
RDF/RDFS Tutorial

2

Introduction

The Resource Description Framework

(RDF) is recommended by the World

Wide Web Consortium (W3C) to model

meta-data about the resources of the

web. It is described in both documents

[1] and [2].

3

[1] Graham Klyne, Jeremy J. Carroll (Eds.).

Resource Description Framework (RDF):

Concepts and Abstract Syntax.

 http://www.w3.org/TR/rdf-concepts/

[2] Dan Brickley, R. V. Guha (Eds.). RDF

Vocabulary Description Language 1.0:

RDF Schema.

 http://www.w3.org/TR/rdf-schema/

4

The former focuses on syntactical aspects

while the latter addresses the definition

of vocabularies (often named schemas).

Here we use a slightly different plan

directed to the goals of the KB course

(using RDF in knowledge representation

systems).

5

1. Model

1.1. URIs

RDF identifies resources with standard

Uniform Resource Identifiers (URI), but

RDF uses what we will call qualified

URIs, that is, URIs with an optional

fragment identifier (a text added to the

URI with a “#” between them).

6

The fragment identifier returns “a property

of the data resulting from a retrieval

action”; however, RDF considers every

qualified URI (with or without fragment

identifier) as a full resource by itself.

7

1.2. Triples and graph

The base element of the RDF model is
the triple: a resource (the subject) is
linked to another resource (the object)
through an arc labeled with a third
resource (the predicate). We will say
that <subject> has a property
<predicate> valued by <object>.

For example, the triple in figure 1 could be
read as “Champin is the creator of
index.html”.

8

9

All the triples result in a directed graph,

whose nodes and arcs are all labeled

with qualified URIs. Note in figure 2 that

a resource may have more than one

value for a given property.

10

11

1.3. Literals

In the RDF recommendation, targets of the

graph can be pieces of text instead of

resources; those pieces of text are called

literals.

12

2. Concepts and vocabulary

We can distinguish three kinds of

concepts in RDF: fundamental

concepts, schema-definition

concepts (useful for defining new

vocabularies) and utility concepts

(concepts which are not absolutely

necessary, but likely to be useful in any

application domain).

13

All these concepts have been given a

URI. These URIs are defined as

fragment identifiers of the URIs of

the W3C documents defining RDF.

For the sake of clarity, we will rather use

the XML non-expanded notation.

14

That is, prefixes rdf: and rdfs: will be used

instead of
http://www.w3.org/TR/1999/REC-rdf-syntax-

19990222#

 and
http://www.w3.org/TR/1999/PR-rdf-schema-

19990303#

 respectively.

The membership of one or another

namespace may not always seem logical,

and must have historical reasons mostly.

15

2.1. Fundamental concepts

2.1.1. rdf:Resource

RDF is about describing resources;

according to [1], “resources are always

named by URIs” and “anything can have a

URI”. So RDF can theoretically be used to

describe anything. Yet it was mainly

designed to handle “network retrievable”

resources.

16

Some authors underline that “the resource is

the conceptual mapping to an entity (…),

not necessarily the entity which

corresponds to that mapping at any

particular instance in time”. However most

of the time we are interested in entities

themselves. It is therefore important to

note that the meta-data we express about

resources may require different levels of

interpretation, which may be valid in a

certain context only.

17

For example, the URI
 http://www.w3.org/Icons/WWW/w3c_main

 returns the W3C logo in the PNG or GIF

format, depending on the browser being

used.

Another example is the daily weather

report, whose URL would return a

different page each day.

18

It follows that the interpretation of
resources (and therefore of RDF triples)
is highly contextual. We can define the
notion of stable resource as follows:
stability for a resource is the property of
being the same in any context, from the
point of view of a user (or a community
of users). This definition is still very
contextual: it is dependant on the users
we are considering, more precisely on
the task they have to accomplish.

19

For example, from the point of view of a

standard reader, the W3C logo is

stable, since the GIF and PNG versions

look the same, but the weather report is

not stable. On the other hand, someone

interested only in image formats may

consider the W3C logo unstable and the

weather report stable – assuming the

weather report is always generating

images in the same format.

20

2.1.2. rdf:Property

The properties are resources used as

predicate of triples; the semantics of a

triple clearly depends on the property

used as predicate. Two things are very

important with the concept of property.

