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Abstract: Face recognition is interpreted as a CBIR (Content Based Image Retrieval) problem. An arbitrary input image of a 
given face is treated as a sample for search within a database (DB), containing a large enough set of images (i.e. projections 
from a sufficient number of view points) for each human face of interest. We assume that the faces for recognition are static 
images, which have been appropriately extracted from an input video sequence. In addition, we have at our disposal a CBIR 
method for image DB access that is simultaneously fast enough and noise-tolerant. The paper describes both the methodology 
used for building up the DB of image samples and the experimental study for the noise-resistance of the available CBIR 
method. The latter is used to acknowledge the applicability of the proposed approach. 
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INTRODUCTION  

 
The Face Recognition (FR) area is intensively being explored 
and developed in the last years. The increasing demands 
toward the biometric security systems for example [1], 
definitely count on yet another modality – the face (the 
person’s physiognomy), in addition to the classical modalities 
– personal code, signature, voice, finger print, iris-image, and 
other. Many of the FR problems still remain open, for 
example: (1) detection/identification of a face in a common 
scene, (2) normalization (by geometric size and illumination) 
of the faces isolated from the scene, (3) face standardization 
(i.e. the isolation of temporary/non-significant attributes like 
hair, moustaches, beard, glasses), (4) storage of the face- 
samples (patterns, standards) in a DB, as well as the capacity 
of this DB (i.e. the number of client-physiognomies for 
recognition), and last but not least – (5) the collision raised by 
the representation of a 3D object (face) with its 2D 
projections. A detailed state-of-art survey for the majority of 
these problems is provided in [2]. Extra information may also 
be obtained by the specialized surveys, for example [3] that 
interprets FR mainly in the aspect of emotion recognition. To 
the set of established FR methods we can definitely add the 
“Eigenfaces” [4] that allude to problem (2) by Principal 
component analysis (PCA), and also the “Fisherfaces” [5], 
where the illumination impact is reduced to 3D-subspace of 
the whole pixel-feature space and is followed by Fisher’s 
interpretation of Linear discriminant analysis vs. the PCA. 
Other approaches, such as neural networks, fuzzy sets, colour 
histograms, template matching and other, have yet a very 
limited application [2, 3]. A characteristic drawback of the 
well-known methods is their inability to meet the challenge of 
a combination of the above mentioned FR problems.  
 
The paper proposes an approach to a combination of the 
following FR problems: the normalization (2), the IDB size 
(4) and the 3D-2D-collisions (5). The detection problem (1) is 
not considered; the standardization problem (3) may be 
considered in the meanwhile. 
 
 

BACKGROUND 
 
The proposed approach for FR is vision-based, and uses 
(minimum) one video camera for capturing the human face in 

its dynamics. For the sake of simplicity, we consider the 
recognition of a single moving object, i.e. we assume that the 
recognized face is „the biggest spot” in the video frames, or at 
least in the majority of frames incoming from the camera. 
  
We will interpret the task of recognizing a face within the 
camera frame as a task for the direct comparison of an input 
example with samples from a given image database (IDB), i.e. 
as a CBIR problem [6, 7, 8]. 
 
Essence of the proposed approach: A given face in front of 
the video camera is considered as a dynamic 3D object, 
represented by a series of 2D projections, i.e. static images 
from the camera. If an appropriate part of these images, or 
similar to them, is already stored in an IDB with representative 
face images, then we can search into this IDB for the image 
sample that is the closest (most similar) to the source/input 
image. Moreover, we can search for a series of image samples, 
sorted (in descending order) of their similarity to the input 
image. Of course, a “dictionary” with a large amount of 
samples will be needed, whose size we will try to estimate 
experimentally hereinafter. 
 
In the same time, the comparison time of the input image with 
all samples from the dictionary has to be quick enough to 
assure operation in real-time. I.e. the realization of the above 
idea is possible, if we have a noise-tolerant and 
simultaneously fast enough CBIR method for accessing a 
large DB with face images. Such CBIR methods are available 
with the system EFIRS (Effective and Fast Image Retrieval 
System) developed by IIT-BAS, [9, 8, 7]. Their noise-
resistance covers cases of eventual linear transformations in 
the input (translation, rotation, and scaling) and regular noise, 
as well as rougher (to a certain level) artefact-noise. 
 
