
The Syntax of CycL 
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CycL is a formal language whose syntax derives 
from first-order predicate calculus (the language 
of formal logic) and from Lisp. In order to 
express common sense knowledge, however, it 
goes far beyond first order logic. The vocabulary 
of CycL consists of terms. The set of terms can 
be divided into constants, non-atomic terms 
(NATs), variables, and a few other types of 
objects. Terms are combined into meaningful 
CycL expressions, which are used to make 
assertions in the CYC® knowledge base.   
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Constants 

 

Constants are the "vocabulary words" of the 

CYC® knowledge base. The CYC® KB is 

an attempt to model the world as most 

sane, adult humans perceive it, so each 

constant stands for some thing or concept 

in the world that we think many people 

know about and/or that most could 

understand.  
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The KB contains constants that denote 

collections of other concepts, such as 

#$AnimalWalkingProcess (the set of all 

actions in which some animal walks) or 

#$Typewriter (the set of all typewriters).  
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It can have constants that denote individual 

things, some of which are more-or-less 

permanently in the KB, like 

#$InternalRevenueService, and some of 

which might get created only when 

reasoning about some state of affairs, like 

#$Walking00036 (a particular case of 

walking).  
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Some of the individuals represented in the 

KB are predicates, such as #$isa or 

#$likesAsFriend, that allow one to express 

relationships among constants. Others are 

functions, such as #$GovernmentFn, 

which can take constants or other things 

as arguments, and generate new concepts 

(i.e., (#$GovernmentOf #$Canada)). 
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Each constant has its own data structure in 

the KB, consisting of the constant and the 

assertions which describe it.  
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Constant Names 

 

Most CYC® constants have a unique name, 
such as #$BillJ, #$massOfObject, or 
#$MapleTree.  

 

CYC® constants are referred to with the 
prefix "#$“. These characters are 
sometimes omitted in documents 
describing CycL, and they may be omitted 
by certain interface tools.  
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Naming Conventions 

 

The name of a CYC® constant - the part 

after the "#$" prefix - must follow these 

rules:  

 

All CYC® constant names must be at least 2 

characters long (not including the #$ 

prefix). 
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Constant names can include any uppercase 

or lowercase letter, any digit, and the 

symbols "-", "_", and "?". No other 

characters, such as "!", "&", or "@" are 

allowed. This policy is enforced in the 

CYC® Functional Interface and in the 

CYC® Web Interface.  



11 

CYC® constant names are case-sensitive: 

#$foo is not the same as #$Foo. However, 

distinguishing two constant names solely 

on the basis of capitalization is prohibited 

by the system.  
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All CYC® predicate names must begin with 

a lowercase character. (This does not 

include all the things that are presently 

instances of #$Predicate in CYC®. Some 

of these latter things are more like 

functions, and their names begin with 

uppercase letters).  
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All non-predicate constant names must 

begin with an uppercase character. Non-

predicate constant names may also begin 

with a numeric character (e.g., 

#$3MCorporation). We may also allow 

predicates to begin with numeric 

characters, if someone makes a 

compelling argument for why this should 

be allowed.  
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All CYC® constant names should be 
composed of one or more meaningful 
"words" in sequence, with no breaks 
except for dashes or underlines (e.g. #$isa 
and #$SportsCar). A sequence of numeric 
characters may count as a "word" (e.g., 
#$FrontOfficeOf123Corp). With the 
exception noted above for predicate 
names, each (non-numeric) "word" in a 
sequence must begin with a capital letter.  
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Hyphens are used to set off parts of names 

which restrict or refine the meaning of the 

name, as in #$Fruit-TheWord or #$Horse-

Domesticated.  



16 

Naming Strategies 

 In general, it's best to give related constants 
names which are alphabetically proximal. 
Some of our interface tools make it easy to 
search for all constants whose name 
begins with a certain string of characters, 
and it's easier to find all constants having 
to do with horses if they have been given 
names like #$Horse-Domesticated and 
#$Horse-Wild than if they have been given 
names like "DomesticatedHorse" and 
"WildHorse". 