21

First, RDF considers properties as first

class object, unlike object modeling

languages, where properties are

attributes of a class. Even though the

concept of class exists in RDF (see

subsection 2.2), properties can be

defined and used independently of

classes.

22

Secondly, the fact that properties are

resources allows to describe them with

RDF itself. This will be widely used by

the following concepts.

23

2.1.3. rdf:Statement

A statement is a resource reifying a triple.

Such a resource must have at least 3

properties: rdf:subject, rdf:object and

rdf:predicate, valued by the corresponding

resources.

24

The reification of triples may seem a utility

concept rather than a fundamental

concept. Nevertheless it is defined as a

part of the model in the W3C

recommendation. This supports the will

to use RDF as its own meta-system, to

make every element of RDF describable

in RDF itself.

25

2.2. Schema definition

concepts

All these concepts are defined in [2], the

second document of the W3C, to allow

the definition of schemas, that is,

vocabularies of resources to use with

RDF. Not all agents will need to be

aware of these concepts: specialized

agents, limited to using a predefined

vocabulary, will not.

26

In schemas, new resources can be defined

as specialization of old ones, thus allowing

to infer implicit triples. Schemas also

constrain the context in which defined

resources may be used, inducing the notion

of schema validity. We will see that these

two notions can be seen as one, in a point

of view based on first-order logic.

27

They all can be expressed as rules allowing

to infer new facts (basically, new triples or

negations of triples). In these rules, the 3-

ary logical predicate

 (subject, predicate, object)

 will be used to represent a believed triple.

28

2.2.1. rdfs:subPropertyOf

Any property denotes a relation between

resources (the set of resource couples

linked by an arc labeled with the

property).

rdfs:subPropertyOf applies to properties

and must be interpreted as the subset

relation between the relations they

denote.

29

Thus the following rule stands:

∀s,p1,o,p2 (s,p1,o) ⋀
(p1,rdfs:subPropertyOf,p2) => (s,p2,o)

For example, if “mother” is a sub-property of
“parent”, any triple having “mother” as
predicate must also be considered as
having “parent” as predicate.

This property is very important in schema
definitions for interoperability between RDF
agents.

30

In the example above, an agent not knowing

the semantics of “mother” could at least

treat it as “parent” (assuming it knows the

semantics of “parent”).

Since rdfs:subPropertyOf denotes a subset

relation, the transitivity rule also stands:

∀p1,p2,p3

(p1,rdfs:subPropertyOf,p2) ⋀

(p2,rdfs:subPropertyOf,p3) =>

(p1,rdfs:subPropertyOf,p3)

31

Note that it is considered invalid by [2] to have

cycles in rdfs:subPropertyOf, though it

doesn’t define a way to express this

constraint in RDF. Anyway, the

corresponding logical rule is the following

(since any cycle would result, with

transitivity, in a property being its own sub-

property):

 ∀p ¬(p,rdfs:subPropertyOf,p)

Note also that there is no standard URI for the

universal property (superproperty of any

property).

32

2.2.2. rdfs:Class, rdf:type and rdfs:subClassOf

Classes are resources denoting a set of

resources, by the mean of the property

rdf:type (instances have property rdf:type

valued by the class). Since all sets of

resources presented in this section are

resources (they have a URI), they have by

definition the property rdf:type valued by

rdfs:Class.

33

Classes are structured the same way as

properties, in a subset hierarchy denoted

by the property rdfs:subClassOf. As for

rdfs:subPropertyOf, cycles must not exist

though it could be used to express

equivalence, but contrary to the property

hierarchy, the class hierarchy has a

maximum element: it is rdf:Resource (so

any class implicitly has rdfs:subClassOf

valued by rdf:Resource).

34

The following rules, similar to the rules

related to rdfs:subPropertyOf, stand:

∀i,c1,c2 (i,rdf:type,c1) ⋀

(c1,rdfs:subClassOf,c2) => (i,rdf:type,c2)

∀c1,c2,c3 (c1,rdfs:subClassOf,c2) ⋀

 (c2,rdfs:subClassOf,c3) =>

 (c1,rdfs:subClassOf,c3)

∀c ¬(c,rdfs:subClassOf,c)

35

2.2.3. rdfs:domain and rdfs:range

These properties apply to properties and

must be valued by classes. They are

used to restrict the set of resources that

may have a given property (the

property’s domain) and the set of valid

values for a property (its range).

