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A Theory for Multiresolution Signal Decomposition: 
The Wavelet Representation 

STEPHANE G. MALLAT 

Abstract-Multiresolution representations are very effective for ana- 
lyzing the information content of images. We study the properties of 
the operator which approximates a signal at a given resolution. We 
show that the difference of information between the approximation of 
a signal at the resolutions 2’ + ’ and 2jcan be extracted by decomposing 
this signal on a wavelet orthonormal basis of L*(R”). In LL(R ), a 
wavelet orthonormal basis is a family of functions ( @ w (2’~ - 
n)) ,,,“jEZt, which is built by dilating and translating a unique function 
t+r (xl. This decomposition defines an orthogonal multiresolution rep- 
resentation called a wavelet representation. It is computed with a py- 
ramidal algorithm based on convolutions with quadrature mirror lil- 
ters. For images, the wavelet representation differentiates several 
spatial orientations. We study the application of this representation to 
data compression in image coding, texture discrimination and fractal 
analysis. 

Index Terms-Coding, fractals, multiresolution pyramids, quadra- 
ture mirror filters, texture discrimination, wavelet transform. 

I. INTRODUCTION 

I N computer vision, it is difficult to analyze the infor- 
mation content of an image directly from the gray-level 

intensity of the image pixels. Indeed, this value depends 
upon the lighting conditions. More important are the local 
variations of the image intensity. The size of the neigh- 
borhood where the contrast is computed must be adapted 
to the size of the objects that we want to analyze [41]. 
This size defines a resolution of reference for measuring 
the local variations of the image. Generally, the structures 
we want to recognize have very different sizes. Hence, it 
is not possible to define a priori an optimal resolution for 
analyzing images. Several researchers [ 181, [3 11, [42] 
have developed pattern matching algorithms which pro- 
cess the image at different resolutions. For this purpose, 
one can reorganize the image information into a set of 
details appearing at different resolutions. Given a se- 
quence of increasing resolutions (rj )jEz, the details of an 
image at the resolution rj are defined as the difference of 
information between its approximation at the resolution rj 
and its approximation at the lower resolution rj _ , 
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A multiresolution decomposition enables us to have a 
scale-invariant interpretation of the image. The scale of 
an image varies with the distance between the scene and 
the optical center of the camera. When the image scale is 
modified, our interpretation of the scene should not 
change. A multiresolution representation can be partially 
scale-invariant if the sequence of resolution parameters 
( ‘; ),E~ varies exponentially. Let us suppose that there ex- 
ists a resolution step cy E R such that for all integers j, rj 
= oJ. If the camera gets 01 times closer to the scene, each 
object of the scene is projected on an area cy2 times bigger 
in the focal plane of the camera. That is, each object is 
measured at a resolution cx times bigger. Hence, the de- 
tails of this new image at the resolution olj correspond to 
the details of the previous image at the resolution cy/ +I. 
Resealing the image by cx translates the image details 
along the resolution axis. If the image details are pro- 
cessed identically at all resolutions, our interpretation of 
the image information is not modified. 

A multiresolution representation provides a simple hi- 
erarchical framework for interpretating the image infor- 
mation [22]. At different resolutions, the details of an im- 
age generally characterize different physical structures of 
the scene. At a coarse resolution, these details correspond 
to the larger structures which provide the image “con- 
text”. It is therefore natural to analyze first the image de- 
tails at a coarse resolution and then gradually increase the 
resolution. Such a coarse-to-fine strategy is useful for pat- 
tern recognition algorithms. It has already been widely 
studied for low-level image processing such as stereo 
matching and template matching [ 161, [ 181. 

Burt [5] and Crowley [8] have each introduced pyra- 
midal implementation for computing the signal details at 
different resolutions. In order to simplify the computa- 
tions, Burt has chosen a resolution step Q! equal to 2. The 
details at each resolution 2’ are calculated by filtering the 
original image with the difference of two low-pass filters 
and by subsampling the resulting image by a factor 2 ‘. 
This operation is performed over a finite range of reso- 
lutions. In this implementation, the difference of low-pass 
filters gives an approximation of the Laplacian of the 
Gaussian. The details at different resolutions are re- 
grouped into a pyramid structure called the Laplacian pyr- 
amid. The Laplacian pyramid data structures, as studied 
by Burt and Crowley, suffer from the difficulty that data 
at separate levels are correlated. There is no clear model 
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which handles this correlation. It is thus difficult to know 
whether a similarity between the image details at different 
resolutions is due to a property of the image itself or to 
the intrinsic redundancy of the representation. Further- 
more, the Laplacian multiresolution representation does 
not introduce any spatial orientation selectivity into the 
decomposition process. This spatial homogeneity can be 
inconvenient for pattern recognition problems such as tex- 
ture discrimination [2 11. 

In this article, we first study the mathematical proper- 
ties of the operator which transforms a function into an 
approximation at a resolution 2 J. We then show that the 
difference of information between two approximations at 
the resolutions 2 J + ’ and 2 J is extracted by decomposing 
the function in a wavelet orthonormal basis. This decom- 
position defines a complete and orthogonal multiresolu- 
tion representation called the wavelet representation. 
Wavelets have been introduced by Grossmann and Morlet 
[ 171 as functions $(x) whose translations and dilations 
(A rl/(.= - t)) __ 
L’(R) 

,u ,)ER+ xR can be used for expansions of 
functions. Meyer [35] showed that 

there exists wavelets +(x) such that ( J2/ 1c/ (2 ‘x - 
k))i,,I;)Ez? is an orthonormal basis of L’( R ). These bases 
generalize the Haar basis. The wavelet orthonormal bases 
provide an important new tool in functional analysis. In- 
deed, before then, it had been believed that no construc- 
tion could yield simple orthonormal bases of L’ (R ) whose 
elements had good localization properties in both the spa- 
tial and Fourier domains. 

The multiresolution approach to wavelets enables us to 
characterize the class of functions II/(x) E L*(R) that 
generate an orthonormal basis. The model is first de- 
scribed for one-dimensional signals and then extended to 
two dimensions for image processing. The wavelet rep- 
resentation of images discriminates several spatial orien- 
tations. We show that the computation of the wavelet rep- 
resentation may be accomplished with a pyramidal 
algorithm based on convolutions with quadrature mirror 
filters. The signal can also be reconstructed from a wave- 
let representation with a similar pyramidal algorithm. We 
discuss the application of this representation to compact 
image coding, texture discrimination and fractal analysis. 
In this article, we omit the proofs of the theorems and 
avoid mathematical technical detals. Rather, we try to il- 
lustrate the practical implications of the model. The math- 
ematical foundations are more thoroughly described in 
w31. 

A. Notation 
Z and R denote the set of integers and real numbers 

respectively. L’( R ) denotes the vector space of measur- 
able, square-integrable one-dimensional functions f (x ). 
Forf(x) E L*(R) and g(x) E L’(R), the inner product 
off(x) with g(x) is written 

The norm of f(x) in L’ (R ) is given by 

I/ flj* = 11, 1 .f’(41* du. 

We denote the convolution of two functionsf(x) E L* (R ) 
and g(x) E L*(R) by 

f* g(x) = (f(u) * g(u)) (x> 

=I’ 

+CC 
J-W g(x - u) du. 

The Fourier transform off(x) E L* (R ) is written p( w ) 
and is defined by 

f(w) = II,f(x) Cwr dx. 

Z* (Z ) is the vector space of square-summable sequences 

L* (R*) is the vector space of measurable, square-inte- 
grable two dimensional functionsf(x, y). Forf(x, y) E 
L*(R*) and g(x, y) E L’(R’), the inner product off(x, 
y) with g(x, y) is written 

( f(X, y), g(x, ?1,> = 11,” sI_ m. Y> g(x, Y) dx dJ. 

The Fourier transform of f(x, y) E L*( R2) is written 
P(% w,.) and is defined by 

&,, w,.) = i+m s+mf(x, y) ,-‘(wl’+uixl dx dy. 
-cc -m 

II. MULTIRESOLUTION TRANSFORM 

In this section, we study the concept of multiresolution 
decomposition for one-dimensional signals. The model is 
extended to two dimensions in Section IV. 

A. Multiresolution Approximation of L’(R ) 
Let A?, be the operator which approximates a signal at 

a resolution 2 j. We suppose that our original signal f(x) 
is measurable and has a finite energy: f(x) E L’(R). 
Here, we characterize AZ, from the intuitive properties that 
one would expect from such an approximation operator. 
We state each property in words, and then give the equiv- 
alent mathematical formulation. 

1) A*, is a linear operator. If A?,f(x) is the approxi- 
mation of some function f(x) at the resolution 2 ‘, then 
A2,f(x) is not modified if we approximate it again at the 
resolution 2 ‘. This principle shows that A*,0 Azi = A2 ,. 
The operator A,, is thus a projection operator on a partic- 
ular vector space V,, C  L’ (R ). The vector space V2, can 
be interpreted as the set of all possible approximations at 
the resolution 2 J of functions in L’ (R) . 

2) Among all the approximated functions at the reso- 
lution 2”, A?,f(x) is the function which is the most sim- 
iliar tof(x). 
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vg(x> E v21, jjdx) -f(x)/1 2 II&Sb) -S(x)/I. 

(1) 

Hence, the operator A*, is an orthogonal projection on the 
vector space VI,. 

