
MATHEMATICAL 

COMPUTER 
MODELLING 

PERGAMON Mathematical and Computer Modelling 36 (2002) 307-319 

www.elsevier.com/locate/mcm 

Dynamical Stabilization of 
an Unstable Equilibrium 

in Chemical and Biological Systems 

H. MALCHOW* 
Institute of Environmental Systems Research, Department of Mathematics and Computer Science 

University of Osnabriick, Artilleriestr. 34, D-49069 Osnabriick, Germany 

malchowQuos.de 

S. V. PETROVSKII 

Shirshov Institute of Oceanology, Russian Academy of Sciences 

Nakhimovsky Prospect 36, Moscow 117218, Russia 

spetrovsQsio.rssi.ru 

Abstract-The dynamics of two-component diffusion-reaction systems is considered. Using well- 
known models from population dynamics and chemical physics, it is shown that for certain parameter 
values the systems exhibit a rather unusual behaviour: a locally unstable equilibrium may become 
stable during a certain transition process. Both the analytical and numerical investigations of this 
phenomenon are presented in one and two spatial dimensions. @ 2002 Elsevier Science Ltd. All 

rights reserved. 
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1. INTRODUCTION 

Diffusion-reaction systems have been attracting significant interest during the last decades be- 

cause of their numerous applications in chemistry and chemical physics [l], biology [a], ecol- 

ogy [3,4], and many other scientific fields [5]. Particularly, instabilities and related transition 

processes are thought to be responsible for the formation of spatial “dissipative structures” in a 

chemical reactor [6], in a cell community (morphogenesis) [7], and in population dynamics [8]. 

Now days, a number of different theoretical tools for the investigation of pattern formation 

processes are known [g-11]. However, a widely used analytical technique is still based on partial 

differential equations. In many cases, the dynamics of a diffusion-reaction system is described by 

the following two equations: 

v = DuV2u(r, t) + f(u, v), 

%$ = DvV2v(r, t) + g(u, v), 
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where t is the time, r is the position, V2 is the Laplace operator, and the functions f and g 

describe the local kinetics. Here and further on, we will refer to the dynamical variables ‘1~ 

and v as the concentrations of the interacting components and to the coefficients D, and D, as 

the corresponding diffusivities. It should be noted, however, that the particular meaning of the 

quantities in equations (1)) (2) can be somewhat different in different problems. While in chemical 

applications D, and D, are the usual molecular diffusivities, in problems of population dynamics 

these coefficients describe the intensity of mixing either due to the self-motion of animals [3,12] 

or due to turbulence, e.g., in case of plankton populations [3,13,14]. 

The dynamics of system (l),(2) is t o a large extent controlled by the properties of the “reduced” 

system, i.e., equations (l),(2) without diffusion 

because of the evident relation between the stationary solutions of equations (3) and the homo- 

geneous stationary states of the full system (l),(2). However, the dynamics of the full system is 

remarkably more rich. Since the famous paper of Turing [7], it is well known that a linearly stable 

stationary point of the reduced system (3) may become unstable in the full system (l),(2). Then, 

after the homogeneity is broken due to the linear Turing instability, the nonlinear interactions 

between the components drive the system into the formation of standing spatial patterns [6]. This 

is an irreversible process; i.e., the broken homogeneity is never restored unless the parameters of 

the system are changed so that, at least, the instability conditions are not met anymore. 

In a somewhat more general sense, a kind of inverse process may occur. We show here that for 

certain parameter values, an “anti-Turing” phenomenon takes place: a locally unstable equilib- 

rium of the system (3) can be made dynamically stable in the full diffusion-reaction system (l),(2). 

In this case, for certain times and lengths, the formation of spatial patterns is suppressed and 

the homogeneity is restored. 

The structure of the paper is as follows. In the second section, an example of a biological 

system is given exhibiting the dynamical stabilization of an unstable equilibrium. Both analytical 

and numerical results are presented. In the third section, the results are extended to the 2-D 

case. In the fourth section, a chemical system described by the well-known Gray-Scott model 

is considered. It is shown that, in spite of significantly different local kinetics of the system, 

its spatiotemporal dynamics can also follow the dynamical stabilization scenario. In the last 

section, some open problems arising in connection with this new phenomenon, are discussed and 

an ecological example is given where the dynamical stabilization may be underlying the system 

dynamics. 

