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Methods of Combining Multiple Classifiers and Their 
Applications to Handwriting Recognition 

Lei Xu, Adam Krzyzak, Member, IEEE, and Ching Y. Suen, Fellow, IEEE 

Abstract- Method of combining the classification powers of 
several classifiers is regarded as a general problem in various 
application areas of pattern recognition, and a systematic inves- 
tigation has been made. Possible solutions to the problem can 
be divided into three categories according to the levels of infor- 
mation available from the various classifiers. Four approaches 
are proposed based on different methodologies for solving this 
problem. One is suitable for combining individual classifiers such 
as Bayesian, k-NN and various distance classifiers. The other 
three could be used for combining any kind of individual clas- 
sifiers. On applying these methods to combine several classifiers 
for recognizing totally unconstrained handwritten numerals, the 
experimental results show that the performance of individual 
classifiers could be improved significantly. For example, on the 
U.S. zipcode database, the result of 98.9% recognition with 0.90% 
substitution and 0.2% rejection can be obtained, as well as a 
high reliability with 95% recognition, 0% substitution and 5% 
rejection. These results compared favorably to other research 
p u p s  in Europe, Asia, and North America. 

I. INTRODUCTION 
ECENTLY, in the area of character recognition, the R concept of combining multiple classifiers is proposed as a 

new direction for the development of highly reliable character 
recognition systems [ 11, and some preliminary results have 
indicated that the combination of several complementary clas- 
sifiers will improve the performance of individual classifiers 

We believe that the combination of multiple classifiers is 
a general problem that is interesting not only to the character 
recognition area but also to various application areas of pattern 
recognition. The main reasons come from two aspects. First, in 
almost any one of the current pattern recognition application 
areas such as character recognition, speech recognition, remote 
sensing, geophysical prospecting and medical applications as 
well as many others [1]-[18], [29], there are a number of 
classification algorithms available. These algorithms are based 
on different theories and methodologies. Broadly speaking, 
we have now two large groups of methods, namely, feature- 
vector-based methods and syntactic-and-structural methods. 
Furthermore, each group includes many algorithms that are 
based on a variety of methodologies, e.g., for the first group 
alone, there exist Bayes classifier, k-NN classifier, various 
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distance classifiers and neural network based classifiers . . . 
etc. Usually, for a specific application problem, each of these 
classifiers could attain a different degree of success, but maybe 
none of them is totally perfect, or even not as good as 
expected for practical applications. So there is a need to study 
the methodology of integrating the results of a number of 
different classification algorithms so that a better result could 
be obtained. The second aspect is that for a specific recognition 
problem, usually numerous types of features could be used to 
represent and recognize patterns. To make a strong impression 
on this fact, some examples are presented as follows. 

In character recognition, the usuable features may come 
from density of point measurements, moments, charac- 
teristic loci, mathematical transforms (Fourier, Walsh, 
Hadamard . . . ), they may also come from skeletons or 
contours (such as loop, endpoint, junction, arc, concav- 
ities and convexities, stroke . . . ) [l], [2]. 
In applications related to texture analysis such as remote 
sensing and scene analysis, the usable features may 
come from co-occurrence matrix, Fourier descriptors, 
power spectrum, moments, contrasts, as well as various 
structural primitives [7], [29]. 
In waveform analysis and recognition such as seismic 
signal, EEG and ECG, speech recognition and speaker 
identification, underwater acoustics as well as recog- 
nition of curve-like images, the usable features may 
come from power spectrum, AR modeling, function 
approximation, zero crossing, hidden Markov modeling, 
and many types of structural line segments [8]-[15]. 

No doubt, many other examples in various pattern recogni- 
tion application areas can still be found. 

These features are represented in very diversified forms, 
e.g., they may be continuous variables, binary values, discrete 
labels, structural primitives . . . , it is very difficult to lump 
them together into one single classifier to make decision. As 
a result, many classifiers are needed to handle the different 
types of features. More specifically, there are three different 
cases where different ways of processing are required. In the 
first case, the features belong to types that are drastically 
different (e.g., continuous variables and structural primitives), 
and classifiers based on different theories and methodologies 
(e.g., feature based methods and syntactic methods) are needed 
to treat such features. This case was discussed earlier in the 
first aspect. In the second case, the features may be different 
not in the form of representation but also in the physical 
meanings, e.g., for a set of features that are represented in the 
form of continuous variables, suppose that some of them are 
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features representing the pattern’s volume, some representing 
the pattern’s temperature, etc., then to lump these features 
into a vector for one classifier, we need first to normalize 
the scales of these features. This job is usually also quite 
difficult. However, it may become much easier if we integrate 
the results of several classifiers each of which uses features 
representing the same type of physical property and thus 
being of the same scale. Finally, in the third case, even if 
normalization is not required in lumping a lot of variables 
into one very high-dimensional vector, it may still be a 
good idea to divide the high-dimensional vector into several 
vectors with lower dimensions as input to several classifiers, 
since it is well known that high-dimension vectors will not 
only increase computational complexity but will also produce 
implementation problems and accuracy problems. 

Of course, the combination of multiple classifiers is by no 
means the only solution for the problem involving a variety 
of features. The hybrid systems of statistical and syntactical 
or structural methods have been developed [5], [16] to cover 
the first case mentioned previously. Various ways of feature 
selection and dimension reduction [ 191 have been proposed to 
solve the problems associated with the third case. Multistage 
system [20], multilevel hierarchical classifier [21], especially 
tree classifiers [22], [23] have been investigated extensively. 
However, even though they may succeed up to a certain 
degree and certain aspects, they too encounter many of their 
own difficulties. Thus, a new direction of combining multiple 
classifiers is certainly worthwhile to be explored further. 

It appears that the study on the combination problem is’now 
only at its preliminary stage. It has started in the character 
recognition area. Due to the complexity of handwritten char- 
acter recognition, recently it has been realized that classifiers 
based on different methodologies or different features are 
usually complementary to each other [16], [17]. Thus efforts 
have been made to develop various complementary classifiers 
or those called expert modules [l], [2], [5] for handwritten 
character recognition. Then it naturally raises the question 
of obtaining a consensus on the results of each individual 
classifier or expert. Presently, three kinds of effort have 
been made toward this direction. One makes use of the 
majority voting principle [l], [2], i.e., each individual classifier 
represents one score that is either as a whole assigned to one 
class label or divided into several labels. The label, which 
receives more than half of the total scores, is taken as the 
final result. The second uses a kind of a candidate subset 
combining and re-ranking approach [3], [4], namely, each 
individual classifier produces a subset of ranked candidate 
labels, and the labels in the union of all subsets are re- 
ranked based on their old ranks in each subset. The third 
applies Dempster-Shafer (D-S) Theory on the special case 
of combining several individual distance classifiers [6]: the 
distance calculated by each individual classifier is transformed 
by some way into a confidence value between [0, 11, which is 
used as the basic probability assignment of the only one focal 
element, the simplest combining rule based on D-S theory is 
used in the special case to combine the contribution of each 
individual to give the final result. The results of these efforts on 
handwritten character recognition or on line script recognition 

are quite interesting and inspiring [1]-[6]. 
In this paper, we propose to conduct a more systematical 

investigation into the problem of multiclassifier combination. 
Generally speaking, we could consider that it consists of two 
parts. The first part, being closely dependent on the specific 
applications, includes the problems of “How many classifiers 
are chosen for a specific application problem? What kind of 
classifiers should be used? And for each classifier what types 
of features should be chosen?”, as well as other problems that 
relate to the construction of those individual and complemen- 
tary classifiers. Papers [l], [2] have already described a lot of 
work on the recognition of totally unconstrained handwritten 
numerals. This paper does not intend to study the problems 
of this part. The second part, which is general and common 
to various applications, includes the problems related to the 
question-how to combine the results of different existing 
classifiers so that a better result can be obtained. This paper 
will concentrate on problems related to this second part. 

In Section 11, we first summarize the problems of combining 
multiclassifiers into three categories according to the levels 
of information produced by various classifiers. Then in the 
following section, several approaches have been proposed to 
tackle these problems. These approaches include new versions 
as well as a general form of voting principle, an averaged 
Bayes classifier and its version, a combination approach in 
Bayesian formalism, and a combination approach in Demp- 
ster-Shafer formalism. The latter two especially are new 
approaches adapted from the literature of evidence gathering 
and uncertainty reasoning. The approaches proposed in this 
paper are applied to the problems of recognizing totally un- 
constrained handwritten numerals, the four experts presented 
in [l], [2] are used as the individual classifiers. The obtained 
combination results are significantly better than any individual 
classifier, e.g., on the same database as [ l ] ,  [2] and by 
combining the four individual classifiers given there, the result 
could give 98.9% recognition, 0.9% substitution and 0.2% 
rejection. If it is required to suppress the substitution rate, 
the results could give 95% recognition, 0% substitution and 
5% rejection; while the individual classifier with the best 
performance among the four can only provide the result of 
93.9% recognition, 1.6% substitution and 4.5% rejection. 

11. THE PROBLEM OF COMBINING MULTIPLE CLASSIFIERS 

A. Three Levels in Classifier’s Output Information 
Given a pattern space P consisting of M mutually exclusive 

sets P = Cl U . - .  U C, with each of Ci, V i  E A = 
{ 1,2,  . . . M} representing a set of specified patterns called a 
class (e.g., M = 10 for the problem of numerals recognition). 
For a sample x from P, the task of a classifier (denoted e) is 
to assign 2 one index j E A U { M  + 1) as a label to represent 
that 2 is regarded as being from class Cj if j # M + 1, with 
j = M + 1 denoting that e has no idea about which class x 
comes from, or in other words, 2 is rejected by e. Regardless 
what internal structure a classifier has and on what theory and 
methodology it bases, we may simple regard a classifier as a 
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function box that receives an input sample x and outputs a 
label j ,  or in short denoted by e(.) = j .  

Although j is the output information we only want at the 
final stage of classification, practically many of the existing 
classification algorithms usually supply or are able to supply 
some other related information. For example, a Bayes classifier 
may also supply M values of post-probabilities P ( i / x ) ,  i = 
l , . . . , M  for each possible label. In fact, the final label 
j is the result of maximum selection from the M values 
and this selection certainly discards some information that is 
considered useless for the final output when there is only a 
single classifier. However such discarded information may be 
useful for multiclassifier combination. Depending on whether 
some output information other than one label j is used and 
the other kind of information is used, we will have different 
types of multiclassifier combination problems. 

