
KR & R © Brachman & Levesque 2005 138

9.

Structured Descriptions

KR & R © Brachman & Levesque 2005 139

From sentences to objects

As we saw with frames, it useful to shift the focus away from the
true sentences of an application towards the categories of objects
in the application and their properties.

In frame systems, this was done procedurally, and we
concentrated on hierarchies of frames as a way of organizing
collections of procedures.

In this section, we look at the categories of objects themselves:
• objects are members of multiple categories

e.g. a doctor, a wife, a mother of two

• categories of objects can be more or less specific than others
e.g. a doctor, a professional, a surgeon

• categories of objects can have parts, sometimes in multiples
e.g. books have titles, tables have legs

• the relation among the parts of an object can be critical in its being a
member of a category

e.g. a stack vs. a pile of bricks

KR & R © Brachman & Levesque 2005 140

Noun phrases

In FOL, all categories and properties of objects are represented
by atomic predicates.

• In some cases, these correspond to simple nouns in English such as
Person or City.

• In other cases, the predicates seem to be more like noun phrases such as
MarriedPerson or CanadianCity or AnimalWithFourLegs.

Intuitively, these predicates have an internal structure and
connections to other predicates.

e.g. A married person must be a person.

These connections hold by definition (by virtue of what the predicates themselves
mean), not by virtue of the facts we believe about the world.

In FOL, there is no way to break apart a predicate to see how it is
formed from other predicates.

Here we will examine a logic that allows us to have both atomic
and non-atomic predicates: a description logic

KR & R © Brachman & Levesque 2005 141

Concepts, roles, constants

In a description logic, there are sentences that will be true or false
(as in FOL).

In addition, there are three sorts of expressions that act like nouns
and noun phrases in English:

• concepts are like category nouns Dog, Teenager, GraduateStudent

• roles are like relational nouns :Age, :Parent, :AreaOfStudy

• constants are like proper nouns johnSmith, chair128

These correspond to unary predicates, binary predicates and
constants (respectively) in FOL.

See also: generic frames, slots, and individual frames.
However: roles can have multiple fillers.

However, unlike in FOL, concepts need not be atomic and can
have semantic relationships to each other.

roles will remain atomic (for now)

KR & R © Brachman & Levesque 2005 142

The symbols of DL

Three types of non-logical symbols:

• atomic concepts:

Dog, Teenager, GraduateStudent

We include a distinguished concept: Thing

• roles: (all are atomic)

:Age, :Parent, :AreaOfStudy

• constants:

johnSmith, chair128

Four types of logical symbols:

• punctuation: [,], (,)

• positive integers: 1, 2, 3, ...

• concept-forming operators: ALL, EXISTS, FILLS , AND

• connectives: =, =, and →

KR & R © Brachman & Levesque 2005 143

The syntax of DL

The set of concepts is the least set satisfying:

• Every atomic concept is a concept.

• If r is a role and d is a concept, then [ALL r d] is a concept.

• If r is a role and n is an integer, then [EXISTS n r] is a concept.

• If r is a role and c is a constant, then [FILLS r c] is a concept.

• If d1, ..., dk are concepts, then so is [AND d1, ..., dk].

Three types of sentences in DL:

• If d and e are concepts, then (d = e) is a sentence.

• if d and e are concepts, then (d = e) is a sentence.

• If d is a concept and c is a constant, then (c → d) is a sentence.

KR & R © Brachman & Levesque 2005 144

The meaning of concepts

Constants stand for individuals, concepts for sets of individuals,
and roles for binary relations.

The meaning of a complex concept is derived from the meaning
of its parts the same way a noun phrases is:

• [EXISTS n r] describes those individuals that stand in relation r to at least
n other individuals

• [FILLS r c] describes those individuals that stand in the relation r to the
individual denoted by c

• [ALL r d] describes those individuals that stand in relation r only to
individuals that are described by d

• [AND d1 ... dk] describes those individuals that are described by all of the di.

[AND Company
[EXISTS 7 :Director]
[ALL :Manager [ANDWoman

[FILLS :Degree phD]]]
[FILLS :MinSalary $24.00/hour]]

For example:

“a company with at least 7 directors,
whose managers are all women with
PhDs, and whose min salary is $24/hr”

KR & R © Brachman & Levesque 2005 145

A DL knowledge base

A DL knowledge base is a set of DL sentences serving mainly to
• give names to definitions

e.g. (FatherOfDaughters =
[AND Male [EXISTS 1 :Child]
 [ALL :Child Female]])

• give names to partial definitions

e.g. (Dog = [AND Mammal Pet
 CarnivorousAnimal

 [FILLS :VoiceCall barking]])
gives necessary but not sufficient conditions

• assert properties of individuals

e.g. (joe →
[AND FatherOfDaughters Surgeon]])