2. A BIOLOGICAL SYSTEM: 
A PREY-PREDATOR COMMUNITY 

Population dynamics is one of the fields of traditional and successful applications of diffusion- 

reaction systems [2,4,8,14,15]. Although the spatial mixing of the system components, i.e., biolog- 

ical species in this case, is typically caused by the self-motion of the organisms or by the specific 

properties of the environment (e.g., marine turbulence in case of plankton systems) and not by 

diffusion in the usual physicochemical meaning, the mathematical description of the mixing stays 

much the same [3]. Choosing a proper parameterization for the biological “reactions”, i.e., for 

the processes of replication, predation, and mortality, one can arrive at the following equations 

for the key species, cf. [2,4]: 

au - = v2u + U(1 - U) - -&z” 
at 
au 
-=psJ+~ ‘u 
at 

--v - mu. 
ufh 
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Dimeusionless quantities have been introduced, and the details are omitted here in order to be 
brief; cf. [16]. D, = D, = D is suggested for simplicity; however, the main results do not depend 

on this assumption. 
A crucial point, affecting the type of the spatiotemporal system dynamics, is the choice of 

the initial conditions. Actually, the formation of the dissipative patterns resulting from Turing 
instability occurs when the initial distribution of the concentrations consists of the homogeneous 
stationary states plus a perturbation with certain wavelengths; otherwise no spatial structure will 
emerge. Another example is given by the propagation of diffusive fronts which is only possible 
in case of finite initial conditions. In this paper, the considerations are restricted to the case 
when at the beginning of the process the prey is spatially uniformly distributed at the level of 
the carrying capacity, u(r,t) = 1, whereas the predator is inhabiting a finite region. These initial 
conditions correspond to the problem of biological invasions [4]. 

Thus, we begin with 1-D problem described by the following equations: 

Ut = u,, f u(1 - u) - 521, 
u+h 

u 
vt = w,, + k- 

u+h 
v - mv, 

and 

U(X,O) = 1, vx; u(z,O) = Vi, ~(3~~0) = 0, if /2j > $. (8) 

Since the dynamics of the system does not show any significant dependence on the form of the 
finite initial distribution of the predator, the simplest form of v(z, 0) is chosen here. 

Another important point is the number and the type of stationary states of the reduced system. 
It is readily seen that the phase plane (u, V) of equations (4),(5) without diffusion terms has the 
following structure: under the condition h < (1 - p)/p, p = m/k, there are three stationary 
points in the physically meaningful region u 2 0, v > 0, namely, (0,O) (trivial extinction), (1,O) 

(predator extinction), and (u*, ZI,) (coexistence), where 

ph 
u*=l_pT us+ = (1 - u,)(h + ue). 

The trivial solutions (0,O) and (1,O) are always saddle-points, whereas the nontrivial point (u,, TJ,) 
can be either focus or node, stable, or unstable, depending on the problem parameters; cf. Figure 1 
and see [16,17] for more details. 

The distinctions in the dynamics of system (6),(7) for different values of k, p, h can be associated 
with the change of the stability of the nontrivial stationary state (u,, 2~) which takes place when 

1-P 
h = hw1~) = lip’ (10) 

which corresponds to Curve 2 in Figure 1. Note that the position of Curves 1 and 2 does not 
depend on k. For all parameter values when the state (u,, v,) is unstable, i.e., below Curve 2, it 
is surrounded by a stable limit cycle. 

The full account of possible dynamical regimes of system (6),(7) with finite initial conditions can 
be found in [17] or in [18] for the case of a somewhat different parameterization of the biological 
processes. Typically, the solution of groblem (6)-( 8) evolves, after a certain transition time, to 
the propagation of stationary diffusive fronts. In case the stationary state (u*, v,) is locally stable, 
the dynamics of these fronts is something one can expect: they “switch” the system from the 
homogeneous stationary unstable state u z 1, v E 0 (after some damped oscillations if (u*, ZI*) 
is a stable focus [2,19]) to the homogeneous stable state u e u*, w E w,. 

