
Chapter 1

Modeling in systems biology

1.1 Introduction

An important aspect of systems biology is the concept of modeling the dynamics of
biochemical networks where molecules are the nodes and the molecular interactions are
the edges. Due to the size and complexity of these networks, intuition alone is not
sufficient to fully grasp their dynamical behavior. Instead an explicit mathematical
description of the network and its interaction dynamics is used, which allows for testing
and predicting the behavior in computer simulations.

This text starts with an introduction to dynamical systems. It then describes building-
blocks used when modeling molecular interactions, and introduces how these ’bricks’ are
combined into models of large biochemical networks. Then different parameter estima-
tion and analysis methods are discussed. In the end there is a discussion on diffusion
and the combination of reactions and diffusion into one model. The text is very sparse
and it is meant to be used as lecture notes for both teacher(!) and students.

Aims

The main goals for this part of the course are to

1. Understand the concept of modeling dynamical systems. Be able to create a math-
ematical model of a dynamical system and to do simple analysis of behavior.

2. Learn about some basic building-blocks for describing biochemical interactions (re-
actions, transcription, ...). Be able to explicitly formulate these interactions as
ordinary differential equations.

3. Use the building blocks to create models of a complete biochemical network. Be
able to do simulations of such a network in the computer excercise.
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4. Be aware of methods for estimating model parameters and tools for model analysis
of properties such as robustness.

5. Understand the concept of diffusion and why it can be important when creating
models in systems biology. Be introduced to reaction-diffusion models.

Items 2 and 3 will constitute the bulk of these lectures. An important goal is to
understand how a model of a large-scale network (as in the figure below) is developed.

Literature

This document is the lecture notes for the dynamics part of the systems biology course,
and it is also the course literature. Additional suggested literature and articles will be
availabe in pdf-format at http://www.thep.lu.se/˜henrik/bnf079/literature.html. The
compilation consists of a number of introductory texts and scientific publications, and
can be used as references for the interested reader to clarify concepts and to learn more
about specific examples.

Contact

Henrik Jönsson, henrik@thep.lu.se, Ph 046-2220663.
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1.2 Model building in systems biology

Before building a mathematical model of a biological system, it is important to make
some basic decisions on how the model should be defined. Examples of such decisions
are:

• Resolution. What should be the resolution of the model? What are our model
variables representing? Given the recent development of experimental techniques
resulting in quantitative molecular data it is now possible to create models describ-
ing molecular contents (numbers or concentrations) and compare directly with ex-
periments. In this course we will look at dynamical models of molecular contents
describing biochemical networks within single cells and briefly extend the approach
to multicellular systems. This choise of resolution would for example not be appli-
cable to explain the evolution of the human population (for which it would be far
too detailed) or describe a single molecular reaction mechanism in detail (for which
the resolution is too low and a quantum mechanical approach would be needed).

• Continuous vs. discrete. Molecules are individual objects, and the quantitative
measure of molecular content is in principle number of molecules. On the other
hand, the number of molecules (of the same type) within for example a cell is often
large and a continuous variable for the concentration (number of variables per unit
volume) is then applicable to describe the system behavior. In this course we will
use continuous concentrations as variables. The limit for when the concentration
is sufficient to describe a system depends on the details of the system but typically
when the number of molecules are more than 101−102 it is safe to use concentration
as a measure of molecular content.

• Deterministic vs. stochastic. This point is somewhat related to the previous.
In principle there is a probability connected to an individual reaction to occur.
This can be taken into account using a stochastic update of the system variables
(reactions happen with a specific probability). Again, within this course we will
assume systems with a large number of molecules where it is applicable to use a
deterministic description of the system update.

A modeling approach for a biochemical network includes several different steps or
tasks to be solved. The theoretical modeling has to be combined with biological experi-
ments for an effective and useful approach. Important steps whithin a modeling approach
are

1. Define the molecular players and interactions. It is a slow and hard process
to do experimental work for elucidation of which molecules are involved in different
biological processes, and how these interact. The genome projects, where the
complete genome of different species are sequenced, have increased the knowledge
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about the molecular (protein) players. This provides a list of components, and
molecular genomics research are contributing to the knowledge of what biological
processes individual molecules are involved in and how these interact. This results
in the biological networks that you have come across earlier in the course. Here we
assume that this is the input to our modeling approach and will not discuss this part
further. It should be noted though, that one main purpose of a modeling approach
is to be able to guide these kinds of experiments for an increased understanding of
the biological system at hand.

2. Describe the molecules and interactions in a mathematical model. To
be able to do a quantitative model of a biochemical network, a system has to be
defined where molecular concentrations are the variables and their interactions are
described explicitly by mathematical functions. These functions depend on the type
of interactions that are described, and a main goal in these lectures is to be familiar
with common ’translations’ for reactions, transcription, etc. into equations, with
the ultimate goal of a complete quantitative model for the network.

3. Estimate parameter values for the model. The mathematical description
includes a number of parameters defining for example reaction rates. Different
values of these parameters can result in different behaviors of the model. Hence it
is crucial to estimate the parameter values that are relevant for a specific biological
network. One possibility is to experimentally measure the parameter for a specific
reaction, which will result in an optimal single estimated value for the parameter.
A potential drawback is that it is hard to do such measurements within a biological
organism, and if it is measured elsewhere that specific condition might lead to a
different value compared to within the organism. Another approach is reverse
engineering, where model parameters are estimated by fitting model output to
available experimental data. This will exclude most parameter values but still it
is possible that this approach will find different values for a single parameter that
equally well describe the biological behavior. Within this part of the course we will
see how parameter estimations can be done in practice.

4. Analyse the dynamical behavior. A final step in a modeling approach is to
analyse the behavior of the defined model. Many molecular networks and modules
show very high robustness. This should then also be accounted for in the model
and can be tested by a sensitivity analysis, where the changes of behavior is tested
when parameters are perturbed. Also, the model can be tested for perturbations
where molecules or interactions are removed from the system, which then can be
compared with knock-out experiments, or provide biological predictions from the
model. The analysis can provide feedback into the previous three steps improving
the description and knowledge of the biological system.
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1.3 Dynamics

Dynamics deals with changes; the evolution in time of a system. It can concern more or
less anything from e.g. classical mechanics with an apple falling to the ground, or the
growth of the human population. Within systems biology dynamics typically refer to
the changes in molecular concentrations (or numbers) within a cell.

A system is defined by i) a set of variables defining the state of the system, and ii)
the rules for how the variable values change in time. Variables can be discrete where the
state of the variable can be described by a distinct set of values, or continuous where
any real value is allowed. The update rules can depend on the time and on the state of
all variables. It can be deterministic where the time and variable states uniquely defines
the state at next time point, or it can be stochastic where the time and variable state
defines the probability of how the variable values changes over time.

The goal when dealing with a dynamical system is to describe and analyse the behav-
ior of the individual variables and also of the complete system, and to be able to make
predictions. A dynamical system can be in equilibrium where variables do not change,
it can oscillate in a repeating fashion, or it can be more complicated and even chaotic.
We will only touch on these subjects briefly, and the interested student can learn more
in introductory courses or text books of the subject (e.g. Fys244, System theory, which
is given at the Department of Theoretical Physics).

1.3.1 Ordinary differential equations

A fundamental tool for studying dynamics of a continuous system is ordinary differential
equations (ODEs). Within this course, we will deal with systems defined as

dx

dt
= fx(x, y, ..., t)

dy

dt
= fy(x, y, ..., t) (1.1)

...

x, y, ... are the state variables which in our case typically are molecular concentrations,
and fx, fy, ... are the functions describing the molecular interactions. The dimension of a
system is defined by the number of variables. If the differential equations are given and
the initial states (values) of the variables are known, the future behavior of the system
is completely defined.

Numerical integration of ODEs

The systems of ODEs for molecular networks are most often too complex to solve analyt-
ically and numerical integration is used to simulate the behavior on a computer. There
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are many sophisticated algorithms for doing this, but almost all are built from discretiz-
ing the differential equation and step forward in time with small steps. The simplest
variant of this stepping is the Euler step

∆x

∆t
=

x(t + ∆t)− x(t)

∆t
= fx(x, y, ..., t), or

x(t + ∆t) = x(t) + ∆tfx(x, y, ..., t).

The error introduced by this step is of the order ∆t2 at each step. More accurate solvers
will be discussed within a computer exercise.

1.3.2 Behavior of a dynamical system

For one dimensional systems the only possible behavior is that the variable value ap-
proaches a specific value, which is defined as a fixed point. The variable might also
approach plus (or minus) infinity.

Example: creation and degradation of a molecule

Assume a molecule A which is produced and degraded at a constant rate.

∅ k1
k2

A,

where k1 is the production rate and k2 is the degradation rate. The production is assumed
to be constant in time (or depend on variables that do not change in time and hence
are left outside the model). The degradation rate is assumed to be constant for each
induvidual molecule of A. A differential equation describing this system is

d[A]

dt
= k1 − k2[A], (1.2)

where [A] is the concentration of molecule A. Fixed points of the system can be found
by solving the algebraic equation d[A]/dt = 0 (i.e. if the system is in such a state it will
stay in this state). k1 and k2 are assumed to be positive constants, and the only solution
is [A] = k1/k2. A closer look at the time derivative as a function of the concentration of
[A] (see figure) resolves more of the dynamical behavior.
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Since the derivative is positive when [A] < k1/k2 and negative when [A] > k1/k2 the sys-
tem will always approach k1/k2 for infinite times. Since any initial concentration A(t0)
eventually will lead to the fixed point, it is called globally stable. ¤

Example: autocatalysis

In this example there is a molecule X which induces it’s own production mediated by a
molecule A.

A + X
k1
k2

2X,

The law of mass action (which will be discussed in more detail later) states that the
rate of a reaction is proportional to the concentrations of the reactants. In this case we
assume that there is a surplus of molecule A resulting in that its concentration can be
assumed to be constant.

d[X]

dt
= k1[A][X]− k2[X]2 = K[X]− k2[X]2 = [X](K − k2[X]), (1.3)

where the constant K = k1[A] is introduced. d[X]/dt equals zero for either [X] = 0 or
[X] = K/k2. A closer look at d[X]/dt as a function of [X] reveals that the fixed points
are of different kinds. The [X] = 0 fixed point is instable, while [X] = K/k2 is stable
(Figure).
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The conclusion is that only if we start the system exactly at [X] = 0 it will stay there.
For any other initial value, the system ends up in [X] = K/k2. A quite interesting note
to make is that the equation in this example is exactly the logistic equation used in
population dynamics.¤

The two examples show that it is possible to analyse the behavior of a dynamical
system without solving the differential equation. We can still predict what will happen
in those examples.

For one dimensional systems we can formalize the approach. Given a differential
equation

dx

dt
= f(x) (1.4)

1. Find all fixed points x∗ by solving dx/dt = 0.

2. Investigate the sign of dx/dt around each fixed point to determine the stability.
This can be done by plotting it as in the examples, but also by looking at df(x)/dx
in the fixed points, where

df(x∗)
dx

< 0 → Fixed point stable

df(x∗)
dx

> 0 → Fixed point instable

while if the derivative is zero at the fixed point further analysis is needed (it is
typically semistable).

It is quite important to note that the behavior (and analysis) depends on the parameter
values. Different values can result in different stabilities (e.g. a change from stable to
unstable). What will for example happen if d in our first example is negative?
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Systems of higher dimensionality can have more elaborate behaviors including oscil-
lations and chaotic behavior. Rigorous analysis of higher dimensional systems are out of
scope for this course, but we will briefly address their dynamical behavior by analysing
phase plots and nullclines.

Example: two autocatalysing molecules that form a complex

This example is an extension of the previous example, where we now have two molecules
X,Y which induces their own production mediated by molecules A and B. X and Y
can also form a complex C (= XY ).

A + X
k1
k2

2X,

B + Y
k4
k5

2Y,

X + Y
k3→ C,

We again assume that there is a surplus of A and B, resulting in their concentrations
being constant. Since the dynamics of X and Y does not depend on the complex C, it
will also be left out of the analysis.

d[X]

dt
= k1[A][X]− k2[X]2 − k3[X][Y ] = K1[X]− k2[X]2 − k3[X][Y ]

= [X](K1 − k2[X]− k3[Y ]),

d[Y ]

dt
= k4[B][Y ]− k5[Y ]2 − k3[X][Y ] = K2[Y ]− k5[Y ]2 = −k3[X][Y ]

= [Y ](K2 − k5[Y ]− k3[X]),

where the constants K1 = k1[A] and K2 = k4[B] are introduced. d[X]/dt equals zero for
either [X] = 0 or [X] = (K1 − k3[Y ])/k2. These expressions no longer defines specific
points but rather defines lines which are defining nullclines. The nullclines for Y are
similarly defined by [Y ] = 0 and [Y ] = (K2 − k3[X])/k5.

An informative way of representing this system is by plotting the nullclines in the
phase space (Figure) which is a plot where [X] and [Y ] defines the axes. Now it is easy
to see that for example the [X] = 0 null cline corresponds to all points on the [Y ] axis.
Fixed points of the system are found where the nullclines intersect where both d[X]/dt
and d[X]/dt are zero. In the regions in between the nullclines there are non-zero time
derivatives ( for both [X] and [Y ]) and by looking at the signs of the derivatives it is
possible to analyse the dynamics. It can for example be seen that d[X]/dt is positive
beneath the nullcline defined by [X] = (K1 − k3[Y ])/k2 and negative above.
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The conclusion of this analysis is that there are four fixed points (0, 0),(K1/k2, 0),(0, K2/k5),
and ’([X]∗, [Y ]∗)’. The only stable fixed point is at ’((K1k5−K2k2)/(k3(k5− k2)), [Y ]∗)’.

Again it must be noted that this is for the parameter set used, and the behavior can
change if for example the nullclines for [X] and [Y ] overlaps (the two not defined by the
axes).¤

1.4 Biochemical rate equations

In a deterministic continuous formulation, molecular reactions are described by differen-
tial equations defining the rate of change in molecular concentrations. Molecular con-
centrations are most often measured in molar which is defined by mole per liter, where
one mole is 6.02 × 1023 molecules. Typical molecular concentrations within a cell are
from 0.1nM to 1µM (with lots of exceptions of course).

1.4.1 Mass action formalism

Despite its simplicity, the mass action formalis has been validated in many experimental
settings. The law of mass action states that the rate of an elementary chemical reaction
is proportional to the product of the concentrations of the reactants. It is based on
the assumptions of i) a well stirred solution and ii) low molecular concentrations, where
the probability of diffusing molecules to get close enough, for a reaction to occur, is
proportional to the concentrations. A rate parameter is used to define the ’probability’
of a reaction to occur if two molecules approach each other.

Generally a mass action reaction can be written as

s1S1 + s2S2 + ...
kf→ p1P1 + p2P2 + ...,
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where the varaibles S1, S2, ... are defining the reactants and the P1, P2, ... are defining the
products. The parameters s1, s2, ..., p1, p2, ... are called stoichometric coefficients and kf

is the rate parameter. The stoichometric coefficients are typically chosen such that the
total mass is conserved in the reaction (or such that atom numbers are the same before
and after the reaction).

Example: a simple mass action reaction

Consider the simple reaction of species A and B forming complex C.

A + B
kf
kb

C.

kf is the rate of the forward reaction of unit [time]−1[conc]−1, while kb is the rate of
the backward reaction of unit [time]−1. Note that reaction rate units are not uniquely
defined, but rather depends on the reaction. In a differential equation formalism the
equations are defined by

d[A]

dt
=

d[B]

dt
= −d[C]

dt
= −kf [A][B] + kb[C], (1.5)

which will have an equilibrium point (fixed point) for [C]/[A][B] = kf/kb where K =
kf/kb defines a relation between concentrations of reactants and products which is inde-
pendent on initial concentrations. K is often defined as the reaction constant. ¤

1.4.2 Thermodynamics and rate constants

In experiments it can be seen that the logarithm of the rate constant, ln k, is linearly
related to the inverse temperature 1/T . The parameters for the slope and intercept is
formulated in Arrhenius law

k = Ae−Ea/TR (1.6)

where Ea is the activation energy, R is the gas constant and A is the steric factor, a
constant measuring the efficiency of a molecular collision leading to a reaction.

In transition state theory the energy is replaced by the Gibbs free energy, G =
E + PV − TS, where P is the pressure V is the volume, T is the temperature and
S is the entropy. The idea is that the a molecule is in a local minima in a “reaction
space”, and that for a reaction to happen, it has to find a path to the product within this
space, and a maxima needs to be passed (see figure below). Values for the Gibbs free
energy for different molecules can be found in the literature and the reaction constant of
a bidirectional reaction can be related to the difference in G.
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1.4.3 Enzyme kinetics

Many reactions have a far too high activation energy to ever occur spontanously. A
common type of reaction is an enzyme reaction, where a helper molecule (the enzyme)
fascilitate a reaction to occur. The enzyme is not used up in the reaction itself.

Example: a simple enzymatic reaction

Consider the simple reaction of species A forming compound B with the help of enzyme
E.

A + E
k→ B + E.

k is the rate of the reaction of unit [time]−1[conc]−1. Using a differential equation for-
malism the equations are defined by

d[A]

dt
= −d[B]

dt
= −k[A][E], (1.7)

d[E]

dt
= 0. (1.8)

The problem with this formulation is that there is no upper limit on how much a single
enzyme molecule can facilitate the reaction. Often there is an upper limit on the rate
due to the fact that the enzyme is occupied during the reaction, and a model accounting
for this is described in the next section. ¤

1.4.4 Enzyme kinetics, Michaelis-Menten

A more proper description of an enzyme reaction is to let the enzyme E bind to the
substrate S and letting the substrate turn into a product P while the enzyme is released

S + E
k1
k2

SE
k3→ P + E. (1.9)
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The rate equations for this system can be written as

d[S]

dt
= −k1[S][E] + k2[SE]

d[E]

dt
= −k1[S][E] + k2[SE] + k3[SE]

d[SE]

dt
= k1[S][E]− k2[SE]− k3[SE]

d[P ]

dt
= k3[SE] (1.10)

The first reaction is assumed to be fast (and in equilibrium) and we assume that
d[SE]/dt ≈ 0. Solving the fixed point equation gives K = k1/(k2 + k3) = [SE]/[S][E].
If we also assume a constant amount of total enzyme, [E] + [SE] = E0, the complex
concentration can be written as a function of the substrate concentration,

[SE] = K[S][E] = K[S](E0 − [SE])

[SE] (1 + K[S]) = KE0[S]

[SE] =
KE0[S]

1 + K[S]
=

E0[S]

(1/K + [S])
. (1.11)

The production of P as a function of the substrate concentration is then

d[P ]

dt
=

Vmax[S]

Km + [S]
(1.12)

where the constants Vmax = k3E0 and Km = 1/K. The choice of parameters is due to
the fact that Vmax is the saturated maximal rate of production and Km is the amount
of substrate that corresponds to half the maximal rate (Fig. 1.1). A problem with the
Michaelis-Menten equation is the “slow” response to substrate concentration compared
with what is often seen in experiments. To get the rate 0.1Vmax a substrate concentration
of S0.1 = Km/9 is needed and to get a rate of 0.9Vmax, the substrate concentration needs
to be S0.9 = 9Km. Hence an 81-fold change in concentration is needed between ’on’ and
’off’ states. This is often handled by using a Hill-type kinetics as will be discussed in
more detail later.

It should also be noted here that the dependence on the enzyme concentration is
built into the Vmax parameter and assumed to be constant. The amount of enzyme is
often also a dynamic variable and the reaction can then be described by

d[P ]

dt
=

V ′
max[S][E]

Km + [S]
(1.13)

where it is assumed that the concentration of the enzyme changes slowly compared to
the change in P.
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Figure 1.1:

Example: protein activation/deactivation cycle

Previously in the course you have seen the example of a protein that can be activated
and deactivated

X∗ (V2E,K2)


(V1,K1)
X,

where the total concentration is constant X∗+X = Xtot = 1 (or X∗ = 1−X). Assuming
that both the activation and deactivation are dependent on other molecules (enzymes),
and that the activation enzyme is dynamic, result in the following Michaelis-Menten
description

d[X]

dt
= − V1[X]

K1 + [X]
+

V2[E](1− [X])

K2 − (1− [X])
. (1.14)

Setting the parameters K1 = K2 = K and f = V2[E]/V1 and investigating the system at

equilibrium (d[X]
dt

= 0) results in the equation

[X]

K + [X]
= f

(1− [X])

K + (1− [X])
. (1.15)

When studying how the activation, [X], is dependent on the input, f , it was shown to
behave either as an analogue amplifier or a digital switch depending on the K value, as
shown in the figure.
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¤

Example: cell cycle

A minimalistic model for the cell cycle was introduced by Goldbeter 1991. It has only
three state variables and the interactions are shown in the figure.

In the model, cyclin (C) is produced and degraded at constant rates. The cyclin
induces a cyclin kinase (M) to be activated, which in turn activates a cyclin protease
(X). Finally the protease induces degradation of the cyclin closing a feedback loop
in the system. All reaction kinetics used is in the Michaelis-Menten format. A minor
simplification of the equations leads to the following model.

dC

dt
= vi − vdX

C

Kd + C
− kdC

dM

dt
= V1C

(1−M)

K1 + (1−M)
− V2

M

K2 + M

dX

dt
= V3M

(1−X)

K3 + (1−X)
− V4

X

K4 + X
(1.16)

Simulation of the network shows that, for some ranges of parameter values, an oscillatory
solution is possible (which also exhibit limit cycle behavior) as can be seen in the figures
below.
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¤

1.4.5 Models within a cell

The mathematical formulations described in previous sections are simplified and assumes
idealized conditions. For example the assumptions of low molecular concentrations and
of well-stirred solutions are very unlike the situation in a cell (Fig.1.2).

Figure 1.2: Visualization of actin network, membranes, and cytoplasmic macromolecu-
lar complexes in a volume of 815 nm by 870 nm by 97 nm. Colors were subjectively
attributed to linear elements to mark the actin laments (reddish); other macromolecular
complexes, mostly ribosomes (green); and membranes (blue). From Mendalia et. al.
(2002), Science 298, 1209-1213. Copyright 2002 AAAS.
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Example: generalized mass action

It is often the case that the mass action dynamics deviate from in vivo experiments. It
might then be useful to “extend” the reaction models to better correlate with experi-
ments. In the generalized mass action approach the concept of activity is introduced.
The idea is that the effective concentrations for a reaction can be different from the ab-
solute concentration. Without going into details, the generalized mass action formalism
for a simple reaction

A + B
kf→ C

uses a differential equation of the form

d[A]

dt
= kfa[A]αb[B]β (1.17)

where a, α, b, and β are (real-valued) parameters. The generalized mass action hence al-
low for additional possibilities of dynamical behavior compared to classical mass action.¤
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1.5 Gene regulation

The central dogma of molecular biology concerns the information flow within cells. It
states that the information is translated between different molecular types as follows:

For gene regulation the important steps are the transcription (DNA → RNA) and trans-
lation (RNA → Proteins). As have been discussed previously in the course, also the
ability of specific proteins (transcription factors) to affect the transcription rate is es-
sential (see figure below). This allows for a network of proteins regulating each others
production (or a network of genes regulatinging each others activity).
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The biological processes involved in transcription and translation are complex, and the
mathematical descriptions we will discuss here are simplified approximations. This is
most often sufficient due to the lack of detailed experimental data, and allows for using
tham in a large network setting. It is also often convenient to model transcription and
translation within a single equation, and due to the complex input-output relations for
these processes, nonlinear descriptions are required.

Example: the lac-operon

The idea that transcription factors (proteins) bind to the DNA and regulate the tran-
scription rate of genes was first introduced by Jacob and Monod in 1961. They used the
lac operon in E. coli and their model is shown in the figure.

In the model a transcription factor, lac-repressor, binds to the DNA and prevents tran-
scription of the lac-operon. The repressor can form a complex with IPTG, which results
in that the repressor is released from the DNA and transcription is activated.

In an experiment where IPTG is introduced to the cells and the lac-operon activity
is measured, a quick response can be seen (figure)
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This simple gene regulation system has features which are common for gene expression.
It is highly nonlinear, and it has a saturated behavior with a maximal value of the
production rate.¤

Example: sea urchin gene Endo16

When it comes to genetic regulation in multicellular organisms, one of the most studied
species is the sea urchin. This example shows the complexity of a single promotor with
a manifold of modules which in turn is regulated by a manifold of molecules (figure).

The authors have also created a model of the transcription activity and use a combination
of logical rules and contiunous equations (figure below). Fortunatly(?), this complex
regulation is beyond the scope of the course, but one should be aware of that the simple
models introduced later in this section have limitations on how accurately they describe
the transcription/translation processes.
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¤

1.5.1 Boolean model with logical rules

The simplest assumption for a gene regulatory network is the boolean approximation,
where genes can be either active or inactive (on/off). This can also be interpreted as
proteins being present/absent in the cell. Boolean rules (e.g. AND,OR) of the input
nodes are defined for determining the state of a node at the next time point. This
results in a model with discrete variables and discrete updates in time. The description
has the advantage with an enumerable number of possible states for the network, and
hence allows for a global exploration of states and dynamics.

Example: boolean description of the lac-operon

In the simple Jacob-Monod model for the lac-operon from the previous example, activity
of the operon was determined by presence/absence of lac-repressor and IPTG. In a
boolean description the logic of the lac-operon can be described by the following rule
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input output
lac-repressor IPTG lac-operon

0 0 1
0 1 1
1 0 0
1 1 1

The only case when the lac-operon is inactive is when the repressor and not the IPTG is
present. The repressor is normally expressed. Adding IPTG then causes the lac-operon
to switch from inactive to active (as is seen in this model and in previous experiment).¤

Example: boolean description of flower development

An example of an investigation of the complete state space in a boolean model is the work
of Alvarez-Buylla et al. Here the ABC-model for plant flower development is investigated
by defining a transcriptional network of genes known to be important along with known
and hypothesised interactions. The authors were able to show that the network dynamics
resulted in 10 fixed points (out of 139968 states), which then were correlated with known
expression profiles for different organs such as petals, stamen, and carpel, as well as for
earlier tissues in flower development (Figure).

¤
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1.5.2 Michaelis-Menten

The transcription/translation process can be modeled as a transcription factor (TF )
binding to DNA (creating a complex) which activates or represses the production of a
protein P . A model describing an activator is

TF + DNA
k1
k2

TFDNA
k3→ P + TFDNA (1.18)

Assuming that the binding/release of the transcription factor is fast compared to the
production of the protein allows for a Michaelis-Menten formalism to be used. The
’enzyme’ in this case is the DNA, and it can be assumed to exist as a single copy within
a cell (DNA+TFDNA = 1). Solving for the equilibrium of the left part of the reaction
leads to TFDNA = TF/(K + TF ) where K = k2/k1. This can be interpreted as the
relative occupation of the binding site or the fraction of time the transcription factor
TF is bound. The production of P can then be seen as this fraction times the rate of
production when the regulation is active (given by k3 = Vmax), which results in

d[P ]

dt
= Vmax

[TF ]

K + [TF ]
(1.19)

Note that the reactions described in Eq. 1.18 is not exactly the same as in the Michaeli-
Menten enzyme reaction Eq.1.9. How are the parameters Vmax and Km defined in this
transcription version? When is there no difference compared to the enzymatic case?

Example: Michaelis-Menten repressor

Assume instead that transcription is active if no transcription factor is bound to the
DNA, and inactive when the transcription factor (TF ) binds

TF + DNA
k1
k2

TFDNA

DNA
k3→ P + DNA (1.20)

This leads to a repressor model and working out the Michaelis-Menten formalism (try
it!) leads to a production of P described by

d[P ]

dt
=

VmaxK

K + [TF ]
(1.21)

which have the behavior shown in the figure below
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Again this can be seen as the fraction of time the DNA binding site is unoccupied
(K/(K + [TF ]) times the production rate, k3 = Vmax, when inactive (unoccupied). ¤

1.5.3 Hill-equation

As mentioned in the Michaelis-Menten section on enzyme kinetics, a problem with this
formalism is the slow response to changes in substrate concentrations (≈ 81-folded change
needed for switching between on/off). For transcription this becomes even more evident,
and a common extension of the Michaelis-Menten formalism is the Hill equation. Often
it is written in the form

dP

dt
= Vmax

Sn

Kn + Sn
(1.22)

where the parameters n and K are called the Hill coefficient and Hill constant, respec-
tively. The Hill constant corresponds to the substrate concentration that results in 50%
response, and the Hill coefficient is determining the steepness of the response. The figure
below shows the dependance on n given a fixed K.
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The Hill-equation can be deduced from a model where a transcription factor can bind
to DNA at multiple sites. Hill himself regarded the equation as a model that better
fitted experiments, which is not an uncommon standpoint among modelers (i.e. the
parameter values are defined by fitting to experiments, rather than from a transcription
factor binding model).

Example, Hill from a complex

Assume that two molecules of a single protein type, X, activates the transcription/translation
of another protein, P . The reactions can be formulated as

X + X + DNA
k1
k2

TFDNA
k3→ P + TFDNA (1.23)

From the equilibrium of the left reaction (together with the assumption DNA+TFDNA =
1), the fractional occupancy of the binding site is given by TFDNA = X2/(K + X2),
where K = k2/k1 (show this!). The production rate is then determined by (k3 = Vmax)

dP

dt
= Vmax

X2

K + X2
. (1.24)

¤

Example, Hill repressor

In the case of a repressor S deactivating the transcription of P , the Hill-equation looks
like

dP

dt
= Vmax

K

K + Sn
(1.25)
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which shows a n dependance as in the figure below.
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¤

Example, bistable switch

In a beautiful work by Gardner et.al. a genetic switch is created by direct manipulation
of the DNA in E. coli (figure below). A network of two genes repressing each other is
constructed, and this novel technique allows for creating simple systems where direct
comparisons between models and experiments are more tractable.

The equations used in this model are of Hill-type plus addition of a constant degradation
term.

du

dt
=

α1

1 + vβ
− u

dv

dt
=

α2

1 + uγ
− v (1.26)

The model can behave as a bistable switch where two stable fixed points are defined
by (u, v)=(high,low) and (low,high) respectively. A phase plane plot with the nullclines



1.5. GENE REGULATION 27

(calculate them!) are shown in the figure below, and quite interestingly, either β or γ
needs to be larger than one to get the bistable behavior. Otherwise the system has a
single stable fixed point. This model will be examined during the computer exercise.

¤

1.5.4 Models accounting for both transcription and translation

Sofar, we have only looked at models describing the transcription and translation in a
single equation. It is of course also possible to divide these into two different processes,
and also treat the mRNA as a dynamical variable.

Example, the repressilator

In a similar effort as described in the bistable switch example, Elowitz et.al. constructed
a network of three repressing genes (figure). A computer exercise is devoted to modeling
of this system, and details are left for then, but the equations used are presented below
as an example of a transcription/translation model.
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The m variables represent mRNA and the p variabless represent proteins. The transcrip-
tion is modeled by a Hill-type equation, and translation is modeled by a linear equation.
In addition to this, constant degradation of all molecules are modeled. The figure below
show the oscillating behavior achieved both in the simulations, and in the experiments.
The left simulation plot shows the deterministic model described above, and the right
plot shows a stochastic version.

¤

1.5.5 Combining contribution from several transcription fac-
tors

As has been seen in the single transcription factor examples the rate limiting part of
gene expression is typically the initiation of transcription. The models were based on
the assumption that the binding and unbinding of transcription factors were fast and
could be assumed to be in equilibrium, which resulted in a probability for a bound
and unbound state respectively. Then each of these states were connected to a rate for
transcription. This idea can easily be extended to multiple transcription factors where
the combined probabilities are used.

Example: A combined activator/repressor rule

A combined activator and repressor in a Michaelis-Menten formalism results in individual
probabilities

PTF1bound =
[TF1]

K1 + [TF1]
=

[TF1]/K1

1 + [TF1]/K1

PTF2notbound =
K2

K2 + [TF2]
=

1

1 + [TF2]/K2

(1.27)
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If these probabilities are assumed to be independent, the probability that TF1 is bound
and TF2 is not is given by

PTF1boundANDTF2notbound = PTF1boundPTF2notbound =

=
[TF1]/K1

1 + [TF1]/K1 + [TF2]/K2 + [TF1][TF2]/K1K2

(1.28)

This probability can then be multiplied with a maximal rate for transcription resulting
in a function as shown in the figure below
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¤

In the previous example only one specific bounding pattern resulted in transcription,
but this can be generalized to transcription for more than one combination, as e.g. for
the lac-operon as discussed previously.

Example: Michaelis-Menten version of the lac-operon

A simplified model for lac-operon regulation using a Michaelis-Menten formalism for a
lac-repressor (R) and IPTG (I) could be assumed by letting transcription occur as soon
as the repressor is not the only molecule present (compare with the boolean rule in the
earlier example). Show that this leads to

dP

dt
=

Vmax(1 + k2[I] + k3[R][I])

1 + k1[R] + k2[I] + k3[R][I]
. (1.29)

This function is shown in the figure below, and it can be seen that when I is not present
R represses the activity, and that the activity increases with increasing concentration
of I. Note that all active states leads to the same maximal production (Vmax) in this
example.
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Note that a similar function is the result of a model where complex formation of R and I
is assumed together with the single R-repression when R binding to DNA and complex
formation is assumed to be fast. ¤

Example: experimental comparison for the lac-operon

A more detailed model of the lac-operon has been presented by Setty et. al. It includes
the lac repressor and IPTG as well as a second inducer (CRP-cAMP) and the RNA
Polymerase. The model assumes different rates of production (α, β) for different states
of the promoter and also some leakiness. Finally it uses Hill-formalism for the IPGT and
cAMP binding. An illustration of the model interactions is shown in the figure below.

Transcription was measured at a number of concentration combinations of IPTG and
cAMP concentrations. Interestingly the transcription rates were given by different
plateaus and was more elaborate than a simple AND function (figure below, top), some-
thing that was also correctly described by the model (figure below bottom).
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¤

An alternative view of the transcription rates for different transcription factor binding
states is given by the approach of Shea and Ackers (1985). In this statistical physics
view, the combination of all possible states are defining a partition function (which is
given by the denominator in the expressions). Transcribing states are then given in the
nominator, which can be interpreted as the cases where the RNA Polyremase is bound to
the DNA. By relating each combination of transcription factor states with a free energy
dependancies of binding can be accounted for (e.g. recruitment and overlapping binding
sites). The partition function can be written as

Z =
∑

σ1...σn

n∏
i

[TFi]
σie−∆Gσ/RT (1.30)

where each transcription factor TFi can be either bound σi = 1 or not bound σi = 0,
and all possible states are accounted for. The transcription rate is proportional to the
probabilities of the transcriptionally active states

P =
Zactive

Zinactive + Zactive

(1.31)

Example, transcription logic

Buchler et. al. (2003) used the Shea-Ackers methodology to investigate how different
logical rules could be implemented for regulating transcription, and its relation to tran-
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scription factor binding mechanisms. The figure below shows example of some of the
rules for two transcription factors.

¤

1.6 Large molecular networks; systems biology in a

nutshell

Using the building blocks of mass action and enzymatic reactions, and transcription/translation
descriptions, models of large biochemical networks can be developed. In these cases ana-
lytical solutions are unreachable, and computer simulations of the systems are necessary.

Example: EGF-pathway simulation

The receptor to the epidermal growth factor (EGF) ligand belongs to the tyrosine kinase
family of receptors and is expressed in virtually all organs of mammals. EGF receptors
play a complex role during development and in the progression of tumors. Schoeberl
et.al. have created a model of the pathway as shown in the figure below.
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This might look like a far too advanced example for our purposes, but let’s look at
the reaction for a single molecule, e.g. the Raf . It is directly involved in two reactions

Raf + RasGTP
k28

k−28

RafRasGTP

Raf ∗P1
k43→ Raf + P1 (1.32)

and the formulation of the differential equation for Raf is straightforward using the mass
action formalism

d[Raf ]

dt
= −k28[Raf ][RasGTP ] + k−28[RafRasGTP ] + k43[Raf ∗P1] (1.33)

¤

Example: TGF-β pathway

The TGF-β pathway plays a prominent role in inter- and intracellular communication
and subversion can lead to cancer, fibrosis vascular disorders and immune diseases.
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P
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This network includes both molecular reactions and transcriptional regulation. A
model for the pathway can be defined by the reactions in Table 1.1.

∅ p0
p0p1

ALK1 (1)

∅ p4
p4p5

Smad4 (2)

∅ p8
p8p9

ALK5 (3)

TGFβ + ALK1
p13
p14

TA1 (4)

PSmad1 + Smad4
p18
p19

PS14 (5)

TGFβ + ALK5
p20
p21

TA5 (6)

PA + TA1
Smad7
p27
p28

TA1P (7)

PB + TA5
Smad7
p31
p32

TA2P (8)

∅ p2
p2p3

Smad1 (9)

∅ p6
p6p7

Smad2 (10)

∅
P S14N

(p11,p12)
p10

Smad7 (11)

Smad1
(

T A1
p15,p16)

p17
PSmad1 (12)

Smad2
T A5

(p22,p23)
p24

PSmad2 (13)

PSmad2 + Smad4
p25
p26

PS24 (14)

PS14
p29
k30

PS14N (15)

Table 1.1: The different reactions in the TGF-β pathway model, where pi (i = 0, 1, . . . , 32) are the
rate constants. Reactions with the symbol ∅ model production and degradation. In reactions (11), (12)
and (13) Michaelis-Menten dynamics is used.
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As an example, the model equation for the Smad1 concentration is given by

d[Smad1]

dt
= p2 − p2p3[Smad1] + p17[PSmad1]− p15[Smad1][TA1]

p16 + [Smad1]
, (1.35)

which is extracted from reactions 9 and 12 above. Try to extract the model equation for
another molecule! ¤

Example: The TGF-β family of ligands and their receptors

In the previous example, a module of the TGF-β signalling pathway was presented. In
idealized experiments, this module can be investigated. A problem that might have to be
accounted for in a modeling approach is crosstalk between a model and its surrounding
(all molecules left out of the model). Hence the presented model might not correctly
describe the behavior within a living organism. For example, TGF-β is only one member
of a whole family of ligands, that binds to a number of different receptors and each ligand-
receptor combination can activate/deactivate the same pathway (see figure).

¤
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Example: Pathways of relevance for cancer

The complexity within living cells are even larger than shown in the previous examples.
Both the EGF and the TGF-β pathways are important in cancer progression. As shown
in the figure below (from Carstens introduction), these pathways are only two of multiple
pathways that are important in this case.

This is an example of a number of modules (the specific pathways with robust be-
havior and ’output’) that interact with each other.¤
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1.7 Estimation of parameter values

Even when the mathematical description of a model is defined (as in the previous section)
the dynamical behavior can change due to different values of the parameters. A main
task withinin a modeling approach is to find or estimate parameter values that are
relevant for the biological system at hand. Here we will discuss two diffrent approaches
for estimating parameter values; experimental measurements, and reverse engineering.

1.7.1 Experimentally measuring parameter values

If it is possible, a good way to find parameter values is to measure the dynamics of a
single reaction. From this it is then possible to estimate the rate parameters.

Example: ALK1 internalization rate

In an experiment, the ALK1 receptor at the cell membrane is labeled with an antibody,
and after 15 minutes the amount of labeled ALK1 receptor is measured. At this time
only 5% of the labeled ALK1 molecules are still present.

Assume a reaction X
k→ ∅ as the receptor disappears from the membrane, which

leads to an equation
dX

dt
= −kX. (1.36)

The solution to this equation is X(t) = X0e
−kt where X0 is the initial concentration.

(This is easily checked by taking the time derivative of X(t).) The kinetic parameter
can be estimated by

e−kt =
X(t)

X0

= 0.05

k = −1

t
ln

X(t)

X0

= − 1

15
ln 0.05 = 0.2 min−1 (1.37)

This estimate could be improved further by fitting a curve X = X0e
−kt to a dynamical

measurment of the labeled ALK1 receptors.¤

1.7.2 Reverse engineering

Even if parameter values are not known from experiment it can be possible to do a
reverse engineering to find parameters for the model that result in an agreement of
model and some biological features of the system. The first thing needed is an objective
function (error measure) that is a quantitative measure of how well the model behavior
(for a given parameter set) corresponds to the biological feature at hand. Then an
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optimization method is needed to find parameters that result in an optimal value of the
objective function. Typically this is a hard optimization problem in a high dimensional
parameter space, and one has to rely on iterative heuristic algorithms to find ’good’
solutions.

Objective function

The objective function, R(p), is a function of the model parameters p. If the system of
differential equations for the model is not analytically solvable, a simulation of the model
for specific parameters is needed for evaluating the objective function value. The most
common type of objective function assumes that there are some quantitative experimen-
tal data available for molecular concentrations allowing for a direct comparison with the
model variables. If for example the concentration of protein X has been measured at N
time points t1, t2, ..., tN , a mean square error can be defined as

R(p) =
1

N

N∑
t

(Xexp
t −X(p)model

t )2 (1.38)

where Xexp
t are the measured concentrations and X(p)model

t are the model variable values
at different time points.

Optimization algorithms

Iterative algorithms are often used when optimizing an objective function. When the
functional form of the model output is known, function fitting can be used, and when the
model is linear and the parameters are confined by linear constraints, linear programming
can be used.

Example: experimental lac-operon revisited

In a previous example where a model for transcription was compared to experimental
data, the transcription rate, f , was described by the function

f = V1
1 + V2A + V3R

1 + V4A + V5R
(1.39)

where

A =
Xn

1 + Xn
, (X = [cAMP ]/KcAMP )

R =
1

1 + Y m
, (Y = [IPTG]/KIPTG)

The parameters were optimized using a nonlinear root mean square fit, and the resulting
parameters (same for multiple runs with different initial conditions) are showed below.
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In the table, also parameter values leading to different other logical rules are provided.¤

Often iterative heuristic algorithms are needed. These iterative procedure consists of
three steps: 1) Solve the differential equation and calculate the objective function value,
2) Adjust model parameters and resimulate, 3) Accept or reject the new parameters
(or construct a new set of parameter values) depending on the difference in objective
function value. Three examples of iterative optimization algorithms that could be used
for parameter estimations are

• Local search. This is the naive way of trying to find a good value for the objective
function. Here you start with a parameter set for which the model is simulated
and the objective function is evaluated. After adjusting parameters a new objective
function value is evaluated and it is accepted if this value is lower than the previous
one. This means that we will only go downhill in the objective function ’landscape’
and we will end up in the closest local minimum.

• Simulated annealing. Again, you start with a parameter set for which the
objective function is evaluated, then do a parameter adjustment and reevaluate the
objective function. Now the new parameter set is accepted with a probability one
if ∆R = Rnew−Rold is negative, and with probability e−∆R/T if ∆R is positive. T is
a parameter (fictitious temperature) which tunes the probability. The first thing to
note is that the algorithm can allow for accepting new parameter sets with a higher
objective function value, which means that it can escape from local minima. The
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second thing to note is that at high values of T , almost all parameter adjustments
are accepted and we get something like a random walk in the parameter space
(searching large regions). At low values of T almost only decreased objective
function values are accepted. The algorithm starts at high values of T and then
slowly decreases T until no more updates are accepted.

• Genetic algorithms. This type of algorithm is developed from an evolutionary
fitness principle. It starts with an ensemble of parameter values for which the
objective function is evaluated. Then ’good’ parameter sets are kept, ’bad’ ones
are removed. The bad solutions are replaced by forming new parameter sets from
two principles; mutation, where the parameters of a good solution are slightly
adjusted, and mating, where the new parameter set is some kind of combination
of two good solutions.

Example: TGF-β model

For the TGF-β pathway, PSmad1 and PSmad2 concentrations are measured at differ-
ent times after TGF-β stimulation. The concentrations are measured at N discrete
time points t1, t2, . . . tN for two experiments. The model is optimized using simulated
annealing type of algorithm and the mean square error is used as an objective function:

R(p) =
1

N

1

M

tN∑
t=t1

M∑
i=1

(xi(t)− x̃i(t))
2, (1.40)

where xi(t,p) and x̃i(t) denote model points and experimental points respectively and
the index i denotes the different molecules (M = 2 in total). (The sum of the R values
from the two experiments is used as objective function.)

The figure below shows experimental data, and the model output for optimized pa-
rameters. In this case multiple good solutions were found (the average model behavior
is plotted with errorbars).
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¤

1.8 Model analysis in systems biology

1.8.1 Robustness

Biological systems have evolved and survived for millions of years. They typically inherit
a stability towards fluctuations in parameters, and the same modules (e.g. pathways)
exist in many different species with varying environment. A good model should also
reflect this and hence a test for robustness can be an important test of the model.
Robustness analysis can also pinpoint which reactions/parameters that are important
for obtaining a specific biological behavior.

A simple measure for sensitivity is to measure the relative change of a system fea-
ture due to a change in a parameter. For example the feature can be the equilibrium
concentration of a compound, C for which the sensitivity (S) to a parameter p is

Sp =
dC
C
dp
p

=
dC

dp

p

C
≈ ∆C

∆p

p

C
(1.41)

It should be noted that this sensitivity measure is local and depends on the current system
“topology” and most often on parameter values. When applying a sensitivity measure,
there are often summation laws appearing, as for example in the case of measuring
sensitivity on equilibrium values

∑
i Spi

= 0. Features often used in robustness analysis
are e.g. the time integral of a variable, the duration or amplitude of a peak, etc.
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Example: creation and degradation revisited

Let’s go back to our first example where a molecule A is produced and degraded at
constant rates.

∅ k
d

A,

(1.42)

where k is the production rate and d is the degradation rate. We calculated that this
system had a fixed point for A∗ = k/d. This system is so simple that it is possible
to calculate the sensitivity of the fixed point with regard to the two parameters. The
derivative form leads to

dA∗

dk

k

A∗ =
1

d

kd

k
= 1

dA∗

dd

d

A∗ = − k

d2

dd

k
= −1

(1.43)

The difference version relies on that a parameter value is changed with a fraction f
(p → p+fp), and that the fixed point is calculated (or measured in a simulation) for the
new parameter value. Changing the parameters a fraction f leads to new fixed points

A∗(k + fk, d) =
k + fk

d
= (1 + f)

k

d

A∗(k, d + fd) =
k

d + fd
=

1

(1 + f)

k

d

(1.44)

and the sensitivity measures are given by

A∗(k + fk, d)− A∗(k, d)

fk

k

A∗(k, d)
=

fA∗(k, d)

fk

k

A∗(k, d)
= 1 (1.45)

A∗(k, d + fd)− A∗(k, d)

fd

d

A∗(k, d)
=

− f
1+f

A∗(k, d)

fd

d

A∗(k, d)
= − 1

1 + f
≈ −1

where in the last equation f is assumed to be small.
We can see that if the two parameter parts are summed we get zero (summation

law), and that when using the difference version f needs to be small not to introduce
errors. The conclusion is that the fixed point is directly increased with the same fraction
as k is changed. For the d parameter there is an decrease of the same fraction as d is
varied. The system is sensitive to changes in the parameters which is obvious since the
parameters are determining the dynamics (and the fixed point) directly.¤
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Example: CD95-induced apoptosis

This model developed by Bentele et.al. describes a pathway that regulates apoptosis
(programmed cell death). Defects in the regulation of apoptosis result in serious deseases
such as cancer, autoimmunity and neurodegeneration. The model components are shown
in the figure below.

A local sensitivity analysis is applied to a single solution (parameter set). The mea-
sure used is the integral of the protein concentration ci =

∫
t
xidt where xi is a concen-

tration. In the figure below the absolute value of the sensitivities,

sij =
dci/ci

dpj/pj

, (1.46)

are shown for all molecules i and parameters j.
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¤

A problem with the local sensitivity measure is that it can be very dependent on the
parameter values. One way to improve the sensitivity measure is to measure the local
sensitivity in multiple points spanning a region in the parameter space.

Example: Circadian clock

Doyle et. al. (2004) compared robustness in different models for the circadian clock
in Drosophila. To avoid only using a local sensitivity, they calculated the sensitivity in
the parameter space surrounding the optimal values by for each parameter pair scan the
parameter space by measuring in points where the parameters where varied 10-fold up
and down in 21 steps (resulting in 21*21 measurments for each pair and 703 parameter
pairs combined from the 38 parameters). Since it is a oscillating system they measured
sensitivity of amplitude and period of the oscillations.

¤

Example: TGF-β model

For the TGF-β model the optimization provided multiple solutions that could explain
the experimental data (as shown in a previous example). These solutions can be grouped
into those that utilizes the Smad7 feedback and those that do not (left figure below shows
a clustering of the solutions).

The figure below shows average sensitivity measures calculated from multiple solu-
tions for each group. The sensitivity is measured on the integral of PSmad1 and PSmad2
concentrations for each parameter. The solutions in group 2 (those using Smad7 feed-
back) are more robust.
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¤
There are other means to measure more global robustness, which will be discussed in

the last lecture.

1.8.2 Perturbations

Another way of analysing a model is by applying perturbations. The model behavior
could then be compared to the same perturbation in experiments, or predict new biology.
The main benefit of having a model in this case is that perturbations are easy to do
in the model, while it is often long and hard work to do it experimentally. Multiple
perturbations can be tested in a model framework, and those that results in interesting
behavior could then be tested in experiments.

Examples of perturbations are genetic manipulations where genes can be either
knocked out or overexpressed, and also silencing techniques such as short inference RNA.
Another type of perturbations are environmental changes, where nutrient levels or tem-
perature are examples. Also chemicals can be introduced for pertubing for example
protein synthesis or degradation.

Example: Perturbation in the TGF-β model

Chemicals are introduced in the cells before TGF-β stimulation, where either degradation
(MG-132) or phosphatases (orthovanadate) are blocked.
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The figure below shows the model prediction of a local perturbation where Smad7 is
removed from the TGF-β model. Again it is shown for two groups of solutions, where
the two groups provide different predictions.
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1.9 Systems Biology Tools

A number of computer tools are available for modeling biochemical networks. For sim-
ulation, analysis, and optimization of models several packages exist, both utilizing tools
such as matlab and mathematica as well as stand-alone applications with graphical user
interfaces. These application often have graphical tools for designing models, and there
also exist specialized tools for this.

Many of these tools can import and export models in specific format for easier transfer
of models, which also simplifies result reproducability of modelling results. One of these
formats is systems biology markup language (SBML) (figure).

Finally there are model databases where multiple models are stored, where one ex-
ample is the biomodels database (figure).

Links to many of these tools can be found on the web page http://sbml.org (figure),
and the biomodels database can be found at http://www.biomodels.net.
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1.10 Transport

Reactions within a cell occur at different spatial locations. For example, a signal trans-
duction network usually have reactions at the cell membrane, in the cytoplasm, and
in the nucleus. Hence spatial dynamics of molecules might also be important for the
behavior of a biochemical network within a cell. Spatial considerations become even
more important when modeling multicellular systems, where it is known that signalling
molecules (often termed morphogens) can be produced at specific positions, move out in
the surrounding tissue, and regulate development.
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1.10.1 Diffusion

Molecules are constantly moving and bouncing into each other due to thermal effects.
This Brownian motion leads to molecular diffusion. Consider a microscopical model for
diffusion that describes number of molecules on a one dimensional lattice discretized in
time (xi, tk), where xi+1 − xi = ∆x and tk+1 − tk = ∆t. The number of molecules in
position xi at time tk is denoted nk

i . Assume that each molecule moves ∆x either to
the right or to the left during a time ∆t with probabilities Pl = Pr = 1/2. Also assume
that consecutive moves are uncorrelated. The average change in molecular number at a
spatial point xi in a time step ∆t is given by

nk+1
i − nk

i = ∆nk
i = Prn

k
i−1 − (Pl + Pr)n

k
i + Pln

k
i+1

=
1

2
nk

i−1 − nk
i +

1

2
nk

i+1 =
1

2

(
nk

i−1 − 2nk
i + nk

i+1

)

=
∆x2

2

nk
i−1 − 2nk

i + nk
i+1

∆x2
(1.47)

This leads to a change per ∆t as

∆nk
i

∆t
=

∆x2

2∆t

nk
i−1 − 2nk

i + nk
i+1

∆x2
= D

nk
i−1 − 2nk

i + nk
i+1

∆x2
(1.48)

where D = (∆x)2/(2∆t) is defined as the diffusion constant. The experienced reader
can recognize that the right hand side of the equation corresponds to a discrete version
of the second derivative in x (≈ d2n/dx2). Letting ∆x → 0 and ∆t → 0 while keeping
D constant, and transforming number of molecules into concentrations, C (C = n/vol)
leads to

dC

dt
= D

d2C

dx2
(1.49)

which is Fick’s law. This is a partial differential equation in time and space and describes
diffusion in a continuous setting. Solving it is beyond the scope of this course.

Example: diffusion from a peaked distribution

A concentration peaked at a single point in space will diffuse as shown in the figure
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Example: diffusion times

The time it takes for a diffusive substrate to “reach” a distance L can be approximated
by

t =
L2

2D
(1.50)

The value of the diffusion constant, D, for a small molecule (e.g. glucose) is in the
order of 10−9 m2/s. Given a cell size of L ≈ 50 µm the diffusion time within a cell is
approximately

t =
(50× 10−6)2

2× 10−9
≈ 3 s (1.51)

while a macroscopic length as L = 1m would give

t =
(1)2

2× 10−9
≈ 5× 108s ≈ 16 years ! (1.52)

¤

If diffusion is included in a model, it can be integrated as an ordinary differential equation
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on a discretized space, where the formulation is

dCi

dt
= D




Nneigh∑
j

(Cj − Ci)


 (1.53)

where i is a compartment index and the sum over j is the Nneigh neighbors. Here the
distances and cross section areas between compartments are assumed to be equal and
included in the diffusion constant D.

Example: diffusion between two compartments

The diffusion rate is proportional to the molecular concentration, similar to what is given
for a mass action reaction. This is particular apparent in the case of two copartments
where the spatial factors are incorporated in the diffusion constant. Assume diffusion of
molecule A between compartments i and j.

Ai

D
D

Aj (1.54)

The resulting differential equations are given by

dAi

dt
= −dAj

dt
= −DAi + DAj (1.55)

¤

Example: early patterning in Drosophila

Diffusing signalling molecules (morphogens) are important for regulating development
in multicellular organisms. In the Drosophila embryo, bicoid mRNA is deposited at the
anterior pole (a localized source). This model by Howard et.al. (2005) discuss how this
robustly can lead to a very precise gene expression pattern.
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For the interested reader, the model equations are provided.
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¤

1.10.2 Membrane transport

Transport across membranes are important and can be both between cytosol and nuclei,
or in and out of cells. Molecule transport across membranes can be both passive and
active (mediated by helper molecules). Passive transport resembles diffusion in character
i.e. driven by concentration gradients. Active transport is typically modeled similar to
enzyme reactions, where a helper molecule (enzyme) does not change in concentration
but can be saturated. A main difference compared to reactions is that one has to take
into account that the number of molecules leaving from one side of the membrane has
to be the same as reaching the other side. This typically means that the change in
concentration is not the same on both sides of the membrane.

Example: NFκB

Hoffmann et al (2002) presented a model of the NFkB pathway where an integral inves-
tigation was on the transport in and out of the nuclei for different isoforms of a molecule
complex (figure).

The cross-membrane transport was assumed to be passive and was modeled by terms
defined by e.g.

dNFkBnucl

dt
= k1NFkBcyt − k01NFkBnucl (1.56)

Note that the authord did not account for the difference in volume between cytosol and
nuclei, something that has been corrected for in later versions of the model.¤
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Example: polarized auxin transport

The plant hormone auxin is important for several developmental features in plants. It has
been showed that the polar (directed) transport is a main regulator of the auxin location.
Auxin can be in a charged (anion) form, which passivly pass through membranes, and
a uncharged (protenated) form, which requires helper molecules for membrane crossing.
A model for auxin flux (from cell to wall) is given by (see figure)

(plus additional spatial factors).

a
i
-a

i
H a

ij
-a

ik
H

A
i

P
ij

P
i

A
ij

f(a
j
)(D)

¤

1.10.3 Reaction-Diffusion models

Models combining biochemical reactions and diffusion have the ability to create spatial
patterns in molecular concentrations. This was first noted by Turing in the 1950s.

Example: the activator-inhibitor model

Meinhardt introduced an activator (a) inhibitor (h) reaction-diffusion model. The one
dimensional version of the equations look like

da

dt
= ρa

(
a2

h
− a

)
+ Da∇2a

dh

dt
= ρb(a

2 − h) + Dh∇2h (1.57)
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The figure shows the spontanous pattern formation in activator (top) and inhibitor (bot-
tom) concentrations when starting in a close to homogeneous state.

Different types of patterns of the activator, generated from different parameter sets, are
shown in the figure below.

¤

Example: stem cell regulation in plants

At the tip of a plant shoot, there is a pool of stem cells throughout the adult life of the
plant. These cells are in part regulated by the WUS protein which is expressed in the
interior of the shoot (see figure). This expression is very robust, and even removal of the
shoot will lead to a new WUS domain forming. A model in which WUS is assumed to be
induced by an activator network is capable of explaining this ability of reorganization.
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For completeness, the equations are provided.

dW

dt
=

1

τw

g (hw + TwaA + TwyY )− dwW (1.58)

dY

dt
= kyL1 − dyY + Dy∇2Y (1.59)

dA

dt
= a− (b + β)A + cA2B − dY A + Da∇2A (1.60)

dB

dt
= bA− cA2B + Db∇2B. (1.61)

where g(x) is the sigmoidal function

g(x) =
1

2

(
1 +

x√
1 + x2

)
. (1.62)

The parameter τi is the inverse maximal rate, and hi sets the basal expression level. The
Tij parameters define the strength of the regulation (j regulating i). A positive T defines
an activation, while a negative T leads to a repression.¤
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CHAPTER 1

Preliminaries

1.1 Delay Differential Equations in Mathematical Biology

The use of ordinary and partial differential equations to model biological systems

has a long history, dating to Malthus, Verhulst, Lotka and Volterra. As these models

are used in an attempt to better our understanding of more and more complicated

phenomena, it is becoming clear that the simplest models cannot capture the rich va-

riety of dynamics observed in natural systems. There are many possible approaches

to dealing with these complexities. On one hand, one can construct larger sys-

tems of ordinary or partial differential equations, i.e., systems with more differential

equations. These systems can be quite good at approximating observed behavior,

but they suffer from the downfall of containing many parameters, often signifying

quantities which cannot be determined experimentally. Furthermore, obtaining an

intuitive sense of which components are most important in determining a behavior

regime can be quite difficult.

Another approach which is gaining prominence is the inclusion of time delay terms

in the differential equations. The delays or lags can represent gestation times, incu-

bation periods, transport delays, or can simply lump complicated biological processes

together, accounting only for the time required for these processes to occur. Such

1
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models have the advantage of combining a simple, intuitive derivation with a wide

variety of possible behavior regimes for a single system. On the negative side, these

models hide much of the detailed workings of complex biological systems, and it is

sometimes precisely these details which are of interest. Delay models are becoming

more common, appearing in many branches of biological modelling. They have been

used for describing several aspects of infectious disease dynamics: primary infection

[10], drug therapy [38] and immune response [11], to name a few. Delays have also

appeared in the study of chemostat models [56], circadian rhythms [47], epidemiology

[12], the respiratory system [51], tumor growth [52] and neural networks [7].

Statistical analysis of ecological data ([49], [50]) has shown that there is evidence

of delay effects in the population dynamics of many species.

1.2 Basic Properties of Delay Differential Equations

While similar in appearance to ordinary differential equations, delay differential

equations have several features which make their analysis more complicated. Let us

examine an example of the form

(1.1) ẋ(t) = f(x(t), x(t− τ)).

To begin with, an initial value problem requires more information than an analogous

problem for a system without delays. For an ordinary differential system, a unique

solution is determined by an initial point in Euclidean space at an initial time t0. For

a delay differential system, one requires information on the entire interval [t0− τ, t0].

Clearly, to know the rate of change at t0, one needs x(t0) and x(t0 − τ), and for

ẋ(t0 + ε), one needs to know x(t0 + ε) and x(t0 + ε − τ). So, in order of the initial

value problem to make sense, one needs to give an initial function or initial history,
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the value of x(t) for the interval [−τ, 0]. Each such initial function determines a

unique solution to the delay differential equation. If we require that initial functions

be continuous, then the space of solutions has the same dimensionality as C([t0 −

τ, t0],R). In other words, it is infinite dimensional.

This infinite dimensional nature of delay differential equations is apparent in the

study of linear systems. Just as for ordinary differential equations, one seeks expo-

nential solutions, and computes a characteristic equation. Rather than a polynomial

equation, one arrives at a transcendental equation of the form

P0(λ) + P1(λ)e−λτ = 0,

where P0 and P1 are polynomial in λ. Generally, this equation has infinitely many

solutions, corresponding to an infinite family of independent solutions to the linear

differential equation [17]. The linear stability analysis is thus more difficult for these

differential equations. Although standard methods for determining the location of

roots of a polynomial (the Routh-Hurwitz criteria, see [16]) are not applicable here,

there are methods available (see the next section and Chapter 2).

While as a general rule, the behavior of delay differential equations is “worse” than

that of ordinary differential equations, this is not always the case. An excellent ex-

ample is provided in [6]. It is well known that the solutions to ẋ(t) = x(t)2 diverge to

infinity in finite time. Solutions to the delay differential equation ẋ(t) = x(t− τ(t))2,

however, are continuable for all time if τ(t) is positive for all t. In the case of a

constant delay, the type with which we will be mostly concerned, this can be seen

by the method of steps, that is, direct integration over intervals of length τ .
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1.3 Linear Delay Differential Equations with Constant Delays and Co-
efficients

Next we explore the relationship between the location of the roots of the charac-

teristic equation and the behavior of solutions of the linear system. In particular, we

will see that equivalence between the stability of the zero solution and the location

of all characteristic roots in the right half-plane holds for delay differential equations,

just as for ordinary differential equations.

Consider a first order delay differential equation

(1.2) ẋ(t) =
m∑

i=1

Aix(t− τi),

where Ai is a constant n× n matrix for all i, and 0 ≤ τi ≤ τ for all i and some fixed

τ . As usual, any higher order linear system is equivalent to this by adding dummy

variables. The characteristic equation of this system is

(1.3) det

(
λI −

m∑
i=1

Aje
−λτi

)
= 0.

We have the following two theorems, which can be found in [15].

Theorem 1.1. Given any real number ρ, the characteristic equation (1.3) has at

most a finite number of roots λ such that Re(λ) ≥ ρ.

Essentially, the preceding theorem says that “most” of the roots of the equation

(1.3) have negative real part. Furthermore, the roots cannot accumulate except

about Re(λ) = −∞. In much of our future analysis, we will be interested in the

space C([−r, 0],R), representing all initial functions. When endowed with the norm

||φ|| = sup
t∈[−r,0]

φ(t),

this is a Banach space.
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Theorem 1.2. If Re(λ) < ρ for every solution of the characteristic equation (1.3),

then there exists a constant M > 0 such that, for each φ ∈ C([t0 − r, t0],R), the

solution to (1.2) satisfies

||y(t;φ)|| ≤M ||φ||eρ(t−t0)

So the behavior of linear delay differential equations is given an upper bound by

the location of the eigenvalue with the largest real part. By combining these two

results, we arrive at the following result, which forms the foundation of our linear

stability analysis.

Corollary 1.3. If Re(λ) < 0 for every solution of the characteristic equation (1.3),

then there exist constants M,γ > 0 such that, for each φ ∈ C([t0 − r, t0],R), the

solution to (1.2) satisfies

||y(t;φ)|| ≤M ||φ||e−γ(t−t0)

In other words, if all of the eigenvalues have negative real part, then solutions to

the linear delay differential equation decay exponentially to 0, exactly as is the case

for ordinary differential equations.

1.4 The differential equation ż(t) = az(t− τ)− bz(t)

We will often encounter the linear delay differential equation ż(t) = az(t−τ)−bz(t)

when studying more complex equations. It is therefore useful to establish some of

its basic properties at the outset.

Lemma 1.4. If |a| < b, then all solutions of the differential equation ż(t) = az(t−

τ)− bz(t) approach 0 as t→∞.
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Proof. Assuming a solution of the form eλt, we arrive at the characteristic equation

for this equation,

(1.4) λ = ae−λτ − b.

We begin by showing that the real part of any solution to this differential equation

is negative. Let λ = µ+ iσ. Then we have

µ+ iσ = ae−µτe−iστ − b

= ae−µτ (cos(στ)− i sin(στ))− b.

Looking at the real part of this equation, we get

(1.5) µ+ b = ae−µτ cos(στ).

If µ ≥ 0, then we get

b ≤ µ+ b = ae−µτ cos(στ) ≤ ae−µτ ≤ a,

contradicting the assumption that |a| < b.

So all of the roots of this differential equation have negative real part. It is a

simple application of Corollary 1.3 to see that then all solutions have a bound of the

form

|z(t)| ≤Me−γt.

Thus, we see that solutions must approach 0 as t→∞.

When the coefficients a and b are equal, solutions need not approach 0, but we

can show that they do indeed approach some positive limit determined by the initial

history φ. The proof of this lemma relies on the method of the Laplace transform. An

excellent description of this theory in application to linear delay differential equations

can be found in the textbook by Bellman and Cooke [2].
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1.5 A Comparison Lemma

We will also be interested in a differential equation of the form

ẏ(t) = p(t)y(t− τ)− dy(t),

where p(t) ≤ d, d > 0. In practice, p(t) will represent the nonlinearities of the model

equation. To better understand the behavior of this system, we will try to compare

its dynamics with those of the system

ż(t) = dz(t− τ)− dz(t).

We begin with the following lemma.

Lemma 1.5. If y and z are defined as above, and y(t) = z(t) ≥ 0 for t ∈ [a, a + τ ]

for some a, then y(t) ≤ z(t),∀t.

Proof. We define new variables y1(t) = edty(t) and z1(t) = edtz(t). Then a simple

calculation shows that

ẏ1(t) = p(t)edτy1(t− τ)

ż1(t) = dedτz1(t− τ).

Also, for nonnegative initial data, y1(t) and z1(t) are nonnegative and nondecreasing

for t ≥ a. Now we examine the difference w1(t) = z1(t) − y1(t). This quantity is

governed by the differential equation

ẇ1(t) = dedτz1(t− τ)− p(t)edτy1(t− τ)

≥ edτ (dz1(t− τ)− dy1(t− τ))

= dedτw1(t− τ)
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Suppose that w1(t) ≥ 0 for t ∈ [a, T ], T ≥ a + τ , then the inequality above means

that w1(t) is nondecreasing for t ∈ [T, T + τ ], and therefore w1(t) ≥ 0 on [−τ, T + τ ].

Now begin with the fact that w1(t) = 0 for t ∈ [a, a + τ ], and repeating the

above argument shows that w1(t) ≥ 0 for t ≥ a. It then follows immediately that

z(t) ≥ y(t) for t ≥ a.

1.6 Local Stability for Delay Differential Equations

For ordinary differential equations, the local stability of a steady state depends on

the location of roots of the characteristic function, which is polynomial in form. The

steady state is stable if and only if all of the roots have negative real part. The well-

known Routh-Hurwitz criteria give precise conditions for this to occur for arbitrary

polynomials. For delay differential equations, local stability is also determined by the

location of the characteristic function, but in this case, this function takes the form of

a so-called quasipolynomial, which is transcendental. Thus, there are infinitely many

roots. Furthermore, the Routh-Hurwitz criteria are not applicable. Many approaches

have been taken to determine the stability of steady states delay equations. Below,

I present a brief survey of these methods, before moving to develop a new method

available for certain delay systems.

1.6.1 The Pontriagin Criteria

When the delays in a system are commensurate, meaning that all are integer

multiples of some fixed quantity, the characteristic function can be written in the

form

(1.6) D1(z) =
m∑

`=0

r∑
j=1

a`jz
`ezj,
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and if we set z = iσ, we can break this into real and imaginary parts as

D1(iσ) = g(σ) + if(σ).

Pontriagin proved the following in [43], and a simplified proof can be found in

[44].

Theorem 1.6. If the roots of (1.6) all have negative real part, then all of the zeros

of f and g are real, simple, and alternating, and

ġ(σ)f(σ)− g(σ)ḟ(σ) > 0, ∀σ ∈ R.

Furthermore, either of the following conditions is sufficient for stability.

1. All zeros of f and g are real, alternating and simple, and the inequality above

is fulfilled for at least one σ.

2. All zeros of g (or f) are real and simple, and for each zero, the inequality is

satisfied.

In practicality, these criteria suffer from several drawbacks. In the case of multiple

delays, Theorem 1.6 holds only when the delays are commensurate, i.e., when they

are rational multiples of some common factor. In general, multiple delay systems are

not equivalent to systems with commensurate delays. Even when there is only one

delay, it is very difficult to determine the relationship between roots of the functions

f and g, and the theorem provides no method for determining whether its hypotheses

are satisfied or not.

1.6.2 Chebotarev’s Theorem

Another approach has been to try to generalize the Routh-Hurwitz criteria directly

[8]. To this end, we can take an expansion of the characteristic function as an infinite
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series,

D1(z) = a0 + a1z + a2z
2 + · · · .

Then we can again write D1(iσ) = u(σ) + iv(σ), and we will have

u(σ) = a0 − a2σ
2 + a4σ

4 −+ · · ·

v(σ) = a1 − a3σ
3 + a5σ

5 −+ · .

Then we can define determinants, as in the Routh-Hurwitz criteria,

Q1 = a1

Q2 =

∣∣∣∣∣∣∣
a1 a3

a0 a2

∣∣∣∣∣∣∣
...

Qm =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

a1 a3 a5 · · · a2m−1

a0 a2 a4 · · · a2m−2

...
...

...
. . .

...

0 0 0 · · · am

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
.

We then have the following theorem.

Theorem 1.7. Assume that u(z) and v(z) have no common zeros. Then the quasipoly-

nomial D1 is stable if and only if Qm > 0 for all m ∈ N0.

While similar in form to the Routh-Hurwitz criteria, this result is nearly impossible

to apply, due to the infinite number of inequalities which must be verified.

1.6.3 Domain Subdivision

The method of domain subdivision or D-subdivision, uses some basic facts about

the behavior of the roots of characteristic functions as a parameter changes to divide
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parameter space into regions in which the number of roots with positive real parts is

constant. The location of the roots depends continuously on the parameters of the

model, and, as the parameters change, a new root can emerge in the right half-plane

only if there is a set of parameters for which a purely imaginary root exists.

One may now subdivide the parameter space (domain) by hypersurfaces consisting

of parameter regimes for which one or more purely imaginary roots exist. In the

regions bounded by these hypersurfaces, the number of roots with positive real part

is constant. Of course, the regions in which the number is zero and their complements

are of most interest. This method is particularly easy to visualize when the system in

question depends on two parameters, so that the domain is R2 and the hypersurfaces

are curves.

1.6.4 Frequency Methods

A class of stability methods making use of the argument principle and a frequency

response curve are particularly popular in control theory applications. The first of

these is the Michailov criterion. If we consider an n-th order system with character-

istic function ∆(z), then we have the following theorem.

Theorem 1.8 (Michailov Criterion). A steady state with characteristic function ∆

is asymptotically stable if and only if

arg ∆(iσ)|σ=∞
σ=0 =

nπ

2
.

Unfortunately the graphical form of the curve ∆(iσ) in the complex plane is

difficult to determine when a delay is included, especially when the length of the

delay is varied.

A closely related criterion was developed by Nyquist. To begin with, one obtains

the transfer function W (s) from the Laplace transform of the linearized system, and
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one then defines the frequency response to be W (iσ).

Theorem 1.9 (Nyquist Criterion). Suppose the open loop system is stable. Then

the closed loop system is stable if and only if the frequency response of the open loop

system does not enclose −1.

The complexity of the graphical form of the frequency response again makes the

direct application of this criterion difficult. A variation on these themes can make

the criteria easier to check, for example, with a computer computation, rather than

graphical analysis. We begin by writing ∆(iσ) = U(σ) + iV (σ) and defining

R(σ) =
U(σ)V ′(σ)− U ′(σ)V (σ)

U2(σ) + V 2(σ)
.

Theorem 1.10. A steady state with characteristic function ∆ and order n is asymp-

totically stable if and only if ∫ ∞

0

R(σ)dσ =
nπ

2
.

1.6.5 The Tsypkin Criterion

Finally we arrive at the method for analyzing linear stability which is most closely

associated with the techniques we will develop in the next chapter. This criterion

will provide necessary and sufficient conditions for the roots of the characteristic

equation to remain in the left half plane for all lengths of delay. We look again at

the transfer function, which, for a system with a single delay, τ , has the form

(1.7)
R(s)

Q(s)
esτ ,

where R and Q are polynomials of degrees n− 1 and n respectively. We then have
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Theorem 1.11 (Tsypkin Criterion). Let Q be a stable polynomial, then the charac-

teristic function ∆ is stable for all delays τ if and only if

|Q(iσ)| > |R(iσ)|

for all σ ∈ R.

In Chapter 2, we will arrive at the same result by a different route on our way to

finding more explicit conditions for the persistence of stability for all delays.

There is also a generalization of this criterion, due to El’sgol’ts [17], to the case of

multiple delays τi, i = 1, . . . ,m. In this case, the numerator of the transfer function

(1.7) has the form
m∑

i=1

Ri(s)e
−sτi .

A necessary and sufficient condition for stability in this case is that Q be stable and

|Q(iσ)| >
m∑

i=1

|R(iσ)|.



CHAPTER 2

Linear Stability Analysis via Sturm Sequences

2.1 General Method

In this chapter, a new method for analyzing the stability of a steady state of a

delay differential equation is introduced. As we have seen in our survey of methods

for linear stability analysis, the introduction of a delay significantly increases the

difficulty of locating the roots of the characteristic equation. Once a delay is included

in a model, it is often of interest to determine whether or not varying the delay length

can change the stability characteristics of a steady state. So, we will focus particularly

on one approach: treating the length of the delay as a bifurcation parameter.

A stable steady state can become unstable if, by increasing the delay, a charac-

teristic root changes from having a negative real part to having positive real part,

and this occurs only if this root traverses the imaginary axis.

2.1.1 Existence of Critical Delays

At a steady state, the characteristic equation of the delayed differential equation

will have the form

(2.1) P (λ, τ) ≡ P1(λ) + P2(λ)e−λτ = 0,

14
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where τ is the length of the discrete delay added, and P1 and P2 are polynomials.

We can rewrite (2.1) as

N∑
j=0

ajλ
j + e−λτ

M∑
j=0

bjλ
j = 0.

Assume that the steady state about which we have linearized is stable in the absence

of a delay. Then for τ = 0 all of the roots of the polynomial have negative real

part. As τ varies, these roots change. We are interested in any critical values of τ at

which a root of this equation transitions from having negative to having positive real

parts. If this is to occur, there must be a boundary case, a critical value of τ , such

that the characteristic equation has a purely imaginary root (see [17]). The following

demonstrates how to determine whether or not such a τ exists, by reducing (2.1) to a

polynomial problem and seeking particular types of roots, thus determining whether

a bifurcation can occur as a result of the introduction of delay.

We begin by looking for a purely imaginary root, iσ, σ ∈ R of (2.1)

P1(iσ) + P2(iσ)e−iστ = 0.

We break the polynomial up into its real and imaginary parts, and write the expo-

nential in terms of trigonometric functions to get

(2.2) R1(σ) + iQ1(σ) + (R2(σ) + iQ2(σ))(cos(στ)− i sin(στ)) = 0.

In terms of the original polynomial coefficients, the new polynomials are

R1(σ) =
∑

j

(−1)j+1a2jσ
2j,

Q1(σ) =
∑

j

(−1)ja2j+1σ
2j+1,

R2(σ) =
∑

j

(−1)j+1b2jσ
2j,

Q2(σ) =
∑

j

(−1)jb2j+1σ
2j+1,
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Note that because iσ is purely imaginary, R1 and R2 are even polynomials of σ,

while Q1 and Q2 are odd polynomials.

In order for (2.2) to hold, both the real and imaginary parts must be 0, so we get

the pair of equations

R1(σ) +R2(σ) cos(στ) +Q2(σ) sin(στ) = 0,

Q1(σ)−R2(σ) sin(στ) +Q2(σ) cos(στ) = 0,

which we can rewrite as

−R1(σ) = R2(σ) cos(στ) +Q2(σ) sin(στ), and

Q1(σ) = R2(σ) sin(στ)−Q2(σ) cos(στ).

(2.3)

Squaring each equation and summing the results yields

(2.4) R1(σ)2 +Q1(σ)2 = R2(σ)2 +Q2(σ)2.

We notice two things about this equation. First, this is a polynomial equation.

The trigonometric terms disappear, and the delay, τ , has been eliminated. Secondly,

it is an equality of even polynomials. This is because squaring an even or odd

function always result in an even function, i.e., f(−x)2 = (±f(x))2 = f(x)2.

Define a new variable µ = σ2 ∈ R. Then equation (2.4) above can be written in

terms of µ as

(2.5) S(µ) = 0,

where S is a polynomial. Note that we are only interested in σ ∈ R, and thus if all of

the real roots of S are negative, we will have shown that there can be no simultaneous

solution σ∗ of (2.3). Conversely, if there is a positive real root µ∗ to S, there is a

delay τ corresponding to σ∗ = ±
√
µ∗ which solves both equations in (2.3).
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To see this, suppose that we have found a σ∗ such that R1(σ
∗)2 + Q1(σ

∗)2 =

R2(σ
∗)2 +Q2(σ

∗)2. Let C =
√
R2(σ∗)2 +Q2(σ∗)2. The preceding equation then can

be interpreted as stating that the point (−R1(σ
∗), Q1(σ

∗)) lies on the circle of radius

C (the negative sign is for convenience later). Now let us return to the equations

for the real and imaginary parts of the characteristic equation. These can now be

written as:

−R1(σ
∗) = C

(
R2(σ

∗)

C
cos(σ∗τ) +

Q2(σ
∗)

C
sin(σ∗τ)

)
, and

Q1(σ
∗) = C

(
R2(σ

∗)

C
sin(σ∗τ)− Q2(σ

∗)

C
cos(σ∗τ)

)
.

We can then write R2(σ∗)
C

= cosα and Q2(σ∗)
C

= sinα, and then

−R1(σ
∗) = C cos(σ∗τ − α), and

Q1(σ
∗) = C sin(σ∗τ − α).

Since the point (−R1(σ
∗), Q1(σ

∗)) lies on the circle of radius C, it is then clear that

there is a positive value τ = τ ∗ that satisfies both equations simultaneously.

Should the polynomial (2.5) have more than one positive real root, we are inter-

ested in studying the one associated with the smallest delay, τ ∗.

An alternate approach, more geometrical in nature, on finding the roots of the

characteristic equation (2.1) is taken in [35] and [33]. In this case, for λ = iσ, we

rewrite (2.1) as

(2.6) −P1(iσ)

P2(iσ)
= e−iστ .

As τ varies, plotting the right hand side in the complex plane traces out a unit

circle, and the left hand side is a rational curve. The intersections of these curves

represent the critical delays in which we are interested. Thus finding the roots of the
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characteristic equation comes down to finding values of σ for which the left hand side

of (2.6) has modulus 1. This reproduces equation (2.4), and the freedom to choose

τ again ensures that the original characteristic polynomial (2.1) is satisfied for some

τ ∗.

2.1.2 Nondegeneracy

Having found a critical delay τ ∗ and the point z = iσ∗ at which a root of the

characteristic equation hits the imaginary axis, it is necessary to confirm that the

root continues into the positive half-plane as τ increases past τ ∗. The criterion for

this to occur is

d

dτ
Re(λ)

∣∣∣∣
λ=iσ∗,τ=τ∗

> 0.

Equivalent in this case is

d

dτ
Re(λ)

∣∣∣∣
λ=iσ∗,τ=τ∗

6= 0,

since it is known for τ < τ ∗ that all solutions λ to (2.1) have negative real part.

Lemma 2.1. If λ = iσ∗ and τ = τ ∗ satisfy the characteristic equation (2.1), then

d

dτ
Re(λ)

∣∣∣∣
λ=iσ∗,τ=τ∗

> 0

if and only if

(2.7) R1(σ
∗)R′1(σ

∗) +Q1(σ
∗)Q′1(σ

∗) 6= R2(σ
∗)R′2(σ

∗) +Q2(σ
∗)Q′2(σ

∗).

Proof. Beginning with the characteristic equation (2.1), we can write

e−λτ = −P1(λ)

P2(λ)
,

which implies,

−λτ = log

(
−P1(λ)

P2(λ)

)
.
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Taking the derivative with respect to τ (treating λ as a function of τ , λ = λ(τ)) gives

−λ− τ
dλ

dτ
=
P ′1(λ)P2(λ)− P1(λ)P ′2(λ)

P1(λ)P2(λ)
· dλ

dτ
,

where ′ = d
dλ

. At λ = iσ∗ and τ = τ ∗, the left hand side becomes −iσ∗− τ ∗ dλ
dτ

. Since

iσ∗ is purely imaginary, and τ ∗ is real, dλ
dτ

is purely imaginary if and only if

P ′1(iσ
∗)P2(iσ

∗)− P1(iσ
∗)P ′2(iσ

∗)

P1(iσ∗)P2(iσ∗)

is real. This occurs only when the numerator and denominator are real multiples of

one another. Now we can write

P ′1(iσ
∗)P2(iσ

∗)− P1(iσ
∗)P ′2(iσ

∗)

P1(iσ∗)P2(iσ∗)
=

(Q′1 − iR′1)(R2 + iQ2)− (Q′2 − iR′2)(R1 + iQ1)

(R1 + iQ1)(R2 + iQ2)
.

Collecting real and imaginary parts, we find that

d

dτ
Re(λ)

∣∣∣∣
λ=iσ∗,τ=τ∗

= 0

if and only if

Q′1R2 +R′1Q2 −Q′2R1 −R′2Q1

R1R2 −Q1Q2

=
Q′1Q2 −R′1R2 +R1R

′
2 −Q1Q

′
2

R1Q2 +R2Q1

.

Cross multiplying and cancelling like terms yields

R1R
′
1(R

2
2 +Q2

2) +Q1Q
′
1(R

2
2 +Q2

2) = R2R
′
2(R

2
1 +Q2

1) +Q2Q
′
2(R

2
1 +Q2

1).

But at σ = σ∗, R2
1 +Q2

1 = R2
2 +Q2

2 6= 0. So this reduces to the condition

R1R
′
1 +Q1Q

′
1 = R2R

′
2 +Q2Q

′
2.

This is a necessary and sufficient condition for

d

dτ
Re(λ)

∣∣∣∣
λ=iσ∗,τ=τ∗

= 0.

Thus the derivative is not equal to 0 if (2.7) holds.
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Practically, this condition can be checked by formally differentiating the equation

(2.4) with respect to σ and verifying that equality does not hold for σ = σ∗.

In summary, we have reduced the question of whether the introduction of a delay

can cause a bifurcation to a problem of determining if a polynomial has any positive

real roots. If such roots can be found, then the argument above guarantees that

there is a delay size τ ∗ such that one of the eigenvalues of the system crosses the

imaginary axis, destabilizing its critical point. We have proven the following:

Lemma 2.2. Given a system of differential equations ẋ(t) = f(x(t), x(t − τ)) with

a discrete delay τ , and a stable steady state for xs for τ = 0, and let

N∑
i=1

aiλ
i + e−λτ

M∑
i=1

biλ
i = 0

be the characteristic equation of the system about xs. Then there exists a τ ∗ > 0 for

which xs undergoes a nondegenerate change of stability if and only if the equation

i) S(µ) = 0 (as defined in equation (2.5)) has a positive real root µ∗ = (σ∗)2, such

that

ii) S ′(µ∗) 6= 0

That is, when µ∗ is a simple, positive real root of the equation

[∑
(−1)ja2jµ

j
]2

+µ
[∑

(−1)ja2j+1µ
j
]2

=
[∑

(−1)jb2jµ
j
]2

+µ
[∑

(−1)jb2j+1µ
j
]2
.

2.2 Positive Real Roots and Sturm Sequences

Once the polynomial equation (2.5) has been obtained, one must determine whether

it has any positive real roots. There are many approaches one might take. For degree

2 characteristic polynomials, there is always the quadratic formula. For third and
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fourth degree polynomials, there are also explicit algorithms (see, for example, [29]

or [35]).

One approach to showing that no bifurcation exists is to apply the Routh-Hurwitz

condition. If these conditions are satisfied, then all of the roots of (2.5) have negative

real part, and thus none are positive and real. This condition is not sharp, however,

since there remains the possibility that the polynomial (2.5) has a conjugate pair of

roots with positive real part and nonzero imaginary part. For example, consider the

characteristic polynomial

(2.8) λ2 + 3λ+ 5 + λe−λτ = 0.

In the absence of delay, this becomes,

λ2 + 4λ+ 5 = 0,

which clearly has only roots with negative real part, and thus the steady state is

stable. Explicitly, the roots are λ1,2 = −2 ± i. The polynomial (2.5) produced by

the process we have described is

µ2 − 2µ+ 25 = 0,

whose roots are 1 ± 2i
√

6. This polynomial has no positive real solution, and yet

fails the Routh-Hurwitz conditions.

In other words, the Routh-Hurwitz conditions can guarantee the absence of a

bifurcation, but cannot give conditions under which a bifurcation does occur with

increasing τ .

A simple approach to determining whether a positive real root exists is Descartes’

Rule of Signs, whereby the number of sign changes in the coefficients is equal to the

number of positive real roots, modulo 2. If the number of sign changes is odd, then
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a solution is guaranteed. If, however, the number of sign changes is even, the rule

cannot distinguish between, for example, 2 roots and 0 roots.

A more general approach to this problem is Sturm sequences. Suppose that a

polynomial f has no repeated roots. Then f and f ′ are relatively prime. Let f = f0

and f ′ = f1. We obtain the following sequence of equations by the division algorithm

f0 = q0f1 − f2,

f1 = q1f2 − f3,

...

fs−2 = qs−2fs−1 −K,

where K is some constant.

The sequence of Sturm functions, f0, f1, f2, · · · , fs−1, fs(= K) is called a Sturm

chain. We may determine the number of real roots of the polynomial f in any

interval in the following manner: Plug in each endpoint of the interval, and obtain a

sequence of signs. The number of real roots in the interval is the difference between

the number of sign changes in the sequence at each endpoint. For a complete proof

of the method of Sturm sequences, see [45].

Example: f(x) = x2 − 1. In this case, f ′ = 2x, so the division algorithm is:

x2 − 1 =
x

2
· (2x)− 1.

So the Sturm chain is simply x2− 1, 2x, 1. If we are interested in the interval [0,∞),

then the chains of signs are

at 0 :−, 0,+ , and

at ∞ :+,+,+.
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There is one sign change in the first sequence and zero in the last, and we conclude

that there is one positive real root to f(x). Similarly, suppose we were interested in

the interval [−2, 2]. Then the sign sequences are

at -2 :+,−,+ , and

at 2 :+,+,+.

There are two sign changes in the first sequence and zero in the second, confirming

that there are two roots in this interval.

Given a specified parameter set, this method gives a simple, implementable algo-

rithm for determining whether a bifurcation occurs, without the need to run the full

simulation of the system of equations for various delays.

2.3 Applications

In [39], we are faced with the characteristic equation

(2.9) λ3 + Aλ2 + (B − δce−λτ )λ+ δcρ− δc(ρ− ψ′)e−λτ = 0,

where A ≡ δ + c + ρ, B ≡ δc + (δ + c)ρ, and ψ′ ≡ ρ − dT > 0, the notation being

that of the paper. In the paper, it is shown that for τ � 1 and τ � 1 no change of

stability occurs. We can extend this result to all τ > 0.

In the notation we have been using, equation (2.9) yields

R1(σ) = −Aσ2 + δcρ,

Q1(σ) = −σ3 +Bσ,

R2(σ) = −δcdT ,

Q2(σ) = −δcσ.
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Using these specific polynomials, (2.4) becomes

σ6 + (A2 − 2B)σ4 + (B2 − (δc)2 − 2δcρA)σ2 − (δc)2(ψ′2 − 2ρψ′) = 0, or

µ3 + (A2 − 2B)µ2 + (B2 − (δc)2 − 2δcρA)µ− (δc)2(ψ′2 − 2ρψ′) = 0.

(2.10)

This can be simplified by substituting the known values of A, B, and ψ′. For the

µ2 coefficient, we have

A2 − 2B = (δ + c+ ρ)2 − 2(δc+ (δ + c)ρ)

= δ2 + c2 + ρ2 + 2δc+ 2ρc+ 2δρ− 2δc− 2(δ + c)ρ

= δ2 + c2 + ρ2.

Further, for the µ coefficient, we have

B2 − 2δcρA− (δc)2 = ((δc)2 + (δρ)2 + (cρ)2 + 2δ2cρ+ 2δρc2 + 2ρ2δc)

− 2δcρ(ρ+ c+ δ)− (δc)2

= (δρ)2 + (cρ)2.

And for the constant term we have

ψ2 − 2ρψ′ = ψ′(ρ− dT − 2ρ) = −ψ′(ρ+ dT ).

So we may write equation (2.10) as

µ3 + (δ2 + c2 + ρ2)µ2 + ((δρ)2 + (cρ)2)µ+ (δc)2ψ′(ρ+ dT ) = 0.

This is a polynomial with positive coefficients, and cannot have any positive real

roots, therefore the introduction of a delay into the model in Nelson and Perelson

[39] cannot lead to a bifurcation. This is an extension of the results presented in

that paper, where it was proven by asymptotic methods that for very large and very

small delays, the steady state was stable. The argument above shows that this is the

case for all delay lengths.
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In [38], the following characteristic equation is encountered for a system of delay

differential equations

λ2 + (δ + c)λ+ δc− ηe−λτ = 0,

where δ, c and η are positive constants. We have P1(λ) = λ2 + (δ + c)λ + δc, and

P2(λ) = −η. Thus

R1(σ) = −σ2 + δc,

Q1(σ) = (δ + c)σ,

R2(σ) = −η, and

Q2(σ) = 0.

By the method of the lemma, we arrive at

η2 = (σ2 − δc)2 + (δ + c)2σ2,

η2 = σ4 − 2δcσ2 + δ2c2 + (δ2 + 2δc+ c2)σ2,

0 = σ4 + (δ2 + c2)σ2 + δ2c2 − η2.

(2.11)

Let µ = σ2, then this becomes:

S(µ) ≡ µ2 + (δ2 + c2)µ+ δ2c2 − η2 = 0.

Since the linear coefficient of S is positive, by Descartes’ rule of signs, a positive

real root can occur if and only if the constant coefficient is negative. So a change

of stability occurs if and only if 0 > δ2c2 − η2 = (δc + η)(δc− η), i.e., if and only if

δc < η.

Checking nondegeneracy, we take the derivative of the last line of (2.11), and

check that equality does not hold.