Generally speaking, the output information that various 
classification algorithms supply or are able to supply can be 
divided into three levels. 

1)  The abstract level: a classifier e only outputs a unique 
label j ,  or for some extension, e outputs a subset J c A. 

2) The rank level: e ranks all the labels in A or (a subset 
J C A) in a queue with the label at the top being the 
first choice. 

3) The measurement level: e attributes each label in A a 
measurement value to address the degree that x has the 
label. 

Among the three levels, the measurement level contains the 
highest amount of information and the abstract level contains 
the lowest. From the measurements attributed to each label, 
we could rank all the labels in A according to a rank rule 
(e.g., ascending or descending). By choosing the label at the 
top rank, or directly by choosing the label with the maximal 
or minimal value at the measurement level, we can assign a 
unique label to x .  In other words, from the measurement level 
to the abstract level there is an information reduction process 
or abstraction process. 

Many classification algorithms are able to supply output 
information from the measurement level, e.g., Bayes classifier 
supplies the post-probabilities P(i /x) ,  i E A and various 
distance classifiers supply the distance between x and each 
prototype sample of each class as the measurements. In other 
words, processing at the measurement level is an intermediate 
stage of many classifiers. However, some of classifiers may be 
able to supply the output information only from the abstract 
level, e.g., the pure syntactic classifier. 

B. Three Types of Problems for Multiple Classifier Combination 
According to which of the aforementioned three output 

information levels a combination is based upon, various prob- 
lems of combining multiple classifiers could be summarized 
into the following three types: 

Type 1: The combination is made based on the output in- 
formation of the abstract level. Given K individual classifiers 
eh, k = 1, . . . , K each of which assigns input x to a label jk ,  
i.e., produces an event ek(x) = jk ,  the problem is to use these 

events to build an integrated classifier E ,  which gives x one 
definitive label j, i.e., E ( x )  = j ,  j E A U { M  + 1). 

Type 2: The combination is made based on the output 
information of the rank level. For an input x,  each ek produces 
a subset Lk g A with all the labels in Lk ranked in a queue, 
the problem is to use these events e(.) = Lk, k = 1 , .  . , K 
to build an E with E ( x )  = j ,  j E A U { M  + 1). 

Type 3: The combination is made based on the output 
information of the measurement level. For an input x ,  each ek 
produces a real vector Me(k)  = [mk(l) ,  . . . , mk(M)lt (where 
mk(i)  denotes a kind of degree that ek considers that x has 
label i), the problem is to use these events e(.) = M e ( k ) ,  
IC = l , . . . , K  to build an E with E ( x )  = j , j  E AU{M+l}. 

The three types of problems described previously cover the 
different scopes of applications. On the problem of Type 1, the 
individual classifiers could be very different from each other 
in their theories or methodologies (e.g., ek may base on a 
statistical method, while el on a syntactic method). In fact, any 
kind of classifier will at least supply the output information at 
the abstract level, so it could be said that the problem of Type 
1 covers all kinds of pattern recognition areas. Thus, this type 
of problem should be most interesting. In contrast, the problem 
of Type 3 requires that all the individual classifiers should be 
able to supply the output information at the measurement level. 
Furthermore, if there are any measurement vectors of different 
kinds (say, M e ( k )  is a vector of postprobabilities, while 
Me(Z) a vector of some kind of distances), the measurements 
should be able to be transformed into the same kind of 
measurement, since a reasonable combination operation on 
these measurements could be made only when they have the 
same measure scale. The problem of Type 2 has a generality 
between Type 1 and Type 3, it requires that all the individual 
classifiers be able to supply the output information at the 
rank level. Thus, its individual classifier could not be a pure 
syntactic classifier that only outputs one label, but could be 
any classifier that is able to supply output information at the 
measurement level since a ranked list Lk could be easily 
obtained from the correspondent measurement vector Me (IC). 

The combination problem studied in [ 11, [2] belongs to Type 
1, and the problem studied in [3], [4] belongs to Type 2. In 
this paper, we will study the problems of Type 3 in Section 
111. Then, in the following four sections, we concentrate on 
the problem of Type 1 because we think that it is the most 
useful one due to its generality. 

111. AVERAGED BAYES CLASSIFIER AND ITS VERSIONS 

A. Averaged Bayes Classifier 
We use this section to discuss the combination problem of 

Type 3. First, we look at a special case that all individual 
classifiers are Bayes classifiers. 

For a Bayes classifier e, its classification of an input 
x is actually based on a set of real value measure- 
ments-postprobabilities: 

Authorized licensed use limited to: Vegim Gashi. Downloaded on August 28, 2009 at 13:16 from IEEE Xplore.  Restrictions apply. 



111 , 

XU er al.: METHODS OF COMBINING MULTIPLE CLASSIFIERS AND THEIR APPLJCATIONS TO HANDWRITING RECOGNITION 

~ 

421 

where x E Ci denotes that x comes from class Ci. In the 
convention of statistical pattern recognition literature, these 
probabilities are simply denoted by P(Ci/x),  Vi  E A. They 
represent the probabilities that x comes from each of the M 
classes under the condition x. 

In principle, these probabilities are not related to each 
classifier e k .  But in practice, that each e k  classifies x is 
not really based on those true values of (l), which are not 
available. Instead, for each x, e k  estimates by itself a set 
approximations of those true values. These approximations 
depend on what features ek are used and how e k  is trained. 
To clarify such a dependence, we denote them as follows: 

For any e k ,  a definitive decision is made as 

e k ( x )  = jwith P k ( Z  E Ci/x) = maxiEAPk(x E Ci/x). ( 3 )  

Now, we don’t care about the results of (3). Instead, we 
use the approximations of (2) for combining the classification 
results on the same x by all K classifiers. One simple approach 
here we propose is to use the following average value as a new 
estimation of combined classifier E: 

l K  P E ( ~  E Ci/X) = - Pk(x E Ca/Z), i = 1 , .  , M.  (4) 
k = l  

K 

The final decision made by this E is given by 

E(%) = j ,  with PE(Z E Cj/x) = maxiEAPE(x E Ci/x) 

that is, a Bayes decision is based on these newly estimated 
post-probabilities. So, we call such a combined E as an 
averaged Bayes classifier. If we expect that the classified 
results are more reliable, we could use the following equation 
to replace (5) to take into account the trade-off between the 
substitution rate and the rejection rate in (6) (shown at the 
bottom of the page) with 0 5 Q 5 1 being a threshold. 

Another alternative is to use the median value of P k ( X  E 
Cilx), i = l , . . . ,M,  denoted by Pm(z E C~/Z), to re- 
place the correspondent average value. Since E,=1 Pm(x E 
Ci/x) # 1 ,  we use the following normalized values as the 
new estimations: 

( 5 )  

M 

B. Extensions to Other Classifiers 
The previous approach could be extended to cover several 

cases when some ek’s belong to another kind of classifiers. 
First we consider the case that ek is a k - N N  classifier. 

In this case, the classification process consists of two steps. 

The first one is to find the k,, nearest prototype samples to 
the present input x with 

M 

k,, = ki, ki >_ 0 
a=1 

where k, represents the number of prototype samples from 
class Ca. The second step is to classify x into class C, 
according to k, = m a ,  k,, that is, 

E ( x )  = j ,  when k, = IC,. (8) 

Since the measurements k, ,  i = l , . . . ,  M have a different 
scale from the measurements in the form of post-probabilities, 
it is not reasonable to use (5) directly. The following formula 
introduces one way to transform k, ’s into the approximations 
as 

(9) 
ka Pk(x E ca/x) = -, i = 1 ,  ’ ’ * hd 
k,, 

and then these approximations could be put into (5) for the 
subsequent combination computing. 

Second, we consider the case ek is some kind of distance 
classifier, i.e., for each Z, e k  classifies x according to some 
distance measures (e.g., Euclidean, Mahalanobis, and other 
pseudodistances etc.) d k ( i )  between x and the centers (or 
prototypes) of each class C,, i = l , . - . , M .  If one could 
design some functions 

for example: 

to derive a set of p k ( i ) ’ S  which obey the three basic axioms 
of probability theory, one could use these p k ( i )  as apparent 
post-probabilities and put them into (4) for combination. 

Generally, any classifiers in which some kind of apparent 
post-probabilities are computable could be combined by means 
of (5). 

IV. COMBINING MULTIPLE CLASSIFIERS BY 
VOTING PRINCIPLE 

A. The Earlier Works 
From now on, this paper will concentrate on the combination 

problem of Type 1 since this type is the most general and 
useful one. 

As indicated in Section 11, the problem is to produce a new 
event E ( x )  = j from the given events e k ( x )  = j k ,  k = 
1,. . , K, where the following equation may not necessarily 
hold: 

e l ( x )  = eZ(x) = ... = e K ( x ) .  (12) 

if P E ( ~  E Cj/x) = maxiCA P E ( ~  E C J x )  5 CY E ( x )  = { j ’  M + 1 ,  otherwise 
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That is, conflicts may exist among the decisions of K classi- 
fiers. A simple and common rule used for resolving this kind 
of conflicts in human social life is voting by majority. This 
rule has been adapted for multiclassifier combination by [ 11, 
[2], [SI in the recognition of unconstrained numerals. 

In [SI, eleven individual classifiers are proposed based on 
template matching, structural and statistical methods respec- 
tively. If six out of 11 vote for the same label, then the 
label is taken as the final result. In [2], two classifiers are 
used based on structural features extracted from skeleton and 
contour respectively. Three rules specific for the combination 
of the two classifiers are proposed. These rules maybe regarded 
as the special examples of the majority voting rule. In [l], two 
classifiers are added to [2]. Among the four, each of the last 
three outputs only one label, i.e., e2(2) = j 2 ,  e3(x) = j3, 
e 4 ( X )  = j4; while the first one outputs a subset of labels, i.e., 
e1(x) = J with #IJI 5 3. The ek, IC = 2,3 ,4  represents one 
vote that is assigned to its output label j k ;  while e1(x) divides 
one vote into #IJI fractions with each label in J receiving 
l/(#lJl) vote. The decision is made such that the label that 
receives more than half of the votes (i.e., two) is taken as the 
final output. 

B. Variants of Voting Principle and a General Expression 

form of a binary characteristic function: 
For convenience, we represent the event ek(z) = i in the 

(13) 
1, when ek(x) = i and i E A 
0, otherwise. 

