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Several additional features of the two live methods are worth mentioning. As was 
st ressed earlier, design of border-detect ion cost functions often requires substantial expe- 
rience and cxperirnentation. To facilitate the met hod's use by non-experts, an automated 
approach has been developed that determines optimal border features from cxdmples of 
the correct borders. Another automated step is available to specify optimal parameters 
of cost trarisforms to create a powerful cost function (Section 6.2.4). Consequently, the 
resultant optimal cost function is specifically designed for a particular application and 
car1 be conveniently obtained by presenting a snirzll number of example border segmerlts 
during the method's training stage. Additionally, the niethod can easily bc applied to 
three-dimensional image data by incorporation of a cost element coinparing the border 
positions in adjacent image slices. 

6.2.6 Hough transforms 

If an image consists of objects with known shape and size, segmentation can be viewed 
as a problem of finding this object within a.n irnage. Typical tasks are to locate circukr 
pads in printed circuit boards, or to  find objects of specific shapes in aerial or satellite 
data, etc. Oiie of many possible ways to solve these problems is to move a mask with 
an appropriate shape and size along the image and look for correlation between the 
image and the mask, as discussed in Section 6.4. Unfortunately, the specified mask 
often differs too much from the object's representation in the processed data, because 
of shape distortions, rotation, zoom, etc. One very effective method that can solve this 
problem is the Hough transform, which can even be used successfully in segmentation 
of overlapping or semi-occl~ided objects. 

To introduce the main concepts of the Hough transform, coiisider an example of circle 
detection. Let the task be to detect a dark circle of a known radius r in an image with a 
uniform bright backgrourid (shown in Figure 6.32a). The method starts with a search for 
dark image pixels; after such a pixel is found, a locus of potential center points of the 
circle associated with it can be determined. Such a locus of potential center points fornis 
a circle with the radius r as demonstrated in Figlire 6.3210. If the loci of potential circle 
centers are constructed for all dark pixels identified in the original image, thc frequency 
can be determined with which each pixel of the irnage space occurs as an element of the 
circle-center loci. As seen from Figure 6.32c, the true center of the circle being sought is 
represented by the pixel with thc highest frequency of occurrence in the circle-center loci. 
Thus, the center of the searched circle is determined. With the kriown circle radius, the 
image segmentation is con~plete. Figure 6.32d presents intuitive proof that the Hough 
transform can be successfully applied to images with incomplete information about the 
searched objects (a circle ill our case) and/or in the presence of additional structures 
and noise. Thc remainder of this section describes the Hough transform rnethodology in 
detail. 

The original Hough transform was designed to detect straight lines and curves [Hough, 
19621, and this original method can be used if analytic equations of object borderlines 
are known-no prior knowledge of region positioii is necessary. A big advantage of this 
approach is robustness of segmentation results; that is, segmentation is not too sensitive 
to imperfect data or noise. Nevertlicless, it is often iinpossible to get analytic expressions 
describing borders. Later, a generalized Hough transform will be described that can find 
objects even if an analytic expression of the border is not known. 
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Figure 6.32: Hough transform--xamplc of circle detection. (a) Original image of a dark circle 
(known radius T )  on a bright background. (b) For each dark pixel, a potential circle-center 
locus is defined by a circle with rdius r and center at that pixel. (c) Thc frequency with which 
image pixels occur in the circlecenter loci is determined-the highesbfrequency pixel represents 
the center of the circle (marked by a). (d) Thc Hongh transform correctly dctects thc circle 
(marked by e) in the presence of incomplete circlc information and overlapping structures. (See 
Figurc 6.37 for a real-life example.) 

Thc basic idea of the method can be seen from the simple problem of detecting a 
straight line in an image [Dilda and Hart, 19721. A straight line is defined by two points 
A = (xl, yl) and B = (x2, y2) (shown in Figure 6.33a). All straight lines going through 
the point A are given by the expression 91 = kxl + q for somc values of k and q. This 
means that the same equation can be interpreted as an equation in the parameter space 
k,q;  all the straight lines going through the point A arc then represented by the equation 
q = -XI k + yl (see Figure 6.33b). Straight lines going through the point B can likewise 
be represented as q = -xzk + yz. The o111y common point of both straight lines in the 
k, q parameter space is the point which in the original image space represents the only 
existing straight lime connecting points A and B. 

