
ABSTRACT

The (ρ,θ)-interpretation of Hough transform (HT) is treated
herein considering its facilities to localize straight lines or
cut-offs in a given image. The definition of "exact" HT is
introduced for the image and for the given choice of the
respective HT-domain size (ρsize*θsize). The idea of "HT inner
noise" is also defined using a mean square estimate for the
HT-deviations from the exact HT. Hence, a constructive
method is proposed for a set of algorithms realising digital
HT of an arbitrary small inner noise. The experiment of
algorithms and a comparative analysis of results are briefly
represented. The proposed method and algorithms are applied
for pre-processing of hand-written text images. Besides the
localisation of text rows and words, the approach proposed is
especially effective for evaluation of the averaged letter slope
of handwriting in the case of critical resolution of 2÷3 pixels
per line and/or per distance among lines.

1. INTRODUCTION

The recognition process in computer analysis of documents is
usually simplified by preliminary image decomposition to
simple domains of minimal area simultaneously being mostly
filled with graphics. These domains are the true objects for
traditional recognition. In text recognition, similar domains
are intuitively defined for the text rows, isolated words
and/or phrases. These domains usually possess a
"longitudinal stretch" and therefore can be effectively
localised by "projective" techniques of HT-type. This work
was provoked by unexpected troubles when using HT for
preliminary processing of hand-written text images.

2. SETTING OF THE PROBLEM

Hough [1] has introduced the transform using the fact of
analytic geometry that every line defined in the 2/D
Euclidean space E2(x,y) by equation L(x,y,a,b) = 0 of two
independent parameters (a and b), can be represented as a
point (a,b) in the E2(a,b) dual space of parameters, and that
this representation is an isomorphism. Instead of this
canonical linear form, Duda and Hart [3] have proposed the
usage of the normal equation form, where the parameters are
respectively ρ, which is the distance from the origin Oxy and

θ − the normal slope angle to the abscissa Ox. Their approach
leads to the both significant advantages:

• The values of the parameters ρ and θ are limited that is
a substantial plus in computer modelling.

• HT can be also considered as parallel projection by
analogy with the Radon transform, which is well known from
computer tomography [4].

The present report deals with the (ρ,θ)-interpretation of
HT used for textual image pre-processing [5]. Information for
other interpretations, generalisations and applications of the
classical HT-technique can be found, for instance in the
never out-of-date survey of Illingworth and Kittler [2].

The idea is well known. If we have a sufficient number of
projections for the textual image along several directions,
preferably through equal intervals ∆θ of the slope angle θs to
the abscissa Ox, θs = −π/2+ s∆θ , s = 0,1,…π/∆θ , then the
projection that is perpendicular to the text row axis could
accumulate the "most-outstanding" maxima corresponding to
these rows and the minima corresponding to the inter-row
spaces. On the other hand, one (ρ,θ)-HT applied to the total
image could give us in principle all the projections
h = hθ(ρ) = h(ρ,θs) , ρ ∈ [ρmin, ρmax] , θs ∈ [−π/2, π/2]. So, it
is possible to find the projection of the "most outstanding"
extrema using classical techniques of functional analysis.

A substantial facilitation here is that the configuration of
considered extrema is arranged along the line θ = α −π/2, i.e.
in parallel to the Oρ axis of the HT space, where α is the
average row slant demanded. Hence, the search of extrema
for the bivariate HT accumulation function h = h(ρ,θ) can be
replaced with the search of extrema for a unidimensional
function ξ = ξ(θ)  being defined as a mean square estimate
for  the behaviour of h. For example, we have the estimate:
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that is the current variance for the sections h = hθ(ρ) = 
= h(ρ,θ) , ρ ∈ [ρmin, ρmax] with θ as a parameter, or another
estimate:
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where E[h(.)] is the mean value of h(.) in both the cases.
A similar strategy can be also used to evaluate the

average font slope of text rows, words and/or phrases.
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We shall intuitively consider as basic algorithm the
(ρ,θ)-HT of discrete performance that is usually
referenced for the above-mentioned purposes [2, 4]:

〈s0〉 Form the accumulator H(ρ,θ) with zero elements.
〈s1〉 For each pixel P(x,y) of the image F(x,y) do:

 if F(x,y) ≠ 0 then
{ ρ0 = (x

2 + y2)1/2, θ0 = arctg(y/x);
    for θ = −π/2 to π/2 step ∆θ  do:
  {ρ =ρ0 cos(θ0 −θ); H(ρ,θ) += F(x,y); } }

The available computer resources concerning both
memory and processing speed naturally restrict the described
approach because the HT processing speed can be evaluated
in the multiplicity of O(xsize.ysize.Θsize). A popular rule to avoid
computational problems here is to reduce the discrete
intervals ∆ρ and ∆θ for the HT-space, and in this way to
improve the preciseness of HT localising facilities. So,

 ∆ρ = ρsize /Ρsize ,    ∆θ = θsize /Θsize ,                   (2)
where ρsize usually amounts to the longest distance between
two image pixels, while θsize is often set as one-half of
revolution for more compact performance:

   ρsize ≤ diag(xsize , ysize) = ( xsize
2 + ysize

2)1/2, θsize= π .    (2a)
Since xsize and ysize are given image dimensions (in pixels)

then only Ρsize and Θsize , i.e. the HT accumulator dimensions
remain for choice. But the enlargement of Ρsize and Θsize over
some limits will roughen the HT approximations to such an
extent that the "inner noise" level of the approximated HT
comparatively to the "exact" HT (i.e. for given xsize , ysize and
chosen Ρsize ,Θsize) will make it out of any sense.

