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Abstract

The Hough Transform, HT, has long been recog-
nised as a technique of almost unique promise for shape
and motion analysis in images containing noisy, missing
and extraneous data. However its widespread adoption
in practical systems has been slow due to its computa-
tional complexity, the need for large storage arrays and
the lack of a detailed understanding of its properties.
The aims of Alvey project MMI/IP078 are

• the investigation of the properties of HTs

• the study of efficient implementations of HTs

• the production of a HT hardware device for use in
real time industrial inspection systems.

• the development of general high level image inter-
pretation strategies which use information derived
from the HT.

The first three items listed above are being stud-
ied at Surrey University in collaboration with Com-
puter Recognition Systems while the final item is un-
der investigation at Heriot Watt University. There has
recently been much activity concerned with space and
time efficient implementations of HT ideas and this pa-
per presents a survey of this area. Topics covered in-
clude the development of new algorithms, the use of
optical techniques and the implementation of HTs on
novel hardware architectures.

1. Introduction

Line drawings and silhouettes strongly suggest that
in human vision the shape of objects provides a major
part of the information needed for the interpretation
of 2D images as 3D world scenes. The development
of methods which will enable computers to reproduce
these abilities is one of the major problems in com-
puter vision. A good shape recognition system must
be able to handle complex scenes which contain several
objects that may partially overlap one another. In the
case of computer vision systems the recognition algo-
rithm must also be able to cope with difficulties caused
by poor characteristics of image sensors and the limited
ability of current segmentation algorithms. The Hough

Transform [1] is an algorithm which has the potential
to address these difficult problems. It is a likelihood
based parameter extraction technique in which pieces
of local evidence independently vote for many possible
instances of a sought after model. In shape detection
the model captures the relative position and orientation
of the constituent points of the shape and distinguishes
between particular instances of the shape using a set of
parameters. The HT identifies specific values for these
parameters and thereby allows image points of the shape
to be found by comparison with predictions of the model
instantiated at the identified parameter values.

Image points on a parametrically defined shape or
curve can be defined by an equation of the form

(1.1)

where P = (pi,...,pn) are specific values of the n param-
eters of the shape and X = (xi,X2) are the coordinates
of any image point of the shape. Equation (l.l) defines
a one to many mapping from a parameter space P to an
image space X. One of the basic ideas behind the HT is
that the form of equation (1.1) can be used to express
a one to many mapping from image space to a space of
parameters i.e. there is a transform

(1.2)

which maps each specific image point, (£1,22) into a
set of parameter values and the form of g is the same
as that of / . The mapping g generates the parameters
of all possible shape instances which could include the
image point (ii, £2)- For example in the case of a circu-
lar shape the relationship between image and parameter
space is given by

-Pi = 0 (1.3)

where pi and P2 are the parameters describing the posi-
tion of the circle centre and P3 denotes the circle radius.
Mapping / is obtained by taking values for pi,p2, and
P3 and (1.3) then defines the set of image points which
belong to a specific circle instance. Mapping g is ob-
tained from (1.3) when specific values are defined for
(^1)^2) and it then yields the set of (pi,P2>P3) values
which define circles that the image point could lie on.
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The parameter surface which g generates for each image
point is the surface of an upturned right circular cone
with its apex at parameter values (zx,Z2,0). The HT
involves taking each image point in turn and mapping
it into multidimensional parameter space P using g. If
several points belong to the same shape then the pa-
rameter space surfaces which they generate via g will
all intersect at the parameter point which characterises
this shape. The HT is a method of identifying these
points of intersection.

In the standard digital computer implementation
of the HT method both image and parameter space are
represented by arrays of numbers which are spatially in-
dexed to appropriately small, regularly shaped regions
of space. The image array is derived from real world
measurements and is a binary valued array in which
Is represent the likely presence of the shape within the
corresponding region of space. Non zero elements of
the image array are mapped into parameter space so
that each element of the parameter array accumulates a
value which is equal to the number of parameter hyper-
surfaces that pass through it. This discrete parameter
space is usually called the accumulator array and cells
where many hypersurfaces intersect have a large count
and form a peak structure. In using the HT the difficult
problem of identifying sets of spatially extended points
is turned into the much easier task of finding compact
local peaks in the accumulator array.

