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Pattern Recognition and Reading by Machine 

W. W. BLEDSOEf A N D I. BROWNINGf 

INTRODUCTION 

MANY EFFORTS have been made to discrimi
nate, categorize, and quantitate patterns, and 
to reduce them into a usable machine language. 

The results have ordinarily been methods or devices 
with a high degree of specificity. For example, some 
devices require a special type font; others can read 
only one type font; still others require magnetic ink. 

We have an interest in decision-making circuits 
with the following qualities: (1) measurable high re
liability in decision making, (2) either a high or a low 
reliability input, and (3) possibly low reliability com
ponents. The high specificity of the devices and 
methods mentioned above was felt to be a drawback 
for our purposes. All of these approaches prove upon 
inspection to center upon analysis of the specific 
characteristics of patterns into parts, followed by a 
synthesis of the whole from the parts. In these 
studies, pattern recognition of the whole, that is, 
Gestalt recognition, was chosen as a more fruitful 
avenue of approach and as a satisfactory problem for 
the initial phases of the over-all study. 

In addition, we chose to concentrate upon the rec
ognition of alphanumeric patterns, rather than upon 
other pattern types, for the following reasons: 

(1) Convenience. Results can be handled easily 
since it is possible to use conventional print
out equipment. Furthermore, we could exploit 
our own familiarity with letters and words. 

(2) Background. Research on alphanumeric pattern 
recognition has been vigorously pursued, and 
we were therefore able to make use of the rela
tively large literature on the subject. 

(3) Usefulness. Success in our efforts would make 
available a technique which society needs and 
can use immediately, even though such a result 
would be only a by-product of our over-all 
study. 

Because typewritten numbers were recognized 
without error in the cases considered, the investiga
tion quickly shifted to hand-blocked print and finally 
handwritten script characters as displaying greater 
complexity and increasing individual variability. In 
this way ,the decision making powers of the system 
were more fully challenged. 

Since a numerical output is the inherent mode of 
expression of a digital computer, our work was aimed 
at developing a numerical score for each pattern ex-
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amined. The basic method employed to obtain these 
scores and to use them to identify each pattern 
uniquely will be described in the following section. 
Then various expansions and variations of the method 
will be covered. Finally, a method of extending iden
tification by contextual relationships will be described 
briefly. 

It may be mentioned at this point that this system 
is highly general — that is: 

(1) It handles all kinds of patterns with equal 
facility. 

(2) Because it does not depend upon absolute pat
tern-matching, it can identify a pattern which 
is not exactly like, but only similar to, a pattern 
it has previously learned. 

(3) It does not depend significantly upon the loca
tion of a pattern on the photomosaic for iden
tification. 

(4) It is only partially dependent upon the orien
tation and magnitude of a pattern for identi
fication. 

It would also be well to mention the two major dis
advantages of the system: 

(1) When the learned patterns are quite variable, 
the memory can be saturated, especially in cer
tain cases. 

(2) A very coarse mosaic, especially if it has incon
stant photocell performance, produces images 
of small letters which do not contain enough 
information for recognition. See, for example, 
the sixth character, an e, in Fig. 2b. The large 
letters, however, do not present this problem. 

However, both of these disadvantages can be at least 
partially overcome; the first, by various techniques 
to be described later; the second, by using a mosaic 
with more photocells. 

BASIC METHOD 

Of prime importance in this method is the way in 
which pattern discrimination is provided. The best 
way to describe the process is by example. 

We start with a 10 X 15 photocell mosaic (this size 
being chosen because of immediate availability), the 
elements of which are related to one another as 75 
randomly chosen, exclusive pairs. Fig. la shows the 
mosaic and two such randomly chosen pairs ( l i l2 and 
2i22). Images, letters for example, projected on the 
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Fig. 1 (a)—The photomosiac and two of the randomly chosen photo
cell pairs. The four digital groups to the right are the four possible 
states of each photocell pair. 

