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Thesis advisor Author

Alán Aspuru-Guzik Sangwoo Shim

Quantum Dynamics in Biological Systems

Abstract

In the first part of this dissertation, recent efforts to understand quantum mechanical

effects in biological systems are discussed. Especially, long-lived quantum coherences

observed during the electronic energy transfer process in the Fenna-Matthews-Olson

complex at physiological condition are studied extensively using theories of open

quantum systems. In addition to the usual master equation based approaches, the

effect of the protein structure is investigated in atomistic detail through the combined

application of quantum chemistry and molecular dynamics simulations. To evaluate

the thermalized reduced density matrix, a path-integral Monte Carlo method with a

novel importance sampling approach is developed for excitons coupled to an arbitrary

phonon bath at a finite temperature. In the second part of the thesis, simulations

of molecular systems and applications to vibrational spectra are discussed. First,

the quantum dynamics of a molecule is simulated by combining semiclassical ini-

tial value representation and density funcitonal theory with analytic derivatives. A

computationally-tractable approximation to the sum-of-states formalism of Raman

spectra is subsequently discussed.
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Chapter 1

Introduction

Although more than 80 years passed of Paul Dirac’s announcement that “the

underlying physical laws necessary for the mathematical theory of a large part of

physics and the whole of chemistry are completely known” [1], tremendous amount of

efforts are still being made to achieve computationally-scalable simulations for quan-

tum dynamics and their associated chemical phenomena. The cost of solving the

time-dependent Schrödinger equation increases very quickly as the size of the system

grows and as the total length of the propagation time gets longer. Even for a modest

sized system, exact quantum mechanical dynamics easily becomes untractable with

currently available computational resources. Therefore, most of the useful approaches

for treating biological systems inevitably involve approximations to some extent. For

example, the structure and behavior of protein complexes found in biology are ex-

plained well in terms of classical statistical mechanics and molecular dynamics, which

are approximations of quantum statistical mechanics and time evolution [2–6]. For

a larger system, even classical mechanical calculations are very hard to carry out.
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Chapter 1: Introduction

Therefore, many coarse-grained and multiscale simulation methods have been sug-

gested and are still actively being developed [7–9]. Nevertheless, classical mechanics

has been the method of choice for studying biological systems in molecular level.

The Fenna-Matthews-Olson complex is a trimeric bacteriochlorophyll protein in

the light-harvesting system of green surfur bacteria [10, 11]. This complex transfers

the energy of the photons collected at the photosynthetic antenna complex to the

reaction center [12]. Eight bacteriochlorophyll (BChl) molecules each of which acting

as a chromophore are embedded in its monomer. Because its high-resolution X-ray

structure has been known for a long time, this subsystem has been studied extensively

by theoreticians [13, 14] as well as experimentalists [15–18]. Early efforts were mostly

focused on evaluating the Hamiltonian relevant to the spectroscopic measurement.

BChl molecules were modelled as two-level systems interacting each other through

electronic Förster’s dipole-dipole coupling [19]. Each BChl molecule was also assumed

to coupled to a harmonic oscillator bath to give the line broadening of the spectro-

scopic spectra. Within this assumption, the electronic Hamiltonian operator was

evaluated by fitting to linear absorption spectra [13, 20], interpreting 2D electronic

spectroscopy data [21], calculation based on force fields [14] and density functinal

theory [22].

Recent 2D nonlinear spectroscopy experiments suggested the existence of long-

lived quantum coherences lasting up to several hundreds of femtoseconds during the

electronic energy transfer process in certain photosynthetic subsystems, especially

within a Fenna-Matthews-Olson (FMO) complex of surfur bacterium, even under

physiological conditions [23–25]. Moreover, the observed quantum coherences are

2



Chapter 1: Introduction

thought to contribute the energy transfer efficiency [26, 27]. Apparently, this energy

transfer dynamics cannot be explained without quantum mechanics. Moreover, tra-

ditional master equation with Born-Markov approximation proven to be unable to

reproduce this long-lived coherence [28]. Thus, more advanced theories of open quan-

tum systems have been applied to explain the dynamics of excitons in FMO complex

with some degree of success [29–33], and still being actively developed.

In the Part I of this dissertation, the efforts we made to understand those long

lived quantum coherences in biological systems are presented; Chapter 2 presents a

review on three approaches made in our group to characterize quantum effects in the

FMO complex. Chapter 3 is about the atomistic simulation to include the effects

from the realistic environment to the dynamics of excitons. Equilibrium properties

of the reduced density matrix of excitons coupled to an arbitrary bath are explored

in Chapter 4 using the path integral Monte Carlo method with importance sampling.

Part II features two projects on calculations absorption and resonance Raman spec-

tra based on approximate quantum dynamics of the molecular system, respectively.

Chapter 5 introduces an approximate but very accurate real space wavefunction prop-

agation in real time using time-averaged semiclassical initial value representation im-

plemented on top of the ab initio molecular dynamics. A simplified and computation-

ally tractable formulation of the resonance Raman scattering cross section using time

dependent density functional theory and analytic derivatives is presented in chapter

6.
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Chapter 1: Introduction

1.1 Review of Theoretical Approaches

For better understanding of the materials included this dissertation, introductions

to basic concepts and relevant theories will be provided in the rest of the current

chapter.

1.1.1 Basics of Open Quantum Systems

The density matrix of a closed system evolves according to the quantum Liouville

equation. As elaborated in the previous section, explicit evaluation of a quantum

mechanical time evolution becomes easily untractable, especially when there exist a

large number of degrees of freedom. Fortunately, we are concerned with only a part

of the total system in most cases. Consider an electronic energy transfer process in

a biomolecular system; the entire system encompassing all electronic and vibrational

degrees of freedom of the molecules and solvents should be, in principle, explicitly

propagated to obtain the exact dynamics. But we are interested only in the electronic

state of chromophores, which exists in a Hilbert space with only a few degrees of

freedom. Therefore, if an equation of motion for such a part of the total system can

be derived, all the information we need to obtain the solution for the problem can be

identified. Theories for treating such a reduced quantum system interacting with a

macroscopic environment is referred to theories of open quantum systems. The part of

our interest is called the system, whereas the rest of the total system is referred as the

bath. The partitioning is entirely determined by the decision of the physicist, although

there may be an obvious choice for the system and the bath in many cases. Given a

total density matrix, the system and the bath density matrices can be defined in a

4



Chapter 1: Introduction

very similar way to a marginal probability density in the probability theory. Given a

probability density function of two random variables X and Y is given as PX,Y (x, y),

the marginal density for X is given as,

PX(x) =

∫
dy PX,Y (x, y), (1.1)

which is an effective probability density only for X. This density contains every

information we need if we are only interested in the distribution of X even though

the actual random process produces a random vector (X, Y ). Now a reduced density

matrix of the system can be defined as an effective, averaged density matrix over its

bath by tracing out the bath degrees of freedom,

ρS(t) ≡ TrBρ(t), (1.2)

where ρ(t) is the density matrix of the total system and TrB is the partial trace

operator which traces out the bath degrees of freedom. In the following sections, two

types of equations of motion for the reduced density matrix of the system will be

introduced based on different sets of approximations.

1.1.2 Redfield Equation

We will discuss the general formulation of the Redfield equation first and then

focus on the application on the electronic energy transfer dynamics. The Hamiltonian

for the total system can be decomposed as three components:

Ĥtotal = ĤS + ĤB + ĤSB, (1.3)

where the system Hamiltonian ĤS only acts on the Hilbert space of the system and

the bath Hamiltonian ĤB only act on the Hilbert space of the bath. Rest of the total

5



Chapter 1: Introduction

Hamiltonian causing the entanglement between the system and the bath is specified

as the system-bath Hamiltonian ĤSB. By choosing the interaction picture relative to

ĤS + ĤB as the zeroth order Hamiltonian, the quantum mechanical equation of the

motion for the total density matrix can be obtained:

dρ̃(t)

dt
=

1

i~

[
H̃SB(t), ρ̃(t)

]
, (1.4)

where

Û0(0, t) = e−
i
~
∫ t
0 ĤS(s)+ĤB(s) ds,

ρ̃(t) = Û †0(0, t)ρ(t)Û0(0, t),

H̃SB(t) = Û †0(0, t)ĤSB(t)Û0(0, t). (1.5)

Operators with a tilde are in the interaction picture. Closed form for ρ̄(t) can be

obtained by integrating Eq. 1.4:

ρ̃(t) = ρ̃(0) +
1

i~

∫ t

0

ds
[
H̃SB(s), ρ̃(s)

]
. (1.6)

Tracing over the bath degrees of freedom and plugging in Eq. 1.4 gives

dρ̃S(t)

dt
=

1

i~
TrB

[
H̃SB(t), ρ̃(t)

]
=

1

i~
TrB

[
H̃SB(t), ρ̃(0)

]
− 1

~2

∫ t

0

ds TrB

[
H̃SB(t),

[
H̃SB(s), ρ̃(s)

]]
. (1.7)

Without the loss of generality, H̃SB(t) can be expanded as a linear combination of

factorized operators:

H̃SB(t) =
∑
k

Ãk(t)⊗ B̃k(t) =
∑
k

Ã†k(t)⊗ B̃†k(t). (1.8)

Note that individual Ã†k(t) and B̃†k(t) might not be Hermitian even though H̃SB(t) is

Hermitian. A series of assumptions needs to be introduced to proceed further. The

6



Chapter 1: Introduction

first assumption is called the Born approximation, which states that the total density

matrix is factorizable at all times, and the bath state is in thermal equilibrium so it

does not depend on time:

ρ̃(t) ≈ ρ̃S(t)⊗ ρ̃B, (1.9)

ρ̃B = ρB =
exp(−βĤB)

TrB exp(−βĤB)
. (1.10)

By plugging in Eq. 1.8 and Eq. 1.9 to Eq. 1.7,

dρ̃S(t)

dt
=

1

i~
∑
k

〈
B̃k(t)

〉 [
Ãk(t), ρ̃S(0)

]
− 1

~2

∑
k,l

∫ t

0

ds
〈
B̃†k(t)B̃l(s)

〉
Ã†k(t)Ãl(s)ρ̃S(s)

+
1

~2

∑
k,l

∫ t

0

ds
〈
B̃l(s)B̃

†
k(t)
〉
Ã†k(t)ρ̃S(s)Ãl(s)

+
1

~2

∑
k,l

∫ t

0

ds
〈
B̃†k(t)B̃l(s)

〉
Ãl(s)ρ̃S(s)Ã†k(t)

− 1

~2

∑
k,l

∫ t

0

ds +
〈
B̃l(s)B̃

†
k(t)
〉
ρ̃S(s)Ãl(s)Ã

†
k(t)

=
1

i~
∑
k

〈
B̃k(t)

〉 [
Ãk(t), ρ̃S(0)

]
− 1

2~2

∑
k,l

∫ t

0

ds
〈{

B̃†k(t), B̃l(s)
}〉([

Ã†k(t),
[
Ãl(s), ρ̃S(s)

]])
− 1

2~2

∑
k,l

∫ t

0

ds
〈[
B̃†k(t), B̃l(s)

]〉([
Ã†k(t),

{
Ãl(s), ρ̃S(s)

}])
, (1.11)

where
〈
Õ
〉

= TrB

[
Õρ̃B

]
. Because the bath is assumed to be in thermal equilibrium,

the bath correlation function is stationary and only depends on the difference of the

two times:

ckl(s) =
1

~

〈
B̃†k(s)B̃l(0)

〉
=

1

~

〈
B̃†k(t)B̃l(t− s)

〉
. (1.12)

7
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It is convenient to define the symmetrized correlation function Skl(t) and the response

function χkl(t):

Skl(t) =
1

~

〈{
B̃†k(t), B̃l(0)

}〉
= ckl(t) + c∗kl(t), (1.13)

χkl(t) =
i

~

〈[
B̃†k(t), B̃l(0)

]〉
= i {ckl(t)− c∗kl(t)} . (1.14)

Skl(t) and χkl(t) are often referred to as the noise and dissipation kernels, respec-

tively [34]. The Eq. 1.11 can be rewritten in terms of these two real functions:

dρ̃S(t)

dt
=

1

i~
∑
k

〈
B̃k(t)

〉 [
Ãk(t), ρ̃S(0)

]
− 1

~
∑
k,l

∫ t

0

ds
1

2
Skl(t− s)

[
Ãk(t),

[
Ãl(s), ρ̃S(s)

]]
+

1

~
∑
k,l

∫ t

0

ds
i

2
χkl(t− s)

[
Ãk(t),

{
Ãl(s), ρ̃S(s)

}]
. (1.15)

By changing the integration variable to t− s,

dρ̃S(t)

dt
=

1

i~
∑
k

〈
B̃k(t)

〉 [
Ãk(t), ρ̃S(0)

]
− 1

~
∑
k,l

∫ t

0

ds
1

2
Skl(s)

[
Ãk(t),

[
Ãl(t− s), ρ̃S(t− s)

]]
+

1

~
∑
k,l

∫ t

0

ds
i

2
χkl(s)

[
Ãk(t),

{
Ãl(t− s), ρ̃S(t− s)

}]
. (1.16)

Now we introduce the second assumption which states that the bath is stationary

and its correlation function decays rapidly:

ckl(s) ≈ 0 for s > τc. (1.17)

This assumption will let us integrate up to infinite time in the second term of Eq. 1.16.

Moreover, if ρ̄S(t) does not change much during the characteristic time τc, ρ̄S(t− s)

8
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in the integrand can be approximated as ρ̄S(t) and a Markovian equation of motion

is obtained:

dρ̃S(t)

dt
≈ 1

i~
∑
k

〈
B̃k(t)

〉 [
Ãk(t), ρ̃S(0)

]
− 1

~
∑
k,l

∫ ∞
0

ds
1

2
Skl(s)

[
Ãk(t),

[
Ãl(t− s), ρ̃S(t)

]]
+

1

~
∑
k,l

∫ ∞
0

ds
i

2
χkl(s)

[
Ãk(t),

{
Ãl(t− s), ρ̃S(t)

}]
. (1.18)

Eq. 1.18 is referred as the Redfield equation. When a model of the bath correlation

function is given, this equation can be integrated to give a complete Markovian master

equation.

The electronic and phonon Hamiltonians of a typical Frenkel exciton can be spec-

ified as [29]:

Ĥel =
∑
n

εn|n〉〈n|+
∑
m 6=n

Emn|m〉〈n|, (1.19)

Ĥph =
∑
i

p̂2
i

2mi

+
1

2
miω

2
i q̂

2
i =

∑
i

~ωi
(
â†i âi +

1

2

)
, (1.20)

where the lowering and raising operators of the ith mode are

âi =

√
miωi
2~

(
q̂i +

i

miωi
p̂i

)
, (1.21)

â†i =

√
miωi
2~

(
q̂i −

i

miωi
p̂i

)
, (1.22)

with the commutation relation
[
âi, â

†
j

]
= δij. Using the displace harmonic oscillator

model, the electronic phonon interaction Hamiltonian can be specified in the following

9
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way:

Ĥel−ph =
∑
n

|n〉〈n| ⊗
∑
i

1

2
miω

2
i

[
(q̂i − dni)2 − q̂2

i

]
=
∑
n

(∑
i

1

2
miω

2
i d

2
ni

)
|n〉〈n|+

∑
n

|n〉〈n| ⊗
(
−
∑
i

miω
2
i dniq̂i

)

=
∑
n

(∑
i

1

2
miω

2
i d

2
ni

)
|n〉〈n|+

∑
n

|n〉〈n| ⊗
(
−
∑
i

miω
2
i dni(âi + â†i )

√
~

2miωi

)

=
∑
n

(∑
i

1

2
miω

2
i d

2
ni

)
︸ ︷︷ ︸

λn

|n〉〈n|+
∑
n

|n〉〈n|︸ ︷︷ ︸
Ân

⊗
(
−
∑
i

√
~miω3

i

2
dni(âi + â†i )

)
︸ ︷︷ ︸

B̂n

=
∑
n

λn|n〉〈n|︸ ︷︷ ︸
Ĥreorg

+
∑
n

Ân ⊗ B̂n︸ ︷︷ ︸
ĤSB

. (1.23)

where ωi, q̂i, p̂i, â
†
i and âi are the angular frequency, position operator, momentum

operator, raising and lowering operators for the ith normal mode coordinate, respec-

tively. dni is the displacement of the ith oscillator for the nth exciton and only the

Franck-Condon transition is assumed to occur during the dynamics. To apply the

Redfield equation, the decomposition of the total system into the system and bath

will be done in the following way:

ĤS = Ĥel + Ĥreorg =
∑
n

(εn + λn)|n〉〈n|+
∑
m 6=n

Emn|m〉〈n|, (1.24)

ĤB = Ĥph =
∑
i

~ωi
(
â†i âi +

1

2

)
, (1.25)

ĤSB = Ĥel−ph − Ĥreorg =
∑
n

Ân ⊗ B̂n. (1.26)

Note that the first term of the RHS of Eq. 1.18 vanishes with this decomposition.

Thus, evaluating the bath correlation would be enough to obtain the equation of

10
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motion for the reduced density matrix of the system.

cmn(t) =
1

~

〈
B̃†m(t)B̃n(0)

〉
=
∑
i,j

√
mimjω3

i ω
3
j

2
dmidnj

× TrB
eβĤB

Z(β)
eiωit(â

†
i âi+

1
2)(â†i + âi)e

−iωit(â†i âi+ 1
2)(â†j + âj). (1.27)

From the commutation relation [â†i , âi] = 1,

â†ie
−iωit(â†âi+ 1

2) = e−iωit(â
†âi− 1

2)â†i , (1.28)

âie
−iωit(â†âi+ 1

2) = e−iωit(â
†âi+ 3

2)âi (1.29)

By plugging in Eq. 1.28 and 1.29 to Eq. 1.27, we obtain

cmn(t) =
∑
i,j

√
mimjω3

i ω
3
j

2
dmidnjTrB

e−βĤB

Z(β)

(
eiωitâ†i + e−iωitâi

)
(â†j + âj)

=
∑
i

miω
3
i dmidni
2

TrB

{
e−βĤB

Z(β)
eiωitâ†i âi +

e−βĤB

Z(β)
e−iωitâiâ

†
i

}

=
∑
i

miω
3
i dmidni
2

TrB

{
e−βĤB

Z(β)
eiωitâ†i âi +

e−βĤB

Z(β)
e−iωit(â†i âi + 1)

}

=
∑
i

miω
3
i dmidni
2

[
n(ωi; β)eiωit + {n(ωi; β) + 1}e−iωit

]
,

c∗mn(t) =
∑
i

miω
3
i dmidni
2

[
n(ωi; β)e−iωit + {n(ωi; β) + 1}eiωit

]
, (1.30)

where Z(β) = TrBe
−βĤB is the partition function of the bath, and n(ωi; β) = 1

eβ~ω−1

is the Bose-Einstein distribution function at the inverse temperature β. Plugging in

11
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to Eq. 1.13 and 1.14,

Skl(t) =
∑
i

miω
3
i dmidni
2

{2n(ωi; β) + 1}
(
e−iωit + eiωit

)
=
∑
i

miω
3
i dmidni
2

{2n(ωi; β) + 1} {2 cos(ωit)}

= 2
∑
i

miω
3
i dmidni
2

coth

(
β~ωi

2

)
cos(ωit), (1.31)

χkl(t) = i
∑
i

miω
3
i dmidni
2

(
e−iωit − eiωit

)
= i
∑
i

miω
3
i dmidni
2

{−2i sin(ωit)}

= 2
∑
i

miω
3
i dmidni
2

sin(ωit). (1.32)

For convenience, we will rewrite the Eq. 1.31 and 1.32 by defining the spectral density

of the bath associated with the mth and nth excitons as

Jmn(ω) =
∑
i

miω
3dmidni
2

δ(ω − ωi). (1.33)

For any macroscopic bath with many degrees of freedom, its spectral density is essen-

tially a continuous function. The Skl(t) and χkl(t) can now be expressed in terms of

the spectral density as integral equations with respect to ω. Because ωi’s are positive

definite, the integration can be done only in the positive region.

Skl(t) = 2

∫ ∞
0

dω Jmn(ω)coth

(
β~ω

2

)
cos(ωt), (1.34)

χkl(t) = 2

∫ ∞
0

dω Jmn(ω) sin(ωt). (1.35)

The Markovian master equation for a system coupled to a harmonic oscillator bath

with linear coupling, like the displaced oscillator model, can be completely specified

by spectral densities. One popular phenomological model for the spectral density is

12
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an Ohmic spectral density with a Lorentz-Drude cutoff function:

Jmn(ω) =
2λmn
π

ω
Ωmn

Ω2
mn + ω2

, (1.36)

where λmn is the reorganization energy and Ωmn is a high frequency cutoff constant.

With this choice of spectral density, analytic expressions for the noise and dissipation

kernels can be obtained:

Smn(t) =
4λmn
β~

Ωmn

(
e−Ωmnt

Ωmn

+
∞∑
k=1

2Ωmne
−Ωmnt − νke−νkt
Ω2
mn − ν2

k

)
, (1.37)

χmn(t) = 2λmnΩmne
−Ωmnt, (1.38)

where νk = 2πk
β~ are Matsubara frequencies. There exist alternative expressions known

to be converge faster thatn the Matsubara series and they are often favored in actual

implementations of the formalism[35–37]. For simplicity, only the high temperatures

approximation of Smn(t) ≈ 4λmn
β~ e−Ωmnt will be considered.

Under the assumptions of the Redfield equation, Ãk(t − s) can be approximated

as a Taylor expansion up to the first order in s:

Ãk(t− s) = Ãk(t)− s
d

dt
Ãk(t) = Ãk(t) +

s

i~

[
ĤS, Ãk(t)

]
. (1.39)

13
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Plugging in all above to Eq. 1.18 and integrating gives

d

dt
ρ̃S(t) ≈ −1

~
∑
k,l

∫ ∞
0

ds
2λkl
β~

e−Ωmns
[
Ãk(t),

[
Ãl(t), ρ̃S(t)

]]
− 1

~
∑
k,l

∫ ∞
0

ds
2λkl
iβ~2

se−Ωmns
[
Ãk(t),

[[
ĤS, Ãl(t)

]
, ρ̃S(t)

]]
+

1

~
∑
k,l

∫ ∞
0

ds
iλmnΩmn

~
e−Ωmns

[
Ãk(t),

{
Ãl(t), ρ̃S(t)

}]
+

1

~
∑
k,l

∫ ∞
0

ds
λmnΩmn

~2
se−Ωmns

[
Ãk(t),

{[
ĤS, Ãl(t)

]
, ρ̃S(t)

}]
= −1

~
∑
k,l

2λkl
β~Ωmn

[
Ãk(t),

[
Ãl(t), ρ̃S(t)

]]
+

1

~
∑
k,l

2iλkl
β~2Ω2

mn

[
Ãk(t),

[[
ĤS, Ãl(t)

]
, ρ̃S(t)

]]
+

1

~
∑
k,l

iλmn
~

[
Ãk(t),

{
Ãl(t), ρ̃S(t)

}]
+

1

~
∑
k,l

λmn
~2Ωmn

[
Ãk(t),

{[
ĤS, Ãl(t)

]
, ρ̃S(t)

}]
. (1.40)

If expressed in the Schrödinger picture, the generator of the quantum master equation

does not depend on time:

d

dt
ρS(t) =

1

i~

[
ĤS, ρ(t)

]
− 1

~
∑
k,l

2λkl
β~Ωmn

[
Âk,

[
Âl, ρS(t)

]]
+

1

~
∑
k,l

2iλkl
β~2Ω2

mn

[
Âk,

[[
ĤS, Âl

]
, ρS(t)

]]
+

1

~
∑
k,l

iλmn
~

[
Âk,

{
Âl, ρS(t)

}]
+

1

~
∑
k,l

λmn
~2Ωmn

[
Âk,

{[
ĤS, Âl

]
, ρS(t)

}]
. (1.41)
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1.1.3 Reduced Hierarchical Equation of Motion

The Born approximation employed in the Redfield equation leads to the pertur-

bation expansion to the second order. Due to this limitation, the Redfield equation

is not applicable when the system-bath interaction is of comparable scale to the site-

site coupling [28]. Also, non-Markovian effects cannot be captured because the bath

correlation time is assumed to be short. For a harmonic oscillator bath with Ohmic

spectral density and Lorentz-Drude cutoff, a non-perturbative and non-Markovian

equation of motion can be derived by exploiting the following facts: (1) The noise

and dissipation kernels are linear combinations of exponential functions of time and

(2) the system-bath interaction Hamiltonian is linear in the position operators of bath

oscillators. We now derive this non-Markovian master equation.