This means that any straight line in the image is represented by a single point in the 
k,q parameter space and any part of this straight line is transformed into the same point. 
The main idea of line detection is to  determine all the possible line pixels in the imagc, 
to transform all lines that can go through these pixels into corresponding points in the 
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Figure 6.33: Hough transform principles. (a) Image space. (b) k,  q parameter space. 

parametcr space, and to detect the points (a, b) in the parameter space that frequently 
resulted from the Hoilgh transform of liries y = air: + b in the image. 

These main steps will be described in more detail. Detection of all possible line pixels 
in the image may be achieved by applying an edge detector to the image; then, all pixels 
with edge magnitude exceeding some tlireshold can be considered possible line pixels 
(referred to as edge pixels below). In the most general case, nothing is known about 
lines in the image, arid therefore lines of any direction may go through any of the edge 
pixels. In reality, the number of these lines is infinite; however, for practical purposes, 
only a liinited number of line directions may be considered. The possible directions of 
lines define a discretization of the parameter k. Similarly, the parameter q is sampled 
into a lirriited number of vdues. The parametcr space is riot continuous any more, but 
rather is represented by a rectangular structure of cells. This array of cells is called the 
accumulator array A, whose elements are accumulator cells A(k, q). For each edge 
pixel, parameters k, q are determined which represent lines of allowed directions going 
through this pixel. For each such line, the values of line parameters k ,  q are used to 
increase the vahle of the accumulator cell A(k, q). Clearly, if a line represented by an 
equation .y = ax+ b is present in the image, the value of the accumulator cell A(a, b) will be 
increased many times-as niaily times as the line y = a,x + b is detected as a line possibly 
going through any of the edge pixels. For any pixel P, lines going through it may have any 
direction k (from the set of allowed directions), but the second parameter q is constrained 
by tlie image co-ordinates of the pixel P and the direction k. Therefore, liries existing 
in the image will cause large values of the appropriate accumulator cells in the image, 
whilc other lines possibly going through edge pixels, which do not correspond to lines 
existing in the image, have different k, q pararrieters for each edge pixel, and therefore the 
corresponding accumulator cells arc increased only rarely. In other words, lines existing in 
the image may be detected as high-valued accumulator cells in the accumulator array, and 
the parameters of the detected line are specified by the accumulator array co-ordinates. 
As a result, line detection in the image is transformed to detection of local rriaxima in the 
accumulator space. 

It lias been noted that an important property of the Hough transform is its insensitivity 
to inissing parts of lines, to image noise, and to other non-line structures co-existing in 
tho irnage. Insensitivity to data imprecision and noise car1 be seen in Figure 6.34. This is 
caused by the robustness of transformation from the image space into the accumulator 
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Figure 6.34: Hough trm!forrn-line detection. (a) Original image. (b) Edge image (note many 
edges, which do not belong to the line). (c) Parameter space. (d) Detected lines. 

space--a missing part of the line will cause only a lower local maximum because a smaller 
number of edge pixels contributes to  the corresponding accumulator cell. A noisy or 
only approximately straight line will not be transformed into a point in the parameter 
space, but rather will result in a cluster of points, and the cluster center of gravity can be 
considered the straight line representation. 

Note that the parametric equation of the line y = kx + q is appropriate only for 
explanation of the Hough transform principlesit  causes difficulties in vertical line 
detection (k + m) and in non-linear discretization of the parameter k. If a line is 
represented as 

the Hough transform does not suffer from these limitations. Again, the straight line 
is transformed to a single point (see Figure 6.35). A practical example showing the 
segmentation of an MR image of the brain into the left and right hemispheres is given in 
Figure 6.36. 
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Figure 6.35: Hough transform in s, 0 space. (a) Straight line in image space. (b) s, 0 parameter 
space. 

