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Overview

e Single Species Systems
« Solving for Equilibria
« Evaluating Stability of Equilibria
Graphically

e Two Species Systems
 Lotka-Volterra Predator-Prey
« Evaluating Stability of Equilibria

« Examples from Epidemiology



* Exponential Growth
 Logistic Growth
e Other Equations



Exponential Growth /

AN
N
d

Solution:

N(t) — N()Grt

What happens to this population?



Exponential Growth

SMB Short Course 2002 — p.5/5



L ogistic Growth /

AN N
I 1 — =
di TN( K)

What do you think the solutions of this will look
like?
Recall exponential growth was

AN _

N
d






- Stability of Equilibria 4

First evaluate the stability of N* = 0.
Near N* = 0,

dN

— ~1rN
a

So as N Increase, dt grows exponentially.
Therefore, N* = 0 Is an unstable equilibrium.



- Stability of Equilibria 4

What do you think will happen near N* = K?

AN N
2 N1
i ( K)



- Stability near K /o

If V is just slightly above K,
dN N
= N1
g r < K) <0

but if IV is just slightly below K,

dN N
- N1
o r ( K>>O

Therefore, N* = K Is stable.



Graphical View of Stability

Logistic Growth
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Other Alternatives

« Gompertz Equation
dN
dt

e Delay or lag time

dN
dt



Other Alternatives

e Allee effect

AN N\ [/ N
— = yN{(1-=)(—-1
i~ %) (%Y

e Discrete time
N(t+1) = F(N(t))

e Stochastic processes



* Predator-prey models
o Competition

e Mutualism



Classic Predator-Prey /

Lotka-Volterra Predator-Prey Model

N = rN —cNP
dt
ar = ODNP —mP
dt



Classic Predator-Prey /

Lotka-Volterra Predator-Prey Model
 Historical interest
 Mass-action term
 Bad mathematical model
 Structurally unstable



L otka-Volterra Phase Plane

Lotk a-"olterra model
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Interacting Populations /

More Realistic Predator-prey models
dN
— = rN|(1- MY P A
dt K N+ B

P A
@ p _dP
i <N+B> .




. Interacting Populations 4 §
- Another More Realistic Predator-prey models '
dN N AN
dat TN(l_E) _P(N2+B2>

dP AN
= P — dP
dt " <N2 +B2> .




- Interacting Populations 4 §
. Competition :

dN N N
L = 1N (1 1 512—2)

dN2 N2 N1
S A bot —L
dt 2 2( K, 21K2)



- Interacting Populations 4 §
© Mutualism :

dN N N.
! = 7“1N1 (1 ! ib12—2>

dt K K
dNQ NQ Nl
—— = Ny (1 - by —
i 2( K, 21K2>



. Interacting Populations 4 §
- To analyze these types of models '

 Nondimensionalize the system
* reduce the number of parameters
« simplfy the system

« Solve for equilibria

« Analyze stabllity of equilibria

 Translate back to determine biological
significance



- Phase-Plane Techniques / ;
- Some defintions of stability '
e Stable - If start small distance from
equilibrium, remain small distance as t — oo
e Lyapunov stable
e |ocally stable
o Asymptotically stable - if start small distance

from equilibrium, distance from equilibrium
approaches zeroas t — o¢

* locally asymptotically stable



Phase-Plane Techniques /

 Linearization

e Bendixson-Dulac negative criterion
* Hopf bifurcation theorem

* Poincaré-Bendixson theorem

e Routh-Hurwitz Conditions



L 1nearization

Given:
dN
— = F(N.P
dt ( ) )
dP
= G(N,P)

dt




L 1nearization

Solve:
F(N*,P*) = 0
G(N*,P*) = 0

to find the equilibria, (N*, P*).
Let:



L 1nearization

Then linearize about the equilibrium:
dx OF OF
e T 2
dy oG OF
Y = €T - Y

Or:




L 1nearization

Let:
a
7 - (a11 12)
a21 A22

Where J Is known as the Jacobian matrix or the
community matrix.
We now look for solutions of the form:

r(t) = zoeM

y(t) = yoe



L Inearization
Substitute this back into the equations to obtain:
ATy = a11%0 + a12yo
AYo = 2170 + a22Yo

or



L inearization
From this, we obtain the characteristic equation

)\2 — (qu + CLQQ) A + (a11a22 — algagl) =

Solving for the two roots of A\ will determine the
stablility of the system.



L 1nearization

* If both roots of A are real and negative, the
equilibrium is a stable node.

* If both roots of A are real and positive, the
equilibrium is an unstable node.

* If the roots of \ are real and of opposite signs,
the equilibrium Is a saddle point.




L Inearization
* If the roots of A are complex with negative
real parts, the equilibrium is a stable focus.

e If the roots of A are complex with positive real
parts, the equilibrium is an unstable focus.