36

A property may have as many values for
rdfs:domain as needed, but no more than
one value for rdfs:range:

∀p,r1,r2 (p,rdfs:range,r1) ⋀ r1 ≠ r2 =>

 ¬(p,rdfs:range,r2)

For a triple to be valid, the object must
match the range (if any) of the predicate
(that is, it must have rdf:type valued by the
corresponding class or one of its
subclasses), and the subject must match
at least one of the domains (if any) of the
predicate.

37

Note that if the predicate has super-

properties, this must also be checked

recursively for all of them. This can be

logically expressed by:

∀s,p,o (s,p,o) ⋀ ∃d (p,rdfs:domain,d) =>

 ∃d' ((p,rdfs:domain,d') ⋀ (s,rdf:type,d'))

 ∀s,p,o,r (s,p,o) ⋀ (p,rdfs:range,r) =>

 (o,rdf:type,r)

38

2.2.4. rdfs:Literal

[2] defines a resource rdfs:Literal, denoting

the set of literals, declared as a class

(though literals are not resources,

according to the recommendation). Its

intended use is to be the range of

properties.

39

2.3. Utility concepts

These concepts may have been defined

in external schemas, but since they are

of very common use, they have been

defined once for all in the core schema.

40

2.3.1. rdfs:Container

Containers are collections of resources. They
are modeled by an instance of one of the
three subclasses of rdfs:Container: rdf:Bag
(an unordered collection), rdf:Seq (an
ordered collection) or rdf:Alt (an alternative).
Membership is modeled by automatically
generated properties rdf:_1, rdf:_2, etc.
These properties are all instances of
rdfs:ContainerMembershipProperty, a
subclass of rdf:Property.

41

2.3.2. rdfs:ConstraintResource and
rdfs:ConstraintProperty

It can be interesting for an RDF agent to be
informed that an unknown resource (or
more specifically a property) is defining a
validity constraint. The set of such
resources is rdfs:ConstraintResource. Its
subclass rdfs:ConstraintProperty is of
course a subclass of rdf:Property too.
Properties rdfs:domain and rdfs:range
defined above are instances of
rdfs:ConstraintProperty.

42

2.3.3. rdfs:seeAlso and rdfs:isDefinedBy

A given resource may be described in

more than one place over the internet.

The rdfs:seeAlso property can be used

to point to alternative descriptions of the

subject resource. Its sub-property

rdfs:isDefinedBy more specifically

points to an original or authoritative

description.

43

2.3.4. rdfs:label and rdfs:comment

It can be useful to describe a resource

with human readable text in addition to

“pure” RDF properties; this is the role of

rdfs:label and rdfs:comment. The former

is used to give a human-readable name

of a resource, the latter - to give a

longer description. Note that they may

have multiple values for

internationalization needs.

44

3. XML syntax

This section describes the XML syntax

recommended by [1]. It uses XML

namespace notations, but expanded names

are obtained simply by concatenating the

namespace to the element name. Hence

we will use the same convention as in the

previous section for prefixes rdf: and rdfs:.

45

An RDF document is a list of descriptions.
Each description applies usually to one
resource, and contains a list of properties.
Property values are either URIs, literals or
other Descriptions.

In XML, RDF meta-data are embedded in
an element named rdf:RDF. This element
contains a sequence of elements named
rdf:Description. These elements can have
one of the two attributes:rdf:about or rdf:ID
(but not both).

46

• rdf:about is used to describe any

resource; its value is either an absolute

or a relative URI.

47

• rdf:ID is used to define a resource; its

value is a fragment identifier (without

the “#” character) to be added to the

XML document URI. A resource may

not be defined more than once.

48

• a description without rdf:about nor rdf:ID

is said to describe an anonymous

resource.

49

An element rdf:Description contains a
sequence of XML elements. These
elements are interpreted as properties,
whose predicate’s URI is the expanded
name of the element. If the element is
empty, it must have an attribute
rdf:resource whose value is the object’s
URI (see 1st dc:Creator in fig. 3). Else, it
can contain plain text (then interpreted as
a literal – see dc:Title in fig. 3) or a single
embedded rdf:Description element (see
2nd dc:Creator in fig. 3).

50

51

