13.03.2015 . Otsu Thresholding - The Lab Book Pages

You are here: Software » Image Processing

Otsu Thresholding

Converting a greyscale image to monochrome is a common image processing task. Otsu's method, named after its inventor
Nobuyuki Otsu, is one of many binarization algorithms. This page describes how the algorithm works and provides a Java
implementation, which can be easily ported to other languages. If you are in a hurry, jump to the code.

Otsu Thresholding Explained
A Faster Approach

Java Implementation
Examples

Many thanks to Eric Moyer who spotted a potential overflow when two integers are multiplied in the variance calculation. The example code has
been updated with the integers cast to floats during the calculation.

Otsu Thresholding Explained

Otsu's thresholding method involves iterating through all the possible threshold values and calculating a measure of spread for the pixel levels
each side of the threshold, i.e. the pixels that either fall in foreground or background. The aim is to find the threshold value where the sum of
foreground and background spreads is at its minimum.

The algorithm will be demonstrated using the simple 6x6 image shown below. The histogram for the image is shown next to it. To simplify the
explanation, only 6 greyscale levels are used.

I3[312345

A 6-level greyscale image and its histogram

The calculations for finding the foreground and background variances (the measure of spread) for a single threshold are now shown. In this
case the threshold value is 3.

Background 84740

8 Weight W, = a5 = 0.4722
((TV (2 % 2
6 Mean = 0x 8+ — N+2x2) _ 46471
i
4 (N — 1 F4712 (1 (O RAT1V2 o TV L (9 — 1647142 w 9
2 Variance J, _ ((0— 0.6471)* » 8) + ({1 [].Dlir]) x T) 4 ((2 — 0.6471)* x 2)
i
(04187 % 8) 4+ (0.1246 = 7) 4 (1.8304 x 2)
012345 - 17
I =).4637
8 pixels 7 pixels 2 pixels
Foreground 64044
8 1i\‘ii.'[’i\,f_’_;].lt ”_f = T = []:32?8)
6- Mean iy = X0 +U]"99) O XA 55047
A= (f2 _ « =2] (4 _ - 3 (o« 43
Variance g:‘:,: ({3 — 3.8047)* = 6) + ({4 .3_8]994;) % 9) 4+ (5 — 3.8047)% = 4)
24
(48033 x 6) 4+ (0.0997 x 9) 4 (4.8864 x 4)
12345 o 19
_ : : =.5152
6 pixels 9 pixels 4 pixels

The next step is to calculate the 'Within-Class Variance'. This is simply the sum of the two variances multiplied by their associated weights.

http://www.labbookpages.co.uk/software/imgProc/otsuThreshold.html#java 1/4

http://www.labbookpages.co.uk/index.html
http://www.labbookpages.co.uk/software/imgProc.html
http://www.labbookpages.co.uk/home/about.html
http://www.labbookpages.co.uk/software.html

13.03.2015 . Otsu Thresholding - The Lab Book Pages

Within Class Variance o3, = W, af + Wy O’;j = 0.4722 % 0.4637 4 0.5278 = 0.5152
= 0.4909

This final value is the 'sum of weighted variances' for the threshold value 3. This same calculation needs to be performed for all the possible
threshold values 0 to 5. The table below shows the results for these calculations. The highlighted column shows the values for the threshold

calculated above.
T=5

Threshold T=0 T=1 T=2 T=3

o
.

T=4

8- 8 8 8 8

6+ 6 6 6 6

4+ 4 4 4 4

2- 2 2 2 2

0 0 0 0 0 0

012345 012345 012345 012345 012345 012345

ol ol HE HE HE HE
Weight, Background Wp =0 Wp = 0.222 Wp = 0.4167 Wp = 0.4722 Wp = 0.6389 Wp = 0.8889
Mean, Background Mp = 0 Mp = 0 Mp = 0.4667 Mp = 0.6471 Mp = 1.2609 Mp = 2.0313
Variance, Background 02, = 0 02, = 0 o2, = 0.2489 | 02, = 0.4637 | 0%, = 1.4102 | 0%, = 2.5303
Weight, Foreground Wsg =1 Weg = 0.7778 | Wg¢ = 0.5833 | W = 0.5278 | W¢ = 0.3611 | W¢ = 0.1111