17 

When naming a constant, it's important to 
assign a name that distinguishes the 
denoted concept from other concepts it 
might get confused with. So "Bow" would 
be a terrible name for a constant. Instead, 
names like "Bow-BoatPart", 
"BowTheWeapon", "Bowing-
BodyMovement" should be used, 
depending on the underlying concept 
denoted.  
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Sometimes it is possible to take this 
principle of specificity in names to an 
extreme, and attempt to embody the whole 
meaning of the constant in its name. This 
is discouraged. For example, one might be 
tempted to give the constant 
#$physicalParts the name 
"distinctIdentifiablePhysicalParts", but it is 
better to leave the name a bit terser since 
it isn't easily confused with some other 
concept, and put the additional information 
in the constant documentation.  
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Variables 

 

Quantified CycL expressions (discussed 

below) contain one or more variables 

which stand for constants whose identities 

are not specified. A variable may appear 

(nearly) anywhere a constant can appear.  
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Variable Names 

 

Variable names must begin with a question 

mark and are ordinarily written in capital 

letters ("?FOO"). Variable names are 

subject to the same restrictions on usable 

characters as constant names. 
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Naming Conventions 

 

In formulas in which only one variable is 

used, it is common to use a single-letter 

variable, such as "?X". However, when a 

formula contains more than one variable, it 

will be much more readable if you give the 

variables mnemonic names. Here's an 

example: 
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(#$implies  

      (#$and  

         (#$isa ?TRANSFER #$TransferringPossession)  

       (#$fromPossessor ?TRANSFER ?FROM))  

     (#$isa ?FROM #$SocialBeing))  

 

"The initial possessor in a possession 

transfer is a social being."  
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Formulas 

 
CycL formulas combine terms into 

meaningful expressions.  

 Every formula has the structure of a Lisp 

list. It is enclosed in parentheses, and 

consists of a list of objects which are 

commonly designated ARG0, ARG1, 

ARG2, etc.  
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The object in the ARG0 position may be a 

predicate, a logical connective, or a 

quantifier. The remaining arguments may 

be atomic constants, non-atomic terms, 

variables, numbers, English strings 

delimited by double quotes ("), or other 

formulas. 
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#$CycFormula 

 

This is the class of well-formed formulas in 

CycL. If a CycL formula satisfies all the 

constraints on the number and types of 

arguments to the relations that appear in 

it, the system will recognize it as an 

instance of the collection #$CycFormula. 
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Atomic Formulas 

 

The simplest kind of formula is an atomic 

formula: a formula in which the ARG0 

position is occupied by a predicate, and all 

the other argument positions are filled with 

terms: 
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(#$likesAsFriend #$DougLenat #$KeithGoolsbey)    

(#$skillCapableOf #$LinusVanPelt 

#$PlayingAMusicalInstrument #$performedBy)    

(#$colorOfObject ?CAR ?COLOR)  
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The first two of the atomic formulas above 

are ground atomic formulas (GAFs), since 

none of the terms filling the argument 

positions ARG1, ARG2, etc. are variables.  
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Predicates 

 

Every CycL atomic formula must begin with 

a predicate in order to be well-formed.  
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Predicate Arity 

 

Most predicates are defined to take a fixed 

number of arguments. There are no optional 

predicate arguments in CycL. However, a 

few predicates, such as #$different, can take 

a variable number of arguments. Such 

predicates are elements of the collection 

#$VariableArityRelation.  



In most cases, arity is automatically inferred 

by CYC® when a relation or predicate is 

made an instance of a certain type of 

collection (e.g. #$BinaryPredicate). 

However, arity can also be asserted directly, 

via the binary predicate #$arity. 
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The number of arguments a predicate takes 
is determined by its arity. A predicate is 
described as unary, binary, ternary, 
quaternary, or quintary, according to 
whether it takes 1, 2, 3, 4, or 5 arguments. 
Currently, no CycL predicate takes more 
than 5 arguments; however, if some 
representation required a predicate to take 
more arguments, CycL would be changed 
to allow this.  
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To be well-formed, an atomic formula must 

have the right number of arguments for the 

predicate filling the ARG0 position. So,  

 (#$likesAsFriend #$DougLenat      

 #$KeithGoolsbey #$Fido)  

is not well-formed, since the arity of 

#$likesAsFriend is 2, but this formula gives 

3 arguments to #$likesAsFriend.  
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Predicate Argument Types 

 

The type of each argument must be 

specified in the definition of the predicate, 

using the predicates #$arg1Isa, #$arg2Isa, 

etc. For example, suppose the predicate 

#$residesInDwelling is defined by the 

following: 
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(#$isa #$residesInDwelling #$BinaryPredicate)    

