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DISTANCE TRANSFORM ALGORITHMS AND
THEIR IMPLEMENTATION AND EVALUATION

George J. Grevera
Saint Joseph’s University
Philadelphia, Pennsylvania, USA

Consider an n-dimensional binary image consisting of one or more objects. A value of 1
indicates a point within some object and a value of 0 indicates that that point is part of
the background (i.e., is not part of any object). For every point in some object, a distance
transform assigns a value indicating the distance from that point within the object to the
nearest background point. Similarly for every point in the background, a distance transform
assigns a value indicating the minimum distance from that background point to the nearest
point in any object. By convention, positive values indicate points within some object and
negative values indicate background points. A number of elegant and efficient distance
transform algorithms have been proposed, with Danielsson being one of the earliest in 1980
and Borgefors in 1986 being a notable yet simple improvement. In 2004 Grevera proposed
a further improvement of this family of distance transform algorithms that maintains their
elegance but increases accuracy and extends them to n-dimensional space as well. In this
paper, we describe this family of algorithms and compare and contrast them with other
distance transform algorithms. We also present a novel framework for evaluating distance
transform algorithms and discuss applications of distance transforms to other areas of image
processing and analysis such as interpolation and skeletonization.

1. INTRODUCTION

Consider a binary image, I , consisting of one or more objects. Since this is
a binary image, each point is either within the bounds of some object (interior
point) or is part of the background and is not part of any object (exterior point).
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We note that some points within objects are noteworthy in that they are positioned
on the border of the object with at least one of the outside (background) points.
Adopting terminology from digital topology [1], we call these points elements of
the set of points that form the immediate interior (II) of some object. Similarly,
some background points are notable in that they are positioned on the border or
interface of some object as well. Once again adopting terminology from digital
topology, we call these background points elements of the set of points that form
the immediate exterior (IE). Together, the union of the sets II and IE form a set
of points called border points (or boundary elements), B. We may now define a
distance transform as an algorithm that given I produces a transformed image, I ′,
by assigning to each point in I the minimum distance from that point to all border
points.

A number of issues arise when dealing with distance transform algorithms.
The first and probably the most important issue is one of accuracy. Does the
distance transform produce results with minimal errors (or is the distance transform
error free)? If that is the case, it is important to develop a methodology to verify
this claim (and we will do so in this chapter). Even for those algorithms that
are theoretically proven to be error free, from a software engineering standpoint
it is important to be able to validate the implementation of the algorithm. A
second important issue concerns the computation time required by the method.
It is relatively straightforward to develop an exhaustive method that requires a
great deal of processing time. It is important to evaluate processing time as well.
And yet another issue is with regard to the dimensionality of I . Since medical
imagery is of three or four dimensions, it is important in the medical arena for a
distance transform algorithm to generalize to dimensions higher than two. Another
issue that arises when dealing with medical images is that of anisotropic sampling.
Medical images are typically acquired as three-dimensional volumes of data (stacks
of slices) with the sampling within each plane or slice at a higher rate than the
sampling across slices. This yields data with finer spacing between neighboring
pixels (or more generally, voxels) within a slice (e.g., 0.5 mm) than between
neighboring pixels between slices (e.g., 1.0 mm).

Distance transform algorithms are, like most other computationally intensive
algorithms, of interest in and by themselves and have been the subject of at least
one PhD dissertation [2]. Many distance transform algorithms have been proposed,
with [3] and [4] most likely being the earliest. In general, distance transform algo-
rithms exhibit varying degrees of accuracy of the result, computational complexity,
hardware requirements (such as parallel processors), and conceptual complexity of
the algorithms themselves. In [5], the author proposed an algorithm that produces
extremely accurate results by propagating vectors that approximate the distance in
2D images by sweeping through the data a number of times by propagating a local
mask in a manner similar to convolution. In [6] the author presented the Chamfer
distance algorithm (CDA), which propagates scalar, integer values to efficiently
and accurately calculate the distance transform of 2D and 3D images (again in a
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manner similar to convolution). Borgefors [6] also presented an error analysis for
the CDA for various neighborhood sizes and integer values. More recently in [7]
an analysis of 3D distance transforms employing 3x3x3 neighborhoods of local
distances was presented. In [8] an analysis of the 2D Chamfer distance algorithm
using 3x3, 5x5, and larger neighborhoods employing both integer and real values
was presented. Marchand-Maillet and Sharaiha [9] also present an analysis of
Chamfer distance using topological order as opposed to the approximation to the
Euclidean distance as the evaluation criteria. Because of the conceptual elegance
of the CDA and because of its widespread popularity, we feel that the CDA family
of algorithms is important and worthy of further study.

Of course, distance transforms outside of the Chamfer family also have been
presented. A technique from Artificial Intelligence, namely A∗ heuristic search
[10], has been used as the basis for a distance transform algorithm [11]. A multiple-
pass algorithm using windows of various configurations (along the lines of [5] and
other raster scanning algorithms such as the CDA) was presented in [12] and
[13]. A method of distance assignment called ordered propagation was presented
in [14]. The basis of that algorithm and others such as A∗ (used in [11]) is to
propagate distance between pixels, which can be represented as nodes in a graph.
These algorithms typically employ sorted lists to order the propagation among the
graph nodes. Guan and Ma [15] and Eggers [16] employ lists as well. In [17] the
authors present four algorithms to perform the exact, Euclidean, n-dimensional
distance transform via the serial composition of n-dimensional filters. Algorithms
for the efficient computation of distance transforms using parallel architectures are
presented in [18] and [19]. In [19] the authors present an algorithm that consists
of two phases, with each phase consisting of both a forward scan and a backward
scan. In the first phase columns are scanned; in the second phase rows are scanned.
They note that since the scanning of a particular column (or row) is independent of
the scanning of the other columns (or rows), each column (row) may be scanned
independently (i.e., in parallel). A distance transform employing a graph search
algorithm is also presented in [20].