The above discussion applies to simple parametric
shapes but the HT method can be extended to detect
general shapes [2,3]. In these cases a shape is described
by a list of template vectors which record the distance
and orientation of each point from an arbitrary local-
isation point. A suitable localisation point is the cen-
troid of the template shape. Translated instances of the
shape may lie anywhere in the image plane. Each can
be characterised by the position of its centroid i.e. the
coordinates of the centroid are two parameters which
can be used to identify translated instances of a tem-
plate shape. In the generalised HT, GHT, each image
point is compared to every entry of the template list and
from this a candidate centroid is calculated and the cor-
responding cell in an accumulator array is incremented.
As in other HTs, shape parameters are identified by lo-
cating peaks in an accumulator array. The method can
be used to find scaled and rotated versions of a shape
using two further parameters to describe these degrees
of freedom.

A good way to view the HT is as an evidence gath-
ering or voting procedure. Each image point generates
or votes for all parameter instances that could have
produced it. The votes are counted in a multidimen-
sional accumulator array and the final totals indicate
the relative likelihood of shapes described by parame-
ters which are within the accumulator cell. Only sets

of image points which belong to a shape will vote co-
herently and produce peaks in the accumulator array.
Using this viewpoint it is easy to see that the HT can
cope with many of the difficulties present in real world
imagery. The method is robust in the presence of ran-
dom extraneous data as this maps into a distributed
background of votes which is unlikely to hinder detec-
tion of large compact peaks. The HT is also tolerant
of missing data produced by poor segmentation or oc-
clusion. These effects lead to a decrease in the height
of parameter peaks but do not necessarily affect their
detectability catastrophically. Finally the HT is inher-
ently parallel as it combines information from each im-
age point independently. This means that it can simul-
taneously accumulate evidence for several examples of a
shape. Each instance of the shape produces a distinct
peak in the accumulator array.

One of the principal disadvantages of the HT in its
standard implementation is the large storage and com-
putational requirements which arise from the use of a
large accumulator array. For the determination of q pa-
rameters we need to represent a q dimensional space. If
each parameter is to be resolved into a intervals then
the accumulator array will have aq elements. If either
q or a is large then this can be a prohibitively large
amount of storage . The size of the accumulator also
has a direct bearing on the computational cost of the HT
as most of the algorithm involves determining, for each
image point, which cells of the accumulator array have
to be incremented. A large accumulator means that
a large number of parameter hypersurface-accumulator
cell intersection tests have to be evaluated. As these
considerations are of great importance to the practical
adoption of the HT method we have begun to study
methods which can utilise the HT ideas but overcome
the inefficiencies of the most naive standard implemen-
tation. In this survey paper we report published work
which relates to ideas for the efficient implementation
of the HT. Section 2 discusses how efficiency problems
can be tackled by consideration of task specific ideas.
A very useful and widely applied idea is that instead of
searching for many parameters using a single stage HT
it is better to decompose large dimensional problems
into multistage algorithms involving a sequence of low
dimensional HTs. Section 3 considers algorithms which
use novel data structures or focusing approaches to the
HT. It includes our own work on a method which we
have called the Adaptive Hough Transform, AHT. Sec-
tion 4 describes the relationship between the HT and
other transforms with a view to use of these transforms
to compute the HT more easily. It can be shown that
the HT is equivalent to calculating projections and these
results lead to both optical and digital implementations
of the HT. In Section 5 we consider how the HT has been
mapped onto existing parallel architectures. Section 6
is a brief summary of the paper.
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2. Task specific principles.

