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Summary 

This paper describes an attempt to make use 
of machine learning or self-organizing processes 
in the design of a pattern-recognition program. 
The program starts not only without any knowledge 
of specific patterns to be input, but also without 
any operators for processing inputs. Operators 
are generated and refined by the program itself 
as a function of the problem space and of its own 
successes and failures in dealing with the prob
lem space. Not only does the program learn infor
mation about different patterns, it also learns 
or constructs, in part at least, a secondary code 
appropriate for the analysis of the particular 
set of patterns input to it. 

Background Review 

The typical pattern recognition program is 
either elaborately preprogrammed to process spe
cific arrays of input patterns, or else it has 
been designed as a tabula rasa, with certain 
abilities to adjust its values, or "learn." The 
first type often cannot identify large-classes of 
patterns that appear only trivially different to 
the human eye, but that would completely escape 
the machine's logic. ' ' The best examples of 
this type are probably capable of being extended 
to process new classes of patterns. 

8,19 
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such extension would seem to be an ad hoc compli
cation where it should be a simplification, and 
to represent an additional burden of time and 
energy on both programmer and computer. 

The latter type of self-adjusting program 
does not, at least as yet, appear to possess meth
ods for accumulating experience that are suffi
ciently powerful to succeed in interesting cases. 
The random machines show relatively poor identi
fication ability.-^A° (One exception to this 
statement appears to be Roberts' modification of 
Rosenblatt's Perceptron.-^ But this modification 
appears to make the Perceptron an essentially non-
random computer.) The most successful of this 
type of computer, to date, simply accumulates in
formation or probabilities about discrete cells 
in the input matrix.:>>-LU But this is an unusually 
weak type of learning (if it should be charac
terized by that vague epithet at all), and this 
type of program is bound to fail as soon as, and 
to the extent that, patterns are allowed to vary. 

Several programs compromise by making use of 
some of the self-adapting and separate operator 
processing features of the latter type of program, 
but with powerful built-in operations of the sort 
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used by the first type. ' They appear to have 
gained in flexibility in writing and modifying 
programs; but they have not, as yet, given 
(published) results that indicate that they are 
any more powerful than the weaker sort of program 
(e.g. Baran and Estrin) that uses individual cells 
in the matrix in ways equivalent to their use of 
"demons" and "operators." A final example of 
this mixed type of program is the randomly coupled 
"n-tuple" operator used by Bledsoe and Browning. > 5 
In this program, random choice of pairs, quin
tuples and other tuples of cells in the input 
matrix is used to compose operators, in an attempt 
to get around the problems of pre-analyzing and 
pre-programming. This method appears to be guar
anteed to have at least as great power as the 
single cell probability method. 3 But it has not 
as yet demonstrated this power. And it would, 
like most of the other programs discussed (or 
known to the authors) fall down when asked to 
process patterns which differed very greatly from 
those with which it had originally "gained expe
rience" by extracting information.^ 

Summary of Program Operation 

In summary, the presently running pattern 
recognition program works as follows: Unknown 
patterns are presented to the computer in dis
crete form, as a 20x20 matrix of zeros and ones. 
The program generates and composes operators by 
one of several random methods, and uses this set 
of operators to transform the unknown input matrix 
into a list of characteristics. Or, alternately, 
the programmer can specify a set of pre-generated 
operators in which he is interested. 

These characteristics are then compared with 
lists of characteristics in memory, one for each 
type of pattern previously processed. As a re
sult of similarity tests, the name of the list 
most similar to the list of characteristics just 
computed is chosen as the name of the input pat
tern. The characteristics are then examined by 
the program and, depending on whether they indi
vidually contributed to success or failure in 
identifying the input, amplifiers for each of 
these characteristics are then turned up or down. 
This adjustment of amplifiers leads eventually to 
discarding operators which produce poor charac
teristics, as ̂ indicated by low amplifier settings, 
and to their replacement by newly generated 
operators. 



One mode of operation of the present program 
is to begin with no operators at all. In this 
case operators are initially generated "by the 
program at a fixed rate until some maximum number 
of operators is reached. The continual replace
ment of poor operators by new ones then tends to 
produce an optimum set of operators for process
ing the given array of inputs. 

Details of Program Operation 

The program can be run in a number of ways, 
and we will present results for some of these. 
The details of the operation of the program 
follow. 

