
A PATTERN RECOGNITION PROGRAM THAT GENERATES,
EVALUATES, AND ADJUSTS ITS OWN OPERATORS

Leonard Uhr
Mental Health Research Institute

University of Michigan
Ann Arbor, Michigan

Summary

This paper describes an attempt to make use
of machine learning or self-organizing processes
in the design of a pattern-recognition program.
The program starts not only without any knowledge
of specific patterns to be input, but also without
any operators for processing inputs. Operators
are generated and refined by the program itself
as a function of the problem space and of its own
successes and failures in dealing with the prob
lem space. Not only does the program learn infor
mation about different patterns, it also learns
or constructs, in part at least, a secondary code
appropriate for the analysis of the particular
set of patterns input to it.

Background Review

The typical pattern recognition program is
either elaborately preprogrammed to process spe
cific arrays of input patterns, or else it has
been designed as a tabula rasa, with certain
abilities to adjust its values, or "learn." The
first type often cannot identify large-classes of
patterns that appear only trivially different to
the human eye, but that would completely escape
the machine's logic. ' ' The best examples of
this type are probably capable of being extended
to process new classes of patterns.

8,19
But each

such extension would seem to be an ad hoc compli
cation where it should be a simplification, and
to represent an additional burden of time and
energy on both programmer and computer.

The latter type of self-adjusting program
does not, at least as yet, appear to possess meth
ods for accumulating experience that are suffi
ciently powerful to succeed in interesting cases.
The random machines show relatively poor identi
fication ability.-^A° (One exception to this
statement appears to be Roberts' modification of
Rosenblatt's Perceptron.-^ But this modification
appears to make the Perceptron an essentially non-
random computer.) The most successful of this
type of computer, to date, simply accumulates in
formation or probabilities about discrete cells
in the input matrix.:>>-LU But this is an unusually
weak type of learning (if it should be charac
terized by that vague epithet at all), and this
type of program is bound to fail as soon as, and
to the extent that, patterns are allowed to vary.

Several programs compromise by making use of
some of the self-adapting and separate operator
processing features of the latter type of program,
but with powerful built-in operations of the sort

Charles Vossler
System Development Corporation

Santa Monica, California

used by the first type. ' They appear to have
gained in flexibility in writing and modifying
programs; but they have not, as yet, given
(published) results that indicate that they are
any more powerful than the weaker sort of program
(e.g. Baran and Estrin) that uses individual cells
in the matrix in ways equivalent to their use of
"demons" and "operators." A final example of
this mixed type of program is the randomly coupled
"n-tuple" operator used by Bledsoe and Browning. > 5
In this program, random choice of pairs, quin
tuples and other tuples of cells in the input
matrix is used to compose operators, in an attempt
to get around the problems of pre-analyzing and
pre-programming. This method appears to be guar
anteed to have at least as great power as the
single cell probability method. 3 But it has not
as yet demonstrated this power. And it would,
like most of the other programs discussed (or
known to the authors) fall down when asked to
process patterns which differed very greatly from
those with which it had originally "gained expe
rience" by extracting information.^

Summary of Program Operation

In summary, the presently running pattern
recognition program works as follows: Unknown
patterns are presented to the computer in dis
crete form, as a 20x20 matrix of zeros and ones.
The program generates and composes operators by
one of several random methods, and uses this set
of operators to transform the unknown input matrix
into a list of characteristics. Or, alternately,
the programmer can specify a set of pre-generated
operators in which he is interested.

These characteristics are then compared with
lists of characteristics in memory, one for each
type of pattern previously processed. As a re
sult of similarity tests, the name of the list
most similar to the list of characteristics just
computed is chosen as the name of the input pat
tern. The characteristics are then examined by
the program and, depending on whether they indi
vidually contributed to success or failure in
identifying the input, amplifiers for each of
these characteristics are then turned up or down.
This adjustment of amplifiers leads eventually to
discarding operators which produce poor charac
teristics, as ̂ indicated by low amplifier settings,
and to their replacement by newly generated
operators.

One mode of operation of the present program
is to begin with no operators at all. In this
case operators are initially generated "by the
program at a fixed rate until some maximum number
of operators is reached. The continual replace
ment of poor operators by new ones then tends to
produce an optimum set of operators for process
ing the given array of inputs.

Details of Program Operation

The program can be run in a number of ways,
and we will present results for some of these.
The details of the operation of the program
follow.

1. An unknown pattern to be identified is
digitfzed into a 20x20 0-1 input matrix.

2. A rectangular mask is drawn around the
input (its sides defined by the leftmost, right
most, bottommost, and topmost filled cells).