Mean, Foreground | M¢ = 2.3611 =M = 3.0357 | Mg = 3.7143 Ms = 3.8947 M¢ = 4.3077 | M¢ = 5.000
0.7755 | 0%¢ = 0.5152 | 0%

Variance, Foreground sz = 3.1196 sz 1.9639 sz 0.2130 sz =0

Within Class Variance | 02y = 3.1196 | 0%, = 1.5268 | o2y,

0.5561 | 0%y = 0.4909 | o2y

0.9779 | 0%y = 2.2491

It can be seen that for the threshold equal to 3, as well as being used for the example, also has the lowest sum of weighted variances.
Therefore, this is the final selected threshold. All pixels with a level less than 3 are background, all those with a level equal to or greater than 3
are foreground. As the images in the table show, this threshold works well.

Result of Otsu's Method
This approach for calculating Otsu's threshold is useful for explaining the theory, but it is computationally intensive, especially if you have a full
8-bit greyscale. The next section shows a faster method of performing the calculations which is much more appropriate for implementations.

A Faster Approach

By a bit of manipulation, you can calculate what is called the between class variance, which is far quicker to calculate. Luckily, the threshold with

the maximum between class variance also has the minimum within class variance. So it can also be used for finding the best threshold and

therefore due to being simpler is a much better approach to use.

Within Class Variance a3, = Wy af + Wy Jf (as seen above)
Between Class Variance o5 = o° — oy
= Wilpy — ,r.!)2 + Wilpy — p)
- P)

=W b " f |_‘H!', — _If!f:l_

9

(where p = Wi, piy, + Wy g)

The table below shows the different variances for each threshold value.

Threshold T=0 T=1 T=2 T=3 T=4 T=5
Within Class Variance |02y = 3.1196 |62y = 1.5268 02, = 0.5561 o%y = 0.4909 o2, = 0.9779 o2y = 2.2491
Between Class Variance 0% = 0 0% = 1.5928 |02 = 2.5635 o625 = 2.6287 |02z = 2.1417 o2z = 0.8705

Java Implementation
A simple demo program that uses the Otsu threshold is linked to below.

Otsu Threshold Demo
The important part of the algorithm is shown here. The input is an array of bytes, srcData that stores the greyscale image.

http://www.labbookpages.co.uk/software/imgProc/otsuThreshold.html#java 2/4

http://www.labbookpages.co.uk/software/imgProc/files/otsuDemo.tar.gz

13.03.2015 . Otsu Thresholding - The Lab Book Pages

File Excerpt: OtsuThresholder. java

// Calculate histogram

int ptr = 0;

while (ptr < srcData.length) {
int h = OxFF & srcData[ptr];
histDatal[h] ++;
ptr ++;

}

// Total number of pixels
int total = srcData.length;

float sum = 0;
for (int t=0 ; t<256 ; t++) sum += t * histData[t];

float sumB = 0;
int wB 0;
int wF 0;

float varMax = 0;
threshold = 0;

for (int t=0 ; t<256 ; t++) {

wB += histDatal[t]; // Weight Background
if (wB == 0) continue;
wF = total - wB; // Weight Foreground

if (wF == 0) break;
sumB += (float) (t * histData[t]);

float mB = sumB / wB; // Mean Background
float mF = (sum - sumB) / wF; // Mean Foreground

// Calculate Between Class Variance

float varBetween = (float)wB * (float)wF * (mB - mF) * (mB - mF);

// Check if new maximum found

if (varBetween > varMax) {
varMax = varBetween;
threshold = t;

Examples

Here are a number of examples of the Otsu Method in use. It works well with images that have a bi-modal histogram (those with two distinct

regions).

Histogram

Greyscale Image Binary Image

http://www.labbookpages.co.uk/software/imgProc/otsuThreshold.html#java

3/4

13.03.2015 . Otsu Thresholding - The Lab Book Pages

'

http://www.labbookpages.co.uk/software/imgProc/otsuThreshold.html#java 4/4