The most conservative voting rule is the following 

that is, the combined classifier E decides that x comes from 
Cj iff all the K classifiers decided that x comes from Cj 
simultaneously, otherwise it rejects 2. In (15), ‘73’’ denotes 
the operator of logical AND or binary multiplication, and in 
the following (15), “U” denotes the operator of logical OR or 
binary summation. 

A slight modification of (14) could lead to a version that is 
less conservative. The version is shown in (15) (at the bottom 
of the page), which results in an E that decides x E C; as 
long as some classifiers support x E Ci and no other classifier 
supports a different x E Cj, j # i. Or in other words, (15) 
means that the classifiers that reject x have no impact on the 
combined E unless all the classifiers reject X. 

The majority voting rule used in [ 11 could be expressed by 
the following formula: 

E(x )  = 
if TE(X E cj) = maxiCA TE(X E ci) > 4 

(16) 
{ h + 1, otherwise. 

where 
K 

TE(X E C;) = C T k ( x  E Ci),i = l , . . . ,M.  (17) 
k=1 

By slightly modifying this formula, a more general version is 
established as follows 

E ( x )  = 
if TE(X E Cj)  = maxiCA T E ( ~  E Ci) 2 a * K 

(18) 
{ kl + 1, otherwise. 

where 0 < a 5 1. Note that (16) is the special case of (18) 
with a = 0.5 + E ,  and E > 0 is arbitrarily small. Equation (12) 
is equivalent to the special case of (18) with a = 1.0. 

In (18), the thresholding operation only considers that the 
maximal votes of the final selected label must be large enough. 
There may exist cases that there are more than two labels that 
receive the maximal vote or the vote of the maximal are not 
considerably larger than the vote of the second maximal. In 
these cases, even the maximal vote of the final selected label 
may be quite large, the decision still may not be reliable since 
there exists an opponent that may also receive a large vote. To 
tackle this problem, a new majority voting rule is proposed in 
(19) (shown at the bottom of the page) and (20): 

maxl = maxiCA T E ( ~  E C;) 
max2 = maxiCA-{j} TE(Z E C;) (20) 

where 0 < a 5 1. Since K ,  the number of classifiers, is 
constant, the votes of max2 could be regarded as the implicit 
objections to the label j. Thus, rule (19) in fact requires that 
the pure supports received by the finally selected label must 
be large enough. It is not difficult to see that rule (15) is 
equivalent to the special case of (18) with max2 = 0. 

All the aforementioned variants could be included in a 
general expression as 

if TE(Z E Cj)  = maxl 2 a * K + d,(z) 

(21) 
M + 1, otherwise. 

if 3 j  E A, nfZl{Tk(X E Cj)  U (1 - U g , T k ( z  E C,)} > 0 
E ( x )  = { h + 1, otherwise 

E ( x )  = { j 7  if TE(Z E Cj)  = maxl and m a l -  maxz 2 a * K 
M + 1, otherwise. 
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where dt(x) is a function of TE(X E C;), i = 1,. . , M. Rule 
(17) is a special case of (21) with dt(x) = 0 and rule (20) is 
a special case of (21) with dt(x) = max2. d,(x) could also 
be another function, e.g., the median value of TE(Z E Ci), 
i = 1, . . . , M.  Observe that the threshold of (21) consists 
of two parts: a constant part that is independent of x, and a 
dynamic one that varies with input x. 

Finally, we should also point out that at the beginning of 
the subsection, although we only let Tk(x E C;) be the event 
of type ek(x) = i, i.e., each classifier outputs a single label. 
For the general case ek(x) = J with J being a subset of labels 
(e.g., expert no. 1 in [l]), all the previous equations also apply 
by defining a nonbinary characteristic function for the event 
ek(x) = J as follows: 

(22) 
when i E J Tk(x E Ci) = { m’ 

0, otherwise. 

V. THE COMBINATION OF MULTIPLE CLASSIFIERS 
IN BAYESIAN FORMALISM 

A. Confusion Matrix, Prior Knowledge, and Beliefs 
In the previous section, those voting methods that combine 

the results of individual classifiers are only based on the label 
outputted by each classifier (i.e., the event ek(x) = j). Each of 
ek(x) = jk’S is equally treated as one vote without considering 
the error of each ek itself. This and the next section will take 
these errors into consideration. 

The errors of each classifier ek are usually described by its 
confusion matrix that is given by 

for k = 1,2,. . . , K; where each row i corresponds to class 
C; and each column j corresponds to the event ek(x) = j. 
Thus, an element n$) denotes that nii) samples of class Ci 
have been assigned a label j by ek. 

The confusion matrix PTk of a trained classifier ek could be 
obtained by using ek to classify a test sample set that reflects 
the distribution of pattern space. It follows from (23) that the 
total number of samples in the test set is 

in which the number of samples in each class C; is 

M+1 

j = 1  

and the number of samples that are assigned j by ek is 

i=l 

For an event ek(x) = j of an error-bearing classifier eh, 
its truth (i.e., x does come from class Cj) has uncertainty. 
With the knowledge of its confusion matrix PTk, such an 
uncertainty could be described by the conditional probabilities 
that propositions x E Ci, i = 1, . . . , M are true under the 
occurrence of the event ek(x) = j, that is 

From another viewpoint, the confusion matrix PTk could 
be regarded as the prior knowledge of an expert. Upon receipt 
of the evidence-the occurrence of event ek(x) = j ,  the expert 
expresses his beliefs with uncertainty on each of M mutually 
exclusive propositions z E Ci, V i  E A by a real numeral 
bel(.) called belief value. The higher the bel(.) he gives to a 
proposition, the more likely it is true. With the knowledge of 
PTk, he expresses his bel(.)’s on each proposition x E c; in 
the form of a conditional probability as given by (27), viz.: 

That is, bel(.) is defined as the probability under the condition 
of ek(x) = j k  and the environment E N .  Where E N  denotes 
the common classification environment that consists of any 
events that are independent of any of events ek(x) = jk, 
k = 1, .  , K, e.g., the environment at least contains the 
occurrence of a specific input pattern x. 

Such a belief expression given in (28) is exactly that 
used by Pearl [24] as well as others who adopt Bayesian 
formalism for evidence gathering and uncertainty reasoning 
in AI literature. In his recent book [24], Pearl described that 
“in this formalism, propositions are given numeral parameters 
signifying the degree of belief accorded to them under some 
body of knowledge, and the parameters are combined and 
manipulated according to the rules of probability theory.” 
The advantages of adopting Bayesian formalism and various 
methods for manipulating uncertainty reasoning along the 
formalism have been studied extensively in [24]. In our case, 
there are M propositions x E Ci, Vi E A, the numeral 
parameters are the conditional probabilities given by (27) and 
the body of knowledge consists of event ek(x), matrix PTk 
as well as the environment EN. 

B. Belief Integration Based on Bayesian Formula 
With K classifiers el, . . , eK, we will have K matrices 

PT1 , . . . , PTK. When these classifiers are used on the same 
input x, K events ek(x) = jk, k = 1, .a., K will happen. As 
discussed previously, each ek(x) = jk and its corresponding 
PTk could supply a set of bel(x E Ci/ek(x),EN), i = 
1, . M ,  each of which supports one of the M propositions. A 
natural question is how to integrate these individual supports 
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to give the combined values in (29) (shown at the bottom of 
the page). 

From (28) and (29), we have (30) (shown at the bottom of 
the page). 

If classifiers el, . . . , eK perform independent of each 
other (e.g., we can consider that classifiers are independent 
when they use independent feature sets, or they are trained 
by independent training sets), then the events e1(x) = 
j1, * .  . , eK(x) = j~ will be independent of each other either 
under the condition of x E C; as well as EN or the condition 
of solely EN. Thus we have 

P(el(x) = j ~ , . . . ~ e ~ ( x )  = j ~ / x  E Ci,EN) 
P(el (x) = jl I ' ' ' 7 eK (E) = jK/EN) 
- - nf='=, P(ek(x) = j k / x  E ci, EN) 

nf='=, P(,k(.) = jk/EN) 
- - n:='=, P(x E ci/ek(x) = jk) 

nf=1 P(x  E Ci/EN) . 
Since 

P(ek(x) = j k / X  E Ci, E N )  - P(x  E Ci/ek(x) = jk) - 
P(ek(x) = jk/EN) P(x E Ci/EN) 

by putting the previous into (30), we have 

(31) 

where P(x  E Ci/ek(x) = jk) could be estimated by (27) 
with j being replaced by jk, P(z  E C;/EN) represents the 
probability that x E Ci is true under occurrence of 3: and 
the common environment EN. It should be noticed that the 
occurrence of x is a necessary condition for events ek(x) = jk, 
IC = 1,s . .  , K  and thus should be placed behind all the 
condition bars "/,, in (27)-(29) and (30) and (39). 

A better estimation of P(x  E C i / E N )  should be the 
postprobabilities P(x  E Ci/x). This means that (31) provides 
an alternative way to solve the combination problem of Type 
3, which we have studied in Section 111. The alternative way 
is not intended to be further studied in this paper. For the 
purpose of this paper, i.e., the combination problem of 5 p e  
1, the postprobabilities P ( z  E Ci/x)'s are not available. For 
practical implementation, we use the following (32) as an 
approximation of (31): 

K 

bel(i) = 7 n P(x  E Ci/ek(x) = j k )  (32) 
k=l 

with 7 as a constant that ensures that 
(since z E Ci, i = 1,2 , .  
exhaustive). That is, we have 

- = 
77 i=lk=l 

bel(i) = 1 
, M are mutually exclusive and 

M K  

(33) 
1 

~ ( x  E Ci/ek(x) = jk). 

Finally, depending on these bel(i) values, we can classify 
x into a class according to the decision rule given here: 

(34) 
if bel(j) = maxiCA bel(i); 

E ( x )  = { & + 1, otherwise. 

In making the trade-off between the substitution rate and 
the rejection rate, (34) could be modified into (35) 

(35) 
if bel(j) = max;EA bel(i) 2 a; 

E ( x )  = { h + 1, otherwise. 

where 0 < a _< 1 is a threshold. 

VI. THE COMBINATION OF MULTIPLE CLASSIFIERS IN 
DEMPSTER~HAFER FORMALISM 

In this section, we study the combination problem of Type 
1 to consider the errors of individual classifiers by adapting 
Dempster-Shafer's evidence theory. The combination is made 
in the situation that only the recognition, substitution and 
rejection rates of each individual classifier are used as the 
prior knowledge. These rates, which usually represent the 
performance indexes of a classifier, are easily obtained by 
testing the classifiers with a test sample set. 