1. An unknown pattern to be identified is 
digitfzed into a 20x20 0-1 input matrix. 

2. A rectangular mask is drawn around the 
input (its sides defined by the leftmost, right
most, bottommost, and topmost filled cells). 

3. The input pattern is transformed into 
four 3-*>it characteristics by each of a set of 
5x5 matrix operators, each cell of which may be 
visualized as containing either a 0, 1, or blank. 
These small matrices which measure local charac
teristics of the pattern are translated, one at a 
time, across and then down that part of the matrix 
which lies within the mask. The operator is con
sidered to match the input matrix whenever the 0's 
and l's in the operator correspond to identical 
values in the pattern, and for each match the 
location of the center cell of the 5*5 matrix 
operator is temporarily recorded. This infor
mation is then summarized and scaled from 0 to 7 
to form four 3-"bit characteristics for the 
operator. These represent l) the number of 
matches, 2) the average horizontal position of the 
matches within the rectangular mask, 3) "the 
average vertical position of the matches, and k) 
the average value of the square of the radial 
distance from the center of the mask. 

A variable number of operators can be used in 
any machine run. This can mean either a number 
pre-set for that specific run, or a number that 
begins at zero and expands, under one of the rules 
described below, up to a maximum of 40. The 
string of 25 numbers which defines a 5*5 matrix 
operator can be generated in any of the following 
ways: 

a. A pre-programmed string can be fed in by 
the experimenter. 

b. A random string can be generated; this 
string can be restricted as to the number 
of "ones" it will contain, and as to 
whether these "ones" must be connected in 
the 5^5 matrix. (We have not actually 
tested this method as yet.) 

c. A random string can be "extracted" from 
the present input matrix and modified by 
the following procedure (which in effect 
is imitating a certain part of the matrix). 
The process of inserting blanks in the 
extracted operator allows for minor dis

tortions in the local characteristics 
which the operator matches. 

(1) A 5x5 matrix is extracted from a 
random position in the input matrix. 

(2) All "zero" cells connected to "one" 
cells are then replaced by blanks. 

(3) Each of the remaining cells, both 
"zeros" and "ones," are then replaced 
by a blank with a probability of ^. 

(k) Tests are made to insure that the 
operator does not have "ones" in the 
same cells as any other currently 
used operator or any operator in a 
list of those recently rejected by 
the program. If the operator is 
similar to one of these in this re
spect a new operator is generated by 
starting over at step l, 

k. A second type of operator is also used. 
This is a combinatorial operator which specifies 
one of 16 possible logical or arithmetic operations 
and two previously calculated characteristics 
which are to be combined to produce a third char
acteristic. These operators are generated by the 
program by randomly choosing one of the possible 
operations and the two characteristics which are 
to be combined. This random generation process 
is improved by generating a set of ten operators, 
and then pre-testing these using the last two 
examples of each pattern which have been saved in 
memory for this purpose. This pre-testing is 
designed to choose an operator from the set which 
produces characteristics that tend to be invariant 
over examples of the same pattern yet vary between 
different patterns. 

Since these operators may act upon character
istics produced by previous operators of the same 
type, functions of considerable complexity may be 
built up. 

5. The two types of operators just described 
produce a list of characteristics by which the 
program attempts to recognize the unknown input 
pattern. At any time the program has stored in 
memory a similar list of characteristics for each 
type of pattern which the program has previously 
encountered. Corresponding to each list of char
acteristics in memory is a list of 3-bit ampli
fiers, which give the current weighting for each 
characteristic as a number from 0 to 7. 