Other types of DL sentences are typically not used in a KB.
e.g. ([AND Rational Animal] = [AND Featherless Biped])

“A FatherOfDaughters is precisely
a male with at least one child and
all of whose children are female”

“A dog is among other things a
mammal that is a pet and a
carnivorous animal whose voice
call includes barking”

“Joe is a FatherOfDaughters and
a Surgeon”

KR & R © Brachman & Levesque 2005 146

Formal semantics

Interpretation ℑ = 〈 D, I 〉 as in FOL, where
• for every constant c, I[c] ∈ D
• for every atomic concept a, I[a] ⊆ D
• for every role r, I[r] ⊆ D × D

We then extend the interpretation to all concepts as subsets of
the domain as follows:

• I[Thing] = D
• I[[ALL r d]] = {x ∈ D | for any y, if <x,y> ∈ I[r] then y ∈ I[d]}

• I[[EXISTS n r]] = {x ∈ D | there are at least n y such that <x,y> ∈ I[r]}
• I[[FILLS r c]] = {x ∈ D | <x,I[c]> ∈ I[r]}
• I[[AND d1 ... dk]] = I[d1] ∩ ... ∩ I[dk]

A sentence of DL will then be true or false as follows:
• ℑ = (d = e) iff I[d] ⊆ I[e]

• ℑ = (d = e) iff I[d] = I[e]

• ℑ = (c → e) iff I[c] ∈ I[e]

KR & R © Brachman & Levesque 2005 147

Entailment and reasoning

Entailment in DL is defined as in FOL:

A set of DL sentences S entails a sentence α (which we write S |= α) iff

 for every ℑ , if ℑ = S then ℑ = α

A sentence is valid iff it is entailed by the empty set.

Given a KB consisting of DL sentences, there are two basic sorts
of reasoning we consider:

1. determining if KB = (c → e)

whether a named individual satisfies a certain description

2. determining if KB = (d = e)

whether one description is subsumed by another

the other case, KB = (d = e) reduces to

KB = (d = e) and KB = (d = e)

KR & R © Brachman & Levesque 2005 148

Entailment vs. validity

In some cases, an entailment will hold because the sentence in
question is valid.

• ([AND Doctor Female] = Doctor)

• ([FILLS :Child sue] = [EXISTS 1 :Child])

• (john → [ALL :Hobby Thing])

But in most other cases, the entailment depends on the
sentences in the KB.

For example,

([AND Surgeon Female] = Doctor)

is not valid.

But it is entailed by a KB that contains

(Surgeon = [AND Specialist [FILLS :Specialty surgery]])

(Specialist = Doctor)

KR & R © Brachman & Levesque 2005 149

Computing subsumption

We begin with computing subsumption, that is, determining
whether or not KB = (d = e).

Some simplifications to the KB:

• we can remove the (c → d) assertions from the KB

• we can replace (d = e) in KB by (d = [AND e a]), where a is a new atomic
concept

• we assume that in the KB for each (d = e), the d is atomic and appears
only once on the LHS

• we assume that the definitions in the KB are acyclic
vs. cyclic (d = [AND e f]), (e = [AND d g])

Under these assumptions, it is sufficient to do the following:

• normalization: using the definitions in the KB, put d and e into a special
normal form, d′ and e′

• structure matching: determine if each part of e′ is matched by a part of d′.

and therefore
whether d = e

KR & R © Brachman & Levesque 2005 150

Normalization

Repeatedly apply the following operations to the two concepts:

• expand a definition: replace an atomic concept by its KB definition

• flatten an AND concept:
[AND ... [AND d e f] ...] ⇒ [AND ... d e f ...]

• combine the ALL operations with the same role:

[AND ... [ALL r d] ... [ALL r e] ...] ⇒ [AND ... [ALL r [AND d e]] ...]

• combine the EXISTS operations with the same role:

[AND ... [EXISTS n1 r] ... [EXISTS n2 r] ...] ⇒
[AND ... [EXISTS n r] ...] (where n =Max(n1,n2))

• remove a vacuous concept: Thing, [ALL r Thing], [AND]

• remove a duplicate expression

In the end, we end up with
a normalized concept of
the following form

[AND a1 ... ai

[FILLS r1 c1] ... [FILLS r j cj]
[EXISTS n1 s1] ... [EXISTS nk sk]
[ALL t1 e1] ... [ALL tm em]]

normalized

atomic

unique
roles

KR & R © Brachman & Levesque 2005 151

Normalization example

[AND Person
[ALL :Friend Doctor]
[EXISTS 1 :Accountant]
[ALL :Accountant [EXISTS 1 :Degree]]
[ALL :Friend Rich]
[ALL :Accountant [AND Lawyer [EXISTS 2 :Degree]]]]

