
The Syntax of CycL

2

CycL is a formal language whose syntax derives
from first-order predicate calculus (the language
of formal logic) and from Lisp. In order to
express common sense knowledge, however, it
goes far beyond first order logic. The vocabulary
of CycL consists of terms. The set of terms can
be divided into constants, non-atomic terms
(NATs), variables, and a few other types of
objects. Terms are combined into meaningful
CycL expressions, which are used to make
assertions in the CYC® knowledge base.

3

Constants

Constants are the "vocabulary words" of the

CYC® knowledge base. The CYC® KB is

an attempt to model the world as most

sane, adult humans perceive it, so each

constant stands for some thing or concept

in the world that we think many people

know about and/or that most could

understand.

4

The KB contains constants that denote

collections of other concepts, such as

#$AnimalWalkingProcess (the set of all

actions in which some animal walks) or

#$Typewriter (the set of all typewriters).

5

It can have constants that denote individual

things, some of which are more-or-less

permanently in the KB, like

#$InternalRevenueService, and some of

which might get created only when

reasoning about some state of affairs, like

#$Walking00036 (a particular case of

walking).

6

Some of the individuals represented in the

KB are predicates, such as #$isa or

#$likesAsFriend, that allow one to express

relationships among constants. Others are

functions, such as #$GovernmentFn,

which can take constants or other things

as arguments, and generate new concepts

(i.e., (#$GovernmentOf #$Canada)).

7

Each constant has its own data structure in

the KB, consisting of the constant and the

assertions which describe it.

8

Constant Names

Most CYC® constants have a unique name,
such as #$BillJ, #$massOfObject, or
#$MapleTree.

CYC® constants are referred to with the
prefix "#$“. These characters are
sometimes omitted in documents
describing CycL, and they may be omitted
by certain interface tools.

9

Naming Conventions

The name of a CYC® constant - the part

after the "#$" prefix - must follow these

rules:

All CYC® constant names must be at least 2

characters long (not including the #$

prefix).

10

Constant names can include any uppercase

or lowercase letter, any digit, and the

symbols "-", "_", and "?". No other

characters, such as "!", "&", or "@" are

allowed. This policy is enforced in the

CYC® Functional Interface and in the

CYC® Web Interface.

11

CYC® constant names are case-sensitive:

#$foo is not the same as #$Foo. However,

distinguishing two constant names solely

on the basis of capitalization is prohibited

by the system.

12

All CYC® predicate names must begin with

a lowercase character. (This does not

include all the things that are presently

instances of #$Predicate in CYC®. Some

of these latter things are more like

functions, and their names begin with

uppercase letters).

13

All non-predicate constant names must

begin with an uppercase character. Non-

predicate constant names may also begin

with a numeric character (e.g.,

#$3MCorporation). We may also allow

predicates to begin with numeric

characters, if someone makes a

compelling argument for why this should

be allowed.

14

All CYC® constant names should be
composed of one or more meaningful
"words" in sequence, with no breaks
except for dashes or underlines (e.g. #$isa
and #$SportsCar). A sequence of numeric
characters may count as a "word" (e.g.,
#$FrontOfficeOf123Corp). With the
exception noted above for predicate
names, each (non-numeric) "word" in a
sequence must begin with a capital letter.

15

Hyphens are used to set off parts of names

which restrict or refine the meaning of the

name, as in #$Fruit-TheWord or #$Horse-

Domesticated.

16

Naming Strategies

 In general, it's best to give related constants
names which are alphabetically proximal.
Some of our interface tools make it easy to
search for all constants whose name
begins with a certain string of characters,
and it's easier to find all constants having
to do with horses if they have been given
names like #$Horse-Domesticated and
#$Horse-Wild than if they have been given
names like "DomesticatedHorse" and
"WildHorse".

17

When naming a constant, it's important to
assign a name that distinguishes the
denoted concept from other concepts it
might get confused with. So "Bow" would
be a terrible name for a constant. Instead,
names like "Bow-BoatPart",
"BowTheWeapon", "Bowing-
BodyMovement" should be used,
depending on the underlying concept
denoted.