However, the situation becomes less expected when the point (~L*,zI,> becomes unstable, i.e., 
when the parameters cross the Hopf bifurcation curve h = h,,(p) in the plane (p, h). The results 
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Figure 1. A map in the (p, h) parametric plan! of the prey-predator system (4),(5): 
the nontrivial “coexistence” state exists for the parameters below Curve 1 and loses 
its stability when crossing Curve 2; the critical relation (17) for the dynamical sta- 
bilization is shown by Curve 3 for k = 0.1, Curve 4 for k = 0.4, and Curve 5 for 
k = 1.2. 

of numerical experiments show that in this case, for parameter values “not very far” from the 

critical relation (lo), the diffusive fronts still work as switching waves but switching the system 

to the state u s ‘u*, 21 G ‘u* which is now locally unstable. Typical wave profiles are presented 

in Figure 2 (since the problem (6)-(8) is symmetrical with respect to x = 0, only half of the 

numerical domain is shown). 

One can see that, after rather strong oscillations at the front of the wave, there comes the 

region (from approximately IC = 200 to 2 = 420 in Figure 2, top, and from z = 400 to 2 = 900 in 

Figure 2, bottom) where the concentrations. u(z, t) and ~(5, t) nearly reach their stationary (but 

unstable!) values u,, v,-the dynamical stabilization takes place. We want to stress, based on 

our numerical results, that this unstable “plateau” exists during a remar~biy long time before 

it is finally displaced by the irregular spatiotemporal oscillations 1161. Moreover, the length of 

the plateau grows with time; cf. top and bottom of Figure 2. 

In order to better understand this phenomenon, the following points must be addressed. 

(i) For which restrictions on the parameter values can the dynamical stabilization of the 

unstable equilibrium occur? There must be some restrictions because the stabilization 

does not appear for arbitrary sets of parameters. 

(ii) How does the length of the plateau change (increase) with time? 

The first of these problems has been considered in [17], where the conditions for dynamical 

stabilization were related to the change of the type of the nontrivial stationary state in four- 

dimensional phase space generated by system (6),(7) in case of stationary wave propagation. 

However, the results obtained in this way do not allow us to make any estimates concerning the 

length of the plateau. Besides, the approach developed in [17] somewhat lacks physical lucidity, 

and that might make the interpretation of the results difficult. In this paper, another physically 

clear approach to deal with problems (i),(ii) is proposed. Both the restrictions on the problem 

parameters and the equation describing the growth of the plateau length with time will appear 

quite naturally as a result of the comparison between the speed of different diffusive fronts. 
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Figure 2. The profiles of the concentration of prey 21 (Curve 1) and predator n 
(Curve 2) calculated at t = 600 (top) and t = 1200 (bottom) for parameters k = 0.4, 
p = 0.15, and h = 0.6 and the initial conditions (8) with Vi = 1.2 and A = 100. 
The arrows show the direction of the diffusive front propagation. The region of 
homogeneity in the middle corresponds to the locally unstable “coexistence” state. 

The idea of the method is as follows. Results of computer simulations [17,18,20] show that, 

generally, the stabilization of a locally unstable state occurs behind the stationary diffusive fronts 

(which may have an oscillating “structure”, cf. Figure 2), travelling with a certain constant 

speed c. The minimal possible value c,r, can be obtained .considering the properties of the 

problem solution in the vicinity of the steady (1,O) state in R* phase space [2,17], 

Cmin = [z (TO + d&i)] 1’2 7 (11) 
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with As = Ti - 460. To and 60 are trace and determinant of the Jacobi matrix, respectively. We 

want to mention that, although c,in is only the exact lower bound of the possible values of the 

speed of the front and not its actual value, it provides a good estimate for the actual value c. 

Moreover, it holds quite often c = c,in [2]. 