3. The input pattern is transformed into
four 3-*>it characteristics by each of a set of
5x5 matrix operators, each cell of which may be
visualized as containing either a 0, 1, or blank.
These small matrices which measure local charac
teristics of the pattern are translated, one at a
time, across and then down that part of the matrix
which lies within the mask. The operator is con
sidered to match the input matrix whenever the 0's
and l's in the operator correspond to identical
values in the pattern, and for each match the
location of the center cell of the 5*5 matrix
operator is temporarily recorded. This infor
mation is then summarized and scaled from 0 to 7
to form four 3-"bit characteristics for the
operator. These represent l) the number of
matches, 2) the average horizontal position of the
matches within the rectangular mask, 3) "the
average vertical position of the matches, and k)
the average value of the square of the radial
distance from the center of the mask.

A variable number of operators can be used in
any machine run. This can mean either a number
pre-set for that specific run, or a number that
begins at zero and expands, under one of the rules
described below, up to a maximum of 40. The
string of 25 numbers which defines a 5*5 matrix
operator can be generated in any of the following
ways:

a. A pre-programmed string can be fed in by
the experimenter.

b. A random string can be generated; this
string can be restricted as to the number
of "ones" it will contain, and as to
whether these "ones" must be connected in
the 5^5 matrix. (We have not actually
tested this method as yet.)

c. A random string can be "extracted" from
the present input matrix and modified by
the following procedure (which in effect
is imitating a certain part of the matrix).
The process of inserting blanks in the
extracted operator allows for minor dis

tortions in the local characteristics
which the operator matches.

(1) A 5x5 matrix is extracted from a
random position in the input matrix.

(2) All "zero" cells connected to "one"
cells are then replaced by blanks.

(3) Each of the remaining cells, both
"zeros" and "ones," are then replaced
by a blank with a probability of ^.

(k) Tests are made to insure that the
operator does not have "ones" in the
same cells as any other currently
used operator or any operator in a
list of those recently rejected by
the program. If the operator is
similar to one of these in this re
spect a new operator is generated by
starting over at step l,

k. A second type of operator is also used.
This is a combinatorial operator which specifies
one of 16 possible logical or arithmetic operations
and two previously calculated characteristics
which are to be combined to produce a third char
acteristic. These operators are generated by the
program by randomly choosing one of the possible
operations and the two characteristics which are
to be combined. This random generation process
is improved by generating a set of ten operators,
and then pre-testing these using the last two
examples of each pattern which have been saved in
memory for this purpose. This pre-testing is
designed to choose an operator from the set which
produces characteristics that tend to be invariant
over examples of the same pattern yet vary between
different patterns.

Since these operators may act upon character
istics produced by previous operators of the same
type, functions of considerable complexity may be
built up.

5. The two types of operators just described
produce a list of characteristics by which the
program attempts to recognize the unknown input
pattern. At any time the program has stored in
memory a similar list of characteristics for each
type of pattern which the program has previously
encountered. Corresponding to each list of char
acteristics in memory is a list of 3-bit ampli
fiers, which give the current weighting for each
characteristic as a number from 0 to 7.

The recognition process proceeds by taking
the difference between each of the characteristics
for the input pattern and those in the recognition
list of the first pattern. These differences are
then weighted by the corresponding pattern ampli
fiers, and then by general amplifiers which repre
sent the average of the pattern amplifiers across
all patterns, producing a weighted average differ
ence between the input list and the list in memory.
This average difference is multiplied by a final
"average difference" amplifier to obtain a "differ
ence score" for the list in memory. When a differ
ence score has been computed for each list in
memory, the name of the list with the smallest
score is printed as the name of the input pattern.

557
13.2

6. After each pattern is recognized the pro
gram modifies pattern amplifiers in those patterns
which have difference scores less than or only
slightly above the difference score for the correct
pattern. This means that the program will tend to
concentrate on the difficult discrimination prob
lems, since amplifiers are adjusted only in those
patterns which appear similar to the correct pat
tern in terms of the difference scores and there
fore make identification of the input difficult.
The correct pattern is compared with each of the
similar patterns in turn. Each characteristic in
the memory lists for a pair of patterns is examined
individually, and a determination is made as to
whether the correct pattern would have "been chosen
if the choice had been made on the basis of this
characteristic alone. If this one characteristic
would have identified the correct pattern, then the
corresponding amplifier is turned up by one. If it
would have identified the wrong pattern then the
amplifier is turned down by one. If no information
is given by the characteristic, for example, if it
is the same for both patterns, then the amplifier
is turned down with a probability of 1/8. If the
pattern compared with the correct pattern had the
higher difference score then the amplifiers are
adjusted only in that pattern. Otherwise, ampli
fiers are adjusted in both patterns. This means
that if several patterns obtained lower scores than
the correct pattern then the amplifiers in the cor
rect pattern will be drastically changed, since
they will change when compared with each of these
patterns.