3) The approximation of a signal at a resolution 2”’ 
contains all the necessary information to compute the same 
signal at a smaller resolution 2 J. This is a causality prop- 
erty. Since Al, is a projection operator on VI, this prin- 
ciple is equivalent to 

VjEZ, v*, c v*,i1. (2) 
4) An approximation operation is similar at all resolu- 
tions. The spaces of approximated functions should thus 
be derived from one another by scaling each approxi- 
mated function by the ratio of their resolution values 

Vj E Z, f(x) E v,, * f(2x) E V2,’ 1. (3) 
5) The approximation AZ/f(x) of a signal f(x) can be 

characterized by 2.’ samples per length unit. Whenf(x) 
is translated by a length proportional to 2 I, A?, f (x ) is 
translated by the same amount and is characterized by the 
same samples which have been translated. As a conse- 
quence of (3), it is sufficient to express the principle 5) 
for the resolution j = 0. The mathematical translations 
consist of the following. 

l Discrete characterization: 

There exists an isomorphism Z from V, onto Z* (Z ) . 

(4) 
l Translation of the approximation: 

vk E Z, A,fx(x) 

= A,f(x - k), whereh(x) =f(x - k). (5) 

l Translation of the samples: 

Z(A,f(-~)) = (my, )i~z * Z(Mi(x)) = (vn>,,,. (6) 

6) When computing an approximation of f(x) at reso- 
lution 2 ‘, some information aboutf (x) is lost. However, 
as the resolution increases to + 00 the approximated signal 
should converge to the original signal. Conversely as the 
resolution decreases to zero, the approximated signal con- 
tains less and less information and converges to zero. 

Since the approximated signal at a resolution 2 ’ is equal 
to the orthogonal projection on a space V2,, this principle 
can be written 

lim V2, = ;” V?, is dense in L2 (R ) (7) ,++CC ,=-'72 

and 

lim V,, = 77 V,, = (0). (8) J--m J= -cc 

We call any set of vector spaces ( V21),Ez which satisfies 
the properties (2)-(8) a multiresolution approximation of 
L’ (R ). The associated set of operators A*, satisfying l)- 
6) give the approximation of any L’ ( R ) function at a res- 

olution 2 I. We now give a simple example of a multi- 
resolution approximation of L’ ( R ). 

Example: Let V, be the vector space of all functions of 
L’( R ) which are constant on each interval ] k, k + 1 [, 
for any k E Z. Equation (3) implies that V2, is the vector 
space of all the functions of L’ (R ) which are constant on 
each interval ] k2 -j, (k + 1)2-’ [, for any k E Z. The 
condition (2) is easily verified. We can define an isomor- 
phism Z which satisfies properties (4), (5), and (6) by as- 
sociating with any function f(x) E V, the sequence 
( CY~)~~~ such that (Ye equals the value of f(x) on the in- 
terval ] k, k + 1 [. We know that the vector space of 
piecewise constant functions is dense in L? (R ). Hence, 

+Oa 
we can derive that U I’,, is dense in L’ (R >. It is clear 

J’-m 
+CO 

that n VI,= (0) , so the sequence of vector spaces 
,=-cc 

( Vr,),EZ is a multiresolution approximation of L’(R). 
Unfortunately, the functions of these vector spaces are 
neither smooth nor continuous, making this multiresolu- 
tion approximation rather inconvenient. For many appli- 
cations we want to compute a smooth approximation. In 
Appendix A, we describe a class of multiresolution ap- 
proximations where the functions of each space Vz , are n 
times continuously differentiable. 

We saw that the approximation operator A?, is an or- 
thogonal projection on the vector space Vz,. In order to 
numerically characterize this operator, we must find an 
orthonormal basis of Vz,. The following theorem shows 
that such an orthonormal basis can be defined by dilating 
and translating a unique function 4 (x). 

Theorem 1: Let ( V2,),Ez be a multiresolution approxi- 
mation of L’ (R ). There exists a unique function 4 (x) E 
L’ (R ), called a scaling function, such that if we set 
&!(x) = 2’$(2’x) forj E Z. (the dilation of 4(x) by 
2’), then 

( &? &,(x - 2m’n)),rGz is an orthonormal basis of I’2 1. 

n (9) 

Indications for the proof of this theorem can be found 
in Appendix B. The theorem shows that we can build an 
orthonormal basis of any V,, by dilating a function $ (x) 
with a coefficient 2 ’ and translating the resulting function 
on a grid whose interval is proportional to 2-‘. The func- 
tions &,(x) are normalized with respect to the L’ (R ) 
norm. The coefhcient J2-’ appears in the basis set in or- 
der to normalize the functions in the L’( R ) norm. For a 
given multiresolution approximation ( V21)JEz, there exists 
a unique scaling function 4(x) which satisfies (9). How- 
ever, for different multiresolution approximations, the 
scaling functions are different. One can easily show that 
the scaling function corresponding to the multiresolution 
described in the previous example is the indicator func- 
tion of the interval [0, I]. In general, we want to have a 
smoother scaling function. Fig. 1 shows an example of a 
continuously differentiable and exponentially decreasing 
scaling function. Its Fourier transform has the shape of a 
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Fig. 1. (a) Example of scaling function 4(x). This function ia computed 

in Appendix A. (b) Fourier transform i(w). A scaling function ia a low- 
pass filter. 

low-pass filter. The corresponding multiresolution ap- 
proximation is built from cubic splines. This scaling func- 
tion is described further in Appendix A. 

The orthogonal projection on V2, can now be computed 
by decomposing the signal f(x) on the orthonormal basis 
given by Theorem 1. Specifically, 

vf(x) E L’(R), AZ/~(X) 

= 2-” !iY (f(u), &,(u - 2-‘n)) &,(x - 2-‘n). 
,1=-C= 

( 10) 
The approximation of the signalf(x) at the resolution 2 ‘, 
A,,f(x), is thus characterized by the set of inner products 
which we denote by 

A&f = (( f(u), hi(u - 2y’n))),lFZ. (11) 

A!, f is called a discrete approximation off(x) at the res- 
olution 2 .‘. Since computers can only process discrete sig- 
nals, we must work with discrete approximations. Each 
inner product can also be interpreted as a convolution 
product evaluated at a point 2:‘n 

(f(u), &,(u - 2-44) 

=s 

*cc 
em f(u) bi(u - 2-/n) du 

= (f(u) * bi( -u)) (2-/n). 

Hence, we can rewrite Af,f: 

A&f = ((f(u) * h( -u)> (2-/n))ntz. (12) 

Since 4(x) is a low-pass filter, this discrete signal can be 
interpreted as a low-pass filtering off(x) followed by a 
uniform sampling at the rate 2 ‘. In an approximation op- 
eration, when removing the details off(x) smaller than 
2-‘, we suppress the highest frequencies of this function. 
The scaling function 4 (x) forms a very particular low- 
pass filter since the family of functions (fl &, 
(x - 2Pin))REz is an orthonormal family. 

In the next section we show that the discrete approxi- 
mation off(x) at the resolution 2 ’ can be computed with 
a pyramidal algorithm. 

B. Implementation of a Multiresolution Transform 
In practice, a physical measuring device can only mea- 

sure a signal at a finite resolution. For normalization pur- 
poses, we suppose that this resolution is equal to 1. Let 
Aff be the discrete approximation at the resolution 1 that 
is measured. The causality principle says that from Af’f 
we can compute all the discrete approximations A:, f for j 
< 0. In this section. we describe a simple iterative al- 
gorithm for calculating these discrete approximations. 

Let (V2,),d be a multiresolution approximation and 
4 (x) be the corresponding scaling function. The family 
of functions (m +*,+1(x - 2P”P’k)),,, is an or- 
thonormal basis of V2,, + 1. We know that for any n E Z, the 
function $*,(x - 2-‘n) is a member of V?, which is in- 
cluded in V2,+ I. It can thus be expanded in this ortho- 
normal basis of V,,, , : 

qb2,(x - 2-‘n) = 

2-‘-l ,z (&,(u - 2:/n), &,+I(u - 2-‘-‘k)) 
m 

* &t+,(x - 2-‘+k). (13) 

By changing variables in the inner product integral, one 
can show that 

2-‘-I( &,(u - 2-‘n), &,+~(u - 2-‘-‘k)) 

= (42-1(u), $(u - (k - 2n))). (14) 

When computing the inner products off(x) with both 
sides of (13) we obtain 

( f (UL +2,(u - 2+n) > 

= ,=g, (5% I(U), +(u - (k - 2n))) 

. (f(u), 42,+,(~ - 2-‘-‘k)). 

Let H be the discrete filter whose impulse response is 
given by 

Vn E Z, h(n) = (4+(u), 6(u - n)). (15) 

Let fi be the mirror filter with impulse response i; (n ) = 
h( -n). By inserting (15) in the previous equation, we 



678 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE. VOL. II, NO. 7. JULY IYXY 

obtain Al-:fd 

(f(u), h(u - 2-/n) > 

= kjYm h(2n - k) (f(U), (f12,Tl(u - 2-‘-h)). 

(16) 
Equation (16) shows that Ai,f can be computed by con- 
volving A:,+ of with fi and keeping every other sample of 
the output. All the discrete approximations A,d,f, forj < 
0, can thus be computed from Affby repeating this pro- 
cess. This operation is called a pyramid transform. The 
algorithm is illustrated by a block diagram in Fig. 5. 

A2mzfd ;""'~'~~~"~~,.....,,,~, 
,..‘. 

.'. '...,,.. 

." .."' ,. 
A ?-;f d _- 

_,,_ ___. ----. 
.’ -...x..-- _.___,___ ;. ,____.. ‘.- .,.... .----.I,_.... _ 

In practice, the measuring device gives only a finite 
number of samples: A:f = (a,,), i ,, I N. Each discrete sig- 
nal Af,,f(j < 0) has 2 ‘N samples. In order to avoid bor- 
der problems when computing the discrete approxima- 
tions Af,f, we suppose that the original signal Af’f is 
symmetric with respect to n = 0 and n = N 

Y-----1...- 
*,/*. 

