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1 Introduction

• HMMs are the representative of the statistical approach to speech recognition.

• HMMs, as well as DTW (Dynamic Time Warping), have to take into account:

– the variability of speech in the parametric space

– the temporal variability

Comparison of DTW and HMM:

DTW HMM

time different paths with different
lengths

different state sequences (the states
can be skipped or repeated)

parameters the variability is evaluated using
distances

probability density functions (pdf)
are used, not “hard” values of vec-
tors
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2 Recognition of isolated words

We have:

• an input sequence (parameter matrix)

O = [o(1),o(2), . . . ,o(T )], (1)

where o(1),o(2), . . . ,o(T ) are parameter vectors computed for each frame of the input signal

• a dictionary of Ň words wi, i ∈ [1, Ň ].

We want to know, to which word belongs the input sequence.

2.1 Probabilistic formulation of the problem

i? = arg max
i

{P(wi|O)} , (2)

where P(wi|O) is the conditional probability of the word wi knowing O.

Illustration of conditional probabilities:

P(problem|Škoda) >> P(problem|Mercedes). (3)

In the speech recognition, we are unfortunately not able to evaluate P(wi|O) directly. The formula of
Bays helps us (we are going to omit the index i):

P(w|O) =
P(O|w)P(w)

P(O)
, (4)

where

• P(w) is the a-priori (known) probability of words, which is determined by the language model
(LM). In case the words have equal probabilities, it will not affect the maximization.

• P(O) is the a-priori probability of the observation sequence. We can not evaluate this probability,
but as it is constant for all the words, it will not affect the maximization.

• P(O|w) is the most important probability: the probability of the sequence O knowing the word
w. To compute it, we should have a model M for the word w. We imagine, that the model
generates the sequence O.

The model is a finite automaton, with several states. Between the states, we find the transition
probabilities aij . Except the first and the last state, all states are emitting (we can imagine, that
they could generate some vectors). Each of those emitting states has attached an emission probability
density function (pdf) bj(o).

A possible configuration of a model is given in Figure 1.

2.2 Transition probabilities aij

should obey:
∑

j

aij = 1 (5)

Our example: only three types of transition probabilities:

• ai,i probability of staying in a state.

• ai,i+1 probability of going to the following state.

• ai,i+2 probability of skipping the following state.

2



1 6

Observation 
sequence ...

a35

... ... ... ... ...

2b  (o  )2

a24

a22

3

a33 a44

5

a55

a56a45a34a12
2

a23
4

Markov
model M

2b  (o  )1 b  (o  ) b  (o  )b  (o  ) b  (o  )3 3 4 4 4 5 5 6

o o o o o o1 2 3 4 5 6

Figure 1: Example configuration of an HMM and association of input vectors with states. The
corresponding state sequence is X = [1, 2, 2, 3, 4, 4, 5, 6].

We can write a matrix of transition probabilities:

A =

















0 a12 0 0 0 0
0 a22 a23 a24 0 0
0 0 a33 a34 a35 0
0 0 0 a44 a45 0
0 0 0 0 a55 a56

0 0 0 0 0 0

















(6)

The majority of models used in ASP (automatic speech processing) are left–right (so that from a state,
we can not return to preceding ones): ai,j<i = 0.

2.3 Emission probability density functions (pdfs)

We note the probability of emission of vector o(t) by i-th state bi[o(t)]. There are two possibilities of
defining those pdfs: discrete pdfs, and continuous pdfs.

2.3.1 Discrete pdfs

In this case, the P -dimensional observation vectors are first converted to discrete symbols using a
classifier based on minimum distance (vector quantizer). An example for two element vectors o(t) is
given in Figure 2. s1 till s9 are symbols, the codebook size in this case is L=9. The emission pdfs are
given by tables of probabilities. For each emitting state j, we can define:

bj(s1)

bj(s2)

. . .

bj(sL)

Those models are called discrete HMMs.

2.3.2 Continuous pdfs

Here, the probability density functions are given using distributions or their sums. Distributions are
determined by their parameters. Most often, the Gaussian distribution is used.

If the vector o had only one element (in reality, o has never one element), the density for j-th
state would be given by one-dimensional distribution:

bj [o(t)] = N (o(t);µj , σj) =
1

σj

√
2π

e
−

[o(t)−µj ]2

2σ2
j (7)
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Figure 2: Conversion of 2-element vectors o to symbols using VQ.
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Figure 3: One-dimensional Gaussian distribution.
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Figure 4: Two-dimensional Gaussian distribution.

where N denotes the normal distribution, µj is a scalar mean value, and σj is a scalar standard
deviation (std). An example of such Gaussian distribution is given in Figure 3. In reality, we have
multi-dimensional parameter vectors (dimension P ), so that the distribution will be multi-dimensional
as well:

bj [o(t)] = N (o(t);µj ,Σj) =
1

√

(2π)P |Σj |
e
− 1

2
(o(t)−µj)

T Σ
−1
j (o(t)−µj), (8)

where µj is the vector mean, Σj is the covariance matrix and |Σj | denotes the determinant. An
example of such distribution with P=2 is given in Figure 4.