The list of characteristics in memory for the
pattern just processed is then modified. The first
time a pattern is encountered its list of computed
characteristics is simply stored in memory along
with its name. On the second encounter of a pat
tern each of the characteristics in memory is re
placed by the new characteristic with a probability
of l/2. For the third and following encounters
each characteristic is replaced by the new value
with a probability of l/k. Since about l/k of the
characteristics will be changing each time, after
several examples of a pattern have been processed,
the list of characteristics in memory will tend to
be more similar to the characteristics of the last
patterns processed than to those processed earlier.
However, to the extent that the learning process is
able to produce operators giving invariant charac
teristics for a single pattern, the list of charac
teristics will be representative of all the examples
processed. The reason for not simply using the
average value for each characteristic is that this
would require saving in memory more than the 3 bits
otherwise needed for each characteristic, as well
as saving an indication of the number of times each
characteristic had been calculated for each pattern.

An alternate scheme which we tried involved
saving the highest and lowest values obtained by
each characteristic, and averaging these to obtain
a mean value with which to compare the input. This
worked quite well in all our test runs, which used
a few samples of each pattern. But there is the
possibility that with large numbers of examples of
a pattern, all the characteristics will eventually

have very large ranges; that is, the lower bounds
will tend to be 0 and the upper bounds will tend
to be 7.

7. The average difference amplifiers which
are used in the final step of the recognition pro
cess provide only coarse adjustments. These ampli
fiers are initially set to some fixed value, e.g.
60, and are then adjusted for the same pairs of pat
terns as the pattern amplifiers. The amplifier for
the correct pattern is turned down by N if there
are N incorrect patterns, and the amplifier for each
of the similar patterns is turned up by one.

8. The general characteristic amplifiers are
now computed by averaging the pattern amplifiers
across all patterns. These indicate the general
value of each characteristic in the recognition
process and form the basis for the construction of
success counts which control the replacement of
operators. Since the combinatorial operators com
bine characteristics to produce other characteristics,
the success count should reflect both the value of
a characteristic in the recognition process and the
importance of this characteristic in aiding the
creation of other, possibly important characteristics.

9.. This success count is formed by first
storing the value of the general characteristic
amplifier corresponding to each characteristic in
a table for success counts. Then starting with the
last combinatorial operator and working back through
the list of these operators, l/2 the value of the
success count for the characteristic corresponding
to the operator is added to the success counts of
the two characteristics which the operator combines.
Finally, two times the general characteristic ampli
fier setting is added to each success count.

10. Whenever a new operator is generated, the
characteristics produced by the operator are com
puted for each of the possible patterns using the
last example of each pattern, which has been saved
in the computer memory. These newly calculated
characteristics are then inserted into the list of
characteristics for their respective patterns. At
the same time the pattern amplifier settings for
each of these new characteristics are set to 1 so
that the characteristic will have very little
weight in computing a difference score until it
has been turned up as a function of proved ability
at differentiation. Since the general amplifier
for a characteristic is simply the average of the
pattern amplifiers, it will also be 1 for the new
characteristic. The success count of a new charac
teristic which is not combined to produce other
characteristics is then 3 and this value will tend
to increase if the operator proves to be valuable.
On the other hand if a success count drops below
3 (or in the case of a matrix operator, if the
average value of the success counts of its four
characteristics drops below 3) the operator is
rejected and a new operator is generated to take
its place.

The pattern amplifiers play a crucial part
both by aiding directly in the recognition process
and by providing the information which ultimately

determines the generation of new operators to re
place poor ones. Since the adjustment of these
amplifiers is made selectively., based on their
individual success or failure in distinguishing
pairs of patterns where confusion is likely, the
operators rejected by the program will tend to be
those which are not useful in making the more dif
ficult discrimination. Also, because amplifiers
are usually changed more drastically when the com
puter makes an incorrect guess, the 5*5 matrix
operators will have a higher probability of being
extracted from unrecognized patterns. Although the
rules governing the learning process seem rather
arbitrary in many cases, and it is difficult to
describe their effects quantitatively, qualitative
effects, such as this ability to concentrate on
difficult problems, are fairly easy to show. The
description of the program's operation shows that
the emphasis is not so much on the design of a
specific problem solving code as it is on the de
sign of a program which, at least in part, will
construct such a problem solving code as a result
of experience.

It is interesting to note that the memory of
the program exists in at least three different
places: l) in the lists of characteristics in
memory, 2) in the settings of the various ampli
fiers, and 3) in the set of operators in use by
the program. While the lists of characteristics
bear some direct relationship to the individual
patterns processed by the program, the values of
the amplifiers and the set of operators in use by
the program depend in a more complex way on the
whole set of patterns processed by the program, and
on the program's success or failure in recognizing
these patterns. The learning in the first case,
which involves simply storing characteristics in
memory, is merely "memorization" or "learning by
rote." In the second case, the learning is more
subtle for it involves the .program's own analysis
of its ability to deal with its environment, and
its attempts to improve this ability.