In the standard implementation of the HT storage
increases exponentially as the number of parameters, q,
increases or the parameter resolution, (oc a) increases.
This curse of dimensionality also applies to the amount
of computation required, as the parameter hypersurface
which each image point generates is usually a (q-1) di-
mensional hypersurface. The most obvious way to im-
prove efficiency is therefore to ensure that both q and a
remain as small as practicable. An obvious strategy is
to restrict the range of parameters which are to be found
by using apriori knowledge of the specific problem to be
solved. A smaller parameter range can be covered to a
specified high resolution using fewer accumulator cells
i.e. a smaller value of a. For example in many problems
which involve circle finding there may be limits on the
likely radius of circles or the centre of the circle may
be constrained to lie within the interior of the image.
In a limiting case it may be known that circles are of
a single known radius and in that case the 3 parameter
circle finding problem collapses to a 2 parameter prob-
lem of finding circle centres. Alternatively the shape
may be known to have certain rotational symmetries
and these can be exploited to reduce the number of in-
tervals needed to determine orientation. Davies [3] has
considered regular polygonal shapes and concludes that
the orientation axis need only be divided into a num-
ber of intervals which is equal to the number of polygon
sides.

A less obvious way of improving the computational
efficiency of the HT is to use extra information to re-
strict the mapping of image to parameter values from
a "one to many" mapping to a "one to few" mapping
i.e. use extra data to constrain the dimensionality or
range of the hypersurface that an image point gener-
ates. Edge direction information [4] is the most com-
monly used piece of extra information although curva-
ture and gray level constraints have also been used in
this way [5,6]. For example in the case of straight line
detection the edge direction is directly related to the line
gradient and therefore line finding can be reduced to a 1
parameter histogramming task to find the best intercept
value. In the case of circle finding edge angle informa-
tion restricts each image point mapping to a single line
of parameter values on the surface of a cone. The idea
of using edge information has been used most notably in
Ballards [7] efficient HT for general shapes. This relies
for its efficiency on the indexing of possible localisation
point vectors by values of edge direction. Candidate
shape points are then only matched to template points
which possess the same value of edge direction.

A sophisticated use of prior information involves
decomposition of high dimensional problems into a se-
ries of lower dimensional problems. One of the simplest
examples of this type is the use of edge direction infor-
mation, 8, as a constraint in circle finding. All the edge

vectors on a circle must project to a common intersec-
tion at the centre of the circle. In [8] it is shown how this
can be used to define a 2 stage HT. Edge vectors can be
estimated using standard operators such as the Sobel
operator. The first stage of the modified HT involves
mapping image features described by [x\,X2,8) into a 2
parameter space (pi,P2) of circle centres. Peaks iden-
tified in the 2 parameter space yield candidate (pi,P2)
values which are then used with image point coordi-
nates in a second stage to calculate a histogram of pos-
sible P3 or radius values. This radius histogram can
be viewed as a trivial 1 parameter HT which maps 4
tuples of (xi,X2,pi,P2) into p3 values. The maximum
dimensionality of any of the substages is only 2 and the
overall efficiency of the modified HT is dominated by
the demands of this stage. The penalty paid for this
increased efficiency is the cost of calculating, and the
reliance on, good edge information. Edge detection is
a computationally intensive task but in most cases this
will not outweigh the benefit gained from its use in the
two stage HT. Indeed there are many situations where
edge information may have to be computed for purposes
other than the HT and in these cases no extra compu-
tation is incurred. However decomposing the HT into
a multistage process may introduce systematic errors as
inaccuracies in parameters determined at an early stage
propagate into later stages. Tsukune and Goto[9] have
shown that similar edge based constraints can be derived
and used to decompose the 5 parameter ellipse finding
problem into a 3 stage problem involving determination
of at most two parameters at any single step.

Ballard and Sabbath [10] have shown that param-
eter decomposition can be a powerful technique in the
matching of 2D views to 3D models. Descriptions of 3D
objects are usually stored as object centred representa-
tions and recognition involves determining the parame-
ters of a transformation which maps a 2D view into these
3D descriptions. The viewing transformation generally
involves 7 parameters which cater for changes in scale
(l parameter), orientation (3 parameters) and transla-
tion (3 parameters). However for orthographic projec-
tion there is a natural ordering or dominance of param-
eters such that they can be sequentially determined in
subgroups i.e. scale can be determined without knowl-
edge of orientation or translation and orienation can be
found without knowing the value of translation parame-
ters. Ballard and Sabbah give specific algorithms for the
case where objects are described by oriented edges and
planar surface patches. The maximum dimensionality
of any subproblem is only 3.