Starting from the previous decomposition for the Hamiltonian of Frenkel excitons

in Eq. 1.24-1.26 and substituting to Eq. 1.4, we obtain

d

dt
ρ̃(t) =

1

i~

[
H̃SB, ρ̃(t)

]
=

1

i~
∑
k

{
Ãk(t)⊗ B̃k(t)

}
ρ̃(t), (1.42)

where

Ãk(t)σ =
[
Ãk(t), σ

]
, Ã†k(t)σ =

[
Ã†k(t), σ

]
,

B̃k(t)σ =
[
B̃k(t), σ

]
, B̃†k(t)σ =

[
B̃†k(t), σ

]
. (1.43)

The formal solution of the Eq.1.42 is,

ρ̃(t) = T← exp

(
1

i~

∫ t

0

ds
∑
k

Ãk(s)⊗ B̃k(s)
)
ρ̃(0), (1.44)
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where T← is the chronological time ordering operator. By assuming that the initial

state is factorizable, ρ̃(0) = ρ̃S(0)⊗ ρ̃B, where the bath is in equilibrium like Eq. 1.10,

the reduced density matrix of the system can be written as,

ρ̃S(t) = T←

〈
exp

(
1

i~

∫ t

0

ds
∑
k

Ãk(s)⊗ B̃k(s)
)〉

ρ̃(0). (1.45)

The bath operators B̃k(t) are linear in the bath position operators. By applying

Kubo’s generalized cumulant expansion [38], the equation above can be expressed as,

ρ̃S(t) = T←

〈
exp

(
1

i~

∫ t

0

ds
∑
k

Ãk(s)⊗ B̃k(s)
)〉

ρ̃(0)

= T← exp

(
− 1

~2

∑
k

∫ t

0

dt1

∫ t1

0

ds1

〈{
Ã†k(t1)⊗ B̃†k(t1)

}{
Ãk(s1)⊗ B̃k(s1)

}〉)
ρ̃(0).

(1.46)

The integrand of Eq. 1.46 can be explicitly evaluated by adapting an Ohmic spectral

density in Eq. 1.36:

− 1

~2

〈{
Ã†k(t1)⊗ B̃†k(t1)

}{
Ãk(s1)⊗ B̃k(s1)

}〉
= F̃k(t1)e−Ωk(t1−s1)T̃k(s1), (1.47)

where F̃k(t) and T̃k(t) are superoperators defined as,

F̃k(t) = i
[
Ã†k(t), σ

]
,

T̃k(t) =
2iλk
β~2

[
Ãk(t), σ

]
+
λkΩk

~

{
Ãk(t), σ

}
. (1.48)

For algebraic convenience, we assumed that the bath operators coupled to different

sites are uncorrelated. Rewriting Eq. 1.46 using these superoperators, the reduced

density matrix can be obtained as,

ρ̃S(t) = T← exp

(∑
k

∫ t

0

dt1F̃k(t1)

∫ t1

0

ds1 e
−Ωk(t1−s1)T̃k(s1)

)
ρ̃S(0)

= T←

{∏
k

exp

(∫ t

0

dt1F̃k(t1)

∫ t1

0

ds1 e
−Ωk(t1−s1)T̃k(s1)

)}
ρ̃S(0), (1.49)
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Differentiating both sides of Eq. 1.49,

d

dt
ρ̃S(t) = T←

∑
l

F̃l(t)
(∫ t

0

ds e−Ωk(t1−s1)T̃l(s)
)

×
{∏

k

exp

(∫ t

0

dt1F̃k(t1)

∫ t1

0

ds1 e
−Ωk(t1−s1)T̃k(s1)

)}
ρ̃S(0)

=
∑
l

F̃l(t)T←
(∫ t

0

ds e−Ωk(t1−s1)T̃l(s)
)

×
{∏

k

exp

(∫ t

0

dt1F̃k(t1)

∫ t1

0

ds1 e
−Ωk(t1−s1)T̃k(s1)

)}
ρ̃S(0)

=
∑
l

F̃l(t)σ̃{··· ,nl−1=0,nl=1,nl+1=0,··· }(t), (1.50)

where auxiliary matrices σ̃{n1,··· ,nN} are defined as,

σ̃{n1,··· ,nN}(t) = T←
∏
k

(∫ t

0

ds e−Ωk(t−s)T̃k(s)
)nk

× exp

(∫ t

0

dt1F̃k(t1)

∫ t1

0

ds1 e
−Ωk(t1−s1)T̃k(s1)

)
ρ̃S(0), (1.51)

and it becomes zero if any element in {nk} is negative. Note that ρ̃S(t) = σ̃{0,··· ,0}(t)

and σ̃{n1,··· ,nN}(0) = 0. The equation of motion of σ̃{n1,··· ,nN}(t) is,

d

dt
σ̃{n1,··· ,nN}(t) = −

∑
l

Ωlσ̃{n1,··· ,nN}

+
∑
l

nlT̃l(t)σ̃{n1,··· ,nl−1,··· ,nN} +
∑
l

F̃l(t)σ̃{n1,··· ,n1+1,··· ,nN}, (1.52)

in the interaction picture. Moving to the Schrödinger picture, we obtain a set of

hierarchical equations of motion.

d

dt
σ{n1,··· ,nN}(t) =

1

i~
LSσ{n1,··· ,nN} −

∑
l

Ωlσ{n1,··· ,nN}

+
∑
l

nlTl(t)σ{n1,··· ,nl−1,··· ,nN} +
∑
l

Fl(t)σ{n1,··· ,n1+1,··· ,nN}. (1.53)
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1.1.4 Haken-Strobl-Reineker Model

First developed by Haken, Strobl and Reineker [39–41], this phenomenological

stochastic model describes the coherent and incoherent dynamics of Frenkel excitons

at the same time. Instead of decompose the total complex to the system and bath,

Haken-Strobl-Reineker (HSR) model mainly focuses on the system Hamiltonian, and

the effect of the bath environment is included as time-dependent stochastic terms:

Ĥsys =
∑
n

εn|n〉〈n|+
∑
m 6=n

Emn|m〉〈n|,

Ĥenv(t) =
∑
m,n

hmn(t)|m〉〈n|,

Ĥtotal(t) = Ĥsys + Ĥenv(t). (1.54)

Realized stochastic density matrix ρ̆S(t) can be defined per realization of the stochas-

tic Hamiltonian according to the usual form of the quantum Liouville equation:

dρ̆S(t)

dt
=

1

i~

[
Ĥtotal, ρ̆S(t)

]
=

1

i~

[
Ĥsys, ρ̆S(t)

]
+

1

i~

[
Ĥenv(t), ρ̆S(t)

]
. (1.55)

Then the reduced density matrix of the system can be obtained as the expectation of

the density matrices over the realized trajectory:

ρS(t) = E (ρ̆S(t)) . (1.56)

Note that ρ̆S(t) is a stochastic process while ρS(t) is deterministic. Equivalently, the

equation of the motion for the reduced density matrix of the system can be obtained

by taking expectation on both sides of Eq. 1.55:

dρS(t)

dt
=

1

i~

[
Ĥsys, ρS(t)

]
+

1

i~
E
([
Ĥenv(t), ρ̆S(t)

])
. (1.57)
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hmn(t) are assumed to have the correlation functions given by

E {hmn(t)hnm(t′)} =
~γmn
τc

e−
|t−t′|
τc , γmn = γnm,

E {hmn(t)hmn(t′)} =
~γ̄mn
τc

e−
|t−t′|
τc , γ̄mn = γ̄∗nm, (1.58)

where τc is the correlation time. The mean values can be set to zero by absorbing

any leftover term into the system Hamiltonian. In the original parametrization, these

stochastic terms were assumed to have delta function correlation in time. There exist

a formulation with exponential correlation function for a two-exciton system [42], but

the derivation presented here is generalized to cover any number of excitons. The

constant ~ was introduced for γmn to have the unit of energy. Although an extension

of the HSR model with nonzero intersite correlations exists [43], only the formulation

with uncorrelated sites will be discussed in this chapter because of its simplicity and

clarity.

To evaluate the second term of Eq. 1.57, we will rewrite the equation using an

orthonormal basis set {Ωk} spanning the density operator space with the following

inner product [44]:

〈Ωk|Ωl〉 ≡ Tr(Ω†kΩl) = δkl. (1.59)

With this orthonormal basis, the commutation relation between operators can be

interpreted as a linear operator acting on the aforementioned vector space:

HΩl =
[
Ĥ,Ωl

]
=
∑
k

Tr
(

Ω†k

[
Ĥ,Ωl

])
Ωk

=
∑
k

Tr
(
Ĥ
[
Ωl,Ω

†
k

])
Ωk. (1.60)
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Then, Eq. 1.55 can be rewritten as

d

dt
|ρ̆S(t)〉 =

1

i~
Hsys|ρ̆S(t)〉+

1

i~
Henv|ρ̆S(t)〉, (1.61)

where |ρ̆S(t)〉 =
∑

k Tr(Ω†kρ̆S)Ωk, Hsys =
∑

k,l Tr
(
Ĥsys

[
Ωl,Ω

†
k

])
|Ωk〉〈Ωl| and Henv =∑

k,l Tr
(
Ĥenv

[
Ωl,Ω

†
k

])
|Ωk〉〈Ωl|.

Because the initial state is same for all instances of the trajectories, a closed form

of a realization of the density matrix can be obtained by integrating Eq. 1.61:

|ρ̆S(t)〉 = T← exp

(
1

i~

∫ t

0

ds Hsys

)
T← exp

(
1

i~

∫ t

0

ds Henv(s)

)
|ρS(0)〉, (1.62)

where T← is the chronological time-ordering operator. Taking expectation on both

sides, the vector expression for the system density matrix can be obtained:

|ρS(t)〉 = T← exp

(
1

i~

∫ t

0

ds Hsys

)
E
{
T← exp

(
1

i~

∫ t

0

ds Henv(s)

)}
|ρS(0)〉. (1.63)

Note that 〈Ωk|Henv|Ωl〉 = Tr
(

Ω†k

[
Ĥenv,Ωl

])
is also a stationary Gaussian random

process with zero mean and correlation time τc because the term is linear in hmn(t)’s:

E {Henv(t2)Henv(t1)} =
~
τc
e−
|t2−t1|
τc E (1.64)

E is a constant superoperator and has the unit of energy. The expectation of an

operator appearing in Eq. 1.63 can be rewritten using only the second moments by

Kubo’s generalized cumulant expansion [38]:

E
{
T← exp

(
1

i~

∫ t

0

ds Henv

)}
= T← exp

(
− 1

~2

∫ t

0

dt2

∫ t2

0

dt1 E {Henv(t2)Henv(t1)}
)

= T← exp

(
−1

~

∫ t

0

dt2

∫ t2

0

dt1
1

τc
e−
|t2−t1|
τc E

)
= T← exp

{
−1

~

∫ t

0

dt2

(
1− e−

t2
τc

)
E
}
. (1.65)
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Plugging in this result to Eq. 1.63 gives

|ρS(t)〉 = T← exp

(
1

i~

∫ t

0

ds Hsys

)
T← exp

{
−1

~

∫ t

0

dt2

(
1− e−

t2
τc

)
E
}
|ρS(0)〉.

(1.66)

By differentiating the equation above, we can come up with the generator for the

vector representation of the density matrix.

d

dt
|ρS(t)〉 =

1

i~

{
Hsys − i

(
1− e− t

τc

)
E
}
|ρS(t)〉. (1.67)

For the practical use, we want to obtain the equation of motion for each element

of the density matrix of the system. Those equations can be obtained by choosing

Ωk = |k1〉〈k2|. k is the collective index for (k1, k2) in this case and |Ωk〉 is equivalent

to |k1, k2〉.

d

dt
〈k1|ρS(t)|k2〉 = 〈k1, k2|

d

dt
|ρS(t)〉

=
1

i~
〈k1, k2|Hsys|ρS(t)〉 − 1

~

(
1− e− t

τc

)
〈k1, k2|E|ρS(t)〉. (1.68)

The explicit form of the E {Henv(t1)Henv(t2)} need to be found to evaluate the second

term of Eq. 1.68.

Henv(t2)Henv(t1) =
∑
k,l

∑
j

Tr
(
Ĥenv(t2)

[
Ωj,Ω

†
k

])
Tr
(
Ĥenv(t1)

[
Ωl,Ω

†
j

])
|Ωk〉〈Ωl|,

(1.69)

where the prefactors of the superoperator Henv are

Tr
(
Ĥenv(t)

[
Ωl,Ω

†
k

])
= Tr

{∑
m,n

hmn(t) (|m〉〈n|l1〉〈l2|k2〉〈k1| − |l1〉〈l2|m〉〈n|k2〉〈k1|)
}

= Tr

{∑
m

δk2l2hml1(t)|m〉〈k1| − hl2k2(t)|l1〉〈k1|
}

= δk2l2hk1l1(t)− δk1l1hl2k2(t). (1.70)
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By plugging in Eq. 1.70 to Eq. 1.69,

∑
j

Tr
(
Ĥenv(t2)

[
Ωj,Ω

†
k

])
Tr
(
Ĥenv(t1)

[
Ωl,Ω

†
j

])
=
∑
j1,j2

{δk2j2hk1j1(t2)− δk1j1hj2k2(t1)} {δj2l2hj1l1(t2)− δj1l1hl2j2(t1)}

=
∑
j1

δk2l2hk1j1(t2)hj1l1(t1)− hk1l1(t2)hl2k2(t1)

− hl2k2(t2)hk1l1(t1) +
∑
j2

δk1l1hj2k2(t2)hl2j2(t1)

= −hk1l1(t2)hl2k2(t1)− hl2k2(t2)hk1l1(t1)

+
∑
j

δk2l2hk1j(t2)hjl1(t1) +
∑
j

δk1l1hjk2(t2)hl2j(t1). (1.71)

To calculate the second term on the right hand side of Eq. 1.68, the following term

should be evaluated first:

〈k1, k2|E {Henv(t2)Henv(t1)} |ρS(t)〉

= −
∑
l1,l2

E {hk1l1(t2)hl2k2(t1)} 〈l1|ρS(t)|l2〉 −
∑
l1,l2

E {hl2k2(t2)hk1l1(t1)} 〈l1|ρS(t)|l2〉

+
∑
l1,l2

∑
j

E {δk2l2hk1j(t2)hjl1(t1)} 〈l1|ρS(t)|l2〉

+
∑
l1,l2

∑
j

E {δk1l1hjk2(t2)hl2j(t1)} 〈l1|ρS(t)|l2〉. (1.72)
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For the diagonal elements, or for k1 = k2 = k,

〈k, k|E {Henv(t2)Henv(t1)} |ρS(t)〉

= −
∑
l1,l2

E {hkl1(t2)hl2k(t1)} 〈l1|ρS(t)|l2〉 −
∑
l1,l2

E {hl2k(t2)hkl1(t1)} 〈l1|ρS(t)|l2〉

+
∑
l1,l2

∑
j

E {δkl2hkj(t2)hjl1(t1)} 〈l1|ρS(t)|l2〉

+
∑
l1,l2

∑
j

E {δkl1hjk(t2)hl2j(t1)} 〈l1|ρS(t)|l2〉

= −
∑
j

~ (γkj + γjk)

τc
e−
|t2−t1|
τc 〈j|ρS(t)|j〉+

∑
j

~ (γkj + γjk)

τc
e−
|t2−t1|
τc 〈k|ρS(t)|k〉.

(1.73)

Therefore,

〈k, k|E|ρS(t)〉 = −
∑
j

(γkj + γjk) 〈j|ρS(t)|j〉+
∑
j

(γkj + γjk) 〈k|ρS(t)|k〉. (1.74)

Plugging in Eq. 1.74 to Eq. 1.68,

d

dt
〈k|ρS(t)|k〉 =

1

i~
〈k|
[
Ĥsys, ρS(t)

]
|k〉+

(
1− e− t

τc

)∑
j

γkj + γjk
~

〈j|ρS(t)|j〉

−
(

1− e− t
τc

)∑
j

γkj + γjk
~

〈k|ρS(t)|k〉. (1.75)
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Similarly, for the off-diagonal elements, k1 6= k2,

〈k1, k2|E {Henv(t2)Henv(t1)} |ρS(t)〉

= −
∑
l1,l2

E {hk1l1(t2)hl2k2(t1)} 〈l1|ρS(t)|l2〉 −
∑
l1,l2

E {hl2k2(t2)hk1l1(t1)} 〈l1|ρS(t)|l2〉

+
∑
l1,l2

∑
j

E {δk2l2hk1j(t2)hjl1(t1)} 〈l1|ρS(t)|l2〉

+
∑
l1,l2

∑
j

E {δk1l1hjk2(t2)hl2j(t1)} 〈l1|ρS(t)|l2〉

= −2~γ̄k1k2
τc

e−
|t2−t1|
τc 〈k2|ρS(t)|k1〉

+
∑
j

~γk1j
τc

e−
|t2−t1|
τc 〈k1|ρS(t)|k2〉+

∑
j

~γjk2
τc

e−
|t2−t1|
τc 〈k1|ρS(t)|k2〉. (1.76)

Therefore,

〈k1, k2|E|ρS(t)〉 = −2γ̄k1k2〈k2|ρS(t)|k1〉+
∑
j

(γk1j + γjk2) 〈k1|ρS(t)|k2〉. (1.77)

Plugging in Eq. 1.77 to Eq. 1.68,

d

dt
〈k1|ρS(t)|k2〉 =

1

i~
〈k1|

[
Ĥsys, ρS(t)

]
|k2〉+

(
1− e− t

τc

) 2γ̄k1k2
~
〈k2|ρS(t)|k1〉

−
(

1− e− t
τc

)∑
j

γk1j + γjk2
~

〈k1|ρS(t)|k2〉. (1.78)

Note that in the completely memoryless bath limit of τc → 0, the original Haken-

Strobl-Reineker fomulation is restored.
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Chapter 2

Characterization and quantification

of the role of coherence in ultrafast

quantum biological experiments

2.1 Introduction

The initial step in photosynthesis is highly efficient excitonic transport of the

energy captured from photons to a reaction center [45]. In most plants and pho-

tosynthetic organisms this process occurs in light-harvesting complexes which are

interacting chlorophyll molecules embedded in a solvent and a protein environment

[46]. Several recent experiments show that excitonic coherence can persist for several

hundreds of femtoseconds even at physiological temperature [23–25, 47]. These ex-

periments suggest the hypothesis that quantum coherence is biologically relevant for

photosynthesis. The results have motivated a sizeable amount of recent theoretical
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work regarding the reasons for the long-lived coherences and their role to the function.

The focus of many studies is on the theoretical models employed. In this con-

text, it is essential to be as realistic an possible and employ the least amount of

approximations. Most of the currently-employed methods involve a master equation

for the reduced excitonic density operator where the vibrational degrees of freedom

(phonons) of the protein and solvent are averaged out. Amongst these simple meth-

ods are the Haken-Strobl model and Redfield theory as employed in Refs. 27, 48 and

49 respectively. To interpolate between the usual weak and strong exciton-phonon

coupling limits, Ishizaki and Fleming developed a hierarchical equation of motion

(HEOM) theory which takes into account non-equilibrium molecular reorganization

effects [29]. Jang et al. perform a second order time-convolutionless expansion after

a small polaron transformation to include strong coupling effects [50]. Another set

of studies focuses on the role of quantum coherence and the phonon environmentin

terms of transport efficiency or entanglement. It was shown that the transport effi-

ciency is enhanced by the interaction or interplay of the quantum evolution with the

phononic environment [27, 48, 49, 51]. Entanglement between molecules is found to

persist for long times [52–54].

The ongoing effort can be summarized with two equally important questions:

What are the microscopic reasons for the persistence of quantum coherence and what

is the relevance of the quantum effect to the biological functionality of the organ-

ism under study? In this work, we summarize the recent efforts from our group to

approach the problem from several angles. Firstly, we investigate the role of coher-

ences in the exciton transfer process of the Fenna-Matthews-Olson (FMO) complex.
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We quantify the amount and the contribution of coherence to the efficient energy

transfer process. Secondly, we present our quantum mechanics/molecular mechanics

(QM/MM) approach to obtain information about the system at the atomistic level,

such as detailed bath dynamics and spectral densities. Finally, we propose a spectro-

scopic tool that allows for obtaining directly the information of the quantum process

via our recent theoretical proposal for the quantum process tomography technique to

the ultrafast regime.

2.2 The Role of Quantum Coherence

In this section, we discuss the question about the relevance of quantum effects

to the biological function. A negative answer to this question would mean that

a particular effect, while being quantum, is not leading to any improvement in the

functionality of a biological system, and therefore would be a byproduct of the spatial

and temporal scales and physical properties of the problem. For example, in energy

transfer (ET) quantum coherence could arise from the closely packed arrangement of

the chromophores in a protein scaffold but it could, in principle, represent a byproduct

of that arrangement and not a relevant feature. Another example, it may be true

that the human eye can detect a single photon, but it is not clear if this quantum

effect is relevant to the biological function, which usually operates at much larger

photon fluxes. If, on the other hand, the above yes-no question of the relevance is

answered positively for a particular effect in a biological system, it would present a

major step towards establishing the relevance or importance of a quantum biological

phenomenon. A natural follow-up questions is: How important quantitatively is a
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particular quantum effect?

Both of these questions should preferably be studied by experimental means. An

experiment would have to be designed in a way that tests for the biological relevance

of quantum coherence. Possible experiments could involve quantum measurements on

mutated samples. In the FMO complex that acts as a molecular ET wire the efficiency

of the transport event is most likely a good quantifier for biological function. One

would need a way to experimentally quantify this efficiency and extract the relevance

of quantum coherence to the efficiency. This can be hard in practice. Yet, as we

will discuss in this work, quantum process tomography is able to obtain detailed

information about quantum coherence and the phonon environment and might thus

lead to progress in this area.

In the case when experimental access to an observable that involves the biolog-

ical relevance is hard or impossible, a theoretical treatment can provide insight. It

is illustrative to analyze a model of the particular biological process in terms of a

quantifier for the success of the process. An example is the aforementioned efficiency

of energy transport. In bird vision, the quantum yield of a chemical reaction is a

relevant measure [55]. Once a detailed model and a success criterion is established,

one needs to quantify the contribution of quantum coherence to the success criterion.

For this step, one can proceed in two distinct pathways. The first pathway is a com-

parison to a classical reference point; the success criterion is computed for the actual

system/model and a classical reference model that does not include quantum correla-

tions. The difference of these two values is attributed to quantum mechanics and can

be considered the quantum mechanical contribution to the success of the process. For
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example, the energy transfer dynamics of a sophisticated quantum mechanical model

such as [29] could be compared to a semi-classical Förster treatment that leads to a

hopping description. In general, this comparison strategy has the drawback that one

has to invoke a classical, and in some cases very artificial, model.

Our work has been mainly concentrated on a second theoretical pathway in an-

swering the relevance question, which overcomes this issue. It is based on just the

quantum mechanical model and the success quantifier. No other, for example clas-

sical, model is invoked. The actual model will contain dynamical processes that are

quantum coherent and others that are incoherent. The non-trivial task is to decon-

struct how the various processes contribute to the performance criterion. This can

be done by decomposing the performance criterion into a sum of contributions, each

associated with a particular process. The terms in this sum related to quantum me-

chanical processes will then give a theoretical answer to the overall relevance of the

particular process and will quantify this relevance. This line of thought was devel-

oped and discussed in Ref. 26 for energy transfer in the FMO complex and provided

insight into both questions ”Is a quantum effect relevant?” and ”If yes, how much?”,

at least from a theoretical standpoint within the approximations of the model under

consideration. In this section, we extend this idea to include the effect of the initial

conditions and compare the results to a total integrated coherence, or concurrence,

measure. We utilize secular Redfield theory and the hierarchy equation of motion

approach.

The Hamiltonian describing a single exciton is given by:

He =
∑
m

(εm + λ)|m〉〈m|+
∑
m<n

Jmn (|m〉〈n|+ |n〉〈m|) . (2.1)
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where the site energies εm, and couplings Jmn are usually obtained from detailed

quantum chemistry studies and/or fitting of experimental spectra. The reorganization

energy λ, which we assume to be the same for each site, is the energy difference of the

non-equilibrium phonon state after Franck-Condon excitation and the excited-state

equilibrium phonon state. The set of states |m〉 is called the site basis and the set of

states |α〉 with He|α〉 = Eα|α〉 is called the exciton basis. We now briefly introduce

the secular Redfield master equation in the weak exciton-phonon (or system-bath)

coupling limit and the non-perturbative hierarchy equation of motion approach. In

both approaches, the dynamics of a single exciton is governed by a master equation,

which is schematically given by:

∂

∂t
ρ(t) =Mρ(t) = (MH +Mdecoherence +Mtrap +Mloss) ρ(t). (2.2)

The master equation consists of the superoperator M, which is divided into several

components. First, coherent evolution with the excitonic Hamiltonian He is described

by the superoperatorMH = −i[He, ·]. In addition, decoherence due to the interaction

with the phonon bath is incorporated by Mdecoherence. Mdecoherence depends on the

spectral density, which models the coupling strengths of the phonon modes to the

system. Finally, one has the processes for trapping to a reaction center Mtrap and

exciton loss Mloss due to spontaneous emission. Associated with these processes are

the trapping rate κ and the loss rate Γ. Details about the trapping and exciton loss

processes can be found in [26, 56].