Furthermore, if (u+, w,) is unstable, the propagation of the diffusive fronts, no matter if with or 

without the dynamical stabilization in the wake, is followed by a region occupied by spatiotem- 

poral oscillations [16,17,20-221, typically irregular. The remarkable thing is that in case of the 

formation of the unstable plateau, there exists a distinct boundary or interface at any time, sepa- 

rating the plateau from the region with irregular oscillations [16,22]. Our numerical results show 

that the size of the region always grows with time, and the interface propagates with a constant 

speed. Considering the travelling wave solutions of equations (6),(7) far ahead of the interface, 

where they can be regarded as small perturbations of the stationary state u E u*, u E v*, we 

arrive at the following estimate for the speed w of the interface [22]: 

Wmin = vz 

in case of an unstable focus, and 

wmin = [+‘1 + &I)]~” 

(12) 

(13) 

in case of an unstable node. Here Ar = Tf - 4Sr where Tl and 61 are the trace and the 

determinant of the matrix of the system in the vicinity of the coexistence state (zL+, v,). Again, 

although equations (12),(13) g ive only the minimal possible value of the speed, it is in an excellent 

agreement with numerical results [22]. 

Numerical results indicate that the dynamical stabilization is unlikely to be observed if (2~,, v,) 

is an unstable node; this is also in agreement with the results of the bifurcation analysis [17]. 

Hence, the further considerations treat the case (u*, w,) as an unstable focus. 

Now, the domain where the dynamical stabilization may take place is bounded by two moving 

boundaries: the leading edge propagating with a constant speed c and the interface between the 

plateau and the region of irregular oscillations propagating with a speed w. The development of 

the plateau is thus controlled by the relation between the values of c and w. Obvirously, in case 

w < c, the length of the domain grows with time as (c - w)t. Let us note, however, that since the 

leading front behaves as a stationary travelling wave, its form and “width” (i.e., the size of the 

region occupied by the regular damping oscillations, cf. Figure 2 between z = 700 and 2 = 850) 

do not change with time. Then, the increase of the length of the domain locked between the two 

moving fronts can only mean the increase of the length of the plateau. Thus, we obtain 

L plateau = (c - w)t + Lo, (14 

where Lo is a constant. 

On the other hand, in case w > c the dynamical stabilization can hardly be observed. The 

length of the plateau, if it happens to appear as a result of certain specific initial conditions, would 

decrease with time until, finally, the region of spatiotemporal oscillations would start immediately 

after the stationary travelling front; cf. Figure 3. Unlike the case shown in Figure ‘2, the “nucleus” 

of the unstable plateau which can be seen just behind the damping oscillations at the front does 

not grow with time. 

Thus, we arrive at a simple necessary condition for the dynamical stabilization 

w < c. (15) 

However, relations (14) and (15) are still not very useful because the actual values of speed are 

not known. Assuming that the fronts propagate with the minimal possible speed, as it usually 
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Figure 3. The profiles of the concentration? of prey u (Curve 1) and predator 2, 
(Curve 2) calculated at t = 1000 for parameters Ic = 0.4, p = 0.5, and h = 0.25. No 
plateau is formed. 

takes place, and taking into account. equations (11) and (12), from (15) we obtain the following 

critical relation between the problem parameters: 

TI = To + Ja,. (16) 

If the nonlinearities in the equations are chosen as in equations (6),(7), one can easily obtain 

that Tl = -260 (note that 60 < 0 because the state “prey only” is a saddle-point) and, finally, 

& [(l - h) - ~(1 + h)] = -2k (p - &-) . (17) 

The critical relation (17) is shown in Figure 1 by the dashed line for the values of parameter 

k = 0.1 (Curve 3), k = 0.4 (Curve 4), and k = 1.2 (Curve 5). The domain in the (p, h) parameter 

plane where one can expect the dynamical stabilization of an unstable equilibrium in the wake 

of the travelling diffusive front is on the left-hand side of the dashed line and below the Hopf 

bifurcation Curve 2. 

3. DYNAMICAL STABILIZATION 
IN TWO SPATIAL DIMENSIONS 

The results of the previous section were obtained for a spatially one-dimensional diffusion- 

reaction system. However, the dynamics of natural systems is usually higher dimensional. In 

this connection, and also in order to show that the dynamical stabilization is not an exotic but 

a rather typical phenomenon in diffusion-reaction systems, it seems important to know whether 

the previous results can be extended to a more-dimensional case. 