The recognition process proceeds by taking 
the difference between each of the characteristics 
for the input pattern and those in the recognition 
list of the first pattern. These differences are 
then weighted by the corresponding pattern ampli
fiers, and then by general amplifiers which repre
sent the average of the pattern amplifiers across 
all patterns, producing a weighted average differ
ence between the input list and the list in memory. 
This average difference is multiplied by a final 
"average difference" amplifier to obtain a "differ
ence score" for the list in memory. When a differ
ence score has been computed for each list in 
memory, the name of the list with the smallest 
score is printed as the name of the input pattern. 
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6. After each pattern is recognized the pro
gram modifies pattern amplifiers in those patterns 
which have difference scores less than or only 
slightly above the difference score for the correct 
pattern. This means that the program will tend to 
concentrate on the difficult discrimination prob
lems, since amplifiers are adjusted only in those 
patterns which appear similar to the correct pat
tern in terms of the difference scores and there
fore make identification of the input difficult. 
The correct pattern is compared with each of the 
similar patterns in turn. Each characteristic in 
the memory lists for a pair of patterns is examined 
individually, and a determination is made as to 
whether the correct pattern would have "been chosen 
if the choice had been made on the basis of this 
characteristic alone. If this one characteristic 
would have identified the correct pattern, then the 
corresponding amplifier is turned up by one. If it 
would have identified the wrong pattern then the 
amplifier is turned down by one. If no information 
is given by the characteristic, for example, if it 
is the same for both patterns, then the amplifier 
is turned down with a probability of 1/8. If the 
pattern compared with the correct pattern had the 
higher difference score then the amplifiers are 
adjusted only in that pattern. Otherwise, ampli
fiers are adjusted in both patterns. This means 
that if several patterns obtained lower scores than 
the correct pattern then the amplifiers in the cor
rect pattern will be drastically changed, since 
they will change when compared with each of these 
patterns. 

The list of characteristics in memory for the 
pattern just processed is then modified. The first 
time a pattern is encountered its list of computed 
characteristics is simply stored in memory along 
with its name. On the second encounter of a pat
tern each of the characteristics in memory is re
placed by the new characteristic with a probability 
of l/2. For the third and following encounters 
each characteristic is replaced by the new value 
with a probability of l/k. Since about l/k of the 
characteristics will be changing each time, after 
several examples of a pattern have been processed, 
the list of characteristics in memory will tend to 
be more similar to the characteristics of the last 
patterns processed than to those processed earlier. 
However, to the extent that the learning process is 
able to produce operators giving invariant charac
teristics for a single pattern, the list of charac
teristics will be representative of all the examples 
processed. The reason for not simply using the 
average value for each characteristic is that this 
would require saving in memory more than the 3 bits 
otherwise needed for each characteristic, as well 
as saving an indication of the number of times each 
characteristic had been calculated for each pattern. 

An alternate scheme which we tried involved 
saving the highest and lowest values obtained by 
each characteristic, and averaging these to obtain 
a mean value with which to compare the input. This 
worked quite well in all our test runs, which used 
a few samples of each pattern. But there is the 
possibility that with large numbers of examples of 
a pattern, all the characteristics will eventually 

have very large ranges; that is, the lower bounds 
will tend to be 0 and the upper bounds will tend 
to be 7. 

7. The average difference amplifiers which 
are used in the final step of the recognition pro
cess provide only coarse adjustments. These ampli
fiers are initially set to some fixed value, e.g. 
60, and are then adjusted for the same pairs of pat
terns as the pattern amplifiers. The amplifier for 
the correct pattern is turned down by N if there 
are N incorrect patterns, and the amplifier for each 
of the similar patterns is turned up by one. 

8. The general characteristic amplifiers are 
now computed by averaging the pattern amplifiers 
across all patterns. These indicate the general 
value of each characteristic in the recognition 
process and form the basis for the construction of 
success counts which control the replacement of 
operators. Since the combinatorial operators com
bine characteristics to produce other characteristics, 
the success count should reflect both the value of 
a characteristic in the recognition process and the 
importance of this characteristic in aiding the 
creation of other, possibly important characteristics. 

9.. This success count is formed by first 
storing the value of the general characteristic 
amplifier corresponding to each characteristic in 
a table for success counts. Then starting with the 
last combinatorial operator and working back through 
the list of these operators, l/2 the value of the 
success count for the characteristic corresponding 
to the operator is added to the success counts of 
the two characteristics which the operator combines. 
Finally, two times the general characteristic ampli
fier setting is added to each success count. 

10. Whenever a new operator is generated, the 
characteristics produced by the operator are com
puted for each of the possible patterns using the 
last example of each pattern, which has been saved 
in the computer memory. These newly calculated 
characteristics are then inserted into the list of 
characteristics for their respective patterns. At 
the same time the pattern amplifier settings for 
each of these new characteristics are set to 1 so 
that the characteristic will have very little 
weight in computing a difference score until it 
has been turned up as a function of proved ability 
at differentiation. Since the general amplifier 
for a characteristic is simply the average of the 
pattern amplifiers, it will also be 1 for the new 
characteristic. The success count of a new charac
teristic which is not combined to produce other 
characteristics is then 3 and this value will tend 
to increase if the operator proves to be valuable. 
On the other hand if a success count drops below 
3 (or in the case of a matrix operator, if the 
average value of the success counts of its four 
characteristics drops below 3) the operator is 
rejected and a new operator is generated to take 
its place. 