Actually, the primary goal of this research was to clarify if the 
available (developed by us) CBIR approach is appropriate for 
the recognition of dynamic objects in a video-clip, in different 
recognition applications [7]. A preliminary result in this aspect 
has been already committed for the case of sign language 
alphabet recognition [10]. In this paper we are considering the 
case of FR. 
 
Expected problems and allowed limitations: In analogy to 
[10], the following two problems can be formulated for the FR 
approach, too: 



(1) isolating the object of interest (a human face in dynamics) 
from the input image (static 2D scene) and/or from the time 
sequence of similar scenes (video-clip); 
 
(2) accumulating a representative enough IDB, i.e. a 
dictionary with images of representative face projections. 
 
The first problem is characteristic for most of the approaches 
in the area of computer vision, image processing and 
recognition, therefore, at this stage, we will consider it 
a’priory resolved. We will concentrate here on the 2nd problem 
– gathering the representative samples in the IDB and 
performing an experiment of evidence for the chosen concept. 
 
Except for being enough in number, the samples from the 
experimental IDB have to adhere to the general limitation of 
the available CBIR methods [8, 9] – the images need to be 
relatively “clean”, i.e. to contain the whole object of interest 
(the human face), in color or gray scale, over an uniform 
(white) background and, if possible, be devoid of noise-
artifacts from the natural surrounding. 
 
All these limitations, related in fact to the well known 
problems of face segmentation [2, 3], are resolved here in their 
light form, according to the experiment’s specifics. For that 
purpose, we are using a simplified scene – a motionless human 
head in front of a dark blue curtain, i.e. with opposite color to 
the actor’s face skin, and facing the camera central position. 
 
We also managed relatively easy the expected difficulties with 
the scene’s surrounding illumination. Thus, we were 
thoroughly concentrated on the uniformity of the manual 
scanning with the camera, row by row, as explained below. 
 
 

APPROACH 
 
As a possible alternative to the needed experimental IDB, we 
could use an IDB partially available on the Internet, [11]. This 
approach is not the most suitable for our goals, as revealed in 
the following analysis. 
 
Three approaches to data gathering: The methodology of 
gathering data in IDB (containing a lot of projections of 
different faces) is based on the recording of a short video-clip 
that traces out the object (a face) through uniform scanning 
(by position and time) in a spatial sector wide enough and in 
front of the object. Three possible approaches have been 
considered:  
  
(1) Static object and moving camera, which scans uniformly 
the needed spatial sector around/in front of the object. 

(2) Static camera and moving object, which makes uniform 
motion in order to expose itself to the camera from all needed 
points of view.  
 
(3) Static object and static camera. 
 
All the mentioned approaches are valid at the stage of regular 
exploitation of a given FR system. But at the stage of 
accumulating different images (views of physiognomies) in an 
IDB, we will once again adopt approach (1), in view of the 
similar advantages already pointed out in [10]. 
 
The third approach, in comparison to the first two, is not 
directly oriented towards the creation of a video-clip. The 
latter needs to be computer generated from a few static photos, 
taken from different positions within the needed spatial sector 
around/in front of the object. This approach is comfortable 
from the actor’s point of view, but it is unacceptable for our 
goals. The needed development efforts on generating the film 
or the final frame sequence (imitating close enough positions 
of exposure) are unduly expensive for our goals. The still 
images produced by this approach have to be considered only 
as a possible input to a FR system in operation. 
 
The second approach is fairly simple from a photographer’s 
point of view. Yet, it requires high precision and a certain 
level of “acting” skills on the part of the “object-actor” when 
performing the uniform movements in front of the camera. If 
the actor is not trained enough for the role in question, there 
will be the need of additional efforts on “normalizing” the 
film. In other words, the approach is unacceptable for our 
goals, even if it is quite popular from the practice of gathering 
similar data, [11].  
 