Fig. 1 (b)—The system learning the letter I in a central position. 
Only two of the 75 pairs are shown. 

2 2 

ADDRESS 
GROUP 

# 1 

ADDRESS 
GROUP 

* 2 

"ill/ 
10 

001/ 

O i l / 
obi/ 

i l l / 
10 

flfil/ 

jo . / , 
01 V, 
0 0 1 / 

Fig. 1(c)—The system learning the letter I in another position. Note 
tha t the memory experience shown in the previous figure remains. 

Fig. 1 (d)—The system learning the letter I in a third position. The 
check marks to the right show all possible combinations of these 
two photocell pairs for the letter I. 

mosaic will produce characteristic patterns, examples 
of which are shown in Figs. 2a and 2b as they appear 
on IBM cards. For computer convenience, the light 
values of an image on the mosaic are rendered in a 
binary system which treats dark as 1 and light as 0. 

When an image is on the mosaic, each pair of photo
cells (the members of which are ordered for this pur
pose) will represent the light values of the image as 
a two-bit number. Each pair of photocells has there
fore four possible states — 00, 01, 10, and 11. 

Fig. 2(a)—Hand-block print as it appears on IBM cards. 
(Top—A, C, E ; Bottom—N, M, H.) 

Fig. 2(b)—Handwritten script characters as they appear on 
IBM cards. (Top — w, 1, o; Bottom — s, r, e.) 
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In the memory matrix of the computer, a 36-bit 
computer word is assigned to each state of each pair, 
giving four words for each photocell pair or 300 com
puter words for the 75 pairs. Furthermore, each bit 
position in the 36-bit computer words is assigned a 
pattern nomenclature. The sequence used in our ex
periment was: 
Position 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 . . . 35 36 

Nomenclature 
1 2 3 4 5 6 7 8 9 a b 

This nomenclature sequence will hereafter be referred 
to as an "alphabet." 

In order to demonstrate how patterns are 
"learned," we will use as an example the letter I. 
First, a letter I is projected on the photocell mosaic 
(Fig. lb). Its image on the mosaic produces one of 
the pair states (00, 10, 01, 11) for each of the pairs, 
depending upon the amount of light falling on the 
pair. Since all 75 pairs are involved, the resulting 75 
states address 75 words in the memory matrix. For 
each word addressed, a binary 1 is entered in the 
nineteenth position, the position corresponding to the 
letter being learned, / . Obviously, if the letter A were 
being learned, a binary 1 would be entered in the 
eleventh or A position, and so forth. The process de
scribed constitutes the learning of a single letter J, 
but whole series of letter I's, differing in shape or 
position or both, can be learned. For example, Figs, 
lb, lc, and Id show the same / being learned in dif
ferent positions, while Fig. 3 shows a case in which 
two (r's have been learned. 
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Fig. 3—The memory matrix with the characters B, G, and 5 
learned. Note that two G's have been learned. 

Since not all the letter JT'S will be in the same posi
tion as the first, some different computer words will 
be addressed. That is to say, there is a degree of in
dividual character variability. However, no letter I 
or combination of I's will normally address the same 
75 computer words as, say, a letter A would. This is 
a key point: the very shape of a character, such as the 
letter I, forbids certain states for certain pairs. The 
existence of these forbidden states lies at the heart of our 
method, for without them the logic would saturate. In 

sum, different patterns have different forbidden states 
and consequently score differently. 

Now, suppose that we have taught the logic several 
alphabets, proceeding for each character as for the 
letter / above. We can then identify a specific un
learned character, an A for example. A letter A is 
"read" by imaging it on the photomosaic. Its image 
will address the 75 computer words in the memory 
matrix to correspond to the active states of the 75 
pairs. Identification of the specific pattern in ques
tion is made by comparing the unknown image with 
the previously learned characters. In practice this is 
done in the following way: 

(1) The binary l's in position one (the position 
corresponding to _.) are added up for all of the 
75 computer words addressed by the unknown 
pattern. The score obtained shows the simi
larity of the unknown pattern to the L pattern. 

