

Introduction to Cyc

Inferencing

2

Overview of Cyc Inferencing

The Cyc inference engine handles modus ponens and

modus tollens (contrapositive) inferencing, universal
and existential quantification, and mathematical
inferencing. It uses contexts called microtheories to
optimize inferencing by restricting search domains.

The Cyc knowledge base contains over 1 million
assertions. Many approaches commonly taken by other
inference engines (such as frames, RETE match,
Prolog, etc.) just don't scale well to KBs of this size.
As a result, the Cyc team has been forced to develop
other techniques.

3

Cyc also includes several special-purpose inferencing

modules for handling a few specific classes of inference.

One set of modules handles reasoning concerning

collection membership, subsethood, and disjointness.

Another handles equality reasoning. Others implement

fast reasoning. Still others implement symmetry,

transitivity and reflexivity reasoning.

4

The Internal Representation of Assertions

In previous versions of Cyc, formulas are stored and

reasoned with in the same form in which they appear in

the KB browser, e.g.

 (implies

 (and

 (isa ?afp AdultFemalePerson)

 (residesInRegion ?afp Guam))

 (and (acquaintedWith Zippy ?afp)

 (likesAsFriend Zippy ?afp)))

5

In Cyc-10, formulas asserted to the KB are stored

internally, and reasoned with, in conjunctive normal

form (CNF). When converted to CNF, a formula gets

rewritten as a conjunction of disjunctions of negated and

non-negated literals. So, for example, the formula above

would be written in CNF as:

6

(and

 (or

 (not (isa ?afp AdultFemalePerson))

 (not (residesInRegion ?afp Guam))

 (acquaintedWith Zippy ?afp))

 (or

 (not (isa ?afp AdultFemalePerson))

 (not (residesInRegion ?afp Guam))

 (likesAsFriend Zippy ?afp)))

Each of the conjuncts would become a separate assertion.

7

Converting to CNF is part of the job of the Cyc-10

canonicalizer. The canonicalizer turns CycL formulas into

canonical form, so that they can be added to the KB as

assertions, looked up in the KB, etc. Some of the other

things the canonicalizer does are outlined below.

In Cyc-10, as well as in earlier versions of Cyc, universal

quantification is handled trivially by leaving universally

quantified variables unbound, while existential

quantification is handled through the use of Skolem

functions. Thus an assertion which is originally entered as:

8

 (forAll ?A

 (implies

 (isa ?A Animal)

 (thereExists ?M

 (and

 (mother ?A ?M)

 (isa ?M FemaleAnimal)))))

will be converted to something like:

9

 (implies

 (isa ?A Animal)

 (and

 (mother ?A (SkolemFunctionFn (?A) ?M))

 (isa (SkolemFunctionFn (?A) ?M)

 FemaleAnimal)))

and then further converted to CNF:

10

 (and

 (or

 (not (isa ?A Animal))

 (mother ?A (SkolemFunctionFn (?A) ?M)))

 (or

 (not (isa ?A Animal))

 (isa (SkolemFunctionFn (?A) ?M)

 FemaleAnimal)))

11

Skolem functions are handled exactly like all other

functions (except that Cyc creates and names the

function term for you). You are free to rename the

function term, or do anything else with it that you might
do with a function such as MotherOf.

Another task the Cyc-10 canonicalizer takes care of is the

ordering of literals in assertions. The advantage of a

canonical literal order is that it simplifies KB lookup;

only a test for structural equality is required to

determine that 2 formulas are the same.

12

The major advantage to using CNF as an internal

representation is that it greatly simplifies the conceptual

scheme used in inferencing, because all axioms have a

uniform structure. When you add

 P and Q => R

to the system, it gets canonicalized to the CNF form

 not(P) or not(Q) or R

13

Note that both of the following would be canonicalized to the

same CNF form:

 P and not(R) => not(Q)

 Q and not(R) => not(P)

14

There is only one potential downside to using CNF, which is

that certain types of assertions which can be expressed quite

compactly in conditional form become somewhat unwieldy

when converted to CNF. Specifically, an assertion of the

form:

 (implies

 (or P1 P2 P3 ... Pm)

 (and Q1 Q2 Q3 ... Qn))

15

will result in a CNF with m times n conjuncts. However,

we do not regard this as a significant problem, since

asserting formulas of this form constitutes bad KE style,

and thus is unlikely to occur very often. In particular, a

knowledge enterer who writes such a formula is

probably attempting to use the P1 ... Pm literals as an

exhaustive list of cases in which the consequent should

hold, when he or she should have been shooting for a

single meaningful generalization.

16

Inferencing: An Introduction

Backward inferencing - the type of inferencing initiated by

an ASK operation - can be regarded as a search through

a tree of nodes, where each node represents a CycL

formula for which bindings are sought, and each link

represents a transformation achieved by employing an

assertion in the knowledge base.

17

For example, let's say I ask for bindings for the formula
(likesObject ?x ?y). That formula will

constitute the root node of an inference search tree.

What I am looking for is any assertion which will help
provide bindings for ?x and ?y. The KB may contain

some ground assertions involving likesObject, such

as

 (likesObject Keith BillM)

and also some if-then rules, such as

 (implies

 (possesses ?x ?y)

 (likesObject ?x ?y))

18

Each of these provides a way to expand the root node. That is,

each constitutes a link to a new node with a different

formula to satisfy; these new nodes will be the leaf nodes of

the search. In the first case, the formula to satisfy in the new

node is simply

 #$True

In the second case, using the if-then rule takes us to a new

node that now needs to satisfy the formula

 (possesses ?x ?y)

19

The search procedure may now recurse on this new node,

because if we can find bindings for this formula, the if-then

rule will give us bindings for our original formula. Perhaps

the KB also contains a rule which says,

 (implies

 (objectFoundInLocation ?x KeithsHouse)

 (possesses Keith ?x))

This assertion can take us to yet another node with the goal

formula

 (objectFoundInLocation ?x KeithsHouse)

20

That is, we are now looking for things found in Keith's

house, because if something is found in Keith's house,

then Keith possesses it, and if someone possesses

something, then he or she likes it. Note that this new

node has one less free variable than its parent, which is

probably desirable.