The secular Redfield theory is valid in the regime of weak system-bath coupling.

The superoperator Mdecoherence is of Lindblad form with Lindblad operators for re-

laxation in the exciton basis and for dephasing of excitonic superpositions. The
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relaxation rates depend on the spectral density evaluated at the particular excitonic

transition frequencies, satisfy detailed balance, and depend on temperature through

the Bose-Einstein distribution. The dephasing rates are linear in temperature. We

use the same Ohmic spectral density as in [29], i.e. J(ω) = 2λγω/π(ω2 + γ2), where

1/γ is the bath correlation time. For 1/γ = 50 fs, this spectral density shows only

modest differences to the spectral density used in [26]. Further details about the

Lindblad model can be found in [26].

The hierarchy equation of motion approach [29] consistently interpolates between

weak and strong system bath coupling. The assumption that the fluctuations are

Gaussian makes the second-order cumulant expansion exact. The resulting equation

of motion can be expressed as an infinite hierarchy of system, i.e. ρ(t), and con-

nected auxiliary density operators {σi}, arranged in tiers. For numerical simulation,

”far-away” tiers in the hierarchy are truncated in a sensible manner. The hierarchy

equation of motion can also be written as in Eq. (2.2) when we make the replace-

ment ρ(t)→ (ρ(t), σ1, σ2, · · · ) and use the hierarchical structure discussed in [29] for

the decoherence superoperator Mdecoherence. For simulations of the Fenna-Matthews-

Olson complex, we use the scaled hierarchy approach developed in [57]. It was shown

recently that four tiers of auxiliary density operators are enough for accurate room

temperature simulations [58], which enables the rapid computation of efficiency and

total coherences. The trapping and exciton loss processes are naturally extended to

the auxiliary systems.

In our previous work [26], we developed a method to quantify the role of quantum

coherence to the transfer efficiency. The energy transfer efficiency (ETE) is given by
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the integrated probability of leaving the system from the sites that are connected to

the trap instead to being lost to the environment. That is, η =
∫∞

0
dtTr{Mtrapρ(t)}.

It was shown that the ETE can be partitioned into η = ηH + ηdecoherence, where the

efficiency due to the coherent dynamics with the excitonic Hamiltonian is given by:

ηH = Tr{Mtrap(Mtrap +Mloss)
−1MHM−1ρ(0)}. (2.3)

The ETE contribution ηdecoherence involves Mdecoherence, i.e.,

ηdecoherence = Tr{Mtrap(Mtrap +Mloss)
−1MdecoherenceM−1ρ(0)}.

In this work, we extend our ETE contribution method to quantify the role of the

initial state to the ETE. We obtain a separation of the coherent contribution, ηH =

ηinit + ηdyn, where the efficiency ηinit can be ascribed to the initial state. The ηdyn is

defined by ηdyn = ηH−ηinit and can be interpreted as dynamical part of the coherence

contribution arising during the time evolution. For the computation of ηinit, we note

that one can always express the ensemble described by the system density matrix as

ρ(t) = pinit(t)|ψinit(t)〉〈ψinit(t)|+
∑

k pk(t)ρk(t). Here, pinit(t) is the probability of the

quantum system being in the (Hamiltonian time-evolved) initial state |ψinit(t)〉, where

pinit(0) = 1. The pk(t) are the probabilities of being in some other ensemble state ρk(t),

where pinit(t) +
∑

k pk(t) = 1. The probability pinit(t) is reduced by the interaction

with the environment and readily computed for Markovian Lindblad dynamics by

considering the damped no-jump evolution due to the decoherence superoperator

Mdecoherence [56, 59, 60]. Therefore, we can compute the efficiency pertaining to

the initial state by ηinit =
∫∞

0
dtTr{Mtrappinit(t)|ψinit(t)〉〈ψinit(t)|}. Together with

Equation (2.3), this obtains the desired separation ηH = ηinit + ηdyn.
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Additionally, we employ another measure for the role of coherence by straightfor-

wardly integrating over time all the coherence elements of the density matrix. That

is:

C(λ) =
∑
m 6=n

∫ ∞
0

dt | 〈m| ρ (t) |n〉 |. (2.4)

We normalize with respect to the case of coherent evolution at λ = 0.0/cm, i.e.

C̃(λ) = C(λ)/C(0). Based on the discussion in [52], the quantity C̃ can be considered

as the (normalized) integrated entanglement (concurrence) that is present before the

exciton is trapped in the reaction center or lost to the environment. We note that the

total coherence measure C̃ is similar in spirit to a measure of the first kind discussed

above. This is because the normalization essentially performs a comparison of the

actual model at a certain λ with an artificial model at λ = 0. (For the numerical

evalutation, the integral in Eq. (2.4) is computed until Tr{ρ(t)} ≤ 10−3.)
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Figure 2.1: (Left panel) Efficiency η (solid black) and contributions of initial state
ηinit (dash-dotted gray) and coherent evolution ηinit + ηdyn (dashed red) for a dimer
that is based on the strongly coupled sites 1 and 2 of the Fenna-Matthews-Olson
complex using the secular Redfield model. The initial state is at site 1 and the target
is site 2. At a physiological value of around λ = 35/cm, one finds ηinit = 0.0 and
ηdyn = 0.43. (Center panel) Efficiency and integrated coherence C̃ for the dimer with
the secular Redfield approach. At λ = 35/cm there is C̃ = 0.37. (Right panel) Same
quantities as in the center panel for the dimer using the hierarchy equation of motion
approach with 15 tiers of auxiliary systems. At λ = 35/cm, one finds C̃ = 0.44. The
parameters are 1/κ = 1 ps, 1/Γ = 1 ns, and 1/γ = 50 fs for all panels.

34



Chapter 2: Characterization and quantification of the role of coherence in ultrafast
quantum biological experiments

10-4 0.001 0.01 0.1 1 10 100
0.0

0.2

0.4

0.6

0.8

1.0

Reorganization energy @1�cmD

E
ff

ic
ie

nc
y

0.01 0.1 1 10 100
0.0

0.2

0.4

0.6

0.8

1.0

Reorganization energy @1�cmD

E
ff

ic
ie

nc
y

0.01 0.1 1 10 100
0.0

0.2

0.4

0.6

0.8

1.0

Reorganization energy @1�cmD

E
ff

ic
ie

nc
y

Figure 2.2: (Left panel) Efficiency η (solid black) and contributions of initial state
ηinit (dash-dotted gray) and coherent evolution ηinit +ηdyn (dashed red) for the Fenna-
Matthews-Olson complex using the secular Redfield model. The initial state is a
classical mixture of site 1 and 6 and the target site for trapping is site 3. The actual
system has a reorganization energy of around λ = 35/cm, where ηinit = 0.0 and
ηdyn = 0.17. (Center panel) Efficiency for initial site 1 (solid black) and initial site 6
(dashed black) and integrated coherence C̃ for initial site 1 (dashed red) and initial
site 6 (dash-dotted green) for the Fenna-Matthews-Olson complex with the secular
Redfield approach. At λ = 35/cm there is C̃ = 0.0151 (inital site 1) and C̃ = 0.0017
(initial site 6). (Right panel) Same quantities as in the center panel for the FMO
complex using the scaled hierarchy equation of motion approach with four tiers of
auxiliary systems. At λ = 35/cm, one finds C̃ = 0.020 (inital site 1) and C̃ = 0.0022
(initial site 6). The parameters are 1/κ = 1 ps, 1/Γ = 1 ns, and 1/γ = 50 fs for all
plots.
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In Fig. 2.1, we present the two measures of coherence for a dimer system. For the

dimer, we take the sites 1 and 2 of the FMO complex with ε1 = 0/cm, ε2 = 120/cm,

and J = −87.7/cm, see [14], and room temperature. This system will also be the

focus of the following sections on the atomistic detail simulations and quantum process

tomography. Here, for studying the role of quantum coherence, we assume that the

task is defined by the exciton initially being at the lower energy site 1 and the target

site being site 2. In the left panel of Fig. 2.1 we show the efficiency η, the contribution

ηH from Eq. (2.3), and ηinit for the secular Redfield model. In the present small

system, environment-assisted transport is relatively unimportant, with the efficiency

as a function of the reorganziation energy being close to unity everywhere. The

underlying contributions show a transition from a regime dominated by coherent

evolution to a regime dominated by incoherent Lindblad jumps. At λ = 35/cm, we

find ηinit = 0% and ηH = 43%. In Fig. 2.1 (center panel), we find that the total

coherence measure C̃ for the dimer is around 0.37 for λ = 35/cm. In Fig. 2.1 (right

panel), the total coherence is plotted for the dimer in the hierarchy equation of motion

approach. We use 15 tiers of auxiliary systems. At λ = 35/cm, we find C̃ = 0.44;

because of the sluggish, non-equilibrium bath there is more coherence than in the

secular Redfield model.

In Fig. 2.2 (left panel), we present the coherent, decoherent, and initial state

contribution to the ETE for the Fenna-Matthews-Olson complex as a function of

the reorganization energy for the secular Redfield model at room temperature. We

use the Hamiltonian given in [14] and the contribution measures given in Equation

(2.3) and by ηinit. The initial state is a classical mixture of site 1 and 6. For small
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reorganization energy, the efficiency is around η = 60% and for larger reorganization

energies we observe environment-assisted quantum transport (ENAQT) [27], with the

efficiency rising up to almost η = 100% for the physiological value of λ = 35/cm. The

contributions measures ηdyn and ηinit reveal the underlying dynamics. The quantum

dynamical contribution ηdyn is around 17% at λ = 35/cm 1. In our model, this part

is due to an interplay of the Hamiltonian dynamics and the trapping/loss dynamics,

which both have their preferred basis being the site basis. The main part of the

efficiency at λ = 35/cm is due to incoherent Lindblad jumps, having a value of

ηdecoherence = 83%. The initial state contribution is relevant only at small values of

the reorganization energy.

In Fig. 2.2 (center and right panel), we compare the efficiency and the coherence

measure C̃ for the secular Redfield and the hierarchy equation of motion approach [29]

for the Fenna-Matthews-Olson complex. The initial state is either localized at site 1 or

at site 6. Four tiers of auxiliary systems were used in the computation, which already

lead to a good agreement with [29] for the dynamics at λ = 35cm−1, 1/γ = 50 fs,

and room temperature. In Fig. 2.2 (right panel), ENAQT is observed with increasing

reorganization energy also in the hierarchy approach, with the efficiency rising up to

almost η = 100% at λ = 35/cm. In Fig. 2.2 (center and right panel), it is observed

that the normalized total coherences of the density matrix decrease with increasing

reorganization energy. For the secular Redfield case, we obtain C̃(λ = 35cm−1) =

0.0151 for the initial site 1 and C̃(λ = 35cm−1) = 0.0017 for the initial site 6. For the

hierarchy case, we obtain more coherence, i.e. C̃(λ = 35cm−1) = 0.020 for the initial

1In Ref. 26, we found the value ηH = 10% for a different Hamiltonian and a different spectral
density.
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site 1 and C̃(λ = 35cm−1) = 0.0022 for the initial site 6. In both models, coherence

is more important for the rugged energy landscape of the pathway from site 1 than

for the funnel-type energy landscape of the pathway from site 6.

Master equation approaches, such as the ones discussed in this section suffer from

various drawbacks. Redfield theory is only applicable in the limit of weak system bath

coupling and does not take into account non-equilibrium molecular reorganization

effects. The hierarchy equation of motion approach assumes Gaussian fluctuations

and Ohmic Drude-Lorentz spectral densities. The detailed atomistic structure of

the protein and the chlorophylls is not taken into account in these approaches. The

results thus provide a general indication of the behavior of the actual system but not

a conclusive and detailed theoretical proof. In the next section, we will present a first

step toward such a detailed study with our combined molecular dynamics/quantum

chemistry method. The atomistic structure is included and realistic spectral densities

can be obtained. We also present a straightforward method to simulate exciton

dynamics beyond master equations. We thus address the second question of the

microscopic origins of the long-lived quantum coherence.

2.3 Molecular Dynamics Simulations

Among many other biologically functional components, protein complexes are

essential components of the photosynthetic system. Proteins remain as one of the

main topics of biophysical research due to their diverse and unidentified structure-

function relationship. Many biological units are highly optimized and efficient, so that

even a point mutation of a single amino acid in conserved region often results in the
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loss of the functionality [61–63]. Have the photosynthetic system adopted quantum

mechanics to improve its efficiency in its course of evolution? To answer this question,

careful characterization of the protein environment to the atomistic detail is necessary

to identify the microscopic origin of the long-lived quantum coherence. As explained

in the previous section, the contribution of the quantum coherence to the energy

transfer efficiency in biological systems have been successfully carried out, yet a more

detailed description of the bath in atomic detail would be desirable to investigate

the structure-function relationship of the protein complex and to test validity of the

assumptions used in popular models of the photosynthetic system.

The site energy of a chromophore is a complex function of the configuration of

the chromophore molecule, and the relative orientation of the molecule to that of

the embedding protein and that of other chromophore molecules. Factors affecting

site energies have intractably large degrees of freedom, so it is reasonable to treat

those degrees of freedom as the bath of an open quantum system. The state of the

system is assumed to be restricted to the single exciton manifold. To construct a

system-bath relationship with atomistic detail of the bath, we start from the total

Hamiltonian operator, and decomposed the operator in such a way that the system-

bath Hamiltonian is not assumed to be any specific functional form:

Htotal =
∑
m

εm(Rch,Rprot)|m〉〈m|+
∑
m,n

{Jmn(Rch,Rprot)|m〉〈n|+ c.c.}

+ Tch + Tprot + Vch(σ,Rch,Rprot) + Vprot(Rch,Rprot). (2.5)

εm represents the site energy of mth site, Jmn is the coupling constant between mth

and nth sites. σ denotes the excitonic state of chromophores, Rch corresponds to the
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nuclear coordinates of chromophore molecules, and Rprot are the nuclear coordinates

of the remaining protein and enclosing water molecules. T and V are the corre-

sponding kinetic and potential energy operators for the chromophores and proteins

respectively under Born-Oppenheimer approximation. The potential energy term for

chromophores depends on the exciton state of the systen, because dynamics of a

molecule will be governed by different Born-Oppenheimer surface when its excitonic

state changes. However, as a first approximation, we assumed that the change of

Born-Oppenheimer surfaces does not affect the bath dynamics significantly. With

this assumption, we can ignore the dependence of the excitonic state in the Vch term

and the system-bath Hamiltonian only contains the one way influence from the bath

to the system:

Htotal ≈
∑
m

εm(Rch,Rprot)|m〉〈m|+
∑
m,n

Jmn(Rch,Rprot)|m〉〈n|

+
∑
m

εm(Rch,Rprot)|m〉〈m|+ Tch + Tprot + Vch(Rch,Rprot) + Vprot(Rch,Rprot)

=
∑
m

ε̄m|m〉〈m|+
∑
m,n

J̄mn|m〉〈n|︸ ︷︷ ︸
HS

+
∑
m

{εm(Rch,Rprot)− ε̄m} |m〉〈m|+
∑
m,n

{
Jmn(Rch,Rprot)− J̄mn

}
|m〉〈n|︸ ︷︷ ︸

HSB

+ Tch + Tprot + Vch(Rch,Rprot) + Vprot(Rch,Rprot)︸ ︷︷ ︸
HB

. (2.6)

Based on this decomposition of the total Hamiltonian, we set up a model of the

FMO complex in atomistic detail with the AMBER force field [64, 65] and approxi-

mate the propagation of the entire complex by classical mechanics. Molecular dynam-

ics simulations were conducted at 77K and 300K with an isothermal-isobaric (NPT)
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ensemble. The parameters for the system and the system-bath Hamiltonian were cal-

culated using quantum chemistry methods along the trajectory from the molecular

dynamics simulation. εm was calculated using the Q-Chem quantum chemistry pack-

age [66]. The electronic excitations were modeled using the time-dependent density

functional theory using the Tamm-Dancoff approximation. The density functional

employed was BLYP and the basis set employed was 3-21G*. External charges from

the force field were included in the calculation as the electrostatic external potential.

The coupling terms, Jmn, were obtained from the Hamiltonian presented in Ref. 14

and considered to be constant in time. ε̄m was chosen as time averaged site energy

for the mth site to minimize the magnitude of the system-bath Hamiltonian. In this

work, only site 1 and site 2 were considered for the exciton dynamics. However, the

methodology can be applied for the exciton dynamic of all seven chromophores.

To obtain a closed-form equation for the reduced density matrix, we applied mean-

field approximation [67]; because no feedback from the system to the bath was as-

sumed, the state of the bath is not affected by the state of the system. Therefore, the

total density matrix, W (t), can be factorized into the reduced density matrix ρ(t),

and B(t) which is defined only in the Hilbert space of the bath. With additional as-

sumption that the bath is in thermal equilibrium, we can obtain the closed equation

for the reduced density matrix.

∂

∂t
ρ(t) = − i

~
[HS, ρ(t)]− i

~
Tr {[HSB,W (t)]}

≈ − i
~

[HS, ρ(t)]− i

~
[Tr {HSBB(t)} , ρ(t)]

≈ − i
~

[HS, ρ(t)]− i

~
[Tr {HSBBeq(t)} , ρ(t)] . (2.7)

Thermal equilibrium of the bath was ensured by the thermostat of the molecular
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Figure 2.3: (Left panel) Time evolution of the exciton population at the site 1 (ρ11)
based on the strongly coupled site 1 and 2 of the FMO complex at 77K and 300K. The
initial pure state ρ = |1〉〈1| was propagated using Monte Carlo integration of unitary
evolutions, where the time-dependent site energies are obtained from a combined
molecular dyanmics/quantum chemistry approach. The asymptotic distribution does
not follow a Boltzmann distribution because relaxation of the system to the bath
is not considered. (Right panel) The concurrence between site 1 and 2 at 77K and
300K. Quantum coherence lives longer at a lower temperature.

dynamics simulation. Thus, the reduced density matrix was obtained by Monte Carlo

integration of 4000 independent instances of unitary quantum evolution with respect

to the thermally equilibrated bath. Each instance was propagated by integrating the

Schrödinger equation with the simple exponential integrator.

Fig. 2.3 shows the change of the population of the site 1, ρ11, and the concurrence

between site 1 and 2. The population is evenly distributed between the two sites

because relaxation was not considered. The concurrence, 2|ρ12|, is an indicator of

pairwise entanglement for the system [52]. Note that the coherence builds up during

the first ∼100 fs , and then decreases subsequently due to the decoherence from the

bath.

Fig. 2.4 shows the spectral density of the first chromophore. Although the spectral

density of the bath from molecular dynamics simulation shows characteristic frequen-
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Figure 2.4: (Left panel) Spectral density from the autocorrelation function of the site
1 of the FMO complex from the molecular dynamics simulation at 77K and 300K.
While the spectral density reflects the characteristic vibrational modes of the protein
and the chromophore molecule, high-frequency modes are overpopulated due to the
limitation of the Newtonian mechanics. (Right panel) Absorption spectrum of site 1
and 2 at 77K and 300K.

cies related to the actual protein environment and the bacteriochloropyll molecule,

high-frequency modes are overpopulated due to the limitation of the classical me-

chanics. There are efforts to incorporate quantum effects into the classical molecular

dynamics simulation in a slightly different context [68–70], and we are investigating

the possibilities of applying these corrections.

Another simplification employed was the omission of the feedback from exci-

ton states. When the exciton state of a bacteriochlorophyll is changed, the Born-

Oppenheimer surface which governs the dynamics of the chromophore molecule should

be also changed. The current scheme only propagates the protein complex on the elec-

tronically ground-state surface. Incorporating the feedback could lead to the different

characteristics of the protein bath. There exist several schemes for mixed quantum-

classical dynamics [71–73] which potentially resolve the problem at the additional

computational cost of simultaneously propagating excitons and protein bath.
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Calculations are underway to carry out the full seven-site simulation of the FMO

complex at different temperatures to compare with experimental temperature-dependent

results [25].

In the following final section, we will describe our quantum process tomography

scheme, which is a spectroscopic technique associated with a computational procedure

for direct extraction of the parameters related to the quantum evolution of the system,

in terms of quantum process maps.

2.4 Quantum Process Tomography

So far, we have delved into several theoretical models to characterize quantum co-

herence in the entire FMO complex and in a dimer subsystem of it. Experimentally,

however, a clear characterization of this coherence is still elusive. Signatures of long

lived quantum superpositions between excitonic states in multichromophoric systems

are potentially monitored through four wave-mixing techniques [23, 74, 75]. How-

ever, a transparent description of the evolving quantum state of the probed system

is not necessarily obtained from a single realization of such experiments. In these, a

series of three weak incoming ultrashort pulses sent from a noncollinear setup induce

a macroscopic third order polarization in the sample. The latter manifests in a time

dependent spatial grating which emits a macroscopic polarization that interferes with

a fourth pulse, called the local oscillator. From an operational standpoint, this last

pulse selects the spatial Fourier component of the polarization which corresponds to

its wavevector (heterodyne detection), hence earning the name of four wave-mixing

for this technique (FWM) [75]. Extracting specific Fourier components of the induced

44



Chapter 2: Characterization and quantification of the role of coherence in ultrafast
quantum biological experiments

polarization allows for the selection of a particular set of processes in the density ma-

trix of the probed system, as each wavevector is associated with a carrier frequency

of the pulse. These processes can be intuitively understood by keeping track of the

dual Feynman diagrams that account for the perturbations that the pulses induce on

the bra or ket sides of the density matrix of the probed system. Whereas the analy-

sis of these experiments is naturally carried out in the density matrix formalism, an

important question is whether the density matrix itself can be imaged via these ex-

periments, a problem known as quantum state tomography (QST) [76]. If this were

possible, quantum process tomography (QPT) could also be carried out, therefore

providing a complete characterization of excited state dynamics [77]. In a previous

study, we showed that a series of two-color heterodyned rephasing photon-echo (PE)

experiments repeated in different polarization configurations yields the necessary in-

formation to carry out QST and QPT of the single-exciton manifold of a coupled

heterodimer [78]. In the present article, we adapt our previous theory to extract

this information from two-dimensional spectra, similar to those employed in current

experiments. An comprehensive study of this possibility has been presented in [79].

Here, we shall highlight some key features of the method.

We begin by reviewing some basic aspects of QPT. Under very general assump-

tions, the evolution of an open quantum system can be described by a linear trans-

formation [80]:

ρab(T ) =
∑
cd

χabcd(T )ρcd(0), (2.8)

where ρab(T ) is the element ab of the reduced density matrix ρ of the system at

time T . Equation (2.8) is remarkable in that χ(T ) is independent of the initial

45



Chapter 2: Characterization and quantification of the role of coherence in ultrafast
quantum biological experiments

state. Knowledge of χ(T ) implies a complete characterization of the dynamics of the

reduced system and, in fact, QPT can be operationally defined as the procedure to

obtain χ(T ). Conceptually, it is straightforward to recognize that, due to linearity,

χ(T ) can be inverted by preparing a complete set of inputs, evolving them for time T ,

and detecting the outputs along a complete basis. In the context of nonlinear optical

spectroscopy, this is exactly the strategy we shall follow, with a few caveats due to

experimental constraints.

To place the discussion in context, we shall be again concerned with the subsys-

tem composed of the excitonic dimer between sites 1 and 2 of the FMO complex.

For simplicity, we ignore the rest of the sites in this theoretical study. We only need

to be concerned with four eigenstates of this model system: The ground state |g〉,

the delocalized single-excitons |α〉 and |β〉, and the biexciton |f〉, which in the pho-

tosynthetic system can be safely assumed to be the direct sum of the single-excitons

without significant interactions between them. Therefore, the biexciton energy level

is just ωf = ωα+ωβ. We label the delocalized excitons so that |α〉 is the higher energy

eigenstate compared to |β〉. Denoting the transition energies between the i-th and

the j-th states by ωij = ωi − ωj, it follows that ωαg = ωfβ and ωβg = ωfα [81]. The

excitonic system is not isolated, and in fact, it interacts with a phonon and photon

bath which induces relaxation and dephasing processes in it.