(2) The same process is repeated for the other 35 
positions, with the result that 36 numerical 
scores are obtained. 

(3) These scores are compared by the computer, 
and the highest score wins. That is, the un
known pattern is identified with the character 
occupying the position scoring highest. If there 
is a tie for highest score, the computer arbi
trarily selects one of the highest scores as the 
winner. Note that the highest score possible 
is 75. 

Fig. 4 shows an example of scoring for hand-block A 
and T. Fig. 5 shows scoring for much more highly 
variable patterns, namely, handwritten a and t. 

It will be noted that if an image corresponding 
exactly to the unknown image had been learned be
fore by the matrix, a score of 75 would be made at that 
position. Again, if by learning several similar patterns 
(A's, for example), all of the pair states now being 
addressed had been learned, a second 75 would be 
made. However, in most cases, an unlearned charac
ter will not make a perfect score. The degree of simi-

I Z 3 4 5 6 7 8 9 A B C D E F G H I J K L M N 0 P Q R S T U V W X Y Z 

m 
I 2 3 4 5 6 7 8 9 A B C D E F G H I J K L M N 0 P Q R S T U V W X Y Z 

Fig. 4—Comparative scores of hand-block letters. 
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Fig. 5—Comparative scores of handwritten letters. 

larity is measured by comparing the magnitude of 
the various scores with a perfect score of 75. Discrimi
nation is defined as the difference between the score 
of the correct character and the next highest score. 
It can be seen that what actually happens in this 
process is that the images, both those learned and 
those being read, are transformed into a new space 
(the memory matrix) and are there compared for 
identification. 

LOGIC EXPANSION AND MANIPULATION 

Our studies and experiments moved outwards from 
the basic method to include a variety of modifications 
and variations. An attempt is made below to evalu
ate each variation in terms of its final effect. It should 
be noted that the combination of two or more of the 
methods to be described results in substantial in
creases in correct readings. 

Different Photocell Groupings 

In the examples cited, the photocells were grouped 
as exclusive pairs. However, it is obviously possible 
to use n-tuples in which n has any value from 1 to 
150. Let us begin by comparing the system employ
ing photocell pairing (n = 2) with a system in which 
n — 1. In the latter case, each individual photocell 
addresses only two computer words, since its possible 
states are 0 and 1. The difference in the behavior of 
the systems is striking. If we re-examine Figs, lb, lc, 
and Id, we note that in learning several images of 
the letter 7, with n = 1, every single photocell would 
exhibit the values 1 and 0: this is so because the posi
tion of the letter I changes. In other words, unless 
the image on the mosaic is held within narrow limits, 
the memory loses most of its discrimination value 
with n = l. 

We can say then, that position is very critical in 
the case of n = 1, and that it has less importance for 
n = 2. A direct consequence of this difference is 
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Fig. 6—Comparisons of the percent recognized for hand-block print 
read with different w-tuplings: n = 1 (hatched bars) and n= 2 
(solid bars). Note that when all five alphabets are learned together, 
the percent for n = 2 improves. In other words, for n = 2, the 
ability to read improves with additional learning in the memory 
matrix. 

MEMORY MATRIX CONTENT-

> 3 4 

PHOTOCELL n-TUPLES 

Fig. 7—Comparison of percentage recognition of hand-block print 
with different n-tuples. Five alphabets (labelled A, B, C, D, and 
E) are considered singly, and then together. 

found when the matrix is taught more than one posi
tion or more than one example of a pattern. The 
scores will improve if n = 2 ; for n = 1, they will not 
improve and will probably deteriorate. Figs. 6 and 7 
illustrate this characteristic with respect to five alpha
bets learned separately and then in combination. 
Marked improvement in the reading of this message, 
which was written in hand-block print, was achieved 
when n = 2 rather than n = 1. For the five alphabets 
learned separately, the average percent of recogni
tion with n = 1 was 56.12 percent; for n = 2, 54.01 
percent. But for the same five alphabets learned to
gether, the percentages are 46.42 for n = 1, and 67.63 
for n = 2 . (See also Figs. 8a and 8b.) 