The first approach turns out to be the most acceptable one 
even though it requires an auxiliary construction for recording 
a video-clip with a conventional camera; Fig.1 illustrates an 
idea for this construction. Here, the responsibility for 
providing the needed uniformity of motion within the video-
clip falls on the operator – researcher. This is acceptable and 
natural as we are speaking of a single (possibly a few 
multiple) session of unvaried scanning procedures. This 
process can be automated in the case that the current approach 
proves to be experimentally efficient enough.  
 
Thus, at this stage, we are using the construction illustrated on 
Fig. 1 and 2 and propose the following method on providing 
the experimental data for our IDB: 
 
(s1) Fix the “actor’s face” in the necessary pose: in front of the 
camera and approximately towards its central position. 
 
(s2) Scan the needed spatial sector in front of the actor’s face: 
row by row, top-down, moving in “zigzag” uniformly along 

 

Fig.1. Kinematics’ schema of the construction for taking 
“primary” video-clips, using the “static object – moving 

camera” approach. 
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Fig.2. The construction in action. 



 

Fig.4. The primary frames for a given face (A2), frames are 
numbered horizontally. The Green graphic shows the average 
intensity per frame, the Blue one shows the maximal intensity, 

while Red one – the average intensity of the differences between 
two consecutive frames. (R) specifies the zones with significant 
frames as well as the black zones in between. The significant 
frame zones can be made more precise through (G) and (B). 
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Fig.4a. The significant frame zones only, the black frames 
zones indicating the (top-down) row changes are removed. 

The graphics have the same sense as in the above Fig.4. 
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Fig.4b. The significant frames with evaluated the row scan 
position progress (in Green) in dependence of the evaluated 
scanning speed (in Red) along the row scan direction. The 
Blue graphics remain their sense of maximal intensity per 

frame, like in Fig. 4 and 4a. 

the rows and having the camera always on while scanning. In 
vertical transitions (from row to row) use an assistant to 
provide the “synchronous” release of the vertical restriction (a 
cord) through equally spaced distances d, vertically among the 
arcs of radius R, R=const (Fig.1). At the same time the camera 
operator can simply cover the lens by hand for better 
segmentation of significant row frames at the video processing 
step later. It is also desirable that the time for transition (from 
row to row) does not go beyond 1÷2 seconds, for 
operativeness. 
 
(s3) If there is next actor face to capture, go to (s1). 
 
Video capture: The experimental materials are video-clips, 
whose unique frames could serve as samples (close-ups) of the 
human face for recognition. We call these “primary (video) 
clips” and let them meet the following set of requirements: 
 
• there is a separate video-clip for the face of each person of 
interest; 
• the video capture is carried out row by row, having each 
row separated from its neighboring ones by a sequence of 
empty (black) frames; 
• it is advisable that the “manual” scanning with the camera 
along each row be carried out at a nearly regular speed; 
• the average scanning speed along the different rows is 
tolerated to vary within some not very large bounds.  
 
Primary video-clips processing. Stages:  
 
♦ Separate the motion frames from the entire video-clip.  
♦ Derive a representative set of frames from the video 
sequence by, for example, obtaining those frames that fall 
within a uniform grid (“square” or “triangular” one) over the 
spherical sector of scanning. The linear parameter D of this 
grid (Fig.1 and 3) will represent the differences between the 
consecutive representative frames, which contain the object 
samples from the corresponding view points. D is measured in 
degrees, but also in cm (for the concrete construction, Fig.1), 
or even in number of frames (by a regular speed of scan). 
 
We assume that the noise-resistance of the used CBIR method 
could also be measured by means of D and d, cf. Fig.1. Thus, 
in a uniform grid with D > D0, where D0 is an admissible 
lower boundary, the CBIR method would start to err when 
recognizing by similarity to the samples of the IDB. This D0 
boundary can serve as a measure for the noise-resistance of 
the CBIR method in use. It will also determine the optimal 
number of grid nodes ( ≈ 2

0
2)2( DDdNπ ) for storing the 

representative samples within the IDB, Fig.3. We will skip the 
details of defining the geometrical model of the experiment. 
Below we provide some of the more important parameters: 

♠ the radius R of the scanned spatial sector, R = 51 cm; 