A further possibility for parameter reduction is to
consider how any shape maps into a low dimensional
space such as that used in line finding. Several au-
thors [11,12,13,14,15] have shown that the distribution
of votes in this parameter space has a characteristic
shape. Finite length lines produce a butterfly shaped
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peak of counts rather than a symmetric peak. Leavers
and Boyce [14] have designed filters to enhance this fea-
ture in order to increase the reliability of line detection.
They have also considered the mapping of circles [15]
into this parameter space. Circles produce a band of
votes with a characteristic falloff at the band edges. The
edges of the band can be enhanced by a filter and param-
eters of the circle can be estimated from their positions.
Casasent and Krishnapuram [16] use the same idea of
mapping any shape into a two parameter space but they
suggest manipulating the resulting HT parameter space
so that upon applying the inverse HT the votes from a
shape map to a compact peak. They indicate a general
technique for deriving the manipulations which must be
performed in parameter space. The position of the peak
in the inverse transform space indicates the translation
parameters associated with the shape.

3. Efficient accumulation methods

In this section we consider several methods which
utilise novel data structures or use techniques that em-
ploy nonuniform or multiple resolutions in order to
achieve storage and computation savings. Many schemes
are based on the observation that it is necessary to
have high accumulator resolution only in places where a
high density of votes accumulate. O'Rourke and Sloan
[17,18,19] were among the first to use this principle.
They developed two data structures. The first structure,
Dynamically Quantised Spaces (DQS) [17,19], consists
of a binary tree in which each node encloses a rectan-
gular region of space. As data is accumulated rules are
used to split and merge cells so that each cell contains,
irrespective of its size, approximately the same num-
ber of counts evenly distributed throughout its volume.
The total number of cells in the tree is an input pa-
rameter of the method but in the final tree there will
be a concentration of small cells around peaks and this
allows peaks to be located more accurately than using
the same number of cells in a standard uniform quan-
tisation schemes. The second data structure, Dynami-
cally Quantised Pyramids (DQP) [18,19], is based on a
multiresolution multidimensional quadtree in which the
number and connectivity of cells is small and fixed. A
disadvantage of the quadtree structure is that its bound-
aries, and hence its spatial resolutions, are fixed. This
limitation is overcome in the DQP data structure us-
ing a dynamic technique, called hierarchical warping, to
modify the boundaries of cells by tracking the mean po-
sition of data points in their regions of space. The net
effect of the boundary adjustment is to produce cells
containing approximately equal numbers of votes. How-
ever the warping process introduces some errors in the
final accumulator totals and means that the final divi-
sion of space depends on the order in which the data is
accumulated i.e. recently accumulated points are most

influential on the final result. O'Rourke and Sloan use
both data structures in a series of experiments where a
3 parameter space is divided into about 64 cells. They
demonstrate the relative abilities of each algorithm to
focus on peaks, to dynamically change attention and to
detect multiple peaks. Their general conclusion is that
DQSs are difficult to implement but perform somewhat
better than DQPs.

A useful idea suggested by several authors is the
iterative focusing of the HT to identify peaks with high
counts. Initially the HT can be accumulated in a coarse
but uniform resolution parameter space. Regions or cells
with high counts at this resolution can then be inves-
tigated at higher resolution. Only a few iterations of
this procedure can lead to very high parameter resolu-
tion. Consider searching for a peak in a q dimensional
space resolved into a accumulator bins. The iterative
use of a much smaller accumulator of size /5 requires
Q(io (fl ) derations to focus down to the same resolu-
tion. The computational saving of the method is pro-
portional to the ratio of the number of cells in the two

accumulators i.e. f %) times the ratio of iterations

i.e. O ( ( | ) ' * gj{Q). This can be very large. This
strategy provides enormous efficiency benefits in terms
of both amount of computation and amount of storage
space required. It has been used by Adiv [20] as an
efficient way to search for motion parameters in high di-
mensional spaces and by Silberberg [21] to identify the
viewing parameters relating stored models to observed
shapes.