Discretization of the parameter space is an important part of this approach [Yuen and 
Hlavac, 19911; also, detccting the local maxima in the ~lccumulator array is a non-trivial 
problem. In reality, the resulting discrete parameter space usually has more t h m  one local 
maximum per linc existing in the image, and smoothing the discrete parameter space 
may be a solution. All these remarks remain valid if more complex curves are sought in 
the image using the Hoi~gh transform, the only difference being the dimensionality of the 
accuniulator may. 

Generdi~ation to more complex curves that can be described by an analytic equation 
is straightforward. Consider an arbitrary curve represented by an equation f (x, a) = 0, 
where a is the vector of curve parameters. 

Figure 6.36: Hough transform line detection used for MRI brain segmentation to the left and 
right hemispheres. (a) Edge image. (b) Segmentation line in original image data. 
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Algorithm 6.14: Curve detection using the Hough transform 

1. Quantize parameter space within the limits of parameters a.  The dimensionality n 
of the parameter space is given by the number of parameters of the vector a. 

2. Form an n-dimensional accumulator array A(a) with structure matching the 
quantization of parameter space; set all elernents to zero. 

3. For each image point (xl, x2) in the appropriately thresholded gradient image, 
increase all accumulator cells A(a) if f (x, a) = 0 

for all a inside the limits used in step 1. 

4. Local maxima in the accumulator array A(a) correspond to realizations of curves 
f (x, a) that are present in the original image. 

If we are looking for circles, the analytic expressioll f (x, a) of the desired curve is 

where the circle 11% center (a, b) and radius r. Therefore, the accumulator data structure 
must be three-dimensional. For each pixel x whose edge magnitude exceeds a given 
threshold, all accunlulator cells corresponding to potential circlc centcrs (a, b) are incre- 
mented in step 3 of the given algorithm. The accumulator cell A(a, b, r) is incremented if 
the point (a ,  b) is a t  distance r from point x: and this condition is valid for all triplets 
(a, b, r) satisfying equation (6.26). If sonlc potential center (a, b) of a circle of radius r is 
frequently found in the parameter space, it is highly probable that a circle with radius r 
and center (a: b) really exists in the processed data. 

The processing results in a set of parameters of desired clirves f (x, a) = 0 that 
correspond to local maxima of accllmlllator cells in the parameter space; these maxima 
best match the desired curves and processed data. Pararneters may represent unbounded 
analytic curves (e.g., line, ellipse, parabola, etc.) , but to look for finite parts of these curves, 
the end points rnust be explicitly defined and other conditions must be incorporated into 
the algorithm. Even though the Hough transform is a very powerful technique for curve 
detection, exponential growth of the accumulator data structure with the increase of the 
number of curve parameters restricts its practical usability to curves with few parameters. 

If prior information about edge directions is used, computational demands can be 
decreased significantly. Consider the case of searching the circular boundary of n dark 
region, letting the circle have a constant radius r = R for sinlplicity. Without using 
edge direction information, all accumulator cells A(u, b) are incremented in the parameter 
space if the corresponding point (a, b) is oil a circlc with center x. With knowledge of 
direction, only a small number of the accun~ulator cells need be incremcnted. For example, 
if edge directions are quantized into eight possible values, only one-eighth of the circle 
need take part in incrementing of accumulator cells. Of course, estimates of edge direction 
are unlikely to be precise-if we anticipate edge direction errors of ~ / 4 ,  three-eighths of 
the circle will require accurriulator cell increlnenting. Using edge directions, candidates 
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for parameters a and b can be identified from the following formulae: 

where $(x) refers to the edge direction in pixel x and A$ is the maximum anticipakd edge 
direction error. Accumulator cells in the parameter spwe are then incremented only if 
(a, b) satisfy equation (6.27). Another heuristic that has a beneficial influence on the curve 
search is to weight the contributions to accumulator cells A(a) by the edge magnitude in 
pixel x; thus the increment AA in step 3 of Algorithm 6.14 [A(a) = A(a) + AA] will be 
grcater if it results from the processing of a pixel with larger edge magnitude. Figure 6.37 
demonstrates circle detection when circular objects of known radius overlap and the image 
contains many additional str~ictures causing the edge image to be very noisy. Note that 
the parameter space with three local maxima corresponding to centers of three circular 
objects. 