A. DempsterShafer Theory 
For convenience, we first briefly introduce the key points 

of DempsterShafer theory. 
Given a number of exhaustive and mutually exclusive 

propositions Ai, i = l , . . . ,  M, which form a universal set 
0 = { A I , .  e . ,  AM}. A subset {Ai,, . - .  , Aiq} c 0 represents 
a proposition denoting the disjunction Ai, U . . . U Ai,. Each 
element Ai C 0 corresponds to a one-element subset {Ai}, 
called a singleton. All the possible subsets of 0 form a superset 
2O, i.e., each subset A c 0 is an element of 2@, i.e., A E 2@. 

The DS theory uses a numeric value in the range [0, I] 
inclusive to indicate belief in a proposition (subset) A c 
0 based on the occurrence of an evidence e. This value, 
conventionally denoted by bel(A), indicates the degree to 
which the evidence e supports the proposition A. The value 
of bel(A) is calculated from another function called a basic 
probability assignment (BPA), which represents the individual 
impact of each evidence on the subsets of 0. A BPA (denoted 
m) is a generalization of a probability mass distribution. It 

bel(i) = bel[x E Ci/el(x),...,eK(x),EN] = P[x  E C;/el(x) =jl,...,e~(x) =j~,ENl,i = l , . . - , M  (29) 
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assigns values in [0, 13 to every element of 2O (i.e., each 
subset of 0, instead of each element of 0 as in probability 
theory) such that the numeric values sum up to 1. Usually, 
m(A) 2 0 is used to denote the value assigned to subset A. 

There are three distinct features about BPA. 
m(A) is the portion of the total belief committed exactly 
to A, which cannot be further subdivided among the 
subsets of A and does not include the portions of the 
total belief committed to subsets of A. 
The singletons {Ai}, Vi E A are only parts of the 
elements in 2e, so it is possibly m(Ai) < 1, and 
since Ai and l A i  = 0 - Ai are only two elements of 
2°, possibly m(Ai) + m(1Ai) < 1. This avoids the 
basic axioms of Bayesian formalism, or in other words, 
BPA supplies an incomplete probabilistic model. 
A subset A E 2Q with m(A) > 0 is called a focal 
element. When A is the only focal element in 2O, 
we have m(@) = 1 - m(A), i.e., m(0)  absorbs the 
unassigned portions of the total belief after commitment 
of belief to various proper subsets of 0. 

Since a subset A represents the disjunction of all the 
elements in A, the truth of B c A implies the truth of A, 
i.e., all the portions committed exactly to every subset of A 
will also support A. Hence, bel(A) is given by 

bel(A) = m(B) 
B C A  

with the special cases. 
1) When A = Ai is a singleton, then bel(A) = bel(Ai) = 

2) When A = 0, bel(@) = 1. 
When two or more evidences exist, there will be two or 

more sets of BPA's and bel(.)'s given to the subsets of the 
same 0. Under the condition that each of these evidences is 
independent of each other, Dempster's combination rule could 
be used to combine them into a new BPA and bel(.), which 
represents the combined impact of the two evidences. 

Let bell, belp and ml ,  m2 denote two belief functions 
and the corresponding BPA's respectively. The Dempster rule 
defines a new BPA m = ml @ m2, which represents the 
combined effect of ml and m2, i.e., for A # 0 (where 0 
denotes the empty set): 

m(A) = mi @ m2(A) = k 

m(Aa). 

mi(X)mz(Y) 
X n Y = A , A # 0  

(37) 

where X C 0, Y 0 are any subsets. The m is a BPA if 
IC-' # 0; if k-' = 0, then ml @ m2 does not exist and m l ,  
m2 are said to be totally contradictory, i.e., the two evidences 
are in conflict. If the two evidences are not in conflict, the 
combined belief function, denoted by bell @ bel2 may be 
computed from ml @ m2 directly by (36). 

Because Dempster rule is associative and commutative, it 
could be used to combine multiple evidences by sequentially 

(and with an arbitrary order) using (37) to obtain 

Obviously, the combination m exists when any of two among 
the K evidences are not in conflict. 

Moreover, the values of m could also be calculated by the 
following formula: 

K 

K 

After obtaining m, we can calculate its correspondent bel by 
(36). 

B. Modeling Multiclassifer Combination by D S  Theory 
In our problem, the M exhaustive and mutually exclusive 

propositions are given by A1 = x E Ci, Vi E A, which 
respectively denote that input sample 3: comes from Ci, 
Vi E A, and the universal proposition is 0 = {AI,. . , AM}. 
When applied to the same input x ,  K classifiers e l , . . - , e K  
will produce K evidences ek(x)  = j k ,  k = 1,2, . . . , K 
with each ek(x)  = jk denoting that x is assigned a label 
jk E A U {M + 1) by classifier ek. 

Given that e$k),  e ik )  are respectively the recognition rate 
and the substitution rate of ek (usually e ik )  + e ik )  < 1 
due to the rejection action). For each ek(x)  = j k ,  when 
jk  E A, one could have uncertain beliefs that the proposition 
Aj, = x E Cj, is true with a degree e$k) and is not true 
with a degree e!'); when jk = M + 1 (i.e., x is rejected by 
ek), one has no ideas about anyone of the M propositions 
A; = x E Ci, Vi E A, which could be regarded as the full 
support of the universal proposition 0. 

We can define a BPA function mk on 0 for evidence 
e(.) = jk  in the following way: 

1) When jk  = M + 1, mk has only a focal element 0 with 
mk(0)  = 1. Since ek says nothing about anyone of the 
M propositions, this is a degenerated case. 

2) When jk  E A, mk has only two focal elements Aj, 
and 4 j ,  = 0 - {Ajk} with mk(Ajk)  = e$') and 
m k ( d j , )  = E!') since ek only gives Aj, and 'Aj, 
the support of degrees dk), eik) respectively. Moreover, 
ek says nothing about any other propositions, so we have 

As a result, with the existence of all the evidences ek(x) ,  
k = 1, , K, we will have K bap's mk, k = 1, , K. 
Our problem is to use the Dempster rule to obtain a combined 
BPA m = ml @ m2 @ . . a @  m ~ t  and to use this new BPA to 
calculate bel(Ai) and bel(7Ai) for V i  E A based on all the K 

m k ( 0 )  = 1 - - e$? 
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evidences. Hereafter, we could form the combined classifier 
by using decision rules derived from these beliefs. 

Before discussing how to compute effectively the combined 
m in the next subsection, we make two preparations. 

First, we discard those evidences ek(z )  = jk with jk = 
M + 1 since it follows from (37) and (39) that a BPA as 
mk(@) = 1 has no influence on the result of the combination. 
After discarding such evidences, assume that there are K' 5 K 
evidences ek(z ) ,  k = 1,. . . , K' with each jk E A. On the K' 
evidences, without losing generality, we could further rule out 
the following three special cases. 

1) K' = 0. It means that all of K classifiers reject the 
input sample z. Obviously, the final decision is simple 
to reject z too. 

2) There is one classifier ek, which has the recognition rate 
= 1. This means that ek itself can classify any input 

sample with absolute correctness. Thus, all the other 
classifications are no longer necessary. 

3) There is one classifier ek, which has the substitution rate 
= 1. This means that ek always makes wrong de- 

cisions, i.e., the classifier is generally not much useful.' 
We will not use such classifiers here. 

As a result, we can concentrate on the general case that 
there are K' evidences ek(z )  = jk ,  k = l , . . . , K '  with 

Second, we show that in the general case previously 
the combination m does exist, i.e., ml,  . . . , mKt are not 
in conflict. To show this, it is sufficient to show k - l  # 
0. It follows from (39) that we only need to show that 
there is a combination X 1  n X 2  n . . .  n XK' # 0 with 
~ ~ ( X ~ ) ~ ~ ( X Z ) . - . ~ K I ( X K / )  # 0. For k = 1 , 2 , . . . , K ' ,  
since 0 < mk(Aj , )  = c i k )  < 1, we know that for at least 
one of m k ( 4 j k )  # 0, mk(@) # 0 should be true. Let 
X1 = A i , ,  and for k = 2, . . . , K', let XI, = Aj, if Aj,  = Aj , ,  

otherwise, let xk be one of 7 A j k ,  0 such that mk(Xk) # 0. 
As a result, we have X I  n X2 n . . . n X K ,  = Ai, # 0 with 
m1(Xl)m2(X2) . . . mKl(XKc) # 0. Therefore, we proved 

0 < €ik) < 1, 0 5 €ik)  < 1. 

k-1 # 0. 

C. An Effective Combination Scheme 
For the computation of m = ml €3 m2 €3 ... €3 mK1, 

the direct use of both (37) and (39) yields the computation 
cost that increases exponentially with M. Usually, it may be 
computationally prohibitive, especially when we have a large 
number of classifiers. However, for our problem, because of 
a special feature that the BPA of each evidence only has two 
focal elements; one is singleton and the other is negation of 
this singleton, we can arrive at a computing method with 
computation cost O(M) .  The method consists of two main 
steps described in the following. 

'Except the special case of two class problem, in this case the complement 
of the decision of such a classifier is always right, then we reach the same 
situation as (2) by exchanging the roles of e!'), e$k) .  However, for a problem 
involving more than two classes, the complement decision of such a classifier 
does not supply much useful information. 

In the first step, we collect the evidences into groups with 
those impacting the same proposition in each group, and then 
combine the evidences in each group respectively. 

, K', suppose 
that among jl, . , j,) there are K1 5 min(M, K') different 
values ji, . . , thus all the K' evidences are collected into 
K1 groups E l ,  Ez,  . , E K ~  with each e(.) = jk being put 
into group Eh if ek(x) = jk = j l .  For each group &, since 
all its evidences ek, (z) = j i , .  . , ek, (x) = j(, impact on the 
same propositions Aj; and l A j ; ,  we can recursively use (37) 
to make a combined BPA mE, from BPA's mkl , . . . , mkg, 
which are provided by ek, , . . . , ek,, i.e., 

For all the evidences ek(x) = j,, k = 1,. 

01 

mE, = m, = mP-l €3 mp. 