A Lfd .__. - .-.,: '.,,---- ', 
3- 5: 13: 152 zoo 25, 

(a) 

(a-,, i f-N<n<O 
(4, = 

i %.Y-,I if0 < II < 0. 

If the impulse response of the filter fi is even ( fi = H ), 
each discrete approximation At,fwill also be symmetric 
with respect to n = 0 and n = 2-/N. Fig. 2(a) shows the 
discrete approximated signal Af,f of a continuous signal 
f(x) at the resolutions 1, l/2, l/4, l/8, l/16, and 
l/32. These discrete approximated signals have been 
computed with the algorithm previously described. Ap- 
pendix A gives the coefficients of the filter H that we used. 
The continuous approximated signals AIlf(x) shown in 
Fig. 2(b) have been calculated by interpolating the dis- 
crete approximations with (10). As the resolution de- 
creases, the smaller details off(x) gradually disappear. 

Theorem 1 shows that a multiresolution approximation 
; b),ez is completely characterized by the scaling func- 
tion 4 (x). A scaling function can be defined as a function 
4(x) E L’(R) such that, for all j E Z, (J2-’ &, 
(x - 2-in)),,,, is an orthonormal family, and if VI, is the 
vector space generated by this family of functions, then 
(V&z is a multiresolution approximation of L’( R ). We 
also impose a regularity condition on scaling functions. 
A scaling function 4 (x) must be continuously differenti- 
able and the asymptotic decay of 4(x) and 4’ (x) at in- 
finity must satisfy 

(45(x)1 = O(F) and 14’(x)/ = 0(x-“). 

The following theorem gives a practical characterization 
of the Fourier transform of a scaling function. 

Theorem 2: Let 4(x) be a scaling function, and let H  
be a discrete filter with impulse response h(n) = 
($2 I(U), 4(u - n)>. Let H(w) be the Fourier series 
defined by 

H(o) = E h(n)ep”‘“. 
,1=--m (17) 

Fig. 2. (a) Discrete approximations A: ,fat the resolutions I. l/2. I /4. 
I /8. I / 16. and l/32. Each dot gives the amplitude of the inner product 
( ,f( u), & (u - 2 -‘?I ) ) depending upon 2-‘,1. (b) Continuous approx- 
imations A,,f(.r) at the resolutions 1. l/2. I /4. I /8. I /l6. and I /32. 
These approximations are computed by interpolating the discrete ap- 
proximations with (IO). 

H(w) satisfies the following two properties: 

iH( = 1 and h(n) = O(n-‘) at infinity. (17a) 

IH(,)/’ + (H(w + a)/’ = 1. (17b) 

Conversely let H( w ) be a Fourier series satisfying (17a) 
and (17b) and such that 

IH( # 0 for w E [0, 7r/2]. (17c) 

The function defined by 

J(w) = ,g, H(2-“w) (18) 

is the Fourier transform of a scaling function. n 
Indication for the proof of this theorem are given in 

Appendix C. The filters that satisfy property (17b) are 
called conjugare filters. One can find extensive descrip- 
tions of such filters and numerical methods to synthesize 
them in the signal processing literature [lo], [36], [40]. 
Given a conjugate filter H which satisfies (17a)-( 17c), we 
can then compute the Fourier transform of the corre- 
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sponding scaling function with (16). It is possible to 
choose H(o) in order to obtain a scaling function 4 (x) 
which has good localization properties in both the fre- 
quency and spatial domains. The smoothness class of 
4 (x) and its asymtotic decay at infinity can be estimated 
from the properties of H( w ) [9]. In the multiresolution 
approximation given in the example of Section II-A, we 
saw that the scaling function is the indicator function of 
the interval [0, 11. One can easily show that the corre- 
sponding function H ( w ) satisfies 

H(w) = e-‘” cos 4 
0 

Appendix A describes a class of symmetric scaling 
functions which decay exponentially and whose Fourier 
transforms decrease as 1 /w”, for some n E N. Fig. 3 
shows the filter H associated with the scaling function 
given in Fig. 1. This filter is further described in Appen- 
dix A. 

III. THE WAVELET REPRESENTATION 

As explained in the introduction, we wish to build a 
multiresolution representation based on the differences of 
information available at two successive resolutions 2 J and 
2JC’. This section shows that such a representation can 
be computed by decomposing the signal using a wavelet 
orthonormal basis. 

A. The Detail Signal 
Here, we explain how to extract the difference of in- 

formation between the approximation of a function f(x) 
at the resolutions 2 J + ’ and 2 ‘. This difference of infor- 
mation is called the detail signal at the resolution 2,‘. The 
approximation at the resolution 2j’ ’ and 2’ of a signal 
are respectively equal to its orthogonal projection on 
Vz,+ I and Vz,. By applying the projection theorem, we can 
easily show that the detail signal at the resolution 2’ is 
given by the orthogonal projection of the original signal 
on the orthogonal complement of V,, in Vz,+ 1. Let 02, be 
this orthogonal complement, i.e., 

O?, is orthogonal to V2,, 

02, 0 v2, = V2,+, 

To compute the orthogonal projection of a functionf(x) 
on 02,, we need to find an orthonormal basis of O2  ,. Much 
like Theorem 1, Theorem 3 shows that such a basis can 
be built by scaling and translating a function $ (x). 

Theorem 3: Let (V?,)jEZ be a multiresolution vector 
space sequence, 4 (x) the scaling function, and H the cor- 
responding conjugate filter. Let +(x) be a function whose 
Fourier transform is given by 

$(w)=G; 4 ; 
i) 0 

with G(w) = e-la H(w + T) . (19) 

h(n) 
0.6 r 

t I I I ,. I.... 

-20 -10 0 10 20 n 

(a) 

:g ;'---I 

0 -J L- 
1 , I I.. 

-n -2 0 2 7Tm 

(b) 

Fig. 3. (a) Impulse response of the filter H associated to the scaling func- 
;ion shown in Fig. I .-The coefficients of this filter 
A. (b) Transfer function H(w) of the filter H. 

are given in Appendix 

Let &,(x) = 2’$(2’x) denote the dilation of +5(x) by 
2,‘. Then 

(@ $2/(X - 2-Jn)),*pz is an orthonormal basis of 02, 

and 

is an orthonormal basis of L* (R ). 

$(x) is called an orthogonal wavelet. H  
Indications for the proof of this theorem can be found 

in Appendix D. An orthonormal basis of 02, can thus be 
computed by scaling the wavelet $(x) with a coefficient 
2 J and translating it on a grid whose interval is propor- 
tional to 2-j. The wavelet function corresponding to the 
example of multiresolution given in Section II-A is the 
Haar wavelet 

i 

1 ifOlx<i 

rc/(x) = -1 if$lx< 1 . 

L 0 otherwise 

This wavelet is not even continuous. In many applica- 
tions, we want to use a smooth wavelet. For computing a 
wavelet, we can define a function H(w) which satisfies 
the conditions (17a)-(17c) of Theorem 2, compute the 
corresponding scaling function 4 (x) with equation (18) 
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and the wavelet $(x) with (19). Depending upon choice 
of H( w), the scaling function 4(x) and the wavelet $(x) 
can have good localization both in the spatial and Fourier 
domains. Daubechies [9] studied the properties of 6 (x) 
and $(x) depending upon H( w ). The first wavelets found 
by Meyer [35] are both C” and have an asymptotic decay 
which falls faster than the multiplicative inverse of any 
polynomial. Daubechies shows that for any II > 0, we 
can find a function H(w) such that the corresponding 
wavelet $(x) has a compact support and is n times con- 
tinuously differentiable [9]. The wavelets described in 
Appendix A are exponentially decreasing and are in C” 
for different values of n. These particular wavelets have 
been studied by Lemarie [24] and Battle 131. 

The decomposition of a signal in an orthonormal wave- 
let basis gives an intermediate representation between 
Fourier and spatial representations. The properties of the 
wavelet orthonormal bases are discussed by Meyer in an 
advanced functional analysis book [34]. Due to this dou- 
ble localization in the Fourier and the spatial domains, it 
is possible to characterize the local regularity of a func- 
tion f(-r) based on the coefficients in a wavelet ortho- 
normal basis expansion [25]. For example, from the 
asymptotic rate of decrease of the wavelet coefficients, we 
can determine whether a function f(x) is n times differ- 
entiable at a point x0. Fig. 4 shows the wavelet associated 
with the scaling function of Fig. 1. This wavelet is sym- 
metric with respect to the point x = l/2. The energy of 
a wavelet in the Fourier domain is essentially concen- 
trated in the intervals [ -2~, -ir] U [T, 27r]. 

Let PO:, be the orthogonal projection on the vector 
space O?,. As a consequence of Theorem 3, this operator 
can now be written 

cm 
PO, f(x) = 2-’ ,,=F, (f(u), IcZl(U - 2-‘n) > 

. l&,(.x - 2-/n). (20) 
PO2 f(.~) yields to the detail signal off(x) at the resolu- 
tion 2 ‘. It is characterized by the set of inner products 

Dzif = (( f(u) 1 iczi(u - 2-‘4 ,),l,z. (21) 

Dz,f is called the discrete detail signal at the resolution 
2 J. It contains the difference of information between 
A:,- 1 f and A$ f. As we did in (12), we can prove that each 
of these inner products is equal to the convolution off(x) 
with &,( -x) evaluated at 2-/n 

(f(u), $?,(U - 2-52)) = (f(u) * ic?,(-u))(2-'n). 

(22) 
Equations (21) and (22) show that the discrete detail sig- 
nal at the resolution 2’ is equal to a uniform sampling of 
(f(u) * rl/?,( -u)) (x) at the rate 2’ 

&if = ((f(u) * h-4) (2-/")),,Ez. 