♠ the average angles of the spatial sector of scanning − 
horizontally ≈ 80° and vertically ≈ 115° (in angle degrees); 
♠ the average speed of scanning, i.e. of the manually moved 
camera that captures along the scanning rows (horizontal arcs) 
with ≈ 15÷20 degrees per second, by a camera capture speed 
of 15÷16 frames per second; 
♠ the distance d between consecutive scan rows over the 
spherical sector, fixed to d = 10 cm (as cord gaps given by a 
fixative); at the chosen R it refers to d ≈ 9.6° (as chord angle); 
♠ the number N of the scanning rows (arcs over the spherical 
sector) is chosen to N = 8, see Fig.1 and 3; 
 
Thus, for both uniform grids shown at Fig.3 we have the 
following possible values of D: 
 kdD = , for square-type-grid, (Fig.3a)  
and respectively 
 32kdD = , for triangle-type-grid, (Fig.3b) 
where  k is the scan row number per grid cell, )}1,...(2,1{ −∈ Nk . 
 
Significant frames extraction: The used methodology for 
estimating the identification numbers of the representative 
frames relies considerably on that during the scanning phase, 
while jumping from a row end to next row begin, the camera 
lens is manually hidden, i.e. the corresponding frames from 
the video-clip are almost black. This simplifies (see Fig.4, 4a, 
4b) the separation of the significant frames from the “black” 
ones via the following 5 steps: 

   
 (a)   (b) 

Fig.3. Spherical sector in front of the camera, scanned row by 
row. Two main variants for the uniform grid of representative 

frames: a) square and b) three-angular one.  



 

 

Fig.5. HS-histogram of a given 
frame. 
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(a1) Transform the frames from RGB to a Gray scale; 
(a2)  Create an image of the differences between each two 

consecutive (Gray) frames from the video sequence; 
(a3) Calculate the values of the average intensity of the 

original frames, the maximal and average intensity of the 
differences, (Fig. 4);  

(a4) Find a statistical estimation of the corresponding 
thresholds for the transition from the sequences of 
insignificant (black) to the sequences of significant 
(motion) frames, (Fig. 4a); 

(a5) Define a regular net of representative frames for the 
given face using ad-hoc estimations for the row scan 
position progress and respective scanning speed (Fig.4b). 

 
Face segmentation: Some of the more popular approaches in 
segmenting the face are: usage of a controlled or known 
background with a previously acquired background image (i.e. 
applying background subtraction); using segmentation by 
motion; or using color segmentation with predefined or 
generated skin color models [2,3]. In addition, to alleviate the 
segmentation and recognition process, multiple camera 
configurations are used [1]. These contribute with additional 
information such as image depth, 3D shape and motion and 
thus are helpful in detecting the eye and/or mouth position, 
etc., [1,2,3]. 
 

The problem of segmenting 
the face from each of the 
motion frames is simplified 
by the chosen experimental 
environment – dark blue 
background, in contrast to 
the human skin color. Thus, 
after a RGB to HSV (Hue-
Saturation-Value) color scale 
transformation of the frames, 
the segmentation can be 
carried on mainly in the 2D 
HS-histogram schema, Fig.5, 
where two main color 
sectors are outlined – blue 
for the background and beige 
for the face. Hence, after a 
transformation to a (cyclic) 
histogram by H only, the 
segmentation task can be 
reduced to finding both the 
optimal thresholds of 
separation [12]: the blue-

beige one and the beige-blue one. That is, at this stage we 
don’t need to use information about the motion. Of course, 
some other peculiarities are considered in parallel, such as the 
fact that in some frames the face region contains gleams (too 
bright pixels) where H is undefined. Here, we also check the 
illumination (V) of the corresponding pixels, define a 
threshold, and apply binarization by V, cf. also [12]. 
 
In brief, the chosen segmentation algorithm for a given frame 
is as follows: 
(b1) Compute the HSV space and evaluate the H-sector of the 

blue background.  
(b2) Determine eventual regions surrounding the basic blue 

background, and repaint them with blue. This is to 
exclude parts from the environment (floor, ceiling, walls, 
etc), which might accidentally land in the frame. 