Note that, strictly speaking, this extention is not a formal routine and the results can hardly be 

foreseen. The matter is that the increase of the number of the spatial dimensions not only makes 

the dynamics of the system more complex, but may lead to suppression of the regimes which would 

be dominant in the system with fewer dimensions. This is just the situation described above: the 

increase of the number of spatial dimensions from 0 (cf. equations (3)) to 1 (equations (6),(7)) 

makes the unstable equilibrium dynamically stable. 
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Let us mention that, in some cases, the dimensionality of the system dynamics depends on 

the scale of the processes under consideration. For instance, the spatiotemporal functioning of a 

plankton community is three dimensional if considered on scale L 5 Lo where Lo is the thickness 

of the upper productive ocean layer, but becomes effectively two dimensional on scale L >> Lo. 

Taking into account that the 3-D case is much more complicated for computer simulations and 

for the visualization of the results, we restrict ourselves to the 2-D case here. Figure 4 shows the 

snapshots of the prey spatial distribution (the distribution of predator is qualitatively similar) 

obtained numerically for a prey-predator community described by equations (4),(5) where now 

u = U(Z, y, t), ‘u = ~(5, y, t), and V2 = & + &. The growing inner grey ring is easily recognized 

as the dynamically stabilized unstable coexistence region. 

Thus, the phenomenon of the dynamical stabilization of an unstable equilibrium exists also in 

a 2-D diffusion-reaction system. As it was in 1-D case, the size of the unstable plateau grows with 

time. However, to the case of cylindrical diffusive fronts, neither condition (14) nor (15) is not 

directly applicable because they were obtained for the plane waves. Particularly, condition (14) 

now gives only rough estimates of the parameter values where the dynamical stabilization may 

be observed. 

Figure 4. The 2-D spatial distribution of prey calculated at equidistant moments of 
time, parameter values are the same as in Figure 2. Black color corresponds to the 
no-species state, while in white areas the prey is at its carrying capacity. The grey 
color corresponds to the unstable coexistence state. 
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4. A CHEMICAL SYSTEM: THE GRAY-SCOTT MODEL 

In the previous sections, the possibility of the dynamical stabilization of an unstable equilibrium 

has been shown by computer experiments. Furthermore, the restrictions on the parameter values 

necessary for the stabilization have been obtained analytically. It has been demonstrated that 

the phenomenon is not sensitive to the dimensionality of the system and can be observed in 1-D 

and 2-D cases. 

A prey-predator system has been chosen as local kinetics to demonstrate the stabilization by 

computer experiments. Now, another question naturally arises: how strongly does the existence 

of this phenomenon depend on the type of the local kinetics ? Although it is shown in [17,18] 

that the dynamical stabilization is robust with respect to some variations in the form of the 

nonlinearities in equations (l),(2) (cf. also [20]), a certain doubt may still exist. The matter 

is that any realistic parameterization of the prey-predator interactions, in spite of the details, 

should allow for, at least, two principal features: 

(i) f(u = 0, w) = 0, g(u, w = 0) = 0, and 

(ii) for large values of u the predation must show a tendency to saturation; cf. equations (4),(5). 

These features impose certain constraints both on the structure of the phase plane of the reduced 

system (3), and on the spatiotemporal dynamics of the full system (l),(2). 

To check the robustness of the results with respect to the type of local interactions, another 

field of application of equations (l),(2) . IS considered. A system of two chemical reactants is free 

from the above limitations and can possess quite different local kinetics. As a particular example, 

the well-known Gray-Scott model [l] is chosen, describing an autocatalytic reaction in an open 

1-D flow reactor, 

ut = uzz + F(1 - u) - u712, (18) 
TJt = v,, + uw2 - (F + k)v, (1% 

with accordingly chosen dimensionless variables; see [23] for details. Here u(z, t) and V(IC, t) are 

the concentration of the substrate and the autocatalyst, respectively, F is the flow rate, and Ic is 

the effective rate constant for the decay of the autocatalyst. As in previous cases, we assume 

D, = D, for simplicity. 

Equations (18),(19) h ave been investigated in many papers; e.g., see [24,25]. A very brief sum- 

mary of the results is only given here as far as they will be needed for the further considerations. 

One can easily see that under the limitation d = 1 - 4(F + k)2/F > 0, there are three sta- 

tionary points: “substrate only” (1,O) and two nontrivial coexistence states (us, v,) (“substrate 

dominated”) and (Us, v,) (“autocatalyst dominated”) where 

1+4 F 

( > 

l-l/z 
US=?’ v3= F+k 2’ 

1-4 F 

( > 

l-t& 
%=T’ ua= F+lc 2’ (21) 

When crossing the critical curve d = 0 in the (Ic, F)-pl ane (Curve 1 in Figure 5) towards smaller 

values of k (i.e., from right to left), the two nontrivial states appear through a saddle-node 

bifurcation, the “autocatalyst dominated” state being an unstable node. 

The “substrate only” state is always stable and the “substrate dominated” state is always 

unstable. A change in the local dynamics can be associated with the change of the type of the 

“autocatalyst dominated” state, first of all, with the change of its stability which takes place 

when 

(22) 
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Figure 5. A map in the parametric (Ic, F) plane. Curve 1 bounds the domain where 
the two nontrivial states exist, Curve 2 is the Hopf bifurcation line, and Curve 3 
corresponds to the critical relation for the dynamical stabilization. 

i.e., when crossing Curve 2 in Figure 5. The Hopf bifurcation, which takes place when crossing 
the Curve (22), is supercritical for k < k,, (where k,, is estimated as about 0.035, cf. [24]) and 
only in this case a stable limit cycle appears. .Otherwise, i.e., for k,, < k < 0.625, no limit cycle 
arises and any trajectory starting in the vicinity of the “autocatalyst dominated” state after a 
number of expanding convolutions is finally attracted to the “substrate only” state. 

This brief consideration of the local dynamics of the Gray-Scott model provides “input” infor- 
mation for the investigation of the spatiotemporal dynamics of the distributed system (18),(19). 
Namely, accounting for the results of the previous sections, it is now obvious that, as far as one 
is concerned with the possibility to observe the dynamical stabilization, the values of F and k 

in equations (18),(19) should be chosen from the domain between the Hopf bifurcation curve 
and the saddle-node bifurcation curve where the “autocatalyst dominated” state is unstable, i.e., 
from the narrow strip between Curves 1 and 2 in Figure 5. 

Thus, the structure of the local phase plane of the Gray-Scott model is essentially different 
from the one of the prey-predator system (4),(5). Q ui e naturally, it results in a significantly ‘t 
different behaviour of the diffusive fronts; cf. [17,18,23-251. And this difference makes it probably 
even more remarkable that the phenomenon of dynamical stabilization also occurs in the system 
described by equations (18),(19). Figure 6 shows the profiles of the concentrations ‘u. and TJ at 
t = 3200 calculated for the initial conditions (8) with A = 400 and Vo = 0.1 for parameter values 
F = 0.015 and k = 0.04. Only half of the domain is shown. 

Again, after promptly damping oscillations behind the leading edge, there comes a region 
where substrate and autocatalyst are distributed homogeneously at the level corresponding to the 
locally unstable state U, = 0.28, U, = 0.196. To stress the distinctions from the cases considered 
in Sections 2 and 3, it should be noted that the unstable focus (u,, v,) is not surrounded by 
a stable limit cycle now. Moreover, since the “substrate only” state is stable for all parameter 
values, the propagation of the diffusive front followed by the dynamical stabilization, with the 
length of the unstable plateau growing with time, means “switching” the system from the stable 
state to an unstable one, a situation that seems quite exotic if considered in a general physical 
context. 
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Figure 6. The profiles of the concentration of the substrate u (Curve 1) and the 
autocatalyst u (Curve 2) calculated at t = 3200 for parameters F = 0.015 and k = 
0.04. The plateau behind the oscillating front appears as a result of the dynamical 
stabilization of the unstable “autocatalyst dominated” state. 

The next step to be done is to examine the restrictions on the problem parameters F and k 

resulting from the conditions for dynamical stabilization; cf. equations (15) and (16). It is readily 

seen that for the Gray-Scott model (18),(19) Tc + & = -2F, whereas Ti = (F + k) - Fu;l. 

Accounting for (21), equation (16) takes the following form: 

g$ = &. (23) 

The critical relation (23) is shown in Figure 5 by Curve 3. Note that Curve 3 is situated in 

the domain where the “autocatalyst dominated” state is stable. Thus, in this case the necessary 

condition (15) of the dynamical stabilization is fulfilled for all parameter values from the domain 

where this state is unstable (cf. the strip between Curves 1 and 2) and does not bring any 

additional restraints on the values of the problem parameters. 

5. DISCUSSION AND CONCLUSIONS 

In this paper, a new facet of the dynamics of a two-component diffusion-reaction system has 

been demonstrated: the dynamical stabilization of an unstable equilibrium resulting in the for- 

mation of a homogeneous spatial distribution of the interacting components, a “plateau” at the 

level corresponding to a locally unstable steady state. It has been shown that this is not an 

exotic but a rather typical phenomenon occurring both in one and two spatial dimensions and 

in systems with essentially different local kinetics, i.e., with different structure of the local phase 

plane. The size of the dynamically stabilized homogeneous region is growing with time according 

to equation (14). 

A simple necessary condition for the dynamical stabilization has been suggested, cf. equa- 

tion (15), which imposes certain constraints on the parameter values. It must be mentioned, 

however, that equation (15) gives only a necessary condition. Particularly, concerning the Gray- 

Scott model, the absence of additional restrictions does not mean that the dynamical stabilization 

can be observed for all the parameter values where the “autocatalyst dominated” state is unsta- 

ble. To obtain more detailed information about possible constraints, the semiempirical “physical” 
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approach considered in this paper should be complemented by the results of a strict bifurcation 

analysis; cf. [17]. Ideally, a rigorous mathematical investigation of the problem should also include 

an explicit analytical proof of the existence of a separatrix in the R* phase space of the system 

corresponding to the stationary travelling front. For a somewhat different problem, such consid- 

eration is done in [19,26], whereas it is still an open problem for equations (4),(S) or (18),(19). 

Concerning a probable application of the results to natural systems, another open problem 

is how the phenomenon can be modified in the presence of noise. Our tentative numerical 

results show that for a periodically applied perturbation, the plateau can survive if the period is 

sufficiently large and the amplitude of the perturbation is sufficiently small. Under the influence 

of a perturbation, the length of the plateau may decrease, and in some cases it may be broken 

into a few parts separated by regions with irregular spatiotemporal oscillations. However, this 

problem needs more careful consideration and will be subject of a separate paper. 

In conclusion, it should be noted that the existence of this phenomenon may shed a new light 

on some ecological problems. Particularly, it is shown in [27] that the temporary behaviour of 

the concentrations of key species in a biological community sometimes exhibits “intermittence”: 

an oscillatory behaviour gives way to a quasi-stationary state of the community which is followed 

again by the oscillations with a period of alternation much less than one year so that it can 

unlikely be related to the seasonal changes. Now, accounting for the results of this paper, one can 

consider the situation when an LLobserver” is taking measurements of the species concentrations 

in a fixed point in front of the population wave; cf. Figure 2. Then his account of the temporal 

dynamics of the community in a given point would be very similar to the one reported in [27]. 

The intermittent temporal behaviour of the community would arise as a result of a biological 

invasion combined with the dynamical stabilization behind the front. An indirect proof for this 

explanation can be also found in [28] where it is shown how a spatial structure of a community 

may result in complex temporal dynamics. 

REFERENCES 

1. P. Gray and S.K. Scott, Chemical Oscillations and Instabilities, Oxford University Press, Oxford, (1990). 

2. J.D. Murray, Mathematical Biology, Springer-Verlag, Berlin, (1989). 

3. A. Okubo, Diffusion and Ecological Problems: Mathematical Models, Springer-Verlag, Berlin, (1980). 

4. N. Shigesada and K. Kawasaki, Biological Invasions: Theory and Practice, Oxford University Press, Oxford, 

(1997). 

5. H. Haken, Advanced Synergetics, Springer Series in Synergetics, Volume 20, Springer-Verlag, Berlin, (1983). 

6. G. Nicolis and I. Prigogine, Self-Organization in Non-Equilibrium Systems, Wiley, New York, (1977). 

7. A.M. Turing, On the chemical basis of morphogenesis, Phil. nuns. R. Sot. Lond. B 237, 37-72, (1952). 

8. L.A. Segel and J.L. Jackson, Dissipative structure: An explanation and an ecological example, J. Theor. 
Biol. 37, 545-559, (1972). 

9. K. Kaneko, Editor, Theory and Applications of Coupled Map Lattices, Wiley & Sons, Chichester, (1993). 

10. L. Schimansky-Geyer, M. Mieth, H. Rose and H. Malchow, Structure formation by active Brownian particles, 
Phys. Lett. A 207, 140-146, (1995). 

11. F. Schweitzer, W. Ebeling and B. Tilch, Complex motion of Brownian particles with energy deposit, Phys. 
Rev. Lett. 80, 5044-5047, (1998). 

12. J.G. Skellam, Random dispersal in theoretical populations, Biometrilca 38, 196-218, (1951). 

13. D. Dubois, A model of patchiness for prey-predator plankton populations, Ecological Modelling 1, 67-80, 
(1975). 

14. J.S. Wroblewski and J.J. O’Brien, A spatial model of plankton patchiness, Marine Biology 35, 161-176, 
(1976). 

15. H. Malchow, Spatio-temporal pattern formation in nonlinear non-equilibrium plankton dynamics, Proc. R. 
Sot. Lond. B251, 103-109, (1993). 

16. S.V. Petrovskii and H. Malchow, A minimal model of pattern formation in a prey-predator system, M&l. 
Comput. Modelling 29 (8), 49-63, (1999). 

17. S.V. Petrovskii and H. Malchow, Critical phenomena in plankton communities: KISS model revisited, Non- 
linear Analysis: Real World Applications 1, 37-51, (2000). 

18. S.V. Petrovskii, M.E. Vinogradov and A.Yu. Morozov, Spatial-temporal dynamics of a localized populational 
“burst” in a distributed prey-predator system, Oceanology 38, 881-890, (1998). 

19. S.R. Dunbar, Travelling wave solutions of diffusive Lotka-Volterra equations, J. Math. Biol. 17, 11-32, (1983). 



Dynamical Stabilization 319 

20. J.A. Sherratt, Invadive wave fronts and their oscillatory wakes are linked by a modulated travelling phase 
resetting wave, Physica D 117, 145-166, (1998). 

21. J.A. Sherratt, M.A. Lewis and A.C. Fowler, Ecological chaos in the wake of invasion, Proc. Natl. Acad. Sci. 

USA 92, 2524-2528, (1995). 
22. S.V. Petrovskii and H. Malchow, Wave of chaos: A new mechanism of pattern formation in a prey-predator 

system, Theoretical Population Biology 59, 157-174, (2001). 
23. J.E. Pearson, Complex patterns in simple systems, Science 261, 189-192, (1993). 
24. K.E. Rasmussen, W. Mazin, E. Mosekilde, G. Dewel and P. Borckmans, Wave-splitting in the bistable Gray- 

Scott model, Int. J. of B~j.~~~~tions and Chaos 6, 1077-1092, (1996). 
25. F. Davidson, Chaotic wakes and other wave-induced behavior in a system of reaction-diffusion equations, Int. 

J. of B@cation and Chaos 8, 1303-1313, (1998). 
26. S.R. Dunbar, Travelling waves in diffusive predator-prey equations: Periodic orbits and point-to-periodic 

heteroclinic orbits, SIAM J. Appl. Math. 46, 1057-1078, (1986). 

27. W.W. Murdoch and E. McCauley, Three distinct types of dynamic behaviour shown by a single planktonic 
system, Nature 316, 628-630, (1985). 

28. E. Ranta, V. Kaitala and P. Lundberg, The spatial dimension in population fluctuations, Science 278, 
1621-1623, (1997). 