(#$arg1Isa #$residesInDwelling #$Animal)    

(#$arg2Isa #$residesInDwelling #$ShelterConstruction) 
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To be well-formed, every formula which has 

#$residesInDwelling in the ARGO position 

must have a term which is an instance of 

#$Animal in the ARG1 position, and term 

which is an instance of 

#$ShelterConstruction in the ARG2 

position.  
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 So,   
(#$residesInDwelling #$PottedPlant37 #$KarensHouse)  

 

is probably not well-formed. Though we can 

never be absolutely certain just from the 

names, #$KarensHouse could be an 

instance of #$ShelterConstruction, but 

#$PottedPlant37 is probably not an 

instance of #$Animal.  
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Logical Connectives 

 

Complex formulas can be built up out of 

atomic formulas or other complex formulas 

by using logical connectives, which are 

special constants analogous to the logical 

operators of formal logic. The most 

important logical connectives in CycL are 

#$not, #$and, #$or, and #$implies.  
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#$not 

 

The connective #$not takes a single formula 

as an argument. Like the "not" of formal 

logic, it reverses the truth value of its 

argument.  
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Thus, 

(#$not (#$colorOfObject #$FredsBike #$RedColor))  

will be true if and only if  

(#$colorOfObject #$FredsBike #$RedColor)  

is false.  
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Likewise,  

   (#$not (#$not (#$colorOfObject #$FredsBike 

 #$RedColor)))   

will have the same truth value as  
 (#$colorOfObject #$FredsBike #$RedColor) 
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#$and 

 

The connective #$and takes one or more 

formulas as arguments. Like the "and" of 

formal logic, it returns true if and only if 

each of its arguments evaluates to true.  
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#$or 

 

The connective #$or takes one or more 

formulas as arguments. Like the "or" of 

formal logic, it returns true if and only if at 

least one of its arguments evaluates to 

true.  
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#$implies 

 

The connective #$implies takes exactly two 

formulas as arguments. Like the "if-then" 

statement of formal logic, it returns true if 

and only if it is not the case that its first 

argument is true and its second argument 

is false.  
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Here's an example: 

 
(#$implies   (#$owns #$Fred #$Bike001)    

         (#$colorOfObject #$Bike001 #$RedColor))  

 

This assertion states that if #$Bike001 is owned by 

#$Fred, then it is red. Newcomers to formal logic 

may misinterpret #$implies as implying a causal 

relationship. But, strictly speaking, a #$implies 

assertion says only that either the first argument 

is false, or the second argument is true.  
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So, for example, the assertion  

 
(#$implies    

 (#$isa #$RichardNixon #$Fruit)    

 (#$colorOfObject #$BillJ #$PastelMintGreen))  

 

is true, because the first argument is false.  
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Assertions involving #$implies are very common in 

the CYC® KB. We also call them conditionals or 

rules, and we often refer to the first argument as 

the antecedent and the second argument as the 

consequent. Note, however, that the particular 

formula above is not representative of assertions 

likely to be found in the CYC® KB. We will come 

to some more representative examples in a 

moment.  
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Well-Formedness of Complex 

Formulas 

 Any complex formula formed by using the logical 

connectives will be well-formed if the formulas 

given as arguments to the connectives are also 

well-formed and if the right number of arguments 

are given. Another way of saying this is that 

#$not, #$and, #$or and #$implies produce 

CycFormulas when they are given arguments 

which are also CycFormulas. 
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 Suppose A and B are syntactically legal, 

and C is not. Then,  
(#$not A)   

(#$and A)    

(#$and A B)    

(#$or A)    

(#$or A B)    

(#$implies A B) 

would all be CycFormulas.   
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But 
(#$not A B)    

(#$and)    

(#$and A C)    

(#$implies A)  

would NOT be CycFormulas.  

It should also be noted that #$and and #$or 

are elements of #$VariableArityRelation. 
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Quantification 

 

So far, we have only looked at ways to make 

statements about specific objects, like 

#$FredsBike. But CycL, like first-order 

predicate calculus, also gives us two ways 

to talk about objects without being specific 

about the identity of the objects involved: 

universal quantification and existential 

quantification.  
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Universal quantification corresponds to 

English expressions like every, all, always, 

everyone, and anything, while existential 

quantification corresponds to English 

expressions like someone, something, and 

somewhere.  