The wavelet $(x) can be viewed as a bandpass filter 
whose frequency bands are approximatively equal to 

vJv(x 1 

1 

0.5 

0 

-0.5 

:+ 

0.4 
1 

0.2 1 

0 t 

Fig. 4. (a) Wavelet $(I) associated to the scaling function of Fig. 1. (b) 
Modulus of the Fourier transform of I/J(X). A wavelet is a band-pass 
filter. 

[ -277, -x] U [K, 2~1. Hence, the detail signal, D?,f 
describes f(x) in the frequency bands [ -2 -‘+ ’ x, 
-2-‘7r] u [2-JT, 2-‘+‘7r]. 

We can prove by induction that for any J > 0, the orig- 
inal discrete signal A:f measured at the resolution 1 is 
represented by 

(AP Jf, (Dz~fIp~~j<-l). (23) 

This set of discrete signals is called an orthogonal wavelet 
representation, and consists of the reference signal at a 
coarse resolution A: if and the detail signals at the reso- 
lutions 2’ for -J I j I - 1. It can be interpreted as a 
decomposition of the original signal in an orthonormal 
wavelet basis or as a decomposition of the signal in a set 
of independent frequency channels as in Marr’s human 
vision model [30]. The independence is due to the or- 
thogonality of the wavelet functions. 

It is difficult to give a precise interpretation of the model 
in terms of a frequency decomposition because the over- 
lap of the frequency channels. However,  we can control 
this overlap thanks to the orthogonality of our decompo- 
sition functions. That is why the tools of functional anal- 
ysis give a better understanding of this decomposition. If 
we ignore the overlapping spectral supports, the interpre- 
tation in the frequency domain provides an intuitive ap- 
proach to the model. In analogy with the Laplacian pyr- 
amid data structure, Ai rfprovides the top-level Gaussian 
pyramid data, and the D?,,f data provide the successive 
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Laplacian pyramid levels. Unlike the Laplacian pyramid, 
however, there is no oversampling, and the individual 
coefficients in the set of data are independent. 

B. Implementation of an Orthogonal Wavelet 
Representation 

In this section, we describe a pyramidal algorithm to 
compute the wavelet representation. With the same 
derivation steps as in Section II-B, we show that D2, f can 
be calculated by convolving A;‘,+, f with a discrete filter 
G  whose form we will characterize. 

For any n E Z, the function &, (X - 2-’ n ) is a member 
of 02, c Vz,- I. In the same manner as (13)) this function 
can be expanded in an orthonormal basis of V, I + I 

I&,(X - 2-/n) = 

2-‘-l ,t”.. ($,,(u - 2-/n), qlh,.I(U - 2p’-‘k)) 

* &,*l(X - 2p’eq. (24) 

As we did in (14), by changing variables in the inner 
product integral we can prove that 

2-‘-I( &!(u - 2-jn), &,+I(u - 2-‘-‘k)) 

(25) 

Hence, by computing the inner product off(x) with the 
functions of both sides of (24), we obtain 

= ,jfm (bl(u>, +(u - (k - 2n))) 

. (f(u), &,+,(u - 2-‘-Q)). (26) 

Let G  be the discrete filter with impulse response 

g(n) = (4&l(u), 4(u - n)), (27) 

and G  be the symmetric filter with impulse response g (n ) 
= g ( -n ). We show in Appendix D that the transfer func- 
tion of this filter is the function G(w) defined in Theorem 
3, equation (19). Inserting (27) to (26) yields 

(f(u), bh,(u - 2:'n)) 

= jY,"(Zn - k) (f(u),c#Q,+,(u - 2-‘-‘/c)). 

(28) 
Equation (28) shows that we can compute the detail signal 
D,, f by convolving At,- ,f with the filter G  and retaining 
every other sample of the output. The orthogonal wavelet 
representation of a discrete signal Aff can therefore be 
computed by successively decomposing At,, , f into At, f 
and Dz,f for -J 5 j I - 1. This algorithm is illustrated 
by the block diagram shown in Fig. 5. 

In practice, the signal A;‘f has only a finite number of 
samples. One method of handling the border problems 

keep one sample out of Iwo 

l-7-j convolve with IMer X 

Fig. 5. Decomposition of a discrete approximation A$, , ,f into an approx- 
imation at a coarser resolution A$ j’and the signal detail LLf. By re- 
peating in cascade this algorithm for -1 2 j 2 -J, we compute the 
wavelet representation of a signal A‘:fon J resolution levels. 

uses a symmetry with respect to the first and the last sam- 
ple as in Section II-B. 

Equation (19) of Theorem 3 implies that the impulse 
response of the filter G  is related to the impulse response 
of the filter H by 

g(n) = (-l)‘-” h(1 - n). (29) 

This equation is provided in Appendix D. G  is the mirror 
filter of H, and is a high-pass filter. In signal processing, 
G  and H are called quudrature mirror filters [lo]. Equa- 
tion (28) can be interpreted as a high-pass filtering of the 
discrete signal A;‘, + of. 

If the original signal has N samples, then the discrete 
signals D2, f and A:, f have 2’ N samples each. Thus, the 
wavelet representation 

has the same total number of samples as the original ap- 
proximated signal A: f. This occurs because the represen- 
tation is orthogonal. Fig. 6(b) gives the wavelet represen- 
tation of the signal Ayfdecomposed in Fig. 2. The energy 
of the samples of D,, f gives a measure of the irregularity 
of the signal at the resolution 2’+‘. Whenever AI, f (x) 
and A2,+ If(x) are significantly different, the signal detail 
has a high amplitude. In Fig. 6, this behavior is observed 
in the textured area between the abscissa coordinates of 
60 and 80. 

C. Signal Reconstruction from an Orthogonal Wavelet 
Representation 

We have seen that the wavelet representation is com- 
plete. We now show that the original discrete signal can 
also be reconstructed with a pyramid transform. Since 
Oz, is the orthogonal complement of V, I in VI,+ I, ( fi 
&)(x - 2-jn), J2-l Ic/?,(x - 2Pin)),,EZ is an orthonor- 
ma1 basis of VI ,+ I. For any n > 0, the function &,+ I (X 
- 2-j- ’ n ) can thus be decomposed in this basis 

&,+I(x - 2-‘-In) 

= 2-‘,:<- (&,(u - 2-/k), &,-I(U - 2:‘-‘n)) 

. $2,(x - 2-‘/k) 

+ 2-j j!Zy, ($?,(u - 2-/k), &,+I(u - 2:‘-‘n)) 

* y&,(x - 2-/i?). (30) 
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(a) 

Az-sfd 

Dpf_ ' 

D2-6.’ ..‘:_,, 

D2-:fe ..,; .:, . ‘.. ; 

Dpf 7’ : ,‘. ,: .::: Y..,.. .._. 

Fig. 6. (a) Multiresolution continuous approximationsAz,f(X). (b) Wave- 
let representation of the signal A,f(x). The dots give the amplitude of 
the inner products ( f(u), $?, (u - 2 -‘n) ) of each detail signal Dz,f 
depending upon 2-‘n. The detail signals samples have a high amplitude 
when the approximationsAzrf(X) andA,,+,f(*) shown in (a) are locally 
different. The top graph gives the inner products ( f( u ). 4 J (u - 2 ‘II) ) 
of the coarse discrete approximation A$,f. 

By computing the inner product of each side of equation 
(30) with the functionf(x), we have 

(f(u), q!J*,+,(u - 2-'-51)) 

= 2-j&y (qb*,(u - 2%c), 4*,+1(u - 2-'%I)) 

* (f(u), h(u - 2-w 

+ 2-j j<, ($,,(u - 2-'k), c#Q,+,(u - 2-'-'4) 

* (f(u), $r,(u - 2-q). (31) 

Inserting (14) and (25) in this expression and using the 
filters H and G, respectively, defined by (15) and (27) 

-+Ajl;fs$+,f + 

IT?I put one zero between each sample 

a: convolve wlh tiller X 

1. : multiplication by 2 

Fig. 7. Reconstruction of a discrete approximation A!, I ffrom an approx- 
imation at a coarser resolution &,f and the signal detail D,, f. By re- 
peating in cascade this algorithm for -.I I j 5 - 1, we reconstruct A:f 
from its wavelet representation. 

yields 

(f(u), 4*,+1(U - 2-‘-w 

= 2 ,g h(n - 2k) (f(u),+& - 2:+)) 
m  

+ 2 &+ - 2k)(f(u), $*,(u - 2-JJk)). 

(32) 

This equation shows that A$, + I f can be reconstructed by 
putting zeros between each sample of A&f and &, f and 
convolving the resulting signals with the filters H and G, 
respectively. A quite similar process can be found in the 
reconstruction algorithm of Burt and Adelson from their 
Laplacian pyramid [5]. 

The block diagram shown in Fig. 7 illustrates this al- 
gorithm. The original discrete signal A;‘fat the resolution 
1 is reconstructed by repeating this procedure for -1 5 

j < 0. From the discrete approximation Aff, we can re- 
cover the continuous approximation A, f(x) with equa- 
tion (10). Fig. 8(a) is a reconstruction of the signal A, f(x) 
from the wavelet representation given in Fig. 6(b). By 
comparing this reconstruction with the original signal 
shown in Fig. 8(b), we can appreciate the quality of the 
reconstruction. The low and high frequencies of the signal 
are reconstructed well, illustrating the numerical stability 
of the decomposition and reconstruction processes. 