18

Sometimes it is possible to take this
principle of specificity in names to an
extreme, and attempt to embody the whole
meaning of the constant in its name. This
is discouraged. For example, one might be
tempted to give the constant
#$physicalParts the name
"distinctIdentifiablePhysicalParts", but it is
better to leave the name a bit terser since
it isn't easily confused with some other
concept, and put the additional information
in the constant documentation.

19

Variables

Quantified CycL expressions (discussed

below) contain one or more variables

which stand for constants whose identities

are not specified. A variable may appear

(nearly) anywhere a constant can appear.

20

Variable Names

Variable names must begin with a question

mark and are ordinarily written in capital

letters ("?FOO"). Variable names are

subject to the same restrictions on usable

characters as constant names.

21

Naming Conventions

In formulas in which only one variable is

used, it is common to use a single-letter

variable, such as "?X". However, when a

formula contains more than one variable, it

will be much more readable if you give the

variables mnemonic names. Here's an

example:

22

(#$implies

 (#$and

 (#$isa ?TRANSFER #$TransferringPossession)

 (#$fromPossessor ?TRANSFER ?FROM))

 (#$isa ?FROM #$SocialBeing))

"The initial possessor in a possession

transfer is a social being."

23

Formulas

CycL formulas combine terms into

meaningful expressions.

 Every formula has the structure of a Lisp

list. It is enclosed in parentheses, and

consists of a list of objects which are

commonly designated ARG0, ARG1,

ARG2, etc.

24

The object in the ARG0 position may be a

predicate, a logical connective, or a

quantifier. The remaining arguments may

be atomic constants, non-atomic terms,

variables, numbers, English strings

delimited by double quotes ("), or other

formulas.

25

#$CycFormula

This is the class of well-formed formulas in

CycL. If a CycL formula satisfies all the

constraints on the number and types of

arguments to the relations that appear in

it, the system will recognize it as an

instance of the collection #$CycFormula.

26

Atomic Formulas

The simplest kind of formula is an atomic

formula: a formula in which the ARG0

position is occupied by a predicate, and all

the other argument positions are filled with

terms:

27

(#$likesAsFriend #$DougLenat #$KeithGoolsbey)

(#$skillCapableOf #$LinusVanPelt

#$PlayingAMusicalInstrument #$performedBy)

(#$colorOfObject ?CAR ?COLOR)

28

The first two of the atomic formulas above

are ground atomic formulas (GAFs), since

none of the terms filling the argument

positions ARG1, ARG2, etc. are variables.

29

Predicates

Every CycL atomic formula must begin with

a predicate in order to be well-formed.

30

Predicate Arity

Most predicates are defined to take a fixed

number of arguments. There are no optional

predicate arguments in CycL. However, a

few predicates, such as #$different, can take

a variable number of arguments. Such

predicates are elements of the collection

#$VariableArityRelation.

In most cases, arity is automatically inferred

by CYC® when a relation or predicate is

made an instance of a certain type of

collection (e.g. #$BinaryPredicate).

However, arity can also be asserted directly,

via the binary predicate #$arity.

31

32

The number of arguments a predicate takes
is determined by its arity. A predicate is
described as unary, binary, ternary,
quaternary, or quintary, according to
whether it takes 1, 2, 3, 4, or 5 arguments.
Currently, no CycL predicate takes more
than 5 arguments; however, if some
representation required a predicate to take
more arguments, CycL would be changed
to allow this.

33

To be well-formed, an atomic formula must

have the right number of arguments for the

predicate filling the ARG0 position. So,

 (#$likesAsFriend #$DougLenat

 #$KeithGoolsbey #$Fido)

is not well-formed, since the arity of

#$likesAsFriend is 2, but this formula gives

3 arguments to #$likesAsFriend.