(b3) Compute the HSV space again. 
(b4) Compute an optimal threshold on the S-histogram. Use 

low S-values to exclude eventual parts of the 
experimental construction that might fall into the frame.  

(b5) Evaluate the H-sector of the “beige” region of interest 
(face) and search for the biggest contour (of maximal 
area) therein. 

(b6) Aggregate the other “beige” regions to the biggest one. 
(b7) Finally, for the necessities of EFIRS, negate the images 

(making their colors opposite) and repaint the (blue) 
background with white (Fig.6). 

 
 

IDB EXPERIMENTS AND RESULTS 
 
The experimental analysis of the proposed approach has been 
carried out by the usage of EFIRS [9, 8, 7]. EFIRS is а C/C++ 
written Windows-XP application operating on an IBM 
compatible PC. For the experiment objectives, an extra test, 
functionally similar to the conventional SLT (Simple Locate 
Test) of EFIRS [9], has been written. The existing IDB 
structure of EFIRS was used for the generation of 
experimental IDB of test samples. The chosen CBIR access 
method was PFWT, as described in [9]. The primary video-
clips have been acquired through a construction as in Fig. 1. 
 
Essence of the experiment: For each possible value of the 
examined parameter D (the basic size of the grid), do: 
♣ Generate a separate IDB for EFIRS by loading it with all 
representative frames for all faces (persons) of interest. It is 
recommended that the representative frames for each face be 
chosen regularly positioned (at distances D≈d) over the square 
grid within the experimental sector of visibility. 
♦ For each square on the grid associated with a given 
primary video-clip, define the closest frame to the center of 
this square. These central frames are obtained from the set of 
motion frames along each row of the clip, and are uniformly 
the most distant ones (at distances ≈D/2 or ≈√5D/2) from their 
corresponding 6 neighboring frames (corners of two vertically 
contacting squares), which have already been stored into the 
IDB. These central frames are used to provide “the heaviest 
case” of input precedents for the CBIR search within the IDB. 
♥ Carry on a SLT for a CBIR search within the IDB over all 
square centers, i.e. over “the heaviest cases” of input 
precedents. Summarize the results for the successful and 
unsuccessful retrievals from IDB. Practically, for more 
dependable results, test with all significant image frames 
extracted from the primary video-clips. 
 
Experiments: At the current stage we have loaded the IDB 
with the representative frames of 22 faces, belonging to 16 
persons, some of them been filmed twice or thrice to capture 
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Fig.6. Several representative frames extracted from the set of 

significant frames for the given face video-clip. 



different emotional status expressed, e.g., (A1,A2,A3), 
(Ao,Au), (N1,N2,N3) and (V1,V2), cf. Table 2.  
 
The significant images acquired for these faces are qualitative 
enough, and enough in their number – 8177 images altogether, 
on average 378 per face – so that we can carry a preliminary 
experiment with the EFIRS system expecting the obtained 
statistical results to be sufficiently reliable. 1251 of the images 
have been defined as representative ones in the IDB, with an 
average of 57 representatives per face. The representative 
frames for each face have been arranged in a uniform square 
grid, cf. Fig.3a and Fig.6. 
 
The generated IDB applies to the case of D = d, where D is 
the basic size of the grid, and d − the distance between the 
scanning rows of the video-clip. 
 

Table 1 contains the results for a given face, e.g. “А2”. Only 6 
rows from all the 8 rows are successfully scanned for this 
example and the averaged error rate has been evaluated to ~ 
2.6%, which is considered a moderately good result among all 
the face experiments. 
 
Table 2 contains the generalized results for each face 
experiment, where the general averaged error rate has been 
evaluated to ~ 6.6%. 
 
Thus, at this stage we can determine the boundary value D0, 
i.e. the noise-resistance measure of the CBIR approach in the 
given FR application, as: 
 

D0 = 1d, at FR rate > 93%.. 
 
As for the averaged search time per input face it is ~ 0.2 s.

Table 1. Test results for a given face (A2). 

Row 
No. 

Frames 
ess./repr. 