0 = 4(σ∗)3 + 2(δ2 + c2)σ∗, and

0 = 4(σ∗)2 + 2(δ2 + c2),
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which clearly has no roots. This shows, that a nondegenerate bifurcation does occur

for δc < η. This reproduces the results in Nelson et al [38].

Culshaw and Ruan, in [14] applied this same method to conclude that no bifur-

cations occurred in a delay model with characteristic equation

(2.12) λ3 + a1λ
2 + a2λ+ a3e

−λτ + a4λe
−λτ + a5 = 0.

In their paper, Culshaw and Ruan follow the method we have presented in Lemma

2, and arrive at the polynomial S if equation (2.5) in the form

z3 + αz2 + βz + γ

Proposition 2 in [14] states that if γ ≥ 0 and β > 0, then this polynomial has no

positive real roots. The proof of this proposition also assumes that α > 0. In this

case all of the coefficients are positive, and there are certainly no positive roots. The

condition α, β, γ > 0 is sufficient, but it is not necessary for no roots to exist. In the

next section we develop a criterion which will extend this result and give necessary

and sufficient conditions for a characteristic equation of the form (2.12) to produce

no bifurcations.

2.4 General Order Two and Three Characteristic Equations

Using Sturm sequences, we can derive some general results for low order char-

acteristic equations. We begin with the general degree two equation, for which a

general result is easy

(2.13) λ2 + aλ+ b+ (cλ+ d)e−λτ = 0.

A steady state with this characteristic is stable for τ = 0 if all of the roots of

λ2 + (a+ c)λ+ (b+ d) = 0
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have negative real part. By the Routh-Hurwitz conditions, this occurs if and only if

a+ c > 0 and b+ d > 0.

Letting λ = iσ and proceeding as in Lemma 2, we arrive at the following form of

equation (2.5)

(2.14) µ2 + (a2 − c2 − 2b)µ+ (b2 − d2) = 0.

Let A ≡ a2− c2−2b and B ≡ b2−d2. Equation (2.14) has a positive real root in two

circumstances. Since the lead coefficient is positive, if B < 0 then there is a single

positive real root. If B > 0, the roots of (2.14) are

−A±
√
A2 − 4B

2
,

and there is a simple positive root (in fact two simple positive real roots) if and only

if A < 0 and A2 − 4B > 0. Thus we can conclude

Proposition 2.3. A steady state with characteristic equation (2.13) is stable in the

absence of delay, and becomes unstable with increasing delay if and only if

i. a+ c > 0 and b+ d > 0, and

ii. either b2 < d2, or b2 > d2, a2 < c2 + 2b and (a2 − c2 − 2b)2 > 4(b2 − d2).

For similar results in the degree two case, and also for some more general results,

see Kuang [32].

For the degree three problem, the situation is somewhat more complex. The

general characteristic equation is

(2.15) λ3 + a2λ
2 + a1λ+ a0 + (b2λ

2 + b1λ+ b0)e
−λτ = 0.

The steady state is stable in the absence of delay if the roots of

λ3 + (a2 + b2)λ
2 + (a1 + b1)λ+ (a0 + b0) = 0
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have negative real part. This occurs if and only if a2 + b2 > 0, a0 + b0 > 0 and

(a2 + b2)(a1 + b1)− (a0 + b0) > 0.

In this case the form of equation (2.5) is

(2.16) µ3 + Aµ2 +Bµ+ C = 0,

where

(2.17) A ≡ a2
2 − b22 − 2a1, B ≡ a2

1 − b21 + 2b2b0 − 2a2a0 and C ≡ a2
0 − b20.

As in the degree two case, since the lead coefficient is positive, there are two

manners in which a positive real root can occur. The first and simplest is to have

C < 0. Now suppose that C > 0. Since the polynomial is odd, we are guaran-

teed a negative real root. The only way to have a simple positive real root in this

case is to have 2 positive real roots. In other words, all of the roots are real. Now

suppose we take the Sturm chain of the polynomial (2.16), denoted f0, f1, f2, f3.

We evaluate the entire real line, i.e., from −∞ and ∞, and construct a table of the

signs at these endpoints. f0 = µ3+Aµ2+Bµ+C and f1 = 3µ2+2Aµ+B, so we have

-∞ ∞

f0 - +

f1 + +

f2

f3

We know that there must be three real roots. The difference in the number of

sign changes at each endpoint must be three, but this is only possible if the Sturm

sequence at one endpoint is always positive or always negative, and the sequence at
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the other endpoint must alternate. So the completed table must have the form

-∞ ∞

f0 - +

f1 + +

f2 - +

f3 + +

Notice that f0 and f2 are odd degree polynomials, and f1 and f3 are even degree

polynomials, and the signs at −∞ are the direct consequence of those at∞ (the same

for even polynomials, and the opposite for odd polynomials). Thus, the bifurcation

occurs in the case C > 0 if and only if the lead coefficients f2 and f3 are positive.

Carrying out the division algorithm, the lead coefficient of f2 is

−(
2

3
B − 2

9
A2),

which is positive if and only if A2 − 3B > 0.

f3 is the constant

−9

4

4B3 − A2B2 − 18ABC + 4CA3 + 27C2

(A2 − 3B)2
.

After some algebraic manipulation, we can see that this is positive if and only if

(2.18) 4(B2 − 3AC)(A2 − 3B)− (9C − AB)2 > 0.

Now we have conditions to guarantee that there are three real roots. We must

finally guarantee that one of these is positive. This occurs if (2.16) has a positive

critical point. The derivative function is

f1 = 3µ2 + 2Aµ+B,
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whose roots are −A±
√

A2−3B
3

. One of these is positive if A < 0 or A > 0 and B < 0,

so either A or B must be negative. So we have

Theorem 2.4. A steady state with characteristic equation (2.15) is stable in the

absence of delay, and becomes unstable with increasing delay if and only if A,B, and

C are not all positive and

i. a2 + b2 > 0, a0 + b0 > 0, (a2 + b2)(a1 + b1)− (a0 + b0) > 0, and

ii. either C < 0, or C > 0, A2−3B > 0 and the condition (2.18) is satisfied, where

A, B and C are given by (2.17).

2.5 Conclusions

So we have developed a method of reducing the question of the existence of a delay-

induced loss of stability to the problem of finding real positive roots of a polynomial.

Although this method has been utilized before, it is useful to see the form of the

polynomials involved. These results are summarized in Lemma 2.2.

The method of this lemma can be used to verify and to extend the results in several

cases from the literature. More generally, it is easy, using the technique, to arrive at

general conditions on the coefficients of a characteristic equation of degree 2, such

that it describes an asymptotically stable steady state which becomes unstable as

the delay parameter is increased. This simple, practical test is given in Proposition

2.3, and is related to analysis done by Y. Kuang in Chapter 3 of his book [32].

The main result of this chapter, presented in Theorem 2.4, is for the degree three

case, where Sturm sequences are used to develop an elementary (though perhaps

algebraically complicated) test for bifurcation. It is hoped that this criterion will

make the investigation of third order systems of delay differential equations simpler,
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both analytically and numerically. It provides a general algorithm for determining

stability that anyone modeling with delay differential equation models can use.



CHAPTER 3

Single Species Models

In the study of population dynamics, the use of differential equations to study

single species populations is well established. Exponential and logistic growth models

are the most common. We would like to study a class of differential equation models

for a single species that involve a time delay. The goal is to determine whether the

introduction of time delays might enrich the dynamics of these models, or whether

their behavior is essentially the same as the ordinary differential equations models

they modify. In particular, we are interested in determining the existence of periodic

solutions for these models.

In this chapter, I will begin by stating the theorems from functional analysis

which we will use to prove the existence of periodic solutions to the delay differential

equations I will study. This section is followed by the exploration of a model of the

form

(3.1) ẋ(t) = b(x(t− τ))x(t− τ)− d(x(t))x(t),

with b nonincreasing and d nondecreasing, which represents the population dynamics

of a single species with a delayed birth term. Basic properties of this model are

determined, including the types of functions b and d which might lead to the existence

of periodic solutions.

32
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In the Section 3.3, we specify to the case b(x) = be−ax and d(x) constant. In

this case, I prove the existence of a class of solutions oscillating about the nontrivial

steady state, and then go on to extend a result of Kuang [32], proving the existence

of a periodic solution to this model in a wider parameter set than has previously

been shown.

In Section 3.4, the final one dealing with this model, a delay-dependent term is

added to the parameter b. The effects of this alteration are explored, and conditions

are given for the existence and linear instability of the positive steady state.

Following this, I change the model to make the rate of change proportional to the

current state of the variable, so the model takes the form

(3.2) ẋ(t) = [b(x(t− τ))− d(x(t))]x(t).

The same general plan is followed as with the first model. I begin by exploring the

basic properties of the model, and the forms of b(x) and d(x) which might give rise

to periodic solutions.

In Section 3.6, the case of a constant per capita death rate is explored in detail,

and it is shown that whenever the nontrivial steady state exists and is unstable, a

periodic solutions exists. Finally, we introduce a delay dependence in the parameters

of (3.2), and in the case b(x) = be−ax, I derive the exact range of delays τ for which

a positive periodic solution exists.

3.1 A Fixed-Point Theorem from Nonlinear Functional Analysis

The primary tool available for proving the existence of periodic solutions is the

theorem below from nonlinear functional analysis. Before stating the theorem, we

need to define what it means for a fixed point of a map to be ejective.
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Definition 3.1. Let X be a Banach space, K a subset of X, and x0 ∈ K. The

point x0 is said to be an ejective point of a map A : X \ {x0} → X if there is an

open neighborhood G ⊂ X of x0 such that, if y ∈ G ∩K, y 6= x0, there is an integer

m = m(y) > 0 such that A(m)(y) /∈ G ∩K.

Intuitively, a point is ejective if it is surrounded by a neighborhood of points,

which the map will sends outside the neighborhood eventually. We now state the

theorem we apply in this chapter and Chapter 4.

Theorem 3.2. If K is a closed, bounded, convex and infinite dimensional set in a

Banach space X, and A : K \ {x0} → K is completely continuous, and x0 ∈ K is

ejective, then there is a fixed point of A in K \ {x0}.

A proof of this theorem is provided by Nussbaum [42]. The primary challenge in

applying this result consists of constructing an appropriate map A. We will show

that solutions of the system oscillate about the nontrivial steady state, and the

“return map” acts on the space of initial functions. A fixed point of this return

map corresponds to a periodic solution, since dictating the behavior of a solution

on an interval of length τ determines all future behavior. Just as with ordinary

differential equations, if an autonomous system returns to its initial condition (or

initial function), it is periodic. This method is analogous to examining a Poincare

map for an ordinary differential equation.

3.2 A General Single-Species Population Model with Delay

The first class of models we will examine will be of the form

(3.3) ẋ(t) = b(x(t− τ))x(t− τ)− d(x(t))x(t).
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We will consider that b(x) is a continuous, positive, decreasing function, i.e., that the

per capita growth rate of the population decreases with increased population levels.

This is an instance of density-limited growth, of which the logistic model is another

example. The delay in this instance can represent a gestation or maturation period,

so the number of individuals entering the population depends on the levels of the

population at a previous instance of time.

The function d(x) is nondecreasing and positive. This represents the per capita

death rate, which may be increased by intraspecific competition.

Models of this type have been used extensively in the mathematical biology lit-

erature, especially when there is an interest in modelling oscillatory phenomena.

In population biology, for example, [4] and [55] explore the model generally, while

[48] is a specific application to housefly populations. Such models are also used in

other branches of biology, such as physiology [36]. While oscillatory phenomena are

noted, few analytic results about the existence of periodic solutions exist for such

models. One such result is found in [32], Chapter 5, and I will refer to it often.

More commonly, results proving the existence of positive periodic solutions rely on

a non-autonomous periodic forcing term or periodic coefficients, with period greater

than zero ([21], [22], [54]).

Now let us proceed with the analysis by proving the following basic fact.

Lemma 3.3. Given positive initial data, solutions of equation (3.3), where b is a

positive function, remain positive for all time.

Proof. We can simply look at the rate of change by steps. By assumption, x(t) is

positive for t ∈ [−τ, 0], so for t ∈ [0, τ ], it is easy to see that ẋ(t) > −d(x(t))x(t).

So if T ∈ [0, τ ] is the first time at which x(t) = 0, then ẋ(T ) > 0. This is clearly a
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contradiction, so x(t) > 0 in this interval. Now simply apply the same analysis to

[τ, 2τ ], and so on. So for all t, the solution remains positive.

The requirement that b(x) be positive is necessary, in spite of the analogy to,

for example, the logistic ordinary differential equation. If there is an x̃ such that

b(x̃) < 0, then there are positive initial histories which become negative. One could

simply set the initial history to be x̃ on [−τ,−ε] for some small ε > 0, and make it

continuous on [−ε, 0] so that x(0) is sufficiently small, say x(0) = −b(x̃)(τ−ε)x̃/2 > 0.

One sees that the solution will be driven negative in the interval [0, τ ]. If x(t) ≥ 0

on [0, τ − ε], then

x(τ − ε) ≤ x(0) +

∫ τ−ε

0

b(x(s− τ))x(s− τ)ds

= x(0) +

∫ τ−ε

0

b(x̃)x̃ds

= −b(x̃)
2

(τ − ε)x̃+ b(x̃)(τ − ε)x̃

=
b(x̃)

2
(τ − ε)x̃ < 0,

contradicting the positivity of x(t) on [0, τ − ε).

I will now give three theorems which describe the most general division of possible

behavior regimes for the differential equation (3.3). These results are slightly more

general than the requirement that b be decreasing and d be increasing. Also, it is

likely that these simple results have already been obtained elsewhere, but I have not

seen them recorded. It is useful to see that the case I will consider in detail, that

which will be covered by Theorem 3.4, is the only one with interesting long-term

dynamics.

Theorem 3.4. Consider the delay differential equation (3.3), if b is a positive func-

tion and sup b(x) < inf d(x), then the zero steady state is globally asymptotically
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stable.

Proof. Let B = sup b(x) and D = inf d(x). We have, then, that ẋ(t) < Bx(t− τ)−

Dx(t), but solutions of ẏ(t) = By(t − τ) − Dy(t) all approach 0 asymptotically as

t→∞, according to Lemma 1.4, since 0 < B < D. So all solutions of (3.3) approach

0 also.

Theorem 3.5. Let b and d be positive functions. Suppose that there exists an x̄ such

that sign(b(x)− d(x)) = −sign(x− x̄), and b′(x̄) < d′(x̄). Then x̄ is a positive steady

state, and the trivial steady state is unstable. If

(3.4) b′(x̄)x̄ > −2d(x̄)− d′(x̄)x̄,

then x̄ is linearly stable for all τ . Otherwise, there exists a τc > 0 such that x̄ is

stable for τ < τc, and unstable for τ > τc.

Proof. To begin with, x̄ is a unique positive steady state, since b(x)−d(x) = 0 if and

only if x = x̄. It is the point at which b(x̄) = d(x̄). Linearizing about this steady

state yields the equation

(3.5) ẋ(t) = (d(x̄) + b′(x̄)x̄)x(t− τ)− (d(x̄) + d′(x̄)x̄)x(t),

which has characteristic equation

λ = αx(t− τ)− βx(t),

where α = d(x̄)+ b′(x̄)x̄ and d(x̄)+d′(x̄)x̄. Since b′(x̄) < d′(x̄), α < β. Furthermore,

we know that for |α| < |β| = β, all roots of the characteristic equation have negative

real part. Since α < β, this condition is satisfied if and only if α > −β, but this is

exactly the condition (3.4).
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If this is not the case, then α < −β. It is clear that for τ = 0, the only char-

acteristic root is λ = α − β < 0. Thus, by the continuity of the location of roots,

for small delays, the system is stable. The derived polynomial for the characteristic

equation is σ− α2− β2, which clearly has a positive real root. Thus there is a τc for

which the characteristic equation has a purely imaginary root. As τ increases past

τc, a root enters the right half-plane. Since the derived polynomial has degree 1, our

Sturm sequence analysis shows that this root can never exit. Thus for τ > τc, the

steady state is unstable.

In [12] the authors prove that if (b(x)x)′ > 0 for all x, then the steady state is

asymptotically stable. A more general result about the linear stability of the model

are also obtained in [12]. These results are contained in Theorem 3.5.

The only situation not covered by the theorems above is when b(x) > d(x) for

all x. In this case, there is no positive steady state, but the trivial steady state is

unstable. This situation is covered by the following theorem.

Theorem 3.6. If

(3.6) lim
x→∞

b(x) ≥ lim
x→∞

d(x),

then all solutions of (3.3) with positive initial data are unbounded.

In particular, no positive periodic solutions are possible in this case. We will prove

this theorem via a pair of lemmas.

Lemma 3.7. Given the condition (3.6), a solution, x(t), of equation (3.3) with

positive initial data is bounded if and only if limt→∞ x(t) = 0.

Proof. Since solutions are continuous, it is clear that if x(t) → 0, then it is bounded.

Now suppose that x(t) < M for all t. In this case, define N = b(M)− d(M). Since
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b is decreasing and d is increasing, we have that b(x(t)) − d(x(t)) ≥ N for all t.

Integrating the differential equation (3.3) yields

x(t) = x(0) +

∫ t

0

[b(x(s− τ))x(s− τ)− d(x(s))x(s)]ds

= x(0) +

∫ 0

−τ

b(x(s))x(s)ds+

∫ t−τ

0

(b(x(s))− d(x(s)))x(s)ds−
∫ t

t−τ

d(x(s))x(s)ds.

Define A = x(0) +
∫ 0

−τ
b(x(s))x(s)ds, which is a constant determined by the initial

history of x. Continuing from above, we can find a lower bound on x(t) in the

following manner

x(t) = A+

∫ t−τ

0

(b(x(s))− d(x(s)))x(s)ds−
∫ t

t−τ

d(x(s))x(s)ds

≥ A+

∫ t−τ

0

Nx(s)ds−
∫ t

t−τ

d(M)Mds

= A− d(M)Mτ +

∫ t−τ

0

Nx(s)ds.(3.7)

Since x(t) < M , the lower bound given by (3.7) must be bounded for all t. In

particular, the integral ∫ ∞

0

Nx(s)ds

must be finite, which implies that x(t) → 0 as t→∞, since x(t) is always positive.

Lemma 3.8. The delay differential equation (3.3), under the conditions of Theorem

3.5 has no solutions which approach 0 as t→∞.

Proof. Given an initial history, we again begin with

x(t) = x(0)+

∫ 0

−τ

b(x(s))x(s)ds+

∫ t−τ

0

(b(x(s))−d(x(s)))x(s)ds−
∫ t

t−τ

d(x(s))x(s)ds.

Notice that the first three terms of this expression are positive, and the final term is

the only negative term. Define B =
∫ 0

−τ
b(x(s))x(s)ds. If x(t) → 0, then there exists
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a T > 0 such that, for all t > T , x(t) < B
2d(M)τ

. Where M is an upper bound on x(t).

Now for t > T , ∫ t

t−τ

d(x(s))x(s)ds ≤
∫ t

t−τ

d(M)
B

2d(M)τ
ds =

B

2
.

Thus, for t > T , x(t) > B
2
, a contradiction.

Given Lemmas 3.7 and 3.8, it is now obvious that solutions with positive initial

data must be unbounded, and thus Theorem 3.6 is proven.

3.3 A Specific Single-Species Delay Model

We will now look specifically at

(3.8) ẋ(t) = bx(t− τ)e−ax(t−τ) − dx(t),

which is a particular case of equation (3.3). We will assume that b > d, so that we

are in the case of Theorem 3.5, where the nontrivial steady state exists.

This particular form of the more general model, with constant per capita death

rate and exponentially decaying per capita birth rate has been used in many models,

for example [4] and [24], especially those dealing with Nicholson’s famous blowfly data

([40], [41]), which sparked much debate about the possibility of chaotic dynamics in

natural populations.

Let us begin by looking at the particulars of this case. The nontrivial steady state

occurs when be−ax̄ = d, i.e., x̄ = 1
a
ln b

d
. According to Theorem 3.5 x̄ is stable for all

τ if and only if

d

dx
be−ax

∣∣∣∣
x=x̄

> −2
d

x̄
.

This is equivalent to the condition b < de2.
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Now suppose that b > de2, and let α = ln b
d
−1. Then α > 1 and the characteristic

equation is

λ = −dαe−λτ − d.

When τ = 0, this is λ = −dα− d. Suppose τ > 0 and that λ = iσ, σ > 0 is a purely

imaginary root. Then the real and imaginary parts of the characteristic equation are

d = −dα cos(στ),

σ = dα sinστ.

Squaring these and summing, we get σ2 + d2 = d2α2, i.e. σ = d(α2 − 1)
1
2 .

Rewriting the real and imaginary parts of the characteristic equation, we see,

cosστ = − 1

α
< 0,

sinστ =
(α2 − 1)

1
2

α
> 0.

So for τc, the critical delay at which an eigenvalue crosses into the right half-plane,

στc ∈ (π
2
, π), and the critical delay is

(3.9) τc =
1

d(α2 − 1)
1
2

cos−1

(
− 1

α

)
.

For τ > τc the steady state is unstable. From now on, we will assume that b > de2.

3.3.1 Oscillatory Solutions

Now let us take an initial function in the set

K = {φ ∈ C([−τ, 0],R+) : φ(−τ) = x̄, φ(t) > x̄, ∀t ∈ (−τ, 0]}.

So long as x(t) > x̄, a solution to (3.8) with an initial history in K will be decreasing,

since the entire graph of bxe−ax lies below that of dx when x > x̄ (see Figure 3.1).

Let us also define the value xm < x̄ so that xmb(xm) = dx̄. In the region (xm, x̄), the
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entire graph of xb(x) lies above dx, and if a solution remains in this region, then it

must be increasing. We now show that any solution with initial history in K \ {x̄}

must oscillate about x̄ infinitely often.

x

b(x)x

dx

Figure 3.1: The growth function, b(x)x, and the decay function, dx, intersecting at x̄

Lemma 3.9. If φ ∈ K, then there exist times 0 < t1 < t2 such that if x(t) is a

solution to (3.8) with initial function φ, then x(t1) = x(t2) = x̄ , ẋ(t1) < 0 and

ẋ(t2) > 0 and x(t) 6= x̄ for any other t ∈ (0, t2)

Proof. Suppose that x(t) > x̄ for all t, then x is monotone decreasing and bounded

below. Thus, x(t) has a limit, and since ẋ must approach 0 as x approaches this

limit, it is clear from the differential equation that x(t) → x̄.

In order to prove that solutions with initial data in the class K cannot remain

above x̄ and have x̄ as a limit, we must now look more carefully at the critical delay

length τc. We know that the nontrivial steady state is unstable if and only if τ > τc,
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and we have seen that στc ∈ (π
2
, π). From the imaginary part of the characteristic

equation when τ = τc, recall that σ = dα sin(στ). We get the following chain of

inequalities, given that the nontrivial steady state is unstable

στ > στc >
π

2

τ >
π

2

1

dα sin(στ)

>
π

2

1

dα
>

1

dα
.

The form of this inequality we will use is

−dα < −1

τ
.

Now consider the function B(x) = xb(x). Taking the derivative at the point

x = x̄, we get B′(x̄) = −dα < 0. Note, in particular, that B is decreasing in a

neighborhood of x̄. For any slope s ∈ (B′(x̄), 0), there exists a δ > 0 such that for

0 < x− x̄ ≤ δ, B(x)−B(x̄) < s(x− x̄). In particular, we now take s = − 1
τ
.

Let T > τ be a time such that x(T ) = x̄+ δ. Then for t ∈ [T, T + τ ] we have

ẋ(t) = B(x(t− τ))− d(x(t))

< B(x(t− τ))− dx̄

< B(x(T ))−B(x̄)

since x(t) is decreasing for t > 0 and B is decreasing in a neighborhood of x̄. Also,

B(x̄) = dx̄. Continuing,

ẋ(t) < −1

τ
(x(T )− x̄) = − δ

τ

But if ẋ(t) < − δ
τ

on the interval [T, T + τ ], then x(T + τ) < x(T ) − τ δ
τ

= x̄, con-

tradicting the assumption that x(t) remains above x̄. We are lead to the conclusion
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that there exists a time t1 such that x(t1) = x̄, x(t) > x̄ for t ∈ (0, t1), and ẋ(t1) < 0,

as desired.

For t ∈ (t1, t1 + τ), x(t) ≤ x̄. To see this, suppose that x(t) = x̄, then ẋ(t) =

x(t− τ)b(x(t− τ))− dx̄ ≥ 0. This implies, x(t− τ)b(x(t− τ)) ≥ dx̄, but this is not

possible, since at time t − τ , xb(x) is less than dx̄, as is apparent in the figure 3.1.

Now suppose that x(t) < x̄ for all t > t1. Integrating (3.8), one arrives at

x(t)− x̄ =

∫ t1

t1−τ

f(x(s))x(s)ds+

∫ t−τ

t1

(f(x(s))− d)x(s)ds−
∫ t

t−τ

dx(s)ds(3.10)

≥
∫ t−τ

t1

(f(x(s))− d)x(s)ds+ A− dτ x̄,(3.11)

where A is defined to be
∫ t1

t1−τ
f(x(s))x(s)ds, and is fixed by the value of the solution

before entering the region x < x̄. If the integral
∫ t−τ

t1
(f(x(s)) − d)x(s)ds fails to

converge, then x(t) → ∞, since the integrand is positive. As this contradicts the

assumption that x(t) < x̄, we must assume that the integral converges. In particular,

the integrand must approach zero. This can occur if and only if x approaches 0 or

x̄. We can rule out the case of x(t) → 0 using equation (3.10). As x → 0, the final

term on the right hand side becomes arbitrarily small, and thus x(t)− x̄ > 0. Which

contradicts the assumption that x→ 0.

We conclude that if x(t) < x̄ then x(t) → x̄. If this is the case, then there exists

a time T so that for x(t) > xm for all t > T , and for these times x(t) is increasing.

The proof that a time t2 exists such that the solution x(t) must increases across

the level x̄ at time t2 is analogous to the proof of the existence of t1, above, and is

omitted.

We are easily led to the following, much more general, result.

Corollary 3.10. Any solution of the delay differential equation (3.8) with positive

initial data is equal to x̄ infinitely often.
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Proof. If we assume that the solution x(t) satisfies x(t) > x̄ for all t > T , then the

analysis in the proof of the previous theorem derives a contradiction. Similarly, if

x(t) < x̄ for t > T , the previous proof arrives at a contradiction.

3.3.2 An Extension of Previously Known Results

In [32], the author proves the existence of periodic solutions for certain equations

of the form

ẋ(t) = B(x(t− τ))−D(x(t)).

An essential component of this proof, required to guarantee certain properties of the

solution map, was the existence of a value x ∈ (xM , x̄) such that B(D−1(B(x))) >

D(x). In this section, I provide a broader condition, which not only encompasses a

larger set in the space of parameters, but is also directly verifiable without the need

to find x. The proof of the existence of periodic solutions from [32] will again apply

to this broader case, extending the previous results.

Let B(x) = xb(x), D(x) = xd(x), and let xM be the point at which B achieves

its maximum. Also define xm ∈ (0, xM) such that B(xm) = B(x̄). If

(3.12) D−1(B(D−1(B(xM)))) > xm,

then the solution operator maps K into K.

Suppose that the initial function φ ∈ K. Then so long as x(t) remains above x̄,

the solution x(t) is decreasing. As we have seem, the form of the equation dictates

that the solution must cross x̄ at some point t1. For the next τ time units, the value

of B(x(t− τ)) increases, since x(t− τ) decreases, and B is decreasing for x > x̄.

Claim: x(t) 6= x̄ for t ∈ (t1, t1 + τ).

Proof. If x(t̃) = x̄ for some t̃ ∈ (t1, t1 +τ), and that t̃ is the smallest such time. Then
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D(x(t̃)) = D(x̄) = B(x̄) > B(x(t̃ − τ)), and thus ẋ(t̃) < 0, contradicting the fact

that x(t) < x̄ for t ∈ (t1, t̃).

So for the interval (t1, t1 + τ), the solution x is below x̄. We now show for these

times x is above xm. Let us deal with this in two cases: x achieves its minimum at

t1 + τ , and it achieves its minimum at some time in (t1, t1 + τ). The first case is

impossible, since ẋ(t1 + τ) = B(x̄) − d(x(t)) > B(x̄) −D(x̄) = 0. So the minimum

must occur in the interval (t1, t1 + τ). At the minimum,

0 = ẋ(t) = B(x(t− τ))−D(x(t))

D(x(t)) = B(x(t− τ)) ≥ B(D−1(B(xM)))

x(t) ≥ D−1(B(D−1(B(xM)))) > xm.

Thus, in the interval (t1, t1 +τ), the solution x(t) remains in the region (xm, x̄). In

this region, B(y) > D(x) for all x and y. It follows that x is increasing for t ≥ t1 + τ

for as long as it remains below x̄. By the same argument as before, the solution must

cross x̄ at some time t2 > t1 + τ . Arguing analogously to the above, since x stays

above xm in the interval (t2 − τ, t2), the maximum of x on the interval (t2, t2 + τ) is

less that F (xM).

Thus, K is mapped into K by the solution operator. Now the arguments from

Kuang apply to show that periodic solutions exist whenever the steady state is

linearly unstable.

For what parameter regimes does the condition (3.12) hold? To begin with, recall

that in our case B(x) = bxe−ax and D(x) = dx. For our functions B and D, the

value of xM can be determined by simply checking where B′(x) = 0. One finds that

xM = 1
a
. It is much more difficult to determine the value of xm. Rather, we can

find another condition, equivalent to (3.12), which does not require knowledge of the
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actual value of xm. One has

(3.13) B(D−1(B(D−1(B(xM))))) > B(xm),

since D−1(B(D−1(B(xM)))) ∈ (0, x̄), and in this region, x > xm is equivalent to

B(x) > B(x̄) = dx̄. To apply this condition, one only needs knowledge of B(xm) =

B(x̄) = d
a
ln( b

d
).

Now, insert xM = 1
a

into (3.13).

b(
1

a
) =

b

a
e−1

D−1(B(
1

a
)) =

b

ad
e−1

B(D−1(B(
1

a
))) =

b2

ad
e−1e−

b
d
e−1

D−1(B(D−1(B(
1

a
)))) =

b2

ad2
e−1e−

b
d
e−1

B(D−1(B(D−1(B(
1

a
))))) =

b3

ad2
e−1e−

b
d
e−1

e−
b2

d2 e−1e−
b
d

e−1

For the condition to hold, we need the expression above to be greater than B(x̄) =

d
a
ln( b

d
). It is clear then that the only truly independent parameter is b

d
. In fact, by

rescaling the differential equation, we can assume that the parameter d is equal to

1. We have then

b3

a
e−1e−be−1

e−b2e−1e−be−1

>
1

a
ln(b)

b3e−1e−be−1

e−b2e−1e−be−1

> ln(b)

This condition is by no means easy on the eye. We can plot the difference of the left

and right hand sides (see Figure 3.2), and see when the function is positive, in order

to get an idea of the range of the parameter b for which the condition is satisfied.

Recall that we are only interested in b > e2, which is approximately 7.3891.
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Figure 3.2: The graph of b3e−1e−be−1
e−b2e−1e−be−1

− ln(b) against b. When b > e2 and this function
is positive, we can prove the existence of periodic solutions to the delay differential
equation (3.8)

3.4 Delay Dependent Parameters

Staying with the same model as in the previous section, let us examine the effect

of allowing one of the parameters to depend on the length of the delay τ . Specifically,

consider

(3.14) ẋ(t) = be−µτx(t− τ)e−ax(t−τ) − dx(t).

Since the first term in this equation represents recruitment or birth rate, the mod-

ification of this parameter could represent the decreased survivorship over a longer

incubation or maturation time. I will examine the effect of this delay dependence on

the existence and stability of the nontrivial steady state.

The mathematical difficulty imposed by this alteration is twofold. First of all, the

location of the steady state will now vary with the length of the delay. Secondly,
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the form of the characteristic equation will change due to the direct inclusion of the

delay in the parameters, and the indirect changes resulting from the varying location

of the steady state.

Let us begin by locating the steady states of the model (3.14). The zero steady

state still exists, and a nontrivial steady state is given by

be−µτe−ax̄ = d

which leads to

x̄ =
1

a
ln

b

deµτ

In particular, if τ > 1
µ

ln b
d
, there is no positive steady state. In this case, given

positive initial data, we have

ẋ(t) ≤ be−µτy(t− τ)− dy(t),

with be−µτ < d, so the solution goes to 0, and the trivial steady state is globally

stable.

Now we examine the characteristic equation for the positive steady state, given

a particular delay τ < 1
µ

ln b
d
. We linearize the equation (3.14) as usual, and assume

an exponential solution to get the new characteristic equation

(3.15) λ = −dα(τ)e−λτ − d,

where α(τ) = 1− ln b
deµτ .

This characteristic equation is essentially the same as that for the delay-independent

case; only α(τ) is affected. In the case of delay-independent parameters, we found a

critical time delay τc, given in equation (3.9), such that the characteristic equation

λ = −dαe−λτ − d
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has a root with positive real part if and only if τ > τc. We will now use this result

to get the condition for instability of (3.14).

Theorem 3.11. The nontrivial steady state of the delay differential equation (3.14)

is unstable if and only if

(3.16) τ >
1

d(α(τ)2 − 1)
1
2

cos−1

(
− 1

α(τ)

)
.

Notice in particular that this condition includes the requirement that α(τ)2−1 >

0, which is equivalent to ln b
deµτ (ln b

deµτ − 2) > 0. This is equivalent to the condition

that be−µτ > de2, similar to the condition b > de2, which needed to be satisfied in

order for a change of stability to occur in the delay-independent case. So we have

Theorem 3.12. The positive steady state of (3.14) exists and is unstable if and only

if τ < 1
µ

ln b
d
, and inequality (3.16) is satisfied. In this case, all solutions with positive

initial data oscillate about the steady state.

3.5 Another General Model

Now let us turn our attention to a slightly different model formulation.

(3.17) ẋ(t) = (b(x(t− τ))− d(x(t)))x(t),

where b and d are again decreasing and increasing, respectively. As opposed to the

model in equation 3.3, in this model, only the nonlinear components of the birth term

are delayed. This could be thought of to correspond to a delayed density dependence

in the per capita birth rate. The delayed logistic models is a particular example

of (3.17). Dynamics of this form often form part of predator-prey and food chain

models, for example [37].
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The conditions for the existence of a positive steady state are the same as before,

but the linearizations are different. As before, we have the following two results,

which are included for completeness, in spite of their simplicity.

Theorem 3.13. If b(0) < d(0), then the delay differential equation (3.17) has no

positive steady state, and the trivial steady state is globally asymptotically stable.

Proof. It is clear that ẋ(t) ≤ (b(0) − d(0))x(t), and so solutions to the full delay

differential equation are bounded by x(0)e(b(0)−d(0))t, which approaches 0 as t →

∞.

Theorem 3.14. If

lim
x→∞

b(x) > lim
x→∞

d(x),

in equation (3.17), then any solution with positive initial history approaches ∞ as

t→∞

Proof. It is clear in this case that the graph of maxx≥0 d(x) < minx≥0 b(x), so ẋ(t)

is positive for all t. If such an increasing solution is bounded, then it has a limit

L > 0, but this would imply 0 = limt→∞ ẋ(t) = (b(L) − d(L))L, which is clearly

impossible.

The most interesting case of this model is, however, when the graphs of b and d

intersect, so that there is a nontrivial steady state. In contrast to the model (3.3), in

this case the nontrivial steady state does not always change stability. Let x(t) ≡ x̄ be

the unique positive steady state of this delay differential equation, i.e. b(x̄) = d(x̄).

Then the linearization of the equation about this steady state is

(3.18) ẋ(t) = b′(x̄)x̄x(t− τ)− d′(x̄)x̄x(t),
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and the characteristic equation is

(3.19) λ = −ae−λτ − b,

where we define

a = −b′(x̄)x̄ > 0, and

b = d′(x̄)x̄ > 0.

When the delay τ is sufficiently small, this characteristic equation has only roots

with negative real part, and the steady state is stable. For some parameter regimes,

however, longer delays result in an unstable steady state. These results are summa-

rized in the following theorem.

Theorem 3.15. If d′(x̄) > −b′(x̄), then the nontrivial steady state x̄ is linearly stable

for all τ . For d′(x̄) < −b′(x̄), there exists a τc such that for τ < τc, the steady state

is stable, and for τ > τc, it is unstable.

Proof. We have the characteristic equation (3.19). Write λ = µ + iσ, and we can

separate this equation into its real and imaginary parts, yielding

µ+ b = −ae−µτ cos(στ)(3.20)

σ = ae−µτ sin(στ).(3.21)

If b > a and µ ≥ 0, then the magnitude of the left hand side of the real part (3.20)

is always strictly greater than the magnitude of the right hand side. Thus only roots

with negative real part exist, for all τ . This proves the first part of the theorem.

Now suppose a > b. It is clear that when τ = 0, the steady state is stable

(λ = −a − b < 0). We use the method described in Chapter 2. The derived

polynomial equation in this case is σ2 + b2−a2 = 0. This has a solution if and only if
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a > b. Since there is only one possible imaginary root, once a root passes to the right

half plane, further increases in τ cannot remove it, so the steady state is unstable

for all τ > τc. This completes the proof of the second part.

3.6 Constant per capita Death Rates

Now let us specify to the case of d(x) = d, a constant, so that we have the

differential equation

(3.22) ẋ(t) = (b(x(t− τ))− d)x(t).

We will focus on the interesting case, where b(0) > d, b is decreasing and b(x̄) = d

for some unique x̄. For this case, we prove that this system has periodic orbits when

the nontrivial steady state is unstable.

Let us begin with the linear stability analysis. The nontrivial steady state, x̄

exists, and the linearization at this point is

(3.23) ẋ(t) = b′(x̄)x̄x(t− τ).

This leads to the characteristic equation

(3.24) λ = −βe−λτ ,

where β = −b′(x̄)x̄ > 0. Note that when τ = 0, the steady state is stable, as the

characteristic equation has exactly one root, which is negative. If we separate the

components of the eigenvalue as λ = µ + iσ, then the real and imaginary parts of

the characteristic equation are

µ = −βe−µτ cos(στ),(3.25)

σ = βe−µτ sin(στ).(3.26)
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Now suppose that (3.24) has a purely imaginary root, λ = iσ. The equation becomes,

0 = −β cos(στ),(3.27)

σ = β sin(στ).(3.28)

We are looking for the smallest positive value of τ such that there is a solution

σ > 0. From the real part (3.27), we see that στ = π
2

is the smallest possible value

for this product. Using this information in the imaginary part (3.28) we see that

σ = β = −b′(x̄)x̄. So we see that the critical delay τc at which the first eigenvalue

with positive real part emerges is τc = π
2σ

, i.e.,

(3.29) τc =
−π

2b′(x̄)x̄
,

and for τ > τc, the nontrivial steady state x̄ is unstable.

Any characteristic root of (3.24) with positive real part is also simple. If not, then

we must have

λ = −βe−λτ ,(3.30)

1 = βτe−λτ .(3.31)

Substituting the first formula in the second gives

(3.32) 1 = −τλ,

and it is clear that is Re(λ) > 0, then equation (3.32) cannot be.

Let us take the time now to record a couple of facts which we will refer to in

proving later results. If we choose the delay τ such that the steady state is unstable,

then b′(x̄) < −π
2x̄τ

. Furthermore, when µ > 0, cos(στ) < 0 (from equation (3.25)) and

sin(στ) > 0, when we consider the complex root with nonnegative imaginary part.

So στ ∈ (π
2
, π).
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Lemma 3.16. Suppose that x(t) is a solution of equation (3.22), x(t0) = x̄, and

x(t) < x̄ for all t ∈ [t0 − τ, t0]. Then for all t > t0, x(t) < x̄e(b(0)−d))τ = M .

Proof. The function x(t) is increasing for t ∈ [t0, t0 + τ ], since b(x(t − τ)) > d for

these times. Since b(x) is a decreasing function, ẋ(t) ≤ (b(0) − d)x(t), so it is clear

that x(t0 + τ) ≤ M . For t ∈ [t0 + τ, t0 + 2τ ], b(x(t − τ)) < d, so x(t) is decreasing.

If x(t) remains above x̄ for all t ≥ t0, then it is always decreasing, and x(t) < M,∀t.

Otherwise, there is a time, t1 such that x(t1) = x̄. In this case, x(t) decreases on

the interval [t1, t1 + τ ]. If x(t) now remains below x̄ for t > t1, then we are done.

Otherwise, there is a time t2 such that x(t2) = x̄. We have returned to the situation

of the lemma. So we have proven that such solutions either oscillate about x̄ with

x(t) < M , or else are eventually monotone (in which case x(t) → x̄).

The final preparatory definition we require is of a subset, K ⊂ C([−τ, 0],R+) of

the Banach space of initial functions.

K = {φ ∈ C([−τ, 0],R+) : φ(−τ) = x̄, φ nondecreasing, and φ(0) ≤M}.

We will show that for any solution x(t) with initial function φ ∈ K1 = K \{x̄}, there

is a time t̃ = t̃(φ) such that x(t̃+ s) is in K1.

Theorem 3.17. Suppose that φ ∈ K1, and that x(t) is the solution to the differential

equation (3.22) with initial function φ. Then there exists a time t1 such that x(t1) =

x̄, and ẋ(t1) < 0. Further, there exists a time t2 > t1 + τ such that x(t2) = x̄ and

ẋ(t2) > 0. If t̃ = t2 + τ , then the function defined by x(t̃ + s) for −τ ≤ s ≤ 0 is in

K1.

Proof. Suppose that t1 does not exist, then for t > 0, x(t) is decreasing and bounded

below by x̄. It follows that x(t) approaches a limit L as t→∞. This is only possible
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if L = x̄. Since b′(x̄) < −π
2x̄τ

, for any α < π
2
, it is true that

b(x)− b(x̄) ≤ − α

τx̄
(x− x̄),

for x such that |x− x̄| < δ′ = δ′(α). In particular, this is true for α = 1. See Figure

(3.3) for an illustration of this fact. Choose δ < min{x(τ), δ′(1)}. For x− x̄ > δ,

b(x)

(π/2τ x*)(x−x*)+d

(1/τ x*)(x−x*)+d

Figure 3.3: The function b(x), its tangent, and a line with slope greater than the tangent

b(x)− d < b(x̄+ δ)− d < − 1

τ x̄
δ,

since b(x̄) = d.

Now let T be a time such that x(T ) = x̄ + δ. Due to the definition of δ, T > τ ,

and x(t) > x̄+ δ for t ∈ [T − τ, T ). Then for t ∈ [T, T + τ ], we have

ẋ(t) = (b(x(t− τ))− d)x(t)

≤ (b(x(t− τ))− d)x̄

≤ − 1

τ x̄
δx̄ = − δ

τ
.
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Now x(T + τ) < x(T )− δ
τ
τ = x(T )− δ = x̄, which is a contradiction.

We have shown that any solution with initial history in K1 must cross the non-

trivial steady state, at a time which we call t1. From this crossing time, the solution

continues to decrease for exactly τ units of time, and then begins to increase. We

now show that the solution must reach the nontrivial steady state again. Essentially

the same analysis works are before, now we have

b(x)− b(x̄) ≥ − 1

τ x̄
(x− x̄) =

1

τ x̄
(x̄− x).

From this point on, the work is analogous, with the directions of the inequalities

reversed.

The next order of business is to show that the steady state x̄ is an ejective fixed

point to the return map. To do this we follow a method described in Kuang [32]

(Section 2.9) and proven by Chow and Hale [9]. If we consider the linearized equation

ẋ(t) = −βx(t− τ),

then for any eigenvalue λ, there is a decomposition of the space of initial functions

C([−τ, 0],R+) = Pλ ⊕ Qλ into subspaces invariant under the solution operator, and

Pλ is the generalized eigenspace of eigenvalue λ. Let πλ be the projection onto Pλ.

Rather than proving it directly from the definition, we will use the following theorem

to show that the steady state x̄ is ejective.

Theorem 3.18. Suppose that the following conditions are satisfied:

1. There is a characteristic root λ with Re(λ) > 0.

2. There is a closed convex set K, x̄ ∈ K and δ > 0 so that

inf{||πλ(φ)|| : φ ∈ K, ||φ|| = δ} > 0,

and
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3. There is a completely continuous function τ : K \ {x̄} → [α,∞), α ≥ 0 such

that the map defined by

Aφ = xτ(φ)(φ), φ ∈ K \ {x̄},

takes K \ {x̄} into K and is completely continuous.

Then x̄ is ejective.

Since the eigenvalue λ is simple, Pλ is a one dimensional space. We define

φ1(θ) =
1

1 + λτ
eλθ = γeλθ, for θ ∈ [−τ, 0]

ψ(s) = e−λs, for s ∈ [0, τ ],

Φ1 = (φ1, φ̄1),

Ψ = (ψ, ψ̄).

For the linear operator L in (3.23) and φ ∈ K1 we define a measure η(θ), by

L(f) = −βφ(−τ) =

∫ 0

−τ

dη(θ)φ(θ)

η(−τ) = 0, η(θ) = −β, for θ ∈ (−τ, 0]

We now compute the bilinear form

(ψ, φ1) = ψ(0)φ1(0)−
∫ 0

−τ

∫ θ

0

ψ(ξ − θ)φ1(ξ)dξdη(θ)

= γ +

∫ 0

−τ

∫ ξ

−τ

ψ(ξ − θ)φ1(ξ)dη(θ)dξ

= γ −
∫ 0

−τ

βψ(ξ + τ)φ1(ξ)dξ

= γ − γβ

∫ 0

−τ

e−(ξ+τ)λeλξdξ

= γ(1− βτe−λτ ) = γ(1 + λτ) = 1.
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Also, we have

1

γ
(ψ̄, φ1) = 1− β

∫ 0

−τ

e−λ̄(ξ+τ)eλξdξ

= 1− βe−λ̄τ

[
1

λ− λ̄
e(λ−λ̄)ξ

]0

−τ

= 1− β
1

λ− λ̄
(e−λ̄τ − e−λτ )

=
1

λ̄− λ
(λ+ βe−λτ − (λ̄+ βe−λ̄τ )) = 0.

From these two computations, it follows readily that (ψ, φ̄1) = 0 and (ψ̄, φ̄1) = 1.

So, (Ψ,Φ1) is the identity, so for any φ ∈ C([−τ, 0],R+), πλφ = Φ1(Ψ, φ). So we need

to show that

inf{||(ψ, φ− x̄)|| : φ ∈ K1, ||φ− x̄|| = δ} > 0.

Let λ = µiσ, and recall that µ > 0, στ ∈ (π
2
, π). We can compute the coefficient

(ψ, φ− x̄), and split it into its real and imaginary parts, yielding

Real part: φ(0)− x̄− β

∫ 0

−τ

e−µ(ξ+τ)(φ(ξ)− x̄) cos(ξ + τ)σdξ(3.33)

Imaginary part: β

∫ 0

−τ

e−µ(ξ+τ)(φ(ξ)− x̄) sin(ξ + τ)σdξ(3.34)

If the infimum is 0, then there is a sequence φn ∈ K1 with ||φn − x̄|| = δ, and

both the real and imaginary parts above go to zero. For the given range of σ and

ξ, sin(ξ + τ)σ > 0 and bounded away from 0 when ξ is near 0. Further, φn − x̄ is

increasing, so the integral in (3.34) can only go to zero only if ||φn − x̄|| → 0, which

is a contradiction. Thus the fixed point x̄ is ejective, and we can apply the Theorem

(3.2). This system has periodic solutions when the steady state is unstable.

3.7 Delay Dependent Parameters
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Figure 3.4: Solutions of the ẋ(t) = (be−ax(t−τ) − d)x(t), with a = 0.1, b = 10, d = 1, with initial
function x̄ + 10t on [−τ, 0]. τc = 0.6822. The upper graph is for τ = 1, and the second
for τ = 0.5.

As in section 3.4, we will now examine the effects of allowing a parameter in the

equation (3.22) depend on the delay, τ . We will use the same type of dependence,

so that we are interested in

(3.35) ẋ(t) = (e−µτb(x(t− τ))− d)x(t).

This form of the delay model allows us to obtain much more explicit results than

were possible in Section 3.4. The location of the nontrivial steady state is now the

value x̄, for which

b(x̄) = deµτ ,

and since b is decreasing, the x̄ is no longer biologically meaningful if b(0) < deµτ .

Thus as τ increases, the nontrivial steady state will disappear.
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The characteristic equation for (3.35) is

λ = e−µτb′(x̄)x̄e−λτ ,

which is similar in form to the characteristic equation (3.24) for the delay-independent

case. We can use the analysis use in the previous section to prove the following result.

Theorem 3.19. If

(3.36)
πeµτ

−2b′(x̄)x̄
< τ <

1

µ
log

b(0)

d
,

then the nontrivial steady state of (3.35) exists and is unstable. Furthermore, there

exist positive, periodic solutions of this differential equation.

It must be remembered that x̄ is a decreasing function of τ . The first inequality

in (3.36) is the condition for instability, obtained from our calculations of the critical

delay, τc, in the delay-independent case. The second inequality is the condition for

the positivity of the nontrivial steady state.

If we specify to the case where b(x) = be−ax, as we have considered previously,

then the picture becomes remarkably clear. In this case, b′(x̄) = −ab(x̄) = −adeµτ ,

b(0) = b, and x̄ = 1
a
ln b

deµτ . Thus the condition for the instability of the steady state

(3.36) becomes

τ >
π

−2adx̄

=
π

2d ln b
de−µτ

=
π

2d

1

ln b
d
− µτ

.

This becomes the quadratic equation in τ ,

µτ 2 − τ ln
b

d
+

π

2d
< 0,
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which is satisfied if and only if

(3.37)
1

2µ

ln
b

d
−

√(
ln
b

d

)2

− 2πµ

d

 < τ <
1

2µ

ln
b

d
+

√(
ln
b

d

)2

− 2πµ

d

 .

If
(
ln b

d

)2
< 2πµ

d
, then no change of stability occurs.

Next we apply the second inequality from (3.36), which guarantees the existence

of a positive steady state. We get τ < 1
µ

ln b
d
. Note that this bound lies within the

bounds provided in (3.37). In fact, this is exactly the midpoint of the left and right

bounds. Putting these facts together, we arrive at the following theorem.
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Figure 3.5: Solutions of the (3.35) with a = 0.1, b = 10, d = 1, µ = .7, with initial function
constantly 5 on [−τ, 0]. The τ -region of instability determined in Theorem 3.20 is
[1.3520, 3.2894]. The graphs are for τ = 0.7, τ = 2 and τ = 4, respectively.

Theorem 3.20. Consider the delay differential equation

(3.38) ẋ(t) = (be−µτe−ax(t−τ) − d)x(t),
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with b > d. If (
ln
b

d

)2

<
2πµ

d
,

then the nontrivial steady state is stable for all delays τ for which it exists. Otherwise,

for

1

2µ

ln
b

d
−

√(
ln
b

d

)2

− 2πµ

d

 < τ <
1

µ
ln
b

d
,

the nontrivial steady state is unstable, and positive periodic solutions exist. For

smaller τ , the nontrivial steady state is stable, and for larger τ , it is no longer

positive, and the zero steady state is globally stable.



CHAPTER 4

Predator-Prey Interaction Models

4.1 The Lotka-Volterra Predator-Prey Interaction Model

One of the most universally recognized models in mathematics is the classic model

for the interaction of a single predator species and a single prey specie developed by

Alfred Lotka [34] and Vito Volterra [53]. If we let x represent the prey species, and

we let y represent the predator species, then the model has the form,

ẋ(t) = ax− bxy

ẏ(t) = cxy − dy,

(4.1)

where a, b, c and d are positive constants. We see that this model includes an expo-

nential growth term for prey in the absence of predation, and an exponential decay

for predators in the absence of prey. The interaction of the two species is represented

by a mass action term, which implicitly assumes that the two species encounter each

other at a rate proportional to each population level, and that the effect of predation

on each is in turn proportional to the number of encounters.

This system of two ordinary differential equations has two steady state solutions,

(0, 0) and (d
c
, a

b
). It is well known that the trivial steady state is a saddle, while the

nontrivial steady state is a center, and solutions in the phase plane form an infinite

family of periodic orbits (Figure 4.1).

64
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Figure 4.1: Periodic solutions of the Lotka-Volterra model with all parameters equal to 1

Periodic solutions are certainly a desirable feature of a model of predator-prey

interaction, as near-periodic behaviors are often observed in nature ([18], [19], [46],

[31]), although it is likely that predation is not the only factor contributing to long

phase cyclic dynamics. Unfortunately, the basic Lotka-Volterra model (4.1) is not

mathematically sound. It is structurally unstable, that is, an arbitrarily small change

in the nature of the model fundamentally changes the qualitative behavior of the

solutions.

For example, we could change the system in the following way

ẋ(t) = ax− bxy − εx2

ẏ(t) = cxy − dy,

ε > 0. This alteration corresponds to changing the growth of the prey in the absence

of predation to logistic growth with a very large carrying capacity (a
ε
). This small
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change in the nature of the model completely alters the nature of the phase portrait

of the models. The infinite family of periodic orbits is lost and replaced by solutions

which all approach the nontrivial steady state (Figure 4.2).

0 0.5 1 1.5 2 2.5 3 3.5
0

0.5
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x

y

Figure 4.2: Solutions to the perturbed Lotka-Volterra model, ε = .2, a = b = c = d = 1

There are several possible ways of making the Lotka-Volterra system more palat-

able mathematically and biologically, each leading to interesting modelling questions

and mathematical results. To begin with, we will retain the logistic growth term for

the prey population in the absence of predation. Ideally, we will develop a model

which corresponds well with biologically observed behavior regimes, including some

kind of periodic behavior or sustained oscillation, and which is mathematically ro-

bust.

One option is to include stochastic effects in the model. This can often lead to

sustained oscillations due to the constant perturbation of the system. While this is

an intriguing option, it is beyond the scope of my current research.
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Another option is to choose more robust nonlinearities in the predation term.

While mass action is reasonable, it is not the only possibility. If we write the preda-

tion term as p(x)y, p(x) is known as the functional response, and is a quantification

of the relative responsiveness of the predation rate to changes in prey density at

various population levels of prey. Kot [30] and Begon [1] describe four categories

of functional response encountered in the ecological literature ([25], [26], [27], [28],

[13]). Type I is the standard mass action or linear response

p(x) = cx.

Type II is the so-called Monod response

p(x) =
cx

a+ x
,

which is hyperbolic, with a saturation level (c) due to the time it takes to handle

prey. Type III is a sigmoidal response

p(x) =
cx2

a2 + x2
,

which includes the feature that predators are inefficient when prey levels are low.

These three types of functional response are all increasing functions of the prey

population x. A Type IV response includes a decrease at large population levels,

corresponding to prey group defenses or toxicity to predators. In the following, we

will consider functional responses of Types I-III.

Thirdly, one may alter the Lotka-Volterra model by including a delay. A delay

takes into account the non-instantaneous nature of biological processes. Statistical

evidence has been reported ([49], [50]) of delayed effects in the density dependence

of the growth rate of several insect and plant species. Another possibility for the

inclusion of delays is in the interaction term p(x)y. This would represent the time
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necessary to convert prey biomass into predator biomass, for instance due to gestation

periods or time required for maturation. Some ecologists have also suggested that

the inclusion of a delay could help to explain certain phenomena observed in long

population cycles [5]. The inclusion of delays make the analysis of these models more

difficult, but also broadens the spectrum of possible behavior regimes.

4.2 A Delay Model of Predator-Prey Interaction

We will look at a system with three populations, x is the prey population, y

represents mature predators, and yj is the juvenile predator population, which does

not hunt.

dx

dt
= rx(1− x

K
)− yp(x)(4.2)

dy

dt
= be−djτy(t− τ)p(x(t− τ))− dy(t)(4.3)

dyj

dt
= by(t)p(x(t))− be−djτy(t− τ)p(x(t− τ))− djyj(t)(4.4)

Let us look at the third equation in more detail. Consumed prey are converted to

juvenile (immature) predator instantly with a conversion rate b. They remain in this

stage of development for τ units of time, decaying exponentially at rate dj. After

this time, the survivors are removed to the class of mature predators y. It is easy to

see that the third equation can be decoupled from the others, as the quantity yj does

not appear in either of the first two equations. This gives a system of two equations,

and a change of variables simplifies things as well, so that we are left with

ẋ(t) = x(1− x)− yp(x)

ẏ(t) = be−djτy(t− τ)p(x(t− τ))− dy.

(4.5)

The function p(x) represents the adult predators functional response to prey, and

we make the following assumptions
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• p(0) = 0, i.e., no predation occurs in the absence of prey,

• p is increasing,

• p(x)/x is bounded and not 0 at x = 0.

These requirements include function responses of types I, II and III, but not IV, as

the latter violate the second requirement.

The most important feature of the model is the term

p(x(t− τ))y(t− τ),

with the delay in both state variables. Due to this, the dy
dt

is no longer proportional

to y(t), the current state of the system. If the delay were omitted from y(t), the

behavior of this system would be much simpler to understand. Biologically, however,

this type of nonlinear inclusion of the delay is entirely natural, and more logical than

including the delay only in the x term. In fact, this type of term is common in

delayed infection disease models [14], [39].

4.3 Preliminary Analysis

We begin by establishing some basic properties of solutions to the system (4.5).

• Given positive initial data, solutions remain positive for all time.

• Solutions are bounded (in fact, eventually uniformly bounded regardless of ini-

tial data).

• Thirdly, we need to determine steady states and their stability.

– The non-trivial steady state becomes unstable for larger delays.

– Periodic solutions exist.
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4.3.1 Positivity of Solutions

It is relatively easy to establish that solutions remain positive for all times, given

a bounded positive initial history on an interval [a − τ, a]. For y, on the interval

[a, a + τ ], we have ẏ(t) ≥ −dy(t). Thus it is clear that y must remain positive.

Further, y remains finite on this interval. If M is the bound on x(t) on [a − τ, a],

then ẏ(t) ≤ be−djτy(t− τ)p(M)− dy(t), which implies

ẏ(t)− dy(t) = be−djτy(t− τ)p(x(t− τ))

d

dt
(e−dty(t)) = be−dte−djτy(t− τ)p(x(t− τ))

Integrating both sides from a to a+ ε, ε ∈ [0, τ ], yields

e−d(ε+a)y(a+ ε) = e−day(a) +

∫ a+ε

a

be−dse−djτy(s− τ)p(x(s− τ))ds

y(a+ ε) = edεy(a) +

∫ a+ε

a

bed(ε+a−s)e−djτy(s− τ)p(x(s− τ))ds.

The right hand side is finite for ε ∈ [0, τ ], since the integrand is also bounded.

For the prey population, the rate of change is essentially proportional to x

ẋ = x(1− x− y
p(x)

x
).

The state variable x can only become negative if 1 − x − y p(x)
x

becomes infinite

and negative as x → 0, but the function p(x)
x

is bounded, and y is bounded for

t ∈ [a, a + τ ]. It follows that x cannot become negative on this interval. We may

iterate this argument to show that x and y are positive and finite for all t ≥ a− τ .

4.3.2 Uniform Boundedness of Solutions

Next we show that all solutions of (4.5) are eventually in a fixed region.
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Theorem 4.1. There exists an M > 0 such that for any solution (x(t), y(t)) of the

system (4.5) with positive initial data,

max

{
lim sup

t→∞
x(t), lim sup

t→∞
y(t)

}
≤M.

Proof. Since p is a positive function for x > 0, and solutions remain positive for all

t, we have ẋ(t) ≤ x(t)(1 − x(t)). Prey solutions of (4.5) with positive initial data

are thus given an upper bound by solutions of ż(t) = z(1 − z) with positive initial

conditions. All such solutions converge to 1, so we can conclude that lim supt→∞ x(t)

is given an upper bound by 1, regardless of initial data.

Now consider the second equation of (4.5). Suppose that be−djτp(1)− d < 0 (we

shall see that this is the condition of nonexistence of a nontrivial steady state). There

exists an ε > 0 such that be−djτp(1 + ε) − d < 0, due to the continuity of p. Since

lim supt→∞ x(t) ≤ 1, there exists a T1 such that x(t) < 1 + ε for all t > T1 − τ . This

T1 will depend on the particular solution (i.e., initial data), but the bound provided

for lim supt→∞ y(t) will not depend on T1. For t > T1, we have

ẏ(t) = be−djτp(x(t− τ))y(t− τ)− d(y)

≤ be−djτp(1 + ε)y(t− τ)− dy(t)

= ay(t− τ)− dy(t),

where we define a = be−djτp(1 + ε) < d. We have seen in Lemma 1.4 that solutions

of

ż(t) = az(t− τ)− dz(t)

approach 0 as t → ∞. Further, the comparison lemma 1.5 now tells us that y(t) is

bounded by z, and thus goes to 0 as well. Clearly, then lim supt→∞ y(t) = 0 in this

case.
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We are left with the case be−djτ ≥ d. Since 1 is a bound on lim supt→∞ x(t), for a

particular solution, there exists a time T2 such that x(t) < 2 for all t ≥ T2. Thus

(4.6) ẏ(t) ≤ be−djτp(2)y(t− τ)− dy(t).

Looking at the equation for ẏ again, we have ẏ(t) ≥ −dy(t). From this, one easily

concludes that for t2 > t1,

y(t2) ≥ y(t1)e
d(t2−t1).

In particular, let t2 = t > τ and t1 = t − τ , and one obtains y(t − τ) ≤ y(t)edτ .

Combining this information with equation (4.6) yields

ẏ(t) ≤ (be−djτp(2)edτ − d)y(t)

= ∆y(t),

defining ∆ by this second equality. Now for t2 > t1, y(t2) < y(t1)e
∆(t2−t1), and this

implies

(4.7) t2 − t1 ≥
1

∆
ln
y(t2)

y(t1)
.

Define p1(x) by p(x) = xp1(x). By our assumptions about p, we know that p1 is

bounded, positive and bounded away from 0 for x ≥ 0. Suppose that there exists a

time T3 such that p1(x(t))y(t) > 1 for all t ≥ T3. Then for t ≥ T3,

ẋ(t) = x(t)(1− x(t)− p1(x(t))y(t)) ≤ −x(t)2.

Solutions to the differential ẋ = −x2 tend uniformly to zero, so for any z0 > 0, there

exists a time T4 > τ such that x(t) < z0 for all t > T2 + T3 + T4. In particular,

we shall consider the case of z0 such that be−djτp(z0) < de−dτ < d. This yields the

estimate of the rate of change of y

ẏ ≤ ay(t− τ)− dy(t),
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with a < d for t ≥ T2 + T3 + T4. This implies that y(t) → 0, contradicting the

assumption that p1(x(t))y(t) > 1 for t ≥ T2. So p1(x)y does not remain above 1.

From this we will conclude that there is some number that y(t) does not remain

above. Since p1 is positive and bounded away from 0, there exists an m > 0 such

that p1(x) > m for all x ≥ 0. Suppose that y(t) > 1
m

for all t > T5. Then

p1(x(t))y(t) > m 1
m

= 1 for all t > T5, contradicting the result previously obtained.

Define

M = max{2, 1

m
e∆(T3+T4)}.

As lim supt→∞ x(t) ≤ 1, it is clear that lim supt→∞ x(t) ≤ M . It remains to show

that lim supt→∞ y(t) ≤ 1
m
e∆(T3+T4). Suppose not. Since y(t) cannot remain above 1

m
,

there must be arbitrarily large times t̄2 > t̄1 > 0 such that

y(t̄1) =
1

m
(4.8)

y(t̄2) =
1

m
e∆(T3+T4), and(4.9)

ẏ(t̄2) > 0.(4.10)

One can chose t̄1 > T2, where the value T2 depends on the particular solution. Now

apply the estimate (4.7), and find

t̄2 − t̄1 ≥
1

∆

∆(T3 + T4) ln 1
m

ln 1
m

= T3 + T4.

Thus t̄1 + T3 + T4 ≤ t̄2.

But t > T2+T3+T4, ẏ(t) < 0. For such times, ẏ(t) < be−djτp(z0)y(t−τ)−dy(t) <

de−dτy(t− τ)− dy(t) < de−dτe−dτy(t)− dy(t) = 0. This contradicts the assumption

(4.10). Thus lim supt→∞ y(t) < M , and the theorem is proven.

From the proof of this theorem, the following result emerges. We shall refer to it

when we study the steady states of the model (4.5).



74

Corollary 4.2. When be−djτp(1)−d < 0, solutions to (4.5) with positive initial data

satisfy

lim
t→∞

(x(t), y(t)) = (1, 0).

Proof. As we have seen in the previous proof, when be−djτp(1)−d < 0, lim supt→∞ y(t) =

0. Due to the positivity of solutions, this is equivalent to limt→∞ y(t) = 0. Re-

call also that lim supt→∞ x(t) ≤ 1. Thus, for ε > 0 there exists a time T such

that for t ≥ T , x(t) < 1 + ε, and, possibly by increasing T , one can assume that

p(x(t))y(t) < p(1 + ε)y(t) < ε. Now for t > T , if x(t) > 1, then

ẋ(t) = x(t)(1− x(t))− p(x(t))y(t) < (1 + ε)(1− x(t)) < 0.

So x is decreasing. On the other hand, if x(t) < 1, then

ẋ(t) = x(t)(1− x(t))− p(x(t))y(t) > x(t)(1− (1− ε))− ε = −ε(x(t)− 1) > 0

for t > T . So, in this case, x is increasing. It follows immediately that for t > T , x(t)

cannot cross x = 1, and is monotone. A limit must therefore exist, and x(t) → 1 is

the only possibility.

4.3.3 Steady States

To determine the steady states of the system (4.5), we simply assume that a

constant (x, y) is a solution and determine what these contant values must be. The

equations for determining steady states are

0 = x(1− x− yp(x)

x
)(4.11)

0 = be−djτp(x)y − dy.(4.12)
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If y = 0, then the second equation is satisfied, and the first gives (0, 0) and (1, 0)

as steady states.

If y 6= 0, then the steady state equations become

0 = 1− x− yp(x)

x
(4.13)

d = be−djτp(x).(4.14)

For the equation (4.13), we must clearly have x ∈ (0, 1). Since p is an increasing

function, it is clear that the second equation has a solution if and only if

(4.15) p(1) >
d

be−djτ
.

So, if the condition (4.15) is satisfied, the system (4.5) has three steady state so-

lutions: (0, 0), (1, 0), and a nontrivial steady state (x∗, y∗). If (4.15) is not satisfied,

then only the first two steady states exist. Note, in particular, that as the length,

τ , of the delay is increased, this condition will eventually fail, due to the rational

function on the left hand side of (4.15).

4.3.4 Linear Stability

The linearization of the delayed Lotka-Volterra system (4.5) about the steady

state (0, 0) is  ẋ

ẏ

 =

 1 0

0 −d


 x

y

+

 0 0

0 0


 xτ

yτ

 ,

where xτ = x(t− τ), and similarly for y. This linear system clearly has eigenvalues

1 and −d, and is thus a saddle.

The linearization about the steady state (1, 0) is −1 −p(1)

0 −d


 x

y

+

 0 0

0 be−djτp(1)


 xτ

yτ

 .
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The characteristic equation is

(4.16) (λ+ 1)(λ+ d− be−djτp(1)e−λτ ).

We will now see that the stability or instability of the steady state (1, 0) corre-

sponds exactly to the nonexistence or existence of the nontrivial steady state. Clearly,

λ = −1 is an eigenvalue, but has no bearing on linear stability. The stability of this

steady state therefore depends on the location of the roots of

(4.17) λ+ d− be−djτp(1)e−λτ = 0.

Recall that the condition for the existence of a nontrivial steady state is d <

be−djτp(1). In this case, if we rewrite the characteristic equations as

λ = be−djτp(1)e−λτ − d,

then the left hand side is 0 when λ = 0 and increases to infinity, and the left hand

side is positive when λ = 0, and decreases to 0. Therefore, we see that there is always

a positive real eigenvalue when the nontrivial steady state exists.

When the nontrivial steady state does not exist (i.e., d ≥ be−djτp(1)) we can show

that there are no eigenvalues with positive real part. Setting λ = µ+ iσ, with µ > 0,

the real part of the characteristic equation is

0 = µ+ d− be−djτp(1)e−µτ cos(στ)

≥ µ+ d− be−djτp(1) > 0

So the steady state (1, 0) is stable in the absence of the nontrivial steady state. In

fact, it we have already shown in Corollary 4.2 that in this case, (1, 0) is globally

stable, as demonstrated in Figure 4.3
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Figure 4.3: Global stability of (1,0) in the absence of a nontrivial steady state

When the nontrivial steady state does exist, i.e., when d < be−djτp(1), (1, 0) is

always unstable. In fact, in this case the characteristic equation always has a real,

positive root. To see this consider, as before,

λ = be−djτp(1)e−λτ − d.

When λ = 0, the left hand side is zero, while the right hand side is positive. As

λ increases along the real line, the left hand side increases to infinity, while the

right hand side decreases to −d. Since the functions on the left and right sides are

continuous, they must intersect, proving the existence of a positive real eigenvalue.

The linear stability picture for the nontrivial steady state, (x∗, y∗) is more com-

plicated. If we take p(x) = px, then we can show that for small delays, the steady

state in stable.

P (λ, τ) +Q(λ, τ)e−(λ+dj)τ ,
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where

P (λ, τ) = λ2 + (2x∗ + y∗p′(x∗)− 1 + d)λ+ d(2x∗ + y∗p′(x∗)− 1)

= (λ+ 2x∗ + y∗p′(x∗)− 1)(λ+ d)

Q(λ, τ) = p(x∗)λ− bp(x∗)(2x∗ − 1)

= p(x∗)(λ− b(2x∗ − 1))

We treat the length of delay, τ , as a bifurcation parameter. One should note, in

particular, that the coefficients of these polynomials depend on the location of the

steady state (x∗, y∗), which, in turn, depends on τ . When the parameters of the

model are independent of delay, i.e., dj = 0, the location of this steady state is fixed,

we may refer to the general criteria for determining whether delay induced instability

occurs, which were developed earlier (Chapter 2, also [20]).

When parameters depend on delay, no such criteria exist. Using methods which

depend in an essential manner on numerical estimations [3], Gourley and Kuang [23]

determined that there is a range of delays for which the nontrivial steady state exists

and is unstable. In this case, all steady states are unstable, and all solution are

eventually trapped in a fixed region. One is naturally led to consider the possibility

of periodic solutions.

4.4 Existence of Periodic Solution

The goal of my work on this two dimensional system has been to make progress

toward a proof of the following conjecture.



79

Conjecture 4.3. For the system

ẋ(t) = x(1− x)− yp(x),

ẏ(t) = be−djτy(t− τ)p(x(t− τ))− dy,

if the non-trivial steady state exists and is unstable, then a positive, nonconstant

periodic solution exists.

Numerical simulations give some hope that this result might hold. If we arrange

the parameters so that the nontrivial steady state exists in the absence of delay, then

for small delays, this steady state is globally stable (Figure 4.4).

0 0.1 0.2 0.3
0

1

2

3

4

x(t)

y(
t)

τ=0.1,
φ(t)=(.3,1) for −τ≤ t≤ 0 

Figure 4.4: Global stability of (x∗, y∗) for small delays

As the delay is increased, a stable limit cycle appears to emerge (Figure 4.5).

For certain parameter regimes, however, the behavior of solutions appears chaotic

(Figures 4.6,4.7).
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Figure 4.5: Emergence of a stable limit cycle

4.4.1 The “Phase Plane”

If we plot y against x, then we get the “phase plane”, where it is easier to see the

interaction of the two population levels. In particular, it is useful to divide the x-y

plane into the following regions,

R1 = {(x, y) : x ≤ 0, f(x, y) ≥ 0}

R2 = {(x, y) : x ≤ 0, f(x, y) ≤ 0}

R3 = {(x, y) : x ≥ 0, f(x, y) ≤ 0}

R4 = {(x, y) : x ≥ 0, f(x, y) ≥ 0},

where f(x, y) is defined by ẋ = −p(x)f(x, y), i.e., f(x, y) = y − x(1−x)
p(x)

.

This division of the phase plane is depicted in Figure 4.8. It should be noted that

only the curve Γ is a true nullcline (in this case for x). When solutions are above
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Figure 4.6: Chaotic solutions in the phase plane

this curve, x is decreasing, and when below, x is increasing. The vertical line x = x∗

is included only for reference. Due to the delays involved in the rate of change of y,

no meaningful nullcline can be drawn.

Furthermore, this is not a phase plane in the traditional sense; solutions can

cross each other, or even themselves. This possibility is demonstrated in Figure

4.6. Due to this complication, we cannot apply such geometrically-based results

as Poincare-Bendixson and Bendixson-Dulac to prove the existence or otherwise of

periodic solutions. We expect from the phase plane depicted in Figure 4.8 that

solutions will oscillate in a counterclockwise direction, but this behavior is much

trickier to prove than in the case of ordinary differential equations.

4.4.2 Oscillation of Solutions
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Figure 4.7: Time series for a chaotic solution

As a first step in showing that solutions do indeed oscillate about the steady state

when it is unstable, we show that if the x component of solutions remain eventually

above or below x = x∗, they must approach the steady state. This result is contained

in the following theorems

Theorem 4.4. If there exists a T such that x(t) < x∗ for all t > T , then (x(t), y(t)) →

(x∗, y∗) as t→∞.

Proof. We begin with the differential equation for y(t)

ẏ(t) = be−djτy(t− τ)p(x(t− τ))− dy(t).
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Figure 4.8: The Division of the phase planes in to the regions Ri

Now integrate both sides from T to t, to get

y(t)− y(T ) =

∫ t

T

[be−djτy(s− τ)p(x(s− τ))− dy(s)]ds

=

∫ t−τ

T−τ

be−djτy(s)p(x(s))ds−
∫ t

T

dy(s)ds

=

∫ T

T−τ

be−djτy(s)p(x(s))ds+

∫ t−τ

T

be−djτy(s)p(x(s))−
∫ t

T

dy(s)ds.

Now define the constant A by

A = y(T ) +

∫ T

T−τ

be−djτy(s)p(x(s))ds.

Note that A is completely determined by the initial history of the delay differential

equation on the time interval [T − τ, T ].
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From the above equation, we can derive two inequalities. First, we have

y(t) ≤ A+

∫ t

T

be−djτy(s)p(x(s))−
∫ t

T

dy(s)ds(4.18)

= A−
∫ t

T

(d− be−djτp(x(s)))y(s)ds.(4.19)

We shall now use this bound on y to see that x(t) → x∗ under the hypothesis of

this theorem.

We begin with the case x(t) < x∗, i.e., be−djτp(x(t)) < d, and consider the

inequality (4.19) The integrand is positive, so the integral is increasing with t. Since

y(t) is known to be positive, we must have∫ ∞

T

(d− be−djτp(x(s)))y(s)ds <∞,

and the continuity of the integrand then allows us to conclude that

(d− be−djτp(x(t)))y(t) → 0,

as t→∞. One may not immediately conclude that either of the terms of this product

approaches 0, but we will show that indeed, d−be−djτp(x(t)) must approach 0, which

is to say, that x→ x∗.

To see this, consider the times t1, t2, · · · at which x(t) has a relative minimum.

It is obvious that these times can only occur when the solution crosses the curve Γ.

In the region where x < x∗, the y values of the curve Γ are bounded below by some

non-zero m. Thus (d − be−djτp(x(ti)))y(ti) ≥ (d − be−djτp(x(ti)))m ≥ 0. Since the

left-hand side goes to 0, the right hand side must do so as well. But this is only

possible if be−djτp(x(ti)) → d, i.e., x(ti) → x∗, and if the relative minima approach

x∗, then it is simple to see that x(t) → x∗.

If x → x∗, then ẋ → 0, and we can see from the differential equation for x that

y(t) → y∗. This proves the theorem for the first case.
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We can prove the same result in the case that x(t) > x∗. Before doing so, we need

to establish the following lemma.

Lemma 4.5. If x(t) > x∗ for t > T , and the initial history of x and y are positive,

then y is bounded away from 0 for t > T .

Proof. For positive initial data, it has already been shown in [23] we have already

seen that solutions are positive. We deal with two cases: y has finite number of

relative minima, and y has an infinite number relative minima.

In the first case, if y(t) is not bounded away from 0, then y(t) → 0, and there

exists a T2 > T such that ẏ(t) < 0 for all t > T2. So for t > T2 + τ

0 > be−djτp(x(t− τ))y(t− τ)− dy(t)

y(t) >
be−djτp(x(t− τ))

d
y(t− τ) ≥ y(t− τ)

which contradicts the assumption that y(t) is decreasing.

For the second case, consider the times t1 < t2 < t3 < · · · at which y(t) has a

relative minimum. At such times we have ẏ(ti) = 0, i.e.

y(ti) =
be−djτp(x(ti − τ))

d
y(ti − τ) ≥ y(ti − τ) ≥ y(tj)

for some j < i. We can continue thus until we arrive at y(t) for some t ∈ [T − τ, T ],

and thus

` = min
t∈[T−τ,T ]

y(t) > 0

is a positive lower bound of y(t) with t > T .

Theorem 4.6. If there exists a T such that x(t) > x∗ for t > T , then (x(t), y(t)) →

(x∗, y∗) as t→∞.
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Proof. Let M be an upper bound on y(t). We begin as before with

y(t) = A+

∫ t−τ

T

be−djτy(s)p(x(s))ds−
∫ t

T

dy(s)ds(4.20)

= A+

∫ t−τ

T

(be−djτp(x(s))− d)y(s)ds− d

∫ t

t−τ

y(s)ds(4.21)

≥ A+

∫ t−τ

T

(be−djτp(x(s))− d)y(s)ds− dMτ.(4.22)

The function y(t) is bounded above, so the lower bound given by (4.22) must

remain finite as t→∞. As in the proof of the previous theorem, since the integrand

is positive, we must have (bedjτp(x(t)) − d)y(t) → 0, but Lemma 4.5 proves that

y is bounded away from 0 under the hypotheses of the theorem. It follows that,

be−djτp(x(t))−d→ 0, and as in the previous theorem, this implies that (x(t), y(t)) →

(x∗, y∗).

Now, when we choose τ large enough that the nontrivial steady state (x∗, y∗) is

unstable, it remains to derive a contradiction from this limiting behavior. Given such

a contradiction, we conclude that x(t) is not less than x∗ for all t, and the solution

curve must leave the region R1 ∪R2. The only possibility for this to occur is for the

curve to pass from region R2 to region R3 at a point with y < y∗. This is clear since

x is decreasing when the solution is above the curve Γ.

We have shown the following,

Theorem 4.7. If there exists a T such that x(t) < x∗ or x(t) > x∗ for all t > T ,

then

(x(t), y(t)) → (x∗, y∗)

as t→∞.

4.5 Future Work
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Although much has been done to better our understanding of this system, much

work remains. To begin with, a contradiction must be derived to the possibility of a

solution approaching the linearly unstable nontrivial steady state as t→∞. Barring

this, some other argument must be made to guarantee that solutions cross into the

region R3. Once this is accomplished a similar argument will provide the desired

return map.

More generally, there are qualitative questions to answer about the nature of the

solution space for this model. For example, are multiple periodic solutions possible?

Also, when nontrivial periodic solutions do exist, what are their stability properties?

Numerical evidence (for example Figures 4.6 and 4.7) suggests the existence of chaotic

solution regimes. What conditions lead to this behavior for solutions?

Finally, how are these dynamics changed when the system is expanded to include

more equations? Such systems can be used as models for food chains. Even in

the case of ordinary differential equations, food chain systems based on the same

principles as Lotka-Volterra predator prey systems can display a wide variety of dy-

namics. Understanding the delay models could provide more insight into the nature

of such systems, or demonstrate that such models are inappropriate for modeling

such biological situations.



CHAPTER 5

Conclusion

The use of delay differential equations in the modeling of biological phenomena

has become more prevalent in recent years. Analytic results about the behavior of

such models is still largely lacking. While numerical simulations provide a basic

understanding of these systems, and allow, for example, the use of parameter fit-

ting, even when analytic results are unavailable. To be sure, increased computation

capacity and speed make the use of such simulations easier. A better analytic un-

derstanding of these models, however, would make the use of numerics even more

useful, and help in the selection of appropriate models in the first place.

The methods of Chapter 2 provide a straightforward and easily applicable method

for analyzing the linear stability of the steady states of such models. The later chap-

ters focused on showing the existence of periodic solutions. The methods for ap-

proaching such questions remain quite cumbersome. Ideally, a better understanding

of the functional analytic theorems at work here would lead to easier determination

of the existence or otherwise of periodic solutions, at least in the case of a system

of only two differential equations. For ordinary differential equations, one has theo-

rems such as Poincare-Bendixson which allow one to draw conclusions based solely

on global properties (the existence of a trapping region) and linear instability. I

88
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hope that continued study of the question of periodicity will lead to steps in the

direction of such theorems for delay models. At the very least, a simpler method of

determining the ejectivity of a fixed point would be quite welcome.

I have spent much time in this thesis attempting to determine the properties

of delay differential equations models. I have mentioned that understanding these

properties would make it easier to determine the appropriateness of these models for

biological phenomena. Much work remains to be done on this question. Although

it seems intuitively clear that delays occur in nature, and that they might therefore

play a significant role in the dynamics of a given system, the models I have studied

are only first approximations. All of the models studied incorporate a discrete delay.

In other words, the dynamics depend on the current state of the system and the state

of the system exactly τ time units ago. This way of including the delay requires much

refinement.

Consider the example of human pregnancy. The gestation period is generally

stated to be nine months, but this is hardly exact. If such a reproductive delay

is significant in the dynamics of some model, then surely the variation about the

mean delay time will also be significant. Discrete delays are only an approximation.

These systems ought to be studied, since the chance of obtaining concrete results is

greater for discrete delays than for their distributed cousins, and knowledge of their

behavior provides insight into more complete, distributed models. One suspects that

the behavior of the discrete model should correspond to the expected behavior, for

example, of a stochastic model, where the length of delay is determined by a proba-

bility distribution function. If discrete delay models are to serve as approximations,

however, it will be important to determine the extent to which their behavior is an

artifact of the essentially discontinuous inclusion of past data.



90

As biologists turn to mathematics to provide a framework for understanding more

and more complicated phenomena, it is important to have as many modeling tech-

niques as possible available for use. While the inclusion of delays is but one approach

among many, the theory behind it should continue to be developed, with an eye es-

pecially toward practical results and the ability to draw applicable conclusions.
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ABSTRACT

Delay Differential Equation Models in Mathematical Biology

by

Jonathan Erwin Forde

Chair: Patrick W. Nelson

In this dissertation, delay differential equation models from mathematical biology

are studied, focusing on population ecology. In order to even begin a study of such

models, one must be able to determine the linear stability of their steady states, a

task made more difficult by their infinite dimensional nature. In Chapter 2, I have

developed a method of reducing such questions to the problem of determining the

existence or otherwise of positive real roots of a real polynomial. The method of

Sturm sequences is then used to make this determination. In particular, I devel-

oped general necessary and sufficient conditions for the existence of delay-induced

instability in systems of two or three first order delay differential equations. These

conditions depend only on the parameters of the system, and can be easily checked,

avoiding the necessity of simulations in these cases.

With this tool in hand, I begin studying delay differential equations for single

species, extending previously obtained results about the existence of periodic solu-



1

tions, and developing a proof for a previously unproven case. Due to the infinite

dimensional nature of these equations, it is quite difficult to prove the existence of

periodic solutions. Nonetheless, knowledge of their existence is essential if one is to

make decisions about the suitability of such models to biological situations. Further-

more, I explore the effect of delay-dependent parameters in these models, a feature

whose use is becoming more common in the mathematical biology literature.

Finally, I look at a delayed predator-prey model with delay dependent parame-

ters. Although I was unable to obtain a complete proof for the existence of periodic

solutions, significant progress has been made in understanding the nature of this

system, and it is hoped that future work will continue to clarify this picture. This

model seems to display chaotic behavior for certain parameter regimes, and thus the

existence of periodic solutions may be precluded in the most general case.
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Parameter Synthesis in Nonlinear Dynamical Systems:
Application to Systems Biology

Alexandre Donzé1, Gilles Clermont2,
Axel Legay1, and Christopher J. Langmead1,3?

1 Computer Science Department, Carnegie Mellon University, Pittsburgh, PA
2 Department of Critical Care Medicine, University of Pittsburgh, Pittsburgh, PA

3 Lane Center for Computational Biology, Carnegie Mellon University, Pittsburgh, PA

Abstract. The dynamics of biological processes are often modeled as systems of nonlinear ordinary differential
equations (ODE). An important feature of nonlinear ODEs is that seemingly minor changes in initial conditions
or parameters can lead to radically different behaviors. This is problematic because in general it is never possible
to know/measure the precise state of any biological system due to measurement errors. The parameter synthesis
problem is to identify sets of parameters (including initial conditions) for which a given system of nonlinear ODEs
does not reach a given set of undesirable states. We present an efficient algorithm for solving this problem that
combines sensitivity analysis with an efficient search over initial conditions. It scales to high-dimensional models
and is exact if the given model is affine. We demonstrate our method on a model of the acute inflammatory response
to bacterial infection, and identify initial conditions consistent with 3 biologically relevant outcomes.

Key words: Verification, Nonlinear Dynamical Systems, Uncertainty, Systems Biology, Acute Illness

1 Introduction

The fields of Systems Biology, Synthetic Biology, and Medicine produce and use a variety of formalisms for
modeling the dynamics of biological systems. Regardless of its mathematical form, a model is an invaluable
tool for thoroughly examining how the behavior of a system changes when the initial conditions are altered.
Such studies can be used to generate verifiable predictions, and/or to address the uncertainty associated with
experimental measurements obtained from real systems.

In this paper, we consider the parameter synthesis problem which is to identify sets of parameters for
which the system does (or does not) reach a given set of states. Here, the term “parameter” refers to both
the initial conditions of the model (e.g., bacterial load at time t = 0) and dynamical parameters (e.g., the
bacterium’s doubling rate). For example, in the context of medicine, we might be interested in partitioning
the parameter space into two regions — those that, without medical intervention, deterministically lead to
the patient’s recovery, and those that lead to the patient’s death. The parameter synthesis problem is relatively
easy to solve when the system has linear dynamics, and there are a variety of methods for doing so (e.g.,
[6–8]). Our algorithm, in contrast, solves the parameter synthesis problem for nonlinear dynamical systems.
That is, for systems of nonlinear ordinary differential equations (ODEs). Moreover, our approach can also be
extended to nonlinear hybrid systems (i.e., those containing mixtures of discrete and continuous variables,
see [11] for details). Nonlinear ODE and hybrid models are very common in the Systems Biology, Synthetic
Biology, and in Medical literature but there are very few techniques for solving the parameter synthesis
problem in such systems. This paper’s primary contribution is a practical algorithm that can handle systems
of this complexity.

Our algorithm combines sensitivity analysis with an efficient search over parameters. The method is
exact if the model has affine dynamics. For nonlinear dynamical systems, we can guarantee an arbitrarily

? Corresponding Author: cjl@cs.cmu.edu



high degree of accuracy with respect to identifying the boundary delineating reachable and non-reachable
sets. Moreover, our method runs in minutes, even on high-dimensional models. We demonstrate the method
by examining two models of the inflammatory response to bacterial infection [20, 26]. In each case, we
identify sets of initial conditions that lead to each of 3 biologically relevant outcomes.

The contributions of this paper are as follows:

– An algorithm for computing parameter synthesis in nonlinear dynamical systems. This work builds on
and extends formal verification techniques that were first introduced in the context of continuous and
hybrid nonlinear dynamical systems [13].

– The results of two studies on two different models of the inflammatory response to bacterial infection.
The first model is a 4-equation model, the second is a 17-equation model.

This paper is organized as follows: We outline previous work in reachability for biological systems
in Sec. 2. Next, we present our algorithm in Sec. 3. We demonstrate our method on two models of acute
inflammation in Sec. 4. We finish by discussing our results and ideas for future work in Sec. 5.

2 Background

Our work falls under the category of formal verification, a large area of research which focus on techniques
for computing provable guarantees that a system satisfies a given property. Formal verification methods can
be characterized by the kind of system they consider (e.g., discrete-time vs continuous-time, finite-state vs
continuous-state, linear vs non-linear dynamics, etc), and by the kind of properties they can verify (e.g,
reachability – the system can be in a given state, liveness – the system will be in a given set of state infinetly
often, etc). The algorithm presented in this paper is intended for verifying reachability properties under pa-
rameter uncertainty in nonlinear hybrid systems. The most closely related work in this area uses symbolic
methods for restricted class of models (e.g., timed automata [4], linear hybrid systems [1, 19, 17]). Symbolic
methods for hybrid systems have the advantage that they are exhaustive, but in general only scale to sys-
tems of small size (< 10 continuous state variables). Another class of techniques invokes abstractions of
the model [2]. Such methods have been applied to biological systems whose dynamics can be described by
multi-affine functions. Here, examples include applications to genetic regulatory networks (e.g., [6–8]). Batt
and co-workers proposed an approach to verify reachability and liveness properties written in the linear tem-
poral logic (LTL) [24] (LTL can be used to check assumptions about the future such as equilibrium points)
of genetic regulatory networks under parameter uncertainty. In that work, the authors show that one can
reduce the verification of qualitative properties of genetic regulatory networks to the application of Model
Checking techniques [10] on a conservative discrete abstraction. Our method is more general in the sense
that we can handle arbitrary nonlinear systems but a limitation is that we cannot handle liveness properties.
However, we believe that our algorithm can be extended to handle liveness properties by combining it with
a recent technique proposed by Fainekos [15]. We note that there is also work in the area of analyzing piece-
wise (stochastic) hybrid systems (e.g., [14, 16, 18, 9]). Our method does not handle stochastic models at the
present time.

Several techniques relying on numerical computations of the reachable set apply to systems with general
nonlinear dynamics ([5, 28, 22]). In [5], the authors presents an hybridization technique, which consists in
approximating the system with a piecewise-affine approximation to take advantage of the wider family of
methods existing for this class of systems. In [21], the authors reduce the reachability problem to a partial
differential equation which they solve numerically. As far as we know, none of these techniques have been
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applied successfully to nonlinear systems of more than a few variables. By contrast, our method builds on
techniques proposed in [12, 13] which can be applied to significantly larger models.

A more “traditional” tool used for the analysis of nonlinear ODEs is bifurcation analysis, which was
applied to the biological models used in our experiments ([26, 20]). Our approach deviates from bifurcation
analysis in several ways. First, it is simpler to apply since it only relies on the capacity to compute numerical
simulations for the system, avoiding the need of computing equilibrium points or limit cycles. Second, it
provides the capacity of analyzing transient behaviors. Finally, when it encounters an ambiguous behavior
(e.g., bi-stability) for a given parameter set, it reports that the parameter has uncertain dynamics and can
refine the result to make such uncertain sets as small as desired.

3 Algorithm

In this section, we give a mathematical description of the main algorithm used in this work.