[AND Person
[EXISTS 1 :Accountant]
[ALL :Friend [AND Rich Doctor]]
[ALL :Accountant [AND Lawyer [EXISTS 1 :Degree] [EXISTS 2 :Degree]]]]

[AND Person
[EXISTS 1 :Accountant]
[ALL :Friend [AND Rich Doctor]]
[ALL :Accountant [AND Lawyer [EXISTS 2 :Degree]]]]

KR & R © Brachman & Levesque 2005 152

Structure matching

Once we have replaced atomic concepts by their definitions, we
no longer need to use the KB.

To see if a normalized concept [AND e1 em] subsumes a
normalized concept [AND d1 ... dn], we do the following:

For each component ej, check that there is a matching component di, where

– if ej is atomic or [FILLS r c], then di must be identical to it;

– if ej = [EXISTS 1 r], then di must be [EXISTS n r] or [FILLS r c];

– if ej = [EXISTS n r] where n >1, then di must be of the form
[EXISTS m r] where m ≥ n;

– if ej = [ALL r e′], then di must be [ALL r d′], where recursively
e′ subsumes d′.

In other words, for every part of the more general concept,
there must be a corresponding part in the more specific one.

It can be shown that this procedure is sound and complete:
it returns YES iff KB = (d = e).

KR & R © Brachman & Levesque 2005 153

Structure matching example

[AND Person
 [FILLS :Age 27]

 [EXISTS 2 :Child]
[EXISTS 1 :Spouse]

[ALL :Friend [AND Doctor Rich]]]

[AND Person
 Female
 [FILLS :Age 27]

[EXISTS 3 :Child]
[FILLS :Spouse jack]

[FILLS :Mother sue]
[ALL :Friend [ANDDoctor

[FILLS :Specialty surgery]
Rich]]]

not needed

KR & R © Brachman & Levesque 2005 154

Computing satisfaction

To determine if KB = (c → e), we use the following procedure:

1. find the most specific concept d such that KB = (c → d)

2. determine whether or not KB = (d = e), as before.

To a first approximation, the d we need is the AND of every di
such that (c → di) ∈ KB.

To find the d, a more complex procedure is used that propagates
constraints from one individual (canCorp) to another (joe).

The individuals we need to consider need not be named by constants;
they can be individuals that arise from EXISTS (like Skolem constants).

Suppose the KB contains

(joe → Person)
(canCorp → [AND Company

[ALL :Manager Canadian]
[FILLS :Manager joe]]

then the KB = (joe → Canadian).

However, this can
miss some inferences!

KR & R © Brachman & Levesque 2005 155

Taxonomies

Two common sorts of queries in a DL system:

• given a query concept q, find all constants c such that KB = (c → q)

e.g. q is [AND Stock FallingPrice MyHolding]

• given a query constant c, find all atomic concepts a such that KB = (c → a)

We can exploit the fact that concepts tend to be structured
hierarchically to answer queries like these more efficiently.

Taxonomies arise naturally out of a DL KB:

• the nodes are the atomic concepts that appear on the LHS of a sentence
(a = d) or (a = d) in the KB

• there is an edge from ai to aj if (ai = aj) is entailed and there is no distinct ak
such that (ai = ak) and (ak = aj).

can link every constant c to the most specific atomic concepts a in the
taxonomy such that KB = (c → a)

Positioning a new atom in a taxonomy is called classification

might want to trigger a
procedure for each such c

KR & R © Brachman & Levesque 2005 156

Computing classification

 Consider adding (anew = d) to the KB.

• find S, the most specific subsumers of d: the atoms a such that
KB = (d = a), but nothing below a

• find G, the most general subsumees of d: the atoms a such that
KB = (a = d), but nothing above a

if S ∩ G is not empty, then anew is not new

• remove any links from atoms in G to atoms in S

• add links from all the atoms in G to anew and from anew to all the atoms in S

• reorganize the constants:
for each constant c such that KB = (c → a) for all a ∈ S,
but KB = (c → a) for no a ∈ G, and where KB = (c → d),
remove links from c to S and put a single link from c to anew.

Adding (anew = d) is similar, but with no subsumees.

see below

KR & R © Brachman & Levesque 2005 157

Subsumers and subsumees

Calculating the most specific subsumers of a concept d:

• Start with S = {Thing}.

• Repeatedly do the following:

– Suppose that some a ∈ S has at least one child a′ just below it in the
taxonomy such that KB = (d = a′).

– Then remove a from S and replace it by all such children a′.