This work offers a constructive method for algorithms of
approximated HT, which inner noise, i.e. HT-approximation
error (see Def.1 and 2 below), is arbitrary close to zero.

3. DESCRIPTION OF THE METHOD PROPOSED

We introduce the idea of the exact HT for the input image
f = f(x,y) in viewpoint of the analytical description of HT as a
Radon transform [4]:

     
( )

RoHT

RoI

∈

∫∫ −+=

),(

dd)sin()cos(),(),(

θρ

ρθθδθρ yxyxyxfh
      (3)

where RoI is the definition domain of the image f = f(x,y),
(x,y) ∈ RoI; RoHT is the definition domain for HT of the
image, i.e. for h = h(ρ,θ); and δ(.) is the Dirac’s function.

Definition 1: The exact HT h = h(ρ,θ), (ρ,θ) ∈ RoHT for
a discrete image f = f(x,y), x = xmin÷(∆x)xmax , y = ymin÷(∆y)ymax

is defined by the sum
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(ρ,θ) ∈ RoHT, for each “real” pixel P(x0, y0) ⊂ RoI, with
dimensions ∆x and ∆y and centre (x0, y0).

Here and in what follows, the expressions of the type
x = xmin÷(∆x)xmax mean x = xmin+s∆x , s = 0,1,...xmax/∆x ,
where . is the integer part of (.).

In this way, we consider the HT for a given pixel P(x0, y0)
of the discrete image as a volume bounded by the plain h = 0
and the enveloping surface h = h

~
((x0, y0), ρ,θ). We interpret

this volume as a generalized osinusoidC
~

(P(x0, y0), ρ,θ)
that consists of a continuum of conventional Cosinusoids
each one corresponding to a perfect point in the “real” pixel
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Fig.1. Geometric interpretation of the method in the strip [θ i − ∆θ ⁄ 2, θ i + ∆θ ⁄ 2):

a) Trapezium-like cosine-shaped hexahedron TC6(x0 , y0 , θ i ) ,  θ i = θmin ÷  (∆θ)θmax ;
b) Symmetrical trapezium ST(x0 , y0 , θ ) , θ  ∈ [θ i − ∆θ ⁄ 2, θ i + ∆θ ⁄ 2);
c)     The accumulated projection for the pixel P(x0 , y0) as a symmetrical trapezium ST(x0 , y0 , θ ).
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Fig.2. Three basic types of TC6 (a view from above)
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Definition 2: The inner noise d = d(ρ,θ) of a given HT
performance H = H(ρ,θ) , ρ = ρmin÷(∆ρ)ρmax  , θ = θmin÷
÷(∆θ)θmax  , on an image f = f(x,y), x = xmin÷(∆x)xmax ,
y = ymin÷(∆y)ymax is defined by the absolute deviation from the
exact HT on the same image that is:

d(ρ,θ) = H(ρ,θ) − h (ρ,θ),

where h (ρ0,θ0) = θρθρ
θρ
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, Π(ρ0,θ0) ⊂ RoHT.
Obviously, the inner noise of HT can be evaluated by the

similar approach used for the evaluation of the HT itself, see
(1) and/or (1a). The estimate (1) is smoother than (1a).
However, (1a) has been preferred here because of its greater
sensibility to noise.

The proposed method can be resumed as follows:
• The HT of an input image is considered decomposed by

image pixels, and a "Generalised Cosinusoid" (GC) of HT-
space is set up in correspondence to each pixel.

• Each vertical cross-section of a given GC represents a
"Symmetric Trapezium" (ST) for a given angle θ. The ST
position and dimension are easily computed in HT-space.

• Each GC is considered decomposed by strips of ±∆θ/2
for each discrete value of θ. Such a GC part can be approxi-
mated by a "Trapezium-like Cosine-shaped Hexahedron"
(TC6). Hence, the entire GC can be represented through a
sequence of TC6-s, each of them being easily computed in an
arbitrary precision by their vertical sections, which are ST-s.

• Each GC for an image pixel and consequently the HT of
the entire image can be computed by sequential processing of
the correspondent TC6-s, respectively their ST-sections.
Many of the ST-s has equal dimensions despite their different
positions in the HT-space, and this is of general importance
for computation.

4. ALGORITHMIC ASPECTS

Several ways are possible to approximate the TC6’s, in which
the (ρ,θ)-HT can be decomposed by the method.