34

Predicate Argument Types

The type of each argument must be

specified in the definition of the predicate,

using the predicates #$arg1Isa, #$arg2Isa,

etc. For example, suppose the predicate

#$residesInDwelling is defined by the

following:

35

(#$isa #$residesInDwelling #$BinaryPredicate)

(#$arg1Isa #$residesInDwelling #$Animal)

(#$arg2Isa #$residesInDwelling #$ShelterConstruction)

36

To be well-formed, every formula which has

#$residesInDwelling in the ARGO position

must have a term which is an instance of

#$Animal in the ARG1 position, and term

which is an instance of

#$ShelterConstruction in the ARG2

position.

37

 So,
(#$residesInDwelling #$PottedPlant37 #$KarensHouse)

is probably not well-formed. Though we can

never be absolutely certain just from the

names, #$KarensHouse could be an

instance of #$ShelterConstruction, but

#$PottedPlant37 is probably not an

instance of #$Animal.

38

Logical Connectives

Complex formulas can be built up out of

atomic formulas or other complex formulas

by using logical connectives, which are

special constants analogous to the logical

operators of formal logic. The most

important logical connectives in CycL are

#$not, #$and, #$or, and #$implies.

39

#$not

The connective #$not takes a single formula

as an argument. Like the "not" of formal

logic, it reverses the truth value of its

argument.

40

Thus,

(#$not (#$colorOfObject #$FredsBike #$RedColor))

will be true if and only if

(#$colorOfObject #$FredsBike #$RedColor)

is false.

41

Likewise,

 (#$not (#$not (#$colorOfObject #$FredsBike

 #$RedColor)))

will have the same truth value as
 (#$colorOfObject #$FredsBike #$RedColor)

42

#$and

The connective #$and takes one or more

formulas as arguments. Like the "and" of

formal logic, it returns true if and only if

each of its arguments evaluates to true.

43

#$or

The connective #$or takes one or more

formulas as arguments. Like the "or" of

formal logic, it returns true if and only if at

least one of its arguments evaluates to

true.

44

#$implies

The connective #$implies takes exactly two

formulas as arguments. Like the "if-then"

statement of formal logic, it returns true if

and only if it is not the case that its first

argument is true and its second argument

is false.

45

Here's an example:

(#$implies (#$owns #$Fred #$Bike001)

 (#$colorOfObject #$Bike001 #$RedColor))

This assertion states that if #$Bike001 is owned by

#$Fred, then it is red. Newcomers to formal logic

may misinterpret #$implies as implying a causal

relationship. But, strictly speaking, a #$implies

assertion says only that either the first argument

is false, or the second argument is true.

46

So, for example, the assertion

(#$implies

 (#$isa #$RichardNixon #$Fruit)

 (#$colorOfObject #$BillJ #$PastelMintGreen))

is true, because the first argument is false.

47

Assertions involving #$implies are very common in

the CYC® KB. We also call them conditionals or

rules, and we often refer to the first argument as

the antecedent and the second argument as the

consequent. Note, however, that the particular

formula above is not representative of assertions

likely to be found in the CYC® KB. We will come

to some more representative examples in a

moment.

48

Well-Formedness of Complex

Formulas

 Any complex formula formed by using the logical

connectives will be well-formed if the formulas

given as arguments to the connectives are also

well-formed and if the right number of arguments

are given. Another way of saying this is that

#$not, #$and, #$or and #$implies produce

CycFormulas when they are given arguments

which are also CycFormulas.

49

 Suppose A and B are syntactically legal,

and C is not. Then,
(#$not A)

(#$and A)

(#$and A B)

(#$or A)

(#$or A B)

(#$implies A B)

would all be CycFormulas.

50

But
(#$not A B)

(#$and)

(#$and A C)

(#$implies A)

would NOT be CycFormulas.

It should also be noted that #$and and #$or

are elements of #$VariableArityRelation.

51

Quantification

So far, we have only looked at ways to make

statements about specific objects, like

#$FredsBike. But CycL, like first-order

predicate calculus, also gives us two ways

to talk about objects without being specific

about the identity of the objects involved:

universal quantification and existential

quantification.

52

Universal quantification corresponds to

English expressions like every, all, always,

everyone, and anything, while existential

quantification corresponds to English

expressions like someone, something, and

somewhere.