Errors 
(1) || (2) 

Errors (1): 
Letter err. 

Errors (2):
row diff.s

> ±1 

Exact 
matches

Warns (1)
row diff.s

= ±1 

Warns (2) 
row diff.s 

= 0 

by w(1) || w( 2) 
avrg of position 

diff.s 

by w(1) || w( 2) 
avrg of abs. 

position diff.s 
1 123 / 11 3 3 0 11 37 72 -1.9  5.8 
2 106 / 11 3 1 2 12 11 80 -5.2  7.4 
3   91 / 11 8 2 6 11 17 55 13.3 15.9 
4   83 / 10 0 0 0 9 20 54   3.9  6.3 
5 104 / 10 1 1 0 9 28 66 10.7 13.4 
6   65 /   7 0 0 0 8 3 54   0.1  5.8 
7 - - - - - - - - - 

          

Total 572 / 60 15 7 8 60 116 381 - - 
Avrg.  71 / 10     1.9   0.9   1.0    7.5    14.5    47.6   2.9  9.0 

% -     2.6   1.2   1.4  10.5    20.3    66.6  -  - 

Table 2. Test results for all faces available into experimental IDB. 

Faces 
IDs 

Rows 
scanned 

Significant 
frames 

Represent. 
frames 

% Errors
(1) || (2)

% Errors (1):
Letter errs.

% Errors (2):
row diff.s 

> ±1 

% Exact 
matches 

% Warns (1) 
row diff.s 

= ±1 

% Warns (2) 
row diff.s 

= 0 
A1 6 538 63   3.2   1.7 1.5 11.3 21.0 64.5 
A2 6 572 60   2.6   1.2 1.4 10.5 20.3 66.6 
A3 5 488 53 11.1   9.0 2.0 10.7 15.2 63.1 
Ao 5 312 53   9.9   9.9 0.0 16.3 11.5 62.2 
Au 5 328 54   8.8   8.8 0.0 15.9 10.1 65.2 
DD 5 260 54 16.2 14.2 1.9 19.6   0.4 63.8 
GA 4 220 41   0.0   0.0 0.0 18.6   5.9 75.5 
GG 3 214 33   4.2   4.2 0.0 15.0 10.3 70.6 
HT 6 454 61 14.3 13.2 1.1 12.8 14.5 58.4 
IH 5 282 48   0.7   0.7 0.0 16.7   7.1 75.5 
LB 6 392 60   0.8   0.0 0.8 14.8 18.9 65.6 
LI 6 388 62   3.1   1.5 1.5 16.0 11.6 69.3 
LK 3 215 42 17.7 16.7 0.9 16.7 11.2 54.4 
MP 6 391 61   3.6   3.6 0.0 15.3   6.4 74.7 
MV 7 463 71   4.8   4.8 0.0 14.9 13.2 67.2 
N1 6 342 62   4.4   2.3 2.0 16.4 10.5 68.7 
N2 8 481 76   3.5   3.1 0.4 14.8   9.6 72.1 
N3 7 478 74   6.1   3.1 2.9 13.6 22.6 57.7 
PK 6 399 (63)   9.0   5.5 3.5 14.5 14.8 61.7 
SK 5 312 53 12.5 11.9 0.6 16.0   5.8 65.7 
V1 5 304 53   6.6   4.3 2.3 17.1 15.8 60.5 
V2 5 344 54   7.8   5.8 2.0 14.5 16.0 61.6 

          

avrg % - - -   6.6   5.3 1.2 14.6 13.4 65.5 
 

Notes to Table 1 & 2: 
• “Exact matches” corresponds to the number of samples (for 

given face and scan row) loaded into the IDB. 
• “Errors (1)” count the errors of type 1 (“erroneously recognized 

face”). These are expected to be highest along the boundary of the 
scanned spatial sector, and lowest – in its central area. 

• “Errors (2)” count the errors of type 2 (“greater than ±1 
deviation between both the rows, the input and the found ones”). 
Their expected behavior is similar to that described for Errors (1).  