It is important to notice that the new BPA m2 has also 
only the same two focal elements as before. Consequently, it 
follows from (40) that m3, . . , m,-l, m E k  could be calculated 
recursively in the same way. 

For, T = 3, . . . , p - 1, p ,  the general recursive formula is 
given by 

1 k, = 
1 - % - l ( A j ; ) m k , ( l A j ; )  - m r - l ( l A j ;  )mk, (Aj ; )  

As a result, we obtain the new combined BPA mEk = mp, 
which again has only the same two focal elements as before. 
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Therefore, after the combination, E k  is equivalent to a new 
classifier that produces an event &(Z) = j$ with a new 
recognition rate = mE,(Aj;) and the substitution rate 
CL') = m ~ , ( i A , ; ) .  

In summary, the first step has converted the K' classifiers 
e l ,  . . . , eKt and their correspondent evidences ek(2) = jk, 
k = 1,'. . , K' into the Kl 5 min(K', M) combined classi- 
fiers El, . . . , E K ~  with their correspondent evidences Ek(Z) = 
jh, k = l , . . . ,  K1 and j {  # j i  # 

The second step is to further combine the BPA's mEk, 
k = 1, . . . , K1 into a final combined BPA 

# jk,. 

m = mE1 @ mE, @ . . @ ~ E K ,  (43) 
and then to calculate the correspondent bel(Ai), bel(1A;) for 
Vi  E A. 

In this case, since any two mEt, mE,, j # i will affect 
different focal elements, the combined mE, @ m ~ ,  will affect 
five focal elements instead of two focal elements as each 
mE,, mE, did. Furthermore, the number of focal elements of 

will increase rapidly as more BPA's are combined. In such 
situation, the direct use of (37) is computationally quite 
expensive. 

mE1 @mEz, mE1 @mEz @ m E ,  7 * ' ' , mEl @ m E z  @' * * @ ~ E K ~  

Fortunately, we have 

{ji,j;,-..,jk,} = A  = {1,2;..,M} 

when K1 = M, i.e., { j i , j h , . . .  , j k , }  is just a permutation 
of {1 ,2 , . . . ,M} . Thus, these Ek, k = 1 , . . . , K 1  are just 
the same as one of the intermediate products in paper [26], 
called simple evidence functions. Moreover, even when K1 < 
M ,  we can append M - K1 functionless evidences &, 
k = K1 + l , . . . ,  M with mE,(O) = 1, mE,(A,;) = 0, 
mEk (TA,;) = 0 for k = K1 + 1, . . . , M and j {  # jb # 1 . . # 
jk1 # &,+, # .. .  # jh. Again, {j{,jh,..-,jh} = A is 
a permutation of {1,2,. . . , M}, and then Ek, k = 1 , .  . . , M 
become the so called simple evidence functions too. On the 
other hand, it is easy to see that for any m,, we have 
m, = m; @ WIE~, k 2 K1 + 1. Thus 

mE1 @ mEz @ * ' * @ mEKl @ mEKl+l @ ' * @ mEM 
= m ~ ,  @ mE, @ . . . @ m ~ ~ ,  = m. 

That is, the appended Ek, k = K1 + l , . . . , M  have no 
influences on the final combined m. So, with these facts, 

we can directly borrow those formulae developed in [26] for 
combining the simple evidence functions to serve our purpose. 

From the formulae (6)-(8) provided in paper [26], by 
noticing that in our case mE,(@) = 1, mE,(Aj;) = 0, 
mE, (1Aj;) = 0 for k = K1 + 1, + . . , M, we obtain after 
some derivation the following formulae for computing the final 
combined beliefs for proposition Aj; , iAj; ,  k = 1,2, . . , M :  

K1 mEh (Aj;) 
A = C  

k=l 1 - mEk (Aj;) 
Ki 

B = n[l - mEk(Aj;)] 
k=l 
K1 

c = mEk ( lAj;)  
k = l  

(44) 

and (46) and (47) (shown at the bottom of the page). 
In the formulae, we have factors (1/(1 - mEk(Aj;))), 

k = 1, . . . , K1, which are not meaningless under the condition 
that mEk(Aj;) < 1, k = 1 , . . . , K 1  . For each k, recall (40) 
that mEe is calculated by mEk = mkl @. . .@ mk, and that in 
our problem mk,(A,;) = E:~') < 1, mkt(lAj;) = dk') < 1, 
i = 1, , p ,  it follows from (39) that mE,(Aj;) < 1. So, we 
see that all the previous equations are always meaningful. 

Now, let's examine the computational complexity of the 
whole procedure. First, the complexity for A, B,  C is respec- 
tively at most of order O ( M ) ,  thus, the computation spent on 
all the equations of (44)-(47) is also of order O(M) .  Second, 
in (40) and (41), all the computations are constant with respect 
to M. So the total computation of the whole procedure is of 
order O ( M ) .  

D. Decision Rules 
Recall that { j { , jb  . . . , j k }  is just a permutation of 

{1,2,. . . , M}, we see that belief values bel(Ai), bel(iAi), 
i = 1 , 2 , . . . ,  M are all given by (44)-(47). With these 

in all the other cases 
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values, we can finally define the combined classifier E by 
the following rules: 

(48) 
if bel(Aj) = maxiCA bel(A;) 

E ( z )  = { kf + 1, otherwise. 

In making the trade-off between the substitution rate and 

E ( z )  = { + 1, otherwise 

where 0 < a 5 1 is a threshold. 
The previous rules didn’t take into consideration the beliefs 

bel(lAi)’s, which also contain useful information for the final 
decision. The following rules are proposed in order to include 
this information. 

the rejection rate, (48) could be modified into (49): 

if bel(Aj) = maXiEA bel(A;) 2 a 

(49) 

1) The first rule 

(50) 
if dj  = maxiEAd, > a 

M + 1, otherwise 

where 0 < a < 1 and d; = bel(Ai) - bel(lA;), 
i = l , . . . ,  M reflects the pure total support by the 
proposition Ai. 

2) The rule tries to pursue the highest recognition rate under 
the constraint of a bounded substitution rate. Equation 
(51) is shown at the bottom of the page. 

3) In (52), which is shown at the bottom of the page, where 
0 < a l ,  a2 5 1 are predefined thresholds. 

VII. APPLICATIONS OF THE COMBINATION APPROACHES 
TO THE RECOGNITION OF TOTALLY UNCONSTRAINED 

HANDWRITTEN NUMERALS 

A. Individual Classifiers and Database 
The four classifiers proposed in [l] (where they are called 

four experts) are used here to show the significant benefits 
obtained by using the combination approaches proposed in 
the earlier sections of this paper. As in [l], the four classifiers 
are named expert#l, expert#2, expert#3, and expert#4, and are 
denoted by el, e2, e3, and e4. The first three are based on the 
features extracted from the skeletons, while e4 is based on the 
features derived from contours. See [l], for more details. 

The data used here come from the U.S. Zipcode database 
of the Concordia OCR research team. This database contains 
17 140 run-length coded binarized digits. The samples were 
originally collected from the dead letter envelopes by the 
U.S. Postal Services at different locations. After some pre- 
processings (see [l] for details), 4000 samples (400 x 10 digits, 
i.e., each of the 10 numerals has 400 samples) were used for 

TABLE I 
THE RESULTS OF FOUR EXPERTS 

Recogn. Substi. Reject. Reliab. 
el 86.05% 2.25% 11.70% 97.45% 
e2 93.10% 2.95% 3.95% 96.98% 
e3 92.95% 2.15% 4.90% 97.74% 
e4 93.90% 1.60% 4.50% 98.32% 

training the four experts, and then, a new set of 2000 samples 
(200 x 10 digits) was used for testing them. The following 
results are obtained from the testing set. 

In Table I, Recogn., Substi., Reject., and Reliab. are abbre- 
viations of recognition, substitution, rejection and reliability 
rates respectively. The reliability rate is defined by 

Recognit ion 
100% - Rejection 

Reliability = (53) 

In addition, if e l  assigns a subset of labels to an input, the 
input is regarded as being rejected in Table I. Moreover, in 
the following, this nonunique recognition of el is also always 
regarded as the rejection except for some cases specifically 
indicated. 

In the following three subsections, we will show the results 
of experiments by the combination approaches proposed in 
Sections IV-VI, then in the last subsection, we will make 
some comparisons with the three approaches. Among el, 
e2, e3, e4, only e3 could supply the output information 
at the measurement level, hence we could only consider 
the combination problem of Type 1. Thus, we have not 
conducted any experiments by using the averaged Bayes 
classifier proposed in Section 111. 

B. Experiments by the Approach Based on 
DempsterShafer Formalism 

Extensive experiments have been carried out to test the 
performance of the approach proposed in Section VI. These 
experiments could be divided into two groups. In the first 
group, we use the recognition, substitution and rejection rates 
provided in Table I as prior knowledge, and use the approach 
for combining the results of the four experts on all the 2000 
samples of the test set given in Table I. But in the second 
group, we divide the 2000 samples into two sets. The first 1000 
samples are used to test e;, i = 1,2 ,3 ,4  in order to obtain the 
estimations of the recognition, substitution and rejection rates, 
i.e., these 1000 samples are used for estimating these rates. 
Then, the four classifiers are tested by the remaining 1000 
samples and combined by the approach given in Section VI 
using the rates learned from the first 1000 samples. In each 
group, a number of experiments have been conducted using 

if bel(Aj) = maxiEA{bel(A;)/Vi, bel(1A;) 5 a} 
E ( z )  = { kf + 1, otherwise. 

if bel(Aj) = maxiEA{bel(Ai)/vz, bel(A;) 2 a1, bel(1Ai) 5 az} 
E ( z )  = { k + 1, otherwise. 
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TABLE I1 
RESULTS OF TRADE-OFF AS INCREASES 

a Recogn. Substi. Reject. Reliab. 
0.00 98.95% 0.85% 0.20% 99.15% 
0.90 97.60% 0.30% 2.10% 99.69% 

TABLE IV 
RESULTS OF INDIVIDUAL CLASSIFIERS ON THE FIRST 1000 SAMPLES 

LY Recogn. Substi. Reject. Reliab. 
el  87.0% 1.5% 11.5% 98.31% 
e2 94.4% 2.4% 3.2% 97.52% 

0.95 95.85% 0.05% 4.10% 99.95% ea 95.0% 1.2% 3.8% 99.79% 
e4 94.8% 0.9% 4.3% 99.06% 0.99 93.95% 0.00% 6.05% 100.0% 

eq: 93.90% 1.60% 4.50% 98.32% 
TABLE V 

RESULTS OF INDIVIDUAL CLASSIFIERS ON THE LAST 1000 SAMPLES TABLE 111 
RESULTS OF TRADE-OFF AS a INCREASES ACCORDING TO RULE (52) a Recogn. Substi. Reject. Reliab. 

o Recogn. Substi. Reject. Reliab. e l  85.1% 3.0% 11.9% 96.59% 
0.00 98.80% 0.80% 0.40% 99.20% e2 91.8% 3.5% 4.7% 96.33% 
0.90 96.45% 0.25% 3.30% 99.74% es 90.9% 3.1% 6.0% 96.70% 
0.91 96.15% 0.10% 3.75% 99.90% 
0.92 96.15% 0.10% 3.75% 99.90% 
0.93 95.85% 0.05% 4.10% 99.95% 
0.95 95.45% 0.05% 4.50% 99.95% 
0.99 91.80% 0.00% 8.20% 100.00% 
e4: 93.90% 1.60% 4.50% 98.32% 

the different decision rules given by (48H52) with different 
values of thresholds to provide different outcomes to allow 
trade-offs between the substitution and rejection rates. 