CycL contains one universal quantifier, 

#$forAll, and four existential quantifiers, 

#$thereExists, #$thereExistAtLeast, 

#$thereExistAtMost, and 

#$thereExistExactly.  
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forAll 

 

The quantifier #$forAll takes two arguments, 

a variable and a formula in which the 

variable appears. In practice, the formula 

is almost always a conditional in which the 

antecedent is used to restrict the scope of 

the variable.  
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Here's an example: 
(#$forAll ?X    

 (#$implies       

  (#$owns #$Fred ?X)       

  (#$objectFoundInLocation ?X #$FredsHouse)))  

This formula states that it is true, concerning 
every object in the CYC® ontology, that if 
#$Fred owns that object, then that object 
is located in #$FredsHouse. In other 
words, all Fred's stuff is in his house.  
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Multiple Quantification 

 

Formulas may contain more than one 

quantifier, as in the following: 
(#$forAll ?X  

   (#$forAll ?Y  

      (#$implies  

         (#$and  

            (#$owns #$Fred ?X)  

            (#$owns #$Fred ?Y))  

         (#$near ?X ?Y))))  
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which says that any two things owned by 

Fred are near each other. Note that each 

quantifier introduces a new variable, and 

that each variable must have a different 

name.  
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Unbound Variables 

 

Normally, variables need to be introduced 

("bound") by a quantifier before they are 

used. Each quantifier binds exactly one 

variable, and every variable used should 

be bound by exactly one quantifier. 

Furthermore, a variable has no meaning 

outside the scope of the quantifier which 

binds it. 
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 However, if a unbound variable appears in 

a CycL formula, it is always assumed to be 

universally quantified, with the result that  
(#$implies    

 (#$owns #$Fred ?X)    

 (#$objectFoundInLocation ?X #$FredsHouse))  

is exactly equivalent to  
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(#$forAll ?X    

 (#$implies       

  (#$owns #$Fred ?X)       

  (#$objectFoundInLocation ?X #$FredsHouse)))  

Since the former is easier to write and read, 

it is almost always preferred in practice, 

and you will rarely see a #$forAll while 

browsing the CYC® KB.  



Note, however, that unbound variables 

which appear only in the consequent of a 

conditional, and not in the antecedent, may 

have drastic and undesired consequences. 

Take, for example, the following:  
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(#$implies    

 (#$owns #$Fred ?WHATEBER)    

 (#$objectFoundInLocation ?WHATEVER #$FredsHouse))  

Because of the typo, the variable ?WHATEVER 

will range over the entire CYC® ontology. In 

other words, the assertion above states that as 

long as Fred owns one thing, everything is 

located in #$FredsHouse-probably not what we 

wanted.  
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#$thereExists 

 

The quantifier #$thereExists takes two 

arguments, a variable and a formula in 

which the variable appears. In practice 

one uses #$thereExists only in certain 

ways, of which the following is a good 

example: 
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   (#$implies       

  (#$isa ?A #$Animal)       

  (#$thereExists ?M          

   (#$mother ?A ?M)))  
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This assertion states that, for every animal, 
there exists at least one object which is 
that animal's mother. The object which is 
the animal's mother may be an object 
which is already represented by a CYC® 
constant, or it may be a new object of 
which CYC® has no knowledge. But 
unless and until it is told otherwise, CYC® 
will assume that the object is a new one 
not identical with any "known" object.  
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#$thereExistExactly,   

#$thereExistAtLeast, 

#$thereExistAtMost  

These three quantifiers are similar to 

#$thereExists, but provide greater 

quantitative expressiveness. Each of them 

takes three arguments: a positive integer, 

a variable, and a formula in which the 

variable appears. Their meaning should be 

fairly self-explanatory. Look at the 

following examples: 
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   (#$implies       

  (#$isa ?P #$Person)       

  (#$thereExistExactly 2  ?LEG          

   (#$and             

    (#$isa ?LEG #$Leg)             

    (#$anatomicalParts ?P ?LEG))))  
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   (#$implies       

  (#$isa ?T #$Table)       

  (#$thereExistAtLeast 3 ?LEG          

   (#$and             

    (#$isa ?LEG #$Leg)             

    (#$anatomicalParts ?T ?LEG))))  
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   (#$implies       