3.1 Preliminaries

The set Rn and the set of n × n matrices are equipped with the infinite norm, noted ‖ · ‖. We define the
diameter of a compact set R to be ‖R‖ = sup(x,x′)∈R2 ‖x − x′‖. The distance from x to R is d(x,R) =
infy∈R ‖x− y‖. The Haussdorf distance between two sets R1 and R2 is:

dH(R1,R2) = max( sup
x1∈R1

d(x1,R2), sup
x2∈R2

d(x2,R1)).

Given a matrix S and a set P , SP represents the set {Sp, p ∈ P}. Given two sets R1 and R2, R1 ⊕R2 is
the Minkowski sum of R1 and R2, i.e., R1 ⊕R2 = {x1 + x2, x1 ∈ R1, x2 ∈ R2}.

3.2 Simulation and Sensitivity Analysis

We consider a dynamical system Sys = (f,P) of the form:

ẋ = f(t, x, p), p ∈ P, (1)

where x ∈ Rn, p is a parameter vector and P is a compact subset of Rnp . We assume that f is continuously
differentiable. Let T ⊂ R+ be a time set. For a given p, a trajectory ξp is a function of T which satisfies the
ODE (Eq. 1), i.e., for all t in T , ξ̇p(t) = f(t, ξp(t), p). For convenience, we include the initial state in the
parameter vector by assuming that if p = (p1, p2, . . . , pnp) then ξp(0) = (p1(0), p2(0), . . . , pn(0)). Under
these conditions, we know by the Cauchy-Lipshitz theorem that the trajectory ξp is uniquely defined.

The purpose of sensitivity analysis techniques is to predict the influence on a trajectory of a perturbation
of its parameter vector. A first order approximation of this influence can be obtained by a Taylor expansion
of ξp(t) around p. Let δp ∈ Rnp . We have:

ξp+δp(t) = ξp(t) +
∂ξp

∂p
(t) δp +O

(
‖δp‖2

)
. (2)

The second term in the right hand side of Eq. (2) is the derivative of the trajectory with respect to p. Since
p is a vector, this derivative is a matrix, which is called the sensitivity matrix. We denote it as: Sp(t) = ∂ξp

∂p (t)
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The sensitivity matrix can be computed as the solution of a system of ODEs. Let si = ∂ξp

∂pi
(t) be the ith

column of Sp. If we apply the chain rule to its time derivative, we get:{
ṡi(t) = ∂f

∂x (t, x(t), p)si(t) + ∂f
∂pi

(t, x(t), p),

si(0) = ∂x(0)
∂pi

.
(3)

Here ∂f
∂x (t, x(t), p) is the Jacobian matrix of f at time t. The equation above is thus an affine, time-varying

ODE. In the core of our implementation, we compute ξp and the sensitivity matrix Sp using the CVODES
numerical solver [27], which is designed to solve efficiently and accurately ODEs (like Eq. 1) and sensitivity
equations (like Eq. 3).

3.3 Reachable Set Estimation Using Sensitivity

The reachability problem is the problem of computing the set of all the states visited by the trajectories
starting from all the possible initial parameters in P at a given time t.

Definition 1 (Reachable Set). The reachable set induced by the set of parameters P at time t is:

Rt(P) =
⋃
p∈P

ξp(t).

The set Rt(P) can be approximated by using sensitivity analysis. Assume that for a given parameter p in P
we computed a trajectory ξp and the sensitivity matrix Sp associated with it. Given another parameter vector
p′ in P , we can use this matrix to get an estimate ξ̂p

p′(t) of ξp′(t). This is done by dropping higher order
terms in the Taylor expansion given in Equation 2. We have:

ξ̂p
p′(t) = ξp(t) + Sp(t)(p′ − p). (4)

If we extend this estimation to all parameters p′ in P , we get the following estimate of the reachable set
Rt(P):

R̂p
t (P) =

⋃
p′∈P

ξ̂p′(t) = {ξp(t)− Sp(t)p} ⊕ Sp(t)P. (5)

Thus R̂p
t is an affine mapping of the initial set P into Rn (see Figure 1).

It can be shown that if the dynamics are affine, i.e., if f(t, x, p) = A(t, p)x+ b(t, p), then the estimation
is exact. However, in the general case, R̂p

t (P) is different from Rt(P). Since the estimation is based on a
first order approximation around parameter p, it is local in the parameter space and its quality depends on
how “big” P is. In order to improve the estimation, we can partition P into smaller subsets P1,P2, . . . ,Pl

and compute trajectories using new initial parameters p1, p2, . . . , pl to get more precise local estimates. As
a practical matter, we need to be able to estimate the benefit of such a refinement. To do so, we compare
R̂p

t (Pj) — the estimate we get when using the “global” center, p; to R̂pj

t (Pj) — the estimate we get when
using the “local” center, pj , and p′i ∈ Pj . We do this for each Pj . Figure 1 illustrates the essential features
of the algorithm.

Proposition 1. We have
dH(R̂p

t (Pj), R̂
pj

t (Pj)) ≤ Err(P,Pj), (6)

where
Err(P,Pj) = ‖ξpj (t)− ξ̂p

pj
(t)‖+ ‖Spj (t)− Sp(t)‖‖Pj‖. (7)
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Fig. 1. Comparison between a “global” and a “local” estimate of the reachable set. The large square on the left hand side represent a
region of parameter space, P . The oval-shaped region on the right hand side corresponds to the true reachable set, Rt(P), induced
by parameters P at time t. The large parallelogram on the right hand side corresponds to the estimated reachable set, R̂p

t (P), using
a sensitivity analysis based on trajectory labeled ξp which starts at point p ∈ P . The point labeled ξ̂p

pj
, for example, is an estimate

of where a trajectory starting at point pj would reach at time t. If we partition P and consider some particular partition, Pj , we
can then compare the estimated reachable sets R̂p

t (Pj) and R̂pj
t (Pj), which correspond to the small light-gray and small dark

gray parallelograms, respectively. We continue to refine until the distance between R̂p
t (Pj) and R̂pj

t (Pj) (Eq. 7) falls below some
user-specified tolerance.

In other words, the difference between the global and the local estimate can be decomposed into the
error introduced in the estimation ξp

pj (t) of the state reached at time t using pj (first term on RHS of Eq.
7), and another term involving the difference between the local and the global sensitivity matrices and the
distance from local center (second term on RHS of Eq. 7).

Proof. let y be in R̂p
t (Pj). There exists py in Pj such that y = ξ̂p

py(t). We need to compare

ξ̂p
py

(t) = ξp(t) + Sp(t)(py − p) (8)

with
ξ̂
pj
py(t) = ξpj (t) + Spj (t)(py − pj). (9)

By introducing
ξ̂p
pj

(t) = ξp(t) + Sp(t)(pj − p) (10)

and after some algebraic manipulations of (8), (9), and (10), we get

ξ̂p
py

(t)− ξ̂
pj
py(t) = ξpj (t)− ξ̂p

pj
(t) + (Spj (t)− Sp(t))(py − pj)

≤ ‖ξpj (t)− ξ̂p
pj

(t)‖+ ‖Spj (t)− Sp(t)‖‖Pj‖ = Err(P,Pj). (11)

Let x = ξ̂
pj
py(t) which is in R̂pj

t (Pj), then it can be shown that ‖y − x‖ ≤ Err(P,Pj) and so
d(y, R̂pj

t (Pj)) ≤ Err(P,Pj). This is true for any y ∈ Pj , thus

sup
y∈R̂p

t (Pj)

d(y, R̂pj

t (Pj)) ≤ Err(P,Pj).

Similarly, we can show that
sup

x∈R̂
pj
t (Pj)

d(x, R̂p
t (Pj)) ≤ Err(P,Pj)

which proves the result. ut
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The quantity Err(P,Pj) can be easily computed from trajectories ξp and ξpj , their corresponding sen-
sitivity matrices, and ‖Pj‖. It has the following properties:

– If the dynamics is affine, then Err(P,Pj) = 0. Indeed, in this case, we have ξ̂p
pj = ξpj so the first term

vanishes and Sp = Spj so the second term vanishes as well;
– If limit ‖P‖ is 0, then limit Err(P,Pj) is also 0. Indeed, as ‖P‖ decreases, so does ‖p− pj‖, and thus
‖ξpj (t)− ξ̂p

pj (t)‖ and ‖Pj‖, since Pj is a subset of P . We can show that the convergence is quadratic.

The computation of reachable sets at a given time t can be extended to time intervals. Assume that T is
a time interval of the form T = [t0, tf ]. The set reachable from P during T is RT (P) = ∪t∈TRt(P). It
can be approximated by simple interpolation between Rt0(P) and Rtf (P). Of course, it may be necessary
to subdivide T into smaller intervals to improve the precision of the interpolation. A reasonable choice for
this subdivision is to use the time steps taken by the numerical solver to compute the solution of the ODE
and the sensitivity matrices.

3.4 Parameter Synthesis Algorithm

In this section, we state a parameter synthesis problem and propose an algorithm that provides an approxi-
mate solution. Let F be a set of ”bad” states. Our goal is to partition the set P into safe and bad parameters.
That is, we want to partition the parameters into those that induce trajectories that intersect F during some
time interval T , and those that do not.

Definition 2. A solution of the parameter synthesis problem (Sys = (f,P),F , T ) where F is a set states
and T a subset of R≥0, is a partitionPbad∪Psaf ofP such that for all p ∈ Pbad (resp. p ∈ Psaf), ξp(t)∩F 6= ∅
(resp. ξp(t) ∩ F = ∅) for all t ∈ T . An approximate solution is a partition P = Psaf ∪ Punc ∪ Pbad where
Psaf and Pbad are defined as before and Punc (i.e., uncertain) may contain both safe and bad parameters.

Exact solutions cannot be obtained in general, but we can try to compute an approximate solution with
the uncertain subset being as small as possible. The idea is to iteratively refine P and to classify the subsets
into the three categories. A subset Pj qualifies as safe (resp. bad) if:

1. R̂pj

T (Pj) is a reliable estimation of RT (Pj) based on the Err function;
2. R̂pj

T (Pj) does not (resp. does) intersect with F .

To guarantee that the process ends, we need to ensure that each refinement introduces only subsets that
are strictly smaller than the refined set.

Definition 3 (Refining Partition). A refining partition of a set P is a finite set of sets {P1, P2, . . . ,Pl}
such that

– P =
l⋃

j=1

Pj;

– There exists γ < 1 such that max
j∈{1,...,l}

‖Pj‖ ≤ γ‖P‖.

Let ρ be a function that maps a set to one of its refining partitions. Our algorithm stops whenever the
uncertain partition is empty, or it contains only subsets with a diameter smaller than some user-specified
value, δp. The complete algorithm is given by Algorithm 1 below.
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Algorithm 1 Parameter Synthesis Algorithm
procedure SAFE(P , F , t, δp, Tol)

Psaf = Pbad = ∅, Punc = {P}
repeat

Pick and remove Q from Punc and let q ∈ Q
for each (qj ,Qj) ∈ ρ(Q) do

if Err(Q,Qj) ≤ Tol then . Reach set estimation is reliable
if R̂q

T (Qj) ∩ F = ∅ then . Reach set away from F
Psaf = Psaf ∪ Qj

else if R̂q
T (Qj) ⊂ F then . Reach set inside F

Pbad = Pbad ∪ Qj

else
Punc = Punc ∪ {(qj ,Qj)} . Some intersection with the bad set

end if
else

Punc = Punc ∪ {(qj ,Qj)} . Reach set estimation not enough precise
end if

end for
until Punc = ∅ or maxPj∈Punc ‖Pj‖ ≤ δp
return Psaf, Punc, Pbad

end procedure

The algorithm has been implemented within the Matlab toolbox Breach [12], which combines Matlab
routines to manipulate partitions with the CVODES numerical solver, which can efficiently compute ODEs
solutions with sensitivity matrices.

It uses rectangular partitions of the form

P(p, ε) = {p′ : p− ε ≤ p′ ≤ p + ε}

The refinement operator ρ is such that

ρ(P(p, ε)) = {P(p1, ε1),P(p2, ε2), . . . ,P(pl, εl)},

with εk = ε/2 and pk = p + (± ε1
2 ,± ε2

2 , . . . ,± εn
2 ). This opera-

tion is illustrated in the Figure on the right.

4 Application to Models of Acute Inflammation

We applied our method to two models of the acute inflammatory response to infection. The first is the 4-
equation, 22-parameter model presented in [26], and the second is the 17-equation, 79-parameter model
presented in [20]. The primary difference between these models is one of detail, and the first model can be
thought of as a reduced dimensional version of the second.

The acute inflammatory response to infection has evolved to promote healing by ridding the organism
of the pathogen. The actual response is a complex and carefully regulated combination of molecular and
cellular cascades that exhibit both pro and anti-inflammatory behaviors. The pro-inflammatory elements are
primarily responsible for eliminating the pathogen, but bacterial killing can cause collateral tissue damage.
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Tissue damage, in turn, triggers an escalation in the pro-inflammatory response creating a positive feedback
cycle (Figure 2). The anti-inflammatory elements counteract this cycle, thereby minimizing tissue damage
and promoting healing. However, in cases of extreme infection, the delicate balance between pro and anti-
inflammatory elements is destroyed, resulting in a potentially lethal amount of tissue damage.

Initiating Event
(P)

Inflammation
(NA)

Anti-Inflammation
(CA)

Damage
(D)

Fig. 2. Cartoon representation of the 4-equation model of the acute immune response. Arrows represent up-regulation, bars represent
down-regulation. Figure is adapted from Figure 1 in [26].

The 4-equation model is as follows:

dP

dt
= kpgP

(
1− P

p∞

)
− kpmsmP

µm + kmpP
− kpmf(NA)P,

dNA

dt
=

snrR

µnr + R
− µnNA,

dD

dt
= kdnfs(f(NA))− µdD,

dCA

dt
= sc +

kcnf(NA + kcmdD)
1 + f(NA + kcmdD

− µcCA,

where

R = f(knnNA + knpP + kndD), f(V ) =
V

(1 + (CA/c∞)2)
and fs(V ) =

V 6

x6
dn + V 6

.

Here, k∗, µ∗, s∗, p∗ are parameters, as defined in [26]. The state variables P , NA, D, and CA, correspond to
the amounts of pathogen, pro-inflammatory mediators (e.g., activated neutrophils), tissue damage, and anti-
inflammatory mediators (e.g., cortisol and interleukin-10), respectively. The 17-equation model, naturally,
is far more detailed in terms of which mediators are modeled.

In each model, there are 3 clinically relevant outcomes: (i) a return to health, (ii) aseptic death, and
(iii) septic death. Death is defined as a sustained amount of tissue damage (D) above a specified threshold
value and constitutes the undesirable or “bad” outcome we wish to avoid. Aseptic and septic death are
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distinguished by whether the pathogen (P ) is cleared below a specified threshold value. Let Falive (resp.
Fdead) refer to the set of states such that D is below (resp. above) some threshold Ddeath, and let Fseptic

(resp. Faseptic) refer to the set of states such that P is above (resp. below) some threshold Pseptic. We
can now define three sets of states corresponding to the three clinically relevant outcomes as follows: (i)
Health = Falive∩Faseptic; (ii) Aseptic death = Fdead∩Faseptic; and (iii) Septic death = Fdead∩Fseptic.
In Figure 3 we present sample traces for both the 4 and 17 equation models.
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Fig. 3. (Top) Examples trace from the 4-equation model. There are three different traces corresponding to septic death, aseptic
death and health. (Bottom) Example traces from the 17-equation model; 5 of the 17 variables are shown. There are also three traces,
illustrating the richer dynamics of the model. Two traces corresponds to aseptic death and the third to health with a periodic small
resurgence of the pathogen. Time is measured in hours.
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4.1 Experiments

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

p

ca

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

na
kp

g

(A) (B)

Fig. 4. Results obtained for the 4-equation model. Figure (A) reproduces results presented in Figure 8 of [26] with kpg = 0.3,
which was obtained using classical bifurcation analysis. Circles are parameter values leading to Health while crosses represent
values leading to Death. Figure (B) illustrates how a pair of parameters (NA and kpg) can be partitioned into the three possible
outcomes. Circles alone lead to Health, crosses and circles lead to Aseptic Death and crosses alone lead to Septic Death. The
separation between regions is induced from small uncertain regions computed by the algorithm.

We performed several experiments. In the first experiment, we validated our method by reproducing
results previously obtained in [26] using bifurcation analysis. Figure 4-A contrasts the initial amount of
pathogen, P0, and the initial amount of anti-inflammatory mediators, CA0. The growth rate of pathogen, kpg,
was set to 0.3 and other parameters to their nominal values. The region Fdeath given by D ≥ 5 was used
in our algorithm and we checked the intersection with reachable set at time 300 hours. Crosses correspond
to initial values leading to death while circles lead to an healthy outcome. We can see that the resulting
partition is quantitatively consistent with Figure 8 in [26]. In our second experiment, we varied growth rate
of pathogen, kpg, and NA. Figure 4-(B) shows that there are three distinct regions in the kpg-NA plane,
corresponding to the three clinical outcomes.

We then performed several experimentations with the 17-equation model. Figures 5 (A) and (B) depict
the kpg-NA and kpg-CAI planes, respectively. CAI is a generic anti-inflammatory mediator. We partitioned
the region using Fdeath = D > 1.5 and checked after time 300 hours. The 17-equation model exhibits
an interesting behavior in the kpg-CAI plane. Namely, that the separation between health and death is not
monotone in the growth rate of the pathogen.

As previously mentioned, our algorithm is implemented in Matlab and uses the CVODES numerical
solver. Figures 4 (A) and (B) were generated in a few seconds, and Figures 5 (A) and (B) were generated
in about an hour on a standard laptop (Intel Dual Core 1.8GHz with 2 Gb of memory). We note that the
algorithm could easily be parallelized.

10



(A) (B)

Fig. 5. Results for the 17-equation model. Figure (A) illustrates the kpg-NA plane, partitioned into regions leading to death (here
aseptic death, represented by crosses) and regions leading to health (represented by circles). Figure (B) illustrates the kpg-CAI

plane. Interestingly, the separation is not monotone with the growth of pathogen kpg .

5 Discussion and Conclusions

Complex models are increasingly being used to make predictions about complex phenomena in biology and
medicine (e.g., [3, 25]). Such models can be potentially very useful in guiding early decisions regarding
intervention, but it is often impossible to obtain accurate estimates for every parameter. Thus, it is important
to have tools for explicitly examining a range of possible parameters to determine whether the behavior of the
model is sensitive to those parameters that are poorly estimated. Performing this task for nonlinear models
is especially challenging. We have presented an algorithm for solving the parameter synthesis problem for
nonlinear dynamical models and applied it on two models of acute inflammation from the literature. The
larger of the two has 17 equations and 79 parameters, demonstrating the scalability of our approach.

Our approach has several limitations. First, our refinement process implies that the number of partitions
increases exponentially with the number of varying parameters. Thus, in practice, some variables must be
held fixed while analyzing the behavior of the model. On the other hand, the number of state variables is
not a limiting factor, as illustrated in our experiments on the 17-equation model. Second, our method re-
lies on numerical simulations. Numerical methods are fundamentally limited in the context of verification
since numerical image computation is not semi-decidable for nonlinear differential equations [23]. More-
over, there are no known methods capable of providing provable bounds on numerical errors for general
nonlinear differential equations. Thus, we cannot claim to provide formal guarantees on the correctness of
the results computed by our method. However asymptotic guarantees exist, meaning that results can always
be improved by decreasing tolerance factors in the numerical computations. A nice feature of our approach
is that it enables one to obtain qualitative results using a few simulations (e.g. a coarse partition between
regions leading to qualitatively different behaviors). These qualitative results can then be made as precise as
desired by focusing on smaller partitions.
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There are several areas for future research. Our first order error control mechanism can be improved
to make the refinements more efficient and more adaptive when nonlinear (i.e. higher order) behaviors
dominate any linear dependance on parameter variations. We are also interested in developing techniques for
verifying properties that are more complex than the reachability predicates we considered in this paper. For
instance, temporal properties could easily be introduced in our framework. The extended system could then
be used, for example, verify the possible outcomes associated with a particular medical intervention. Finally,
we believe that the method could easily be used in the context of personalized medicine. In particular, given
individual or longitudinal measurements from a specific patient, we could define a reachable set, Fobs, that
includes these observations (possibly convolved with a model of the measurement errors). We could then use
our method to identify the set of parameters that are consistent with the observations. The refined parameters
can then be used to make patient-specific predictions.
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For biological populations with nonoverlapping generations, population 
growth takes place in discrete time steps and is described by difference 
equations. Some of the simplest such nonlinear difference equations can 
exhibit a remarkrible spectrum of dynamical behavior, from stable 
equilibrium points, to stable cyclic oscillations between two population 
points, to stable cycles with four points, then eight, 16, etc., points, through 
to a chaotic regime in which (depending on the initial population value) 
cycles of any period, or even totally aperiodic but bounded population 
fluctuations, can occur. This rich dynamical structure is overlooked in 
conventional linearized stability analyses; its existence in the simplest and 
fully deterministic nonlinear (“density dependent”) difference equations 
is a fact of considerable mathematical and ecological interest. 

1. Introduction 

In some biological situations (such as man), population growth is a continuous 
process and generations overlap; the appropriate mathematical description 
involves nonlinear differential equations. In other biological situations (such 
as 13 year periodical cicadas), population growth takes place at discrete 
intervals of time and generations are completely nonoverlapping; the appro- 
priate mathematical description is in terms of nonlinear difference equations. 
For a single species, the simplest such differential equations, with no time- 
delays, lead to very simple dynamics: a familiar example is the logistic, 
dN/dt = rN(1 -N/K), with a globally stable equilibrium point at N = K 
for all r > 0. But the corresponding simplest difference equations, with their 
built-in time lag in the operation of regulatory mechanisms, can have a 
complicated dynamical structure, the great richness of which is not commonly 
appreciated either in the ecological literature, or in elementary mathematical 
discussions of difference equations. 

For a single species, the difference equations arising in population biology 
are usually discussed as having either a stable equilibrium point or unstable, 
growing oscillations. In fact, some of the most elementary of these nonlinear 
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difference equations exhibit a spectrum of dynamical behavior, which, as the 
intrinsic growth rate r increases, goes from a stable equilibrium point, to 
stable cyclic oscillations between two population points, to stable cycles with 
four points, then eight points, and so on, through to a regime which can only 
be described as “chaotic” (an apt term coined by Li & Yorke, 1974). For any 
given value of r, in this chaotic regime there are cycles of period, 2, 3, 4, 
5, . . . , n, . , , , where n is any positive integer, along with an uncountable 
number of initial points for which the system does not eventually settle into 
any finite cycle; whether the system converges on a cycle, and, if so, which 
cycle, depends on the initial population point (and some of the cycles may be 
attained only from infinitely unlikely initial points). Figure 1 aims to illustrate 
this range of behavior. 

,:trwl-----1 
IO 20 30 

Tme (ti 

FIG. 1. Spectrum of dynamical behavior of the population density, Nt/K, as a function of 
time, t, as described by the difference equation (1) for various values of r. Specifically: 
(a) Y = 14, stable equilibrium point; (b) r = 2.3, stable two-point cycle; (c) r = 2.6, 
stable four-point cycle; (d), (e), (f) are in the chaotic regime, where the detailed character 
of the solution depends on the initial population value, with (d) r = 3.3 (N,,/K = 0,075) 
(e) r = 3.3 (No/K = l-S), (f) r = 5.0 (No/K = O-02). 
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Specifically, consider the simple nonlinear equation 
N t + I = Nt exp IN - Nt/QI. (1) 

This is considered by some people (Macfadyen, 1963; Cooke, 1965) to be the 
difference equation analogue of the logistic differential equation, with r and K 
the usual growth rate and carrying capacity, respectively. The stability 
character of this equation, as a function of increasing r, is set out in Table 1, 
and illustrated by Fig. 1. 

TABLE] 
Dynamics of a population described by the dtrerence equation (1) 

Dynamical behavior Value of growth rate, r Illustration 

Globally stable equilibrium point 
Globally stable two-point cycle 
Globally stable four-point cycle 
Stable cycle, period 8, giving way in turn 

to cycles of period 16, 32, etc. as r 
increases 

2>r>O 

2.526 > r > 2 

2.656 > r > 2-526 

2.692 > r > 2.656 

Fig. l(a) 
Fig. l(b) 
Fig. l(c) 

Chaos (cycles of arbitrary period, or 
aperiodic behavior, depending on initial 
condition) 

r > 2.692 Fig. WI, @I, (0 

Another example is 

N f + 1 = N,[l + 4 -N,/Io] 
or, equivalently, defining x = (r/l +r)(N/K), 

x~+~ = (l+r)x,(l-x,). 

(24 

GW 
In the form (2b), this is probably the simplest nonlinear difference equation 
one could write down. Although discussed by various people (Maynard 
Smith, 1968; May, 1972; Krebs, 1972; Scudo & Levine, 1974) as the analogue 
of the logistic differential equation, equation (2) is less satisfactory than (1) 
by virtue of its unbiological feature that the population can become negative 
if at any point Nt exceeds K(1 +r)/r. Thus stability properties here refer to 
stability within some specific neighborhood, unlike equation (1) where, for 
example, the stable equilibrium point at N = K is globally stable (for all 
iV > 0) for 2 > r > 0. With this proviso, the stability behavior of equation (2) 
is strikingly similar to that of equation (1): see Table 2. 

The one-parameter difference equations (1) and (2) are treated in detail to 
give specificity to the discussion. It is to be emphasized, however, that the 
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TABLE 2 
Dynamics of a population described by the dyerence equation (2) 

Dynamical behavior Value of growth rate, r 

Stable equilibrium point 2>r>O 
Stable two-point cycle 2449 > r > 2 
Stable four-point cycle 2-544 > r > 2.449 
Stable cycles, period 8, then 16, 32, etc. 2.570 > r > 2.544 
Chaos r > 2.570 

phenomenon of a threefold regime of a stable point, giving way to stable 
cycles of period 2”, giving way to chaotic behavior, is a generic one which is 
liable to occur in any model for discrete generations with the possibility of 
strongly density-dependent population growth. Some other simple difference 
equations, which are mainly culled from the entomological literature and 
which exhibit the phenomenon, are as follows. (i) The equation 

N t+1 = A[1 +aNJVbNt 

has been used by Hassell (1974) to provide a two-parameter fit to a wide 
range of field and laboratory data, on single-species population growth: for 
relatively small values of b or of A there is a globally stable point; the con- 
junction of moderate values of b and R produces stable cycles; relatively large 
values of both b.and A leads to chaos. (ii) The density dependent form 

N 12 
t+1 = a’ ’ l+exp{A(N,-B)} 1 Nt 

discussed by Pennycuik, Compton & Beckingham (1968), by Usher (1972), 
and (in a limiting step-function form) by Williamson (1974), can also exhibit 
all three regimes as the two parameters A and B are varied. (iii) Similarly the 
class of models 

N ANt 
t+1 = 1 +(aNJ” 

the possible stable points of which have been discussed by Maynard Smith 
(1974), can show all three types of behavior as A and b vary. (iv) The density 
dependent equation 

N t+1 = lNt [if Nt < B] 

N t+i = Y4/WbW [if Nt > B], 

discussed by Varley, Gradwell & Hassell (1973), is an interesting example. 
Here, as a consequence of the pathological discontinuity, the stable point 
regime (0 < b c 2) gives way directly to the chaotic regime (b > 2), with no 
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intervening regime of stable cycles. (v) In all the above examples, the para- 
meters can take values such that the curve relating N,+, to Nt has a hump. 
To the contrary, the form 

N ANt 
t+1 

=---- 
l+aN, 

which is sometimes called the logistic difference equation (Skellam, 1952; 
Leslie, 1957; Utida, 1967; Pielou, 1969), gives a monotonic curve relating 
N t+1 and N,, and consequently it always leads simply to a globally stable 
equilibrium point. 

That such single species difference equations should describe populations 
going from stable equilibrium points to stable cycles as r increases is not 
surprising, in view of the general engineering precept that excessively long 
time delays in otherwise stabilizing feedback mechanisms can lead to “in- 
stability” or, more precisely, to stable limit cycles (see May, 1973, pp. 27-30 
and chap. 4; May, Conway, Hassell & Southwood, 1974). What is remarkable, 
and disturbing, is that the simplest, purely deterministic, single species models 
give essentially arbitrary dynamical behavior once r is big enough [r > 2.692 
for equation (l), r > 2.570 for equation (2)]. Such behavior has previously 
been noted in a meteorological context (Lorenz, 1963, 1964), and doubtless 
has other applications elsewhere. 

For population biology in general, and for temperate-zone insects in parti- 
cular, the implication is that even if the natural world was 100 % predictable, 
the dynamics of populations with “density dependent” regulation could none- 
theless in some circumstances be indistinguishable from chaos, tf the intrinsic 
growth rate r is large enough. 

Section 2 presents the stability analysis for the model (1) at smaller r, 
up to the regime of chaos; this section contains an explicit Lyapunov function 
to show the stable equilibrium point (for 2 > r > 0) is globally stable, and 
introduces some novel mathematical tricks to study the regime of stable 
cycles (for 2.692 > P > 2). Section 3 similarly gives the analysis of the model 
(2) at smaller r. Section 4 briefly outlines an abstract mathematical theorem, 
very recently proved by Li & Yorke (1974), which shows that if the system 

N t+ I = Ntf(N3 
has a cycle of period 3, then it also has cycles of period n, where IZ is any 
positive integer, so that its behavior is chaotic (in the sense defined above). 
This general theorem is then applied to the specific equations (1) and (2) to 
elucidate their behavior at larger r. Section 4 also speculates upon some of the 
tendencies evidenced by Fig. l(d), (e), (f), which suggest the need for further 
general mathematical analysis of such systems. Sections 5 and 6 briefly 
discuss some other biological and mathematical aspects of the problem. 
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2. Equation (1): Stable Points and Stable Cycles 

We begin by quickly recapitulating the standard linearized analysis for 
stable equilibrium points of difference equations such as (1), (2) or (3), 
because these general methods underlie the tricks subsequently introduced in 
the derivation of stable cycles. 

We first find the possible equilibrium points, and then study their stability. 
Using the general form of equation (3), equilibrium points where N,,, 
= Nt = N* are the solutions of 

j-(N*) = 1. (4) 

To examine the stability of such an equilibrium point with respect to small 
perturbations, write Nt = N* +x,, and linearize about the equilibrium point 
(neglecting initially small quantities of order x”) to get an equation for the 
population perturbation x, : 

Xt+1 = (1 -Ph. (5) 

Here, for notational convenience, we have introduced the definition 

Neighborhood stability clearly requires 11 -ccl < 1, which leads to the 
criterion 

2>p>o. (7) 

More specifically, if 1 > ,u > 0 the perturbations are monotonically damped, 
and if 2 > p > 1 they are damped in an oscillatory manner. 

Applied to equation (l), where f(N) = exp [r(l -N/K)], equation (4) 
leads to a unique equilibrium point at 

N” = K. (8) 

Next, equation (6) reduces to p = r, whence the requirement for this equili- 
brium point to be a stable one is 

2>r>O. (9) 

More particularly, perturbations are exponentially damped if 1 > r > 0, 
oscillatorilly damped if 2 > r > 1. 

The above constitutes a linearized stability analysis. However, in this 
instance we can construct a nonlinear Lyapunov function; that is, a function 
V, with the properties V, 2 0 and AF’, E V,, 1 - V, I 0. Such a function is 

v, = (N,--K)‘. (10) 
This clearly has the property V, 2 0, and for the quantity AV, we have 
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AK = Wt+, -N,)(N,+ 1 +N,-2K) for which it may be shown that 

AV, I 0 [for all Nt > 01, (11) 
if, and only if, 2 > r > 0. Therefore the linearized stability analysis is a valid 
characterization of the global, nonlinear stability properties, and the equili- 
brium point of equation (8) is globally stable for 2 > r > 0. This is a useful, 
if special, result. 

To study what happens when Y > 2 it is helpful to have recourse to the 
apparently novel trick of expressing N,,, as a function of N,: 

N t+2 = NtdNt), (12) 
where clearly the function g(N) is defined in terms of thef(N) of the general 
equation (3) by 

g(N) = fWftN.fN))~ (13) 
The analysis outlined three paragraphs above may now be repeated, step by 
step, using g(N) instead off(N), to seek stable solutions (N,,, = Nt = Nt-2, 
etc.) of the equation (12). Such solutions will lead to stable two-point cycles 
of the kind depicted in Fig. l(b). 

Applying this trick specifically to equation (l), we have 

g(N) = exp [r-(2-s{exp [r(l -:)I + I})]. (14) 

Possible equilibrium solutions, N*, follow from 

g(N”) = 1, (15) 
that is, 

2 = (N/K)(exp [r(l -N/K)] + 1). (16) 
By writing 

N” E K(l + y), (17) 
equation (16) may be manipulated into the form 

y = tanh (+ry). (18) 
A graphical way of solving this transcendental equation is indicated in Fig. 2. 
The essential point is that if r -C 2, there is only one real solution, namely 
y = O(N* = K), corresponding to the globally stable equilibrium point 
already discovered for r < 2. However, for r > 2 there are three real solu- 
tions: the trivial solution y = 0, and a pair of solutions y = +y,-, (with 
y0 < 1) as indicated in Fig. 2. It may further be shown by the techniques 
discussed above that the solution y = 0 is always unstable for r > 2, but 
that each of the pair of solutions N* = K(1 j-yO) is stable provided 

2 > r[2-r(l-yg)] > 0. (19) 
The quantities r and y, are themselves related by equation (1X), whence 
equation (19) eventually comes down to the constraint r -=c 2.526. 
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RG. 2. Graphical solution of equation (18). The straight line depicts the function 
f(y) = y  [the left-hand side of equation (1811; the dashed curve illustrates the function 
tanh (&+y) if I < 2 (specilkally, r = l), so that the slope near the origin is less than y, and 
here the only solution of equation (18) is at y  = 0; the solid curved line illustrates tanh (+ry) 
if r > 2 (specifically, r = 4), so that the slope nea.r the origin is greater than y, and here 
there are necessarily three real solutions of equation (18), at y  = 0 and y  = i yo. 

Thus for r < 2 equation (1) has a stable equilibrium point at N* = K, 
but as Y increases beyond 2 this solution becomes unstable, and bifurcates 
into a pair of points N * = K(1 +yO), between which the population alternates _ 
in a two-point cycle which is stable provided 2 < r c 2.526. Extensive 
numerical studies suggest this two-point cycle is globally stable for these 
values of r. 

Beyond Y = 2.526, the two-point cycle in turn becomes unstable, and each 
of the points bifurcates into two further points, giving a stable four-point 
cycle, as illustrated in Fig. l(c). The details of this process can be elucidated 
by studying the relationship 

N t+4 = Nt WJ cw 
which follows from the general equations (3) and (12) with 

WI = m7SWdN)). (21) 
For equation (l), h(N) then follows from equation (14), and we can compute 
the equilibrium solutions and their stability, along the lines laid down above. 
We find that for r < 2526 the only real solutions of h(N*) = 1 are the three 
points just discussed. However, for larger r not only are all these points 
unstable, but there emerge four further real solutions, which lead to a stable 
four-point cycle for Y < 2.656. 
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Beyond r = 2.656 there lies a stable eight-point cycle, then a stable 16-point 
cycle, and so on. Notice that as the period of the various cycles increases, the 
range of r values for which they are stable decreases : the equilibrium point is 
stable for a band of r values of width two, the two-point cycle is stable in a 
band of width 0.526, the four-point cycle in a band of width 0.130. In 
section 4 it will be shown that eventually, for r > 3.102, the system has 
entered the chaotic regime; however, the full details of the transition from 
the regime of stable cycles (with systematically increasing periods of length 
2”), to the chaotic regime, has so far defied analysis.7 

Note that, independent of the details of the dynamics, the population 
variations must eventually lie between finite upper and lower bounds, N+ 
and N- respectively, for all values of r and for all initial population values. 
For the upper bound5 observe that regardless of the initial value, equation (1) 
implies the population in the subsequent generation cannot exceed the 
maximum of the functionf(x) = KX exp [r(l -x)1, which maximum occurs 
at x = l/r; that is 

N 
+ 

= K exp (r - 1) 
r ’ (22) 

Although extreme initial conditions can keep the population low at first, 
ultimately the smallest possible population is that attained one step after the 
N, of equation (22), and thus has the value 

N- = N, exp [r(l-N+/R)]. (23) 
The ratio between these upper and lower bounds provides a measure of the 
population variations liable to occur once r increases substantially beyond 
two : 

N+/N- = exp [exp(r-1)-r]. (24) 
The magnitude of this ratio is obviously sensitively dependent on the value 
of r as r increases. 

3. Equation (2) : Stable Points and Stable Cycles 
Following the recipes outlined in the previous section, the analysis of 

equation (2) is analogous to that of equation (1). 
First observe that the only possible equilibrium point, given by the solution 

of equation (4), is N* = K. The formula (6) gives p = r, whence from 
equation (7) this point is stable if, and only if, 2 > r > 0. In contrast with the 
global result obtained in the previous section, this equilibrium point is stable 
only to perturbations which are not too large. For all r > 0, a disturbance to 
Nt > K(r+ 1)/r leads in the next time step to a negative Nt+l, and all sub- 
sequent Nt + k are necessarily negative, diverging towards - co. Biologically, 

t See note added in proof. 
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of course, such negative values of N imply extinction; but these features of 
the model (2) make it in some respects less satisfying than (1). 

For r > 2, we again turn to study the possibility of stable two-point 
cycles, using equations (12) and (13) : here g(N) may usefully be written in the 
form 

g(N) = 1 -r31c3(N-K)(N-NA)(N-NB), (25) 
with the definition 

N A,B = (K/2r)[r+2+(r2-4)*]. (26) 
We see that if r < 2, there is only one real solution of the equation g(N*) = 1, 
namely the familiar point N* = K. But once r > 2, this solution becomes 
unstable, and two new solutions of equation (12) split off on either side of it, 
at N* = NA, NB. These two new points will be stable if equation (7) is satis- 
fied, where here 

r2-4. (27) 

Thus equation (2) will have a stable two-point cycle if, and only if,J6 > r > 2, 
as set out in Table 2. 

Again, as r increases beyond & each of these two points bifurcates, to 
give stable four-point cycles if 2.544 > r > 2449; and so on. As for the 
previous example, the next section shows that eventually a regime of chaos is 
established for r > 2.828. Again, the details of the transition zone where 
stable cycles of period 2” merge into the chaotic regime are not yet elucidated.? 

4. Three-point Cycles and Chaotic Behavior 

Motivated by earlier work of Lorenz (1963, 1964), published in the 
meteorological literature, Li & Yorke (1974) have very recently proved an 
abstract mathematical theorem which is relevant to our present discussion of 
ecological equations such as (1) and (2). Suppose the general difference 
equation (3) has a three-point cycle, that is a solution such that Iv,,, = Nt 
= N*, with N,,, # Nt+2 # N*. It then necessarily follows that there are 
also cycles with period ~1, where n is any positive integer, and furthermore that 
there are an uncountable number of initial points NO from which the system 
does not eventually settle into any of these cycles (that is, is not “asympto- 
tically periodic”). In these circumstances, whether the system will converge 
upon one of the cycles, and, if so, which cycle, depends on the starting point, 
No. 

We now apply this general mathematical theorem to the ecologically 
interesting equations (1) and (2). First we seek a cyclic solution, with period 3, 

t See note added in proof. 
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for equation (1). For notational convenience, write the three points in such a 
cycle as N1 = aK, N2 = bK, N3 = cK: then a, b, c (with a < b < c) are 
given by 

b = a exp [r(l-a)] 

c = b exp [r(l- b)] (28) 

a = c exp [r(l -c)]. 

With the help of the observation that a+ b+c = 3, it may be seen that a is 
the smallest solution of the transcendental equation 

In {3/a-l-exp[r(l-a)]} 
r = 2-a-a exp [r(l-a)] ’ (29) 

Figure 3 illustrates the behavior of these solutions a, b, c as functions of r. 
For r above r, (where rc = 3.102) there are two distinct three-point cycles; 
below rc = 3.102 no such cycles exist. 

The dynamical behavior of equation (1) in this chaotic regime, r > r,-, is 
illustrated in Fig. l(d), (e), (f). F’g I ure l(d) and (e) are for the same value of r, 
and differ only in their initial population value. Note that Fig. l(d) or (e), if 
looked at only over particular short time intervals, could convey the impres- 

FlG. 3. Values of the three population points Nl = c%, Nz = bK, Na = cK, with 
a < b < c, in the three-point cyclic solution of equation (l), as functions of r. The curve 
for a is according to the right-hand scale (from O-0.03), and the curves for b and c are 
according to the left-hand scale (from O-3). Notice there is no solution for r < 3-102. 
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sion of being locked into a three-point cycle; there is a tendency to be 
“captured” into almost-periodic three-point cycles, in between episodes 
of apparently chaotic behavior. A detailed understanding of these properties 
remains an interesting mathematical problem, related to that of determining 
what fraction of the totality of initial points converge to a three-point cycle, 
what fraction to a five-point cycle, and so on, ending with a determination of 
the fraction of initial points which lead to aperiodic behavior. 

For relatively large values of Y beyond rc [e.g., Fig. l(f)], the population 
fluctuations become more severe, as indicated earlier by the asymptotic 
upper and lower limits (22) and (23). Notice, however, that the mean popula- 
tion remains around the value K, as follows from the remark that for equa- 
tion (1) . , 

>I , 
that is, 

j-l 
izo j~,+~ = jK[l -(l/rj) ln (N,+j/NJ]* 

Thus, for a long time sequence, j % 1, we have 

(N) N K. (32) 
As r becomes large, this mean value is increasingly constituted of a few fairly 
large population values, together with long sequences of very low population 
values [e.g., Fig. l(f)]. Very approximately, we may observe from equa- 
tion (22) that the large fluctuations will have an amplitude around K[exp 
(r- 1)1/r, and will consequently on the average be spaced (l/r) exp (r- 1) 
time intervals apart. This gives qualitative insight into the numerical results. 

It remains to find the value of r which marks the onset of three-point cycles, 
and consequent chaos, in equation (2). To this end, we use the form (2b), and 
seek solutions a < b < c such that 

b = (l+r)a(l-a) 

c = (l+r)b(l-b). (33) 
a = (l+r)c(l-c) 

Numerical computations reveal that such real solutions can be found if, and 
only if, r > 2.828. [Li & Yorke (1974) have already remarked, by way of an 
example, that this difference equation has three-point cycles once r 2 3.1 

5. Multispecies Difference Equations 

The above discussion is restricted to single species systems obeying differ- 
ence equations. Similar considerations are likely to apply, a fortiori, to 
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multispecies situations. Here analytic results are hard to come by; some 
numerical studies are reported elsewhere (May, 1974a). 

6. Discussion 

Equations (1) and (2) are two of the simplest nonlinear difference equations 
to be found. Their rich dynamical structure is a fact of considerable mathe- 
matical interest, which deserves to be more widely appreciated. 

Previous work in this general area of population biology includes, inter 
ah, remarks on the relation between differential equation models and 
difference equation models (Van der Vaart, 1973; May, 1972), and on the 
equivalence between difference equations and differential equations with 
explicit time-delays (May et al., 1974; Maynard Smith, 1968; McMurtrie, 
1974). Earlier discussions of the stability properties of equations (1) and (2) 
consist of linearized analyses showing the equilibrium point is in both cases 
only stable for 2 > r > 0 [Cook, 1965 for (1); Maynard Smith, 1968 for (211, 
with larger r usually dismissed as “unstable, with diverging oscillations”. 
Very recently, May (1974b) has noted the stable two- and four-point cycles 
for these equations when r > 2, and Scudo & Levine (1974) have indepen- 
dently noted the two-point cycle behavior in equation (2). 

The transition, as r increases beyond r,-, into a regime of apparent chaos, 
with cycles of essentially arbitrary period possible, is a result /with many 
ecological implications. It could be particularly relevant to temperate insect 
populations, where the natural description is in terms of nonlinear or “density 
dependent” difference equations, often with relatively large r. In conclusion, 
it may be emphasized that without an understanding of the range of behavior 
latent in deterministic difference equations, one could be hard put to make 
sense of computer simulations or time-series analyses of such models. 

I am indebted to R. E. McMurtrie, G. F. Oster, and a reviewer (J. R. Beddington) 
for helpful comments. I particularly thank 5. A. Yorke for drawing his very elegant 
work to my attention. 
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Note added in proof: 

These analytic difficulties have recently been resolved (May & Oster, to 
be published). Tables 1 and 2 incorporate these latest results, and give an 
accurate description of the dynamical behavior of equations (1) and (2). 
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Glossary

Dynamical system is a set of components the properties
of which (e. g. their quantity, activity level etc.) change
in time because the components interact among them-
selves and are also influenced by external forces.

Network node is a constituent component of the net-
work, in biological networks most often identifiedwith
a molecular species.

Interaction is a connection between network nodes; in
biological networks an interaction means that two

nodes chemically react, regulate each other, or effec-
tively influence each other’s activities. Interactions are
mostly pairwise, but can be higher-order as well; they
can be directed or undirected, and are usually charac-
terized by an interaction strength.

Network is a system of interacting nodes. A network can
be represented mathematically as a graph, where ver-
tices denote the nodes and edges denote the interac-
tions. Biological networks often are understood to be
dynamical systems as well, because the activities of net-
work nodes evolve in time due to the graph of interac-
tions.

Network state is the vector of activities of all nodes that
fully characterizes the network at any point in time;
since a biological network is a dynamical system, this
state generally changes through time according to a set
of dynamical equations.

Biological function refers to the role that a specific net-
work plays in the life of the organism; the network can
be viewed as existing to perform a task that enables the
cell to survive and reproduce, such as the detection or
transduction of a specific chemical signal.

Pathway is a subset of nodes and interactions in a net-
work along which information or energy and matter
flow in a directed fashion; pathways can be coupled
through interactions or unwanted cross-talk.

Curse of dimensionality is the rapid increase of com-
plexity encountered when analyzing or experimentally
observing network states, as more and more network
nodes are added. If there are N network nodes each
of which only has two states (for example on and off ),
the number of states that the network can be in grows
as 2N .

Design principle is an (assumed) constraint on the net-
work architecture, stating that a biological network, in
addition to performing a certain function, implements
that function in a particular way, usually to maximize
or minimize some further objective measure, for in-
stance robustness, information transmission, or des-
ignability.

Definition of the Subject

In cell biology, networks are systems of interacting mole-
cules that implement cellular functions, such as the regu-
lation of gene expression, metabolism or intracellular sig-
naling. While on a molecular level a biological network is
a mesh of chemical reactions between, for example, en-
zymes and their substrates, or DNA-binding proteins and
the genes that they regulate, the collective effect of these re-
actions can often be thought of as the enabling and regulat-



720 C Cell Biology: Networks, Regulation and Pathways

ing the flow of matter and energy (in metabolic networks),
or of information (in signaling and transcriptional regula-
tory networks). The field is concerned primarily with the
description and properties of such flows and with their
emergence from network constituent parts – themolecules
and their physical interactions. An important focus is also
the question of how network function and operating prin-
ciples can be inferred despite the limited experimental ac-
cess to network states and building blocks.

Introduction

Biological network has come to mean a system of interact-
ing molecules that jointly perform cellular tasks such as
the regulation of gene expression, information transmis-
sion, or metabolism [28]. Specific instances of biological
networks include, for example, the DNA and DNA bind-
ing proteins comprising the transcriptional regulatory net-
work; signaling proteins and small molecules comprising
various signaling networks; or enzymes and metabolites
comprising the metabolic network. Two important as-
sumptions shape our current understanding of such sys-
tems: first, that the biological networks have been under
selective evolutionary pressure to perform specific cellular
functions in a way that furthers the overall reproductive
success of the individual; and second, that these functions
often are not implemented on a microscopic level by sin-
gle molecules, but are rather a collective property of the
whole interaction network. The question of how complex
behavior emerges in a network of (simple) nodes under
a functional constraint is thus central [144].

To start off with a concrete example, consider chemo-
taxis in the bacterium Escherichia coli [16,40], one of the
paradigmatic examples of signal transduction. This sys-
tem is dedicated to steering the bacteria towards areas high
in nutrient substances and away from repellents. Chemo-
effector molecules in the solution outside the bacterium
bind to receptor molecules on the cell surface, and the re-
sulting structural changes in the receptors are relayed in
turn by the activities of the intracellular signaling proteins
to generate a control signal for molecularmotors that drive
the bacterial flagella. The chemotactic network consists of
about 10 nodes (here, signaling proteins), and the inter-
actions between the nodes are the chemical reactions of
methylation or phosphorylation. Notable features of this
system include its extreme sensitivity, down to the lim-
its set by counting individual molecules as they arrive at
the cell surface [17], and the maintenance of this sensitiv-
ity across a huge dynamic range, through an adaptation
mechanism that provides nearly perfect compensation of
background concentrations [27]. More recently it has been

appreciated that aspects of this functionality, such as per-
fect adaptation, are also robust against large variations in
the concentrations of the network components [6].

Abstractly, different kinds of signaling proteins, such
those in chemotaxis, can be thought of as the building
blocks of a network, with their biochemical interactions
forming the wiring diagram of the system, much like the
components and wiring diagram of, for instance, a radio
receiver. In principle, these wiring diagrams are hugely
complex; for a network composed of N species, there are
! CN

k possible connections among any set of k compo-
nents, and typically we don’t have direct experimental
guidance about the numbers associated with each ‘wire.’
One approach is to view this as giant fitting problem:
once we draw a network, there is a direct translation of
this graph into dynamical equations, with many parame-
ters, and we should test the predictions of these dynam-
ics against whatever data are available to best determine
the underlying parameters. Another approach is to ask
whether this large collection of parameters is special in
any way other than that it happens to fit the data – are
there principles that allow us to predict how these systems
shouldwork? In the context of chemotaxis, wemight imag-
ine that network parameters have been selected to opti-
mize the average progress of bacteria up the chemical gra-
dients of nutrients, or to maximize the robustness of cer-
tain functions against extreme parameter variations. These
ideas of design principles clearly are not limited to bacte-
rial chemotaxis.

An important aspect of biological networks is that
the same components (or components that have an easily
identifiable evolutionary relationship) can be (re)used in
different modules or used for the same function in a dif-
ferent way across species, as discussed for example by Rao
et al. [118] for the case of bacterial chemotaxis. Further-
more, because evolutionary selection depends on function
and not directly on microscopic details, different wiring
diagrams or even changes in components themselves can
result in the same performance; evolutionary process can
gradually change the structure of the network as long as
its function is preserved; as an example see the discussion
of transcriptional regulation in yeast by Tanay et al. [148].
On the other hand, one can also expect that signal pro-
cessing problems like gain control, noise reduction, en-
suring (bi)stability etc, have appeared and were solved re-
peatedly, perhaps even in similar ways across various cel-
lular functions, and we might be able to detect the traces
of their commonality in the network structure, as for ex-
ample in the discussion of local connectivity in bacterial
transcriptional regulation by Shen–Orr et al. [136]. Thus
there are reasons to believe that in addition to design prin-
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ciples at the network level, there might also be local or-
ganizing principles, similar to common wiring motifs in
electronic circuitry, yet still independent of the identity of
the molecules that implement these principles.

Biological networks have been approached at many
different levels, often by investigators from different dis-
ciplines. The basic wiring diagram of a network – the fact
that a kinase phosphorylates these particular proteins, and
not all others, or that a transcription factor binds to the
promoter regions of particular genes – is determined by
classical biochemical and structural concepts such as bind-
ing specificity. At the opposite extreme, trying to under-
stand the collective behavior of the network as a whole
suggests approaches from statistical physics, often look-
ing at simplified models that leave out many molecular
details. Analyses that start with design principles are yet
a different approach, more in the ‘top–down’ spirit of sta-
tistical physics but leaving perhaps more room for details
to emerge as the analysis is refined. Eventually, all of these
different views need to converge: networks really are built
out of molecules, their functions emerge as collective be-
haviors, and these functions must really be functions of
use to the organism. At the moment, however, we seldom
know enough to bridge the different levels of description,
so the different approaches are pursued more or less in-
dependently, and we follow this convention here. We will
start with themolecular building blocks, then look atmod-
els for networks as a whole, and finally consider design
principles. We hope that this sequence doesn’t leave the
impression that we actually know how to build up from
molecules to function!

Before exploring our subject in more detail, we take
a moment to consider its boundaries. Our assignment
from the editors was to focus on phenomena at the level
of molecular and cellular biology. A very different ap-
proach attempts to create a ‘science of networks’ that
searches for common properties in biological, social, eco-
nomic and computer networks [104]. Even within the bio-
logical world, there is a significant divide between work
on networks in cell biology and networks in the brain.
As far as we can see this division is an artifact of history,
since there aremany issues which cut across these different
fields. Thus, some of the most beautiful work on signal-
ing comes from photoreceptors, where the combination
of optical inputs and electrical outputs allowed, already in
the 1970s, for experiments with a degree of quantitative
analysis that even today is hard to match in systems which
take chemical inputs and give outputs that modulate the
expression levels of genes [14,121]. Similarly, problems of
noise in the control of gene expression have parallels in the
long history of work on noise in ion channels, as we have

discussed elsewhere [156], and the problems of robustness
have also been extensively explored in the network of in-
teractions among the multiple species of ion channels in
the membrane [51,88]. Finally, the ideas of collective be-
havior are much better developed in the context of neural
networks than in cellular networks, and it is an open ques-
tion how much can be learned by studying these different
systems in the same language [151].

Biological Networks and Their Building Blocks

Genetic Regulatory Networks

Cells constantly adjust their levels of gene expression. One
central mechanism in this regulatory process involves the
control of transcription by proteins known as transcrip-
tion factors (TFs), which locate and bind short DNA se-
quences in the regulated genes’ promoter or enhancer re-
gions. A given transcription factor can regulate either a few
or a sizable proportion of the genes in a genome, and a sin-
gle gene may be regulated by more than one transcription
factor; different transcription factors can also regulate each
other [166].

In the simplest case of a gene regulated by a single TF,
the gene might be expressed whenever the factor – in this
case called an activator – is bound to the cognate sequence
in the promoter (which corresponds to the situation when
the TF concentration in the nucleus is high), whereas the
binding of a repressor would shut a normally active gene
down. The outlines of these basic control principles were
established long ago, well before the individual transcrip-
tion factors could be isolated, in elegant experiments on
the lactose operon of Escherichia coli [69] and even sim-
plermodel systems such as phage! [115]. To a great extent
the lessons learned from these experiments have provided
the framework for understanding transcriptional control
more generally, in prokaryotes [114], eukaryotes [75], and
even during the development of complex multicellular or-
ganisms [8].

The advent of high throughput techniques for prob-
ing gene regulation has extended our reach beyond sin-
gle genes. In particular, microarrays [30] and the related
data analysis tools, such as clustering [36], have enabled
researchers to find sets of genes, ormodules, that are coex-
pressed, i. e. up- or down-regulated in a correlated fashion
when the organism is exposed to different external con-
ditions, and are thus probably regulated by the same set
of transcription factors. Chromatin immunoprecipitation
(ChIP) assays have made it possible to directly screen for
short segments of DNA that known TFs bind; using mi-
croarray technology it is then possible to locate the inter-
genic regions which these segments belong to, and hence
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find the regulated genes, as has recently been done for the
Saccharomyces cerevisiaeDNA-TF interaction map [86].

These high throughput experimental approaches,
combined with traditional molecular biology and com-
plemented by sequence analysis and related mathematical
tools [139], provide a large scale, topological view of the
transcriptional regulatory network of a particular organ-
ism, where each link between two nodes (genes) in the reg-
ulatory graph implies either activation or repression [5].
While useful for describing causal interactions and trying
to predict responses to mutations and external perturba-
tions [89], this picture does not explain how the network
operates on a physical level: it lacks dynamics and speci-
fies neither the strengths of the interactions nor how all the
links converging onto a given node jointly exercise control
over it. To address these issues, representative wild-type
or simple synthetic regulatory elements and networks con-
sisting of a few nodes have been studied extensively to con-
struct quantitative models of the network building blocks.

For instance, combinatorial regulation of a gene by
several transcription factors that bind and interact on the
promoter has been considered by Buchler et al. [31] as
an example of (binary) biological computation and syn-
thetic networks implementing such computations have
been created [56,170]. Building on classical work describ-
ing allosteric proteins such as hemoglobin, thermody-
namic models have been used with success to account
for combinatorial interactions on the operator of the !

phage [2]. More recently Bintu et al. [24,25] have reviewed
the equilibrium statistical mechanics of such interactions,
Setty et al. [134] have experimentally and systematically
mapped out the response surface of the lac promoter
to combinations of its two regulatory inputs, cAMP and
IPTG, and Kuhlman et al. [85] have finally provided a con-
sistent picture of the known experimental results and the
thermodynamic model for the combinatorial regulation of
the lactose operon. There have also been some successes
in eukaryotic regulation, where Schroeder et al. [132] used
thermodynamically motivated models to detect clusters of
binding sites that regulate the gap genes in morphogenesis
of the fruit fly.

Gene regulation is a dynamical process composed of
a number of steps, for example the binding of TF to DNA,
recruitment of transcription machinery and the produc-
tion of the messenger RNA, post-transcriptional regula-
tion, splicing and transport of mRNA, translation, mat-
uration and possible localization of proteins. While the
extensive palette of such microscopic interactions repre-
sents a formidable theoretical and experimental challenge
for each detailed study, on a network level it primarily in-
duces three effects. First, each node – usually understood

as the amount of gene product – in a graph of regulatory
interactions is really not a single dynamical variable, but
has a nontrivial internal state representing the configu-
ration on the associated promoter, concentration of the
corresponding messenger RNA etc.; the relation of these
quantities to the concentration of the output protein is not
necessarily straightforward, as emphasized in recent work
comparing mRNA and protein levels in yeast [46]. Second,
collapsing multiple chemical species onto a single node
makes it difficult to include non-transcriptional regulation
of gene expression in the same framework. Third, the re-
sponse of the target gene to changes in the concentrations
of its regulators will be delayed and extended in time, as in
the example explored by Rosenfeld and Alon [123].

Perhaps the clearest testimonies to the importance of
dynamics in addition to network topology are provided by
systems that involve regulatory loops, in which the output
of a network feeds back on one of the inputs as an activator
or repressor. McAdams and Shapiro [99] have argued that
the time delays in genetic regulatory elements are essen-
tial for the proper functioning of the phage ! switch, while
Elowitz and Leibler [38] have created a synthetic circuit
made up of three mutually repressing genes (the “repres-
silator”), that exhibits spontaneous oscillations. Circadian
clocks are examples of naturally occurring genetic oscilla-
tors [171].

In short, much is known about the skeleton of genetic
regulatory interactions for model organisms, and physical
models exist for several well studied (mostly prokaryotic)
regulatory elements. While homology allows us to bridge
the gap between model organisms and their relatives, it is
less clear how and at which level of detail the knowledge
about regulatory elements must be combined into a net-
work to explain and predict its function.

Protein–Protein Interaction Networks

After having been produced, proteins often assemble into
complexes through direct contact interactions, and these
complexes are functionally active units participating in
signal propagation and other pathways. Proteins also in-
teract through less persistent encounters, as when a pro-
tein kinase meets its substrate. It is tempting to define
a link in the network of protein–protein interactions by
such physical associations, and this is the basis of sev-
eral experimental methods which aim at a genome-wide
survey of these interactions. Although starting out be-
ing relatively unreliable (with false positive rates of up to
50%), high throughput techniques like the yeast two hy-
brid assay [68,161] or mass spectrometry [45,61] are pro-
viding data of increasing quality about protein–protein in-
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teractions, or the “interactome” [84]. While more reliable
methods are being developed [5] and new organisms are
being analyzed in this way [49,91,125], the existing inter-
action data from high throughput experiments and cu-
rated databases has already been extensively studied.

Interpretation of the interactions in the protein net-
work is tricky, however, due to the fact that different ex-
perimental approaches have various biases – for exam-
ple, mass spectrometry is biased towards detecting interac-
tions between proteins of high abundance, while two hy-
brid methods seem to be unbiased in this regard; on the
other hand, all methods show some degree of bias towards
different cellular localizations and evolutionary novelty of
the proteins. Assessing such biases, however, currently de-
pends not on direct calibration of the methods themselves
but on comparison of the results with manually curated
databases, although the databases surely have their own
biases [70]. It is reassuring that the intersection of various
experimental results shows significantly improved agree-
ment with the databases, but this comes at the cost of
a substantial drop in coverage of the proteome [100].

In contrast to the case of transcriptional regulation, the
relationship between two interacting proteins is symmet-
ric: if protein A binds to protein B, B also binds to A, so
that the network is described by an undirected graph.Most
of the studies have been focused on binary interactions
that yeast two hybrid and derived approaches can probe,
although spectrometry can detect multiprotein complexes
as well. Estimates of number of links in these networks
vary widely, even in the yeast Saccharomyces cerevisiae:
Krogan et al. [84] directly measure around 7100 interac-
tions (between 2700 proteins), while Tucker et al. [158]
estimate the total to be around 13 000–17 000, and von
Mering et al. [100] would put the lower estimate at about
30 000. Apart from the experimental biases that can in-
fluence such estimates and have been discussed already, it
is important to realize that each experiment can only de-
tect interactions between proteins that are expressed under
the chosen external conditions (e. g. the nutrientmedium);
moreover, interactions can vary from being transient to
permanent, to which various measurement methods re-
spond differently. It will thus become increasingly impor-
tant to qualify each interaction in a graph by specifying
how it depends on context in which the interaction takes
place.

Proteins ultimately carry out most of the cellular pro-
cesses such as transcriptional regulation, signal propaga-
tion and metabolism, and these processes can be modeled
by their respective network and dynamical system abstrac-
tions. In contrast, the interactome is not a dynamical sys-
tem itself, but instead captures specific reactions (like pro-

tein complex assembly) and structural and/or functional
relations that are present in all of the above processes. In
this respect it has an important practical role of annotating
currently unknown proteins through ‘guilt by association,’
by tying them into complexes and processes with a previ-
ously known function.

Metabolic Networks
Metabolic networks organize our knowledge about an-
abolic and catabolic reactions between the enzymes, their
substrates and co-factors (such as ATP), by reducing the
set of reactions to a graph representation where two sub-
strates are joined by a link if they participate in the same
reaction. For model organisms like the bacterium Es-
cherichia coli the metabolic networks have been studied in
depth and are publicly available [77,78], and an increas-
ing number of analyzed genomes offers sufficient sampling
power to make statistical statements about the network
properties across different domains of life [72].

Several important features distinguish metabolic from
protein–protein interaction and transcriptional regulation
networks. First, for well studied systems the coverage of
metabolic reactions is high, at least for the central routes
of energy metabolism and small molecule synthesis; no-
tice that this is a property of our knowledge, not a prop-
erty of the networks (!). Second, cellular concentrations of
metabolites usually are much higher than those of tran-
scription factors, making the stochasticity in reactions due
to small molecular counts irrelevant. Third, knowledge
of the stoichiometry of reactions allows one to directly
write down a system of first order differential equations for
the metabolite fluxes [60], which in steady state reduces
to a set of linear constraints on the space of solutions.
These chemical constraints go beyond topology and can
yield strong and testable predictions; for example, Ibarra et
al. [66] have shown how computationally maximizing the
growth rate of Escherichia coli within the space of allowed
solutions given by flux balance constraints can correctly
predict measurable relationships between oxygen and sub-
strate uptake, and that bacteria can be evolved towards the
predicted optimality for growth conditions in which the
response was initially suboptimal.

Signaling Networks

Signaling networks consist of receptor and signaling pro-
teins that integrate, transmit and route information by
means of chemical transformations of the network con-
stituents. One class of such transformations, for exam-
ple, are post–translational modifications, where targets
are phosphorylated, methylated, acetylated, : : : on spe-
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cific residues, with a resulting change in their enzymatic
(and thus signaling) activity. Alternatively, proteins might
form stable complexes or dissociate from them, again in-
troducing states of differential activity. The ability of cells
to modify or tag proteins (possibly on several residues)
can increase considerably the cell’s capacity to encode its
state and transmit information, assuming that the signal-
ing proteins are highly specific not only for the identity
but also the modification state of their targets; for a review
see [110].

Despite the seeming overlap between the domains of
protein–protein network and signaling networks, the fo-
cus of the analysis is substantially different. The inter-
actome is simply a set of possible protein–protein in-
teractions and thus a topological (or connectivity) map; in
contrast, signaling networks aim to capture signal trans-
duction and therefore need to establish a causal map, in
which the nature of the protein–protein interaction, its
direction and timescale, and its quantitative effect on the
activity of the target protein matter. As an example, see
the discussion by Kolch et al. [83] on the role of protein–
protein interactions in MAPK signaling cascade.

Experiments on some signaling systems, such as
the Escherichia coli chemotactic module, have generated
enough experimental data to require detailed models in
the form of dynamical equations. Molecular processes in
a signaling cascade extend over different time scales, from
milliseconds required for kinase and phosphatase reac-
tions and protein conformational changes, to minutes or
more required for gene expression control, cell movement
and receptor trafficking; this fact, along with the (often es-
sential) spatial effects such as the localization of signaling
machinery and diffusion of chemical messengers, can con-
siderably complicate analyses and simulations.

Signaling networks are often factored into pathways
that have specific inputs, such as the ligands of the G pro-
tein coupled receptors on the cell surface, and specific out-
puts, as with pathways that couple to the transcriptional
regulation apparatus or to changes in the intracellular con-
centration of messengers such as calcium or cyclic nu-
cleotides. Nodes in signaling networks can participate in
several pathways simultaneously, thus enabling signal in-
tegration or potentially inducing damaging “crosstalk” be-
tween pathways; how junctions and nodes process signals
is an area of active research [74].

The components of signaling networks have long been
the focus of biochemical research, and genetic methods al-
low experiments to assess the impact of knocking out or
over-expressing particular components. In addition, sev-
eral experimental approaches are being designed specifi-
cally for elucidating signaling networks. Ab-chips localize

various signaling proteins on chips reminiscent of DNA
microarrays, and stain them with appropriate fluorescent
antibodies [105]. Multicolor flow cytometry is performed
on cells immuno-stained for signaling protein modifica-
tions and hundreds of single cell simultaneous measure-
ments of the modification state of pathway nodes are col-
lected [113]. Indirect inference of signaling pathways is
also possible from genomic or proteomic data.

One well studied signal transduction system is the mi-
togen activated protein kinase (MAPK) cascade that con-
trols, among other functions, cell proliferation and differ-
entiation [32]. Because this system is present in all eu-
karyotes and its structural components are used in mul-
tiple pathways, it has been chosen as a paradigm for the
study of specificity and crosstalk. Similarly, the TOR sys-
tem, identified initially in yeast, is responsible for inte-
grating the information on nutrient availability, growth
factors and energy status of the cell and correspondingly
regulating the cell growth [95]. Another interesting exam-
ple of signal integration and both intra- and inter-cellular
communication is observed in the quorum sensing cir-
cuit of the bacterium Vibrio harveyi, where different kinds
of species- and genus-specific signaling molecules are de-
tected by their cognate receptors on the cell surface, and
the information is fed into a common Lux phosphorelay
pathway which ultimately regulates the quorum sensing
genes [165].

Models of Biological Networks

Topological Models

The structural features of a network are captured by its
connectivity graph, where interactions (reactions, struc-
tural relations) are depicted as the links between the inter-
acting nodes (genes, proteins, metabolites). Information
about connectivity clearly cannot and does not describe
the network behavior, but it might influence and constrain
it in revealing ways, similar to effect that the topology of
the lattice has on the statistical mechanics of systems liv-
ing on it.

Theorists have studied extensively the properties of
regular networks and random graphs starting with Erdös
and Rényi in 1960s. The first ones are characterized by
high symmetry inherent in a square, triangular, or all-to-
all (mean field) lattice; the random graphs were without
such regularity, constructed simply by distributing K links
at random betweenN nodes. The simple one–point statis-
tical characterization that distinguishes random from reg-
ular networks looks at the node degree, that is the proba-
bility P(k) that any node has k incoming and/or outgoing
links. For random graphs this distribution is Poisson,
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meaning that most of the nodes have degrees very close
to the mean, hki D P

k k P(k), although there are fluctua-
tions; for regular lattices every node has the same connec-
tivity to its neighbors.

The first analyses of the early reconstructions of large
metabolic networks revealed a surprising “scale free” node
degree distribution, that is P(k) ! k!! , with " between
2 and 3 for most networks. For the physics community,
which had seen the impact of such scale invariance on
our understanding of phase transitions, these observations
were extremely suggestive. It should be emphasized that
for many problems in areas as diverse as quantum field
theory, statistical mechanics and dynamical systems, such
scaling relations are much more than curiosities. Power
laws relating various experimentally observable quantities
are exact (at least in some limit), and the exponents (here,
" ) really contain everything onemight want to know about
the nature of order in the system. Further, some of the
first thoughts on scaling emerged from phenomenologi-
cal analyses of real data. Thus, the large body of work on
scaling ideas in theoretical physics set the stage for peo-
ple to be excited by the experimental observation of power
laws in much more complex systems, although it is not
clear to us whether the implied promise of connection to
a deeper theoretical structure has been fulfilled. For diver-
gent views on these matters see Barabási et al. [10] and
Keller et al. [81].

The most immediate practical consequence of a scale
free degree distribution is that – relative to expectations
based on random graphs – there will be an over-represen-
tation of nodes with very large numbers of links, as with
pyruvate or co-enzyme A in metabolic networks [72,163].
These are sometimes called hubs, although another conse-
quence of a scale free distribution is that there is no ‘critical
degree of connection’ that distinguishes hubs from non-
hubs. In the protein–protein interaction network of Sac-
charomyces cerevisiae, nodes with higher degree are more
likely to represent essential proteins [73], suggesting that
node degree does have some biological meaning. On the
theoretical side, removal of a sizable fraction of nodes from
a scale free network will neither increase the network di-
ameter much, nor partition the network into equally sized
parts [3], and it is tempting to think that this robustness
is also biologically significant. The scale free property has
been observed in many non-biological contexts, such as
the topology of social interactions,WorldWideWeb links,
electrical power grid connectivity . . . [144]. A number of
models have been proposed for how such scaling might
arise, and some of these ideas, such as growth by prefer-
ential attachment, have a vaguely biological flavor [11,12].
Finding the properties of networks that actually discrimi-

nate among different mechanisms of evolution or growth
turns out to be surprisingly subtle [173].

Two other revealing measures are regularly computed
for biological networks. The mean path length, hli, is the
shortest path between a pair of nodes, averaged over all
pairs in the graph, and measures the network’s overall
‘navigability.’ Intuitively, short path lengths correspond
to, for example, efficient or fast flow of information and
energy in signaling or metabolic networks, quick spread
of diseases in a social network and so on. The clustering
coefficient of a node i is defined as Ci D 2ni /ki (ki " 1),
where ni is the number of links connecting the ki neigh-
bors of node i to each other; equivalently, Ci is the ra-
tio between the number of triangles passing through two
neighbors of i and node i itself, divided by the maximum
possible number of such triangles. Random networks have
low path lengths and low clustering coefficients, whereas
regular lattices have long path lengths and are locally clus-
tered. Watts and Strogatz [167] have constructed an in-
termediate regime of “small world” networks, where the
regular lattice has been perturbed by a small number of
random links connecting distant parts of the network to-
gether. These networks, although not necessarily scale free,
have short path lengths and high clustering coefficients,
a property that was subsequently observed in metabolic
and other biological networks as well [163].

A high clustering coefficient suggests the existence
of densely connected groups of nodes within a network,
which seems contradictory to the idea of scale invari-
ance, in which there is no inherent group or cluster size;
Ravasz et al. [120] addressed this problem by introducing
hierarchical networks and providing a simple construc-
tion for synthetic hierarchical networks exhibiting both
scale free and clustering behaviors. Although there is no
unique scale for the clusters, clusters will appear at any
scale one chooses to look at, and this is revealed by the
scaling of clustering coefficient C(k) with the node de-
gree k, C(k) ! k!1, on both synthetic as well as natural
metabolic networks of organisms from different domains
of life [120]. Another interesting property of some bio-
logical networks is an anti-correlation of node degree of
connected nodes [96], which we can think of as a ‘disso-
ciative’ structure; in contrast, for example, with the asso-
ciative character of social networks, where well connected
people usually know one another.

As we look more finely at the structure of the graph
representing a network, there is of course a much greater
variety of things to look at. For example, Spirin and
Mirny [142] have focused on high clustering coefficients
as a starting point and devised algorithms to search for
modules, or densely connected subgraphs within the yeast
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protein–protein interaction network. Although the prob-
lem has combinatorial complexity in general, the authors
found about 50 modules (of 5–10 proteins in size, some of
which were unknown at the time) that come in two types:
the first represents dynamic functional units (e. g. signal-
ing cascades), and the second protein complexes. A similar
conclusion was reached by Han et al. [57], after having an-
alyzed the interactome in combination with the temporal
gene expression profiles and protein localization data; the
authors argue that nodes of high degree can sit either at the
centers of modules, which are simultaneously expressed
(“party hubs”), or they can be involved in various path-
ways and modules at different times (“date hubs”). The
former kind is at a lower level of organization, whereas the
latter tie the network into one large connected component.

Focusing on even a smaller scale, Shen-Orr et al. [136]
have explored motifs, or patterns of connectivity of small
sets of nodes that are over-represented in a given network
compared to the randomized networks of the same de-
gree distribution P(k). In the transcriptional network of
the bacterium E. coli, three such motifs were found: feed
forward loops (in which gene X regulates Y that regulates
Z, but X directly regulates Z as well), single input modules
(where gene X regulates a large number of other genes in
the same way and usually auto-regulates itself), and dense
overlapping regulons (layers of overlapping interactions
between genes and a group of transcription factors, much
denser than in randomized networks). Themotif approach
has been extended to combined network of transcriptional
regulation and protein–protein interactions [169] in yeast,
as well as to other systems [101].

At the risk of being overly pessimistic, we should con-
clude this section with a note of caution. It would be at-
tractive to think that a decade of work on network topol-
ogy has resulted in a coherent picture, perhaps of the fol-
lowing form: on the smallest scale, the nodes of biologi-
cal networks are assembled into motifs, these in turn are
linked into modules, and this continues in a hierarchical
fashion until the entire network is scale free. As we will
discuss again in the context of design principles, the no-
tion of such discrete substructure – motifs and modules –
is intuitively appealing, and some discussions suggest that
it is essential either for the function or the evolution of
networks. On the other hand, the evidence for such struc-
ture usually is gathered with reference to some null model
(e. g., a random network with the same P(k)), so we don’t
even have an absolute definition of these structures, much
less a measure of their sufficiency as a characterization of
the whole system; for attempts at an absolute definition
of modularity see Ziv et al. [174] and Hofman and Wig-
gins [62]. Similarly, while it is appealing to think about

scale free networks, the evidence for scaling almost always
is confined to less than two decades, and in practice scaling
often is not exact. It is then not clear whether the idealiza-
tion of scale invariance captures the essential structure in
these systems.

Boolean Networks

A straightforward extension of the topological picture that
also permits the study of network dynamics assumes that
the entities at the nodes – for example, genes or signal-
ing proteins – are either ‘on’ or ‘off’ at each moment of
time, so that for node i the state at time t is #i (t) 2 f0; 1g.
Time is usually discretized, and an additional prescrip-
tion is needed to implement the evolution of the sys-
tem: #i (t C 1) D fi(

˚
#"(t)

!
), where f i is a function that

specifies how the states of the nodes $ that are the in-
puts to node i in the interaction graph combine to de-
termine the next state at node i. For instance, f A might
be a Boolean function for gene A, which needs to have
its activator gene B present and repressor gene C absent,
so that #A(t C 1) D #B(t) ^ #̄C (t). Alternatively, f might
be a function that sums the inputs at state t with some
weights, and then sets #i D 1(0) if the result is above (be-
low) a threshold, as in classical models of neural networks.

Boolean networks are amenable both to analytical
treatment and to efficient simulation. Early on, Kauff-
man [80] considered the family of random boolean net-
works. In these models, each node is connected at random
to K other nodes on average, and it computes a ran-
dom Boolean function of its inputs in which a frac-
tion % of the 2K possible input combinations leads to
#i (t C 1) D 1. In the limit that the network is large, the
dynamics are either regular (settling into a stable fixed
cycle) or chaotic, and these two phases are separated by
a separatrix 2%(1 " %)K D 1 in the phase space (%;K).

Aldana and Cluzel [4] have shown that for connectiv-
ities of K ! 20 that could reasonably be expected in e. g.
transcriptional regulatory networks, the chaotic regime
dominates the phase space. They point out, however, that
if the network is scale free, there is no ‘typical’K as the dis-
tribution P(k) ! k!! does not have a well-defined mean
for " # 3 and the phase transition criterion must be re-
stated. It turns out, surprisingly, that regular behavior is
possible for values of " between 2 and 2.5, observed in
most biological networks, and this is exactly the region
where the separatrix lies. Scale free architecture, at least
for Boolean networks, seems to prevent chaos.

Several groups have used Boolean models to look at
specific biological systems. Thomas [150] has established
a theoretical framework in which current states of the
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genes (as well as the states in the immediate past) and
the environmental inputs are represented by Boolean vari-
ables that evolve through the application of Boolean func-
tions. This work has been continued by, for example,
Sanchez and Thieffry [128] who analyzed the gap-gene
system of the fruit fly Drosophila by building a Boolean
network that generates the correct levels of gene expres-
sion for 4 gap genes in response to input levels of 3 mater-
nal morphogens with spatially varying profiles stretched
along the anterior-posterior axis of the fly embryo. Inter-
estingly, to reproduce the observed results and correctly
predict the known Drosophila segmentation mutants, the
authors had to introduce generalized Boolean variables
that can take more than two states, and have identified the
smallest necessary number of such states for each gene.

In a similar spirit, Li et al. [91] studied the skeleton of
the budding yeast cell cycle, composed of 11 nodes, and
a thresholding update rule. They found that the topology
of this small network generates a robust sequence of tran-
sitions corresponding to known progression through yeast
cell-cycle phases G1 (growth), S (DNA duplication), G2
(pause) and M (division), triggered by a known ‘cell-size
checkpoint.’ This progression is robust, in the sense that
the correct trajectory is the biggest dynamical attractor of
the system, with respect to various choices of update rules
and parameters, small changes in network topology, and
choice of triggering checkpoints.

The usefulness of Boolean networks stems from the
relative ease of implementation and simple parametriza-
tion of network topology and dynamics, making them
suitable for studying medium or large networks. In addi-
tion to simplifying the states at the nodes to two (or more)
discrete levels, which is an assumption that has not been
clearly explored, one should be cautious that the discrete
and usually synchronous dynamics in time can induce un-
wanted artifacts.

Probabilistic Models

Suppose one is able to observe simultaneously the activity
levels of several proteins comprising a signaling network,
or the expression levels of a set of genes belonging to the
same regulatory module. Because they are part of a func-
tional whole, the activity levels of the components will
be correlated. Naively, one could build a network model
by simply computing pairwise correlation coefficients be-
tween pairs of nodes, and postulating an interaction, and
therefore a link, between the two nodes whenever their
correlation is above some threshold. However, in a test
case where A ! B ! C (gene A induces B which induces
C), one expects to see high positive correlation among all

three elements, even though there is no (physical) interac-
tion betweenA and C. Correlation therefore is not equal to
interaction or causation. Constructing a network from the
correlations in this naive way also does not lead to a gen-
erative model that would predict the probabilities for ob-
serving different states of the network as a whole. Another
approach is clearly needed; see Markowetz and Spang [94]
for a review.

In the simple case where the activity of a protein/gene
i can either be ‘on’ (#i D 1) or ‘off’ (#i D 0), the state
of a network with N nodes will be characterized by a bi-
nary word of N bits, and because of interaction between
nodes, not all these words will be equally likely. For exam-
ple, if node A represses node B, then combinations such as
1A0B : : : or 0A1B : : : will be more likely than 1A1B : : :. In
the case of deterministic Boolean networks, having node
A be ‘on’ would imply that node B is ‘off’ with certainty,
but in probabilistic models it only means that there is
a positive bias for node B to be ‘off,’ quantified by the
probability that node B is ‘off’ given that the state of node
A is known. Having this additional probabilistic degree of
freedom is advantageous, both because the network itself
might be noisy, and because the experiment can induce er-
rors in the signal readout, making the inference of deter-
ministic rules from observed binary patterns an ill-posed
problem.

Once we agree to make a probabilistic model, the
goal is to find the distribution over all network states,
which we can also think of as the joint distribution of
all the N variable that live on the nodes of the network,
P(#1; : : : ; #N jC), perhaps conditioned on some fixed set
of environmental or experimental factors C. The activities
of the nodes, #i , can be binary, can take on a discrete set of
states, or be continuous, depending on our prior knowl-
edge about the system and experimental and numerical
constraints. Even for a modest N , experiments of realistic
scale will not be enough to directly estimate the probabil-
ity distribution, since even with binary variable the num-
ber of possible states, and hence the number of param-
eters required to specify the general probability distribu-
tion, grows as ! 2N . Progress thus depends in an essential
way on simplifying assumptions.

Returning to the three gene example A ! B ! C, we
realize that C depends on A only through B, or in other
words, C is conditionally independent of A and hence no
interaction should be assigned between nodes A and C.
Thus, the joint distribution of three variables can be fac-
torized,

P(#A; #B; #C) D P(#Cj#B)P(#Bj#A)P(#A):

One might hope that, even in a large network, these sorts
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of conditional independence relations could be used to
simplify our model of the probability distribution. In gen-
eral this doesn’t work, because of feedback loops which, in
our simple example, would include the possibility that C
affects the state of A, either directly or through some more
circuitous path. Nonetheless one can try to make an ap-
proximation in which loops either are neglected or (more
sensibly) taken into account in some sort of average way;
in statistical mechanics, this approximation goes back at
least to the work of Bethe [19].

In the computer science and bioinformatics literature,
the exploitation of Bethe-like approximations has come to
be known as ‘Bayesian network modeling’ [43]. In prac-
tice what this approach does is to search among possible
network topologies, excluding loops, and then for fixed
topology one uses the conditional probability relationships
to factorize the probability distribution and fit the tables
of conditional probabilities at each node that will best re-
produce some set of data. Networks with more links have
more parameters, so one must introduce a trade-off be-
tween the quality of the fit to the data and this increasing
complexity. In this framework there is thus an explicit sim-
plification based on conditional independence, and an im-
plicit simplification based on a preference for models with
fewer links or sparse connectivity.

The best known application of this approach to a bi-
ological network is the analysis of the MAPK signaling
pathway in T cells from the human immune system [127].
The data for this analysis comes from experiments in
which the phosophorylated states of 11 proteins in the
pathway are sampled simultaneously by immunostaining
[113], with hundreds of cells sampled for each set of exter-
nal conditions. By combining experiments from multiple
conditions, the Bayesian network analysis was able to find
a network of interactions among the 11 proteins that has
high overlap with those known to occur experimentally.

A very different approach to simplification of proba-
bilistic models is based on the maximum entropy princi-
ple [71]. In this approach one views a set of experiments as
providing an estimate of some set of correlations, for ex-
ample the ! N2 correlations among all pairs of elements
in the network. One then tries to construct a probability
distribution which matches these correlations but other-
wise has as little structure – as much entropy – as possi-
ble. We recall that the Boltzmann distribution for systems
in thermal equilibrium can be derived as the distribution
which has maximum entropy consistent with a given aver-
age energy, and maximum entropy modeling generalizes
this to take account of other average properties. In fact one
can construct a hierarchy of maximum entropy distribu-
tions which are consistent with higher and higher orders

of correlation [130]. Maximum entropy models for binary
variables that are consistent with pairwise correlations are
exactly the Ising models of statistical physics, which opens
a wealth of analytic tools and intuition about collective be-
havior in these systems.

In the context of biological networks (broadly con-
strued), recent work has shown that maximum entropy
models consistent with pairwise correlations are sur-
prisingly successful at describing the patterns of activity
among populations of neurons in the vertebrate retina as
it responds to natural movies [131,153]. Similar results are
obtained for very different retinas under different condi-
tions [137], and these successes have touched a flurry of
interest in the analysis of neural populations more gen-
erally. The connection to the Ising model has a special
resonance in the context of neural networks, where the
collective behavior of the Ising model has been used for
some time as a prototype for thinking about the dynam-
ics of computation and memory storage [64]; in the max-
imum entropy approach the Ising model emerges directly
as the least structured model consistent with the experi-
mentally measured patterns of correlation among pairs of
cells. A particularly striking result of this analysis is that
the Ising models which emerge seem to be poised near
a critical point [153]. Returning to cell biology, the maxi-
mum entropy approach has also been used to analyze pat-
terns of gene expression in yeast [90] as well as to revisit
the MAPK cascade [151].

Dynamical Systems

If the information about a biological system is detailed
enough to encompass all relevant interacting molecules
along with the associated reactions and estimated reaction
rates, and the molecular noise is expected to play a negligi-
ble role, it is possible to describe the systemwith rate equa-
tions of chemical kinetics. An obvious benefit is the imme-
diate availability of mathematical tools, such as steady state
and stability analyses, insight provided by nonlinear dy-
namics and chaos theory, well developed numerical algo-
rithms for integration in time and convenient visualization
with phase portraits or bifurcation diagrams. Moreover,
analytical approximations can be often exploited produc-
tively when warranted by some prior knowledge, for ex-
ample, in separately treating ‘fast’ and ‘slow’ reactions. In
practice, however, reaction rates and other important pa-
rameters are often unknown or known only up to order-
of-magnitude estimations; in this case the problem usually
reduces to the identification of phase space regions where
the behavior of the system is qualitatively the same, for ex-
ample, regions where the system exhibits limit-cycle oscil-
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lations, bistability, convergence into a single steady state
etc.; see Tyson et al. [159] for a review. Despite the difficul-
ties, deterministic chemical kinetic models have been very
powerful tools in analyzing specific network motifs or reg-
ulatory elements, as in the protein signaling circuits that
achieve perfect adaptation, homeostasis, switching and so
on, described by Tyson et al. [160], and more generally in
the analysis of transcriptional regulatory networks as re-
viewed by Hasty et al. [59].

In the world of bacteria, some of the first detailed com-
puter simulations of the chemotaxis module of Escherichia
coli were undertaken by Bray et al. [29]. The signaling cas-
cade from the Tar receptor at the cell surface to the modifi-
cations in the phosphorylation state of the molecular mo-
tor were captured by Michaelis–Menten kinetic reactions
(and equilibrium binding conditions for the receptor),
and the system of equations was numerically integrated
in time. While slow adaptation kinetics was not studied
in this first effort, the model nevertheless qualitatively re-
produces about 80 percent of examined chemotactic pro-
tein deletion and overexpressionmutants, although the ex-
treme sensitivity of the system remained unexplained.

In eukaryotes, Novak and Tyson [107] have, for in-
stance, constructed an extensive model of cell cycle con-
trol in fission yeast. Despite its complexity (!10 proteins
and !30 rate constants), Novak and colleagues have pro-
vided an interpretation of the system in terms of three
interlocking modules that regulate the transitions from
G1 (growth) into S (DNA synthesis) phase, from G2 into
M (division) phase, and the exit from mitosis, respec-
tively. The modules are coupled through cdc2/cdc13 pro-
tein complex and the system is driven by the interaction
with the cell size signal (proportional to the number of
ribosomes per nucleus). At small size, the control circuit
can only support one stable attractor, which is the state
with low cdc2 activity corresponding to G1 phase. As the
cell grows, new stable state appears and the system makes
an irreversible transition into S/G2 at a bifurcation point,
and, at an even larger size, the mitotic module becomes
unstable and executes limit cycles in cdc2-cdc13 activity
until the M phase is completed and the cell returns to its
initial size. The basic idea is that the cell, driven by the
the size readout, progresses through robust cell states cre-
ated by bistability in the three modules comprising the cell
cycle control – in this way, once it commits to a transi-
tion from G2 state into M, small fluctuations will not flip
it back into G2. The mathematical model has in this case
successfully predicted the behaviors of a number of cell cy-
cle mutants and recapitulated experimental observations
collected during 1970s and 1980s by Nurse and collabora-
tors [108].

The circadian clock is a naturally occurring transcrip-
tional module that is particularly amenable to dynamical
systems modeling. Leloup and Goldbeter [87] have cre-
ated a mathematical model of a mammalian clock (with
!20 rate equations) that exhibits autonomous sustained
oscillations over a sizable range of parameter values, and
reproduces the entrainment of the oscillations to the light–
dark cycles through light-induced gene expression. The
basic mechanism that enables the cyclic behavior is neg-
ative feedback transcriptional control, although the actual
circuit contains at least two coupled oscillators. Studying
circadian clock in mammals, the fruit fly Drosophila or
Neurospora is attractive because of the possibility of con-
necting a sizable cataloge of physiological disorders in cir-
cadian rhythms to malfunctions in the clock circuit and
direct experimentation with light-dark stimuli [171]. Re-
cent experiments indicate that at least in cyanobacteria
the circadian clock can be reconstituted from a surpris-
ingly small set of biochemical reactions, without transcrip-
tion or translation [102,157], and this opens possibilities
for even simpler and highly predictive dynamical mod-
els [126].

Dynamical modeling has in addition been applied to
many smaller systems. For example, the construction of
a synthetic toggle switch [44], and the ‘repressilator’ – os-
cillating network of three mutually repressing genes [38] –
are examples where mathematical analysis has stimulated
the design of synthetic circuits. A successful reaction-
diffusion model of how localization and complex forma-
tion of Min proteins can lead to spatial limit cycle oscilla-
tions (used by Escherichia coli to find its division site) was
constructed by Huang et al. [65]. It remains a challenge,
nevertheless, to navigate in the space of parameters as it
becomes ever larger for bigger networks, to correctly ac-
count for localization and count various forms of protein
modifications, especially when the signaling networks also
couple to transcriptional regulation, and to find a proper
balance between models that capture all known reactions
and interactions and phenomenological models that in-
clude coarse-grained variables.

Stochastic Dynamics

Stochastic dynamics is in principle the most detailed level
of system description. Here, the (integer) count of every
molecular species is tracked and reactions are drawn at
random with appropriate probabilities per unit time (pro-
portional to their respective reaction rates) and executed
to update the current tally of molecular counts. An algo-
rithm implementing this prescription, called the stochas-
tic simulation algorithm or SSA, was devised by Gille-
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spie [47]; see Gillespie [48] for a review of SSA and a dis-
cussion of related methods. Although slow, this approach
for simulating chemical reactions can be made exact. In
general, when all molecules are present in large numbers
and continuous, well-mixed concentrations are good ap-
proximations, the (deterministic) rate dynamics equations
and stochastic simulation give the same results; however,
when molecular counts are low and, consequently, the
stochasticity in reaction timing and ordering becomes im-
portant, the rate dynamics breaks down and SSA needs to
be used. In biological networks and specifically in tran-
scriptional regulation, a gene and its promoter region are
only present in one (or perhaps a few) copies, while tran-
scription factors that regulate it can also be at nanomolar
concentrations (i. e. from a few to a few hundredmolecules
per nucleus), making stochastic effects possibly very im-
portant [97,98].