Test Results

The program was written for the IBM 709 and
required about 2000 machine instructions. The
time required to process a single character was
about 25 seconds when 5 different patterns were
used and kO seconds when each character had to be
compared with ten possible patterns in memory.
While such times are not excessive, they are large
enough to make it impractical to run extremely
large test cases.

In several early runs which we made, k8 pre
programmed matrix operators were used. These were
designed to measure such things as straight and
curved lines, the ends of vertical and horizontal
strokes, and various other features. The program
was tested using seven different sets of the five
hand-printed characters A, B, C, D, and E. These
involved a fair amount of distortion, and variation
in size, but were not rotated to any great extent.

The program's performance on the last three or
four sets in a run varied from about 70$ to 80$

depending on various changes which were made to the
rules governing the learning process. Although the
effects of the various rules were not extensively
tested, the program's ability to recognize charac
ters seemed quite dependent on the manner in which
pattern amplifiers were adjusted. Originally, the
amplifier for a characteristic had been turned up
by 1 with a probability of l/2 if the characteristic
individually identified the correct pattern, and
the amplifier had been turned down by 1 if it gave
no information. Performance seemed to improve when
this rule was changed so that the amplifier was
always turned up for a correct response of the
.characteristic, and turned down only with a proba
bility of 1/8 when no information was given by the
characteristic. The first of these runs showed
that few new matrix operators were being generated
by the program, so changes were also made in the
way the success counts were formed in order to
increase the number of new operators generated.

One run was made which did not use the matrix
operators. Instead, the individual cells of the
20x20 matrix were used as the first 400 character
istics and 500 combinatorial operators were used,
to produce a total of 900 characteristics which the
program used to recognize characters. With these
changes the program recognized only a little more
than 30$ of the characters. The amplifier settings
appeared to be generally somewhat higher for the
characteristics produced by the combinatorial oper
ators than for the input cells themselves. This
indicated that the program might have done slightly,
though probably not substantially, better if the
recognition had been based only on these latter
characteristics.

The last runs were made without pre-programmed
operators, but with the program generating all oper
ators from the start. A maximum of kO matrix oper
ators were used at any one time, and 160 of the
combinatorial operators were used in addition to
these. On a run with the same seven sets of five
characters used in previous tests, the program
recognized 86$ of the characters correctly in sets
2 through 7« (The first set can never be correctly
identified by the program, of course, since the
program must always predict the name of some pat
tern whose characteristics it already has in memory.)
In this run, the same sets of characters were then
processed by the computer a second time, and in
this case the program recognized 94$ of them, missing
only two of the 35 characters.

In another run three passes were made through
three sets of the first ten alphabetic characters.
In this case the program recognized 29 out of the
30 characters, or 97$, on the third encounter. With
this rather limited training the program was then
able to recognize 70$ of the hand printed charac
ters in a fourth set different from the three sets
with which it was trained. In this case, the pro
gram's ability to recognize unknown characters was
considerably less than its ability to recognize
previously processed characters. This can be ex
plained by the fact that three examples of each
pattern contain only a few of the possible vari
ations of a character. It can be expected that as

the number of examples -with which the program is
trained increases, its ability to recognize unknown
characters will also increase.

We have not made any test runs of this program
on the entire 26 letter alphabet, because of the
computer time involved. We have, however, made
some preliminary runs in debugging a modified pro
gram that was designed to increase the speed of
processing by a factor of 10 or greater, along with
a number of other changes. These runs gave pre
liminary processing abilities around 80$, using
three sets of the alphabet, after only two passes.
We anticipate that the completely debugged program,
with improvements in such things as amplifier ad
justments plus longer runs should raise this figure.

The program was also tested using line draw
ings representing a chair, a table, two different
faces, and two types of particle decay similar to
those shown in bubble chamber pictures. Two sets
of these 6 drawings were used, with the second set
drawn somewhat differently from the first set.
After the first set was processed, 50$ of .the draw
ings in the second set were recognized correctly by
the program. When the same two sets were then pro
cessed by the program a second time, all of the
drawings were correctly recognized.

Discussion

When this program is given a neurophysiologi-
cal interpretation, or a neural net analog, it can
be seen to embody relatively weak, plausible, and
"natural-looking" assumptions. The 5x5 matrix
operator is equivalent to a 5x5 net of input reti
nal cones or photocells converging on a single out
put, with "ones" denoting excitatory and "zeros"
denoting inhibitory connections, and the threshold
for firing the output unit set at the sum of the
"ones." Each translation step of the operator
matrix over the larger matrix gives a sequential
simulation of the parallel placement of many of
these simple neural net operators throughout the
matrix. Each different operator, then, is the
equivalent of an additional connection pattern
between input cones, firing onto a new output unit
that computes the output for that operation. This
is all quite plausible for the retina as known
anatomically, with a single matrix of cones in
parallel that feed into several layers of neurons.
Evidence for excitatory and inhibitory connections
is also strong.^ And there is even beginning to be
evidence of several types of simple net operators
that exist in parallel iterated form throughout the
retinal matrix (four of these as determined by
Lettvin, Maturana, McCulloch and Pitts in the frog;
and probably even more as determined by Hubel and
Wiesel in the cat) .i:L> 1 2