21

Alternatively, there may be another rule which states

 (implies

 (and

 (isa ?x Agent)

 (owns ?x ?y))

 (possesses ?x ?y))

This rule could take us to a new node whose formula to

satisfy is

 (and

 (isa ?x Agent)

 (owns ?x ?y))

22

But this is probably not a happy development: we are now

three nodes down, and the problem is getting more

complex, rather than simpler.

Thus, the primary issue to be addressed in designing an

inference procedure is the algorithm to be used for

searching the tree. How do we decide which leaf nodes

to expand next? Another important issue is to determine

how a node is expanded. That is, how do we find the

axioms in the knowledge base which are likely to

provide links to new leaf nodes?

23

Inferencing in Cyc

Three important strengths of Cyc inferencing are:

1. The inferencing code is modular and stable.

2. The state of the search is maintained, so that a search

which suspends due to resouce constraints can resume

where it left off.

3. Search is completely parameterized, so that various kinds

of search may be performed.

24

The first and second items should be self-explanatory, but

the third demands elaboration. Cyc-10 does heuristic

search by default, but depth-first search is also

implemented (and is used for forward inference, since

forward inference requires traversal of the whole search

tree anyway). Certain applications also take advantage of

parameterized search, doing mostly heuristic search but

substituting in a special method for expanding nodes, or

identifying goal nodes, etc. Below we discuss the

heuristics Cyc-10 search uses and then we cover the

various search parameters.

25

Heuristics for Deciding Which Node to Expand

Cyc-10 uses a number of heuristic rules to decide which leaf

node to expand next. Some of these are purely syntactic

heuristics:

• Favor nodes with fewer literals to satisfy (as compared

with all other unexpanded nodes). This heuristic helps to

steer the search toward branches that are likely to bottom

out soon.

• Favor nodes that have fewer free variables (as

compared with all other unexpanded nodes). Like the

preceding heuristic, this heuristic helps to steer the search

toward branches that are likely to bottom out soon.

26

• Very weakly favor nodes that are higher up in the

search tree . This heuristic helps to avoid going too far

down into the search without ever following up on other

branches.

• Strongly favor nodes with no free variables left at all .

If there are no free variables left, there's a good chance

we'll be able to determine the truth value of the formula

just by doing a KB lookup.

• Weakly disfavor nodes which include negative literals

(that is, anything of the form (not P)). Because the KB

consists primarily of positive assertions, it is easier to find

bindings for positive literals than for negative literals.

27

Other heuristics are semantic:

• Disfavor nodes which might be part of a unification

cycle . Basically, try to avoid going in circles.

• Disfavor nodes which are less likely to be satisfied by

KB lookup . This is done by adding a measure of

disfavor to a node for each of its goal literals that mention

a predicate and a constant, but the constant has no index

for the predicate in the KB.

28

Weighing Heuristics

These heuristic rules act in concert, according to a linear

summation rule. One way to think of this is as a chorus

of agents, each of which corresponds to one heuristic

and who are each looking to see if their heuristic

applies. As each candidate node is presented to the

chorus, the agents shriek more or less loudly, according

to how strongly they disfavor the node. The sum of the

volumes of the shrieks is compared with the sums of

other nodes, and the open node with the lowest sum is

expanded next.

29

Heuristics for Deciding Which Literal in a Node

to Expand

In many cases, the formula at a node will contain more

than one literal. In the example developed above, for

instance, we saw a node whose formula to satisfy was

 (and

 (isa ?x Agent)

 (owns ?x ?y))

If we choose to expand this node, which of these two

literals should we expand first? Should we look for
elements of Agent, or should we look for owns pairs?

30

The solution used in Cyc-10 is to require that each HL

module which applies to a literal must be able to provide

a heuristic estimate for how expensive it would be to

apply that module to the literal. These heuristics are

linearly summed, and the literal which has the lowest

heuristic cost is favored most strongly.

31

Search Nodes

Under Cyc-10, each search node is a structure with the

following slots:

• search : the search this node is part of

• parent : this node's parent node

• children : A list of pointers to this node's children

• depth : the depth of this node in the search tree

• options : current ways left to expand the node

• state : a datastructure that contains the semantics of the

node

32

The search node semantic state includes the following

information:

• formula : the CycL formula to satisfy, which represents

the intermediate state of the inference search at this node.

• inference supports : the assertions and HL modules used

to transform our parent's formula into our formula. The

inference supports of this node and all its ancestors

together constitute the complete inference path down to

this search node.

• variable bindings : a mapping between variables in the

parent node and what they are bound to in this node.

33

ASKs and Direction

ASKs and ASSERTs use direction to control which

assertions will be accessed during inference. Direction

comes in two flavors: forward and backward. An

ASSERT with direction :forward will cause inference to

be performed at assert time; an ASSERT with direction

:backward will cause inference to be deferred until ask

time.

34

Equality

Equality is handled at unification time. It's as if the KB had

a unique names assumption: objects with different

names are assumed to be not equal, unless you

specifically override the assumption by asserting that
two objects are equal, e.g. (equals Fred Joe). No

inference concerning equality is done at unification

time.