Recently Li et al [22,23] have detailed a focusing
algorithm, the Fast Hough Transform, FHT, which uses
a multidimensional quadtree in conjunction with HTs
which map image points into hyperplanes. This use of
hyperplanes is advantageous as the approximate inter-
section between planes and parameter cells can be effi-
ciently computed using incremental tests which depend
on the known spatial relationship between a quadrant
and its four sons. Only additions and shifts are required
to implement the test and the computational cost scales
only linearly with the dimensionality of the parameter
space. Computational gains of O(103) for 2D lines and
O(106) for 3D plane detection can be achieved. The
algorithm is regular in structure and is therefore easily
extended to higher dimensional spaces and easily imple-
mented in VLSI hardware. However the FHT currently
identifies areas for focusing by requiring that quadrants
have a vote count which exceeds a fixed threshold. In
complex images this threshold may be difficult to deter-
mine and if it is set too low the efficiency of the method
will deteriorate as the algorithm will explore too many
quadrants. Another problem is related to the incremen-
tal intersection testing method. This requires that each
quadrant must store the distance of every image feature
from its centre. If there are many image features this
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can represent a large overhead. It is also not clear that
all shapes can be naturally mapped into hyperplanes.
Finally the quadtree data structure is a static structure
and cannot optimally adapt to situations which may re-
quire different parameter resolutions along different pa-
rameter axes. Li et al [24] have recognised the last prob-
lem and have suggested using a data structure, called
the bintree, in which space is partitioned into rectangu-
lar regions.

Illingworth and Kittler [8,25] have developed an it-
erative coarse to fine search strategy for detecting lines
and circles in 2D and 3D parameter spaces. Their im-
plementation is called the Adaptive Hough Transform,
AHT. It uses a small accumulator array (typical /? =
9) which is thresholded and then analysed by a con-
nected components algorithm. The shape and extent
of connected components determine the new parame-
ter limits which are used in the next iteration. Limits
can be decreased, expanded, rotated or merely trans-
lated depending on the distribution of counts in the ac-
cumulator. Parameter limits are defined independently
for each parameter dimension and therefore the method
selects appropriate precision for each parameter. The
method works well for single object recognition and we
are currently investigating strategies for using it to de-
tect multiple objects. The storage gain using the AHT

is of the order expected for focusing methods, i.e. ( j J ,
while experiments with searching for circles in a 3 pa-
rameter space demonstrated that it was several hundred
times times faster than a standard method.

Brown [26,27] attempted to overcome the storage
problems associated with the standard HT by replacing
the accumulator array by a small fixed size content ad-
dressable store i.e. a hash table in software or a cache
if implemented in hardware. Counts are accumulated in
the store until it is full and then a flushing or garbage
collection method is invoked to release some storage for
further use. The simplest flushing strategy is to remove
entries with fewest votes. However it is possible to de-
vise schemes which will favour the keeping of recent in-
formation or which will incorporate geometric locality
information. Brown studied caches of size 32, 64 and
128 and compared their performance againt standard
accumulators as he varied flushing strategy and the or-
der of accumulation of the data. He concluded that
finite length caches were as practical as accumulators
and he was able to predict qualitatively the degradation
of their performance as noise increased and cache length
decreased.

4. Optical and projection based implementations.

In this section we consider the relation of the HT
to other transforms. It was pointed out by Deans [28]
that the HT for linear features was a special case of a

well known transform much studied in the mathematical
literature, the Radon Transform. The Radon transform
of a function f(x,y) on a two dimensional Euclidean
plane is defined as

+ OO +OO

R{p,6)= / / f[x,y)8{p-xcos(9) - ysin{6) )dxdy
— oo — oo

(4.1)
where 8 is the Dirac delta function. The delta function
term forces integration of f{x, y) along the line

p = xcos(8) + ysin(8) (4.2)

The Radon Transform yields the projections of the func-
tion f{x,y) across the image for various values of line
parameters p and 0. It is a transform which is much
used in computer tomography and is equivalent to the
HT when considering the transform for binary images.
The Radon and Hough transforms for shapes other than
lines are calculated by integrating or projecting image
data along paths which are identical to the curve to be
detected.