Since the early formulation of distance transform algorithms [3, 4], applica-
tions employing distance transforms have also become widespread. For example,
distance transforms have been used for skeletonization of images [21, 22, 23, 24].
Distance transforms are also useful for the (shape-based) interpolation of both
binary images [25, 26] as well as gray image data [27]. In [28] the authors em-
ploy distance transform information in multidimensional image registration. An
efficient ray tracing algorithm also employs distance transform information [29].
Distance transforms have also been shown to be useful in calculating the medial
axis transform, with [30, 31] employing the Chamfer distance algorithm specifi-
cally. In addition to the usefulness of distance transforms for the interpolation of
3D gray medical image data [32, 33], they have also been used for the automatic
classification of plant cells [34] and for measuring cell walls [35]. The Chamfer
distance was also employed in a method to characterize spinal cord atrophy [36].
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Because distance transforms are applicable to such a wide variety of problems, it
is important to develop accurate and efficient distance transform algorithms.

2. DISTANCE TRANSFORM ALGORITHMS

Before we begin our discussion of algorithms in detail, we note that our
descriptions will be limited to the two-dimensional case (i.e., where the input
image, I , is two dimensional). Some algorithms readily generalize (or have been
generalized) to higher dimensions. We will endeavor to point out those more
general algorithms. Furthermore, all of the algorithms that will be described do
not require any special purpose hardware such as parallel processors.

All of the distance transform algorithms that will be described can be said to
rely on the determination of border points, so we begin with a method to determine
them. Recall that we define the border points,B, as the union of the sets II and IE.
To determine the set of border points, we must first determine these sets. A point

element of the background iff I(q) = 0. But not all object points are elements of
II (nor are all background points elements of IE). Only those object points that are
on the border of an object are elements of II (and similarly for IE). To determine
if an object point, p = (x, y), is an element of II, we consider the neighborhood
of p to be the set of all points N(p) = {(x + dx, y + dy) | −1 <= dx <= 1
and −1 <= dy <= 1}. In practice, we typically restrict the definition of N(p)
to include only those nearby elements with the same x or y coordinates as p (the
so-called 4-adjacency (connectedness or connectivity) versus the less restrictive
8-adjacency) as follows: N(p) = {(x + dx, y + dy)| − 1 <= dx <= 1 and
−1 <= dy <= 1 and |dx + dy| = 1}. If there exists at least one point q in N(p)
such that q is an element of the background, then p is an element of II. Similarly,
to determine if a background point, q = (x, y), is an element of IE, we consider
the neighborhood of q. If there exists at least one point p in N(q) such that p
is an element of an object, then q is an element of the IE. The algorithm for this
determination follows:

for (y=1; y<ySize-1; y++)

for (x=1; x<xSize-1; x++)

if ( I(x-1,y) != I(x,y) or I(x+1,y)] != I(x,y) or

I(x,y-1) != I(x,y) or I(x,y+1) != I(x,y))

then (x,y) is a 4-adjacent border element.

if ( I(x-1,y-1) != I(x,y) or I(x+1,y-1)] !=I(x,y) or

I(x-1,y+1) != I(x,y) or I(x+1,y+1) !=I(x,y) )

then (x,y) is a remaining 8-adjacent border element.

where xSize is the number of columns in I and I ′, and ySize is the number of rows.
We note that some distance transform algorithms including [5] restrict the definition
of border points to elements of II only. Our framework easily accommodates this

p= (x, y) is an element of an object iff I(p) = 1. Similarly, a point q = (x, y) is an
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via a simple change to the algorithm above as illustrated below. We point out,
however, that this definition will not preserve the property of symmetry under
complement [37]. Consider the complement C of the binary image I such that
C(p) = 1 if I(p) = 0 andC(p) = 0 otherwise. A distance transform that preserves
symmetry under complement produces the same result given either C or I (i.e.,
C ′(p) = I ′(p) for all p, although the sign may be opposite by convention. In that
case, |C ′(p)| = |I ′(p)|.
for (y=1; y<ySize-1; y++)

for (x=1; x<xSize-1; x++)

if (I(x,y)==1) //restrict border points to II only

if ( I(x-1,y) != I(x,y) or I(x+1,y)] !=I(x,y) or

I(x,y-1) != I(x,y) or I(x,y+1) !=I(x,y) )

then (x,y) is a 4-adjacent border element.

if ( I(x-1,y-1) != I(x,y) or I(x+1,y-1)] != I(x,y) or

I(x-1,y+1) != I(x,y) or I(x+1,y+1) != I(x,y) )

then (x,y) is a remaining 8-adjacent border element.

Note that, without loss of generality, we assume that no object extends to the edge
of the discrete matrix in which it is represented. Otherwise, the description of the
algorithms would be unnecessarily complicated by additional boundary condition
checks. If it is the case that an object extends to the edge of the matrix, one may
simply embed that matrix and the objects that are represented within it in a larger
matrix with an additional layer of surrounding background elements.

2.1. A Simple Distance Transform Algorithm (Simple)

Arguably the simplest distance transform follows. First, we assign each border
element a distance value of 0: I ′(s) = 0, where s is in B. Then for each t not
in B, we assign I ′(t) = min {d(s, t)|s in B and t not in B}, where d(s, t) is the
Euclidean distance from s to t. This algorithm is very simple, both conceptually
and computationally. It is also error free. Furthermore, it is also very easy to extend
this algorithm to higher dimensions as well as to anisotropic data. Unfortunately, if
for each twe must search I to determine every s inB, we have an algorithm that is
the least computationally efficient of those that will be discussed. We subsequently
refer to this algorithm as Simple. Pseudo code for this algorithm follows.

//iterate over all (non border element) points

for (y=1; y<ySize-1; y++) {

for (x=1; x<xSize-1; x++) {

if (I’(x,y)!=0) { //only consider non border elements

//t=(x,y)

//now iterate over all border elements

for (y1=0; y1<ySize; y1++) {

for (x1=0; x1<xSize; x1++) {
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if (I’(x1,y1)==0) {

//s=(x’,y’)

//calculate the distance to this border element

d = sqrt( (x-x1)*(x-x1) + (y-y1)*(y-y1) );

//is it better than what’s already been assigned?

if (d < I’(x,y)) {

//yes, then update the distance from this

//point, t, to the border element, s

I’(x,y) = d;

}

} //end if

} //end for x1

} //end for y1

} //end if

} //end for x

} //end for y

2.2. A Simple Distance Transform Algorithm Employing a List
(SimpleList)

A straightforward modification to the simple algorithm yields a surprisingly
effective method. Instead of exhaustively and repeatedly searching I to determine
every s in B for every t not in B, we employ an additional data structure, a
list (actually using the vector class which can be indexed as implemented in the
generics in the standard C++ library) to represent B. The C++ vector class is
used because it may be indexed like an array, but unlike an array it can grow in
size dynamically. One does not need to know a priori the number of points to
allocate for the array. Then for each t not in B, we search the list L = B and
assign I ′(t) = min {d(s, t)|s in L and t not in B}. Like the simple algorithm
that does not employ a list, this algorithm is also very simple, both conceptually
and computationally. It too is also error free. Furthermore, it is also very easy to
extend this algorithm to higher dimensions as well as to anisotropic data. Unlike
the simple algorithm that does not employ a list, this algorithm is very efficient
when the size of the list is small. We subsequently refer to this algorithm as
SimpleList. Pseudo code for this algorithm follows.

//iterate over all (non border element) points

for (y=1; y<ySize-1; y++) {

for (x=1; x<xSize-1; x++) {

if (I’(x,y)!=0) { //only consider non border elements

//at this stage, we have a point that is not an element of

//the border. iterate over all border elements in the list.

for (i=0; i<list.size(); i++) {

x1 = list[i]->x;
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y1 = list[i]->y;

//calculate the distance to this border element

d = sqrt( (x-x1)*(x-x1) + (y-y1)*(y-y1));

//is it better than what’s already been assigned?

if (d < I’(x,y)) {

//yes, then change to this border element

I’(x,y) = d;

}

}

} //end if

} //end for x

} //end for y

This method is also important for testing other methods as it will form the basis
of our testing procedure.

2.3. Danielsson’s [5] 4SED and 8SED Algorithms (and Grevera’s
Improved 8SED Algorithm)

Although not completely error free, Danielsson’s distance transform algo-
rithms were early contributions and are important steps in the development of
subsequent algorithms such as the Chamfer distance and Dead Reckoning. 8SED
is efficient, reasonably accurate, conceptually easy to understand, and is still in
widespread use today. These algorithms begin by initially assigning a distance
value of 0 for all p in B and a value of infinity for all p not in B. Then the algo-
rithms sweep through I ′ using a number of passes and various local “windows”
in a manner somewhat similar to convolution [38] from digital signal processing.
The current distance assignment to each point under consideration, u, is com-
pared to the current assignments to its neighbors plus the distance, a, from the
specific neighbor, n, to u. If the current distance assignment, I ′(u), is greater
than I ′(n) + a, then I ′(u) is updated to I ′(n) + a, which results in minimizing
the distance to u. The difference between 4SED, 8SED, and Grevera’s improved
8SED algorithms are in the number of sweeps and in the neighborhood windows
that are checked during the minimization process. 4SED is the least accurate but
is the fastest. Grevera’s improved 8SED produces more accurate results at the ex-
pense of increased processing time although the increase in time is not significant.
Pseudo code for the 4SED algorithm follows.

//perform the first pass ("first picture scan")

for (y=1; y<=ySize-1; y++) {

for (x=0; x<=xSize-1; x++) check( x, y-1, dy );

for (x=1; x<=xSize-1; x++) check( x-1, y, dx );

for (x=xSize-2; x>=0; x--) check( x+1, y, dx );

}
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//perform the final pass ("second picture scan")

for (y=ySize-2; y>=0; y--) {

for (x=0; x<=xSize-1; x++) check( x, y+1, dy );

for (x=1; x<=xSize-1; x++) check( x-1, y, dx );

for (x=xSize-2; x>=0; x--) check( x+1, y, dx );

}

where check compares, and updates if necessary, the current distance I ′(u), u =
(x, y) to the specified neighbor and offset from neighbor to u, I ′(n) + a. Pseudo
code for the 8SED algorithm follows.

//perform the first pass ("first picture scan")

for (y=1; y<=ySize-1; y++) {

for (x=0; x<=xSize-1; x++) {

if (x>0) { //** boundary condition not checked in original

// but needed

check( x-1, y-1, dxy );

}

check( x, y-1, dy );

if (x<xSize-1) { //** not checked in original but needed

check( x+1, y-1, dxy );

}

}

for (x=1; x<=xSize-1; x++) check( x-1, y, dx );

for (x=xSize-2; x>=0; x--) check( x+1, y, dx );

}

//perform the final pass ("second picture scan")

for (y=ySize-2; y>=0; y--) {

for (x=0; x<=xSize-1; x++) {

if (x>0) { //** not checked in original but needed

check( x-1, y+1, dxy );

}

check( x, y+1, dy );

if (x<xSize-1) { //** not checked in original but needed

check( x+1, y+1, dxy );

}

}

for (x=1; x<=xSize-1; x++) check( x-1, y, dx );

for (x=xSize-2; x>=0; x--) check( x+1, y, dx );

}

Pseudo code for Grevera’s improved 8SED algorithm follows. Note: * indi-
cates a difference from the original 8SED algorithm.



DISTANCE TRANSFORM ALGORITHMS 41

//perform the first pass ("first picture scan").

for (y=1; y<ySize-1; y++) {

for (x=0; x<=xSize-1; x++) { //* from 4sed

check( x, y-1, dy );

}

for (x=1; x<=xSize-1; x++) {

check( x-1, y, dx );

check( x-1, y-1, dxy ); //*

}

for (x=xSize-2; x>=0; x--) {

check( x+1, y, dx );

check( x+1, y-1, dxy ); //*

}

}

//perform the final pass ("second picture scan")

for (y=ySize-2; y>=0; y--) {

for (x=0; x<=xSize-1; x++) { //* from 4sed

check( x, y+1, dy );

}

for (x=1; x<=xSize-1; x++) {

check( x-1, y, dx );

check( x-1, y+1, dxy ); //*

}

for (x=xSize-2; x>=0; x--) {

check( x+1, y, dx );

check( x+1, y+1, dxy ); //*

}

}

2.4. Borgefors’ [6] CDA (Including Chessboard, Cityblock, and
Euclidean 3x3 Window)

Borgefors’ Chamfer distance algorithm (CDA) is arguably the most popular
distance transform method. Like Danielsson’s algorithms, it is not completely
error free, but it is efficient, reasonably accurate, and conceptually even easier to
understand than Danielsson’s algorithms. Furthermore, it has also been extended
from 2D to 3D [7, 40], and simple modifications produce other distance transforms
such as chessboard, cityblock, and Euclidean with a 3x3 window. Like Daniels-
son’s algorithm, the CDA (including chessboard, cityblock, and Euclidean) begins
by initially assigning a distance value of 0 for all p inB and a value of infinity for all
q not inB. Then the CDA sweeps through using two passes. The first pass is from
top to bottom and left to right and the second pass is from bottom to top and right to
left. Again, various local “windows” are used in a manner similar to convolution
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[38] from digital signal processing using 3x3 windows for CDA 3x3, chessboard,
cityblock, and Euclidean, 5x5 windows for CDA 5x5, and 7x7 windows for CDA
7x7. The current distance assignment to each point under consideration, u, is
compared to the current assignments to its neighbors plus the distance, an, for that
specific neighbor n taken from Figure 1 from the specific neighbor, n, to u. If the
current distance assignment, I ′(u), is greater than I ′(n)+an, then I ′(u) is updated
to I ′(n) + an, which results in minimizing the distance to u. Resulting distance
transform errors diminish with increasing window size while computation cost
increases with increasing window size. Note that different window configurations
(but of the same size) are employed for the forward and backward passes.

Pseudo code for CDA 3x3, cityblock, chessboard, and Euclidean 3x3 appears
below. dx, dy, and dxy are assigned an values according to the table entries
in Figure 1 corresponding to the desired method. CDA 5x5 and CDA 7x7 are
analogous.

//perform the first (forward) pass

for (y=1; y<ySize-1; y++) {

for (x=1; x<xSize-1; x++) {

check( x-1, y-1, dxy );

check( x, y-1, dy );

check( x+1, y-1, dxy );

check( x-1, y, dx );

}

}

//perform the final (backward) pass

for (y=ySize-2; y>=1; y--) {

for (x=xSize-2; x>=1; x--) {

check( x+1, y, dx );

check( x-1, y+1, dxy );

check( x, y+1, dy );

check( x+1, y+1, dxy );

}

}

where check compares, and updates if necessary, the current distance I ′(u), u =
(x, y) to the specified neighbor and offset from neighbor to u, I ′(n) + an.

Borgefors cleverly demonstrated: (i) using a small window and propagating
distance in this manner introduces errors in the assigned distance values even if
double precision floating point is used to represent distance values, (ii) these errors
may be minimized by using values other than 1 and

√
2 for the distances between

neighboring pixels, and, surprisingly, (iii) using integer window values such as 3
and 4 yields more accurate results than using window values of 1 and

√
2 and does
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forward pass backward pass
4 3 4 - - -

CDA 3×3 3 u - - u 3
- - - 4 3 4

- 1 - - - -
city block 1 u - - u 1

- - - - 1 -

1 1 1 - - -
chessboard 1 u - - u 1

- - - 1 1 1

- 11 - 11 - - - - - -
11 7 5 7 11 - - - - -

CDA 5x5 - 5 u - - - - u 5 -
- - - - - 11 7 5 7 11
- - - - - - 11 - 11 -

- 43 38 - 38 43 - - - - - - -
43 - 27 - 27 - 43 - - - - - -
38 27 17 12 17 27 38 - - - - - -

CDA 7×7 - - 12 u - - - - - - u 12 -
- - - - - - - 38 27 17 12 17 27 38
- - - - - - - 43 - 27 - 27 - 43
- - - - - - - - 43 38 - 38 43 -

√
2 1

√
2 - - -

Euclidean 3x3 1 u - - u 1
- - -

√
2 1

√
2

Figure 1. Various windows used by the Chamfer distance algorithm. ‘u’ indicates the

of the algorithm.
center of the window. ‘-’ indicates that the point is not used (considered) during that pass
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so with much better performance (when implemented using integer arithmetic),
and (iv) larger windows with appropriate values minimize errors even further at
increased computational cost.

2.5. Grevera’s [37] Dead Reckoning Algorithm

The Dead Reckoning Algorithm (DRA) is a straightforward modification to
the CDA that, employing equal-sized windows, produces more accurate results at
a slightly increased computational cost. Furthermore, it has been demonstrated
[37] that DRA using only a 3x3 window typically produces more accurate results
than CDA with a 7x7 window with similar execution times.

In addition to I ′, which for a given point, (x, y), is the minimum distance from
(x, y) to the nearest border point, the DRA introduces an additional data structure,
P (x, y) = (x′, y′), which is used to indicate the actual border point (x′, y′) in
B such that I ′(x, y) is minimum. This is similar to the method employed by
Danielsson [5], where 4SED employs three minimization iterations in both the
forward and backward passes. Our method as in the CDA employs only one
iteration in each pass. Note that as the CDA progresses, I ′(x, y) may be updated
many times. In the DRA, each time that I ′(x, y) is updated, P (x, y) is updated
as well. We note that the order in which the ‘if’ statements in the pseudo code
for this algorithm are evaluated may influence the assignment of P (x, y) and
subsequently, the value assigned to I ′(x, y). Regardless, our results demonstrate
that our algorithm remains more accurate using only a 3x3 neighborhood than CDA
using a 7x7 neighborhood. Although the DRA employs a 3x3 (or larger) window to
guide the update/minimization of distance process as does CDA, the actual values
assigned to I ′ are not the same as CDA. DRA uses instead the actual Euclidean
distance from the border to the point (x, y) at the center of the window. Using
only a 3x3 window, the DRA typically determines a more accurate estimation of
the exact Euclidean distance within the framework of the CDA. Pseudo code for
the DRA is the same as CDA except for a modification to check. check compares,
and updates if necessary, the current distance I ′(u), u = (x, y) to the specified
neighbor and offset from neighbor to u, I ′(n) + an as before in the CDA but if
I ′(u) >= I ′(n) + an, I ′(u) is not assigned I ′(n) + an but is assigned distance
from u to P (n) and P(u) = P (n).

2.6. Dijkstra’s Graph Algorithm

Dijkstra’s shortest path algorithm [39] for determining minimum cost paths
in graphs can be adapted to distance transform algorithms as well. To accomplish
this we simply map the input binary image, I , to a graph, G = (V,E), where V is
the set of vertices (the set of discrete (x, y) locations in I andE is the set of edges
defined as follows. Consider some point, p = (x, y), in V and the (8-connected)
neighborhoodN(p) = {(x−1, y), (x+1, y), (x, y−1), (x, y+1), (x−1, y−1),
(x+1, y−1), (x−1, y+1), (x+1, y+1)} = {(x+dx, y+dy)|−1 <= dx <= 1
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and −1 <= dy <= 1 and |dx + dy| <= 2}. E consists of all edges from points
p to each of its neighbors and define the cost (distance) associated as either 1 or√

2 depending on the Euclidean distance from p to the particular neighbor. As in
previous algorithms, this method begins as many of the previous ones with initially
assigning a distance value of 0 for all p in B and a value of infinity for all p not
in B. Those points p for which I ′(p) = 0 are also initially placed on an ordered
list L that is sorted from smallest to largest according to the distance assignment,
I ′(p). The algorithm then proceeds as follows:

while (L is not empty) {

remove from L, p such that I’(p) is minimal

among all elements of L;

consider each neighbor n in N(p);

if (I’(p)+d(p,n) < I’(n)) {

I’(n) = I’(p)+d(p,n);

put n in L according to I’(n);

}

}

where d(p, n) is the Euclidean distance from p to n. Because of the regularly
discretized nature of I , d(p, n) is either 1 or

√
2 since n is in N(p). When this

algorithm terminates, I ′(p) will contain the minimal distance from p to an element
ofB in terms of the minimal summation of edge costs associated with a path from
any element ofB to p. In that respect, this method is similar to DRA. Subsequently,
we will refer to Dijkstra’s algorithm adapted and applied to the distance transform
problem as ModifiedDijkstra (MD).

We will now describe a variant of the MD algorithm. Recall that DRA is the
same as CDA except for a modification to the check procedure where check com-
pares the current distance assignment I ′(u), u = (x, y) to the specified neighbor
and offset from neighbor to u, I ′(n) + an as before, but if I ′(u) >= I ′(n) + an,
I ′(u) is not assigned I ′(n) + an but is assigned the distance from u to P (n). We
can also modify MD to perform in this manner. We call this method ModifiedDi-
jkstraDeadReckoning (MDDR) using 8-connected neighborhoods.

None of these algorithms (based on Dijkstra’s graph algorithm) are error free.
To develop an error-free graph-based algorithm, we note that Dijkstra’s algorithm
determines cost (distance) as a discrete sequence of edges in the graph between
two vertices. Since we are using this discrete space as a model of an underlying
continuous space, small errors may be introduced. Therefore, the first time that a
vertex is encountered may not be the optimal distance assignment for that point.
We must allow for a vertex to be revisited (as in A∗ heuristic search [10]) by
maintaining a list (vector) of border element assignments (instead of a single, first
assignment). We call this method DijkstraVectors (DV), and experimental results
have shown this algorithm to be error free.
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2.7. Ragnemalm’s [14] CSED Algorithm

Ragnemalm’s CSED algorithm is similar to Dijkstra’s algorithm except that
instead of employing a single ordered list, L, it avoids maintaining L in sorted
order by using two lists, L1 and L2, and a limit or threshold, l , on the current p in
L1 such that I ′(p) < l. In this manner, propagation of distance values is ordered
along approximate isocontours by repeatedly sweeping through L1 by examining
each p in L1 in turn. If the current I ′(p) < l, then we consider the neighborhood
of p. Otherwise, we move p from L1 to L2 for future consideration. Initially, all
elements ofN(b), b inB, are placed onL1. Similar to the DRA, which introduced
an additional data structure,P (x, y) = (x′, y′), which is used to indicate the actual
border point (x′, y′) inB such that I ′(x, y) is minimum, CSED uses an additional
data structure P(x, y) = (dx, dy) such that (x′, y′) = (x, y) + (dx, dy). (P (x, y)
is an element of B where P(x, y) is the displacement from (x, y) to an element of
B). Additionally, we will refer to the x component of p in P as px and similarly for
y. Ragnemalm’s algorithm also performs a more intelligent propagation among
the 8-connected neighbors than Dijkstra’s algorithm as well.

Pseudo code for this algorithm follows. Like the algorithms based on Dijk-
stra’s algorithm (except for DV), CSED is not error free.

for all p {

if I’(p)=0 then

consider each neighbor n in N(p)

check( p, 0, 1 );

check( p, 1, 1 );

check( p, 1, 0 );

check( p, 1, -1 );

check( p, 0, -1 );

check( p, -1, -1 );

check( p, -1, 0 );

check( p, -1, 1 );

}

swap( l1, l2 );

l = 1;

while L1 is not empty

for each p in L1

remove p from L1

if I’(p) > l then

put p on L2;

else if px(p)=0 then

check( p, 0,sgn(py(p)) );

//vertical

else if py(p)=0 then

check( p, sgn(px(p)), 0 );
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//horizontal

else if |px(p)| = |py(p)| then

check( p, sgn(px(p)), sgn(py(p)) );

//diagonal

check( p, sgn(px(p)), 0 );

//horizontal

check( p, 0, sgn(py(p)) );

//vertical

else if |Px(p)| > |Py(p)| then

check( p, sgn(px(p)), sgn(py(p)) );

//diagonal

check( p, sgn(px(p)), 0 );

//horizontal

else

check( p, sgn(px(p)), sgn(py(p)) );

//diagonal

check( p, 0, sgn(py(p)) );

//vertical

L1 = L2;

where sgn(k) = −1 if k < 0, 0 if k = 0, and 1 if k > 0 and check is defined as
follows:

check( p, dx, dy )

let n = (px+dx, py+dy);

let d = sqrt( dx*dx + dy*dy );

if (I’(n) > I’(p)+d) {

I’(n) = I’(p)+d;

put n in L2;

}

Ragnemalm also presents an error free version of the CSED algorithm. Unfor-
tunately, our implementation of that algorithm, which we believe is faithful to the
description in their paper, allows a few points to remain initialized at infinity in our
tests. This severely skews the results. Therefore, the software that accompanies
this article includes our implementation of the error free version but the results of
executing that implementation will not be included in this paper.

3. EVALUATING DISTANCE TRANSFORM ALGORITHMS

Distance transforms may be evaluated according to a variety of criteria. As
mentioned previously, the accuracy of the result is arguably the most important
measure. Even algorithms that purport to be error free should be evaluated to
ensure that the implementation is indeed error free. To evaluate accuracy we
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(a) (b)

(c) (d)

Figure 2. Sample test images consisting of (a) a single, solitary point-object, (b) a con-
figuration of three single point-objects that is a known problematic configuration, (c) and
(d) randomly generated test images by sampling from a normal distribution (with different
standard deviations).

need to (i) choose a suite of test cases (input binary images), (ii) develop a “gold
standard” or “ground truth” for each of the test cases, (iii) choose a set of metrics
to compare the result of a distance transform method with ground truth, and then
(iv) compare the results of a method under test with the gold standard using the
metrics.

The simplest test case consists of an image that contains a solitary object con-
sisting of a single point at the center of the image as shown in Figure 2a. Another
test case has been described [2] as being extremely problematic for algorithms
that sweep through the data using local windows (such as 4SED, 8SED, CDA,
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DRA, and others). It consists of the three single point-objects as shown in Figure
2b. Although input images consisting of a few solitary point-objects are useful for
understanding algorithms, they are not reflective of real-world objects. To simu-
late real-world objects, we also include images consisting of randomly generated
objects by sampling from a normal distribution, as shown in Figures 2c and 2d.

With regard to a gold standard, we chose the SimpleList algorithm because it is
straightforward, easy to verify, and is exhaustive in its determination of the correct
distance assignments. The Simple algorithm could be used instead of SimpleList
but in practice, Simple is too slow to be useful. (For example, for a rather small
image of 300x300 consisting of a single center point object, SimpleList required
0.03 s of CPU time on a 2-GHz Pentium 4 under Linux. Simple required 71.98 s.
The remaining methods required less then 1 s.)

The result of the distance transform, I ′, may be regarded as a grey image
where the grey value at each location is the distance value assigned by the par-
ticular algorithm. Given I ′, the result of some distance transform algorithm, and
I ′
SimpleList (the result of applying SimpleList to I), we can compute the magnitude

of the differences between I ′ and I ′
SimpleList and determine the RMS (root mean

squared) error as well as the location of the (magnitude of the) single largest dif-
ference between I ′ and I ′

SimpleList. Additionally, we also calculate the number
of pixels that exhibit any difference whatsoever (regardless of the magnitude of
the difference) and express this as a percentage of the whole. More qualitative
insights can also be gained by viewing difference images (|I ′− I ′

SimpleList|) or by
simply thresholding I ′ to create a binary image and viewing the result as shown
in Figure 7 as applied to the input binary image consisting of a single center point.
The expected thresholded result should appear as a circular isocontour with radius
equal to the distance from the center point. Which isocontour is observed depends
upon the selected threshold value. Note that the thresholded results of CDA 3x3,
CDA 5x5, Chessboard, Cityblock, Euclidean 3x3, and MD exhibit significant vis-
ible errors in the form of polygonal approximations to the circular isocontour. The
more accurate of these methods exhibit polygons with more sides (while the least
have less sides). Chessboard has only four sides, while the thresholded results of
CDA 3x3, Cityblock, Euclidean 3x3, and MD have eight sides. Careful examina-
tion of the thresholded results of CDA 5x5 and CDA 7x7 yields 16- and 20-sided
polygons for the selected threshold, respectively. The remaining, most accurate
methods do not have any noticeable artifacts. In addition to accuracy, it is also
important to report the CPU time required to perform the distance transform as
well.

4. RESULTS OF EVALUATION

All experiments were performed on a Dell 3.6-GHz Pentium 4 system with
2 GB of RAM running Redhat Linux version 2.6.9 and using g++ version 3.4.2.



50 GEORGE J. GREVERA

The times reported are user mode CPU time plus kernel mode CPU time. We
feel that this is a better measure than simple elapsed time, especially on modern,
multiprogrammed operating systems. No other users were logged onto the system
during the tests. Four input test images were employed to evaluate the various
distance transform algorithms: (1) a solitary object consisting of a single solitary
point at the center of the image (Figure 2a), (2) the extremely problematic image
consisting of 3 point-objects (Figure 2b), (3) a randomly generated set of objects
created by sampling from a normal distribution with a mean of the center of the
image an a standard deviation of 0.20 (Figures 2c), and (4) another randomly
generated set of objects created by sampling from a normal distribution with a
different standard deviation of 0.05 (Figure 2d). Each of the input test images were
1000x1000 pixels in size. As previously mentioned, the SimpleList algorithm was
used as the gold standard. RMS error as well as the magnitude of the single largest
difference are reported as well. The results of the evaluation are shown in Table
1 for the central single-point object and three single-point objects, and 2 for two
sets of randomly generated objects.

5. CONCLUDING REMARKS

Although the results in Table 1 appear promising for the gold standard method,
SimpleList, with regards to CPU time, Table 2 demonstrates that SimpleList is not
practical for most applications because its time is two to three orders of magnitude
worse than other methods. The best-performing methods with regard to CPU time
took as little as 0.1 seconds. Of these fastest methods, DRA 3x3 exhibited minimal
error for the randomly generated images.

With regard to accuracy, DV and SimpleList were the only methods that ex-
hibited 0 errors. The performance of SimpleList precludes it from being used in
practice but the performance of DV is quite good for practical use. For applications
that can tolerate small errors, the modified 8SED algorithm had a very low error
rate and excellent performance.
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Table 1. Results of various distance transform algorithms applied to an image consisting of
a solitary object consisting of a single point at the center of the image (left) and 3 single-

point objects (right). RMSE is the root mean squared error, max err is the value of
the magnitude of the largest difference, diff is the percentage of the total

number of points that are different, and time is the CPU time in seconds

Central single-point object 3 single-point objects
RMSE max err diff time RMSE max err diff time

CDA 3× 3 14.7 39.6 95.7 0.1 14.7 39.6 95.8 0.1
CDA 5× 5 3.9 10.0 95.7 0.1 3.9 9.9 95.7 0.1
CDA 7× 7 2.5 6.8 95.7 0.3 2.4 6.9 95.7 0.3
Chessboard 67.5 202.6 95.8 0.1 67.4 203.0 95.8 0.1
Cityblock 135.0 286.7 95.8 0.1 134.2 287.3 95.8 0.1
CSED 0.0 0.0 0.0 0.2 4E-05 0.0 1E-04 0.4
DRA 3× 3 0.0 0.0 0.0 0.1 0.5 2.8 13.7 0.1
DRA 7× 7 0.0 0.0 0.0 0.5 0.1 0.9 2.7 0.5
DV 0.0 0.0 0.0 1.8 0.0 0.0 0.0 2.8
8SED 0.0 0.0 0.0 0.2 1E-02 0.2 1.1 0.2
8SED modified 0.0 0.0 0.0 0.2 1E-02 0.1 1.1 0.1
Euclidean 3× 3 22.5 43.9 95.8 0.1 22.4 44.1 95.8 0.1
4SED 0.4 1.0 47.8 0.2 0.5 3.0 48.3 0.2
MD 22.5 43.9 95.8 1.4 22.4 44.1 95.8 1.4
MDDR 0.0 0.0 0.0 1.4 1E-02 0.1 1.1 1.4
SimpleList 0.0 0.0 0.0 0.2 0.0 0.0 0.0 0.4
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Table 2. Results of various distance transform algorithms applied to an image (left)
consisting of a randomly generated set of objects created by sampling from a normal

distribution with a mean of the center of the image an a standard deviation of 0.20,
and (right) another randomly generated set of objects created by sampling

from a normal distribution with a different standard deviation of 0.05

First randomly generated objects Second randomly generated objects
RMSE max err diff time RMSE max err diff time

CDA 3× 3 0.1 1.0 20.3 0.1 7.0 26.6 87.6 0.1
CDA 5× 5 2E-02 0.3 20.3 0.1 1.7 5.9 87.5 0.1
CDA 7× 7 1E-02 0.2 20.3 0.3 1.1 4.1 87.6 0.3
Chessboard 0.3 5.0 20.9 0.1 42.3 136.3 88.3 0.1
Cityblock 0.5 5.8 20.7 0.1 65.8 192.7 88.1 0.1
CSED 0.0 0.0 0.0 0.5 2E-05 2E-02 4E-04 0.4
DRA 3× 3 4E-03 0.6 3E-02 0.1 1.0 18.2 1.7 0.1
DRA 7× 7 4E-05 4E-02 1E-04 0.5 1E-02 1.6 0.1 0.5
DV 0.0 0.0 0.0 4.0 0.0 0.0 0.0 3.0
8SED 3E-04 0.1 3E-03 0.2 5E-03 0.3 0.2 0.2
8SED modified 3E-04 0.1 2E-03 0.2 5E-03 0.3 0.2 0.2
Euclidean 3× 3 0.1 1.3 10.9 0.1 9.6 28.0 86.5 0.1
4SED 0.2 2.8 10.2 0.2 0.4 3.4 48.4 0.2
MD 0.1 1.3 10.9 3.1 9.6 28.0 86.5 2.0
MDDR 3E-04 0.1 3E-03 3.2 7E-03 0.3 0.4 1.9
SimpleList 0.0 0.0 0.0 5498.2 0.0 0.0 0.0 854.6
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Figure 3. Results of various distance transform algorithms applied to an image consisting
of a solitary object consisting of a single point at the center of the image, and the magnitude
of the differences for the method. Top row, left to right: CDA 3x3 and differences, CDA
5x5 and differences, CDA 7x7 and differences. Second row, left to right: Chessboard
and differences, Cityblock and differences, CSED and difference. Third row, left to right:
DRA 3x3 and differences, DRA 7x7 and differences, DV and differences. Fourth row,
left to right: 8SED and differences, 8SED modified and differences, Euclidean 3x3 and
difference. Fifth row, left to right: 4SED and differences, MD and differences, MDDR and
differences. Sixth row: SimpleList and differences.
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Figure 4. Results of various distance transform algorithms applied to an image consisting
of 3 single-point objects. Top row, left to right: CDA 3x3, CDA 5x5, CDA 7x7. Second
row, left to right: Chessboard, Cityblock, CSED. Third row, left to right: DRA 3x3, DRA
7x7, DV. Fourth row, left to right: 8SED, 8SED modified, Euclidean 3x3. Fifth row, left to
right: 4SED, MD, MDDR. Sixth row: SimpleList.
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Figure 5. Results of various distance transform algorithms applied to an image consisting
of a randomly generated set of objects created by sampling from a normal distribution with a
mean of the center of the image an a standard deviation of 0.20. Top row, left to right: CDA
3x3, CDA 5x5, CDA 7x7. Second row, left to right: Chessboard, Cityblock, CSED. Third
row, left to right: DRA 3x3, DRA 7x7, DV. Fourth row, left to right: 8SED, 8SED modified,
Euclidean 3x3. Fifth row, left to right: 4SED, MD, MDDR. Sixth row: SimpleList.
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Figure 6. Results of various distance transform algorithms applied to an image consisting
of a randomly generated set of objects created by sampling from a normal distribution with a
mean of the center of the image an a standard deviation of 0.05. Top row, left to right: CDA
3x3, CDA 5x5, CDA 7x7. Second row, left to right: Chessboard, Cityblock, CSED. Third
row, left to right: DRA 3x3, DRA 7x7, DV. Fourth row, left to right: 8SED, 8SED modified,
Euclidean 3x3. Fifth row, left to right: 4SED, MD, MDDR. Sixth row: SimpleList.
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Figure 7. Thresholded results of various distance transform algorithms applied to an image
consisting of a solitary object consisting of a single point at the center of the image. Top
row, left to right: CDA 3x3, CDA 5x5, CDA 7x7, Chessboard. Second row, left to right:
Cityblock, CSED, DRA 3x3, DRA 7x7. Third row, left to right: DV, 8SED, 8SED modified,
Euclidean 3x3. Fourth row, left to right: 4SED, MD, MDDR, SimpleList.
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7. APPENDIX

The accompanying CD contains implementations (C++ classes that compile
and run under Windows with VC++ 6, and Linux and Solaris with g++) of the
following distance transform algorithms in an extensible framework. Updates to
this software can be found at http://www.sju.edu/∼ggrevera.

Chamfer2D 3x3

Chamfer2D 5x5

Chamfer2D 7x7

Chessboard2D

Cityblock2D

CSED

DeadReckoning 3x3

DeadReckoning 7x7

DijkstraVectors

EightSED

EightSED modified

errorfreeCSED

Euclidean2D

FourSED

ModifiedDijkstra

Simple

SimpleList

Other support classes include:

CLUT — CLUT (Color LookUp Table) class for writing some color TIFF
image files

Timer — Timer class for reporting elapsed time and CPU time

Normal — Normal class which samples random numbers from a normal
distribution using the Box-Muller transform
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TIFFWriter — This class contains methods that write 8-bit color rgb
images or float, double, 8-bit, or 16-bit grey images

DistanceTransform — an abstract base class from which all distance
transform classes inherit

A VC++ 6 workspace is included along with Windows executables. The
Makefile works under both Linux and Solaris. The main.cpp file creates binary
test images, applies each of the distance transforms in turn to the test images,
evaluates the results, and creates TIFF images of the results.
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