CycL contains one universal quantifier,

#$forAll, and four existential quantifiers,

#$thereExists, #$thereExistAtLeast,

#$thereExistAtMost, and

#$thereExistExactly.

53

54

forAll

The quantifier #$forAll takes two arguments,

a variable and a formula in which the

variable appears. In practice, the formula

is almost always a conditional in which the

antecedent is used to restrict the scope of

the variable.

55

Here's an example:
(#$forAll ?X

 (#$implies

 (#$owns #$Fred ?X)

 (#$objectFoundInLocation ?X #$FredsHouse)))

This formula states that it is true, concerning
every object in the CYC® ontology, that if
#$Fred owns that object, then that object
is located in #$FredsHouse. In other
words, all Fred's stuff is in his house.

56

Multiple Quantification

Formulas may contain more than one

quantifier, as in the following:
(#$forAll ?X

 (#$forAll ?Y

 (#$implies

 (#$and

 (#$owns #$Fred ?X)

 (#$owns #$Fred ?Y))

 (#$near ?X ?Y))))

57

which says that any two things owned by

Fred are near each other. Note that each

quantifier introduces a new variable, and

that each variable must have a different

name.

58

Unbound Variables

Normally, variables need to be introduced

("bound") by a quantifier before they are

used. Each quantifier binds exactly one

variable, and every variable used should

be bound by exactly one quantifier.

Furthermore, a variable has no meaning

outside the scope of the quantifier which

binds it.

59

 However, if a unbound variable appears in

a CycL formula, it is always assumed to be

universally quantified, with the result that
(#$implies

 (#$owns #$Fred ?X)

 (#$objectFoundInLocation ?X #$FredsHouse))

is exactly equivalent to

60

(#$forAll ?X

 (#$implies

 (#$owns #$Fred ?X)

 (#$objectFoundInLocation ?X #$FredsHouse)))

Since the former is easier to write and read,

it is almost always preferred in practice,

and you will rarely see a #$forAll while

browsing the CYC® KB.

Note, however, that unbound variables

which appear only in the consequent of a

conditional, and not in the antecedent, may

have drastic and undesired consequences.

Take, for example, the following:

61

62

(#$implies

 (#$owns #$Fred ?WHATEBER)

 (#$objectFoundInLocation ?WHATEVER #$FredsHouse))

Because of the typo, the variable ?WHATEVER

will range over the entire CYC® ontology. In

other words, the assertion above states that as

long as Fred owns one thing, everything is

located in #$FredsHouse-probably not what we

wanted.

63

#$thereExists

The quantifier #$thereExists takes two

arguments, a variable and a formula in

which the variable appears. In practice

one uses #$thereExists only in certain

ways, of which the following is a good

example:

64

 (#$implies

 (#$isa ?A #$Animal)

 (#$thereExists ?M

 (#$mother ?A ?M)))

65

This assertion states that, for every animal,
there exists at least one object which is
that animal's mother. The object which is
the animal's mother may be an object
which is already represented by a CYC®
constant, or it may be a new object of
which CYC® has no knowledge. But
unless and until it is told otherwise, CYC®
will assume that the object is a new one
not identical with any "known" object.

66

#$thereExistExactly,

#$thereExistAtLeast,

#$thereExistAtMost

These three quantifiers are similar to

#$thereExists, but provide greater

quantitative expressiveness. Each of them

takes three arguments: a positive integer,

a variable, and a formula in which the

variable appears. Their meaning should be

fairly self-explanatory. Look at the

following examples:

67

 (#$implies

 (#$isa ?P #$Person)

 (#$thereExistExactly 2 ?LEG

 (#$and

 (#$isa ?LEG #$Leg)

 (#$anatomicalParts ?P ?LEG))))

68

 (#$implies

 (#$isa ?T #$Table)

 (#$thereExistAtLeast 3 ?LEG

 (#$and

 (#$isa ?LEG #$Leg)

 (#$anatomicalParts ?T ?LEG))))

69

 (#$implies

 (#$isa ?P #$Person)

 (#$thereExistAtMost 1 ?SPOUSE

 (#$spouse ?P ?SPOUSE)))

70

Well-Formedness of Quantified

Formulas

 As you probably by now expect, any formula

beginning with a quantifier is well-formed if

and only if its arguments are of the right

number, of the right types, in the right

order, and its formula argument is well-

formed.