Experiments of the First Group 
1) Results from decision rule (48): The results of applying 

(48) to process the combined beliefs given by (44)-(47) 
are 

Recogn. : 98.95% 
Reject. : 0.20%, 

Substi. : 0.85% 
Relab. : 99.15%. 

2) Results from decision rule (49): By using (49) to replace 
(48), we can determine the trade-offs between high 
recognition rate and high reliability rate. The following 
table shows some profiles about the trade-offs as Q 

increases. 
In the Table 11, the last row is the performance of 

e4 alone. Refer to Table I, we see that e4 gives the 
best performance among the four individual classifiers. 
Here and later, we list this performance again to show 
the improvements obtained by the combined classifier 
E. As shown in the table, the combined E is absolutely 
superior to e4 (and thus to all other individual classifiers) 
in all aspects. The most interesting thing is that E 
could keep a high reliability and a high recognition 
simultaneously. 

3) Results from decision rule (52). This rule produced the 
outcomes similar to those by (51), the difference is 
that it uses the threshold Q to control the pure support 
bel(A,) - bel(TA,) for adjusting the trade-offs between 
the recognition rate and the reliability rate. Table I11 is 
the counterpart of Table 11. 

Experiments with the Second Group 
As indicated earlier in this section, the experiments of 

this group use the first 1000 samples as training set to 
obtain the initial recognition, substitution and rejection rates, 

e4 93.0% 2.3% 4.7% 97.59% 

TABLE VI 
OUTCOME OF E BY RULE (48) ON THE LAST 1000 SAMPLES 

i 1 0  0 I 2 3 4 5 6 7 8 9 rej. 
0 : 9 8 0  0 1 0  0 0 0 1 0  0 
1 : 0 1 0 0 0  0 0 0 0 0 0 0 0 
2: 0 0 99 0 0 0 0 0 1 0  0 

4: 0 0 0 0 97 0 0 0 0 1 1  
5 : 0 0 0 0 0 1 0 0 0 0 0 0 0  

3: 0 0 1 9 8  0 0 0 0 0 0 0 

6: 1 0  0 0 0 0 99 0 0 0 0 
7: 0 0 1 0 1 0 0 98 0 0 0 
8 : 0 0 0 0 0 0 0 0 1 0 0 0 0  

Recogn.: 98.6% Substi.: 1.2% Reject.: 0.2%, Relab.: 98.8% 
9: 0 0 0 0 0 0 0 1 1  97 1 

and then use the last 1000 samples as the testing set to 
check the performance. Thus for convenience of comparing 
the combined classifier with each individual classifier, the 
following Tables IV and V are given to show the performances 
of individual classifiers on the first 1000 samples and the last 
1000 samples respectively. 

By comparing Tables IV and V, one could see that the 
performances of e;, i = 1 , 2 , 3 , 4  on the first 1000 samples are 
better than those on the last 1000 samples, i.e., we selected the 
difficult half of the original data set for testing our combination 
approach. In the following, we use the rates given in Table IV 
as the prior knowledge for the combination test on the last 
1000 samples. 

1) Results from decision rule (48): The results of applying 
(48) to process the combined beliefs given by (44)-(48) 
are shown in the following confusion matrix. 

2) Results from decision rule (49): Table VI1 lists the results 
by using (49) on the last 1000 samples for different 
values of a. Table VI11 also clearly shows the significant 
improvements of E over e4. 

As an example, we also present the confusion matrix 
in Table VI11 of the combined E with Q = 0.96 as 
follows to give some classification details. 

3) Results from decision rule (49): Table IX corresponds 
to Table IV. 

C. Experiments by the Approach Based on Bayesian Formalism 
Several experiments were conducted to verify the approach 
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TABLE VI1 
RESULTS OF TRADE-OFFS AS 0 INCREASES, USING THE LAST 1000 SAMPLES 

a Recogn. Substi. Reject. Reliab. 
0.00 98.6% 1.2% 0.2% 98.80% 
0.90 97.0% 0.4% 2.6% 99.59% 
0.92 97.0% 0.4% 2.6% 99.59% 
0.94 96.9% 0.4% 2.7% 99.59% 
0.96 95.0% 0.0% 5.0% 100.0% 

e4: 93.0% 2.3% 4.7% 97.59% 

TABLE VI11 
OUTCOME OF E BY RULE (49) WITH C y  = 0.96 USING THE LAST 1000 SAMPLES 

i ( o  0 1 2 3 4 5 6 7 8 9 rej. 
0 : 9 4 0  0 0 0 0 0 0 0 0 6 
1 : 0 9 9 0  0 0 0 0 0 0 0 1 
2: 0 0 97 0 0 0 0 0 0 0 3 
3: 0 0 0 92 0 0 0 0 0 0 8 
4: 0 0 0 0 92 0 0 0 0 0 8 
5: 0 0 0 0 0 97 0 0 0 0 3 
6: 0 0 0 0 0 0 97 0 0 0 3 
7: 0 0 0 0 0 0 0 93 0 0 7 
8: 0 0 0 0 0 0 0 0 98 0 2 
9: 0 0 0 0 0 0 0 0 0 91 9 

Recogn.: 95.0% 11 Substi.: 0.0% Reject.: 5.0%, Relab.: 100.0% 

proposed in Section V, They consist of three groups. In the 
first group, we used the confusion matrices of ei,  i = 1,2 ,3 ,4  
on all the 2000 testing samples as the prior knowledge, and 
then combined the results of the four classifiers on the same 
2000 samples. 

1) Experiments with the first group: The following table 
shows the results of the combinations obtained from (34) 
and (35) for a specified range of a values. Again, from 
the list, we see that the combined E is significantly better 
than any of the individual classifiers. 

2) Experiments with the second group: In the second group, 
we use the confusion matrices of ei, i = 1 , 2 , 3 , 4  on 
the first 1000 samples as the prior knowledge, and then 
combine the results of the four classifiers on the last 
1000 samples; i.e., the first 1000 samples constituted the 
learning set and the last 1000 samples the testing set. 
Table XI is the counterpart of Table X. 
In this table, the recognition rate of the combined E is 
lower than that of e4, and it seems that the combined 
result is even worse than the individual classifier e4. 

However, the recognition rate is not the only index for 
evaluating the performance of classification. In Table 
XI, the substitution rate is significantly reduced and the 
reliability is significantly increased. Thus, from this point 
of view, we see that the performance is still improved 
considerably. 

Furthermore, we can also observe that as cy increases, 
the combined recognition rate and substitution rate de- 
crease while the reliability increases. Thus, there is a 
trade-off when we choose the value of a. In practice, 
we may have two ways to do this. One is to previously 
set an upper bound for the substitution rate, we adjust 
cy such that the resulting substitution rate is below the 

TABLE IX 
RESULTS OF TRADE-OFFS AS a INCREASES WITH 

RULE (49) ON THE LAST 1000 SAMPLES 

a Recogn. Substi. Reject. Reliab. 
0.00 98.6% 1.1% 0.3% 98.80% 
0.90 96.1% 0.3% 3.6% 99.69% 
0.91 96.1% 0.3% 3.6% 99.69% 
0.92 95.7% 0.3% 4.0% 99.69% 
0.93 95.5% 0.3% 4.2% 99.69% 
0.94 95.0% 0.0% 5.0% 100.0% 
e4: 93.0% 2.3% 4.7% 97.59% 

TABLE X 
RESULTS OF TRADE-OFF AS ff INCREASES 

a Recogn. Substi. Reject. Reliab. 
0.00000 99.20% 0.80% 0.00% 99.20% 
0.9oooO 98.85% 0.50% 0.65% 99.50% 
0.99000 98.35% 0.20% 1.45% 99.80% 
0.99900 97.75% 0.15% 2.10% 99.85% 
0.99990 96.35% 0.05 3.6% 99.95% 
0.99999 94.05% 0.00% 5.95% 100.00% 
e4 : 93.90% 1.60% 4.50% 98.32% 

TABLE XI 
 RESULT^ OF TRADE-OFFS AS a INCREASES, ON THE LAST 1000 SAMPLES 

a Recogn. Substi. Reject. Reliab. 
O.Ooo00 92.3% 0.9% 6.8% 99.03% 
0.90000 92.2% 0.7% 7.1% 99.25% 
0.99000 91.8% 0.6% 7.6% 99.35% 
0.99900 91.7% 0.4% 7.9% 99.57% 
0.99990 91.5% 0.3% 8.2% 99.67% 
0.99999 91.0% 0.3% 8.7% 99.67% 
e4 : 93.0% 2.3% 4.7% 97.59% 

bound and the recognition rate is as high as possible. The 
other way is to adjust a such that the substitution rate is 
reduced as much as possible until it can’t significantly 
reduce any more. 

The similar phenomena can also be observed from 
the results of Tables XII-XVI. The similar trade-offs 
also apply. In fact, this kind of trade-off applies also 
to the results given in the previous Section VIZ-B and 
Section VII-B. 

3) Experiments with the third group: In the third group, 
each time we leave out 10 samples (one for each digit) 
as testing set and use the 1990 samples as the training set 
to learn from the confusion matrices of e;, i = 1,2 ,3 ,4 ,  
the same process is repeated 200 times until each of the 
2000 samples has been taken as testing sample once. 