It would seem, however, that the known physio
logical constraints and the plausible geometric
constraints on operators would suggest fewer than
the k0-odd operators that we have used (or than the
30-odd used by Doyle or the 75 used by Bledsoe and
Browning - ignoring the fact that they cannot be so
easily interpreted neurophysiologically)» ' For
example, straight line and sharp curve operators

559
13.2

would seem to be more plausible in terms of the
ease of connection and the importance of the infor •
mation to which they respond. A possible operator
that might overcome this problem, with which we are
now working, is a simple differencing operator that
will, by means of several additional layers of
operations, first delineate contour and then com
pute successively higher order differences, and
hence straightness, slope and curvature, for the
unknown pattern. This operator appears to be
equivalent to a simple net of excitatory and inhi
bitory elements. ^

This, then, suggests that the mapping part of
the program would be effected by two layers of
parallel basic units in a neuron net-like arrange
ment. The matching part might similarly be per
formed by storing the previously mapped lists in a
parallel memory and sweeping the input list, now
mapped into the same standard format, through these
lists. Finally, the amplifiers can be interpreted
as threshold values as to when the differences thus
computed lead to an output. The specific pattern
characteristic amplifier would be an additional
single unit layer lying right behind the memory
list; the interpretation of the general amplifiers
might be made in terms of chemical gradients, but
is more obscure.

Thus a suitable parallel computer would perform
all of the operations of this program in from three
to five serial steps. This is a somewhat greater
depth than those programs, such as Selfridge's and
Rosenblatt's, that attempt to remain true to this
aspect of the visual nervous system. 1 5 * 17 But it
is well within the limits, and actually closer to
the specifications, of that system. It also takes
into consideration the very precise (and amazing)
point-to-point and nearness relations that are seen
in the visual system, both between several spots on
the retina or any particular neural layer, and from
retina to cortex.20 It also is using operators that
seem more plausible in terms of neural interconnec
tions - again, in the living system, heavily biased
toward nearness.

The size of the overall input matrix has also
been chosen with the requirements of pattern per
ception in mind. Good psychophysical data show
clearly that when patterns of the complexity of
alphanumeric letters are presented to the human
eye, recognition is just as sure and quick no
matter how small the retinal cone mosaic, until the
pattern subtends a mosaic of about the 20x20 size,
at which time recognition begins to fall off, in
both speed and accuracy, until a 10x10 mosaic is
reached, at which point the pattern cannot be re
solved at all. This further suggests something
about the size of the basic operator, when we con
sider that most letters are composed of loops and
strokes that are on the order of 1/2 or l/k of the
whole. For our present purposes, the advantage of
the 5x5 operator was not only its plausibility but
also the fact that it cuts down to a workable size
the space within which to generate random operators
of the sort we are using when we permute through all
possible combinations of the matrix. Again, with
the constraint that these random operators be

connected, it becomes a more powerful geometry -
and topology-sensitive operator, and also a simu
lation of a more plausible neural net.

Finally, psychophysical evidence also strongly
suggests that the resolving power of the human per
ceptual mechanism is on the order of only two or
three bits worth of differentiation as to dimen
sions of pattern characteristics - things such as
length, slope, and curvature.1' 1^l> 2 1 This, again,
suggests a 5x5 matrix as a minimum matrix that is
capable of making these resolutions.

The specifications for and methods used by
living systems, and especially the human visual
system, suggest certain design possibilities for a
pattern recognition computer; but they certainly do
not suggest the only possibilities. Nor should
they be slavishly imitated. They should, however,
be examined seriously, for the living pattern rec
ognizers are the only successful systems that we
know of today. Nor does it seem that the sort of
use we have been making of these human specifica
tions will impose any fundamental limitation on a
program such as this, one that generates and ad
justs its own operators. We have, in fact, already
found the program making a different, and, appar
ently, more powerful, choice of operators than the
choice suggested to us by the psychophysiological
data and conjectures we have just described. The
program's "learning" methods can now depend both
on built-in connections (maturation) and on the
inputs that need to be learned. The program will
develop differently as a function of"different
input sets. It appears to be capable of extrac
ting and successfully using information from these
sets. This would seem to be as completely adap
tive - being adaptive to inputs - as a computer or
organism can be expected to be.