71

Skolemization

People writing assertions for entry into the CYC®

KB use #$thereExists quite frequently. But when

you browse the KB, you rarely see #$thereExists

in an assertion. That's because once assertions

are entered into the KB, occurences of

#$thereExists are automatically converted into

Skolem functions. The only exceptions are

certain cases where #$thereExists is used within

an expression that is an argument to a

predicate.

72

Thus, an assertion which was entered as:

 (#$implies

 (#$isa ?A #$Animal)

 (#$thereExists ?M

 (#$and (#$mother ?A ?M)

 (#$isa ?M #$FemaleAnimal))))

73

will appear in the KB as 4 different
assertions:

 (#$isa #$SKF-8675309 #$SkolemFunction)

 (#$arity #$SKF-8675309 1)

 (#$implies

 (#$isa ?A #$Animal)

 (#$mother ?A (#$SKF-8675309 ?A)))

 (#$implies

 (#$isa ?A #$Animal)

 (#$isa (#$SKF-8675309 ?A) #$FemaleAnimal))

74

Non-Atomic Terms

A non-atomic term (NAT) is a way of

specifying a term as a function of some

other term(s). Every NAT is composed of a

function and one or more arguments to

that function.

75

Consider, for example, the function

#$FruitFn, which takes as an argument a

type of plant and returns the collection of

the fruits of that type of plant. This function

can be used to build the following NATs:

 (#$FruitFn #$AppleTree)

 (#$FruitFn #$PearTree)

 (#$FruitFn #$WatermelonPlant)

 . . .

76

Note that there may or may not be a named
CYC® constant corresponding to the
collection of apples (that is, a constant
called #$Apple). The NAT (#$FruitFn
#$AppleTree) provides a way of talking
about this collection even if the
corresponding constant does not exist.

NATs can be used anywhere a constant can
be used.

77

Function Arity

Like predicates, most functions have a fixed

arity. A function is described as unary,

binary, ternary, quaternary, or quintary,

according to whether it takes 1, 2, 3, 4, or

5 arguments. No CycL function currently

takes more than 5 arguments.

78

 A few functions do not have a fixed arity, but

can take a variable number of arguments.

Mathematical functions like #$PlusFn are

one example. And in Cyc-10, IBQEs are

now treated as NATs in which the units of

measure are functions which can take

either one or two arguments, according to

whether they are intended to denote a

single value or a range.

79

Function Argument Types and

Result Types

 Functions with fixed arity are similar to
predicates in that the definition of the
function must specify the type of each
argument, using the predicates #$arg1Isa,
#$arg2Isa, etc.

 Functions with no fixed arity are defined
using the predicate #$argsIsa, which
specifies a single type of which every
argument must be an instance.

80

 Functions differ from predicates in that they

return a CYC® term as a result.

Accordingly, function definitions must also

describe the type of the result to be

returned, using the predicate #$resultIsa.

Consider, for example, the function

#$GovernmentFn:

81

 (#$arity #$GovernmentFn 1)

 (#$arg1Isa #$GovernmentFn #$GeopoliticalEntity)

 (#$resultIsa #$GovernmentFn #$RegionalGovernment)

The argument to #$GovernmentFn must always be
an instance of #$GeopoliticalEntity, and a NAT
created using #$GovernmentFn will always be
an instance of #$RegionalGovernment. So, for
instance,

(#$isa

 (#$GovernmentFn #$UnitedStatesOfAmerica)
#$RegionalGovernment)

82

Reifiable Functions vs. Non-

Reifiable Functions

 Many CycL functions are instances of

#$ReifiableFunction. Each time an

instance of #$ReifiableFunction is used

with a new set of arguments to build a

NAT, that NAT is reified, that is, preserved

in the CYC® ontology as a constant.