IV. EXTENSION OF THE ORTHOGONAL WAVELET 
REPRESENTATION TO IMAGES 

The wavelet model can be easily generalized to any di- 
mension y1 > 0 [33]. In this section, we study the two- 
dimensional case for image processing applications. The 
signal is now a finite energy functionf(x, y) E L*(R’). 
A multiresolution approximation of L2 (R*) is a sequence 
of subspaces of L’ (R’) which satisfies a straightforward 
two-dimensional extension of the properties (2) to (8). Let 
(Vz, )jez be such a multiresolution approximation of 
L* ( R2). The approximation of a signal f(x, y  ) at a res- 
olution 2 J is equal to its orthogonal projection on the vec- 
tor space V,,. Theorem 1 is still valid in two dimensions, 
and one can show that there exists a unique scaling func- 
tion @(x, y) whose dilation and translation given an or- 
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(b) 
Fig. 8. (a) Original sIgnal A,,~(.I ) approximated at the resolution I. (b) 

Reconstruction of A, f(.r) from the wavelet representation shown in Fig. 
6(b). Bj comparing both figures. we can appreciate the quality of the 
reconstruction. 

thonormal basis of each space I’?,, . Let @ ‘2, (x, y) =  2” 
@  (2”x, 2’~). The family of functions 

pb(x - 2-,/n, \’ - 2-‘m))(n,,,,)E72 

forms an  orthonormal basis of V,,. The  factor 2-’ nor- 
malizes each function in the L2(R2) norm. The function 
+ (x, .v) is unique with respect to a  particular multireso- 
lution approximation of L’ (R 2  ). 

W e  next describe the particular case of separable mul- 
tiresolution approximations of L’( R2) studied by Meyer 
[35]. For such multiresolution approximations, each vec- 
tor space If,, can be  decomposed as a  tensor product of 
two identical subspaces of L2  (R ) 

v,, =  v:, 0  v:,. 

The  sequence of vector spaces ( V2,),Ez forms a  multi- 
resolution approximation of L*( R2) if and  only if 
(VL),,EZ is a  multiresolution approximation of L* (R ). One  
can then easily show that the scaling function + (x, y ) can 
be  written as 

where C#I (x) is the one-dimensional scaling function of the 
multiresolution approximation ( V:,)jEz. W ith a  separable 
multiresolution approximation, extra importance is given 
to the horizontal and  vertical directions in the image. For 
many types of images, such as those from man-made en- 
vironments, this emphasis is appropriate. The orthogonal 
basis of V2, is then given by 

(2p%‘b - 2-h ?’ - 2-‘mj)(,,,,,,,Ez2 

= phh(~ - 2-/n) &I(? - 2-‘m))(,l,,,l,tz1. 

(33) 

Fig. 9. Approximations of an  image at the resolutions 1, l/2, l/4, and 
l/8 (j =  0, -I, -2, -3). 

The approximation of a  signal f(x, y) at a  resolution 2  ’ 
is therefore characterized by the set of inner products 

A&f =  

(( f(x, Y>? 42,(x - 2w h(Y - 2-w ))i,z,,,,irZl 

Let us suppose that the camera measures an  approxima- 
tion of the irradiance of a  scene at the resolution 1. Let 
Affbe the resulting image and  N be  the number  of pixels. 
One  can easily show that, for j <  0, a  discrete image ap- 
proximation At,f has  2  JN pixels. Border problems are 
handled by supposing that the original image is symmetric 
with respect to the horizontal and  vertical borders. Fig. 9  
gives the discrete approximations of an  image at the res- 
olutions 1, l/2, l/4, and  l/8. 

As in the one-dimensional case, the detail signal at the 
resolution 2’ is equal  to the orthogonal projection of the 
signal on  the orthogonal complement of V2, in V2, +  I. Let 
01, be  this orthogonal complement.  The following theo- 
rem gives a  simple extension of Theorem 3, and  states 
that we can build an  orthonormal basis of 02, by scaling 
and  translating three wavelets functions, * ’ (x, y), q2  (x, 
y), and  *j(x, y). 

Theorem 4: Let ( V2,)jGz be  a  separable multiresolution 
approximation of L2(R2). Let Q(.x, y) =  C#I(X) $(y) be  
the associated two-dimensional scaling function. Let 
\k (x) be  the one-dimensional wavelet associated with the 
scaling function C#I (x). Then,  the three “wavelets” 

@(x, y) =  4,(x> G(y), **(x3 .v> = $(x) 4,(y), 

*‘(x, vv) =  $(x> $(Y) 

are such that 

(2-‘Ql,(x - 2-/n, y - 2:/m). 

2:‘*:,(x - 2:ln, y - 2:jrn), 

2-9:,(x - 2-/n, ?’ - 2-‘rn))(,~,,,~)Fz’ (34) 

is an  orthonormal basis of 02, and  

(2-‘9j,(x - 2-‘n, y - 2-/m), 

2-Q!;, (x - 2-/n, y - 2-/m), 

2-)*G,(x - 2-h, Y - 2e’m))(,,,,n,Ez3 (35) 

is an  orthonormal basis of L’( R’). 
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Appendix E gives a proof of this theorem. The differ- 
ence of information between A$ + I f and A$ f is equal to 
the orthonormal projection of f(x) on 02,, and is char- 
acterized by the inner products of f(x) with each vector 
of an orthonormal basis of O,, . Theorem 4 says that this 
difference of information is given by the three detail im- 
ages 
D;,f = (( j-(x, Y), *:,cx - 2-k Y - 2-“m) ))ln,m)FZ?: 

(36) 
D&f = ((j-(x, y), *:,(X - 2-k Y - 2-Jm) ))i,,,,n)FZ? 

(37) 
D;,f = (( f(x, Y), ‘P;,(x - 2-k Y - 2-44 ))ir~,,,I~EZ~. 

(38) 
Just as for one-dimensional signals, one can show that in 
two dimensions the inner products which define A’:,f, 
0: ,f, 0; ,f, and D:, f are equal to a uniform sampling of 
two-dimensional convolution products. Since the three 
wavelets \k,(x, y), \k>(x, y), and \k3(x, y) are given by 
separable products of the functions 4 and $, these con- 
volutions can be written 

A$,f = 

((fb Y> * +21(-x) d)*d-Y)) 

D;,f = 

Dfif = 

F’n, 2-‘m))(,l.,n)Ez1 
(39) 

2-‘n, 2-Jm))(,1.,r,,Ez1 

(40) 

((fb ~9 * Ir/2,( -4 h( -Y)> (2-k 2pJm)),,l,,n)Ez2 

(41) 
D;,f = 

The expressions (39) through (42) show that in two di- 
mensions, A$, f and the Di, f are computed with separable 
filtering of the signal along the abscissa and ordinate. 

The wavelet decomposition can thus be interpreted as a 
signal decomposition in a set of independent, spatially 
oriented frequency channels. Let us suppose that C#I (x) 
and $(x) are, respectively, a perfect low-pass and a per- 
fect bandpass filter. Fig. 10(a) shows in the frequency do- 
main how the image A$+ I f is decomposed into A,“, f, 
04, f, D:, f, and D:, f. The image A:, f corresponds to the 
lowest frequencies, D:, f gives the vertical high frequen- 
cies (horizontal edges), Ds, f the horizontal high frequen- 
cies (vertical edges) and D:, f the high frequencies in both 
directions (the comers). This is illustrated by the decom- 
position of a white square on a black background ex- 
plained in Fig. 11(b). The arrangement of the Di,f im- 

(b) 

Fig. 10. (a) Decomposition of the frequency support of the image A!, 1 f 
into A’,‘,fand the detail images LIl f. The image A’,‘, fcorresponds to the 
lower horizontal and vertical frequencies of A,, ,_ Di,fgives the vertical 
high frequencies and horizontal low frequencies. L2-, J‘the horizontal high 
frequencies and vertical low frequencies and Dl,fthe high frequencies 
in both horizontal and vertical directions. (b) Disposition of the Di,f 
and A$ , f’ images of the image wavelet representations shown in this 
article. 

(a) 

Cc) 
Fig. I I. (a) Original image. (b) Wavelet representation on three resolution 

levels. The black, grey. and white pixels correspond respectively to neg- 
ative, zero. and positive wavelet coefficients. The disposition of the de- 
tatl images is explained in Fig. IO(b). (c) These images show the abso- 
lute value of the wavelet coefficients for each detail images Di, shown 
in (b). Black and white pixels correspond respectively to zero and high 
amplitude coefficients. The amplitude is high along the edges of the 
square for each orientation. 
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ages is shown in Fig. 10(b). The black, grey, and white 
pixels respectively correspond to negative, zero, and pos- 
itive coefficients. Fig. 1 l(c) shows the absolute value of 
the detail signal samples. The black pixels correspond to 
zero whereas the white ones have a high positive value. 
As expected, the detail signal samples have a high ampli- 
tude on the horizontal edges, the vertical edges and the 
comers of the square. 

For any J > 0, an image A;(fis completely represented 
by the 3J + 1 discrete images 

This set of images is called an orthogonal wavelet rep- 
resentation in two dimensions. The image Af-,f is the 
coarse approximation at the resolution 2PJ and the D:,f 
images give the detail signals for different orientations and 
resolutions. If the original image has N pixels. each image 
Af?‘,f, DJ,f, D<,f, Dz,fhas 2/N pixels ( j < 0). The total 
number of pixels in this new representation is equal to the 
number of pixels of the original image, so we do not in- 
crease the volume of data. Once again, this occurs due to 
the orthogonality of the representation. In a correlated 
multiresolution representation such as the Laplacian pyr- 
amid. the total number of pixels representing the signal is 
increased by a factor of 2 in one dimension and of 4/3 in 
two dimensions. 

A. Decomposition and Reconstruction Algorithms in 
TN)O Dimerzsiorzs 

In two dimensions, the wavelet representation can be 
computed with a pyramidal algorithm similar to the one- 
dimensional algorithm described in Section III-B. The 
two-dimensional wavelet transform that we describe can 
be seen as a one-dimensional wavelet transform along the 
s and y axes. By repeating the analysis described in Sec- 
tion III-B, we can show that a two-dimensional wavelet 
transform can be computed with a separable extension of 
the one-dimensional decomposition algorithm. At each 
step we decompose A&+ of into A;,f, D$, f, D$, f, and 
02) f. This algorithm is illustrated by a block diagram in 
Fig. 12. We first convolve the rows of A;, , , f with a one- 
dimensional filter, retain every other row, convolve the 
columns of the resulting signals with another one-dimen- 
sional filter and retain every other column. The filters used 
in this decomposition are the quadrature mirror filters fi 
and e described in Sections II-B and III-B. 

The structure of application of the filters for computing 
A:, . 04, , Di, , and D$, is given in Fig. 12. We compute 
the wavelet transform of an image A: f by repeating this 
process for - 1 2 j 2 -J. This corresponds to a sepa- 
rable conjugate mirror filter decomposition [44]. 

Fig. 14(b) shows the wavelet representation of a natural 
scene image decomposed on 3 resolution levels. The pat- 
tern of arrangement of the detail images is as explained 
in Fig. 10(b). Fig. 14(c) gives the absolute value of the 
wavelet coefficients of each detail image. The wavelet 
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m : convolve (rows or columns) wilh the fuller X 

I?-I’ keep one column ouL of two 

11121: keeo one row out of two 

Fig. 12. Decomposition of an image A:,. f into A$,f. Dlflf. Di,f. and 
D:,f: This algorithm is based on one-dimensional convolutions of the 
rows and columns of A’,‘.. fwith the one dimensional quadrature mirror 
filters fi and G. 

coefficients have a high amplitude around the images 
edges and in the textured areas within a given spatial ori- 
entation. 

The one-dimensional reconstruction algorithm de- 
scribed in Section III-C can also be extended to two di- 
mensions. At each step, the image A$+ of is reconstructed 
from A;‘, f, Di,,f, Dz, f, and 02, f. This algorithm is illus- 
trated by a block diagram in Fig. 13. Between each col- 
umn of the images A$ f, D:, f, Ds, f, and Dz, f, we add a 
column of zeros, convolve the rows with a one dimen- 
sional filter, add a row of zeros between each row of the 
resulting image, and convolve the columns with another 
one-dimensional filter. The filters used in the reconstruc- 
tion are the quadrature mirror filters Hand G described in 
Sections II-B and III-B. The image Ayf is reconstructed 
from its wavelet transform by repeating this process for 
-J i ,j i - 1. Fig. 14(d) shows the reconstruction of 
the original image from its wavelet representation. If we 
use floating-point precision for the discrete signals in the 
wavelet representation, the reconstruction is of excellent 
quality. Reconstruction errors are more thoroughly dis- 
cussed in the next section. 

V. APPLICATIONS OF THE ORTHOGONAL WAVELET 
REPRESENTATION 

A. Compact Coding of Wavelet Image Representations 
To compute an exact reconstruction of the original im- 

age, we must store the pixel values of each detail image 
with infinite precision. However, for practical applica- 
tions, we can allow errors to occur as long as the relevant 
information is not destroyed for a human observer. In this 
section, we show how to use the sensitivity of the human 
visual system as well as the statistical properties of the 
image to optimize the coding by the wavelet representa- 
tion. The conjugate mirror filters which implement the 
wavelet decomposition have also been studied by Woods 
[44] and Adelson et al. [l] for image coding. 

Let (A$,f, (D;if LJs,,s -17 (D:,f >pJs,s -13 
(D:, f ) -.,<, 5 ~I ) be the wavelet representation of an 
image A;‘f. Let (E-J, (+Js,+l~ ($-Js,+l? 

( E: ) -J <, 5 ~, ) be the mean square errors introduced when 
coding each image component of the wavelet representa- 
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A$+ I f 

;, 
convoive (row or column) with filter X 

gj 

put one row of zeros between each row 

put one column of zeros between each column 

multiply by 4 

Fim C’ 13. Reconstruction of an image A$ f from A$f, Di,f; Df,f. and 
0: jY The row and columns of these images are convolved with the one 
dimensional quadrature mirror filtera H and C. 

(a) 

(b) 

(4 
Fig. 14. (a) Original image. (b) Wavelet representation on three resolution 

levels. The arrangement of the detail images ia explained in Fig. IO(b). 
Cc) These images show the absolute value of the wavelet coefficients for 
each detail images Di, shown in (b). The amplitude is high along the 
edges and the textured area for each orientation. (d) Reconstruction of 
the original image from the wavelet representation given in (b). 

tion. Let cO be the mean square error of the image recon- 
structed from the coded wavelet representation. Since the 
wavelet representation is orthogonal in L’(R’), one can 

prove that 3 -1 
Eo = 22Jt-J + c c 2-y. 

k=I ,,=J 

The factors 2-2’ are due to the normalization factor 2-j 
which appears in (33) and (34). Psychological experi- 
ments on human visual sensitivity show that the visible 
distortion on the reconstructed image will not only depend 
on the total mean square error co, but also on the distri- 
bution of this error between the different detail images 
Di, f. The contrast sensitivity function of the visual SYS- 
tern [6] shows that the perception of a contrast distortion 
in the image depends upon the frequency components of 
the modified contrast. Visual sensitivity also depends upon 
the orientation of the stimulus. The results of Campbell 
and Kulikowski [7] show that the human visual system 
has a maximum sensitivity when the contrast is horizontal 
or vertical. When the contrast is tilted at 45’) the sensi- 
tivity is minimum. A two-dimensional wavelet represen- 
tation corresponds to a decomposition of the image into 
independent frequency bands and three spatial orienta- 
tions. Each detail image Di, gives the image contrast in 
a given frequency range and along a particular orienta- 
tion. It is therefore possible to adapt the coding error of 
each detail image to the sensitivity of human perception 
for the corresponding frequency band and spatial orien- 
tation selectivity. The more sensitive the human visual 
system, the less coding error we want to introduce in the 
detail image 05, f. Watson [43] has made a particularly 
detailed study of subband image coding adapted to human 
visual perception. 

Given an allocation of the coding error between the dif- 
ferent resolutions and orientations of the wavelet repre- 
sentation, we must then code each detail image with a 
minimum number of bytes. In order to optimize the cod- 
ing, one can use the statistical properties of the wavelet 
coefficients for each resolution and orientation. Natural 
images are special kinds of two-dimensional signals. This 
shows up clearly when one looks at the histogram of the 
detail images D$ If. Since the pixels of these detail images 
are the decomposition coefficients of the original image 
in an orthonormal family, they are not correlated. The 
histogram of the detail images could therefore have any 
distribution. Yet in practice, for all resolutions and ori- 
entations, these histograms are symmetrical peaks cen- 
tered in zero. Natural images must therefore belong to a 
particular subset of L’( R’). The modeling of this subset 
is a well known problem in image processing [26]. The 
wavelet orthonormal bases are potentially helpful for this 
purpose. Indeed, the statistical properties of an image de- 
composition in a wavelet orthonormal basis look simpler 
than the statistical properties of the original image. More- 
over, the orthogonality of the wavelet functions can sim- 
plify the mathematical analysis of the problem. 

We have found experimentally that the detail image his- 
tograms can be modeled with the following family of his- 
tograms: 

/l(u) = Ke-‘l”l/,)J. (44) 
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The parameter 0  modifies the decreasing rate of the peak 
and  CY models the variance. This model  was built by  stud- 
ing the histograms of seven different images decomposed 
on  four resolution levels each.  Our  goal was only to define 
a  qualitative histogram model.  The  constant K is adjusted 
in order to have ST, h(u) du  = N where N is the total 
number  of pixels of the given detail image. By changing 
variables in the integral, one  can derive that 

NP s 
m  K=- , where I’(r) =  e-Q-’ du. (45) 
0 

The coefficients CY and  @  of the histogram model  can be  
computed by measur ing the first and  second moment  of 
the detail image histogram: 

s 

0 3  

m ml = -m lulh(u)du and  m2 = 
c 

u2h(u)  du. 
--co 

(46) 
By inserting (44) of the histogram model  and  changing 
variables in these two integrals, we obtain 

ml =  and  m -2Koi71’ 2- 
P 

(47) 

Thus. 

where (48) 

1  
m217  - 0 P 

(YIP (49) 

Nr ; 
0 

The function F-‘(x) is shown in Fig. 15. Fig. 16(a) gives 
a  typical example of a  detail image histogram obtained 
from the wavelet representat ion of a  real image. Fig. 16(b) 
is the graph of the model  derived from (44). 

The a  priori knowledge of the detail signal’s statistical 
distribution given by the histogram model  (44) can be  used 
to optimize the coding of these signals. W e  have devel- 
oped  such a  procedure [27] using Max’s algorithm [32] to 
minimize the quantization noise on  the wavelet represen- 
tation. Predictive coding procedures are also effective for 
this purpose.  Results show that one  can code an  image 
using such a  representat ion with less than 1.5 bits per pixel 
with few visible distortions [ 11, [27], [44]. 