Calculating the most general subsumees of a concept d:

• Start with G = the most specific subsumers.

• Repeatedly do the following:

– Suppose that for some a ∈ G, KB = (a = d).

– Then remove a from G and replace it by all of its children (or delete it,
if there are none).

• Repeatedly delete any element of G that has a parent subsumed by d.

KR & R © Brachman & Levesque 2005 158

An example of classification

WINE

RED-
WINE

WHITE-
WINE

BORDEAUX-
WINE

DRY-
BORDEAUX-
WINE

SWEET-
BORDEAUX-
WINE

VERY-DRY-
BORDEAUX-
WINE

EXPENSIVE-
WHITE-
VERY-DRY-
BORDEAUX-
WINE

WHITE-
VERY-DRY-
BORDEAUX-
WINE

new

KR & R © Brachman & Levesque 2005 159

Using the taxonomic structure

Note that classification uses the structure of the taxonomy:

If there is an a′ just below a in the taxonomy such that KB = (d = a′), we
never look below this a′. If this concept is sufficiently high in the taxonomy�
(e.g. just below Thing), an entire subtree will be ignored.

Queries can also exploit the structure:

For example, to find the constants described by a concept q, we simply
classify q and then look for constants in the part of the taxonomy
subtended by q. The rest of the taxonomy not below q is ignored.

This natural structure allows us to build and use very large
knowledge bases.

• the time taken will grow linearly with the depth of the taxonomy

• we would expect the depth of the taxonomy to grow logarithmically with
the size of the KB

• under these assumptions, we can handle a KB with thousands or even
millions of concepts and constants.

KR & R © Brachman & Levesque 2005 160

Taxonomies vs. frame hierarchies

The taxonomies in DL look like the IS-A hierarchies with frames.

There is a big difference, however:

• in frame systems, the KB designer gets to decide what the fillers of
the :IS-A slot will be; the :IS-A hierarchy is constructed manually

• in DL, the taxonomy is completely determined by the meaning of the
concepts and the subsumption relation over concepts

For example, a concept such as
[AND Fish [FILLS :Size large]]

must appear in the taxonomy below Fish even if it was first
constructed to be given the name Whale. It cannot simply be
positioned below Mammal.

To correct our mistake, we need to associate the name with a
different concept:

[AND Mammal [FILLS :Size large] ...]

KR & R © Brachman & Levesque 2005 161

Inheritance and propagation

As in frame hierarchies, atomic concepts in DL inherit properties
from concepts higher up in the taxonomy.

For example, if a Doctor has a medical degree, and Surgeon is below
Doctor, then a Surgeon must have a medical degree.

This follows from the logic of concepts:

 If KB = (Doctor = [EXISTS 1 :MedicalDegree])
and KB = (Surgeon = Doctor)

 then KB = (Surgeon = [EXISTS 1 :MedicalDegree])

This is a simple form of strict inheritance (cf. next chapter)

Also, as noted in computing satisfaction (e.g. with joe and
canCorp), adding an assertion like (c → e) to a KB can cause other
assertions (c′ → e′) to be entailed for other individuals.

This type of propagation is most interesting in applications where
membership in classes is monitored and changes are significant.

KR & R © Brachman & Levesque 2005 162

Extensions to the language

A number of extensions to the DL language have been
considered in the literature:

• upper bounds on the number of fillers

[AND [EXISTS 2 :Child] [AT-MOST 3 :Child]]

opens the possibility of inconsistent concepts

• sets of individuals: [ALL :Child [ONE-OF wally theodore]]

• relating the role fillers: [SAME-AS :President :CEO]

• qualified number restriction: [EXISTS 2 :Child Female] vs.
[AND [EXISTS 2 :Child] [ALL :Child Female]]

• complex (non-atomic) roles: [EXISTS 2 [RESTR :Child Female]]

[ALL [RESTR :Child Female] Married] vs.
[ALL :Child [AND Female Married]]

Each of these extensions adds extra complexity to the problem of
calculating subsumption.

This topic will be explored for RESTR in Chapter 16.

KR & R © Brachman & Levesque 2005 163

Some applications

Like production systems, description logics have been used in a
number of sorts of applications:

• interface to a DB

relational DB, but DL can provide a nice higher level view of the data
based on objects

• working memory for a production system

instead of a having rules to reason about a taxonomy and inheritance
of properties, this part of the reasoning can come from a DL system

• assertion and classification for monitoring

incremental change to KB can be monitored with certain atomic
concepts declared “critical”

• contradiction detection in configuration

for a DL that allows contradictory concepts, can alert the user when
these are detected. This works well for incremental construction of a
concept representing e.g. a configuration of a computer.