Basic construction "B": It inherits
the basic algorithm; see par.2. Each
TC6 is computed on parts in the
innermost loop.

New construction "N": The
embedded order of loops is changed;
the first is the loop on Θ and the next
is the double loop (on Y and X). The
reason is that the sections
ST(x0, y0,θ ) , x0 = X∆x , y0 = Y∆y ,
along a direction θ = Θi/∆θ , are
identical but translated accordingly to
the position of each image pixel

P(x0, y0) ⊂ RoI. Therefore it is possible to compute the
sections STk  = ST(x0, y0,θ ), θ = ∆θ (Θi −1/2 + k/K) in
advance for all k = 1,… K and Θi = Θmin ,…Θmax ; while the
approximations of the corresponding TC6(x0, y0,θ ) remain
unchanged in the inner double loop (on Y and X).

Speedy construction "S": It resembles construction B,
differing in that all necessary trapezia (of number K for each
direction Θ ) are computed in advance and then the control
enters the main triple loop (Y, X,Θ ).

Several algorithms, which differ in the way of TC6
computation have been developed based on these three
constructions, namely B1, B2, N1, N2, S1, S2, S3, besides
B_(the basic algorithm) and BF (an exact FP algorithm).
Always herein, K that we call a “constructive parameter” is
chosen K = 3.

Table 1. Results for (Xsize=Ysize=29) square, by rising the HT-parameters:
from  (Ρsize =49, Θsize=36 ) to (Ρsize =257, Θsize=178 ), i.e. ≈≈ 1:5

B_ B1 B2 N1 N2 S1 S2 S3 BF
1485 19 21 119 119 119 412 837 24

hA_max
1334 30 21 41 41 41 76 60 20

181,3 4,33 4,24 17,9 17,9 17,9 41,2 80,5 3,80
dE1_mean

76,4 1,58 1,58 1,83 18,0 1,80 2,54 3,23 0,28

78,4 1,02 1.02 10,5 10,5 10,4 19,9 48,1 1,29
dE1_sigma

36,5 0,48 0,39 0,72 0,72 0,72 0,90 1,22 0,26

0.1 3.6 3.6 2.0 1.8 1.8 1.0 0.8 3.2
HT_time[s]

0.6 28.9 26.8 28.2 24.1 25.7 12.9 7.7 26.0
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  Fig.3. Evaluation of the letter slope θθn in a handwriting fragment (Xsize=153, Ysize=31 ; Ρsize=183, Θsize=104 ):
  (a)  by the "rough" basic version B_  (it absents any indicative 2-d Max, the first Max gives a wrong θn = 0°);
  (b) by the "precise" version BF,  and  (c) by the "speedy" version S2  (there is an indicative 2-d Max, i.e. θn = 87,1°).

5. EXPERIMENTS

The test image, we prefer due to easier precision of the HT-
inner-noise evaluation, is a square, instead of a disk as usual
[4]. The chosen square size is Xsize = Ysize = 29.

5.1. Evaluation parameters

HT_time: the experimentally measured time of HT.
hA_max: the global maximum for picture h = H[Pj][Θi].
hE1_mean: the global average of ξ∼ξ(Θi), see (1).
hE1_sigma: the mean square variation of ξ∼ξ(Θi).

The HT inner noise (see Def.2) of the algorithmic
versions here, can be evaluated by the similar estimate
function ξ, see (1a). The corresponding parameters are
denoted by the prefix “d” (instead of “h”) in Table 1.

5.2. Comparative description of experiments

Table 1 compares lower towards (≈5 times) higher values for
Θsize and Ρsize, for the chosen test image. So, we can order the
versions by closeness to the exact HT as:
     BFp B2p B1p (N1p N2p S1)p S2p S3pp B_    (5)
and by processing speed as:
     B_pp S3p S2p (N2p BFp S1p N1)p B2p B1  (5a)

Table 2 shows a classification of the algorithmic versions
by preferences expertly concluded herein.

5.3. Application in text image processing

Fig.3 illustrates the evaluation of the averaged font-slope θn

of a hand-written text. The shown phrase is isolated from a
larger text image by the EX_HT, an experimental system for
exact HT. The writing thickness here is 1÷2 pixels. The first
maximum of the horizontal histograms corresponds to the
phrase longitude, and the second one – to its letters’ slope.
The weak capability of usual algorithms and the efficiency of
the algorithms proposed herein are illustrated.

6. CONCLUSION

More details about the method proposed can be found in [6].
The method has been successfully used for preliminary
processing of textual images, and more precisely, for
evaluation of the letter slope in images of handwriting. A
similar approach of exact HT can be sought by an analogy for
other interpretations of HT [2].
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Table 2. The recommended versions defined by a
combination of two concurrent requirements.

Preferred
 Version

By lower values
of Θsize and Ρsize

By higher values
For Θsize and Ρsize

Processing
speed S1 , S2 , S3 , BF S2 , S3 , BF , S1

No speed
requirements

BF , B1 , B2 BF , N1 , N2

          