Remembering that n can equal any number from 1 
to 150, we can ask what effect is produced when 
higher n-tupling is used. The problem of pattern 
recognition with a multichannelled system, such as 
the one simulated for discussion here, has tradition
ally been approached from one of the two extremes, 
that is, n = 1 or n = 150. Consider the formula 

N 
S«X - XC = L, 

n 
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where 

S = the number of operational states of the photo
cell. In the case being considered S = 2, for 
the possible photocell states are 0 and 1. 

n = the parameter for n-tupling. 
N = the number of photocells. 
C = the number of categories of patterns learned 

and read (36 in the previous examples). 
L = the number of storage sites in the memory 

matrix. 

The factors held arbitrarily constant in our experi
ment were n = 2, N = 150, and C = 36. The tradi
tional cases, as mentioned before, have involved 
n = 1 and n = N = 150. But the former has been 
shown to deteriorate or at least not to improve appre
ciably with learning. The latter, on the other hand, re
quires a prohibitively large memory matrix (36 X2150, 
using the same values as above), although its reading 
ability would be perfect if enough learning experience 
could be provided. 

Let us summarize concerning these two extreme 
conditions. If n = 1, there are no forbidden combina
tions and therefore the memory will saturate with 
the learning of successive characters which vary in 

1 3 5 7 II 1 3 5 7 II 1 3 5 7 II 

NO OF 36 CHARACTER ALPHABETS 

Fig. 8(a)—Scores made on handwritten script letters, showing that 
for larger values of n, larger amounts of learning are useful. 

£ no 

100 200 300 400 
LETTERS AND NUMBERS LEARNED 

Fig. 8(b)—Material of Fig. 8(a) presented in different form. 

size, area, shape, or position. Such a logic has, con
sequently, an extremely limited use. If n = 150, 
saturation is impossible. But, even apart from the 
impossibility of having 2150 computer addresses avail
able, images being read successfully would be re
stricted to exactly those that had been learned be
fore. This logic, then, has even more severe limitations. 

Our method avoids these several disadvantages by 
concerning itself with intermediate values of n, values 
which provide the learning advantages of a large ex
ponential matrix but which retain a memory matrix 
more comparable in size to the photomosaic matrix. 
For example, with n = 2, the formula for the logic 
used gives: 

1 ^0 
22 X — X 36 = 10,800 

2 

The number of bits in the memory matrix for the 
simplest case of a system not position sensitive, under 
these conditions, is therefore 10,800. 

Let us introduce another quantity, M, which will 
be the number of photocell n-tuples utilized in a given 
experiment. While M will normally be given by N/n, 
larger M values can be obtained by non-exclusive 
n-tupling of the photocells. We will have more to say 
about the non-exclusive cases later. 

In any event, it is obvious from the formula that a 
larger memory matrix can be utilized if any of the 
variables are increased. During the course of our 
experiments, we used the following values: 

n = 1, 2, 3, 5, 8 
M = 30, 50, 75, 150, 128, 256, 512, 1024 
C = 10 and 36 

The experimental data suggest that a greater amount 
of logic produces better discrimination. The primary 
effect of varying n is that as n increases, the percent 
of recognition increases with increased learning (Figs. 
7, 8a, and 8b). However, a balance must be preserved 
among the various parameters in order to utilize to 
best advantage a given amount of logic and to mini
mize computing time. 