Figure 6.37: Hough transform--circle detection. (a) Original image. (b) Edge image (note that 
the edge information is far from perfect). (c) Parameter space. (d) Detected circles. 
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The randomized Hough transform offers a different approach to achieve increased 
efficiency [Xu and Oja, 19931; it randomly selects n pixels from the edge image and deter- 
mines n pararneters of the detected curve followed by incrementirig a single accumulator 
cell only. Extensions to the randomized Hough transform use local information about the 
edge image and apply the Hough transform process to a neighborhood of the edge pixel 
[Kalviainen et a]. , 19951. 

If the parametric representations of the desired curves or region borders are known, 
this method works very well, but unfortunately this is not often the case. The desired 
region borders can rarely be described using a parametric boundary curve with a small 
number of parameters; in this case, a generalized Hough transform [Ballard, 1981; Davis, 
1982; Illingworth and Kittler, 19871 can offer the solution. This method constructs a 
parametric curve (region border) description based on sample situations detected in the 
learning stage. Assume that shape, size, and rotation of the desired region are known. A 
reference point xR is chosen at any locatiori inside the sample region, then an arbitrary 
line can be constructed starting at this reference point aiming in the direction of the 
region border (see Figure 6.38). The border direction (edge direction) is found a t  the 
intersection of the line and the region border. A reference table (referred to as the R-table 
in [Ballard, 19811) is constructed, and intersection parameters are stored as a function 
of the border direction at  the intersection point; using different lines aimed from the 
reference point, all the distances of the reference point to region borders and the border 
directions at the intersections can be found. The resulting table can be ordered according 
to the border directions at the intersection points. As Figure 6.38 makes clear, different 
points x of the region border can have the same border direction, 4(x) = +(x'). This 
implies that there may bc more than one (r, a) pair for each q5 that can determine the 
co-ordinates of a potential reference point, 

Figure 6.38: Principles of the generalized Hough transform: geometry of R-table construction. 

An example of an R-table is given in Table 6.1. Assuming no rotation and known 
size, remaining description parameters required are the co-ordinates of the reference point 
R R (x, , x2 ). If size and rotation of the region may vary, the number of parameters increases 

to four. Each pixel x with a significant edge in the direction 4(x) has co-ordinates of 
potential reference points {sl + r($)  cos (a(b)), zz + r(4) sin (a($))  1. These must be 
computed for all possible values of r and a! according to the border direction 4(x) given 
in the R-table. The following algorithm presents the generalized Hough transform in 
the most general of cases in which rotation (T) and size ( S )  may both change. If either 
there is no change in rotation (T = 0), or there is no size change (S = I), the resulting 
accumulator data structure A is simpler. 
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4 1 (rf , a;), (rf , a!:), . . . , (ryl cty' ) 
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(ri, (xi), (r:, a;): . . . , (r:', a:' ) 
. . .  ... 
c (+:,~:):(+;,az);...,(r~, 7Lk k 

Table 6.1: R-table 

Algorithm 6.15: Generalized Hough transform 

1. Construct an R-table description of the desired object. 

2. Form a data structure A that represents the potential reference points 

Set all accumulator cell values A(xl, 2 2 ,  S, r) to zero. 

3. For each pixel (xl,  2 2 )  in a thresholded gradient image, determine the edge direction 
@(x); find all potential reference points xR and increase all 

for all possible values of rotation and size change 

r f  = 21 + r(4 + r )  SCOS (a(4 + r)) , 
z,R = 1 2  + ~ ( 4  + r) Ssin (a(+ + r)) . 