The experimental technique we consider is photon-echo (PE) spectroscopy, which

is a particular subset of FWM techniques where the wavevector of the fourth pulse

corresponds to the phase-matching condition kPE = −k1 + k2 + k3, with ki being

the wavevector corresponding to the i-th pulse. Here, the labeling of the pulses cor-

46



Chapter 2: Characterization and quantification of the role of coherence in ultrafast
quantum biological experiments

responds to the order in which the fields interact with the sample. Typically, the

ultrashort pulses employed to study these excitonic systems possess an optical carrier

frequency, therefore allowing transitions which are resonant with the frequency com-

ponents ±ωβg and ±ωαg. In PE experiments, the first pulse centered at t1 creates an

optical coherence beating at a frequency ωgα or ωgβ. At t2 = t1 + τ , the second pulse

creates a coherence or a population in the single exciton manifold. At t3 = t2 + T ,

the third pulse generates another optical coherence, but this time, beating at the

frequencies opposite to the ones in the first interval, that is, at frequencies ωαg or ωβg,

causing a rephasing echo of the signal. The heterodyne detection of the nonlinear

polarization signal PPE(τ, T, t) occurs at time t4 = t3 + t. Borrowing from NMR

jargon, the intervals (t1, t2), (t2, t3), and (t3, t4) are traditionally refered to as coher-

ence, waiting, and echo times, and their durations are τ , T , and t, respectively. This

nomenclature should not be taken literally. For example, in most cases, coherences do

not only evolve in the coherence time, but in the waiting and echo times. Similarly,

the waiting time is often referred to as population time, which hosts dynamics of both

populations and coherences. For a historical perspective on this vocabulary, we refer

the reader to any comprehensive NMR treatise such as [82].

The experiment is systematically repeated for many durations for each interval.

In order to ’watch’ single-exciton dynamics, it is convenient to isolate the changes on

the signal due to the waiting time T . This exercise is accomplished by performing

a double Fourier transform of the signal along the τ and t axes, which yields a 2D

spectra that evolves in T [83–85]:

S(ωτ , T, ωT ) =

∫ ∞
0

dτ

∫ ∞
0

dtPPE(τ, T, t)e−iωτ τ+iωTT (2.9)
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In order to map a PE experiment to a QPT, we identify the coherence interval

as the preparation step and the echo interval as the detection step. This assumption

implies that the optical coherence intervals have well characterized dynamics. This

hypothesis is reasonable due to a separation of timescales where optical coherences

will presumably decay exponentially due to pure dephasing and not due to intricate

phonon-induced processes. Therefore, the 2D spectrum consists of four Lorentzian

peaks centered about (ωτ , ωt) = (ωαg, ωαg), (ωαg, ωβg), (ωβg, ωαg), (ωβg, ωβg). In this

discussion, we shall ignore inhomogeneous broadening, noting that it can always be

accounted for as a convolution of the signal with the distribution of inhomogeneity.

The width of these Lorentzians can be directly related to the dephasing rates of

the optical coherences. Loosely speaking, a particular value on the ωτ axis of the

spectrum indicates a specific type of state preparation, whereas the ωt axis is related

to a particular detection. More precisely, a peak in the 2D spectrum displays the

correlations between the frequency beats from the coherence and echo intervals. A

crucial realization is that the amplitude of these peaks can be written as a linear

combination of elements of the time evolving excitonic density matrix stemming from
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different initial states, that is, of elements of χ(T ) itself [79]:

S̃(ωαg, T, ωαg) = −Cα
ω1
Cα
ω2

(µαg · e1)(µαg · e2)

×{Cα
ω3

[(µαg · e3)(µαg · e4)(χggαα(T )− 1− χαααα(T ))

+(µfβ · e3)(µfβ · e4)χββαα(T )]

+Cβ
ω3

[(µfα · e3)(µfβ · e4)− (µβg · e3)(µαg · e4))χαβαα(T )]}

−Cα
ω1
Cβ
ω2

(µαg · e1)(µβg · e2)

×{Cα
ω3

[(µαg · e3)(µαg · e4)(χggβα(T )− χααβα(T ))

+(µfβ · e3)(µfβ · e4)χβββα(T )]

+Cβ
ω3

[((µfα · e3)(µfβ · e4)− (µβg · e3)(µαg · e4))χαββα(T )]},

(2.10)

S̃(ωαg, T, ωβg) = −Cα
ω1
Cα
ω2

(µαg · e1)(µαg · e2)

×{Cβ
ω3

[(µβg · e3)(µβg · e4)(χggαα(T )− 1− χββαα(T ))

+(µfα · e3)(µfα · e4)χαααα(T )]

+Cα
ω3

[((µfβ · e3)(µfα · e4)− (µαg · e3)(µβg · e4))χβααα(T )]}

−Cα
ω1
Cβ
ω2

(µαg · e1)(µβg · e2)

×{Cβ
ω3

[(µβg · e3)(µβg · e4)(χggβα(T )− χβββα(T ))

+(µfα · e3)(µfα · e4)χααβα(T )]

+Cα
ω3

[((µfβ · e3)(µfα · e4)− (µαg · e3)(µβg · e4))χβαβα(T )]},

(2.11)
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S̃(ωβg, T, ωαg) = −Cβ
ω1
Cβ
ω2

(µβg · e1)(µβg · e2)

×{Cα
ω3

[(µαg · e3)(µαg · e4)(χggββ(T )− 1− χααββ(T ))

+(µfβ · e3)(µfβ · e4)χββββ(T )]

+Cβ
ω3

[(µfα · e3)(µfβ · e4)− (µβg · e3)(µαg · e4))χαβββ(T )]}

−Cβ
ω1
Cα
ω2

(µβg · e1)(µαg · e2)

×{Cα
ω3

[(µαg · e3)(µαg · e4)(χggαβ(T )− χαααβ(T ))

+(µfβ · e3)(µfβ · e4)χββαβ(T )]

+Cβ
ω3

[((µfα · e3)(µfβ · e4)− (µβg · e3)(µαg · e4))χαβαβ(T )]},

(2.12)

S̃(ωβg, T, ωβg) = −Cβ
ω1
Cβ
ω2

(µβg · e1)(µβg · e2)

×{Cβ
ω3

[(µβg · e3)(µβg · e4)(χggββ(T )− 1− χββββ(T ))

+(µfα · e3)(µfα · e4)χααββ(T )]

+Cα
ω3

[((µfβ · e3)(µfα · e4)− (µαg · e3)(µβg · e4))χβαββ(T )]}

−Cβ
ω1
Cα
ω2

(µβg · e1)(µαg · e2)

×{Cβ
ω3

[(µβg · e3)(µβg · e4)(χggαβ(T )− χββαβ(T ))

+(µfα · e3)(µfα · e4)χαααβ(T )]

+Cα
ω3

[((µfβ · e3)(µfα · e4)− (µαg · e3)(µβg · e4))χβααβ(T )]}.

(2.13)

Here, the expressions have been obtained using the rotating-wave approximation, as
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well as the assumption of no overlap between pulses. µpq = µqp is the transition dipole

moment between states p, q ∈ {g, α, β, f}. We have rescaled the spectra amplitudes

to eliminate the details of the lineshape by multiplying them by the dephasing rates

of the optical coherences in the coherence and echo intervals,

S̃(ωpg, T, ωqg) = ΓgpΓqgS(ωpg, T, ωqg). (2.14)

The coefficient Cp
ωi

is the amplitude of the i-th pulse at the frequency ωpg,

Cp
ωi

= −Λ

i

√
2πσ2e−σ

2(ωpg−ωi)2/2, (2.15)

with Λ being the strength of the pulse and σ the width of the Gaussian pulse in

time domain. Also, ei is the polarization of the i-th pulse. Both Cp
ωi

and ei are

experimentally tunable parameters for the pulses.

Whereas Equations (14) and (15) presented in [78] correspond to a single value

of τ and t, Equations (2.10), (2.11), (2.12), and (2.13) stem from Fourier transform

of data collected at many τ and t times (see Ref. 79). Therefore, in principle, a 2D

spectrum provides a more robust source of information from which to invert χ(T )

than in the suggested 1D experiment. The displayed equations, albeit lengthy, are

easy to interpret. For instance, consider the term which is proportional to χαβαα(T )

in Equation (2.10), which stems from the Feynman diagram depicted in Fig. 2.5.

As expected, it consists of a waiting time where the initially prepared population

|α〉〈α| is transferred to the coherence |α〉〈β|. This waiting time is escorted by a co-

herence |g〉〈α| oscillating as e(−iωgα−Γgα)τ which evolves during the coherence time

and another set of coherences |f〉〈β| and |α〉〈g| which evolve during the echo time

as e(−iωfβ−Γfβ)t = e(−iωαg−Γαg)t. These two intervals correspond to the diagonal peak
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Figure 2.5: Dual Feynman diagrams that account for the population to coherence
transfer terms χαβαα(T ) in quantum process tomography.

located at (ωαg, ωαg). Other processes that exhibit oscillations at those two respec-

tive frequencies appear as additional terms in the equation corresponding to that

particular peak.

In Ref. 78, we showed that there are sixteen real valued parameters of χ(T ) which

need to be determined at every value of T in order to carry out QPT of the single

exciton manifold of a heterodimer. For an illustration, we shall describe how to obtain

the elements χijαα(T ). These quantities are shown in Fig. 2.6 and have been com-

puted using the Ishizaki-Fleming model, with a bath correlation time of 150 fs [29].

They display rich and nontrivial phonon-induced behavior, such as the spontaneous

generation of coherence from a population in an eigenstate of the excitonic Hamil-

tonian, and therefore, is a very good example of how QPT provides access to this

nontrivial information via the repetition of a series of 2D PE experiments. For this

particular set of χ(T ) elements, we shall exploit the waveform of the pulses but not

their polarizations, and for simplicitly we will assume the polarization configuration
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Figure 2.6: Transfer of population in eigenstate |α〉〈α| to other populations and
coherences in the eigenbasis of the single exciton Hamiltonian. The hierarchy equation
of motion approach is used for a dimer system based on the parameters of the site
1 and site 2 subsystem of the Fenna-Matthews-Olson complex. Population in |α〉〈α|
decreases (χαααα(T ), purple) and is transferred to |β〉〈β| (χββαα(T ), blue). Emergence
of coherence from the initial population occurs in this model (<{χαβαα(T )}, yellow
and ={χαβαα(T )}, green).

xxxx for each of the pulses including the heterodyning.

Consider the possibility of using pulses with carrier frequencies centered about

ωαg and ωβg respectively, and such that their bandwidth is narrow enough that the

pulse centered about ωαg has negligible component at ωβg and vice versa. Then, we

can carry out an experiment such that
|Cαω1 |
|Cβω1 |

,
|Cαω2 |
|Cβω2 |

,
|Cβω3 |
|Cαω3 |

� 1 (experiment 1) for all i

and notice that the diagonal peak at (ωαg, ωαg) reduces to,

〈S̃(ωα, T, ωα)〉xxxx = −Cα
ω1
Cα
ω2
Cβ
ω3

× 〈(µαg · e1)(µαg · e2)[(µfα · e3)(µfβ · e4)− (µβg · e3)(µαg · e4))]〉xxxxχαβαα(T ),

(2.16)

which implies that its evolution with respect to T directly monitors the transfer of

the population prepared at |α〉〈α| to the coherence at |α〉〈β|. Here, 〈·〉xxxx denotes an

isotropic average of the experiments performed with the xxxx polarization configura-
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tion. χαβαα(T ) can be directly obtained if information of the dipole moments is known

in advance. As can be checked easily, χαβαα(T ) = (χβααα(T ))∗ can, in principle, be

also obtained directly from an experiment where
|Cαωi |
|Cβωi |

� 1 for all i (experiment 2)

and monitoring 〈S̃(ωα, T, ωβ)〉xxxx. Redundant measurements can be used as ways of

effectively constraining the QPT.

Similarly, the transfer from |α〉〈α| to other populations can be extracted by mon-

itoring 〈S̃(ωα, T, ωα)〉xxxx in experiment 2 and 〈S̃(ωα, T, ωβ)〉xxxx in experiment 1.

These two linearly independent conditions are enough to extract χggαα(T ), χαααα(T ),

and χββαα(T ), since there is a third independent condition based on trace preservation

which reads χggαα(T ) + χαααα(T ) + χββαα(T ) = 1.

It is now important to verify whether the suggested experiments are feasible. In

order to ensure conditions of the form
|Cαωi |
|Cβωi |

� 1, we need σ ∼ 3
ωαg−ωβg ∼ 75 fs, that

is, the pulse needs to be long enough to guarantee the narrow band condition. This

requirement is very reasonable, as it is not too long to obscure the decoherence pro-

cesses that we want to witness. In the case where the length of the pulse were of

similar length as the dynamical events that one is interested in, it is not necessary

to use very narrowband pulses either. The only essential requirement is a toolbox of

two different waveforms for the pulses, for instance, a set of pulses centered about ωαg

and ωβg respectively, but having σ ∼ 30 fs, for instance. By carrying out 8 experi-

ments alternating the two waveforms in each of the three pulses, each of the terms in

Equations (2.10), (2.11), (2.12), and (2.13) which are proportional to Ci
ω1
Cj
ω2
Ck
ω3

for

i, j, k ∈ {α, β} may be inverted to yield the block diagonal set of equations discussed

above.
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In summary, we have presented three different tools for unraveling the role of

quantum coherence in biological systems: a) techniques for obtaining the contribution

of quantum coherences to biological processes; b) a microscopic simulation approach

to explore the dynamics of these systems by direct simulation; and finally c) a new

theoretical proposal for an experimental procedure that provides detailed information

about the quantum procesess associated with energy transfer in the ultrafast regime.

We believe that ultimately, a combination of these three techniques and tools from

other groups will be collectively required to make definitive conclusions about the

role of quantum coherence in photosynthetic complexes.
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Chapter 3

Atomistic study of the long-lived

quantum coherences in the

Fenna-Matthews-Olson complex

3.1 Introduction

Recent experiments suggest the existence of long-lived quantum coherence during

the electronic energy transfer process in photosynthetic light-harvesting complexes

under physiological conditions [23–25]. This has stimulated many researchers to seek

for the physical origin of such a phenomenon. The role and implication of quantum

coherence during the energy transfer have been explored in terms of the theory of

open quantum systems [27–29, 48, 50, 51, 60, 86–91], and also in the context of

quantum information and entanglement [52–54, 92]. However, the characteristics of

the protein environment, and especially its thermal vibrations or phonons, have not
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been fully investigated from the molecular viewpoint. A more detailed description of

the bath in atomic detail is desirable; to investigate the structure-function relationship

of the protein complex and to go beyond the assumptions used in popular models of

photosynthetic systems.

Protein complexes constitute one of the most essential components in every bio-

logical organism. They remain one of the major targets of biophysical research due

to their tremendously diverse and, in some cases, still unidentified structure-function

relationship. Many biological units have been optimized through evolution and the

presence of certain amino acids rather than others is fundamental for functional-

ity [61–63]. In photosynthesis, one of the most well-characterized pigment-protein

complexes is the Fenna-Matthews-Olson (FMO) complex which is a light-harvesting

complex found in green sulphur bacteria. It functions as an intermediate conductor

for exciton transport located between the antenna complex where light is initially

absorbed and the reaction center. Since the resolution of its crystal structure over

30 years ago [12], the FMO trimer, composed of 3 units each comprising 8 bacte-

riochlorophylls has been extensively studied both experimentally [15–18] and theo-

retically [13, 14]. For instance regarding the structure-function relationship, it has

been shown [93] that amino acid residues cause considerable shifts in the site energies

of bacteriochlorophyll a (BChl) molecules of the FMO complex and in turn causes

changes to the energy transfer properties.

Have photosynthetic systems adopted interesting quantum effects to improve their

efficiency in the course of evolution, as suggested by the experiments? In this arti-

cle, we provide a first step to answer this question by characterizing the protein
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environment of the FMO photosynthetic system to identify the microscopic origin

of the long-lived quantum coherence. We investigate the quantum energy transfer

of a molecular excitation (exciton) by incorporating an all-atom molecular dynamics

(MD) simulation. The molecular energies are computed with time-dependent density

functional theory (TDDFT) along the MD trajectory. The evolution of the exci-

tonic density matrix is obtained as a statistical ensemble of unitary evolutions by a

time-dependent Schrödinger equation. Thus, this work is in contrast to many stud-

ies based on quantum master equations in that it includes atomistic detail of the

protein environment into the dynamical description of the exciton. We also intro-

duce a novel approach to add quantum corrections to the dynamics. Furthermore, a

quantitative comparison to the hierarchical equation of motion and the Haken-Strobl-

Reineker method is presented. As the main result, the time evolution of coherences

and populations shows characteristic beatings on the time scale of the experiments.

Surprisingly, we observe that the cross-correlation of site energies does not play a

significant role in the energy transfer dynamics.

The paper is structured as follows: In the first part we present the methods em-

ployed and in the second part the results followed by conclusions. In particular, the

partitioning of the system and bath Hamiltonian in classical and quantum degrees

of freedom and details of the MD simulations and calculation of site energies are

discussed in Section 3.2.1. The exciton dynamics of the system under the bath fluc-

tuations is then presented in Section 3.2.2. In Section 3.2.3 we introduce a quantum

correction to the previous exciton dynamics. Using the discussed methods we evalu-

ated site energies and their distribution at 77 and 300K in Section 3.3.1 and we also
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computed the linear absorption spectrum of the FMO complex in Section 3.3.3. The

site basis dephasing rates are discussed in Section 3.3.2. From the exciton dynamics

of the system we obtained populations and coherences and compared to the QJC-MD

approach in Section 3.3.4. We then compare the MD and quantum corrected MD

methods to the hierarchical equation of motion (HEOM) and Haken-Strobl-Reineker

(HSR) methods in Section 3.3.5. In Section 3.3.6 we determined the spectral density

for each site from the energy time bath-correlator and studied the effect of auto and

cross-correlations on the exciton dynamics by introducing a comparison to first-order

autoregressive processes. We conclude in Section 3.4 by summarizing our results.

3.2 Methods

3.2.1 Molecular Dynamics Simulations

A computer simulation of the quantum evolution of the entire FMO complex is cer-

tainly unfeasible with the currently available computational resources. However, we

are only interested in the electronic energy transfer dynamics among BChl molecules

embedded in the protein support. This suggests a decomposition of the total system

Hamiltonian operator into three parts: the relevant system, the bath of vibrational

modes, and the system-bath interaction Hamiltonians. The system Hamiltonian op-

erates on the excitonic system alone which is defined by a set of two-level systems.

Each two-level system represents the ground and first excited electronic state of a

BChl molecule. In addition, the quantum mechanical state of the exciton is assumed

to be restricted to the single-exciton manifold because the exciton density is low.
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On the other hand, factors affecting the system site energies have intractably large

degrees of freedom, so it is reasonable to treat all those degrees of freedom as the

bath of an open quantum system.

More formally, to describe the system-bath interplay by including atomistic detail

of the bath, we start from the total Hamiltonian operator and decompose it in a

general way such that no assumptions on the functional form of the system-bath

Hamiltonian are necessary [67]:

Ĥtotal =
∑
m

∫
dR εm(R)|m〉〈m| ⊗ |R〉〈R|

+
∑
m,n

∫
dR {Jmn(R)|m〉〈n| ⊗ |R〉〈R|+ c.c.}

+|1〉〈1| ⊗ T̂R +
∑
m

∫
dR Vm(R)|m〉〈m| ⊗ |R〉〈R|. (3.1)

Here, R corresponds to the nuclear coordinates of the FMO complex including both

BChl molecules, protein, and enclosing water molecules. The set of states |m〉 ⊗ |R〉

denote the presences of the exciton at site m given that the FMO complex is in the

configuration R, εm(R) represents the site energy of the mth site and Jmn(R) is the

coupling constant between the mth and nth sites. Note that the site energies and

coupling terms can be modulated byR. |1〉〈1| is the identity operator in the excitonic

subspace, T̂R is the kinetic operator for the nuclear coordinates of the FMO complex,

and Vm(R) is the potential energy surface for the complex when the exciton at site

m under Born-Oppenheimer approximation. Given multiple Born-Oppenheimer sur-

faces, one would need to carry out a coupled nonadiabatic propagation. However,

as a first approximation, we assume that the change of Born-Oppenheimer surfaces

does not affect the bath dynamics significantly. This approximation becomes better
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at small reorganization energies. Indeed, BChl molecules have significantly smaller

reorganization energies than other chromophores [94]. With this assumption, we can

ignore the dependence on the excitonic state in the V term, thus the system-bath

Hamiltonian only contains the one-way influence from the bath to the system. We

also adopted Condon approximation so that the J terms do not depend on R:

HS =
∑
m

∫
dR ε̄m|m〉〈m| ⊗ |R〉〈R|+

∑
m,n

∫
dR {Jmn(R)|m〉〈n| ⊗ |R〉〈R|+ c.c.} ,

≈
∑
m

∫
dR ε̄m|m〉〈m| ⊗ |R〉〈R|+

∑
m,n

∫
dR

{
J̄mn|m〉〈n| ⊗ |R〉〈R|+ c.c.

}
,

HB = |1〉〈1| ⊗ T̂R +
∑
m

∫
dR Vm(R)|m〉〈m| ⊗ |R〉〈R|,

≈ |1〉〈1| ⊗ T̂R +

∫
dR Vground(R)|1〉〈1| ⊗ |R〉〈R|,

HSB =
∑
m

∫
dR {εm(R)− ε̄m} |m〉〈m| ⊗ |R〉〈R|,

Htotal = HS +HB +HSB. (3.2)

Based on this decomposition of the total Hamiltonian, we set up a model of the FMO

complex with the AMBER 99 force field [64, 65] and approximate the dynamics of

the protein complex bath by classical mechanics. The initial configuration of the

MD simulation was taken from the x-ray crystal structure of the FMO complex of

Prosthecochloris aestuarii (PDB ID: 3EOJ.). Shake constraints were used for all

bonds containing hydrogen and the cutoff distance for the long range interaction

was chosen to be 12 Å. After a 2ns long equilibration run, the production run was

obtained for a total time of 40ps with a 2fs timestep. For the calculation of the

optical gap, snapshots were taken every 4fs. Two separate simulations at 77K and

300K were carried out with an isothermal-isobaric (NPT) ensemble to investigate the

61



Chapter 3: Atomistic study of the long-lived quantum coherences in the
Fenna-Matthews-Olson complex

temperature dependence of the bath environment. Then, parameters for the system

and the system-bath Hamiltonian were calculated using quantum chemistry methods

along the trajectory obtained from the MD simulations.

We chose not to include the newly resolved eighth BChl molecule [93] in our

simulations because up to now, the large majority of the scientific community has

focused on the seven site system which is therefore a better benchmark to compare

our calculations to previous work. It is important to note however that this eighth

site may have an important role on the dynamics. In particular, as suggested in

[95, 96] this eighth site is considered to be the primary entering point for the exciton

in the FMO complex and its position dictates a preferential exciton transport pathway

rather than two independent ones. Also when starting with an exciton on this eighth

site, the oscillations in the coherences are largely suppressed.

The time-dependent site energy εm was evaluated as the excitation energy of the

Qy transition of the corresponding BChl molecule. We employed the time-dependent

density functional theory (TDDFT) with BLYP functional within the Tamm-Dancoff

approximation (TDA) using the Q-Chem quantum chemistry package [66]. The basis

set was chosen to be 3-21G after considering a trade-off between accuracy and com-

putational cost. The Qy transition was identified as the excitation with the highest

oscillator strength among the first 10 singlet excited states. Then, the transition

dipole of the selected state was verified to be parallel to the y molecular axis. Every

atom which did not belong to the TDDFT target molecule was incorporated as a

classical point charge to generate the external electric field for the QM/MM calcula-

tion. Given that the separation between BChl molecules and the protein matrix is
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quite clear, employing this simple QM/MM method with classical external charges to

calculate the site energies is a good approximation. The external charges were taken

from the partial charges of the AMBER force field [64, 65]. The coupling terms, Jmn,

can also be obtained from quantum chemical approaches like transition density cube

or fragment-excitation difference methods [97, 98]. However, in this case we employed

the MEAD values of the couplings of the Hamiltonian presented in the literature [14]

and considered them to be constant in time. ε̄m was straightforwardly chosen as the

time averaged site energy for the mth site.