The pattern amplifiers play a crucial part 
both by aiding directly in the recognition process 
and by providing the information which ultimately 



determines the generation of new operators to re
place poor ones. Since the adjustment of these 
amplifiers is made selectively., based on their 
individual success or failure in distinguishing 
pairs of patterns where confusion is likely, the 
operators rejected by the program will tend to be 
those which are not useful in making the more dif
ficult discrimination. Also, because amplifiers 
are usually changed more drastically when the com
puter makes an incorrect guess, the 5*5 matrix 
operators will have a higher probability of being 
extracted from unrecognized patterns. Although the 
rules governing the learning process seem rather 
arbitrary in many cases, and it is difficult to 
describe their effects quantitatively, qualitative 
effects, such as this ability to concentrate on 
difficult problems, are fairly easy to show. The 
description of the program's operation shows that 
the emphasis is not so much on the design of a 
specific problem solving code as it is on the de
sign of a program which, at least in part, will 
construct such a problem solving code as a result 
of experience. 

It is interesting to note that the memory of 
the program exists in at least three different 
places: l) in the lists of characteristics in 
memory, 2) in the settings of the various ampli
fiers, and 3) in the set of operators in use by 
the program. While the lists of characteristics 
bear some direct relationship to the individual 
patterns processed by the program, the values of 
the amplifiers and the set of operators in use by 
the program depend in a more complex way on the 
whole set of patterns processed by the program, and 
on the program's success or failure in recognizing 
these patterns. The learning in the first case, 
which involves simply storing characteristics in 
memory, is merely "memorization" or "learning by 
rote." In the second case, the learning is more 
subtle for it involves the .program's own analysis 
of its ability to deal with its environment, and 
its attempts to improve this ability. 

Test Results 

The program was written for the IBM 709 and 
required about 2000 machine instructions. The 
time required to process a single character was 
about 25 seconds when 5 different patterns were 
used and kO seconds when each character had to be 
compared with ten possible patterns in memory. 
While such times are not excessive, they are large 
enough to make it impractical to run extremely 
large test cases. 

In several early runs which we made, k8 pre
programmed matrix operators were used. These were 
designed to measure such things as straight and 
curved lines, the ends of vertical and horizontal 
strokes, and various other features. The program 
was tested using seven different sets of the five 
hand-printed characters A, B, C, D, and E. These 
involved a fair amount of distortion, and variation 
in size, but were not rotated to any great extent. 

The program's performance on the last three or 
four sets in a run varied from about 70$ to 80$ 

depending on various changes which were made to the 
rules governing the learning process. Although the 
effects of the various rules were not extensively 
tested, the program's ability to recognize charac
ters seemed quite dependent on the manner in which 
pattern amplifiers were adjusted. Originally, the 
amplifier for a characteristic had been turned up 
by 1 with a probability of l/2 if the characteristic 
individually identified the correct pattern, and 
the amplifier had been turned down by 1 if it gave 
no information. Performance seemed to improve when 
this rule was changed so that the amplifier was 
always turned up for a correct response of the 
.characteristic, and turned down only with a proba
bility of 1/8 when no information was given by the 
characteristic. The first of these runs showed 
that few new matrix operators were being generated 
by the program, so changes were also made in the 
way the success counts were formed in order to 
increase the number of new operators generated. 

One run was made which did not use the matrix 
operators. Instead, the individual cells of the 
20x20 matrix were used as the first 400 character
istics and 500 combinatorial operators were used, 
to produce a total of 900 characteristics which the 
program used to recognize characters. With these 
changes the program recognized only a little more 
than 30$ of the characters. The amplifier settings 
appeared to be generally somewhat higher for the 
characteristics produced by the combinatorial oper
ators than for the input cells themselves. This 
indicated that the program might have done slightly, 
though probably not substantially, better if the 
recognition had been based only on these latter 
characteristics. 