One of the most encouraging things about this
program is that it still has a lot to learn. Its
present level of success was achieved without any
great sophistication in choice of operators or any
great ability on the part of the program to gener
ate and improve operators. More important, the
program itself is in a position to improve on what
ever choices it, or its programmers, make for it,
and to make and to evaluate its own choices. This
is so because it learns, and continues to learn, as
it performs. There is good reason to feel that the
present results reflect only the beginning to this
process, since the program is still adjusting its
set of operators and their values. The program, as
it continues to run and be tested, should continue
to improve. The program will be doing the improv
ing - "learning," if you will - and not the pro
grammers. It will be something of an experimenter
on its own; and it should, in fact, present- us with
results, as it evolves toward "best" sets of oper
ators, that will be the equivalent of parallel
experiments between, and throw light on alternate,
pattern recognition methods. For most pattern
recognition schemes are close to being equivalents
to one or another of the sets of operators that the
present program can handle, except for those pro
grams which make use of more complex analytic
methods.

This sort of design would seem to have some
applicability to a variety of more "intelligent"
machines. The program replaces the programmer-
analyst by a programmed operator that first gener
ates operators that make effective enough use of
the unknown input space, and then makes use of
feedback as to the success of these new operators
in mapping unknown inputs in order to increase
their effectiveness. Thus neither programmer nor
program needs to know anything specific about the
problem ahead of time. The program performs, as
part of its natural routine, the data collection,
analysis, and inference that is typically left to
the programmer. This would be a foolish waste of
time for a problem that had already been analyzed.
But pattern recognition, and many other problems
of machine intelligence, have not been sufficiently
analyzed. The different pattern recognition pro
grams are, themselves, attempts to make this analy
sis. As long as pattern recognition remains in the
experimental stage (as it must do until it is
effectively solved), a program of this sort would
seem to be the most convenient and flexible format
for running what is, in effect, a continuing series
of experiments upon whose results continuing modi
fications of theories are made. This becomes an
extremely interesting process for the biologist or
psychologist, especially to the extent that the
program can be interpreted either physiologically
or functionally, or at the least does not violate
any known data. For the experimentation and con
comitant theory building and modification being
undertaken today is rapidly building what appears
to us to be the first relatively firm and meaning
ful theoretical structure - for pattern, or form,
perception - for the science of "higher mental
processes."

Self-generation of operators, by the various
methods employed in this program, may also suggest
approaches toward solving a wide variety of pattern
recognition and pattern extraction problems. Thus
there is some hope that relatively powerful oper
ators are being extracted and generated as a result
of experience with and feedback from the program's
quasi-experimental analysis on the body of data
that is available to it - its inputs and the conse
quences of its actions. Further, the level of
power of these operators, and the serial ordering
of operators can also be placed under similar
control. Thus operators need not be overly simple
or random to be machine-chosen; nor pre-programmed
to be powerful. Rather, they can arise from the
problem, and thus be sensitive to the problem, and
to changes in the problem.

References

1. Alluisi, E. A. "Conditions Affecting the Amount
of Information in Absolute Judgements," Psychol.
Rev., 1957, 6k, 97-103-

2. Bailey, G. E. C. and Norrie, G. 0. "Automatic
Reading of Typed or Printed Characters," Brit.
Inst. Radio Eng. Conv. on Electronics in
Automation, 1957*

13.

3. Baran, P. and Estrin, G. "An Adaptive Character
Reader/' Paper presented at IRE WESCON, Los
Angeles, August, i960.

14-. Bledsoe, W. W. and Browning, I. "Pattern Recog
nition and Reading by Machine," Proc. Eastern
Joint Comp. Conf., 1959, 225-232.

5. Bledsoe, W. W. "Further Results on the N-tuple
Pattern Recognition Method," IRE Trans. Elec
tronic Computers, in press.

6. Doyle, W. "Recognition of Sloppy, Hand-printed
Characters," Proc. West. Joint Comp. Conf.,
i960, 133-1^2.

7. Greanias, B. C , Hoppell, C. J., Kloomok, M.,
and Osborne, J. S. "The Design of the Logic
for the Recognition of Printed Characters "by
Simulation," IBM J. Res. Development, 1957, 1,
8-18.

8. Grimsdale, R. L., Sumner, F. H., Tunis, C. J.,
and Kilburn, T. "A System for the Automatic
Recognition of Patterns," Proc. IEE, Part B,
1959, 106, 210-221.

9. Hartline, H. K. "The Response of Single Optic
Nerve Fibers of the Vertebrate Eye to Illumin
ation of the Retina," Amer. J. Physiol., 1938,
121, i4-00-l4-15.

10. Highleyman, W. H. and Kamentsky, L. A. "Comments
on a Character Recognition Method of Bledsoe
and Browning," IRE Trans. Electronic Computers,
i960, Vol. EC-9, 2 6 ^

11. Hubel, D. H. and Wiesel, T. N. "Receptive Fields
of Single Neurons in the Cat's Striate Cortex,"
J. Physiol., 1959, 1U8, 57^-591-

12. Lettvin, J. Y., Maturana, H. R., McCulloch,
W. S., and Pitts, W. H. "What the Frog's Eye
Tells the Frog's Brain," Proc. IRE, 1959, V7,
19140-1951'

13. Miller, G. A. "The Magical Number Seven, Plus
or Minus Two: Some Limits on our Capacity for
Processing Information," Psychol. Rev., 1956,
63, 81-96.

lit-. Roberts, L. G. "Pattern Recognition with Adap
tive Network," IRE Conv. Rec. i960, Vol. 8,
Part 2, 1, 66-70.