  (#$isa ?P #$Person)       

  (#$thereExistAtMost 1 ?SPOUSE             

   (#$spouse ?P ?SPOUSE)))  
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Well-Formedness of Quantified 

Formulas 

 As you probably by now expect, any formula 

beginning with a quantifier is well-formed if 

and only if its arguments are of the right 

number, of the right types, in the right 

order, and its formula argument is well-

formed. 
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Skolemization 

 

People writing assertions for entry into the CYC® 

KB use #$thereExists quite frequently. But when 

you browse the KB, you rarely see #$thereExists 

in an assertion. That's because once assertions 

are entered into the KB, occurences of 

#$thereExists are automatically converted into 

Skolem functions. The only exceptions are 

certain cases where #$thereExists is used within 

an expression that is an argument to a 

predicate.  
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Thus, an assertion which was entered as: 

   (#$implies       

  (#$isa ?A #$Animal)       

  (#$thereExists ?M          

   (#$and (#$mother ?A ?M)                  

     (#$isa ?M #$FemaleAnimal))))  
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will appear in the KB as 4 different 
assertions:  

   (#$isa #$SKF-8675309 #$SkolemFunction)    

 (#$arity #$SKF-8675309 1)    

 (#$implies      

  (#$isa ?A #$Animal)      

  (#$mother ?A (#$SKF-8675309 ?A)))    

 (#$implies       

  (#$isa ?A #$Animal)      

  (#$isa (#$SKF-8675309 ?A) #$FemaleAnimal))  
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Non-Atomic Terms 

 

A non-atomic term (NAT) is a way of 

specifying a term as a function of some 

other term(s). Every NAT is composed of a 

function and one or more arguments to 

that function.  



75 

Consider, for example, the function 

#$FruitFn, which takes as an argument a 

type of plant and returns the collection of 

the fruits of that type of plant. This function 

can be used to build the following NATs:  

   (#$FruitFn #$AppleTree)     

 (#$FruitFn #$PearTree)     

    (#$FruitFn #$WatermelonPlant)     

     . . .  
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Note that there may or may not be a named 
CYC® constant corresponding to the 
collection of apples (that is, a constant 
called #$Apple). The NAT (#$FruitFn 
#$AppleTree) provides a way of talking 
about this collection even if the 
corresponding constant does not exist.  

NATs can be used anywhere a constant can 
be used.  
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Function Arity 

 

Like predicates, most functions have a fixed 

arity. A function is described as unary, 

binary, ternary, quaternary, or quintary, 

according to whether it takes 1, 2, 3, 4, or 

5 arguments. No CycL function currently 

takes more than 5 arguments. 
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 A few functions do not have a fixed arity, but 

can take a variable number of arguments. 

Mathematical functions like #$PlusFn are 

one example. And in Cyc-10, IBQEs are 

now treated as NATs in which the units of 

measure are functions which can take 

either one or two arguments, according to 

whether they are intended to denote a 

single value or a range.  
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Function Argument Types and 

Result Types 

 Functions with fixed arity are similar to 
predicates in that the definition of the 
function must specify the type of each 
argument, using the predicates #$arg1Isa, 
#$arg2Isa, etc. 

 Functions with no fixed arity are defined 
using the predicate #$argsIsa, which 
specifies a single type of which every 
argument must be an instance.  
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 Functions differ from predicates in that they 

return a CYC® term as a result. 

Accordingly, function definitions must also 

describe the type of the result to be 

returned, using the predicate #$resultIsa. 

Consider, for example, the function 

#$GovernmentFn:  
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   (#$arity #$GovernmentFn 1)    

 (#$arg1Isa #$GovernmentFn #$GeopoliticalEntity)    

 (#$resultIsa #$GovernmentFn #$RegionalGovernment)  

The argument to #$GovernmentFn must always be 
an instance of #$GeopoliticalEntity, and a NAT 
created using #$GovernmentFn will always be 
an instance of #$RegionalGovernment. So, for 
instance,  

(#$isa  

 (#$GovernmentFn #$UnitedStatesOfAmerica) 
#$RegionalGovernment)  
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Reifiable Functions vs. Non-

Reifiable Functions 

 Many CycL functions are instances of 

#$ReifiableFunction. Each time an 

instance of #$ReifiableFunction is used 

with a new set of arguments to build a 

NAT, that NAT is reified, that is, preserved 

in the CYC® ontology as a constant.  