The last runs were made without pre-programmed 
operators, but with the program generating all oper
ators from the start. A maximum of kO matrix oper
ators were used at any one time, and 160 of the 
combinatorial operators were used in addition to 
these. On a run with the same seven sets of five 
characters used in previous tests, the program 
recognized 86$ of the characters correctly in sets 
2 through 7« (The first set can never be correctly 
identified by the program, of course, since the 
program must always predict the name of some pat
tern whose characteristics it already has in memory.) 
In this run, the same sets of characters were then 
processed by the computer a second time, and in 
this case the program recognized 94$ of them, missing 
only two of the 35 characters. 

In another run three passes were made through 
three sets of the first ten alphabetic characters. 
In this case the program recognized 29 out of the 
30 characters, or 97$, on the third encounter. With 
this rather limited training the program was then 
able to recognize 70$ of the hand printed charac
ters in a fourth set different from the three sets 
with which it was trained. In this case, the pro
gram's ability to recognize unknown characters was 
considerably less than its ability to recognize 
previously processed characters. This can be ex
plained by the fact that three examples of each 
pattern contain only a few of the possible vari
ations of a character. It can be expected that as 



the number of examples -with which the program is 
trained increases, its ability to recognize unknown 
characters will also increase. 

We have not made any test runs of this program 
on the entire 26 letter alphabet, because of the 
computer time involved. We have, however, made 
some preliminary runs in debugging a modified pro
gram that was designed to increase the speed of 
processing by a factor of 10 or greater, along with 
a number of other changes. These runs gave pre
liminary processing abilities around 80$, using 
three sets of the alphabet, after only two passes. 
We anticipate that the completely debugged program, 
with improvements in such things as amplifier ad
justments plus longer runs should raise this figure. 

The program was also tested using line draw
ings representing a chair, a table, two different 
faces, and two types of particle decay similar to 
those shown in bubble chamber pictures. Two sets 
of these 6 drawings were used, with the second set 
drawn somewhat differently from the first set. 
After the first set was processed, 50$ of .the draw
ings in the second set were recognized correctly by 
the program. When the same two sets were then pro
cessed by the program a second time, all of the 
drawings were correctly recognized. 

Discussion 

When this program is given a neurophysiologi-
cal interpretation, or a neural net analog, it can 
be seen to embody relatively weak, plausible, and 
"natural-looking" assumptions. The 5x5 matrix 
operator is equivalent to a 5x5 net of input reti
nal cones or photocells converging on a single out
put, with "ones" denoting excitatory and "zeros" 
denoting inhibitory connections, and the threshold 
for firing the output unit set at the sum of the 
"ones." Each translation step of the operator 
matrix over the larger matrix gives a sequential 
simulation of the parallel placement of many of 
these simple neural net operators throughout the 
matrix. Each different operator, then, is the 
equivalent of an additional connection pattern 
between input cones, firing onto a new output unit 
that computes the output for that operation. This 
is all quite plausible for the retina as known 
anatomically, with a single matrix of cones in 
parallel that feed into several layers of neurons. 
Evidence for excitatory and inhibitory connections 
is also strong.^ And there is even beginning to be 
evidence of several types of simple net operators 
that exist in parallel iterated form throughout the 
retinal matrix (four of these as determined by 
Lettvin, Maturana, McCulloch and Pitts in the frog; 
and probably even more as determined by Hubel and 
Wiesel in the cat) .i:L> 1 2 

It would seem, however, that the known physio
logical constraints and the plausible geometric 
constraints on operators would suggest fewer than 
the k0-odd operators that we have used (or than the 
30-odd used by Doyle or the 75 used by Bledsoe and 
Browning - ignoring the fact that they cannot be so 
easily interpreted neurophysiologically)» ' For 
example, straight line and sharp curve operators 
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would seem to be more plausible in terms of the 
ease of connection and the importance of the infor • 
mation to which they respond. A possible operator 
that might overcome this problem, with which we are 
now working, is a simple differencing operator that 
will, by means of several additional layers of 
operations, first delineate contour and then com
pute successively higher order differences, and 
hence straightness, slope and curvature, for the 
unknown pattern. This operator appears to be 
equivalent to a simple net of excitatory and inhi
bitory elements. ^ 

This, then, suggests that the mapping part of 
the program would be effected by two layers of 
parallel basic units in a neuron net-like arrange
ment. The matching part might similarly be per
formed by storing the previously mapped lists in a 
parallel memory and sweeping the input list, now 
mapped into the same standard format, through these 
lists. Finally, the amplifiers can be interpreted 
as threshold values as to when the differences thus 
computed lead to an output. The specific pattern 
characteristic amplifier would be an additional 
single unit layer lying right behind the memory 
list; the interpretation of the general amplifiers 
might be made in terms of chemical gradients, but 
is more obscure. 