4. The location of suitable regions is given by local maxima in the A data structure. 

The Hough trarisform wa.s initially developed to detect analytically defined shapes, 
such as lines, circles: or ellipses in general images, and the generalized Hough transform 
can bc: wed to detcct arbitrary shapes. Howevcr, even the generalized Hough transform 
requires thc complete specification of thc exact shape of the target object to achieve precise 
segmeiitation. Therefore, it allows detection of objects with complex but pre-determined, 
shapes. Other vdricties exist that allow detection of objects whose exact shape is unknown, 
assuming a priori knowledge can be used to form an approximate rrlodel of the object. 

The Hollgh transform has many desirable features [Illingworth and Kittler, 19881. 
It rccogriiees partial or slightly deformed shapes, therefore behaving extremely well in 
recognition of occluded objects. It may be also used to measure similarity between a 
inodel and a, detected object on the basis of size and spatial location of peaks in the 
parameter space. The Hough transform is very robust in the presence of additional 
structures in the image (other lines, curves, or objects) as well as being insensitive to 
image noise. Moreover, it may search for several occurrences of a shape during the same 
processing pass. Unfortunately, the conventional scquerltial approach requires a lot of 
storage and extensive computation. However, its illherent parallel character gives the 
potential for real-time irnplcment ations. 
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Marly serious implementational problems were only touched upor1 here (shape param- 
eterization, accumulation in paraineter space, peak detection in parameter space, etc.). 
Details are discussed in surveys [Illingworth and Kittler, 1988; Princen et al., 19941, where 
extensive lists of references may also be found. Because of thc large tirile requirements in 
the sequential version, effort has been devoted to hierarchical approaches [Neveu, 1986; 
Princen et al., 19891; fast algorithms were developed [Guil et a]., 19951; gray-scale Hough 
transforms working directly in image data were presented in [Lo aiid Tsai, 19951; methods 
combining the Hough transform and automated line tracing were studied [Wang anti 
Howart h, 1989; Lerner and Morelli, 19901, aild many parallel implementations were tested 
[Oyster, 1987; Olariu et al., 1993; Chung and Lin, 19951. The unique properties of the 
Hough transform also provoke more and rnore applications [Illingworth and Kittler, 1988; 
McKenzie and Protheroe, 1990; Bruinmer, 19911. Features of many existing varieties of 
the Hough transform, together wit11 pcrforrnance comparisons, are given in [Kalviainen 
et al., 19951. 

6.2.7 Border detection using border location information 

If any information about boundary location or shape is known, it is of benefit to use it. 
The inforrriatiori may, for instance, be based on some higher-level knowledge, or can rcsult 
from segmentation applied to a lower-resolution image. 

One possibility is to determine a boundary in an image as thc location of significant 
edges positioned close to an assumed border if the edge directions of these significant edges 
match the assunled boundary dircction. The new border pixels are sought in directions 
perpendicular to the assumed border (see Figure 6.39). If a large number of border 
elements satisfying the given conditions is found, an approxiinate curve is computed based 
on these pixels, and a new; rnore accurate, border results. 

Figure 6.39: A priori information about boundary location. 

Another possibility is based on prior knowledge of end points-this approach assumes 
low iniage noise arid relatively straight boundaries. The process iteratively partitions 
the border arid searches for the strongest edge located on perpendiculars to the line 
connecting end points of each partition; perpendiculars are located at  the center of the 
connecting straight line--see Figure 6.40. The strongest significant edge located on the 
perpendicular that is close to the straight line connecting the end points of the current 
partition is accepted as a new border element. The itcration process is then repeated. 

Another approach to contour detection has been introduced in [Kass et al., 19871 in 
which active coritour models (snakes) start their search for a coiitour taking advantage of 
user-provided knowledge about a,pproxirnate position and shape of the required contour. 
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Detected border Exact border 3 

Figure 6.40: Divide-and-conquer iterative border detection; numbers show the sequence of 
division steps. 

An optimization method refines the starting contour estimate and matches the desired 
contour. This approach is discussed in Section 7.2. 

6.2.8 Region construction from borders 

All methods considered hitherto have focused on the detect.ion of borders that partially or 
conipletely segmented the processed image. If a complete segmentation is achieved, the 
borders segment an image into regions; but if only a partial segmentation results, regions 
are not defined uniquely and region determination from borders may be a very coniplex 
task requiring cooperation with higher-level knowledge. However, methods exist that are 
able to construct regions from partial borders which do not form closed boundaries. These 
methods do not always find acceptable regions, but they are useful in many practical 
situations. 

One of then1 is the superslice method [Milgram, 19791, which is applicable if regions 
have dominant gray-level properties. The approach assumes that some border-part 
locations are known in the image; the image data is then thresholded using different 
thresholds. Regions resulting from the thresholding for which the detected boundaries 
best coincide with assumed boundary segments are then accepted as correct. 

Better results can be obtained by applying a method described in [Hong et al., 19801 
based on the existence of partial borders in the processed image. Region construction 
is based on probabilities that pixels are located inside a region closed by the partial 
borders. The border pixels are described by their positions and by pixel edge directions 
q5(x). The closest 'opposite' edge pixel is sought along a perpendicular to each significant 
image edge, and then closed borders are constructed from pairs of opposite edge pixels. 
A pixel is a potential region member if it is on a straight line connecting two opposite 
edge pixels. The final decision on which of the potential region pixels will form a region 
is probabilistic. 

Algorithm 6.16: Region forming from partial borders 

1. For each border pixel x, search for an opposite edge pixel within a distance not 
exceeding a given maximum M .  If an opposite edge pixel is not found, process the 
next border pixel in the image. If an opposite edge pixel is found, mark each pixel 
on the connecting straight line as a potential region member. 
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2. Compute the number of markers for each pixel in the image (the number of markers 
tells how often a pixel was on a connecting line between opposite edge pixels). Let 
b(x) be the number of markers for the pixel x. 

3. The weighted number of markers B(x) is then determined as follows: 

B(x) = 0.0 for b(x) = 0 ,  

= 0.1 for b(x) = 1 , 
= 0.2 for b(x) = 2 ,  

= 0.5 for b(x) = 3 ,  
= 1.0 for b(x) > 3 .  

The confidence that a pixel x is a member of a region is given as the sum xi B(xi) 
in a 3 x 3  neighborhood of the pixel x. If the confidence that a pixel x is a region 
member is one or larger, then pixel x is marked as a region pixel, otherwise it is 
marked as a background pixel. 

Note that this method allows the construction of bright regions on a dark backgrou~ltl 
as well as dark regions on a bright background by taking either of the two options in the 
search for opposite edge pixels--step 1. Search orientation depends on whether rclatively 
dark or bright regiorls are constructed. If +(x) and 4(y) are directions of edges, the 
condition that must be satisfied for x and y to be opposite is 

Note that it is possible to take advaritage of prior knowledge of rnaximurrl region 
sizes-this information defines the value of M in step 1 of the algorithm, the maxirrium 
search length for the opposite edge pixel. 

This method was applied to form texture primitives (Chapter 15 [Hong et al., 19801) 
as shown in Figure 6.41. The differences between the results of this region detection 
method and those obtained by thresholding applied to the same data are clearly visible if 
Figures 6.41b and 6 . 4 1 ~  arc compared. 

6.3 Region-based segmentation 

The aim of the segmentation methods described in thc previous section was to find borders 
between regions; the following methods construct regions directly. It is easy to construct 
regions from their borders, and it is easy to detect borders of existing regions. However, 
segmentations resulting from edge-based methods and region-growing methods arc not 
usually exactly the same, and a combination of results may often be a good idea. Region 
growing techniques are generally better in noisy images, where borders tire extremely 
difficult to detect. Homogeneity is an important property of regions and is used as thc 
main segmentation criterion in region growing, whose basic idea is to divide an image 
into zories of maximum homogeneity. The criteria for homogeneity car1 be based on 
gray-level, color, texture, shape, model (using semantic informat ion), etc. Properties 