Non-exclusive n-tupling 

Some experiments were made in which non-exclu
sive n-tupling was used for the photocells. The num
ber of n-tuples (M) used could in these cases have 
any value. Tables I and II show that non-exclusive 
pairing resulted in some improvement in the percent 
of characters recognized. But this improvement was 
at the expense of more storage space and longer com
puting time. We feel that a larger gain in percent 
recognized can be realized, for the same amount of 
storage and same length of computing time, by in
creasing the number of photocells (N) and continuing 
to use exclusive n-tuples. In other words, we see no 
real advantages in non-exclusive grouping. 
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TABLE I 

PROGRESS IN READING H A N D BLOCK P R I N T 

«-Tupling 

Exclusive 

1 
5 
1 
3 

2,3,5 
2,3,5 

2,3,5 

2,3,5 
2,3,5 

Non
exclusive 

2,3,5 

3 

Alphabets 
Learned 

1 
1 
5 
3 
2 
3 
1 
4 
1 
1 
1 

Manipulation 

None 
None 
None 
None 

Probability 
Distribution 

None 
Rotating Origin 
Rotating Origin 

Context 
Context-Positioning 

Percent 
Read 

39-72 
28-66 

46 
78 

77-84 
80-84 
80-85 
88-92 

96 
94-100 
98-100 

TABLE I I 

PROGRESS IN READING HANDWRITING 

n-Tupling 

Exclusive 

1 
1 
2 
2 
5 
5 

5 

Non
exclusive 

5 
5 
5 
5 
5 

Alphabets 
Learned 

1 
3 
1 
5 
5 
3 
5 
5 

11 
11 
11 
11 

Manipulation 

None 
None 
None 
None 
None 

Distribution 
None 

Positioning 
None 

Positioning 
Rotating Origin 

Context-Positioning 

Percent 
Read 

26.14 
30.68 
25.00 
33.64 
34.55 
43.84 
24.55 
53.15 
50.00 
58.56 
60.00 
94.32 

Positioning 

A procedure for pre-positioning characters for 
learning and reading by rotating an origin was at
tempted and found to be profitable in special cases. 
This rotating-origin technique is useful for digits and 
for print, but will not work with handwritten script. 
That is to say, if a character or pattern is separate 
and distinct, it can have an origin rotated with re
spect to some reference. Handwriting (as contrasted 
with the separate handwritten characters which we 
used) has continuity, and there is no obvious origin 
from which to start. Some method for separating 
handwriting into its components would be required 
before the origin of such components could be rotated 
profitably. 

For each character an origin is arbitrarily defined. 
The character is then successively repositioned about 
this origin in the following sequence of x, y values: 
0 , 0 ; l , 0 ; l , l ; 0 ; , l ; - l , 0 ; - l , - l ; 0 , - l ; l , - l ; 2 , 0 ; e t c . 

Scores are obtained for each value, and the maximum 
score made by a character in any of the positions is 
chosen as the identifying score. This program in
volved a considerable amount of computer time, and 
is of interest mainly in connection with the possibility 
of simulating conditions for "servoing" the "eyeball." 
Such a feedback system appears feasible, since effec
tive score criteria were found. 

In a variation of the positioning program, the 
characters were all relocated by the computer to the 
upper left hand corner of the rectangle. This posi
tioning, combined with the rotating-origin program 
just described, gives the maximum probability of re
claiming position-dependent data. This combination 
provides the largest increases in effectiveness for the 
n = 1 cases, those cases which we have seen are most 
sensitive to position. Typical increases in percent 
recognized for hand-block print with these techniques 
are: 

Original Positioning Rotating origin 
80 84 89 
72 88 90 

Distribution Processing 

A method of processing the data obtained from the 
pattern scores was tried which was based on the en
tire scoring pattern rather than upon the maximum 
score only. The principle involved becomes clear at 
once if Fig. 5 is re-examined. Note that the sets of 
scores with respect to the previously learned letters 
are quite different for a and t. These different values 
are apparently consistent in their differences. For ex
ample, t scores high for b, while a scores low for b, 
and so forth. 

The procedure is first to teach the memory matrix 
several alphabets as a primary experience. Scores 
made by one or more additional alphabets, constitut
ing a secondary experience, are then averaged to give 
a score distribution typical of each character. An un
known pattern is compared with the memory matrix 
in the usual way to obtain its distribution of scores. 
This distribution is then compared with the typical 
distributions and the one most similar to it is chosen. 
For convenience, all of the scores were normalized, 
so that the sum of the scores in each distribution was 
one. Comparisons between two distributions were 
made in these experiments by summing the absolute 
values of the differences of the corresponding scores. 
I t might well prove useful to employ a correlation 
technique in which a sum is taken of the products of 
corresponding scores, but this has not yet been tried. 

As an example of results, in one case in which hand
written script characters were being read (n = 5, 3 
alphabets learned), we found: 

Undistributed 32.3% recognized 
Distributed 45% recognized 
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A final approach in this effort was to introduce ten 
arbitrary shapes for the primary experience (Fig. 9). 

Fig. 9—Arbitrary shapes which were taught to the system as a basic 
distribution pattern for the subsequent reading of alphanumeric 
handwritten characters. Each shape was learned in the position 
shown and also in several positions resulting from lateral dis
placement. 

After these were taught to the memory matrix, three 
alphabets were compared with the matrix to obtain 
a ten-component distribution analogous to the 36-
component bar graph of Figs. 4 and 5. The three 
ten-component distributions were averaged. New 
alphabets could then be read by the distribution-
comparison program. For handwritten script the re
sults of this program were: 

Undistributed 
Ten-Component Distribution 

32.3% recognized 
5 1 % recognized 

This program was novel in that it involved two 
steps of disorder; that is, two arbitrary operations — 
random pairing and comparison with arbitrary con
figurations — were performed on patterns before 
attempting to read order out of them. It is also im
portant to note that by using only 10 shapes instead 
of 36, a considerable saving in computer time is 
realized. 

Probability 

The method of reading characters described previ
ously utilizes a memory matrix which is taught by 
a given set of experience patterns. Another method 
was tried in which the contents-of several such mem
ory matrices were averaged to obtain a "probability" 
matrix which was then used as the memory matrix 
in the reading phase. The memory matrices used in 
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3.0 
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the averaging can be taught by different sets of ex
perience patterns. An interesting (but not very suc
cessful) special case is one in which each of the 
matrices being averaged is taught only one alphabet 
of experience patterns. 

In the few cases tried with this method, the percent 
of handwritten characters recognized was increased 
as follows: 

Original 
Probability Matrix Used 

28% recognized 
52% recognized 

Fig. 10—Percentages of recognition for five different 
choices of random n-tupling. 

Certain variations of this "probability" method 
will undoubtedly yield some increase in percent 
recognition. 

Discrimination Criteria 

The scores obtained for each pattern read by any 
of the described methods lend themselves readily to 
the establishment of discrimination criteria. That is, 
if the standard of minimum margin is not met for a 
given image, a secondary program can be evoked 
which utilizes one of the higher (and probably slower) 
logic treatments for higher resolution and/or dis
crimination. Such a program would give the com
puter a second, and "more careful look" at a pattern 
which was not clearly recognized on the first trial. 

Randomness 

Since the elements of the photomosaic are related 
to each other by randomly chosen n-tuples, it was 
decided to test the sensitivity of reading ability to 
changes in the particular organization used. The 
random (actually pseudo-random) n-tuples were gen
erated by the following program. First a random 
permutation, k(l), k(2), . . . , k(150) of the num
bers 1, 2, 3, . . . , 150 was generated. Then the ele
ments of the mosaic EEh E2, . . . , E150, were related 
in this manner: 

(Ek(l) , Ek(2) , • • • , Ek(n) , (Ek(n+l) j • • • j Ek(2n) , • • • , 

150-n) 

The test was made by using five different randomly 
chosen permutations to read the same set of patterns. 
The results are shown in Fig. 10. Although ad
mittedly the sample was rather limited, indications 
are that the percent recognized is fairly insensitive to 
the variation, especially when the precent recognized 
is high. 

Context 

Another method to extend the basic technique de
serves special attention, for it produced the highest 
percentage of correct readings. It is identification of 
letters by word context, and it operates as follows: 

1. Establish the length of an unknown word by 
counting the number of characters between 
spaces. 
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T 30 35 42 46 44 

H 25 37 40 40 40 

E 38 43 43 47 49 

45 39 43 46 45 

45 47 37 45 38 

46 42 42 46 46 

39 48 37 40 40 

35 48 32 37 33 

48 46 49 39 @ 

43 42 46 42 43 

46 43 @ 4 5 41 

42 46 42 42 41 

43 48 38 40 35 

48 47 31 31 34 

41 44 42 50 44 

41 48 39 39 @ 

37 44 31 31 47 

48 48 49 47 47 

39 36 36 39 43 

33 33 30 33 37 

50 46 44 48 46 

41 

41 

43 

NOTE: WINNERS WERE T; K; U AND E TIED n = 3 M = 50 Cl = 396 Mu =0 

CORRECT WORD: 

jt = 49; r i M 7 ; j e s 5 0 ; 

OTHER WORDS: 

ou = 39; SL =31; JL =50; 

J. = 48; J. =45; JL = 50; 

J: = 49; X = 45; JL = 50; 

jdAjL = 4 9 + 4 7 + 5 0 = 146 

a~Jt,JL. =39+31 + 50 = 120 

J£JLJL = 4 8 + 4 5 + 50 = 143 

jtj.ju =49 + 4 5 + 5 0 = 1 4 4 

Fig. 11—Scoring by context. 

2. Establish, by the techniques previously de
scribed, all the scores for all of the letters con
stituting the unknown word. 

3. Using a vocabulary of words of the length in 
question, add in their proper order the letter 
scores of each word in the vocabulary to obtain 
a total score for each word. 

4. The highest score wins. 

Fig. 11 illustrates the whole process. Words can 
be read by context (see Fig. 12), or, since each word 
has a score, it would be possible to establish a similar 
program to deal with phrase context. 

The word the in the message in Fig. 11 won against 
100 other three-letter words even though it was 
badly misread letter by letter. The results shown 

THE COMPUTATION IS DONE BY THE USUAL MACHINE 
FOR n - 2 ( I I ALPHABETS) 

LETTERS 

TKU GXMPYTYTTEN LU DEYT FY TTU UUEET MNQHTUU 
CONTEXT 

THE COMPUTATION U DONE BY THE GREAT MACHINE 
FOR n ' 5 111 ALPHABETS) 

LETTERS 

TKE GVMSUTUTIVN 2U DVUM BY TKU USMAQ MNCHUJE 
CONTEXT 

THE COMPUTATION IS DONE BY THE USUAL MACHINE 

Fig. 12—Handwritten letters read by context. 
Letters and words incorrectly identified are underscored. 

in the table were obtained using a vocabulary of 677 
most commonly used short words. Obviously a larger 
vocabulary would result in decreased recognition. 

Tables I and II summarize the results obtained for 

reading hand-block print and handwritten script by 
the basic method and by the various modifications 
described. 

DISCUSSION 

The problem posed by this investigation was: Can 
a general program be utilized to attenuate the in
formation contained in a higher-order matrix pattern, 
wrhile at the same time retaining enough of the 
essence of the information to categorize the pattern. 
Our results clearly indicate that this is possible. And 
although such a program will be useful at once for 
purposes of character recognition as is required in 
general reading machines, it has a much broader 
import. 

A general program of this sort — as opposed to 
such specific logical programs as pattern matching or 
analytical character differentiation — will be useful 
as a basic tool in our investigation of decision-making 
circuits. This method could be expanded into such 
areas as phrase context, the automatic reading of 
books as a service to language translation programs, 
etc. It should perhaps be re-emphasized that the pro
gram identified typewritten numbers without error 
in the cases considered. Handwritten script was pur
posely introduced to challenge the program by offer
ing it patterns of high variability. 
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