15. Rosenblatt, F. The Perceptron. A Theory of
Statistical Separability in Cognitive Systems.
Buffalo: Cornell Aeronautical Laboratory, Inc.,
Report No. VG-H96-G-I, 1958.

16. Rosenblatt, F. "Perceptron Simulation Experi
ments," Proc. IRE, I960, 14-8, 301-309-

17. Selfridge, 0. G. "Pandemonium: A Paradigm for
Learning," In: Mechanization of Thought Pro
cesses. London: HMSO, 1959, 511-535-

18. Selfridge, 0. G. and Neisser, U. "Pattern
Recognition by Machines and Men," Sci. Amer.,
i960, 203, 60-68.

19. Sherman, H. "A Quasi-topological Method for
the Recognition of Line Patterns," In: Infor
mation Processing. Paris: UNESCO, i960,
232-238.

20. Sperry, R. W. "Mechanisms of Neural Maturation,"
In: (S. S. Stevens, Ed.) Handbook of Experi
mental Psychology. New York: John Wiley and
Sons, Inc., 1951, 236-2&0.

21. Uhr, L. "Machine Perception of Printed and
Hand-written Forms by Means of Procedures for
Assessing and Recognizing Gestalts," Paper
presented at ACM Meeting, Boston, 1959.

22. Uhr, L. "'Pattern Recognition' Computers as
Models for Form Perception," (draft), Ditto,
i960.

23• Uhr, L. "A Possibly Misleading Conclusion as
to the Inferiority of One Method for Pattern
Recognition to a Second Method to Which it is
Guaranteed to be Superior," IRE Trans. Elec
tronic Computers, 1961, in press.

2I4-. Uhr, L. and Vossler, C. "Suggestions for Self-
adapting Computer Models of Brain Functions,"
Behav. Sci., 1961, in press.

25. Unger, S. H. "Pattern Recognition and Detection,''
Proc. IRE, 1959, hi, 1737-1752.

562
13.2

UNKNOWN PATTERN INTERNAL REPRESENTATION

• mm •

1 I
V
1
I
f

/
/
/
/
J.

• •

mm

mm

M B

•»

w

mtm

mm

+m*

mm

mm

+*

« •

m%\

^

•^

*"
»•»

•

N

*
v

>
r

V
>

/

>
/

v
\

J
/

\ 1
J f

L,

i
/
r

i

i

i

i

i

i

i
i

i

i

i

i

i

i

i

i

i

i
i

i

i

i

i

i

i

i

i

i
i

i

i

i
i

i

i
i

i

i

i

i
i

i

i
i

i
i

i
i

i

i

i

i

i
1
1

1

1
1

Figure 1 An unknown pattern is input as a 20 x 20 matrix with the cells covered by the
pattern represented by 'l's' and the other cells by '0's."

OPERATOR

(_.

<

0
<

r
E-

•

4

A

2

$
5
i

G
3
3

•K

)

1

T

I

T

I

* i

I

T i

I

I

T;
i P

i

i

• i

I

i
i

i

i
i

i

i

i
i

i

i *

i

I
I

I
I

mam

*
i

i
I
i

i
i

i
i

i

i

i

i
i

I
i

I

i
i

i
i

i
i

i
i

i

.)
r

Figure 2 A rectangular mask is drawn around the unknown pattern.
Each of the 5 x 5 matrix "operators" is then translated over the
pattern.

563
13.2

OPERATOR

o
r i

§

1

1

1

1

1

1

1

1

0 1

1

1

1

HI'

Ef

1

1

1

? 1

Al

1

HI'

1
1

1

L

or
l

l

r E

l

l

l

l

i

_

l
l

l

l

l
l

l

l

l

l

l
l

l
l

l

l
l

l
l

l

l

l

l

l

l
l

l

l

l
l
l

OPERATOR HIT

1

1
1

1

0

1

0 B

N = 2

X R^

Figure 3 The operator at the lover left in the figure is shown in
the two positions where it matches the input matrix. An operator
gives a positive output each time its '"l's" cover 'l's'' and its 'O's'
cover "O's" in the unknown pattern.