3.2.2 Exciton Dynamics

In this section, we describe the method for the dynamics of the excitonic reduced

density matrix within our molecular dynamic simulation framework. It is based on

a simplified version of the quantum-classical hybrid method (Ehrenfest) described in

[67]. The additional assumption on Hamiltonian (3.2) is that the bath coordinate

R is a classical variable, denoted by a superscript “cl”. As discussed above, the

time-dependence of these variables arises from the Newtonian MD simulations. The

additional force on the nuclei due to the electron-phonon coupling [67] is neglected.

Hence, the Schrödinger equation for the excitonic system is given by:

i~
∂

∂t
|ψ(t)〉 ≈

{
HS +HSB(Rcl(t))

}
|ψ(t)〉. (3.3)

The system-environment coupling leads to an effective time-dependent Hamiltonian

Heff (t) = HS +HSB(Rcl(t)). This equation suggests a way to propagate the reduced

density matrix as an average of unitary evolutions given by Eq. (3.3). First, short MD

trajectories (in our case 1 ps long) are uniformly sampled from the full MD trajectory
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(40 ps). Then, for each short MD trajectory, the excitonic system can be propagated

under unitary evolution with a simple time-discretized exponential integrator. The

density matrix is the classical average of these unitary evolutions:

ρS(t) =
1

M

M∑
i=1

|ψi(t)〉〈ψi(t)|, (3.4)

where M is the number of sample short trajectories. Each trajectory is subject to

different time-dependent fluctuations from the bath, which manifests itself as de-

coherence when averaged to the statistical ensemble. Compared to many methods

based on the stochastic unraveling of the master equation, e.g. [59, 99], our formalism

directly utilizes the fluctuations generated by the MD simulation. Therefore, the de-

tailed interaction between system and bath is captured. The temperature of the bath

is set by the thermostat of the MD simulation, thus no further explicit temperature

dependence is required in the overall dynamics. The dynamics obtained by this nu-

merical integration of the Schrödinger equation will also be compared to the HEOM

approach. The HEOM is briefly described in the Supporting Material along with a

discussion on the differences respect to the MD-method.

3.2.3 Quantum Jump Correction to MD Method (QJC-MD)

The MD/TDDFT simulation above leads to crucial insights into the exciton dy-

namics. However, it does not capture quantum properties of the vibrational envi-

ronment such as zero-point fluctuations. At zero temperature all the atoms in the

MD simulation are completely frozen. Moreover, similarly to an infinite-temperature

model, at long times of the quantum dynamical simulation the exciton is evenly

distributed among all molecules, as we will see below. In order to obtain a more
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realistic description, we modify the stochastic simulation by introducing quantum

jumps derived from the zero-point (zp) fluctuations of the modes in the vibrational

environment. We refer to this corrected version of the MD propagation as QJC-MD.

Introducing harmonic bath modes explicitly we reformulate the system-bath Hamil-

tonian as:

HSB =
∑
m

|m〉〈m|
∑
ξ

gmξ Rξ. (3.5)

Here, each gmξ represents the coupling strength of a site m to a particular mode ξ

and Rξ is the dimensionless position operator for that mode. We now formulate

our correction by separating the bath operators into two parts, Rξ = Rzp
ξ + RMD

ξ ,

the first part is due to zero-point fluctuations and the second comes from our MD

simulations. As above, the MD part is replaced by the classical time-dependent

variables, RMD
ξ → Rcl

ξ (t). The zero-point operator is expressed by creation and

annihilation operators, Rzp
ξ = bzpξ +bzp,†ξ , which satisfy the usual commutation relations

[bzpξ , b
zp,†
ξ′ ] = δξξ′. By construction, for the zp-fluctuations one has 〈bzp,†ξ bzpξ 〉 = 0.

The zp-fluctuations can only induce excitonic transitions from higher to lower

exciton states in the instantaneous eigenbasis of the Hamiltonian, thus leading to

relaxation of the excitonic system. The evolution of the populations PM of the in-

stantaneous eigenstates |M〉(t) due to the zero-point correction is expressed by a Pauli

master equation as:

(
ṖM

)
zpc

= −
∑
N

γ(ωMN)PM +
∑
N

γ(ωNM)PN , (3.6)

and for the coherences as:

(
ĊMN

)
zpc

= −1

2
γ(|ωMN |)CMN . (3.7)
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The associated rate can be derived from a secular Markovian Redfield theory [34] to

be γ(ωMN) = 2πJ (ωMN)
∑

m |cm (M) |2|cm (N) |2, where the spectral density J (ω) is

only non-zero for positive transition frequencies ωMN = EM − EN and taken to be

as in [87]. The coefficients cm (M) translate from site to energy basis. The time

evolution given by Equations (3.6) and (3.7) is included in the dynamics simulation

by introducing quantum jumps as in the Monte-Carlo wavefunction (MCWF) method

[99]. We thus arrive at a hybrid classically averaged H (t) simulation with additional

quantum transitions induced by the vacuum fluctuations of the vibrational modes.

3.3 Results and Discussion

3.3.1 Site Energy Distributions

Using the coupled QM/MD simulations, site energies were obtained for each BChl

molecule. These energies and their fluctuations are reported in Figure 3.1. We note

that the magnitude of the fluctuations are of the order of hundreds of cm−1. Although

the order of the site energies does not perfectly match previously reported results [14,

20], the overall trend does not deviate much, especially considering that our result is

purely based on ab initio calculations without fitting to the experimental result. The

Qy transition energies calculated by TDDFT are known to be systematically blue-

shifted with respect to the experiment [100]. However, the scale of the fluctuations

remains reasonable. Therefore, the comparison in Fig. 3.1 was made after shifting

the overall mean energy to zero for each method.

The excitation energy using TDDFT does not always converge when the config-
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Figure 3.1: Panel a: Comparison of the calculated site energies for each BChl molecule
to the previous works by Wendling et al. and Adolphs et al. [14, 20]. Our calculation,
labeled as MD, was obtained using QM/MM calculations with the TDDFT/TDA
method at 77K and 300K. Vertical bars represent the standard deviation for each
site. Panel b: Marginal distribution of site 1 energy at 77K and 300K. Histograms
represent the original data, and solid lines correspond to the estimated Gaussian
distribution.
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uration of the molecule deviates significantly from its ground state structure. The

number of points which failed to converge was on average less than 4% for configura-

tions at 300K, and less than 2% at 77K. We interpolated the original time series to

obtain smaller time steps and recover the missing points. Interpolation could lead to

severe distortion of the marginal distribution when the number of available points is

too small. However, in our case, the distributions virtually remained the same with

and without interpolation.

3.3.2 Dephasing Rates

In the Markovian approximation and assuming an exponentially decaying auto-

correlation function, the dephasing rate γφ is proportional to the variance of the site

energy σ2
ε [34]:

γφ =
2

~
σ2
ε τ, (3.8)

where τ is a time decay parameter which we estimated through a comparison to first

order autoregressive processes, as described in Section 3.3.6. The dependence on the

variance is clearly justified: states associated with large site energy fluctuations tend

to undergo faster dephasing. Figure 3.2, panel a), presents the approximate site basis

dephasing rates for each site with τ ≈ 5fs. The averaged value of the slopes is 0.485

cm−1 K−1, which is in good agreement with the experimentally measured value of

0.52 cm−1 K−1 obtained from a closely related species Chlorobium tepidum in the

exciton basis [25]. From this plot we note the presence of a positive correlation be-

tween temperature and dephasing rate. This correlation is plausible: as temperature

increases so does the energy disorder, hence the coherences should decay faster. In
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fact, in the Markovian approximation, dephasing rates increase linearly with temper-

ature [34, 101]. Calculations at other temperatures are underway to verify this and

to obtain more information on the precise temperature dependence of the dephasing

rates.

3.3.3 Simulated Spectra

The absorption, linear dichroism (LD), and circular dichroism (CD) spectra can

be obtained from the Fourier transform of the corresponding response functions. The

spectra can be evaluated for the seven BChl molecules using the following expres-

sions [102, 103]:

IAbs(ω) ∝ Re

∫ ∞
0

dt eiωt
7∑

m,n=1

〈~dm · ~dn〉{〈Umn(t, 0)〉 − 〈U∗mn(t, 0)〉},

ILD(ω) ∝ Re

∫ ∞
0

dt eiωt
7∑

m,n=1

〈3(~dm · r̂)(~dn · r̂)− ~dm · ~dn〉{〈Umn(t, 0)〉 − 〈U∗mn(t, 0)〉},

ICD(ω) ∝ Re

∫ ∞
0

dt eiωt
7∑

m,n=1

〈ε̄m(~Rm − ~Rn) · (~dm × ~dn)〉{〈Umn(t, 0)〉 − 〈U∗mn(t, 0)〉},

(3.9)

where m and n are indices for the BChl molecules in the complex, ~dm is the transition

dipole moment of the mth site, Umn(t, 0) is the (m,n) element of the propagator in

the site basis, r̂ is the unit vector in the direction of the rotational symmetry axis, ~Rm

is the coordinate vector of the site m, and 〈· · · 〉 indicates an ensemble average. The

ensemble average was evaluated by sampling and averaging over 4000 trajectories.

We applied a low-pass filter to smooth out the noise originated from truncating the

integration and due to the finite number of trajectories. Figure 3.2 panel b) and
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Figure 3.2: Panel a shows the calculated dephasing rate for each site at 77K and
300K. Panel b shows the simulated linear absorption spectra of the FMO complex
at 77K and 300K. They were shifted to be compared to the experimental spectra as
obtained by Engel through personal communication. Panel c shows the simulated
linear dichroism (LD) and circular dichroism (CD) spectra at 77K. Experimental
spectra were obtained from Wendling et al.[20] Although TDDFT-calculated spectra
shows systematically overestimated site energies, the width and overall shape of the
spectra is in good agreement.
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c) show direct comparison of the calculated and experimental spectra at 77K and

300K. As discussed in Section 3.3.1, TDDFT tends to systematically overestimate

the excitation energy of the Qy transition [104] yet the fluctuation widths of the

site energies are reasonable. In fact, the width and overall shape of the calculated

spectrum is in good agreement with the experimental spectrum at each temperature.

Calculated LD and CD spectra also reproduce well the experimental measurements,

considering that no calibration to experiments was carried out. Since both LD and

CD spectra are sensitive to the molecular structure it appears that our microscopic

model correctly captures these details.

3.3.4 Population Dynamics and Long-lived Quantum Coher-

ence

The MD method is based on minimal assumptions and directly evaluates the

dynamics of the reduced density matrix from the total density matrix as described

in Section 3.2. The reduced density matrix was obtained after averaging over 4000

trajectories. Figure 3.3 shows the population and coherence dynamics of each of

the seven sites according to the dephasing induced by the nuclear motion of the

FMO complex. In particular, the populations and the absolute value of the pairwise

coherences, as defined in [52] (2 · |ρ12 (t)| and 2 · |ρ56 (t)|) are plotted at both 77 and

300K starting with an initial state in site 1 (first three panels) and then in site 6

(last three panels). Until very recently [95, 96] site 1 and 6 have been thought as

the entry point of an exciton in the FMO complex, therefore most of the previous

literature chose the initial reduced density matrix to be either pure states |1〉〈1| or
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|6〉〈6| [29, 51, 105]. However, our method could be applied to any mixed initial state

without modification. We note that coherent beatings last for about 400fs at 77K and

200fs at 300K. These timescales are in agreement with those reported for FMO [25, 29]

and with what was found in Section 3.3.2. Although quite accurate in the short time

limit, the MD method populations do not reach thermal equilibrium at long times.

This was verified by propagating the dynamics to twice the time shown in Figure

3.3. This final classical equal distribution is similar to the HSR model result. The

three central panels of Figure 3.3 show the same populations and coherences obtained

from the QJC-MD method. As discussed in Section 3.2, this method includes a zero

point correction through relaxation transitions and predicts a more realistic thermal

distribution at 77K. At 300K the quantum correction is less important in the dynamics

because the Hamiltonian fluctuations dominate over the zero temperature quantum

fluctuations.

3.3.5 Comparison between MD, QJC-MD, HEOM, and HSR

Methods

Figure 3.4 shows a direct comparison of the population dynamics of site 1 calcu-

lated using the HEOM method discussed by Ishizaki and Fleming [29, 58], our MD

and quantum corrected methods at 77K and 300K, and the HSR model [39, 40] with

dephasing rates obtained from Eq. (3.8). We observe that the short-time dynamics

and dephasing characteristics are surprisingly similar, considering that the methods

originate from very different assumptions. Atomistic detail can allow for differentia-

tion of the system-environment coupling for different chromophores. For example, at
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Figure 3.3: Panel a: Time evolution of the exciton population of each chromophore
in the FMO complex at 77K and 300K. Panel b: Change of the pairwise coherence,
or concurrence in time. Initial pure states, ρS(0) = |1〉〈1| for the top and center
panels were propagated using the two formulations developed in this article, MD
and QJC-MD, to utilize the atomistic model of the protein complex bath from the
MD/TDDFT calculation. Panel c The initial state was set to |6〉〈6| and propagated
using the MD method.
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both temperatures (right panels), the MD populations of site 6 undergo faster deco-

herence than the corresponding HEOM results. We attribute this to the difference

in energy gap fluctuations of site energy between site 1 and 6 obtained from the MD

simulation as can be seen in 3.1. On one hand, in the HEOM method, site energy

fluctuations are considered to be identical across all sites, on the other, in our method

the fluctuations of each site are obtained from the MD simulation in which each site is

associated with a different chromophore-protein coupling. Nevertheless, the fact that

we obtain qualitatively similar results to the HEOM approach (at least when start-

ing in ρ(0) = |1〉 〈1|) without considering non equilibrium reorganization processes

suggests that such processes might not be dominant in the FMO. The quantum cor-

rection results (QJC-MD), for every temperature and initial state, are in between

the HEOM and MD results. This is due to the induced relaxation from zero-point

fluctuations of the bath environment, which are not included in the MD method but

included in the QJC-MD and HEOM methods.

The HSR results take into account the site-dependence of the dephasing rates

based on Eq. (3.8). The method is briefly described in the supplementary material.

Due to the Markovian assumption, this model shows slightly less coherence than the

HEOM method and similarly to the MD method it converges to an equal classical

mixture of all sites in the long time limit.

3.3.6 Correlation Functions and Spectral Density

The bath autocorrelation function and its spectral density contain information

on interactions between the excitonic system and the bath. The bath correlation
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Figure 3.4: Comparison of the population dynamics obtained by using the MD
method, the corrected MD, the hierarchy equation of motion approach and the Haken-
Strobl-Reineker model at 77K and 300K. Panels on the right correspond to the initial
state in site 1 and those on the left to an initial state in site 6. All methods show
similar short-time dynamics and dephasing, while the long time dynamics is different
and the different increases as relaxation is incorporated in the various methods.
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function is defined as C(t) = 〈δε(t)δε(0)〉 with δε = ε(t)− ε̄. For the MD simulation,

C(t) is shown in Fig. 3.5 a) for the two temperatures.

To study the effect of the decay rate of the autocorrelation function on the pop-

ulation dynamics, we modeled site energies using first-order autoregressive (AR(1))

processes [106]. The marginal distribution of each process was tuned to have the

same mean and variance as for the MD simulation. The autocorrelation function of

the AR(1) process is an exponentially decaying function:

C(t) ∝ exp(−t/τ). (3.10)

We generated three AR(1) processes with different time constants τ and propagated

the reduced density matrix using the Hamiltonian corresponding to each process. As

can be seen in Fig. 3.5, panel a), the autocorrelation function of the AR(1) process

with τ ≈ 5fs has a similar initial decay rate to that of the MD simulation at both

temperatures. Therefore, as shown in the last three horizontal panels, its spectral

density is in good agreement with the MD simulation result in the low frequency

region, i.e up to 600cm−1. Modes in this region are known to be the most important

in the dynamics and in determining the the decoherence rate. Also, as panels b) and

c) show, that same AR(1) process with τ ≈ 5fs exhibits similar population beatings

and concurrences to those of the MD simulation. The relation of this 5fs time scale

to others reported in [21, 29] is presently unclear. We suspect that the discrepancy

between the two results should decrease when one propagates the MD in the excited

state. Work in this direction is in progress in our group.

The spectral density can be evaluated as the reweighted cosine transform of the
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Figure 3.5: Panel a: Site 1 autocorrelation functions using MD and AR(1) processes
generated with time constant equal to 2fs, 5fs, and 50fs at 77K and 300K. Panel
b: Site 1 population dynamics of MD and AR(1) processes with the different time
constants at 77K and 300K. Panel c: The change of pairwise coherence between site 1
and 2 of MD and AR(1) processes with the different time constants at 77K and 300K.
Panel d: Spectral density of site 1 of the FMO complex from the MD simulation at
77K and 300K. They clearly show the characteristic vibrational modes of the FMO
complex. High-frequency modes are overpopulated due to the ultraviolet catastrophe
observed in classical mechanics. The Ohmic spectral density used by Ishizaki and
Fleming in [29] was presented for comparison. The spectral densities of site 1 from
AR(1) processes are also presented.
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corresponding bath autocorrelation function C (t) [103, 104],

J(ω) =
2

π~
tanh(β~ω/2)

∫ ∞
0

C(t) cos(ωt) dt. (3.11)

With the present data the spectral density exhibits characteristic phonon modes from

the dynamics of the FMO complex, see Fig. 3.5 d) first panel. However, high-

frequency modes tend to be overpopulated due to the limitation of using classical

mechanics. Most of these modes are the local modes of the pigments, which can

be seen from the pigment-only calculation in [65]. There are efforts to incorporate

quantum effects into the classical MD simulation in the context of vibrational coher-

ence [68–70]. We are investigating the possibilities of incorporating corrections based

on a similar approach. Moreover, we also obtain a discrepancy of the spectral density

in the low frequency region. On one hand, the origin could lie in the harmonic ap-

proximation of the bath modes leading to the tanh prefactor in Eq. (3.11) or in the

force field used in this work. On the other, the form of the standard spectral density

is from [17] which measures fluorescence line-narrowing on a much longer timescale,

around ns, than considered in our simulations (around ps). Assuming correctness of

our result, this implies that for the simulation of fast exciton dynamics in photosyn-

thetic light-harvesting complexes a different spectral density than the widely used

one has to be employed.

Site energy cross-correlations between chromophores due to the protein environ-

ment have been postulated to contribute to the long-lived coherence in photosynthetic

systems [24]. Many studies have explored this issue, e.g. recently [14, 51, 60, 107–

109]. We tested this argument by de-correlating the site energies. For each unitary

evolution, the site energies of different molecules at the same time were taken from
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Figure 3.6: Panel a: Cross-correlation function of the original MD trajectory and a
randomly shuffled trajectory between sites 1 and 2 at 77K and 300K. Panel b: Site
1 population dynamics of the original dynamics and the shuffled dynamics at 77K
and 300K. c, The pairwise coherence between sites 1 and 2. Original and shuffled
dynamics are virtually identical at both temperatures.
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different parts of the MD trajectory. In this way, we could significantly reduce po-

tential cross correlation between sites while maintaining the autocorrelation function

of each site. As can be seen in Fig. 3.6, no noticeable difference between the original

and shuffled dynamics is observed.

3.4 Conclusion

The theoretical and computational studies presented in this article show that the

long-lived quantum coherence in the energy transfer process of the FMO complex of

Prosthecochloris aestuarii can be simulated with the atomistic model of the protein-

chromophore complex. Unlike traditional master equation approaches, we propagate

in a quantum/classical framework both the system and the environment state to

establish the connection between the atomistic details of the protein complex and the

exciton transfer dynamics. Our method combines MD simulations and QM/MM with

TDDFT/TDA to produce the time evolution of the excitonic reduced density matrix

as an ensemble average of unitary trajectories.

The conventional assumption of unstructured and uncorrelated site energy fluc-

tuations is not necessary for our method. No ad hoc parameters were introduced

in our formalism. The temperature and decoherence time were extracted from the

site energy fluctuation by the MD simulation of the protein complex. The simulated

dynamics clearly shows the characteristic quantum wave-like population change and

the long-lived quantum coherence during the energy transfer process in the biological

environment. On this note it is worth mentioning that one has to be careful in the

choice of force-field and in the method used to calculated site energies. In fact as
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presented in Olbrich et al. [110] a completely different energy transfer dynamics was

obtained by using the semiempirical ZINDO-S/CIS to determine site energies.

Moreover, we determined the correlations of the site energy fluctuations for each

site and between sites through the direct simulation of the protein complex. The

spectral density shows the influence of the characteristic vibrational frequencies of

the FMO complex. This spectral density can be used as an input for quantum mas-

ter equations or other many-body approaches to study the effect of the structured

bath. The calculated linear absorption spectrum we obtained is comparable to the

experimental result, which supports the validity of our method. The characteris-

tic beating of exciton population and pairwise quantum coherence exhibit excellent

agreement with the results obtained by the HEOM method. It is also worth noting

the remarkable agreement of the dephasing timescales of the MD simulations, the

HEOM approach, and experiment.

Recently, characterization of the bath in the LH2 [103, 104] and FMO [109] pho-

tosynthetic complexes were reported using MD simulation and quantum chemistry at

room temperature. Those studies mostly focused on energy and spatial correlations

across the sites, the linear absorption spectrum, and spectral density. The detailed

study in [109] also suggests that spatial correlations are not relevant in the FMO

dynamics.

This work opens the road to understanding whether biological systems employed

quantum mechanics to enhance their functionality during evolution. We are planning

to investigate the effects of various factors on the photosynthetic energy transfer

process. These include: mutation of the protein residues, different chromophore
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molecules, and temperature dependence. Further research in this direction could

elucidate on the design principle of the biological photosynthesis process by nature,

and could be beneficial for the discovery of more efficient photovoltaic materials and

in biomimetics research.
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Chapter 4

Path integral Monte Carlo with

importance sampling for excitons

interacting with arbitrary phonon

bath environment

4.1 Introduction

Recent 2D non-linear spectroscopy experiments suggested the existence of long-

lived quantum coherence during the electronic energy transfer process within the

Fenna-Matthews-Olson complex of green sulfur bacteria, marine algae and plants

even under physiological conditions [23, 25, 47, 111–113]. These results attracted

a large amount of attention from theoretical physicists and chemists. The energy

transfer process usually has been modeled as the dynamics of excitons coupled to a
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phonon bath in thermal equilibrium within the single exciton manifold. This approx-

imation leads to the famous spin-Boson Hamiltonian. The solution of this type of

Hamiltonian has been studied extensively. For example, by assuming a certain rela-

tive magnitude between the reorganization energy and coupling terms, one can obtain

quantum master equations valid in specific regimes[19, 67, 114]. Another approxima-

tion, the Haken-Strobl-Reineker model works in both the coherent and incoherent

regimes, but incorrectly converges to the high temperature limit in the long time

even at the low temperature [39, 40]. More recently, numerically exact approaches

which interpolate both limits have been investigated and applied to many systems of

interest. Two of the most popular methods are the hierarchical equation of motion

[29, 87, 115] and the quasiadiabatic path integral method [116, 117]. These methods

are being actively developed, improved, and applied to many systems of interests [58].

Although having been successful in many applications, many of the models de-

scribed above have assumed the phonon bath to be a set of independent harmonic os-

cillators and encode all the complexity of the bath environment in the spectral density,

which is essentially a frequency dependent distribution of exciton-phonon coupling.

However, for studying the anharmonic effects of a very sophisticated bath environ-

ment, like the protein complexes of photosynthesis, being able to directly include the

atomistic details of the bath structure into the exciton dynamics has a distinct ad-

vantage. In other words, approaches that can evaluate the influence functional first

suggested by Feynman and Vernon [118] have more straightforward descriptions and

are applicable to arbitrary systems. Evaluation of the exact influence functional for

arbitrary environment requires the simulation of the full quantum dynamics, which is
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still not practical with currently available computational resources. There have been

several attempts to incorporate atomistic details of the large scale bath by combining

the exciton dynamics and molecular dynamics simulations [32, 104, 119]. However,

these theories are still in their early stages and the propagation scheme used does

not satisfy some fundamental properties, like the detailed balance condition at finite

temperature. In pursuit of more accurate theory, it is crucial to know the correct

asymptotic behavior in the limit of infinite time. In this context, we decided to ex-

plore the numerically exact reduced density matrix in a finite temperature using path

integral Monte Carlo [120–123] method. Recently, Moix et al applied path integral

Monte Carlo for the equilibrium reduced density matrix of the FMO complex within

the framework of open quantum systems [124].

4.2 Theory

4.2.1 Path Integral Formulation of the Reduced Thermal

Density Matrix

We want to evaluate the reduced density matrix of an excitonic system coupled

to phonons on arbitrary Born-Oppenheimer surfaces at a finite temperature. For

photosynthetic energy transfer, we usually restrict the excitons to be within the single

exciton manifold because at normal light intensity, in average, one photon is present

at a given time in the complexes of interest. However, the formulation itself is not

limited to the single exciton manifold. The Hamiltonian operator for such a system
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can be written as

Ĥ =
∑
m

∫
dR [Vm(R)− Vg(R)] |m〉〈m| ⊗ |R〉〈R|+

∑
m6=n

∫
dR Jmn(R)|m〉〈n| ⊗ |R〉〈R|︸ ︷︷ ︸

Ĥexc=ĤS+ĤSB

+ |1〉〈1| ⊗
[
T̂ +

∫
dR Vg(R)|R〉〈R|

]
︸ ︷︷ ︸

ĤB

. (4.1)

The Hamiltonian was written in terms of the diabatic basis |m,R〉 ≡ |m〉 ⊗ |R〉,

where m is the index for the exciton state and R is the phonon coordinate. Vg(R)

is the potential energy surface (PES) of the phonons in the electronic ground state

and Vm(R) is the PES of the phonons in the mth exciton state. T̂ is the kinetic

operator of the phonons defined as T̂ = −~2
2
M−1∇2, where M is the mass tensor of

the phonons. This expression is generally applicable to any molecular system with

multiple potential energy surfaces. The reduced thermal density matrix ρS is defined

as the partial trace of the full thermal density matrix with respect to the bath degrees

of freedom:

ρS =
1

Z(β)
TrB exp

(
−βĤ

)
=

1

Z(β)

∫
dR0 〈R0| exp

(
−βĤ

)
|R0〉, (4.2)
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where Z(β) is the partition function of the total system. We proceed by relying on

the following identity:

〈R0| exp(−βĤ)|R0〉 = 〈R0|
{

exp

(
−βĤ
M

)}M

|R0〉

=

∫
dR1

∫
dR2 · · ·

∫
dRM−1

× 〈R0| exp

(
−βĤ
M

)
|RM−1〉〈RM−1| exp

(
−βĤ
M

)
|RM−2〉

× · · · × 〈R2| exp

(
−βĤ
M

)
|R1〉〈R1| exp

(
−βĤ
M

)
|R0〉. (4.3)

For any positive integer M , the expression above is exact. When the Trotter

decomposition is applied, an imaginary timestep τ ≡ β~
M

is usually defined for conve-

nience. Then, the thermal density matrix can be interpreted as an imaginary time

evolution. In the limit of an infinitesimal imaginary timestep, the Trotter decompo-

sition converges to the exact result,

〈R1| exp

(
−βĤ
M

)
|R0〉 = 〈R1| exp

(
−τĤ/~

)
|R0〉

= 〈R1|e−τĤexc/2~e−τĤB/~e−τĤexc/2~|R0〉+O(τ 3)

=

∫
dR2

∫
dR3 〈R1|e−τĤexc/2~|R3〉

× 〈R3|e−τĤB/~|R2〉〈R2|e−τĤexc/2~|R0〉+O(τ 3). (4.4)

Subsequently, we will recast the system part of Ĥexc as a single matrix to simplify
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the notation,

Ĥexc =
∑
m,n

∫
dR Emn(R)|m〉〈n| ⊗ |R〉〈R|,

Emm(R) =

 Vm(R)− Vg(R) for m = n,

Jmn(R) for m 6= n.

(4.5)

With the single exciton manifold assumption, Emm corresponds to the optical gap of

the m-th site. Now, the three terms in the integrand of the Eq. 4.4 can be written

without Dirac notation,

〈R1|e−τĤexc/2~|R3〉 = δ(R1 −R3)e−τE(R3)/2~,

〈R3|e−τĤB/~|R2〉 = (4πτ |λ|)−1/2e−τVg(R3)/2~e−(R3−R2)Tλ−1(R3−R2)/4τe−τVg(R2)/2~

+O(τ 3),

〈R2|e−τĤexc/2~|R0〉 = δ(R2 −R0)e−τE(R0)/2~, (4.6)

where λ ≡ ~M−1

2
. By the Eq. 4.4 and Eq. 4.6,

〈R1| exp

(
−βĤ
M

)
|R0〉 = (4πτ |λ|)−1/2e−τVg(R1)/2~e−(R1−R0)Tλ−1(R1−R0)/4τe−τVg(R0)/2~

× e−τE(R1)/2~e−τE(R0)/2~ +O(τ 3). (4.7)

Note that Eq. 4.7 is a matrix with the same dimension as the reduced density matrix
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of the system. Substituting Eq. 4.7 to Eq. 4.2, we obtain

ρS =
1

Z(β)

∫
dR0

∫
dR1 · · ·

∫
dRM−1

× e−τE(R0)/2~e−τE(RM−1)/~ · · · e−τE(R1)/~e−τE(R0)/2~

× e−τVg(R0)/~e−τVg(R1)/~ · · · e−τVg(RM−1)/~

× e−(R0−RM−1)Tλ−1(R0−RM−1)/4τe−(RM−1−RM−2)Tλ−1(RM−1−RM−2)/4τ

× · · · × e−(R1−R0)Tλ−1(R1−R0)/4τ

=

∫
dR0

∫
dR1 · · ·

∫
dRM−1

× K

Z(β)
e−τE(R0)/2~e−τE(RM−1)/~ · · · e−τE(R1)/~e−τE(R0)/2~︸ ︷︷ ︸

ρPIMC(R0,··· ,RM−1)

× 1

K
e−βVPIMC(R0,R1,··· ,RM−1)︸ ︷︷ ︸

fg(R0,··· ,RM−1)

, (4.8)

where,

VPIMC(R0,R1, · · · ,RM−1) =
1

M

M−1∑
i=0

Vg(Ri)

+
M−1∑
i=0

M

2β2~2
{Ri −Rmod(i+1,M)}TM{Ri −Rmod(i+1,M)}.

(4.9)

The expressions above show that the reduced thermal density matrix ρS can be eval-

uated as an expectation value of ρPIMC(R0, · · · ,RM−1) where the joint probability

density function of the M N -dimensional random variables (R0, · · · ,RM−1) is fg.

This type of multidimensional integral can be efficiently evaluated using Monte Carlo

integration. Because fg(R0, · · · ,RM−1) is invariant to cyclic permutation of the

phonon coordinate, usually the averaged estimator ρPIMC over the cyclic permutation

89



Chapter 4: Path integral Monte Carlo with importance sampling for excitons
interacting with arbitrary phonon bath environment

is used in the actual Monte Carlo evaluation:

ρPIMC(R0,R1, · · · ,RM−1) =
1

M

M−1∑
i=0

ρPIMC(Ri,Rmod(i+1,M), · · · ,Rmod(i+M−1,M)).

(4.10)

4.2.2 Population-Normalized Estimator and Importance Sam-

pling

In the previous approach described in Eq. 4.8, the phonon coordinates are sampled

according the electronic ground state PES. The estimator should converge to the

target quantity in the long time limit, taking into account the discretization error.

As long as fg(R0, · · · ,RM−1) is positive definite everywhere in the phonon space, the

sampling efficiency depends on the selection of the probability density. Obviously,

the actual distribution of the phonon coordinate depends heavily on the excited state

PES. Therefore, the Monte Carlo points coordinates sampled according to the reduced

dynamics of the bath by taking the partial trace with respect to the exciton degrees

of freedom, as explored in multiple surface path integral Monte Carlo approaches, are

expected to give the better estimates. This choice of the probability density reweights

the estimator in the following way:

fI(R0, · · · ,RM−1) = TrS [ρPIMC(R0, · · · ,RM−1)] fg(R0, · · · ,RM−1),

ρI(R0, · · · ,RM−1) =
ρPIMC(R0, · · · ,RM−1)

TrS [ρPIMC(R0, · · · ,RM−1)]
. (4.11)

In the expression above, we call ρI(R0, · · · ,RM−1) the population normalized esti-

mator for the reduced density matrix because the sum of its populations is always

constrained to be 1. The effective energy gap term of − 1
β

log TrρPIMC(R0, · · · ,RM−1)
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was added to the Eq. 4.9 to enable the phonons follow the excited state dynamics

depending on the exciton state ρS. For the estimator of the reduced density matrix in

Eq. 4.8, the normalization must obtained by the estimates of its diagonal elements,

leading to more uncertainties in the coherence. However, the population-normalized

estimator preserves the correct normalization by construction, and does not suffer

from any additional uncertainty.

Local gradient information can improve the efficiency and scaling of the sampling

procedure by means of a gradient-based approach such as the Metropolis-adjusted

Langevin algorithm (MALA). [125, 126] However, the exact closed form of the gra-

dient of the effective energy gap term, log TrSρPIMC(R0, · · · ,RM−1) can only be ex-

pressed as a function of a power series of matrices. Nevertheless, with the following

approximation:

n∑
k=0

AkBAn−k ≈
n∑
k=0

1

2n

(
n

k

)
AkBAn−k, (4.12)

an accurate approximated of the gradient can be obtained and employed in the sam-
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pling procedure,

∂

∂Rij

log TrS [ρPIMC(R0, · · · ,RM−1)] =
TrS

[
∂

∂Rij
ρPIMC(R0, · · · ,RM−1)

]
TrS [ρPIMC(R0, · · · ,RM−1)]

≈
TrS

[
− τ

2~
∂E(Ri)
∂Rij

ρPIMC(R0, · · · ,RM−1)
]

TrS [ρPIMC(R0, · · · ,RM−1)]
,

∇i log fg(R0, · · · ,RM−1) = − β

M
∇iVg(Ri)

+
M

2β~2
M(Rmod(i+1,M) +Rmod(i−1,M) − 2Ri),

µi(R0, · · · ,RM−1) =
TrS

[
− τ

2~
∂E(Ri)
∂Rij

ρPIMC(R0, · · · ,RM−1)
]

TrS [ρPIMC(R0, · · · ,RM−1)]

+∇i log fg(R0, · · · ,RM−1)

≈ ∇i log fI(R0, · · · ,RM−1). (4.13)

Here, ∇i is the gradient operator with respect to Ri.

Note that if we choose an appropriate Metropolis criterion, no bias in the distri-

bution is introduced even with the approximate gradient [127]. Firstly, a trial move

R′i obtained by

R′i = Ri + µi(R0, · · · ,RM−1)∆t+ ξi
√

∆t, (4.14)

where ∆t is the timestep for the Monte Carlo step and ξi is a N -dimensional vector

of independent standard Gaussian random variables. Then, R′i is probabilistically

accepted according to the acceptance ratio,

fI(R
′
0, · · · ,R′M−1)

fI(R0, · · · ,RM−1)
×
∏M−1

i=0 exp
[
− |R′i−{Ri+µi(R0,··· ,RM−1)}|2

2∆t

]
∏M−1

i=0 exp
[
− |Ri−{R′i+µi(R′0,··· ,R′M−1)}|2

2∆t

] . (4.15)

The Monte Carlo timestep ∆t is only a tunable parameter for the Monte Carlo sam-

pling procedure and not related to the physics of the simulated system.
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Parameters Value

k11 4× 10−5

k22 3.2× 10−5

x11 7
x22 10.5
ε11 0
ε22 2.2782× 10−5

c 5× 10−5

α 0.4
x12 8.75
m 3.6743× 103

Table 4.1: Summary of the parameters for the model system by Alexander et al [128].
All values are given in atomic units.

4.3 Application

4.3.1 Alexander’s 1D Test Model

Our formulation is equivalent to the multiple electronic state extension of matrix

multiplication path integral (MMPI) method of Alexander [120, 128] when the popu-

lation normalized estimator is chosen and only the vibrational degrees of freedom are

considered. Therefore, the 1D model employed in Ref. [128] was calculated to test

the validity of our method. The elements of the electronic Hamiltonian in this model

are given by,

V11(x) =
1

2
k11(x− x11)2 + ε11,

V22(x) =
1

2
k22(x− x22)2 + ε22,

V12(x) = c exp
[
−α(x− x12)2

]
, (4.16)

The total nuclear probability density evaluated as histograms from the Metropolis

random walk and MALA simulations are compared to the grid-based result from
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Alexander et al. [128] in Fig. 4.1. The distributions converged to the exact probability

density after 2× 107 steps with 8 beads at both temperatures of 8K and 30K.

4.3.2 Model of a Chromophore Heterodimer with Displaced

Harmonic Oscillators

To test the proposed method, a system of two chromophores in a photosynthetic

complex was modeled using displaced harmonic oscillator model. In this model,

the ground and excited electronic states of the monomer are modeled as harmonic

oscillators with different displacement, but the same harmonic constant [67]. The

thermal reduced density matrix was calculated within the single exciton manifold.

The Hamiltonian for this model is then given as follows:

Vg(x1, x2) =
1

2
(k1x

2
1 + k2x

2
2),

Ve(x1, x2) =

 1
2
k1{(x1 − d1)2 − x2

1}+ ε1 J

J 1
2
k2{(x2 − d2)2 − x2

2 + ε2}

 ,

M =

 m1 0

0 m2

 . (4.17)

Some of the parameters were set according to our molecular dynamics/quantum

chemistry calculation of the FMO complex [32]. The parameter values are listed in

table 4.2.

The model system was simulated at seven different temperatures ranging from

30K to 300K with a number of beads (discretization number) of 4, 8, 16, 32 and 64.

The number of timesteps propagated in each simulation was 4 × 107. The value of
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Figure 4.1: The estimated nuclear probability densities of Alexander’s model [128]
at (a) 8K and (b) 30K. For path integral Monte Carlo simulations, densities were
obtained by histograms with 50 bins. The discretization number of 8 was enough to
converge to the exact probability densitiies.
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Parameter Value

k1 2.227817× 10−3

k2 2.227817× 10−3

d1 3.00000
d2 2.00000
ε1 8.064745× 10−2

ε2 7.976238× 10−2

J −4.738588× 10−4

m1 3.418218× 106

m2 3.418218× 106

Table 4.2: Summary of the parameters for the displaced harmonic oscillator model
used in Sec. 4.3.2. All values are given in atomic units.

each timestep was tuned so that the acceptance ratio of the MALA run is close to

0.574, and 0.234 for the Metropolis random walk as maintaining these acceptance ratio

is known to provide most efficient sampling [126]. We used non-overlapping batch

means [129] with a batch size of 106 to estimate the standard error of the correlated

samples. The batch size was adjusted so that the null hypothesis of uncorrelated

batches was not rejected by using Ljung-Box test [130] at a significance level of 5%.

As shown in Fig. 4.2, the standard error of the simulation decreases modestly as

the number of Monte Carlo steps increases. Fig. 4.3 shows the temperature depen-

dence of the estimates of reduced density matrix elements as a function of various

discretization numbers using MALA. Although the Metropolis random walk simula-

tion gives a smaller confidence interval for the 4 bead case, MALA provides better

estimates as the dimension of the sample space increases. The Metropolis random

walk result is given in Fig. 4.4. While the population of the low energy site de-

creases as the temperature increases, the quantum coherence does not monotonically

decrease. We believe that this pheonomenon is an artifact of an insufficient discretiza-
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Figure 4.2: Estimates of (1,2) matrix elements of the thermal reduced density matrix
evaluated using MALA and Metropolis random walk at 77K with 64 beads. MALA
estimate has a smaller confidence interval thus a more accurate estimate than that
of the Metropolis random walk. The error bar indicates the 95% confidence interval
evaluated with the batch means. The 0.95 quantile of the χ2 distribution with 13
degrees of freedom is 22.362 and both Ljung-Box statistics (Q) are smaller. Thus, the
uncorrelation hypothesis is not rejected in both cases at the 5% significance level.
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tion number at low temperatures. As can be seen in Fig. 4.3, 64 or more beads are

needed for the coherence to converge at 77K, while 16 beads are enough at 300K with

acceptable accuracy. This is a well known limition of imaginary time path integral

Monte Carlo simulations. Figure 4.5 shows the probability density function of the

phonon coordinate at 77K and 300K. The population difference in the reduced den-

sity matrix is reflected to the difference in the probability mass of the two diabatic

potential energy minimum at (3, 0) and (0, 2).

4.4 Conclusion

We explore a method for obtaining the thermal reduced density matrix of an

exciton system coupled to an arbitrary phonon bath for path integral Monte Carlo

simulation. Note that our scheme is closely related to the path integral Monte Carlo

simulation for nonadiabatic systems for vibrational coherence [128, 131, 132]. Al-

though the phonon state can be obtained as a byproduct, we mainly focused on

the evaluation of the reduced density matrix of the excitonic system to explore the

asymptotic behavior of the populations and coherences in this paper. In addition, we

implemented an importance sampling scheme for better spatial scaling and sampling

efficiency. Although the path integral Monte Carlo cannot evaluate the real time

evolution of density matrices, the method gives the exact asymptotic values with all

quantum effects from both the system and bath environments if a sufficient number of

beads are used. We believe that in some of the cases where the bath has a nontrivial

coupling to the system, or the non-Markovianity of the bath manifests very strongly,

treating the environment around the system of interest as a set of harmonic oscillators
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Figure 4.3: Estimates of matrix elements of the thermal reduced density matrix eval-
uated at 30K, 50K, 77K, 140K, 225K and 300K with different discretization numbers
of 4, 8 and 16 using MALA. (a) is the (1,1) element, (b), (c) and (d) are (1,2), (2,1)
and (2,2) elements, respectively. The error bar indicates the 95% confidence interval
evaluated with the batch means.
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Figure 4.4: Estimates of matrix elements of the thermal reduced density matrix eval-
uated at 30K, 50K, 77K, 140K, 225K and 300K with different discretization numbers
of 4, 8 and 16 using random walk Metropolis. (a) is the (1,1) element, (b), (c) and
(d) are (1,2), (2,1) and (2,2) elements, respectively. The error bar indicates the 95%
confidence interval evaluated with the batch means.
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Figure 4.5: The phonon probability density function evaluated at (a) 77K and (b)
300K with 16 beads using MALA. At the lower temperature, the contribution of
the exciton with lower energy at (0, 2) becomes larger. Therefore, the population
differenece becomes more distinct, as can be seen in the temperature dependence of
the exciton population in Fig. 4.3.

is not sufficient. If this is the case, the system should be studied in its entirety. We

are trying to develop a real time propagation scheme to treat the system exactly, and

the bath semiclassically. The method studied in this paper offers a foundation for it

by providing the correct asymptotic behaviors.
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Chapter 5

First-principles semiclassical initial

value representation molecular

dynamics

5.1 Introduction

Algorithms for the simulation of molecular dynamics belong to the fundamental

toolset of modern theoretical chemical physics. Classical simulation methods are able

to study systems with up to millions of particles but are unable to describe quantum

effects such as tunelling and delocalization. Exact quantum mechanical methods

are restricted to a few quantum particles, especially when pre-computed analytical

potential energy surfaces (PES) are employed.

First-principles molecular dynamics (FPMD) algorithms have been introduced as

an alternative to the pre-calculation of the PES. FPMD avoids any source of error
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originated from the fitting of the PES. This is particularly true for many degrees

of freedom, where the fitting procedure might not represent the many-dimensional

surface accurately. In this family of methods, the potential and its derivatives are

calculated on-the-fly as the dynamical simulation progresses and are directly obtained

from electronic structure calculations. In the Born-Oppenheimer molecular dynamics

(BOMD) approach, the electronic structure calculations for a given simulation step

are converged based on previous step information. This approach can lead to system-

atic energy drifts and several methods have been proposed to avoid this effect [133].

Alternatively, extended Lagrangian molecular dynamics approaches (ELMD) [134–

137] involve the propagation of nuclear and electronic degrees of freedom simulta-

neously. The electronic degrees of freedom are assigned to classical variables that

are propagated using classical equations of motion and these can be expanded in

terms of plane waves [134], Gaussian functions [136] or real-space grids [137]. Usually

ELMD propagation is computationally more efficient, however questions have raised

on whether the resultant energy surface remains close to the actual Born-Oppenheimer

one and about disturbing dependencies on the fictitious electronic masses [136, 138].

While the evaluation of the potential on-the-fly can be easily integrated with

classical simulations, the delocalized nature of quantum mechanical propagation has

led to the development of many alternative approaches for the simulation of quantum

dynamics. For example, the path-integral centroid molecular dynamics approach [139]

includes quantum nuclear effects employing an extended Lagrangian. Alternatively,

in the variational multi-configuration Gaussian wavepacket method (vMCG) [140] the

quantum wavepackets are represented by fixed-width Gaussian functions for which the
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potential is approximated to be locally harmonic. Other approaches introduce a mean

field approximation and then update the dynamics in a time-dependent self-consistent

fashion [141, 142].

Semiclassical molecular dynamics methods [143–152] are based on classical tra-

jectories and therefore are amenable for carrying out on-the-fly calculation of the

potential. The benefits of calculating the potential only when needed have been

suggested by Heller and co-workers [152, 153]. In between formally exact quantum

methods and classical dynamics, semi-classical methods include quantum effects ap-

proximately. Two representative semi-classical approaches are the coupled coherent

states (CCS) technique [154] and the ab initio multiple spawing method (AIMS) al-

gorithm [155]. In the CCS approach, several grids of coherent states are classically

propagated and their trajectories can be derived from first principle dynamics. In

AIMS, the nuclear wavefunction are spawned onto a multiple potential surface basis

set. This set is made of adaptive time-dependent fixed-width Gaussian functions,

which are generated by classical Newtonian dynamics.

5.2 First-Principles SC-IVR

In this work, we show how the semiclassical initial value representation (SC-IVR)

method [144] can be coupled tightly and naturally, without any mayor change in

formulation, with first principles electronic structure approaches to carry out clas-

sical molecular dynamics. We show how the method is able to reproduce approxi-

mately quantum effects such as the vibrational power spectra using a single, short

classical trajectory using computational resources comparable to those employed in
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first-principles molecular dynamics calculations. Calculations employing multiple tra-

jectories can in principle be more accurate (and more computational intense as well),

but here we focus on analyzing the predictive power of single trajectory runs. Finally,

we describe how different approaches can be used in conjunction with this method

for studying the symmetry of the vibrational states either by arranging the initial

conditions of the classical trajectory or by employing the symmetry of the coherent

state basis.

In the SC-IVR method, the propagator in F dimension is approximated by the

phase space integral,

e−iĤt/~ =
1

(2π~)F

∫
dp (0)

∫
dq (0) Ct (p (0) ,q (0))

× eiSt(p(0),q(0))/~ |p (t) ,q (t) 〉〈p (0) ,q (0)| , (5.1)

where (p (t) ,q (t)) are the set of classically-evolved phase space coordinates, St is the

classical action and Ct is a pre-exponential factor. In the Heller-Herman-Kluk-Kay

version of the SC-IVR [151, 156], the prefactor involves mixed phase space derivatives,

Ct (p (0) ,q (0)) =

√
1

2

∣∣∣∣ ∂q (t)

∂q (0)
+
∂p (t)

∂p (0)
− i~γ ∂q (t)

∂p (0)
+

i

γ~
∂p (t)

∂q (0)

∣∣∣∣, (5.2)

as well as a set of reference states,

〈q | p (t) ,q (t)〉 =
∏
i

(γi/π)F/4 exp [−γi · (qi − qi (t)) /2 + ipi (t) · (qi − qi (t)) /~] ,

(5.3)

of fixed width γi. For bound systems, the widths are usually chosen to match

the widths of the harmonic oscillator approximation to the wave function at the

global minimum and no significant dependency has been found under width vari-

ation [145]. By introducing a 2F × 2F symplectic monodromy matrix M (t) ≡
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∂ ((pt,qt) /∂ (p0,q0)), one can calculate the pre-factor of Eq. 5.2 from blocks of F×F

size and monitor the accuracy of the classical approximate propagation by the devia-

tion of its determinant from unity. Wang et al. suggested calculating the determinant

of the positive-definite matrix MTM instead [157] and we monitored the same quan-

tity for this work. The spectral density is obtained as a Fourier transform of the

surviving probability[151]. The SC-IVR expression of the probability of survival for

a phase-space reference state |χ〉 = |pN , qN〉 is,〈
χ
∣∣∣e−iĤt/~∣∣∣χ〉 =

1

(2π~)F

∫
dp (0)

∫
dq (0) Ct (p (0) ,q (0))

× eiSt(p(0),q(0))/~ 〈χ | p (t) ,q (t)〉 〈p (0) ,q (0) | χ〉 . (5.4)

The phase-space integral of Eq. 5.4 is usually computed using Monte Carlo meth-

ods. If the simulation time is long enough, the phase space average can be well

approximated by a time average integral. This idea has been suggested and im-

plemented by Kaledin and Miller [158] to obtain the time averaging (TA-) SC-IVR

approximation [159] for the spectral density,

I (E) =
1

(2π~)F

∫
dp (0)

∫
dq (0)

Re

π~T

∫ T

0

dt1

∫ T

t1

dt2 Ct2 (p (t1) ,q (t1))

× 〈χ | p (t2) ,q (t2)〉 ei(St2 (p(0),q(0))+Et2)/~
[
〈χ | p (t1) ,q (t1)〉 ei(St1 (p(0),q(0))+Et1)/~

]∗
,

(5.5)

where (p (t1) ,q (t1)) and (p (t2) ,q (t2)) are variables that evolve from the same initial

conditions but to different times, and T is the total simulation time. The advantage

of this approach is that the additional time integral can in principle replace the need

for phase-space averaging in the large-time limit of a single trajectory. Calculations

of the vibrational spectra of systems such as the water molecule have proved to be
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very accurate using the TA-SC-IVR approach and its inexpensive single-trajectory

variant showed significant improvements over the simple harmonic approximation

for excited vibrational levels [158]. In order to make Eq. 5.5 less computationally

demanding, one can employ the separable approximation [158], where the pre-factor

of Eq. 5.5 is approximated as a phase, Ct2 (p (t1) ,q (t1)) = Exp [i (φ (t2)− φ (t1)) /~] ,

and φ (t) = phase [Ct (p (0) ,q (0))]. Using this approximation, Eq. 5.5 becomes

I (E) =
1

(2π~)F
1

2π~T

×
∫
dp (0)

∫
dq (0)

∣∣∣∣∫ T

0

dt 〈χ | p (t) ,q (t)〉 ei(St(p(0),q(0))+Et+φt(p(0),q(0))/~)

∣∣∣∣2
(5.6)

leading to a simplification of the double-time integration to a single time integral. The

resulting integral is positive definite, making more amenable for Monte Carlo integra-

tion. Our numerical tests show that the results of carrying out this approximation

are essentially identical to the double time integral approach when using a single tra-

jectory. In this paper results will be reported by use of this last approximation, since

it is computationally cheaper and numerically more stable than Eq. 5.5.

For this work, we compute the potential energy surface at each nuclear configura-

tion directly from the Kohn-Sham orbitals expanded on a non-orthogonal Gaussian

basis. Gradients and Hessians at each nuclear configuration are obtained analytically

from electronic orbitals. The evaluation of the potential represents most of the com-

putational effort of our approach, which is roughly a few hours of computer time using

standard desktop machines for a 1 cm−1 spectrum resolution. The nuclear equations
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of motion are,

MIR̈I = −∇I min
C

EDFT [C,RI ] , (5.7)

where C is the rectangular matrix of the lowest occupied orbitals and the classical

propagation is performed according to the velocity-Verlet algorithm, as implemented

in the Q-Chem package [160]. At each time step, the potential, nuclear gradient

and Hessian are used to calculate the action, pre-factor and coherent state overlaps

necessary for the TA-SC-IVR method (Eq. 5.5 and 5.6). A schematic representation

of an implementation of the algorithm for a multithreaded machine is shown in Fig.

(5.1). At each time step, results are accumulated for time-average integration. The

results presented on this work were carried out on a single thread. For each classical

trajectory, the procedure is repeated and the final integration gives the spectrum

intensity I (E) for a given parametric value of E. The same procedure is repeated

for next E + ∆E, where in our calculation ∆E = 1cm−1. As previously mentioned,

the trajectory is monitored by calculating at each time step the deviation of the

determinant of the monodromy matrix from unity. The difference in the determinants

was always smaller than 10−6 during the course of the calculations. A time step of 10

a.u. has been always found to satisfy the strict monodromy matrix restrictions even

for the lightest atoms.

The calculation of the full dimensional vibrational power spectrum of the CO2

molecule is a challenging test for FP-SC-IVR method: A successful method should

reproduce spectral features such as degenerate bending modes, strong intermodal

couplings and Fermi resonances. To evaluate the FP-SC-IVR method, we compare

vibrational spectrum of CO2 molecule from FP-SC-IVR method to numerically-exact
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Figure 5.1: First-principles SC-IVR algorithm: At each time step electronic wave-
function are saved to calculated nuclear Hessian. Nuclear positions, gradients and
Hessian are accumulated for the spectral time-average integral.

discrete variable representation (DVR) eigenvalue calculations on a potential fitted

to a set of first-principles points obtained at the same level of theory. The next

section describes the details of the potential fitting and DVR calculation. Following,

we continue on the discussion of the FP-SC-IVR method.

5.3 Potential Fitting and Grid Calculations

The CO2 molecule is a linear molecule with four vibrational normal modes: a

symmetric stretching mode (ν1), degenerate bending modes (ν2 and ν2) , and an

antisymmetric stretching mode (ν3). A 3d potential energy grid in internal coor-

dinates is calculated using the B3LYP density functional [161] with the cc-pVDZ
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basis set [162]. The grid points are then fitted to a potential energy surface [163]

represented by a fourth-order Morse-cosine expansion,

V (r1, r2, θ) =
4∑

i,j,k=0

Kijk

(
1− e−a1(r1−re))i × (cosθ − cosθe)j

(
1− e−a2(r2−re))k , (5.8)

where the parameter re = 2.206119 a.u. and θe = 180 specify the equilibrium co-

ordinates of the CO2 molecule. The Morse parameters a1 = a2 = 1.2489 a.u. were

determined so as to minimize the standard deviation of the differences of the fitted

potential from the ab initio result using the Levenberg-Marquardt non-linear least

square algorithm [164] . Instead, re was obtained by geometry optimization within

the Q-Chem ab initio package [160].

The 35 Kijk coefficients were subject to the non-linear least square fitting proce-

dure to the DFT energies. Since these coefficients must be the same once r1 and r2

are swapped, 13 linear constraints of the type Kijk = Kkji were imposed during the

fitting procedure. Additionally, to ensure that the equilibrium geometry was fitted

to the predetermined equilibrium parametric distance, the coefficients K100 and K001

were constrained to be zero. Consequently, we employed a total number of 14 fitting

constraints (K000 term is always constant). A total of 2500 ab initio grid points were

chosen for the fitting process. These grid points range from 1.42 a.u. to 7.09 a.u. for

r1 and r2, and from 113.6 to 180 for the angle variable. The calculated expansion

coefficients Kijk are reported in Table 5.1.

As far as the numerically exact eigenvalues calculations is concerned, we used an

exact DVR (Discrete Variable Representation) matrix diagonalization procedure. The

CO2 molecule was described for grid calculations in internal coordinates, while on-

the-fly classical trajectories and the SC-IVR calculations described previously were
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coeff. attoJ coeff. attoJ

K001 +0.000000 K100 = K001

K002 +1.442886 K200 = K002

K003 -0.032125 K300 = K003

K004 +0.003630 K400 = K004

K010 +0.726891 K111 +0.392310
K011 -0.443422 K110 = K011

K012 -0.162970 K210 = K012

K013 -0.101077 K310 = K013

K020 +0.488451 K121 +0.606572
K021 -0.358126 K120 = K021

K022 -0.210888 K220 = K022

K030 +0.175981 K202 +0.097300
K031 -0.184503 K130 = K031

K112 +0.103205 K211 = K112

K101 +0.210532 K040 +0.155374
K102 +0.067998 K201 = K102

K103 +0.068693 K301 = K103

Table 5.1: Expansion coefficients Kijk for the CO2 B3LYP/cc-pVDZ fitted potential
energy surface in attoJoule units.

performed in Cartesian coordinates. No significant contamination between the ro-

tational (set to zero kinetic energy) and vibrational motion was found within the

simulation time. To this end, the deviation from simplecticity of the monodromy ma-

trix in the vibrational sub-space were never more than 10−6 as previously mentioned.

The coordinates r1 and r2 are CO distances, and θ is the angle between the CO

bonds. In these coordinates the kinetic part of the Hamiltonian for J = 0 is,

T =
p2

1

2µCO
+

p2
2

2µCO
+

j2

2µCOr2
1

+
j2

2µCOr2
2

+
p1p2cosθ

mC

− p1pθ
mCr2

− p2pθ
mCr2

− cosθj2 + j2cosθ

2mCr1r2

, (5.9)

where pk = −i ∂
∂rk

, pθ = −i ∂
∂θ
sinθ, and j2 = − 1

sinθ
∂
∂θ
sinθ ∂

∂θ
. The carbon mass were

taken to be mC = 12.0 a.m.u., while the oxygen mass mO = 15.9949 a.m.u. and the
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reduced mass is as usual 1/µCO = 1/mC + 1/mO.

As previosuly mentioned, in order to calculate exact eigenvalues, a sine-DVR basis

for the coordinates r1 and r2 and a Legendre-DVR basis for θ has been used [165]. For

each degree of freedom 50 DVR functions were used and eigenvalues were converged

to at least 10−3cm−1. The sine-DVR ranged from 1.51 a.u. to 3.78 a.u. and the

magnetic quantum number m of the Legendre-DVR was zero.

Because of the restriction of total angular momentum J = 0, we couldn’t observe

all degenerate bending excitations. However, ZPE and several vibrational energy

levels were obtained and compared with that ones coming from a single on-the-fly

semiclassical trajectory.

5.4 First-Principles SC-IVR Calculations

The full power spectrum obtained using Eq. (5.5) after 3000 BOMD steps of

10 a.u. each is shown on the bottom of Fig. 5.2. For longer simulations, the

monodromy matrix symplectic properties as well as the resolution of the spectrum

started to deteriorate. The calculated vibrational zero-point energy (ZPE) value was

2518 cm−1 versus the exact value of 2514.27 cm−1 and both are in good agreement

with the experimental value of 2508cm−1. In contrast, harmonic normal-mode analy-

sis (whose frequencies are 656.62, 1363.46, 2423.47 wavenumbers) predicts a frequency

of 2550.08 cm−1. Thus, the TA-SC-IVR method successfully reproduces the ZPE an-

harmonic effects with the use of a single classical trajectory. Some representative

frequencies of the power spectrum are presented in Table 5.2. The ZPE was shifted

to zero for comparison with reported classical ELMD simulations on the same system
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Figure 5.2: CO2 Vibrational Power Spectrum: Initial kinetic energy on: (a) all modes;
(b) symmetric mode; (c) one bending and symmetric modes; (d) bending and asym-
metric modes.
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that cannot reproduce the ZPE or higher vibrational states [166, 167] but only single

modes frequencies. For these studies of Refs. 166 and 167, the vibrational data were

obtained from the Fourier transform of correlation functions of classical trajectories

in plane-wave DFT calculations. The ELMD approach predicts the following funda-

mental frequencies 648, 1368, 1428 and 2353 for Ref. 166 and 663, 1379, 1456 and

2355 for Ref. 167. These classical results are similar but limited to a normal mode

analysis.

Table 5.2 compares our TA-SC-IVR results with the exact ones and to those ob-

tained by Filho [168] with the same density functional and a basis set of comparable

quality (6-31+G*) [169], using a perturbative approximation of the eigenvalue expan-

sion. One can see how a different basis set results a significant deviation of vibrational

levels spacing, once the comparison is performed in units of wavenumbers.

A major difficulty on the CO2 power spectrum simulations is the calculation of

the Fermi resonance splittings. These are the result of anharmonic couplings, and

they represent a stringent test for a semi-classical method that relies on a single short

trajectory. The Fermi resonances occur when an accidental degeneracy between two

excited vibrational levels of the same symmetry exists and it results in a repulsion

between the corresponding energy levels. The sources of these resonances are purely

anharmonic and are only present in polyatomic potentials. For the CO2 molecule, the

unperturbed frequencies for the symmetric stretching are roughly equal to the first

bending overtone (ν1
∼= 2ν2). For these modes, the wavefunctions are transformed

as the irreducible representation of D∞h, i.e. ν1(1000) as Σ+
g , at the experimental

frequency of 1388 cm−1, and ν2
2(0200) as Σ+

g + ∆g, at an experimental frequency of
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Exp.(a) mode(b) Harmonic(c) FP-SCIVR-SA(d) DVR Ref. 168

667.4 0, 11, 0 656.62 644 657.2
1285.4∧ 0, 20, 0 1313.24 1288 1252.91 1283.4
1388.2∧ 1, 00, 0 1363.46 1381 1372.29 1408.8
1932.5† 0, 31, 0 1969.86 1932 1930.2
2003.2 0, 33, 0 1969.86 2024 2004.9
2076.9† 1, 11, 0 2020.08 2106 2098.5
2349.1 0, 00, 1 2423.47 2388 2359.51 2411.5
2548.4‡ 0, 40, 0 2626.48 2515 2482.95 2553.3
2585.0? 0, 42, 0 2626.48 2578 2591.2
2671.7‡ 0, 44, 0 2626.48 2669 2640.15 2716.5
2760.7? 1, 22, 0 2676.70 2759 2796.3
2797.2‡ 2, 00, 0 2726.92 2793 2757.14 2845.2
4673.3 0, 00, 2 4846.94 4690+ 4693.24 4797.8
6972.6 0, 00, 3 7270.41 6803+ 6821.35 7152.9

Table 5.2: (a) Experimental frequencies in cm−1 from Ref. 173. (b) First number is
the symmetric stretch quantum, second are the degenerate bendings, and third one
is the asymmetric stretch. The exponent of the second number is the li degeneracy
index. (c) Vibrational levels according to a normal modes harmonic model. (d) Using
the Separable approximation of Eq. 5.6. Some of the calculated vibrational energy
eigenvalues are tabulated. All data are in wavenumbers. Fermi Resonances group
of frequencies are indicated by the same superscript symbols. Uncertain peaks are
marked with (+). The first column represents the experimental vibrational frequen-
cies associated with the modes listed on the second column. The third column shows
the harmonic DFT results. In the fourth and fifth columns, we show our FP-SCIVR
and exact numerical DVR calculations in the B3LYP/cc-PVDZ model chemistry used
for the FP-SCIVR calculations. The fifth column shows perturbative DFT calcula-
tions carried out using a similar functional and basis set.
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1285cm−1. Another Fermi doublet results from the addition of a quantum of bending

mode to the previous Fermi doublet to yield the following states: ν1ν2(1110) , at

an experimental frequency of 2077 cm−1 and the ν3
2(0310) state, at an experimental

frequency of 1932 cm−1. Higher-energy Fermi resonances are indicated in Table 5.2

by using the same superscript symbols. The first Fermi terms are located at 1313

and 1363 in a harmonic approximation and corrected to 1288 and 1381 wavenumbers

for FP-TA-SC-IVR. Thus, the original levels have been repelled by Fermi couplings.

One mode is located at a higher frequency than the harmonic prediction, while the

other is at a lower frequency. The latter effect could be explained also by simple

anharmonicity, but the former is evidence of the ability of the single trajectory FP-

TA-SC-IVR method even when the separable approximation is used to capture Fermi

resonance effects partially. The same reasoning can explain the second Fermi doublet

located at 1932 and 2106 for FP-TA-SC-IVR, while the harmonic estimate at 1970

and 2020 wavenumbers.

With the FP-TA-SC-IVR method, one can also identify the couplings between

vibrational modes and the appearance of Fermi resonance splittings by carrying out

simulations with different initial conditions. This can be achieved by selectively set-

ting the initial velocity of some vibrational modes to zero. The anharmonic coupling

between levels leads to a consistent reproduction of the ZPE peak in the spectrum for

all simulations. However the excited vibrational peaks related to the modes with zero

initial kinetic energy show a very small signal in the power spectrum. Vibrational

energy redistribution processes can be studied as well, by carrying out simulations

at different timescales. In Fig. 5.2, we show the resulting power spectra for different
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initial conditions. If the initial state contains only purely symmetric motion, the low-

est Fermi resonance peaks in Fig. 5.2(b) are absent as well as for a bending (without

symmetric stretching) motion in Fig. 5.2(d). These results and the intensity of their

peaks respect to that ones located at the same frequencies in Fig. 5.2(a) suggest that

the Fermi resonance is indeed originated from the coupling between bending and the

symmetric modes. One can reach the same conclusions by inspecting the lower Fermi

doublet peaks intensity: by adding a bending mode (from Fig. 5.2(b) to Fig. 5.2(c))

and a second one (from Fig. 5.2(c) to Fig. 5.2(a)) the intensity of both peaks is grad-

ually raised. This is called “intensity borrowing” and it arises from the strong mixing

of the zero order states. These observations reinstate that “repulsion and mixing are

the hallmarks of Fermi resonances” [170]. Also, for a distinct set of initial conditions,

an additional peak at 5500 cm−1 related to the asymmetric stretch was observed. Us-

ing the proposed approach, one can carefully detect the characteristics of each peak

even for complicated power spectra.

An attractive method for obtaining the symmetry properties of the eigenstates

involves arranging the initial basis vectors [158, 171]. The basis for this method is

the direct product of coherent states |χ〉 =
∏4

k=1 |p
(k)
i , q

(k)
i 〉εk . These states can be

chosen to have an initial symmetry by employing linear combinations of the form

|p(k)
i , q

(k)
i 〉εk =

(
|p(k)
i , q

(k)
i 〉+ εk|−p,−q(k)

i 〉
)
/
√

2. The k-th mode can be made sym-

metric (εk = 1), antisymmetric (εk = −1) or have no symmetry restrictions (εk = 0).

In order to assign the proper symmetry to each peak on Fig. 5.3 , the reduced D2h

symmetry group was adopted. All irreducible representations were reproduced and

peaks were grouped by symmetry as reported in Fig. 5.3. Note that (d) and (e)
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Figure 5.3: CO2 Vibrational Power Spectrum (Separable approximation): Different
basis set symmetries for ν1(symmetric stretching mode), ν2 and ν2 (bending modes)
and ν3(asymmetric mode) and the corresponding D2h irreducible representation; (a)
all εs are zero; (b) (B1u): ε (v1) = 0, ε (v2) = 1, ε (ν2) = 0, ε (v3) = −1; (c) (Ag):
ε (v1) = 1, ε (v2) = 0, ε (ν2) = 0, ε (v3) = 1; (d) (B2u):ε (v1) = 0, ε (v2) = −1, ε (ν2) =
0, ε (v3) = 1, (e) (B3u) ε (v1) = 0, ε (v2) = 0, ε (ν2) = −1, ε (v3) = 1. B2u and B3u

representations are degenerated in the D∞h subspace as shown.

119



Chapter 5: First-principles semiclassical initial value representation molecular
dynamics

Figure 5.4: Gaussian width variations and related power spectra: a) γi = ωi; b)γi =
2ωi; c)γi = ωi/2, where ωi are the i− esime normal mode frequency. The FP-SCIVR
power spectra are fairly insensitive to variations in the value of the coherent state
width.

plots are identical since they only differ trivially by swapping coefficients between the

degenerate bending modes in the original D∞h symmetry group.

Finally we have investigated the stability of the propagator versus variations of

the coherent states gaussian width parameters γi. Previous calculations [156] have

shown that there is no significant depedency on energy and norm conservation for the

semiclassical propagator if suitable values of γi are chosen. For power spectra calcu-

lation we have chosen to look at vibrational levels variations under different values

of coeherent states width. Since a single trajectory was used in the FP-TA-SC-IVR

approach, no Monte Carlo integration is performed in phase space coordinates and

the changes of γi are confined to the coherent states overlap and to the prefactor in
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Eq. 5.2. As reported in Fig. 5.4 and checked on a finer scale, no significant varia-

tion was observed beyond 1 cm−1. These findings are in agreements with previous

calculations on the same propagator [156]. Interestingly, a different distribution in

peaks intensity were found in each panel. Since the peaks magnitude is proportional

to the overlap between the reference state and the actual eigenfunction, the anhar-

monic choice (γi = ωi/2) is a more suitable solution as clearly showed on panel (c) of

Fig. 5.4.

5.5 Conclusions

In conclusion, we have shown that SC-IVR can be implemented easily and effi-

ciently using first principles molecular dynamics. With the modest computational cost

of a single classical trajectory, the vibrational density of states of the CO2 molecule

was calculated. On Fig. 5.5 we report a graphical comparison between the harmonic

and the FP-TA-SC-IVR approximations, versus the exact vibrational value for the

Fermi resonance multiplets. One can notice how the single trajectory FP-TA-SC-IVR

goes far beyond the harmonic approximation by removing the harmonic degenerancy

and including part of anharmonicity. Fermi splittings are well mimiced not only for

the first doublet, but also for the higher ones. The numerically exact DVR vibrational

energy levels constrained by J = 0 are represented on the last column. The FP-TA-

SC-IVR values are similar to the DVR results, when comparison is possible. However,

a closer look at Table 5.2 shows how these single trajectory FP-TA-SC-IVR calcula-

tions can include only part of the anharmonicity and that their precision gets worse

for higher vibrational levels. In particular, the spacing of the higher-energy states is
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Figure 5.5: Fermi Resonance states vibrational energy level: (a) in harmonic approx-
imation; (b) single FP-SC-IVR trajectory calculation; (c) exact grid calculation on
splined potential.
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harmonic-like and thisis the mayor limitation of using a single classical trajectory.

These and previous calculations on model potentials [158] has shown how the

single trajectory TA-SC-IVR gives reasonable results and performs better for higher

frequencies modes. The computational cost of the method is essentially the same as

classical propagation, and therefore, if broadly implemented in electronic structure

codes, it can provide a description of quantum effects at a comparable computational

cost to that of classical approaches. Possible applications of this method or related

ones are the study of excited electronic states and Franck-Condon transitions, such

as vibrational absorption spectra [174]. Although this single trajectory approach may

be a practical tool for the simulation of more complex systems, the use of more trajec-

tories is probably required to remove any harmonic “ghost states”. We are currently

exploring the use of a small number of a set of systematically determined trajectories

for further improvement of the results. If the number of required trajectories grows

as a low polynomial of the system size, semi-classical methods could be competitive

with currently-employed numerical approximations to obtain anharmonic vibrational

effects. Finally, we expect that the representation of the potential energy in terms of

normal coordinates will become less suitable when large amplitude motions or non

adiabatic effects come into play.
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Chapter 6

Simplified Sum-Over-States

Approach for Predicting

Resonance Raman Spectra

6.1 Introduction

Resonance enhancement of Raman scattering, which occurs whenever the fre-

quency of the incident radiation approaches molecular excitation frequencies, was

reported some 20 years after the initial experimental observation of the Raman ef-

fect [175, 176]. The large degree of enhancement spanning several orders of mag-

nitude is useful for detection of the inherently inefficient spontaneous Raman scat-

tering. Moreover, the shapes of Raman spectra change considerably at resonance

with molecular excitations and provide information on structures and properties of

electronic excited states. Resonance Raman spectroscopy is a sensitive spectroscopic
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technique for strongly absorbing chemical constituents such as nucleic acid bases,

aromatic aminoacids, and heme chromophores [177–179].

Another important manifestation of resonance enhancement emerges in surface-

enhanced Raman scattering (SERS) [180–182]. The surface enhancement of Raman

scattering is observed in molecules adsorbed on rough or nanostructured noble-metal

surfaces and comprises an electromagnetic and a chemical contribution [182, 183]. The

chemical contribution to the SERS intensities, while generally smaller in magnitude

than the electromagnetic enhancement, is sensitive to the electronic structure of the

adsorbate. The chemical effect leads to characteristic changes in the relative inten-

sities of Raman bands and alters the overall shape of the Raman spectra compared

to neat substance. Chemical effects are satisfactorily described by cluster models

and can be attributed to resonance enhancement due to interface states [184, 185].

The combination of surface enhancement with intramolecular excitations gives rise to

surface-enhanced resonance Raman scattering (SERRS) which provides an extraor-

dinary sensitivity, even to the level of single-molecule detection [186–188].

While theoretical descriptions of resonance Raman scattering has been developed

early on by Shorygin and co-workers [176, 189] and by Albrecht [190, 191], calculations

of resonance Raman scattering from medium-size and large molecules are not often

routinely performed. Raman scattering is a second-order process and its cross sections

are given by the Kramers–Heisenberg–Dirac (KHD) dispersion relation [192, 193].

The classical expression for Raman cross sections involving derivatives of electronic

polarizabilities with respect to vibrational normal modes can be obtained via clo-

sure of the sum over intermediate vibronic states in the KHD expression [194, 195].
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The description of Shorygin and co-workers [189, 196] represents the polarizability

derivatives as a sum over electronic states and introduces parameters for the result-

ing derivatives of excitation energies and oscillator strengths of the lowest excited

state with respect to vibrational normal modes.

On the other hand, Albrecht’s approach is rooted in the vibronic coupling theory

[197, 198] and introduces the Herzberg–Teller expansion into the sum over vibronic

states of the KHD dispersion relation. Each vibronic state contributes four different

terms denoted A, B, C, and D by Albrecht. The A term is due to vibrational wave-

function overlap of the initial and the intermediate state and of the intermediate and

the final state. The B and C terms arise from the dependence of transition dipole

moments on vibrational coordinates and are analogous to the intensity borrowing

terms of vibronic coupling theory [197, 198]. The B term is derived from the coupling

between the intermediate electronic excited state to other excited states, while the

C term is due to the coupling between the ground electronic state to excited states

and is customarily assumed to be small. The D term is of higher order in the cou-

pling between electronic states and is often neglected. Albrecht’s treatment involves

a full sum over all vibronic states of the molecule and is thus rarely computationally

tractable for larger systems. Nevertheless, it constituted a major breakthrough in the

understanding of Raman scattering in that it provided a unified picture for both non-

resonant and resonant Raman spectra. Sums over vibronic states can be evaluated in

the displaced harmonic oscillator approximation [199].

A different approach to resonance Raman scattering was proposed by Heller and

co-workers [200]. It amounts to a transformation of the KHD dispersion relation into
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the time domain, which represents the resonance Raman process as a propagation of

vibrational wavepackets (multiplied with transition dipole moments) on the excited-

state potential energy surface. Often, the short-time approximation to propagation

dynamics is introduced [201], which has proven remarkably useful in interpreting

resonance Raman spectra [201–203].

Finally, resonance Raman cross section can be expressed in a fashion analogous

to the non-resonant case by introducing finite lifetimes for the intermediate states,

or in other words, by computing Raman cross sections from derivatives of electronic

polarizabilities evaluated at complex frequencies ω̃ = ω + iγ [204, 205]. Here ω is

the excitation frequency and γ corresponds to an averaged lifetime of excited states,

which is usually treated as an empirical parameter.

The purpose of the present work is to provide a simple and computationally

tractable approximation for resonance Raman cross sections. To this end, we reduce

the summation over vibronic states of the KHD dispersion relation to a summation of

electronic states, similar to the parametric method of Shorygin and co-workers, and

apply the double harmonic approximation, which is commonly used in calculations

of vibrational spectra. This approximation requires only excitation energies, transi-

tion dipole moments, and their respective geometric derivatives to be computed for

the electronic excited states included in the sum-over-states expression. In contrast

to Shorygin’s work, all parameters in the sum-over-states expression are provided

from ab initio calculations, while the summation runs over all electronic excitations

in a given energy range. Analytical gradient techniques make computation of geo-

metric derivatives particularly efficient in the framework of time-dependent density
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functional theory (TDDFT) [206]. In addition, the sum-over-states approach may be

used to identify major contributions to resonance Raman intensities. We apply the

present approach to assign and interpret resonance Raman scattering in nucleic acid

bases.

6.2 Theory

The polarizability theory of Raman scattering due to Placzek relates the Raman

scattering cross section to frequency-dependent electronic polarizabilities at the fre-

quency of the incident radiation [191, 195],

αmn(ω) =
∑
k

[
µm0kµ

n
0k

Ωk − ω
+
µn0kµ

m
0k

Ωk + ω

]
. (6.1)

m and n are Cartesian directions. We use atomic units throughout. The summation

is over all electronic excited states k > 0 with excitation energies Ωk and transi-

tion dipole moments µm0k. The polarizability theory of Raman scattering is based

on the separability of the electronic and nuclear wavefunctions (Born–Oppenheimer

approximation) and the assumption that the incident radiation is sufficiently far from

resonance such that energy differences between vibronic levels of the KHD expression

may be approximated by electronic excitation energies Ωk. In the double harmonic

approximation, the Raman scattering cross sections are proportional to derivatives

of αmn(ω) with respect to vibrational normal modes [191, 195]. Straightforward dif-

ferentiation of the sum-over-states expansion for α(ω) with respect to the vibrational

normal mode Q yields the following expression for the Raman scattering cross section
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of the vibration Q, (
∂σ

∂Ω

)
Q

=
(ω − ωQ)4

2ωQc4
|〈σQ(ω)〉|2 , (6.2)

where the components of the Raman scattering tensor σmnQ (ω) are given by

σmnQ (ω) =
∑
k

[
− µm0kµn0k

[
(Ωk − ω)2 − γ2

k

((Ωk − ω)2 + γ2
k)

2 +
i 2(Ωk − ω)γk

((Ωk − ω)2 + γ2
k)

2

]
∂Ωk

∂Q

+

[
µm0k

∂µn0k
∂Q

+
∂µm0k
∂Q

µn0k

][
Ωk − ω

(Ωk − ω)2 + γ2
k

+
i γk

(Ωk − ω)2 + γ2
k

]]
.

(6.3)

Here, ωQ is the vibrational frequency, c is the speed of light. Angle brackets denote

the appropriate orientational average over components of the Raman scattering tensor

σQ(ω). The excited states k > 0 have linewidths γk associated with them, which are

chosen as empirical parameters independent of k in most studies. We will follow this

practice here. The analogous expression for σmnQ (ω) with uniform linewidths γk = γ

for all excited states may be obtained by differentiation of the polarizability evaluated

at the complex frequency ω̃ = ω+ iγ [204, 205]. In contrast, in the present approach

different linewidths γk may be chosen for individual excited states to reflect differences

in their lifetimes. Ultimately, the excited-state linewidths may be rigorously derived

from a open-system formulation, e. g., in the framework of TDDFT [207–209].

In practice, the sum over electronic excited states has to be truncated. The

number of excited states contributing significantly to the Raman cross sections in

Eq. 6.3 will be small in the vicinity of a resonance (|ω−Ωk| ≈ γk) but might increase

significantly in the non-resonant case. While truncation of the sum-over-states is a

potential source of error not present in the finite-lifetime approach [204, 205], we find

that convergence is sufficiently fast even in the non-resonant regime for nucleic acid

bases considered here.
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Differentiation of the frequency-dependent electronic polarizabilities (Eq. 6.1) with

respect to the vibrational normal mode Q gives rise to two kinds of terms for each

excited state. The first term in Eq. 6.3 is proportional to the Cartesian derivative

(gradient) of the excitation energy ∂Ωk
∂Q

. It may be compared to the A term in Al-

brecht’s approach, which arises from the energy differences between vibronic states in

the energy denominator [190, 191]. By analogy, we will refer to these contributions as

the A terms in the following. Only totally symmetric vibrational modes Q yield non-

zero energy derivatives ∂Ωk
∂Q

, therefore A terms are only present for totally symmetric

vibrations. The second term in Eq. 6.3 results from the dependence of transition

moments µm0k on the vibrational normal modes. In the language of Herzberg–Teller

coupling [190, 197, 198], this dependence results from the interaction of the ground

state or the electronic excited state k with other electronic states induced by nuclear

displacements along the vibrational mode Q. The corresponding contributions are

denoted B and C terms, respectively, in Albrecht’s approach. The terms in Eq. 6.3

that are proportional to derivatives of transition dipole moments
∂µm0k
∂Q

have the same

origin and hence will be referred to as B terms. B terms are non-zero for vibrational

modes that transform like components of the polarizability tensor; the selection rules

for the B term are equivalent to those for non-resonant Raman scattering [190, 191].

The frequency dependence of Raman spectra is defined by the molecular electronic

excitation spectrum. In the strictly resonant case (ω = Ωk) the excited electronic state

k dominates the sum in Eq. 6.3. In this limit, the shape of the resonance Raman

spectrum reflects the structure of the potential energy surface of the excited state k.

Since the A term is quadratic in the resonance denominator ((Ωk−ω)2 +γ2
k)
−1, while
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the B term is linear in it, the A term contribution can be expected to be predominant

at resonance. In the opposite limiting case the excitation frequency is far from any

electronic excitations (non-resonant Raman scattering), and a considerable number of

electronic excited states contributes to the sum-over-states expression (Eq. 6.3.) The

B term contributions become dominant in Raman cross sections, while the A terms

are scaled down by their large energy denominators. Smooth interpolation between

both limiting cases (non-resonant and strictly resonant) requires that both A and B

terms be treated on equal footing.

Analytical derivative techniques allow to compute excitation energy gradients and

non-resonant polarizability derivatives in an efficient fashion using TDDFT [206, 210].

In this work, derivatives of transition dipole moments are computed by numerical

differentiation. However, an analytical implementation is possible starting from a

Lagrangian formulation [211], similar to that for gradients of excitation energies [212,

213] and frequency-dependent polarizabilities [210].

6.3 Resonance Raman Spectra of nucleic acid bases

In the following, we explore the characteristic changes in resonance Raman spec-

tra of guanosine for excitations in the range between 200–266 nm, which contains a

number of electronic excitations. In addition, we consider Raman excitation profiles

of ring-breathing modes of nucleosides. Raman excitation profiles describe the de-

pendence of Raman cross sections on the energy of the incident radiation. Finally, we

determine the relative contributions of the A and B terms to Raman cross sections

of guanosine both at resonance and in the non-resonant case.
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All calculations have been performed using the PBE0 functional [214] and triple-

zeta valence basis sets with two sets of polarization functions (TZVPP) [215]. The

PBE0 functional has been chosen because it has proven quite accurate both for po-

larizabilities [216, 217] and Raman intensities [210, 218]. However, vibrational fre-

quencies [219] and electronic excitation energies [220] are often overestimated with

PBE0. 20 excited electronic states were included in the sum-over-states expressions.

Linewidth parameters were assumed to be 0.1 eV for all electronic states. All calcu-

lations were performed using the program package Turbomole [221].

In Fig. 6.1(a)–(c), we compare experimental and computed resonance Raman

spectra of guanosine at excitation wavelengths of 266 nm, 218 nm, and 200 nm.

In addition, we show experimental and computed non-resonant Raman spectra of

guanosine at 514.5 nm in Fig. 6.1(d). The experimental spectra are from Refs. 222

and 223. The considered range of excitation energies includes the two overlapping

electronic absorption bands of guanosine observed experimentally at 4.4–4.6 eV and

4.8–5.1 eV [224–226]. Deconvolution of the UV absorption spectrum of guanosine in

water yields 4.56 eV and 5.04 eV for the positions of the absorption maxima [224].

PBE0 predicts the two lowest electronic excited states of guanosine at 4.97 eV and

5.39 eV to be strongly allowed. At still higher excitation energies, a second pair of

strongly allowed electronic absorption bands is observed experimentally [224, 226],

with maxima at 6.17 eV and 6.67 eV, respectively. The computed excitation energies

for these transitions are 6.79 eV and 6.99 eV. We refer to supplementary information

for a full overview of computed and experimental excitation energies of guanosine.

The overestimation of excitation energies observed here is quite typical for the PBE0
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Figure 6.1: Experimental and computed Raman spectra of guanosine at 266, 218,
200, and 514.5 nm excitations. Experimental spectra of guanosine-5′-monophosphate
(GMP) are from Refs. 222 and 223. Note that different frequency scales are applied
to experimental and computed Raman spectra. See text for computational details.
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functional [220] and is in part due to the lack of solvation effects in the calculations.

Since the shape of resonance Raman spectra is sensitive to the relative position of

the frequency of the incident light in the electronic excitation spectrum, we correct

for the systematic error in excitation energies with PBE0. To this end, we first intro-

duce a linear regression between the computed and experimental excitation energies

based on the four strongly allowed electronic transitions of guanosine. The slope of

the linear regression is 1.02, the offset is 0.35 eV. In addition, frequency scales in

experimental and computed Raman spectra are adjusted in Fig. 6.1(a)–(d) to reflect

the systematic overestimation of vibrational frequencies with PBE0 functional [219].

This corresponds to an effective scaling factor of 0.96.

The experimental resonance Raman spectrum at 266 nm excitation (Fig. 6.1(a))

is characterized by a strong 1492 cm−1 Raman peak and a slightly less intense 1581

cm−1 band. The former vibrational band was attributed to an imidazole ring vibration

while the latter was assigned to a pyrimidine ring stretch mode [227]. A complete

assignment of intensive Raman bands of guanosine is given in the supplementary

information. To facilitate comparison between experimental and theoretical results,

we compute the resonance Raman spectra at an excitation frequency shifted according

to the linear regression results, see above. The experimental results obtained using

266 nm (4.66 eV) excitation are thus compared to computed Raman spectra at the

245 nm (5.07 eV) excitation. The computed Raman spectrum at 245 nm is dominated

by contributions from the S1 excited state. The strongest vibrational band is found

at 1631 cm−1 and stems from the ν(N7–C8) bond stretch. The pyrimidine ring stretch

is observed as a weaker band at 1547 cm−1. Comparison with the resonance Raman
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spectrum computed for the S2 electronic excitation shows the opposite pattern, with

a strong band at 1547 cm−1 and a somewhat less intense one at 1631 cm−1. The

predicted spectrum at resonance with the S2 state seems to be in a better overall

agreement with the experimental resonance Raman spectrum at 266 nm than the

computed spectrum at resonance with the S1 state, see supplementary information for

more details. This findings underscore the importance of an accurate determination of

the relative position of the frequency of the incident radiation relative to the electronic

excitation spectrum of the molecule. The linear regression between experimental and

computed excitations used here is perhaps the simplest possible correction scheme,

while more rigorous approaches would contributions from the A terms, as is expected

for an excitation close to resonance.

The experimental resonance Raman spectrum for the 218 nm excitation is charac-

terized by a strong vibrational band at 1367 cm−1 assigned to an in-plane purine ring

vibration. The ν(C6=O) Raman band is observed at 1685 cm−1. The corresponding

computed spectrum is obtained for the 203 nm (6.11 eV) excitation. The intermediate

π → π∗ excited state S10 of guanosine of low intensity (computed excitation energy

6.25 eV) has the largest contribution to the computed resonance Raman spectrum.

It might be associated with the electronic transition observed at 215 nm (5.77 eV) in

circular dichroism (CD) spectra of guanosine [228]. Due to the low oscillator strength

of the S10 transition (0.05), the resonance Raman intensity is derived from both the A

and the B terms. The strongest vibrational band in the computed resonance Raman

spectrum at 203 nm excitation purine ring stretch mode predicted at 1416 cm−1.

The experimental resonance Raman spectrum at 200 nm shows a strong pyrimidine
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ring stretching band at 1578 cm−1 vibrational band as well as three Raman peaks of

nearly equal intensity at 1679 cm−1, 1489 cm−1, and 1364 cm−1, which are assigned

to the ν(C6=O) stretch, a pyrimidine ring stretch, and an imidazole ring stretch,

respectively. The low-frequency part of the resonance Raman spectrum is dominated

by the ring breathing mode. The computed resonance Raman spectrum at 187 nm

(6.63 eV) is close in energy to the strongly allowed π → π∗ state (S13) at 6.79 eV.

The pyrimidine ring stretch vibration at 1631 cm−1 is predicted as the strongest

vibrational band. The intensities of the the ν(C6=O) vibration at 1829 cm−1, the

imidazole ring vibration at 1547 cm−1, and the ring deformation mode at 1416 cm−1,

which correspond to the three intense Raman bands observed experimentally, are

underestimated relative to the strongest Raman peak. Since the excitation at 200

nm is close to strict resonance, the A terms are dominant in the resonance Raman

spectrum.

The non-resonant Raman spectrum of guanosine at 514.5 nm is shown in Fig. 6.1(d).

Assignments of the non-resonant Raman spectra of guanine and its derivatives have

been published previously [229–231]. As expected for Raman spectra far from reso-

nance, the B terms are dominant, while the A terms are comparatively small. The

non-resonant case is characterized by a significant number of excited electronic states,

each contributing only a small amount to Raman cross sections. Under these circum-

stances, the closure of the sum over states is applicable, and the resulting Raman

cross sections are represented as a ground state response property [191, 195]. The

sum-over-states results for guanosine Raman spectra at 514.5 nm including 20 excited

electronic states is in very good agreement with the conventional result obtained from
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derivatives of frequency-dependent electronic polarizabilities, see supplementary in-

formation.

The changes observed in the experimental resonance Raman spectra can be well

described within the sum-over-states formalism. A comprehensive assignment of Ra-

man peaks can be achieved. The relative changes in resonance Raman spectra de-

pend on a the relative position of the frequency of the incident radiation within the

electronic excitation spectrum. Thus a balanced description of a large number of

electronic excitations is required, which represents a considerable challenge for the

existing DFT methodology. Generally, the sum-over-states approach reproduces the

characteristic changes in the overall shape of resonance Raman spectra reasonably

well. This suggests that the main source of error in these calculations is due to elec-

tronic excitation energies, while the local properties of excited states, such as energy

gradients and derivatives of transition dipole moments, are better reproduced. Sim-

ilar results have been found for relaxed structures of excited states [206, 212, 213].

However, we note that all comparisons include relative Raman cross sections only.

Accurate determination of absolute Raman cross sections is a challenging taks both

for experiments and computation and is not considered here.

Raman excitation profiles (REPs) describe the dependence of Raman scattering

cross sections on excitation frequency. In Fig. 6.2 we show the REPs for the ring

breathing modes of adenosine, guanosine, cytidine, and uridine. These low-frequency

totally symmetric vibrational modes correspond to an in-phase expansion or contrac-

tion of the entire heteroaromatic ring system. Experimental spectra are from Ref. 232.

For consistency, the correction for systematic errors in excitation energies derived for
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Figure 6.2: Experimental and computed Raman excitation profiles of ring breathing
modes of nucleosides. Experimental data for nucleoside 5′-monophosphates are from
Ref. 232. Solid lines in experimental data are obtained by interpolation and serve
solely to guide the eye. Note that different energy scales are applied to experimental
and computed Raman excitation profiles. See text for computational details.
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guanosine (see above for details) is used for all nucleosides.

The ring breathing mode of adenosine (Fig. 6.2(a)) is observed at 729 cm−1 in

experimental spectra, while the computed vibrational frequency is 747 cm−1. The

experimental REP shows two maxima at the positions of the electronic absorption

bands of adenosine. They are assigned to the strongly allowed π → π∗ excited states

S2 and S7, respectively. The Raman cross section of the ring breathing mode is larger

at resonance with the higher-energy absorption band, in line with experimental data.

Since the ring breathing vibration is totally symmetric, its intensity is almost entirely

due to A term contributions.

The ring breathing mode of guanosine (Fig. 6.2(b)) is observed at 670 cm−1; the

computed vibrational frequency is 612 cm−1. Two broad maxima are observed in the

experimental REP at the positions of the two electronic absorption bands. The first

REP maximum at 4.5–5.0 eV covers the two closely lying dipole-allowed states S1 and

S2, while the second REP maximum peaked at ca. 6 eV includes the weakly allowed

S10 state as well as the strongly absorbing S13 and S17 states. The larger Raman cross

section at the second maximum is reproduced by theoretical results. The significant

contribution from B terms, which grows with increasing excitation energy, suggests

that the ring breathing modes is strongly coupled to non-totally symmetric vibrations.

Experimental and computed REPs of the ring breathing mode of cytidine are

shown in Fig. 6.2(c). Experimental vibrational frequency is 782 cm−1, the computed

frequency is 792 cm−1. Two moderately strong maxima are present in the experi-

mental REP, followed by a significant increase at the high-energy edge of the REP.

The two maxima are attributed to the two π → π∗ transitions of cytidine (S1 and
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S4). The increase at above 6.2 eV is due to the S8 and higher-lying excited states.

While the Raman cross sections are almost exclusively due to A terms at the first

maxima, the contribution of B terms increases at higher excitation energies. The ring

breathing mode of uridine shows a single broad peak at about 4.7 eV (Fig. 6.2(d)),

which is assigned to the strongly allowed S2 excited state. Experimental vibrational

frequency of the ring breathing mode is 783 cm−1, computed value is 781 cm−1.

The two limiting cases of the sum-over-states expression are the strictly resonant

situation, in which one resonant electronic state dominates the sum, with the A terms

outweighing the corresponding B terms. In this case, the sum reduces to the short-

time approximation [233]. The other limiting case, far from resonance, is usually

well described by the polarizability theory of Placzek [195], in which polarizability

derivatives are often even approximated by their static limits. As was pointed out

by Albrecht, B terms are dominant in the non-resonant case [190], while A terms

are all but negligible. The polarizability approximation is usually adequate for the

range of excitation frequencies below the lowest electronic excitation. In the inter-

mediate regime, e. g., above the first electronic excitation, both A and B terms from

different electronic excited states contribute to Raman cross section, and a smooth

interpolation, such as the one offered by the present approach, becomes necessary.

The presented sum-over-states approach ignores the details of vibronic structure

and includes the contributions from a given electronic excited state in an aggregate

manner only. Thus, it is likely to be problematic for molecules with well-resolved

vibronic transitions such as small gas-phase species. However, vibronic structure is

typically “washed out” in most medium-size and large molecules or in the presence
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of a solvent so that the averaged description appears appropriate in these cases. The

contributions of different electronic excited states to the Raman scattering tensor

σQ(ω) are additive, cf. Eq. 6.2. Therefore, the quality of the description of the strictly

resonant case may be improved upon by treating the contribution of the resonant

electronic state in a more accurate way such as explicit time propagation [200, 201]

or summation over vibronic states [199].

The computed resonance Raman cross sections include excitation energies, transi-

tion moments and their geometric derivatives. As a consequence, they offer a sensitive

test of the TDDFT methodology. Our results indicate that largest source of error

for relative resonance Raman cross sections are excitation energies, and the results

are found to improve if the excitation energies are corrected for errors intrinsic to

the method. Corrections using experimental excitation energies might be used for

this purpose if available. Alternatively, corrections for excitation energies might be

obtained from more accurate theoretical methods such as coupled-cluster response

approaches.

6.4 Conclusion

In this work, we presented a simple approximation to resonance Raman cross

section based on the sum-over-states expression for frequency-dependent electronic

polarizabilities. Each electronic excited state contributes two types of terms to the

Raman cross section, which we term A and B terms, in analogy to Albrecht’s treat-

ment. The A terms are dominant in the strictly resonant case, while the B terms

determine the Raman cross sections in the non-resonant limit. By using both terms,
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the present method can treat the resonant and non-resonant cases on equal foot-

ing. Resonance Raman spectra and Raman excitation profiles of nucleosides can be

predicted with reasonable accuracy using the sum-over-states approach. The major

source of error seem to be electronic excitation energies, which are can be off by up to

0.5 eV with TDDFT. Improved description of resonance Raman spectra and Raman

excitation profiles is expected from a combination of the present sum-over-states for-

mulation with more accurate approaches for the few strictly resonant electronic states

as well as an first-principles framework for computing electronic state linewidths from

the open-system formulation of TDDFT [209].
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Summary and Future Directions

In this dissertation, quantum effects in biological systems were investigated by

simulations at the molecular level. To study the effect of the protein environment

on long-lived quantum coherences observed during the energy transfer process in the

FMO complex, the protein complex embedding the chromophores were simulated in

atomistic detail using molecular dynamics and TD-DFT. SC-IVR and DFT calcu-

lations were combined to give an accurate quantum dynamics. A formula for the

resonance Raman spectra was developed using TD-DFT and analytic gradients and

applied to the nucleic acid bases.

Our exciton propagation method with molecular dynamics and TD-DFT is a phe-

nomological model like the Haken-Strobl-Reineker method. The effect of the bath

is included as classical stochastic terms in the system Hamiltonian, and the reduced

density matrix is evaluated by averaging over the realization of quantum trajectories.

Although very convenient in carrying out the propagation using stochastic simulation,

this type of stochastic Liouville eqaution cannot reproduce the correct asymptotic
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behavior at a finite temperature. Several propagation methods based on trajecto-

ries generated by stochastic generators [59, 99, 234–237] or real time path integral

Monte Carlo [238–241] are known to produce exact dynamics. We expect that these

stochastic methods are more appropriate than master equation based approaches for

atomistic simulations. However, most of these stochastic approaches are obtained by

mathematical unraveling of the master equation or influence functional rather than

contemplating the physical system. Therefore, further investigations are needed to

combine these methods with atomistic simulations.

Simulation of the protein environment is currently limited to classical mechanics

due to the large degrees of freedom. As explored in Chapter 5, very accurate quan-

tum dynamics can be obtained on top of classical mechanics using SC-IVR. Another

possibility is to use mixed quantum-classical dynamics [242–245]. This formalism was

developed to treat the dynamics of a quantum subsystem interacting with a classical

bath by propagating the classical bath and the quantum reduced density matrix in

phase space using the Wigner representation. However, both of these methods are not

scalable enough to directly simulate the entire photosynthetic system. Other promis-

ing approaches would be to introduce the quantum correction factors to the classical

bath correlation. These factors have been studied in the context of vibrational en-

ergy relaxation [69, 70, 246] and are expected to be straightforwardly applicable to

the energy transfer dynamics.
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[240] L. Mühlbacher and E. Rabani, Phys. Rev. Lett. 100, 1 (2008).

163



Bibliography
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