An important property of the Radon transform is
that it can be computed via the Fourier transform. The
Fourier Slice theorem states that if F(u, v) is the Fourier
transform of a function f(x,y), Ro{p) is a projection
at an angle 9 across f(x,y) and S (̂w) is the Fourier
transform of Rg (p), then

5<y(w) = F(u>cos6, (4.3)

This allows efficient calculation of the Radon transform
using either optical Fourier techniques [29,30,32] or the
Fast Fourier Transform [31].

Several authors have used optical methods to com-
pute the HT. Eichmann and Dong [29] suggested a setup
which used coherent optics. Later Gindi and Gmitro
[30] discussed a hybrid optical-digital hardware system
for the calculation of the Radon transform at video rates
on a 512x512 image. In their system a single projection
is acquired by imaging a scene onto a special ID sen-
sor array whose elements span the vertical length of the
image. This is achieved using an anamorphic optical
system, one with differing magnification in two orthog-
onal directions. Data for different angles of projection
is collected by rotating the image using a prism which
spins at 450rpm. 512 angular slices each consisting of
512 samples could be collected at standard video rates.
This projection data can be processed to yield the HT
for lines. Steier and Shori [32] have built a system based
on similar ideas and show results relating to the loca-
tion of bridges and roadways in outdoor scenes and the
detection of tool parts in an industrial inspection task.

The idea of the HT as a projection has been used by
Mostafavi and Shah [33] in conjunction with hardware
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features of commercially available image processing sys-
tems to produce a rapid algorithm for line detection.
The same idea has been used and extended in the re-
cent work of Sanz and Dinstein [34,35]. Lines at a single
orientation, 6, can be detected by convolving the binary
image of the line with a template image. In the tem-
plate image each pixel lying on a line a normal distance
p from the origin has an intensity of p. The resultant
histogram of gray levels should have large peaks only
at values of intensity equal to the p value of the line.
By generating and evaluating a series of histograms for
each value of 9 the full HT can be built up. Features of
specialised image processing and general pipelined archi-
tectures can be used in the template image generation,
the image convolution and the gray level histogram gen-
eration steps. The method can be used for shapes other
than lines by using different template images.

5. Parallel architectures.

One of the main characteristics of the HT is that
it consists of a series of fairly simple calculations car-
ried out independently on every feature in an image. In
this section we will review ideas and attempts to capture
this inherent paralellism on specialised parallel architec-
tures.

Several authors have investigated the implementa-
tion of the HT on currently available SIMD architec-
tures. These usually consist of square arrays of simple
processing elements, P.E.s, connected so that each can
communicate with its 4 or 8 neighbours. All processors
concurrently execute the same instructions on different
items of data. Most often each P.E. has only a single bit
arithmetic logic unit, several registers and a few kilobits
of on chip RAM. The mapping of the HT onto these ar-
chitectures has been considered by both Silberberg [36]
and Li [37]. Silberberg considered distributing both the
image and the accumulator arrays among all P.E.s i.e.
each P.E. is assigned both an image feature and a cell
of parameter space. However this necessitated a great
deal of data transfers between P.E.s in order to pass
votes to the correct P.E. for accumulation. Over 98%
of the time of the algorithm was taken in shifting data
around the processing array and the end result was that
the use of 8000 simple P.E.s led to a speedup factor of
only 7 relative to a standard implementaion on a VAX
11/785. This poor result illustrates the care required in
mapping algorithms onto parallel machines.