Table XI1 is the counterpart of Table X. It shows the 
advantage of the combined E over individual classifiers. 

D. Experiments by the Approach Based on Voting Principle 
The experiments in this subsection consist of two groups. 

One includes the results obtained from a testing set of all the 
2000 samples. The other includes the results on a testing set of 
the last lo00 samples. In fact, the combination approach based 
on voting principle does not need the learning procedure for 
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TABLE XI1 
RESULTS OF TRADE-OFFS AS 0 INCREASES 

a Recogn. Substi. Reject. Reliab. 
0.00000 96.55% 1.45% 2.00% 98.52% 
0.90000 96.25% 1.10% 2.65% 98.87% 
0.99000 95.80% 0.90% 3.30% 99.07% 
0.99900 0.99900 0.70% 3.95% 99.27% 
0.99990 94.15% 0.60% 5.25% 99.37% 
0.99999 92.30% 0.60% 7.10% 99.35% 
e4 : 93.90% 1.60% 4.50% 98.32% 

TABLE XI11 
THE RESULTS OF VOTING RULE (18) FOR DIFFERENT THRESHOLDS 

~~ 

Recog. Subst. Reject. Reliab. 
0.0 5 a 5 0.25 98.90% 0.90% 0.20% 99.10% 
0.25 < a 5 0.50 97.95% 0.35% 1.70% 99.64% 
0.50 < a 5 0.75 92.90% 0.00% 7.10% 100.00% 
e4 : 93.90% 1.60% 4.50% 98.32% 

TABLE XIV 
RESULTS OF VOTING RULE (19) FOR DIFFERENT THRESHOLDS . ,  

Recog. Subst. Reject. Reliab. 
a = 0.0 98.90% 0.90% 0.20% 99.10% 
0.0 5 a 5 0.25 98.60% 0.50% 0.90% 99.50% 
0.25 < a 5 0.50 95.45% 0.05% 4.50% 99.95% 
0.50 < a 5 0.75 88.60% 0.00% 11.4% 100.0% 
e4 : 93.90% 1.60% 4.50% 98.32% 

obtaining prior knowledge. The second group is provided here 
only to facilitate a comparison with previous investigations 
described in Section VII-D. 

In both groups, the two general voting rules represented by 
(18) and (19) are used for a number of threshold values. 

Experiments with the First Group (on the 2000 Samples) 
Results obtained from voting rule (18): Table XI11 gives 
the results produced by (18) with different values of 
a. It follows from this table that the combined E by 
voting rule could also improve individual classifiers 
significantly. 
Note that 0.0 5 a < 0.25 means that any value between 
[O.O, 0.251 produces the same result because the votes 
are digits among {0,1,2,3,4}. 
Results obtained fTom voting rule (20). 

Experiments with the Second Group (on the Last 
IO00 Samples) 

1) Results obtained from voting rule (19): In the following, 
Tables XV and XVI correspond to Tables XI11 and XIV 
respectively, the difference is that all the results here are 
obtained from the last 1000 samples. 

2) Results obtained from voting rule (20): As an example, 
the confusion matrix of the combined E with 0.25 < 
(Y 5 0.50 is given in Table XVI. 

Remarks: In all the experiments described Section VII-D, 
the nonunique assignment e1(x)  = J is treated as a rejection 
if J has more than one element. It is worthwhile to point out 

TABLE XV 
RESULTS OF VOTING RULE (IS), ON THE LAST 1000 SAMPLES 

Recog. Subst. Reject. Reliab. 
0.0 5 a 5 0.25 98.6% 1.2% 0.2% 98.80% 
0.25 < a 5 0.50 97.6% 0.5% 1.9% 99.49% 
0.50 < a 5 0.75 91.7% 0.0% 8.3% 100.00% 
e4 : 93.0% 2.3% 4.7% 97.59% 

TABLE XVI 
RESULTS OF VOTING RULE (20), USING THE LAST 1000 SAMPLES 

Recog. Subst. Reject. Reliab. 
a = 0.0 98.6% 1.2% 0.2% 98.80% 
0.0 5 a 5 0.25 98.3% 0.7% 1.0% 99.29% 
0.25 < CY 5 0.50 94.3% 0.0% 5.7% 100.00% 
0.50 < a 5 0.75 86.1% 0.0% 13.9% 100.00% 
e4 : 93.0% 2.3% 4.7% 97.59% 

43 1 

TABLE XVII 
OUTCOME OF E BY RULE (20) WITH 

0.25 < a 5 0.50, ON THE LAST SAMPLES 

i J 0  0 1 2 3 4 5 6 7 8 9 rej. 
0 : 9 4 0  0 0 0 0 0 0 0 0 6 
1 : 0 9 9 0  0 0 0 0 0 0 0 1 
2 : o o  9 5 0  0 0 0 0 0 0 5 
3: 0 0 0 91 0 0 0 0 0 0 9 
4 0 0 0 0 9 2 0  0 0 0 0 8 
5: 0 0 0 0 0 95 0 0 0 0 5 
6 : 0 0 0 0 0 0 9 7 0 0 0 3  
7 : 0 0 0 0 0 0 0 9 3 0 0 7  
8 : 0 0  0 0 0 0 0 0 9 8 0  2 
9 : 0 0 0 0 0 0 0 0 0 8 9 1 1  
Recogn.: 9.43% 11 Substi.: 0.0% Reject.: 5.7%, Relab.: 100.0% 

that if (22) is used (i.e., as treated in [l]), then the results 
could improve somewhat due to the voting contribution from 
e l ( z )  = J .  

For example, on the 2000 samples, we could have 

Recogn. Substi. Reject. Reliab. 
a = 0.51 93.05% 0.0% 6.95% 100.0% 

which is better than its counterpart in Table XIII, i.e., 

Recogn. Substi. Reject. Reliab. 
0.50 < a  5 0.75 92.9% 0.0% 7.1% 100.0%. 

In other words, e l ( x )  = J does give some useful information 
for combination. In Section VIII, we will discuss how to 
generalize our combination approaches so that the case of 
e l ( x )  = J could be included. 

E. Comparison of the Three Approaches: A Case Study 
The three previous subsections have shown that each of 

the three combination approaches improves the performance 
of the individual classifiers significantly. In this subsection, 
we further compare the three approaches with each other and 
investigate the characteristics of each approach. 

Through reorganizing some results of the previous subsec- 
tion, we may get four ordered lists Tables XVIII-XXIV (will 
be given in the sequel) for comparing the performance of the 
three approaches. 
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TABLE XVIII 
THE MAXIMUM RECOGNITION RATES: FROM THE 2000 SAMPLE S E T  

approach: B D s  Vd V Dsd Bi 
recognmax99.2% >98.95% 98.9% 5 8 . 9 %  >98.8% >96.55% 

TABLE XIX 
THE MAXIMUM RECOGNITION RATES: FROM THE LAST SAMPLES 

aooroach DS DSA VA V P 
reWkYh" : 98.6% = 98.6% = 98.6% = 98.6% = 92.3% 

TABLE XX 
THE BEST RECOGNITION RATES UNDER THE CONSTRAINT THAT THEIR 

CORRESPONDENT RELIABILITY RATES = 100%: FROM THE 2000 SAMPLE SET 
~~ 

approach B DS v Dsd v d  

recOgn,ax :94.05% >93.95% >92.9% > 91.9% > 88.6 

TABLE XXI 
THE BEST RECOGNITION RATES UNDER THE CONSTRAINT THAT THEIR 

CORRESPONDENT RELIABILITY RATES = 100%: FROM THE LAST SAMPLES 

approach DS Dsd v d  V 
remgnmax : 95.0% = 95.0% > 94.3% > 91.7% 

In all the tables, recogn,,, represents the maximum recog- 
nition rate achieved by an approach, i.e., the recognition rate of 
the approach at threshold value cy = 0. In the last three tables, 
the best recognition rate of an approach is the highest one 
among a given subset of all the recognition rates obtained from 
the experiments of the previous three subsections, with the 
correspondent reliability rate of each one in the subset being 
not lower than the given value (e.g., 99% in Table XXIV and 
XXV). For example, in Table 11, under the constraint that the 
reliability is not lower than 0.999, we have the best recognition 
rate 95.85%. Thus in Table XXI, under item DS the rate is 
95.85%. 

The notation B represents the approach based on Bayesian 
formalism in Section V with decision rule given by (34) and 
(35). DS denotes the approach based on Dempster-Shafer 
formalism in Section VI with decision rule (48) and (49). DSd 
is a version of DS with the decision rule replaced by (50). V 
denotes the approach based on voting principle in Section IV 
with decision rule (21). V d  is a version of V with decision 
rule replaced by (19). 

In part (a) of all the tables, the training method of B, DS, 
DSd is the same as that in the first group of Sections VII-B and 
VII-C, i.e., the 2000 samples are not only used to learn from 
the confusion matrices or the rates of individual classifiers, 
but also to test the combination approaches. Whereas in part 
(b) of the tables, the training method is the same as that in 
the second group of in Sections VII-B and VII-C, i.e., the first 
1000 samples are used for learning and the last 1000 samples 
for testing. In addition, in Tables XVIII and XXIV, we use Bl 
to represent a procedure of B with the training given in the 
third group of Section VII, i.e., in each case, 1990 samples 
are used for learning, and the other 10 samples (one per digit) 
for testing; the process is repeated 200 times until each of the 
2000 samples has been tested once. 

From Tables XXI-XXV, we can summarize the following 

TABLE XXII 
THE BEST RECOGNITION RATES UNDER THE CONSTRAINT THAT THEIR 

CORRESPONDENT RELIABILITY RATES 2 99.9%: FROM THE 2000 SAMPLE SET 

aDoroach B DSA DS VA V 
recOgnmax :96.35% >96.15% >95.85% >95.45% > 92.9% 

TABLE XXIII 
THE BEST RECOGNITION RATES UNDER THE CONSTRAINT THAT THEIR 

CORRESPONDENT RELIABILITY RATES 2 99.9%: FROM THE LAST lo00 SAMPLES 
~ 

annroach D S  DSA VA V _ _  _ _  -rr - - - - ~ -  

recognmax : 95.0% = 95.0% > 94.3% > 91.7% 

TABLE XXIV 
THE BEST RECOGNITION RATES UNDER THE CONSTRAINT THAT THEIR 

CORRESPONDENT RELIABILITY RATES 2 99.0%: FROM THE 2000 SAMPLE S E T  

approach B DS v d  V Dsd Bf 
recOgnmax : 99.2% > 98.95% >98.9% = 98.9% > 98.8% > 95.8% 

observations on the characteristics of each approach. 
1) If the confusion matrices of individual classifiers are well 

learned, then the performance of the approach based on 
Bayesian formalism is the best, e.g., in part (a) of all 
the four tables, B is ranked at the top. However, the 
approach is unstable. The rough learning will degenerate 
the performance of the approach rapidly, e.g., in part (b) 
of all the four tables, B is either ranked the lowest or 
simply not ranked because it could not reach the required 
reliability. 