B. Texture Discrimination and  Fractal Analysis 
W e  now describe the application of the wavelet orthog- 

onal representat ion to texture discrimination and  fractal 

F-‘(x) 
t 

1.5 

1 

0.5 

:_; 

OA 0 0.2 0.4 X 

Fig. 15. Graph of the function F-‘(x) characterized by (49) 

h(u) r 

15000 

10000 

5000 

0 

(a) 

0 \ 

, ,,,,,,,,j 

-10 -5 0 5 10 u 

(b) 

Fig. 16. (a) Typical example of a  detail image histogram h(u). (b) Mod- 
eling of h  ( U) obtained from equation (44). The parameters oi and 0  have 
been computed from the first two moments of the original histogram (01 
=  1.39andP = 1.14). 

analysis. Using psychophysics,  Julesz [21] has developed 
a  texture discrimination theory based on  the decomposi-  
tion of textures into basic primitives called textons. These 
textons are spatially local; they have a  particular spatial 
orientation and  narrow frequency tuning. The wavelet 
representat ion can also be  interpreted as a  texton decom- 
position where each texton is equal  to a  particular func- 
tion of the wavelet orthonormal basis. Indeed, these func- 
tions have all the discriminative abilities required by the 
Julesz theory. In the decomposit ion studied in this article, 
we have used only three orientation tunings. However,  
one  can build a  wavelet representat ion having as many 
orientation tunings as desired by using non-separable 
wavelet orthonormal bases [33]. 
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Fig. 17(a) shows three textures synthesized by Beck. 
Humans cannot preattentively discriminate the middle 
from the right texture but can separate the left texture from 
the others. In this example, human discrimination is based 
mainly on the orientation of these textures as their fre- 
quency content is very similar. With a first-order statis- 
tical analysis of the wavelet representation shown in Fig. 
17(b), we can also discriminate the left texture but not the 
two others. This example illustrates the ability of our rep- 
resentation to differentiate textures on orientation criteria. 
This is of course only one aspect of the problem, and a 
more sophisticated statistical analysis is needed for mod- 
eling textures [ 131. Although several psychophysical 
studies have shown the importance of a signal decompo- 
sition in several frequency channels [4], [ 151, there still 
is no statistical model to combine the information pro- 
vided by the different channels. From this point of view, 
the wavelet mathematical model might be helpful to trans- 
pose some of the tools currently used in functional anal- 
ysis to characterize the local regularity of functions [25]. 

Mandelbrot [29] has shown that certain natural textures 
can be modeled with Brownian fractal noise. Brownian 
fractal noise F(x) is a random process whose local dif- 
ferences 

(F(x) - F(x + Ax) / 

I/Ax/IH 
has a probability distribution function g(x) which is 
Gaussian. Such a random process is self-similar, i.e.. 

tlr > 0, F(x) and rHF(rx) are statistically identical. 

Hence, a realization of F(x) looks similar at any scale 
and for any resolution. Fractals do not provide a general 
model which can be used for the analysis of any kind of 
texture, but Pentland [39] has shown that for a fractal tex- 
ture, the psychophysical perception of roughness can be 
quantified with the fractal dimension. 

Fig. 18(a) shows a realization of a fractal noise which 
looks like a cloud. Its fractal dimension is 2.5. Fig. 18(b) 
gives the wavelet representation of this fractal. As ex- 
pected, the detail signals are similar at all resolutions. The 
image Ai-if gives the local dc component of the original 
fractal image. For a cloud, this would correspond to the 
local differences of illuminations. 

Let US show that the fractal dimension can be computed 
from the wavelet representation. We give the proof for 
one-dimensional fractal noise, but the result can be easily 
extended to two dimensions. The power spectrum of frac- 
tal noise is given by [29] 

P(w) = kcC2Hp’. (50) 
The fractal dimension is related to the exponent H by 

D=T+l-H (51) 
where T is the topological dimension of the space in which 
x varies ( for images T = 2 ). Since Brownian fractal noise 
is not a stationary process, this power spectrum cannot be 

(a) 

(b) 
Fig. 17. (a) .I. Beck textures: only the left texture 15 preattcntively discrl- 

minable by a human observer. (h) These Images show the alxolutc value 
of the wavelet coefficients of image (a). computed on three resolution 
levels. The left texture can be discrimmated with a first-order statistical 
analysis of the detail signals amplitude. The two other textures can not 
be dlscriminatcd with such a technic. 

(a) 

(b) 
Fig. 18. (a) Brownian fractal image. (b) Wavelet representation on three 

resolution levels of image (a). A\ expected. the detail signals are similar 
at all resolutions. 

interpreted in the classical sense. Flandrin [ 121 has shown 
how to define precisely this power spectrum formula with 
a time-frequency analysis. We saw in equation (22) that 
the detail signals Dz,fare obtained by filtering the signal 
with &, ( -x) and sampling the output. The power spec- 
trum of the fractal filtered by &, ( -x) is given by 

P2#(W) = P(w) I5(2-‘w)~?. (52) 

After sampling at a rate 2’, the power spectrum of the 
discrete detail signal becomes [37] 

P;,(w) = 2J ,;<m P,,(w + 2/2kr). (53) 
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Let ai, be the energy of the detail signal Dz, f 

2-J *217r 
o;, = - 2T -2,n mJJ) h. \’ 

tation. In this article, we emphasized the computer vision 
applications, but this representation can also be helpful 

(54) for pattern recognition in other domains. Grossmann and 
Kronland-Martinet [23] are currently working on speech 

By inserting (52) and (53) into (54) and changing vari- recognition applications, and Morlet [ 141 studies seismic 

ables in this integral, we obtain that signal analysis. The wavelet orthonormal bases are also 

2 2’Ho5 / 1 1. (55) 
studied in both pure and applied mathematics [20], [25], 

02, = and have found applications in Quantum Mechanics with 

For a fractal, the ratio ai,/ai,&r is therefore constant. the work of Paul [38] and Federbush [ 111. 

From the wavelet representation of a Brownian fractal, we 
compute H from equation (55) and derive the fractal di- 

APPENDIX A 

mension D with (51). This result can easily be extended 
AN EXAMPLE MULTIRESOLUTION APPROXIMATION 

to two dimensions in order to compute the fractal dimen- In this appendix, we describe a class of multiresolution 
sion of fractal images. Analogously, we compute the ra- approximations of L’(R) studied by Lemarie [24] and 
tios of the energy of the detail images within each direc- Battle [3]. We explain how to compute the corresponding 

tion, and derive the value of the coefficient H. A similar scaling functions 4 (x), wavelets G(x),  and quadrature 
algorithm has been proposed by Heeger and Pentland for filters H. These multiresolution approximations are built 
analyzing fractals with Gabor functions [ 191. For the frac- from polynomial splines of order 2p + 1. The vector space 
tal shown in Fig. 18(a), we calculated the ratios of the V, is the vector space of all functions of L’( R) which are 
energy of the detail images within each orientation for the p times continuously differentiable and equal to a poly- 
resolutions l/2. l/4, and l/8. We recovered the fractal nomial of order 2p -t 1 on each interval [k, k  + 11, for 
dimension of this image from each of these ratios with a any k E Z. The other vector spaces V,, are derived from 
3 percent maximum error. V, with property (3). Lemarie has shown that the scaling 

Much research work has recently concentrated on the function associated with such a multiresolution approxi- 
analysis of fractals with the wavelet transform [2]. This mation can be written 
topic is promising because multiscale decompositions, . 
such as the wavelet transform, are well adapted to eval- 4(w) = d&j 

where n = 2 + 2p, (56) 
uate the self-similarity of a signal and its fractal proper- 
ties. and where the function C,,(w) is given by 

computation and interpretation of the concept of a multi- 

VI. CONCLUSION 

This article has described a mathematical model for the C,,(w) = E 
1 

h=-w (w + 2kr)“’ 
(57) 

resolution representation. We explained how to extract the We can compute a closed form of C,, (0) by calculating 
difference of information between successive resolutions the derivative of order y1 - 2 of the equation 
and thus define a new (complete) representation called the 
wavelet representation. This representation is computed C*(w) = l 
by decomposing the original signal using a wavelet or- 4 sin* (w/2)’ 

thonormal basis, and can be interpreted as a decomposi- Theorem 2 says that a(w) is related to the transfer func- 
tion using a set of independent frequency channels having tion H( w ) of a quadrature mirror filter by 
a spatial orientation tuning. A wavelet representation lies 
between the spatial and Fourier domains. There is no re- $(2w) = H(w) $(w). 

dundant information because the wavelet functions are or- From (56) we obtain 
thogonal. The computation is efficient due to the exis- 
tence of a pyramidal algorithm based on convolutions with C*,,(w) 
quadrature mirror filters. The original signal can be re- 

H(w) = 2?17c2,,(2w)’ 
\i 

(58) 

constructed from the wavelet decomposition with a simi- 
lar algorithm. 

The Fourier transform of the corresponding orthonormal 

We discussed the application of the wavelet represen- 
wavelet can be derived from the property (19) of Theorem 

tation to data compression in image coding. We showed 
3 

that an orthogonal wavelet transform provides interesting 
insight on the statistical properties of images. The orien- 
tation selectivity of this representation is useful for many 
applications. We reviewed in particular the texture dis- 
crimination problem. A wavelet transform is particularly 
well-suited to analyze the fractal properties of images. 
Specifically, we showed how to compute the fractal di- 
mension of a Brownian fractal from its wavelet represen- 
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The wavelet $(x) defined by (59) decreases exponen- 
tially. 

The scaling function shown in Fig. 1 was obtained with 
p = 1, and thus n = 4. It corresponds to a multiresolution 
approximation built from cubic splines. Let 

N,(o) = 5 + 30 cos 2 ( -)‘+ 3O(sin~)?(cos~j 

and 

N*(a) = 2(sini)i(iorq)? + 7O(cOs~) 

The function Cs( w) is given by 

c,(w) = N,(w) + h(w) 

105 sin i 
c  Y. 

For this multiresolution approximation based on cubic 
splines, the functions 6 (w ) and 5 (w) are computed from 
(56) and (59) with n = 4. The transfer function H(w) of 
the quadrature mirror filter is given by equation (58). Ta- 
ble I gives the first 12 coefficients of the impulse response 
(h(n))n,z. This filter is symmetrical. The impulse re- 
sponse of the mirror filter G  is obtained with (29). 