In most recognition systems however, we are trying to make the parameters within the vector
uncorrelated (or at least we believe that they are uncorrelated), so that the covariance matrix is
diagonal. It is then enough, instead of P ×P covariance coefficients, to estimate P standard deviations
which form the vector σj . As consequence, the P -dimensional distribution will be a product of P

independent 1-dimensional distributions:

bj [o(t)] =

P
∏

i=1

N (o(t);µji, σji) =

P
∏

i=1

1

σji

√
2π

e
−

[o(t)−µji]
2

2σ2
ji (9)

and the models will have less parameters (2P per emitting state instead of P + P ×P ), which can be
more reliably estimated.

In speaker-independent systems however, modeling the pdf with only one Gaussian is often not
enough to capture characteristics of all speakers. More complicated distributions are used:

1. Gaussian distribution mixtures (more P -dimensional distributions, summed up with weights).
An example of such Gaussian mixture with 2 mixture components is given in Figure 5.

2. the parameter vectors can be divided into streams, for example:

• 1st stream: MFCC coefficients.

• 2nd stream: ∆MFCC coefficients – “velocities”

• 3rd stream: ∆∆MFCC coefficients – “accelerations”
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Figure 5: Two-dimensional Gaussian mixture with 2 mixture components.

• 4th stream: E, ∆E and ∆∆E – log energy, its velocity and acceleration.

and each stream has its own pdf (1 Gaussian or Gaussian mixture).

Steps 1) can result in very complex models with big number of parameters (several millions). To limit
the number of parameters, some sets of parameters can be shared (tied) across states and/or models.
Consequence: less parameters, more reliable estimation.

Remark: the mathematicians would say that the output value of a pdf, given a vector o, is not a

probability. For simplicity reasons, we are going to call it a probability. . .

2.4 State sequences

The observation vectors can be spread across the states using state sequence X of length T + 2 (T
being the length of observation sequence O), indexed from t = 0 to t = T + 1. We can call X a path
through the model (similarly as for DTW). In our example:

X = [1, 2, 2, 3, 4, 4, 5, 6] (10)

Each state sequence must contain the 1st state (No. 1) in non-existing time t = 0 and the last state
(No. 6 in our example) in non-existing time t = T + 1, even though no vector belongs to them (no
vector can belong to them, as they are not emitting !). See Figure 6.

In the majority of cases, the state sequence is not “visible” from the exterior. This is why the
models are called hidden.

3 Determination of probability, that the model M generates se-
quence O

first, we define a probability of generation of O on the path X:

P(O, X|M) = ax(o)x(1)

T
∏

t=1

bx(t)(ot)ax(t)x(t+1), (11)
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Figure 6: Illustration of possible state sequences. The dots stand for emissions of vectors by states.
States 1 and 6 of the the HMM are non-emitting. The sequence X = [1, 2, 2, 3, 4, 4, 5, 6] used as
example is printed in red.

(it is actually a product of all possible probabilities, we encounter on our way through the model). In
our example:

P(O, X|M) = a12b2(o1)a22b2(o2)a23b3(o3) . . . (12)

There are two possibilities to define a unique probability, that the model generates the observation
sequence:

a)

P(O|M) =
∑

{X}

P(O, X|M), (13)

where we take the sum of all possible paths of length T + 2 through the model. This is called
Baum-Welch probability.

b)
P?(O|M) = max

{X}
P(O, X|M), (14)

where we take only the maximum probability (that of the “best” path). We call it Viterbi

probability.

Remarks

1. In case of DTW, we have minimized the distance. Here, we maximize the probability, sometimes
also called likelihood and denoted L.

2. For the computation of both Baum-Welch and Viterbi probabilities, fast algorithms are
known: it is not necessary to evaluate the probabilities over all possible paths X.

4 Parameter training – the simple case

Till know, we expected that the parameters of models were known. Unfortunately usually nobody
gives them to us. What we will be given is a set of observation sequences (e.g. parameter matrices)
with transcriptions. We will be able to train the parameters of models Mi for word wi from training
sequences carrying the label wi. Usually, we need many examples of a word to train a single model.
Here, we will show the training on one single example.

The training proceeds in two steps:
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Figure 7: Example of state occupation functions for 3 emitting states of a model

1. the parameters of model are roughly estimated: for example, we take the global mean µ, and
global covariance matrix Σ (or global standard deviation vector σ) and we set the parameters
of each state equal to those values: µj = µ and Σj = Σ (or σj = σ):

µ̂ = 1
T

T
∑

t=1

o(t)

Σ̂ = 1
T

T
∑

t=1

(o(t) − µ)(o(t) − µ)T full covariance matrix

σ̂ = 1
T

T
∑

t=1

(o(t) − µ)2 diagonal covariance matrix

(15)

It is also possible to allocate the vectors uniformly to states, and evaluate µj and Σj (or σj) for
each state.

2. Iterations:

a) Assignment of vectors to states. This assignment can be done “hardly”, but more often, a
“soft” assignment is computed. The state occupation function Lj(t) determines, how much
a vector will contribute to re-estimation of given state. An example of Lj(t) is in Fig. 7.

b) Re-estimation of parameters based on above computed assignment. In case the state occu-
pation functions are used:

µ̂j =

T
∑

t=1

Lj(t)o(t)

T
∑

t=1

Lj(t)

Σ̂j =

T
∑

t=1

Lj(t)(o(t) − µj)(o(t) − µj)
T

T
∑

t=1

Lj(t)

full covariance matrix

σ̂j =

T
∑

t=1

Lj(t)(o(t) − µj)
2

T
∑

t=1

Lj(t)

diagonal covariance matrix

(16)

Similarly, we can derive also formulas for the computation of transition probabilities aij

from state occupation functions (see [3]).
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Stop criterion: fixed number of iterations, or the probabilities evaluated during the iterations
stop to change.

4.1 Computation of state occupation functions — FW-BW algorithm

The state occupation function Lj(t) is the probability of being in state j at time t. It can be computed
as the sum of probabilities of all the paths, that “cross” state j at time t (solid lines in Figure 8):
P (O, x(t) = j|M). We want to be sure, however, that:

N
∑

j=1

Lj(t) = 1, (17)

in other words: all states’ “claims” to one vector must sum up to 100%. Therefore, we will normalize
the probability of being in state j at time t by the probability of being in all states at time j (dashed
and solid lines in Fig. 8):

Lj(t) =
P (O, x(t) = j|M)

∑

j

P (O, x(t) = j|M)
. (18)

Being in all states at time t (knowing that we could be anywhere before and we can be anywhere after
the time t) however means that we can take any path through the model. And sum of probabilities of
all the paths is the Baum-Welch probability. We can therefore rewrite equation 18 to more common
form:

Lj(t) =
P (O, x(t) = j|M)

P (O|M)
. (19)

To determine probability of being in state j at time t: P (O, x(t) = j|M), it is very practical to
define a probability of all paths ending in state j at time t and a probability of all paths beginning in
state j at time t and extending toward the end of time. We will call them partial forward probability
and partial backward probability.

4.1.1 Partial forward probability

For the model M with N states, the partial forward probability of being in state j at time t is:

αj(t) = P (o(1) . . . o(t), x(t) = j|M) (20)
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Figure 9: Computation of partial forward probability αj(t)

We find, that this forward probability can be evaluated using a recursive formula, if we take into
account, that the state j can be reached only from other emitting states (Fig. 9):

αj(t) =

[

N−1
∑

i=2

αi(t − 1)aij

]

bj[o(t)] for 2 ≤ j ≤ N − 1 (21)

The algorithm is initialized for time t = 1 by considering the transition probability from the 1st
non-emitting state to all emitting states:

αj(1) = a1jbj [o(1)] for 2 ≤ j ≤ N − 1 (22)

Once all αj(1) are initialized, we can proceed in steps from t = 1 till t = T and compute iteratively αj(t)
using Equation 21 at each step. When we are at the end (t = T ), we will complete the computation
by the evaluation of αN (T + 1) for the last non-emitting state (the time T + 1 is only formal, as we
know, that no vector, and hence no time, belongs to the N -th state):

αN (T + 1) =

N−1
∑

i=2

αi(T )aiN (23)

or in words “a sum of last alphas multiplied by transition probabilities to the last state”. The last
alpha is equal to the Baum-Welch probability:

P (O|M) = αN (T + 1) (24)

so that we dispose of the way to compute the probability of emission of O by the model: P (O|M).

4.1.2 Partial backward probability

For the model M with N states, the partial backward probability of being in state j at time t is:

βj(t) = P (o(t + 1) . . . o(T )|x(t) = j,M) (25)

We find, that this forward probability can be evaluated using a recursive formula, having in mind,
that the state j can be reached only from other emitting states (Fig. 10). In this case, we do not
take into account the emission probability for the time t, as it was the case in the computation of the
forward probability, but for the time t + 1:

βj(t) =

N−1
∑

i=2

ajibi[o(t + 1)]βi(t + 1) for 2 ≤ j ≤ N − 1 (26)
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Figure 10: Computation of partial backward probability βj(t)

We should initialize the algorithm at the last time T by the transition probabilities to the last (non-
emitting) state:

βj(T ) = ajN for 2 ≤ j ≤ N − 1 (27)

Once all βj(T ) are initialized, we can proceed in steps against the time from t = T till t = 1 and
compute iteratively βj(t) using Equation 26 at each step. When we are at the beginning (t = 1), we
will complete the computation by the evaluation of β1(0) for the first non-emitting state (the time 0
is only formal, as we know, that no vector, and hence no time, belongs to the 1st state):

β1(0) =

N−1
∑

i=2

a1ibi[o(1)]βi(1) (28)

The first beta (first beta is the last computed one) is again equal to the Baum-Welch probability:

P (O|M) = β1(0) (29)

so that we dispose of a second way to evaluate the probability of emission of O by the model.

4.1.3 Why did we do it all ?

¿From αj(t) and βj(t), we can compute the probability of being in state j at the time t:

P (O, x(t) = j|M) = αj(t)βj(t) (30)

The state occupation function Lj(t) can be derived from this expression by a normalization by the
total emission probability (see Eq. 19):

Lj(t) =
αj(t)βj(t)

P (O|M)
(31)

where P (O|M) is given using Equations 29 or 24.

4.2 Algorithm of model training

Having all the formalism in place, the algorithm for model training can look like:

1. Allocate an accumulator for each estimated vector/matrix.
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2. Compute the forward and backward probabilities αj(t) and βj(t). Compute the values of state
occupation functions Lj(t).

3. To each accumulator, add the contribution of the vector o(t) weighted by the respective Lj(t).

4. Use the final value of the accumulator for the computation of the estimated vector/matrix (here,
we must divide by the sum

∑T
t=1 Lj(t) – a standard normalization).

5. If the value P(O|M) did not change significantly from the last iteration, stop. Otherwise, return
to Step 1.

A great advantage of the above algorithm is the possibility to use arbitrary number of training se-
quences in steps 2 and 3. Above, this is not reflected – all the equations should be modified by adding
sums and normalizations over all the utterances. See [3] for complete re-estimation formulae.

5 Recognition using the Viterbi decoding

Remainder: We should recognize an unknown sequence O. We dispose of a dictionary of Ň words
w1 . . . wŇ . Each of them is modeled by a Hidden Markov model: M1 . . . MŇ . We want to know, which
model would generate O with the highest probability:

i? = arg max
i

{P(O|Mi)} (32)

(we assume that all words have equal probabilities, so that the a-priori probability P(wi) will not play
any role. . . ) For this evaluation, we could use the Baum-Welch probability

P (O|M) = αN (T ) = β1(1) (33)

but more likely, we will use the Viterbi probability for the most probable sequence of states, which
can be computed more efficiently:

P?(O|M) = max
{X}

P(O, X|M). (34)

and equation 32 will be rewritten:

i? = arg max
i

{P?(O|Mi)} . (35)

For the evaluation of the Viterbi probability, a similar algorithm as for the Baum-Welch one is
used, but the operator “max” replaces the sums in the equations.

The partial Viterbi probability is defined:

Φj(t) = P? (o(1) . . . o(t), x(t) = j|M) . (36)

For j-th state and the time t, it can be evaluated in the similar way as the partial forward probability
αj(t):

Φj(t) = max
i

{Φi(t − 1)aij} bj[o(t)] for 2 ≤ j ≤ N − 1 (37)

The computation differs from Eq. 21 only by replacing a sum with a maximum selection (illustrated
in Fig. 11) Once again, the Φ for the first non-emitting state must be initialized as:

Φj(1) = a1jbj[o(1)] for 2 ≤ j ≤ N − 1. (38)

Once Φj(1) are initialized, we can proceed to computation of Φj(t) using Equation 37. At the end,
we evaluate the partial probability for the last state:

ΦN (T + 1) = max
i

{Φi(T )aiN} (39)

which is actually the desired final Viterbi probability:

P?(O|M) = ΦN (T + 1) (40)

If we remembered, for each state j and each time t, the source of maximum value of Φi(t − 1)aij (i.e.
“from where we came”), we can back-trace the optimal state sequence X ? from the end (similarly as
for DTW). Figure 6 shows the possible paths through the model of our example. The state sequence
X = [1, 2, 2, 3, 4, 4, 5, 6] used as example in subsection 2.4 is shown in red.
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Figure 11: Computation of partial Viterbi probability Φj(t). The bold line denotes the selected
maximum, the dashed lines the discarded paths from other states.

6 Continuous speech recognition

The models are “glued” each to other using the non-emitting states (their purpose is to provide this
seam-less “glue”). One “mega-model” is created in this way. The language knowledge (in the form of
transition probabilities between phonemes or words) can be built in this model.

For an input sequence, we find the optimal way through this mega-model. When we finish, we
can back-trace the path and the units found on this path (phonemes, words) are the output of the
recognizer.
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