Thus a suitable parallel computer would perform 
all of the operations of this program in from three 
to five serial steps. This is a somewhat greater 
depth than those programs, such as Selfridge's and 
Rosenblatt's, that attempt to remain true to this 
aspect of the visual nervous system. 1 5 * 17 But it 
is well within the limits, and actually closer to 
the specifications, of that system. It also takes 
into consideration the very precise (and amazing) 
point-to-point and nearness relations that are seen 
in the visual system, both between several spots on 
the retina or any particular neural layer, and from 
retina to cortex.20 It also is using operators that 
seem more plausible in terms of neural interconnec
tions - again, in the living system, heavily biased 
toward nearness. 

The size of the overall input matrix has also 
been chosen with the requirements of pattern per
ception in mind. Good psychophysical data show 
clearly that when patterns of the complexity of 
alphanumeric letters are presented to the human 
eye, recognition is just as sure and quick no 
matter how small the retinal cone mosaic, until the 
pattern subtends a mosaic of about the 20x20 size, 
at which time recognition begins to fall off, in 
both speed and accuracy, until a 10x10 mosaic is 
reached, at which point the pattern cannot be re
solved at all. This further suggests something 
about the size of the basic operator, when we con
sider that most letters are composed of loops and 
strokes that are on the order of 1/2 or l/k of the 
whole. For our present purposes, the advantage of 
the 5x5 operator was not only its plausibility but 
also the fact that it cuts down to a workable size 
the space within which to generate random operators 
of the sort we are using when we permute through all 
possible combinations of the matrix. Again, with 
the constraint that these random operators be 



connected, it becomes a more powerful geometry -
and topology-sensitive operator, and also a simu
lation of a more plausible neural net. 

Finally, psychophysical evidence also strongly 
suggests that the resolving power of the human per
ceptual mechanism is on the order of only two or 
three bits worth of differentiation as to dimen
sions of pattern characteristics - things such as 
length, slope, and curvature.1' 1^l> 2 1 This, again, 
suggests a 5x5 matrix as a minimum matrix that is 
capable of making these resolutions. 

The specifications for and methods used by 
living systems, and especially the human visual 
system, suggest certain design possibilities for a 
pattern recognition computer; but they certainly do 
not suggest the only possibilities. Nor should 
they be slavishly imitated. They should, however, 
be examined seriously, for the living pattern rec
ognizers are the only successful systems that we 
know of today. Nor does it seem that the sort of 
use we have been making of these human specifica
tions will impose any fundamental limitation on a 
program such as this, one that generates and ad
justs its own operators. We have, in fact, already 
found the program making a different, and, appar
ently, more powerful, choice of operators than the 
choice suggested to us by the psychophysiological 
data and conjectures we have just described. The 
program's "learning" methods can now depend both 
on built-in connections (maturation) and on the 
inputs that need to be learned. The program will 
develop differently as a function of"different 
input sets. It appears to be capable of extrac
ting and successfully using information from these 
sets. This would seem to be as completely adap
tive - being adaptive to inputs - as a computer or 
organism can be expected to be. 

One of the most encouraging things about this 
program is that it still has a lot to learn. Its 
present level of success was achieved without any 
great sophistication in choice of operators or any 
great ability on the part of the program to gener
ate and improve operators. More important, the 
program itself is in a position to improve on what
ever choices it, or its programmers, make for it, 
and to make and to evaluate its own choices. This 
is so because it learns, and continues to learn, as 
it performs. There is good reason to feel that the 
present results reflect only the beginning to this 
process, since the program is still adjusting its 
set of operators and their values. The program, as 
it continues to run and be tested, should continue 
to improve. The program will be doing the improv
ing - "learning," if you will - and not the pro
grammers. It will be something of an experimenter 
on its own; and it should, in fact, present- us with 
results, as it evolves toward "best" sets of oper
ators, that will be the equivalent of parallel 
experiments between, and throw light on alternate, 
pattern recognition methods. For most pattern 
recognition schemes are close to being equivalents 
to one or another of the sets of operators that the 
present program can handle, except for those pro
grams which make use of more complex analytic 
methods. 

