachments and/or 

nonmonotonic reasoning (negation-as-failure 

and/or prioritised conflict handling) of the 

kinds supported in CCI rule systems. Such 

adherence may thus facilitate combining 

SWRL knowledge with knowledge from 

those other rules languages.  
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