APPENDIX B 
PROOF OF THEOREM 1 

This appendix gives the main steps of the proof of 
Theorem 1. More details can be found in [28]. We prove 
Theorem 1 forj = 0. The result can be extended for any 
j E Z using the property (3). From the properties (5) and 
(6) of the isomorphism Z from VI onto Z*(Z ), one can 
prove that there exists a function g (x) such that ( g (X - 
k))kEz is a basis of VI. We are looking for a function 
4(x) E V, suchthat (4(x - k))kEZ is an orthonormal 
basis of V, Let 4 (w ) be the Fourier transform of $ (x). 
With the Poisson formula, we can show that the family of 
functions ($(x - k))kEZ is orthonormal if and only if 

,g, I$( w + 2ka)(* = 1. (60) 

Since 4 (x) E V,, it can be decomposed in the basis ( g (X 
- k)),,,: 

+-x)kEZ E z2w such that $(x) = k: akg(x - k). 

VW 
The Fourier transform of (61) can be written 

$(a) = M(w) g(w) with M(w) = ,Iz’, Coke’““. 

(62) 

TABLE1 

h(n) 

0.006 

0.006 

-0.003 

-0.002 

By inserting (62) in (60), we obtain 

/ +CX? 
M(w) = 

One can show that the continuity of the isomorphism Z 
implies that there exists two constants C, and C2 such that 

C, I x  Ig(w + 2ka)l* 
! 

I/* 
I c*. 

Hence, (63) is defined for any w E R. Conversely, it is 
simple to prove that equations (62) and (63) define the 
Fourier transform of a function 4 (x) such that (4(x - 
k))kcz is an orthonormal family that generates VI. 

APPENDIX C 
PROOF OF THEOREM 2 

This appendix gives the main steps of the proof of 
Theorem 2. More details can be found in [28]. Let us first 
prove property (17a). Since $2m1(~) E V-, C V,, it can 
be decomposed in the orthogonal basis (4 (x - k) ) kc~ 

42-'(x) = ,g, (+2-W 4(u - 4) +(u - k). 

The Fourier transform of this equation yields 

6P-4 = H(w) 6(w) (64) 

where H( w ) is the Fourier series defined by (17). One 
can show that the property (7) of a multiresolution ap- 
proximation implies that any scaling function satisfies 

From (64) we obtain 1 H(0) 1 = 1. Since the asymptotic 
decay of 4 (x) at infinity satisfies 

)4(x)) = w-x-2) 

we can also derive that 

h(n) = (q!-‘(u), 4(u - rl)) = 0(n-‘) 
at infinity. 
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Let us now prove property ( 17b). We saw in Appendix 
A that a scaling function must satisfy 

,g., I$( w + 2k7r)12 = 1. (66) 

Since H(w) is 2~ periodic, (64) and (66) yield 

(H(w)(2 + /H((w + 7r)f = 1. 

Let us write 

(67) 

We will show that this equation defines the Fourier 
transform of a scaling function. We need to prove that 

(a) 4(w) E L’(R) and (4(x - n)),,,Z is an ortho- 
normal family. 

(p) If V,, is the vector space generated by the family 
of functions ( &, (X - 2:‘~)) nEZ, then the sequence of 
vector spaces ( Vz I),i,z is a multiresolution approximation 
ofL’(R). 

Let us first prove property ((Y). With the Parseval theo- 
rem, we can show that this statement is equivalent to 

Let us define the sequence of functions ( g,(w)), , , such 
that 

g,(o) = 
fi H(2-“w) 

P=l 
for (w ( < 2qr 

(69) 
0 for Iw[ 1 2qn. 

As q tends to + 
towards (4(w) ( 

00, the sequence (g,(u)),, I 
’ almost everywhere. We can 

converges 
also prove 

5 

+CZ 
Vn E Z, ~Q1 g,(w) erkw dw = 

i 
ar 

ifk = 0 

ifk # 0. 
(70) 

With hypothesis (17~) of Theorem 2, it is then possible 
to apply the dominated convergence theorem to the se- 
quence ( gq(w))y,l to derive from (70) that 4 (o) satis- 
fies (68). 

Let us now prove property ( 0). In order to prove that 
( W,,EZ is a multiresolution approximation of L’(R), we 
must show that assertions (2)-(8) apply. The properties 
(2)-(6) can be derived from the equation 

$(2w) = H(w) J(w). 

Since H(w) satisfies (17a), we can show that 

From this equation, one can prove that the sequence of 
vector spaces ( Vli)jGz defined in (0) do satisfy the last 
two properties (7) and (8) of a multiresolution represen- 

APPENDIX D 
PROOF OF THEOREM 3 

This appendix gives the main steps of the proof of 
Theorem 3. More details can be found in [28]. This theo- 
rem is proved for j = - 1. We are looking for a function 
$(x) E L’(R) such that (&?lr/> ,(x - 2-‘n)),,Z is an 
orthonormal basis of O,-, The orthogonality of this fam- 
ily can be expressed with the Poisson formula 

(71) 

Since &,(x) E O2 I C V,, we can decompose it on the 
orthonormal basis ( 4 (x - n ) ) ,,Ez: 

li/2~l(x) = ,,g, (&I(U), 4(u - n)) 4(x - n). 

(72) 
Let us define 

G(w) = E ( G2 i(u), $(u - n)) emino. (73) ,,= -cc 

The Fourier transform of (73) yields 

$(2w) = G(w) J(w). (74) 

As in Appendix C, (74) and (71) give 

(G(wf + (G(w f a)(’ = 1. (75) 

Since 02- 1 is orthogonal to VI I, each function of the fam- 
ily ( @$2m1(x - 2-l n) ) ,rcZ should be orthogonal to 
each function of the family ( &?+2m1(x - 2-‘n)),Ez. 
The Poisson formula shows that this property is equiva- 
lent to 

Vn E Z, 5 q+(2w + 2n7r) $(2w + 2n7r) = 0. 
,1=--03 

(76) 

By inserting (64), (66), and (74) in (77), we obtain 

H(w) G(o) + H(o + r) G(w + T) = 0. (77) 

We can prove that the necessary conditions (75) and (76) 
on G(w) are sufficient to ensure that ( fl&-~(x - 
2p’n)),,Ez is an orthogonal basis of 02-1. An example of 
such function G(w) is given by 

G(w) = e -‘“H(w + 7r). (78) 

The functions G(w) and H(w) can be viewed as the 
transfer functions of a pair of quadrature mirror filters. By 
taking the inverse Fourier transform of (79), we prove 
that the impulse responses ( g (n ) ) nEZ and (h (n ) ) ,lEZ of 
these filters are related by 

g(n) = (-I)‘-“h( 1 - n). (79) 

By definition, a multiresolution approximation of L’( R) 
satisfies 

lim Vz, = L’(R) and lim V,, = (0). 
./++a p--m tation. 
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Since O? , is the orthogonal complement of V2, in V?, + I, 
we can derive that that for any j # k, 02, is orthogonal 
to O?h and 

L’(R) = it Oz,. (80) ,,= -cc 

We proved that for anyj E Z, (G&,(x - 2-Jn)),,.z is 
an orthonormal basis of 02, . The family of functions 
( m~3r(X - 2-/n)) 
basis of L’( R ). 

C,I, IEZ: is therefore an orthonormal 

APPENDIX E 
PROOF OF THEOREM 4 

This appendix gives the main steps of Theorem 4 proof. 
More details can be found in [35]. Let ( V2,)iGz be a mul- 
tiresolution approximation of L’( R ) such that for any j E 
Z, 

v,, = v;, 0 VA, (81) 
where ( Vi, licz is a multiresolution approximation of 
L’(R). We want to prove that the family of functions 

(2-‘$&(x - 2p’ll) &,(y - 2-h), 

2-‘&,(x - 2-/n) &,(.v - 2+n), 

2-‘jc7iCer - 231) bi(Y - 2-‘m))(,i,,,r)Ez2 

is an orthonormal basis O?, . The vector space 02, is the 
orthogonal complement of V?, in V2, + I. Let 04, be the 
orthogonal complement of Vi, in Vl, I. Equation (81) 
yields 

V >,T’ = vi,+, 8 vi,*, 

= (Oi, 0 Vi,) 0 (04, 8 Vi,). 

This can be rewritten 

v,,-1 = (V$, 0 Vi,) 8 (Vi, 0 Oil) 0 co;, 0 v;,) 

8 (o;, 0 o;,,. 

The orthogonal complement of V?, in VI,, I is therefore 
given by 

02, = (Vi, 0 04,) 0 co:, 0 v;,, 

0 (Oi, 0 o;,,. (82) 

The family of functions (m&,(x - 2-.‘n))icz is an 
orthonormal basis of Vi, and ( fl+*, (X - 2-jn )),EZ is 
an orthonormal basis of O:, . Hence, (82) implies that 

(2-‘&,(x - 2-‘n) I&,(J - 2-/m), 

2-‘&,(x - 2-/n) &,(y - 2:‘m), 

2-‘$2~(x - 2-‘n) 452iCY - 2-‘f4)(,i,,)i)Ezz 

is an orthonormal basis of 02, 
The vector sDace L’C R’) can be decomnosed as a direct 

sum of the orthogonal spaces 02, 

L’(R’) = ii 02,. 
,=-LX 

The family of functions 

(2-&(x - 2-/n) il/z,(y - 2-Jm), 

2-‘4!3,(x - 2-ln) &,(y - 2-‘m), 

2-‘ic/n(,x - 231) h(Y - 2--‘4)(n ,,,)tZ’ 

is therefore an orthonormal basis of L2( R*). 
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