Li [37] considered two schemes for running his Fasi
Hough Transform, FHT, on a SIMD architecture. In
the first scheme each P.E. is assigned an image feature
and the coordinates of a parameter cell are broadcast
simultaneouly to every P.E. by a central controller. Each
P.E. decides whether the hypersurface generated by its
image feature intersects the cell and if it does it sends

a vote back to the controller. The votes from each P.E.
can be summed by the central controller and stored for
later analyis. A second scheme is to assign each P.E.
a volume of parameter space and broadcast the image
features. The choice of method depends on the number
of available P.E.'s, the number of image features and
the number of parameter cells. For the standard HT
the number of parameter cells increases exponentially
with dimensionality of the problem and therefore the
first alternative is likely to be the most feasible.

Simplistically one might argue that the use of n
P.E.s, one for each of n image features, should speed up
the HT by a factor of O(n). However votes have to be
routed to their correct places in the accumulator and on
a simple square 2D mesh with only local shifting oper-
ations this requires O(^/n) steps. As Silberberg found
out this can be a significant overhead and even the dom-
inant time factor. However if the array is augmented
by a tree based voting network this can be reduced to
O(log(n)) and the expected gains in efficiency should
again approach O(n).

Little et al [38] describe a possible implementation
of the HT on an architecture called the Connection Ma-
chine. This is similar to the previously mentioned SIMD
architectures but as well as P.E.s communicating with
near neighbours there is a hardware router which im-
plements rapid communication between any pair of pro-
cessors. The architecture is based on a 12 dimensional
hypercube i.e. every processor can be reached from any
other by traversing at most 12 edges of the cube. Un-
fortunately this paper concentrates on aspects of pro-
gramming and addressing and does not give any figures
on the efficiency gains in using this parallel implemen-
tation.

Olsen et al [39] discuss the operation of the HT on
a MIMD computer architecture. They use a commer-
cially available system called the BBN Butterfly Paral-
lel Processor™. This consists of 256 processing nodes
connected by a switching network. Each processor is a
microprocessor from the Motorola 68000 series and each
node has a substantial amount of local memory i.e. 1
megabyte. Memory is shared in the sense that a switch-
ing network allows any processor to address the local
memory of any other processor. Olsen et al implemented
two different line finding HTs using different parameter-
isations for lines. The versions differed in whether the
image was partitioned among the processors with the
parameter cells accessed from common memory or vice
versa. They consider whether the algorithm is computa-
tion or communication resource bound and their results
indicate that it is possible to achieve processor utilisa-
tion factors in the region of 80% i.e. if 100 processors
are used they will give a speedup of 80 times relative to
using a single processor.

The HT has attracted attention from researchers
interested in human vision as it is a prime example of
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the ideas of the connectionist school of artificial intel-
ligence [40,41]. The unifying principle of this approach
to intelligence is that low and medium level vision tasks
are done by massively parallel, cooperative computa-
tions on large networks of simple neuron like units. Low
level pixel based properties, like edge or gray level esti-
mates, can be represented by nodes in a feature network
which is spatially indexed to the image while parame-
ter values associated with higher level image entities,
such as straight lines, can be represented by nodes in
a seperate parameter network. Each node records a
measure of confidence of the occurrence of its feature
or parameter value and direct connections between the
two networks define possible ways in which nodes can
influence these confidence values. Different connection
patterns can be used to impose different image space to
parameter space mappings i.e. connections can be es-
tablished so that when many low level units which lie on
a straight line have high confidence then the higher level
unit describing the parameters of this line will acquire a
large confidence value. The major characteristic of this
type of implementation is the huge number of feature
and parameter units needed and the very large number
of connections which are required between them.

6. Summary

We have discussed some of the most important
ideas which have been proposed for increasing the ef-
ficiency of the HT. These include principles which can
be exploited to decrease the storage and computational
demands of specific tasks as well as new, general ways of
efficiently representing and accumulating the parameter
space. The consideration of optical techniques has led to
the development of realtime implementations of the HT
while experience with programming the HT on general
purpose parallel architectures has illustrated that cer-
tain global communication facilities are needed if this
is to be sucessful. In future work we will investigate
and develop many of these ideas as well as considering
other aspects of the shape representation and recogni-
tion problem.
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