* If the roots of )\ are purely complex, the
equilibrium of the linearized system Is a
center, but the original nonlinear system will
have a center or a stable or unstable focus
depending upon the exact nature of the
nonlinear terms.



Routh-Hurwitz conditions

Routh-Hurwitz conditions give the necessary and
sufficient conditions for all roots of the
characteristic polynomial to have negative real
roots thus implying asymptotic stability.

p=TrJ =an+a2 <V
q = detJ = aq1022 — a12a21 0
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......................................

Bendixson’s negative criterion

Consider the dynamical system, %
F(z,y),% = G(x,y), where F and G are contin-
uously differentiable functions on some simply
connected domain D C R2. If V- (F,G) = §E + &

IS of one sign in D, there cannot be a closed orbit
contained within D.




......................................

rion
Additionally, we have the Bendixson’s-Dulac’s
negative criterion.

Let B be a smooth function on D C %2 (with above
assumptions). If V - (BF, BG) = ZE + 20C s
of one sign in D, there cannot be a closed orbit
contained within D.




Other theorems

e The Hopf bifurcation theorem gives
conditions necessary for the existence of real
periodic solutions of a real system of ordinary
differential equations.

e Poincaré-Bendixson theorem can also be
used to prove the existence of periodic orbits.



...............................................

Examples from Epidemiolog

Divide population up into distinct classes

e S = Susceptibles
e | = Infectives
e R = Recovered

Classes used depend on disease dynamics






SIR Modd - constant popul atr 47

dS

dl

— = I — (01 — ul
g = sl =plma
dR

T = B —

g7 Bl — pR

N = S+T1+R

S(0) = Sy, 1(0) = Iy, R(0) = 0. All parameters are
assumed to be positive.



...............................................

Questions for Epidemic Modéd's

Given all parameters and initial conditions
* Does the infection spread or die out?

: o If it does spread, how does it develop with
: time?

« When will it start to decline?



- Equilibria A

Note: Since N IS a constant, we can solve for
only S and I, then if we need R, we can calculate
it easlly.

dS

= — uN —aSI —uS =0
dt a “ a

dl

= aSI—-BI—ul =0
g o BI —



. Equilibria 4

Gives two equilibria:

S*=N ., I*=0
a a (B + p)

Let

F(S,I) = puN —aSI —uS
G(S,I) = aSI—pI—pul



Stability

Then
OF
% — —CVI—,LL
OF
W — —OéS
0G
% — Ck[
S S —f—p

ol




- Stability 4

First, let’'s evaluate the stability of S* = N, I* =0
The elements of the Jacobian evaluated at this
equilibrium are:

ail —H
a2 = —aN
as?1 — 0



- Stability 4

Applying the Routh-Hurwitz conditions:

a1l +ax = —f—2pu
a11a92 — Q12021 = M (6 + 1 — aN)
Clearly, — 5 — 2u < 0
However, i (8 +p—alN) >0onlyifaN < 5+ u
Therefore, S* = N, I* = 0 Is asymptotically stable
If aN < 8+ pu
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- Stability /

Now, let's evaluate the stability of

g¥ B+u I — p(aN—pF—p)
a ) a(B+u) | |
The elements of the Jacobian evaluated at this

equilibrium are:

_ p(aN — 3 — pu)
. g B+ p)
a;p = —0B—pu
y p(aN — 5 — )

B+ )
aso — 0



- Stability 4

Applying the Routh-Hurwitz conditions:

a1a92 — a12021 = (5 + 1) (M (ag;g— M))



- Stability /

Both

p(aN — B — )
s B+ 1) =0
e (M) <o

are true if aN > 3+ pu



......................................

Stability
Therefore,
. B+p . plaN-—0—p
S R

IS asymptotically stable if /N < 5 + u

But what about limit cycles?
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......................................

Recall, we need

OF  0G

oS 0l

to be of one sign in our region of interest, D.
Define D to be all positive values in 2.

V- (F,G) =




......................................

oF 0G

95 | % — —(X]—/L+(XS—B—M

So this will be of one sign, negative, If
alN < [+ usince S < N.

Therefore there are no limit cycles in D.



......................................

* Ry Is defined to be the number of secondary
iInfections produced by one primary infection
In a wholly susceptible population.

« SoIf Ry > 1, then the disease will spread.

e For SIR model, R, Is calculated by linearizing

the equation for ¢ about I = 0, which we
have already done.

e S0 the criteria for determining if the epidemic

will spread is, Ry = gf_\;




Conclusions

There are many other applications of differential
equation models in biology. Once a basic set of
equations has been developed, there are a
number of standard techinques used to analyze
the stability of the equations.

We will take time in the lab to explore these and
other equations.
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