This sort of design would seem to have some 
applicability to a variety of more "intelligent" 
machines. The program replaces the programmer-
analyst by a programmed operator that first gener
ates operators that make effective enough use of 
the unknown input space, and then makes use of 
feedback as to the success of these new operators 
in mapping unknown inputs in order to increase 
their effectiveness. Thus neither programmer nor 
program needs to know anything specific about the 
problem ahead of time. The program performs, as 
part of its natural routine, the data collection, 
analysis, and inference that is typically left to 
the programmer. This would be a foolish waste of 
time for a problem that had already been analyzed. 
But pattern recognition, and many other problems 
of machine intelligence, have not been sufficiently 
analyzed. The different pattern recognition pro
grams are, themselves, attempts to make this analy
sis. As long as pattern recognition remains in the 
experimental stage (as it must do until it is 
effectively solved), a program of this sort would 
seem to be the most convenient and flexible format 
for running what is, in effect, a continuing series 
of experiments upon whose results continuing modi
fications of theories are made. This becomes an 
extremely interesting process for the biologist or 
psychologist, especially to the extent that the 
program can be interpreted either physiologically 
or functionally, or at the least does not violate 
any known data. For the experimentation and con
comitant theory building and modification being 
undertaken today is rapidly building what appears 
to us to be the first relatively firm and meaning
ful theoretical structure - for pattern, or form, 
perception - for the science of "higher mental 
processes." 

Self-generation of operators, by the various 
methods employed in this program, may also suggest 
approaches toward solving a wide variety of pattern 
recognition and pattern extraction problems. Thus 
there is some hope that relatively powerful oper
ators are being extracted and generated as a result 
of experience with and feedback from the program's 
quasi-experimental analysis on the body of data 
that is available to it - its inputs and the conse
quences of its actions. Further, the level of 
power of these operators, and the serial ordering 
of operators can also be placed under similar 
control. Thus operators need not be overly simple 
or random to be machine-chosen; nor pre-programmed 
to be powerful. Rather, they can arise from the 
problem, and thus be sensitive to the problem, and 
to changes in the problem. 
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UNKNOWN PATTERN INTERNAL REPRESENTATION 
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Figure 1 An unknown pattern is input as a 20 x 20 matrix with the cells covered by the 
pattern represented by 'l's' and the other cells by '0's." 
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Figure 2 A rectangular mask is drawn around the unknown pattern. 
Each of the 5 x 5 matrix "operators" is then translated over the 
pattern. 
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Figure 3 The operator at the lover left in the figure is shown in 
the two positions where it matches the input matrix. An operator 
gives a positive output each time its '"l's" cover 'l's'' and its 'O's' 
cover "O's" in the unknown pattern. 
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OPERATOR GENERATION 
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b) BY RANDOM CHOICE OF CELLS 
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Figure h Operators are generated within the 5 x 5 matrix "by either: a) 
extraction from the input pattern (random placement of a 5 x 5 matrix, 
elimination of 'O's" connected to 'l's, " and elimination of each of the 
remaining cells with a probability of •§•) or b) "by random designation of 
cells as either "0'' or ''l1' (choose a "1," then place a '0'' two cells to 
its right). In l) from 3 to 7 "l's" are chosen completely at random, 
while in 2) the choice is limited to connected cells. 
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Figure 5 A) Some typical examples of pre-programmed operators 
are shown. B) Six of the operators generated "by the program, 
during a run that reached 9k^> success on 7 sets of 5 patterns, 
are shown. 
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MAT MX 
OPERATORS 
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Figure 6 Operator outputs are listed for the unknown pattern in the same format 
as in lists stored in memory. 
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Figure 7 Differences are obtained between the characteristics for the input pattern 
and each list of characteristics in memory. These differences are then weighted by 
the product of the "general amplifiers" and "pattern amplifiers," giving a weighted 
average difference for each list in memory. When multiplied by corresponding "average 
difference amplifiers," the weighted average differences give "difference scores" for 
each pattern in memory. The name of the pattern with the smallest "difference score" 
is chosen as the name of input. 
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Figure 8 The pattern amplifiers for certain lists are adjusted 
to increase weightings of individual characteristics that gave 
differences in the right direction, and to decrease weightings 
that gave differences in the wrong direction 
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Figure 9 Two examples of an "A" and a "C" and the two line drawings of 
a chair are typical of unknown patterns processed. 