Constants which are reified NATs don't start

out with proper constant names, but can

always be referred to by their NAT

expression. They can later be assigned

constant names if desired.

83

84

• Skolem functions are reifiable.

• Non-reifiable functions include

mathematical functions like #$PlusFn. Just

because we use a NAT like (#$PlusFn 59

64) doesn't mean we want to add to the

KB a unit denoting the number 123. If we

want to talk about the number 123, we'll

just refer to it directly.

85

Assertions

So far this document has dealt mostly with

the syntax of formulas in CycL. This is the

syntax used by people or external

programs when they assert things into a

version of the CYC® KB or query the KB.

Now we will shift our focus to what

formulas look like once they have been

asserted into the KB.

86

The CYC® KB consists of a large number of

assertions. When a formula is successfully

asserted into the KB, it is stored as one of

these. Each assertion is composed of a

number of elements:

87

• a formula

• a microtheory

• a truth value

• a direction (or access level)

• a support

88

Formulas

You are already familiar with formulas-they

are the CycFormulas we use to state

things in the CYC® KB.

89

Microtheories

Every assertion is contained in some

microtheory. A particular formula may be

asserted into (or concluded in) more than

one microtheory; when this is the case,

there will be an assertion which has that

formula in each of those microtheories.

The largest number of assertions are

currently in the #$BaseKB.

90

 Microtheories are covered in more detail here, as

well as in the constant vocabulary, under

#$Microtheory. Where does the microtheory

information on assertions come from? That

depends on the origin of the assertion. If an

assertion is added to the KB by the inference

engine as the result of firing a rule, the inference

engine code decides what microtheory the

conclusion should be added in and records it at

add time.

91

If an assertion is the result of a person or external

program asserting a formula into the KB, at that

time the asserter must specify which microtheory

the formula is to go in. Some interfaces for

knowledge entry may not require the user to

specify a microtheory for new assertions, and

will then either try to choose the right one or will

use #$BaseKB as a default. If you use such an

interface make sure you know what the default

behavior is.

92

Truth Values

Attached to every assertion is a truth value

that indicates its degree of truth. CycL

contains five possible truth values, of

which the most common are default true

and monotonically true.

93

Assertions that are monotonically true are

held to be true in every case, that is, for

every possible set of bindings to the

universally quantified variables (if any) in

the assertion, and cannot be overridden.

In the case of a monotonically true

assertion with universally quantified

variables in its formula, if an object is

found for which the assertion is not true,

an error is signalled.

In the case of a ground assertion that is

monotonically true, if the negation of that

formula is ever asserted or arrived at during

inference (in the same microtheory), an error

is signalled.

94

95

 Assertions that are default true, in contrast,

are held to be true in most cases, and can

be overridden. If the negation of an

existing ground, default assertion is

asserted in the same microtheory, or is

arrived at through inference, no error is

signalled. Instead, the argumentation

mechanism is invoked to decide what the

final truth value of the assertion will be.

96

 By default, GAFs which begin with the

predicates #$isa and #$genls are

monotonically true, while all other

assertions (including rules) are default

true.

97

Directions

Direction is a value associated with every

assertion that determines when

inferencing involving that assertion should

be performed. There are three possible

values for direction: forward, backward,

and code.

98

Inferencing involving assertions with direction

forward is performed at assert time (that is,

when a new assertion is added to the KB), while

inferencing involving assertions with direction

backward is postponed until a query occurs and

that query allows backward inference. By

default, GAFs have direction forward, while rules

have direction backward. Only in very special

cases should rules have direction forward.

99

Supports

Attached to every assertion is a support,

which consists of one or more justifications

which form the support for the presence of

the assertion in the KB. In many cases, at

least one of the supporting justifications is

local, indicating that the assertion was

added to the KB from an outside source

(most commonly, a human KEer).

In other cases, a supporting justification is a

source which indicates the assertion was

inferred and which outlines the final step of

some argument, or chain of reasoning,

which supports the assertion.

100