564
13.2

OPERATOR GENERATION

a) BY EXTRACTION

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1 .-

1

1
1

1

1
1

1

1

1

1
1

1
1

1
1

1

1

1

1

1
1

1

-
1

1

0
0

0
0
1

0
0

0
1
1

0
0

1
1
0

1
1

1
0
0

0
0

0
0
0

— •

0
0

1

0
0

1
1

1
1

1
1

1

0
0
0

— •

0

1

0

1
1

1

1

0
0

b) BY RANDOM CHOICE OF CELLS

1) 1

1

0

1

1

1
0

0

0

2)

i

1
1

1

-

0
0
0

0

0

Figure h Operators are generated within the 5 x 5 matrix "by either: a)
extraction from the input pattern (random placement of a 5 x 5 matrix,
elimination of 'O's" connected to 'l's, " and elimination of each of the
remaining cells with a probability of •§•) or b) "by random designation of
cells as either "0'' or ''l1' (choose a "1," then place a '0'' two cells to
its right). In l) from 3 to 7 "l's" are chosen completely at random,
while in 2) the choice is limited to connected cells.

OPERATORS USED

A. PRE-PROGRAMMED SET

565
13.2

1

1

1

1

0

1

0

0
0

0

0
0 0

-

1

0 0

0
0

0

0
0

1
1

1

1
1

1 1
_1 1 _1

i i__Li I
_ J L 1 _ 1 _
1 1

B. SET GENERATED BY P R O G R A M

1

1

0

0

0
0

0

1
1

1 0

0
0

0

1

0

1-1 1
1

1

1

0

0
0

-

1

0

0

1

1 1 1

0

0

1 1

0

0

0
0

0

0

0

0

0

1

1
1

Figure 5 A) Some typical examples of pre-programmed operators
are shown. B) Six of the operators generated "by the program,
during a run that reached 9k^> success on 7 sets of 5 patterns,
are shown.

566
13.2

MAT MX
OPERATORS

PATTERN OPERATOR 1

NAME

B

N

3 4

2 3

5 6

OPERATOR 2

X Y Bf N X

2 2

0 1

0 0

COMBINATORIAL!
^OPERATORS *1

CHARACTERISTIC

R^ . . . m-2 m-1 m

. . 6

. . 2

Figure 6 Operator outputs are listed for the unknown pattern in the same format
as in lists stored in memory.

567
13.2

PATTERN A

CHARACTERISTICS (A)
INPUT (?)
DIFFERENCE |A - ? |

PATTERN AMPLIFIERS
GENERAL AMPLIFIERS

3
2
1

2
3

3
2
1

3
3

4
2
2

1
1

1
2
1

2
1

4 .
2 .
2 .

0 .
0 .

. . 3

. . 4

. . 1

. . 3

. . 3

DIFF. X AMPLIFIERS

WEIGHTED
AVERAGE DIFF

| f = 1 . 0 4

AVE. DIFF.
AMPLIFIER

61

PATTERN B

CHARACTERISTICS (B)
INPUT (?)
DIFFERENCE |B - ?|

PATTERN AMPLIFIERS
GENERAL AMPLIFIERS

2
2
0

4
3

2
2
0

3
3

3
2
1

2
1

2
2
0

3
1

3 .
2 .
1 .

2 .
0 .

. . 5

. . 4

. . 1

. . 2

. . 3

DIFF. X AMPLIFIERS

WEIGHTED
AVERAGE DIFF.

8 =
32

.25

AVE. DIFF.
AMPLIFIER

60

Figure 7 Differences are obtained between the characteristics for the input pattern
and each list of characteristics in memory. These differences are then weighted by
the product of the "general amplifiers" and "pattern amplifiers," giving a weighted
average difference for each list in memory. When multiplied by corresponding "average
difference amplifiers," the weighted average differences give "difference scores" for
each pattern in memory. The name of the pattern with the smallest "difference score"
is chosen as the name of input.

RIGHT LIST

DIFFERENCE

AMPLIFIERS
ADJUSTED

NEW TOTAL

4
+ 1
+ 1

6

2
+ 1
-1
2

1ST WRONG LIST

DIFFERENCE

AMPLIFIERS
ADJUSTED
NEW TOTAL

2
+ 1

3

4 5

3 1
0 +1
3 2

2ND WRONG LIST

DIFFERENCE

AMPLIFIERS

ADJUSTED

NEW TOTAL

1 2

+ 1 -1
2 1

2

-1
1

1 . . . 1

-1 . . .+1
0 ... 2

Figure 8 The pattern amplifiers for certain lists are adjusted
to increase weightings of individual characteristics that gave
differences in the right direction, and to decrease weightings
that gave differences in the wrong direction

569
13.2

I I I I
I I I
I I I

I I
I I I
I i

i i I
I I

I I I
I
i I I I I I I

I
I
I

I I
I
I
I

I I I I I

i I I
I I

I
I I
i i i i i i i

I I
i i i i

I
I
I
I
I
I

I I I I I I I
i i i i
1 1 1 1 i i

I I
I I
I I

i i i i
I I I

I

I I I I I I
i l l I

I I I

I I

I I I

11 ii
i ii
I I

Figure 9 Two examples of an "A" and a "C" and the two line drawings of
a chair are typical of unknown patterns processed.