 
• “Warns (1)” and “Warns (2)” register the expected situations of 

“deviations in ±1 from found to current row”. The averaged values 
“Avrg_of_position_diff(erences)” and “Avrg_of_abs(olute)_position 
_diff” concern both these recognition situations. It is expected that 
“Avrg_of_position_diff” would be close to zero (if the model is void 
of geometric inaccuracies), while “Avrg_of_abs_position_diff” – 
close to the average distance D/2 (in number of significant frames) 
between each two consecutive representative frames. 



Discussion of results: We can consider as positive the result 
of D0 = d. It signifies that the size of the needed IDB would 
be the largest, i.e. ~ 80 = 8*10 as a number of representative 
images for each face in our case. The latter is not important 
in terms of the needed resources of (external) memory, since 
for the proposed CBIR technology, which covers a size of 
hundreds of thousands of objects, it is enough to only store a 
key with size of ~ 0.5 KB per object [8]. 
 
From the viewpoint of efficiency, the search time remains a 
logarithmic one [7,8,9,10]. Thus, within an IDB of ~ 80 
representative samples for each face (person or physiognomy 
of interest), the proposed approach would require a log2(80) ≈ 
6÷7 of extra accesses, in addition to the basic access number 
of ~ log2F, F the number of faces represented in the IDB. 
 
Even a result such as D0 < d should not be considered 
hopeless. It signifies that D0 cannot be found at the chosen 
accuracy d (i.e. the distance between the rows of scan) of the 
IDB experiment. The value of D0 would then be a fractional 
number D0 = αd, α∈(0,1). 
 
Actually, by definition the result is D0 > d, i.e. the chosen 
CBIR technology does not err when searching of an exact 
match, while the percentage of errors from occasional linear 
transformations on the input (translation, rotation, and 
scaling) is < 1.5%. The former is fundamental for the used 
CBIR technology, while the latter has been experimentally 
proven over a database of a large size ≈ 60 000 of 
trademark/hallmark images [9,8]. 
 
Thus, even at an IDB with D = d, we can determine D0 more 
accurately as a fraction of d, at least horizontally, on the basis 
of the average distance between two consecutive motion 
frames from a primary video-clip. Naturally, this distance is 
primary dependent on the camera capture speed and speed of 
the (manual) scanning by rows. 
 
By a comparative analysis of the achieved results towards 
those of [10], an earlier application of the same approach to 
sign language recognition problems, one can note that with 
similar image preprocessing methods in use the results in 
[10] look better. Nevertheless, the current results are more 
promising because of the larger experiments over more 
complicated objects (human faces vs. palm signs). 

 
 

CONCLUSION AND FUTURE WORK DISCUSSION 
 
The paper proves once again our [7] idea of “surrounding 
filming” of 3D objects to represent them as a minimal set of 
representative 2D projections (images) in an IDB and to use 
this representation to meet the 3D recognition problem as a 
CBIR one, in behalf of our recent progress in CBIR 
efficiency [8, 9]. Instead of palm signs [10], we have 
considered here human faces in their static and/or dynamic. 
 
In the near future we are going to arrange the experiments for 
D0 = 2d, and even D0 = 4d, and evaluate the respective FR 
rates. This will give us a basis to define the number of 
necessary representative frames per face into IDB as a 
function of a predefined FR rate value.  
 
The currently achieved FR rate of ~ 93% is considered not 
bad in view of the very early stage of the experimental 
refinements. The following refinements in the frame image 
preprocessing are envisaged in the near future: 
 
• a geometrical (shape) normalization of faces, using the 
distances among the eyes and mouth; 

• an intensity (lightening) normalization, considering faces 
as Lambertian surfaces by analogy of Fisherfaces [5];  
• a standardization of faces, removing the extra facial 
attributes like hair, moustaches, glasses, etc., [2]. 
 
In this way we expect to achieve higher FR rate of up to 99% 
and more, and simultaneously to reduce the number of 
necessary representative frames per face − up to 5÷9 for 
relatively small number of faces in the IDB. For large (and 
very large) IDB of faces it is expected that the number of ~ 
32÷64 representative frames per face will be optimal 
(preferable) for a similar FR rate of ~ 99% (or higher). 
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