One of the pioneering studies of the role of noise in
a biological system was a simulation of the phage ! lysis-
lysogeny switch by Arkin et al. [7]. The life cycle of the
phage is determined by the concentrations of two tran-
scription factors, cI (lambda repressor) and cro, that com-
pete for binding to the same operator on the DNA. If cI
is prevalent, the phage DNA is integrated into the host’s
genome and no phage genes except for cI are expressed
(the lysogenic state); if cro is dominant, the phage is in
lytic state, using cell’s DNA replication machinery to pro-
duce more phages and ultimately lyse the host cell [115].
The switch is bistable and the fate of the phage depends
on the temporal and random pattern of gene expression of
two mutually antagonistic transcription factors, although
the balance can be shifted by subjecting the host cell to
stress and thus flipping the toggle into lytic phase. The
stochastic simulation correctly reproduces the experimen-
tally observed fraction of lysogenic phages as a function of
multiplicity-of-infection. An extension of SSA to spatially
extended models is possible.

Although the simulations are exact, they are computa-
tionally intensive and do not offer any analytical insight
into the behavior of the solutions. As a result, various
theoretical techniques have been developed for studying
the effects of stochasticity in biological networks. These
are often operating in a regime where the deterministic
chemical kinetics is a good approximation, and noise (i. e.
fluctuation of concentrations around the mean) is added
into the system of differential equations as a perturbation;
these Langevin methods have been useful for the study
of noise propagation in regulatory networks [76,111,149].
The analysis of stochastic dynamics is especially interest-
ing in the context of design principles which consider the
reliability of network function, to which we return below.

Network Properties and Operating Principles

Modularity

Biological networks are said to be modular, although the
term has several related but nevertheless distinct mean-
ings. Their common denominator is the idea that there
exist a partitioning of the network nodes into groups, or
modules, that are largely independent of each other and
perform separate or autonomous functions. Independence
can be achieved through spatial isolation of the module’s
processes or by chemical specificity of its components. The
ability to extract the module from the cell and reconstitute
it in vitro, or transplant it to another type of cell is a pow-
erful argument for the existence of modularity [58]. In the
absence of such strong and laborious experimental verifi-
cations, however, measures of modularity that depend on
a particular network model are frequently used.

In topological networks, the focus is on the mod-
ule’s independence: nodes within a module are densely
connected to each other, while inter-modular links are
sparse [57,120,142] and the tendency to cluster is mea-
sured by high clustering coefficients. As a caveat to this
view note that despite their sparseness the inter-module
links could represent strong dynamical couplings. Mod-
ular architecture has been studied in Boolean networks
by Kashtan and Alon [79], who have shown that mod-
ularity can evolve by mutation and selection in a time-
varying fitness landscape where changeable goals decom-
pose into a set of fixed subproblems. In the example stud-
ied they computationally evolve networks implementing
several Boolean formulae and observe the appearance of
a module – a circuit of logical gates implementing a partic-
ular Boolean operator (like XOR) in a reusable way. This
work makes clear that modularity in networks is plausi-
bly connected to modularity in the kinds of problems that
these networks were selected to solve, but we really know
relatively little about the formal structure of these prob-
lems.

There are also ways of inferring a form of modularity
directly without assuming any particular network model.
Clustering tools partition genes into co-expressed groups,
or clusters, that are often identified with particular mod-
ules [36,133,140]. Ihmels et al. [67] have noted that each
node can belong to more than one module depending on
the biological state of the cell, or the context, and have
correspondingly reexamined the clustering problem. Ele-
mento et al. [37] have recently presented a general infor-
mation theoretic approach to inferring regulatorymodules
and the associated transcription factor binding sites from
various kinds of high-throughput data. While clustering
methods have been widely applied in the exploration of
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gene expression, it should be emphasized that merely find-
ing clusters does not by itself provide evidence for mod-
ularity. As noted above, the whole discussion would be
much more satisfying if we had independent definitions
of modularity and, we might add, clearly stated alternative
hypotheses about the structure and dynamics of these net-
works.

Focusing on the functional aspect of the module, we
often observe that the majority of the components of
a system (for instance, a set of promoter sites or a set of
genes regulating motility in bacteria) are conserved to-
gether across species. These observations support the hy-
pothesis that the conserved components are part of a very
tightly coupled sub-network which we might identify as
a module. Bioinformatic tools can then use the combined
sequence and expression data to give predictions about
modules, as reviewed by Siggia et al. [139]. Purely phyloge-
netic approaches that infer module components based on
inter-species comparisons have also been productive and
can extract candidate modules based only on phylogenetic
footprinting, that is, studying the presence or absence of
homologous genes across organisms and correlating their
presence with hand annotated phenotypic traits [141].

Robustness

Robustness refers to a property of the biological network
such that some aspect of its function is not sensitive to
perturbations of network parameters, environmental vari-
ables (e. g. temperature), or initial state; see de Visser et
al. [162] for a review of robustness from an evolution-
ary perspective and Goulian [53] for mechanisms of ro-
bustness in bacterial circuits. Robustness encompasses two
very different ideas. One idea has to do with a general prin-
ciple about the nature of explanation in the quantitative
sciences: qualitatively striking facts should not depend on
the fine tuning of parameters, because such a scenario just
shifts the problem to understanding why the parameters
are tuned as they are. The second idea is more intrinsic to
the function of the system, and entails the hypothesis that
cells cannot rely on precisely reproducible parameters or
conditions and must nonetheless function reliably and re-
producibly.

Robustness has been studied extensively in the chemo-
tactic system of the bacterium Escherichia coli. The sys-
tematic bias to swim towards chemoattractants and away
from repellents can only be sustained if the bacterium
is sensitive to the spatial gradients of the concentration
and not to its absolute levels. This discriminative ability
is ensured by the mechanism of perfect adaptation, with
which the proportion of bacterial straight runs and tum-

bles (random changes in direction) always returns to the
same value in the absence of gradients [27]. Naively, how-
ever, the ability to adapt perfectly seems to be sensitive to
the amounts of intracellular signaling proteins, which can
be tuned only approximately by means of transcriptional
regulation. Barkai and Leibler [13] argued that there is in-
tegral feedback control in the chemotactic circuit which
makes it robust against changes in these parameters, and
Alon et al. [6] showed experimentally that precision of
adaptation truly stays robust, while other properties of the
systems (such as the time to adapt and the steady state)
show marked variations with intracellular signaling pro-
tein concentrations.

One seemingly clear example of robust biological func-
tion is embryonic development. We know that the spa-
tial structure of the fully developed organism follows
a ‘blueprint’ laid out early in development as a spatial pat-
tern of gene expression levels. von Dassow et al. [34] stud-
ied one part of this process in the fruit fly Drosophila,
the ‘segment polarity network’ that generates striped pat-
terns of expression. They considered a dynamical system
based on the wiring diagram of interactions among a small
group of genes and signaling molecules, with ! 50 associ-
ated constants parametrizing production and degradation
rates, saturation response and diffusion, and searched the
parameter space for solutions that reproduce the known
striped patterns. They found that, with their initial guess at
network topology, such solutions do not exist, but adding
a particular link – biologically motivated though uncon-
firmed at the time – allowed them to find solutions by
random sampling of parameter space. Although they pre-
sented no rigorous measure for the volume of parameter
space in which correct solutions exist, it seems that a wide
variety of parameter choices and initial conditions indeed
produce striped expression patterns, and this was taken to
be a signature of robustness.

Robustness in dynamical models is the ability of the
biological network to sustain its trajectory through state
space despite parameter or state perturbations. In circa-
dian clocks the oscillations have to be robust against both
molecular noise inherent in transcriptional regulation, ex-
amined in stochastic simulations by Gonze et al. [52], as
well as variation in rate parameters [143]; in the latter work
the authors introduce integral robustness measures along
the trajectory in state space and argue that the clock net-
work architecture tends to concentrate the fragility to per-
turbations into parameters that are global to the cell (max-
imum overall translation and protein degradation rates)
while increasing the robustness to processes specific to the
circadian oscillator. As was mentioned earlier, robustness
to state perturbations was demonstrated by Li et al. [91] in
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the threshold binary network model of the yeast cell cycle,
and examined in scale-free random Boolean networks by
Aldana and Cluzel [4].

As with modularity, robustness has been somewhat re-
sistant to rigorous definitions. Importantly, robustness has
always been used as a relational concept: function X is
robust to variations in Y . An alternative to robustness is
for the organism to exert precise control over Y , perhaps
even using X as a feedback signal. This seems to be how
neurons stabilize a functional mix of different ion chan-
nels [93], following the original theoretical suggestion of
LeMasson et al. [88]. Pattern formation during embry-
onic development in Drosophila begins with spatial gra-
dients of transcription factors, such as Bicoid, which are
established by maternal gene expression, and it has been
assumed that variations in these expression levels are in-
evitable, requiring some robust readout mechanism. Re-
cent measurements of Bicoid in live embryos, however,
demonstrate that the absolute concentrations are actually
reproducible from embryo to embryo with ! 10% preci-
sion [54]. While there remain many open questions, these
results suggest that organismsmay be able to exert surpris-
ingly exact control over critical parameters, rather than
having compensation schemes for initially sloppy mech-
anisms. The example of ion channels alerts us to the pos-
sibility that cells may even ‘know’ which combinations of
parameters are critical, so that variations in a multidimen-
sional parameter space are large, but confined to a low di-
mensional manifold.

Noise

A dynamical system with constant reaction rates, starting
repeatedly from the same initial condition in a stable en-
vironment, always follows a deterministic time evolution.
When the concentrations of the reacting species are low
enough, however, the description in terms of time (and
possibly space) dependent concentration breaks down,
and the stochasticity in reactions, driven by random en-
counters between individual molecules, becomes impor-
tant: on repeated trials from the same initial conditions,
the system will trace out different trajectories in the state
space. As has been pointed out in the section on stochas-
tic dynamics, biological networks in this regime need to
be simulated with the Gillespie algorithm [47], or ana-
lyzed within approximate schemes that treat noise as per-
turbation of deterministic dynamics. Recent experimental
developments have made it possible to observe this noise
directly, spurring new research in the field. Noise in bio-
logical networks fundamentally limits the organism’s abil-
ity to sense, process and respond to environmental and

internal signals, suggesting that analysis of noise is a cru-
cial component in any attempt to understand the design of
these networks. This line of reasoning is well developed in
the context of neural function [20], and we draw attention
in particular to work on the ability of the visual system to
count single photons, which depends upon the precision
of the G-protein mediated signaling cascade in photo re-
ceptors; see, for example, [117].

Because transcriptional regulation inherently deals
with molecules, such as DNA and transcription factors,
that are present at low copy numbers, most noise studies
were carried out on transcriptional regulatory elements.
The availability of fluorescent proteins and their fusions
to wild type proteins have been the crucial tools, enabling
researchers to image the cells expressing these probes in
a controllable manner, and track their number in time and
across the population of cells. Elowitz et al. [39] pioneered
the idea of observing the output of two identical regulatory
elements driving the expression of two fluorescent pro-
teins of different colors, regulated by a common input in
a single Escherichia coli cell. In this ‘two-color experiment,’
the correlated fluctuations in both colors must be due to
the extrinsic fluctuations in the common factors that in-
fluence the production of both proteins, such as over-
all RNA polymerase or transcription factor levels; on the
other hand, the remaining, uncorrelated fluctuation is due
to the intrinsic stochasticity in the transcription of the gene
and translation of the messenger RNA into the fluorescent
protein from each of the two promoters [147]. Ozbudak
et al. [109] have studied the contributions of stochastic-
ity in transcription and translation to the total noise in
gene expression in prokaryotes, while Pedraza and van
Oudenaarden [112] and Hooshangi et al. [63] have looked
at the propagation of noise from transcription factors to
their targets in synthetic multi-gene cascades. Rosenfeld et
al. [124] have used the statistics of binomial partitioning of
proteins during the division of Escherichia coli to convert
their fluorescence measurements into the corresponding
absolute protein concentrations, and also were able to ob-
serve the dynamics of these fluctuations, characterizing the
correlation times of both intrinsic and extrinsic noise.

Theoretical work has primarily been concerned with
disentangling and quantifying the contributions of differ-
ent steps in transcriptional regulation and gene expression
to the total noise in the regulated gene [111,146,149], of-
ten by looking for signatures of various noise sources in
the behavior of the measured noise as a function of the
mean expression level of a gene. For many of the exam-
ples studied in prokaryotes, noise seemed to be primarily
attributable to the production of proteins in bursts from
single messenger RNAmolecules, and to pulsatile and ran-
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dom activation of genes and therefore bursty translation
into mRNA [50]. In yeast [26,119] and in mammalian
cells [116] such stochastic synthesis of mRNA was mod-
eled and observed as well. Simple scaling of noise with the
mean was observed in !40 yeast proteins under different
conditions by Bar-Even et al. [9] and interpreted as origi-
nating in variability in mRNA copy numbers or gene acti-
vation.

Bialek and Setayeshgar [22] have demonstrated theo-
retically that at low concentrations of transcriptional regu-
lator, there should be a lower bound on the noise set by the
basic physics of diffusion of transcription factor molecules
to the DNA binding sites. This limit is independent of
(possibly complex, and usually unknown) molecular de-
tails of the binding process; as an example, cooperativity
enhances the ‘sensitivity’ to small changes in concentra-
tion, but doesn’t lower the physical limit to noise perfor-
mance [23]. This randomness in diffusive flux of factors to
their ‘detectors’ on the DNAmust ultimately limit the pre-
cision and reliability of transcriptional regulation, much
like the randomness in diffusion of chemoattractants to
the detectors on the surface of Escherichia coli limits its
chemotactic performance [17]. Interestingly, one dimen-
sional diffusion of transcription factors along the DNA
can have a big impact on the speed with which TFs find
their targets, but the change in noise performance that one
might expect to accompany these kinetic changes is largely
compensated by the extended correlation structure of one
dimensional diffusion [152]. Recent measurements of the
regulation of the hunchback gene by Bicoid during early
fruit fly development by Gregor et al. [54] have provided
evidence for the dominant role of such input noise, which
coexists with previously studied output noise in produc-
tion of mRNA and protein [156]. These results raise the
possibility that initial decisions in embryonic development
are made with a precision limited by fundamental physical
principles.

Dynamics, Attractors, Stability and Large Fluctuations

The behavior of a dynamical system as the time tends to
infinity, in response to a particular input, is interesting re-
gardless of the nature of the network model. Both discrete
and continuous, or deterministic and noisy, systems can
settle into a number of fixed points, exhibit limit-cycle os-
cillations, or execute chaotic dynamics. In biological net-
works it is important to ask whether these qualitatively dif-
ferent outcomes correspond to distinct phenotypes or be-
haviors. If so, then a specific stable gene expression profile
in a network of developmental genes, for example, encodes
that cell’s developmental fate, as the amount of lambda re-

pressor encodes the state of lysis vs lysogeny switch in the
phage. The history of the system that led to the establish-
ment of a specific steady state would not matter as long
as the system persisted in the same attractor: the dynam-
ics could be regarded as a ‘computation’ leading to the
final result, the identity of the attractor, with the activi-
ties of genes in this steady state in turn driving the down-
stream pathways and other modules; see Kauffman [80]
for genetic networks and Hopfield [64] for similar ideas
in neural networks for associative memory. Alternatively,
such partitioning into transient dynamics and ‘meaning-
ful’ steady states might not be possible: the systemmust be
analyzed as a whole while it moves in state space, and parts
of it do not separately and sequentially settle into their at-
tactors.

It seems, for example, that qualitative behavior of the
cell cycle can be understood by progression through well-
defined states or checkpoints: after transients die away,
the cell cycle proteins are in a ‘consistent’ state that reg-
ulates division or growth related activities, so long as the
conditions do not warrant a new transition into the next
state [33,103]. In the fruit fly Drosophila development it
has been suggested that combined processes of diffusion
and degradation first establish steady-state spatial profiles
of maternal morphogens along the major axis of the em-
bryo, after which this stable ‘coordinate system’ is read out
by gap and other downstream genes to generate the body
segments. Recent measurements by Gregor et al. [55] have
shown that there is a rich dynamics in the Bicoid mor-
phogens concentration, prompting Bergmann et al. [18] to
hypothesize that perhaps downstream genes read out and
respond to morphogens even before the steady state has
been reached. On another note, an interesting excitable
motif, called the “feedback resistor,” has been found in
HIV Tat system – instead of having a bistable switch like
the ! phage, HIV (which lacks negative feedback capabil-
ity) implements a circuit with a single stable ‘off’ lysogenic
state, that is perturbed in a pulse of trans activation when
the virus attacks. The pulse probably triggers a threshold-
crossing process that drives downstream events, and sub-
sequently decays away; the feedback resistor is thus again
an example of a dynamic, as opposed to the steady-state,
readout [168]. Excitable dynamics are of course at the
heart of the action potential in neurons, which results from
the coupled dynamics of ion channel proteins, and re-
lated dynamical ideas are now emerging other cellular net-
works [145].

If attractors of the dynamical system correspond to
distinct biological states of the organism, it is important
to examine their stability against noise-induced sponta-
neous flipping. Bistable elements are akin to the ‘flip-flop’
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switches in computer chips – they form the basis of cel-
lular (epigenetic) memory. While this mechanism for re-
membering the past is not unique – for example, a very
slow, but not bistable, dynamics will also retain ‘memory’
of the initial condition through protein levels that per-
sist on a generation time scale [138], it has the potential
to be the most stable mechanism. The naturally occurring
bistable switch of the ! phage was studied using stochas-
tic simulation by Arkin et al. [7], and a synthetic toggle
switch was constructed in Escherichia coli by Gardner et
al. [44]. Theoretical studies of systems where large fluctu-
ations are important are generally difficult and restricted
to simple regulatory elements, but Bialek [21] has shown
that a bistable switch can be created with as few as tens of
molecules yet remain stable for years. A full understand-
ing of such stochastic switching brings in powerful meth-
ods from statistical physics and field theory [122,129,164],
ultimately with the hope of connecting to quantitative ex-
periments [1].

Optimization Principles

If the function of a pathway or a network module can be
quantified by a scalar measure, it is possible to explore the
space of networks that perform the given function opti-
mally. An example already given was that of maximizing
the growth rate of the bacterium Escherichia coli, subject to
the constraints imposed by the known metabolic reactions
of the cell; the resulting optimal joint usage of oxygen and
food could be compared to the experiments [66]. If enough
constraints exist for the problem to be well posed, and
there is sufficient reason to believe that evolution drove the
organism towards optimal behavior, optimization princi-
ples allow us to both tune the otherwise unknown parame-
ters to achieve themaximum, and also to compare the wild
type and optimal performances.

Dekel and Alon [35] have performed the cost/benefit
analysis of expressing lac operon in bacteria. On one hand
lac genes allow Escherichia coli to digest lactose, but on
the other there is the incurred metabolic cost to the cell
for expressing them. That the cost is not negligible to the
bacterium is demonstrated best by the fact that it shuts
off the operon if no lactose is present in the environment.
The cost terms are measured by inducing the lac operon
with changeable amount of IPTG that provides no en-
ergy in return; the benefit is measured by fully inducing
lac with IPTG and supplying variable amounts of lactose;
both cost and benefit are in turn expressed as the change in
the growth rate compared to the wild-type grown at fixed
conditions. Optimal levels of lac expression were then pre-
dicted as a function of lactose concentration and bacteria

were evolved for several hundred generations to verify that
evolved organisms lie close to the predicted optimum.

Zaslaver et al. [172] have considered a cascade of
amino-acid biosynthesis reactions in Escherichia coli, cat-
alyzed by their corresponding enzymes. They have then
optimized the parameters of the model that describes the
regulation of enzyme gene expression, such that the to-
tal metabolic cost for enzyme production was balanced
against the benefit of achieving a desired metabolic flux
through the biosynthesis pathway. The resulting optimal
on-times and promoter activities for the enzymes were
compared to themeasured activities of amino-acid biosyn-
thesis promoters exposed to different amino-acids in the
medium. The authors conclude that the bacterium im-
plements a ‘just-in-time’ transcription program, with en-
zymes catalyzing initial steps in the pathway being pro-
duced from strong and low-latency promoters.

In signal transduction networks the definition of an
objective function to be maximized is somewhat more
tricky. The ability of the cell to sense its environment and
make decisions, for instance about which genes to up- or
down-regulate, is limited by several factors: scarcity of sig-
nals coming from the environment, perhaps because of the
limited time that can be dedicated to data collection; noise
inherent in the signaling network that degrades the qual-
ity of the detected signal; (sub-)optimality of the decision
strategy; and noise in the effector systems at the output.
A first idea would be to postulate that networks are de-
signed to lower the noise, and intuitively the ubiquity of
mechanisms such as negative feedback [15,53] is consis-
tent with such an objective. There are various definitions
for noise, however, which in addition are generally a func-
tion of the input, raising serious issues about how to for-
mulate a principled optimization criterion.

When we think about energy flow in biological sys-
tems, there is no doubt that our thinking must at least
be consistent with thermodynamics. More strongly, ther-
modynamics provides us with notions of efficiency that
place the performance of biological systems on an abso-
lute scale, and in many cases this performance really is
quite impressive. In contrast, most discussions of infor-
mation in biological systems leave “information” as a col-
loquial term, making no reference to the formal appara-
tus of information theory as developed by Shannon and
others more than fifty years ago [135]. Although many as-
pects of information theory that are especially important
for modern technology (e. g., sophisticated error-correct-
ing codes) have no obvious connection to biology, there is
something at the core of information theory that is vital:
Shannon proved that if we want to quantify the intuitive
concept that “x provides information about y,” then there
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is only one way to do this that is guaranteed to work un-
der all conditions and to obey simple intuitive criteria such
as the additivity of independent information. This unique
measure of “information” is Shannon’s mutual informa-
tion. Further, there are theorems in information theory
which, in parallel to results in thermodynamics, provide
us with limits to what is possible and with notions of effi-
ciency.

There is a long history of using information theoretic
ideas to analyze the flow of information in the nervous
system, including the idea that aspects of the brain’s cod-
ing strategies might be chosen to optimize the efficiency
of coding, and these theoretical ideas have led directly to
interesting experiments. The use of information to think
about cellular signaling and its possible optimization is
more recent [154,175]. An important aspect of optimiz-
ing information flow is that the input/output relations of
signaling devices must be matched to the distribution of
inputs, and recent measurements on the control of hunch-
back by Bicoid in the early fruit fly embryo [54] seem re-
markably consistent with the (parameter free) predictions
from these matching relations [155].

In the context of neuroscience there is a long tradition
of forcing the complex dynamics of signal processing into
a setting where the subject needs to decide between a small
set of alternatives; in this limit there is a well developed
theory of optimal Bayesian decision making, which uses
prior knowledge of the possible signals to help overcome
noise intrinsic to the signaling system; Libby et al. [92]
have recently applied this approach to the lac operon in
Escherichia coli. The regulatory element is viewed as an
inference module that has to ‘decide,’ by choosing its in-
duction level, if the environmental lactose concentration is
high or low. If the bacterium detects a momentarily high
sugar concentration, it has to discriminate between two
situations: either the environment really is at low over-
all concentration but there has been a large fluctuation;
or the environment has switched to a high concentration
mode. The authors examine how plausible regulatory ele-
ment architectures (e. g. activator vs repressor, cooperative
binding etc.) yield different discrimination performance.
Intrinsic noise in the lac system can additionally compli-
cate such decision making, but can be included into the
theoretical Bayesian framework.

The question of whether biological systems are optimal
in any precise mathematical sense is likely to remain con-
troversial for some time. Currently opinions are stronger
than the data, with some investigators using ‘optimized’
rather loosely and others convinced that what we see today
is only a historical accident, not organizable around such
lofty principles. We emphasize, however, that attempts to

formulate optimization principles require us to articulate
clearly what we mean by “function” in each context, and
this is an important exercise. Exploration of optimization
principles also exposes new questions, such as the nature
of the distribution of inputs to signaling systems, that one
might not have thought to ask otherwise. Many of these
questions remain as challenges for a new generation of ex-
periments.

Evolvability and Designability

Kirschner and Gerhart [82] define evolvability as an or-
ganism’s capacity to generate heritable phenotypic varia-
tion. This capacity may have two components: first, to re-
duce the lethality of mutations, and second, to reduce the
number of mutations needed to produce phenotypically
novel traits. The systematic study of evolvability is hard
because the genotype-to-phenotype map is highly non-
trivial, but there have been some qualitative observations
relevant to biological networks. Emergence of weak link-
age of processes, such as the co-dependence of transcrip-
tion factors and their DNA binding sites in metazoan tran-
scriptional regulation, is one example. Metazoan regula-
tion seems to depend on combinatorial control by many
transcription factors with weak DNA-binding specificities
and the corresponding binding sites (called cis-regulatory
modules) can be dispersed and extended on the DNA.
This is in stark contrast to the strong linkage between
the factors and the DNA in prokaryotic regulation or in
metabolism, energy transfer or macromolecular assembly,
where steric and complementarity requirements for inter-
acting molecules are high. In protein signaling networks,
strongly conserved but flexible proteins, like calmodulin,
can bind weakly to many other proteins, with small mu-
tations in their sequence probably affecting such binding
andmaking the establishment of new regulatory links pos-
sible and perhaps easy.

Some of the most detailed attempts to follow the evo-
lution of network function have been by Francois and
coworkers [41,42]. In their initial work they showed how
simple functional circuits, performing logical operations
or implementing bistable or oscillatory behavior, can be
reliably created by a mutational process with selection by
an appropriate fitness function. More recently they have
considered fitness functions which favor spatial structure
in patterns of gene expression, and shown how the net-
works that emerge from dynamics in this fitness landscape
recapitulate the outlines of the segmentation networks
known to be operating during embryonic development.

Instead of asking if there exists a network of nodes such
that they perform a given computation, and if it can be
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found by mutation and selection as in the examples above,
one can ask howmany network topologies perform a given
computation. In other words, one is asking whether there
is only one (fine tuned?) or many topologies or solutions
to a given problem. The question of how many network
topologies, proxies for different genotypes, produce the
same dynamics, a proxy for phenotype, is a question of
designability, a concept originally proposed to study the
properties of amino-acid sequences comprising functional
proteins, but applicable also to biological regulatory net-
works [106]. The authors examine three- and four-node
binary networks with threshold updating rule and show
that all networks with the shared phenotype have a com-
mon ‘core’ set of connections, but can differ in the vari-
able part, similar to protein folding where the essential set
of residues is necessary for the fold, with numerous varia-
tions in the nonessential part.

Future Directions

The study of biological networks is at an early stage, both
on the theoretical as well as on the experimental side. Al-
though high-throughput experiments are generating large
data sets, these can suffer from serious biases, lack of tem-
poral or spatial detail, and limited access to the component
parts of the interacting system. On a theoretical front, gen-
eral analytical insights that would link dynamics with net-
work topology are few, although for specific systems with
known topology computer simulation can be of great as-
sistance. There can be confusion about which aspects of
the dynamical model have biological significance and in-
terpretation, and which aspects are just ‘temporary vari-
ables’ and the ‘envelope’ of the proverbial back-of-the-
envelope calculations that cells use to perform their bio-
logical computations on; which parts of the trajectory are
functionally constrained and which ones could fluctuate
considerably with no ill-effects; how much noise is tolera-
ble in the nodes of the network and what is its correlation
structure; or how the unobserved, or ‘hidden,’ nodes (or
their modification/activity states) influence the network
dynamics.

Despite these caveats, cellular networks have some ad-
vantages over biological systems of comparable complex-
ity, such as neural networks. Due to technological develop-
ments, we are considerably closer to the complete census
of the interacting molecules in a cell than we are generally
to the picture of connectivity of the neural tissue. Com-
ponents of the regulatory networks are simpler than neu-
rons, which are capable of a range of complicated behav-
iors on different timescales. Modules and pathways often
comprise smaller number of interacting elements than in

neural networks, making it possible to design small but
interesting synthetic circuits. Last but not least, sequence
and homology can provide strong insights or be powerful
tools for network inference in their own right.

Those of us who come from the traditionally quantita-
tive sciences, such as physics, were raisedwith experiments
in which crucial elements are isolated and controlled. In
biological systems, attempts at such isolation may break
the regulatory mechanisms that are essential for normal
operation of the system, leaving us with a system which
is in fact more variable and less controlled than we would
have if we faced the full complexity of the organism. It is
only recently that we have seen the development of exper-
imental techniques that allow fully quantitative, real time
measurements of the molecular events inside individual
cells, and the theoretical framework into which such mea-
surements will be fit still is being constructed. The range
of theoretical approaches being explored is diverse, and it
behooves us to search for those approaches which have the
chance to organize our understanding of many different
systems rather than being satisfied with models of partic-
ular systems. Again, there is a balance between the search
for generality and the need to connect with experiments
on specific networks. We have tried to give some examples
of all these developments, hopefully conveying the correct
combination of enthusiasm and skepticism.
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156. Tkačik G, Gregor T, Bialek W (2008) The role of input noise
in transcriptional regulation. PLoS One 3, e2774 arXiv.org:q-
bioMN/0701002

157. Tomita J, NakajimaM, Kondo T, Iwasaki H (2005) No transcrip-
tion-translation feedback in circadian rhythm of kaic phos-
phorylation. Science 307:251–254

158. Tucker CL, Gera JF, Uetz P (2001) Towards an understanding
of complex protein networks. Trends Cell Biol 11(3):102–6

159. Tyson JJ, Chen K, Novak B (2001) Network dynamics and cell
physiology. Nat Rev Mol Cell Biol 2(12):908–16

160. Tyson JJ, Chen KC, Novak B (2003) Sniffers, buzzers, toggles
and blinkers: dynamics of regulatory and signaling pathways
in the cell. Curr Opin Cell Biol 15(2):221–31

161. Uetz P, Giot L, Cagney G, Mansfield TA, Judson RS, Knight JR,
Lockshon D, Narayan V, SrinivasanM, Pochart P, Qureshi-Emili
A, Li Y, Godwin B, Conover D, Kalbfleisch T, Vijayadamodar
G, Yang M, Johnston M, Fields S, Rothberg JM (2000) A com-
prehensive analysis of protein-protein interactions in Saccha-
romyces cerevisiae. Nature 403(6770):623–7

162. de Visser JA, Hermisson J, Wagner GP, Ancel Meyers L,
Bagheri-Chaichian H, Blanchard JL, Chao L, Cheverud JM,
Elena SF, Fontana W, Gibson G, Hansen TF, Krakauer D,
Lewontin RC, Ofria C, Rice SH, von Dassow G, Wagner A, Whit-
lock MC (2003) Perspective: Evolution and detection of ge-
netic robustness. Evolution Int J Org Evolution 57(9):1959–72

163. Wagner A, Fell DA (2001) The small world inside large
metabolic networks. Proc Biol Sci 268(1478):1803–10

164. Walczak AM, Sasai M, Wolynes PG (2005) Self-consistent pro-
teomic field theory of stochastic gene switches. Biophys J
88(2):828–50

165. Waters CM, Bassler BL (2005) Quorum sensing: cell-to-cell
communication in bacteria. Annu Rev Cell Dev Biol 21:
319–46

166. Watson JD, Baker TA, Beli SP, Gann A, Levine M, Losick R
(2003) Molecular Biology of the Gene: 5th edn. Benjamin
Cummings, Menlo Park

167. Watts DJ, Strogatz SH (1998) Collective dynamics of ‘small-
world’ networks. Nature 393(6684):440–2

168. Weinberger LS, Shenk T (2007) An hiv feedback resistor: auto-
regulatory circuit deactivator and noise buffer. PLoS Biol
5(1):e9

169. Yeger-Lotem E, Sattath S, Kashtan N, Itzkovitz S, Milo R, Pinter
RY, Alon U, Margalit H (2004) Network motifs in integrated
cellular networks of transcription-regulation and protein-



Cellular Automata as Models of Parallel Computation C 741

protein interaction. Proc Natl Acad Sci (USA) 101(16):5934–
5939

170. Yokobayashi Y, Weiss R, Arnold FH (2002) Directed evolution
of a genetic circuit. Proc Nat Acad Sci (USA) 99(26):16587–91

171. YoungMW, Kay SA (2001) Time zones: a comparative genetics
of circadian clocks. Nat Rev Genet 2(9):702–15

172. Zaslaver A, Mayo AE, Rosenberg R, Bashkin P, Sberro H,
Tsalyuk M, Surette MG, Alon U (2004) Just-in-time transcrip-
tion program inmetabolic pathways. Nat Genet 36(5):486–91

173. Ziv E, Koytcheff R, Middendorf M, Wiggins C (2005a) Sys-
tematic identification of statistically significant network mea-
sures. Phys Rev E 71:016110

174. Ziv E, Middendorf M,Wiggins C (2005b) Information theoretic
approach to network modularity. Phys Rev E 71:046117

175. Ziv E, Nemenman I, Wiggins CH (2006) Optimal signal pro-
cessing in small stochastic biochemical networks. arXiv.org:q-
bio/0612041

Cellular Automata as Models
of Parallel Computation
THOMAS WORSCH
Lehrstuhl Informatik für Ingenieure
und Naturwissenschaftler, Universität Karlsruhe,
Karlsruhe, Germany

Article Outline

Glossary
Definition of the Subject
Introduction
Time and Space Complexity
Measuring and Controlling the Activities
Communication in CA
Future Directions
Bibliography

Glossary

Cellular automaton The classical fine-grained parallel
model introduced by John von Neumann.

Hyperbolic cellular automaton A cellular automaton re-
sulting from a tessellation of the hyperbolic plane.

Parallel Turing machine A generalization of Turing’s
classical model where several control units work co-
operatively on the same tape (or set of tapes).

Time complexity Number of steps needed for computing
a result. Usually a function t : NC ! NC, t(n) being
the maximum (“worst case”) for any input of size n.

Space complexity Number of cells needed for computing
a result. Usually a function s : NC ! NC, s(n) being
the maximum for any input of size n.

State change complexity Number of proper state
changes of cells during a computation. Usually a func-
tion sc : NC ! NC, sc(n) being the maximum for any
input of size n.

Processor complexity Maximum number of control
units of a parallel Turing machine which are simulta-
neously active during a computation. Usually a func-
tion sc : NC ! NC, sc(n) being the maximum for any
input of size n.

NC The set f1; 2; 3; : : : g of positive natural numbers.
Z The set f: : : ; "3; "2; "1; 0; 1; 2; 3; : : : g of integers.
QG The set of all (total) functions from a setG to a set Q.

Definition of the Subject

This article will explore the properties of cellular automata
(CA) as a parallel model.

The Main Theme

We will first look at the standard model of CA and com-
pare it with Turing machines as the standard sequential
model, mainly from a computational complexity point of
view. From there we will proceed in two directions: by
removing computational power and by adding compu-
tational power in different ways in order to gain insight
into the importance of some ingredients of the definition
of CA.

What Is Left Out

There are topics which we will not cover although they
would have fit under the title.

One such topic is parallel algorithms for CA. There are
algorithmic problems which make sense only for parallel
models. Probably the most famous for CA is the so-called
Firing Squad Synchronization Problem. This is the topic of
Umeo’s article (! Firing Squad Synchronization Problem
in Cellular Automata), which can also be found in this en-
cyclopedia.

Another such topic in this area is the Leader election
problem. For CA it has received increased attention in re-
cent years. See the paper by Stratmann and Worsch [29]
and the references therein for more details.

And we do want to mention the most exciting (in our
opinion) CA algorithm: Tougne has designed a CA which,
starting from a single point, after t steps has generated the
discretized circle of radius t, for all t; see [5] for this gem.

There are also models which generalize standard CA
by making the cells more powerful. Kutrib has introduced
push-down cellular automata [14]. As the name indicates,
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1. INTRODUCTION 

Diffusion-reaction systems have been attracting significant interest during the last decades be- 

cause of their numerous applications in chemistry and chemical physics [l], biology [a], ecol- 

ogy [3,4], and many other scientific fields [5]. Particularly, instabilities and related transition 

processes are thought to be responsible for the formation of spatial “dissipative structures” in a 

chemical reactor [6], in a cell community (morphogenesis) [7], and in population dynamics [8]. 

Now days, a number of different theoretical tools for the investigation of pattern formation 

processes are known [g-11]. However, a widely used analytical technique is still based on partial 

differential equations. In many cases, the dynamics of a diffusion-reaction system is described by 

the following two equations: 

v = DuV2u(r, t) + f(u, v), 

%$ = DvV2v(r, t) + g(u, v), 
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where t is the time, r is the position, V2 is the Laplace operator, and the functions f and g 

describe the local kinetics. Here and further on, we will refer to the dynamical variables ‘1~ 

and v as the concentrations of the interacting components and to the coefficients D, and D, as 

the corresponding diffusivities. It should be noted, however, that the particular meaning of the 

quantities in equations (1)) (2) can be somewhat different in different problems. While in chemical 

applications D, and D, are the usual molecular diffusivities, in problems of population dynamics 

these coefficients describe the intensity of mixing either due to the self-motion of animals [3,12] 

or due to turbulence, e.g., in case of plankton populations [3,13,14]. 

The dynamics of system (l),(2) is t o a large extent controlled by the properties of the “reduced” 

system, i.e., equations (l),(2) without diffusion 

because of the evident relation between the stationary solutions of equations (3) and the homo- 

geneous stationary states of the full system (l),(2). However, the dynamics of the full system is 

remarkably more rich. Since the famous paper of Turing [7], it is well known that a linearly stable 

stationary point of the reduced system (3) may become unstable in the full system (l),(2). Then, 

after the homogeneity is broken due to the linear Turing instability, the nonlinear interactions 

between the components drive the system into the formation of standing spatial patterns [6]. This 

is an irreversible process; i.e., the broken homogeneity is never restored unless the parameters of 

the system are changed so that, at least, the instability conditions are not met anymore. 

In a somewhat more general sense, a kind of inverse process may occur. We show here that for 

certain parameter values, an “anti-Turing” phenomenon takes place: a locally unstable equilib- 

rium of the system (3) can be made dynamically stable in the full diffusion-reaction system (l),(2). 

In this case, for certain times and lengths, the formation of spatial patterns is suppressed and 

the homogeneity is restored. 

The structure of the paper is as follows. In the second section, an example of a biological 

system is given exhibiting the dynamical stabilization of an unstable equilibrium. Both analytical 

and numerical results are presented. In the third section, the results are extended to the 2-D 

case. In the fourth section, a chemical system described by the well-known Gray-Scott model 

is considered. It is shown that, in spite of significantly different local kinetics of the system, 

its spatiotemporal dynamics can also follow the dynamical stabilization scenario. In the last 

section, some open problems arising in connection with this new phenomenon, are discussed and 

an ecological example is given where the dynamical stabilization may be underlying the system 

dynamics. 

2. A BIOLOGICAL SYSTEM: 
A PREY-PREDATOR COMMUNITY 

Population dynamics is one of the fields of traditional and successful applications of diffusion- 

reaction systems [2,4,8,14,15]. Although the spatial mixing of the system components, i.e., biolog- 

ical species in this case, is typically caused by the self-motion of the organisms or by the specific 

properties of the environment (e.g., marine turbulence in case of plankton systems) and not by 

diffusion in the usual physicochemical meaning, the mathematical description of the mixing stays 

much the same [3]. Choosing a proper parameterization for the biological “reactions”, i.e., for 

the processes of replication, predation, and mortality, one can arrive at the following equations 

for the key species, cf. [2,4]: 

au - = v2u + U(1 - U) - -&z” 
at 
au 
-=psJ+~ ‘u 
at 

--v - mu. 
ufh 
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Dimeusionless quantities have been introduced, and the details are omitted here in order to be 
brief; cf. [16]. D, = D, = D is suggested for simplicity; however, the main results do not depend 

on this assumption. 
A crucial point, affecting the type of the spatiotemporal system dynamics, is the choice of 

the initial conditions. Actually, the formation of the dissipative patterns resulting from Turing 
instability occurs when the initial distribution of the concentrations consists of the homogeneous 
stationary states plus a perturbation with certain wavelengths; otherwise no spatial structure will 
emerge. Another example is given by the propagation of diffusive fronts which is only possible 
in case of finite initial conditions. In this paper, the considerations are restricted to the case 
when at the beginning of the process the prey is spatially uniformly distributed at the level of 
the carrying capacity, u(r,t) = 1, whereas the predator is inhabiting a finite region. These initial 
conditions correspond to the problem of biological invasions [4]. 

Thus, we begin with 1-D problem described by the following equations: 

Ut = u,, f u(1 - u) - 521, 
u+h 

u 
vt = w,, + k- 

u+h 
v - mv, 

and 

U(X,O) = 1, vx; u(z,O) = Vi, ~(3~~0) = 0, if /2j > $. (8) 

Since the dynamics of the system does not show any significant dependence on the form of the 
finite initial distribution of the predator, the simplest form of v(z, 0) is chosen here. 

Another important point is the number and the type of stationary states of the reduced system. 
It is readily seen that the phase plane (u, V) of equations (4),(5) without diffusion terms has the 
following structure: under the condition h < (1 - p)/p, p = m/k, there are three stationary 
points in the physically meaningful region u 2 0, v > 0, namely, (0,O) (trivial extinction), (1,O) 

(predator extinction), and (u*, ZI,) (coexistence), where 

ph 
u*=l_pT us+ = (1 - u,)(h + ue). 

The trivial solutions (0,O) and (1,O) are always saddle-points, whereas the nontrivial point (u,, TJ,) 
can be either focus or node, stable, or unstable, depending on the problem parameters; cf. Figure 1 
and see [16,17] for more details. 

The distinctions in the dynamics of system (6),(7) for different values of k, p, h can be associated 
with the change of the stability of the nontrivial stationary state (u,, 2~) which takes place when 

1-P 
h = hw1~) = lip’ (10) 

which corresponds to Curve 2 in Figure 1. Note that the position of Curves 1 and 2 does not 
depend on k. For all parameter values when the state (u,, v,) is unstable, i.e., below Curve 2, it 
is surrounded by a stable limit cycle. 

The full account of possible dynamical regimes of system (6),(7) with finite initial conditions can 
be found in [17] or in [18] for the case of a somewhat different parameterization of the biological 
processes. Typically, the solution of groblem (6)-( 8) evolves, after a certain transition time, to 
the propagation of stationary diffusive fronts. In case the stationary state (u*, v,) is locally stable, 
the dynamics of these fronts is something one can expect: they “switch” the system from the 
homogeneous stationary unstable state u z 1, v E 0 (after some damped oscillations if (u*, ZI*) 
is a stable focus [2,19]) to the homogeneous stable state u e u*, w E w,. 

However, the situation becomes less expected when the point (~L*,zI,> becomes unstable, i.e., 
when the parameters cross the Hopf bifurcation curve h = h,,(p) in the plane (p, h). The results 
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Figure 1. A map in the (p, h) parametric plan! of the prey-predator system (4),(5): 
the nontrivial “coexistence” state exists for the parameters below Curve 1 and loses 
its stability when crossing Curve 2; the critical relation (17) for the dynamical sta- 
bilization is shown by Curve 3 for k = 0.1, Curve 4 for k = 0.4, and Curve 5 for 
k = 1.2. 

of numerical experiments show that in this case, for parameter values “not very far” from the 

critical relation (lo), the diffusive fronts still work as switching waves but switching the system 

to the state u s ‘u*, 21 G ‘u* which is now locally unstable. Typical wave profiles are presented 

in Figure 2 (since the problem (6)-(8) is symmetrical with respect to x = 0, only half of the 

numerical domain is shown). 

One can see that, after rather strong oscillations at the front of the wave, there comes the 

region (from approximately IC = 200 to 2 = 420 in Figure 2, top, and from z = 400 to 2 = 900 in 

Figure 2, bottom) where the concentrations. u(z, t) and ~(5, t) nearly reach their stationary (but 

unstable!) values u,, v,-the dynamical stabilization takes place. We want to stress, based on 

our numerical results, that this unstable “plateau” exists during a remar~biy long time before 

it is finally displaced by the irregular spatiotemporal oscillations 1161. Moreover, the length of 

the plateau grows with time; cf. top and bottom of Figure 2. 

In order to better understand this phenomenon, the following points must be addressed. 

(i) For which restrictions on the parameter values can the dynamical stabilization of the 

unstable equilibrium occur? There must be some restrictions because the stabilization 

does not appear for arbitrary sets of parameters. 

(ii) How does the length of the plateau change (increase) with time? 

The first of these problems has been considered in [17], where the conditions for dynamical 

stabilization were related to the change of the type of the nontrivial stationary state in four- 

dimensional phase space generated by system (6),(7) in case of stationary wave propagation. 

However, the results obtained in this way do not allow us to make any estimates concerning the 

length of the plateau. Besides, the approach developed in [17] somewhat lacks physical lucidity, 

and that might make the interpretation of the results difficult. In this paper, another physically 

clear approach to deal with problems (i),(ii) is proposed. Both the restrictions on the problem 

parameters and the equation describing the growth of the plateau length with time will appear 

quite naturally as a result of the comparison between the speed of different diffusive fronts. 
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Figure 2. The profiles of the concentration of prey 21 (Curve 1) and predator n 
(Curve 2) calculated at t = 600 (top) and t = 1200 (bottom) for parameters k = 0.4, 
p = 0.15, and h = 0.6 and the initial conditions (8) with Vi = 1.2 and A = 100. 
The arrows show the direction of the diffusive front propagation. The region of 
homogeneity in the middle corresponds to the locally unstable “coexistence” state. 

The idea of the method is as follows. Results of computer simulations [17,18,20] show that, 

generally, the stabilization of a locally unstable state occurs behind the stationary diffusive fronts 

(which may have an oscillating “structure”, cf. Figure 2), travelling with a certain constant 

speed c. The minimal possible value c,r, can be obtained .considering the properties of the 

problem solution in the vicinity of the steady (1,O) state in R* phase space [2,17], 

Cmin = [z (TO + d&i)] 1’2 7 (11) 
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with As = Ti - 460. To and 60 are trace and determinant of the Jacobi matrix, respectively. We 

want to mention that, although c,in is only the exact lower bound of the possible values of the 

speed of the front and not its actual value, it provides a good estimate for the actual value c. 

Moreover, it holds quite often c = c,in [2]. 

Furthermore, if (u+, w,) is unstable, the propagation of the diffusive fronts, no matter if with or 

without the dynamical stabilization in the wake, is followed by a region occupied by spatiotem- 

poral oscillations [16,17,20-221, typically irregular. The remarkable thing is that in case of the 

formation of the unstable plateau, there exists a distinct boundary or interface at any time, sepa- 

rating the plateau from the region with irregular oscillations [16,22]. Our numerical results show 

that the size of the region always grows with time, and the interface propagates with a constant 

speed. Considering the travelling wave solutions of equations (6),(7) far ahead of the interface, 

where they can be regarded as small perturbations of the stationary state u E u*, u E v*, we 

arrive at the following estimate for the speed w of the interface [22]: 

Wmin = vz 

in case of an unstable focus, and 

wmin = [+‘1 + &I)]~” 

(12) 

(13) 

in case of an unstable node. Here Ar = Tf - 4Sr where Tl and 61 are the trace and the 

determinant of the matrix of the system in the vicinity of the coexistence state (zL+, v,). Again, 

although equations (12),(13) g ive only the minimal possible value of the speed, it is in an excellent 

agreement with numerical results [22]. 

Numerical results indicate that the dynamical stabilization is unlikely to be observed if (2~,, v,) 

is an unstable node; this is also in agreement with the results of the bifurcation analysis [17]. 

Hence, the further considerations treat the case (u*, w,) as an unstable focus. 

Now, the domain where the dynamical stabilization may take place is bounded by two moving 

boundaries: the leading edge propagating with a constant speed c and the interface between the 

plateau and the region of irregular oscillations propagating with a speed w. The development of 

the plateau is thus controlled by the relation between the values of c and w. Obvirously, in case 

w < c, the length of the domain grows with time as (c - w)t. Let us note, however, that since the 

leading front behaves as a stationary travelling wave, its form and “width” (i.e., the size of the 

region occupied by the regular damping oscillations, cf. Figure 2 between z = 700 and 2 = 850) 

do not change with time. Then, the increase of the length of the domain locked between the two 

moving fronts can only mean the increase of the length of the plateau. Thus, we obtain 

L plateau = (c - w)t + Lo, (14 

where Lo is a constant. 

On the other hand, in case w > c the dynamical stabilization can hardly be observed. The 

length of the plateau, if it happens to appear as a result of certain specific initial conditions, would 

decrease with time until, finally, the region of spatiotemporal oscillations would start immediately 

after the stationary travelling front; cf. Figure 3. Unlike the case shown in Figure ‘2, the “nucleus” 

of the unstable plateau which can be seen just behind the damping oscillations at the front does 

not grow with time. 

Thus, we arrive at a simple necessary condition for the dynamical stabilization 

w < c. (15) 

However, relations (14) and (15) are still not very useful because the actual values of speed are 

not known. Assuming that the fronts propagate with the minimal possible speed, as it usually 
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Figure 3. The profiles of the concentration? of prey u (Curve 1) and predator 2, 
(Curve 2) calculated at t = 1000 for parameters Ic = 0.4, p = 0.5, and h = 0.25. No 
plateau is formed. 

takes place, and taking into account. equations (11) and (12), from (15) we obtain the following 

critical relation between the problem parameters: 

TI = To + Ja,. (16) 

If the nonlinearities in the equations are chosen as in equations (6),(7), one can easily obtain 

that Tl = -260 (note that 60 < 0 because the state “prey only” is a saddle-point) and, finally, 

& [(l - h) - ~(1 + h)] = -2k (p - &-) . (17) 

The critical relation (17) is shown in Figure 1 by the dashed line for the values of parameter 

k = 0.1 (Curve 3), k = 0.4 (Curve 4), and k = 1.2 (Curve 5). The domain in the (p, h) parameter 

plane where one can expect the dynamical stabilization of an unstable equilibrium in the wake 

of the travelling diffusive front is on the left-hand side of the dashed line and below the Hopf 

bifurcation Curve 2. 

3. DYNAMICAL STABILIZATION 
IN TWO SPATIAL DIMENSIONS 

The results of the previous section were obtained for a spatially one-dimensional diffusion- 

reaction system. However, the dynamics of natural systems is usually higher dimensional. In 

this connection, and also in order to show that the dynamical stabilization is not an exotic but 

a rather typical phenomenon in diffusion-reaction systems, it seems important to know whether 

the previous results can be extended to a more-dimensional case. 

Note that, strictly speaking, this extention is not a formal routine and the results can hardly be 

foreseen. The matter is that the increase of the number of the spatial dimensions not only makes 

the dynamics of the system more complex, but may lead to suppression of the regimes which would 

be dominant in the system with fewer dimensions. This is just the situation described above: the 

increase of the number of spatial dimensions from 0 (cf. equations (3)) to 1 (equations (6),(7)) 

makes the unstable equilibrium dynamically stable. 
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Let us mention that, in some cases, the dimensionality of the system dynamics depends on 

the scale of the processes under consideration. For instance, the spatiotemporal functioning of a 

plankton community is three dimensional if considered on scale L 5 Lo where Lo is the thickness 

of the upper productive ocean layer, but becomes effectively two dimensional on scale L >> Lo. 

Taking into account that the 3-D case is much more complicated for computer simulations and 

for the visualization of the results, we restrict ourselves to the 2-D case here. Figure 4 shows the 

snapshots of the prey spatial distribution (the distribution of predator is qualitatively similar) 

obtained numerically for a prey-predator community described by equations (4),(5) where now 

u = U(Z, y, t), ‘u = ~(5, y, t), and V2 = & + &. The growing inner grey ring is easily recognized 

as the dynamically stabilized unstable coexistence region. 

Thus, the phenomenon of the dynamical stabilization of an unstable equilibrium exists also in 

a 2-D diffusion-reaction system. As it was in 1-D case, the size of the unstable plateau grows with 

time. However, to the case of cylindrical diffusive fronts, neither condition (14) nor (15) is not 

directly applicable because they were obtained for the plane waves. Particularly, condition (14) 

now gives only rough estimates of the parameter values where the dynamical stabilization may 

be observed. 

Figure 4. The 2-D spatial distribution of prey calculated at equidistant moments of 
time, parameter values are the same as in Figure 2. Black color corresponds to the 
no-species state, while in white areas the prey is at its carrying capacity. The grey 
color corresponds to the unstable coexistence state. 
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4. A CHEMICAL SYSTEM: THE GRAY-SCOTT MODEL 

In the previous sections, the possibility of the dynamical stabilization of an unstable equilibrium 

has been shown by computer experiments. Furthermore, the restrictions on the parameter values 

necessary for the stabilization have been obtained analytically. It has been demonstrated that 

the phenomenon is not sensitive to the dimensionality of the system and can be observed in 1-D 

and 2-D cases. 

A prey-predator system has been chosen as local kinetics to demonstrate the stabilization by 

computer experiments. Now, another question naturally arises: how strongly does the existence 

of this phenomenon depend on the type of the local kinetics ? Although it is shown in [17,18] 

that the dynamical stabilization is robust with respect to some variations in the form of the 

nonlinearities in equations (l),(2) (cf. also [20]), a certain doubt may still exist. The matter 

is that any realistic parameterization of the prey-predator interactions, in spite of the details, 

should allow for, at least, two principal features: 

(i) f(u = 0, w) = 0, g(u, w = 0) = 0, and 

(ii) for large values of u the predation must show a tendency to saturation; cf. equations (4),(5). 

These features impose certain constraints both on the structure of the phase plane of the reduced 

system (3), and on the spatiotemporal dynamics of the full system (l),(2). 

To check the robustness of the results with respect to the type of local interactions, another 

field of application of equations (l),(2) . IS considered. A system of two chemical reactants is free 

from the above limitations and can possess quite different local kinetics. As a particular example, 

the well-known Gray-Scott model [l] is chosen, describing an autocatalytic reaction in an open 

1-D flow reactor, 

ut = uzz + F(1 - u) - u712, (18) 
TJt = v,, + uw2 - (F + k)v, (1% 

with accordingly chosen dimensionless variables; see [23] for details. Here u(z, t) and V(IC, t) are 

the concentration of the substrate and the autocatalyst, respectively, F is the flow rate, and Ic is 

the effective rate constant for the decay of the autocatalyst. As in previous cases, we assume 

D, = D, for simplicity. 

Equations (18),(19) h ave been investigated in many papers; e.g., see [24,25]. A very brief sum- 

mary of the results is only given here as far as they will be needed for the further considerations. 

One can easily see that under the limitation d = 1 - 4(F + k)2/F > 0, there are three sta- 

tionary points: “substrate only” (1,O) and two nontrivial coexistence states (us, v,) (“substrate 

dominated”) and (Us, v,) (“autocatalyst dominated”) where 

1+4 F 

( > 

l-l/z 
US=?’ v3= F+k 2’ 

1-4 F 

( > 

l-t& 
%=T’ ua= F+lc 2’ (21) 

When crossing the critical curve d = 0 in the (Ic, F)-pl ane (Curve 1 in Figure 5) towards smaller 

values of k (i.e., from right to left), the two nontrivial states appear through a saddle-node 

bifurcation, the “autocatalyst dominated” state being an unstable node. 

The “substrate only” state is always stable and the “substrate dominated” state is always 

unstable. A change in the local dynamics can be associated with the change of the type of the 

“autocatalyst dominated” state, first of all, with the change of its stability which takes place 

when 

(22) 
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Figure 5. A map in the parametric (Ic, F) plane. Curve 1 bounds the domain where 
the two nontrivial states exist, Curve 2 is the Hopf bifurcation line, and Curve 3 
corresponds to the critical relation for the dynamical stabilization. 

i.e., when crossing Curve 2 in Figure 5. The Hopf bifurcation, which takes place when crossing 
the Curve (22), is supercritical for k < k,, (where k,, is estimated as about 0.035, cf. [24]) and 
only in this case a stable limit cycle appears. .Otherwise, i.e., for k,, < k < 0.625, no limit cycle 
arises and any trajectory starting in the vicinity of the “autocatalyst dominated” state after a 
number of expanding convolutions is finally attracted to the “substrate only” state. 

This brief consideration of the local dynamics of the Gray-Scott model provides “input” infor- 
mation for the investigation of the spatiotemporal dynamics of the distributed system (18),(19). 
Namely, accounting for the results of the previous sections, it is now obvious that, as far as one 
is concerned with the possibility to observe the dynamical stabilization, the values of F and k 

in equations (18),(19) should be chosen from the domain between the Hopf bifurcation curve 
and the saddle-node bifurcation curve where the “autocatalyst dominated” state is unstable, i.e., 
from the narrow strip between Curves 1 and 2 in Figure 5. 

Thus, the structure of the local phase plane of the Gray-Scott model is essentially different 
from the one of the prey-predator system (4),(5). Q ui e naturally, it results in a significantly ‘t 
different behaviour of the diffusive fronts; cf. [17,18,23-251. And this difference makes it probably 
even more remarkable that the phenomenon of dynamical stabilization also occurs in the system 
described by equations (18),(19). Figure 6 shows the profiles of the concentrations ‘u. and TJ at 
t = 3200 calculated for the initial conditions (8) with A = 400 and Vo = 0.1 for parameter values 
F = 0.015 and k = 0.04. Only half of the domain is shown. 

Again, after promptly damping oscillations behind the leading edge, there comes a region 
where substrate and autocatalyst are distributed homogeneously at the level corresponding to the 
locally unstable state U, = 0.28, U, = 0.196. To stress the distinctions from the cases considered 
in Sections 2 and 3, it should be noted that the unstable focus (u,, v,) is not surrounded by 
a stable limit cycle now. Moreover, since the “substrate only” state is stable for all parameter 
values, the propagation of the diffusive front followed by the dynamical stabilization, with the 
length of the unstable plateau growing with time, means “switching” the system from the stable 
state to an unstable one, a situation that seems quite exotic if considered in a general physical 
context. 
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Figure 6. The profiles of the concentration of the substrate u (Curve 1) and the 
autocatalyst u (Curve 2) calculated at t = 3200 for parameters F = 0.015 and k = 
0.04. The plateau behind the oscillating front appears as a result of the dynamical 
stabilization of the unstable “autocatalyst dominated” state. 

The next step to be done is to examine the restrictions on the problem parameters F and k 

resulting from the conditions for dynamical stabilization; cf. equations (15) and (16). It is readily 

seen that for the Gray-Scott model (18),(19) Tc + & = -2F, whereas Ti = (F + k) - Fu;l. 

Accounting for (21), equation (16) takes the following form: 

g$ = &. (23) 

The critical relation (23) is shown in Figure 5 by Curve 3. Note that Curve 3 is situated in 

the domain where the “autocatalyst dominated” state is stable. Thus, in this case the necessary 

condition (15) of the dynamical stabilization is fulfilled for all parameter values from the domain 

where this state is unstable (cf. the strip between Curves 1 and 2) and does not bring any 

additional restraints on the values of the problem parameters. 

5. DISCUSSION AND CONCLUSIONS 

In this paper, a new facet of the dynamics of a two-component diffusion-reaction system has 

been demonstrated: the dynamical stabilization of an unstable equilibrium resulting in the for- 

mation of a homogeneous spatial distribution of the interacting components, a “plateau” at the 

level corresponding to a locally unstable steady state. It has been shown that this is not an 

exotic but a rather typical phenomenon occurring both in one and two spatial dimensions and 

in systems with essentially different local kinetics, i.e., with different structure of the local phase 

plane. The size of the dynamically stabilized homogeneous region is growing with time according 

to equation (14). 

A simple necessary condition for the dynamical stabilization has been suggested, cf. equa- 

tion (15), which imposes certain constraints on the parameter values. It must be mentioned, 

however, that equation (15) gives only a necessary condition. Particularly, concerning the Gray- 

Scott model, the absence of additional restrictions does not mean that the dynamical stabilization 

can be observed for all the parameter values where the “autocatalyst dominated” state is unsta- 

ble. To obtain more detailed information about possible constraints, the semiempirical “physical” 
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approach considered in this paper should be complemented by the results of a strict bifurcation 

analysis; cf. [17]. Ideally, a rigorous mathematical investigation of the problem should also include 

an explicit analytical proof of the existence of a separatrix in the R* phase space of the system 

corresponding to the stationary travelling front. For a somewhat different problem, such consid- 

eration is done in [19,26], whereas it is still an open problem for equations (4),(S) or (18),(19). 

Concerning a probable application of the results to natural systems, another open problem 

is how the phenomenon can be modified in the presence of noise. Our tentative numerical 

results show that for a periodically applied perturbation, the plateau can survive if the period is 

sufficiently large and the amplitude of the perturbation is sufficiently small. Under the influence 

of a perturbation, the length of the plateau may decrease, and in some cases it may be broken 

into a few parts separated by regions with irregular spatiotemporal oscillations. However, this 

problem needs more careful consideration and will be subject of a separate paper. 

In conclusion, it should be noted that the existence of this phenomenon may shed a new light 

on some ecological problems. Particularly, it is shown in [27] that the temporary behaviour of 

the concentrations of key species in a biological community sometimes exhibits “intermittence”: 

an oscillatory behaviour gives way to a quasi-stationary state of the community which is followed 

again by the oscillations with a period of alternation much less than one year so that it can 

unlikely be related to the seasonal changes. Now, accounting for the results of this paper, one can 

consider the situation when an LLobserver” is taking measurements of the species concentrations 

in a fixed point in front of the population wave; cf. Figure 2. Then his account of the temporal 

dynamics of the community in a given point would be very similar to the one reported in [27]. 

The intermittent temporal behaviour of the community would arise as a result of a biological 

invasion combined with the dynamical stabilization behind the front. An indirect proof for this 

explanation can be also found in [28] where it is shown how a spatial structure of a community 

may result in complex temporal dynamics. 
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Glossary

Swimming The ability to advance in a fluid in the absence

of external propulsive forces by performing cyclic

shape changes.

Navier–Stokes equations A system of partial differential

equations describing themotion of a simple viscous in-

compressible fluid (a Newtonian fluid)

�

�

@v

@t
C (v � r)v

�

D  rpC ��v

div v D 0
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where v and p are the velocity and the pressure in the

fluid, � is the fluid density, and � its viscosity. For

simplicity external forces, such as gravity, have been

dropped from the right hand side of the first equation,

which expresses the balance between forces and rate

of change of linear momentum. The second equation

constrains the flow to be volume preserving, in view of

incompressibility.

Reynolds number A dimensionless number arising nat-

urally when writing Navier–Stokes equations in non-

dimensional form. This is done by rescaling position

and velocity with x� D x/L and v� D v/V , where L

and V are characteristic length scale and velocity asso-

ciated with the flow. Reynolds number (Re) is defined

by

Re D
VL�

�
D

VL

�

where � D �/� is the kinematic viscosity of the fluid,

and it quantifies the relative importance of inertial ver-

sus viscous effects in the flow.

Steady Stokes equations A system of partial differential

equations arising as a formal limit of Navier–Stokes

equations when Re! 0 and the rate of change of the

data driving the flow (in the case of interest here, the

velocity of the points on the outer surface of a swim-

mer) is slow

 ��v Crp D 0

div v D 0 :

Flows governed by Stokes equations are also called

creeping flows.

Microscopic swimmers Swimmers of size L D 1 µm

moving in water (� � 1mm2/s at room tempera-

ture) at one body length per second give rise to

Re � 10 6. By contrast, a 1m swimmer moving in

water at V D 1m/s gives rise to a Re of the order 106.

Biological swimmers Bacteria or unicellular organisms

are microscopic swimmers; hence their swimming

strategies cannot rely on inertia. The devices used for

swimming include rotating helical flagella, flexible tails

traversed by flexural waves, and flexible cilia covering

the outer surface of large cells, executing oar-like row-

ing motion, and beating in coordination. Self propul-

sion is achieved by cyclic shape changes described by

time periodic functions (swimming strokes). A notable

exception is given by the rotating flagella of bacteria,

which rely on a submicron-size rotary motor capable

of turning the axis of an helix without alternating be-

tween clockwise and anticlockwise directions.

Swimming microrobots Prototypes of artificial micro-

swimmers have already been realized, and it is hoped

that they can evolve into working tools in biomedicine.

They should consist of minimally invasive, small-scale

self-propelled devices engineered for drug delivery, di-

agnostic, or therapeutic purposes.

Definition of the Subject

Swimming, i. e., being able to advance in a fluid in the ab-

sence of external propulsive forces by performing cyclic

shape changes, is particularly demanding at low Reynolds

numbers (Re). This is the regime of interest for micro-or-

ganisms and micro-robots or nano-robots, where hydro-

dynamics is governed by Stokes equations. Thus, besides

the rich mathematics it generates, low Re propulsion is of

great interest in biology (How do microorganism swim?

Are their strokes optimal and, if so, in which sense? Have

these optimal swimming strategies been selected by evolu-

tionary pressure?) and biomedicine (can small-scale self-

propelled devices be engineered for drug delivery, diag-

nostic, or therapeutic purposes?).

For a microscopic swimmer, moving and changing

shape at realistically low speeds, the effects of inertia are

negligible. This is true for both the inertia of the fluid and

the inertia of the swimmer. As pointed out by Taylor [10],

this implies that the swimming strategies employed by

bacteria and unicellular organism must be radically differ-

ent from those adopted by macroscopic swimmers such as

fish or humans. As a consequence, the design of artificial

microswimmers can draw little inspiration from intuition

based on our own daily experience.

Taylor’s observation has deep implications. Based on

a profound understanding of low Re hydrodynamics, and

on a plausibility argument on which actuation mecha-

nisms are physically realizable at small length scales, Berg

postulated the existence of a sub-micron scale rotary mo-

tor propelling bacteria [5]. This was later confirmed by ex-

periment.

Introduction

In his seminal paper Life at low Reynolds numbers [8], Pur-

cell uses a very effective example to illustrate the subtleties

involved in microswimming, as compared to the swim-

ming strategies observable in our mundane experience.

He argues that at low Re, any organism trying to swim

adopting the reciprocal stroke of a scallop, whichmoves by

opening and closing its valves, is condemned to the frus-

trating experience of not having advanced at all at the end

of one cycle.



550 B Biological Fluid Dynamics, Non-linear Partial Differential Equations

This observation, which became known as the scallop

theorem, started a stream of research aiming at finding the

simplest mechanism by which cyclic shape changes may

lead to effective self propulsion at small length scales. Pur-

cell’s proposal was made of a chain of three rigid links

moving in a plane; two adjacent links swivel around joints

and are free to change the angle between them. Thus,

shape is described by two scalar parameters (the angles be-

tween adjacent links), and one can show that, by changing

them independently, it is possible to swim.

It turns out that the mechanics of swimming of Pur-

cell’s three-link creature are quite subtle, and a detailed

understanding has started to emerge only recently [4,9]. In

particular, the direction of the average motion of the cen-

ter of mass depends on the geometry of both the swimmer

and of the stroke, and it is hard to predict by simple in-

spection of the shape of the swimmer and of the sequence

of movements composing the swimming stroke. A radi-

cal simplification is obtained by looking at axisymmetric

swimmers which, when advancing, will do so by moving

along the axis of symmetry. Two such examples are the

three-sphere-swimmer in [7], and the push-me–pull-you

in [3]. In fact, in the axisymmetric case, a simple and com-

plete mathematical picture of low Re swimming is now

available, see [1,2].

TheMathematics of Swimming

This article focuses, for simplicity, on swimmers having

an axisymmetric shape ˝ and swimming along the axis

of symmetry, with unit vector E{. The configuration, or

state s of the system is described by N C 1 scalar pa-

rameters: s D fx(1); : : : ; x(NC1)g. Alternatively, s can be
specified by a position c (the coordinate of the center of

mass along the symmetry axis) and by N shape parame-

ters � D f� (1); : : : ; � (N)g. Since this change of coordinates
is invertible, the generalized velocities u(i) : D ẋ(i) can be

represented as linear functions of the time derivatives of

position and shape:

(u(1); : : : ; u(NC1))t D A(� (1); : : : ; � (N))(�̇ (1); : : : ; �̇ (N); ċ)t

(1)

where the entries of the N C 1 � N C 1 matrix A are in-

dependent of c by translational invariance.

Swimming describes the ability to change position in

the absence of external propulsive forces by executing

a cyclic shape change. Since inertia is being neglected, the

total drag force exerted by the fluid on the swimmer must

also vanish. Thus, since all the components of the total

force in directions perpendicular to E{ vanish by symmetry,

self-propulsion is expressed by

0 D

Z

@˝

�n � E{ (2)

where � is the stress in the fluid surrounding ˝ ,

and n is the outward unit normal to @˝ . The stress

� D �
 

rv C (rv)t
�

 pId is obtained by solving Stokes

equation outside ˝ with prescribed boundary data v D v̄

on @˝ . In turn, v̄ is the velocity of the points on the bound-

ary @˝ of the swimmer, which moves according to (1).

By linearity of Stokes equations, (2) can be written as

0 D
NC1
X

iD1

'(i)(� (1); : : : ; � (N))u(i)

D At˚ � (�̇ (1); : : : ; �̇ (N); ċ)t (3)

where˚ D ('(1); : : : ; '(N))t , and we have used (1). Notice

that the coefficients '(i) relating drag force to velocities are

independent of c because of translational invariance. The

coefficient of ċ in (3) represents the drag force correspond-

ing to a rigid translation along the symmetry axis at unit

speed, and it never vanishes. Thus (3) can be solved for ċ,

and we obtain

ċ D

N
X

iD1

Vi (�
(1); : : : ; � (N))�̇ (i) D V(�) � �̇ : (4)

Equation (4) links positional changes to shape changes

through shape-dependent coefficients. These coefficients

encode all hydrodynamic interactions between ˝ and

the surrounding fluid due to shape changes with rates

�̇ (1); : : : ; �̇ (N).

A stroke is a closed path  in the space S of admissible

shapes given by [0; T] 3 t 7! (� (1); : : : � (N 1)). Swimming

requires that

0 ¤ �c D

Z T

0

N
X

iD1

Vi �̇
(i)dt (5)

i. e., that the differential form
PN

iD1 Vi d� (i) is not exact.

The Scallop Theorem Proved

Consider a swimmer whose motion is described by

a parametrized curve in two dimensions (N D 1), so that

(4) becomes

ċ(t) D V(�(t))�̇(t) ; t 2 R ; (6)

and assume that V 2 L1(S) is an integrable function in the

space of admissible shapes and � 2 W1;1(R; S) is a Lips-

chitz-continuous and T-periodic function for some T > 0,

with values in S.
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Figure 1 is a sketch representing concrete examples

compatible with these hypotheses. The axisymmetric case

consists of a three-dimensional cone with axis along E{
and opening angle � 2 [0; 2�] (an axisymmetric octo-

pus). A non-axisymmetric example is also allowed in this

discussion, consisting of two rigid parts (valves), always

maintaining mirror symmetry with respect to a plane

(containing E{ and perpendicular to it) while swiveling

around a joint contained in the symmetry plane and per-

pendicular to E{ (a mirror-symmetric scallop), and swim-

ming parallel to E{.
Among the systems that are not compatible with the

assumptions above are those containing helical elements

with axis of rotation E{, and capable of rotating around E{
always in the same direction (call � the rotation angle). In-

deed, a monotone function t 7! �(t) is not periodic.

The celebrated “scallop theorem” [8] states that, for

a system like the one depicted in Fig. 1, the net displace-

ment of the center of mass at the end of a periodic stroke

will always vanish. This is due to the linearity of Stokes

equation (which leads to symmetry under time reversals),

and to the low dimensionality of the system (a one-di-

mensional periodic stroke is necessarily reciprocal). Thus,

whatever forward motion is achieved by the scallop by

closing its valves, it will be exactly compensated by a back-

ward motion upon reopening them. Since the low Re

world is unaware of inertia, it will not help to close the

valves quickly and reopen them slowly. A precise state-

ment and a rigorous short proof of the scallop theorem are

given below.

Theorem 1 Consider a swimmer whose motion is de-

scribed by

ċ(t) D V(�(t))�̇(t) ; t 2 R ; (7)

with V 2 L1(S). Then for every T-periodic stroke � 2
W1;1(R; S), one has

�c D

Z T

0
ċ(t)dt D 0 : (8)

Biological Fluid Dynamics, Non-linear Partial Differential Equations, Figure 1

Amirror-symmetric scallop or an axisymmetric octopus

Proof Define the primitive of V by

	 (s) D

Z s

0

V(�)d� (9)

so that 	 0(�) D V(�). Then, using (7),

�c D

Z T

0
V(�(t))�̇(t)dt

D

Z T

0

d

dt
	 (�(t))dt

D 	 (�(T))  	 (�(0)) D 0

by the T-periodicity of t 7! �(t).

Optimal Swimming

A classical notion of swimming efficiency is due to Ligh-

thill [6]. It is defined as the inverse of the ratio between the

average power expended by the swimmer during a stroke

starting and ending at the shape �0 D (� (1)0 ; : : : ; �
(N)
0 ) and

the power that an external force would spend to translate

the system rigidly at the same average speed c̄ D �c/T :

Eff 1 D
1
T

R T
0

R

@˝ �n � v

6��Lc̄2
D

R 1
0

R

@˝ �n � v

6��L(�c)2
(10)

where � is the viscosity of the fluid, L D L(�0) is the effec-

tive radius of the swimmer, and time has been rescaled to

a unit interval to obtain the second identity. The expres-

sion in the denominator in (10) comes from a generalized

version of Stokes formula giving the drag on a sphere of

radius Lmoving at velocity c̄ as 6��Lc̄.

Let DN : H1/2(@˝)! H 1/2(@˝) be the Dirichlet to

Neumann map of the outer Stokes problem, i. e., the map

such that �n D DNv, where � is the stress in the fluid,

evaluated on @˝ , arising in response to the prescribed ve-

locity v on @˝ , and obtained by solving the Stokes prob-

lem outside˝ . The expended power in (10) can be written

as
Z

@˝

�n � v D

Z

@˝

DN(v) � v : (11)
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At a point p 2 @˝ , the velocity v(p) accompanying

a change of state of the swimmer can be written as a lin-

ear combination of the u(i)

v(p) D

NC1
X

iD1

Vi (p; �)u(i) (12)

D
N

X

iD1

Wi(p; �)�̇ (i) : (13)

Indeed, the functions Vi are independent of c by transla-

tional invariance, and (4) has been used to get (13) from

the line above.

Substituting (13) in (11), the expended power becomes

a quadratic form in �̇

Z

@˝

�n � v D (G(�)�̇ ; �̇) (14)

where the symmetric and positive definite matrix G(�) is

given by

Gi j(�) D

Z

@˝

DN(Wi(p; �)) �W j(p; �)dp : (15)

Strokes of maximal efficiency may be defined as those pro-

ducing a given displacement�c of the center of mass with

minimal expended power. Thus, from (10), maximal effi-

ciency is obtained by minimizing

Z 1

0

Z

@˝

�n � v D

Z 1

0

(G(�)�̇ ; �̇) (16)

subject to the constraint

�c D

Z 1

0
V(�) � �̇ (17)

among all closed curves � : [0; 1]! S in the set S of ad-

missible shapes such that �(0) D �(1) D �0.

The Euler–Lagrange equations for this optimization

problem are

 
d

dt
(G�̇)C

1

2

0

B

B

B

B

B

@

�

@G

@� (1)
�̇; �̇

�

:::
�

@G

@� (N)
�̇ ; �̇

�

1

C

C

C

C

C

A

C�
�

r�V  r
t
�V

�

�̇ D 0

(18)

where r�V is the matrix (r�V)i j D @Vi /@� j , r
t
�
V is its

transpose, and � is the Lagrange multiplier associated with

the constraint (17).

Given an initial shape �0 and an initial posi-

tion c0, the solutions of (18) are in fact sub-Riemannian

geodesics joining the states parametrized by (�0; c0) and

(�0; c0 C�c) in the space of admissible states X, see [1].

It is well known, and easy to prove using (18), that along

such geodesics (G( )̇ ; ̇) is constant. This has interest-

ing consequences, because swimming strokes are often di-

vided into a power phase, where jG( )j is large, and a re-

covery phase, where jG( )j is smaller. Thus, along optimal
strokes, the recovery phase is executed quickly while the

power phase is executed slowly.

The Three-Sphere Swimmer

For the three-sphere-swimmer of Najafi and Golesta-

nian [7], see Fig. 2, ˝ is the union of three rigid disjoint

balls B(i) of radius a, shape is described by the distances x

and y, the space of admissible shapes is S D (2a;C1)2,

and the kinematic relation (1) takes the form

u(1) D ċ  
1

3
(2ẋ C ẏ)

u(2) D ċ C
1

3
(ẋ  ẏ)

u(3) D ċ C
1

3
(2ẏ C ẋ) :

(19)

Consider, for definiteness, a system with a D 0:05mm,

swimming in water. Calling f (i) the total propulsive force

on ball B(i), we find that the following relation among

forces and ball velocities holds

0

@

f (1)

f (2)

f (3)

1

A D R(x; y)

0

@

u(1)

u(2)

u(3)

1

A (20)

where the symmetric and positive definite matrix R is

known as the resistance matrix. From this last equa-

tion, using also (19), the condition for self-propulsion

f (1) C f (2) C f (3) D 0 is equivalent to

ċ D Vx (x; y)ẋ C Vy (x; y)ẏ ; (21)

where

Vx (x; y) D
Rec � (ec � ey)

Rec � (ex � ey)
(22)

Vy (x; y) D  
Rec � (ec � ex )

Rec � (ex � ey)
: (23)

Moreover, ex D ( 1; 1; 0)t , ey D (0; 1; 1)t , ec D (1/3;

1/3; 1/3)t .
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Biological Fluid Dynamics, Non-linear Partial Differential Equations, Figure 2

Swimmer’s geometry and notation

Biological Fluid Dynamics, Non-linear Partial Differential Equa-

tions, Table 1

Energy consumption (10–12 J) for the three strokes of Fig. 3 in-

ducing the same displacement �c D 0:01mm in T D 1 s

Optimal stroke Small square stroke Large square stroke

0.229 0.278 0.914

Given a stroke  D @! in the space of admissible

shapes, condition (5) for swimming reads

0 ¤ �c D

Z T

0

 

Vx ẋ C Vy ẏ
�

dt

D

Z

!

curlV(x; y)dxdy (24)

which is guaranteed, in particular, if curl V is bounded

away from zero. Strokes of maximal efficiency for a given

initial shape (x0; y0) and given displacement �c are ob-

tained by solving Eq. (18). For N D 2, this becomes

 
d

dt
(Ġ )C

1

2

�

(@xĠ ; ̇ )

(@yĠ ; ̇ )

�

C�curlV( )̇? D 0 (25)

where @xG and @yG stand for the x and y derivatives of the

2 � 2 matrix G(x; y).

It is important to observe that, for the three-sphere

swimmer, all hydrodynamic interactions are encoded in

the shape dependent functions V(x; y) andG(x; y). These

can be found by solving a two-parameter family of outer

Stokes problems, where the parameters are the distances x

and y between the three spheres. In [1], this has been done

numerically via the finite element method: a representa-

tive example of an optimal stroke, compared to two more

naive proposals, is shown in Fig. 3.

Future Directions

The techniques discussed in this article provide a head

start for the mathematical modeling of microscopic swim-

mers, and for the quantitative optimization of their

strokes. A complete theory for axisymmetric swimmers is

already available, see [2], and further generalizations to

Biological Fluid Dynamics, Non-linear Partial Differential Equa-

tions, Figure 3

Optimal stroke and square strokes which induce the same

displacement �c D 0:01mm in T D 1 s, and equally spaced

level curves of curl V. The small circle locates the initial shape

�0 D (0:3mm; 0:3mm)

arbitrary shapes are relatively straightforward. The com-

bination of numerical simulations with the use of tools

from sub-Riemannian geometry proposed here may prove

extremely valuable for both the question of adjusting the

stroke to global optimality criteria, and of optimizing the

stroke of complex swimmers. Useful inspiration can come

from the sizable literature on the related field dealing with

control of swimmers in a perfect fluid.
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Glossary

Deterministic continuous model Amathematical model

where the variables of themodel can take any real value

and where the time evolution of the model is set by the

initial conditions.

Stochastic discrete model A mathematical model where

the variables of the model take on discrete values and

where the time evolution of the model is described by

a set of probability distributions.

Definition of the Subject

Understanding the operation cellular networks is proba-

bly one of the most challenging and intellectually exciting

scientific fields today. With the availability of new exper-

imental and theoretical techniques our understanding of

the operation of cellular networks has made great strides

in the last few decades. An important outcome of this work

is the development of predictive quantitative models. Such

models of cellular function will have a profound impact on

our ability of manipulate living systems which will lead to

new opportunities for generating energy, mitigating our

impact on the biosphere and last but not least, opening up

new approaches and understanding of important disease

states such as cancer and aging.

Introduction

Cellular networks are some of the most complex natural

systems we know. Even in a “simple” organism such as

E. coli, there are at least four thousand genes with many

thousands of interactions between molecules of many dif-

ferent sizes [11]. In a human cell the number of interac-

tions is probably orders of magnitude larger. Why all this

complexity? Presumably the earliest living organisms were

much simpler than what we find today but competition

for resources and the need to adapt in unfavorable con-

ditions must have led to the development of sensory and

decision-making capabilities above and beyond the basic

requirements for life. What we see today in almost all liv-

ing organisms are complex signaling and genetic networks

whose complexity and subtlety is beyond most man-made

technological systems [87].

Over the last sixty or so years, biochemists and molec-

ular biologists have identified many of the components

in living cells and have traced out many of the interac-

tions that delineate cellular networks. What emerges is

a picture that would be familiar to many control engineers
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Overview 
 

Computational cell modelling has been successfully 

used to study the complexity of biological networks 

that consist of multiple feedback regulations1. 

Particularly, the use of continuous differential 

equations as a well-established method to formulate 

the molecular interactions in biological networks is 

crucial for building quantitative models. However, the 

use of differential equations often involves many 

unknown biochemical mechanisms and parameters 

that have to be estimated, and is hard to scale to large 

networks. In order to overcome the issues of 

parameter values and lack of scalability, qualitative and 

logical modelling (such as Boolean networks) has been 

increasingly used to model large biological networks2.  

 

Both differential equations and logical modelling play 

important roles in understanding a cell’s molecular 

systems3. A few studies have linked the continuous 

differential equations with discrete logical models4,5. 

Recently, logical modelling with model reduction has 

been shown to be a powerful technique for studying 

large networks6. This project aims to conduct a study 

to use logical (Boolean or multilevel) network or 

extended logical model (e.g. Fuzzy logic) to scale the 

dynamic modelling of ODEs to relatively large 

regulatory networks (say, of size > 100 genes). The 

aim of the project is to research less granular 

approaches to simulation and model-based design in 

synthetic biology7 and will investigate the use of 

modular, composable, qualitative Boolean models. The 

system will be tested in the model-based design and 

construction of regulatory networks in Escherichia coli 

and Bacillus subtilis.  

 
Methodology 
 

Designing large/complex biological systems requires in 

silico modelling to guide more predictive design. 

Traditional dynamic modelling based on differential 

equations requires the details for the design 

specification and does not scale well for large systems. 

Hence, we need an intermediate form of modelling 

that is able to capture the required dynamic/functional 

behaviour but is more abstract and therefore more 

scalable. The methods used in this project will involve 

non-linear ordinary differential equations and logical 

(Boolean or multilevel) modelling. Existing computer 

software for ODE modelling (e.g. XPPAUT, 

CellDesigner) and logical modelling software (e.g. 
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GINsim) will be used. In qualitative Boolean models, 

molecular interactions (activation or inhibition) are 

represented as logical functions and implemented with 

two types of updating schemes: synchronous and 

asynchronous. The synchronous mode assumes that 

all processes happen at the same time and 

asynchronous update assumes that processes happen 

at different times. State transition graphs will be used 

to visualize the activities of gene expression and 

signaling pathways. The recent technique of model 

reduction6,8 in asynchronous update will be used to 

map the large biological system to a reduced model 

that still contains the essential dynamics of the system 

such as stable states and conserved attractors. 

Furthermore, high-performance computing software 

(e.g. cloud computing, GPGPU) suitable for application 

to systems and synthetic biology, as well as 

biomedicine, will be developed. Synthetic biology 

requires the design and composition of models from 

parts and so theories for composing logical models 

will be investigated and developed to provide a basis 

for model construction and analysis. 

 
Timeline 
 

1st Year: Literature review of mathematical modelling 

of cell and synthetic biology in continuous differential 

equations and discrete logical modelling methods. 

Technical background or knowledge in computational 

cell modelling and dynamical system theory. Project 

plan. 2nd Year: Construct the method/software for 

logical modelling in synthetic biology. Mathematical 

models developed. Model composition explored. 

Construct and test the synthetic regulatory networks 

3rd Year: Documentation and testing of the 

method/software or models. Conference paper 

written. Model analysis and interpretation of the 

results. 4th Year: Thesis preparation and writing 

scientific publications. Journal paper produced.  

 

Training & Skills 
 

The student will receive training in computational and 

mathematical modelling, model analysis and 

interpretation in a biological context. Training in 

conceptual model construction or computational cell 

biology and molecular biology will also be provided. 

The Ph.D. project will primarily be based at School of 

Computing Science, Newcastle University where 

computational and experimental work will be carried 

out. The student will attend regular ICOS and ASL 

meetings. Research will be communicated in research 

seminars at the both Universities and at international 

conferences. Dr. Zheng and Dr. Poh (NTU) will 

provide additional complementary training in Boolean 

and advanced biological systems modelling. The 

student will be supported to travel to Singapore for 

about a year as part of the exchange program, and 

thereby gain international experience of learning and 

living. Through this project, the student will become 

an independent researcher in solving problems and 

perform interdisciplinary research. 
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Dynamical robustness of biological networks with
hierarchical distribution of time scales

A.N. Gorban and O. Radulescu

Abstract: Concepts of distributed robustness and r-robustness proposed by biologists to explain a
variety of stability phenomena in molecular biology are analysed. Then, the robustness of the relax-
ation time using a chemical reaction description of genetic and signalling networks is discussed.
First, the following result for linear networks is obtained: for large multiscale systems with hier-
archical distribution of time scales, the variance of the inverse relaxation time (as well as the var-
iance of the stationary rate) is much lower than the variance of the separate constants. Moreover, it
can tend to 0 faster than 1/n, where n is the number of reactions. Similar phenomena are valid in the
nonlinear case as well. As a numerical illustration, a model of signalling network is used for the
important transcription factor NFkB.
1 Introduction

Robustness, defined as stability against external perturbations
and internal variability, represents a common feature of living
systems. The fittest organisms are those that resist to diseases,
to imperfections or damages of regulatory mechanisms, and
that can function reliably in various conditions. There are
many theories that describe, quantify and explain robustness.
Waddington’s canalisation [1] was formalised by Thom [2]
as structural stability of attractors under perturbations. Many
useful ideas on robustness have been imported from the
theory of control of dynamical systems and of automata
[3, 4]. The new field of systems biology places robustness in
a central position among the living systems organising prin-
ciples, identifying redundancy, modularity and negative feed-
back as sources of robustness [5–7].
In this paper, we provide some justification to a different,

less understood source of robustness.
Early insights into this problem can be found in the von

Neumann’s discussion of robust coupling schemes of auto-
mata [8]. von Neumann noticed the intrinsic relation between
randomness and robustness. Quoting him ‘without random-
ness, situations may arise where errors tend to be amplified
instead of cancelled out; for example it is possible that the
machine remembers its mistakes, and thereafter perpetuates
them’. To cope with this, von Neumann introduces multi-
plexing and random perturbations in the design of robust
automata.
Related to this is Wagner’s concept of distributed robust-

ness that ‘emerges from the distributed nature of many bio-
logical systems, where many (and different) parts contribute
to system functions’ [9, 10]. To a certain extent, distributed
robustness and control are antithetical. In a robust system,
any localised perturbation should have only small effects.
Robust properties should not depend on only one, but on
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many components and parameters of the system. A
weaker version of distributed robustness is the r-robustness,
when r or less changes have small effect on the functioning
of the system [11].
Molecular biology offers numerous examples of distribu-

ted robustness and of r-robustness. Single knockouts of
developmental genes in the fruit fly have localised effects
and do not lead to instabilities [12]. Complex diseases are
the result of deregulation of many genetic pathways [13].
Transcriptional control of metazoa is based on promoter
and enhancer regulating DNA regions that collect influ-
ences from many proteins [14]. Networks of regulating
micro-RNA could be key players in canalising genetic
developmental programmes [15]. Interestingly, computer
models of gene regulation networks [16] have distributed
robustness with respect to variations of their parameters.
Flux balance analysis in-silico studies of the effects of mul-
tiple knockouts in Saccharomyces cerevisiae showed that
yeast metabolism is less robust to multiple attacks than to
single attacks [11].
Let us formulate the problem mathematically. A property

M of the biological system is a function of several par-
ameters of the system, M ¼ f(K1, K2, . . . , Kn). Let us
assume that the parameters (K1, K2, . . . , Kn) are indepen-
dent, random variables. There are various causes of variabil-
ity: mutations, across individuals variability, changes in the
functional context, and so on. For different causes, the
distribution of parameters may be significantly different.
For example, if parameters change because of random del-
etion of some reactions, then the appropriate model is
Ki ¼ Ki

0, with probability 12 p, and Ki ¼ 0, with prob-
ability p. On the other hand, the fluctuation of enzyme
activity can be formalised as a distribution of Ki with con-
tinuous density.
Considering independent and identical distributions of

Ki, we can give two basic examples of functions M ¼ f
(K1, K2, . . . , Kn) that have much less variability than indi-
vidual Ki. The first example considers the average value
of Ki, that is, M ¼

P
i Ki=n: Var(M) ¼ 1

n

P
i Var(Ki). If all

Var(Ki) ¼ Var(K), then Var(M ) ¼ Var(K )/n. The second
example considers the order statistics [17]: M ¼ K(l ) or
M ¼ K(n2l), where Kl is the lst parameter in the order
K(1) � K(2) � . . . K(n). When l does not depend on n (or is
IET Syst. Biol., 2007, 1, (4), pp. 238–246



uniformly bounded), Var(M ) goes to 0 when n! 1 as 1/
n2. This is faster than for the average.
Following these examples, for definitions of robustness

we can start from the inequality: Var(M )� Var(K),
where Var(Ki) ¼ Var(K ) for all i ¼ 1, . . . , n.
To avoid the problem of units and supposing that M,

Ki . 0, we can use logarithmic scale.

Definition 1: M is robust with respect to distributed vari-
ations if the log-variance ofM is much smaller than the log-
variance of any of the parameters. Let Var(log
Ki) ¼ Var(log K) for all i ¼ 1, . . . , n. Then

Var( logM)� Var( logK) (1)

Let us consider r-index subsets Ir ¼ fi1, i2, . . . , irg , f1,
2, . . . , ng for given r. Let Ki

0, i ¼ 1, . . . , n, be the central
values of the parameters. For given Ir, the perturbed
values Ki are obtained by multiplying r-selected central
values by independent random scales si . 0, i ¼ 1, . . . , r,
Ki ¼ Ki

0si, i [ Ir, Var(log si) ¼ Var(log s) for all i [ Ir,
and Var(Kj) ¼ 0 for all j � Ir.

Definition 2: M is robust with respect to r variations or
r-robust if for any Ir

Var( logM)� Var( log s) (2)

r-robustness holds if (2) is valid for any deterministic choice
of r targets. If the target set Ir is randomly chosen, we shall
speak of weak r-robustness. We call robustness index the
maximal value of r such that the system is r-robust.
The above definitions are inspired from biological ideas.

Our first definition corresponds to Wagner’s distributed
robustness [10]. It expresses the fact that M is not sensitive
to random variations of the parameters. r-robustness has
been defined in [11] as resistance with respect to multiple
mutations. r-robustness can also be interpreted as functional
redundance (this is different from the structural redundance
of Wagner [10], meaning that many genes code for the same
protein) meaning that the property M is collectively con-
trolled by more than r parameters, and cannot be consider-
ably influenced by changing a number of parameters �r.
One should also notice the introduction of a new concept.
Even if there are r critical targets (for instance genes
whose mutations lead to large effects), the probability of
hitting these r targets randomly could be small. We have
introduced the weak r-robustness to describe this situation.
Robustness with respect to distributed variations can be a

consequence of the Gromov–Talagrand concentration of
measure in high dimensional metric-measure spaces [18,
19]. In Gromov’s theory, the concentration has a geometri-
cal significance: objects in very high-dimension look very
small when they are observed via the values of real func-
tions with bounded rate of change (1-Lipschitzian
functions: j f (x)2 f(y)j , kx2 yk). This represents an
important generalization of the law of large numbers and
has many applications in mathematics. In this paper, we
shall discuss two types of concentration effects: cube con-
centration that applies to sums or averages and the faster
simplex concentration that applies to order statistics (see
above).
In both definitions, we propose a robustness criterion.

There are two difficulties in relation to this. First, it is diffi-
cult to impose an objective criterion for what ‘�’ means in
(1) and (2). In the sense of asymptotic behaviour, it is clear
that Var(logM )/Var(log K)! 0 when n! 1. When con-
centration phenomena are present, the ratio r ¼ Var(log
M )/Var(log K) should scale like 1/n or even like
IET Syst. Biol., Vol. 1, No. 4, July 2007
1/n2, where n is the number of independent variable par-
ameters. In practice, we always consider finite number of
parameters. In this case, r is finite and robustness means
that the ratio is smaller than some threshold, r , u.
Obviously, when Var(log M)/Var(log K) � 1, the system is
not robust, hence u , 1. In general, we should study depen-
dence Var(log M) on Var(log K) and n (or r – for
r-robustness). An example of such study for nonlinear signal-
ling network is presented below. The dependence Var(logM)
on Var(log K) may be nonlinear, but often remains close to a
piecewise linear function. In that case, the slopes
dVar( logM)=dVar( logK) are more informative than the
ratios Var( logM)=Var( logK). One can reformulate defi-
nitions of robustness and r-robustness using these slopes.
Second, some homogeneity of the parameters is implicit.

For instance, in this paper, Ki are kinetic parameters.
Because of the exponential Arrhenius law, log-variances
of the kinetic parameters can be arbitrarily large with
respect to log-variances of the activation energies. A
robust property with respect to the kinetic parameters may
be artificially declared non-robust with respect to activation
energies. Furthermore, we want to exclude trivial cases
when M does not depend on Ki. To avoid problems, we
can consider only positively homogeneous functions of
degree one: f(aK1, aK2, . . . , aKn) ¼ af(K1, K2, . . . , Kn)
for positive a. If Ki are, for example, matrix elements of a
matrix K, then eigenvalues li of K are homogeneous func-
tions of Ki of degree one. If for all li, the real part is
non-positive, Reli � 0, and non-zero purely imaginary
eigenvalues do not exist, then inverse relaxation time
1/t ¼ minf2Relijli = 0g is positively homogeneous
function of Ki of degree one. If right-hand side of a
system of differential equations is a homogeneous linear
function of Ki, _x ¼

P
Kifi(x), then eigenvalues of

Jacobian matrices at any point, inverse periods of limit
cycles, and inverse relaxation times are positively homo-
geneous functions of Ki of degree one. In logarithmic
scale, variance of log M is the same as of log(M21).
Hence, we can consider in Definitions 1, 2 positively homo-
geneous functions of degrees 1 and 21 together. This is
enough for our purposes in this paper.
In this paper, we choose a signalling module example as

an illustration of the various concepts of robustness. The
robust property that we study here is the relaxation time
of a biological molecular system modelled as a network
of chemical reactions. Relaxation time is an important
issue in chemical kinetics, but there exists biological speci-
fics. A biological system is a hierarchically structured open
system. Any biological model is necessarily a submodel of
a bigger one. After a change of the external conditions, a
cascade of relaxations takes place and the spatial extension
of a minimal model describing this cascade depends on
time. Timescales are important in signalling between cells
and between different parts of an organism. It is therefore
important to know how the relaxation time depends on the
size and the topology of a network and how robust is this
time against variations of the kinetic constants.
In this paper, first, we extend the classical results on limi-

ting steps of stationary states of one-route cyclic linear
networks onto dynamic of relaxation of any linear network.
This allows us to relate the relaxation time of a linear
network with hierarchical distribution of time scales to low-
order statistics of the network constants and to prove the dis-
tributed robustness of this relaxation time. Last, using a
model of the NFkB signalling module as an example, we
show that similar results apply to nonlinear networks. For
this nonlinear network, the robustness of another character-
istic time, the period of its oscillations is studied as well.
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2 Limitation of relaxation in linear reaction
networks

First, we consider a linear network of chemical reactions. In
a linear network, all the reactions are of the type Ai! Aj,
and the reaction rates rji are proportional to the reagents
Ai concentration: rji ¼ kjici.
The dynamics of the network is described by

_ci ¼
X

j, j=i

(kijcj � kjici) or _c ¼ Kc (3)

where K ¼ (Kij), for i = j, Kij is the reaction rate constant
kij of the reaction producing Ai and consuming Aj (this is
zero if no such reaction exists), and Kii ¼ �

P
j, j=i kji.

For the analysis of kinetic systems, linear conservation
laws and positively invariant polyhedra are important. A
linear conservation law is a linear function defined on the
concentrations b(c) ¼

Pq
i¼1 bici (q is the number of

reagents), whose value is preserved by the dynamics (3).
The conservation laws coefficient vectors bi are left
eigenvectors of the matrix K corresponding to the zero
eigenvalue. For any kinetic system, b0 ¼

Pq
i¼1 ci is the con-

servation law. A set E is positively invariant with respect to
kinetic equations (3), if any solution c(t) that starts in E at
time t0 [c(t0) [ E] belongs to E for t . t0 [c(t) [ E if
t . t0]. It is straightforward to check that the standard
simplex S ¼ {cjci � 0,

P
i ci ¼ 1} is positively invariant

set for kinetic equation (3): just check that if ci ¼ 0 for
some i, and all cj � 0 then _ci � 0. This simple fact immedi-
ately implies the following properties of K:

† all eigenvalues l of K have non-positive real parts,
Rel � 0, because solutions cannot leave S in positive time;
† If Rel ¼ 0, then l ¼ 0, because intersection of S with
any plane is a polygon, and a polygon cannot be invariant
with respect to rotations of sufficiently small angles;
† The Jordan cell of K that corresponds to zero eigenvalue
is diagonal, because all solutions should be bounded in S for
positive time.
† The shift in time operator exp(Kt) is a contraction in the
l1 norm for t . 0: for positive t and any two solutions of (3)
c(t), c0(t) [ S

X

i

ci(t)� c0i(t)
�� �� �

X

i

ci(0)� c0i(0)
�� ��

Vertices of S correspond to components Ai (in each
vertex only one ci = 0). For any initial state, c(0) [ S;
there exists a limit state limt!1exp(Kt)c(0). We call a
linear network weakly ergodic, if these limits coincide for
all c(0) [ S. This is equivalent to uniqueness of steady
state in S. The steady-state c� [ S for weakly ergodic
network is not obligatory strictly positive, some of c�i
could be zero. This is the difference from ergodic networks
that have strictly positive steady state.
The ergodicity of the network follows from its topological

properties. A non-empty subset V of the reaction digraph ver-
tices forms a sink, if there are no oriented edges from Ai [ V
to any Aj � V. For example, in the reaction digraph
A1 A2! A3, the one-vertex sets fA1g and fA3g are sinks.
A sink is minimal if it does not contain a strictly smaller
sink. In the previous example, fA1g and fA3g are minimal
sinks. Minimal sinks are also called ergodic components.
The following properties are equivalent:

1. the network is weakly ergodic.
2. for each two vertices Ai, Aj(i = j) we can find such a
vertex Ak that an oriented paths exist from Ai to Ak and
240
from Aj to Ak. One of these paths can be degenerated: it
might be i ¼ k or j ¼ k.
3. the network has only one minimal sink (one ergodic
component).
4. there is an unique linear conservation law, namely
b0(c) ¼

Pq
i¼1 ci; in other words, the zero eigenvalue of

the matrix K is not degenerate.

Hence, the number of independent linear conservation laws
is equal to the maximal number of disjoint ergodic
components.
These properties of weakly ergodic reaction networks are

well known in chemical kinetics [20]. They can be also
extracted from the theory of Markov chains [21].
In the proof of this statement, the following trans-

formation plays central role. Let b0(c), b1(c), . . . , bl(c) be
independent linear conservation laws and b0(c) ¼

P
i ci.

The map c 7! [b1(c), . . . , bl(c)] projects the simplex S
onto the l-dimensional polyhedron B. Preimage of each
point of B is a positively invariant polyhedron in S, and pre-
image of a vertex is a positively invariant face of S. The
vertices of such a face form a sink (we identify components
and vertices of S). The number of vertices in l-dimensional
polyhedron B cannot be smaller than lþ 1. So, if there are
lþ 1 independent, linear conservation laws, then there
exist lþ 1 disjoint sinks in reaction graph. Let us assume
inverse: there exist l sinks, S1, . . . , Sl. For each c [ S,
the limit exists c�(c) ¼ limt!1exp(Kt)c. The independent
conservation laws bj are b j(c) ¼

P
i[Sj

c�i (c).
Now, let us suppose that the kinetic parameters are well

separated and let us sort them in decreasing order:
k(1)� k(2)� . . .� k(n). Let us also suppose that the
network has only one ergodic component (when there are
several ergodic components, each one has its longest relax-
ation time that can be found independently). We say that
k(r), 1 � r � n is the ergodicity boundary if the network
of reactions with parameters k1, k2, . . . , kr is weakly
ergodic, but the network with parameters k1, k2, . . . , kr21

it is not. In other words, when eliminating reactions in
decreasing order of their characteristic times, starting with
the slowest one, the ergodicity boundary is the constant of
the first reaction whose elimination breaks the ergodicity
of the reaction digraph.
Relaxation to equilibrium of the network is multi-

exponential, but the longest relaxation time is given by

t ¼
1

min{�Relijli = 0}
(4)

An estimate of the longest relaxation time can be
obtained by applying the perturbation theory for linear oper-
ators to the degenerated case of the zero eigenvalue of
the matrix K. We have K ¼ K,r(k1, k2, . . . , kr21)þ
krQþ o(kr), where K,r is obtained from K by letting
kr ¼ krþ1 ¼ . . . kn ¼ 0, Q is a constant matrix and o(kr)
includes terms that are negligible relative to kr. From equiv-
alence of the properties (1)–(4), it follows that the zero
eigenvalue is twice degenerate in K,r and not degenerate
in K,rþ krQ. One gets the following estimate

a
1

k(r)
� t � a

1

k(r)
(5)

where a, a . 0 are some positive functions of k1, k2, . . . ,
kr21 (and of the reaction graph topology).
Two simplest examples give us the structure of the

perturbation theory terms for minl=0f2Relg.
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1. For the reaction mechanism shown in Fig. 1a,
minl=0f2Relg ¼ 1, if 1 , k1þ k2.
2. For the reaction mechanism shown in Fig. 1b,
minl=0f2Relg ¼ 1k2/(k1þ k2)þ o(1), if 1 , k1þ k2. For
well-separated parameters, there exists a trigger alternative:
if k1� k2, then minl=0f2Relg ’ 1; if, inverse, k1� k2,
then minl=0f2Relg ¼ o(1).

More generally

t ’ 1

ak(r)
(6)

with a . 1. This means that 1/k(r) gives the lower estimate
of the relaxation time, but t could be larger. The detailed
analysis of multiscale networks [22] shows that there is a
trigger alternative too: if the constants are well separated,
then either a ’ 1 or a� 1.
Thus, the well-known concept of stationary reaction rates

limitation by ‘narrow places’ or ‘limiting steps’ (slowest
reaction) should be complemented by the ergodicity bound-
ary limitation of relaxation time. It should be stressed that
the relaxation process is limited not by the classical limiting
steps (narrow places), but by the reactions that may be
absolutely different. The simplest example of this kind is
an irreversible catalytic cycle: the stationary rate is
limited by the slowest reaction (the smallest constant), but
the relaxation time is limited by the reaction constant with
the second lowest value (in order to break the weak ergodi-
city of a cycle two reactions must be eliminated).

3 Robustness of relaxation time in linear
systems

In general, for large multiscale systems, we observe concen-
tration effects: the log-variance of the relaxation time is
much lower than that of the separate constants. For
linear networks, this follows from well-known properties
of the order statistics [17]. For instance, if ki are
independent, log-uniform random variables, we have
Var[log(k(r))] � 1/n2. Here, we meet a “simplex-type” con-
centration ([19] pp. 234–236) and the log-variance of the
relaxation time can tend to 0 faster than 1/n, where n is
the number of reactions.
For parameters whose logarithm is uniformly distributed in

the interval [0, 1], k(r) has a log-beta distribution
log (k(r)) � B(r, nþ 1� r), i.e. for any 0 � a � b � 1,
P½a , log (k(r)) , b� ¼1=B(r, nþ 1� r)

Ð b
a
xr�1(1� x)n�r

dx, where B(r, nþ 1� r) ¼
Ð 1
0
xr�1(1� x)n�rdx.

The above estimates for the variance of the order stat-
istics, hence of relaxation time of linear networks, are
based on identical distributions of the kinetic constants. A
more realistic approach is to consider non-identical distri-
butions with different means. Let d be the average separ-
ation between mean parameters, in logarithmic scale (this
separation is zero for identical distributions) and let
D ¼ nd be the spread of the means. Let us suppose that

Fig. 1 Two basic examples of ergodicity boundary reaction

a Connection between ergodic components
b Connection from one ergodic component to element that is con-
nected to the both ergodic components by oriented paths. In both
cases, for 1 ¼ 0, the ergodic components are fA2g and fA3g
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all the parameters have the same variance Var(logki) ¼
Var(logk). When Var(logk) , d2, the overlap of distri-
butions of successive parameters is improbable and one
has Var(logk(r)) ¼ Var(logk). When d2 , Var(logk) , D2,
there is overlap and the variance of logk(r) is limited
by the distance d, one has saturation: Var(logk(r)) ¼ d2.
Finally, when D2 , Var(logk), we recover the case of iden-
tical distributions and one has simplex concentration
Var(logk(r)) ¼ Var(logk)/n2. The three regimes can be
observed even for relaxation times of nonlinear models as
will be discussed in Section 4.4.
Let us now discuss some design principles for robust net-

works. Suppose we have to construct a linear chemical reac-
tion network. How to increase robustness of the largest
relaxation times for this network? To be more realistic, let
us take into account two types of network perturbation:

1. random noise in constants;
2. elimination of a link or of a node in reaction network.

Long routes are more robust for the perturbations of the
first kind. So, the first recipe is simple: let us create long
cycles! But longer cycles are destroyed by link or node
elimination with higher probability. So, the second recipe
is also simple: let us create a system with many alternative
routes!
Finally, the resources are expensive, and we should create

a network of minimal size.
Hence, we come to a new combinatorial problem. How to

create a minimal network that satisfies the following
restrictions

1. the length of each route is .L;
2. after destruction of arbitrarily chosen Dlinks and Dnodes,
there remains at least one long route in the network.

To obtain the minimal network that fulfills the above con-
straints, we should include bridges between cycles, but the
density of these bridges should be sufficiently low in order
not to affect the length of the cycles significantly.
Additional restrictions could be involved. For example,

we can discuss not all the routes, but productive routes
only (that obligatory include some of the reaction steps).
For acyclic networks, we obtain similar recipes: long

chains should be combined with bridges. A compromise
between the chain length and number of bridges is needed.

4 Robustness of characteristic times in
nonlinear systems: an example

4.1 Model

Our example is one of the most documented transcriptional
regulation systems in eukaryote organisms: the signalling
module of NFkB. The response of this factor to a signal
has been modelled by several authors [23–26].
The transcription factor NFkB is a protein (actually a het-

erodimer made of two smaller molecules p50 and p65) that
regulates the activity of more than one hundred genes and
other transcription factors that are involved in the immune
and stress response, apoptosis, and so on. NFkB is thus
the principal mediator of the response to cellular agression
and is activated by more than 150 different stimuli: bacteria,
viral and bacterial products, mitogen agents and stress
factors (radiations, ischemia, hypoxia, hepatic regeneration
and drugs among which some anticancer drugs). NFkB has
complex regulation, including inhibitor degradation and
production, translocation between nucleus and cytoplasm,
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negative and positive feed-back. Under normal conditions,
NFkB is trapped in the cytoplasm where it forms a molecu-
lar complex with its inhibitor IkB. Under this form, NFkB
cannot perform its regulatory function, the complex
cannot penetrate the nucleus. A signal that can be modelled
by a kinase (IKK) frees NFkB by degrading its inhibitor.
Free NFkB enters the nucleus and regulates the transcrip-
tion of many genes, among which the gene of its inhibitor
IkB and the gene of a protein A20 that inactivates the
kinase.
Here, we would like to study the robustness of the charac-

teristic times of a nonlinear molecular system. In particular,
the double negative feed-back (via IkB and A20) is respon-
sible for oscillations of NFkB activity under persistent
stimulation [23–25]. We are thus interested in three charac-
teristic times of the NFkB model: the period and the
damping time of the oscillations and the largest relaxation
time (the damping of the oscillations is not necessarily the
only relaxation process, therefore the damping time is not
necessarily equal to the largest relaxation time).
We use the model introduced in [24] for the response of

NFkB module to a signal. This model is represented in
Fig. 2. The first reaction of the model is the activation of
the kinase. In the absence of a signal, the kinetic constant
of the activation reaction is zero k1 ¼ 0, meaning that the
kinase IKK remains inactive. The presence of a signal is

Fig. 2 Model of NFkB signalling

Non linear reaction mechanism is represented as bipartite graph. There
are 15 chemical species and 31 reactions
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modelled by a non-zero activation constant k1 . 0,
meaning that the kinase is activated.
We have numerically studied the dependence of these

time scales on the parameters of the model, which are
the kinetic constants of the reactions. The damping time
td and the largest relaxation time tmax were computed by
linearising the dynamical equations at steady state. The
period of the oscillation has a rigorous meaning only for
a limit cycle, when the oscillations are sustained. At a
Hopf bifurcation and close to it, the inverted imaginary
part of the conjugated eigenvalues crossing the imaginary
axis provide good estimate for the period. Another
method for computing the period is the direct determi-
nation of the timing between successive peaks. We have
noticed that in logarithmic scale (throughout this paper,
we use natural logarithm), the differences between the
periods computed by the two methods were small, there-
fore we have decided to use the first method, which is
more rapid. A criterion for the existence (observability)
of the oscillations is the damping time to period ratio.
This ratio is infinite for self-sustained oscillations, big for
observable oscillations (when at least two peaks are
visible). A low ratio means over-damped oscillations. We
call the period an observable one, if the above ratio is
larger than one.

4.2 r-robustness of the period

First, we have tested the 1-robustness of the characteristic
times. Each parameter has been multiplied by a variable,
positive scale factor (changing from 0.001 to 1000), all
the other parameters being kept fixed. The result can be
seen in Fig. 3.
Large plateaus over which characteristic times are practi-

cally constant correspond to robustness. The period of the
oscillations is particularly robust. For the damping time

Fig. 3 Log–log dependence of the characteristic times (circles:
largest relaxation time, x marks: dumping time, solid line: period)
on the scale factor that multiplies the value of one parameter,
while all the other parameters are fixed

Scale factor varies from 0.001 to 1000 (from26.9 to 6.9 in logarithm).
Oscillations have limited existence regions (outside these regions they
are overdamped; our subjective criterion for overdamping is a
damping time over period ratio ,1.75). There are also regions where
oscillations are self-sustained. The limits of these regions are Hopf
bifurcation points, where the damping time and the largest relaxation
time diverge. Inside these regions, the damping time and the largest
relaxation time are infinite and not represented.
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and the largest relaxation time, we have domains of substan-
tial variation. There are two types of such domains:

1. domains where d log t=d log k ’ �1.
2. domains where jd log t=d log kj . 1

where k is the variable parameter.
The first type of behaviour is the same as the one of linear

networks. For linear networks, when one acts on the ergodi-
city boundary k(r), the longest relaxation time changes inver-
sely proportional to k (this corresponds to k ¼ k(r)). When
parameters change, they in turn become the ergodicity
boundary. Acting on a parameter, which is not the ergodicity
boundary, has no effect; this means a plateau in the graph.
The second type of behaviour exists only for nonlinear

networks and is related to bifurcations. The variation of
one parameter can bring the system close to a bifurcation
(for the NFkB model, this is a Hopf bifurcation) where
the relaxation time diverges.
The in silico experiment shows that the largest relaxation

time is not 1-robust; this time can be significantly changed
by modifying a single parameter, for instance k9. The
damping time has similar behaviour being even less
robust (some plateaus of the largest relaxation time are
higher than the damping time, which continues to decrease;
consider for instance the effect of k9 in Fig. 3).
As also noticed by the biologists [25], the period of the

oscillations is 1-robust. We do not have a rigorous expla-
nation of this property. An heuristic explanation is the fol-
lowing. Close to the Hopf bifurcation, two conjugated
eigenvalues l+ im of the Jacobian cross the imaginary
axis of the complex plane; l vanishes that explains the
divergence of the relaxation time, while m, whose inverse
is the period, does not change much. However, this is not
a full explanation because it does not say what happens
far from the Hopf bifurcation point.

4.3 Parameter sensitivity

Not all the parameters have the same influence on the
characteristic times. This can already be seen in Fig. 3.
To quantify these differences, we have computed the distri-
butions of the characteristic times when one parameter is
multiplied by a log-uniform random scale, all the other par-
ameters being fixed. This computation, whose results are
represented in Fig. 4, is also a first step towards testing
weak r-robustness.
Although rather robust, the period is not constant. Several

parameters induce relatively significant changes of this
quantity. In the order of increasing strength of their effect
on the period, these parameters are: k7, k9, k15, k23, k22
and k26. Among these, k22, k26, and k9 expressing the tran-
scription rates of mRNA-IkB, the translation rates of IkB
and the binding rate of the kinase to the NFkB–IkB
complex are particularly interesting because by changing
them, one can increase and also decrease the period.
These results confirm and complete the findings of [26].
The parameters that have the greatest influence on the
period are the kinetic constants of the production module
of IkB: k22 and k26. The strong influence of NFkB transloca-
tion constant k15 on the period, missed in [26], is present
here. Interestingly, the delay produced in the transcrip-
tion/translation module of A20 have smaller effect on the
period than the delay produced by the IkB production
module. Less obvious is the effect of k7 and k9 (binding
of IKK to IkB or to the complex) on the period, detected
as important both here and in [26].
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The damping time to period ratio represents a criterion
for observability of the oscillations. To increase the
number of visible peaks, one should increase the above
ratio. Because the period is robust, this is equivalent to
increasing the damping time. Figs. 3 and 4 show that this
is possible in many ways by changing only one parameter
(decrease in k3, k9, k17, k18, k23 and k27 or increase in k4,
k16, k20, k22 and k26).

4.4 Weak r-robustness of all the characteristic
times

The divergence of the relaxation time close to a bifurcation
does not necessarily imply the absence of weak r-robustness
or of distributed robustness. The set of bifurcation
points forms a manifold in the space of parameters, of codi-
mension equal to the codimension of the bifurcation; in
general, this set has zero measure (stochastic cellular auto-
mata provide an interesting counter-example: the NEC
automaton of Andrei Toom [27]). The probability of
being by chance close to a bifurcation is generally small.
We have tested the weak r-robustness of the characteristic

times, by using independent, log-uniform distributions of the
parameters over 2 decades interval. All the three character-
istic times are weakly r-robust when r is small (see Figs. 4
and 5a and b). Thus, although controlable (there are critical
parameters), the system is weakly robust. Only a directed
choice of the right targets has an effect, random choice of a
small number of targets is inefficient.
For further study of the r-robustness, we have plotted in

Fig. 6 the dependence of the log-variance of the character-
istic times on the number of the perturbed parameters r
(1 � r � n).
The dependence of the variance of the characteristic

times on the number r of perturbed parameters can easily
be predicted for a linear network. Let us present simple esti-
mates for only one critical parameter, the ergodicity bound-
ary. Suppose that perturbation of parameters is sufficiently
small, Var(log ki) ¼ Var(log k) , d2 (see Section 3 for
the definitions and notations). If the chosen target is the
ergodicity boundary, then for the log-variance of the

Fig. 4 Parameter sensitivity study; distributions of the charac-
teristic times when different parameters are, in turn, multiplied
by a log-uniform (between 0.1 and 10), random scale factor,
while all the other parameters are fixed

Distributions corresponding to various parameters are spread out ver-
tically. The lower-most, bar-plotted distribution is the average of all
the distributions and corresponds to choosing randomly the parameter
to be modified. 1-robustness means that all distributions are concen-
trated (their spread in log-scale is small). Weak 1-robustness means
that only the average distribution is concentrated
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relaxation time t we have Var(log t) � Var(log k). The
probability to pick the ergodicity boundary is 12 (12 1/
n)r ’ 12 exp(2r/n) (for sufficiently big r), so Var(logt)/
Var(logki) ’ 12 (12 1/n)r ’ 12 exp(2r/n). This result
can be extended to the case when one has r0 critical
targets. In this case Var(logt)/Var(logki) ’ C2[12
(12 r0/n)

r] ’ C2[12 exp(2rr0/n)], where C . 0 is a sen-
sitivity. In our case, we know the number of critical targets
from the sensitivity studies r0 ’ 10 (see Fig. 3). The theor-
etical curve with C ¼ 1, r0 ¼ 10 fits well with the calculated
log-variance of the damping time for small values of r, see
Fig. 6a). There are differences at larger r that should be
explained by the nonlinear interference between the vari-
ations of the parameters. For quantities that follow cube con-
centration the log-variance is just proportional to r; it is the
case of the period, see Fig. 6a). To conclude, the plot of
Var(logt) against r can be used to distinguish between cube
concentration and presence of critical targets, and in the
latter case to estimate the number of critical targets.
We have also used a protocol for testing distributed

robustness. This corresponds to changing all the parameters
(r ¼ n ¼ 31 in Fig. 6b). Distributed robustness protocol can
be used to distinguishing between cube concentration,
simplex concentration and the cases with slightly interfering
critical targets. It is then useful to plot the log-variance of
the characteristic time against the log-variance of the par-
ameters. In the case of cube concentration, one just has
the proportionality. For simplex concentration, the discus-
sion from Section 3 applies. There are three regimes: first,
proportionality for log-variances up to d2, then saturation
for log-variances up to D2 and again proportionality with

Fig. 5 Distributions of characteristic times for log-uniform
(between 0.1 and 10), independent random scales multiplying
the kinetic parameters

a one parameter, randomly chosen
b changes in two parameters, randomly chosen
c all the parameters
Unperturbed values of the characteristic times are indicated with
arrows. The concentration of the distributions at a and b shows that
the period and the relaxation time are weakly 1- and 2-robust. The
variation in all parameters produce long tailed distributions (that can
be fitted by log-generalised logistic distributions) of the period and
of the damping time, slightly biased relative to the unperturbed
values (the bias of the period is positive, suggesting that it is easier
to increase, than to decrease the period by random perturbations).
The distribution of the relaxation time can be described as a mixture
of a log-generalised logistic, and of a log-beta distribution. Let us
remind that order statistics for log-uniform, independent variables
follow log-beta distributions
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a smaller slope. The first regime applies with no modifi-
cations to the case with critical targets, but if there is no
interference between targets, no saturation is observed.
Fig. 6b suggests that the behaviours of the relaxation
time, of the period and of the dumping time are examples
of simplex concentration, of cube concentration and of
weakly interfering critical targets, respectively.
We may also want to know the distributions of the

characteristic times for a distributed robustness protocol.
When all the parameters take independent log-uniform
values, the distributions of characteristic times are much
broader than the ones induced by changing a small
number of parameters (compare Fig. 5a with c). Neither
the longest relaxation time nor the damping time has distrib-
uted robustness (quantitatively, this follows from Fig. 6a:
for r ¼ 31 the variance ratios are larger than one).
However, Figs. 6a and 5 clearly show that the period is
more robust than the other characteristic times. In logarith-
mic scale, the distributions of the dumping time and of the
period have tails with different exponential decay rates
towards 1 and 21. These distributions (a possible fit is
by log-generalized logistic distributions) have longer tails
in log scale (exponential, compared to gaussian) than log-
normal distributions that are sometimes observed in
biology [28–32]. The tails are also longer than the ones
of the Tracy–Widom distribution characterising largest
eigenvalues of certain classes of random matrices [33,
34]. These long tails are related to the critical retardation
phenomena [35] close to the Hopf bifurcation (see also
Fig. 3). The distribution of the relaxation time can be seen
as a mixture between a log-beta (sharply limited by a
maximal time) and a log-generalised logistic distribution
(accounting for critical retardation).

5 Discussion and conclusions

We demonstrated the possibility of a new kind of robustness
of biological systems. This type of robustness has geometrical
origin, being related to the high dimension inwhich variability
sources act. There are two basic types of such geometrical
effects: cube-type and simplex-type concentrations.
The classical example of the cube concentration gives the

central limit theorem, when the robust property is the sum of

Fig. 6 Relaxation times of nonlinear regimes

a Log-variance of the characteristic times against r, the number of
perturbed parameters. The choice of the r parameters is random
(uniform) and the values of the random scales are independent,
log-uniform (between 0.1 and 10). Some statistical samples corre-
spond to overdamped oscillations (dumping time/period ratio ,1);
these samples were rejected when computing the log-variance of the
observable period. The log-variance of the dumping time is compared
with the theoretical curve for r0 ¼ 10 non-interfering critical targets
b Log-variance of the characteristic times against the log-variance of
the parameters, for r ¼ 31. Relaxation time shows typically simplex
concentration behaviour, with a saturation regime (II) between two
proportionality regimes (I) and (III)
IET Syst. Biol., Vol. 1, No. 4, July 2007



many (n), independent contributions. For concentration of
this type, the relative standard deviation decreases as
1=

ffiffiffi
n
p

. The classical example of the simplex concentration,
is the situation when the robust property depends on the kth
order effect (parameter) in a collection of many (n) effects
(parameters), for example, the relaxation time of a system
with limiting step. For concentration of this type, the rela-
tive standard deviation decreases much faster, as 1/n.
We have also defined the concepts of distributed robust-

ness, r-robustness that occur naturally in molecular biology.
We have introduced a new notion: weak r-robustness means
that the system is robust with respect to blind attacks (the
targets are randomly chosen).
Both distributed and r-robustness imply low sensitivity.

Thus, sensitivity studies can be useful for the analysis of
robustness, but this may be not enough for proving robust-
ness. Indeed, changing many parameters could have an
effect even when there are no critical parameters (par-
ameters with respect to which sensitivity is high).
Conversely, it may be sometimes difficult to distinguish
between a system with critical parameters and a system
with limiting steps (simplex concentration). We showed
that the log-variance of the output of the system should
have a saturation plateau in the first case and not in the
latter, as a function of the log-variance of the parameters.
For the nonlinear model of NFkB signalling, we have distin-
guished among three types of phenomena: cube concen-
tration for the period, simplex concentration for the
relaxation time and critical parameters for the damping
time. We have also shown that weak r-robustness protocols
can be used to identify the number of critical parameters,
when these exist.
For linear networks, we relate the largest relaxation time to

the ergodicity boundary (a topological concept). The notion
of ergodicity boundary could not be applied directly to non-
linear systems. Nevertheless, direct computation demon-
strates that a nonlinear signalling network also has robust
relaxation characteristics, and concentration effects for relax-
ation time seems similar to linear systems (with some
additional long-tail effect related to critical retardation).
In our discussion of robust design of linear networks

(Section 3), we considered two types of noise: random
noise in constants and destruction of links. The necessity
of robustness to both types leads to a new combinatorial
problem. How to create a minimal network that has suffi-
ciently long routes (the length of each route is .L) and,
at the same time, sufficiently many routes; after destruction
of Dlinks links and Dnodes nodes, there remains at least one
long route in the network.
In a recent work, Rand et al. [36] introduces the flexi-

bility dimension that quantifies the range of evolution of
clocks. This notion applies to multitask evolution, simul-
taneously fulfilling several objectives. By using linear
response theory, the authors propose a method to compute
the directions in the characteristic space that are not
robust to changes of the parameters: the flexibility dimen-
sion is the largest linear space of characteristics that con-
tains non-robust directions. Our notion of robustness
index is different, because it does not follow from linear
response and more importantly it applies to parameters
and not to characteristics. We can explain the sense of
robustness index r as follows: for significant change of
characteristics by random perturbation, one needs to per-
turbe .r parameters. Nevertheless, the flexibility dimen-
sion and the robustness index have properties in common:
they are both small for simple networks and tend to be
increased by the loop complexity and by the unevenness
of the lifetimes of various species.
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Concerning the analysed example, several conclusions
are important. NFkB dynamics belong to the category of
ultradian oscillators. As for circadian oscillators [36], the
period of the oscillations is a relatively robust property.
Even if the biological role of these oscillations has not yet
been proved (for some conjectures the reader can refer to
[25]), it is important to know that the robustness applies
to different timescales. A specificity of the NFkB system
is the proximity to a Hopf bifurcation. Two nonlinear
phenomena could be relevant for the behaviour of the sig-
nalling system: the critical retardation and the excitability.
The first property would produce long-tail distributions of
the damping time of the oscillations. Thus, there are critical
parameters for the damping time, which is less robust than
the period of the oscillations. The second property could
raise the efficiency of the regulatory role of NFkB by
increasing the amplitude of its response to signals.
The robustness of a system could be related to its com-

plexity. To test the concentration rigorously, from high-
dimension, one needs to build an hierarchy of models
obtained from another model by model reduction.
Parameters of simpler models in the hierarchy are functions
of packages of parameters (‘atoms’) of more complex
models. Independent perturbations of the atoms produce
less variability than overall perturbation of packages.
Another source of complexity is dynamics itself. It is
necessary to take into account dynamical complexity as
well as complexity of hierarchical organisation. These
ideas have been briefly discussed in [37] and will be
presented in detail in a future work.
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Chapter 1

Introduction

An outline for this course.

• We will observe that many phenomena in ecology, biology and biochemistry can be

modelled mathematically.

• We will initially focus on systems where the spatial variation is not present or, at

least, not important. Therefore only the temporal evolution needs to be captured

in equations and this typically (but not exclusively) leads to difference equations

and/or ordinary differential equations.

• We are inevitably confronted with systems of non-linear difference or ordinary dif-

ferential equations, and thus we will study analytical techniques for extracting in-

formation from such equations.

• We will proceed to consider systems where there is explicit spatial variation. Then

models of the system must additionally incorporate spatial effects.

• In ecological and biological contexts the main physical phenomenon governing the

spatial variation is typically, but again not exclusively, diffusion. Thus we are in-

variably required to consider parabolic partial differential equations. Mathematical

techniques will be developed to study such systems.

• These studies will be in the context of ecological, biological and biochemical appli-

cations. In particular we will draw examples from:

– enzyme dynamics and other biochemical reactions;

– epidemics;

– interaction ecological populations, such as predator-prey models;

– biological pattern formation mechanisms;

– chemotaxis;

– the propagation of an advantageous gene through a population;

– nerve pulses and their propagation.
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1.1 References

The main references for this lecture course will be:

• J. D. Murray, Mathematical Biology, 3rd edition, Volume I [8].

• J. D. Murray, Mathematical Biology, 3rd edition, Volume II [9].

Other useful references include (but are no means compulsory):

• J. P. Keener and J. Sneyd, Mathematical Physiology [7].

• L. Edelstein-Keshet, Mathematical Models in Biology [2].

• N. F. Britton, Essential Mathematical Biology [1].



Chapter 2

Spatially independent models for a

single species

In this chapter we consider modelling a single species in cases where spatial variation is not

present or is not important. In this case we can simply examine the temporal evolution

of the system.

References.

• J. D. Murray, Mathematical Biology, 3rd edition, Volume I, Chapter 1 and Chapter

2 [8].

• L. Edelstein-Keshet, Mathematical Models in Biology, Chapter 1, Chapter 2 and

Chapter 6 [2].

• N. F. Britton, Essential Mathematical Biology, Chapter 1 [1].

2.1 Continuous population models for single species

A core feature of population dynamics models is the conservation of population number,

i.e.

rate of increase of population = birth rate− death rate (2.1)

+ rate of immigration − rate of emigration.

We will make the assumption the system is closed and thus there is no immigration or

emigration.

Let N(t) denote the population at time t. Equation (2.1) becomes

dN

dt
= f(N) = Ng(N), (2.2)

where g(N) is defined to be the intrinsic growth rate. Examples include:

7
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The Malthus model. This model can be written as:

g(N) = b− d
def
= r, (2.3)

where b and d are constant birth and death rates. Thus

dN

dt
= rN, (2.4)

and hence

N(t) = N0e
rt. (2.5)

The Verhulst model. This model is also known as the logistic growth model:

g(N) = r

(

1− N

K

)

. (2.6)

Definition. In the logistic growth equation, r is defined to be the linear birth rate

and K is defined to be the carrying capacity.

For N ≪ K, we have
dN

dt
≃ rN ⇒ N ≃ N0e

rt. (2.7)

However, as N tends towards K,
dN

dt
→ 0, (2.8)

the growth rate tends to zero.

We have
dN

dt
= rN

(

1− N

K

)

, (2.9)

and hence

N(t) =
N0Ke

rt

K +N0(ert − 1)
→ K as t→ ∞. (2.10)

Sketching N(t) against time yields solution as plotted in Figure 2.1: we see that solutions

always monotonically relaxes to K as t→ ∞.

Aside. The logistic growth model has been observed to give very good fits to popula-

tion data in numerous, disparate, scenarios ranging from bacteria and yeast to rats and

sheep [8].

2.1.1 Investigating the dynamics

There are two techniques we can use to investigate the model

dN

dt
= f(N) = Ng(N). (2.11)
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Figure 2.1: Logistic growth for N0 < K (left-hand) and N0 > K (right-hand). Parameters

are as follows: r = 0.015 and K = 100.

Method (i): analytical solution

For the initial conditions N(t = 0) = N0, with N0 fixed, we can we formally integrate

equation (2.2) to give N(t) = N∗(t), where N∗(·) is the inverse of the function F (·) defined
by

F (x) =

∫ x

N0

1

f(s)
ds. (2.12)

However, unless integrating and finding the inverse function is straightforward, there is an

easier way to determine the dynamics of the system.

Method (ii): plot the graph

Plot dN/dt = f(N) = Ng(N) as a function of N . For example, with

f(N) = Ng(N) = N(6N2 −N3 − 11N + 6) = N(N − 1)(N − 2)(3 −N), (2.13)

we have the plot shown in Figure 2.2.
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Figure 2.2: Growth according to the dynamics f(N) = N(N − 1)(N − 2)(3−N).
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Note 1. For a given initial condition, N0, the system will tend to the nearest root of

f(N) = Ng(N) in the direction of f(N0). The value of |N(t)| will tend to infinity with

large time if no such root exists.

For f(N) = Ng(N) = N(N − 1)(N − 2)(3 −N), we have:

• when N0 ∈ (0, 2] the large time asymptote is N(∞) = 1;

• for N0 > 2 the large time asymptote is N(∞) = 3;

• N(t) = 0 ∀t if N(0) = 0.

Note 2. On more than one occasion we will have a choice between using a graphical

method and an analytical method, as seen above. The most appropriate method to use

is highly dependent on context. The graphical method, Method (ii), quickly and simply

gives the large time behaviour of the system and stability information (see below). The

analytical method, Method (i), is often significantly more cumbersome, but yields all

information, at a detailed quantitative level, about the system.

Definition. A stationary point, also known as an equilibrium point, is a point where

the dynamics does not change in time. Thus in our specific context of dN/dt = f(N) =

Ng(N), the stationary points are the roots of f(N) = 0.

Example. For dN/dt = f(N) = Ng(N) = N(N − 1)(N − 2)(3 − N), the stationary

points are

N = 0, 1, 2, 3. (2.14)

Definition. A stationary point is stable if a solution starting sufficiently close to the

stationary point remains close to the stationary point.

Non-examinable. A rigorous definition is as follows. Let NN0
(t) denote the solution

to dN/dt = f(N) = Ng(N) with initial condition N(t = 0) = N0. A stationary point,

Ns, is stable if, and only if, for all ǫ > 0 there exists a δ such that if |Ns −N0| < δ then

|NN0
(t)−Ns| < ǫ.

Exercise. Use Figure 2.2 to deduce which of stationary points of the system

dN

dt
= f(N) = Ng(N) = N(N − 1)(N − 2)(3 −N), (2.15)

are stable.

Solution. Figure 2.2 shows that both Ns = 1 and Ns = 3 are stable.
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2.1.2 Linearising about a stationary point

Suppose Ns is a stationary point of dN/dt = f(N) and make a small perturbation about

Ns:

N(t) = Ns + n(t), n(t) ≪ Ns. (2.16)

We have, by using a Taylor expansion of f(N) and denoting ′ = d/dN , that

f(N(t)) = f(Ns + n(t)) = f(Ns) + n(t)f ′(Ns) +
1

2
n(t)2f ′′(Ns) + . . . , (2.17)

and hence

dn

dt
=
dN

dt
= f(N(t)) = f(Ns) + n(t)f ′(Ns) +

1

2
n(t)2f ′′(Ns) + . . . (2.18)

The linearisation of dN/dt = f(N) about the stationary point Ns is given by neglecting

higher order (and thus smaller) terms to give

dn

dt
= f ′(Ns)n(t).

The solution to this linear system is simply

n(t) = n(t = 0) exp

[

t
df

dN
(Ns)

]

. (2.19)

Definition. Let Ns denote a stationary point of dN/dt = f(N), and let

n(t) = n(t = 0) exp

[

t
df

dN
(Ns)

]

, (2.20)

be the solution of the linearisation about Ns. Then Ns is linearly stable if n(t) → 0 as

t→ ∞. In other words, Ns is linearly stable if

df

dN
(Ns) < 0. (2.21)

Exercise. By algebraic means, deduce which stationary points of the system

dN

dt
= f(N) = Ng(N) = N(N − 1)(N − 2)(3−N), (2.22)

are linearly stable. Can your answer be deduced graphically?

Solution. Differentiating f(N) with respect to N gives

f ′(N) = 2− 22N + 18N2 − 4N3, (2.23)

and hence f ′(0) = 6 (unstable), f ′(1) = −8 (stable) etc.

Consider the graph of f(N) to deduce stability graphically—steady states with negative

gradient are linearly stable c.f. Figure 2.2.
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Figure 2.3: Growth according to the dynamics f(N) = (1−N)3.

Exercise. Find a function f(N) such that dN/dt = f(N) has a stationary point which

is stable and not linearly stable.

Solution. The function

f(N) = (1−N)3, (2.24)

gives f ′(1) = 0 and is therefore not linearly stable (see Figure 2.3).

2.1.3 Insect outbreak model

First introduced by Ludwig in 1978, the model supposes budworm population dynamics

to be modelled by the following equation:

dN

dt
= rBN

(

1− N

KB

)

− p(N), p(N)
def
=

BN2

A2 +N2
. (2.25)

The function p(N) is taken to represent the effect upon the population of predation by

birds. Plotting p(N) as a function of N gives the graph shown in Figure 2.4.
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Figure 2.4: Predation, p(N), in the insect outbreak model. Parameters are as follows:

A = 150, B = 0.5.
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Non-dimensionsionalisation

Let

N = N∗u, t = Tτ, (2.26)

where N∗, N have units of biomass, and t, T have units of time, with N∗, T constant.

Then

N∗

T

du

dτ
= rBN

∗u

(

1− N∗u

KB

)

− B(N∗)2u2

A2 + (N∗)2u2
, (2.27)

⇒ du

dτ
= rBTu

(

1− N∗u

KB

)

− BTN∗u2

A2 + (N∗)2u2
. (2.28)

Hence with

N∗ = A, T =
A

B
, r = rBT =

rBA

B
, q =

KB

N∗
=
KB

A
, (2.29)

we have
du

dτ
= ru

(

1− u

q

)

− u2

1 + u2
def
= f(u; r, q). (2.30)

Thus we have reduced the number of parameters in our model from four to two, which

substantially simplifies our subsequent study.

Steady states

The steady states are given by the solutions of

ru

(

1− u

q

)

− u2

1 + u2
= 0. (2.31)

Clearly u = 0 is a steady state. We proceed graphically to consider the other steady states

which are given by the intersection of the graphs

f1(u) = r

(

1− u

q

)

and f2(u) =
u

1 + u2
. (2.32)

The top left plot of Figure 2.5 shows plots of f1(u) and f2(u) for different values of r and

q. We see that, depending on the values of r and q, we have either one or three non-zero

steady states. Noting that
df(u; r, q)

du

∣
∣
∣
∣
u=0

= r > 0, (2.33)

typical plots of du/dτ vs. u are shown in Figure 2.5 for a range of values of r and q.

Definition. A system displaying hysteresis exhibits a response to the increase of a

driving variable which is not precisely reversed as the driving variable is decreased.

Remark. Hysteresis is remarkably common. Examples include ferromagnetism and

elasticity, amongst others. See http://en.wikipedia.org/wiki/Hysteresis for more

details.
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Figure 2.5: Dynamics of the non-dimensional insect outbreak model. Top left: plots of

the functions f1(u) (dashed line) and f2(u) (solid line) with parameters r = 0.2, 0.4, 0.6,

q = 10, 15, 20, respectively. Top right: plot of f(u; r, q) with parameters r = 0.6, q = 0.6.

Bottom left: plot of f(u; r, q) with parameters r = 0.6, q = 6. Bottom right: plot of f(u; r, q)

with parameters r = 0.6, q = 10.

Extended Exercise

• Fix r = 0.6. Explain how the large time asymptote of u, and hence N , changes as

one slowly increases q from q ≪ 1 to q ≫ 1 and then one decreases q from q ≫ 1 to

q ≪ 1. In particular, show that hysteresis is present. Note for this value of r, there

are three non-zero stationary points for q ∈ (q1, q2) with 1 < q1 < q2 < 10.

Solution. For small values of q there is only one non-zero steady state, S1. As q is

increased past q1, three non-zero steady states exist, S1, S2, S3, but the system stays

at S1. As q is increased further, past q2, the upper steady state S3 is all that remains

and hence the system moves to S3. If q is now decreased past q2, three non-zero

steady states (S1, S2, S3) exist but the system remains at S3 until q is decreased

past q1.

Figure 2.6 shows f(u; r, q) for different values of q. The dashed line shows a plot for

q = q1 whilst the dash-dotted line shows a plot for q = q2.

• What is the biological interpretation of the presence of hysteresis in this model?
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Figure 2.6: Left-hand plot: du/dτ = f(u; r, q) in the non-dimensional insect outbreak model

as q is varied. For small q there is one, small, steady state, for q ∈ (q1, q2) there are three

non-zero steady states and for large q there is one, large, steady state. Right-hand plot: the

steady states plotted as a function of the parameter q reveals the hysteresis loop.

Solution. If the carrying capacity, q, is accidentally manipulated such that an out-

break occurs (S1 → S3) then reversing this change is not sufficient to reverse the

outbreak.

2.1.4 Harvesting a single natural population

We wish to consider a simple model for the maximum sustainable yield. Suppose, in the

absence of harvesting, we have

dN

dt
= rN

(

1− N

K

)

. (2.34)

We consider a perturbation from the non-zero steady state, N = K. Thus we write

N = K + n, and find, on linearising,

dn

dt
= −rn ⇒ n = n0e

−rt. (2.35)

Hence the system returns to equilibrium on a timescale of TR(0) = O(1/r).

We consider two cases for harvesting:

• constant yield, Y ;

• constant effort, E.

Constant yield

For a constant yield, Y = Y0, our equations are

dN

dt
= rN

(

1− N

K

)

− Y0
def
= f(N ;Y0). (2.36)
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Figure 2.7: Dynamics of the constant yield model for Y0 = 0.00, 0.15, 0.30. As Y0 is increased

beyond a critical value the steady states disappear and N → 0 in finite time. Parameters are

as follows: K = 100 and r = 0.01.

Plotting dN/dt as a function of N reveals (see Figure 2.7) that the steady states disappear

as Y0 is increased beyond a critical value, and then N → 0 in finite time.

The steady states are given by the solutions of

rN∗ − rN∗2

K
− Y0 = 0 ⇒ N∗ =

r ±
√

r2 − 4rY0/K

2r/K
. (2.37)

Therefore extinction will occur once

Y0 >
rK

4
. (2.38)

Constant effort

For harvesting at constant effort our equations are

dN

dt
= rN

(

1− N

K

)

− EN
def
= f(N ;E) = N(r − E)− rN2

K
, (2.39)

where the yield is Y (E) = EN . The question is: how do we maximise Y (E) such that the

stationary state still recovers?

The steady states, N∗, are such that f(N∗;E) = 0 (see Figure 2.8). Thus

N∗(E) =
(r −E)K

r
=

(

1− E

r

)

K, (2.40)

and hence

Y ∗(E) = EN∗(E) =

(

1− E

r

)

KE. (2.41)

Thus the maximum yield, and corresponding value of N∗, are given by the value of E such

that
∂Y ∗

∂E
= 0 ⇒ E =

r

2
, Y ∗

max =
rK

4
, N∗

max =
K

2
. (2.42)
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Linearising about the stationary state N∗(E) we have N = N∗(E) + n with

dn

dt
≃ fE(N

∗) +
df(N ;E)

dN

∣
∣
∣
∣
N=N∗

n+ . . . = −(r − E)n + . . . , (2.43)

and hence the recovery time is given by

TR(E) ≃ O
(

1

r − E

)

. (2.44)

Defining the recovery time to be the time for a perturbation to decrease by a factor of e

according to the linearised equations about the non-zero steady state, then

TR(0) =
1

r
, TR(E) =

1

r − E
. (2.45)

Hence, at the maximum yield state,

TR(E) =
2

r
since E =

r

2
at maximum yield. (2.46)

As we measure Y it is useful to rewrite E in terms of Y to give the ratio of recovery times

in terms of the yield Y (E) and the maximum yield YM :

TR(Y )

TR(0)
=

2

1±
√

1− Y
YM

. (2.47)

Derivation. At steady state, we have

K

r
E2 −KE + Y ∗ = 0 as Y ∗ = EN∗ = KE

(

1− E

r

)

. (2.48)

This gives

E =
r ± r

√

1− 4Y ∗/Kr

2
⇒ r − E =

r

2

[

1∓
√

1− Y ∗

Y ∗
M

]

. (2.49)

Substituting into equation (2.45) gives the required result.

Plotting TR(Y )/TR(0) as a function of Y/YM yields some interesting observations, as

shown in Figure 2.8.

Note. As TR increases the population recovers less quickly, and therefore spends more

time away from the steady state, N∗. The biological implication is that, in order to

maintain a constant yield, E must be increased. This, in turn, implies TR increases,

resulting in a positive feedback loop that can have disastrous consequences upon the

population.
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Figure 2.8: Dynamics of the constant effort model. The left-hand plot shows the logistic

growth curve (solid line) and the yield, Y = EN (dashed lines), for two values of E. The

right-hand plot shows the ratio of recovery times, TR(Y )/TR(0), with the negative root plotted

as a dashed line and the positive root as a solid line. Parameters are as follows: K = 100 and

r = 0.01.

2.2 Discrete population models for a single species

When there is no overlap in population numbers between each generation, we have a

discrete model:

Nt+1 = Ntf(Nt) = H(Nt). (2.50)

A simple example is

Nt+1 = rNt, (2.51)

which implies

Nt = rtN0 →







∞ r > 1

N0 r = 1

0 r < 1

. (2.52)

Definition. An equilibrium point, N∗, for a discrete population model satisfies

N∗ = N∗f(N∗) = H(N∗). (2.53)

Such a point is often known as a fixed point.

An extension of the simple model, equation (2.51), called the Ricker model includes a

reduction of the growth rate for large Nt:

Nt+1 = Nt exp

[

r

(

1− Nt

K

)]

, r > 0 K > 0, (2.54)

or, in non-dimensionalised form,

ut+1 = ut exp [r (1− ut)]
def
= H(ut). (2.55)

We can start developing an idea of how this system evolves in time via cobwebbing, a

graphical technique, as shown in Figure 2.9.
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Figure 2.9: Dynamics of the Ricker model. The left-hand plot shows a plot of Nt+1 =

Nt exp [r (1−Nt/K)] alongside Nt+1 = Nt with the cobwebbing technique shown. The right-

hand plot shows Nt for successive generation times t = 1, 2, . . . , 10. Parameters are as follows:

N0 = 5, r = 1.5 and K = 100.

In particular, it is clear that the behaviour sufficiently close to a fixed point, u∗, depends

on the value of H ′(u∗). For example:

• −1 < H ′(u∗) < 0

• H ′(u∗) = −1
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• H ′(u∗) < −1

2.2.1 Linear stability

More generally, to consider the stability of an equilibrium point algebraically, rather than

graphically, we write

ut = u∗ + vt, (2.56)

where u∗ is an equilibrium value. Note that u∗ is time-independent and satisfies u∗ =

H(u∗). Hence

ut+1 = u∗ + vt+1 = H(u∗ + vt) = H(u∗) + vtH
′(u∗) + o(v2t ). (2.57)

Consequently, we have

vt+1 = H ′(u∗)vt where H ′(u∗) is a constant, independent of t, (2.58)

and thus

vt =
[
H ′(u∗)

]t
v0. (2.59)

This in turn enforces stability if |H ′(u∗)| < 1 and instability if |H ′(u∗)| > 1.

Definition. A discrete population model is linearly stable if |H ′(u∗)| < 1.

2.2.2 Further investigation

The equations are not as simple as they seem. For example, from what we have seen thus

far, the discrete time logistic model seems innocuous enough.

Nt+1 = rNt

(

1− Nt

K

)

, r > 0 K > 0. (2.60)

If we put in enough effort, one could be forgiven for thinking that the use of cobwebbing

will give a simple representation of solutions of this equation. However, the effects of

increasing r are stunning. Figure 2.10 shows examples of cobwebbing when r = 1.5 and

r = 4.0.

It should now be clear that even this simple equation does not always yield a simple

solution! How do we investigate such a complicated system in more detail?
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Figure 2.10: Dynamics of the discrete logistic model. The left-hand plot shows results for

r = 1.5 whilst the right-hand plot shows results for r = 4.0. Other parameters are as follows:

N0 = 5 and K = 100.

Definition. A bifurcation point is, in the current context, a point in parameter space

where the number of equilibrium points, or their stability properties, or both, change.

We proceed to take a closer look at the non-dimensional discrete logistic growth model:

ut+1 = rut (1− ut) = H(ut), (2.61)

for different values of the parameter r, and, in particular, we seek the values where the

number or stability nature of the equilibrium points change. Note that we have equilibrium

points at u∗ = 0 and u∗ = (r − 1)/r, and that H ′(u) = r − 2ru.

For 0 < r < 1, we have:

• u∗ = 0 is a stable steady state since |H ′(0)| = |r| < 1;

• the equilibrium point at u∗ = (r − 1)/r is unstable. It is also unreachable, and thus

irrelevant, for physical initial conditions with u0 ≥ 0.

For 1 < r < 3 we have:

• u∗ = 0 is an unstable steady state since |H ′(0)| = |r| > 1;

• u∗ = (r − 1)/r is an stable steady state since |H ′((r − 1)/r)| = |2− r| < 1.

In Figure 2.11 we plot this on a diagram of steady states, as a function of r, with stable

steady states indicated by solid lines and unstable steady states by dashed lines.

When r = 1 we have (r − 1)/r = 0, so both equilibrium points are at u∗ = 0, with

H ′(u∗ = 0) = 1. Clearly we have a switch in the stability properties of the equilibrium

points, and thus r = 1 is a bifurcation point.
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Figure 2.11: Bifurcation diagram for the non-dimensional discrete logistic model. The non-

zero steady state is given, for r > 1, by N∗ = (r − 1)/r.

What happens for r > 3? We have equilibrium points at u∗ = 0, u = (r − 1)/r and

H ′(u∗ = (r − 1)/r) < −1; both equilibrium points are unstable. Hence if the system

approaches one of these equilibrium points the approach is only transient; it quickly moves

away. We have a switch in the stability properties of the equilibrium points, and thus r = 3

is a bifurcation point.

To consider the dynamics of this system once r > 3 we consider

ut+2 = H(ut+1) = H [H(ut)]
def
= H2(ut) = r [rut(1− ut)] [1− rut(1− ut)] . (2.62)

Figure 2.12 shows H2(ut) for r = 2.5 and r = 3.5 and demonstrates the additional steady

states that arise as r is increased past r = 3.

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

u
t

u t+
2

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

u
t

u t+
2

Figure 2.12: Dynamics of the non-dimensional discrete logistic model in terms of every

second iteration. The left-hand plot shows results for r = 2.5 whilst the right-hand plot shows

results for r = 3.5.

Note. The fixed points of H2 satisfy u∗2 = H2(u
∗
2), which is a quartic equation in u∗2.

However, we know two solutions, the fixed pointsH(·), i.e. 0 and (r−1)/r. Using standard
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techniques we can reduce the quartic to a quadratic, which can be solved to reveal the

further fixed points of H2, namely

u∗2 =
r + 1

2r
± 1

2r

[
(r − 1)2 − 4

]1/2
. (2.63)

These roots exist if (r − 1)2 > 4, i.e. r > 3.

Definition. The mth composition of the function H is given by

Hm(u)
def
= [H ·H . . .H ·H]
︸ ︷︷ ︸

m times

(u). (2.64)

Definition. A point u is periodic of period m for the function H if

Hm(u) = u, Hi(u) 6= u, i ∈ {1, 2, . . . m− 1}. (2.65)

Thus the points

u∗2 =
r + 1

2r
± 1

2r

[
(r − 1)2 − 4

]1/2
, (2.66)

are points of period 2 for the function H.

Problem. Show that the u∗2 are stable with respect to the function H2 for r > 3,

(r − 3) ≪ 1.

Let

u0
def
=

r + 1

2r
± 1

2r

[
(r − 1)2 − 4

]1/2
, u1 = H(u0), u2 = H2(u0), (2.67)

and let

λ =
∂

∂u
[H2(u)] |u=u0

. (2.68)

Then

λ =
∂

∂u
[H ·H(u)] |u=u0

= H ′(u0)H
′(u1). (2.69)

Thus for stability we require |H ′(u0)H
′(u1)| < 1.

Exercise. Finish the problem: show that the steady states

u∗2 =
r + 1

2r
± 1

2r

[
(r − 1)2 − 4

]1/2
, (2.70)

are stable for the dynamical system ut+1 = H2(ut), with r > 3, (r − 3) ≪ 1.
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Exercise. Suppose u0 is an equilibrium point of period m for the function H. Show

that u0 is stable if

Πm−1
i=0

[
H ′(ui)

]
< 1, (2.71)

where ui = Hi(u0) for i ∈ {1, 2, . . . ,m− 1}.

Solution. Defining λ in a similar manner as before, we have

λ =
∂

∂u
Hm(u)

∣
∣
∣
∣
u=u0

, (2.72)

=
∂

∂u
[H(Q(u)]

∣
∣
∣
∣
u=u0

, where Q(u) = Hm−1(u), (2.73)

= H ′(Q(u))
∂Q

∂u

∣
∣
∣
∣
u=u0

, (2.74)

= H ′(um−1)
∂

∂u
Hm−1

∣
∣
∣
∣
u=u0

. (2.75)

Hence, by iteration, we have the result.

We plot the fixed points of H2, which we now know to be stable, in addition to the fixed

points of H1, in Figure 2.13. The upper branch, u∗2U , is given by the positive root of

equation (2.70) whilst the lower branch, u∗2L, is given by the negative root. We have

u∗2L = H(u∗2U ), u
∗
2U = H(u∗2L). Thus a stable, period 2, oscillation is present, at least for

(r − 3) ≪ 1. Any solution which gets sufficiently close to either u∗2U or u∗2L stays close.
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Figure 2.13: Bifurcation diagram for the non-dimensional discrete logistic model with inclu-

sion of the period 2 solutions.

For higher values of r, there is a bifurcation point for H2; we can then find a stable

fixed point for H4(u) : : H2[H2(u)] in a similar manner. Increasing r further there is a

bifurcation point for H4(u). Again, we are encountering a level of complexity which is too

much to deal with our current method.

To bring further understanding to this complex system, we note the following definition.
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Definition. An orbit generated by the point u0 are the points {u0, u1, u2, , u3, . . .}
where ui = Hi(u) = H(ui−1).

We are primarily interested in the large time behaviour of these systems in the context of

biological applications. Thus, for a fixed value of r, we start with a reasonable initial seed,

say u∗ = 0.5, and plot the large time asymptote of the orbit of u∗, ie. the points Hi(u
∗)

once i is sufficiently large for there to be no transients. This gives an intriguing plot; see

Figure 2.14.
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Figure 2.14: The orbit diagram of the logistic map. For each value of r ∈ [3, 4] along

horizontal axis, points on the large time orbits of the logistic map are plotted.

In particular, we have regions where, for r fixed, there are three points along the ver-

tical corresponding to period 3 oscillations. This means any period of oscillation exists

and we have a chaotic system. This can be proved using Sharkovskii’s theorem. See P.

Glendinning, Stability, Instability and Chaos [4] for more details on chaos and chaotic

systems.

Note. A common discrete population model in mathematical biology is

Nt+1 =
rNt

1 + aN b
t

. (2.76)

Models of this form for the Colorado beetle are within the periodic regimes, while Nichol-

son’s blowfly model is in the chaotic regime [8].

2.2.3 The wider context

In investigating the system

ut+1 = rut (1− ut)
def
= H(ut), (2.77)

we have explored a very simple equation which, in general, exhibits greatly different be-

haviours with only a small change in initial conditions or parameters (i.e. linear growth

rate, r). Such sensitivity is a hallmark feature of chaotic dynamics. In particular, it makes
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prediction very difficult. There will always be errors in a model’s formalism, initial condi-

tions and parameters and, in general, there is no readily discernible pattern in the way the

model behaves. Thus, assuming the real system behaviour is also chaotic, using statistical

techniques to extract a pattern of behaviour to thus enable an extrapolation to predict

future behaviour is also fraught with difficulty. Attempting to make accurate predictions

with models containing chaos is an active area of research, as is developing techniques to

analyse seemingly random data to see if such data can be explained by a simple chaotic

dynamical system.



Chapter 3

Continuous population models:

interacting species

In this chapter we consider interacting populations, but again in the case where spatial

variation is not important. Appendix A contains relevant information for phase plane

analysis that may be useful.

References.

• J. D. Murray, Mathematical Biology, 3rd edition, Volume I, Chapter 3 [8].

• L. Edelstein-Keshet, Mathematical Models in Biology, Chapter 6 [2].

• N. F. Britton, Essential Mathematical Biology, Chapter 2 [1].

There are three main forms of interaction:

Predator-prey An upsurge in population I (prey) induces a growth in population II

(predator). An upsurge in population II (predator) induces a decline in population

I (prey).

Competition An upsurge in either population induces a decline in the other.

Symbiosis An upsurge in either population induces an increase in the other.

Of course, there are other possible interactions, such as cannibalism, especially with the

“adult” of a species preying on the young, and parasitism.

3.1 Predator-prey models

The most common predator-prey model is the Lotka-Volterra model. With N the number

of prey and P the number of predators, this model can be written

dN

dt
= aN − bNP, (3.1)

dP

dt
= cNP − dP, (3.2)

27
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with a, b, c, d positive parameters and c < b. Non-dimensionalising with u = (c/d)N ,

v = (b/a)P , τ = at and α = d/a, we have

1

1/a

d

c

du

dτ
=
ad

c
u− bd

c

a

b
uv ⇒ du

dτ
= u− uv = u(1− v) ≡ f(u, v), (3.3)

1

1/a

a

b

dv

dτ
= c

d

c

a

b
uv − d

a

b
v, ⇒ dv

dτ
= α(uv − v) = αv(u− 1) ≡ g(u, v), (3.4)

There are stationary points at (u, v) = (0, 0) and (u, v) = (1, 1).

Exercise. Find the stability of the stationary points (u, v) = (0, 0) and (u, v) = (1, 1).

The Jacobian, J , is given by

J =

(

fu fv
gu gv

)

=

(

1− v −u
αv α(u− 1)

)

. (3.5)

At (0, 0) we have

J =

(

1 0

0 −α

)

, (3.6)

with eigenvalues 1, −α. Therefore the steady state (0, 0) is an unstable saddle.

At (1, 1) we have

J =

(

0 −1

α 0

)

, (3.7)

with eigenvalues ±i√α. Therefore the steady state (1, 1) is a centre (not linearly stable).

These equations are special; we can integrate them once, as follows, to find a conserved

constant:
du

dv
=

u(1 − v)

α(u− 1)v
⇒

∫
u− 1

u
du =

∫
1− v

αv
. (3.8)

Hence

H = const = αu+ v − α lnu− ln v. (3.9)

This can be rewritten as (
ev

v

)(
eu

u

)α

= eH , (3.10)

from which we can rapidly deduce that the trajectories in the (u, v) plane take the form

shown in Figure 3.1. Thus u and v oscillate in time, though not in phase, and hence we

have a prediction; predators and prey population numbers oscillate out of phase. There

are often observations of this e.g. hare-lynx interactions.
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Figure 3.1: Dynamics of the non-dimensional Lotka-Volterra system for α = 1.095 and

H = 2.1, 2.4, 3.0, 4.0. The left-hand plot shows the dynamics in the (u, v) phase plane whilst

the right-hand plot shows the temporal evolution of u and v.

3.1.1 Finite predation

The common predator-prey model assumes that as N → ∞ the rate of predation per

predator becomes unbounded, as does the rate of increase of the predator’s population.

However, with an abundance of food, these quantities will saturate rather than become

unbounded. Thus, a more realistic incorporation of an abundance of prey requires a refine-

ment of the Lotka-Volterra model. A suitable, simple, model for predator-prey interactions

under such circumstances would be (after a non-dimensionalisation)

du

dτ
= f(u, v) = u(1− u)− auv

d+ u
, (3.11)

dv

dτ
= g(u, v) = bv

(

1− v

u

)

, (3.12)

where a, b, d are positive constants. Note the effect of predation per predator saturates

at high levels of u whereas the predator levels are finite at large levels of prey and drop

exceedingly rapidly in the absence of prey.

There is one non-trivial equilibrium point, (u∗, v∗), satisfying

v∗ = u∗ where (1− u∗) =
au∗

d+ u∗
, (3.13)

and hence

u∗ =
1

2

[

−(a+ d− 1) +
√

(a+ d− 1)2 + 4d
]

. (3.14)

The Jacobian at (u∗, v∗) is

J =

(

fu fv
gu gv

)∣
∣
∣
∣
∣
(u∗,v∗)

, (3.15)

where

fu(u
∗, v∗) = 1− 2u∗ − au∗

d+ u∗
+

au∗v∗

(d+ u∗)2
= −u∗ + a(u∗)2

(d+ u∗)2
. (3.16)
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fv(u
∗, v∗) = − au∗

d+ u∗
, (3.17)

gu(u
∗, v∗) =

b(v∗)2

(u∗)2
= b, (3.18)

gv(u
∗, v∗) = b

(

1− 2
v∗

u∗

)

= −b. (3.19)

The eigenvalues satisfy

(λ− fu)(λ− gv)− fvgu = 0 ⇒ λ2 − (fu + gv)λ+ (fugv − fvgu) = 0, (3.20)

and hence

λ2 − αλ+ β = 0 ⇒ λ =
α±

√

α2 − 4β

2
, (3.21)

where

α = −u∗ + a(u∗)2

(u∗ + d)2
− b, β = b

(

u∗ − a(u∗)2

(u∗ + d)2
− (u∗ − 1)

)

. (3.22)

Note that

β = 1− a(u∗)2

(u∗ + d)2
= 1− u∗(1− u∗)

(u∗ + d)
=

(u∗ + d)− u∗ + (u∗)2

u∗ + d
=
d+ (u∗)2

d+ u∗
> 0. (3.23)

Thus, if α < 0 the eigenvalues λ are such that we have either:

• a stable node (α2 − 4β > 0);

• stable focus (α2 − 4β < 0);

at the equilibrium point (u∗, v∗).

If α > 0 we have an unstable equilibrium point at (u∗, v∗).

3.2 A look at global behaviour

This previous section illustrated local dynamics: we have conditions for when the dynamics

will stably remain close to the non-trivial equilibrium point. One is also often interested

in the global dynamics. However, determining the global dynamics of a system, away

from its equilibrium points, is a much more difficult problem compared to ascertaining the

local dynamics, sufficiently close to the equilibrium points. For specific parameter values,

one can readily solve the ordinary differential equations to consider the behaviour of the

system. One is also interested in the general properties of the global behaviour. This is

more difficult, and we will consider one possible approach below.

There are many potential tools available: nullcline analysis, the Poincaré-Bendixson The-

orem, the Poincaré Index and the Bendixson-Dulac Criterion. The Poincaré-Bendixson

Theorem is a useful tool for proving that limit cycles must exist, while Poincaré indices

and the Bendixson-Dulac Criterion are useful tools for proving a limit cycle cannot exist.
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We will briefly consider nullclines and the Poincaré-Bendixson Theorem in detail. Please

refer to P. Glendinning, Stability, Instability and Chaos: An Introduction to the Theory

of Nonlinear Differential Equations [4], or D. W. Jordan and P. Smith, Mathematical

Techniques: An Introduction for Engineering, Mathematical and Physical Sciences [6], for

further details than considered here.

3.2.1 Nullclines

Definition. Consider the equations

du

dt
= f(u, v),

dv

dt
= g(u, v). (3.24)

The nullclines are the curves in the phase plane where f(u, v) = 0 and g(u, v) = 0.

Reconsider

du

dτ
= f(u, v) = u(1− u)− auv

d+ u
, (3.25)

dv

dτ
= g(u, v) = bv

(

1− v

u

)

. (3.26)

The u nullclines are given by

f(u, v) ≡ 0 ⇒ u ≡ 0 and v =
1

a
(1− u)(u+ d). (3.27)

The v nullclines are given by

g(u, v) ≡ 0 ⇒ v ≡ 0 and v = u. (3.28)

A sketch of the nullclines and the behaviour of the phase plane trajectories is shown in

Figure 3.2.

3.2.2 The Poincaré-Bendixson Theorem

For a system of two first order ordinary differential equations, consider a closed bounded

region D. Suppose a positive half path, H, lies entirely within D. Then one of the

following is true:

1. H is a closed trajectory, e.g. a limit cycle;

2. H asymptotically tends to a closed trajectory, e.g. a limit cycle;

3. H terminates on a stationary point.

Therefore, if D does not have a stationary point then there must be a limit cycle.

For a proof see P. Glendinning, Stability, Instability and Chaos: An Introduction to the

Theory of Nonlinear Differential Equations [4].
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Figure 3.2: The (u, v) phase-plane for the finite predation model when the steady state is

stable. The u nullclines are plotted in red and the v nullclines in green. Trajectories for a

number of different initial conditions are shown as dashed lines. Parameters are as follows:

a = 2.0, b = 0.1, d = 2.0.

Exercise. Explain why α > 0 in the previous example (see equation (3.22)) implies

we have limit cycle dynamics. What does this mean in terms of the population levels of

predator and prey?

Solution. For α > 0 the steady state is an unstable node or spiral. Further, we can find a

simple, closed boundary curve, C, in the positive quadrant of the (u, v) plane, such that

on C phase trajectories always point into the domain, D, enclosed by C. Applying the

Poincaré-Benedixon Theorem to the domain gives the existence of a limit cycle. See J. D.

Murray, Mathematical Biology Volume I [8] (Chapter 3.4) for more details.

3.3 Competitive exclusion

We consider an ordinary differential equation model of two competitors. An example might

be populations of red squirrels and grey squirrels [8]. Here, both populations compete for

the same resources and a typical model for their dynamics is

dN1

dt
= r1N1

(

1− N1

K1
− b12

N2

K1

)

, (3.29)

dN2

dt
= r2N2

(

1− N2

K2
− b21

N1

K2

)

, (3.30)

where K1, K2, r1, r2, b12, b21 are positive constants. Let us associate N1 with red squirrels

and N2 with grey squirrels in our example.

In particular, given a range of parameter values and some initial values for N1 and N2 at

the time t = 0, we would typically like to know if the final outcome is one of the following

possibilities:

• the reds become extinct, leaving the greys;
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• the greys become extinct, leaving the reds;

• both reds and greys become extinct;

• the reds and greys co-exist. If this system is perturbed in any way will the reds and

greys continue to coexist?

After a non-dimensionalisation (exercise) we have

u′1 = u1(1− u1 − α12u2)
def
= f1(u1, u2), (3.31)

u′2 = ρu2(1− u2 − α21u1)
def
= f2(u1, u2), (3.32)

where ρ = r2/r1.

The stationary states are

(u∗1, u
∗
2) = (0, 0), (u∗1, u

∗
2) = (1, 0), (u∗1, u

∗
2) = (0, 1), (3.33)

and

(u∗1, u
∗
2) =

1

1− α12α21
(1− α12, 1− α21), (3.34)

if α12 < 1 and α21 < 1 or α12 > 1 and α21 > 1.

The Jacobian is

J =

(

1− 2u1 − α12u2 −α12u1
−ρα21u2 ρ(1− 2u2 − α21u1)

)

. (3.35)

It is a straightforward application of phase plane techniques to investigate the nature of

these equilibrium points:

Steady state (u∗1, u
∗
2) = (0, 0).

J− λI =

(

1− λ 0

0 ρ− λ

)

⇒ λ = 1, ρ. (3.36)

Therefore (0, 0) is an unstable node.

Steady state (u∗1, u
∗
2) = (1, 0).

J− λI =

(

−1− λ −α12

0 ρ(1− α21)− λ

)

⇒ λ = −1, ρ(1− α21). (3.37)

Therefore (1, 0) is a stable node if α21 > 1 and a saddle point if α21 < 1.

Steady state (u∗1, u
∗
2) = (0, 1).

J− λI =

(

1− α12 − λ 0

−ρα21 −ρ− λ

)

⇒ λ = −ρ, 1− α12. (3.38)

Therefore (0, 1) is a stable node if α12 > 1 and a saddle point if α12 < 1.
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Steady state (u∗1, u
∗
2) =

1
1−α12α21

(1− α12, 1− α21).

J− λI =
1

1− α12α21

(

α21 − 1− λ α12(α12 − 1)

ρα21(α21 − 1) ρ(α21 − 1)− λ

)

. (3.39)

Stability depends on α12 and α21.

There are several different possible behaviours. The totality of all behaviours of the above

model is reflected in how one can arrange the nullclines within the positive quadrant.

However, for competing populations these straight line nullclines have negative gradients.

Figure 3.3 shows the model behaviour for different sets of parameter values.
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Figure 3.3: Dynamics of the non-dimensional competitive exclusion system. Top left: α12 =

0.8 < 1, α21 = 1.2 > 1 and u2 is excluded. Top right: α12 = 1.2 > 1, α21 = 0.8 < 1 and u1 is

excluded. Bottom left: α12 = 1.2 > 1, α21 = 1.2 > 1 and exclusion is dependent on the initial

conditions. Bottom right: α12 = 0.8 < 1, α21 = 0.8 < 1 and we have coexistence. The stable

steady states are marked with ∗’s and ρ = 1.0 in all cases. The red lines indicate f1 ≡ 0 whilst

the green lines indicate f2 ≡ 0.

Note. In ecology the concept of competitive exclusion is that two species competing for

exactly the same resources cannot stably coexist. One of the two competitors will always

have an ever so slight advantage over the other that leads to extinction of the second

competitor in the long run (or evolution into distinct ecological niches).
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3.4 Mutualism (symbiosis)

We consider the same ordinary differential equation model for two competitors, i.e.

dN1

dt
= r1N1

(

1− N1

K1
+ b12

N2

K1

)

, (3.40)

dN2

dt
= r2N2

(

1− N2

K2
+ b21

N1

K2

)

, (3.41)

where K1, K2, r1, r2, b12, b21 are positive constants or, after non-dimensionalisation,

u′1 = u1(1− u1 + α12u2)
def
= f1(u1, u2), (3.42)

u′2 = ρu2(1− u2 + α21u1)
def
= f2(u1, u2). (3.43)

In symbiosis, the straight line nullclines will have positive gradients leading to the following

two possible behaviours shown in Figure 3.4.
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Figure 3.4: Dynamics of the non-dimensional symbiotic system. The left-hand figure shows

population explosion (α12 = 0.6 = α21) whilst the right-hand figure shows population coex-

istence (α12 = 0.1 = α21). The stable steady states are marked with ∗’s and ρ = 1.0 in all

cases. The red lines indicate f1 ≡ 0 whilst the green lines indicate f2 ≡ 0.

3.5 Interacting discrete models

It is also possible, and sometimes useful, to consider interacting discrete models which

take the form

ut+1 = f(ut, vt), (3.44)

vt+1 = g(ut, vt), (3.45)

and possess steady states at the solutions of

u∗ = f(u∗, v∗), v∗ = g(u∗, v∗). (3.46)

It is interesting and relevant to study the linear stability of these equilibrium points, and

the global dynamics, but we do not have time to pursue this here.



Chapter 4

Enzyme kinetics

In this chapter we consider enzyme kinetics, which can be thought of as a particular case

of an interacting species model. In all cases here we will neglect spatial variation.

Throughout, we will consider the m chemical species C1, . . . , Cm.

• The concentration of Ci, denoted ci, is defined to be the number of molecules of Ci

per unit volume.

• A standard unit of concentration is moles m−3, often abbreviated to mol m−3. Recall

that 1 mole = 6.023 × 1023 molecules.

References.

• J. D. Murray, Mathematical Biology, 3rd edition, Volume I, Chapter 6 [8].

• J. P. Keener and J. Sneyd, Mathematical Physiology, Chapter 1 [7].

4.1 The Law of Mass Action

Suppose C1, . . . , Cm undergo the reaction

λ1C1 + λ2C2 + . . .+ λmCm

kf
GGGGGGBF GGGGGG

kb
ν1C1 + ν2C2 + . . .+ νmCm. (4.1)

The Law of Mass Action states that the forward reaction proceeds at rate

kf c
λ1

1 c
λ2

2 . . . cλm

m , (4.2)

while the back reaction proceeds at the rate

kbc
ν1
1 c

ν2
2 . . . cνmm , (4.3)

where kf and kb are dimensional constants that must be determined empirically.

36
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Note 1. Strictly, to treat kf , kb above as constant, we have to assume that the tem-

perature is constant. This is a very good approximation for most biochemical reactions

occurring in, for example, physiological systems. However, if one wanted to model re-

actions that produce extensive heat for example, burning petrol, one must include the

temperature dependence in kf and kb and subsequently keep track of how hot the sys-

tem gets as the reaction proceeds. This generally makes the modelling significantly more

difficult. Below we assume that we are dealing with systems where the temperature is

approximately constant as the reaction proceeds.

Note 2. The Law of Mass Action for chemical reactions can be derived from statistical

mechanics under quite general conditions (see for example L. E. Riechl, A Modern Course

in Statistical Physics [11]).

Note 3. As we will see later, the Law of Mass Action is also used in biological scenarios to

write down equations describing, for example, the interactions of people infected with, and

people susceptible to, a pathogen during an epidemic. However, in such circumstances its

validity must be taken as an assumption of the modelling; in such scenarios one cannot rely

on thermodynamic/statistical mechanical arguments to justify the Law of Mass Action.

4.2 Michaelis-Menten kinetics

Michaelis-Menten kinetics approximately describe the dynamics of a number of enzyme

systems. The reactions are

S + E
k1

GGGGGGBF GGGGGG

k−1

SE, (4.4)

SE
k2

GGGGGGA P + E. (4.5)

Letting c denoting the concentration of the complex SE, and s, e, p denoting the con-

centrations of S, E, P , respectively, we have, from the Law of Mass Action, the following

ordinary differential equations:

ds

dt
= −k1se+ k−1c, (4.6)

dc

dt
= k1se− k−1c− k2c, (4.7)

de

dt
= −k1se+ k−1c+ k2c, (4.8)

dp

dt
= k2c. (4.9)

Note that the equation for p decouples and hence we can neglect it initially.

The initial conditions are:

s(0) = s0, e(0) = e0 ≪ s0, c(0) = 0, p(0) = 0. (4.10)
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Key Point. In systems described by the Law of Mass Action, linear combinations of

the variables are often conserved. In this example we have

d

dt
(e+ c) = 0 ⇒ e = e0 − c, (4.11)

and hence the equations simplify to:

ds

dt
= −k1(e0 − c)s+ k−1c, (4.12)

dc

dt
= k1(e0 − c)s − (k−1 + k2)c, (4.13)

with the determination of p readily achievable once we have the dynamics of s and c.

4.2.1 Non-dimensionalisation

We non-dimensionalise as follows:

τ = k1e0t, u =
s

s0
, v =

c

e0
, λ =

k2
k1s0

, ǫ
def
=

e0
s0

≪ 1, K
def
=

k−1 + k2
k1s0

, (4.14)

which yields

u′ = −u+ (u+K − λ)v, (4.15)

ǫv′ = u− (u+K)v, (4.16)

where u(0) = 1, v(0) = 0 and ǫ≪ 1. Normally ǫ ∼ 10−6. Setting ǫ = 0 yields

v =
u

u+K
, (4.17)

which is inconsistent with the initial conditions. Thus we have a singular perturbation

problem; there must be a (boundary) region with respect to the time variable around t = 0

where v′ ≁ O(1). Indeed for the initial conditions given we find v′(0) ∼ O(1/ǫ), with u(0),

v(0) ≤ O(1). This gives us the scaling we need for a singular perturbation investigation.

4.2.2 Singular perturbation investigation

We consider

σ =
τ

ǫ
, (4.18)

with

u(τ, ǫ) = ũ(σ, ǫ) = ũ0(σ) + ǫũ1(σ) + . . . , (4.19)

v(τ, ǫ) = ṽ(σ, ǫ) = ṽ0(σ) + ǫṽ1(σ) + . . . . (4.20)

Proceeding in the usual way, we find that ũ0, ṽ0 satisfy

dũ0
dσ

= 0 ⇒ ũ0 = constant = 1, (4.21)

and
dṽ0
dσ

= ũ0 − (1 +K)ṽ0 = 1− (1 +K)ṽ0 ⇒ ṽ0 =
1− e−(1+K)σ

1 +K
, (4.22)
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which gives us the inner solution.

To find the outer solution we expand

u(τ, ǫ) = u0(τ) + ǫu1(τ) + . . . , (4.23)

v(τ, ǫ) = v0(τ) + ǫv1(τ) + . . . , (4.24)

within the equations

u′ = −u+ (u+K − λ)v, (4.25)

ǫv′ = u− (u+K)v, (4.26)

to find that
du0
dτ

= −u0 + (u0 +K − λ)v0, (4.27)

and

0 = u0 − (u0 +K)v0. (4.28)

This gives

v0 =
u0

u0 +K
and

du0
dτ

= − λu0
u0 +K

. (4.29)

In order to match the solutions as σ → ∞ and τ → 0 we require

lim
σ→∞

ũ0 = lim
τ→0

u0 = 1 and lim
σ→∞

ṽ0 = lim
τ→0

v0 =
1

1 +K
. (4.30)

Thus the solution looks like that shown in Figure 4.1.
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Figure 4.1: Numerical solution of the non-dimensional Michaelis-Menten equations clearly

illustrating the two different time scales. The u dynamics are indicated by the solid line and

the v dynamics by the dashed line. Parameters are ǫ = 0.01, K = 0.1 and λ = 1.0.
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Often the initial, fast, transient is not seen or modelled and one considers just the outer

equations with a suitably adjusted initial condition (ultimately determined from consis-

tency/matching with the inner solution). Thus one often uses Michaelis-Menten kinetics

where the equations are simply:

du

dt
= − λu

u+K
with u(0) = 1 and v =

u

u+K
. (4.31)

Definition. We have, approximately, that dv/dτ ≃ 0 using Michaelis-Menten kinet-

ics. Taking the temporal dynamics to be trivial,

dv

dτ
≃ 0, (4.32)

when the time derivative is fast, i.e. of the form

ǫ
dv

dτ
= g(u, v), (4.33)

where ǫ ≪ 1, g(u, v) ∼ O(1), is known as the pseudo-steady state hypothesis and is a

common assumption in the literature. We have seen its validity in the case of enzyme

kinetics about at least away from the inner region.

Note. One must remember that the Michaelis-Menten kinetics derived above are a very

useful approximation, but that they hinge on the validity of the Law of Mass Action.

Even in simple biological systems the Law of Mass Action may breakdown. One (of

many) reasons, and one that is potentially relevant at the sub-cellular level, is that the

system in question has too few reactant molecules to justify the statistical mechanical

assumptions underlying the Lass of Mass Action. Another reason is that the reactants are

not well-mixed, but vary spatially as well as temporally. We will see what happens in this

case later in the course.

4.3 More complex systems

Here we consider a number of other simple systems involving enzymatic reactions. In

each case the Law of Mass Action is used to write down a system of ordinary differential

equations describing the dynamics of the various reactants. See J. Keener and J. Sneyd,

Mathematical Physiology [7], for more details.

4.3.1 Several enzyme reactions and the pseudo-steady state hypothesis

We can have multiple enzymes. In general the system of equations reduces to

u′ = f(u, v1, . . . , vn), (4.34)

ǫiv
′
i = gi(u, v1, . . . , vn), (4.35)



Chapter 4. Enzyme kinetics 41

for i ∈ {1, . . . , n}, while the pseudo-steady state hypothesis gives a single ordinary differ-

ential equation

u′ = f(u, v1(u), . . . , vn(u)), (4.36)

where v1(u), . . . , vn(u) are the appropriate roots of the equations

gi(u, v1, . . . , vn) = 0, i ∈ {1, . . . , n}. (4.37)

4.3.2 Allosteric enzymes

Here the binding of one substrate molecule at one site affects the binding of another

substrate molecules at other sites. A typical reaction scheme is:

S + E
k1

GGGGGGBF GGGGGG

k−1

C1

k2
GGGGGGA P + E (4.38)

S + C1

k3
GGGGGGBF GGGGGG

k−3

C2

k4
GGGGGGA C1 + E. (4.39)

Further details on the investigation of such systems can be found in J. D. Murray, Mathe-

matical Biology Volume I [8], and J. P. Keener and J. Sneyd, Mathematical Physiology [7].

4.3.3 Autocatalysis and activator-inhibitor systems

Here a molecule catalyses its own production. The simplest example is the reaction scheme

A+B
k→ 2B, (4.40)

though of course the positive feedback in autocatalysis is usually ameliorated by inhibition

from another molecule. This leads to an example of an activator-inhibitor system which

have a very rich behaviour. Other examples of these systems are given below.

Example 1

This model qualitatively incorporates activation and inhibition:

du

dt
=

a

b+ v
− cu, (4.41)

dv

dt
= du− ev. (4.42)

Example 2

This model is commonly referred to as the Gierer-Meinhardt model [3]:

du

dt
= a− bu+

u2

v
, (4.43)

dv

dt
= u2 − v. (4.44)
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Example 3

This model is commonly referred to as the Thomas model [8]. Proposed in 1975, it is an

empirical model based on a specific reaction involving uric acid and oxygen:

du

dt
= a− u− ρR(u, v), (4.45)

dv

dt
= α(b− v)− ρR(u, v), (4.46)

where

R(u, v) =
uv

1 + u+Ku2
, (4.47)

represents the interactive uptake.



Chapter 5

Introduction to spatial variation

We have initially considered biological, biochemical and ecological phenomena with neg-

ligible spatial variation. This is, however, often not the case. Consider a biochemical

reaction as an example. Suppose this reaction is occurring among solutes in a relatively

large, unstirred solution. Then the dynamics of the system is not only governed by the dy-

namics of the rate at which the biochemical react, but also by the fact there can be spatial

variation in solute concentrations, which entails that diffusion of the reactants can occur.

Thus modelling such a system requires taking into account both reaction and diffusion.

We have a similar problem for population and ecological models when we wish to incor-

porate the tendency of a species to spread into a region it has not previously populated.

Key examples include modelling ecological invasions, where one species invades another’s

territory (as with grey and red squirrels in the UK [10]), or modelling the spread of dis-

ease. In some, though by no means all, of these ecological and disease-spread models the

appropriate transport mechanism is again diffusion, once more requiring that we model

both reaction and diffusion in a spatially varying system.

In addition, motile cells can move in response to external influences, such as chemical

concentrations, light, mechanical stress and electric fields, among others. Of particular

interest is modelling when motile cells respond to gradients in chemical concentrations, a

process known as chemotaxis, and we will also consider this scenario.

Thus, in the following chapters, we will study how to model such phenomena and how

(when possible) to solve the resulting equations in detail, for various models motivated

from biology, biochemistry and ecology.

References.

• J. D. Murray, Mathematical Biology Volume I, Chapter 11 [8].

• N. F. Britton, Essential Mathematical Biology, Chapter 5 [1].
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5.1 Derivation of the reaction-diffusion equations

Let i ∈ {1, . . . ,m}. Suppose the chemical species Ci, of concentration ci, is undergoing a

reaction such that, in the absence of diffusion, one has

dci
dt

= Ri(c1, c2, . . . , cm). (5.1)

Recall that Ri(c1, c2, . . . , cm) is the total rate of production/destruction of Ci per unit

volume, i.e. it is the rate of change of the concentration ci.

Let t denote time, and x denote the position vector of a point in space. We define

• c(x, t) to be the concentration of (say) a chemical (typically measured in mol m−3).

• q(x, t) to be the flux of the same chemical (typically measured in mol m−2 s−1).

Recall that the flux of a chemical is defined to be such that, for a given infinitesimal

surface element of area dS and unit normal n̂, the amount of chemical flowing through

the surface element in an infinitesimal time interval, of duration dt, is given by

n̂ · q dSdt. (5.2)

Definition. Fick’s Law of Diffusion relates the flux q to the gradient of c via

q = −D∇c, (5.3)

where D, the diffusion coefficient, is independent of c and ∇c.

Bringing this together, we have, for any closed volume V (fixed in time and space), with

bounding surface ∂V ,

d

dt

∫

V
ci dV = −

∫

∂V
q · ndS +

∫

V
Ri(c1, c2, . . . , cm) dV, i ∈ {1, . . . ,m}. (5.4)

Hence

d

dt

∫

V
ci dV =

∫

V
∇ · q dV +

∫

V
Ri(c1, c2, . . . , cm) dV (5.5)

=

∫

V
{∇ · (D∇ci) +Ri(c1, c2, . . . , cm)} dV, (5.6)
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and thus for any closed volume, V , with surface ∂V , one has
∫

V

{
∂ci
∂t

−∇ · (D∇ci)−Ri

}

dV = 0, i ∈ {1, ...,m}. (5.7)

Hence
∂ci
∂t

= ∇ · (D∇ci) +Ri, x ∈ D, (5.8)

which constitutes a system of reaction-diffusion equations for the m chemical species in

the finite domain D. Such equations must be supplemented with initial and boundary

conditions for each of the m chemicals.

Warning. Given, for example, that
∫ 2π

0
cos θ dθ = 0 6⇒ cos θ = 0, θ ∈ [0, 2π], (5.9)

are you sure one can deduce equation (5.8)?

Suppose
∂ci
∂t

−∇ · (D∇ci)−Ri 6= 0, (5.10)

at some x = x∗. Without loss of generality, we can assume the above expression is positive

i.e. the left-hand side of equation (5.10) is positive.

Then ∃ ǫ > 0 such that
∂ci
∂t

−∇ · (D∇ci)−Ri > 0, (5.11)

for all x ∈ Bǫ(x
∗).

In this case ∫

Bǫ(x∗)

[
∂ci
∂t

−∇ · (D∇ci)−Ri

]

dV > 0, (5.12)

contradicting our original assumption, equation (5.7).

Hence our initial supposition is false and equation (5.8) holds for x ∈ D.

Remark. With one species, with a constant diffusion coefficient, in the absence of reac-

tions, we have the diffusion equation which in one dimension reduces to

∂c

∂t
= D

∂2c

∂x2
. (5.13)

For a given length scale, L, and diffusion coefficient, D, the timescale of the system is T =

L2/D. For a cell, L ∼ 10−5m = 10−3cm, and for a typical protein D ∼ 10−7cm2s−1 would

not be unreasonable. Thus the timescale for diffusion to homogenise spatial gradients of

this protein within a cell is

T ∼ L2

D
∼ 10−6 cm2

10−7 cm2 s−1 ∼ 10 s, (5.14)

therefore we can often neglect diffusion in a cell. However, as the scale doubles the time

scale squares e.g. L× 10 ⇒ T × 100 and L× 100 ⇒ T × 104.
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Note. The above derivation generalises to situations more general than modelling chem-

ical or biochemical diffusion. For example, let I(x, y, t) denote the number of infected

people per unit area. Assume the infectives, on average, spread out via a random walk

mechanism and interact with susceptibles, as described in Section (6.2.1). One has that

the flux of infectives, qI , is given by

qI = −DI∇I, (5.15)

whereDI is a constant, with dimensions of (length)2 (time)−1. Thus, one has, via precisely

the same ideas and arguments as above, that

∂I

∂t
= ∇ · (DI∇I) + rIS − aI, (5.16)

where S(x, y, t) is the number of susceptibles per unit area, and r and a have the same

interpretation as in Section 6.2.1.

Fisher’s Equation. A very common example is the combination of logistic growth and

diffusion which, in one spatial dimension, gives rise to Fisher’s Equation:

∂u

∂t
= D

∂2u

∂x2
+ ru

(

1− u

K

)

, (5.17)

which was first proposed to model the spread of an advantageous gene through a popula-

tion. See Section 6.1 for more details.

5.2 Chemotaxis

As briefly mentioned earlier, motile cells can move in response to gradients in chemical

concentrations, a process known as chemotaxis. This leads to slightly more complicated

transport equations, as we shall see.

The diffusive flux for the population density of the cells, n, is as previously: JD = −D∇n.
The flux due to chemotaxis (assuming it is an attractant rather than a repellent) is taken

to be of the form:

JC = nχ(a)∇a = n∇Φ(a), (5.18)

where a is the chemical concentration and Φ(a) increases monotonically with a. Clearly

χ(a) = Φ′(a); the cells move in response to a gradient of the chemical in the direction in

which the function Φ(a) is increasing at the fastest rate.

Thus the total flux is

JD + JC = −D∇n+ nχ(a)∇a. (5.19)

Combining the transport of the motile cells, together with a term describing their repro-

duction and/or death, plus an equation for the chemical which also diffuses and, typically,
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is secreted and degrades leads to the following equations

∂n

∂t
= ∇ · (D∇n)−∇ · (nχ(a)∇a) + f(n, a), (5.20)

∂a

∂t
= ∇ · (Da∇a) + λn− µa. (5.21)

In the above the above f(n, a) is often taken to be a logistic growth term while the function

χ(a) describing the chemotaxis has many forms, including

χ(a) =
χ0

a
, (5.22)

χ(a) =
χ0

(k + a)2
, (5.23)

where the latter represents a receptor law, with Φ(a) taking a Michaelis-Menten form [5].
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Travelling waves

Certain types of models can be seen to display wave-type behaviour. Here we will be

interested in travelling waves, those that travel without change in shape and at constant

speed.
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6.1 Fisher’s equation: an investigation

Fisher’s equation, after suitable non-dimensionalisation, is

∂β

∂t
=
∂2β

∂z2
+ β(1− β), (6.1)

where β, z, t are all non-dimensionalised variables.

Clearly the solution of these equations will depend on the initial and boundary conditions

we impose. We state these conditions for the time being as

β(z, t) → β±∞ as z → ±∞ and β(z, τ = 0) = β0(z), (6.2)

where β±∞, β0, are constants.

6.1.1 Key points

• We will investigate whether such a wave solution exists for the above equations which

propagates without a change in shape and at a constant (but as yet unknown) speed

v. Such wave solutions are defined to be travelling wave solutions.

48
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• The investigation of the potential existence of a travelling wave solution will be

substantially easier to investigate on performing the transformation to the moving

coordinate frame y = z − vτ as, by the definition of a travelling wave, the wave

profile will be independent of time in a frame moving at speed v.

• Using the chain rule and noting that we seek a solution that is time independent

with respect to the y variable, we have

∂β

∂t
=
∂β

∂y

∂y

∂t
+
∂β

∂τ

∂τ

∂t
and

∂β

∂z
=
∂β

∂y

∂y

∂z
+
∂β

∂τ

∂τ

∂z
, (6.3)

i.e.
∂

∂t
7→ −v ∂

∂y
+

∂

∂τ
and

∂

∂z
7→ ∂

∂y
. (6.4)

Assuming β = β(y) so that ∂β/∂τ = 0 the partial differential equation, (6.1), reduces

to

β′′ + vβ′ + β(1 − β) = 0 where ′ =
d

dy
. (6.5)

• One must choose appropriate boundary conditions at ±∞ for the travelling wave

equations. These are the same as the boundary conditions for the full partial differ-

ential equation (but rewritten in terms of y), i.e.

β(y) → β±∞ as y → ±∞, (6.6)

where β±∞, are the same constants as specified in equation (6.2).

• One must have that β+∞, β−∞ only take the values zero or unity:

∫
∞

−∞

[
β′′ + vβ′ + β(1− β)

]
dy = 0, (6.7)

gives
[
β′ + vβ

]∞

−∞
+

∫
∞

−∞

β(1− β)dy = 0. (6.8)

If we want β → constant as y → ±∞ and β, β′ finite for ∀y we must have either

β → 0 or β → 1 as y → ∞ and similarly for y → −∞.

• With the boundary conditions (β(−∞), β(∞)) = (1, 0), we physically anticipate

v > 0.

Indeed there are no solutions of the Fisher travelling wave equations for these bound-

ary conditions and v ≤ 0.
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• Solutions to equations (6.1) and (6.2) are unique. The proof would be an exercise

in the theory of partial differential equations.

• The solutions of the travelling wave equations are not unique. One may have solu-

tions for different values of the unknown v. Also, if β(y) solves (6.5) for any fixed

value of v then, for the same value of v, so does β(y +A), where A is any constant.

For both v and A fixed the solution of the travelling wave equations are normally

unique.

• Note that the solutions of the travelling wave equations, (6.5), can only possibly

be solutions of the full partial differential equation, when considered on an infi-

nite domain. [Realistically one requires that the length scale of variation of the

system in question is much less than the length scale of the physical domain for

a travelling wave to (have the potential to) be an excellent approximation to the

reaction-diffusion wave solutions on the physical, i.e. finite, domain].

• One “loses” the partial differential equation initial conditions associated with (6.1)

and (6.2). The solution of the travelling wave equations given above for β are only

a solution of the full partial differential equation, (6.1), for all time if the travelling

wave solution is consistent with the initial conditions specified in (6.2).

• However, often (or rather usually!), one finds that for a particular choice of v the

solutions of the full partial differential equation system, (6.1) and (6.2), tend, as

t → ∞, to a solution of the travelling wave equations (6.5), with fixed v and A, for

a very large class of initial conditions.

• The Russian mathematician Kolmogorov proved that solutions of the full partial

differential equation system, (6.1) and (6.2), do indeed tend, as t→ ∞, to a solution

of the travelling wave equations for v = 2 for a large class of initial conditions.

6.1.2 Existence and the phase plane

We will investigate the existence of solutions of Fisher’s equation, equation (6.5), with the

boundary conditions (β(−∞), β(∞)) = (1, 0) and v > 0, by means of an extended exercise

involving the phase plane (β′, β).

Consider the travelling wave equation

d2β

dy2
+ v

dβ

dy
+ β(1− β) = 0, (6.9)

with v > 0 and the boundary conditions (β(−∞), β(∞)) = (1, 0).

Exercise 1. Show that the stationary point at (β, β′) = (1, 0) is always a saddle point

and the stationary point at (β, β′) = (0, 0) is a stable node for v ≥ 2 and a stable focus

for v < 2.



Chapter 6. Travelling waves 51

Solution. Writing β′ = γ gives

d

dy

(

β

γ

)

=
d

dy

(

β

β′

)

=

(

γ

−vγ − β(1 − β)

)

. (6.10)

The Jacobian, J , is given by

J =

(
∂f
∂β

∂f
∂γ

∂g
∂β

∂g
∂γ

)

=

(

0 1

−1 + 2β −v

)

. (6.11)

At (0, 0) we have

det(J − λI) = det

(

−λ 1

−1 −v − λ

)

⇒ λ2 + vλ+ 1 = 0, (6.12)

and hence

λ =
−v ±

√
v2 − 4

2
. (6.13)

Therefore:

• if v < 2 we have λ = −v/2± iµ and hence a stable spiral;

• if v > 2 we have λ = −v/2± µ and hence a stable node;

• if v = 2 we have λ = −1 and hence a stable node.

At (1, 0) we have

det(J − λI) = det

(

−λ 1

1 −v − λ

)

⇒ λ2 + vλ− 1 = 0, (6.14)

and hence

λ =
−v ±

√
v2 + 4

2
. (6.15)

Therefore (1, 0) is a saddle point.

Exercise 2. Explain why solutions of Fisher’s travelling wave equations must tend to

phase plane stationary points as y → ±∞. Hence explain why solutions of (6.9) with

v < 2 are unphysical.

Solution. (β, γ) ≡ (β, β′) will change as y increases, unless at a stationary point. Therefore

they will keep moving along a phase space trajectory as y → ∞ unless the y → ∞ limit

evolves to a stationary point.

To satisfy limy→0 β(y) = 0, we need to be on a phase space trajectory which “stops” at

β = 0. Therefore we must be on a phase space trajectory which tends to a stationary

point with β = 0 as y → ∞.

Hence we must tend to (0, 0) as y → ∞ to satisfy limy→∞ β(y) = 0 as y → ∞.

An analogous argument holds as y → −∞.

If v < 2 then β < 0 at some point on the trajectory which is unphysical:
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Exercise 3. Show that the gradient of the unstable manifold at (β, β′) = (1, 0) is given

by
1

2

(

−v +
√

v2 + 4
)

. (6.16)

Sketch the qualitative form of the phase plane trajectories near to the stationary points

for v ≥ 2.

Solution. We require the eigenvectors of the Jacobian at (1, 0):

(

0 1

1 −v

)(

1

q±

)

= λ±

(

1

q±

)

⇒ q± = λ± and 1− vq± = λ±q±. (6.17)

Hence

v± =

(
1

1
2

[

−v ±
√
v2 + 4

]

)

. (6.18)

Exercise 4. Explain why any physically relevant phase plane trajectory must leave

(β, β′) = (1, 0) on the unstable manifold pointing in the direction of decreasing β.

Solution. Recall that, close to the stationary point,

(

β

γ

)

−
(

β∗

γ∗

)

= a−e
λ−yv− + a+e

λ+yv+. (6.19)

The solution moves away from the saddle along the unstable manifold, which corresponds

to a−.
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Exercise 5. Consider v ≥ 2. With γ
def
= β′ show that for β ∈ (0, 1] the phase plane

trajectories, with gradient
dγ

dβ
= −v − β(1 − β)

γ
, (6.20)

satisfy the constraint dγ/dβ < −1 whenever γ = −β.

Solution.
dγ

dβ

∣
∣
∣
∣
β=−γ

= −v + (1− β) ≤ (−v + 2)− (1 + β) < −1. (6.21)

Exercise 6. Hence show that with v ≥ 2 the unstable manifold leaving (β, β′) = (1, 0)

and entering the region β′ < 0, β < 1 enters, and can never leave, the region

R def
= {(β, γ) | γ ≤ 0, β ∈ [0, 1], γ ≥ β}. (6.22)

Solution. Along L1 = {(β, γ) | γ = 0, β ∈ (0, 1)} the trajectories point vertically into R
as ∣

∣
∣
∣

dγ

dβ

∣
∣
∣
∣
→ ∞ as we approach L1 and γ′ = −β(1− β) < 0. (6.23)

Along L2 = {(β, γ) | β = 1, γ ∈ (−1, 0)} we have

dγ

dβ

∣
∣
∣
∣
L2

= −v − β(1− β)

γ
= −v < 0. (6.24)

Hence trajectories that enter R cannot leave. There any trajectory must end at a station-

ary point and trajectories are forced to the point (β, γ) = (0, 0).

Exercise 7. Thus prove that that there exists a monotonic solution, with β ≥ 0, to

equation (6.9) for every value of v ≥ 2 and, with v ≥ 2 fixed, the phase space trajectory

is unique.

Solution. The above analysis is valid for v ≥ 2. For v fixed a trajectory enters the region

R along the unstable manifold (only one unstable manifold enters R). The solution is

monotonic as γ < 0 throughout R.

Figure 6.1 shows the results of numerical simulation of the Fisher equation (6.1) with

initial and boundary conditions given by (6.2) at a series of time points.

6.1.3 Relation between the travelling wave speed and initial conditions

We have seen that, for v fixed, the phase space trajectory of Fisher’s travelling wave

equation is unique. The non-uniqueness associated with the fact that if β(y) solves Fisher’s

travelling wave equation then so does β(y + A) for A constant simply corresponds to a

shift along the phase space trajectory. This, in turn, corresponds simply to translation of

the travelling wave.
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Figure 6.1: Solution of the Fisher equation (6.1) with initial and boundary conditions given

by (6.2) at times t = 10, 20, 30, 40, 50.

Key question. Do solutions of the full system, equations (6.1) and (6.2), actually evolve

to a travelling wave solution, and if so, what is its speed?

Non-Examinable: initial conditions of compact support

Kolmogorov considered the equation

∂ψ

∂τ
=
∂2ψ

∂z2
+ ψ(1 − ψ), (6.25)

with the boundary conditions

ψ(z, τ) → 1 as z → −∞ and ψ(z, τ) → 0 as z → ∞, (6.26)

and non-negative initial conditions satisfying the following: there is a K, with 0 < K <∞,

such that

ψ(z, τ = 0) = 0 for z > K and ψ(z, τ = 0) = 1 for z < −K. (6.27)

He proved that ψ(z, τ) tends to a Fisher travelling wave solution with v = 2 as t→ ∞.

This can be applied to equations (6.1) and (6.2) providing the initial conditions are non-

negative and the initial condition for β satisfies the above constraint, i.e. there is a K,

with 0 < K <∞, such that

β(z, τ = 0) = 0 for z > K and β(z, τ = 0) = 1 for z < −K. (6.28)

Under such constraints β also tends to a Fisher travelling wave solution with v = 2.

6.2 Models of epidemics

The study of infectious diseases has a long history and there are numerous detailed models

of a variety of epidemics and epizootics (i.e. animal epidemics). We can only possibly

scratch the surface. In the following, we consider a simple, framework model but even this

is capable of highlighting general comments about epidemics and, in fact, approximately

describes some specific epidemics.
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6.2.1 The SIR model

Consider a disease for which the population can be placed into three compartments:

• the susceptible compartment, S, who can catch the disease;

• the infective compartment, I, who have and transmit the disease;

• the removed compartment, R, who have been isolated, or who have recovered and

are immune to the disease, or have died due to the disease during the course of the

epidemic.

Assumptions

• The epidemic is of short duration course so that the population is constant (counting

those who have died due to the disease during the course of the epidemic).

• The disease has a negligible incubation period.

• If a person contracts the disease and recovers, they are immune (and hence remain

in the removed compartment).

• The numbers involved are sufficiently large to justify a continuum approximation.

• The ‘dynamics’ of the disease can be described by applying the Law of Mass Action

to:

S + I
r−→ 2I, I

a−→ R. (6.29)

The model

Then the equations describing the time evolution of numbers in the susceptible, infective

and removed compartments are given by

dS

dt
= −rIS, (6.30)

dI

dt
= rIS − aI, (6.31)

dR

dt
= aI, (6.32)

subject to

S(t = 0) = S0, I(t = 0) = I0, R(t = 0) = 0. (6.33)

Note that
d

dt
(S + I +R) = 0 =⇒ S + I +R = S0 + I0. (6.34)

Key questions in an epidemic situation are, given r, a, S0 and I0,
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1. Will the disease spread, i.e. will the number of infectives increase, at least in the

short-term?

Solution.

dS

dt
= −rIS ⇒ S is decreasing and therefore S ≤ S0. (6.35)

dI

dt
= I(rS − a) < I(rS0 − a). (6.36)

Therefore, if S0 < a/r the infectives never increase, at least initially.

2. If the disease spreads, what will be the maximum number of infectives at any given

time?

Solution.
dI

dS
= −(rS − a)

rS
= −1 +

ρ

S
where ρ

def
=

a

r
. (6.37)

Integrating gives

I + S − ρ lnS = I0 + S0 − ρ lnS0, (6.38)

and so, noting that dI/dS = 0 for S = ρ, the maximum number of infectives is given

by

Imax =

{

I0 S0 ≤ ρ

I0 + S0 − ρ lnS0 − ρ ln ρ− ρ S0 > ρ
. (6.39)

3. How many people in total catch the disease?

Solution. From 2, I → 0 as t → ∞. Therefore the total number who catch the

disease is

R(∞) = N0 − S(∞)− I(∞) = N0 − S(∞), (6.40)

where S(∞) < S0 is the root of

S∞ − ρ lnS∞ = N0 − ρ lnS0, (6.41)

obtained by setting S = S∞ and N0 = I0 + S0 in equation (6.38).

6.2.2 An SIR model with spatial heterogeneity

We consider an application to fox rabies. We will make the same assumptions as for the

standard SIR model, plus:

• healthy, i.e. susceptible, foxes are territorial and, on average, do not move from their

territories;

• rabid, i.e. infective, foxes undergo behavioural changes and migrate randomly, with

an effective, constant, diffusion coefficient D;

• rabies is fatal, so that infected foxes do not return to the susceptible compartment

but die, and hence the removed compartment does not migrate.
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Figure 6.2: Numerical solution of the SIR model, equations (6.30)-(6.32), where the solid

lines indicate the phase trajectories and the dashed line S + I = S0 + I0. Parameters are as

follows: r = 0.01 and a = 0.25.

Taking into account rabid foxes’ random motion, the SIR equations become

∂S

∂t
= −rIS, (6.42)

∂I

∂t
= D∇2I + rIS − aI, (6.43)

∂R

∂t
= aI. (6.44)

The I and S equations decouple, and we consider these in more detail. We assume

a one-dimensional spatial domain x ∈ (−∞,∞) and apply the following scalings/non-

dimensionalisations,

I∗ =
I

S0
, S∗ =

S

S0
, x∗ =

√

D

rS0
x, t∗ = rS0t, λ =

a

rS0
, (6.45)

where S0 is the population density in the absence of rabies, to obtain

∂S

∂t
= −IS, (6.46)

∂I

∂t
= ∇2I + I(S − λ), (6.47)

where asterisks have been dropped for convenience in the final expression.

Travelling waves

We seek travelling wave solutions with

S(x, t) = S(y), I(x, t) = I(y), y = x− ct, c > 0, (6.48)

which results in the system

0 = cS′ − IS, (6.49)

0 = I ′′ + cI ′ + I(S − λ), (6.50)
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where ′ = d/dy.

We assume λ = a/(rS0) < 1 below. This is equivalent to the condition for disease spread

in the earlier SIR model.

Boundary conditions

We assume a healthy population as y → ∞:

S → 1 and I → 0, (6.51)

and as y → −∞ we require

I → 0. (6.52)

Bound on travelling wave speed

We write S = 1− P and linearise about the wavefront:

−cP ′ − I = 0 and I ′′ + cI ′ + I(1 − λ). (6.53)

The I equation decouples and analysis of this equation gives a stable focus at (I, I ′) = (0, 0)

if the eigenvalues

µ =
−c±

√

c2 − 4(1− λ)

2
, (6.54)

are complex. This requires

c ≥ 2
√
1− λ. (6.55)

Severity of epidemic

S(∞) is a measure of the severity of the epidemic. We have I = cS′/S and therefore

d

dy
(I ′ + cI) + cS′

(
S − λ

S

)

= 0. (6.56)

Therefore

(I ′ + cI) + c(S − λ lnS) = constant = c, (6.57)

by evaluating the equation as y → ∞.

In this case

S(−∞)− λ lnS(−∞) = 1, where S(−∞) < 1, (6.58)

gives the severity of the epidemic.

Further comments on travelling wave speed

Typically, the wave evolves to have minimum wave speed:

c ≃ cmin. (6.59)
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Pattern formation

Examples of the importance of spatial pattern and structure can be seen just about every-

where in the natural world. Here we will be concerned with building and analysing models

which can generate patterns; understanding how self-organising principles may lead to the

generation of shape and form.
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7.1 Minimum domains for spatial structure

Consider the non-dimensionalised, one dimensional, budworm model, but with a diffusive

spatial structure:

ut = Duxx + f(u), where f(u) = ru

(

1− u

q

)

− u2

1 + u2
. (7.1)

We also suppose that exterior to our domain conditions are very hostile to budworm so

that we have the boundary conditions

u(0, t) = 0, u(L, t) = 0, (7.2)

where L > 0 is the size of the domain. Note that f ′(0) = r > 0.

Question. Clearly u = 0 is a solution. However, if we start with a small initial distri-

bution of budworm, will we end up with no budworm, or an outbreak of budworm? In

particular, how does this depend on the domain size?

Solution. For initial conditions with 0 ≤ u(x, t = 0) ≪ 1, sufficiently small, we can

approximate f(u) by f ′(0)u at least while u(x, t) remains small. Thus our equations are,

approximately,

ut = Duxx + f ′(0)u, u(0, t) = 0, u(L, t) = 0. (7.3)

59
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We look for a solution of the form (invoking completeness of Fourier series):

u(x, t) =
∞∑

n=1

an(t) sin
(nπx

L

)

. (7.4)

This gives that the time-dependent coefficients satisfy

dan
dt

=
Dn2π2

L2
an + f ′(0)an = σnan, (7.5)

and hence

u(x, t) =

∞∑

n=1

a(0)n exp

[(

f ′(0)− Dn2π2

L2

)

t

]

sin
(nπx

L

)

. (7.6)

For the solution to decay to zero, we require that all Fourier modes decay to zero as t→ ∞,

and hence we require that

σn < 0 ∀n ⇒ f ′(0)− Dn2π2

L2
< 0 ∀n, (7.7)

and thus that

f ′(0) <
Dn2π2

L2
⇒ L ≤

[
Dπ2

f ′(0)

]
def
= Lcrit. (7.8)

Hence there is a critical lengthscale, Lcrit, beyond which an outburst of budworm is possible

in a spatially distributed system.

7.1.1 Domain size

On first inspection one probably should be surprised to see that Lcrit increases linearly

with the diffusion coefficient, i.e. diffusion is destabilising the zero steady state.

We can further investigate how the nature of a steady state pattern depends on the

diffusion coefficient. Suppose L > Lcrit and that the steady state pattern is of the form:

We therefore have

0 = Duxx + f(u). (7.9)

Multiplying by ux and integrating with respect to x, we have

0 =

∫

Duxuxx dx+

∫

uxf(u) dx. (7.10)
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Thus we have

1

2
Du2x + F (u) = constant = F (umax) where F ′(u) = f(u). (7.11)

We can therefore find a relation between L, D, integrals of

F (u)
def
=

∫ u

0
f(y) dy, (7.12)

and max(u), the size of the outbreak, as follows:

ux = −
(

2

D

) 1

2 √

F (umax)− F (u) since x > 0 and therefore ux < 0. (7.13)

Integrating, gives

2

∫ L/2

0
dx = −(2D)

1

2

∫ 0

umax

1
√

F (umax)− F (ū)
dū, (7.14)

and hence

L = (2D)
1

2

∫ umax

0

1
√

F (umax)− F (ū)
dū. (7.15)

Therefore umax is a function of L/
√
2D and the root of equation (7.15).
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Figure 7.1: Numerical simulation of the um-L space, equation (7.15) with r = 0.6, q = 6.2

and D = 0.1.

7.2 Diffusion-driven instability

Consider a two component system

ut = Du∇2u+ f(u, v), (7.16)

vt = Dv∇2v + g(u, v), (7.17)
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for x ∈ Ω, t ∈ [0,∞) and Ω bounded.

The initial conditions are

u(x, 0) = u0(x), v(x, 0) = v0(x), (7.18)

and the boundary conditions are either Dirichlet, i.e.

u = uB , v = vB, x ∈ ∂Ω, (7.19)

or homogeneous Neumann, i.e.

n · ∇u = 0, n · ∇v = 0, for x ∈ ∂Ω, (7.20)

where n is the outward pointing normal on ∂Ω.

Definition. Patterns are stable, time-independent, spatially heterogeneous solutions

of equations (7.16)-(7.17).

Definition. A diffusion-driven instability, also referred to as a Turing instability,

occurs when a steady state, stable in the absence of diffusion, goes unstable when

diffusion is present.

Remark. Diffusion-driven instabilities, in particular, can drive pattern formation in

chemical systems and there is significant, but not necessarily conclusive, evidence that it

can drive pattern formation in a variety of biological systems. A key point is that this

mechanism can drive the system from close to a homogeneous steady state to a state with

spatial pattern and structure. The fact that diffusion is responsible for this is initially quite

surprisingly. Diffusion, in isolation, disperses a pattern; yet diffusion, when in combination

with the kinetic terms, often can drive a system towards a state with spatial structure.

7.2.1 Linear analysis

We wish to understand when a diffusion-driven instability occurs. Using vector and matrix

notation we define

u =

(

u

v

)

, F (u) =

(

f(u, v)

g(u, v)

)

, D =

(

Du 0

0 Dv

)

, (7.21)

and write the problem with homogeneous Neumann boundary conditions as follows:

ut = D∇2u+ F (u), (7.22)

i.e.

∂

∂t

(

u

v

)

=

(

Du 0

0 Dv

)

∇2

(

u

v

)

+

(

f(u, v)

g(u, v)

)

, (7.23)

with

n · ∇u = 0, x ∈ ∂Ω, (7.24)
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i.e.

n.∇u = 0 = n.∇v x ∈ ∂Ω. (7.25)

Let u∗ be such that F (u∗) = 0. Implicit in this definition is the assumption that u∗ is a

constant vector.

Let w = u− u∗ with |w| ≪ 1. Then we have

∂w

∂t
= D∇2w + F (u∗) + Jw + higher order terms, (7.26)

where

J =

(
∂f
∂u

∂f
∂v

∂g
∂u

∂g
∂v

)∣
∣
∣
∣
∣
u=u∗

, (7.27)

is the Jacobian of F evaluated at u = u∗. Note that J is a constant matrix.

Neglecting higher order terms in |w|, we have the equation

wt = D∇2w + Jw, n · ∇w = 0, x ∈ ∂Ω. (7.28)

This is a linear equation and so we look for a solution in the form of a linear sum of

separable solutions. To do this, we first need to consider a general separable solution

given by

w(x, t) = A(t)p(x), (7.29)

where A(t) is a scalar function of time. Substituting this into equation (7.28) yields

1

A

dA

dt
p = D∇2p+ Jp. (7.30)

Clearly to proceed, with p dependent on x only, we require Ȧ/A to be time independent.

It must also be independent of x as A is a function of time only. Thus Ȧ/A is constant.

We take Ȧ = λA, where λ is as yet an undetermined constant. Thus

A = A0 exp(λt), (7.31)

for A0 6= 0 constant. Hence we require that our separable solution is such that

[
λp− Jp−D∇2p

]
= 0. (7.32)

Suppose p satisfies the equation

∇2p+ k2p = 0, n · ∇p = 0, x ∈ ∂Ω, (7.33)

where k ∈ R. This is motivated by the fact in one-dimensional on a bounded domain, we

have p′′+k2p = 0; the solutions are trigonometric functions which means one immediately

has a Fourier series when writing the sum of separable solutions.
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Then we have
[
λp− Jp+Dk2p

]
= 0, (7.34)

and thus
[
λI − J +Dk2

]
p = 0, (7.35)

with |p| not identically zero. Hence

det
[
λI − J + k2D

]
= 0. (7.36)

This can be rewritten as

det

(

λ− fu +Duk
2 −fv

−gu λ− gv +Dvk
2

)

= 0, (7.37)

which gives the following quadratic in λ:

λ2 +
[
(Du +Dv)k

2 − (fu + gv)
]
λ+ h(k2) = 0, (7.38)

where

h(k2) = DuDvk
4 − (Dvfu +Dugv)k

2 + (fugv − gufv). (7.39)

Note 1. Fixing model parameters and functions (i.e. fixing Du, Dv, f , g), we have an

equation which gives λ as a function of k2.

Note 2. Thus, for any k2 such that equation (7.33) possesses a solution, denoted pk(x)

below, we can find a λ = λ(k2) and hence a general separable solution of the form

A0e
λ(k2)tpk(x). (7.40)

The most general solution formed by the sum of separable solutions is therefore

∑

k2

A0(k
2)eλ(k

2)tpk(x), (7.41)

if there are countable k2 for which equation (7.33) possesses a solution. Otherwise the

general solution formed by the sum of separable solutions is of the form
∫

A0(k
2)eλ(k

2)tpk2(x) dk
2, (7.42)

where k2 is the integration variable.

Unstable points

If, for any k2 such that equation (7.33) possesses a solution, we find Re(λ(k2)) > 0 then:

• u∗ is (linearly) unstable and perturbations from the stationary state will grow;

• while the perturbations are small, the linear analysis remains valid; thus the per-

turbations keep growing until the linear analysis is invalid and the full non-linear

dynamics comes into play;
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• a small perturbation from the steady state develops into a growing spatially hetero-

geneous solution which subsequently seeds spatially heterogeneous behaviour of the

full non-linear model;

• a spatially heterogeneous pattern can emerge from the system from a starting point

which is homogeneous to a very good approximation.

Stable points

If, for all k2 such that equation (7.33) possesses a solution, we find Re(λ(k2)) < 0 then:

• u∗ is (linearly) stable and perturbations from the stationary state do not grow;

• patterning will not emerge from perturbing the homogeneous steady state solution

u∗;

• the solution will decay back to the homogeneous solution1.

7.3 Detailed study of the conditions for a Turing instability

For a Turing instability we require the homogeneous steady state to be stable without

diffusion and unstable with diffusion present. Here we analyse the requirements for each

of these conditions to be satisfied.

7.3.1 Stability without diffusion

We firstly require that in the absence of diffusion the system is stable. This is equivalent

to

Re(λ(0)) < 0, (7.43)

for all solutions of λ(0), as setting k2 = 0 removes the diffusion-driven term in equation

(7.36) and the preceding equations.

We have that λ(0) satisfies

λ(0)2 − [fu + gv]λ(0) + [fugv − fvgu] = 0. (7.44)

Insisting that Re(λ(0) < 0) gives us the conditions

fu + gv < 0 (7.45)

fugv − fvgu > 0. (7.46)

1Technical point: Strictly, this conclusion requires completeness of the separable solutions. This can

be readily shown in 1D on bounded domains. (Solutions of p′′ + k2p = 0 on bounded domains with

Neumann conditions are trigonometric functions and completeness is inherited from the completeness of

Fourier series). Even if completeness of the separable solutions is not clear, numerical simulations of the

full equations are highly indicative and do not, for the models typically encountered, contradict the linear

analysis results. With enough effort and neglecting any biological constraints on model parameters and

functions, one may well be able to find Du, Dv, f, g where there was such a discrepancy but that is not

the point of biological modelling.
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The simplest way of deducing (7.45) and (7.46) is by brute force.

The roots of the quadratic are given by

λ(0)± =
(fu + gv)±

√

(fu + gv)2 − 4(fugv − fvgu)

2
. (7.47)

7.3.2 Instability with diffusion

Now consider the effects of diffusion. In addition to Re(λ(0)) < 0, we are required to

show, for diffusion-driven instability, that there exists k2 such that

Re(λ(k2)) > 0, (7.48)

so that diffusion does indeed drive an instability.

We have that λ(k2) satisfies

λ2 +
[
(Du +Dv)k

2 − (fu + gv)
]
λ+ h(k2) = 0, (7.49)

where

h(k2) = DuDvk
4 − (Dvfu +Dugv)k

2 + (fugv − gufv), (7.50)

and

α = (fu + gv)− (Du +Dv)k
2 < 0. (7.51)

Thus Re(λ(k2)) > 0 requires that

Re
(

α±
√

α2 − 4h(k2)
)

> 0 ⇒ h(k2) < 0. (7.52)

Hence we must find k2 such that

h(k2) = DuDvk
4 − (Dvfu +Dugv)k

2 + (fugv − gufv) < 0, (7.53)

so that we have k2 ∈ [k2−, k
2
+] where h(k

2
±) = 0. Figure 7.2 shows a plot of a caricature

h(k2).

This gives us that we have an instability whenever

k2 ∈
[

A−
√
A2 −B

2DuDv
,
A+

√
A2 −B

2DuDv

]

=
[
k2−, k

2
+

]
, (7.54)

where

A = Dvfu +Dugv and B = 4DuDv(fugv − gufv) > 0, (7.55)

and there exists a solution of the following

∇2p+ k2p = 0, n · ∇p = 0, x ∈ ∂Ω, (7.56)

for k2 in the above range.
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Figure 7.2: A plot of a caricature h(k2).

Insisting that k is real and non-zero (we have considered the k = 0 case above) we have

A > 0 and A2 −B > 0, (7.57)

which gives us that when Re(λ(k2)) > 0, the following conditions hold:

A > 0 : Dvfu +Dugv > 0, (7.58)

A2 −B > 0 : (Dvfu +Dugv) > 2
√

DuDv(fugv − fvgu). (7.59)

7.3.3 Summary

We have found that a diffusion-driven instability can occur when conditions (7.45), (7.46),

(7.58), (7.59) hold whereupon the separable solutions, with k2 within the range (7.54) and

for which there is a solution to equation (7.33), will drive the instability.

Key point 1. Note that constraints (7.45) and (7.58) immediately gives us that Du 6=
D2. Thus one cannot have a diffusion-driven instability with identical diffusion coefficients.

Key point 2. From constraints (7.45), (7.46), (7.58) the signs of fu, gv must be such

that J takes the form

J =

(

+ +

− −

)

or

(

+ −
+ −

)

or

(

− −
+ +

)

or

(

− +

− +

)

. (7.60)

Key point 3. A Turing instability typically occurs via long-range inhibition, short-range

activation. In more detail, suppose

J =

(

+ −
+ −

)

. (7.61)
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Then we have fu > 0 and gv < 0 by the signs of J . In this case Dvfu+Dugv > 0 ⇒ D2 >

Du. Hence the activator has a lower diffusion coefficient and spreads less quickly than the

inhibitor.

7.3.4 The threshold of a Turing instability.

The threshold is defined such that equation (7.39), i.e.

DuDvk
4
c − (Dvfu +Dugv)k

2
c + (fugv − gufv) = 0, (7.62)

has a single root, k2c .

Thus we additionally require

A2 = B i.e. (Dvfu +Dugv)
2 = 4DuDv(fugv − gufv) > 0, (7.63)

whereupon

k2c =
A

2DuDv
=
Dvfu +Dugv

2DuDv
. (7.64)

Strictly one also requires that a solution exists for

∇2p+ k2p = 0, n · ∇p = 0, x ∈ ∂Ω, (7.65)

when k2 = k2c . However, the above value of k2c is typically an excellent approximation.

7.4 Extended example 1

Consider the one-dimensional case:

ut = Duuxx + f(u, v), (7.66)

vt = Dvvxx + g(u, v), (7.67)

for x ∈ [0, L], t ∈ [0,∞) and zero flux boundary conditions at x = 0 and x = L.

The analogue of

∇2p+ k2p = 0, n · ∇p = 0, x ∈ ∂Ω, (7.68)

is

pxx + k2p = 0, p′(0) = p′(L) = 0, (7.69)

which gives us that

pk(x) = Ak cos (kx) , k =
nπ

L
, n ∈ {1, 2, . . .}, (7.70)

where Ak is k-dependent in general but independent of t and x.

Thus the separable solution is of the form
∑

k

Ake
λ(k2)t cos (kx) , (7.71)

where the sum is over the allowed values of k i.e.

k =
nπ

L
, n ∈ {1, 2, . . .}. (7.72)
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Figure 7.3: Numerical simulation of the Gierer-Meinhardt model for pattern formation.

7.4.1 The influence of domain size

If the smallest allowed value of k2 = π2/L2 is such that

k2 =
π2

L2
>
A+

√
A2 −B

2DuDv
= k2+, (7.73)

then we cannot have a Turing instability.

Thus for very small domains there is no pattern formation via a Turing mechanism.

However, if one slowly increases the size of the domain, then L increases and the above

constraint eventually breaks down and the homogeneous steady state destabilises leading

to spatial heterogeneity.

This pattern formation mechanism has been observed in chemical systems. It is regularly

hypothesised to be present in biological systems (e.g. animal coat markings, fish markings,

the interaction of gene products at a cellular level, the formation of ecological patchiness)

though the evidence is not conclusive at the moment.

7.5 Extended example 2

Consider the two-dimensional case with spatial coordinates x = (x, y)T , x ∈ [0, a], y ∈
[0, b], and zero flux boundary conditions. We find that the allowed values of k2 are

k2m,n =

[
m2π2

a2
+
n2π2

b2

]

, (7.74)

with

pm,n(x) = Am,n cos
(mπx

a

)

cos
(nπy

b

)

, n,m ∈ {0, 1, 2, . . .}, (7.75)

excluding the case where n, m are both zero.



Chapter 7. Pattern formation 70

Suppose the domain is long and thin, b≪ a. We may have a Turing instability if

k2m,n =

[
m2π2

a2
+
n2π2

b2

]

∈
[
k2−, k

2
+

]
where h(k2±) = 0. (7.76)

For b sufficiently small, this requires n = 0 and therefore no spatial variation in the y

direction.

This means we have that the seed for pattern formation predicted by the linear analysis

is a separable solution which is “stripes”; this typically invokes a striped pattern once the

non-linear dynamics sets in.

For a large rectangular domain, b ∼ a sufficiently large, it is clear that a Turing instability

can be initiated with n, m > 0. This means we have that the seed for pattern formation

predicted by the linear analysis is a separable solution which is “spots”. This typically

invokes a spotted pattern once the non-linear dynamics sets in.
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Figure 7.4: Changes in patterning as the domain shape changes.

Figure 7.4 shows how domain size may affect the patterns formed. On the left-hand side

the domain is long and thin and only a striped pattern results, whilst the on the right-hand

side the domain is large enough to admit patterning in both directions.

Suppose we have a domain which changes its aspect ratio from rectangular to long and

thin. Then we have the following possibilities:
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This leads to an interesting prediction, in the context of animal coat markings, that if it

is indeed driven by a Turing instability, then one should not expect to see an animal with

a striped body and a spotted tail.

Figure 7.5: Animal coat markings which are consistent with the predictions of pattern

formation by a Turing instability.

Common observation is consistent with such a prediction (see Figure 7.5) but one should

not expect universal laws in the realms of biology as one does in physics (see Figure

7.6). More generally, this analysis has applications in modelling numerous chemical and

biochemical reactions, in vibrating plate theory, and studies of patchiness in ecology and

modelling gene interactions.

Figure 7.6: Animal coat markings which are inconsistent with the predictions of pattern

formation by a Turing instability.



Chapter 8

Excitable systems: nerve pulses

Many cells communicate with one another via nerve impulses, also known as action po-

tentials. Action potentials are brief changes in the membrane potential of a cell produced

by the flow of ionic current across the cell membrane. Such type of communication is not

limited to neurons by make occur in other cells, for example cardiac and muscle cells.

See http://en.wikipedia.org/wiki/Action_potential and related links for more de-

tails.

References.

• J. P. Keener and J. Sneyd, Mathematical Physiology, Chapter 4 and Chapter 8 [7].

8.1 Background

Here we outline the background physics required to write down a model to describe a

nerve impulse. Firstly, we note that:

• numerous fundamental particles, ions and molecules have an electric charge, e.g. the

electron, e−, and the sodium ion, Na+;

• it is an empirical fact that total charge is conserved;

• electric charges exert electrical forces on one another such that like charges repel and

unlike charges attract. The electric potential, denoted V , is the potential energy of

a unit of charge due to such forces and is measured in volts;

• a concentration of positive particles has a large positive potential, while a concen-

tration of negative particles has a large, but negative potential;

• electric current is defined to be the rate of flow of electric charge, measured in Amps.

72
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8.1.1 Resistance

Ohms Law, ∆V = IR, holds in most situations, where ∆V is the change in potential, I is

the current flowing and R, which may depend on material properties and geometries but

not on I nor V is the resistance.

Key point. Suppose one uses a wire of low resistance to connect a region with a con-

centration of positive charges to a region with a concentration of negative charges. The

charges will, very quickly, flow onto/off the wire until the potential is constant and there

is no further flow of charge.

8.1.2 Capacitance

A simple example of capacitor is two conducting plates, separated by an insulator, for

example, an air gap.

Connecting a battery to the plates, as illustrated, using wires of low resistance leads to

charge flowing onto/off the plates. It will equilibrate (very quickly!); let Qeqm denote the

difference in the total value of the charge stored on the two plates. The capacitance of the

plates, C, is defined to be

C =
Qeqm

V
> 0, (8.1)

where C is a constant, independent of V . Thus the higher the capacitance, the better the

plates are at storing charge, for a given potential.
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Suppose now the potential is a function of time, V = V (t). Charge will flow on and off the

plates in response to time dependent changes in V (t). If the time for a significant change

in V (t) is far longer than the time it takes for the difference in the total value of the charge

stored on the two plates, Q, to reach its equilibrium value, Qeqm, as is essentially always

the case, one has

Q = Qeqm = CV (t). (8.2)

Hence, the current, J , i.e. the rate of flow of charge on/off the plates is given by

J = Q̇ = CV̇ . (8.3)

8.2 Deducing the Fitzhugh Nagumo equations

An axon is a part of nerve cell:

dendrites

nucleus

soma (cell body)

axon

synapse

axon terminals

dendrite of 

another cell

direction of signal propagation

The nerve signal along the axon is, in essence, a propagating pulse in the potential dif-

ference across the plasma (i.e. outer) membrane of the axon. This potential difference,

V , arises due to the preferential permeability of the axon plasma membrane which allows

potassium and sodium ions, K+ and Na+, to pass through the membrane at rates which

differ between the two ions and vary with V . In the rest state, V = Vrest ≃ −70mV

(millivolts); in a nerve signal pulse in V rises to a peak of ∼ 15mV. It is this pulse we are

interested in modelling.

The geometry of the axon can be treated as a cylindrical tube. An axon is axisymmetric,

so we have no θ dependence in any of our models of the axon.

8.2.1 Space-clamped axon

A common, simplifying, experimental scenario is to space-clamp the axon, i.e. to place a

conducting wire along the axon’s axis of symmetry.
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• The interior of the axon will quickly equilibrate, and there will be no spatial variation

in the potential difference, nor any current, along the inside of the axon.

• Thus, by conservation of charge, the total current flowing across the axon membrane

must be zero.

• Note that any changes in the interior due to, for example the axon allowing K+

and Na+ to pass through its membrane, will occur on a much slower timescale and

hence one has that the interior of the space-clamped axon has no spatial variation

in its potential difference, no current flowing along the inside of the axon, and, most

importantly, the total current flowing through the axon membrane is zero.

The basic model for the space-clamped axon plasma membrane potential is given by

0 = total transmembrane current per unit area,

= c
dV

dt
+ INa + IK + I0 + Iapplied(t), (8.4)

where

• Iapplied(t) is the applied current, i.e. the current injected through the axon plasma

membrane in the experiment, which is only function of time in most experimental

set-ups. We will take Iapplied(t) = 0 below.
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• cdV/dt is the capacitance current through a unit area of the membrane. Recall:

Rate of flow on/off capacitor = C dV/dt.

Therefore rate of flow of charge per unit area of membrane = cdV/dt where c is the

membrane capacitance per unit area.

• INa, IK are the voltage dependent Na+ and K+ currents. I0 is a voltage dependent

background current.

These currents actually take complicated forms involving numerous other variables

which satisfy complex equations, that can be simplified, if somewhat crudely. An

excellent account is given in T. F. Weiss, Cellular Biophysics [12].

The resulting equations written in terms of the non-dimensional variables v = (V −
Vrest)/|Vrest| and τ = t/T where T = 6 ms, the time scale of a typical nerve pulse,

are

ǫ
dv

dτ
= Av(δ − v)(v − 1)− n, (8.5)

dn

dτ
= −γn+ v, (8.6)

where A, γ, ǫ, δ are positive parameters such that A, γ ∼ O(1), 0 < ǫ≪ δ ≪ 1.

Key point. The spatially independent behaviour of a space-clamped axon is approxi-

mated by the above Fitzhugh Nagumo equations, (8.5)-(8.6).

8.3 A brief look at the Fitzhugh Nagumo equations

We have

ǫ
dv

dτ
= Av(δ − v)(v − 1)− n, (8.7)

dn

dτ
= −γn+ v, (8.8)

where A, γ, ǫ, δ are positive parameters such that A, γ ∼ O(1), 0 < ǫ≪ δ ≪ 1.

8.3.1 The (n, v) phase plane

The nullclines of equations (8.5)-(8.6) are the lines where v̇ = 0 and ṅ = 0. A plot of the

nullclines separates the (v, n) phase plane into four regions, as shown in Figure 8.1.

There are several things to note about the dynamics.

• There is one stationary point which is a stable focus.

• Thus, with initial conditions sufficiently close to the stationary point, the system

evolves to the stationary point in a simple manner.
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Figure 8.1: The phase plane for the Fitzhugh-Nagumo equations with the v nullcline shown

in red and the n nullcline in green. The trajectories for two different initial perturbations

from the steady state are shown as dashed lines. Parameters are as follows: A = 1, γ = 0.5,

δ = 0.1 and ǫ = 0.001.

• Consider initial conditions with n ∼ 0, but v increased sufficiently. The system does

not simply relax back to the equilibrium. However, one can understand how the

qualitative behavioural of the system by considering the phase plane.

• We anticipate that v = (V −Vrest)/|Vrest| behaves in the manner shown in Figure 8.2

for a sufficiently large perturbation in v.
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Figure 8.2: Solutions of the Fitzhugh Nagumo equations with v dynamics indicated by the

solid line and n dynamics by the dashed line. The right-hand figure shows the oscillations

that arise for large t. Parameters are as follows: A = 1, γ = 0.5, δ = 0.1 and ǫ = 0.01.

• This is essentially a nerve pulse (although because of the space clamping all the

nerve axon is firing at once).

Definition. A system which, for a sufficiently large perturbation from a stationary

point, undergoes a large change before eventually returning to the same stationary

point is referred to as excitable.
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8.4 Modelling the propagation of nerve signals

In the following, we generalise the ideas we have seen for modelling the plasma membrane

potential of an axon to scenarios where this potential can vary along the axon.

8.4.1 The cable model

In the model we are about to develop we make following assumptions.

• The cell membrane is a cylindrical membrane separating two conductors of electric

current, namely the extracellular and intracellular mediums. These are assumed to

be homogeneous and to obey Ohm’s law.

• The model has no θ dependence.

• A circuit theory description of current and voltages is adequate, i.e. quasi-static

terms of Maxwell’s equations are adequate; for example, electromagnetic radiation

effects are totally negligible.

• Currents flow through the membrane in the radial direction only.

• Currents flow through the extracellular medium in the axial direction only and the

potential in the extracellular medium is a function of z only. Similarly for the

potential in the intracellular medium.

These assumptions are appropriate for unmyelinated nerve axons. Deriving the model

requires considering the following variables:

• Ie(z, t) – external current;

• Ii(z, t) – internal current;

• J(z, t) – total current through the membrance per unit length;

• Jion(z, t) – total ion current through the membrance per unit area;

• V (z, t) = Vi(z, t)− Ve(z, t) – transmembrane potential;

• ri – internal resistance per unit length;

• re – external resistance per unit length;

• C – membrane capacitance per unit area.
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Consider the axial current in the extracellular medium, which has resistance re per unit

length. We have

Ve(z + dz)− Ve(z) = −reIe(z)dz ⇒ reIe(z) = −∂Ve
∂z

, (8.9)

where the minus sign appears because of the convention that positive current is a flow of

positive charges in the direction of increasing z. Hence, if Ve(z+dz) > Ve(z) then positive

charges flow in the direction of decreasing z giving a negative current. Similarly,

riIi(z) = −∂Vi
∂z

. (8.10)

Using conservation of current, we have

Ie(z + dz, t)− Ie(z, t) = J(z, t)dz = Ii(z, t)− Ii(z + dz, t), (8.11)

which gives

J(z, t) = −∂Ii
∂z

=
∂Ie
∂z

. (8.12)

Hence

J =
1

ri

∂2Vi
∂z2

= − 1

re

∂2Ve
∂z2

, (8.13)

and so
∂2V

∂z2
= (ri + re)J. (8.14)

Putting this all together gives

0 = −∂(Ii + Ie)

∂z
=

∂

∂z

(
1

re

∂Ve
∂z

+
1

ri

∂Vi
∂z

)

=

(
re + ri
reri

)
∂2Ve
∂z2

+
1

ri

∂2V

∂z2
, (8.15)

and so

0 =
1

ri

∂2V

∂z2
−
(
re + ri
ri

)
∂Ie
∂z

=
1

ri

(
∂2V

∂z2
+ (re + ri)J(z, t)

)

. (8.16)
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We also have that

J(z, t) = 2πa

(

Jion(V, z, t) + C
∂V

∂t

)

, (8.17)

and finally, therefore,

1

2πa(ri + re)

∂2V

∂z2
= C

∂V

∂t
+ Jion(V, z, t). (8.18)

This gives an equation relating the cell plasma membrane potential, V , to the currents

across the cell plasma membrane due to the flow of ions, Jion(V, z, t).

Note 1. Note even though, physically, there is no diffusion, we still have a parabolic

partial differential equation, so the techniques we have previously studied are readily

applicable.

Note 2. From the above equation one can model cell plasma membrane potentials given

suitable initial and boundary conditions, and a suitable expression for Jion(z, t).

We use the same expression for Jion(z, t), i.e. the expression for INa + IK + I0 as in the

Fitzhugh Nagumo model of a space-clamped axon.

Thus with v = (V − Vrest)/|Vrest| and x = Kz, where K is a constant, we have

ǫ
∂v

∂τ
= ǫ2

∂2v

∂x2
+Av(δ − v)(v − 1)− n, (8.19)

dn

dτ
= −γn+ v, (8.20)

where 0 < A, γ ∼ O(1), 0 < ǫ ≪ δ ≪ 1.

Note that K has been chosen so that the coefficient infront of the vxx term is ǫ2. This

means, with respect to such variables, the front of the nerve pulse is extremely sharp.

Hence, for such a scaling to exist, the extent of the nerve pulse must be less than ǫL, where

L is the length of the axon; this constraint holds true for typical parameter estimates. The

reason for the choice of this scaling is simply mathematical convenience in a travelling wave

analysis.

We are interested in nerve pulses, so we take the boundary conditions to be n, v → 0 as

x→ ±∞.

We thus again have a system of parabolic partial differential equations to solve, and we

are particularly interested in travelling pulse solutions. This entails that a travelling wave

analysis would be most insightful. With the travelling wave coordinate y = x − cτ and

v(y) = v(x, τ), n(y) = n(x, τ), we obtain

ǫ2
d2v

dy2
+ ǫc

dv

dy
+Av(δ − v)(v − 1)− n = 0, (8.21)

c
dn

dy
− γn+ v = 0. (8.22)

We have 0 < A ∼ O(1), 0 < γ−1, δ, ǫ ≪ 1. One can readily investigate these ordinary

differential equations to find that the travelling wave speed is unique, giving a unique

prediction for the speed of a nerve pulse in terms of biophysical parameters.



Appendix A

The phase plane

Throughout this appendix we will be concerned with systems of two coupled, first-order,

autonomous, non-linear ordinary differential equations.

Disclaimer. This material should have been covered elsewhere (for example in your

course on differential equations) and hence below is intended to review, rather than intro-

duce and lecture this topic.

We can represent solutions to the equations

dx

dt
= X(x, y), (A.1)

dy

dt
= Y (x, y), (A.2)

as trajectories (or “integral paths”) in the phase plane, that is the (x, y) plane. Suppose,

for the initial condition x(t = tinitial) = x0, y(t = tinitial) = y0 we plot, in the (x, y) plane,

the solution of (A.1):

We can do exactly the same for all the values of {tinitial, xinitial, yinitial}, to build-up a

graphical representation of the solutions to the equations (A.1) and (A.2) for many initial

conditions. This plot is referred to as the “phase plane portrait”.

81
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A.1 Properties of the phase plane portrait

The gradient of the integral path through the point (x0, y0) is given by

dy

dx
=

dy

dt

/
dx

dt
=

(
Y (x, y)

X(x, y)

)∣
∣
∣
∣
(x0,y0)

=
Y (x0, y0)

X(x0, y0)
. (A.3)

Key point 1. Note that if Y (x0, y0) = 0 and X(x0, y0) 6= 0 then

(
dy

dx

)∣
∣
∣
∣
(x0,y0)

= 0, (A.4)

which corresponds to a horizontal line segments in the phase plane.

Key point 2. If Y (x0, y0) 6= 0 and X(x0, y0) = 0 then

∣
∣
∣
∣

dy

dx

∣
∣
∣
∣
→ ∞ as (x, y) → (x0, y0), (A.5)

which corresponds to a vertical line segment in the phase plane.

Key point 3. Assuming that either X(x0, y0) 6= 0 or Y (x0, y0) 6= 0, then two path

integral curves do not cross at the point (x0, y0). This is because under these circumstances

dy/dx takes a unique value, i.e. the following is not possible:

A.2 Equilibrium points

Definition. A point in the phase plane where X(x0, y0) = Y (x0, y0) = 0 is defined

to be an equilibrium point, or equivalently, a stationary point.

The reason for the above definition is because if (x, y) = (x0, y0) then both dx/dt and

dy/dt are zero, and hence (x, y) do not change as t increases; hence x(t), y(t) remain at

(x0, y0) for all time.
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Key point 1. Integral curves cannot cross at points which are not equilibrium points.

Key point 2. If an integral path ends it must end on a stationary point.

Key point 3. As we shall see below, equilibrium points are only approached as t→ ∞
or t→ −∞.

However, what about the gradient of integral paths at (x0, y0)? We informally have

dy

dx
=

0

0
, (A.6)

which is not uniquely defined—the value ultimately depends on the details of how quickly

X(x, y) and Y (x, y) approach zero as (x, y) → (x0, y0), and this generally depends on the

direction upon which (x, y) approaches (x0, y0).

A.2.1 Equilibrium points: further properties

Suppose the equations (A.1) and (A.2) have an equilibrium point at (x0, y0). Thus

X(x0, y0) = Y (x0, y0) = 0. To determine the behaviour of integral paths close to the

equilibrium point we write

x = x0 + x̄, y = y0 + ȳ, (A.7)

where it is assumed that x̄, ȳ are sufficiently small to allow the approximations that we

will make below.

By Taylor expansion, we have

X(x, y) = X(x0 + x̄, y0 + ȳ) = X(x0, y0) + x̄
∂X

∂x
(x0, y0) + ȳ

∂X

∂y
(x0, y0) + h.o.t.

= x̄
∂X

∂x
(x0, y0) + ȳ

∂X

∂y
(x0, y0) + h.o.t., (A.8)

using the fact X(x0, y0) = 0. Similarly, we have

Y (x, y) = Y (x0 + x̄, y0 + ȳ) = Y (x0, y0) + x̄
∂Y

∂x
(x0, y0) + ȳ

∂Y

∂y
(x0, y0) + h.o.t.,

= x̄
∂X

∂x
(x0, y0) + ȳ

∂X

∂y
(x0, y0) + h.o.t. (A.9)

Note that x0 and y0 are constant, and hence have zero time derivative. Hence, by use

of Taylor expansions and neglecting higher orders (i.e. taking x̄, ȳ sufficiently small), we

can neglect terms of the order O
(
x̄ȳ, x̄2, ȳ2

)
and hence we can write equations (A.1) and

(A.2) in the form

du

dt
=

(
∂X
∂x (x0, y0)

∂X
∂y (x0, y0)

∂Y
∂x (x0, y0)

∂Y
∂y (x0, y0)

)

u
def
= Ju where u

def
=

(

x̄

ȳ

)

. (A.10)
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Definition. The matrix

J =

(
∂X
∂x (x0, y0)

∂X
∂y (x0, y0)

∂Y
∂x (x0, y0)

∂Y
∂y (x0, y0)

)

, (A.11)

is defined to be the Jacobian matrix at the equilibrium point (x0, y0).

A.3 Summary

The key points thus far are as follows.

1. We have taken the full non-linear equation system, (A.1) and (A.2), and expanded

about one of its (possibly many) equilibrium points taken to be located at (x0, y0),

using Taylor expansions of X(x, y), Y (x, y).

2. We assume that we are sufficiently close to (x0, y0) to enable us to only consider

linear terms of the order of (x− x0), (y − y0).

3. In this way, we obtain a set of two coupled, linear, autonomous ordinary differential

equations, i.e. equation (A.10) above, which in principle we can solve!

4. This procedure is sometimes referred to as “a linearisation of equations (A.1) and

(A.2) about the point (x0, y0)”.

5. In virtually all cases the behaviour of the linearised system is the same as the be-

haviour of the full non-linear equations sufficiently close to the point (x0, y0). In this

respect one should note that the statement immediately above can be formulated

more rigorously and proved for all the types of stationary points except:

• centre type equilibrium points, i.e. case [3c] below;

• the degenerate cases where λ1 = 0 and/or λ2 = 0, which are briefly mentioned in

item 2 on page (87). These stationary points can be considered non-examinable.

The relevant theorem is “Hartmann’s theorem”, as discussed further in P. Glendin-

ning, Stability, Instability and Chaos [4].

6. However, one should also note that the solution of the linearised equations may

behave substantially differently from the solutions of the full non-linear equations,

(A.1) and (A.2), sufficiently far from (x0, y0).

A.4 Investigating solutions of the linearised equations

We now have a set of two coupled, linear, autonomous ordinary differential equations,

(A.10). It is useful to look for a solution of the form

u = u0e
λt, (A.12)
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for some constant, λ. Substituting this into equation (A.10) we obtain

λu0e
λt = Ju0e

λt i.e. (J − λI)u0 = 0. (A.13)

For a non-zero solution, we must have u0 6= (0, 0) and hence we require

det (J − λI) = 0, (A.14)

where I is the 2× 2 identity matrix.

This quadratic equation has two roots for λ, denoted λ1, λ2, which are possibly equal and

possibly complex; these are, of course, the eigenvalues of J evaluated at the point (x0, y0).

A.4.1 Case I

λ1, λ2 real, with λ1 6= 0, λ2 6= 0, λ1 6= λ2. Without loss of generality we take λ2 > λ1
below.

We have two distinct, real eigenvalues. Let the corresponding eigenvectors be denoted by

e1 and e2. We thus have

Je1 = λ1e1, Je2 = λ2e2. (A.15)

We seek a solution of the form

u = A1e1 +A2e2. (A.16)

Substituting this into equation (A.10), we find, by comparing coefficients of e1 and e2,

that
dA1

dt
= λ1A1,

dA2

dt
= λ2A2, (A.17)

and hence

A1 = A1(t = 0)eλ1t, A2 = A2(t = 0)eλ2t. (A.18)

Thus we have (

x̄

ȳ

)

def
= u = A1(t = 0)eλ1te1 +A2(t = 0)eλ2te2, (A.19)

which gives us a representation of the solution of (A.10) for general initial conditions. This

information is best displayed graphically, and we do so below according to the values of

λ2, λ1.

Note. The equilibrium point i.e. (x̄, ȳ) = (0, 0) can only be reached either as t→ ∞ or

t→ −∞.

1. λ1 < λ2 < 0. The phase plot of the linearised equations in the (x̄, ȳ) plane looks

like one of the two possibilities in Figure A.1.

Definition. An equilibrium point which results in this case is called a stable

node, with the word “stable” referring to the fact that integral paths enter the

node, i.e. the equilibrium point at (0, 0).
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Figure A.1: Possible phase portraits of a stable node. The equilibrium point in each case is

denoted by the large dot.

2. λ2 > λ1 > 0. We still have

u = A1(t = 0)eλ1te1 +A2(t = 0)eλ2te2. (A.20)

However, the direction of the arrows is reversed as the signs of λ1, λ2 are changed.

The phase plane portraits are the same as in Figure A.1 except the direction of the

arrows is reversed.

Definition. An equilibrium point which results in this case is called an unstable

node, with the word “unstable” referring to the fact that integral paths leave the

node, i.e. the equilibrium point at (0, 0).

3. λ2 > 0 > λ1. Once more, we still have

u = A1(t = 0)eλ1te1 +A2(t = 0)eλ2te2, (A.21)

but again the phase plane portrait is slightly different—see Figure A.2.

Definition. An equilibrium point which results in this case is called a saddle

point.

Definition. The two integral paths originating from the saddle point are some-

times referred to as the unstable manifolds of the saddle point. Conversely, the

integral paths tending to the saddle point are sometimes referred to as the sta-

ble manifolds of the saddle point. This forms part of a nomenclature system

commonly used in more advanced dynamical systems theory; see P. Glendinning,

Stability, Instability and Chaos [4].
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Figure A.2: The phase portrait of a saddle point. The equilibrium point is denoted by the

large dot.

A.4.2 Case II

λ2, λ1 real. One, or more, of the following also holds:

λ2 = λ1, λ1 = 0, λ2 = 0. (A.22)

We typically will not encounter these degenerate cases in this course. We briefly note

that behaviour of the full equations, (A.1), can be highly nontrivial when the linearisation

reduces to these degenerate cases. Further details of such cases can be found in P. Glendin-

ning, Stability, Instability and Chaos [4], which is on the reading list for this course. When

λ1, λ2 = 0, Hartmann’s theorem doesn’t hold.

A.4.3 Case III

λ2, λ1 complex. The complex eigenvalues of a real matrix always occur in complex conju-

gate pairs. Thus we take, without loss of generality,

λ1 = a− ib = λ∗2, λ2 = a+ ib = λ∗1, (A.23)

where a, b real, b 6= 0, and ∗ denotes the complex conjugate.

We also have two associated complex eigenvectors e1, e2, satisfying

Je1 = λ1e1, Je2 = λ2e2, (A.24)

which are complex conjugates of each other, i.e. e1 = e∗2.

Using the same idea as in Case I above, we have

u = A1(t = 0)eλ1te1 +A2(t = 0)eλ2te2, (A.25)

though now, in general, A1(t = 0), λ1, e1, A2(t = 0), λ2, e2 are complex, and hence so is

u.
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Restricting u to be real gives

u = A1(t = 0)eλ1te1 +A∗
1(t = 0)eλ2te2 = A1(t = 0)eλ1te1 + (A1(t = 0)eλ1te1)

∗, (A.26)

and this is real, as for any complex number z, we have z + z∗ ∈ R.

After some algebra this reduces to

u = eat [M cos(bt) +K sin(bt)] = eat

[(

M1

M2

)

cos(bt) +

(

K1

K2

)

sin(bt)

]

, (A.27)

whereM = (M1,M2)
T , K = (K1,K2)

T are real, constant vectors, which can be expressed

in terms of A1(t = 0), A2(t = 0) and the components of the eigenvectors e1 and e2.

Equivalently, we have

x̄ = eat [cos(bt)M1 + sin(bt)K1] , ȳ = eat [cos(bt)M2 + sin(bt)K2] , (A.28)

where M1, M2, K1, K2 are real constants.

1. a > 0. We have x̄, ȳ are, overall, increasing exponentially but are oscillating too.

For, example, with K1 = 0, M1 = 1 we have x̄ = eat cos(bt), which looks like:

Note that the overall growth of x̄ is exponential at rate a. Thus, in general, the

phase plane portrait looks like one of the examples shows in Figure A.3.

Note. The sense of the rotation, clockwise or anti-clockwise, is easily determined

by calculating dȳ/dt when ȳ = 0 or dx̄/dt when x̄ = 0.

Definition. An equilibrium point which results in the above, is called an un-

stable spiral or, equivalently, an unstable focus. The word “unstable” refers to

the fact that integral paths leave the equilibrium point.
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Figure A.3: Possible phase portraits of a focus. The equilibrium point in each case is denoted

by the large dot.

2. a < 0. This is the same as 1. except now the phase plane portrait arrows point

towards the equilibrium point as x̄ and ȳ are exponentially decaying as time increases

rather than exponentially growing.

Definition. An equilibrium point which results in this case is called a stable

spiral or, equivalently, a stable focus. The word “stable” refers to the fact that

integral paths enter the equilibrium point.

3. a = 0. Thus we have λ2 = −ib = −λ1, b 6= 0, b real, and

x̄ = [cos(bt)M1 + sin(bt)K1] , ȳ = [cos(bt)M2 + sin(bt)K2] , (A.29)

where M1, M2, K1, K2 are constants. Note that

K2x̄−K1ȳ = L cos(bt), −M2x̄+M1ȳ = L sin(bt), (A.30)

where L = K2M1 − K1M2. Letting x∗ = K2x̄ − K1ȳ and y∗ = −M2x̄ +M1ȳ, we

have

(x∗)2 + (y∗)2 = L2, (A.31)

i.e. a circle in the (x∗, y∗) plane, enclosing the origin, which is equivalent to, in

general, a closed ellipse, in the (x̄, ȳ) plane enclosing the origin.

Note. As with 3. above, the sense of the rotation, clockwise or anti-clockwise, is

easily determined by calculating dȳ/dt when ȳ = 0 or dx̄/dt when x̄ = 0.

Definition. An equilibrium point which results in this case, is called a centre.

A centre is an example of a limit cycle.
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Definition. A limit cycle is an integral path which is closed (and which does not

have any equilibrium points).

A.5 Linear stability

Definition. An equilibrium point is linearly stable if the real parts of both eigenvalues

λ1, λ2 are negative.

From the expressions for u above, for example

u = A1(t = 0)eλ1te1 +A2(t = 0)eλ2te2, (A.32)

when λ1, λ2 real, we see that any perturbation away from the equilibrium decays back to

the equilibrium point.

Definition. An equilibrium point is linearly unstable if the real parts of at least one

of the eigenvalues λ1, λ2 is positive (and the other is non-zero).

Other situations are in general governed by the non-linear behaviour of the full equations

and we do not need to consider them here.

A.5.1 Technical point

The behaviour of the linearised equations and the behaviour of the non-linear equations

sufficiently close to the equilibrium point are guaranteed to be the same for any of the

equilibrium points [I 1-3], [III 1,2] or [II] with λ1 = λ2 6= 0. All these equilibrium points are

such that Re(λ1) Re(λ2) 6= 0. This is the essence of Hartmann’s theorem. This guarantee

does not hold for centres, or the equilibrium points described in [II] with λ1λ2 = 0.

The underlying reasons for this are as follows.

• First, note from the above that integral paths which meet the equilibrium point

can either grow/decay at exponential rate Re(λ1), or exponential rate Re(λ2), or

consist of the sum of two such terms. Second, note that in the above we took a

Taylor expansion. Including higher order terms in this Taylor expansion can lead to

a small correction for the rate of exponential decay towards or growth away from

the stationary point exhibited by the integral paths. These corrections tend to zero

as one approaches the equilibrium point.

• Consider the centre equilibrium point, which has Re(λ1) = Re(λ2) = 0, and an

exponential growth/decay of zero. If the corrections arising from the Taylor series are

always positive, the exponential growth/decay rate of all integral paths sufficiently

near the stationary point is always (slightly) positive. Hence these integral paths

grow exponentially away from the stationary point. However, b is non-zero, so x̄ and

ȳ are still oscillating. Hence one has the non-linear equations behave like a stable

focus.
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• If Re(λ1), Re(λ2) 6= 0, then for all integral paths reaching the stationary point, the

above mentioned corrections, sufficiently close to the equilibrium point, are negligi-

ble, e.g. they cannot change exponential growth into exponential decay or vice-versa.

This allows one to show that stationary points with Re(λ1) Re(λ2) 6= 0 are guar-

anteed to have the same behaviour for the linearised and the non-linear equations

sufficiently close to the equilibrium point.

A.6 Summary

We will typically only encounter stationary points [I 1-3], [III 1-3]. Of these stationary

points, all but centres exhibit the same behaviour for the linearised and the non-linear

equations sufficiently close to the equilibrium point as plotted above and in D. W. Jordan

and P. Smith, Mathematical Techniques [6].



Bibliography

[1] N. F. Britton. Essential Mathematical Biology. Springer Undergraduate Mathematics

Series. Springer, 2005.

[2] L. Edelstein-Keshet. Mathematical Models in Biology. SIAM Classics in Applied

Mathematics, 2005.

[3] A. Gierer and H. Meinhardt. A theory of biological pattern formation. Kybernetik,

12:30–39, 1972.

[4] P. Glendinning. Stability, Instability and Chaos: An Introduction to the Theory of

Nonlinear Differential Equations. Cambridge Texts in Applied Mathematics, 1999.

[5] T. Hillen and K. Painter. A user’s guide to PDE models for chemotaxis. J. Math.

Biol., 58(1):183–217, 2009.

[6] D. W. Jordan and P. Smith. Mathematical Techniques: An Introduction for the En-

gineering, Physical and Mathematical Sciences. Oxford University Press, 3rd edition,

2002.

[7] J. P. Keener and J. Sneyd. Mathematical Physiology, volume 8 of Interdisciplinary

Applied Mathematics. Springer, New York, 1st edition, 1998.

[8] J. D. Murray. Mathematical Biology I: An Introduction, volume I. Springer-Verlag,

3rd edition, 2003.

[9] J. D. Murray. Mathematical Biology II: Spatial Models and Biochemical Applications,

volume II. Springer-Verlag, 3rd edition, 2003.

[10] A. Okubo, P. K. Maini, M. H. Williamson, and J. D. Murray. On the spread of the

grey squirrel in Great Britain. Proc. R. Soc. Lond. B, 238(1291):113–125, 1989.

[11] L. E. Reichl. A Modern Course in Statistical Physics. Wiley-VCH, 3rd edition, 2009.

[12] T. F. Weiss. Cellular Biophysics, volume 2. MIT Press, 1996.

92



Ordinary Differential Equations
and Introduction to Dynamical

Systems
Holly D. Gaff

hgaff@tiem.utk.edu

University of Tennessee, Knoxville

SMB Short Course 2002 – p.1/57



Overview

� Single Species Systems� Solving for Equilibria� Evaluating Stability of Equilibria
Graphically� Two Species Systems� Lotka-Volterra Predator-Prey� Evaluating Stability of Equilibria� Examples from Epidemiology
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Single Species Systems

� Exponential Growth� Logistic Growth� Other Equations
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Exponential Growth

�
�� � �

Solution: � � � � � 	 
 �
What happens to this population?
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Exponential Growth

Exponential Growth
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Logistic Growth

�
� � � � �

What do you think the solutions of this will look
like?
Recall exponential growth was�

� � �
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Equilibria

�
�� � � � �

�
�� � �

� � � � � � �

� � � � � � �
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Stability of Equilibria
First evaluate the stability of

� � �
.

Near

� � �

,

�
��  !

So as increase,

"# "$ grows exponentially.

Therefore,

� � �
is an unstable equilibrium.
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Stability of Equilibria
What do you think will happen near

% & ?

'
'( & ) * +
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Stability near
If is just slightly above ,

,
,- . / 0 1 2 3

but if is just slightly below ,

,
,- . / 0 1 4 3

Therefore,

5 . is stable.
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Graphical View of Stability
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Other Alternatives

6 Gompertz Equation7
78 9 :<; = > ? @

6 Delay or lag time7
78 9 A A 8 BC A 8 D B B
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Other Alternatives

E Allee effectF
FG H I J K L K J

E Discrete time M G J N H M M G N N

E Stochastic processes
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Interacting Populations

O Predator-prey models

O Competition

O Mutualism
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Classic Predator-Prey

Lotka-Volterra Predator-Prey ModelP
PQ R S T U

P
PQ R V T W
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Classic Predator-Prey

Lotka-Volterra Predator-Prey ModelX Historical interestX Mass-action termX Bad mathematical modelX Structurally unstable
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Lotka-Volterra Phase Plane
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Interacting Populations
More Realistic Predator-prey models

Y
YZ [ \ ]_^ ^

Y
YZ [ ` ^ Y
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Interacting Populations
Another More Realistic Predator-prey models

a
ab c d e_f f g g

a
ab c h g g f a
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Interacting Populations
Competition

i jik l m j j n_o j
j o p jq q
ji qik l mq q n_o q

q o pq j j
q
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Interacting Populations
Mutualismr srt u v s s w_x s

s y sz z
sr zrt u vz z w_x z

z yz s s
z
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Interacting Populations
To analyze these types of models{ Nondimensionalize the system{ reduce the number of parameters{ simplfy the system{ Solve for equilibria{ Analyze stability of equilibria{ Translate back to determine biological

significance
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Phase-Plane Techniques
Some defintions of stability| Stable - if start small distance from

equilibrium, remain small distance as

}

| Lyapunov stable| locally stable| Asymptotically stable - if start small distance
from equilibrium, distance from equilibrium
approaches zero as

}

| locally asymptotically stable
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Phase-Plane Techniques

~ Linearization~ Bendixson-Dulac negative criterion~ Hopf bifurcation theorem~ Poincaré-Bendixson theorem~ Routh-Hurwitz Conditions
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Linearization
Given: �

�� � � � �

�
�� � � � �
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Linearization
Solve: � �� � � � �

� �� � � � �
to find the equilibria,

� �� � �
.

Let:

� ��� � � ��� � � �

� ��� � � ��� � � �
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Linearization
Then linearize about the equilibrium:

��� �� � �
�

������ ���� � � � �
�

�
������ ���� � � � �

� �� � � �
�

������ ���� � � � �
�

�
������ ���� � � � �

Or:

 �   � � ¡<¢ ¢ ¡¢£
¡£ ¢ ¡£ £

�
�
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Linearization
Let:

¤ ¥ ¦<§ § ¦<§¨
¦¨ § ¦¨ ¨

Where

¤

is known as the Jacobian matrix or the
community matrix.
We now look for solutions of the form:

© ª�« ¬ ¥ ©< ® ¯°

± ª�« ¬ ¥ ± ® ¯°
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Linearization
Substitute this back into the equations to obtain:

²�³<´ µ ¶<· · ³ ´ ¶<·¸ ¹´² ¹´ µ ¶¸ · ³ ´ ¶¸ ¸ ¹´
or

¶�· · º ² ¶ ·¸

¶¸ · ¶¸ ¸ º ² ³�´
¹´ µ »
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Linearization
From this, we obtain the characteristic equation

¼ ½¾ ¿ÁÀ�Â Â À ½ ½ Ã ¼ ¿ÀÂ Â À ½ ½ ¾ ÀÂ ½ À ½Â Ã Ä Å

Solving for the two roots of
¼

will determine the

stability of the system.
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Linearization

Æ If both roots of

Ç

are real and negative, the
equilibrium is a stable node.Æ If both roots of

Ç

are real and positive, the
equilibrium is an unstable node.Æ If the roots of

Ç

are real and of opposite signs,
the equilibrium is a saddle point.
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Linearization

È If the roots of

É

are complex with negative
real parts, the equilibrium is a stable focus.È If the roots of

É

are complex with positive real
parts, the equilibrium is an unstable focus.È If the roots of

É

are purely complex, the
equilibrium of the linearized system is a
center, but the original nonlinear system will
have a center or a stable or unstable focus
depending upon the exact nature of the
nonlinear terms.
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Routh-Hurwitz conditions
Routh-Hurwitz conditions give the necessary and
sufficient conditions for all roots of the
characteristic polynomial to have negative real
roots thus implying asymptotic stability.

Ê Ë Ì Í Ë Î�Ï Ï Î�Ð Ð Ñ Ò

Ó Ë Ô�Õ Ö Í Ë Î<Ï Ï Î<Ð Ð × Î<Ï Ð Î<Ð Ï Ø Ò
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Stability
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Bendixson negative criterion
Bendixson’s negative criterion

Consider the dynamical system,

ÙÛÚ ÙÜ ÝÞÁßáà â ãà ÙÛä ÙÜ Ý Þßáà â ãà where and are contin-

uously differentiable functions on some simply

connected domain å æ
. If ç Þ à ã Ý èé è Ú èê è ä

is of one sign in , there cannot be a closed orbit

contained within .
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Bendixson-Dulac negative crite-
rion
Additionally, we have the Bendixson’s-Dulac’s
negative criterion.

Let be a smooth function on ë ì
(with above

assumptions). If í î ï ð ñ òó ôòöõ òó ÷òöø is

of one sign in , there cannot be a closed orbit

contained within .
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Other theorems

ù The Hopf bifurcation theorem gives
conditions necessary for the existence of real
periodic solutions of a real system of ordinary
differential equations.ù Poincaré-Bendixson theorem can also be
used to prove the existence of periodic orbits.
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Examples from Epidemiology
Divide population up into distinct classesú û ü Susceptiblesú ý ü Infectivesú ü Recovered

Classes used depend on disease dynamics
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SIR Model

S RI

µN

α β

µ µ µS

S I

I

I

R
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SIR Model - constant population

þ ÿ
þ� � � � ÿ � � � � ÿ � � � ÿ

þ �
þ� � � ÿ � � � � � �

þ
þ� � � � �

� ÿ �

ÿ �	� � � ÿ�
� � �	� � � �
� �	� � � �� All parameters are

assumed to be positive.
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Questions for Epidemic Models

Given all parameters and initial conditions

� Does the infection spread or die out?

� If it does spread, how does it develop with
time?

� When will it start to decline?
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Equilibria
Note: Since is a constant, we can solve for
only

�

and

�

, then if we need , we can calculate
it easily.

� �
�� � � � � � � � � � � �

� �
� � � � � � � � � � � � �
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Equilibria
Gives two equilibria:

� � � � � � � �

� � � �
 � � � � � !  " " � #

 ! � #

Let

! � � � # � � "  � � " � �

! � � � # �  � � " � " � �
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Stability
Then $

$% & ' ( ) ' *

$
$ ) & ' ( %

$
$% & ( )

$
$ ) & ( % ' ' *
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Stability
First, let’s evaluate the stability of

+, - . /, - 0

The elements of the Jacobian evaluated at this
equilibrium are:

132 2 - 4 5

1326 - 4 7

16 2 - 0

16 6 - 7 4 4 5
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Stability
Applying the Routh-Hurwitz conditions:

8:9 9 8:; ; < = = >@?

89 9 8:; ; = 89 ; 8:; 9 < ? A ? = B C

Clearly, = = >@? D E

However, ? A ? = B C F E
only if B D ?

Therefore,

GH < I JH < E
is asymptotically stable

if B D ?
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Disease dies out
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Stability
Now, let’s evaluate the stability ofKL M NPO QR S TL M Q U R VXW N W Q YRU NO Q Y

The elements of the Jacobian evaluated at this
equilibrium are:

Z3[ [ M \ ] \ ] ^`_ \ \ ] a
] a

Z3[b M \ \ ]

Zb [ M ] ^`_ \ \ ] a
] a

Zb b M c
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Stability
Applying the Routh-Hurwitz conditions:

dfe e dfg g h i j i j k`l i i j m
j m

dfe e dfg g i dfe g dfg e h k j m j k`l i i j m
j m
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Stability
Both

n o n o p`q n n o r
o r s t

p o r o pq n n o r
o r s t

are true if q u o
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Stability
Therefore,

vw x y
z { | w x y } z ~ ~ y �

z } y �

is asymptotically stable if z � y

But what about limit cycles?
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Epidemic
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Bendixson’s Negative Criteria
Recall, we need

� � � � � �
��

�
��

to be of one sign in our region of interest, .

Define to be all positive values in

�

.
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Bendixson’s Negative Criteria

�
��

�
�� � � � � � � � � � � �

So this will be of one sign, negative, if� � � since

�

.

Therefore there are no limit cycles in .
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� Basic reproduction rate

� � is defined to be the number of secondary
infections produced by one primary infection
in a wholly susceptible population.

� So if � � �

, then the disease will spread.

� For SIR model, � is calculated by linearizing
the equation for

�� �� about

� � �

, which we
have already done.

� So the criteria for determining if the epidemic
will spread is, � � � � �P ¢¡ .
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Conclusions
There are many other applications of differential
equation models in biology. Once a basic set of
equations has been developed, there are a
number of standard techinques used to analyze
the stability of the equations.

We will take time in the lab to explore these and

other equations.

SMB Short Course 2002 – p.56/57



Acknowledgements

£ Murray, J. D., Mathematical Biology,
Springer-Verlag, 1989.

£ Kot, Mark, Elements of Mathematical
Ecology, Cambridge University Press, 2001.

£ Arrowsmith, D.K. and C.M. Place, Ordinary
Differential Equations, Chapman and Hall,
1982.

All slides created in LATEXusing the Prosper class.

SMB Short Course 2002 – p.57/57



Last update: 27-04-2016

34960 - MMB - Mathematical Models in Biology

Universitat Politècnica de Catalunya1 / 5

Degree competences to which the subject contributes
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7,5 Teaching languages:  English

Coordinating unit: 200 - FME - School of Mathematics and Statistics

Degree:

Teaching staff

Specific:

Transversal:

1. RESEARCH. Read and understand advanced mathematical papers. Use mathematical research techniques to 
produce and transmit new results.
2. MODELLING. Formulate, analyse and validate mathematical models of practical problems by using the appropriate 
mathematical tools.
3. CALCULUS. Obtain (exact or approximate) solutions for these models with the available resources, including 
computational means.
4. CRITICAL ASSESSMENT. Discuss the validity, scope and relevance of these solutions; present results and defend 
conclusions.

5. SELF-DIRECTED LEARNING. Detecting gaps in one's knowledge and overcoming them through critical self-
appraisal. Choosing the best path for broadening one's knowledge.
6. EFFICIENT ORAL AND WRITTEN COMMUNICATION. Communicating verbally and in writing about learning 
outcomes, thought-building and decision-making. Taking part in debates about issues related to the own field of 

Prior skills

    *  Proficiency in undergraduate mathematics: calculus, algebra, probability and statistics.
    * Ability to perform basic operations in linear algebra: eigenvalues and eigenvectors, computation of determinants, 
rank of matrices...
    * Ability to analyize and solve linear differential equations and discuss the stability of simple vector fields.
    * Interest towards biological applications of mathematics and/or previous working experience.

Requirements

    *  Basic knowledge of undergraduate mathematics: calculus, ordinary differential equations, linear algebra, probability 
and statistics.
    * First course in ordinary differential equations: linear differential equations, qualitative and stability theory and 
numerical simulation.
    * Basic knowledge of computer programming for scientific purposes.
    * Courses and all the bibliography will be in English.
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This course is an introduction to the most common mathematical models in biology: in populations dynamics, ecology, 
physiology, sequence analysis and phylogenetics. At the end of the course the student should be able to:

    * Understand and discuss basic models of dynamical systems of biological origin, in terms of the parameters.
    * Model simple phenomena, analyze them (numerically and/or analytically) and understand the effect of parameters.
    * Understand the diversity of mechanisms and the different levels of modelization of physiological activity.
    * Obtain and analyze genomic sequences of real biological species and databases containing them.
    * Use computer software for gene prediction, alignment and phylogenetic reconstruction.
    * Understand different gene prediction, alignment and phylogenetic reconstruction methods.
    * Compare the predictions given by the models with real data.
    * Communicate results in interdisciplinary teams.

specialization.
7. THIRD LANGUAGE. Learning a third language, preferably English, to a degree of oral and written fluency that fits in
with the future needs of the graduates of each course.
8. TEAMWORK. Being able to work as a team player, either as a member or as a leader. Contributing to projects 
pragmatically and responsibly, by reaching commitments in accordance to the resources that are available.
9. EFFECTIVE USE OF INFORMATI0N RESOURCES. Managing the acquisition, structure, analysis and display of 
information from the own field of specialization. Taking a critical stance with regard to the results obtained.

Learning objectives of the subject

Total learning time: 187h 30m Hours large group: 
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60h  

127h 30m 
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Study load

The course will be structured in five blocks each consisting of a brief introduction through theoretical lectures, the 
development of a short project in groups and wrap-up sessions with oral presentations, discussion and complementary 
lectures.

The central part intended to develop the short project will held at the computer lab. The SAGE computing environment 
will be used, with interfaces to Python, R and C if necessary. 

Teaching methodology
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Content

Mathematical models in Genomics

Mathematical Models in Neurohysiology

Models of Population Dynamics

Learning time: 75h 

Learning time: 56h 15m

Learning time: 37h 30m

Theory classes: 12h 
Laboratory classes: 12h 
Self study : 51h 

Theory classes: 9h 
Laboratory classes: 9h 
Self study : 38h 15m

Theory classes: 6h 
Laboratory classes: 6h 
Self study : 25h 30m

   1.  Brief introduction to genomics (genome, gen structure, genetic code...). Genome databases online.
   2. Phylogenetics: Markov models of molecular evolution (Jukes-Cantor, Kimura, Felsenstein hierarchy...), 
phylogenetic trees, branch lengths. Phylogenetic tree reconstruction (distance and character based methods).
   3. Genomics: Markov chains and Hidden Markov models for gene prediction. Tropical arithmetics and Viterbi 
algorithm. Forward and Expectation-Maximization algorithms. 
   4. Multiple sequence alignment: dynamical programming, tropical arithmetics and Pair-HMMs

1) Membrane biophysics.
2) Excitability and Action potentials: The Hodgkin-Huxley model, the Morris-Lecar model, integrate & fire models.
3) Bursting oscillations.
4) Synaptic transmission and dynamics.

1. Modelling interactions among populations with differential equations. Stability and bifurcations.
2. One-dimensional discrete models. Chaos in biological systems.
3. Paradigms of population dynamics in current research.

Description:

Description:

Description:
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50%: Each of the five blocks will give a part (10%) of the qualification, based on the perfomance on the short-projects. 
20%: Overall evaluation of the participation, interest and proficiency evinced along the course.
30%: Final exam aiming at validating the acquisition of the most basic concepts of each block.

Qualification system

Biological networks Learning time: 18h 45m

Theory classes: 3h 
Laboratory classes: 3h 
Self study : 12h 45m

1. Complex networks in biology.
2. Networks of neurons.

Description:
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Thesis advisor Author
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Quantum Dynamics in Biological Systems

Abstract

In the first part of this dissertation, recent efforts to understand quantum mechanical

effects in biological systems are discussed. Especially, long-lived quantum coherences

observed during the electronic energy transfer process in the Fenna-Matthews-Olson

complex at physiological condition are studied extensively using theories of open

quantum systems. In addition to the usual master equation based approaches, the

effect of the protein structure is investigated in atomistic detail through the combined

application of quantum chemistry and molecular dynamics simulations. To evaluate

the thermalized reduced density matrix, a path-integral Monte Carlo method with a

novel importance sampling approach is developed for excitons coupled to an arbitrary

phonon bath at a finite temperature. In the second part of the thesis, simulations

of molecular systems and applications to vibrational spectra are discussed. First,

the quantum dynamics of a molecule is simulated by combining semiclassical ini-

tial value representation and density funcitonal theory with analytic derivatives. A

computationally-tractable approximation to the sum-of-states formalism of Raman

spectra is subsequently discussed.
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Chapter 1

Introduction

Although more than 80 years passed of Paul Dirac’s announcement that “the

underlying physical laws necessary for the mathematical theory of a large part of

physics and the whole of chemistry are completely known” [1], tremendous amount of

efforts are still being made to achieve computationally-scalable simulations for quan-

tum dynamics and their associated chemical phenomena. The cost of solving the

time-dependent Schrödinger equation increases very quickly as the size of the system

grows and as the total length of the propagation time gets longer. Even for a modest

sized system, exact quantum mechanical dynamics easily becomes untractable with

currently available computational resources. Therefore, most of the useful approaches

for treating biological systems inevitably involve approximations to some extent. For

example, the structure and behavior of protein complexes found in biology are ex-

plained well in terms of classical statistical mechanics and molecular dynamics, which

are approximations of quantum statistical mechanics and time evolution [2–6]. For

a larger system, even classical mechanical calculations are very hard to carry out.
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Therefore, many coarse-grained and multiscale simulation methods have been sug-

gested and are still actively being developed [7–9]. Nevertheless, classical mechanics

has been the method of choice for studying biological systems in molecular level.

The Fenna-Matthews-Olson complex is a trimeric bacteriochlorophyll protein in

the light-harvesting system of green surfur bacteria [10, 11]. This complex transfers

the energy of the photons collected at the photosynthetic antenna complex to the

reaction center [12]. Eight bacteriochlorophyll (BChl) molecules each of which acting

as a chromophore are embedded in its monomer. Because its high-resolution X-ray

structure has been known for a long time, this subsystem has been studied extensively

by theoreticians [13, 14] as well as experimentalists [15–18]. Early efforts were mostly

focused on evaluating the Hamiltonian relevant to the spectroscopic measurement.

BChl molecules were modelled as two-level systems interacting each other through

electronic Förster’s dipole-dipole coupling [19]. Each BChl molecule was also assumed

to coupled to a harmonic oscillator bath to give the line broadening of the spectro-

scopic spectra. Within this assumption, the electronic Hamiltonian operator was

evaluated by fitting to linear absorption spectra [13, 20], interpreting 2D electronic

spectroscopy data [21], calculation based on force fields [14] and density functinal

theory [22].

Recent 2D nonlinear spectroscopy experiments suggested the existence of long-

lived quantum coherences lasting up to several hundreds of femtoseconds during the

electronic energy transfer process in certain photosynthetic subsystems, especially

within a Fenna-Matthews-Olson (FMO) complex of surfur bacterium, even under

physiological conditions [23–25]. Moreover, the observed quantum coherences are

2
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thought to contribute the energy transfer efficiency [26, 27]. Apparently, this energy

transfer dynamics cannot be explained without quantum mechanics. Moreover, tra-

ditional master equation with Born-Markov approximation proven to be unable to

reproduce this long-lived coherence [28]. Thus, more advanced theories of open quan-

tum systems have been applied to explain the dynamics of excitons in FMO complex

with some degree of success [29–33], and still being actively developed.

In the Part I of this dissertation, the efforts we made to understand those long

lived quantum coherences in biological systems are presented; Chapter 2 presents a

review on three approaches made in our group to characterize quantum effects in the

FMO complex. Chapter 3 is about the atomistic simulation to include the effects

from the realistic environment to the dynamics of excitons. Equilibrium properties

of the reduced density matrix of excitons coupled to an arbitrary bath are explored

in Chapter 4 using the path integral Monte Carlo method with importance sampling.

Part II features two projects on calculations absorption and resonance Raman spec-

tra based on approximate quantum dynamics of the molecular system, respectively.

Chapter 5 introduces an approximate but very accurate real space wavefunction prop-

agation in real time using time-averaged semiclassical initial value representation im-

plemented on top of the ab initio molecular dynamics. A simplified and computation-

ally tractable formulation of the resonance Raman scattering cross section using time

dependent density functional theory and analytic derivatives is presented in chapter

6.
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Chapter 1: Introduction

1.1 Review of Theoretical Approaches

For better understanding of the materials included this dissertation, introductions

to basic concepts and relevant theories will be provided in the rest of the current

chapter.

1.1.1 Basics of Open Quantum Systems

The density matrix of a closed system evolves according to the quantum Liouville

equation. As elaborated in the previous section, explicit evaluation of a quantum

mechanical time evolution becomes easily untractable, especially when there exist a

large number of degrees of freedom. Fortunately, we are concerned with only a part

of the total system in most cases. Consider an electronic energy transfer process in

a biomolecular system; the entire system encompassing all electronic and vibrational

degrees of freedom of the molecules and solvents should be, in principle, explicitly

propagated to obtain the exact dynamics. But we are interested only in the electronic

state of chromophores, which exists in a Hilbert space with only a few degrees of

freedom. Therefore, if an equation of motion for such a part of the total system can

be derived, all the information we need to obtain the solution for the problem can be

identified. Theories for treating such a reduced quantum system interacting with a

macroscopic environment is referred to theories of open quantum systems. The part of

our interest is called the system, whereas the rest of the total system is referred as the

bath. The partitioning is entirely determined by the decision of the physicist, although

there may be an obvious choice for the system and the bath in many cases. Given a

total density matrix, the system and the bath density matrices can be defined in a

4
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very similar way to a marginal probability density in the probability theory. Given a

probability density function of two random variables X and Y is given as PX,Y (x, y),

the marginal density for X is given as,

PX(x) =

∫
dy PX,Y (x, y), (1.1)

which is an effective probability density only for X. This density contains every

information we need if we are only interested in the distribution of X even though

the actual random process produces a random vector (X, Y ). Now a reduced density

matrix of the system can be defined as an effective, averaged density matrix over its

bath by tracing out the bath degrees of freedom,

ρS(t) ≡ TrBρ(t), (1.2)

where ρ(t) is the density matrix of the total system and TrB is the partial trace

operator which traces out the bath degrees of freedom. In the following sections, two

types of equations of motion for the reduced density matrix of the system will be

introduced based on different sets of approximations.

1.1.2 Redfield Equation

We will discuss the general formulation of the Redfield equation first and then

focus on the application on the electronic energy transfer dynamics. The Hamiltonian

for the total system can be decomposed as three components:

Ĥtotal = ĤS + ĤB + ĤSB, (1.3)

where the system Hamiltonian ĤS only acts on the Hilbert space of the system and

the bath Hamiltonian ĤB only act on the Hilbert space of the bath. Rest of the total

5
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Hamiltonian causing the entanglement between the system and the bath is specified

as the system-bath Hamiltonian ĤSB. By choosing the interaction picture relative to

ĤS + ĤB as the zeroth order Hamiltonian, the quantum mechanical equation of the

motion for the total density matrix can be obtained:

dρ̃(t)

dt
=

1

i~

[
H̃SB(t), ρ̃(t)

]
, (1.4)

where

Û0(0, t) = e−
i
~
∫ t
0 ĤS(s)+ĤB(s) ds,

ρ̃(t) = Û †0(0, t)ρ(t)Û0(0, t),

H̃SB(t) = Û †0(0, t)ĤSB(t)Û0(0, t). (1.5)

Operators with a tilde are in the interaction picture. Closed form for ρ̄(t) can be

obtained by integrating Eq. 1.4:

ρ̃(t) = ρ̃(0) +
1

i~

∫ t

0

ds
[
H̃SB(s), ρ̃(s)

]
. (1.6)

Tracing over the bath degrees of freedom and plugging in Eq. 1.4 gives

dρ̃S(t)

dt
=

1

i~
TrB

[
H̃SB(t), ρ̃(t)

]
=

1

i~
TrB

[
H̃SB(t), ρ̃(0)

]
− 1

~2

∫ t

0

ds TrB

[
H̃SB(t),

[
H̃SB(s), ρ̃(s)

]]
. (1.7)

Without the loss of generality, H̃SB(t) can be expanded as a linear combination of

factorized operators:

H̃SB(t) =
∑
k

Ãk(t)⊗ B̃k(t) =
∑
k

Ã†k(t)⊗ B̃†k(t). (1.8)

Note that individual Ã†k(t) and B̃†k(t) might not be Hermitian even though H̃SB(t) is

Hermitian. A series of assumptions needs to be introduced to proceed further. The

6
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first assumption is called the Born approximation, which states that the total density

matrix is factorizable at all times, and the bath state is in thermal equilibrium so it

does not depend on time:

ρ̃(t) ≈ ρ̃S(t)⊗ ρ̃B, (1.9)

ρ̃B = ρB =
exp(−βĤB)

TrB exp(−βĤB)
. (1.10)

By plugging in Eq. 1.8 and Eq. 1.9 to Eq. 1.7,

dρ̃S(t)

dt
=

1

i~
∑
k

〈
B̃k(t)

〉 [
Ãk(t), ρ̃S(0)

]
− 1

~2

∑
k,l

∫ t

0

ds
〈
B̃†k(t)B̃l(s)

〉
Ã†k(t)Ãl(s)ρ̃S(s)

+
1

~2

∑
k,l

∫ t

0

ds
〈
B̃l(s)B̃

†
k(t)
〉
Ã†k(t)ρ̃S(s)Ãl(s)

+
1

~2

∑
k,l

∫ t

0

ds
〈
B̃†k(t)B̃l(s)

〉
Ãl(s)ρ̃S(s)Ã†k(t)

− 1

~2

∑
k,l

∫ t

0

ds +
〈
B̃l(s)B̃

†
k(t)
〉
ρ̃S(s)Ãl(s)Ã

†
k(t)

=
1

i~
∑
k

〈
B̃k(t)

〉 [
Ãk(t), ρ̃S(0)

]
− 1

2~2

∑
k,l

∫ t

0

ds
〈{

B̃†k(t), B̃l(s)
}〉([

Ã†k(t),
[
Ãl(s), ρ̃S(s)

]])
− 1

2~2

∑
k,l

∫ t

0

ds
〈[
B̃†k(t), B̃l(s)

]〉([
Ã†k(t),

{
Ãl(s), ρ̃S(s)

}])
, (1.11)

where
〈
Õ
〉

= TrB

[
Õρ̃B

]
. Because the bath is assumed to be in thermal equilibrium,

the bath correlation function is stationary and only depends on the difference of the

two times:

ckl(s) =
1

~

〈
B̃†k(s)B̃l(0)

〉
=

1

~

〈
B̃†k(t)B̃l(t− s)

〉
. (1.12)

7
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It is convenient to define the symmetrized correlation function Skl(t) and the response

function χkl(t):

Skl(t) =
1

~

〈{
B̃†k(t), B̃l(0)

}〉
= ckl(t) + c∗kl(t), (1.13)

χkl(t) =
i

~

〈[
B̃†k(t), B̃l(0)

]〉
= i {ckl(t)− c∗kl(t)} . (1.14)

Skl(t) and χkl(t) are often referred to as the noise and dissipation kernels, respec-

tively [34]. The Eq. 1.11 can be rewritten in terms of these two real functions:

dρ̃S(t)

dt
=

1

i~
∑
k

〈
B̃k(t)

〉 [
Ãk(t), ρ̃S(0)

]
− 1

~
∑
k,l

∫ t

0

ds
1

2
Skl(t− s)

[
Ãk(t),

[
Ãl(s), ρ̃S(s)

]]
+

1

~
∑
k,l

∫ t

0

ds
i

2
χkl(t− s)

[
Ãk(t),

{
Ãl(s), ρ̃S(s)

}]
. (1.15)

By changing the integration variable to t− s,

dρ̃S(t)

dt
=

1

i~
∑
k

〈
B̃k(t)

〉 [
Ãk(t), ρ̃S(0)

]
− 1

~
∑
k,l

∫ t

0

ds
1

2
Skl(s)

[
Ãk(t),

[
Ãl(t− s), ρ̃S(t− s)

]]
+

1

~
∑
k,l

∫ t

0

ds
i

2
χkl(s)

[
Ãk(t),

{
Ãl(t− s), ρ̃S(t− s)

}]
. (1.16)

Now we introduce the second assumption which states that the bath is stationary

and its correlation function decays rapidly:

ckl(s) ≈ 0 for s > τc. (1.17)

This assumption will let us integrate up to infinite time in the second term of Eq. 1.16.

Moreover, if ρ̄S(t) does not change much during the characteristic time τc, ρ̄S(t− s)

8
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in the integrand can be approximated as ρ̄S(t) and a Markovian equation of motion

is obtained:

dρ̃S(t)

dt
≈ 1

i~
∑
k

〈
B̃k(t)

〉 [
Ãk(t), ρ̃S(0)

]
− 1

~
∑
k,l

∫ ∞
0

ds
1

2
Skl(s)

[
Ãk(t),

[
Ãl(t− s), ρ̃S(t)

]]
+

1

~
∑
k,l

∫ ∞
0

ds
i

2
χkl(s)

[
Ãk(t),

{
Ãl(t− s), ρ̃S(t)

}]
. (1.18)

Eq. 1.18 is referred as the Redfield equation. When a model of the bath correlation

function is given, this equation can be integrated to give a complete Markovian master

equation.

The electronic and phonon Hamiltonians of a typical Frenkel exciton can be spec-

ified as [29]:

Ĥel =
∑
n

εn|n〉〈n|+
∑
m 6=n

Emn|m〉〈n|, (1.19)

Ĥph =
∑
i

p̂2
i

2mi

+
1

2
miω

2
i q̂

2
i =

∑
i

~ωi
(
â†i âi +

1

2

)
, (1.20)

where the lowering and raising operators of the ith mode are

âi =

√
miωi
2~

(
q̂i +

i

miωi
p̂i

)
, (1.21)

â†i =

√
miωi
2~

(
q̂i −

i

miωi
p̂i

)
, (1.22)

with the commutation relation
[
âi, â

†
j

]
= δij. Using the displace harmonic oscillator

model, the electronic phonon interaction Hamiltonian can be specified in the following

9
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way:

Ĥel−ph =
∑
n

|n〉〈n| ⊗
∑
i

1

2
miω

2
i

[
(q̂i − dni)2 − q̂2

i

]
=
∑
n

(∑
i

1

2
miω

2
i d

2
ni

)
|n〉〈n|+

∑
n

|n〉〈n| ⊗
(
−
∑
i

miω
2
i dniq̂i

)

=
∑
n

(∑
i

1

2
miω

2
i d

2
ni

)
|n〉〈n|+

∑
n

|n〉〈n| ⊗
(
−
∑
i

miω
2
i dni(âi + â†i )

√
~

2miωi

)

=
∑
n

(∑
i

1

2
miω

2
i d

2
ni

)
︸ ︷︷ ︸

λn

|n〉〈n|+
∑
n

|n〉〈n|︸ ︷︷ ︸
Ân

⊗
(
−
∑
i

√
~miω3

i

2
dni(âi + â†i )

)
︸ ︷︷ ︸

B̂n

=
∑
n

λn|n〉〈n|︸ ︷︷ ︸
Ĥreorg

+
∑
n

Ân ⊗ B̂n︸ ︷︷ ︸
ĤSB

. (1.23)

where ωi, q̂i, p̂i, â
†
i and âi are the angular frequency, position operator, momentum

operator, raising and lowering operators for the ith normal mode coordinate, respec-

tively. dni is the displacement of the ith oscillator for the nth exciton and only the

Franck-Condon transition is assumed to occur during the dynamics. To apply the

Redfield equation, the decomposition of the total system into the system and bath

will be done in the following way:

ĤS = Ĥel + Ĥreorg =
∑
n

(εn + λn)|n〉〈n|+
∑
m 6=n

Emn|m〉〈n|, (1.24)

ĤB = Ĥph =
∑
i

~ωi
(
â†i âi +

1

2

)
, (1.25)

ĤSB = Ĥel−ph − Ĥreorg =
∑
n

Ân ⊗ B̂n. (1.26)

Note that the first term of the RHS of Eq. 1.18 vanishes with this decomposition.

Thus, evaluating the bath correlation would be enough to obtain the equation of

10
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motion for the reduced density matrix of the system.

cmn(t) =
1

~

〈
B̃†m(t)B̃n(0)

〉
=
∑
i,j

√
mimjω3

i ω
3
j

2
dmidnj

× TrB
eβĤB

Z(β)
eiωit(â

†
i âi+

1
2)(â†i + âi)e

−iωit(â†i âi+ 1
2)(â†j + âj). (1.27)

From the commutation relation [â†i , âi] = 1,

â†ie
−iωit(â†âi+ 1

2) = e−iωit(â
†âi− 1

2)â†i , (1.28)

âie
−iωit(â†âi+ 1

2) = e−iωit(â
†âi+ 3

2)âi (1.29)

By plugging in Eq. 1.28 and 1.29 to Eq. 1.27, we obtain

cmn(t) =
∑
i,j

√
mimjω3

i ω
3
j

2
dmidnjTrB

e−βĤB

Z(β)

(
eiωitâ†i + e−iωitâi

)
(â†j + âj)

=
∑
i

miω
3
i dmidni
2

TrB

{
e−βĤB

Z(β)
eiωitâ†i âi +

e−βĤB

Z(β)
e−iωitâiâ

†
i

}

=
∑
i

miω
3
i dmidni
2

TrB

{
e−βĤB

Z(β)
eiωitâ†i âi +

e−βĤB

Z(β)
e−iωit(â†i âi + 1)

}

=
∑
i

miω
3
i dmidni
2

[
n(ωi; β)eiωit + {n(ωi; β) + 1}e−iωit

]
,

c∗mn(t) =
∑
i

miω
3
i dmidni
2

[
n(ωi; β)e−iωit + {n(ωi; β) + 1}eiωit

]
, (1.30)

where Z(β) = TrBe
−βĤB is the partition function of the bath, and n(ωi; β) = 1

eβ~ω−1

is the Bose-Einstein distribution function at the inverse temperature β. Plugging in

11
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to Eq. 1.13 and 1.14,

Skl(t) =
∑
i

miω
3
i dmidni
2

{2n(ωi; β) + 1}
(
e−iωit + eiωit

)
=
∑
i

miω
3
i dmidni
2

{2n(ωi; β) + 1} {2 cos(ωit)}

= 2
∑
i

miω
3
i dmidni
2

coth

(
β~ωi

2

)
cos(ωit), (1.31)

χkl(t) = i
∑
i

miω
3
i dmidni
2

(
e−iωit − eiωit

)
= i
∑
i

miω
3
i dmidni
2

{−2i sin(ωit)}

= 2
∑
i

miω
3
i dmidni
2

sin(ωit). (1.32)

For convenience, we will rewrite the Eq. 1.31 and 1.32 by defining the spectral density

of the bath associated with the mth and nth excitons as

Jmn(ω) =
∑
i

miω
3dmidni
2

δ(ω − ωi). (1.33)

For any macroscopic bath with many degrees of freedom, its spectral density is essen-

tially a continuous function. The Skl(t) and χkl(t) can now be expressed in terms of

the spectral density as integral equations with respect to ω. Because ωi’s are positive

definite, the integration can be done only in the positive region.

Skl(t) = 2

∫ ∞
0

dω Jmn(ω)coth

(
β~ω

2

)
cos(ωt), (1.34)

χkl(t) = 2

∫ ∞
0

dω Jmn(ω) sin(ωt). (1.35)

The Markovian master equation for a system coupled to a harmonic oscillator bath

with linear coupling, like the displaced oscillator model, can be completely specified

by spectral densities. One popular phenomological model for the spectral density is

12
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an Ohmic spectral density with a Lorentz-Drude cutoff function:

Jmn(ω) =
2λmn
π

ω
Ωmn

Ω2
mn + ω2

, (1.36)

where λmn is the reorganization energy and Ωmn is a high frequency cutoff constant.

With this choice of spectral density, analytic expressions for the noise and dissipation

kernels can be obtained:

Smn(t) =
4λmn
β~

Ωmn

(
e−Ωmnt

Ωmn

+
∞∑
k=1

2Ωmne
−Ωmnt − νke−νkt
Ω2
mn − ν2

k

)
, (1.37)

χmn(t) = 2λmnΩmne
−Ωmnt, (1.38)

where νk = 2πk
β~ are Matsubara frequencies. There exist alternative expressions known

to be converge faster thatn the Matsubara series and they are often favored in actual

implementations of the formalism[35–37]. For simplicity, only the high temperatures

approximation of Smn(t) ≈ 4λmn
β~ e−Ωmnt will be considered.

Under the assumptions of the Redfield equation, Ãk(t − s) can be approximated

as a Taylor expansion up to the first order in s:

Ãk(t− s) = Ãk(t)− s
d

dt
Ãk(t) = Ãk(t) +

s

i~

[
ĤS, Ãk(t)

]
. (1.39)

13



Chapter 1: Introduction

Plugging in all above to Eq. 1.18 and integrating gives

d

dt
ρ̃S(t) ≈ −1

~
∑
k,l

∫ ∞
0

ds
2λkl
β~

e−Ωmns
[
Ãk(t),

[
Ãl(t), ρ̃S(t)

]]
− 1

~
∑
k,l

∫ ∞
0

ds
2λkl
iβ~2

se−Ωmns
[
Ãk(t),

[[
ĤS, Ãl(t)

]
, ρ̃S(t)

]]
+

1

~
∑
k,l

∫ ∞
0

ds
iλmnΩmn

~
e−Ωmns

[
Ãk(t),

{
Ãl(t), ρ̃S(t)

}]
+

1

~
∑
k,l

∫ ∞
0

ds
λmnΩmn

~2
se−Ωmns

[
Ãk(t),

{[
ĤS, Ãl(t)

]
, ρ̃S(t)

}]
= −1

~
∑
k,l

2λkl
β~Ωmn

[
Ãk(t),

[
Ãl(t), ρ̃S(t)

]]
+

1

~
∑
k,l

2iλkl
β~2Ω2

mn

[
Ãk(t),

[[
ĤS, Ãl(t)

]
, ρ̃S(t)

]]
+

1

~
∑
k,l

iλmn
~

[
Ãk(t),

{
Ãl(t), ρ̃S(t)

}]
+

1

~
∑
k,l

λmn
~2Ωmn

[
Ãk(t),

{[
ĤS, Ãl(t)

]
, ρ̃S(t)

}]
. (1.40)

If expressed in the Schrödinger picture, the generator of the quantum master equation

does not depend on time:

d

dt
ρS(t) =

1

i~

[
ĤS, ρ(t)

]
− 1

~
∑
k,l

2λkl
β~Ωmn

[
Âk,

[
Âl, ρS(t)

]]
+

1

~
∑
k,l

2iλkl
β~2Ω2

mn

[
Âk,

[[
ĤS, Âl

]
, ρS(t)

]]
+

1

~
∑
k,l

iλmn
~

[
Âk,

{
Âl, ρS(t)

}]
+

1

~
∑
k,l

λmn
~2Ωmn

[
Âk,

{[
ĤS, Âl

]
, ρS(t)

}]
. (1.41)
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1.1.3 Reduced Hierarchical Equation of Motion

The Born approximation employed in the Redfield equation leads to the pertur-

bation expansion to the second order. Due to this limitation, the Redfield equation

is not applicable when the system-bath interaction is of comparable scale to the site-

site coupling [28]. Also, non-Markovian effects cannot be captured because the bath

correlation time is assumed to be short. For a harmonic oscillator bath with Ohmic

spectral density and Lorentz-Drude cutoff, a non-perturbative and non-Markovian

equation of motion can be derived by exploiting the following facts: (1) The noise

and dissipation kernels are linear combinations of exponential functions of time and

(2) the system-bath interaction Hamiltonian is linear in the position operators of bath

oscillators. We now derive this non-Markovian master equation.

Starting from the previous decomposition for the Hamiltonian of Frenkel excitons

in Eq. 1.24-1.26 and substituting to Eq. 1.4, we obtain

d

dt
ρ̃(t) =

1

i~

[
H̃SB, ρ̃(t)

]
=

1

i~
∑
k

{
Ãk(t)⊗ B̃k(t)

}
ρ̃(t), (1.42)

where

Ãk(t)σ =
[
Ãk(t), σ

]
, Ã†k(t)σ =

[
Ã†k(t), σ

]
,

B̃k(t)σ =
[
B̃k(t), σ

]
, B̃†k(t)σ =

[
B̃†k(t), σ

]
. (1.43)

The formal solution of the Eq.1.42 is,

ρ̃(t) = T← exp

(
1

i~

∫ t

0

ds
∑
k

Ãk(s)⊗ B̃k(s)
)
ρ̃(0), (1.44)
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where T← is the chronological time ordering operator. By assuming that the initial

state is factorizable, ρ̃(0) = ρ̃S(0)⊗ ρ̃B, where the bath is in equilibrium like Eq. 1.10,

the reduced density matrix of the system can be written as,

ρ̃S(t) = T←

〈
exp

(
1

i~

∫ t

0

ds
∑
k

Ãk(s)⊗ B̃k(s)
)〉

ρ̃(0). (1.45)

The bath operators B̃k(t) are linear in the bath position operators. By applying

Kubo’s generalized cumulant expansion [38], the equation above can be expressed as,

ρ̃S(t) = T←

〈
exp

(
1

i~

∫ t

0

ds
∑
k

Ãk(s)⊗ B̃k(s)
)〉

ρ̃(0)

= T← exp

(
− 1

~2

∑
k

∫ t

0

dt1

∫ t1

0

ds1

〈{
Ã†k(t1)⊗ B̃†k(t1)

}{
Ãk(s1)⊗ B̃k(s1)

}〉)
ρ̃(0).

(1.46)

The integrand of Eq. 1.46 can be explicitly evaluated by adapting an Ohmic spectral

density in Eq. 1.36:

− 1

~2

〈{
Ã†k(t1)⊗ B̃†k(t1)

}{
Ãk(s1)⊗ B̃k(s1)

}〉
= F̃k(t1)e−Ωk(t1−s1)T̃k(s1), (1.47)

where F̃k(t) and T̃k(t) are superoperators defined as,

F̃k(t) = i
[
Ã†k(t), σ

]
,

T̃k(t) =
2iλk
β~2

[
Ãk(t), σ

]
+
λkΩk

~

{
Ãk(t), σ

}
. (1.48)

For algebraic convenience, we assumed that the bath operators coupled to different

sites are uncorrelated. Rewriting Eq. 1.46 using these superoperators, the reduced

density matrix can be obtained as,

ρ̃S(t) = T← exp

(∑
k

∫ t

0

dt1F̃k(t1)

∫ t1

0

ds1 e
−Ωk(t1−s1)T̃k(s1)

)
ρ̃S(0)

= T←

{∏
k

exp

(∫ t

0

dt1F̃k(t1)

∫ t1

0

ds1 e
−Ωk(t1−s1)T̃k(s1)

)}
ρ̃S(0), (1.49)
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Differentiating both sides of Eq. 1.49,

d

dt
ρ̃S(t) = T←

∑
l

F̃l(t)
(∫ t

0

ds e−Ωk(t1−s1)T̃l(s)
)

×
{∏

k

exp

(∫ t

0

dt1F̃k(t1)

∫ t1

0

ds1 e
−Ωk(t1−s1)T̃k(s1)

)}
ρ̃S(0)

=
∑
l

F̃l(t)T←
(∫ t

0

ds e−Ωk(t1−s1)T̃l(s)
)

×
{∏

k

exp

(∫ t

0

dt1F̃k(t1)

∫ t1

0

ds1 e
−Ωk(t1−s1)T̃k(s1)

)}
ρ̃S(0)

=
∑
l

F̃l(t)σ̃{··· ,nl−1=0,nl=1,nl+1=0,··· }(t), (1.50)

where auxiliary matrices σ̃{n1,··· ,nN} are defined as,

σ̃{n1,··· ,nN}(t) = T←
∏
k

(∫ t

0

ds e−Ωk(t−s)T̃k(s)
)nk

× exp

(∫ t

0

dt1F̃k(t1)

∫ t1

0

ds1 e
−Ωk(t1−s1)T̃k(s1)

)
ρ̃S(0), (1.51)

and it becomes zero if any element in {nk} is negative. Note that ρ̃S(t) = σ̃{0,··· ,0}(t)

and σ̃{n1,··· ,nN}(0) = 0. The equation of motion of σ̃{n1,··· ,nN}(t) is,

d

dt
σ̃{n1,··· ,nN}(t) = −

∑
l

Ωlσ̃{n1,··· ,nN}

+
∑
l

nlT̃l(t)σ̃{n1,··· ,nl−1,··· ,nN} +
∑
l

F̃l(t)σ̃{n1,··· ,n1+1,··· ,nN}, (1.52)

in the interaction picture. Moving to the Schrödinger picture, we obtain a set of

hierarchical equations of motion.

d

dt
σ{n1,··· ,nN}(t) =

1

i~
LSσ{n1,··· ,nN} −

∑
l

Ωlσ{n1,··· ,nN}

+
∑
l

nlTl(t)σ{n1,··· ,nl−1,··· ,nN} +
∑
l

Fl(t)σ{n1,··· ,n1+1,··· ,nN}. (1.53)
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1.1.4 Haken-Strobl-Reineker Model

First developed by Haken, Strobl and Reineker [39–41], this phenomenological

stochastic model describes the coherent and incoherent dynamics of Frenkel excitons

at the same time. Instead of decompose the total complex to the system and bath,

Haken-Strobl-Reineker (HSR) model mainly focuses on the system Hamiltonian, and

the effect of the bath environment is included as time-dependent stochastic terms:

Ĥsys =
∑
n

εn|n〉〈n|+
∑
m 6=n

Emn|m〉〈n|,

Ĥenv(t) =
∑
m,n

hmn(t)|m〉〈n|,

Ĥtotal(t) = Ĥsys + Ĥenv(t). (1.54)

Realized stochastic density matrix ρ̆S(t) can be defined per realization of the stochas-

tic Hamiltonian according to the usual form of the quantum Liouville equation:

dρ̆S(t)

dt
=

1

i~

[
Ĥtotal, ρ̆S(t)

]
=

1

i~

[
Ĥsys, ρ̆S(t)

]
+

1

i~

[
Ĥenv(t), ρ̆S(t)

]
. (1.55)

Then the reduced density matrix of the system can be obtained as the expectation of

the density matrices over the realized trajectory:

ρS(t) = E (ρ̆S(t)) . (1.56)

Note that ρ̆S(t) is a stochastic process while ρS(t) is deterministic. Equivalently, the

equation of the motion for the reduced density matrix of the system can be obtained

by taking expectation on both sides of Eq. 1.55:

dρS(t)

dt
=

1

i~

[
Ĥsys, ρS(t)

]
+

1

i~
E
([
Ĥenv(t), ρ̆S(t)

])
. (1.57)
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hmn(t) are assumed to have the correlation functions given by

E {hmn(t)hnm(t′)} =
~γmn
τc

e−
|t−t′|
τc , γmn = γnm,

E {hmn(t)hmn(t′)} =
~γ̄mn
τc

e−
|t−t′|
τc , γ̄mn = γ̄∗nm, (1.58)

where τc is the correlation time. The mean values can be set to zero by absorbing

any leftover term into the system Hamiltonian. In the original parametrization, these

stochastic terms were assumed to have delta function correlation in time. There exist

a formulation with exponential correlation function for a two-exciton system [42], but

the derivation presented here is generalized to cover any number of excitons. The

constant ~ was introduced for γmn to have the unit of energy. Although an extension

of the HSR model with nonzero intersite correlations exists [43], only the formulation

with uncorrelated sites will be discussed in this chapter because of its simplicity and

clarity.

To evaluate the second term of Eq. 1.57, we will rewrite the equation using an

orthonormal basis set {Ωk} spanning the density operator space with the following

inner product [44]:

〈Ωk|Ωl〉 ≡ Tr(Ω†kΩl) = δkl. (1.59)

With this orthonormal basis, the commutation relation between operators can be

interpreted as a linear operator acting on the aforementioned vector space:

HΩl =
[
Ĥ,Ωl

]
=
∑
k

Tr
(

Ω†k

[
Ĥ,Ωl

])
Ωk

=
∑
k

Tr
(
Ĥ
[
Ωl,Ω

†
k

])
Ωk. (1.60)
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Then, Eq. 1.55 can be rewritten as

d

dt
|ρ̆S(t)〉 =

1

i~
Hsys|ρ̆S(t)〉+

1

i~
Henv|ρ̆S(t)〉, (1.61)

where |ρ̆S(t)〉 =
∑

k Tr(Ω†kρ̆S)Ωk, Hsys =
∑

k,l Tr
(
Ĥsys

[
Ωl,Ω

†
k

])
|Ωk〉〈Ωl| and Henv =∑

k,l Tr
(
Ĥenv

[
Ωl,Ω

†
k

])
|Ωk〉〈Ωl|.

Because the initial state is same for all instances of the trajectories, a closed form

of a realization of the density matrix can be obtained by integrating Eq. 1.61:

|ρ̆S(t)〉 = T← exp

(
1

i~

∫ t

0

ds Hsys

)
T← exp

(
1

i~

∫ t

0

ds Henv(s)

)
|ρS(0)〉, (1.62)

where T← is the chronological time-ordering operator. Taking expectation on both

sides, the vector expression for the system density matrix can be obtained:

|ρS(t)〉 = T← exp

(
1

i~

∫ t

0

ds Hsys

)
E
{
T← exp

(
1

i~

∫ t

0

ds Henv(s)

)}
|ρS(0)〉. (1.63)

Note that 〈Ωk|Henv|Ωl〉 = Tr
(

Ω†k

[
Ĥenv,Ωl

])
is also a stationary Gaussian random

process with zero mean and correlation time τc because the term is linear in hmn(t)’s:

E {Henv(t2)Henv(t1)} =
~
τc
e−
|t2−t1|
τc E (1.64)

E is a constant superoperator and has the unit of energy. The expectation of an

operator appearing in Eq. 1.63 can be rewritten using only the second moments by

Kubo’s generalized cumulant expansion [38]:

E
{
T← exp

(
1

i~

∫ t

0

ds Henv

)}
= T← exp

(
− 1

~2

∫ t

0

dt2

∫ t2

0

dt1 E {Henv(t2)Henv(t1)}
)

= T← exp

(
−1

~

∫ t

0

dt2

∫ t2

0

dt1
1

τc
e−
|t2−t1|
τc E

)
= T← exp

{
−1

~

∫ t

0

dt2

(
1− e−

t2
τc

)
E
}
. (1.65)
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Plugging in this result to Eq. 1.63 gives

|ρS(t)〉 = T← exp

(
1

i~

∫ t

0

ds Hsys

)
T← exp

{
−1

~

∫ t

0

dt2

(
1− e−

t2
τc

)
E
}
|ρS(0)〉.

(1.66)

By differentiating the equation above, we can come up with the generator for the

vector representation of the density matrix.

d

dt
|ρS(t)〉 =

1

i~

{
Hsys − i

(
1− e− t

τc

)
E
}
|ρS(t)〉. (1.67)

For the practical use, we want to obtain the equation of motion for each element

of the density matrix of the system. Those equations can be obtained by choosing

Ωk = |k1〉〈k2|. k is the collective index for (k1, k2) in this case and |Ωk〉 is equivalent

to |k1, k2〉.

d

dt
〈k1|ρS(t)|k2〉 = 〈k1, k2|

d

dt
|ρS(t)〉

=
1

i~
〈k1, k2|Hsys|ρS(t)〉 − 1

~

(
1− e− t

τc

)
〈k1, k2|E|ρS(t)〉. (1.68)

The explicit form of the E {Henv(t1)Henv(t2)} need to be found to evaluate the second

term of Eq. 1.68.

Henv(t2)Henv(t1) =
∑
k,l

∑
j

Tr
(
Ĥenv(t2)

[
Ωj,Ω

†
k

])
Tr
(
Ĥenv(t1)

[
Ωl,Ω

†
j

])
|Ωk〉〈Ωl|,

(1.69)

where the prefactors of the superoperator Henv are

Tr
(
Ĥenv(t)

[
Ωl,Ω

†
k

])
= Tr

{∑
m,n

hmn(t) (|m〉〈n|l1〉〈l2|k2〉〈k1| − |l1〉〈l2|m〉〈n|k2〉〈k1|)
}

= Tr

{∑
m

δk2l2hml1(t)|m〉〈k1| − hl2k2(t)|l1〉〈k1|
}

= δk2l2hk1l1(t)− δk1l1hl2k2(t). (1.70)
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By plugging in Eq. 1.70 to Eq. 1.69,

∑
j

Tr
(
Ĥenv(t2)

[
Ωj,Ω

†
k

])
Tr
(
Ĥenv(t1)

[
Ωl,Ω

†
j

])
=
∑
j1,j2

{δk2j2hk1j1(t2)− δk1j1hj2k2(t1)} {δj2l2hj1l1(t2)− δj1l1hl2j2(t1)}

=
∑
j1

δk2l2hk1j1(t2)hj1l1(t1)− hk1l1(t2)hl2k2(t1)

− hl2k2(t2)hk1l1(t1) +
∑
j2

δk1l1hj2k2(t2)hl2j2(t1)

= −hk1l1(t2)hl2k2(t1)− hl2k2(t2)hk1l1(t1)

+
∑
j

δk2l2hk1j(t2)hjl1(t1) +
∑
j

δk1l1hjk2(t2)hl2j(t1). (1.71)

To calculate the second term on the right hand side of Eq. 1.68, the following term

should be evaluated first:

〈k1, k2|E {Henv(t2)Henv(t1)} |ρS(t)〉

= −
∑
l1,l2

E {hk1l1(t2)hl2k2(t1)} 〈l1|ρS(t)|l2〉 −
∑
l1,l2

E {hl2k2(t2)hk1l1(t1)} 〈l1|ρS(t)|l2〉

+
∑
l1,l2

∑
j

E {δk2l2hk1j(t2)hjl1(t1)} 〈l1|ρS(t)|l2〉

+
∑
l1,l2

∑
j

E {δk1l1hjk2(t2)hl2j(t1)} 〈l1|ρS(t)|l2〉. (1.72)
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For the diagonal elements, or for k1 = k2 = k,

〈k, k|E {Henv(t2)Henv(t1)} |ρS(t)〉

= −
∑
l1,l2

E {hkl1(t2)hl2k(t1)} 〈l1|ρS(t)|l2〉 −
∑
l1,l2

E {hl2k(t2)hkl1(t1)} 〈l1|ρS(t)|l2〉

+
∑
l1,l2

∑
j

E {δkl2hkj(t2)hjl1(t1)} 〈l1|ρS(t)|l2〉

+
∑
l1,l2

∑
j

E {δkl1hjk(t2)hl2j(t1)} 〈l1|ρS(t)|l2〉

= −
∑
j

~ (γkj + γjk)

τc
e−
|t2−t1|
τc 〈j|ρS(t)|j〉+

∑
j

~ (γkj + γjk)

τc
e−
|t2−t1|
τc 〈k|ρS(t)|k〉.

(1.73)

Therefore,

〈k, k|E|ρS(t)〉 = −
∑
j

(γkj + γjk) 〈j|ρS(t)|j〉+
∑
j

(γkj + γjk) 〈k|ρS(t)|k〉. (1.74)

Plugging in Eq. 1.74 to Eq. 1.68,

d

dt
〈k|ρS(t)|k〉 =

1

i~
〈k|
[
Ĥsys, ρS(t)

]
|k〉+

(
1− e− t

τc

)∑
j

γkj + γjk
~

〈j|ρS(t)|j〉

−
(

1− e− t
τc

)∑
j

γkj + γjk
~

〈k|ρS(t)|k〉. (1.75)
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Similarly, for the off-diagonal elements, k1 6= k2,

〈k1, k2|E {Henv(t2)Henv(t1)} |ρS(t)〉

= −
∑
l1,l2

E {hk1l1(t2)hl2k2(t1)} 〈l1|ρS(t)|l2〉 −
∑
l1,l2

E {hl2k2(t2)hk1l1(t1)} 〈l1|ρS(t)|l2〉

+
∑
l1,l2

∑
j

E {δk2l2hk1j(t2)hjl1(t1)} 〈l1|ρS(t)|l2〉

+
∑
l1,l2

∑
j

E {δk1l1hjk2(t2)hl2j(t1)} 〈l1|ρS(t)|l2〉

= −2~γ̄k1k2
τc

e−
|t2−t1|
τc 〈k2|ρS(t)|k1〉

+
∑
j

~γk1j
τc

e−
|t2−t1|
τc 〈k1|ρS(t)|k2〉+

∑
j

~γjk2
τc

e−
|t2−t1|
τc 〈k1|ρS(t)|k2〉. (1.76)

Therefore,

〈k1, k2|E|ρS(t)〉 = −2γ̄k1k2〈k2|ρS(t)|k1〉+
∑
j

(γk1j + γjk2) 〈k1|ρS(t)|k2〉. (1.77)

Plugging in Eq. 1.77 to Eq. 1.68,

d

dt
〈k1|ρS(t)|k2〉 =

1

i~
〈k1|

[
Ĥsys, ρS(t)

]
|k2〉+

(
1− e− t

τc

) 2γ̄k1k2
~
〈k2|ρS(t)|k1〉

−
(

1− e− t
τc

)∑
j

γk1j + γjk2
~

〈k1|ρS(t)|k2〉. (1.78)

Note that in the completely memoryless bath limit of τc → 0, the original Haken-

Strobl-Reineker fomulation is restored.
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Chapter 2

Characterization and quantification

of the role of coherence in ultrafast

quantum biological experiments

2.1 Introduction

The initial step in photosynthesis is highly efficient excitonic transport of the

energy captured from photons to a reaction center [45]. In most plants and pho-

tosynthetic organisms this process occurs in light-harvesting complexes which are

interacting chlorophyll molecules embedded in a solvent and a protein environment

[46]. Several recent experiments show that excitonic coherence can persist for several

hundreds of femtoseconds even at physiological temperature [23–25, 47]. These ex-

periments suggest the hypothesis that quantum coherence is biologically relevant for

photosynthesis. The results have motivated a sizeable amount of recent theoretical
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work regarding the reasons for the long-lived coherences and their role to the function.

The focus of many studies is on the theoretical models employed. In this con-

text, it is essential to be as realistic an possible and employ the least amount of

approximations. Most of the currently-employed methods involve a master equation

for the reduced excitonic density operator where the vibrational degrees of freedom

(phonons) of the protein and solvent are averaged out. Amongst these simple meth-

ods are the Haken-Strobl model and Redfield theory as employed in Refs. 27, 48 and

49 respectively. To interpolate between the usual weak and strong exciton-phonon

coupling limits, Ishizaki and Fleming developed a hierarchical equation of motion

(HEOM) theory which takes into account non-equilibrium molecular reorganization

effects [29]. Jang et al. perform a second order time-convolutionless expansion after

a small polaron transformation to include strong coupling effects [50]. Another set

of studies focuses on the role of quantum coherence and the phonon environmentin

terms of transport efficiency or entanglement. It was shown that the transport effi-

ciency is enhanced by the interaction or interplay of the quantum evolution with the

phononic environment [27, 48, 49, 51]. Entanglement between molecules is found to

persist for long times [52–54].

The ongoing effort can be summarized with two equally important questions:

What are the microscopic reasons for the persistence of quantum coherence and what

is the relevance of the quantum effect to the biological functionality of the organ-

ism under study? In this work, we summarize the recent efforts from our group to

approach the problem from several angles. Firstly, we investigate the role of coher-

ences in the exciton transfer process of the Fenna-Matthews-Olson (FMO) complex.
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We quantify the amount and the contribution of coherence to the efficient energy

transfer process. Secondly, we present our quantum mechanics/molecular mechanics

(QM/MM) approach to obtain information about the system at the atomistic level,

such as detailed bath dynamics and spectral densities. Finally, we propose a spectro-

scopic tool that allows for obtaining directly the information of the quantum process

via our recent theoretical proposal for the quantum process tomography technique to

the ultrafast regime.

2.2 The Role of Quantum Coherence

In this section, we discuss the question about the relevance of quantum effects

to the biological function. A negative answer to this question would mean that

a particular effect, while being quantum, is not leading to any improvement in the

functionality of a biological system, and therefore would be a byproduct of the spatial

and temporal scales and physical properties of the problem. For example, in energy

transfer (ET) quantum coherence could arise from the closely packed arrangement of

the chromophores in a protein scaffold but it could, in principle, represent a byproduct

of that arrangement and not a relevant feature. Another example, it may be true

that the human eye can detect a single photon, but it is not clear if this quantum

effect is relevant to the biological function, which usually operates at much larger

photon fluxes. If, on the other hand, the above yes-no question of the relevance is

answered positively for a particular effect in a biological system, it would present a

major step towards establishing the relevance or importance of a quantum biological

phenomenon. A natural follow-up questions is: How important quantitatively is a
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particular quantum effect?

Both of these questions should preferably be studied by experimental means. An

experiment would have to be designed in a way that tests for the biological relevance

of quantum coherence. Possible experiments could involve quantum measurements on

mutated samples. In the FMO complex that acts as a molecular ET wire the efficiency

of the transport event is most likely a good quantifier for biological function. One

would need a way to experimentally quantify this efficiency and extract the relevance

of quantum coherence to the efficiency. This can be hard in practice. Yet, as we

will discuss in this work, quantum process tomography is able to obtain detailed

information about quantum coherence and the phonon environment and might thus

lead to progress in this area.

In the case when experimental access to an observable that involves the biolog-

ical relevance is hard or impossible, a theoretical treatment can provide insight. It

is illustrative to analyze a model of the particular biological process in terms of a

quantifier for the success of the process. An example is the aforementioned efficiency

of energy transport. In bird vision, the quantum yield of a chemical reaction is a

relevant measure [55]. Once a detailed model and a success criterion is established,

one needs to quantify the contribution of quantum coherence to the success criterion.

For this step, one can proceed in two distinct pathways. The first pathway is a com-

parison to a classical reference point; the success criterion is computed for the actual

system/model and a classical reference model that does not include quantum correla-

tions. The difference of these two values is attributed to quantum mechanics and can

be considered the quantum mechanical contribution to the success of the process. For
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example, the energy transfer dynamics of a sophisticated quantum mechanical model

such as [29] could be compared to a semi-classical Förster treatment that leads to a

hopping description. In general, this comparison strategy has the drawback that one

has to invoke a classical, and in some cases very artificial, model.

Our work has been mainly concentrated on a second theoretical pathway in an-

swering the relevance question, which overcomes this issue. It is based on just the

quantum mechanical model and the success quantifier. No other, for example clas-

sical, model is invoked. The actual model will contain dynamical processes that are

quantum coherent and others that are incoherent. The non-trivial task is to decon-

struct how the various processes contribute to the performance criterion. This can

be done by decomposing the performance criterion into a sum of contributions, each

associated with a particular process. The terms in this sum related to quantum me-

chanical processes will then give a theoretical answer to the overall relevance of the

particular process and will quantify this relevance. This line of thought was devel-

oped and discussed in Ref. 26 for energy transfer in the FMO complex and provided

insight into both questions ”Is a quantum effect relevant?” and ”If yes, how much?”,

at least from a theoretical standpoint within the approximations of the model under

consideration. In this section, we extend this idea to include the effect of the initial

conditions and compare the results to a total integrated coherence, or concurrence,

measure. We utilize secular Redfield theory and the hierarchy equation of motion

approach.

The Hamiltonian describing a single exciton is given by:

He =
∑
m

(εm + λ)|m〉〈m|+
∑
m<n

Jmn (|m〉〈n|+ |n〉〈m|) . (2.1)
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where the site energies εm, and couplings Jmn are usually obtained from detailed

quantum chemistry studies and/or fitting of experimental spectra. The reorganization

energy λ, which we assume to be the same for each site, is the energy difference of the

non-equilibrium phonon state after Franck-Condon excitation and the excited-state

equilibrium phonon state. The set of states |m〉 is called the site basis and the set of

states |α〉 with He|α〉 = Eα|α〉 is called the exciton basis. We now briefly introduce

the secular Redfield master equation in the weak exciton-phonon (or system-bath)

coupling limit and the non-perturbative hierarchy equation of motion approach. In

both approaches, the dynamics of a single exciton is governed by a master equation,

which is schematically given by:

∂

∂t
ρ(t) =Mρ(t) = (MH +Mdecoherence +Mtrap +Mloss) ρ(t). (2.2)

The master equation consists of the superoperator M, which is divided into several

components. First, coherent evolution with the excitonic Hamiltonian He is described

by the superoperatorMH = −i[He, ·]. In addition, decoherence due to the interaction

with the phonon bath is incorporated by Mdecoherence. Mdecoherence depends on the

spectral density, which models the coupling strengths of the phonon modes to the

system. Finally, one has the processes for trapping to a reaction center Mtrap and

exciton loss Mloss due to spontaneous emission. Associated with these processes are

the trapping rate κ and the loss rate Γ. Details about the trapping and exciton loss

processes can be found in [26, 56].

The secular Redfield theory is valid in the regime of weak system-bath coupling.

The superoperator Mdecoherence is of Lindblad form with Lindblad operators for re-

laxation in the exciton basis and for dephasing of excitonic superpositions. The

31



Chapter 2: Characterization and quantification of the role of coherence in ultrafast
quantum biological experiments

relaxation rates depend on the spectral density evaluated at the particular excitonic

transition frequencies, satisfy detailed balance, and depend on temperature through

the Bose-Einstein distribution. The dephasing rates are linear in temperature. We

use the same Ohmic spectral density as in [29], i.e. J(ω) = 2λγω/π(ω2 + γ2), where

1/γ is the bath correlation time. For 1/γ = 50 fs, this spectral density shows only

modest differences to the spectral density used in [26]. Further details about the

Lindblad model can be found in [26].

The hierarchy equation of motion approach [29] consistently interpolates between

weak and strong system bath coupling. The assumption that the fluctuations are

Gaussian makes the second-order cumulant expansion exact. The resulting equation

of motion can be expressed as an infinite hierarchy of system, i.e. ρ(t), and con-

nected auxiliary density operators {σi}, arranged in tiers. For numerical simulation,

”far-away” tiers in the hierarchy are truncated in a sensible manner. The hierarchy

equation of motion can also be written as in Eq. (2.2) when we make the replace-

ment ρ(t)→ (ρ(t), σ1, σ2, · · · ) and use the hierarchical structure discussed in [29] for

the decoherence superoperator Mdecoherence. For simulations of the Fenna-Matthews-

Olson complex, we use the scaled hierarchy approach developed in [57]. It was shown

recently that four tiers of auxiliary density operators are enough for accurate room

temperature simulations [58], which enables the rapid computation of efficiency and

total coherences. The trapping and exciton loss processes are naturally extended to

the auxiliary systems.

In our previous work [26], we developed a method to quantify the role of quantum

coherence to the transfer efficiency. The energy transfer efficiency (ETE) is given by

32



Chapter 2: Characterization and quantification of the role of coherence in ultrafast
quantum biological experiments

the integrated probability of leaving the system from the sites that are connected to

the trap instead to being lost to the environment. That is, η =
∫∞

0
dtTr{Mtrapρ(t)}.

It was shown that the ETE can be partitioned into η = ηH + ηdecoherence, where the

efficiency due to the coherent dynamics with the excitonic Hamiltonian is given by:

ηH = Tr{Mtrap(Mtrap +Mloss)
−1MHM−1ρ(0)}. (2.3)

The ETE contribution ηdecoherence involves Mdecoherence, i.e.,

ηdecoherence = Tr{Mtrap(Mtrap +Mloss)
−1MdecoherenceM−1ρ(0)}.

In this work, we extend our ETE contribution method to quantify the role of the

initial state to the ETE. We obtain a separation of the coherent contribution, ηH =

ηinit + ηdyn, where the efficiency ηinit can be ascribed to the initial state. The ηdyn is

defined by ηdyn = ηH−ηinit and can be interpreted as dynamical part of the coherence

contribution arising during the time evolution. For the computation of ηinit, we note

that one can always express the ensemble described by the system density matrix as

ρ(t) = pinit(t)|ψinit(t)〉〈ψinit(t)|+
∑

k pk(t)ρk(t). Here, pinit(t) is the probability of the

quantum system being in the (Hamiltonian time-evolved) initial state |ψinit(t)〉, where

pinit(0) = 1. The pk(t) are the probabilities of being in some other ensemble state ρk(t),

where pinit(t) +
∑

k pk(t) = 1. The probability pinit(t) is reduced by the interaction

with the environment and readily computed for Markovian Lindblad dynamics by

considering the damped no-jump evolution due to the decoherence superoperator

Mdecoherence [56, 59, 60]. Therefore, we can compute the efficiency pertaining to

the initial state by ηinit =
∫∞

0
dtTr{Mtrappinit(t)|ψinit(t)〉〈ψinit(t)|}. Together with

Equation (2.3), this obtains the desired separation ηH = ηinit + ηdyn.
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Additionally, we employ another measure for the role of coherence by straightfor-

wardly integrating over time all the coherence elements of the density matrix. That

is:

C(λ) =
∑
m 6=n

∫ ∞
0

dt | 〈m| ρ (t) |n〉 |. (2.4)

We normalize with respect to the case of coherent evolution at λ = 0.0/cm, i.e.

C̃(λ) = C(λ)/C(0). Based on the discussion in [52], the quantity C̃ can be considered

as the (normalized) integrated entanglement (concurrence) that is present before the

exciton is trapped in the reaction center or lost to the environment. We note that the

total coherence measure C̃ is similar in spirit to a measure of the first kind discussed

above. This is because the normalization essentially performs a comparison of the

actual model at a certain λ with an artificial model at λ = 0. (For the numerical

evalutation, the integral in Eq. (2.4) is computed until Tr{ρ(t)} ≤ 10−3.)
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Figure 2.1: (Left panel) Efficiency η (solid black) and contributions of initial state
ηinit (dash-dotted gray) and coherent evolution ηinit + ηdyn (dashed red) for a dimer
that is based on the strongly coupled sites 1 and 2 of the Fenna-Matthews-Olson
complex using the secular Redfield model. The initial state is at site 1 and the target
is site 2. At a physiological value of around λ = 35/cm, one finds ηinit = 0.0 and
ηdyn = 0.43. (Center panel) Efficiency and integrated coherence C̃ for the dimer with
the secular Redfield approach. At λ = 35/cm there is C̃ = 0.37. (Right panel) Same
quantities as in the center panel for the dimer using the hierarchy equation of motion
approach with 15 tiers of auxiliary systems. At λ = 35/cm, one finds C̃ = 0.44. The
parameters are 1/κ = 1 ps, 1/Γ = 1 ns, and 1/γ = 50 fs for all panels.
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Figure 2.2: (Left panel) Efficiency η (solid black) and contributions of initial state
ηinit (dash-dotted gray) and coherent evolution ηinit +ηdyn (dashed red) for the Fenna-
Matthews-Olson complex using the secular Redfield model. The initial state is a
classical mixture of site 1 and 6 and the target site for trapping is site 3. The actual
system has a reorganization energy of around λ = 35/cm, where ηinit = 0.0 and
ηdyn = 0.17. (Center panel) Efficiency for initial site 1 (solid black) and initial site 6
(dashed black) and integrated coherence C̃ for initial site 1 (dashed red) and initial
site 6 (dash-dotted green) for the Fenna-Matthews-Olson complex with the secular
Redfield approach. At λ = 35/cm there is C̃ = 0.0151 (inital site 1) and C̃ = 0.0017
(initial site 6). (Right panel) Same quantities as in the center panel for the FMO
complex using the scaled hierarchy equation of motion approach with four tiers of
auxiliary systems. At λ = 35/cm, one finds C̃ = 0.020 (inital site 1) and C̃ = 0.0022
(initial site 6). The parameters are 1/κ = 1 ps, 1/Γ = 1 ns, and 1/γ = 50 fs for all
plots.
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In Fig. 2.1, we present the two measures of coherence for a dimer system. For the

dimer, we take the sites 1 and 2 of the FMO complex with ε1 = 0/cm, ε2 = 120/cm,

and J = −87.7/cm, see [14], and room temperature. This system will also be the

focus of the following sections on the atomistic detail simulations and quantum process

tomography. Here, for studying the role of quantum coherence, we assume that the

task is defined by the exciton initially being at the lower energy site 1 and the target

site being site 2. In the left panel of Fig. 2.1 we show the efficiency η, the contribution

ηH from Eq. (2.3), and ηinit for the secular Redfield model. In the present small

system, environment-assisted transport is relatively unimportant, with the efficiency

as a function of the reorganziation energy being close to unity everywhere. The

underlying contributions show a transition from a regime dominated by coherent

evolution to a regime dominated by incoherent Lindblad jumps. At λ = 35/cm, we

find ηinit = 0% and ηH = 43%. In Fig. 2.1 (center panel), we find that the total

coherence measure C̃ for the dimer is around 0.37 for λ = 35/cm. In Fig. 2.1 (right

panel), the total coherence is plotted for the dimer in the hierarchy equation of motion

approach. We use 15 tiers of auxiliary systems. At λ = 35/cm, we find C̃ = 0.44;

because of the sluggish, non-equilibrium bath there is more coherence than in the

secular Redfield model.

In Fig. 2.2 (left panel), we present the coherent, decoherent, and initial state

contribution to the ETE for the Fenna-Matthews-Olson complex as a function of

the reorganization energy for the secular Redfield model at room temperature. We

use the Hamiltonian given in [14] and the contribution measures given in Equation

(2.3) and by ηinit. The initial state is a classical mixture of site 1 and 6. For small
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reorganization energy, the efficiency is around η = 60% and for larger reorganization

energies we observe environment-assisted quantum transport (ENAQT) [27], with the

efficiency rising up to almost η = 100% for the physiological value of λ = 35/cm. The

contributions measures ηdyn and ηinit reveal the underlying dynamics. The quantum

dynamical contribution ηdyn is around 17% at λ = 35/cm 1. In our model, this part

is due to an interplay of the Hamiltonian dynamics and the trapping/loss dynamics,

which both have their preferred basis being the site basis. The main part of the

efficiency at λ = 35/cm is due to incoherent Lindblad jumps, having a value of

ηdecoherence = 83%. The initial state contribution is relevant only at small values of

the reorganization energy.

In Fig. 2.2 (center and right panel), we compare the efficiency and the coherence

measure C̃ for the secular Redfield and the hierarchy equation of motion approach [29]

for the Fenna-Matthews-Olson complex. The initial state is either localized at site 1 or

at site 6. Four tiers of auxiliary systems were used in the computation, which already

lead to a good agreement with [29] for the dynamics at λ = 35cm−1, 1/γ = 50 fs,

and room temperature. In Fig. 2.2 (right panel), ENAQT is observed with increasing

reorganization energy also in the hierarchy approach, with the efficiency rising up to

almost η = 100% at λ = 35/cm. In Fig. 2.2 (center and right panel), it is observed

that the normalized total coherences of the density matrix decrease with increasing

reorganization energy. For the secular Redfield case, we obtain C̃(λ = 35cm−1) =

0.0151 for the initial site 1 and C̃(λ = 35cm−1) = 0.0017 for the initial site 6. For the

hierarchy case, we obtain more coherence, i.e. C̃(λ = 35cm−1) = 0.020 for the initial

1In Ref. 26, we found the value ηH = 10% for a different Hamiltonian and a different spectral
density.
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site 1 and C̃(λ = 35cm−1) = 0.0022 for the initial site 6. In both models, coherence

is more important for the rugged energy landscape of the pathway from site 1 than

for the funnel-type energy landscape of the pathway from site 6.

Master equation approaches, such as the ones discussed in this section suffer from

various drawbacks. Redfield theory is only applicable in the limit of weak system bath

coupling and does not take into account non-equilibrium molecular reorganization

effects. The hierarchy equation of motion approach assumes Gaussian fluctuations

and Ohmic Drude-Lorentz spectral densities. The detailed atomistic structure of

the protein and the chlorophylls is not taken into account in these approaches. The

results thus provide a general indication of the behavior of the actual system but not

a conclusive and detailed theoretical proof. In the next section, we will present a first

step toward such a detailed study with our combined molecular dynamics/quantum

chemistry method. The atomistic structure is included and realistic spectral densities

can be obtained. We also present a straightforward method to simulate exciton

dynamics beyond master equations. We thus address the second question of the

microscopic origins of the long-lived quantum coherence.

2.3 Molecular Dynamics Simulations

Among many other biologically functional components, protein complexes are

essential components of the photosynthetic system. Proteins remain as one of the

main topics of biophysical research due to their diverse and unidentified structure-

function relationship. Many biological units are highly optimized and efficient, so that

even a point mutation of a single amino acid in conserved region often results in the
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loss of the functionality [61–63]. Have the photosynthetic system adopted quantum

mechanics to improve its efficiency in its course of evolution? To answer this question,

careful characterization of the protein environment to the atomistic detail is necessary

to identify the microscopic origin of the long-lived quantum coherence. As explained

in the previous section, the contribution of the quantum coherence to the energy

transfer efficiency in biological systems have been successfully carried out, yet a more

detailed description of the bath in atomic detail would be desirable to investigate

the structure-function relationship of the protein complex and to test validity of the

assumptions used in popular models of the photosynthetic system.

The site energy of a chromophore is a complex function of the configuration of

the chromophore molecule, and the relative orientation of the molecule to that of

the embedding protein and that of other chromophore molecules. Factors affecting

site energies have intractably large degrees of freedom, so it is reasonable to treat

those degrees of freedom as the bath of an open quantum system. The state of the

system is assumed to be restricted to the single exciton manifold. To construct a

system-bath relationship with atomistic detail of the bath, we start from the total

Hamiltonian operator, and decomposed the operator in such a way that the system-

bath Hamiltonian is not assumed to be any specific functional form:

Htotal =
∑
m

εm(Rch,Rprot)|m〉〈m|+
∑
m,n

{Jmn(Rch,Rprot)|m〉〈n|+ c.c.}

+ Tch + Tprot + Vch(σ,Rch,Rprot) + Vprot(Rch,Rprot). (2.5)

εm represents the site energy of mth site, Jmn is the coupling constant between mth

and nth sites. σ denotes the excitonic state of chromophores, Rch corresponds to the
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nuclear coordinates of chromophore molecules, and Rprot are the nuclear coordinates

of the remaining protein and enclosing water molecules. T and V are the corre-

sponding kinetic and potential energy operators for the chromophores and proteins

respectively under Born-Oppenheimer approximation. The potential energy term for

chromophores depends on the exciton state of the systen, because dynamics of a

molecule will be governed by different Born-Oppenheimer surface when its excitonic

state changes. However, as a first approximation, we assumed that the change of

Born-Oppenheimer surfaces does not affect the bath dynamics significantly. With

this assumption, we can ignore the dependence of the excitonic state in the Vch term

and the system-bath Hamiltonian only contains the one way influence from the bath

to the system:

Htotal ≈
∑
m

εm(Rch,Rprot)|m〉〈m|+
∑
m,n

Jmn(Rch,Rprot)|m〉〈n|

+
∑
m

εm(Rch,Rprot)|m〉〈m|+ Tch + Tprot + Vch(Rch,Rprot) + Vprot(Rch,Rprot)

=
∑
m

ε̄m|m〉〈m|+
∑
m,n

J̄mn|m〉〈n|︸ ︷︷ ︸
HS

+
∑
m

{εm(Rch,Rprot)− ε̄m} |m〉〈m|+
∑
m,n

{
Jmn(Rch,Rprot)− J̄mn

}
|m〉〈n|︸ ︷︷ ︸

HSB

+ Tch + Tprot + Vch(Rch,Rprot) + Vprot(Rch,Rprot)︸ ︷︷ ︸
HB

. (2.6)

Based on this decomposition of the total Hamiltonian, we set up a model of the

FMO complex in atomistic detail with the AMBER force field [64, 65] and approxi-

mate the propagation of the entire complex by classical mechanics. Molecular dynam-

ics simulations were conducted at 77K and 300K with an isothermal-isobaric (NPT)
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ensemble. The parameters for the system and the system-bath Hamiltonian were cal-

culated using quantum chemistry methods along the trajectory from the molecular

dynamics simulation. εm was calculated using the Q-Chem quantum chemistry pack-

age [66]. The electronic excitations were modeled using the time-dependent density

functional theory using the Tamm-Dancoff approximation. The density functional

employed was BLYP and the basis set employed was 3-21G*. External charges from

the force field were included in the calculation as the electrostatic external potential.

The coupling terms, Jmn, were obtained from the Hamiltonian presented in Ref. 14

and considered to be constant in time. ε̄m was chosen as time averaged site energy

for the mth site to minimize the magnitude of the system-bath Hamiltonian. In this

work, only site 1 and site 2 were considered for the exciton dynamics. However, the

methodology can be applied for the exciton dynamic of all seven chromophores.

To obtain a closed-form equation for the reduced density matrix, we applied mean-

field approximation [67]; because no feedback from the system to the bath was as-

sumed, the state of the bath is not affected by the state of the system. Therefore, the

total density matrix, W (t), can be factorized into the reduced density matrix ρ(t),

and B(t) which is defined only in the Hilbert space of the bath. With additional as-

sumption that the bath is in thermal equilibrium, we can obtain the closed equation

for the reduced density matrix.

∂

∂t
ρ(t) = − i

~
[HS, ρ(t)]− i

~
Tr {[HSB,W (t)]}

≈ − i
~

[HS, ρ(t)]− i

~
[Tr {HSBB(t)} , ρ(t)]

≈ − i
~

[HS, ρ(t)]− i

~
[Tr {HSBBeq(t)} , ρ(t)] . (2.7)

Thermal equilibrium of the bath was ensured by the thermostat of the molecular
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Figure 2.3: (Left panel) Time evolution of the exciton population at the site 1 (ρ11)
based on the strongly coupled site 1 and 2 of the FMO complex at 77K and 300K. The
initial pure state ρ = |1〉〈1| was propagated using Monte Carlo integration of unitary
evolutions, where the time-dependent site energies are obtained from a combined
molecular dyanmics/quantum chemistry approach. The asymptotic distribution does
not follow a Boltzmann distribution because relaxation of the system to the bath
is not considered. (Right panel) The concurrence between site 1 and 2 at 77K and
300K. Quantum coherence lives longer at a lower temperature.

dynamics simulation. Thus, the reduced density matrix was obtained by Monte Carlo

integration of 4000 independent instances of unitary quantum evolution with respect

to the thermally equilibrated bath. Each instance was propagated by integrating the

Schrödinger equation with the simple exponential integrator.

Fig. 2.3 shows the change of the population of the site 1, ρ11, and the concurrence

between site 1 and 2. The population is evenly distributed between the two sites

because relaxation was not considered. The concurrence, 2|ρ12|, is an indicator of

pairwise entanglement for the system [52]. Note that the coherence builds up during

the first ∼100 fs , and then decreases subsequently due to the decoherence from the

bath.

Fig. 2.4 shows the spectral density of the first chromophore. Although the spectral

density of the bath from molecular dynamics simulation shows characteristic frequen-
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Figure 2.4: (Left panel) Spectral density from the autocorrelation function of the site
1 of the FMO complex from the molecular dynamics simulation at 77K and 300K.
While the spectral density reflects the characteristic vibrational modes of the protein
and the chromophore molecule, high-frequency modes are overpopulated due to the
limitation of the Newtonian mechanics. (Right panel) Absorption spectrum of site 1
and 2 at 77K and 300K.

cies related to the actual protein environment and the bacteriochloropyll molecule,

high-frequency modes are overpopulated due to the limitation of the classical me-

chanics. There are efforts to incorporate quantum effects into the classical molecular

dynamics simulation in a slightly different context [68–70], and we are investigating

the possibilities of applying these corrections.

Another simplification employed was the omission of the feedback from exci-

ton states. When the exciton state of a bacteriochlorophyll is changed, the Born-

Oppenheimer surface which governs the dynamics of the chromophore molecule should

be also changed. The current scheme only propagates the protein complex on the elec-

tronically ground-state surface. Incorporating the feedback could lead to the different

characteristics of the protein bath. There exist several schemes for mixed quantum-

classical dynamics [71–73] which potentially resolve the problem at the additional

computational cost of simultaneously propagating excitons and protein bath.
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Calculations are underway to carry out the full seven-site simulation of the FMO

complex at different temperatures to compare with experimental temperature-dependent

results [25].

In the following final section, we will describe our quantum process tomography

scheme, which is a spectroscopic technique associated with a computational procedure

for direct extraction of the parameters related to the quantum evolution of the system,

in terms of quantum process maps.

2.4 Quantum Process Tomography

So far, we have delved into several theoretical models to characterize quantum co-

herence in the entire FMO complex and in a dimer subsystem of it. Experimentally,

however, a clear characterization of this coherence is still elusive. Signatures of long

lived quantum superpositions between excitonic states in multichromophoric systems

are potentially monitored through four wave-mixing techniques [23, 74, 75]. How-

ever, a transparent description of the evolving quantum state of the probed system

is not necessarily obtained from a single realization of such experiments. In these, a

series of three weak incoming ultrashort pulses sent from a noncollinear setup induce

a macroscopic third order polarization in the sample. The latter manifests in a time

dependent spatial grating which emits a macroscopic polarization that interferes with

a fourth pulse, called the local oscillator. From an operational standpoint, this last

pulse selects the spatial Fourier component of the polarization which corresponds to

its wavevector (heterodyne detection), hence earning the name of four wave-mixing

for this technique (FWM) [75]. Extracting specific Fourier components of the induced
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polarization allows for the selection of a particular set of processes in the density ma-

trix of the probed system, as each wavevector is associated with a carrier frequency

of the pulse. These processes can be intuitively understood by keeping track of the

dual Feynman diagrams that account for the perturbations that the pulses induce on

the bra or ket sides of the density matrix of the probed system. Whereas the analy-

sis of these experiments is naturally carried out in the density matrix formalism, an

important question is whether the density matrix itself can be imaged via these ex-

periments, a problem known as quantum state tomography (QST) [76]. If this were

possible, quantum process tomography (QPT) could also be carried out, therefore

providing a complete characterization of excited state dynamics [77]. In a previous

study, we showed that a series of two-color heterodyned rephasing photon-echo (PE)

experiments repeated in different polarization configurations yields the necessary in-

formation to carry out QST and QPT of the single-exciton manifold of a coupled

heterodimer [78]. In the present article, we adapt our previous theory to extract

this information from two-dimensional spectra, similar to those employed in current

experiments. An comprehensive study of this possibility has been presented in [79].

Here, we shall highlight some key features of the method.

We begin by reviewing some basic aspects of QPT. Under very general assump-

tions, the evolution of an open quantum system can be described by a linear trans-

formation [80]:

ρab(T ) =
∑
cd

χabcd(T )ρcd(0), (2.8)

where ρab(T ) is the element ab of the reduced density matrix ρ of the system at

time T . Equation (2.8) is remarkable in that χ(T ) is independent of the initial
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state. Knowledge of χ(T ) implies a complete characterization of the dynamics of the

reduced system and, in fact, QPT can be operationally defined as the procedure to

obtain χ(T ). Conceptually, it is straightforward to recognize that, due to linearity,

χ(T ) can be inverted by preparing a complete set of inputs, evolving them for time T ,

and detecting the outputs along a complete basis. In the context of nonlinear optical

spectroscopy, this is exactly the strategy we shall follow, with a few caveats due to

experimental constraints.

To place the discussion in context, we shall be again concerned with the subsys-

tem composed of the excitonic dimer between sites 1 and 2 of the FMO complex.

For simplicity, we ignore the rest of the sites in this theoretical study. We only need

to be concerned with four eigenstates of this model system: The ground state |g〉,

the delocalized single-excitons |α〉 and |β〉, and the biexciton |f〉, which in the pho-

tosynthetic system can be safely assumed to be the direct sum of the single-excitons

without significant interactions between them. Therefore, the biexciton energy level

is just ωf = ωα+ωβ. We label the delocalized excitons so that |α〉 is the higher energy

eigenstate compared to |β〉. Denoting the transition energies between the i-th and

the j-th states by ωij = ωi − ωj, it follows that ωαg = ωfβ and ωβg = ωfα [81]. The

excitonic system is not isolated, and in fact, it interacts with a phonon and photon

bath which induces relaxation and dephasing processes in it.

The experimental technique we consider is photon-echo (PE) spectroscopy, which

is a particular subset of FWM techniques where the wavevector of the fourth pulse

corresponds to the phase-matching condition kPE = −k1 + k2 + k3, with ki being

the wavevector corresponding to the i-th pulse. Here, the labeling of the pulses cor-
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responds to the order in which the fields interact with the sample. Typically, the

ultrashort pulses employed to study these excitonic systems possess an optical carrier

frequency, therefore allowing transitions which are resonant with the frequency com-

ponents ±ωβg and ±ωαg. In PE experiments, the first pulse centered at t1 creates an

optical coherence beating at a frequency ωgα or ωgβ. At t2 = t1 + τ , the second pulse

creates a coherence or a population in the single exciton manifold. At t3 = t2 + T ,

the third pulse generates another optical coherence, but this time, beating at the

frequencies opposite to the ones in the first interval, that is, at frequencies ωαg or ωβg,

causing a rephasing echo of the signal. The heterodyne detection of the nonlinear

polarization signal PPE(τ, T, t) occurs at time t4 = t3 + t. Borrowing from NMR

jargon, the intervals (t1, t2), (t2, t3), and (t3, t4) are traditionally refered to as coher-

ence, waiting, and echo times, and their durations are τ , T , and t, respectively. This

nomenclature should not be taken literally. For example, in most cases, coherences do

not only evolve in the coherence time, but in the waiting and echo times. Similarly,

the waiting time is often referred to as population time, which hosts dynamics of both

populations and coherences. For a historical perspective on this vocabulary, we refer

the reader to any comprehensive NMR treatise such as [82].

The experiment is systematically repeated for many durations for each interval.

In order to ’watch’ single-exciton dynamics, it is convenient to isolate the changes on

the signal due to the waiting time T . This exercise is accomplished by performing

a double Fourier transform of the signal along the τ and t axes, which yields a 2D

spectra that evolves in T [83–85]:

S(ωτ , T, ωT ) =

∫ ∞
0

dτ

∫ ∞
0

dtPPE(τ, T, t)e−iωτ τ+iωTT (2.9)
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In order to map a PE experiment to a QPT, we identify the coherence interval

as the preparation step and the echo interval as the detection step. This assumption

implies that the optical coherence intervals have well characterized dynamics. This

hypothesis is reasonable due to a separation of timescales where optical coherences

will presumably decay exponentially due to pure dephasing and not due to intricate

phonon-induced processes. Therefore, the 2D spectrum consists of four Lorentzian

peaks centered about (ωτ , ωt) = (ωαg, ωαg), (ωαg, ωβg), (ωβg, ωαg), (ωβg, ωβg). In this

discussion, we shall ignore inhomogeneous broadening, noting that it can always be

accounted for as a convolution of the signal with the distribution of inhomogeneity.

The width of these Lorentzians can be directly related to the dephasing rates of

the optical coherences. Loosely speaking, a particular value on the ωτ axis of the

spectrum indicates a specific type of state preparation, whereas the ωt axis is related

to a particular detection. More precisely, a peak in the 2D spectrum displays the

correlations between the frequency beats from the coherence and echo intervals. A

crucial realization is that the amplitude of these peaks can be written as a linear

combination of elements of the time evolving excitonic density matrix stemming from
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different initial states, that is, of elements of χ(T ) itself [79]:

S̃(ωαg, T, ωαg) = −Cα
ω1
Cα
ω2

(µαg · e1)(µαg · e2)

×{Cα
ω3

[(µαg · e3)(µαg · e4)(χggαα(T )− 1− χαααα(T ))

+(µfβ · e3)(µfβ · e4)χββαα(T )]

+Cβ
ω3

[(µfα · e3)(µfβ · e4)− (µβg · e3)(µαg · e4))χαβαα(T )]}

−Cα
ω1
Cβ
ω2

(µαg · e1)(µβg · e2)

×{Cα
ω3

[(µαg · e3)(µαg · e4)(χggβα(T )− χααβα(T ))

+(µfβ · e3)(µfβ · e4)χβββα(T )]

+Cβ
ω3

[((µfα · e3)(µfβ · e4)− (µβg · e3)(µαg · e4))χαββα(T )]},

(2.10)

S̃(ωαg, T, ωβg) = −Cα
ω1
Cα
ω2

(µαg · e1)(µαg · e2)

×{Cβ
ω3

[(µβg · e3)(µβg · e4)(χggαα(T )− 1− χββαα(T ))

+(µfα · e3)(µfα · e4)χαααα(T )]

+Cα
ω3

[((µfβ · e3)(µfα · e4)− (µαg · e3)(µβg · e4))χβααα(T )]}

−Cα
ω1
Cβ
ω2

(µαg · e1)(µβg · e2)

×{Cβ
ω3

[(µβg · e3)(µβg · e4)(χggβα(T )− χβββα(T ))

+(µfα · e3)(µfα · e4)χααβα(T )]

+Cα
ω3

[((µfβ · e3)(µfα · e4)− (µαg · e3)(µβg · e4))χβαβα(T )]},

(2.11)
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S̃(ωβg, T, ωαg) = −Cβ
ω1
Cβ
ω2

(µβg · e1)(µβg · e2)

×{Cα
ω3

[(µαg · e3)(µαg · e4)(χggββ(T )− 1− χααββ(T ))

+(µfβ · e3)(µfβ · e4)χββββ(T )]

+Cβ
ω3

[(µfα · e3)(µfβ · e4)− (µβg · e3)(µαg · e4))χαβββ(T )]}

−Cβ
ω1
Cα
ω2

(µβg · e1)(µαg · e2)

×{Cα
ω3

[(µαg · e3)(µαg · e4)(χggαβ(T )− χαααβ(T ))

+(µfβ · e3)(µfβ · e4)χββαβ(T )]

+Cβ
ω3

[((µfα · e3)(µfβ · e4)− (µβg · e3)(µαg · e4))χαβαβ(T )]},

(2.12)

S̃(ωβg, T, ωβg) = −Cβ
ω1
Cβ
ω2

(µβg · e1)(µβg · e2)

×{Cβ
ω3

[(µβg · e3)(µβg · e4)(χggββ(T )− 1− χββββ(T ))

+(µfα · e3)(µfα · e4)χααββ(T )]

+Cα
ω3

[((µfβ · e3)(µfα · e4)− (µαg · e3)(µβg · e4))χβαββ(T )]}

−Cβ
ω1
Cα
ω2

(µβg · e1)(µαg · e2)

×{Cβ
ω3

[(µβg · e3)(µβg · e4)(χggαβ(T )− χββαβ(T ))

+(µfα · e3)(µfα · e4)χαααβ(T )]

+Cα
ω3

[((µfβ · e3)(µfα · e4)− (µαg · e3)(µβg · e4))χβααβ(T )]}.

(2.13)

Here, the expressions have been obtained using the rotating-wave approximation, as
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well as the assumption of no overlap between pulses. µpq = µqp is the transition dipole

moment between states p, q ∈ {g, α, β, f}. We have rescaled the spectra amplitudes

to eliminate the details of the lineshape by multiplying them by the dephasing rates

of the optical coherences in the coherence and echo intervals,

S̃(ωpg, T, ωqg) = ΓgpΓqgS(ωpg, T, ωqg). (2.14)

The coefficient Cp
ωi

is the amplitude of the i-th pulse at the frequency ωpg,

Cp
ωi

= −Λ

i

√
2πσ2e−σ

2(ωpg−ωi)2/2, (2.15)

with Λ being the strength of the pulse and σ the width of the Gaussian pulse in

time domain. Also, ei is the polarization of the i-th pulse. Both Cp
ωi

and ei are

experimentally tunable parameters for the pulses.

Whereas Equations (14) and (15) presented in [78] correspond to a single value

of τ and t, Equations (2.10), (2.11), (2.12), and (2.13) stem from Fourier transform

of data collected at many τ and t times (see Ref. 79). Therefore, in principle, a 2D

spectrum provides a more robust source of information from which to invert χ(T )

than in the suggested 1D experiment. The displayed equations, albeit lengthy, are

easy to interpret. For instance, consider the term which is proportional to χαβαα(T )

in Equation (2.10), which stems from the Feynman diagram depicted in Fig. 2.5.

As expected, it consists of a waiting time where the initially prepared population

|α〉〈α| is transferred to the coherence |α〉〈β|. This waiting time is escorted by a co-

herence |g〉〈α| oscillating as e(−iωgα−Γgα)τ which evolves during the coherence time

and another set of coherences |f〉〈β| and |α〉〈g| which evolve during the echo time

as e(−iωfβ−Γfβ)t = e(−iωαg−Γαg)t. These two intervals correspond to the diagonal peak
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Figure 2.5: Dual Feynman diagrams that account for the population to coherence
transfer terms χαβαα(T ) in quantum process tomography.

located at (ωαg, ωαg). Other processes that exhibit oscillations at those two respec-

tive frequencies appear as additional terms in the equation corresponding to that

particular peak.

In Ref. 78, we showed that there are sixteen real valued parameters of χ(T ) which

need to be determined at every value of T in order to carry out QPT of the single

exciton manifold of a heterodimer. For an illustration, we shall describe how to obtain

the elements χijαα(T ). These quantities are shown in Fig. 2.6 and have been com-

puted using the Ishizaki-Fleming model, with a bath correlation time of 150 fs [29].

They display rich and nontrivial phonon-induced behavior, such as the spontaneous

generation of coherence from a population in an eigenstate of the excitonic Hamil-

tonian, and therefore, is a very good example of how QPT provides access to this

nontrivial information via the repetition of a series of 2D PE experiments. For this

particular set of χ(T ) elements, we shall exploit the waveform of the pulses but not

their polarizations, and for simplicitly we will assume the polarization configuration
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Figure 2.6: Transfer of population in eigenstate |α〉〈α| to other populations and
coherences in the eigenbasis of the single exciton Hamiltonian. The hierarchy equation
of motion approach is used for a dimer system based on the parameters of the site
1 and site 2 subsystem of the Fenna-Matthews-Olson complex. Population in |α〉〈α|
decreases (χαααα(T ), purple) and is transferred to |β〉〈β| (χββαα(T ), blue). Emergence
of coherence from the initial population occurs in this model (<{χαβαα(T )}, yellow
and ={χαβαα(T )}, green).

xxxx for each of the pulses including the heterodyning.

Consider the possibility of using pulses with carrier frequencies centered about

ωαg and ωβg respectively, and such that their bandwidth is narrow enough that the

pulse centered about ωαg has negligible component at ωβg and vice versa. Then, we

can carry out an experiment such that
|Cαω1 |
|Cβω1 |

,
|Cαω2 |
|Cβω2 |

,
|Cβω3 |
|Cαω3 |

� 1 (experiment 1) for all i

and notice that the diagonal peak at (ωαg, ωαg) reduces to,

〈S̃(ωα, T, ωα)〉xxxx = −Cα
ω1
Cα
ω2
Cβ
ω3

× 〈(µαg · e1)(µαg · e2)[(µfα · e3)(µfβ · e4)− (µβg · e3)(µαg · e4))]〉xxxxχαβαα(T ),

(2.16)

which implies that its evolution with respect to T directly monitors the transfer of

the population prepared at |α〉〈α| to the coherence at |α〉〈β|. Here, 〈·〉xxxx denotes an

isotropic average of the experiments performed with the xxxx polarization configura-
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tion. χαβαα(T ) can be directly obtained if information of the dipole moments is known

in advance. As can be checked easily, χαβαα(T ) = (χβααα(T ))∗ can, in principle, be

also obtained directly from an experiment where
|Cαωi |
|Cβωi |

� 1 for all i (experiment 2)

and monitoring 〈S̃(ωα, T, ωβ)〉xxxx. Redundant measurements can be used as ways of

effectively constraining the QPT.

Similarly, the transfer from |α〉〈α| to other populations can be extracted by mon-

itoring 〈S̃(ωα, T, ωα)〉xxxx in experiment 2 and 〈S̃(ωα, T, ωβ)〉xxxx in experiment 1.

These two linearly independent conditions are enough to extract χggαα(T ), χαααα(T ),

and χββαα(T ), since there is a third independent condition based on trace preservation

which reads χggαα(T ) + χαααα(T ) + χββαα(T ) = 1.

It is now important to verify whether the suggested experiments are feasible. In

order to ensure conditions of the form
|Cαωi |
|Cβωi |

� 1, we need σ ∼ 3
ωαg−ωβg ∼ 75 fs, that

is, the pulse needs to be long enough to guarantee the narrow band condition. This

requirement is very reasonable, as it is not too long to obscure the decoherence pro-

cesses that we want to witness. In the case where the length of the pulse were of

similar length as the dynamical events that one is interested in, it is not necessary

to use very narrowband pulses either. The only essential requirement is a toolbox of

two different waveforms for the pulses, for instance, a set of pulses centered about ωαg

and ωβg respectively, but having σ ∼ 30 fs, for instance. By carrying out 8 experi-

ments alternating the two waveforms in each of the three pulses, each of the terms in

Equations (2.10), (2.11), (2.12), and (2.13) which are proportional to Ci
ω1
Cj
ω2
Ck
ω3

for

i, j, k ∈ {α, β} may be inverted to yield the block diagonal set of equations discussed

above.
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In summary, we have presented three different tools for unraveling the role of

quantum coherence in biological systems: a) techniques for obtaining the contribution

of quantum coherences to biological processes; b) a microscopic simulation approach

to explore the dynamics of these systems by direct simulation; and finally c) a new

theoretical proposal for an experimental procedure that provides detailed information

about the quantum procesess associated with energy transfer in the ultrafast regime.

We believe that ultimately, a combination of these three techniques and tools from

other groups will be collectively required to make definitive conclusions about the

role of quantum coherence in photosynthetic complexes.
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Chapter 3

Atomistic study of the long-lived

quantum coherences in the

Fenna-Matthews-Olson complex

3.1 Introduction

Recent experiments suggest the existence of long-lived quantum coherence during

the electronic energy transfer process in photosynthetic light-harvesting complexes

under physiological conditions [23–25]. This has stimulated many researchers to seek

for the physical origin of such a phenomenon. The role and implication of quantum

coherence during the energy transfer have been explored in terms of the theory of

open quantum systems [27–29, 48, 50, 51, 60, 86–91], and also in the context of

quantum information and entanglement [52–54, 92]. However, the characteristics of

the protein environment, and especially its thermal vibrations or phonons, have not
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been fully investigated from the molecular viewpoint. A more detailed description of

the bath in atomic detail is desirable; to investigate the structure-function relationship

of the protein complex and to go beyond the assumptions used in popular models of

photosynthetic systems.

Protein complexes constitute one of the most essential components in every bio-

logical organism. They remain one of the major targets of biophysical research due

to their tremendously diverse and, in some cases, still unidentified structure-function

relationship. Many biological units have been optimized through evolution and the

presence of certain amino acids rather than others is fundamental for functional-

ity [61–63]. In photosynthesis, one of the most well-characterized pigment-protein

complexes is the Fenna-Matthews-Olson (FMO) complex which is a light-harvesting

complex found in green sulphur bacteria. It functions as an intermediate conductor

for exciton transport located between the antenna complex where light is initially

absorbed and the reaction center. Since the resolution of its crystal structure over

30 years ago [12], the FMO trimer, composed of 3 units each comprising 8 bacte-

riochlorophylls has been extensively studied both experimentally [15–18] and theo-

retically [13, 14]. For instance regarding the structure-function relationship, it has

been shown [93] that amino acid residues cause considerable shifts in the site energies

of bacteriochlorophyll a (BChl) molecules of the FMO complex and in turn causes

changes to the energy transfer properties.

Have photosynthetic systems adopted interesting quantum effects to improve their

efficiency in the course of evolution, as suggested by the experiments? In this arti-

cle, we provide a first step to answer this question by characterizing the protein
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environment of the FMO photosynthetic system to identify the microscopic origin

of the long-lived quantum coherence. We investigate the quantum energy transfer

of a molecular excitation (exciton) by incorporating an all-atom molecular dynamics

(MD) simulation. The molecular energies are computed with time-dependent density

functional theory (TDDFT) along the MD trajectory. The evolution of the exci-

tonic density matrix is obtained as a statistical ensemble of unitary evolutions by a

time-dependent Schrödinger equation. Thus, this work is in contrast to many stud-

ies based on quantum master equations in that it includes atomistic detail of the

protein environment into the dynamical description of the exciton. We also intro-

duce a novel approach to add quantum corrections to the dynamics. Furthermore, a

quantitative comparison to the hierarchical equation of motion and the Haken-Strobl-

Reineker method is presented. As the main result, the time evolution of coherences

and populations shows characteristic beatings on the time scale of the experiments.

Surprisingly, we observe that the cross-correlation of site energies does not play a

significant role in the energy transfer dynamics.

The paper is structured as follows: In the first part we present the methods em-

ployed and in the second part the results followed by conclusions. In particular, the

partitioning of the system and bath Hamiltonian in classical and quantum degrees

of freedom and details of the MD simulations and calculation of site energies are

discussed in Section 3.2.1. The exciton dynamics of the system under the bath fluc-

tuations is then presented in Section 3.2.2. In Section 3.2.3 we introduce a quantum

correction to the previous exciton dynamics. Using the discussed methods we evalu-

ated site energies and their distribution at 77 and 300K in Section 3.3.1 and we also
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computed the linear absorption spectrum of the FMO complex in Section 3.3.3. The

site basis dephasing rates are discussed in Section 3.3.2. From the exciton dynamics

of the system we obtained populations and coherences and compared to the QJC-MD

approach in Section 3.3.4. We then compare the MD and quantum corrected MD

methods to the hierarchical equation of motion (HEOM) and Haken-Strobl-Reineker

(HSR) methods in Section 3.3.5. In Section 3.3.6 we determined the spectral density

for each site from the energy time bath-correlator and studied the effect of auto and

cross-correlations on the exciton dynamics by introducing a comparison to first-order

autoregressive processes. We conclude in Section 3.4 by summarizing our results.

3.2 Methods

3.2.1 Molecular Dynamics Simulations

A computer simulation of the quantum evolution of the entire FMO complex is cer-

tainly unfeasible with the currently available computational resources. However, we

are only interested in the electronic energy transfer dynamics among BChl molecules

embedded in the protein support. This suggests a decomposition of the total system

Hamiltonian operator into three parts: the relevant system, the bath of vibrational

modes, and the system-bath interaction Hamiltonians. The system Hamiltonian op-

erates on the excitonic system alone which is defined by a set of two-level systems.

Each two-level system represents the ground and first excited electronic state of a

BChl molecule. In addition, the quantum mechanical state of the exciton is assumed

to be restricted to the single-exciton manifold because the exciton density is low.
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On the other hand, factors affecting the system site energies have intractably large

degrees of freedom, so it is reasonable to treat all those degrees of freedom as the

bath of an open quantum system.

More formally, to describe the system-bath interplay by including atomistic detail

of the bath, we start from the total Hamiltonian operator and decompose it in a

general way such that no assumptions on the functional form of the system-bath

Hamiltonian are necessary [67]:

Ĥtotal =
∑
m

∫
dR εm(R)|m〉〈m| ⊗ |R〉〈R|

+
∑
m,n

∫
dR {Jmn(R)|m〉〈n| ⊗ |R〉〈R|+ c.c.}

+|1〉〈1| ⊗ T̂R +
∑
m

∫
dR Vm(R)|m〉〈m| ⊗ |R〉〈R|. (3.1)

Here, R corresponds to the nuclear coordinates of the FMO complex including both

BChl molecules, protein, and enclosing water molecules. The set of states |m〉 ⊗ |R〉

denote the presences of the exciton at site m given that the FMO complex is in the

configuration R, εm(R) represents the site energy of the mth site and Jmn(R) is the

coupling constant between the mth and nth sites. Note that the site energies and

coupling terms can be modulated byR. |1〉〈1| is the identity operator in the excitonic

subspace, T̂R is the kinetic operator for the nuclear coordinates of the FMO complex,

and Vm(R) is the potential energy surface for the complex when the exciton at site

m under Born-Oppenheimer approximation. Given multiple Born-Oppenheimer sur-

faces, one would need to carry out a coupled nonadiabatic propagation. However,

as a first approximation, we assume that the change of Born-Oppenheimer surfaces

does not affect the bath dynamics significantly. This approximation becomes better
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at small reorganization energies. Indeed, BChl molecules have significantly smaller

reorganization energies than other chromophores [94]. With this assumption, we can

ignore the dependence on the excitonic state in the V term, thus the system-bath

Hamiltonian only contains the one-way influence from the bath to the system. We

also adopted Condon approximation so that the J terms do not depend on R:

HS =
∑
m

∫
dR ε̄m|m〉〈m| ⊗ |R〉〈R|+

∑
m,n

∫
dR {Jmn(R)|m〉〈n| ⊗ |R〉〈R|+ c.c.} ,

≈
∑
m

∫
dR ε̄m|m〉〈m| ⊗ |R〉〈R|+

∑
m,n

∫
dR

{
J̄mn|m〉〈n| ⊗ |R〉〈R|+ c.c.

}
,

HB = |1〉〈1| ⊗ T̂R +
∑
m

∫
dR Vm(R)|m〉〈m| ⊗ |R〉〈R|,

≈ |1〉〈1| ⊗ T̂R +

∫
dR Vground(R)|1〉〈1| ⊗ |R〉〈R|,

HSB =
∑
m

∫
dR {εm(R)− ε̄m} |m〉〈m| ⊗ |R〉〈R|,

Htotal = HS +HB +HSB. (3.2)

Based on this decomposition of the total Hamiltonian, we set up a model of the FMO

complex with the AMBER 99 force field [64, 65] and approximate the dynamics of

the protein complex bath by classical mechanics. The initial configuration of the

MD simulation was taken from the x-ray crystal structure of the FMO complex of

Prosthecochloris aestuarii (PDB ID: 3EOJ.). Shake constraints were used for all

bonds containing hydrogen and the cutoff distance for the long range interaction

was chosen to be 12 Å. After a 2ns long equilibration run, the production run was

obtained for a total time of 40ps with a 2fs timestep. For the calculation of the

optical gap, snapshots were taken every 4fs. Two separate simulations at 77K and

300K were carried out with an isothermal-isobaric (NPT) ensemble to investigate the
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temperature dependence of the bath environment. Then, parameters for the system

and the system-bath Hamiltonian were calculated using quantum chemistry methods

along the trajectory obtained from the MD simulations.

We chose not to include the newly resolved eighth BChl molecule [93] in our

simulations because up to now, the large majority of the scientific community has

focused on the seven site system which is therefore a better benchmark to compare

our calculations to previous work. It is important to note however that this eighth

site may have an important role on the dynamics. In particular, as suggested in

[95, 96] this eighth site is considered to be the primary entering point for the exciton

in the FMO complex and its position dictates a preferential exciton transport pathway

rather than two independent ones. Also when starting with an exciton on this eighth

site, the oscillations in the coherences are largely suppressed.

The time-dependent site energy εm was evaluated as the excitation energy of the

Qy transition of the corresponding BChl molecule. We employed the time-dependent

density functional theory (TDDFT) with BLYP functional within the Tamm-Dancoff

approximation (TDA) using the Q-Chem quantum chemistry package [66]. The basis

set was chosen to be 3-21G after considering a trade-off between accuracy and com-

putational cost. The Qy transition was identified as the excitation with the highest

oscillator strength among the first 10 singlet excited states. Then, the transition

dipole of the selected state was verified to be parallel to the y molecular axis. Every

atom which did not belong to the TDDFT target molecule was incorporated as a

classical point charge to generate the external electric field for the QM/MM calcula-

tion. Given that the separation between BChl molecules and the protein matrix is
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quite clear, employing this simple QM/MM method with classical external charges to

calculate the site energies is a good approximation. The external charges were taken

from the partial charges of the AMBER force field [64, 65]. The coupling terms, Jmn,

can also be obtained from quantum chemical approaches like transition density cube

or fragment-excitation difference methods [97, 98]. However, in this case we employed

the MEAD values of the couplings of the Hamiltonian presented in the literature [14]

and considered them to be constant in time. ε̄m was straightforwardly chosen as the

time averaged site energy for the mth site.

3.2.2 Exciton Dynamics

In this section, we describe the method for the dynamics of the excitonic reduced

density matrix within our molecular dynamic simulation framework. It is based on

a simplified version of the quantum-classical hybrid method (Ehrenfest) described in

[67]. The additional assumption on Hamiltonian (3.2) is that the bath coordinate

R is a classical variable, denoted by a superscript “cl”. As discussed above, the

time-dependence of these variables arises from the Newtonian MD simulations. The

additional force on the nuclei due to the electron-phonon coupling [67] is neglected.

Hence, the Schrödinger equation for the excitonic system is given by:

i~
∂

∂t
|ψ(t)〉 ≈

{
HS +HSB(Rcl(t))

}
|ψ(t)〉. (3.3)

The system-environment coupling leads to an effective time-dependent Hamiltonian

Heff (t) = HS +HSB(Rcl(t)). This equation suggests a way to propagate the reduced

density matrix as an average of unitary evolutions given by Eq. (3.3). First, short MD

trajectories (in our case 1 ps long) are uniformly sampled from the full MD trajectory
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(40 ps). Then, for each short MD trajectory, the excitonic system can be propagated

under unitary evolution with a simple time-discretized exponential integrator. The

density matrix is the classical average of these unitary evolutions:

ρS(t) =
1

M

M∑
i=1

|ψi(t)〉〈ψi(t)|, (3.4)

where M is the number of sample short trajectories. Each trajectory is subject to

different time-dependent fluctuations from the bath, which manifests itself as de-

coherence when averaged to the statistical ensemble. Compared to many methods

based on the stochastic unraveling of the master equation, e.g. [59, 99], our formalism

directly utilizes the fluctuations generated by the MD simulation. Therefore, the de-

tailed interaction between system and bath is captured. The temperature of the bath

is set by the thermostat of the MD simulation, thus no further explicit temperature

dependence is required in the overall dynamics. The dynamics obtained by this nu-

merical integration of the Schrödinger equation will also be compared to the HEOM

approach. The HEOM is briefly described in the Supporting Material along with a

discussion on the differences respect to the MD-method.

3.2.3 Quantum Jump Correction to MD Method (QJC-MD)

The MD/TDDFT simulation above leads to crucial insights into the exciton dy-

namics. However, it does not capture quantum properties of the vibrational envi-

ronment such as zero-point fluctuations. At zero temperature all the atoms in the

MD simulation are completely frozen. Moreover, similarly to an infinite-temperature

model, at long times of the quantum dynamical simulation the exciton is evenly

distributed among all molecules, as we will see below. In order to obtain a more
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realistic description, we modify the stochastic simulation by introducing quantum

jumps derived from the zero-point (zp) fluctuations of the modes in the vibrational

environment. We refer to this corrected version of the MD propagation as QJC-MD.

Introducing harmonic bath modes explicitly we reformulate the system-bath Hamil-

tonian as:

HSB =
∑
m

|m〉〈m|
∑
ξ

gmξ Rξ. (3.5)

Here, each gmξ represents the coupling strength of a site m to a particular mode ξ

and Rξ is the dimensionless position operator for that mode. We now formulate

our correction by separating the bath operators into two parts, Rξ = Rzp
ξ + RMD

ξ ,

the first part is due to zero-point fluctuations and the second comes from our MD

simulations. As above, the MD part is replaced by the classical time-dependent

variables, RMD
ξ → Rcl

ξ (t). The zero-point operator is expressed by creation and

annihilation operators, Rzp
ξ = bzpξ +bzp,†ξ , which satisfy the usual commutation relations

[bzpξ , b
zp,†
ξ′ ] = δξξ′. By construction, for the zp-fluctuations one has 〈bzp,†ξ bzpξ 〉 = 0.

The zp-fluctuations can only induce excitonic transitions from higher to lower

exciton states in the instantaneous eigenbasis of the Hamiltonian, thus leading to

relaxation of the excitonic system. The evolution of the populations PM of the in-

stantaneous eigenstates |M〉(t) due to the zero-point correction is expressed by a Pauli

master equation as:

(
ṖM

)
zpc

= −
∑
N

γ(ωMN)PM +
∑
N

γ(ωNM)PN , (3.6)

and for the coherences as:

(
ĊMN

)
zpc

= −1

2
γ(|ωMN |)CMN . (3.7)
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The associated rate can be derived from a secular Markovian Redfield theory [34] to

be γ(ωMN) = 2πJ (ωMN)
∑

m |cm (M) |2|cm (N) |2, where the spectral density J (ω) is

only non-zero for positive transition frequencies ωMN = EM − EN and taken to be

as in [87]. The coefficients cm (M) translate from site to energy basis. The time

evolution given by Equations (3.6) and (3.7) is included in the dynamics simulation

by introducing quantum jumps as in the Monte-Carlo wavefunction (MCWF) method

[99]. We thus arrive at a hybrid classically averaged H (t) simulation with additional

quantum transitions induced by the vacuum fluctuations of the vibrational modes.

3.3 Results and Discussion

3.3.1 Site Energy Distributions

Using the coupled QM/MD simulations, site energies were obtained for each BChl

molecule. These energies and their fluctuations are reported in Figure 3.1. We note

that the magnitude of the fluctuations are of the order of hundreds of cm−1. Although

the order of the site energies does not perfectly match previously reported results [14,

20], the overall trend does not deviate much, especially considering that our result is

purely based on ab initio calculations without fitting to the experimental result. The

Qy transition energies calculated by TDDFT are known to be systematically blue-

shifted with respect to the experiment [100]. However, the scale of the fluctuations

remains reasonable. Therefore, the comparison in Fig. 3.1 was made after shifting

the overall mean energy to zero for each method.

The excitation energy using TDDFT does not always converge when the config-
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Figure 3.1: Panel a: Comparison of the calculated site energies for each BChl molecule
to the previous works by Wendling et al. and Adolphs et al. [14, 20]. Our calculation,
labeled as MD, was obtained using QM/MM calculations with the TDDFT/TDA
method at 77K and 300K. Vertical bars represent the standard deviation for each
site. Panel b: Marginal distribution of site 1 energy at 77K and 300K. Histograms
represent the original data, and solid lines correspond to the estimated Gaussian
distribution.
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uration of the molecule deviates significantly from its ground state structure. The

number of points which failed to converge was on average less than 4% for configura-

tions at 300K, and less than 2% at 77K. We interpolated the original time series to

obtain smaller time steps and recover the missing points. Interpolation could lead to

severe distortion of the marginal distribution when the number of available points is

too small. However, in our case, the distributions virtually remained the same with

and without interpolation.

3.3.2 Dephasing Rates

In the Markovian approximation and assuming an exponentially decaying auto-

correlation function, the dephasing rate γφ is proportional to the variance of the site

energy σ2
ε [34]:

γφ =
2

~
σ2
ε τ, (3.8)

where τ is a time decay parameter which we estimated through a comparison to first

order autoregressive processes, as described in Section 3.3.6. The dependence on the

variance is clearly justified: states associated with large site energy fluctuations tend

to undergo faster dephasing. Figure 3.2, panel a), presents the approximate site basis

dephasing rates for each site with τ ≈ 5fs. The averaged value of the slopes is 0.485

cm−1 K−1, which is in good agreement with the experimentally measured value of

0.52 cm−1 K−1 obtained from a closely related species Chlorobium tepidum in the

exciton basis [25]. From this plot we note the presence of a positive correlation be-

tween temperature and dephasing rate. This correlation is plausible: as temperature

increases so does the energy disorder, hence the coherences should decay faster. In
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fact, in the Markovian approximation, dephasing rates increase linearly with temper-

ature [34, 101]. Calculations at other temperatures are underway to verify this and

to obtain more information on the precise temperature dependence of the dephasing

rates.

3.3.3 Simulated Spectra

The absorption, linear dichroism (LD), and circular dichroism (CD) spectra can

be obtained from the Fourier transform of the corresponding response functions. The

spectra can be evaluated for the seven BChl molecules using the following expres-

sions [102, 103]:

IAbs(ω) ∝ Re

∫ ∞
0

dt eiωt
7∑

m,n=1

〈~dm · ~dn〉{〈Umn(t, 0)〉 − 〈U∗mn(t, 0)〉},

ILD(ω) ∝ Re

∫ ∞
0

dt eiωt
7∑

m,n=1

〈3(~dm · r̂)(~dn · r̂)− ~dm · ~dn〉{〈Umn(t, 0)〉 − 〈U∗mn(t, 0)〉},

ICD(ω) ∝ Re

∫ ∞
0

dt eiωt
7∑

m,n=1

〈ε̄m(~Rm − ~Rn) · (~dm × ~dn)〉{〈Umn(t, 0)〉 − 〈U∗mn(t, 0)〉},

(3.9)

where m and n are indices for the BChl molecules in the complex, ~dm is the transition

dipole moment of the mth site, Umn(t, 0) is the (m,n) element of the propagator in

the site basis, r̂ is the unit vector in the direction of the rotational symmetry axis, ~Rm

is the coordinate vector of the site m, and 〈· · · 〉 indicates an ensemble average. The

ensemble average was evaluated by sampling and averaging over 4000 trajectories.

We applied a low-pass filter to smooth out the noise originated from truncating the

integration and due to the finite number of trajectories. Figure 3.2 panel b) and
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Figure 3.2: Panel a shows the calculated dephasing rate for each site at 77K and
300K. Panel b shows the simulated linear absorption spectra of the FMO complex
at 77K and 300K. They were shifted to be compared to the experimental spectra as
obtained by Engel through personal communication. Panel c shows the simulated
linear dichroism (LD) and circular dichroism (CD) spectra at 77K. Experimental
spectra were obtained from Wendling et al.[20] Although TDDFT-calculated spectra
shows systematically overestimated site energies, the width and overall shape of the
spectra is in good agreement.
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c) show direct comparison of the calculated and experimental spectra at 77K and

300K. As discussed in Section 3.3.1, TDDFT tends to systematically overestimate

the excitation energy of the Qy transition [104] yet the fluctuation widths of the

site energies are reasonable. In fact, the width and overall shape of the calculated

spectrum is in good agreement with the experimental spectrum at each temperature.

Calculated LD and CD spectra also reproduce well the experimental measurements,

considering that no calibration to experiments was carried out. Since both LD and

CD spectra are sensitive to the molecular structure it appears that our microscopic

model correctly captures these details.

3.3.4 Population Dynamics and Long-lived Quantum Coher-

ence

The MD method is based on minimal assumptions and directly evaluates the

dynamics of the reduced density matrix from the total density matrix as described

in Section 3.2. The reduced density matrix was obtained after averaging over 4000

trajectories. Figure 3.3 shows the population and coherence dynamics of each of

the seven sites according to the dephasing induced by the nuclear motion of the

FMO complex. In particular, the populations and the absolute value of the pairwise

coherences, as defined in [52] (2 · |ρ12 (t)| and 2 · |ρ56 (t)|) are plotted at both 77 and

300K starting with an initial state in site 1 (first three panels) and then in site 6

(last three panels). Until very recently [95, 96] site 1 and 6 have been thought as

the entry point of an exciton in the FMO complex, therefore most of the previous

literature chose the initial reduced density matrix to be either pure states |1〉〈1| or
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|6〉〈6| [29, 51, 105]. However, our method could be applied to any mixed initial state

without modification. We note that coherent beatings last for about 400fs at 77K and

200fs at 300K. These timescales are in agreement with those reported for FMO [25, 29]

and with what was found in Section 3.3.2. Although quite accurate in the short time

limit, the MD method populations do not reach thermal equilibrium at long times.

This was verified by propagating the dynamics to twice the time shown in Figure

3.3. This final classical equal distribution is similar to the HSR model result. The

three central panels of Figure 3.3 show the same populations and coherences obtained

from the QJC-MD method. As discussed in Section 3.2, this method includes a zero

point correction through relaxation transitions and predicts a more realistic thermal

distribution at 77K. At 300K the quantum correction is less important in the dynamics

because the Hamiltonian fluctuations dominate over the zero temperature quantum

fluctuations.

3.3.5 Comparison between MD, QJC-MD, HEOM, and HSR

Methods

Figure 3.4 shows a direct comparison of the population dynamics of site 1 calcu-

lated using the HEOM method discussed by Ishizaki and Fleming [29, 58], our MD

and quantum corrected methods at 77K and 300K, and the HSR model [39, 40] with

dephasing rates obtained from Eq. (3.8). We observe that the short-time dynamics

and dephasing characteristics are surprisingly similar, considering that the methods

originate from very different assumptions. Atomistic detail can allow for differentia-

tion of the system-environment coupling for different chromophores. For example, at
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Figure 3.3: Panel a: Time evolution of the exciton population of each chromophore
in the FMO complex at 77K and 300K. Panel b: Change of the pairwise coherence,
or concurrence in time. Initial pure states, ρS(0) = |1〉〈1| for the top and center
panels were propagated using the two formulations developed in this article, MD
and QJC-MD, to utilize the atomistic model of the protein complex bath from the
MD/TDDFT calculation. Panel c The initial state was set to |6〉〈6| and propagated
using the MD method.
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both temperatures (right panels), the MD populations of site 6 undergo faster deco-

herence than the corresponding HEOM results. We attribute this to the difference

in energy gap fluctuations of site energy between site 1 and 6 obtained from the MD

simulation as can be seen in 3.1. On one hand, in the HEOM method, site energy

fluctuations are considered to be identical across all sites, on the other, in our method

the fluctuations of each site are obtained from the MD simulation in which each site is

associated with a different chromophore-protein coupling. Nevertheless, the fact that

we obtain qualitatively similar results to the HEOM approach (at least when start-

ing in ρ(0) = |1〉 〈1|) without considering non equilibrium reorganization processes

suggests that such processes might not be dominant in the FMO. The quantum cor-

rection results (QJC-MD), for every temperature and initial state, are in between

the HEOM and MD results. This is due to the induced relaxation from zero-point

fluctuations of the bath environment, which are not included in the MD method but

included in the QJC-MD and HEOM methods.

The HSR results take into account the site-dependence of the dephasing rates

based on Eq. (3.8). The method is briefly described in the supplementary material.

Due to the Markovian assumption, this model shows slightly less coherence than the

HEOM method and similarly to the MD method it converges to an equal classical

mixture of all sites in the long time limit.

3.3.6 Correlation Functions and Spectral Density

The bath autocorrelation function and its spectral density contain information

on interactions between the excitonic system and the bath. The bath correlation
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Figure 3.4: Comparison of the population dynamics obtained by using the MD
method, the corrected MD, the hierarchy equation of motion approach and the Haken-
Strobl-Reineker model at 77K and 300K. Panels on the right correspond to the initial
state in site 1 and those on the left to an initial state in site 6. All methods show
similar short-time dynamics and dephasing, while the long time dynamics is different
and the different increases as relaxation is incorporated in the various methods.
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function is defined as C(t) = 〈δε(t)δε(0)〉 with δε = ε(t)− ε̄. For the MD simulation,

C(t) is shown in Fig. 3.5 a) for the two temperatures.

To study the effect of the decay rate of the autocorrelation function on the pop-

ulation dynamics, we modeled site energies using first-order autoregressive (AR(1))

processes [106]. The marginal distribution of each process was tuned to have the

same mean and variance as for the MD simulation. The autocorrelation function of

the AR(1) process is an exponentially decaying function:

C(t) ∝ exp(−t/τ). (3.10)

We generated three AR(1) processes with different time constants τ and propagated

the reduced density matrix using the Hamiltonian corresponding to each process. As

can be seen in Fig. 3.5, panel a), the autocorrelation function of the AR(1) process

with τ ≈ 5fs has a similar initial decay rate to that of the MD simulation at both

temperatures. Therefore, as shown in the last three horizontal panels, its spectral

density is in good agreement with the MD simulation result in the low frequency

region, i.e up to 600cm−1. Modes in this region are known to be the most important

in the dynamics and in determining the the decoherence rate. Also, as panels b) and

c) show, that same AR(1) process with τ ≈ 5fs exhibits similar population beatings

and concurrences to those of the MD simulation. The relation of this 5fs time scale

to others reported in [21, 29] is presently unclear. We suspect that the discrepancy

between the two results should decrease when one propagates the MD in the excited

state. Work in this direction is in progress in our group.

The spectral density can be evaluated as the reweighted cosine transform of the
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Figure 3.5: Panel a: Site 1 autocorrelation functions using MD and AR(1) processes
generated with time constant equal to 2fs, 5fs, and 50fs at 77K and 300K. Panel
b: Site 1 population dynamics of MD and AR(1) processes with the different time
constants at 77K and 300K. Panel c: The change of pairwise coherence between site 1
and 2 of MD and AR(1) processes with the different time constants at 77K and 300K.
Panel d: Spectral density of site 1 of the FMO complex from the MD simulation at
77K and 300K. They clearly show the characteristic vibrational modes of the FMO
complex. High-frequency modes are overpopulated due to the ultraviolet catastrophe
observed in classical mechanics. The Ohmic spectral density used by Ishizaki and
Fleming in [29] was presented for comparison. The spectral densities of site 1 from
AR(1) processes are also presented.
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corresponding bath autocorrelation function C (t) [103, 104],

J(ω) =
2

π~
tanh(β~ω/2)

∫ ∞
0

C(t) cos(ωt) dt. (3.11)

With the present data the spectral density exhibits characteristic phonon modes from

the dynamics of the FMO complex, see Fig. 3.5 d) first panel. However, high-

frequency modes tend to be overpopulated due to the limitation of using classical

mechanics. Most of these modes are the local modes of the pigments, which can

be seen from the pigment-only calculation in [65]. There are efforts to incorporate

quantum effects into the classical MD simulation in the context of vibrational coher-

ence [68–70]. We are investigating the possibilities of incorporating corrections based

on a similar approach. Moreover, we also obtain a discrepancy of the spectral density

in the low frequency region. On one hand, the origin could lie in the harmonic ap-

proximation of the bath modes leading to the tanh prefactor in Eq. (3.11) or in the

force field used in this work. On the other, the form of the standard spectral density

is from [17] which measures fluorescence line-narrowing on a much longer timescale,

around ns, than considered in our simulations (around ps). Assuming correctness of

our result, this implies that for the simulation of fast exciton dynamics in photosyn-

thetic light-harvesting complexes a different spectral density than the widely used

one has to be employed.

Site energy cross-correlations between chromophores due to the protein environ-

ment have been postulated to contribute to the long-lived coherence in photosynthetic

systems [24]. Many studies have explored this issue, e.g. recently [14, 51, 60, 107–

109]. We tested this argument by de-correlating the site energies. For each unitary

evolution, the site energies of different molecules at the same time were taken from
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Figure 3.6: Panel a: Cross-correlation function of the original MD trajectory and a
randomly shuffled trajectory between sites 1 and 2 at 77K and 300K. Panel b: Site
1 population dynamics of the original dynamics and the shuffled dynamics at 77K
and 300K. c, The pairwise coherence between sites 1 and 2. Original and shuffled
dynamics are virtually identical at both temperatures.
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different parts of the MD trajectory. In this way, we could significantly reduce po-

tential cross correlation between sites while maintaining the autocorrelation function

of each site. As can be seen in Fig. 3.6, no noticeable difference between the original

and shuffled dynamics is observed.

3.4 Conclusion

The theoretical and computational studies presented in this article show that the

long-lived quantum coherence in the energy transfer process of the FMO complex of

Prosthecochloris aestuarii can be simulated with the atomistic model of the protein-

chromophore complex. Unlike traditional master equation approaches, we propagate

in a quantum/classical framework both the system and the environment state to

establish the connection between the atomistic details of the protein complex and the

exciton transfer dynamics. Our method combines MD simulations and QM/MM with

TDDFT/TDA to produce the time evolution of the excitonic reduced density matrix

as an ensemble average of unitary trajectories.

The conventional assumption of unstructured and uncorrelated site energy fluc-

tuations is not necessary for our method. No ad hoc parameters were introduced

in our formalism. The temperature and decoherence time were extracted from the

site energy fluctuation by the MD simulation of the protein complex. The simulated

dynamics clearly shows the characteristic quantum wave-like population change and

the long-lived quantum coherence during the energy transfer process in the biological

environment. On this note it is worth mentioning that one has to be careful in the

choice of force-field and in the method used to calculated site energies. In fact as
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presented in Olbrich et al. [110] a completely different energy transfer dynamics was

obtained by using the semiempirical ZINDO-S/CIS to determine site energies.

Moreover, we determined the correlations of the site energy fluctuations for each

site and between sites through the direct simulation of the protein complex. The

spectral density shows the influence of the characteristic vibrational frequencies of

the FMO complex. This spectral density can be used as an input for quantum mas-

ter equations or other many-body approaches to study the effect of the structured

bath. The calculated linear absorption spectrum we obtained is comparable to the

experimental result, which supports the validity of our method. The characteris-

tic beating of exciton population and pairwise quantum coherence exhibit excellent

agreement with the results obtained by the HEOM method. It is also worth noting

the remarkable agreement of the dephasing timescales of the MD simulations, the

HEOM approach, and experiment.

Recently, characterization of the bath in the LH2 [103, 104] and FMO [109] pho-

tosynthetic complexes were reported using MD simulation and quantum chemistry at

room temperature. Those studies mostly focused on energy and spatial correlations

across the sites, the linear absorption spectrum, and spectral density. The detailed

study in [109] also suggests that spatial correlations are not relevant in the FMO

dynamics.

This work opens the road to understanding whether biological systems employed

quantum mechanics to enhance their functionality during evolution. We are planning

to investigate the effects of various factors on the photosynthetic energy transfer

process. These include: mutation of the protein residues, different chromophore
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molecules, and temperature dependence. Further research in this direction could

elucidate on the design principle of the biological photosynthesis process by nature,

and could be beneficial for the discovery of more efficient photovoltaic materials and

in biomimetics research.
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Chapter 4

Path integral Monte Carlo with

importance sampling for excitons

interacting with arbitrary phonon

bath environment

4.1 Introduction

Recent 2D non-linear spectroscopy experiments suggested the existence of long-

lived quantum coherence during the electronic energy transfer process within the

Fenna-Matthews-Olson complex of green sulfur bacteria, marine algae and plants

even under physiological conditions [23, 25, 47, 111–113]. These results attracted

a large amount of attention from theoretical physicists and chemists. The energy

transfer process usually has been modeled as the dynamics of excitons coupled to a
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phonon bath in thermal equilibrium within the single exciton manifold. This approx-

imation leads to the famous spin-Boson Hamiltonian. The solution of this type of

Hamiltonian has been studied extensively. For example, by assuming a certain rela-

tive magnitude between the reorganization energy and coupling terms, one can obtain

quantum master equations valid in specific regimes[19, 67, 114]. Another approxima-

tion, the Haken-Strobl-Reineker model works in both the coherent and incoherent

regimes, but incorrectly converges to the high temperature limit in the long time

even at the low temperature [39, 40]. More recently, numerically exact approaches

which interpolate both limits have been investigated and applied to many systems of

interest. Two of the most popular methods are the hierarchical equation of motion

[29, 87, 115] and the quasiadiabatic path integral method [116, 117]. These methods

are being actively developed, improved, and applied to many systems of interests [58].

Although having been successful in many applications, many of the models de-

scribed above have assumed the phonon bath to be a set of independent harmonic os-

cillators and encode all the complexity of the bath environment in the spectral density,

which is essentially a frequency dependent distribution of exciton-phonon coupling.

However, for studying the anharmonic effects of a very sophisticated bath environ-

ment, like the protein complexes of photosynthesis, being able to directly include the

atomistic details of the bath structure into the exciton dynamics has a distinct ad-

vantage. In other words, approaches that can evaluate the influence functional first

suggested by Feynman and Vernon [118] have more straightforward descriptions and

are applicable to arbitrary systems. Evaluation of the exact influence functional for

arbitrary environment requires the simulation of the full quantum dynamics, which is
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still not practical with currently available computational resources. There have been

several attempts to incorporate atomistic details of the large scale bath by combining

the exciton dynamics and molecular dynamics simulations [32, 104, 119]. However,

these theories are still in their early stages and the propagation scheme used does

not satisfy some fundamental properties, like the detailed balance condition at finite

temperature. In pursuit of more accurate theory, it is crucial to know the correct

asymptotic behavior in the limit of infinite time. In this context, we decided to ex-

plore the numerically exact reduced density matrix in a finite temperature using path

integral Monte Carlo [120–123] method. Recently, Moix et al applied path integral

Monte Carlo for the equilibrium reduced density matrix of the FMO complex within

the framework of open quantum systems [124].

4.2 Theory

4.2.1 Path Integral Formulation of the Reduced Thermal

Density Matrix

We want to evaluate the reduced density matrix of an excitonic system coupled

to phonons on arbitrary Born-Oppenheimer surfaces at a finite temperature. For

photosynthetic energy transfer, we usually restrict the excitons to be within the single

exciton manifold because at normal light intensity, in average, one photon is present

at a given time in the complexes of interest. However, the formulation itself is not

limited to the single exciton manifold. The Hamiltonian operator for such a system
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can be written as

Ĥ =
∑
m

∫
dR [Vm(R)− Vg(R)] |m〉〈m| ⊗ |R〉〈R|+

∑
m6=n

∫
dR Jmn(R)|m〉〈n| ⊗ |R〉〈R|︸ ︷︷ ︸

Ĥexc=ĤS+ĤSB

+ |1〉〈1| ⊗
[
T̂ +

∫
dR Vg(R)|R〉〈R|

]
︸ ︷︷ ︸

ĤB

. (4.1)

The Hamiltonian was written in terms of the diabatic basis |m,R〉 ≡ |m〉 ⊗ |R〉,

where m is the index for the exciton state and R is the phonon coordinate. Vg(R)

is the potential energy surface (PES) of the phonons in the electronic ground state

and Vm(R) is the PES of the phonons in the mth exciton state. T̂ is the kinetic

operator of the phonons defined as T̂ = −~2
2
M−1∇2, where M is the mass tensor of

the phonons. This expression is generally applicable to any molecular system with

multiple potential energy surfaces. The reduced thermal density matrix ρS is defined

as the partial trace of the full thermal density matrix with respect to the bath degrees

of freedom:

ρS =
1

Z(β)
TrB exp

(
−βĤ

)
=

1

Z(β)

∫
dR0 〈R0| exp

(
−βĤ

)
|R0〉, (4.2)
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where Z(β) is the partition function of the total system. We proceed by relying on

the following identity:

〈R0| exp(−βĤ)|R0〉 = 〈R0|
{

exp

(
−βĤ
M

)}M

|R0〉

=

∫
dR1

∫
dR2 · · ·

∫
dRM−1

× 〈R0| exp

(
−βĤ
M

)
|RM−1〉〈RM−1| exp

(
−βĤ
M

)
|RM−2〉

× · · · × 〈R2| exp

(
−βĤ
M

)
|R1〉〈R1| exp

(
−βĤ
M

)
|R0〉. (4.3)

For any positive integer M , the expression above is exact. When the Trotter

decomposition is applied, an imaginary timestep τ ≡ β~
M

is usually defined for conve-

nience. Then, the thermal density matrix can be interpreted as an imaginary time

evolution. In the limit of an infinitesimal imaginary timestep, the Trotter decompo-

sition converges to the exact result,

〈R1| exp

(
−βĤ
M

)
|R0〉 = 〈R1| exp

(
−τĤ/~

)
|R0〉

= 〈R1|e−τĤexc/2~e−τĤB/~e−τĤexc/2~|R0〉+O(τ 3)

=

∫
dR2

∫
dR3 〈R1|e−τĤexc/2~|R3〉

× 〈R3|e−τĤB/~|R2〉〈R2|e−τĤexc/2~|R0〉+O(τ 3). (4.4)

Subsequently, we will recast the system part of Ĥexc as a single matrix to simplify
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the notation,

Ĥexc =
∑
m,n

∫
dR Emn(R)|m〉〈n| ⊗ |R〉〈R|,

Emm(R) =

 Vm(R)− Vg(R) for m = n,

Jmn(R) for m 6= n.

(4.5)

With the single exciton manifold assumption, Emm corresponds to the optical gap of

the m-th site. Now, the three terms in the integrand of the Eq. 4.4 can be written

without Dirac notation,

〈R1|e−τĤexc/2~|R3〉 = δ(R1 −R3)e−τE(R3)/2~,

〈R3|e−τĤB/~|R2〉 = (4πτ |λ|)−1/2e−τVg(R3)/2~e−(R3−R2)Tλ−1(R3−R2)/4τe−τVg(R2)/2~

+O(τ 3),

〈R2|e−τĤexc/2~|R0〉 = δ(R2 −R0)e−τE(R0)/2~, (4.6)

where λ ≡ ~M−1

2
. By the Eq. 4.4 and Eq. 4.6,

〈R1| exp

(
−βĤ
M

)
|R0〉 = (4πτ |λ|)−1/2e−τVg(R1)/2~e−(R1−R0)Tλ−1(R1−R0)/4τe−τVg(R0)/2~

× e−τE(R1)/2~e−τE(R0)/2~ +O(τ 3). (4.7)

Note that Eq. 4.7 is a matrix with the same dimension as the reduced density matrix

88



Chapter 4: Path integral Monte Carlo with importance sampling for excitons
interacting with arbitrary phonon bath environment

of the system. Substituting Eq. 4.7 to Eq. 4.2, we obtain

ρS =
1

Z(β)

∫
dR0

∫
dR1 · · ·

∫
dRM−1

× e−τE(R0)/2~e−τE(RM−1)/~ · · · e−τE(R1)/~e−τE(R0)/2~

× e−τVg(R0)/~e−τVg(R1)/~ · · · e−τVg(RM−1)/~

× e−(R0−RM−1)Tλ−1(R0−RM−1)/4τe−(RM−1−RM−2)Tλ−1(RM−1−RM−2)/4τ

× · · · × e−(R1−R0)Tλ−1(R1−R0)/4τ

=

∫
dR0

∫
dR1 · · ·

∫
dRM−1

× K

Z(β)
e−τE(R0)/2~e−τE(RM−1)/~ · · · e−τE(R1)/~e−τE(R0)/2~︸ ︷︷ ︸

ρPIMC(R0,··· ,RM−1)

× 1

K
e−βVPIMC(R0,R1,··· ,RM−1)︸ ︷︷ ︸

fg(R0,··· ,RM−1)

, (4.8)

where,

VPIMC(R0,R1, · · · ,RM−1) =
1

M

M−1∑
i=0

Vg(Ri)

+
M−1∑
i=0

M

2β2~2
{Ri −Rmod(i+1,M)}TM{Ri −Rmod(i+1,M)}.

(4.9)

The expressions above show that the reduced thermal density matrix ρS can be eval-

uated as an expectation value of ρPIMC(R0, · · · ,RM−1) where the joint probability

density function of the M N -dimensional random variables (R0, · · · ,RM−1) is fg.

This type of multidimensional integral can be efficiently evaluated using Monte Carlo

integration. Because fg(R0, · · · ,RM−1) is invariant to cyclic permutation of the

phonon coordinate, usually the averaged estimator ρPIMC over the cyclic permutation
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is used in the actual Monte Carlo evaluation:

ρPIMC(R0,R1, · · · ,RM−1) =
1

M

M−1∑
i=0

ρPIMC(Ri,Rmod(i+1,M), · · · ,Rmod(i+M−1,M)).

(4.10)

4.2.2 Population-Normalized Estimator and Importance Sam-

pling

In the previous approach described in Eq. 4.8, the phonon coordinates are sampled

according the electronic ground state PES. The estimator should converge to the

target quantity in the long time limit, taking into account the discretization error.

As long as fg(R0, · · · ,RM−1) is positive definite everywhere in the phonon space, the

sampling efficiency depends on the selection of the probability density. Obviously,

the actual distribution of the phonon coordinate depends heavily on the excited state

PES. Therefore, the Monte Carlo points coordinates sampled according to the reduced

dynamics of the bath by taking the partial trace with respect to the exciton degrees

of freedom, as explored in multiple surface path integral Monte Carlo approaches, are

expected to give the better estimates. This choice of the probability density reweights

the estimator in the following way:

fI(R0, · · · ,RM−1) = TrS [ρPIMC(R0, · · · ,RM−1)] fg(R0, · · · ,RM−1),

ρI(R0, · · · ,RM−1) =
ρPIMC(R0, · · · ,RM−1)

TrS [ρPIMC(R0, · · · ,RM−1)]
. (4.11)

In the expression above, we call ρI(R0, · · · ,RM−1) the population normalized esti-

mator for the reduced density matrix because the sum of its populations is always

constrained to be 1. The effective energy gap term of − 1
β

log TrρPIMC(R0, · · · ,RM−1)
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was added to the Eq. 4.9 to enable the phonons follow the excited state dynamics

depending on the exciton state ρS. For the estimator of the reduced density matrix in

Eq. 4.8, the normalization must obtained by the estimates of its diagonal elements,

leading to more uncertainties in the coherence. However, the population-normalized

estimator preserves the correct normalization by construction, and does not suffer

from any additional uncertainty.

Local gradient information can improve the efficiency and scaling of the sampling

procedure by means of a gradient-based approach such as the Metropolis-adjusted

Langevin algorithm (MALA). [125, 126] However, the exact closed form of the gra-

dient of the effective energy gap term, log TrSρPIMC(R0, · · · ,RM−1) can only be ex-

pressed as a function of a power series of matrices. Nevertheless, with the following

approximation:

n∑
k=0

AkBAn−k ≈
n∑
k=0

1

2n

(
n

k

)
AkBAn−k, (4.12)

an accurate approximated of the gradient can be obtained and employed in the sam-
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pling procedure,

∂

∂Rij

log TrS [ρPIMC(R0, · · · ,RM−1)] =
TrS

[
∂

∂Rij
ρPIMC(R0, · · · ,RM−1)

]
TrS [ρPIMC(R0, · · · ,RM−1)]

≈
TrS

[
− τ

2~
∂E(Ri)
∂Rij

ρPIMC(R0, · · · ,RM−1)
]

TrS [ρPIMC(R0, · · · ,RM−1)]
,

∇i log fg(R0, · · · ,RM−1) = − β

M
∇iVg(Ri)

+
M

2β~2
M(Rmod(i+1,M) +Rmod(i−1,M) − 2Ri),

µi(R0, · · · ,RM−1) =
TrS

[
− τ

2~
∂E(Ri)
∂Rij

ρPIMC(R0, · · · ,RM−1)
]

TrS [ρPIMC(R0, · · · ,RM−1)]

+∇i log fg(R0, · · · ,RM−1)

≈ ∇i log fI(R0, · · · ,RM−1). (4.13)

Here, ∇i is the gradient operator with respect to Ri.

Note that if we choose an appropriate Metropolis criterion, no bias in the distri-

bution is introduced even with the approximate gradient [127]. Firstly, a trial move

R′i obtained by

R′i = Ri + µi(R0, · · · ,RM−1)∆t+ ξi
√

∆t, (4.14)

where ∆t is the timestep for the Monte Carlo step and ξi is a N -dimensional vector

of independent standard Gaussian random variables. Then, R′i is probabilistically

accepted according to the acceptance ratio,

fI(R
′
0, · · · ,R′M−1)

fI(R0, · · · ,RM−1)
×
∏M−1

i=0 exp
[
− |R′i−{Ri+µi(R0,··· ,RM−1)}|2

2∆t

]
∏M−1

i=0 exp
[
− |Ri−{R′i+µi(R′0,··· ,R′M−1)}|2

2∆t

] . (4.15)

The Monte Carlo timestep ∆t is only a tunable parameter for the Monte Carlo sam-

pling procedure and not related to the physics of the simulated system.
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Parameters Value

k11 4× 10−5

k22 3.2× 10−5

x11 7
x22 10.5
ε11 0
ε22 2.2782× 10−5

c 5× 10−5

α 0.4
x12 8.75
m 3.6743× 103

Table 4.1: Summary of the parameters for the model system by Alexander et al [128].
All values are given in atomic units.

4.3 Application

4.3.1 Alexander’s 1D Test Model

Our formulation is equivalent to the multiple electronic state extension of matrix

multiplication path integral (MMPI) method of Alexander [120, 128] when the popu-

lation normalized estimator is chosen and only the vibrational degrees of freedom are

considered. Therefore, the 1D model employed in Ref. [128] was calculated to test

the validity of our method. The elements of the electronic Hamiltonian in this model

are given by,

V11(x) =
1

2
k11(x− x11)2 + ε11,

V22(x) =
1

2
k22(x− x22)2 + ε22,

V12(x) = c exp
[
−α(x− x12)2

]
, (4.16)

The total nuclear probability density evaluated as histograms from the Metropolis

random walk and MALA simulations are compared to the grid-based result from
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Alexander et al. [128] in Fig. 4.1. The distributions converged to the exact probability

density after 2× 107 steps with 8 beads at both temperatures of 8K and 30K.

4.3.2 Model of a Chromophore Heterodimer with Displaced

Harmonic Oscillators

To test the proposed method, a system of two chromophores in a photosynthetic

complex was modeled using displaced harmonic oscillator model. In this model,

the ground and excited electronic states of the monomer are modeled as harmonic

oscillators with different displacement, but the same harmonic constant [67]. The

thermal reduced density matrix was calculated within the single exciton manifold.

The Hamiltonian for this model is then given as follows:

Vg(x1, x2) =
1

2
(k1x

2
1 + k2x

2
2),

Ve(x1, x2) =

 1
2
k1{(x1 − d1)2 − x2

1}+ ε1 J

J 1
2
k2{(x2 − d2)2 − x2

2 + ε2}

 ,

M =

 m1 0

0 m2

 . (4.17)

Some of the parameters were set according to our molecular dynamics/quantum

chemistry calculation of the FMO complex [32]. The parameter values are listed in

table 4.2.

The model system was simulated at seven different temperatures ranging from

30K to 300K with a number of beads (discretization number) of 4, 8, 16, 32 and 64.

The number of timesteps propagated in each simulation was 4 × 107. The value of
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Figure 4.1: The estimated nuclear probability densities of Alexander’s model [128]
at (a) 8K and (b) 30K. For path integral Monte Carlo simulations, densities were
obtained by histograms with 50 bins. The discretization number of 8 was enough to
converge to the exact probability densitiies.
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Parameter Value

k1 2.227817× 10−3

k2 2.227817× 10−3

d1 3.00000
d2 2.00000
ε1 8.064745× 10−2

ε2 7.976238× 10−2

J −4.738588× 10−4

m1 3.418218× 106

m2 3.418218× 106

Table 4.2: Summary of the parameters for the displaced harmonic oscillator model
used in Sec. 4.3.2. All values are given in atomic units.

each timestep was tuned so that the acceptance ratio of the MALA run is close to

0.574, and 0.234 for the Metropolis random walk as maintaining these acceptance ratio

is known to provide most efficient sampling [126]. We used non-overlapping batch

means [129] with a batch size of 106 to estimate the standard error of the correlated

samples. The batch size was adjusted so that the null hypothesis of uncorrelated

batches was not rejected by using Ljung-Box test [130] at a significance level of 5%.

As shown in Fig. 4.2, the standard error of the simulation decreases modestly as

the number of Monte Carlo steps increases. Fig. 4.3 shows the temperature depen-

dence of the estimates of reduced density matrix elements as a function of various

discretization numbers using MALA. Although the Metropolis random walk simula-

tion gives a smaller confidence interval for the 4 bead case, MALA provides better

estimates as the dimension of the sample space increases. The Metropolis random

walk result is given in Fig. 4.4. While the population of the low energy site de-

creases as the temperature increases, the quantum coherence does not monotonically

decrease. We believe that this pheonomenon is an artifact of an insufficient discretiza-

96



Chapter 4: Path integral Monte Carlo with importance sampling for excitons
interacting with arbitrary phonon bath environment

5 10 15 20 25 30 35 40
The number of batches

0.16

0.18

0.20

0.22

0.24

0.26

ρ
S

1
2

(a) MALA
σ = 2.5734× 10−3

0 2 4 6 8 10 12
Lag

−0.2

0.0

0.2

0.4

0.6

0.8

1.0

A
ut

oc
or

re
la

ti
on

(c) MALA
Q = 21.2888

5 10 15 20 25 30 35 40
The number of batches

0.16

0.18

0.20

0.22

0.24

0.26

ρ
S

1
2

(b) Random Walk
σ = 4.8694× 10−3

0 2 4 6 8 10 12
Lag

−0.2

0.0

0.2

0.4

0.6

0.8

1.0

A
ut

oc
or

re
la

ti
on

(d) Random Walk
Q = 17.4696

Figure 4.2: Estimates of (1,2) matrix elements of the thermal reduced density matrix
evaluated using MALA and Metropolis random walk at 77K with 64 beads. MALA
estimate has a smaller confidence interval thus a more accurate estimate than that
of the Metropolis random walk. The error bar indicates the 95% confidence interval
evaluated with the batch means. The 0.95 quantile of the χ2 distribution with 13
degrees of freedom is 22.362 and both Ljung-Box statistics (Q) are smaller. Thus, the
uncorrelation hypothesis is not rejected in both cases at the 5% significance level.
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tion number at low temperatures. As can be seen in Fig. 4.3, 64 or more beads are

needed for the coherence to converge at 77K, while 16 beads are enough at 300K with

acceptable accuracy. This is a well known limition of imaginary time path integral

Monte Carlo simulations. Figure 4.5 shows the probability density function of the

phonon coordinate at 77K and 300K. The population difference in the reduced den-

sity matrix is reflected to the difference in the probability mass of the two diabatic

potential energy minimum at (3, 0) and (0, 2).

4.4 Conclusion

We explore a method for obtaining the thermal reduced density matrix of an

exciton system coupled to an arbitrary phonon bath for path integral Monte Carlo

simulation. Note that our scheme is closely related to the path integral Monte Carlo

simulation for nonadiabatic systems for vibrational coherence [128, 131, 132]. Al-

though the phonon state can be obtained as a byproduct, we mainly focused on

the evaluation of the reduced density matrix of the excitonic system to explore the

asymptotic behavior of the populations and coherences in this paper. In addition, we

implemented an importance sampling scheme for better spatial scaling and sampling

efficiency. Although the path integral Monte Carlo cannot evaluate the real time

evolution of density matrices, the method gives the exact asymptotic values with all

quantum effects from both the system and bath environments if a sufficient number of

beads are used. We believe that in some of the cases where the bath has a nontrivial

coupling to the system, or the non-Markovianity of the bath manifests very strongly,

treating the environment around the system of interest as a set of harmonic oscillators
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Figure 4.3: Estimates of matrix elements of the thermal reduced density matrix eval-
uated at 30K, 50K, 77K, 140K, 225K and 300K with different discretization numbers
of 4, 8 and 16 using MALA. (a) is the (1,1) element, (b), (c) and (d) are (1,2), (2,1)
and (2,2) elements, respectively. The error bar indicates the 95% confidence interval
evaluated with the batch means.

99



Chapter 4: Path integral Monte Carlo with importance sampling for excitons
interacting with arbitrary phonon bath environment

0 50 100 150 200 250 300
Temperature (K)

0.0

0.1

0.2

0.3

0.4

0.5

ρ
S

1
1

(a)

4
8
16
32
64

0 50 100 150 200 250 300
Temperature (K)

0.00

0.05

0.10

0.15

0.20

0.25

0.30

ρ
S

1
2

(b) 4
8
16
32
64

0 50 100 150 200 250 300
Temperature (K)

0.00

0.05

0.10

0.15

0.20

0.25

0.30

ρ
S

2
1

(c) 4
8
16
32
64

0 50 100 150 200 250 300
Temperature (K)

0.5

0.6

0.7

0.8

0.9

1.0

ρ
S

2
2

(d) 4
8
16
32
64

Figure 4.4: Estimates of matrix elements of the thermal reduced density matrix eval-
uated at 30K, 50K, 77K, 140K, 225K and 300K with different discretization numbers
of 4, 8 and 16 using random walk Metropolis. (a) is the (1,1) element, (b), (c) and
(d) are (1,2), (2,1) and (2,2) elements, respectively. The error bar indicates the 95%
confidence interval evaluated with the batch means.
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Figure 4.5: The phonon probability density function evaluated at (a) 77K and (b)
300K with 16 beads using MALA. At the lower temperature, the contribution of
the exciton with lower energy at (0, 2) becomes larger. Therefore, the population
differenece becomes more distinct, as can be seen in the temperature dependence of
the exciton population in Fig. 4.3.

is not sufficient. If this is the case, the system should be studied in its entirety. We

are trying to develop a real time propagation scheme to treat the system exactly, and

the bath semiclassically. The method studied in this paper offers a foundation for it

by providing the correct asymptotic behaviors.
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Chapter 5

First-principles semiclassical initial

value representation molecular

dynamics

5.1 Introduction

Algorithms for the simulation of molecular dynamics belong to the fundamental

toolset of modern theoretical chemical physics. Classical simulation methods are able

to study systems with up to millions of particles but are unable to describe quantum

effects such as tunelling and delocalization. Exact quantum mechanical methods

are restricted to a few quantum particles, especially when pre-computed analytical

potential energy surfaces (PES) are employed.

First-principles molecular dynamics (FPMD) algorithms have been introduced as

an alternative to the pre-calculation of the PES. FPMD avoids any source of error
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originated from the fitting of the PES. This is particularly true for many degrees

of freedom, where the fitting procedure might not represent the many-dimensional

surface accurately. In this family of methods, the potential and its derivatives are

calculated on-the-fly as the dynamical simulation progresses and are directly obtained

from electronic structure calculations. In the Born-Oppenheimer molecular dynamics

(BOMD) approach, the electronic structure calculations for a given simulation step

are converged based on previous step information. This approach can lead to system-

atic energy drifts and several methods have been proposed to avoid this effect [133].

Alternatively, extended Lagrangian molecular dynamics approaches (ELMD) [134–

137] involve the propagation of nuclear and electronic degrees of freedom simulta-

neously. The electronic degrees of freedom are assigned to classical variables that

are propagated using classical equations of motion and these can be expanded in

terms of plane waves [134], Gaussian functions [136] or real-space grids [137]. Usually

ELMD propagation is computationally more efficient, however questions have raised

on whether the resultant energy surface remains close to the actual Born-Oppenheimer

one and about disturbing dependencies on the fictitious electronic masses [136, 138].

While the evaluation of the potential on-the-fly can be easily integrated with

classical simulations, the delocalized nature of quantum mechanical propagation has

led to the development of many alternative approaches for the simulation of quantum

dynamics. For example, the path-integral centroid molecular dynamics approach [139]

includes quantum nuclear effects employing an extended Lagrangian. Alternatively,

in the variational multi-configuration Gaussian wavepacket method (vMCG) [140] the

quantum wavepackets are represented by fixed-width Gaussian functions for which the
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potential is approximated to be locally harmonic. Other approaches introduce a mean

field approximation and then update the dynamics in a time-dependent self-consistent

fashion [141, 142].

Semiclassical molecular dynamics methods [143–152] are based on classical tra-

jectories and therefore are amenable for carrying out on-the-fly calculation of the

potential. The benefits of calculating the potential only when needed have been

suggested by Heller and co-workers [152, 153]. In between formally exact quantum

methods and classical dynamics, semi-classical methods include quantum effects ap-

proximately. Two representative semi-classical approaches are the coupled coherent

states (CCS) technique [154] and the ab initio multiple spawing method (AIMS) al-

gorithm [155]. In the CCS approach, several grids of coherent states are classically

propagated and their trajectories can be derived from first principle dynamics. In

AIMS, the nuclear wavefunction are spawned onto a multiple potential surface basis

set. This set is made of adaptive time-dependent fixed-width Gaussian functions,

which are generated by classical Newtonian dynamics.

5.2 First-Principles SC-IVR

In this work, we show how the semiclassical initial value representation (SC-IVR)

method [144] can be coupled tightly and naturally, without any mayor change in

formulation, with first principles electronic structure approaches to carry out clas-

sical molecular dynamics. We show how the method is able to reproduce approxi-

mately quantum effects such as the vibrational power spectra using a single, short

classical trajectory using computational resources comparable to those employed in
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first-principles molecular dynamics calculations. Calculations employing multiple tra-

jectories can in principle be more accurate (and more computational intense as well),

but here we focus on analyzing the predictive power of single trajectory runs. Finally,

we describe how different approaches can be used in conjunction with this method

for studying the symmetry of the vibrational states either by arranging the initial

conditions of the classical trajectory or by employing the symmetry of the coherent

state basis.

In the SC-IVR method, the propagator in F dimension is approximated by the

phase space integral,

e−iĤt/~ =
1

(2π~)F

∫
dp (0)

∫
dq (0) Ct (p (0) ,q (0))

× eiSt(p(0),q(0))/~ |p (t) ,q (t) 〉〈p (0) ,q (0)| , (5.1)

where (p (t) ,q (t)) are the set of classically-evolved phase space coordinates, St is the

classical action and Ct is a pre-exponential factor. In the Heller-Herman-Kluk-Kay

version of the SC-IVR [151, 156], the prefactor involves mixed phase space derivatives,

Ct (p (0) ,q (0)) =

√
1

2

∣∣∣∣ ∂q (t)

∂q (0)
+
∂p (t)

∂p (0)
− i~γ ∂q (t)

∂p (0)
+

i

γ~
∂p (t)

∂q (0)

∣∣∣∣, (5.2)

as well as a set of reference states,

〈q | p (t) ,q (t)〉 =
∏
i

(γi/π)F/4 exp [−γi · (qi − qi (t)) /2 + ipi (t) · (qi − qi (t)) /~] ,

(5.3)

of fixed width γi. For bound systems, the widths are usually chosen to match

the widths of the harmonic oscillator approximation to the wave function at the

global minimum and no significant dependency has been found under width vari-

ation [145]. By introducing a 2F × 2F symplectic monodromy matrix M (t) ≡
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∂ ((pt,qt) /∂ (p0,q0)), one can calculate the pre-factor of Eq. 5.2 from blocks of F×F

size and monitor the accuracy of the classical approximate propagation by the devia-

tion of its determinant from unity. Wang et al. suggested calculating the determinant

of the positive-definite matrix MTM instead [157] and we monitored the same quan-

tity for this work. The spectral density is obtained as a Fourier transform of the

surviving probability[151]. The SC-IVR expression of the probability of survival for

a phase-space reference state |χ〉 = |pN , qN〉 is,〈
χ
∣∣∣e−iĤt/~∣∣∣χ〉 =

1

(2π~)F

∫
dp (0)

∫
dq (0) Ct (p (0) ,q (0))

× eiSt(p(0),q(0))/~ 〈χ | p (t) ,q (t)〉 〈p (0) ,q (0) | χ〉 . (5.4)

The phase-space integral of Eq. 5.4 is usually computed using Monte Carlo meth-

ods. If the simulation time is long enough, the phase space average can be well

approximated by a time average integral. This idea has been suggested and im-

plemented by Kaledin and Miller [158] to obtain the time averaging (TA-) SC-IVR

approximation [159] for the spectral density,

I (E) =
1

(2π~)F

∫
dp (0)

∫
dq (0)

Re

π~T

∫ T

0

dt1

∫ T

t1

dt2 Ct2 (p (t1) ,q (t1))

× 〈χ | p (t2) ,q (t2)〉 ei(St2 (p(0),q(0))+Et2)/~
[
〈χ | p (t1) ,q (t1)〉 ei(St1 (p(0),q(0))+Et1)/~

]∗
,

(5.5)

where (p (t1) ,q (t1)) and (p (t2) ,q (t2)) are variables that evolve from the same initial

conditions but to different times, and T is the total simulation time. The advantage

of this approach is that the additional time integral can in principle replace the need

for phase-space averaging in the large-time limit of a single trajectory. Calculations

of the vibrational spectra of systems such as the water molecule have proved to be
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very accurate using the TA-SC-IVR approach and its inexpensive single-trajectory

variant showed significant improvements over the simple harmonic approximation

for excited vibrational levels [158]. In order to make Eq. 5.5 less computationally

demanding, one can employ the separable approximation [158], where the pre-factor

of Eq. 5.5 is approximated as a phase, Ct2 (p (t1) ,q (t1)) = Exp [i (φ (t2)− φ (t1)) /~] ,

and φ (t) = phase [Ct (p (0) ,q (0))]. Using this approximation, Eq. 5.5 becomes

I (E) =
1

(2π~)F
1

2π~T

×
∫
dp (0)

∫
dq (0)

∣∣∣∣∫ T

0

dt 〈χ | p (t) ,q (t)〉 ei(St(p(0),q(0))+Et+φt(p(0),q(0))/~)

∣∣∣∣2
(5.6)

leading to a simplification of the double-time integration to a single time integral. The

resulting integral is positive definite, making more amenable for Monte Carlo integra-

tion. Our numerical tests show that the results of carrying out this approximation

are essentially identical to the double time integral approach when using a single tra-

jectory. In this paper results will be reported by use of this last approximation, since

it is computationally cheaper and numerically more stable than Eq. 5.5.

For this work, we compute the potential energy surface at each nuclear configura-

tion directly from the Kohn-Sham orbitals expanded on a non-orthogonal Gaussian

basis. Gradients and Hessians at each nuclear configuration are obtained analytically

from electronic orbitals. The evaluation of the potential represents most of the com-

putational effort of our approach, which is roughly a few hours of computer time using

standard desktop machines for a 1 cm−1 spectrum resolution. The nuclear equations
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of motion are,

MIR̈I = −∇I min
C

EDFT [C,RI ] , (5.7)

where C is the rectangular matrix of the lowest occupied orbitals and the classical

propagation is performed according to the velocity-Verlet algorithm, as implemented

in the Q-Chem package [160]. At each time step, the potential, nuclear gradient

and Hessian are used to calculate the action, pre-factor and coherent state overlaps

necessary for the TA-SC-IVR method (Eq. 5.5 and 5.6). A schematic representation

of an implementation of the algorithm for a multithreaded machine is shown in Fig.

(5.1). At each time step, results are accumulated for time-average integration. The

results presented on this work were carried out on a single thread. For each classical

trajectory, the procedure is repeated and the final integration gives the spectrum

intensity I (E) for a given parametric value of E. The same procedure is repeated

for next E + ∆E, where in our calculation ∆E = 1cm−1. As previously mentioned,

the trajectory is monitored by calculating at each time step the deviation of the

determinant of the monodromy matrix from unity. The difference in the determinants

was always smaller than 10−6 during the course of the calculations. A time step of 10

a.u. has been always found to satisfy the strict monodromy matrix restrictions even

for the lightest atoms.

The calculation of the full dimensional vibrational power spectrum of the CO2

molecule is a challenging test for FP-SC-IVR method: A successful method should

reproduce spectral features such as degenerate bending modes, strong intermodal

couplings and Fermi resonances. To evaluate the FP-SC-IVR method, we compare

vibrational spectrum of CO2 molecule from FP-SC-IVR method to numerically-exact
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Figure 5.1: First-principles SC-IVR algorithm: At each time step electronic wave-
function are saved to calculated nuclear Hessian. Nuclear positions, gradients and
Hessian are accumulated for the spectral time-average integral.

discrete variable representation (DVR) eigenvalue calculations on a potential fitted

to a set of first-principles points obtained at the same level of theory. The next

section describes the details of the potential fitting and DVR calculation. Following,

we continue on the discussion of the FP-SC-IVR method.

5.3 Potential Fitting and Grid Calculations

The CO2 molecule is a linear molecule with four vibrational normal modes: a

symmetric stretching mode (ν1), degenerate bending modes (ν2 and ν2) , and an

antisymmetric stretching mode (ν3). A 3d potential energy grid in internal coor-

dinates is calculated using the B3LYP density functional [161] with the cc-pVDZ
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basis set [162]. The grid points are then fitted to a potential energy surface [163]

represented by a fourth-order Morse-cosine expansion,

V (r1, r2, θ) =
4∑

i,j,k=0

Kijk

(
1− e−a1(r1−re))i × (cosθ − cosθe)j

(
1− e−a2(r2−re))k , (5.8)

where the parameter re = 2.206119 a.u. and θe = 180 specify the equilibrium co-

ordinates of the CO2 molecule. The Morse parameters a1 = a2 = 1.2489 a.u. were

determined so as to minimize the standard deviation of the differences of the fitted

potential from the ab initio result using the Levenberg-Marquardt non-linear least

square algorithm [164] . Instead, re was obtained by geometry optimization within

the Q-Chem ab initio package [160].

The 35 Kijk coefficients were subject to the non-linear least square fitting proce-

dure to the DFT energies. Since these coefficients must be the same once r1 and r2

are swapped, 13 linear constraints of the type Kijk = Kkji were imposed during the

fitting procedure. Additionally, to ensure that the equilibrium geometry was fitted

to the predetermined equilibrium parametric distance, the coefficients K100 and K001

were constrained to be zero. Consequently, we employed a total number of 14 fitting

constraints (K000 term is always constant). A total of 2500 ab initio grid points were

chosen for the fitting process. These grid points range from 1.42 a.u. to 7.09 a.u. for

r1 and r2, and from 113.6 to 180 for the angle variable. The calculated expansion

coefficients Kijk are reported in Table 5.1.

As far as the numerically exact eigenvalues calculations is concerned, we used an

exact DVR (Discrete Variable Representation) matrix diagonalization procedure. The

CO2 molecule was described for grid calculations in internal coordinates, while on-

the-fly classical trajectories and the SC-IVR calculations described previously were
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coeff. attoJ coeff. attoJ

K001 +0.000000 K100 = K001

K002 +1.442886 K200 = K002

K003 -0.032125 K300 = K003

K004 +0.003630 K400 = K004

K010 +0.726891 K111 +0.392310
K011 -0.443422 K110 = K011

K012 -0.162970 K210 = K012

K013 -0.101077 K310 = K013

K020 +0.488451 K121 +0.606572
K021 -0.358126 K120 = K021

K022 -0.210888 K220 = K022

K030 +0.175981 K202 +0.097300
K031 -0.184503 K130 = K031

K112 +0.103205 K211 = K112

K101 +0.210532 K040 +0.155374
K102 +0.067998 K201 = K102

K103 +0.068693 K301 = K103

Table 5.1: Expansion coefficients Kijk for the CO2 B3LYP/cc-pVDZ fitted potential
energy surface in attoJoule units.

performed in Cartesian coordinates. No significant contamination between the ro-

tational (set to zero kinetic energy) and vibrational motion was found within the

simulation time. To this end, the deviation from simplecticity of the monodromy ma-

trix in the vibrational sub-space were never more than 10−6 as previously mentioned.

The coordinates r1 and r2 are CO distances, and θ is the angle between the CO

bonds. In these coordinates the kinetic part of the Hamiltonian for J = 0 is,

T =
p2

1

2µCO
+

p2
2

2µCO
+

j2

2µCOr2
1

+
j2

2µCOr2
2

+
p1p2cosθ

mC

− p1pθ
mCr2

− p2pθ
mCr2

− cosθj2 + j2cosθ

2mCr1r2

, (5.9)

where pk = −i ∂
∂rk

, pθ = −i ∂
∂θ
sinθ, and j2 = − 1

sinθ
∂
∂θ
sinθ ∂

∂θ
. The carbon mass were

taken to be mC = 12.0 a.m.u., while the oxygen mass mO = 15.9949 a.m.u. and the
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reduced mass is as usual 1/µCO = 1/mC + 1/mO.

As previosuly mentioned, in order to calculate exact eigenvalues, a sine-DVR basis

for the coordinates r1 and r2 and a Legendre-DVR basis for θ has been used [165]. For

each degree of freedom 50 DVR functions were used and eigenvalues were converged

to at least 10−3cm−1. The sine-DVR ranged from 1.51 a.u. to 3.78 a.u. and the

magnetic quantum number m of the Legendre-DVR was zero.

Because of the restriction of total angular momentum J = 0, we couldn’t observe

all degenerate bending excitations. However, ZPE and several vibrational energy

levels were obtained and compared with that ones coming from a single on-the-fly

semiclassical trajectory.

5.4 First-Principles SC-IVR Calculations

The full power spectrum obtained using Eq. (5.5) after 3000 BOMD steps of

10 a.u. each is shown on the bottom of Fig. 5.2. For longer simulations, the

monodromy matrix symplectic properties as well as the resolution of the spectrum

started to deteriorate. The calculated vibrational zero-point energy (ZPE) value was

2518 cm−1 versus the exact value of 2514.27 cm−1 and both are in good agreement

with the experimental value of 2508cm−1. In contrast, harmonic normal-mode analy-

sis (whose frequencies are 656.62, 1363.46, 2423.47 wavenumbers) predicts a frequency

of 2550.08 cm−1. Thus, the TA-SC-IVR method successfully reproduces the ZPE an-

harmonic effects with the use of a single classical trajectory. Some representative

frequencies of the power spectrum are presented in Table 5.2. The ZPE was shifted

to zero for comparison with reported classical ELMD simulations on the same system
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Figure 5.2: CO2 Vibrational Power Spectrum: Initial kinetic energy on: (a) all modes;
(b) symmetric mode; (c) one bending and symmetric modes; (d) bending and asym-
metric modes.
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that cannot reproduce the ZPE or higher vibrational states [166, 167] but only single

modes frequencies. For these studies of Refs. 166 and 167, the vibrational data were

obtained from the Fourier transform of correlation functions of classical trajectories

in plane-wave DFT calculations. The ELMD approach predicts the following funda-

mental frequencies 648, 1368, 1428 and 2353 for Ref. 166 and 663, 1379, 1456 and

2355 for Ref. 167. These classical results are similar but limited to a normal mode

analysis.

Table 5.2 compares our TA-SC-IVR results with the exact ones and to those ob-

tained by Filho [168] with the same density functional and a basis set of comparable

quality (6-31+G*) [169], using a perturbative approximation of the eigenvalue expan-

sion. One can see how a different basis set results a significant deviation of vibrational

levels spacing, once the comparison is performed in units of wavenumbers.

A major difficulty on the CO2 power spectrum simulations is the calculation of

the Fermi resonance splittings. These are the result of anharmonic couplings, and

they represent a stringent test for a semi-classical method that relies on a single short

trajectory. The Fermi resonances occur when an accidental degeneracy between two

excited vibrational levels of the same symmetry exists and it results in a repulsion

between the corresponding energy levels. The sources of these resonances are purely

anharmonic and are only present in polyatomic potentials. For the CO2 molecule, the

unperturbed frequencies for the symmetric stretching are roughly equal to the first

bending overtone (ν1
∼= 2ν2). For these modes, the wavefunctions are transformed

as the irreducible representation of D∞h, i.e. ν1(1000) as Σ+
g , at the experimental

frequency of 1388 cm−1, and ν2
2(0200) as Σ+

g + ∆g, at an experimental frequency of
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Exp.(a) mode(b) Harmonic(c) FP-SCIVR-SA(d) DVR Ref. 168

667.4 0, 11, 0 656.62 644 657.2
1285.4∧ 0, 20, 0 1313.24 1288 1252.91 1283.4
1388.2∧ 1, 00, 0 1363.46 1381 1372.29 1408.8
1932.5† 0, 31, 0 1969.86 1932 1930.2
2003.2 0, 33, 0 1969.86 2024 2004.9
2076.9† 1, 11, 0 2020.08 2106 2098.5
2349.1 0, 00, 1 2423.47 2388 2359.51 2411.5
2548.4‡ 0, 40, 0 2626.48 2515 2482.95 2553.3
2585.0? 0, 42, 0 2626.48 2578 2591.2
2671.7‡ 0, 44, 0 2626.48 2669 2640.15 2716.5
2760.7? 1, 22, 0 2676.70 2759 2796.3
2797.2‡ 2, 00, 0 2726.92 2793 2757.14 2845.2
4673.3 0, 00, 2 4846.94 4690+ 4693.24 4797.8
6972.6 0, 00, 3 7270.41 6803+ 6821.35 7152.9

Table 5.2: (a) Experimental frequencies in cm−1 from Ref. 173. (b) First number is
the symmetric stretch quantum, second are the degenerate bendings, and third one
is the asymmetric stretch. The exponent of the second number is the li degeneracy
index. (c) Vibrational levels according to a normal modes harmonic model. (d) Using
the Separable approximation of Eq. 5.6. Some of the calculated vibrational energy
eigenvalues are tabulated. All data are in wavenumbers. Fermi Resonances group
of frequencies are indicated by the same superscript symbols. Uncertain peaks are
marked with (+). The first column represents the experimental vibrational frequen-
cies associated with the modes listed on the second column. The third column shows
the harmonic DFT results. In the fourth and fifth columns, we show our FP-SCIVR
and exact numerical DVR calculations in the B3LYP/cc-PVDZ model chemistry used
for the FP-SCIVR calculations. The fifth column shows perturbative DFT calcula-
tions carried out using a similar functional and basis set.
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1285cm−1. Another Fermi doublet results from the addition of a quantum of bending

mode to the previous Fermi doublet to yield the following states: ν1ν2(1110) , at

an experimental frequency of 2077 cm−1 and the ν3
2(0310) state, at an experimental

frequency of 1932 cm−1. Higher-energy Fermi resonances are indicated in Table 5.2

by using the same superscript symbols. The first Fermi terms are located at 1313

and 1363 in a harmonic approximation and corrected to 1288 and 1381 wavenumbers

for FP-TA-SC-IVR. Thus, the original levels have been repelled by Fermi couplings.

One mode is located at a higher frequency than the harmonic prediction, while the

other is at a lower frequency. The latter effect could be explained also by simple

anharmonicity, but the former is evidence of the ability of the single trajectory FP-

TA-SC-IVR method even when the separable approximation is used to capture Fermi

resonance effects partially. The same reasoning can explain the second Fermi doublet

located at 1932 and 2106 for FP-TA-SC-IVR, while the harmonic estimate at 1970

and 2020 wavenumbers.

With the FP-TA-SC-IVR method, one can also identify the couplings between

vibrational modes and the appearance of Fermi resonance splittings by carrying out

simulations with different initial conditions. This can be achieved by selectively set-

ting the initial velocity of some vibrational modes to zero. The anharmonic coupling

between levels leads to a consistent reproduction of the ZPE peak in the spectrum for

all simulations. However the excited vibrational peaks related to the modes with zero

initial kinetic energy show a very small signal in the power spectrum. Vibrational

energy redistribution processes can be studied as well, by carrying out simulations

at different timescales. In Fig. 5.2, we show the resulting power spectra for different
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initial conditions. If the initial state contains only purely symmetric motion, the low-

est Fermi resonance peaks in Fig. 5.2(b) are absent as well as for a bending (without

symmetric stretching) motion in Fig. 5.2(d). These results and the intensity of their

peaks respect to that ones located at the same frequencies in Fig. 5.2(a) suggest that

the Fermi resonance is indeed originated from the coupling between bending and the

symmetric modes. One can reach the same conclusions by inspecting the lower Fermi

doublet peaks intensity: by adding a bending mode (from Fig. 5.2(b) to Fig. 5.2(c))

and a second one (from Fig. 5.2(c) to Fig. 5.2(a)) the intensity of both peaks is grad-

ually raised. This is called “intensity borrowing” and it arises from the strong mixing

of the zero order states. These observations reinstate that “repulsion and mixing are

the hallmarks of Fermi resonances” [170]. Also, for a distinct set of initial conditions,

an additional peak at 5500 cm−1 related to the asymmetric stretch was observed. Us-

ing the proposed approach, one can carefully detect the characteristics of each peak

even for complicated power spectra.

An attractive method for obtaining the symmetry properties of the eigenstates

involves arranging the initial basis vectors [158, 171]. The basis for this method is

the direct product of coherent states |χ〉 =
∏4

k=1 |p
(k)
i , q

(k)
i 〉εk . These states can be

chosen to have an initial symmetry by employing linear combinations of the form

|p(k)
i , q

(k)
i 〉εk =

(
|p(k)
i , q

(k)
i 〉+ εk|−p,−q(k)

i 〉
)
/
√

2. The k-th mode can be made sym-

metric (εk = 1), antisymmetric (εk = −1) or have no symmetry restrictions (εk = 0).

In order to assign the proper symmetry to each peak on Fig. 5.3 , the reduced D2h

symmetry group was adopted. All irreducible representations were reproduced and

peaks were grouped by symmetry as reported in Fig. 5.3. Note that (d) and (e)
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Figure 5.3: CO2 Vibrational Power Spectrum (Separable approximation): Different
basis set symmetries for ν1(symmetric stretching mode), ν2 and ν2 (bending modes)
and ν3(asymmetric mode) and the corresponding D2h irreducible representation; (a)
all εs are zero; (b) (B1u): ε (v1) = 0, ε (v2) = 1, ε (ν2) = 0, ε (v3) = −1; (c) (Ag):
ε (v1) = 1, ε (v2) = 0, ε (ν2) = 0, ε (v3) = 1; (d) (B2u):ε (v1) = 0, ε (v2) = −1, ε (ν2) =
0, ε (v3) = 1, (e) (B3u) ε (v1) = 0, ε (v2) = 0, ε (ν2) = −1, ε (v3) = 1. B2u and B3u

representations are degenerated in the D∞h subspace as shown.
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Figure 5.4: Gaussian width variations and related power spectra: a) γi = ωi; b)γi =
2ωi; c)γi = ωi/2, where ωi are the i− esime normal mode frequency. The FP-SCIVR
power spectra are fairly insensitive to variations in the value of the coherent state
width.

plots are identical since they only differ trivially by swapping coefficients between the

degenerate bending modes in the original D∞h symmetry group.

Finally we have investigated the stability of the propagator versus variations of

the coherent states gaussian width parameters γi. Previous calculations [156] have

shown that there is no significant depedency on energy and norm conservation for the

semiclassical propagator if suitable values of γi are chosen. For power spectra calcu-

lation we have chosen to look at vibrational levels variations under different values

of coeherent states width. Since a single trajectory was used in the FP-TA-SC-IVR

approach, no Monte Carlo integration is performed in phase space coordinates and

the changes of γi are confined to the coherent states overlap and to the prefactor in
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Eq. 5.2. As reported in Fig. 5.4 and checked on a finer scale, no significant varia-

tion was observed beyond 1 cm−1. These findings are in agreements with previous

calculations on the same propagator [156]. Interestingly, a different distribution in

peaks intensity were found in each panel. Since the peaks magnitude is proportional

to the overlap between the reference state and the actual eigenfunction, the anhar-

monic choice (γi = ωi/2) is a more suitable solution as clearly showed on panel (c) of

Fig. 5.4.

5.5 Conclusions

In conclusion, we have shown that SC-IVR can be implemented easily and effi-

ciently using first principles molecular dynamics. With the modest computational cost

of a single classical trajectory, the vibrational density of states of the CO2 molecule

was calculated. On Fig. 5.5 we report a graphical comparison between the harmonic

and the FP-TA-SC-IVR approximations, versus the exact vibrational value for the

Fermi resonance multiplets. One can notice how the single trajectory FP-TA-SC-IVR

goes far beyond the harmonic approximation by removing the harmonic degenerancy

and including part of anharmonicity. Fermi splittings are well mimiced not only for

the first doublet, but also for the higher ones. The numerically exact DVR vibrational

energy levels constrained by J = 0 are represented on the last column. The FP-TA-

SC-IVR values are similar to the DVR results, when comparison is possible. However,

a closer look at Table 5.2 shows how these single trajectory FP-TA-SC-IVR calcula-

tions can include only part of the anharmonicity and that their precision gets worse

for higher vibrational levels. In particular, the spacing of the higher-energy states is
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Figure 5.5: Fermi Resonance states vibrational energy level: (a) in harmonic approx-
imation; (b) single FP-SC-IVR trajectory calculation; (c) exact grid calculation on
splined potential.
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harmonic-like and thisis the mayor limitation of using a single classical trajectory.

These and previous calculations on model potentials [158] has shown how the

single trajectory TA-SC-IVR gives reasonable results and performs better for higher

frequencies modes. The computational cost of the method is essentially the same as

classical propagation, and therefore, if broadly implemented in electronic structure

codes, it can provide a description of quantum effects at a comparable computational

cost to that of classical approaches. Possible applications of this method or related

ones are the study of excited electronic states and Franck-Condon transitions, such

as vibrational absorption spectra [174]. Although this single trajectory approach may

be a practical tool for the simulation of more complex systems, the use of more trajec-

tories is probably required to remove any harmonic “ghost states”. We are currently

exploring the use of a small number of a set of systematically determined trajectories

for further improvement of the results. If the number of required trajectories grows

as a low polynomial of the system size, semi-classical methods could be competitive

with currently-employed numerical approximations to obtain anharmonic vibrational

effects. Finally, we expect that the representation of the potential energy in terms of

normal coordinates will become less suitable when large amplitude motions or non

adiabatic effects come into play.
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Chapter 6

Simplified Sum-Over-States

Approach for Predicting

Resonance Raman Spectra

6.1 Introduction

Resonance enhancement of Raman scattering, which occurs whenever the fre-

quency of the incident radiation approaches molecular excitation frequencies, was

reported some 20 years after the initial experimental observation of the Raman ef-

fect [175, 176]. The large degree of enhancement spanning several orders of mag-

nitude is useful for detection of the inherently inefficient spontaneous Raman scat-

tering. Moreover, the shapes of Raman spectra change considerably at resonance

with molecular excitations and provide information on structures and properties of

electronic excited states. Resonance Raman spectroscopy is a sensitive spectroscopic
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technique for strongly absorbing chemical constituents such as nucleic acid bases,

aromatic aminoacids, and heme chromophores [177–179].

Another important manifestation of resonance enhancement emerges in surface-

enhanced Raman scattering (SERS) [180–182]. The surface enhancement of Raman

scattering is observed in molecules adsorbed on rough or nanostructured noble-metal

surfaces and comprises an electromagnetic and a chemical contribution [182, 183]. The

chemical contribution to the SERS intensities, while generally smaller in magnitude

than the electromagnetic enhancement, is sensitive to the electronic structure of the

adsorbate. The chemical effect leads to characteristic changes in the relative inten-

sities of Raman bands and alters the overall shape of the Raman spectra compared

to neat substance. Chemical effects are satisfactorily described by cluster models

and can be attributed to resonance enhancement due to interface states [184, 185].

The combination of surface enhancement with intramolecular excitations gives rise to

surface-enhanced resonance Raman scattering (SERRS) which provides an extraor-

dinary sensitivity, even to the level of single-molecule detection [186–188].

While theoretical descriptions of resonance Raman scattering has been developed

early on by Shorygin and co-workers [176, 189] and by Albrecht [190, 191], calculations

of resonance Raman scattering from medium-size and large molecules are not often

routinely performed. Raman scattering is a second-order process and its cross sections

are given by the Kramers–Heisenberg–Dirac (KHD) dispersion relation [192, 193].

The classical expression for Raman cross sections involving derivatives of electronic

polarizabilities with respect to vibrational normal modes can be obtained via clo-

sure of the sum over intermediate vibronic states in the KHD expression [194, 195].
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The description of Shorygin and co-workers [189, 196] represents the polarizability

derivatives as a sum over electronic states and introduces parameters for the result-

ing derivatives of excitation energies and oscillator strengths of the lowest excited

state with respect to vibrational normal modes.

On the other hand, Albrecht’s approach is rooted in the vibronic coupling theory

[197, 198] and introduces the Herzberg–Teller expansion into the sum over vibronic

states of the KHD dispersion relation. Each vibronic state contributes four different

terms denoted A, B, C, and D by Albrecht. The A term is due to vibrational wave-

function overlap of the initial and the intermediate state and of the intermediate and

the final state. The B and C terms arise from the dependence of transition dipole

moments on vibrational coordinates and are analogous to the intensity borrowing

terms of vibronic coupling theory [197, 198]. The B term is derived from the coupling

between the intermediate electronic excited state to other excited states, while the

C term is due to the coupling between the ground electronic state to excited states

and is customarily assumed to be small. The D term is of higher order in the cou-

pling between electronic states and is often neglected. Albrecht’s treatment involves

a full sum over all vibronic states of the molecule and is thus rarely computationally

tractable for larger systems. Nevertheless, it constituted a major breakthrough in the

understanding of Raman scattering in that it provided a unified picture for both non-

resonant and resonant Raman spectra. Sums over vibronic states can be evaluated in

the displaced harmonic oscillator approximation [199].

A different approach to resonance Raman scattering was proposed by Heller and

co-workers [200]. It amounts to a transformation of the KHD dispersion relation into
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the time domain, which represents the resonance Raman process as a propagation of

vibrational wavepackets (multiplied with transition dipole moments) on the excited-

state potential energy surface. Often, the short-time approximation to propagation

dynamics is introduced [201], which has proven remarkably useful in interpreting

resonance Raman spectra [201–203].

Finally, resonance Raman cross section can be expressed in a fashion analogous

to the non-resonant case by introducing finite lifetimes for the intermediate states,

or in other words, by computing Raman cross sections from derivatives of electronic

polarizabilities evaluated at complex frequencies ω̃ = ω + iγ [204, 205]. Here ω is

the excitation frequency and γ corresponds to an averaged lifetime of excited states,

which is usually treated as an empirical parameter.

The purpose of the present work is to provide a simple and computationally

tractable approximation for resonance Raman cross sections. To this end, we reduce

the summation over vibronic states of the KHD dispersion relation to a summation of

electronic states, similar to the parametric method of Shorygin and co-workers, and

apply the double harmonic approximation, which is commonly used in calculations

of vibrational spectra. This approximation requires only excitation energies, transi-

tion dipole moments, and their respective geometric derivatives to be computed for

the electronic excited states included in the sum-over-states expression. In contrast

to Shorygin’s work, all parameters in the sum-over-states expression are provided

from ab initio calculations, while the summation runs over all electronic excitations

in a given energy range. Analytical gradient techniques make computation of geo-

metric derivatives particularly efficient in the framework of time-dependent density
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functional theory (TDDFT) [206]. In addition, the sum-over-states approach may be

used to identify major contributions to resonance Raman intensities. We apply the

present approach to assign and interpret resonance Raman scattering in nucleic acid

bases.

6.2 Theory

The polarizability theory of Raman scattering due to Placzek relates the Raman

scattering cross section to frequency-dependent electronic polarizabilities at the fre-

quency of the incident radiation [191, 195],

αmn(ω) =
∑
k

[
µm0kµ

n
0k

Ωk − ω
+
µn0kµ

m
0k

Ωk + ω

]
. (6.1)

m and n are Cartesian directions. We use atomic units throughout. The summation

is over all electronic excited states k > 0 with excitation energies Ωk and transi-

tion dipole moments µm0k. The polarizability theory of Raman scattering is based

on the separability of the electronic and nuclear wavefunctions (Born–Oppenheimer

approximation) and the assumption that the incident radiation is sufficiently far from

resonance such that energy differences between vibronic levels of the KHD expression

may be approximated by electronic excitation energies Ωk. In the double harmonic

approximation, the Raman scattering cross sections are proportional to derivatives

of αmn(ω) with respect to vibrational normal modes [191, 195]. Straightforward dif-

ferentiation of the sum-over-states expansion for α(ω) with respect to the vibrational

normal mode Q yields the following expression for the Raman scattering cross section
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of the vibration Q, (
∂σ

∂Ω

)
Q

=
(ω − ωQ)4

2ωQc4
|〈σQ(ω)〉|2 , (6.2)

where the components of the Raman scattering tensor σmnQ (ω) are given by

σmnQ (ω) =
∑
k

[
− µm0kµn0k

[
(Ωk − ω)2 − γ2

k

((Ωk − ω)2 + γ2
k)

2 +
i 2(Ωk − ω)γk

((Ωk − ω)2 + γ2
k)

2

]
∂Ωk

∂Q

+

[
µm0k

∂µn0k
∂Q

+
∂µm0k
∂Q

µn0k

][
Ωk − ω

(Ωk − ω)2 + γ2
k

+
i γk

(Ωk − ω)2 + γ2
k

]]
.

(6.3)

Here, ωQ is the vibrational frequency, c is the speed of light. Angle brackets denote

the appropriate orientational average over components of the Raman scattering tensor

σQ(ω). The excited states k > 0 have linewidths γk associated with them, which are

chosen as empirical parameters independent of k in most studies. We will follow this

practice here. The analogous expression for σmnQ (ω) with uniform linewidths γk = γ

for all excited states may be obtained by differentiation of the polarizability evaluated

at the complex frequency ω̃ = ω+ iγ [204, 205]. In contrast, in the present approach

different linewidths γk may be chosen for individual excited states to reflect differences

in their lifetimes. Ultimately, the excited-state linewidths may be rigorously derived

from a open-system formulation, e. g., in the framework of TDDFT [207–209].

In practice, the sum over electronic excited states has to be truncated. The

number of excited states contributing significantly to the Raman cross sections in

Eq. 6.3 will be small in the vicinity of a resonance (|ω−Ωk| ≈ γk) but might increase

significantly in the non-resonant case. While truncation of the sum-over-states is a

potential source of error not present in the finite-lifetime approach [204, 205], we find

that convergence is sufficiently fast even in the non-resonant regime for nucleic acid

bases considered here.
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Differentiation of the frequency-dependent electronic polarizabilities (Eq. 6.1) with

respect to the vibrational normal mode Q gives rise to two kinds of terms for each

excited state. The first term in Eq. 6.3 is proportional to the Cartesian derivative

(gradient) of the excitation energy ∂Ωk
∂Q

. It may be compared to the A term in Al-

brecht’s approach, which arises from the energy differences between vibronic states in

the energy denominator [190, 191]. By analogy, we will refer to these contributions as

the A terms in the following. Only totally symmetric vibrational modes Q yield non-

zero energy derivatives ∂Ωk
∂Q

, therefore A terms are only present for totally symmetric

vibrations. The second term in Eq. 6.3 results from the dependence of transition

moments µm0k on the vibrational normal modes. In the language of Herzberg–Teller

coupling [190, 197, 198], this dependence results from the interaction of the ground

state or the electronic excited state k with other electronic states induced by nuclear

displacements along the vibrational mode Q. The corresponding contributions are

denoted B and C terms, respectively, in Albrecht’s approach. The terms in Eq. 6.3

that are proportional to derivatives of transition dipole moments
∂µm0k
∂Q

have the same

origin and hence will be referred to as B terms. B terms are non-zero for vibrational

modes that transform like components of the polarizability tensor; the selection rules

for the B term are equivalent to those for non-resonant Raman scattering [190, 191].

The frequency dependence of Raman spectra is defined by the molecular electronic

excitation spectrum. In the strictly resonant case (ω = Ωk) the excited electronic state

k dominates the sum in Eq. 6.3. In this limit, the shape of the resonance Raman

spectrum reflects the structure of the potential energy surface of the excited state k.

Since the A term is quadratic in the resonance denominator ((Ωk−ω)2 +γ2
k)
−1, while

130



Chapter 6: Simplified Sum-Over-States Approach for Predicting Resonance Raman
Spectra

the B term is linear in it, the A term contribution can be expected to be predominant

at resonance. In the opposite limiting case the excitation frequency is far from any

electronic excitations (non-resonant Raman scattering), and a considerable number of

electronic excited states contributes to the sum-over-states expression (Eq. 6.3.) The

B term contributions become dominant in Raman cross sections, while the A terms

are scaled down by their large energy denominators. Smooth interpolation between

both limiting cases (non-resonant and strictly resonant) requires that both A and B

terms be treated on equal footing.

Analytical derivative techniques allow to compute excitation energy gradients and

non-resonant polarizability derivatives in an efficient fashion using TDDFT [206, 210].

In this work, derivatives of transition dipole moments are computed by numerical

differentiation. However, an analytical implementation is possible starting from a

Lagrangian formulation [211], similar to that for gradients of excitation energies [212,

213] and frequency-dependent polarizabilities [210].

6.3 Resonance Raman Spectra of nucleic acid bases

In the following, we explore the characteristic changes in resonance Raman spec-

tra of guanosine for excitations in the range between 200–266 nm, which contains a

number of electronic excitations. In addition, we consider Raman excitation profiles

of ring-breathing modes of nucleosides. Raman excitation profiles describe the de-

pendence of Raman cross sections on the energy of the incident radiation. Finally, we

determine the relative contributions of the A and B terms to Raman cross sections

of guanosine both at resonance and in the non-resonant case.
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All calculations have been performed using the PBE0 functional [214] and triple-

zeta valence basis sets with two sets of polarization functions (TZVPP) [215]. The

PBE0 functional has been chosen because it has proven quite accurate both for po-

larizabilities [216, 217] and Raman intensities [210, 218]. However, vibrational fre-

quencies [219] and electronic excitation energies [220] are often overestimated with

PBE0. 20 excited electronic states were included in the sum-over-states expressions.

Linewidth parameters were assumed to be 0.1 eV for all electronic states. All calcu-

lations were performed using the program package Turbomole [221].

In Fig. 6.1(a)–(c), we compare experimental and computed resonance Raman

spectra of guanosine at excitation wavelengths of 266 nm, 218 nm, and 200 nm.

In addition, we show experimental and computed non-resonant Raman spectra of

guanosine at 514.5 nm in Fig. 6.1(d). The experimental spectra are from Refs. 222

and 223. The considered range of excitation energies includes the two overlapping

electronic absorption bands of guanosine observed experimentally at 4.4–4.6 eV and

4.8–5.1 eV [224–226]. Deconvolution of the UV absorption spectrum of guanosine in

water yields 4.56 eV and 5.04 eV for the positions of the absorption maxima [224].

PBE0 predicts the two lowest electronic excited states of guanosine at 4.97 eV and

5.39 eV to be strongly allowed. At still higher excitation energies, a second pair of

strongly allowed electronic absorption bands is observed experimentally [224, 226],

with maxima at 6.17 eV and 6.67 eV, respectively. The computed excitation energies

for these transitions are 6.79 eV and 6.99 eV. We refer to supplementary information

for a full overview of computed and experimental excitation energies of guanosine.

The overestimation of excitation energies observed here is quite typical for the PBE0
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Figure 6.1: Experimental and computed Raman spectra of guanosine at 266, 218,
200, and 514.5 nm excitations. Experimental spectra of guanosine-5′-monophosphate
(GMP) are from Refs. 222 and 223. Note that different frequency scales are applied
to experimental and computed Raman spectra. See text for computational details.
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functional [220] and is in part due to the lack of solvation effects in the calculations.

Since the shape of resonance Raman spectra is sensitive to the relative position of

the frequency of the incident light in the electronic excitation spectrum, we correct

for the systematic error in excitation energies with PBE0. To this end, we first intro-

duce a linear regression between the computed and experimental excitation energies

based on the four strongly allowed electronic transitions of guanosine. The slope of

the linear regression is 1.02, the offset is 0.35 eV. In addition, frequency scales in

experimental and computed Raman spectra are adjusted in Fig. 6.1(a)–(d) to reflect

the systematic overestimation of vibrational frequencies with PBE0 functional [219].

This corresponds to an effective scaling factor of 0.96.

The experimental resonance Raman spectrum at 266 nm excitation (Fig. 6.1(a))

is characterized by a strong 1492 cm−1 Raman peak and a slightly less intense 1581

cm−1 band. The former vibrational band was attributed to an imidazole ring vibration

while the latter was assigned to a pyrimidine ring stretch mode [227]. A complete

assignment of intensive Raman bands of guanosine is given in the supplementary

information. To facilitate comparison between experimental and theoretical results,

we compute the resonance Raman spectra at an excitation frequency shifted according

to the linear regression results, see above. The experimental results obtained using

266 nm (4.66 eV) excitation are thus compared to computed Raman spectra at the

245 nm (5.07 eV) excitation. The computed Raman spectrum at 245 nm is dominated

by contributions from the S1 excited state. The strongest vibrational band is found

at 1631 cm−1 and stems from the ν(N7–C8) bond stretch. The pyrimidine ring stretch

is observed as a weaker band at 1547 cm−1. