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The papers of this book were selected from those presented at the First Inter­
national Symposium on Multispectral Image Processing And Pattern Recognition, 
co-sponsored by SPIE, held on October 21-23, 1998 in Wuhan, China. 

Based on the recommendations of reviewers, we selected nine papers for this 
book from more than 130 presentations at the conference. The authors of the nine 
selected papers were then invited to submit elaborate papers which were completed 
with meticulous theoretical deduction and/or expatiatory experimental results, for 
a new round of reviews. These papers were then revised again by the authors, 
following the comments of the reviewers. 

These papers cover different topics in image processing and recognition: 
3D object understanding from 2D images (P. S. P. Wang and W. R. Watkins), 
image characterization by geometrical, orthogonal and smoothed orthogonal 
moments (J. Shen, W. Shen and D. Shen), facet matching and object track­
ing (S. Maybank and R. Fraile), neural network techniques (H. Pan and 
L. Liu), and different image processing techniques and their applications, such 
as small target detection in infrared sea surface images (Y. S. Moon, T. Zhang, 
Z.-R. Zuo and Z. Zuo), vision system for ALV navigation (X. Ye, J. Liu and W. Gu), 
bibliography information extraction from book cover image (H. Yang, N. Onda, 
M. Kashimura and S. Ozawa) and radar target recognition (X. Liao and Z. Bao). 

The study of 3D representation, understanding, learning and recognition is diffi­
cult and complicated because of infinite variations due to rotation, orientation and 
topological transformations, and this has attracted more and more attention. In 
particular, articulated objects are even more challenging because in addition to the 
above-mentioned difficulties, the object itself can change shape or structure. Yet 
not much research work has been done in this area because of its complexities, and 
most research in the past concentrates only on rigid object recognition. In the first 
paper, P. S. P. Wang presents a state-of-the-art of 3D object understanding from 
2D images and a new method generalized from linear combination for extracting 
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2 J. SHEN, P. S. P. WANG & T. ZHANG 

features of articulated as well nonarticulated portions of a 3D object, a robust yet 
simple method needing only very few learning samples. 

Moments, including geometric and orthogonal ones, are widely used in image 
processing, pattern recognition, computer vision and multiresolution analysis. To 
clarify the use of different types of moments, in the second paper J. Shen et al. 
present a study on different moments and compare their behaviors for image charac­
terization and classification. They at first present geometric, Legendre, Hermite and 
Gaussian-Hermite moments and their calculation, and then analyze and compare 
their behavior in both spatial and spectral domains. They also show the orthogo­
nality equivalence theorem and that Gaussian-Hermite moments give an approach 
to construct orthogonal features from wavelet analysis. 

The images processed by our brain represent our window into the world. For 
some animals this window is derived from a single eye, for others, including humans, 
two or more eyes provide stereo imagery. Animal vision is truly varied and has de­
veloped over millennia in many remarkable ways. In the third paper, W. R. Watkins 
shows us some examples in multispectral image processing. We have learned a lot 
about vision processes by studying animal systems and can learn even more. 

Small target detection has found its wide applications in remote sensing, surveil­
lance, robotics, etc. The difficulty of small target detection is that the available 
information from targets is much less than that from the background. In the fourth 
paper, Y. S. Moon et al. present small target detection from infrared sea surface 
images based on multilevel filters. 

In the Minimum Description Length (MDL) approach to model fitting, the 
length of the compressed data is the measure of the accuracy of the fit of the model 
to the data. MDL is applicable in cases where the usual maximum likelihood (ML) 
method for model fitting fails. Some applications of MDL have been made in image 
processing and computer vision. In the fifth paper, S. Maybank et al. present an 
MDL approach applied to model-based vehicle tracking, namely the fitting of a 
facet model to the image of a car, with the position and orientation of the car on 
the ground plane as model parameters. 

Vision system has been an important topic for research on Autonomous Land 
Vehicle (ALV). For road following, the vision system must provide the surrounding 
information of a vehicle. In the sixth paper, X. Ye et al. present an integrated vision 
system for ALV navigation, including modules of 2D vision using color cameras to 
find road regions, 3D vision using active laser radar for obstacle detection, and 
information fusion to create a complete environment description. The system is 
composed of high-speed image processing hardware and transputer-based pipeline 
with high-speed data channel. 

An important problem in multispectral image processing is multisensor data 
fusion. Bayesian networks (BN) provide a high-level generic architecture for fus­
ing sensory observations from multiple data sources. Discrete BN's offer a general 
formalism for representing a joint probability distribution of multiple discrete ran­
dom variables but learning discrete BN's from complete data or incomplete and 
soft data is still an open problem. Hybrid BN's, the most general BN's encountered 
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in practical applications, have not yet found a general solution for representation, 
inference and learning. In the seventh paper, H. Pan et al. present Fuzzy Bayesian 
Networks (FBN) as a general formalism for representation, inference and learning 
with hybrid BN's, and the inference algorithms of such networks. 

With the development of the database and Internet, automatic input and anal­
ysis of printed documents receive more and more attention. However, in document 
analysis, most attention is paid to the text part, while researches on bibliogra­
phy information extraction are carried out less frequently. In the eighth paper, 
H. Yang et al. present a new system for extracting and classifying bibliography 
regions from the color image of a book cover. The system consists of three major 
components: preprocessing, color space segmentation, and text regions extraction 
and classification. By comparing the text regions on front cover with those on spine, 
all extracted text regions are classified into suitable bibliography categories: author, 
title, publisher, and other information, without applying OCR. 

Radar target recognition based on high resolution range profiles (HRRP) has 
received much attention in recent years. Information redundancy is quite severe 
in HRRP's. Since the distribution of scatterers is target-dependent and usually 
nonuniform, parametrized HRRP's (PHRRP) cannot be regarded as discrete signals 
and the normalized correlation (NC) based recognition scheme can no longer be used 
to classify them. In the last paper, X. Liao et al. present a new scheme of radar 
target recognition based on PHRRP's by introducing a novel generalized-weighted-
normalized correlation (GWNC) for measuring the similarity between PHRRP's. 
With the main lobe width parameter properly chosen, the aspect sensitivity of 
PHRRP's can be reduced without sacrificing their discriminative power. 

Finally, we would like to thank all people who have contributed to the success 
of this book, in particular, the authors and the reviewers for their efforts to ensure 
the quality of the papers. We hope you will find the book helpful. 
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This paper is aimed at 3D object understanding from 2D images, including articu­
lated objects in active vision environment, using interactive, and internet virtual reality 
techniques. Generally speaking, an articulated object can be divided into two portions: 
main rigid portion and articulated portion. It is more complicated that "rigid" object 
in that the relative positions, shapes or angles between the main portion and the artic­
ulated portion have essentially infinite variations, in addition to the infinite variations 
of each individual rigid portions due to orientations, rotations and topological transfor­
mations. A new method generalized from linear combination is employed to investigate 
such problems. It uses very few learning samples, and can describe, understand, and 
recognize 3D articulated objects while the objects status is being changed in an active 
vision environment. 

Keywords: Articulated object recognition; feature extraction; learning; active vision; 
linear combination; pattern representation; thinning. 

1. INTRODUCTION 

Recently, the study of three-dimensional (3D) representation, description, under­
standing, learning and recognition of rigid objects has attracted more and more 
attention. It is difficult and complicated because of infinite variations due to rota­
tion, orientation and topological transformations. Articulated objects are even more 
challenging because in addition to the above mentioned difficulties, the object itself 
can change shape or structure, which makes its pattern representation and match­
ing rather difficult. Articulated objects consisting of a major portion of industrial 
parts play important roles in 3D pattern recognition, computer vision and indus­
trial parts inspection.1'2 Yet not many research work have been done in this area 
because of the difficulties and complexities,3'5 and most research in the past con­
centrate only on rigid object recognition.4 '8-12 '15-17 '19-21-24 Several survey papers 
in this field can be found in Refs. 6, 7, 13 and 14. In Ref. 20, a new approach for 
analyzing and recognizing articulated objects in static environment was presented. 
In that method, the articulated portion of an object can be extracted by comparing 
two different statuses of the same view in the learning process. The observer and 
the object being investigated are basically stationary. This paper presents a state-
of-the-art novel idea in extracting features of articulated as well as non-articulated 
portions of a 3D object. It is robust yet simple and needs only very few learning 
samples. It is also flexible in that it works in an active vision environment where the 
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observer moves or the object itself moves or rotates. Some examples are illustrated 
in the following sections. The line drawings are obtained from the original images by 
Hough transform and skeletonization (thinning) process, which is a very important 
preprocessing procedure in pattern analysis and recognition.16 Several examples 
in virtual environment are illustrated. Finally, future topics of this research are 
discussed. 

2. ANALYSIS, METHODOLOGIES AND EXPERIMENTS 

We will adapt the notations and definitions in Ref. 20. A polyhedral 3D object is first 
transformed to a line-drawing image, which can be represented by a layered graph. 

Definition 2.1. A 3D coordinated graph (3dcg) in 3D Cartesian space is a graph 
G = (V, E), where V is a nonempty finite set of nodes (vertices), each denoted by 
a Cartesian product (x,y,z), and E is a finite nonempty set of edges (branches, 
lines) connecting pairs of nodes in V that are neighbors. Each line is denoted by 
(a, b) if a and b are two nodes and are directly connected. 

A Heuristic Algorithm for 3D object represented by 3dcg (CGPA). 

Step 0. Unmark all input lines. Select a node a with maximum number of neighbors 
(if there are more than one such node, select the one with a longest line, else select 
any one of them to start). 

Step 1. If a has n nonmarked lines connecting to b i , b 2 , . . . , b n , then record 
(a — bi b2 • • • b„). Mark all lines that have already been parsed. 

Step 2. Check all bj nodes simultaneously, where i — 1,2, . . . , n , to see if any 
of these bi nodes have any connecting lines that are not marked yet. If no, go to 
Step 3, else, set a <— bj , Vi = 1 , . . . ,n such that bj has nonmarked lines, and go 
to Step 1. Repeat this process till all b^'s have been done, and no more unmarked 
lines are left, then go to Step 3. 

Step 3. Produce the parsing sequence recorded from Steps 1 and 2 and halt. 

An example is illustrated in the following Fig. 1. 
An example of graph representation of the object is shown in Fig. 2. 
Notice that the hinge (or joint) of a two-portion articulated object can be de­

tected by the following algorithm in the learning process, assuming the hinge or 
joint is always visible amongst those learning samples in various rotations, char­
acteristic views and statuses. Recall that a graph representation's starting nodes 
begin with the one with maximum weight (number of neighborhoods), and if there 
are more than one such node, start with any one of them2 0 - 2 2 : 
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Original 
Object C 

Extracted 
Portions 

i,b,c,dare 
correspondence points 

Fig. 1. A basket with lid in various statuses and extracted portions. 

ri b f 9 \ 

e \ ' i ' * / 

Fig. 2. A graph representation of an articulated object: a basket with lid. 

A Hinge Detection Algorithm 

1. Find graph representation of the input line drawing, transformed from the 
3D object. 

2. Change status of the object by rotating the articulated portion along the hinge 
(joint), while the object itself may also rotate. Find its corresponding graph 
representation for each status and/or view. 

3. Comparing with those graph representations, the hinge is the branch which has 
irregular broken successor links to its sublevel vertices (nodes). 
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(Hi) 
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Fig. 3. Detection of hinge (joint) a - b of an articulated object. 

Extraction of Articulated Features 

1. Obtain the hinge of graph representation. 
2. Find a complete sequence of encircled branch from one end of the branch. 
3. Output this subset of graph, and represent it as the articulated portion of 

the object. 

This can be illustrated in Fig. 3. There are four different views and statuses 
of the same articulated object, i.e. a basket with lid. Each is represented by its 
corresponding line drawings and graph representations, respectively. Note that each 
dangling node (vertex) is denoted by a sign.20 

Once the hinge is detected, from the branch that associates with the hinge, 
we can find a complete sequence of branches that encircles a subset of the graph, 
representing the articulated portion of the object, as illustrated in the light dashed 
encircled lines representing a-b-e-c . 
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Fig. 4. Some examples of articulated object views and statuses. Dotted lines are thinned skeletons 
of the line drawings obtained from Hough transform of the original images. 

Several partitions of characteristic views (CV's) of a basket with lid are shown 
in the following figures: 

Some more examples of mixed characteristic views are shown below. Notice that 
these figures all together illustrate a continuous movement and rotation of a basket 
with lid, while its lid is opening or closing, i.e. with various statuses. 

All these images will be divided into two portions, i.e. the articulated por­
tion of the lid, and the main portion of the open basket as illustrated in Fig. 1. 
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Fig. 5. Some more examples of an articulated object with mixed characteristic views and statuses. 

Note that the articulated portion is a relative term, i.e. one can also consider the 
open basket as the articulated portion, thereby, the lid as the main portion, and 
vice versa. 
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Fig. 6. Some examples of model tanks as articulated objects. 

Once the articulated portion of the object is extracted, pattern matching can be 
pursued repectively in each of the portion by the linear combination method.2'20,22 

That is, each extracted portion shall be a linear combination of several views of 
the corresponding portion in the learning sample image database of the object be­
ing investigated. Notice that one of the advantages of this method is that it can 
save recognition time, especially for those which are not being accepted, because 
when the graph representations do not match with the learning samples, we do not 
even have to go further for any other measurement matching.2,22 In our laboratory, 
we have established a set of image database of 3D articulated objects to be ex­
perimented on its 3D pattern representation, matching, and recognition, including 
industrial parts and military target identifications, as illustrated in the following 
figure, Fig. 6. 

3. DISCUSSIONS, CONCLUSION AND FUTURE RESEARCH 

We have presented a methodology that can extract the features of an articulated 
portion of a 3D object that consists of two portions: the articulated portion and the 
main portion. 

Comparing with another method of extracting an articulated portion of an object 
in Ref. 22, which requires that the object being investigated is still or stationary, 
this new method has the flexibility of allowing either the observer's movement or 
the object's rotation or both, while the status of the object can vary at the same 
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Fig. 7. Examples of objects, line drawings and wire frames. 

Fig. 8. Example of an x-window 3D object recognition system.' 

time, i.e. the articulate portion can change positions, shapes or angles relative to the 
main portion of the object. This method also requires very few learning samples in 
contrast to others in the literature.3,4,7 Notice, however, that after Hough transform, 
sometimes a line will be broken into pieces as shown in Fig. 6. This will affect 
its graph representation. One way to remedy this is to "patch them" up before 
graph representation. There are many interesting examples of articulated objects 
with three or more portions (e.g. a tank). In these cases, there will be too many 
characteristic views although still finite. An improvement is to represent their "wire 
frames" which are transparent to viewers, as illustrated in Figs. 7 and 8.23 A more 
advanced improved version with illustrations can be found in Ref. 24. 

This will significantly reduce the number of graph representations and simplify 
the complexities of pattern matching. Also the hinge or joint may not be so clear or 
visible like a tank. How can it be represented and extracted? How can our method 
described in this paper be extended to those objects? How about curved objects in 
a more complicated occluded environment? These are interesting topics for future 
research. Notice that in our method the correspondence points are chosen man­
ually and the success depends on the choice of threshold values. As shared with 
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Looking from one side, mountains, from the other side, ranges 
Far, near, high, low, all different 
I can hardly recognize the true face of the Lu Shan mountain 
Simply because I am in the middle of it 

Fig. 9. A famous poem by a well-known Chinese poet Su Dong-po (11th Century). 

some drawbacks of LC method,2 certain objects are misrecognized or incorrectly 
rejected. In future, we would like to explore automatic determination of correspon­
dence points, and overcome some difficulties of misrecognition due to poor choice 
of threshold values. An inherent difficulty of recognizing 3D objects seems due to 
its so many variations, as many as infinite, from various angles, sizes and statuses. 
Interesting enough, this basic natural phenomenon happens to coincide with a fa­
mous poem written by a famous Chinese poet Su Dong-po about one thousand 
years ago, as shown in Fig. 9. 

A more recent new version of improved learning and recognition system using 
internet and JAVA, with live illustrations can be found in the author's homepage 
at Refs. 23, 24. Readers can conduct their own recognition tests from their own 
computers using any browser such as PC-IE or Netscape Communicator, as long 
as it supports JDK 1.1.6 or above. 
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Moments are widely used in pattern recognition, image processing, computer vision 
and multiresolution analysis. To clarify and to guide the use of different types of mo­
ments, we present in this paper a study on the different moments and compare their 
behavior. After an introduction to geometric, Legendre, Hermite and Gaussian-Hermite 
moments and their calculation, we analyze at first their behavior in spatial domain. Our 
analysis shows orthogonal moment base functions of different orders having different 
number of zero-crossings and very different shapes, therefore they can better separate 
image features based on different modes, which is very interesting for pattern analysis 
and shape classification. Moreover, Gaussian-Hermite moment base functions are much 
more smoothed, they are thus less sensitive to noise and avoid the artifacts introduced 
by window function discontinuity. We then analyze the spectral behavior of moments in 
frequency domain. Theoretical and numerical analyses show that orthogonal Legendre 
and Gaussian-Hermite moments of different orders separate different frequency bands 
more effectively. It is also shown that Gaussian-Hermite moments present an approach 
to construct orthogonal features from the results of wavelet analysis. The orthogonality 
equivalence theorem is also presented. Our analysis is confirmed by numerical results, 
which are then reported. 

Keywords: Image characterization; classification; moments; orthogonal moments; behav­
ior analysis; frequency analysis; orthogonality equivalence. 

1. INTRODUCTION 

Moments, such as geometric moments and orthogonal moments, are widely used in 
pattern recognition, image processing, computer vision and multiresolution analysis. 
In order to better represent local characteristics of images, smoothed orthogonal 
moments were also recently proposed. 

To clarify and to guide the use of different types of moments, an analysis of their 
behavior both in spatial and frequency domains would be necessary. In this paper, 
we analyze and compare the behavior of different moments, in particular, geometric 
moments, Legendre moments, Hermite moments and Gaussian-Hermite moments. 
Our paper is organized as follows. In Sec. 2, we present geometric, Legendre and 
Hermite moments, and their computation. We analyze and compare the behavior 
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of these moments in Sec. 3, in spatial domain and in Sec. 4, in the frequency do­
main. In Sec. 5, we introduce the Gaussian-Hermite moments, their calculation, 
the relation between Gaussian-Hermite moments and the wavelet analysis, and the 
orthogonality equivalence theorem. A comparison with other moments is also re­
ported. The paper is terminated by some concluding remarks, which are presented 
in Sec. 6. 

2. GEOMETRIC, LEGENDRE AND HERMITE MOMENTS AND THEIR 
CALCULATION 

2.1. Geometric Moments and Their Calculation 

Geometric moments and their calculation have found wide applications in pattern 
recognition, linear filtering, edge detection, image segmentation, multiresolution 
analysis, texture analysis, and other domains of image processing and computer 
vision.1-3 '7 '9 '14-16 '18 '21 '27 '28 Geometric moments of a ID signal S(x) are defined by 

/

W 

S{x + t)tndt n = 0 , l , 2 , . . . (1) 

-w 

where Mn(x) is the moment of order n calculated from a window of size (2w + 1) 
pixels centered at the point x. Geometric moments of a 2D image I(x, y) are defined 
similarly, i.e. 

/ I(x + u,y + v)umvndudv m,n = 0 ,1 ,2 , . . . (2) 
-w\ J-w2 

where Mmtn(x) is the moment of order (m,n) calculated from a window of size 
{2w\ + 1) x (2u>2 + 1) pixels centered at the pixel (a;, y). 

Due to the large computational complexity of moment calculation, fast al­
gorithms for geometric moment computation and their application have been 
proposed.8 '10-13,29 As is well known, one of the advantages of geometric moments 
is that they have an explicit geometrical and statistical significance. In fact, the 
geometrical moments used in pattern recognition and image processing are exactly 
those defined in statistics. If we consider the geometric moments from the viewpoint 
of functional analysis, they are projections of the input signal S(x) onto the poly­
nomial function space, taking the monomial functions 1 • CC • 3J • • • • • X . • • • c l S bases. 

2.2. Orthogonal Legendre Moments and Their Calculation 

Obviously, when one projects a signal onto the axes of a space, generally, one had 
better use orthogonal bases. The advantage of using orthogonal bases is that the 
orthogonality between the bases, helps in reducing the calculation; the error is 
easier to estimate when a limited number of projections is used, and reconstruction 
could also be more simple.5'6'26 So orthogonal moments are proposed and their 
performance is analyzed.19>20'22-24 Taking the polynomial space to analyze the 
signal, the orthogonal bases are known as Legendre polynomials.26 



ON GEOMETRIC AND ORTHOGONAL MOMENTS 19 

Legendre polynomials are defined as 

f (dn/dxn)(x* - l ) " / (2" • „!) for x e [-1,1] 
-Pn(z) = < , W 

I 0 otherwise, 
where n = 0 ,1 ,2 , . . . , is the order of the Legendre polynomial and n! = n • (n — 1) • 
(n — 2) 1. Based on the Legendre polynomials denned above, we can define 
the scaled Legendre polynomials as 

f \{dn/dxn)(x2 - w2)n]/[(2w)n • n\] for x G [-w,w] 
Ln{x) = < (4) 

I 0 otherwise, 

where n is the order of the scaled Legendre polynomial, n = 0 ,1 ,2 , . . . , and w > 0, 
the scale factor. 

The functions Ln(x), n = 0 ,1 ,2 , . . . , are orthogonal polynomials on the interval 
f—w,w\, i.e. 

Lm(x)Ln(x)dx = 0 for m ^ n . (5) 

Given a signal S(x), by use of the scaled Legendre polynomial Ln(x) above, we 
can define the nth order orthogonal Legendre moment Mn(x) as follows 

/

w 

S(x + t)Ln{t) 
-W 

dt 

= (Ln(t),S(x + t)) (6) 

where (fi(t), f2{t)) means the inner product of / i and /2. 
By use of the orthogonality, we have shown that the nth order orthogonal Leg­

endre moments can be calculated by using the following theorem:22""24 

Theorem of recursive calculation of Legendre moments. The nth order 
orthogonal Legendre moments of S(x), calculated from the window [x — w,x + w], 
can be computed from the (n—l)th and (n-2) th order Legendre moments as follows 

Afo(ar) = (L0{t), S{x +1)) ^S^x + w)- S^x - w) (7) 

Mi (a;) = (Li(t), S(x +1)) = [Si (a: + w) + S^x - w)} - (L0(t), Sx(x + t))/w (8) 

MJx) = (Ln(t), S(x +1)) = (L„_2(t), S(x +1)) 

-[(2n-l) / -u;](L„_i( i ) ,5i(a; + i)) for n > 2 (9) 

where 

(L0{t), Si(x +1)) = Si+1{x + w)~ Si+1(x - w) (10) 

(Li(t), Si{x + t)) = [Si+1(x + w)+ Si+1{x - w)] 

-(Lo(t),Si+1(x + t))/w (11) 

(Ln(t), Si(x +1)) = (Ln-2(t), Si(x + t)) - [(2n - l)/w] 

xiLn-ity.Si+^x + t)) f o r n > 2 (12) 
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with 

and 

m = f 
J — c 

S0(t) = S(t) 

Si_i(y)dy fori = 1,2,3, (13) 

As Si(t) can be easily calculated from 5j_i(t) by use of the recursive sum-box 
technique,2'17 the recursive calculation of Legendre moments according to the above 
theorem reduces the computational complexity considerably. 

In 2D cases, given an image I(x, y), the 2D Legendre moment of order (p, q) in 
a 2D window centered at (x, y) is defined as 

/

kx pky 

/ I{x + t,y + v)Lp(t)Lq(v)dtdv (14) 

•kx J-ky 

Obviously, 2D Legendre moments are separable, so the calculation of 2D Leg­
endre moments can be decomposed into the cascade of ID Legendre moment 
calculation, and the recursive algorithm applies. Table 1 shows a comparison be­
tween the computational complexity of the recursive method and that of the clas­
sical method using 2D masks. Readers can see Refs. 22-24 for more details. 

Table 1. Comparison of computational complexity per pixel for calculating all 
2D Legendre moments of order (p, q) with p+q < N. 

Window size 

(2kx + 1) 
x (2ky + 1) 

7x7 

9x9 

11 x 11 

15 x 15 

21 x 21 

31 x 31 

51 x 51 

Max. moment 
order N 

(p+ q<N) 

3 
5 
7 

3 
5 
7 

3 
5 
7 

3 
5 
7 

3 
5 
7 

3 
5 
7 

3 
5 
7 

Classical 

Nb. of x 

490 
1715 
4116 

810 
2835 
6804 

1210 
4235 
10164 

2250 
7875 
18900 

4410 
15435 
37044 

9610 
33635 
80724 

26010 
91035 
218484 

algorithm 

Nb. of + 

490 
1715 
4116 

810 
2835 
6804 

1210 
4235 
10164 

2250 
7875 
18900 

4410 
15435 
37044 

9610 
33635 
80724 

26010 
91035 
218484 

Recursive algorithm 

Nb. of x 

5 
22 
65 

5 
22 
65 

5 
22 
65 

5 
22 
65 

5 
22 
65 

5 
22 
65 

5 
22 
65 

Nb. of + 

124 
299 
570 

124 
299 
570 

124 
299 
570 

124 
299 
570 

124 
299 
570 

124 
299 
570 

124 
299 
570 
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2.3. Hermite Moments 

Another family of orthogonal polynomial functions is Hermite polynomials,6'26 

which can be used as moment base functions. A scaled Hermite polynomial of 
order n is defined as 

Pn(t) = Hn(t/a) (15) 

with 

Hn(t) = ( - l ) n exp(t2)(dn/dtn) exp ( - i 2 ) . (16) 

The ID nth order Hermite moment Mn(x, S(x)) of a signal S(x) can therefore 
be defined as 

/

oo 

Pn{t)S{x + t)dt n = 0 , l , . . . (17) 
-oo 

where Pn(t) is the scaled Hermite polynomial function defined in Eq. (15). 
This moment definition can be easily generalized for 2D cases, and the 2D 

Hermite moments centered at (x, y) of an image I(x, y) are defined as 

Mp,q(x,y,I(x,y))= HPtq(t/cr,v/a)I(x+ t,y+ v)dtdv (18) 
J J —OO 

with 

Hp>q(t/a, v/a) = Hp(t/<j)Hq{v/<r). (19) 

Obviously, by use of the separability of 2D Hermite base functions, 2D Her­
mite moments can be calculated by the cascade of ID moments, which reduces the 
computational complexity. 

3. COMPARISON OF SPATIAL BEHAVIOR OF GEOMETRIC, 
LEGENDRE AND HERMITE MOMENTS 

In this section, we analyze and compare the spatial domain behavior of geometric, 
Legendre and Hermite moments. Figure 1 shows the graphs of different ID mo­
ment base functions of different orders. In order to better show the zero-crossings 
and the oscillations of Hermite base functions, the pseudologarithm is used for ge­
ometric and Hermite moment base functions to visualize the function values. The 
pseudologarithm of f(x) is defined by sign(/(x)) log(l + |/(a;)|), such that 0 will be 
mapped to 0, and the visualized value reserves the sign of the original value. 

From Fig. 1, we see that for geometric moment base functions, the graphs have 
almost similar shapes independent of the moment order, i.e. all base functions of 
odd orders are monotone, and all base functions of even orders are monotone with 
respect to the absolute value of x. The moments of a signal can be considered as 
projections of the signal onto the base function space, so if we want to characterize 
images of different spatial modes by the moments, the geometric moments would 
not be very efficient. On the contrary, for Hermite and Legendre moment base func­
tions, we see many oscillations of the functions depending on the moment order. 
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ID Geometric Moment base 
functions, order 0 to 3 

05 X 
ID Hermite Moment 

base functions, order 0 to 3 
ID Legendre Moment 

base functions, order 0 to 3 

ID Geometric Moment 
base functions order 4 to 7 

ID Hermite Moment 
base functions, order 4 to 7 

ID Legendre Moment 
base functions, order 4 to 7 

Fig. 1. Graph of different ID moment base functions of different orders. 

This means that when we characterize the signal by the use of these moments, we 
extract efficiently the characteristics of different spatial modes of the signal. The 
reason for this efficiency can be easily understood from the properties of orthogonal 
polynomials. In fact, an orthogonal polynomial of order n has always n different 
real roots, i.e. n different zero-crossings, moments of different orders therefore cor­
respond to different spatial modes. Moreover, we see that the oscillations exhibited 
in Hermite moment base functions are much less important than that of Legen­
dre ones. So the Hermite moments represent different spatial modes less effectively 
than Legendre ones. This is because the Hermite bases themselves are not really 
orthogonal if we do not use a weight function, as is the case for Hermite moment 
calculation. In other words, we can say that the Legendre bases are really orthog­
onal, the Hermite bases are closer to orthogonal than the geometric moment bases 
which are not at all orthogonal. The same conclusion holds in 2D cases, which can 
be seen in Fig. 2. 

Of course, from the viewpoint of functional analysis, because all these families 
of base functions are complete, the initial signal given can be reconstructed from 
the moments, no matter which kind of moments are used. So all the geometric, 
Hermite or Legendre moments could be used to characterize a signal. But from the 
practical application viewpoint, if we want to characterize different spatial modes, 
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Hermite (0,7) LeacnJrci1' 7. | 

<•?'• 

%'^' 
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Geometric (10,11)1 ** 1 . u i . u i • M i 

Fig. 2. Graph of different 2D moment base functions of different orders. 

20 « W 

Fig. 3. Three reference shape images and examples of noisy images. 
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such as to distinguish different forms for classification, Legendre moments would 
be more effective. 

To verify the conclusion above, we performed the following experiment. The 
objective is to classify noisy images by using different moments. Three different 
reference shape images: quadrilateral, hexagon and octagon, are used as models. 
From these reference images, we generate noisy images by adding random noises 
of different standard deviations. Figure 3 shows the three different reference shape 
images: quadrilateral, hexagon and octagon, and an example of their noisy images. 

Each shape (including reference and noisy shapes) is then characterized by 
twelve 2D moments of orders (0,0), (0,1), . . . , (0,5), (1,0), (1 ,1) , . . . , (1,5), i.e. each 
shape is represented by a moment vector of twelve dimensions. Geometric, Her-
mite and Legendre moments are tested respectively. The classification is done by 
comparing the moment vector of a noisy shape with those of the three reference 
shapes. Obviously, in order to well characterize the shapes, for each noisy shape, the 
difference (distance in moment space) between the moment vector and its reference 
shape should be as little as possible, and the distance between the moment vector 
and the other reference shapes should be as great as possible. Table 2 shows the 
experimental results of the distances when using different kinds of moments. Notice 
that in order to facilitate the comparison of performances, the distances listed in 
Table 2 are normalized with respect to the distance to the reference shape to which 
the noisy shape originally belongs. 

From Table 2, we see that Hermite moments better characterize the noisy shapes 
than the geometric ones, and Legendre moments best characterize the noisy shapes. 

4. BEHAVIOR OF GEOMETRIC HERMITE AND LEGENDRE 
MOMENTS IN FREQUENCY DOMAIN 

In this section, we analyze and compare the behavior of geometric, Hermite and 
Legendre moments in frequency domain. Figure 4 shows the Fourier transform 
amplitude of these moments of orders 0 through 7. 

From Fig. 4, we see that almost all the geometric moment base functions are typ­
ical low-pass kernel, no matter how large the order is. The amplitude of the Fourier 
transform is always monotonically decreased when the frequency is increased from 
frequency 0 or a frequency very close to 0. As to Hermite moment base functions, 
when the order is increased, the maximum Fourier amplitude position moves more 
and more to the right and the frequency domain behavior becomes more and more 
similar to a band-pass kernel. If this property is not well shown in Fig. 4 because of 
the very limited graph size, one can see it better in Fig. 5 where Fourier transform 
amplitude of higher order moment base functions is shown. Legendre moment base 
functions exhibit best the band-pass characteristics. From Figs. 4 and 5, we see 
that except for functions of extremely low orders, all the Legendre base functions 
rather represent band-pass kernels than low-pass ones. The higher the order is, the 
more to the right the pass-band moves. 

We can therefore conclude that Legendre moments separate characteristics in 
different frequency bands better than Hermite moments, which in turn separate 
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FT of geometric mint, order 0 to 3 FT of Hermite mmt, order 0 to 3 FT of Legendre mmt, order 0 to 3 

IVYw^.. llmvwwwwwv™ 

FT of Geometric mmt, order 4 to 7 FTof Hermite mmt, order 4 to 7 FTof Legendre mmt, order 4 to 7 

'frW»i 1 . l ^ i i 1 .WWi I n t i i 

Fig. 4. Fourier transform amplitude of geometric, Hermite and Legendre moment base functions. 

FT of Geometric mmt, order 22 to 25 FT of Hermite mmt, order 22 to 25 FTofLe^ndremrt,ordsr22to25 

Lit 
Fig. 5. Fourier transform amplitude of high order geometric, Hermite and Legendre moment base 
functions. 

different frequency bands better than geometric ones. So from the frequency analysis 
viewpoint, it seems that the orthogonal Legendre moments characterize images 
more efficiently, which is also supported by the experimental results in Table 2. 

On using the conventional frequency window analysis technique representing 
frequency characteristics by the band center and band width, which are widely 
used in short-time Fourier analysis and wavelet analysis, we can better see the 
difference between the moment base functions. Table 3 shows these characteristics 
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Table 3. Frequency window characteristics of geometric, Hermite and Legendre 
moment base functions. 

Base 
function 

order 

0 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 

Geometric moment 
base function 

Center 

0.40 
1.25 
1.59 
2.32 
2.61 
3.28 
3.52 
4.15 
4.36 
4.95 
5.14 

Effective 
bandwidth 

2.11 
3.87 
4.71 
5.74 
6.23 
7.00 
7.36 
7.98 
8.27 
8.79 
9.03 

Hermite moment 
base function 

Center 

0.40 
1.25 
1.64 
2.42 
2.79 
3.56 
3.93 
4.69 
5.10 
5.89 
6.36 

Effective 
bandwidth 

2.11 
3.87 
4.77 
5.86 
6.45 
7.30 
7.78 
8.50 
8.94 
9.59 
10.03 

Legendre moment 
base function 

Center 

0.40 
1.25 
1.94 
2.60 
3.25 
3.92 
4.59 
5.29 
6.01 
6.77 
7.55 

Effective 
bandwidth 

2.11 
3.87 
4.90 
5.74 
6.46 
7.15 
7.77 
8.41 
9.01 
9.64 
10.23 

for orders from 0 through 10. In the computation, the center and effective bandwidth 
of frequency window are denned as 

Center U>Q = \f uj\F(u)\2duj 
• / . +oo 

/ l*V)l: 
VO 

du (20) 

Effective bandwidth = j \ f (w - wo)2\F(w)\2du I f °° \F(uj)\2du \ . (21) 

Similar conclusion holds in 2D cases, which is shown in Fig. 6 where Fourier 
transform amplitude of 2D moment base functions is illustrated. 

FT of 2D Geometric Moment Base 
order (2, 3) 

FT of 2D Hermite Moment Base 
order (2, 3) 

FT of 2D Legendre Moment Base 
onfer(2,3) 

ui.fKwSH.'l 

<f frequency axis 0 0 

* tLll * 

(frequency axis 

Fig. 6. Fourier transform amplitude of 2D moment base functions (amplitude visualized in pseu-
dolog value: visual(x) = log(l + |a:|)). 
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5. GAUSSIAN-HERMITE MOMENTS AND ORTHOGONALITY 
EQUIVALENCE THEOREM 

From the analysis of spatial domain behavior of geometric, Hermite and Leg-
endre moments above, we see that these moment base functions exhibit a 
great discontinuity at the window boundary. In order to better represent local 
characteristics of images, particularly for noisy images, one should use orthogonal 
moments with a smoothing window function. Notice that the use of smoothing win­
dow functions is one of the fundamental ideas in signal and image processing, such 
as in short-time Fourier transform. Taking the well-known Gaussian functions as 
smoothing kernel, smoothed orthogonal Gaussian-Hermite moments were recently 
proposed.25 In this section, we analyze smoothed orthogonal Gaussian-Hermite 
moments and compare them with geometric, Hermite and Legendre moments. 

Given the Gaussian smoothing function g(x, a) with 

g{x, a) = (2TT<72)-1/2 exp(-x2/2cr2) (22) 

the nth order smoothed Gaussian-Hermite moment Mn(x, S(x)) of the signal S(x) 
is defined as 

/

oo 

Bn(t)S(x + t)dt n = 0 , l , . . . (23) 

-oo 

with 

Bn(t)=g(t,a)Pn(t) (24) 

where Pn(t) is a scaled Hermite polynomial function of order n defined as 

Pn(t) = Hn(t/a) (25) 

with 

Hn(t) = ( -1 )" exp(t2){dT/dtn) exp ( - i 2 ) . (26) 

We have shown25 that the smoothed Gaussian-Hermite moments are orthogonal 
moments and they can be recursively calculated as follows: 

Mn(x,S(m\x)) = 2{n-l)Mn.2{x,S^m\x)) 

+ 2aMn-i(x, S{m+1\x)) for m > 0 and n > 2 (27) 

with 

M0(x, S^(x)) = g(x, ayS^ix) for m > 0 (28) 

M1(x,S(m\x))=2od[g(x,a)]/dx*S(m\x) for m > 0 (29) 

and in particular, 

M0(x,S(x))=g(x,a)*S(x) (30) 

Mi (a;, S{x)) = 2ad[g(x, a)*S{x)]/dx (31) 
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Fig. 7. Spatial behavior of ID Gaussian-Hermite base functions. 

where 

S^m\x) = dmS(x)/dxm, 

S(°\x) = S(x), 

and * denotes the convolution operator. 
Now we analyze the spatial domain behavior of smoothed Gaussian-Hermite 

moment base functions. Because the nth order Hermite polynomial Hn(x) has n 
different real roots, the Gaussian-Hermite base function g(x,a)Hn(x/a) will also 
have n different real roots. Therefore the nth order Gaussian-Hermite base function 
will change its sign n times. In other words, it consists of n oscillations. So Gaussian-
Hermite moments can well characterize different spatial modes as other orthogonal 
moments. Figure 7 shows the spatial behavior of Gaussian-Hermite base functions 
of different orders. 

As to the frequency domain behavior, since Gaussian-Hermite base functions 
comprise more and more oscillations when the order n is increased, they will 
thus contain more and more high frequencies. From the spectral analysis view­
point, the orthogonal Gaussian-Hermite moments efficiently separate the signal 
features in different frequency bands. Figure 8 shows the Fourier transform am­
plitude of some Gaussian-Hermite base functions. On comparing with Figs. 4 
and 5, we see that the orthogonal Gaussian-Hermite moments better separate 
different frequency bands. Table 4 shows the frequency window characteristics of 
Gaussian-Hermite moment base functions. Comparing Table 4 with Table 3, we 
see that the frequency window quality factor Q = (Center)/ (Effective bandwidth) 
of Gaussian-Hermite moment bases is larger than that of other moment bases. 
Gaussian-Hermite moments therefore separate different bands more efficiently. 

Moreover, from the recursive calculation of Gaussian-Hermite moments, we see 
that these moments are in fact linear combinations of the derivatives of the signal 
filtered by a Gaussian filter. As is well known, derivatives are important features 
widely used in signal and image processing. Because differential operations are 
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FT of Gaussian-Hermite mmt, order 0 to 3 FT of Gaussian-Hermite mmt order 4 to 7 ^ o f Gaussian-Hermite mmt, 
order 22 to 25 

. 

Fig. 8. Fourier transform amplitude of Gaussian-Hermite base functions. 

Table 4. Frequency window characteristics of Gaussian-Hermite moment base functions. 

Order 

Center 

Effective 
bandwidth 

0 

0.53 

0.44 

1 

1.13 

0.48 

2 

1.36 

0.75 

3 

1.69 

0.80 

4 

1.86 

0.97 

5 

2.12 

1.01 

6 

2.24 

1.15 

7 

2.47 

1.19 

8 

2.59 

1.33 

9 

2.81 

1.41 

10 

2.97 

1.66 

sensitive to random noise, a smoothing is in general necessary. The Gaussian-
Hermite moments just about meet this demand because of the Gaussian smoothing 
included. In image processing, one often needs derivatives of different orders to 
effectively characterize the image,2,17 but how to combine them is still a difficult 
problem. Gaussian-Hermite moments show a way to construct orthogonal features 
from different derivatives. 

The derivatives of Gaussian functions are widely used as mother wavelets for 
signal and image analysis,4 and different order derivatives of Gaussian niters de­
fine different wavelets, so the derivatives of an input signal filtered by Gaussian 
filters of different standard deviations represent the decomposition of the signal 
into wavelets. Therefore the smoothed orthogonal Gaussian-Hermite moments also 
offer a solution to construct orthogonal features from the wavelet analysis results. 

2D orthogonal Gaussian-Hermite moments of order (p, q) of an input image 
I(x, y) can be defined similarly 

Mp,q{x,y,I(x,y)) = ff G(t,v,a)HPtq(t/a,v/(r)S(x+ t,y+ v)dt dv (32) 

where G(t,v, a) is the 2D Gaussian function, and HPtq(t/cr,v/a), the scaled 2D 
Hermite polynomial of order (p, q), with 

HPiq(t/<x,v/a) = Hp{t/<r)Hq(v/a), (33) 

Obviously, 2D orthogonal Gaussian-Hermite moments are separable, so the recur­
sive algorithm in ID cases can be applied for their calculation. Figure 9 shows two 
Gaussian-Hermite moment base functions and the Fourier transform amplitude of 
a 2D Gaussian-Hermite base function. 
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Fig. 9. 2D Gaussian-Hermite moment base functions and Fourier transform amplitude. 

To compare the performance of 2D Gaussian-Hermite moments with others, we 
have to test the sensibility of the moments to noise. By using noise-free images 
and noisy ones with additional random noise, we calculated the moment vectors 
(mo,o, wo,i, • • •, wio,5im^o,mi t \ , . . . ,m^s), and the normalized distances between 
noise-free images and noisy ones are shown in Table 5. 

We see from Table 5 that the Gaussian-Hermite moments are less sensitive to 
noise than the other moments. 

As is shown above, the orthogonality of moment base functions is denned in the 
space domain, so one can easily understand their good performance in the spatial 
domain, for example, they can well separate different image modes. But why do they 
have a good performance in the frequency domain as well? To better understand the 
good performance of orthogonal moments in both spatial and frequency domains, 
we propose the following orthogonality equivalence theorem. 

Orthogonality equivalence theorem. Orthogonal moment base functions are 
not only orthogonal in spatial domain but also in frequency domain. 
Let fo(x), fi(x), . . . , fn(x), ... be a family of orthogonal polynomial functions 
defined on the interval [a, b] and taking w(x) as the weight function, with w(x) > 0, 
Vz G [a,b], the interval [a, b] can be [a,+oo), (—00,6] or (—00,+00). According to 
the definition of orthogonal polynomial functions, we have 

/ 
Ja 

f 
J a 

w(x)fm(x)fn(x) dx = 0 

w{x)fm{x)fn(x) dx 

for m, n = 0 , 1 , . . . and m ^ n (34) 

./a 
w(x)fm (x) dx > 0 for 771,n = 0 , 1 , . . . and m = n. 

Because w(x) > 0, Vx € [a, b, ], we can define 

p(x) = y/w(x), x G [a, b]. 

(35) 

(36) 
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Orthogonal moment base functions using the orthogonal function family is 

Bn(x) = p(x)fn(x), n = 0 ,1 ,2 , . . . (37) 

where n is the order of the function. 
Now we show that the orthogonal function family is orthogonal in frequency 

domain as well. Let Fn{w) be the Fourier transform of Bn(x), with 

/

oo 
Bn(x) exp(-ju) 

-OO 

= / 
J a 

dx 

p(x)fn(x)exv(-juj) dx. (38) 

The inner product between Fm(u}) and Fn(cj) in the frequency domain will be 

(Fm(u>),Fn(w)) 

-J. Fm(uj)Fn(u) dw 

/

OO rb 

Fm(cj) / p(x)fn(x)exp(juj) dx du 
-oo Ja 

rb r /«oo 

= / Pix)fn(x) / Fm(w) exp(jw) dw 

= / P{x)fn(x)p{x)fm(x) dx 
J a 

-f 
Ja 

w(x)fn(x)fm(x) dx. (39) 

From the definition of the orthogonal polynomial functions above, we obtain 

{ = 0 for 7n,n = 0 , l , 2 = . . . . and m = n 
(40) 

> 0 for 771,71 = 0 ,1 ,2 , . . . and m^n 

which means that Fm{oj) and Fn(cj) are orthogonal in the interval (—oo,+oo) in 
frequency domain. 

In particular, taking w(x) = 1 and the interval [a,b] = [-T,+T], where IT is 
the window size, we obtain Legendre moment base functions which are orthogonal 
in both spatial and frequency domains. Taking w(x) = exp(x2/a2) and the interval 
(—oo, +oo), we obtain smooth Gaussian-Hermite moment base functions which are 
also orthogonal in both spatial and frequency domains. 

6. CONCLUDING REMARKS 

In this paper, we analyzed and compared the behavior of different moments such 
as geometric, Legendre, Hermite and Gaussian-Hermite moments. 

After an introduction to geometric, Legendre and Hermite moments, we first 
analyzed their behavior in spatial domain. Our analysis showed: (1) All these mo­
ments allow the reconstruction of the image from moments, so they can all be 
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used for image analysis. (2) The general variation trend of the values of geomet­
ric moment base functions of different orders is the same, so these moments do 
not very well characterize different spatial modes of image functions. (3) Legendre 
and Hermite moment base functions of different orders have different number of 
zero-crossings and very different shapes, therefore they could better separate image 
features based on different modes, which is very interesting for pattern analysis 
and shape classification. (4) Legendre moment base functions are orthogonal to 
each other, but Hermite moment base functions for a finite window size are not. So 
by using Legendre moments, the calculation could be reduced, the error is easier to 
estimate when moments of a limited order are used, and the image reconstruction 
from these moments could also be simpler. (5) All geometric, Legendre and Hermite 
moment base functions exhibit a great discontinuity at the window boundary, so 
to some extent, they would be sensitive to noise. These results are confirmed by 
experimental results for shape characterization. 

To characterize noisy images, Gaussian-Hermite moments are then introduced. 
We showed (1) The Gaussian-Hermite base functions are also orthogonal, so they 
preserve all the advantages of orthogonal moments such as Legendre ones. More­
over they are much more smoothed than other moment base functions and do not 
exhibit a discontinuity even at the window boundary. Gaussian-Hermite moments 
are therefore much less sensitive to noise and avoid the artifacts introduced by 
window function discontinuity. (2) The orthogonality of Legendre and Gaussian-
Hermite moment base functions ensures the development of the image in an or­
thogonal function space and therefore facilitates afterwards the image comparison 
and classification. 

The spectral behavior of these moments in frequency domain was also analyzed. 
Our analyses showed that Legendre and Gaussian-Hermite moments of different 
orders separate different frequency bands more effectively than other moments. 
In particular, the quality factor (Q) of frequency window of Gaussian-Hermite 
moment base functions is better than other moments. This conclusion is confirmed 
by experimental results on noisy images. We also show that Gaussian-Hermite 
moments present an approach to construct orthogonal features from the results of 
wavelet analysis, which is very important for image analysis and classification. To 
better understand the good performance of orthogonal moments, the orthogonality 
equivalence theorem was also presented. 

Since the moments are widely used in image analysis, multiresolution analysis 
and pattern recognition, we hope that the analysis presented in this paper will give 
a global view of different moments and can help moment-based image analysis. 

REFERENCES 
1. Y. S. Abu-Mostafa and D. Psatlis, "Recognitive aspect of moments," IEEE Trans. 

PAMI-6 (1984) 698-706. 
2. S. Castan and J. Shen, "Box filtering for Gaussian-type niters by use of the B-Spline 

functions," Proc. 4th Scandinavian Conf. Image Analysis, Norway, 1985 pp. 235-243. 



ON GEOMETRIC AND ORTHOGONAL MOMENTS 35 

3. L. H. Chen and W. H. Tsai, "Moment preservation curve detection," IEEE Trans. 
SMC-18 (1988) 148-158. 

4. Ch. K. Chui (ed.), Wavelets: A Tutorial in Theory and Applications, Academic Press 
Inc., Boston, 1992. 

5. P. Davis, Methods of Numerical Integration, 1975. 
6. C. Froberg, Introduction to Numerical Analysis, 1965. 
7. R. M. Haralick, "The facet approach to optic flow," Proc. Image Understanding Work­

shop, Arlington, 1983, pp. 84-93. 
8. M. Hatamian, "A real-time two-dimensional moment generating algorithm and its 

single chip implementation," IEEE Trans. ASSP-34, 3 (1986) 546-553. 
9. M. K. Hu, "Visual pattern recognition," IRE Trans. Inform. Th. IT-8 (1962) 179-187. 

10. B. C. Li and J. Shen, "Fast computation of moment invariants," Patt. Recogn. 24, 8 
(1991) 807-813. 

11. B. C. Li and J. Shen, "Pascal triangle transform approach to the calculation of 3D 
moments," CVGIP: Graph. Mod. Imag. Process. 54, 4 (1992) 301-307. 

12. B. C. Li and J. Shen, "Range-image-based calculation of three-dimensional convex 
object moments," IEEE Trans. Robot. Automat. 8, 4 (1993) 484-490. 

13. B. C. Li and J. Shen, "Two-dimensional local moment, surface fitting and their fast 
computation," Patt. Recogn. 27, 6 (1994) 785-790. 

14. S. T. Lio and W. H. Tsai, "Moment preservation corner detection," Patt. Recogn. 23, 
5 (1990) 441-446. 

15. C. H. Lo and H. S. Don, "3D moment forms: their construction and application to 
object identification and positioning," IEEE Trans. PAMI-11, 10 (1989) 1053-1064. 

16. E. P. Lyvers, "Subpixel measurement using a moment-based edge operator," IEEE 
Trans. PAMI-11, 12 (1989) 1293-1308. 

17. M. J. McDonnell, "Box-filtering techniques," CGIP 17, 1 (1981) 65-70. 
18. H. H. Nagel, "On the estimation of optical flow: relations between different approaches 

and some new results," Artif. Intell. 33 (1984) 299-324. 
19. M. Pawlak and S. X. Liao, "On image analysis by moments," IEEE Trans. PAMI-18, 

3 (1996) 254-266. 
20. M. Pawlak and X. Liao, "On image analysis by orthogonal moments," Proc. 11th 

ICPR, The Hague, August 30-September 3, 1992, pp. 549-552. 
21. F. A. Sadjadi, "3D moment invariants," IEEE Trans. PAMI-2, 2 (1960) 127-136. 
22. J. Shen and D. F. Shen, "Image characterization by fast calculation of low-

order Legendre moments," Proc. IEEE Int. Conf. SMC'96, Beijing, October 1996, 
pp. 1144-1149. 

23. J. Shen and D. F. Shen, "Image characterization by fast calculation of Legendre 
moments," Proc. European Symp. Satellite Remote Sensing'96, Italy, September 1996, 
pp. 295-306. 

24. J. Shen and D. F. Shen, "Orthogonal Legendre moments and their calculation," Proc. 
ICPR'96, Vienna, August 1996, pp. B241-B245. 

25. J. Shen, "Orthogonal Gaussian-Hermite moments for image characterization," Proc. 
SPIE, Intelligent Robots and Computer Vision XVI: Algorithms, Techniques, Active 
Vision, and Materials Handling, Pittsburgh, October 15-17, 1997, pp. 224-233. 

26. G. Szego, Orthogonal Polynomials, N.Y., 1959. 
27. C. H. Teh and R. T. Chin, "On image analysis by the methods of moments," IEEE 

Trans. PAMI-10, July (1988) 496-512. 
28. N. Yokaya, "Range image segmentation based on differential geometry: a hybrid ap­

proach," IEEE Trans. PAMI-11, 6 (1989) 643-649. 



36 J. SHEN, W. SHEN & D. SHEN 

29. M. F . Zakaria, L. J. Vroomen, P . J . A. Zsombar-Murray a n d J . M. H. M. Van Kessel, 
"Fast a lgor i thm for t h e computa t ion of momen t invariants ," Patt. Recogn. 2 0 , 6 (1987) 
634-643. 

J u n S h e n is a professor 
in computer science and 
head of Image Labora­
tory at EGID' Institute, 
Bordeaux-3 University, 
France. He received the 
B.S. degree in radio 
and electronic engineer­
ing from Tsinghua Uni­
versity, Beijing, China 

in 1968, and the Ph.D. and "Doctorat 
d 'Etat" degrees in computer science from 
Paul Sabatier University, Toulouse, France 
in 1982 and 1986, respectively. He is author 
or co-author of more than 100 publications 
in image processing and computer vision. He 
received an "Outstanding Paper Honorable 
Mention" from IEEE Computer Society in 
1986. 

His current research interests include im­
age processing and analysis, computer vi­
sion, pattern recognition and neural network 
application. 

W e i S h e n is an asso­
ciate professor at Zhong-
shan University, Can­
ton, China. He received 
the B.S. degree in me­
chanics from the Poly­
technic Institute of 
Jiangsu, China in 1982, 
and the M.S. degree 
in robotics and Ph.D. 

from University of Poitiers, France, in 1989 
and 1996, respectively. 

His research interests include image pro­
cessing, computer vision, pattern recognition 
and neural network application. 

Danfe i S h e n is with 
the National Higher In­
stitute of Telecommu­
nications (Boole Na-
tionale Superieure des 
Telecommunications), 
Paris, France. He re­
ceived the B.S. and 
M.S. degrees in applied 
mathematics from the 

University of Bordeaux-1, France, in 1996 
and 1997, respectively. 

His current research interests include 
signal and image processing and computer 



MULTISPECTRAL IMAGE PROCESSING: 
THE NATURE FACTOR 

WENDELL R. WATKINS 
U.S. Army Research Laboratory 

ATTN: AMSRL-SL-EA 
White Sands Missile Range, NM, 88002-5513, USA 

The images processed by our brain represent our window into the world. For some 
animals this window is derived from a single eye, for others, including humans, two 
eyes provide stereo imagery, for others like the black widow spider several eyes are 
used (8 eyes), and some insects like the common housefly utilize thousands of eyes 
(ommatidia). Still other animals like the bat and dolphin have eyes for regular vision, 
but employ acoustic sonar vision for seeing when their regular eyes do not work such 
as in pitch black caves or turbid water. Of course, other animals have adapted to dark 
environments by bringing along their own lighting such as the firefly and several creatures 
from the depths of the ocean floor. Animal vision is truly varied and has developed over 
millennia in many remarkable ways. We have learned a lot about vision processes by 
studying these animal systems and can still learn even more. 

Keywords: Image processing; human vision; depth perception; wide baseline stereo; tar­
get acquisition; navigation; optical turbulence. 

1. INTRODUCTION 

There have been many advances in the twentieth century, but few can rival those in 
the area of image processing. The miniaturization and increased speed and memory 
of computers have opened the door for exploitation of a wide variety of applica­
tions in the area of multispectral image processing. We now have imaging systems 
that reconstruct 3D images of human body organs beneath our skin through com­
puter tomography (CT) scans, 3D images of aircraft approaching an airport can 
be displayed inside a crystal for air traffic control, photographs are digitally stored 
and enhanced before printing, and robots can navigate and perform complex ob­
ject manipulation using processed stereo imagery. Yet, in some ways we have not 
taken full advantage of the evolution of the imaging systems developed by animals 
including humans. 

What is vision anyway? The brain receives signals from our optic nerves that 
represent the images formed on the retinas of our eyes. Our brain with only about 
a 125-terabyte storage capacity is able to translate these image signals into human 
vision with incredible speed. We perform object recognition using color, shape and 
texture. We perform range mapping to determine the relative position of objects. We 
even fill in image data voids based on previous image processing experience. We have 
begun to replicate some of the human vision processing through the development of 
mathematical algorithms and techniques such as neural networks, wavelets, fuzzy 
logic, etc. Yet, our understanding has a way to go. We have begun to use the 
information produced simultaneously by several images for robotic depth perception 
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purposes, but it is difficult to imagine what the vision of the common housefly 
must be with its 4000 image forming elements. More importantly, however, we have 
become comfortable with less than optimum methods of image display. 

During the course of a day, we are presented a tremendous amount of visual 
information to process. We read newspapers, magazines and books. We read our 
email messages off our computer monitors. We even digest visual information from 
television displays. We have become accustomed to processing a large majority 
of our visual information as a 2D representation that can be easily replicated in 
digital form. It is much easier to process information and produce algorithms for 
a 2D array. It is to their credit that the great sculptors of the past were able to 
break out of the 2D representation mold and produce 3D works of art. It is this 
understanding of depth perception and the use of our vision capability that has not 
been fully exploited in many areas of multispectral image processing. We will look 
at some examples in this area and other areas in this paper. 

2. MULTISPECTRAL IMAGE PROCESSING 

Just as an oasis is a delightfully refreshing change of pace for the desert traveler, 
multispectral image processing provides the scientist and engineer an opportunity 
to apply a diversity of disciplines to a myriad of applications in a world where spe­
cialization and repetition have become the norm. Multispectral image processing 
encompasses the disciplines of mathematics, computer sciences, electrical and me­
chanical engineering, physics, photogrammetry and biological sciences. Bernd Jahne 
gives a nice summary of multispectral image processing tasks in his recent book 
entitled Practical Handbook on Image Processing for Scientific Applications.12 He 
includes geometric measurements of gauging and counting, radiometric measure­
ments of revealing the invisible, depth measurements of exploring the 3D space, and 
velocity measurements of exploring dynamic processes. Although we have come a 
long way in terms of being able to analyze imagery using sophisticated physical and 
mathematical algorithms that drive our computer vision measurement analysis, we 
still cannot match human vision that is able to easily solve very difficult recognition 
and classification tasks.18 

The complexity of the tasks for which we now use multispectral image pro­
cessing truly challenges our scientific and engineering ingenuity. To optimize the 
results of our image processing we must consider the scene or object illumination 
and optical properties for proper contrast and texture. The radiation field, which 
constitutes the image, may be altered by the atmosphere between the scene or ob­
ject and the camera system collecting the image. The spectral, spatial and temporal 
characteristics of the camera itself may not accurately collect all of the important 
details contained in the scene. Our image analysis tools may also introduce artifacts 
or distort the characteristics of the scene. Finally, the means used to display the 
results may not allow important aspects of the scene to be accurately portrayed. 

We can enhance the aircraft pilot's ability to land in adverse weather using 
infrared and millimeter imagery overlaid on the pilot's visible vision using heads-
up displays.22 We can even see through intense explosive plumes using laser-gated 
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imagery;26 but, we still cannot safely drive automobiles under foggy conditions. 
We can diagnose diseases using sophisticated techniques such as CT scans. Yet, 
orthodontists routinely have to compare dental X-rays taken over a period of months 
to determine tooth positioning. Our visible cameras can now match the sensitivity 
of the human eye,23 and we will soon have the capability of true 3D display of 
aircraft positions for air traffic controllers.24 Still, we obtain most of our daily news 
and information from flat displays, pictures and written text. We have become too 
comfortable with a 2D representation of our 3D world. 

3. IMAGE PROCESSING TOOLS 

Machine or computer processing requires that the images be input in digital form. 
Conversion from a radiance field, which is sensed by the imaging system used, to 
the required digital format introduces several problems such as sampling, aliasing 
and data fidelity that must be resolved.11 Unless atmospheric degradations like 
aerosol scattering and optical turbulence distortion are eliminated using techniques 
like guide star deformable mirror corrections during image collection,21 the image 
content must be restored using processing techniques such as boundary contour 
systems.1 Before an image processing task such as target detection can be per­
formed, the imagery data must be enhanced and restored for optimum results. This 
process typically entails filtering and/or averaging of some kind and can include 
spatial, temporal and spectral image characteristics. Although there are many ref­
erences on image processing techniques, Anil K. Jain's book entitled Fundamentals 
of Digital Image Processing continues to be the definitive text in this area.13 Once 
the images have been prepared for a particular image processing task, the real chal­
lenging work begins. Features must be extracted from the imagery in the form of 
regions, edges and lines, depth and motion, and scale and texture. These features 
are then used to create the masks that represent the objects of interest through 
segmentation, size and shape, and finally classification. 

It should again be stressed that the machine or computer vision process really 
only measures quantities related to the content of imagery databases. Often what 
is desired in an image processing task requires analysis that verges on the qualita­
tive recognition aspect that is performed by animal vision or, in essence, we want 
intelligent robotic vision. It is in this regime that the Nature Factor is important. 
Human vision, for example, uses a sophisticated hierarchy of organized massively 
parallel processing. Machine or computer processing is still in its infancy in terms 
of performing the qualitative image processing tasks. Animals rely for their survival 
on how well they blend into the terrain, yet we have only begun to be able to model 
the camouflage process in cluttered environments for image processing tasks.10,30 

Part of the problem relates to how we perceive objects based on texture and color 
variations and how these processes can be applied to imagery in spectral bands 
outside of the visible.2,4'25 Finally, neural nets and fuzzy logic are beginning to be 
used as the image processing speed available in personal computers has attained 
the hundreds of MHz central processing unit clock speed.11 
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How is the Nature Factor used? To begin, the sensors we use to collect the 
imagery to be analyzed as well as the rectangular or square shape of the digitally 
stored image pixels does not correspond to the hexagonal pattern of close-packed 
cones used for human color vision. Nature's hexagonal close-pack translates into a 
pattern where each individual color cone, for example red, is surrounded by three 
green and three blue cones alternately spaced at 60° intervals. This is not a random 
distribution but optimum for minimizing the Moire-effect. That is why color printers 
with dot matrices have their three color axes rotated by 60° with respect to each 
other. The spectral content of the imagery can also be an issue. The bow and arrow 
deer hunter with his human-designed camouflage can be in for a surprise. Deer are 
nocturnal and, hence, have enhanced scotopic vision. In fact, they see ultraviolet 
(uv) fluorescence that humans do not. Not only will they see the clothing washed 
with phosphate detergent but even the bowstring will glow unless it is coated with 
uv-blocking wax. Many manmade objects have vertical and horizontal edges that 
differ from Nature's more curved shapes so why not use a bar-pattern to measure 
the human vision's modulation transfer function. It was not until very recently 
that anything else was even tried for characterizing the vision process.3,27 Finally, 
Nature has given us many excellent examples of vision processes. Most animals 
have two eyes. The hunters have two forward-looking eyes with excellent visual 
acuity for discerning primarily motion. The preys, on the other hand, have two 
opposite looking eyes to give hemispherical coverage of approaching danger. Some 
birds that have opposite looking eyes rock forward and backward to obtain depth 
perception information about the location of small crustaceans hidden under the 
moving sands of the surf on the oceans' shores. Yet, for the most part, we have 
discarded the value of stereoscopic depth perception for use in addressing many 
common image processing tasks.34 

4. THE NATURE FACTOR 

The basis for exploiting the Nature Factor began with the development of a field re­
search tool called the Mobile Imaging Spectroscopy Laboratory (MISL). The basic 
concept behind its use was the matching of multiple spectral band imaging sys­
tems on a target plane from a close up and far away location. Typically the ratio 
of the far to close ranges was 10 to 17. By comparing the imagery that had the 
fields of view in the target plane optically matched with appropriate lenses, the ef­
fects of the propagation of the scene radiation could be characterized.32 The MISL 
was used to characterize atmospheric effects on target contrast. Changes in solar 
loading due to the passage of clouds that blocked the sun during the day were espe­
cially pronounced in the thermal infrared spectral region.5 Contrast transmission 
and optical turbulence distortion of the propagated imagery could be character­
ized as well.14'33 Because the contrast transmission is dependent upon the product 
of spectral radiance times atmospheric transmission times the detector response, 
this led to bandpass optimization for the use of thermal imaging for long path 
applications.17 These effects were summarized in a paper presented at the 1993 
Society of Photo-Optical Instrumentation Engineers Symposium in Orlando, FL.31 
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Fig. 1. (a) Right view (b) Left view of camo nets, 3 m separation. 

One of the most significant outgrowths of the concept of matching the near and 
far views was the visualization of scene dynamics. Some of the effects like solar 
loading changes could be seen from both views, while others like optical turbulence 
distortions were only seen in the distant view. Almost by accident the benefits of 
using wide baseline stereo imaging was conceived when the near and far imaging 
system live monitor imagery was fused with cross-eyed stereo viewing. The optical 
distortions that were occurring on the far imagery seemed to disappear when fused 
with the undistorted near imagery. Several experiments were performed to illustrate 
the benefits of real-time viewing with wide baseline stereo. The first example was 
that of the application of the depth perception aspect of stereo vision applied to 
the detection of camouflage netting shown in Fig. 1 

Figure 1 shows what can be done with hyperstereo (wide baseline, compared 
to the human interocular distance of 6~to-7 cm, stereo) vision when applied to 
camouflage netting viewed from a 45° look-down angle at a range of about 55 m.34 

The figure gives a cross-eyed stereo view with 3 m baseline separation. When viewed 
in stereo two camouflage nets (one obvious forest net and one very difficult-to-see 
desert net) leap out of the scene. Care must be taken in the display of the stereo 
images to be effective. In this example, the camera separation was 3 m with the 
camera fields of view of 20° by 15° (width/height). This corresponds to images 
with 19 m lateral extent and ranges between the bottom and top of the scene of 
46 m to 69 m or a vertical extent of 27.5 m along the ground. With a typical image 
display width of 11.5 cm and a 2 cm separation between them, the stereo images 
can easily be fused at a viewing distance of 30 cm to 100 cm. This represents an 
angular viewing extent between 7° to 20°. A problem can occur when too much 
magnification is used which corresponds to increasing the viewing extent too far 
beyond the actual scene field of view. When a 6 m camera baseline was used for 
horizontal viewing, there was a problem with too much parallax to fuse magnified 
fields of view of about 2° in width for ranges less than about 300 m. The problem 
is similar to trying to see all of your fingers when you spread them out at different 
ranges right in front of your face. You can only view them one at a time. An 
additional benefit of wide baseline stereo viewing that is not experienced when just 
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(a) (b) 

Fig. 2. (a) Right view (b) Left view of optical turbulence distortion. 

looking at a stereo pair of still images is dynamic cueing. When the wind is blowing 
the motion of the individual branches of the bushes can be readily distinguished 
from the back and forth undulations of the flat surface camouflage net even at much 
longer ranges. 

The second example was that of the application of the stereo fusion process for 
mitigating optical turbulence distortions. Figure 2 shows a cross-eyed stereo view 
with a 10 m baseline separation of a scene with ranges of one-to-several kilometers 
to distinct features that can be stereo vision fused. In this stereo pair the line of 
telephone poles about half way up in the scene is at a range between one and two 
kilometers away. The lower portion contains features at ranges of much less than 
a kilometer. With the 10 m platform separation and a line of sight centered at 
about 2 kilometers? stereo fusion of most of these features is not possible because 
the same features are not even in both fields of view. The features in the upper 
half of the stereo pair can be fused and give good depth perception up to multiple 
kilometers. These images were taken from VHS videotapes that show appreciable 
optical turbulence distortion along both stereo lines of sight. This can be seen as 
different distortions of the edges of the individual high contrast features between the 
two scenes shown in Fig. 2. When viewed as single line of sight video the individual 
objects would dance around and change shapes. Because the platform separation 
was wider than the typical l-to-2 m coherence length for the optical turbulence 
present along each path, the distortions of the features out to several kilometers 
were different for each line of sight; and, hence, the distortions were decoupled from 
each other. When the video from each line of sight was viewed in stereo, the stereo 
fusion process filtered out most of the dancing around and changes in shape as 
noise. The features became more distinct in shape with only a little residual high 
frequency jitter of the edges. It is in the area of dealing with scene dynamics that 
the Nature Factor can have significant impact. 

5. DEPTH VERSUS MOTION CUES 

To understand how the Nature Factor can be used, consider for the moment what 
it must be like to see using the common housefly's vision system with its compound 
eyes of thousands of individual imaging elements or ommatidia. By simultaneously 
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analyzing the imagery from patches of ommatidia with a brain the size of the head 
of a pin, you would be able to discern from motion or depth cues dangers that are 
present in any direction. Motion cues are derived from the change in position of an 
object with respect to its background. The range to an object can be derived by 
determining the angular offset of the object with respect to its background along 
two or more different lines of sight and, then, solving the feature correspondence 
between the different image pairs. In essence, motion and depth cues are treated 
the same mathematically. Currently, motion cues are derived from temporal sets 
of images but depth information is typically not used. Consider what the world 
would look like if your eyes were placed multiple meters apart and equipped with 
magnifying optics. When such a test was conducted the results were that the same 
human vision analysis processes that were used to obtain depth information around 
us upto tens of meters provided depth information at multiple kilometer ranges (see 
Fig. 3).34 In order to illustrate how the depth mapping can be performed, views of 
this scene were taken along three different lines of sight and digitized to form 512 by 
512 pixel arrays. There was a central line of sight, a left line of sight with a baseline 
separation of 19.6 m, and a right line of sight with a baseline separation of 27.2 m. 
The three scenes were aligned at a central point and a 256 by 256 pixel area was 
extracted. Four distinct stationary features were picked from the central scene and 
the pixel disparity between left and center and center and right were calculated. The 
disparity was measured by applying pixel template area matching. Disparities were 
calculated from the sum of squared differences for each distinct feature in the two 
pairs of stereo images.28 This approach uses a small area of interest from one stereo 
pair image that is matched to the second stereo pair image within a larger region 
whose extent is based on expected disparity limits to obtain the best template 
match. The ratio of the camera baseline separations is 1.39 (left-center/center-
right). The results are shown in Fig. 4.29 An entire scene depth map could not be 
derived because the images were taken at different times and scene feature changes 
due to lighting and other effects such as motion due to wind in general caused 
large errors in texture correspondence especially for the forest canopy. For whole 
scene depth mapping all the different lines of sight imagery must be taken at the 
same time. 

As mentioned above, the use of wide baseline stereo vision has other benefits. 
The optical turbulence distortions were automatically mitigated through the hu­
man vision processing of the imagery. Evidently what happens is the turbulence 
distortions being seen by each eye become decoupled by the angular separation; 
and, hence, the human vision processing averaged out the distortions as noise. This 
occurs because the human stereo fusion process is based on relatively coarse spatial 
content within images as evidenced by image compression research.9,15 In addition, 
when wide baseline stereo was applied to an underwater robotic task of picking up 
objects in turbid water, the depth perception obtained allowed the object of interest 
to be separated from the floating murky debris that constituted severe clutter.20 

Yet, the algorithms currently used for target acquisition are based on statistics from 
digitized single line of sight images with no depth perception cues. Using the Nature 
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Fig. 3. Cross-eyed stereo pair of rural terrain at 2 km range collected with two visible cameras 
with 10X lens and a 50 m baseline separation. Additional details of the imagery and method of 
viewing are found in Ref. 34. 
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Fig. 4. Set of three lines of sight for the same terrain as in Fig. 3 aligned on the center pixel. 
The disparities between four stationary locations in the scenes are shown for the left-center and 
center-right stereo pairs. The ratio between disparities (left-center/center-right) is calculated a t 
each location for comparison with the camera platform separation ratio of 1.39. 

Factor of replicating the stereo vision depth perception that animal vision utilizes 

to detect targets, there are several cues that can be applied such as depressed trails 

in grassy terrain that lead to the vehicle producing them. In addition, much of the 

clutter that is detected in single line of sight imagery disappears because volume 

and surface contour can be used as discriminating factors. Finally, the ground and 

tree lines are better defined showing where real targets cannot be and where hidden 

targets may be. 
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6. NAVIGATION 

A final example of how the Nature Factor can be used is in the area of navigation. 
Before delving into how wide baseline stereo vision can be used to enhance nav­
igation, a digression is in order to explain why it is not already being used. It is 
not as if stereo vision or even wide baseline stereo vision was just discovered. The 
first documented use of stereo vision was by Euclid; and, subsequently, it was rep­
resented in drawings by Giovanni Battista della Porta around 1600. More recently 
the Brewster Stereoscope was in widespread use from the mid-1800s to mid-1900s. 
It was not until very recently that technology has provided the tools to allow et.sy 
viewing of high spatial resolution stereo video imagery. The other missing element 
in making wide baseline stereo vision practical was the computational speed now 
available to enhance the video inputs to the stereo imagery display. The cost of ob­
taining the necessary processing and display equipment is now only a few thousand 
instead of tens of thousands of dollars. 

We take advantage of our depth perception extensively in navigating over rough 
terrain. During the day we have little problem avoiding obstacles when the visibil­
ity is good. But at night avoiding obstacles becomes a real problem. Recent tests 
at the U.S. Army Research Laboratory by V. Grayson CuQlock-Knopp et al. have 
compared monocular, biocular and binocular night vision goggles.6'7 Their findings 
were that the depth perception of the binocular goggles provided the best naviga­
tion as well as target detection capabilities. Hyperstereo vision has also been used 
in robotics applications including navigation.8'16'19 To illustrate how wide baseline 
stereo vision could be adapted to enhanced night time vehicular navigation a set of 
experiments were performed using a pair of Inframetrics, Inc. Model 610 infrared 
imagers with 2.5 m baseline separation. In order to illustrate how a driver could 
use a stereo display headset for navigation, a passenger in the vehicle wore a pair 
of stereoscopic display goggles designed for viewing asynchronous video signals on 
a see through LCD display shown in Fig. 5. The cost of the unit was less than 
one thousand dollars. The type of stereo imagery display that was viewed is shown 
in Fig. 6 with additional details given elsewhere.34 The important finding of the 
experiment was that the stereoscopic vision indeed could be used to navigate the ve­
hicle even in rough terrain. For military applications of driving without headlights, 
navigation in this case would have been impossible. As in the case of applying wide 
baseline stereo vision to search and target acquisition tasks, care must be taken 
in presenting the correct stereoscopic field of view for the particular task. In this 
case some magnification can be used without creating problems with the distance 
perception needed for driving a vehicle. The cameras used were set for a 75% field 
of view magnification to lessen the problem of fusing the entire field of view of 
the individual cameras. Additionally, the camera lines of sight need to be adjusted 
depending upon whether the terrain is on-road or off-road. The on-road terrain 
requires the camera lines of sight to cross at about 150 m because the driving 
speeds are typically higher with less terrain hazards than the off-road case where 
the lines of sight should cross at a range of about 30 m. In this way the stereoscopic 
depth of field is optimized for detecting the most probable location of navigation 
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(a) (b) 

Fig. 5. (a) Right view (b) Left view of stereo pairs showing a modified pair of stereo goggles for 
asynchronous video signal viewing. 

(a) (b) 

Fig. 6. (a) Right (b) Left IR image of road with 75% fov. 

hazard. Figure 6 shows a dark shadow in the road that could be interpreted as a 
dip whereas the actual dips are often not seen at all without using stereoscopic 
vision. Our current research is now focusing on using wide baseline stereo vision 
with chopped active source illumination for navigation through fog. 

7. CONCLUSIONS 

As the applications of multispectral image processing expand into the realm where 
quantitative measurements are being used to make qualitative assessments, we must 
rely more heavily on the recognition processes already developed in Nature. The 
human vision process must be better understood and modeled. The inclusion of this 
Nature Factor will not only change the mathematical approach we use to analyze 
the multispectral image processing task, but also the manner in which the imagery 
data to be used is obtained. The example of the basic omission of depth perception 
in image processing analysis was highlighted, but there are many more ways that 
we can benefit from vision systems that have been developed naturally. 
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This paper discusses the research in small target detection in infrared images with 
heavy clutter background. For most infrared images, ship objects are rather dim in the 
relative dark sea surface background. The existence of scan line disturbance and noise 
also increases the difficulty in proper detection. Dim objects must be distinguished from 
a dark background. On the other hand, the small targets must also be distinguished 
from clutters. Through analysis of the targets and background, we build characteris­
tic models of small ship objects, noise and sea backgrounds respectively, and indicate 
their differences in spatial and frequency domains among them. Based on the principles 
of signal processing, pattern recognition and artificial intelligence, we propose a com­
bined algorithm for detecting sea surface small targets. In this algorithm, components 
of background and noise are first suppressed by a multilevel filter designed accordingly, 
meanwhile enhancing the target ones of interest. The pixels of the candidate targets are 
then discriminated by minimum risk Bayes test. Finally, according to a priori knowl­
edge about the targets such as the ranges of their sizes, the targets of interest can be 
detected. In particular, the related probability distributions used by statistic decision 
are obtained by offline learning of typical training samples. Experiments show that the 
algorithm is excellent for such kinds of target detection and is robust to noise. 

Keywords: Target detection; infrared imaging; multilevel Alter; minimum risk Bayes test; 
pattern recognition; modeling and learning. 

1. INTRODUCTION 

Small target detection has found its wide applications in such areas as remote sens­
ing, surveillance, environment monitoring, aerospace, medical diagnosis, robotics, 
and so on.1-2-4"9 The crux of small target detection lies in the fact that available 
information from the targets are generally much less than that from the background 
so that the solution algorithms must explore the largest possible information in­
herent to the problem and utilize such information very effectively. Unfortunately, 
no general solution to the problem exists. For this reason, heuristic solutions to 
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the problems will not only have important application values but also theoreti­
cal significance in image analysis and signal processing. A few researchers have 
used wavelets and fractals as tools to attack the issues of small target detection. 
Casasent ei al1 applied Gabor transform to detecting vehicles on the ground. Pell4 

used fractal dimension singular changing as a sign indicating candidate man-made 
objects on the ground in remote-sensed images. Recently, Wang and Zhang6 made 
use of fractal dimension and fractal constant abrupt variation for detecting small 
ship targets. Despite their success, the following problems remain to be resolved; (1) 
automatic determination of optimal threshold for real-time detection, (2) construc­
tion of adaptable models of the targets, background and noise for effective target 
detection, and (3) mining of adequate inherent information to the problem for im­
proving detection performance instead of only relying on a single signal processing 
technique. In view of the fact that detecting sea surface small targets in infrared 
images is a typical case, this work proposes and tests a new detecting approach, 
featuring synthesized techniques from signal processing, pattern recognition and 
artificial intelligence. The remainder of the paper is organized as follows. Section 2 
gives an analysis of the characteristics of target, noise and background as well as 
their modeling. Section 3 presents multilevel filter for enhancing targets and sup­
pressing background clutter. In Sec. 4 optimum threshold real-time estimation and 
target detection are discussed. Finally, experiments conducted on practical infrared 
image data and conclusion are reported in Sec. 5. 

2. ANALYSIS OF TARGET AND BACKGROUND CHARACTERISTICS 
AND MODELING 

Figure 1 shows one of the images we studied. The image was taken by an infrared 
imaging instrument which scans the scenes from left to right. We can clearly dis­
cern the horizontal scan lines. Because the infrared imaging instrument is easily 
disturbed by the environment, such as climate, vibrating, occlusion and so on, 
noises which are the randomly distributed bright dots in the image are obvious. 

P"ffi"*farai^ 

Fig. 1. An infrared image of sea surface small target. 
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The background is the relative dark sea surface and the targets are the com­
paratively brighter parts which might be the ship objects. Even if the ships' gray 
level is in the small target domain, one can distinguish them from the nearby com­
paratively darker background. But general speaking, we cannot identify them only 
by their gray values because the domains occupied by the ships are small and their 
gray value distributions are often mixed with those of the background. Ships are 
continuous parts in the image when compared with dot noise. We can tell their 
difference by considering the difference of their space-domain appearance. For ex­
ample, the ships' sizes in the studied images are in the range of 6 to 14 pixels in 
length, 6 to 10 pixels in height. The noise size is usually below 3 x 3 pixels. 

Without losing generality, we assume that targets, noise and background clutter 
are all approximated respectively by cubes with different sizes or cube mixtures of 
different sizes. Let a standard cube ro(j, k) be represented by 

ro(j,k) = 
0, 

\j\<=Tj, \k\<=Tk 

otherwise 
(1) 

where 2Tj and 2Tk are the size of definition domain of ro. Then any cube rx<y{j, k) 
in x-y plane can be denoted as 

rx,v(j, k) = f(x, y)r0(x - aj, y - f3k) (2) 

where a, (3 are dilation coefficients in x-y coordinates, respectively, and f(x, y) is 
considered as a dilation coefficient in the gray level axis. 

In another view, we can study the characteristics of the background, target and 
noise in the frequency domain. Let us first describe the background, target and 
noise model in one dimension according to Eqs. (1) and (2). See Fig. 2. 

This is an ideal model. We only consider the gray value and size attributes of 
background, target and noise, ignoring their relative positions since the position 
shift in space domain corresponds to the phase shift in frequency domain. Let 
Gn, Gt, Gb be the gray value of noise, target, background, respectively. 2Tn, 2Tt, 2Tb 
represent the covering range (nonzero size) of noise, target, background. Cn,Ct,Cb 
are the central positions of noise, target, background covering ranges, respectively. 

Gray value 
A 

G. 

Noise 

Background Target 

2T„ 

* 2Th 

-27,-

-> Position 

Pig. 2. Ideal model of background, target and noise. 
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• X 

Fig. 3. Gate function. 

Fig. 4. F(w) is amplitude spectrum of f(x). 

We find the three parts are similar in shape in Fig. 3 with variations of gray value, 
covering range and central position. 

Figure 3 shows the gate function. Its Fourier transformation is given by 

/

+oo 
f(x)e-j"xdx = I. 

+V^<(x=2si""r 

This is a sine function. Its modulus F(UJ) is 

U! 

\2Tslnu>T\ 

2TsmuT 
(3) 

LUT 
kit 

and at u> 

as shown in Fig. 4. 
fc = ± l , ± 2 , . . . , F(u)=0, 

•k-n+n/2\ _ F(u>) gets its local maximal value F(Kn1^r/ ) = 
F(OJ) gets its maximal value at UJ = 0. At ui = j , , 

*?±^,k = ±l,±2 
(2k+\\-K • c l e a r l y i t n e decadence olF(u) along the w axis is dependent on T value. In 
other words, we can say the energy distribution of F(w) is dependent on the T value 
considering F2(w) represents signal energy. When T increases, the zero points and 
local maximal points of F(w) compress along the UJ axis, implying that the signal 
energy is mainly distributed in the low frequency part. When T decreases, the zero 
points and local maximal points of F(w) expand along the w axis, implying that 
the signal energy in the high frequency part cannot be neglected. 

Large T corresponds to the background part (including scan lines) in our ideal 
model. Small T corresponds to the target part and very small T corresponds to the 
noise. The amplitude of target spectrum in the middle and high frequency parts is 
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relatively larger than the background. Noise has more frequency components in the 
high frequency part. Although this is only the ideal model, the same features also 
occur in real life images. 

One can extend this conclusion to the two-dimensional image. The Fourier trans­
formation of a cube function defined on a rectangular region is a two-dimensional 
sine function, which has the similar property as the one dimension sine function. 
Therefore, we get the same conclusion: background is relatively dominant in low fre­
quency part, target is viewable in middle frequency part and noise is more obvious in 
high frequency part in the frequency domain. Thus, two-dimensional sine function 
can be viewed as a frequency-domain modeling of targets, noise and background. 

3. MULTILEVEL FILTER FOR TARGET ENHANCEMENT 

Relying on the above space-frequency domain modeling as the first step for detecting 
targets, we try to use a set of filters to enhance the target and suppress background 
clutter. It seems that using a multilevel filter can solve the problem. 

We first apply a Low Pass Filter (LPF) to the image. If the truncate threshold 
of the LPF is well chosen, the background part will be enhanced while the target 
and noise will be inhibited. Let F represent the amplitude spectrum of an original 
image / and Lp represent the amplitude spectrum of LPF. The result of / passing 
through the LPF can be written as F x Lp. By subtracting the LPF result from the 
original image, the background part, written as F — F x Lp = F(l — Lp). Similarly, 
we can inhibit the noise and enhance the target. This is then followed by another 
LPF whose amplitude spectrum is Lq written as F(l — Lp)Lq. After this series of 
processing, the target part can be easily detected from the image. 

The next problem is the determination of the truncate threshold of the LPF. We 
know, if a LPF is followed by the LPF, the total amplitude spectrum is Lp x Lp. 
The total spectrum contracts when compared with Lp. This means that by con­
catenating two LPF, we get a narrower band than LPF. For this reason, we can 
begin with a wider band LPF, followed by another, to test if the band width is 
proper. This is equivalent to manual checking whether the target stands out or not. 
Similarly, Lq can also be constructed by this concatenation method. We can achieve 
good detect results if we properly adjust the number of concatenates in the stage 
of training and learning of the system. Figure 5 shows this multilevel filter system 
used for small target detection. To construct the system easily, we can use the same 
LPF for all levels. This approach can help to cut down the costs when constructing 
the system using hardware. 

•••-*] Lqn | • Fout 

LP1 
— • Lp2 

•-q2 

Fig. 5. Multilevel filter for detection. 
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We can also directly construct the LPF in space domain. To illustrate it, we 
can use a five-point average LPF as an example. The width of the filter is 5, noted 
as Wf = 5. If the width of the signal is Ws and Wf > Wa, when the signal passes 
through LPF, it will be seriously weakened. If Wf -C Ws, changes only occur at 
the edge of the signal. We know the width of two successive concatenation filters 
W(2) = W(l) + W(l) — 1, where W{ri) means the width of n concatenated filters, it 
can be calculated based on the above equation. For the use in n-level filter detection, 
we should choose n, such that W(n) >= Wt, and W{1) » Wn, where Wt means 
the width of target and W(l) is the basic filter unit. This gives relationships among 
the basic parameters of the filters and sizes of targets, noise and background clutter. 
For example, if the width of target is 9, we can use W(l) = 5 , and n = 2 to denote 
that two concatenated LPF are used. In practice, we have found that the use of 
multilevel filter gives good detection result. 

4. OPTIMUM THRESHOLD REAL-TIME ESTIMATE AND TARGET 
DETECTION 

Due to departure of practice from ideal modeling as well as no perfect filtering 
available, the above filter is unable to isolate the targets of interest without some 
remaining clutter. Hence, new detection algorithm should be implemented in at 
least two steps. First as mentioned above, we can apply multilevel filter to the 
image to inhibit noise, background and enhance target. Next, pattern recognition 
method is used to distinguish targets from the remaining clutter. Figure 6 shows 
the procedure in the form of a flowchart. 

After carefully studying the image characteristics, we can choose proper basic 
filter parameters, structure and the level number of filter used. An original image 
/ first passes through the series of Lp-based multilevel filter, the filtered image / i 
is then subtracted from / . Next, the resultant image ji passes through another 
-Lg-based multilevel filter. Finally, we can use the contrast of the filtered image /3 
as a feature for small target detection. 

Define the filtered image contrast as 

C = ^ ^ i (4) 
a 

where $•$ represents the gray level of filtered image, a is contrast average of the 
image. Assume that contrast x of the filtered image is a random variable. Let 
P{R\) and P{Ri) be the occurrence probabilities of the background and target 
pixels, respectively. Also, let p(x/Ri) and p(x/i?2) be the probability distribution 
functions of the contrast values of the background and target pixels of the filtered 
image, respectively. In this way, the detection of targets can be regarded as a pattern 
classification problem involving two classes3: target and background so that we 
can use the minimum risk Bayes test method to choose an optimal classification 
discrimination threshold t. 

Let the contrast threshold be t, the background region be R\ and the target 
region be i?2- If the threshold t splits R\ into Rn and -R12 where R\i and R12 are 
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^f Minus ^ 
»i 

Lq based multi-level filter 

Stage 1 

contrast based 
feature extraction Stage 2 

minimum risk Bayes test target detection 

Stage 3 

discriminating target by target size range 

Target detection result 

Fig. 6. A combined algorithm for small target detection. 

the respective right and wrong classifications of background region, respectively. Let 
the cost for Rn be C n = 0. Similarly, let the cost of Ru be Ci2 . Threshold t also 
splits R2 into R21 and R22 which are the respective wrong and right classifications of 
target region. Let the cost for R22 be C22 = 0. Also, R2\ is the wrong classification 
of target region into background class and its cost is C21. Then the total cost r(t) 
can be calculated in discrete condition as 

r(t) = Y, Ci2P(Ri)p{x/R{) + Y, C21P{R2)P(x/R2) (5) 

where r(t) can be minimized by adjusting t. The i value corresponding to the 
minimal r is the proper contrast based segmentation threshold, i.e. 

r(i) = m i n r ( i ) . (6) 

These formulas of probability and distribution are determined by a supervised 
offline learning and training of the detection system on a large sample set of in­
frared images, with man-machine interface. A flow chart of the training procedure is 
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input sample 
image set {f i} 

Man-
Machine 
Interface 

, > i 

J 
'\ 

^ ^ N 

^-1 ̂  

" 
LP 

based multi-level filter 

\t 
r 

' 

Lq based multi-level filter 

" 
Contrast based feature extraction 

• ' 

Statistical distribution analysis 

Estimated P( R1 ), p( R2), 
P(> 

minimum risk Bayes test 

-/R2) 

Fig. 7. A supervised procedure of learning and training. 

shown in Fig. 7. Despite it being common to assume these distributions are normal 
distribution, practical situations are often a serious departure from it. Hence the 
training and learning on samples is necessary for effective detection of targets. 

The final detection step utilizes a priori knowledge of targets to further improve 
the performance of the methodology. In this experiment, the candidate target re­
gions whose sizes are less than a given threshold are discarded. 

5. EXPERIMENTAL RESULTS AND CONCLUSION 

Through learning and training on a set of large sample images, we obtained Fig. 8 
showing the contrast distribution of background and target. This forms the founda­
tion of using minimal risk Bayes test to get the right classification threshold. The 
priori contrast conditional distributions of target and background were learned from 
the sample set containing 80 sample images. Figure 9 shows several sample images. 
We first marked all target pixels in the sample images manually, and then, calcu­
lated the contrast images according to the processing steps described previously. 
Finally, the contrast distribution of object and background can be estimated from 
the contrast images with the known position of the target pixels. The calculation 
of contrast images and the estimation were carried on the small window with size 
50 x 32, which slide along the images. 

The functions fitting to the statistical data of Figs. 8(a) and 8(b) are pi(x) = 
\e~Xx and p2 = -jk=e~(-x~>1)'111° respectively, shown in Fig. 8(c). For the distribu­
tion curve shown in Fig. 8(a) , the parameters are: A = 1.9192. For the distribution 
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Fig. 8. (a) Contrast distribution of background p{x/R\). (b) Contrast distribution of target 
p(x/R<2). (c) Fitted contrast distributions of background and target, (d) Plotting of r ( t ) . 

(a) 

(b) 

(c) 

(d) 

Fig. 9. Some sample images used for estimating the priori conditional distribution of the target 
and background. 
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Table 1. Optimal threshold {£} under varying cost (Ci2,C2i). 

C12 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 

C21 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 

i 2.1 2.4 2.5 2.6 2.8 2.9 3.0 3.2 3.6 

curve shown in Fig. 8(b), the parameters are: /J = 3.9811, a = 0.9780. It is obvious 
that the fitted probability distribution of background contrast of the filtered images 
deviates significantly from normal distribution. 

Table 1 lists different optimal thresholds under changing cost ( C ^ C ^ i ) . 
Figure 10 shows the experimental results of a sequence of images (generated 

using the above discussed methodology). 
We have done many experiments on a series of sea surface infrared images using 

the above method. The excellent results demonstrate accurate target detection. 
Our detection method is robust to noise. However, due to the complexity of small 
target detection, further work should include: (1) stability problem9 of small target 
detection under various kinds of clutters; (2) enhancement of the adaptability or 
robustness of the algorithms under random changing environments. 

(a) Original image (b) Result through Lpi 

(c) Difference image 1 (d) Result through Lp2 

(e) Difference image 2 (f) Normalize image 

(g) Result through Lq (h) Detection result 

Fig. 10. Experiment result of a sequence of sea surface infrared images with heavy clutters. 
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MINIMUM DESCRIPTION LENGTH METHOD 
FOR FACET MATCHING 
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The Minimum Description Length (MDL) criterion is used to fit a facet model of 
a car to an image. The best fit is achieved when the difference image between the car 
and the background has the greatest compression. MDL overcomes the overfitting and 
parameter precision problems which hamper the more usual maximum likelihood method 
of model fitting. Some preliminary results are shown. 

Keywords: Model fitting; facet model; minimum description length; MDL; log* code; 
Kolmogorov complexity; code length; tracking. 

1. INTRODUCTION 

If a set of data is a good fit to a model, then loss free data compression can be 
achieved by first coding the model and then coding any deviations of the data val­
ues from those predicted by the model. If the model is simple and the deviations 
are small, then a large compression can be achieved. In the Minimum Description 
Length (MDL) approach to model fitting the length of the compressed data, mea­
sured in bits, is the measure of the accuracy of the fit of the model to the data. If 
there are a number of models, then the one which achieves the shortest length of 
compressed data is chosen.7-9 '12 '13 

MDL overlaps three scientific disciplines: statistics, computer science and in­
formation theory. In statistics MDL provides a way of assigning probabilities to 
complex models,12'13 in computer science it is an approximation to Kolmogorov 
complexity,8'9 and in information theory it provides a method of coding where 
storage space is reduced at the cost of increased computation.9 The theoretical 
justification for MDL is found in the theory of Kolmogorov complexity. 

At first sight, it is surprising that a measure as simple as bit length can provide 
a useful basis for model selection. The theory underlying MDL shows that if an 
agent seeks to make good hypotheses about incoming data, and if it has a classical 
computer but not any other more powerful device, then data compression is a good 
way of choosing hypotheses. Compression is not always optimal, but it is guaranteed 
never to make a bad choice of hypothesis. 

The Kolmogorov complexity of a string s is the length in bits of the shortest 
program which can compute s from zero input. The models in MDL correspond 
to different programs for compressing s. Unfortunately, Kolmogorov complexity is 
not computable in that there is no algorithm which can take an arbitrary string 

'Thanks to Phil Torr for stimulating conversations on MDL and Bayesian classification. 
fFunded by DERA, Great Malvern, UK. 
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s and return its Kolmogorov complexity. In applications of MDL computability is 
achieved by restricting the candidate programs to those considered "natural" or 
"appropriate" in the context of the application. 

Let s be a bit string which records the data and let 6 be a vector of parameters 
which specify the model. Both the number of components in 8 and the values of 
the different components may vary. The vector 8 is coded as a string M{8) and the 
deviations of the data from the model are coded as a string Cg(s). Here, all strings 
are bit strings, i.e. strings of Os and Is only. The string s is coded as M{8).Cg{s) 
where "." is string concatenation. The original string s is recovered from M(6).Cg(s) 
by first reading M{8), then constructing the model and finally using the information 
in Cg(s) to adjust the model until it coincides with s. The codes for M{9) and Cg{s) 
must be prefix codes, firstly so that the end of M(8) in M(8).Cg(s) can be detected 
and secondly to ensure that code lengths correspond to probabilities. 

Let s i-> A(s) be the length function defined on strings. The model 8 is a good 
fit to s if A(Af (0)) + X(Cg(s)) < A(s). 

The MDL approach to model fitting has the following advantages. 

(i) It has a good theoretical foundation in Kolmogorov complexity, 
(ii) It can accommodate an infinite number of models, 

(iii) Overfitting is discouraged, because the additional components of 8 increase the 
length of M(8) without decreasing the length of Cg(s). 

(iv) The optimal precision of the components of 8 can be found by minimizing 
X(M(8)) + X(Cg(s)) over a range of precisions. 

MDL is applicable in cases where the usual maximum likelihood (ML) method for 
model fitting fails. For example, ML cannot determine the precision of the param­
eters or detect overfitting. Various extensions of ML exist in which overfitting is 
discouraged by attaching a cost to the number of parameters,1 '6 but these exten­
sions require strong statistical assumptions about the errors in the data. The MDL 
cost of a given set of parameter values is easy to compute, and it is possible to 
compare the costs of radically different models in a principled way. 

MDL is often combined with a probabilistic approach,5 '7,12,13 in which the data 
x is drawn, at least nominally, from a sample space carrying a parameterized density 
p(x\8). The length of the bit string Cg(s) is set equal to — \og(p(x\8)). The rationale 
is that this gives the shortest expected code length over all possible realizations of 
the data: data with high probabilities are assigned short codes. In this paper we 
avoid any explicit use of probability distributions and seek only to find a short code 
for the current data, without invoking a hypothetical sample space of all the data 
which might have been observed. 

Some applications of MDL have been made in computer vision.4,5'7'10'11 The 
most striking application is due to Leclerc,7 who describes an image segmentation 
algorithm based entirely on MDL. More usually, MDL occurs as part of a larger 
algorithm or computational scheme. 

In this paper MDL is applied to a central task in model based vehicle 
tracking,14'15'18 namely the fitting of a facet model to the image of a car. The model 
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parameters are the position and orientation of the car on the ground plane. Potential 
applications include vehicle counting, detection of hazardous situations or anoma­
lous driver behavior, and vehicle classification. The major advantage of MDL over 
previous fitting methods is that it allows a rational comparison of different hy­
potheses about the shape, appearance and position of the car without having to 
construct detailed probabilistic models. 

2. MDL FOR A FACET 

We describe two algorithms for coding the gray levels in an image region. The 
first achieves compression when the gray levels vary smoothly with position. The 
second achieves compression when the gray levels vary randomly. In an application 
to model fitting the region R would be the projection of a model facet, as shown 
for example in Fig. 1. 

Fig. 1. Facet model projected to the image. 

2.1. First Algorithm 

The gray levels ^ , (i, j) € R are listed in a standard order, for example lexi­
cographic in % and j . A polynomial of degree e is fitted to the g^ by choosing 
coefficients rpq such that the following sum is minimized, 

E U - E rp**n • (̂  
The coefficients rpq are infinite precision real numbers, and thus unsuitable, as part 
of a short description of the gray levels in R. They are replaced by ratios of integers. 
Let do , . . . de be levels of precision, and define ratios of integers apq/bpq by 

apq/bpq = Rationalize[rP € , dp+q] 0 < p + q < e. (2) 

file:///9ij-
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Define integers Sij by 

" (iJ)eR. (3) S^ = F l o o r 9ij ~ 5 1 apgiPJQ/bP 
p+q<e 

In (2) and (3), R a t i o n a l i z e and F l o o r are Mathemat ica functions.17 

R a t i o n a l i z e [ r , d ] returns the rational number q with the smallest denominator 

such tha t \r — q\ < d. F l o o r [ r ] returns the greatest integer n such tha t n < r. 

The code for the Sij is based on Rissanen's1 3 universal prior density for the 

positive integers. Rissanen's density n >-> pn is an appropriate default density when 

there is little or no prior information about the integers tha t might be encountered. 

Its most striking characteristic is tha t pn decreases very slowly as n increases. 

To define pn, let log be the logarithm to base 2 and let log* be the function 

defined by 

log*(x) = l o g ( x ) l < a ; < 2 

log*(a:) — log(a;) + log*(log(x)) 2 < x . 

The above definition of log* follows Baxter ,3 but differs from the log* function de­

fined by Li and Vitanyi in Ref. 9. The density n t-4 pn is given by pn = c - 1 2 ~ l o g ("•*, 

n > 1 where c is a normalizing constant chosen such tha t 

oo 

Y,Pn = l-
i=l 

The density n i-> pn has an associated prefix code such tha t the code d{n) for 

the integer n has length log*(n) + O ( l ) . A program to compute d(n) is given by 

Baxter .3 The following code is an implementation of Baxter ' s coding algorithm in 

Mathematica: 

l o g s t a r [ n J := Block [ { I s , k } , 

I f [ n == 1, R e t u r n [ { 0 } ] ] ; 

I s = { I n t e g e r D i g i t s [ n , 2 ] } ; 

k = L e n g t h [ I s [ [ 1 ] ] ] - 1 ; 

Whi le [k >= 2 , 

I s = J o i n [ { I n t e g e r D i g i t s [ k , 2 ] } , l s ] ; 

k = L e n g t h [ I s [ [ 1 ] ] ] - 1 ] ; 

J o i n [ F l a t t e n [ I s ] , { 0 } ] 

] 

Let abs(n) be the absolute value of the integer n . A prefix code n !->• c{n) is 

defined on the integers, bo th positive and negative, by 

c(n) = d(2n) n > 1 

c(n) = d(2 abs(n) + 1) n< 1 . 
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Sij are coded using c. Briefly, the pixels in R are listed in the standard order. Let 
the induced order on the 5ij be Si,..., Sn^, where n(R) is the number of pixels in 
R. The gray levels g^, (i,j) £ R are coded as 

d(e).c(a0o).e(&oo) • • • c(a0e).c(b0e).d(n(R)).c(Si)... c(6n(R)). (4) 

The precisions do • • • de are varied until the code (4) has a minimum length. If 
this length is less than \(d(n)) + 8n(R) bits, then the bivariate polynomial of degree 
e is a possible model for the gray levels in R. 

2.2. Second Algorithm 

The second algorithm is based on Huffman coding.2 Suppose that the pixels in R 
take m distinct gray level values, hi, 1 < i < m and let fi be the frequency of hi, 
1 < i < m. The fi are used as probabilities for a Huffman code. A histogram of the 
gray levels obtained for a typical facet is shown in Fig. 2. 

Fig. 2. Gray level histogram of a facet. 

Let Cj be the code word corresponding to /$, 1 < i < m and let h \-> k(h) be 
the function that assigns the code word k(h) to the gray level h. The gray levels in 
R are listed in a standard order gi,... ,gn(R)> a n d coded by the string 

d(m).hi.ci hm.cm.d(n(R)).k(gi) k(gn(R)) • 

To achieve compression, the number n(R) of pixels has to be large enough to ensure 
that the compression of the data compensates for the cost of recording the coding 
table /ij f> Cj, 1 < i < m. 

3. MODEL FITTING 

The car is modeled by seven facets, as shown in Fig. 1. The model is provisional 
in that it does not include those surfaces of the car not visible in Fig. 1. There are 
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three parameters: the position (x, y) and the orientation 6 of the car in the ground 
plane. The position of the ground plane relative to the camera and the internal 
parameters of the camera are determined offline, using the method described by 
Worrall et al.ls With this information the projection of the model to the image can 
be calculated for any set of values x, y, 9. 

The coding is applied to the gray levels in an image window measuring 400 
pixels horizontally by 300 pixels vertically. Let B be a fixed background image not 
containing the car and let / be an image containing the car. It is assumed that B 
is known, both to the coder and the decoder. Let x, y, 0 be hypothetical values for 
the position and orientation of the car on the ground plane. The model is projected 
into / and two regions Ri, i?2 are defined, where i?i is the set of pixels of I included 
in the projection of the model, and i?2 is the remainder i?2 = I\Ri-

Let J be the difference image defined by J*., = Uj - Bij. If the parameter values 
x, y, 6 are well chosen, then the gray levels Jy for (i,j) € i?2 will be small. The 
image J is coded using the log* code for the gray levels of pixels in R2 and the 
normal 8 bit code for the gray levels of pixels in R\. 

4. RESULTS 

The results obtained so far are provisional in that the two coding algorithms de­
scribed in Sec. 2 have not yet been applied to the model fitting. Instead, as noted 
in Sec. 3, we use a simpler but less efficient coding in which the background gray 
levels in the difference image have the log* code, and the car gray levels have the 
usual fixed length 8 bit code. 

The orientation 6 of the car is held constant. Let f(x,y) be the code length 
for the difference image, as a function of position (x, y) on the ground plane. A 
graph of / is shown in Fig. 3. The graph is constructed by taking 169 sample values 
(xi,yj) for 1 < i < 13, 1 < j < 13. The intervals |xi+i — a^l, \yj+i — Vj\ are each 
of length 25 cm. The labelings on the x and y axes in Fig. 3 correspond to i and j 

Pig. 3. Graph of code length as a function of position (x, y). 
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code length 

Fig. 4. Graph of code length as a function of x. 

code length 

Fig. 5. Graph of code length as a function of y. 

respectively, i.e. they run from 1 to 13. The surface has a clearly defined minimum, 
located which we suppose, near to (13,9). The function x M- f{x,9) is shown in 
Fig. 4 and the function y i-> / (13, y) is shown in Fig. 5. 

5. CONCLUSION 

An application of MDL to the task of fitting a facet model to the image of a car 
has been described. It is apparent from Figs. 3-5 that the car can be located in 
spite of the discrepancies between the shape of the model and the shape of the 
car. In future work, the model will be made more accurate and the coding will be 
made more efficient, firstly by using a Huffman code for the background gray levels 
and secondly by using polynomial approximations to model the gray levels on the 
different facets of the model for the car. 
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In this paper an integrated vision system for autonomous land vehicle is described. 
The vision system includes 2D and 3D vision modules and information fusion module. 
The task of 2D vision is to provide the physical and geometry information of road, 
and the task of 3D vision system is to detect the obstacles in the surrounding. Fusion 
module combines 2D and 3D information to generate a feasible region provided for 
vehicle navigation. 

Keywords: ALV; obstacle; fusion; road segmentation; vision system. 

1. INTRODUCTION 

Autonomous vehicle is an active field of research. Several prototypes have been 
developed.2,3 In 1990s, intelligent vehicles became an important part of research in 
Intelligent Transportation System and Intelligent Vehicle Highway System in some 
countries. Vision system plays an important role for an intelligent vehicle, but using 
vision to guide an autonomously driving vehicle is still a challenging subject. Many 
researchers are working on relative subjects.1,4 

A powerful robot vision system, together with fast image processing algorithm, 
which enables an autonomous land vehicle (ALV) to act in the real-world environ­
ment, is a project of research in our group. 

For road following, a vision system must provide the surrounding information of 
a vehicle for the planning system. This means the perception must inform where is 
the road region and where is the obstacle. We have designed and developed a vision 
system for this purpose. This system includes 2D vision, 3D vision and information 
integration. The sensor of 2D vision is a color camera, and the sensor of 3D vision 
is an active laser radar. 2D vision is used for finding the road region in the color 
image, and 3D vision is used for obstacle detection. Fusion module integrates 2D 
information and 3D information to create a complete environment description. We 
designed and built two kinds of hardware equipment for vision system operating 
at near real time, one is a high-speed image processing system and the other is a 
pipeline equipment based on Transputer with high-speed data channel. 

2. 2D VISION 

In a real road environment, the possible road for a vehicle may be divided into two 
broad categories: structural road with road markers and unstructured road without 
special markers. We propose two kinds of algorithm for the two-cataloeue road 
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situations, one is region and edge information integrated algorithm for unstructured 
road and the other is white line following algorithm for structured road. 

2.1. Region and Edge Information Combination Algorithm 

Due to the complexity of outdoor environment, segmentation following in ALV is 
made very difficult. Segmentation methods can be divided into three types. One 
is based on feature space classification, the second is region based method which 
includes region growing and split-merge methods, the third is based on edge meth­
ods. There are global and local conflicts in image segmentation. According to the 
analysis of small neighborhood, the region consistency can be determined. The con­
fidence of region consistency will be higher when larger neighborhood is used. But 
using over-large neighbor will increase the possibility of data inconsistency. To avoid 
this problem the local edge information and global region consistency information 
are combined. 

In consideration of real-time operating requirement, we do not use time-
consuming complex algorithms. For the robustness of the algorithm, the region 
segmentation and edge detection information are combined to reach the segmenta­
tion purpose. 

Since a color image has richer information than intensity image, most of the 
outdoor robots use color images instead of monochrome, but it is time consuming to 
use R-G-B color image directly and a large amount of redundant information exists 
among the R-G-B color space. We use classical Fisher's linear discriminate technique 
to calculate the optimal projection transform G(i,j) = wiR(i,j) + w2G{i,j) + 
wzB{i,j), where W = (wiW2Ws)t = Sw~1(mi — m^), and calculate the optimal 
transform value for some typical road surface and set a look-up table for high­
speed selection. 

Among the variety of image segmentation techniques, the threshold method is 
popular. This is actually a two-class classifier with a single feature. There are lots 
of threshold selection algorithms in literature. But for our purpose, it is best to use 
road knowledge. We assume that the area in front of the vehicle is always the road 
area. A trapezoid window on the bottom of an image is selected and the feature 
value of the window is calculated. This value is used to guide threshold selection. 
The histogram of G(i,j) is smoothed with Gaussian filter, then the convex hull of 
the histogram is constructed. The concavities are found by taking the difference be­
tween the convex hull and the histogram. The maximum of the concavities is used 
as candidate threshold site. Then the feature value guides the optimal threshold se­
lection. Double thresholds are used in the algorithm. Due to the complexity of road 
environment, the global threshold method is not appropriate to some situations, 
regions may appear under or over segmented. So the edge detection information is 
combined to modify the segmentation results. 

A Canny-like edge detector, which includes four directional (vertical, horizon­
tal, 45°, 135°) second-order derivative mask, is used in our algorithm. Some post­
processing procedures are processed after edge operating. Edge tracking is used to 
connect the edge points, and the short edge lines are eliminated. The remaining edge 
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lines are used to search and compare with the boundary determined by threshold 
based segmentation method. On the basis of neighborhood and direction property, 
most of the edges which are not road edges can be discarded. 

In the two-class problem, two kinds of mistakes may appear. One, the regions 
which actually belong to road regions be assigned to nonroad regions. Another is 
that the regions belonging to nonroad regions be assigned to road regions. According 
to some rules, for example, if an edge point detected by the edge detector falls into 
the road region, then set the value of that point on the region as zero. After verifying 
all edge points, morphology and connectedness operators are processed. Another 
example is that if road regions lie on the same side of edge line then the statistical 
value calculated and the region growth proceed. Through some combination rules, 
the satisfied segmentation results can be obtained. We tested the algorithm in 
summer and autumn from morning to late afternoon on a campus road. Figures 1 
and 2 show the processed results. 

Fig. 1. Nonuniform light condition. 

Fig. 2. Road with shadow. 
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2.2. White Line Following Algorithm 

For white line following, there are two important tasks: one is to search for starting 
points of two white lines (a left one and a right one), the other is line following 
from the just found starting point. In the algorithm, white line starting points are 
searched by a local thresholding and hypothesis verification method, and the white 
line following is based on window searching scheme. 

The changing conditions of light, shadows on ground, and the interference from 
nearby objects often make it difficult to find out the starting points correctly. We 
enhance the performance of the searching algorithm by three steps: enlarge search­
ing area, use as many features of the white line as possible, feedback line following 
results to starting point searching and remove illegal starting points. The left line 
starting point is searched in the left part and right line starting point in the right 
part. The searching begins at the bottom row of the image and goes upward row 
by row. First, change the gray level image to a binary image (with only " 1 " or "0") 
according to: 

( 1 if(/[t, j] > ave[i] + 0i) A (/[i, j] > 92) A [I[i,j] > max[i] - 93) 
B[i,j] = < (1) 

(̂  0 otherwise 

where I[i,j] represents the gray level value of a pixel in the image, 9\ and #3 are two 

thresholds, which are set according to road model, 62 is the average gray level of the 

road surface calculated from the previous image; max[z] and ave[z] are maximum and 

average values of intensity in a row. There are several line segments with gray level 

" 1 " in each row of binary image. Find out the line segments tha t are comparable 

in width with known white lines and give a mark for each of them. Each line 

segment marked is a candidate for the s tar t ing point, then a hypothesis verification 

procedure is processed. Assume a candidate P as shown in Fig. 3, make the rays 

s tar t ing from P with slope 4> as R<t>, in practice we take <f> = 0°, 11.25°, 22.5°, 33.75°, 

45°, 56.25°, 67.5°, 78.75°, 90°. For each ray, count the number of pixels with value 
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Fig. 3. White line starting point searching. 
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Fig. 4. Two discontinuity edge of white line in a window. 

1 on the ray in a window and pick up the maximum count number C. If C > T, 
accept P as a white line starting point. If not, continue the searching process. 

Window following follows a white line in the image in both upward and down­
ward directions from the starting point in a window with size 20 x 20. If there 
is a white line segment in a window, there will be a gray level discontinuity edge 
from the background to white line and a gray level discontinuity edge from white 
line to the background as shown in Fig. 4. We use multidirectional local projection 
to find out the two gray level discontinuity edges and calculate the projection of 
sixteen directions in a window. In each direction, there will be a rising intensity 
and a dropping intensity. The maximum of rising intensity corresponds to the dis­
continuity edge from the background to white line and the maximum of dropping 
intensity corresponds to the discontinuity edge from white line to the background. 
When the position, orientation and intensity of the two discontinuity edges have 
been calculated, we can determine whether there is a white line segment in the 
window. If there is, one then forecast the position of the next window on the basis 
of the position and orientation of the white line calculated in the current window 
and repeat the steps until the line following has been finished according to some 
rules. Actually when the vehicle makes a turn or avoids an obstacle, we can only 
see one white line in an image sometimes. For deciding that a white line is the left 
edge line or the right one, the knowledge of processed results of the previous images 
is used to easily handle the problem. Figure 5 is the experiment result. 

3. 3D VISION 

The purpose of 3D vision here is to detect obstacles on the road. A laser range 
sensor (LRS) made by our university is used as a sensor device in 3D vision. LRS 
is amplitude-modulated continuous-wave laser radar that senses the range to the 
target by measuring the shift in phase between an emitted beam and its echo. 
Every half-second, LRS gives an image, which contains 64 row by 256 column of 
range value corresponding to 30° by 80° field of view. For the outdoor scene, usu­
ally there are two methods for obstacle detection, one is surface slope algorithm; 
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Fig. 5. White line following result. 

Fig. 6. Range coordinate system. 

the other is elevation difference algorithm. We use the latter which is sufficient for 
detection purpose. The idea of elevation difference segmentation is to transfer the 
original range image from spherical coordination of sensor to Cartesian coordina­
tion of ground to get the elevation map, then to process the elevation map to get 
the obstacle region. Figure 6 shows the range image coordinate system. Points in 
the range image are described by the spherical coordinates (a, /3, r) , where r is the 
range value of a pixel representing the distance from sensor to the object, a and {J 
are scanning angles in horizontal and vertical directions, respectively. Range sensor 
is mounted on the ALV above the origin of a local vehicle coordinate (0,0, H). Local 
vehicle coordinate system {Xy,Yy,Zy) is a moving Cartesian coordinate system, 
where the positive direction of axis of Yy is the same as the vehicle traveling di­
rection, Zy is the axis directly upward. From the above geometry relation, we can 
transfer points from sensor coordinate system to local vehicle coordinate system by 
the following equations: 

( Xy == r sin a 

I Yy = r cos a cos /3 

\ Zy = H — r cos a sin/3 

(2) 
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In consideration of the movements and posture changing of the vehicle, we 
must complete transformation from local vehicle coordinate to world coordinate 
(Xw,Yw,Zw) according to parameters given by the inertial navigation system. 
The inertial navigation system delivers six parameters for every line of range data. 
Three of the parameters represent absolute orientation with respect to inertial frame 
and the other three represent instantaneous acceleration with respect to the iner­
tial reference frame. Assume that the world coordinate coincides with the initial 
reference frame, then point P v is transformed from local vehicle coordinate to the 
world coordinate by following equation: 

Pw(t) = Sw(t) + KPv(t) (3) 

where Sjy(£) is the position of ALV in world coordination at time t, R is trans­
formation matrix of three posture angles. After all of the above transformation, 
obstacle position can be obtained by thresholding the tranformed image in which 
the intensity of each point represents the height of that point above the ground 
plane. But by using global threshold wrong information of the obstacle position is 
possible. So a local threshold row by row is used to segment the transformed image. 
Figure 7 shows the original range image and transformed image. In order to elim­
inate the noise on the range image, a 3*3 media filter is used for noise smoothing 
before transformation. 

4. FUSING OF 2D AND 3D INFORMATION 

2D vision and 3D vision have their special function; each of them can only give 
part of the information about road scenes. For obtaining the complete environment 
description it is necessary to fuse 2D and 3D information. 

Fig. 7. Range image and transformed image. 
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As an important theory of uncertainty inference, Dempster-Shafer theory has 
extensive applications in multisensors fusion. In this theory the probability is as­
signed to proposition (i.e. to subsets of a frame of discrimination). A basic prob­
ability assignment is a function m : 2e~*[0,1] where m(<}>) = 0, X L i c e m ( ^ ) = *• 
Dempster's rule of combining states that two bpa's mi and m2, corresponding to 
two independent sources of evidence, can be combined to yield a new bpa m : mi © 
m2(c) = if""1 £ A i n B i = s C ml{Ai)m2{Bj), where k = 1 - E ^ n B ^ ml{Ai)m2{Bj). 

Dempster's rule of combination is an important tool for belief value updating. 
However the condition required by Dempster's rule is that the bodies of evidence to 
be combined must be independent. This constraint condition may not be satisfied 
for some applications. And the form of normalization used in the rule leads to some 
counterintuitive results in some situations. To deal with the above problems, Wu 
and Yang et of.5 proposed a generalized evidence combination formula relaxing the 
requirement of evidence independence, and Zhang and Gu6 presented a modification 
of Dempster's rule of combination in our sensors fusion application. The procedure 
of fusing 2D and 3D information includes: 

® Sensors calibration. 
9 Define the frame of discernment 0 = {F, O}, F represents free region on the road 

and O represents obstacle region. 
© Select evidence from features of 2D and 3D. 
• Calculate each evidence bpa and calculate belief measure bel and plausibility 

measure pis of a proposition. 
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• According to modification formula of D-S combination rule calculate combined 

bpa of all evidence. 

• According to some decision rules, select possible hypothesis, which has maximum 

support provided by joint evidence. 

Figure 8 shows the result of 2D and 3D information fusion. 

5. HARDWARE ARCHITECTURE 

Figure 9 is an overview of our image processing system, which provides 256 x 256 
red, green and blue images with 8 bits of intensity per image. The field of view 
and focus of the camera are kept fixed. The system contains several special pur­
pose processors (SP in Fig. 9), each of them performs a standard image processing 
operation (such as look-up table, convolution, morphology, connecting components 
labeling) with video frame rate (1/25 second). The system also contains a general 
purpose processing unit (GP in Fig. 9) based on TMS320C30 microprocessor. It 
can perform some algorithms at high speed. Each processor communicates with 
each other through an image data bus and also communicates with the host com­
puter through a PC bus. The processors can be programmed by the host computer 
and can be organized as a pipeline structure suitable for some image processing 
and understanding tasks. For ALV road following, the system is available for both 
unstructured and structured roads. 

c 
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Fig. 9. 2D hardware architecti 
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Figure 10 shows the 3D vision hardware architecture. Operation of 3D vision 
includes inertial navigation parameter acquirement, range data acquirement, correc­
tion, coordinate transformation, data modification according to the change of mov­
ing vehicle posture, data merge and data transmission. The most significant feature 
is that data throughput is very large in the operating procedure. In order to satisfy 
the above requirements the hardware of 3D vision was designed. That is based on 
Transputer pipeline architecture, which includes five Transputer with high-speed 
data channel and input module. One PC is used as host. Input module receives 
range data at rate 2 frame/s. Each frame includes 256 x 64 pixels with 8 bits/pixel. 
High-speed data channel can provide 33 Mbytes/s throughput. An important point 
in this system is that the high-speed data channel provides conditions for high-speed 
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da ta exchanging among Transputers . A parallel implementing software has been de­

veloped for carrying out algorithms on multinode Transputer . The parallelism in 

vision processing can be divided into two types: pipelining and parallel decom­

position (also called da ta decomposition). The pipelining operation can be repre­

sented as Y = F{X) = Fn(Fn-i(F... (F2(Fi(X))...)), and the parallel decomposi­

tion can be represented as Y = F(X) = F ( X i ) || F(X2)) || . . . || F ( X „ _ i ) || F(Xn), 

where X is the input image or sub-region of image, Y the output image, F the pro­

cessing operator, || the parallel operator. In the obstacle detection algorithm the 

parallel program is developed based on such parallelisms. 

6. CONCLUSION 

An integrated vision system for ALV is presented in this paper. The experimental 

results show tha t the vision system works well on the testing site. Now we are 

working on multiinformation combination on different processing level for adapt ing 

to complex road situations. We are also constructing an image processing system 

based on advanced DSP chip in order to increase program flexibility and to reduce 

the system's size. 
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1. INTRODUCTION 

Multispectral image processing has entered the era of multisensor data fusion. 
Bayesian networks also called causal probabilistic networks, belief networks, or 
influence diagrams, provide a high-level generic architecture for fusing sensory ob­
servations from multiple sensors and nonsensory data from multiple data sources. 
From the view point of probability theory, Bayesian networks are computational 
architectures that guarantee the consistency and coherence of a causal probabilistic 
model of a given problem domain and maintain the probabilistic equilibrium of 
the model upon arrival of new information. Inference using Bayesian networks is 
very flexible, in the sense that new information can be input into any section of 
the model and propagated throughout the rest of the network. There is no need to 
distinguish between forward chaining or backward chaining as referred to in logical 
production systems. Bayesian networks are particularly relevant to multisensor data 
fusion which normally involve disparate and noncommensurate random variables 
corresponding to disparate information sources. 

Discrete Bayesian networks provide a general formalism for representing a 
joint probability distribution of multiple discrete random variables. Exact general-
purpose inference algorithms with discrete Bayesian networks exist and are well 
developed, such as the well-known junction tree inference algorithm.8'15 Learning 
discrete Bayesian networks from complete data or incomplete and soft data is gen­
erally a NP-hard problem and still has to be considered unsolved yet, but a number 
of suboptimal solution components2 '11 '23-25 have been developed, which may be 
integrated to provide an operational solution.21 

As a big contrast with discrete Bayesian networks, general hybrid Bayesian net­
works in which continuous and discrete variables may appear anywhere in a directed 
acyclic graph (DAG) have not found a general solution for representation, infer­
ence and learning. However, hybrid Bayesian networks are the most general form 
of Bayesian networks encountered in the vast variety of practical applications. A 
general operational solution for representation, inference and learning with general 
hybrid Bayesian networks is in great demand by real-world modeling practitioners. 

In the literature, some constrained classes of hybrid Bayesian networks have 
been investigated. One of these is the class of networks with Conditional Gaussian 
(CG) density functions.12,14,16 In these networks, the conditional distribution of the 
quantitative continuous variables given the qualitative discrete variables is assumed 
to be multivariate Gaussian. The CG model can be extended to allow continuous 
variable parents for continuous variables, and becomes the CG regression model. 
Exact probabilistic inference with the CG model or CG regression model or their 
close relatives4,16 is possible and turns out to be polynomial in the number of 
continuous variables. Parametric learning with CG regression models from incom­
plete data is shown19 to be possible using EM algorithm. However, there is a strict 
limitation that continuous variables cannot be parents of discrete variables. This 
asymmetry between the continuous and discrete variables obstruct the applications 
of hybrid networks in general practice. A further extension is to approximate an 
arbitrary conditional probability distribution by a sum of weighted CG (SWCG) 
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distribution.1'3 However, the dark side of this approach is that there is no general 
efficient calculus for division and multiplication of SWCG models18 which is re­
quired by the message passing in the junction tree inference algorithm. In fact, the 
number of terms of such a SWCG in the initial approximation of a continuous prob­
ability distribution can be large. The computational complexity is even worse when 
message passing is considered: the multiplication of SWCG makes the number of 
terms in the product grow exponentially with the path length, and the worst is the 
division of two SWCG models for which there is simply no closed-form solution yet. 
All these difficulties make the probabilistic inference computationally intractable. 

Therefore, we must resort to approximate representations which are computable. 
Recently, Kozlov and Koller10 proposed an approach of nonuniform dynamic dis­
cretization for hybrid networks. Rather than discretizing each variable separately, 
they discretized a continuous function on its entire multidimensional domain at 
once by a nonuniform adaptive discretization using a binary split partition tree. 
Like most discretization approaches used by probabilists, their discretization is de­
fined to produce mutually exclusive quantizations. Pan and McMichael22 proposed 
an alternative approach to crisp exclusive quantization using fuzzification in which 
each discrete state of a newly converted discrete variable corresponds to a fuzzy 
set of the original continuous variable. Defuzzification from the discrete states to a 
crisp continuous value can also be done if required. However, no explicit inference 
and learning schemes were given in Ref. 22. 

This paper takes a large step further from that fuzzification and proposes t l ^ 
precise formalism of fuzzy Bayesian networks in two alternative forms for represen­
tation, inference and learning with general hybrid Bayesian networks. In both forms, 
instead of using fuzzy sets for mapping between continuous variables and their part­
ner discrete variables, we use Conditional Gaussian (CG) models. The first form 
replaces each continuous variable in the given directed acyclic graph (DAG) by a 
partner discrete variable and adds a directed link from the partner discrete variable 
to the continuous one. The mapping between two variables is not crisp quantization 
but is approximated (fuzzified) by a conditional Gaussian (CG) distribution. The 
CG model is equivalent to a fuzzy set but no fuzzy logic formalism is employed. 
The conditional distribution of a discrete variable given its discrete parents is still 
assumed to be multinomial as in discrete Bayesian networks. The second form only 
replaces each continuous variable whose descendants include discrete variables by 
a partner discrete variable and adds a directed link from that partner discrete vari­
able to the continuous one. The dependence between the partner discrete variable 
and the original continuous variable is approximated by a CG distribution, but the 
dependence between a continuous variable and its continuous and discrete parents 
is approximated by a conditional Gaussian regression (CGR) distribution. Obvi­
ously, the second form is a finer approximation, but restricted to CGR models, 
and requires more complicated inference and learning algorithms. This results in 
two general approximate representations of a general hybrid Bayesian networks, 
which are called here the fuzzy Bayesian network (FBN) form-I and form-II. For 
the two forms of FBN, general inference algorithms exists, exact for the form-I and 
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approximate for the form-II, which are extensions of the junction tree inference 
algorithm for discrete Bayesian networks. 

Learning fuzzy Bayesian networks from data is different from learning pure dis­
crete Bayesian networks because not only all the newly converted discrete variables 
are latent in the data, but also the number of discrete states for each of these vari­
ables and the CG or CGR distribution of each continuous variable given its partner 
discrete parents or both continuous and discrete parents have to be determined. 
However, based on the previous work on learning discrete Bayesian networks, it is 
possible to extend an integrated approach for discrete network learning21 to hybrid 
network learning using the formalism of fuzzy Bayesian networks. In this paper, 
we will focus on the representation forms and inference algorithms of the proposed 
fuzzy Bayesian networks. Some thoughts on learning fuzzy Bayesian networks from 
data are also presented. 

2. FUZZY BAYESIAN NETWORKS AS APPROXIMATE 
REPRESENTATION OF HYBRID BAYESIAN NETWORKS 

First of all, we like to point out that fuzziness indeed exists not only in human 
cognitive processes and communication languages, but also in the peripherals of 
discrete Bayesian networks. It makes the point more obvious if we take a look at an 
example Bayesian network for automobile diagnostics which is popularized by the 
Hugin system. Figure 1 shows a simple discrete Bayesian network for the problem 
of automobile diagnostics. In this network, although all the variables are defined to 
be discrete, a subset of the variables is genuinely continuous, as shown in Fig. 2. 

Oil Pressure 

normal, low, none 

Temperature 
normal, hot, very hot 

Elsystem OK 

yes, no 

Fig. 1. An example of discrete Bayesian networks: each variable is discrete, with their discrete 
states shown under its name. 
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'Oil Pressure 

I o—> 100 J 

Fan Belt 
intact, weak, broken 

r Battery ^ 

I o —-> too ) 

' Temperature 

V o —-> loo ) 

Elsystem OK 

yes, no 

Engine 
running, stopped 

Head Light 

0—>100 

Parking Light 

o—> loo 

Fig. 2. Some variables shown in rounded boxes should be genuinely continuous, their frames are 
normalized to a real line segment [0,100]. 

For a discrete variable which is genuinely continuous, a mapping is implicitly 
involved whenever an originally continuous observation arrives. Such an observation 
is normally called evidence in the Bayesian network terminology. According to the 
axioms of the probability theory, the discrete states of an originally continuous 
variable must be mutually exclusive and collectively exhaustive. Consequently, the 
mapping from the continuous value domain to the discrete state frame is realized 
through a quantization. However, not every continuous variable can be sensibly 
quantized, as the cut between two neighboring discrete states is often hard to define. 
In reality, we often have no sound reason to set a clear-cut boundary between 
neighboring states if its discrete states are commensurate. For example, the variable 
"Temperature" is inherently continuous, and it is discretized to three discrete states: 
"normal", "hot", and "very hot". However, there is no meaningful way to set the 
boundary between "normal" and "hot", and between "hot" and "very hot". 

We recognize that fuzziness is a sort of vagueness and uncertainty which is 
indeed different from the axiomatic definition of probability. Briefly, probability is 
a measure of the undecidability in the outcome of clearly denned and randomly 
occurring events, while fuzziness is concerned with the ambiguity or undecidability 
inherent in the description of the event itself. Nevertheless, this does not necessarily 
rule out the possibility of using probabilistic calculus for handling fuzziness. It does 
remind us that we as probabilists should at least face the real-world complexity with 
an open mind. On the other hand, we also consider fuzzy logic as an approximate 
reasoning formalism which may be easy to use and possibly sufficient in many 
ordinary applications. It is quite possible that fuzzy Bayesian networks as proposed 
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here may realize anything fuzzy logic can do and will inherit all the rigor, flexibility 
and other superior properties of probabilistic approaches. 

Let us now face the reality of general hybrid Bayesian networks with the 
following definition. 

Definition 1. Hybrid Bayesian Networks 

A general hybrid Bayesian network (HBN) is a directed acyclic graph (DAG) rep­
resenting the joint probability distribution of a given set of variables V, including 
discrete variables X and continuous ones Y 

tf£W = (V,L ,P) = ( X , Y , L , P ) (1) 

where X C V denotes a set of discrete variables, Y C V a set of continuous 
variables, L a set of directed links between variables, and P a set of conditional 
probability distributions 

L C V x V (2) 

P = {P(F | r+ , t f+) ; VGV} (3) 

where the notation is defined as follows: we use upper-case letters such as V for a 
variable name, and corresponding lower-case letters such as v for a value of a variable 
(of V). We use bold-face letters such as V for sets and |V| for the cardinality of 
V. All the continuous variables are denoted by capping with a such as Y . If a 
continuous variable Y is discretized, the corresponding discrete variable is denoted 
by the original letter Y with the cap removed. Ty and tyy denote the set of discrete 
and continuous parents respectively for a variable V. Configurations of Ty and $?y 
are denoted by jy and tpy respectively. The set of discrete and continuous children 
of V are denoted by Fv and ^v respectively. A configuration of Tv and ^fv are 
denoted by 7y and tpy respectively. Note also that V can be either discrete or 
continuous. Figure 3 shows a HBN abstracted from the example of Fig. 1. 

Fig. 3. A hybrid Bayesian network abstracted from the example of Fig. 2. 
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Note that in the above definition of HBN, we have no restriction on the depen­
dency topology among all the variables. A continuous or discrete variable can have 
continuous and/or discrete variables as parents or children. We believe that this 
ultimate generality of HBN's is most demanded in practical applications and it will 
give nontechnical users a peaceful mind even though the fuzzy Bayesian networks 
as defined below are approximate representations. However, approximation is abso­
lutely necessary because we have no general representation of arbitrary probability 
distributions of hybrid variables: P(V\T^, ^y). Fortunately, once a fuzzy Bayesian 
network is constructed by transforming a given HBN, the inference algorithm can 
be exact (as shown later). 

The first form of the fuzzy Bayesian network for a given hybrid network HBN 
is defined as follows: 

Definition 2. Fuzzy Bayesian Network Form-I 

Given a hybrid Bayesian network HBN as defined in the form of (l)-(3), the first 
form of its corresponding fuzzy Bayesian network FBN is defined by 

FBN1 = (X,Y,Y,L1,P1) (4) 

where Y is the set of discrete variables defined by discretizing Y, i.e. 

Y G Y *+ Y G Y (5) 

we call Y the fictitious discrete variable or fuzzy variable of the continuous variable 
Y. L1 is the set of directed links for FBN1 obtained by the fuzzification transfor­
mation of HBN 

VT G Y, replace Y in HBN by Y and create a new directed link Y -> Y (6) 

P 1 is the set of conditional probability distributions 

P ^ P x U P y U P y (7) 

where 

p x = {P(X|r+), X G X } (8) 

P Y = { P ( F | r + ) , YGY} (9) 

P y = { W ) , YGY}. (10) 

Note that for each originally discrete variable X G X, all its parents are now discrete 
and still denoted by T j , but this T£ contains the original r £ in the HBN and the 
fictitious discrete variables of X'a continuous parents ^ ^ in the HBN. Similarly 
for the parents TY of each fictitious discrete variable Y converted from Y . However, 
each continuous variable Y now has only one discrete parent Y and no continuous 
parent at all. With this transformation, the conditional probability distribution for 
each discrete variable X and each fictitious discrete variable Y can be assumed to 
be multinomial which is general for discrete variables while the distribution for each 
continuous variable Y can be approximated by a conditional Gaussian (CG) 



90 H. PAN & L. LIU 

P(Y = y\Y = y) = 
\P™1 

: exp < -
f (y-/%)2] 
I 2ay J (11) 

where y denotes a discrete state of Y and y denotes any continuous value of Y. 
Note that there is no one-to-one correspondence between y and y. However, for 
each state y, there is a parameter vector 6y = (/xy, ay). It is equivalent to say that 
the original conditional distribution P(Y | r £ , ^ + ) of a continuous variable Y given 
its original discrete parents F£ and its original continuous parents ^~~, in HBN is 
approximated by a conditional Gaussian mixture (CGM) model 

(12) 

The marginal probability of the continuous variable Y" is also represented by a 
Gaussian mixture (GM) model 

(13) 

It is commonly accepted18 that Gaussian mixture models are general approxima­
tions to arbitrary probability distributions. Therefore, we can say that the first 
form of the fuzzy Bayesian network FBN1 defined by (4)-( l l) provides a general 
approximate representation to a general hybrid Bayesian network HBN defined by 
(l)-(3). The accuracy of this approximation relative to the original HBN can be 
made sufficiently high if a sufficient number of discrete states {y} for each fictitious 
discrete variable Y is used. Figure 4 shows the first form of the fuzzy Bayesian 
network for the hybrid Bayesian network of Fig. 3. 

Fig. 4. Form-I of fuzzy Bayesian network for the hybrid Bayesian network. 
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The second form of the fuzzy Bayesian networks differentiates those contin­
uous variables whose descendants do not include discrete variables from other 
continuous variables: 

Definition 3. Fuzzy Bayesian Network Form-II 

The second form of the fuzzy Bayesian network FBN for a given hybrid Bayesian 
network HBN is obtained by applying the fuzzification transformation as denned 
by (6) only to those continuous variables Z C Y whose descendants in HBN include 
discrete variables. This form can be expressed as 

F5JV2 = ( X , Z , Z , W , L 2 , P 2 ) (14) 

where Z is the fictitious discrete variable of the subset of continuous variables 
Z C Y , and W is the remaining other continuous variable 

W = Y / Z (15) 

whose descendants do not include discrete variables. L2 denotes the set of directed 
links whose contents should be clearly understood from the above definition: X and 
Z are discrete variables and they do not have continuous parents, and Z and W 
are still continuous variables; but each Z e Z has only one discrete parent Z and 
is a leaf node, and each W S W still keeps its original discrete parents Tit and 
continuous parents \J/lt and may have continuous descendants. P 2 denotes the set 
of conditional probability distributions 

P 2 = P x U P z U P ^ U P w (16) 

where P x is defined in the same way as (8), and 

P Z = { / W + ) , ZeZ} (17) 

Pi = {P(Z\Z), ZeZ} (18) 

P^ = {P(W\T±,^±), WGW}. (19) 

The conditional distribution P(X\T^) for X € X and P{Z\Y%) for Z G Z can 
be assumed to be multinomial. The conditional distribution P(Z\Z) for Z e Z is 
simply a conditional Gaussian (CG) 

p^=*z=*=7m°AJI^r} <20) 

where z denotes a discrete state of Z and z denotes any continuous value of Z and 
there is no one-to-one correspondence between z and z. But now the conditional 
distribution P(W|r^t ,ty~t ) is approximated by a conditional Gaussian regression 
(CGR) model 

^^H^Pp-V^} (21) 
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Fig. 5. Form-II of fuzzy Bayesian network for the hybrid Bayesian network. 

where 7 on the right side of this equation abbreviates 7^ referring to a configuration 
of W's discrete parents, ip on the right side abbreviates tp^, referring to a continuous 
value vector of W's continuous parents, and a 7 is a vector of regression parameters 
for the given discrete configuration 7_t of W's discrete parents. Similar to (12) and 
(13), it is easy to see that the original conditional distribution of Z for Z £ Z given 
its original discrete and continuous parents in HBN and Z's marginal distribution 
are thus approximated by conditional Gaussian mixture (CGM) models, and the 
original conditional distribution of W for W £ W given its original discrete and 
continuous parents in HBN and W's marginal distribution are approximated by 
conditional Gaussian regression mixture (CGRM) models. 

If we can assume the interaction between W and its continuous parents that 
can indeed be approximated by regression models a7 , then obviously the second 
form FBN2 provides a finer approximation to HBN than FBN1. However, this 
assumption puts a limitation on the generality of the FBN2 as a price paid for the 
accuracy in the subclass of applications assumed. Figure 5 shows the second form 
of the fuzzy Bayesian network for the hybrid Bayesian network of Fig. 3. 

3. A HYBRID JUNCTION TREE INFERENCE ALGORITHM FOR THE 
FORM-I FUZZY BAYESIAN NETWORKS 

For a hybrid Bayesian network HBN defined by Eq. (1) representing the joint prob­
ability distribution P(X,Y), the form-I fuzzy Bayesian network FBN1 can be 
constructed by the definition (4) which provides a general approximation to HBN, 

P(X, Y) « P(X, Y, Y\FBNX). (22) 

In the following, we shall only consider P(X, Y, Y\FBN x) , which shall be written 
P(X, Y, Y) as the existence of FBN1 is implicitly assumed. 
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The local Markov property of FBN1 leads to the following factorization 

P(X,Y,Y) = n P(X\TX) n P(Y\TY) n p& iy) 
X€X yeY Y€Y 

= P ( X , Y ) P ( Y | Y ) (23) 

where P(X, Y) defines a purely discrete Bayesian network BN1 of discrete variables 
T = X U Y : 

P(X,Y) = 1{P(X\TX)1[P(Y\VY) 
X€X Y€Y 

= n P(T\TT) 
TeT 

= P(T) (24) 

and P(Y|Y) defines a fuzzy peripheral star-like tree whose root node is the whole 
discrete network BN1, and in fact, the topology is as simple as 

P(Y\Y) = l[P(Y\Y). (25) 
yeY 

We shall also call BN1 the discrete body of FBN1 and the subgraphs defined 
by Y, Y the fuzzy peripherals. Clearly, we can apply a general-purpose inference 
algorithm to BN1 and the fuzzy peripherals can be handled separately. Assume we 
choose to use the junction tree algorithm.8'15 A junction tree JT can be constructed 
by graph triangulation and associated transformations from the discrete body BN1 

JT = (C, S) (26) 

where C is the set of clusters each is a clique of variables from T 

C = (Cl,C2,...,Cm), C f c C T , k = l,2,...,m (27) 

and S is the set of separators each separating two adjacent clusters in the junction 
tree JT 

S = {Si:i = d n Cj,VCi, Cj eC,Ci^ Cj} . (28) 

In the junction tree JT, for every fictitious discrete node Y S Y, there is always 
one cluster (at least one) Cy which contains Y 

Y e CY . (29) 

We can create a new hybrid cluster Cy which contains the continuous node Y and 
its discrete partner Y, 

Cy = {Y,Y} (30) 

which can be linked to Cy through a new junction defined by a new discrete 
separator Sy 

SY = {Y} = CYnCY. (31) 
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This results in a hybrid junction tree HJT 

HJT = (JT, C, S) = (C, C, S, S) (32) 

where 

C = {C} and S = { 5 } . (33) 

With the hybrid junction tree HJT so obtained, we have 

I k e s <»(») nS < ss*(S) * 

where $() denotes the potential which is a nonvanishing nonnegative proportional of 
probability. The inference in the hybrid junction tree HJT can still be done using 
the message passing mechanism. The evidence propagation between two discrete 
clusters is still the same as a standard message passing8,9 Here we only need to 
consider how to propagate evidence between a pair of discrete cluster Cy and 
hybrid cluster Cy through its separator Sy . 

Suppose a set of evidence E is distributed to the hybrid Bayesian network HBN. 
Let $*(A) denote the updated potential for a clique A (cluster or separator) 

$*(A)=${A\E). (35) 

To propagate evidence from Cy to Cy through Sy, we first need to update the 
potential of the separator Sy 

AeCY\{Y} 

we can then update the potential of the hybrid cluster Cy 

- $*(§y) - $*(Y) 

**(Cy) = Z(Cy)-^f = *{Oy)-jU. . ( 3 7 ) 

According to the CGM model of (11), we have 

$(y) 
y/2ncry 

$(CY = (y,y)) = $(y,y) = - ^ L e x p | - ^ ^ | . (38) 

Applying (38) into (37), we obtain 

(39) 

The marginal potential of the continuous variable Y can be computed 
by marginalization 

where Qy is the discrete frame of Y. 
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Defuzzification 
The defuzzification from the discrete states of Y to a crisp value y~o of Y can be 
obtained by maximization 

yo = arg max$*(y). (41) 
y 

This is useful or often required in fuzzy system control. 

To propagate an evidence Y = yo from Cy to Cy through Sy, we first update the 
potential of the separator 

i Pyn i - Vj/U ~ ^ 

and then we can update the potential for the cluster Cy 

^iSy) = ^{Y = y) = iy{y,y)dy=^e,P[-^^] (42) 

4. AN AUGMENTED HYBRID JUNCTION TREE INFERENCE 
ALGORITHM FOR THE FORM-II FUZZY BAYESIAN NETWORKS 

For a hybrid Bayesian network HBN defined by Eq. (1) representing the joint proba­
bility distribution P(X, Y) , the form-II fuzzy Bayesian network FBN2 can be con­
structed by the definition (14) which provides a general approximation to HBN it the 
interactions between adjacent continuous variables can be modeled by CGR models, 

P ( X , Y ) « P ( X , Z , Z , W | F 5 . / V 2 ) . (44) 

In the following, we shall only consider P(X, Z, Z,W\FBN2) and which shall be 
written P(X, Z, Z, W ) as the existence oiFBN2 is implicitly assumed. Apparently, 
the fuzzification transformation (6) does not change the decomposability of the 
original HBN. 

The local Markov property of FBN2 leads to the following factorization 

p(x,z,z,w)= Y[p(x\rx)l[p(z\rz)llP(z\z) ]J p(wqr+,*t) 

Jfex Z€Z z e z Wew 

= P(X,Z)P(Z|Z)P(W|X) (45) 

= P(X,Z,W)P(Z|Z) (46) 

where P(X, Z, W ) defines a hybrid Bayesian network HBN2 of discrete variables 
X, Z and continuous variables W: 

p(x,z,w)= n P(x\rx) n P{z\Tz) n P{W\T±,*±) 

= P (X ,Z)P(W|X) (47) 
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and P(Z|Z) defines a fuzzy peripheral star-like tree whose root node is HBN2, and 
in fact, the topology is as simple as 

P(Z|Z) = J J P(Z\Z). (48) 

If a junction tree can be constructed from HBN2, then Z can be attached to 
this tree with hybrid clusters {Cz = {Z, Z}} through discrete separators {Sz = 
{Z}}. The evidence propagation between a cluster Cz which contains Z and a 
hybrid cluster Cz through a separator Sz can be done with a mechanism similar 
to the hybrid junction tree inference algorithm presented in the previous section. 
Therefore, for the augmented hybrid junction tree inference algorithm discussed 
here, we only need to consider the hybrid network HBN2 of variables X, Z and W. 

A hybrid junction tree HJT can be constructed by graph triangulation and 
associated transformations from the hybrid network HBN2 

HJT = ( C , C , C , S , S , S ) (49) 

where C is a set of discrete clusters of purely discrete variables, C is a set of hybrid 
clusters of discrete and continuous variables, and C is a set of continuous clusters 
of purely continuous variables. Similarly, S, S and S are sets of discrete separators, 
hybrid separators and continuous separators respectively. Let X — S — Z denote 
that clusters X, Z are adjuncted through separator S, and for C,C £ C, C ^ 
C"; C, C £ C, C ^ C; C, C £ C, C £ C"; and S € S, S £ S, S e S, each junction 
in the hybrid junction tree must belong to one and only one of the seven classes 

C - S - C (50) 

C - S-C (51) 

C - S-C (52) 

C - S - C (53) 

C - S - C (54) 

C -S-C' (55) 

C-S-C'. (56) 

These classes exhaust all the possible junction types. We can see that a discrete 
cluster C is never adjacent to a continuous cluster C and in the path between 
them there must be a hybrid cluster C. We also see that we can always find a 
variable ordering consistent with FBN2 in which all the discrete variables precede 
all the continuous variables. Consequently, we can always find an ordering of all the 
clusters in which the first cluster is a discrete one. A hybrid junction tree HJT can 
be constructed from this cluster ordering such that: 

1. We can take a discrete cluster in the tree as the root of HJT. 
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Fig. 6. A hybrid junction tree HJT for the form-II fuzzy Bayesian network of Fig. 5. Solid boxes 
show discrete clusters, rounded solid boxes show hybrid clusters, dashed boxes show discrete sepa­
rators, dashed rounded boxes show hybrid separators. There is no continuous cluster or separator 
in this example. 

2. If any branch of HJT from the root to a leaf contains continuous clusters, then 
these continuous clusters must be farthest away from the discrete root and there 
must be at least one hybrid cluster between the continuous clusters to the discrete 
clusters in that branch. 

Lauritzen called such a root as a strong root. Statement (iii) of Theorem 2 of 
Ref. 17 ensures that the clusters of a decomposable form-II fuzzy Bayesian network 
can be organized in a hybrid junction tree with at least one strong root In the 
following discussions, we henceforth assume that a hybrid junction tree HJT with 
a discrete strong root has been constructed from FBN2. Figure 6 shows a hybrid 
junction tree corresponding to the form-II fuzzy Bayesian network FBN2 of Fig. 5. 

Each of the seven junction classes should be treated differently for the message 
passage. The junctico class (50) is the same as in an ordinary discrete junction 
tree handled by the standard junction tree inference algorithm.8 The classes (51), 
(53), (54), and (56) are symmetric but the classes (51) and (55) are asymmetric 
and their bidirectional message passings should be treated differently. However, the 
junction class (53) can be considered a super class which contains all other classes. 
Therefore, it suffices just to show the message passing scheme with this class of 
junctions while different classes may be implemented differently for the sake of 
computational efficiency. 

Consider two adjacent hybrid clusters A,B that are separated by a hybrid 
separator X: 

A = KAUYj (57) 
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B = KAUYB (58) 

I = K x U K x , K x = K , n K B , Y x = Y A n Y B (59) 

where K^ and YA denote the set of discrete and continuous variables contained in 
the cluster A respectively. Similarly for B and X. 

Now assume a set of evidence E is distributed to FBN2, and the potential of 
A is updated from ${A) to $*(A) 

9* (A) = $(;4|E) (60) 

we now need to propagate the evidence from A to B through separator X. 
First, the potential of separator X should be updated by 

*•(*)=/~--yeYA /~ {£. . -#GKAX>(K^YA)} n & (61) 
J-°° J~°° Y€YA 

where K enumerates KA'S discrete elements, and Y enumerates Y A ' S 
continuous elements. 

We then update the potential of hybrid cluster B 

$•(£) = 4>(KB,YB)^X'^x) . (62) 
$ ( K X , Y X ) 

Clearly, in order to reach an explicit computable formalism for a general hybrid 
message passing, we need to have a general conditional Gaussian regression (CGR) 
model for the potential of a hybrid clique (cluster or separator) and associated oper­
ations of general CGR models, including instantiation of discrete and/or continuous 
evidence, frame extension, marginalization, multiplication, and special division. 

Conditional Gaussian Regression Potential (CGRP) Distribution 
First of all, a general CGR model for a hybrid clique potential is a generalization of 
a CGR model of (21). Consider a hybrid clique A which contains discrete variables 
K and continuous variables Y. Let a = (k, y) be a configuration of A, where k is a 
configuration of K and y is a vector of continuous values of Y. The potential $(a) 
is a function of k and y 

$(a) = / ( k , y ) = f ( ^ exp | - J ( a k y - / i k ) ' ^ ( a k y - /xk) 1 (63) 

where a k and / ik are two vectors of constant continuous values, J^k is the covariance 
matrix of y, all depending on k. Let 

5k = - ^ ^ U k (64) 
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- 1 

hk = /4X>k (65) 
k 

1 - 1 

A k = o a k 5 3 a k ^ 
Z k 

<&(k) is a potential of k which is proportional to itself, so Eq. (63) can be written as 

/ (k , y) = $(k) exp{5 k + h k ' y - y 'Aky} . (67) 

Let 

g = {5k} , h = {hk} , A = {Ak} , for k G ftK • (68) 

The triple (g, h, A) which are defined only for $(k) > 0 constitutes the canonical 
characteristics of the potential distribution $(^4). We shall call the form defined 
by (63)-(67) the conditional Gaussian regression potential (CGRP) model for the 
potential of a hybrid cluster. Basic operations on CGRP models are provided by 
Lauritzen.12 Their properties are summarized as follows: 

1. Extension of a CGRP model can be done by adjoining O's to the characteristics 
such as to give them the desired dimensions. 

2. Multiplication and division of two CGRP models defined on the same set of 
variables (after the frame extension) become addition and subtraction of their 
characteristics. 

3. Marginalization over continuous variables are finite iff the corresponding parts 
of A are positive definite. Marginalization over discrete variables leads to a mix­
ture of CGRP models. This is the major subtle problem with CGRP models. 
Therefore, we have to resort to approximation using a single CGRP model for a 
mixture of CGRP models. In-depth elaboration on the marginalization of CGRP 
models is beyond the scope of this paper. 

5. SOME THOUGHTS ON LEARNING FUZZY BAYESIAN NETWORKS 
FROM DATA 

Learning an underlying hybrid Bayesian network from a given data set adds non-
trivial extra complexities to learning a discrete network. But the previous work on 
learning discrete networks still provides a basic ground from where we can start ex­
ploring the unknown area of learning hybrid networks. This section is a minor part 
of this paper as learning of hybrid networks using the formalism of fuzzy Bayesian 
network is a problem more complicated than the inference with hybrid networks. 
Thus we may only provide some general thoughts, a computable formalism for 
learning hybrid networks using the formalism of fuzzy Bayesian network is open to 
future investigation. 

In the previous work on learning Bayesian networks involving continuous vari­
ables, there were two commonly adopted assumptions. One is that all the variables 
are continuous and normally distributed,6 the approaches based on this assumption 
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are obviously limited to such a subclass of networks. The other is that all the vari­
ables in the network are treated discrete but some observations may be continuous, 
so we need to discretize the continuous observations to discrete data and then the 
discrete network learning algorithms may be applied. Recent development along the 
second assumption is to discretize multivariate continuous observations dynamically 
or simultaneous while learning is in progress.5'10'20 But because the underlying net­
work is assumed to be discrete, the so learned network may not be appropriate for 
continuous variable inference as we presented in the last two sections. 

In the following, we first summarize an integrated approach for learning discrete 
Bayesian networks which is largely based on using existing proved component algo­
rithms. This work is our ongoing effort.21 We then show the difference of learning 
hybrid networks and the possible extension of the current approach. 

5.1. An Integrated Approach for Learning Discrete Bayesian Networks 

Consider a given data set D = {Dk, k = 1,2,. . . , N} defined over a discrete variable 
set V = (Vi, V2, . . . , Vn). Each data case Dk is a full configuration of V if Dk is 
complete and hard. In case of incomplete but still hard data, Dk can be a partial 
configuration of V. In case of soft data, Dk contains a likelihood vector for each 
observed variable. 

Assume the data set D is generated by an underlying discrete Bayesian network, 
a DAG 

BN = (V ,L ,P) (69) 

where L is the set of directed links among which there is no directed cycle, P is a set 
of conditional probability tables P = {P(V|IV), V £ V}, where IV is V's parent 
set. Once the set V is fixed, we say BN is characterized by its DAG structure 
S = L and the vector of parameters describing P given S 

BN = (S, 9 ) . (70) 

5.1.1. An integrated criterion 

An integrated approach of learning BN from D is to hypothesize and select an 
optimal BN0 = (S0,Q0) from all possible valid alternatives under the MAP and 
interchangeably MDL criteria 

BN0 = avgma,xP(D\@,S)P(@\S)P(S) 
5,0 

= argminL(D|G, 5) + L(0\S) + L(S) (71) 

where L(X) denotes the description length of X which relates to P(X) by 

L(X) = -\og2P(X). (72) 

If we only want to find the optimal structure S0, we can integrate the scoring 
functions over 0 and obtain 

S0 = argmaxP(D|S)P(S) = argminL(D|S) + L(S). (73) 
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Cooper and Herskovits2 showed that under the multinomial distribution and 
complete data, the data likelihood P(D|5) has a closed-form solution. In case of 
incomplete and/or soft data, it can be shown that there is no closed-form solution 
for P(D |5) , and we have to use P ( D | 6 , S) which can be computed by an iterative 
EM algorithm.13 

However, with the pure MAP criterion, there is no generally valid assumption 
about the prior P(S). In contrast, the MDL principle can be used as a general 
criterion.11 With MDL criterion, the prior P(S) is replaced by the prior descrip­
tion length of the structure L(S) which is computable. However, in a pure MDL-
based approach, there is no generally valid expression for L(D\S) without using 
the multinomial model of P(D|S) . Therefore, in our approach, we choose to use 
P(D|S) together with L(S) in an integrated criterion 

S0 = argmaxP(D|S')2-L(5) = argmin[- log2 P (D |5 ) + L{S)}. (74) 

5.1.2. An integrated algorithm 

In principle, we should use the integrated criterion (74) through a simultaneous 
optimization which tends to favor a simpler structure S and also the better fit 
of S to the data D. However, there is a lower bound of L(S): any two variables 
X,Y £ V should be directly linked if X,Y are not d-separated by a (^-separation 
variable set Z C V, denoted by (X J_ y |Z) . Equivalently, we may use conditional 
independence test based on deviance or Chi-square statistics to test if (X J_ Y\Z) is 
true. Therefore we may start with a fully connected undirected graph of V, and we 
may iteratively prune each link (X, Y) if (X ± Y\Z) for |Z| = 0 , 1 , . . . , Tp, where Tp 

is a threshold which can be set to the maximum number of parents for each variable 
known a priori or to n — 2 if unknown. In fact, the conditional independence tests 
should be used in a relative sense, so we should mainly rely on tests with low-
order conditioning sets. The ultimate criterion to decide if there should be a link 
between each pair of variables (X, Y) and how a link should be oriented, is still the 
integrated criterion (74). Briefly, this integrated algorithm consists of the following 
four components: 

1. The Potential Graph Algorithm: This algorithm starts with the fully con­
nected undirected graph of V, then iteratively tries to prune each link (X, Y) by 
testing if (X _L Y\Z) for |Z| = 0 , 1 , . . . , Tp. The test statistics are deviance which 
is an equivalent of mutual information, but sensible to the sampling insufficiency. 
We mainly rely on tests of low-order conditioning sets ((^-separation sets). This 
results in a sparse undirected graph which is called a possibly minimal potential 
graph (PG). 

2. The Axiomatic Causality Discovery Algorithm: On the PG so obtained, 
a subset of undirected links can be oriented using the constraints of d-separation 
for converging arrows and acyclicity. This results in a subset of directed links Ls-

3. The Inductive Causality Discovery Algorithm: The potential graph PG 
and the subset of directed links Ls will constrain the remaining structural search 
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space substantially. Then we evaluate each of the alternative structures using the 
integrated criterion (74). This result in an approximate optimal structure S. 

4. The Structure Refinement Algorithm: Allowing link omission and commis­
sion errors in PG and Ls, we then try to evaluate the loss of each cut link and 
the worthiness of each determined link still using the integrated criterion (74). 

This approach is not pure axiomatic but an integrated one. We are inspired by 
the work in Refs. 2, 7, 11, 14 and 25 and many others. We believe that as long as 
we rarely have sufficient data and we can only assume the underlying distribution 
not exactly modelable by a Bayesian network, this integrated solution is the choice. 
For more detailed description, see Ref. 21. 

5.2. Possible Extensions to Learning Hybrid Bayesian Networks Using the 
Fuzzy Bayesian Network Formalism 

When a subset of variables Y C V are continuous, the conditional independence 
between two variables given a conditioning set (X _L 1^|Z), where either X or Y or 
both can be continuous or discrete and Z can be hybrid, can still be tested. Refer­
ence 14, Chapter 6 provides detailed treatment on testing conditional independence 
of discrete variables, of continuous variables and of mixed variables. Following Lau-
ritzen's guidelines, the Potential Graph Algorithm introduced in the last subsection 
can be extended to produce a possibly minimal potential hybrid graph (PHG). 

The Axiomatic Causality Discovery Algorithm involves pure graph-theoretical 
operations, so it should also apply to the learning hybrid networks. 

Central to the Inductive Causality Discovery Algorithm and the Structure Re­
finement Algorithm is the evaluation of a hypothetical structure S using the inte­
grated criterion (74). It is possible to construct a computable formalism for P(G\S) 
or P(D|G, S) and L(S) for each of the two forms of the fuzzy Bayesian network. 
We shall leave these possibilities for future research. 

A new class of problems involved in learning FBN's is the determination of the 
number of components in CG or CGR models and the parameters of these models. 
McLachlan18 summarized the existing tools available from the statistical literature 
for automatic evaluation of finite Gaussian mixture models. 

6. CONCLUSION 

Hybrid Bayesian networks in which continuous variables and discrete ones may ap­
pear anywhere in a DAG are the most general form of Bayesian networks demanded 
by practical applications. This paper presented a formalism of fuzzy Bayesian net­
works (FBN) with two alternative forms. The first form of FBN fuzzifies each 
continuous variable through a fuzzification transformation which replaces the con­
tinuous variable with a discrete partner variable and adds a directed link from the 
discrete partner to the original continuous one. The mapping between the contin­
uous variable and its discrete partner is approximated by a conditional Gaussian 
(CG), which can be considered as an inverse of a fuzzy set membership function, 
but no fuzzy logic formalism is used throughout. The second form of FBN only 
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fuzzifies those continuous variables whose descendants include discrete variables 

still through the same fuzzification transformation. The mapping between such a 

continuous variable and its discrete par tner is still modeled by a CG distribution, 

but the dependence between a continuous variable and its hybrid parents is approx­

imated by a conditional Gaussian regression (CGR) distribution. The second form 

is a finer but less general approximation. We have shown tha t there is a closed-

form hybrid junction-tree inference algorithm for the form-I FBNs, but for the 

form-II, further approximation is required in an augmented hybrid junction-tree 

inference algorithm mainly due to marginalization of hybrid clique potential . We 

have also shown tha t learning hybrid Bayesian networks is more complicated than 

learning discrete networks, but it is possible to extend an integrated approach for 

discrete network learning to learning hybrid networks using the formalism of fuzzy 

Bayesian networks. 
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This paper describes a new system for extracting and classifying bibliography regions 
from the color image of a book cover. The system consists of three major components: 
preprocessing, color space segmentation and text region extraction and classification. 

Preprocessing extracts the edge lines of the book and geometrically corrects and 
segments the input image, into the parts of front cover, spine and back cover. 

The same as all color image processing researches, the segmentation of color space 
is an essential and important step here. Instead of RGB color space, HSI color space is 
used in this system. The color space is segmented into achromatic and chromatic regions 
first; and both the achromatic and chromatic regions are segmented further to complete 
the color space segmentation. 

Then text region extraction and classification follow. After detecting fundamental 
features (stroke width and local label width) text regions are determined. By comparing 
the text regions on front cover with those on spine, all extracted text regions are classi­
fied into suitable bibliography categories: author, title, publisher and other information, 
without applying OCR. 

Keywords: Color space segmentation; HSI color space; achromatic region; chromatic 
region; text region. 

1. INTRODUCTION 

Today, it has become possible to search for bibliographies of books, indexes of jour­
nals and abstracts of papers online in many libraries or on the Internet. However, 
most of the original information is still extracted and input manually, so that build­
ing those index databases would require extensive human labor. On the other hand, 
rapid increase in the range and volume of publications makes manual work more and 
more difficult. Thereby automatic information extraction and input techniques are 
demanded,6'14 and increasing emphasis is being placed on the realization of com­
puter based systems which are able to analyze printed documents automatically. 
However, in document analysis research, much attention is paid to text parts;2 '6 '14 

while the research in relation to bibliography information extraction are carried out 
less frequently. 

Our research is centered around the idea of automatic extraction and classifica­
tion of bibliography information from the color image of a book cover. Here, we use 
Leaf CatchLight (Fig. 1), which is a digital camera that can produce high-quality 
color images, to get the cover image of an opened book as an input image (Fig. 2). 
The bibliography information region of the book will be extracted from the input 
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Fig. 1. Leaf CatchLight digital camera. 

Fig. 2. An input image. 

image and the image will be created based on the extraction result. In this paper, 
we suggest to accomplish the task according to the flow shown in Fig. 3. 

This paper is organized as follows: In Sees. 2-4, methods of preprocessing, 
color space segmentation and text region extraction and classification are ad­
dressed in order, with examples. Sections 5 and 6 provide experiments, conclusion 
and discussion. 
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f input image ) 

1 
preprocessing 

1 
color space 
segmentat ion 

1 
text region extract ion 

and classi f icat ion 

1 
f bibliography^ 
. image J 

Fig. 3. The system flow. 

2. PREPROCESSING 

A book cover consists of three parts: front cover, spine and back cover. When an 
opened book is photographed into an image plane face-down, the top and bottom 
edges of the book will appear convex broken lines (Fig. 4) in the image; and the 
convex broken lines break exactly at the points that correspond to the vertices of 
spine. Therefore the image of a book can be split into three parts, each of which 

Fig. 4. Definition of coordinate systems. 
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Fig. 5. Geometrical segmentation result. 

corresponds to one of the three par t s of the book cover. In other words, as long 
as the vertices of spine are detected, the input image can be geometrically seg­
mented into the par t s of front cover, spine and back cover, along the lines between 
correspondent vertices. 

Furthermore, by geometrically correcting each par t separately, the images of 
front cover, spine and back cover are created. 

However, because bibliography information usually does not appear on back 
cover, processes described in the following sections operate on only front cover and 
spine (Fig. 5). 

3. C O L O R SPACE SEGMENTATION 

Color space segmentation is an essential and important s tep in color image process­
ing, because any error tha t occurs here might influence the following processing.13 

In previous research on document analysis, text is often assumed to be printed 
in black on a white background, so that it can be extracted by thresholding the 
gray-scale image.1 7 On the other hand, although research on multicolor document 
are gett ing more and more popular in recent years, much of the at tent ion is paid 
to text par ts . The process presented in this paper pays at tent ion to a book cover, 
where bibliography text could be printed in any font, size and on any background, 
which makes the task much more complicated; and the color is not known a priori. 

3.1. Achromatic and Chromatic Regions Segmentation 

Although there are various color spaces, HSI space is the one tha t closely corre­
sponds to the human visual interpretation of color, which can be described in terms 
of Hue, Saturat ion and intensity.9 '1 6 Among the three a t t r ibutes of HSI space, 
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hue is the most reliable one, because it is independent of the intensity attribute. 
However, there is still one major problem associated with hue: hue is unstable at too 
low or too high saturations and intensities.1'8'12-13 To solve this problem, it is nec­
essary to define the effective ranges of hue, i.e. to define achromatic and chromatic 
areas in HSI color space, first. 

Achromatic colors are defined as colors which are completely desaturated and 
whose values depend on intensity only:12 while chromatic colors are defined as colors 
with stable hue values and whose values depend on all the three attributes. From 
the concepts mentioned above and the characteristics of color display systems, an 
image can be divided into achromatic and chromatic regions following the next 
steps [Figs. 6(a)-7(b)]: 

1. Thresholding global intensity into Io • • • In-i categories and saturation histogram 
into So • • • Sm-\ categories. 

2. A color is defined as achromatic color if its intensity belongs to intensity category 
IQ or In-i, or its saturation belongs to saturation category So or Sm_i (in Fig. 6, 
h = [0,101]; / „ _ ! = [153,256); S0 = [0,128]; Sm_x = [192,256)). 

3. Thresholding global intensity into n categories named as IQ ... In-i and satura­
tion into m categories named as So ... Sm_i. 

4. A color is defined as achromatic color if its intensity belongs to intensity category 
Io or In-\, or its saturation belongs to saturation category So °r Sm_i. 

5. The other colors are defined as chromatic colors. 

3.2. Further Segmentation 

Because achromatic colors only depend on their intensity values, the achromatic re­
gion can be segmented further into i categories at the thresholds TAQ = 0, TA\,..., 
and TAi = 255. Meanwhile, the chromatic region can be segmented further accord­
ing to all the hue, intensity and saturation histogram thresholding following the 
steps: 

1. Segment the global hue histogram into h categories at thresholds Tho = 0, 
Th\,..., and Thh = 255. 

2. Within the region where hue e [Thj,Thj+i], segment its local intensity his­
togram into lj categories at thresholds TIj0 = 0, TIji,... and TIji = 255. 

3. Furthermore, within the region where hue G [Thj,Thj+i] and intensity £ 
[T/,fc,T/j(fc+1)], segment its local saturation histogram into Sjk at thresholds 
TSjko = 0, TSjki, • • • and TSjkSjk. 

So now the chromatic region is segmented further into X)i=o 10,k=o sjk categories 
[Fig. 6(c) and 7(c)]. All the thresholds are calculated automatically using the fourth 
central moment method.5 

Thus the color space segmentation is completed and text regions will be ex­
tracted from binary images each of which is created corresponding to one of the 
segments. 
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(c) Further Segmentation Result 

Fig. 6. Result of color space segmentation (spine). 
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(c) Further Segmentation Result 

Fig. 7. Result of color space segmentation (front cover). 

4. TEXT REGION EXTRACTION AND CLASSIFICATION 

Although a book cover structurally consists of rectangular blocks, it is a complex 
document containing text regions and graph regions, that probably appear in any 
position. Our objective in this section is to (1) extract text regions from given 
binary images, which are obtained from the previous process, to create a text-only 
image; and (2) classify the text regions into suitable bibliography categories. 
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4.1. Text Region Extraction 

4.1.1. Feature Detection 

1. Stroke Width 
There is an important and fundamental attribute of document images: text re­
gions contain highly structured stroke units. Also we found that the feature of 
stroke width can be detected from run-length histogram. The stroke width set 
SW is defined as the run-length with high frequencies in the run-length his­
togram, except the run-length whose length is one.7'15 This feature reflects the 
average width of strokes in a text image, and the number of the element (SN) of 
SW reflects the number of font size (Fig. 8). In other words, it can be considered 
that there is no text region in an image if SN = 0; a stroke width set must be 
able to detect from an image in which the text region exists. 

2. Label 
By labeling a binary image, the connected pixels which belong to the same 
component are given the same label. So label is another important feature re­
flecting connected components, or pixels. In an ideal case, one label corresponds 
to one letter. 

(a) a binary image (b) run-length histogram 

Fig. 8. An example of stroke width feature detection. 

4.1.2. Block Segmentation 

A candidate image is composed of several blocks, each of which represents a coherent 
component of the image, one text line or one graph region. The blocks are obtained 
by smearing the image, so that adjacent connected components are merged into one 
block if the distance between them is less than the smearing threshold.4'15 Because 
it is a rule that the space between letters is narrower than the width of a letter,10 



EXTRACTION OF BIBLIOGRAPHY INFORMATION 113 

the smearing threshold varies dynamically with the local average label width. 

4.1.3. Text Region Determination 

If a block is a text block, it should meet the following criteria: 

1. Local stroke width set (sw) can be detected. Moreover, sw is a subset of SW. 
2. The area of each label in the block is neither too large nor too small. 
3. The ratio of the length to the width of a label is proper, generally for most formal 

printed letters it would be about 1.0, however, there are some exceptions such 
as the letter "1", "i", "h", "t", etc. whose length-width ratio may be 2.0-4.0. 

4. When there are more than three labels in one block, the centroids of those labels 
are on the same straight line, assuming to be in a horizontal direction line.3 

Based on the above criteria, it can be determined whether a block is a text block 
or not. After all the object binary images are operated on, an image in which only 
text regions remain is available by merging all the text blocks (Fig. 9). 

4.2. Text Region Classification 

The design of book cover varies with book, however, there is a style guide for spine 
design: the top three-quarters of the spine, comprises the bibliographic identification 
area; and the remaining quarter is shared by the library identification area (location 
for the library classification number) above the publishers identification area;11 

and front cover bears stamped or printed materials, such as author and title, etc. 
Therefore by comparing front cover to spine, the text regions appearing on the 
cover can be classified. The text region classification strategy is as follows. 

(a) (b) (c) (d) 

Fig. 9. Results of text regions extraction and block segmentation, (a) and (b) results of spine; 
(c) and (d) results of front cover. 
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Table 1. Result of block matching. 

1. Block segmentation with the dynamic smearing thresholds of local black-pixel-
runlength (Fig. 9). 

2. Normalization. 
3. Match each block on front cover to those on spine: image matching and features 

matching. The block on front cover which contains components within a block 
on spine is considered to belong to the same region as that block (Table 1). 

4. Those blocks on front cover which cannot find the corresponding blocks on spine 
are classified into other information region. 

After classifying the text regions, a bibliography image and an other information 
image, if it so exists, are created, as a result (Fig. 10). 

IIBLIOGBAPHY CARD 

Fig. 10. Final result. 
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5. EXPERIMENT AND RESULTS 

The suggested system has been tested on different object books. In this section, we 
demonstrate the effectiveness of the system by presenting one more example, shown 
in Figs. 11-16 and Table 2. This system was worked on Sun Unix Workstation with 
SunOS 4.1, it cost 300 seconds, 10 seconds, 10 seconds in preprocessing, color space 
segmentation and text region extraction and classification sections respectively. Now 
the authors are porting the system from Unix application to windows application, 
the calculation time is expected to be reduced. 

II 

l I " ' ' 

HANDBUOK 

MASS <5M=.CTR.\ 

ENVIKO.NMFtTKb 
CX)N.AMP4AMS 

Fig. 11. Input image. 

CPC 

HANDBOOK 
of 

MASS SPECTRA 
of 

ENVIRONMENTAL 
CONTAMINANTS 

Ronald A. Hites 

Fig. 12. Results of preprocessing. 



116 H. YANG ET AL. 

Fig. 13. Color space segmentation results of spine. 

(a) Achromatic region (b) Chromatic region 

Fig. 14. Color space segmentation results of front cover. 
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Fig. 15. Text regions extraction results. 
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Fig, 16. Final result. 

6. CONCLUSION AND DISCUSSION 

6.1. Conclusion 

In this paper, we proposed a new system for extracting bibliography regions from 
the color image of a book cover. It is a new application among document layout 
analysis. The images are taken just once so that it would be convenient for users 
and the object books would be protected from being damaged. The simple prepro­
cessing, text extraction method ensured the executive speed. Moreover, OCR is not 
necessary for text region classification in our research, though it is necessary when 
creating the final information database. 
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Table 2. Result of block matching 

6.2. Discussion 

Although we have got the results we had expected, there is more to be done for our 
future project. 

• For the current stage, our object books are all hardcover ones, which simplified 

the processes somehow. In the near future, we will make some a t t empts to apply 

our system to softcover books, which should be much more challenging. 

• In our research, bibliography regions have been extracted and classified properly. 

However it would be more useful if the bibliography database could be created 

and input automatically afterwards. This will be our work in the future. 
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A new scheme of radar target recognition based on parameterized high resolution 
range profiles (PHRRP) is presented in this paper. A novel criterion called generalized-
weighted-normalized correlation (GWNC) is proposed for measuring the similarity 
between PHRRP's . By properly choosing the parameter of the mainlobe width in 
GWNC, aspect sensitivity of PHRRP's can be reduced without sacrificing their discrim­
inative power. Performance of the scheme is evaluated using a dataset of three scaled 
aircraft models. The experimental results show that by using GWNC, only a small num­
ber of most dominant scatterers can achieve the same recognition rates as HRRP's , thus 
leading to a significant data reduction for the recognition system. 

Keywords: Radar target recognition; high resolution range profiles (HRRP); dom­
inant scatterers; parameterized HRRP (PHRRP); generalized-weighted-normalized 
correlation (GWNC). 

1. INTRODUCTION 

Radar target recognition based on high resolution range profiles (HRRP) has re­
ceived much attention in recent years.2-5 A HRRP is basically the distribution of the 
target's scatterers along the radar line of sight and is usually obtained via Fourier 
transform of the radar return recorded in the frequency domain. Since scatter­
ers occur only at the peaks of a HRRP and the frequency domain data are usually 
zero padded in order to locate all significant scatterers correctly, information redun­
dancy is quite severe in HRRP's. Based on the scatterers' model, parameterizations 
of HRRP's have been proposed to achieve data reduction using the modified Prony 
algorithm1 and the least squares fitting method.3 Since the distribution of scatterers 
is target-dependent and usually nonuniform, the parameterized HRRP's (PHRRP) 
cannot be regarded as discrete signals and the normalized correlation (NC) based 
recognition scheme can no longer be used to classify them. In this paper, we present 
a new scheme of radar target recognition based on PHRRP's. We first use the 
RELAX algorithm4 to extract PHRRP's from the frequency domain measure­
ments. Then we propose a novel criterion called generalized-weighted-normalized 
correlation (GWNC) for measuring the similarity of PHRRP's, and use it to classify 
the extracted PHRRP's. 

•This work is supported by the National Science Foundation of China and the National Defense 
Pre-research Foundation of China. 
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The rest of the paper is organized as follows. Section 2 gives a brief introduction 
of the data model and the RELAX algorithm. Section 3 establishes the GWNC 
criterion. Section 4 presents experimental results. Finally Sec. 5 concludes the paper. 

2. DATA MODEL AND EXTRACTION OF PHRRP'S 

2.1. Data Model 

The frequency domain radar return can be modeled as 

x{f) = j > * exp (j'2?r v ( / + / o ) ) (1) 

where r^ and o\., respectively, are the down range and scattering strength of the A;th 
scatterer, K is the number of scatterers on the target, /o is the center frequency, 
and c is the speed of light. Equation (1) can be interpreted as the superimposition 
of K complex sinusoids with complex amplitudes <7k exp(j '27r^/o) and frequencies 
-£*-, k = 1, 2 , . . .K. Hence the HRRP, i.e. Fourier transform of X(f), is in fact a 
band limited and discrete spectrum, each spectral line corresponding to a scatterer 
on the target. This observation leads us naturally to using parametric spectrum 
estimation techniques1,3'5 to extract the parameters, i.e. {cr*, exp(j2n^Lkfo), rk}^=i, 
in Eq. (1). Usually we are not concerned with the phase of the complex amplitudes. 
Therefore the parameters that serve for later recognition purpose are represented 
by {l0"fc|2>'"fc}jfeLi) which are referred to as the parameterized HRRP (PHRRP). 
Various methods are available for extraction of PHRRP's, including the modified 
Prony algorithm1 and the least squares fitting method.3 The more recently proposed 
RELAX algorithm4 gives the estimates of spectrum parameters directly and has 
been demonstrated to be robust to noise. For this reason, it shall be used in this 
paper to extract the PHRRP's from the frequency domain measurements. 

2.2. Extraction of PHRRP's 

Using matrix notations, the discrete version of Eq. (1) can be written as 

x = S7a (2) 

where a is column vector representing a\.exp(j2-ir^-fo) for k — 1,2,...K, and 
ri and x are matrix and column representations of exp(j2n^f) and X(f), re­
spectively, at discrete samples of / . The parameter estimation of Eq. (2) is to 
estimate ft and a from x, which is the frequency domain measurements recorded 
by the radar. This can be achieved by minimizing the square error e2 = ||x— J7a||2. 
The optimization can proceed in two steps. First suppose ft is known, then the 
square error is minimized by orthogonally projecting x onto the column space of 
ft, i.e. setting a = ft+x, where ft+ = ( f i ^ f i ) - 1 ! ^ is the pseudo inverse of ft. 
Next, we optimize ft to minimize e2 = ||x - S7fi+x||2, which is equivalent to max­
imizing ||flf2+x||2 because Clfl+ is the orthogonal projector on the column space 
of CI. When K = 1, ft = [lexp(j27t^Af) • • -exp(j2Tr^Af(N - 1))]T, with A / 
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being the sampling interval of X(f) and N the number of sampling points, and 
||$7f2+x||2 = ^ | | n H x | | 2 , which can be implemented by FFT. 

The RELAX algorithm4 is an algorithm that iteratively finds the strongest 
complex sinusoid present in x using the above methods and then cleans the complex 
sinusoid form x. At each iteration when the fcth strongest complex sinusoid is found, 
the lst-fcth strongest complex sinusoids are reestimated, again iteratively, until the 
relative change of the residue energy of x is smaller than satisfied. This finely tunes 
the parameters to their real values. For the case, when the number of complex 
sinusoids K is unknown, the RELAX algorithm stops when the residue energy of x 
is smaller than desired. 

3. GENERALIZED-WEIGHTED-NORMALIZED 
CORRELATION (GWNC) 

The model of frequency domain radar return of Eq. (1) is rewritten as 

*(/)=£>* exp (j2w^f+/Q)) <3) 
where the superscript x is used to denote the associated data record. Taking Fourier 
transform of each side of Eq. (3) yields the range domain signal 

Kx 

x{r) = YJAlw(r-rt) (4) 
fc=i 

where x(r) = x\(2r/c) with x\{r) being Fourier transform of X(f), A% = 
&1 exp(j47r/0rg/c), and w(r) = wi(2r/c) with W\(r) being Fourier transform of the 
frequency domain window function. Multiplying x(r) by its conjugate and dropping 
the cross-term yields 

Kx RX 

i ( r ) D = ? f | x ( r ) | 2 - 2 E A ^ X r - ^ K ( r - r f ) 
fc=i '=i 

= f > 2 K r - r 2 ) | 2 (5) 
fc=i 

where x(r) is the cross-term free HRRP, * denotes the complex conjugate, and 
dt = \Ak\2 = \ak\2- F o r t w o cross-term free HRRP's x(r) and y(r), we define 

K* . 
C ( a = , y ) D = ? f ^ 5 ( r p y ( r ; ) / K 0 ) | 2 Def 

p= l 

Kx Kx Ky 

p = l ' = 1 fc=l ' 

f ^ ^ a f ^ K r f - r D I 2 . (6) 
i=i fc=i 
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Note that the cross-terms are again dropped in Eq. (6). Obviously, C(y,x) = 
C(x,y). Define 

«. , , ) * -= f f i j j j> (7) 
y/C{x,x)C(y,y) 

p(x, y) is referred to as generalized-weighted-normalized correlation (GWNC), with 
the weights \w(rxj — ry,k)\2 being a function of relative distance between scatterers. 
Just as normalized correlation (NC) is used to measure the similarity of HRRP's, 
GWNC can be used to measure the similarity of PHRRP's, each of which is des­
ignated as {^t,r%}^lv with a%, r£ and Kx defined to be the same as in Eqs. (3) 
and (5). It should be noted that the choice of a proper mainlobe width for w{r) is 
important in the application of GWNC. With a wide mainlobe, GWNC is robust 
to the azimuth variation. However, GWNC will lose its discriminating power if the 
mainlobe is too wide. From our experiences, the mainlobe width can be chosen to 
be 2-5 times the width of a range cell achieved by DFT . 

It is easily seen from Eqs. (6) and (7) that GWNC is efficient in computation 
when the number of scatterers is not too large. For PHRRP templates {a%, r%}£=1, 
C(x, x) can be computed offline and stored in memory. For an unknown PHRRP 
{^fc>rfc}fc=i' C{y,y) needs to be computed only once before it is matched against 
all templates. Thus the computation of GWNC can be further reduced. The storage 
efficiency of GWNC is obvious, as there are only 2K data points for K scatterers, 
and this is much smaller than the data points of a HRRP. 

To compensate for the translational range shift, the numerator of Eq. (7) should 
be modified as 

<?(*' y) = AT £ £ *f *>(Ar + rf - rt)f . (8) 
1=1 k=\ 

In practice, the search for Ar can be done in the neighborhood of Ar, where 

Ky Kv Kx Kx 

^=E^/E^ - £ w/ E5? • (9) 
fc=i / fc=i i=i I i=i 

4. EXPERIMENTAL RESULTS 

We evaluate the performance of GWNC using the dataset of three scaled aircraft 
models: B52 (scale 1:91), Q6 (scale 1:20) and Q7 (scale 1:15). The raw data are 
collected by placing the scaled models on a turntable in a microwave anechoic cham­
ber and measuring the radar returns at stepped frequencies ranging from 12 GHz 
to 18 GHz with a 0.06 GHz increment. Azimuthal angles of the measurements are 
from 0° to 155° (0° is the nose-on azimuth) with an average increment of 0.43°. The 
elevation angles remain constant at 5°. The PHRRP's are obtained by extracting 
the parameters of K most dominant scatterers from the stepped-frequency mea­
surements using the RELAX algorithm.5 The corresponding HRRP's are obtained 
via FFT of the stepped-frequency measurements. 
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Fig. 1. Examples of HRRP's of the aircraft models, (a) B52, at the azimuth of 48.5°; (b) Q6, at 
the azimuth of 59.5°. 
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Fig. 2. Examples of PHRRP's of the aircraft models, (a) B52, at the azimuth of 48.5°; (b) Q6, 
at the azimuth of 59.5°. 

Figure 1 gives some examples of HRRP's of the three aircraft models and Fig. 2 
gives the corresponding PHRRP's. The abscissas range in meters. It is seen that 
the PHRRP is a good representation of the dominant scatterers as indicated by the 
peaks in the corresponding HRRP. 

Figure 3 gives the NC of HRRP's and GWNC of PHRRP's, respectively, of 
B52 for all three targets. The abscissas are azimuth variation in degrees. Figure 4 
gives similar plots of the Q6 aircraft. In Figs. 3(b) and 4(b), the number of most 
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Fig. 3. (a) NC between the HRRP's of B52 and those of all three targets. (b) GWNC between 
the PHRRP's of B52 and those of all three targets — Solid with "o": B52, Dashed with " • " : Q6, 
Dotted with "A": Q7. Reference azimuth: 48.5°. 
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Fig. 4. (a) NC between the HRRP's of Q6 and those of all three targets. (b) GWNC between 
the PHRRP's of Q6 and those of all three targets — Solid with "o": B52, Dashed with "D": Q6, 
Dotted with "A": Q7. Reference azimuth: 59.5°. 

dominant scatterers are all 12. Since translational range shifts do not occur for 
turntable targets, the GWNC is computed using Eqs. (6) and (7), with w(r) is 
chosen as Fourier transform of the Hamming window function to reduce the effect 
of sidelobes. The mainlobe width of w(r) is chosen to be three times the width of a 
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range cell achieved by DFT. It is seen from Figs. 3 and 4 that the azimuth sensitivity 
of PHRRP's can be reduced without sacrificing their discriminative power if the 
mainlobe width of w(r) is chosen properly. 

Now we evaluate the performance of GWNC via comparison of classification 
rates. We construct the template set for PHRRP (or HRRP) by fetching PHRRP's 
(or HRRP's) from every 4.7° azimuths starting from the 2° azimuth, thus obtaining 
a total of 99 templates for PHRRP (or HRRP) over the 0°-155° azimuth range for 
the three aircraft models. An unknown PHRRP (or HRRP) is classified by first 
computing its GWNC (or NC) with all PHRRP (or HRRP) templates and then 
assigning it to the class of which a template has the maximum GWNC (or NC) 
with the unknown PHRRP (or HRRP). In computation of GWNC, w(r) is again 
chosen as Fourier transform of the Hamming window function with its mainlobe 
width chosen to be three times the width of a range cell achieved by DFT. The 
classification results are summarized in Table 1. 

It is seen from Table 1 that the classification rates achieved by PHRRP's increase 
rapidly as an increased number of dominant scatterers are used and the classification 
rates achieved by only 12 dominant scatterers are already comparable to those 
achieved by HRRP's, thus demonstrating the effectiveness of GWNC. The number 
of data points for a HRRP is 101 and it can be reduced to 64 by discarding the 
range cells at each end, which carry little target features. On the other hand, there 
are only 2K data points for K most dominant scatterers. This results in a 62% 
data reduction for 12 dominant scatterers. 

Table 1. Correct classification rates in percentage. 

Correct classification rates 

(%) 

B52 Q6 Q7 Average 

NC applied to HRRP's 88 89 91 89 

GWNC K = 4 77 80 79 79 

applied to K = 8 89 89 78 85 

PHRRP's K = 12 94 88 84 89 

5. CONCLUSIONS 

In this paper we have presented a new scheme for radar target recognition based on 
parameterized high resolution range profiles (PHRRP). We have proposed a novel 
criterion called generalized-weighted-normalized correlation (GWNC), which can be 
used to measure the similarity between PHRRP's. With a properly chosen mainlobe 
width of GWNC, the PHRRP's azimuth sensitivity can be reduced and yet their 
discriminative power does not suffer. The experimental results with the dataset 
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of three scaled aircraft models show tha t by using G W N C only a small number 

of most dominant scatterers can achieve the recognition rates as good as those of 

HRRP ' s , thus leading to a significant da t a reduction for the recognition system. 
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