Constants which are reified NATs don't start 

out with proper constant names, but can 

always be referred to by their NAT 

expression. They can later be assigned 

constant names if desired. 
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•  Skolem functions are reifiable.  

•  Non-reifiable functions include 

mathematical functions like #$PlusFn. Just 

because we use a NAT like (#$PlusFn 59 

64) doesn't mean we want to add to the 

KB a unit denoting the number 123. If we 

want to talk about the number 123, we'll 

just refer to it directly.  
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Assertions 

 

So far this document has dealt mostly with 

the syntax of formulas in CycL. This is the 

syntax used by people or external 

programs when they assert things into a 

version of the CYC® KB or query the KB. 

Now we will shift our focus to what 

formulas look like once they have been 

asserted into the KB. 
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The CYC® KB consists of a large number of 

assertions. When a formula is successfully 

asserted into the KB, it is stored as one of 

these. Each assertion is composed of a 

number of elements:  
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• a formula 

• a microtheory 

• a truth value 

• a direction (or access level) 

• a support 
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Formulas 

 

You are already familiar with formulas-they 

are the CycFormulas we use to state 

things in the CYC® KB. 
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Microtheories 

 

Every assertion is contained in some 

microtheory. A particular formula may be 

asserted into (or concluded in) more than 

one microtheory; when this is the case, 

there will be an assertion which has that 

formula in each of those microtheories. 

The largest number of assertions are 

currently in the #$BaseKB. 
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 Microtheories are covered in more detail here, as 

well as in the constant vocabulary, under 

#$Microtheory. Where does the microtheory 

information on assertions come from? That 

depends on the origin of the assertion. If an 

assertion is added to the KB by the inference 

engine as the result of firing a rule, the inference 

engine code decides what microtheory the 

conclusion should be added in and records it at 

add time.  
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If an assertion is the result of a person or external 

program asserting a formula into the KB, at that 

time the asserter must specify which microtheory 

the formula is to go in. Some interfaces for 

knowledge entry may not require the user to 

specify a microtheory for new assertions, and 

will then either try to choose the right one or will 

use #$BaseKB as a default. If you use such an 

interface make sure you know what the default 

behavior is.  
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Truth Values 

 

Attached to every assertion is a truth value 

that indicates its degree of truth. CycL 

contains five possible truth values, of 

which the most common are default true 

and monotonically true. 
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Assertions that are monotonically true are 

held to be true in every case, that is, for 

every possible set of bindings to the 

universally quantified variables (if any) in 

the assertion, and cannot be overridden. 

In the case of a monotonically true 

assertion with universally quantified 

variables in its formula, if an object is 

found for which the assertion is not true, 

an error is signalled.  



In the case of a ground assertion that is 

monotonically true, if the negation of that 

formula is ever asserted or arrived at during 

inference (in the same microtheory), an error 

is signalled.  
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 Assertions that are default true, in contrast, 

are held to be true in most cases, and can 

be overridden. If the negation of an 

existing ground, default assertion is 

asserted in the same microtheory, or is 

arrived at through inference, no error is 

signalled. Instead, the argumentation 

mechanism is invoked to decide what the 

final truth value of the assertion will be.  
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 By default, GAFs which begin with the 

predicates #$isa and #$genls are 

monotonically true, while all other 

assertions (including rules) are default 

true.  
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Directions 

 

Direction is a value associated with every 

assertion that determines when 

inferencing involving that assertion should 

be performed. There are three possible 

values for direction: forward, backward, 

and code.  
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Inferencing involving assertions with direction 

forward is performed at assert time (that is, 

when a new assertion is added to the KB), while 

inferencing involving assertions with direction 

backward is postponed until a query occurs and 

that query allows backward inference. By 

default, GAFs have direction forward, while rules 

have direction backward. Only in very special 

cases should rules have direction forward. 
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Supports 

 

Attached to every assertion is a support, 

which consists of one or more justifications 

which form the support for the presence of 

the assertion in the KB. In many cases, at 

least one of the supporting justifications is 

local, indicating that the assertion was 

added to the KB from an outside source 

(most commonly, a human KEer).  



In other cases, a supporting justification is a 

source which indicates the assertion was 

inferred and which outlines the final step of 

some argument, or chain of reasoning, 

which supports the assertion. 
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