2) The approach based on Dempster-Shafer formalism is 
quite robust. Inaccurate learning does not influence the 
performance substantially. For example, from Tables 
XVIII and XIX, the recognition rates of DS, DSd 
only drop a little, while from Tables XX to XXI, their 
recognition rates even go up. In addition, we could also 
see that the performances of DS, DSd are not much 
different, which means that the decision rules given by 
(48)-(50) work equally well. 

3) Both the approach based on D-S formalism and the 
approach based on voting principle behave well. On the 
average, the approach based D-S formalism is better 
than the approach based on voting principle, especially 
when high reliability is required (see Tables XX-XXIII). 

4) For the approach based on the voting principle, the 
version V d  (i.e., using decision rule (19)) performs 
better than the version V (i.e., using decision rule (18)), 
especially when high reliability is desired (see Tables 
XX-XXIII). In addition, it also follows from Table XI11 
that (18) is more flexible than its special case (16). 
For example, (16), which was originally used in [l], 
could only give the recognition rate of 92.90% with 0% 
substitution. However, (18) could also give other two 
choices as shown in Table XIII. 

Before closing this section, we must emphasize that the 
previous observations are just obtained from a case study on 
the 2000 sample data set presently available. They should 
be tested with more data sets. Strictly speaking, the experi- 
mentally obtained Recogn., Substi., Reject. and Reliab. rates 
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TABLE XXV 
THE BEST RECOGNITTON UTES UNDER THE CONSTRAINT THAT THEIR 

CORRESPONDENT REL~A~ILITV UTES 1 99.0%: FROM 'WE LAST lo00 SAMPLES 

recognmax : 98.3% > 97.60% > 95.0% = 95.0% > 92.3% 
approach v d  V D s  Dsd B 

should all be regarded as random variables, and thus the 
comparisons of their values should be analyzed statistically; 
e.g., in Table XVIII, 99.2% > 98.95% should be tested under 
a given significance level. This more rigorous analysis is 
certainly a direction that deserves further pursuit in future. 
Here, we unfortunately do not have enough information to 
do so. First, in our experiments, for each algorithm and 
under a fixed a, we have only one sample for random 
variables Recogn., Substi., Reject. and Reliab., e.g., as given 
in Table XVIII, for a = 0, we only have one sample 
value 99.2% and 98.95 for random variables Recogn.(B) 
and Recogn.(DS) respectively. To check statistically either 
always Recogn.(B) > Recogn.(DS) or on the average 
E[Recogn.(B)] > E[Recogn.(DS)], we at least need enough 
number samples of Recogn.(B), Recogn.(DS) for forming 
some test statistics to conduct statistical analysis. Second, even 
when there are some ways to increase the number of such 
samples,* we also need to known the population distributions 
of Recogn.(B), Recogn.(DS). We need some further studies 
as well as evidences before we can appropriately make as- 
sumptions on the distributions of Recog., Substi., Reject. and 
Reliab. for every algorithm. Third, even provided that we are 
given the assumption that all the distributions are Gaussian, 
and provided that we modeled the problem as, say, a simple 
Hypothesis testing: Ho : E[Recogn.(B)] = E[Recogn.(DS)] 
and H I  : E[Recogn.(B)] # E[Recogn.(DS)], we still need to 
known whether it is appropriate to make the test under the con- 
dition with known Var[Recogn.(B)] = Var[Recogn.(DS)] or 
unknown Var[Recogn.(B)] # Var[Recogn.(DS)]. So, we see 
that the aforementioned interesting issues deserve investigation 
with more data sets and experiments in the future. 

VIII. CONCLUSION 
The combination of several independent classifiers is a gen- 

eral problem that occurs in various application areas of pattern 
recognition. According to the levels of output information by 
various classifiers, the problems of combining multiclassifiers 
can be divided into three types. Type 3 covers the individual 
classifiers that can output measurement values based on which 
the decision is made. The averaged Bayes classifier and its 
version are proposed in Section I11 to solve the problem of 
this type. This approach is suitable for combining individual 
classifiers such as Bayesian classifier, k-NN classifier and 
various distance classifiers. Type 2 covers the individual 
classifiers that can output an ordered list of possible decisions 
(i.e., a number of labels), the method proposed in [4] aims 
at tackling the problems of this type. Type 1 covers the 
individual classifiers that output one label (one decision), i.e., 

2For example, try to find other data sets or just divide the present 2000 
character samples into many subsets (say, 50 in one subset). In the latter case, 
from each subset, one can obtain one sample for Remgn.(B), Recogn.(DS), 
and thus in total we can have 40 samples for Remgn.(B), Recogn.(DS). 

any classifiers including those discussed in Type 2 and Type 3. 
Three approaches have been proposed in this paper to solve the 
problems of Type 1. One is based on the voting principle that 
is commonly used in social life. The other two are developed 
in accordance with Bayesian formalism and Dempster-Shafer 
formalism-two well known formalisms used in evidence 
gathering and uncertainty reasoning. 

A simple approach based on the voting principle is the 
majority voting approach that was originally proposed in [ 11, 
[2], [5]. In our paper, two new versions of the voting principle 
are also presented. They are proved better than the simple 
majority voting approach used in the experiments presented 
in Section VII. Moreover, a general formula is given; it 
summarizes all those versions that are based on the voting 
principle. Although simple and useful, these approaches can 
not consider the classification error of each event ek(z) = jk. 
To fill this gap, other two approaches are developed. They 
regard each event ek(x) = j k  as an evidence with uncertain 
supports to the possible decisions (i.e., labels). One approach 
uses the confusion matrix of each individual classifier as 
the prior knowledge to manage this uncertainty. It gathers 
the evidences e k ( 2 )  = jk, k = 1, , K  derived from 
Bayes formula. The other approach uses the recognition rate 
and substitution rate of each individual classifier as prior 
knowledge to manage the uncertainty. Dempster's combination 
formula is used for gathering the evidences. 

The experimental results on the recognition of totally un- 
constrained handwritten numerals have shown that the per- 
formances of individual classifiers could be improved sig- 
nificantly by the combination approaches proposed in this 
paper except the one in Section 111, which could not be tested 
because it was not suitable for our application problem. The 
experiments have also shown the features of each approach and 
the details are given in Section VII-E. Based on our case study 
in Section VII-E, roughly speaking, the first recommendation 
would be the approach based on D-S formalism since it can 
obtain high recognition and reliability rates simultaneously and 
robustly. However, this recommendation does not mean that 
we should abandon the other approaches, which actually work 
also pretty well. Here, we should emphasize that the observa- 
tions here are obtained from our experiments on recognition of 
unconstrained handwritten numerals. They may be true or may 
not be totally true when generalized to the problems or even 
the same problem when other data bases are used. However, 
the combining approaches studied in this paper are general 
and not constrained to any specific application problem, we 
believe that they will improve the performances of individual 
classifiers in general. 

We argue that the research addressed to the problem of 
combining multiclassifiers may provide new insight to the 
literature of statistical pattern recognition. Previously, the 
main efforts focus on the design of one good classifier and 
the reduction of a high-dimensional feature vector so that a 
desired classification rate can be attained. Now, we can also 
change our focus. Instead of designing one high performance 
classifier (the job is usually extremely difficult), we can build 
a number of classifiers that use the low dimension feature 
vectors of different and complementary types. Each classifier 
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itself may not have a superb performance. However the 
appropriate combination of these individual classifiers may 
produce a performance of high quality. There are also many 
new problems to be studied, we list some of them here: 

All the approaches described in this paper are based on 
the assumption that individual classifiers are independent 
of each other. How to generalize these approaches or de- 
velop a new approach to combine dependent classifiers? 
How many classifiers are appropriate for a special prob- 
lem with a given number of feature variables? And how 
to distribute these variables to each classifier? 
In this paper, the recognition rate and the substitution 
rate of each individual classifier were fixed after their 
training phase. It is well-known that these rates can be 
changed by applying different rejection thresholds to the 
individual classifiers. How to adjust these thresholds in 
the combination phase such that the best combination 
can be achieved? 
Is it possible to develop a method to analyze the recogni- 
tion rate of the combined classifier theoretically instead 
of experimentally? 

Even concentrated only on the approaches proposed in 
this paper, there are also open problems to be tackled. For 
example, on testing -the approach proposed in Section I11 
and using (3 1) directly to solve the combination problem 
of Type 3. In addition, at the end of Section VII-D, we 
remarked that the use of the nonunique assignment el(z) = 
J = {jl, j 2 , .  . . , j p }  c A by (22) can further improve the 
performance. The approaches proposed in Sections V and VI 
can be extended to cover this case. Here, we briefly introduce 
the key points of such extensions: 

1) For the approach given in Section V, the extension 
needs two modifications. First, use (22) to let the event 
ek(x) = J distribute its score to learn from the confusion 
matrix of classifier e k .  Second, when ek classifies an 
unknown sample x with ek(z) = {j1,j2,...,jp}, then 
the following formula is used to replace (27): 

For the approach given in Section VI, the extension can 
be made by directly using (40) or (39) for solving the 
combined BPA’s and bel’s. However, the computational 
complexity will increase exponentially with M. If there 
is only one classifier that has an output of nonunique 
assignments, as in the case in [l] and Section VI1 of 
this paper, we can borrow directly the implementation 
scheme of Dempster rule for hierarchical evidence re- 
cently proposed by Schafer et al. [28]. Furthermore, the 
scheme can also be used directly for our purpose to some 
special cases where several classifiers have the output of 
nonunique assignments. In these cases, for any two of 
such classifiers, say ek(x) = J, el(x).= I, we have the 
truth on either I n  J = 0 or on one of I J, J 5 I. 

It is not difficult to see that these cases correspond to 
some hierarchical structures. 
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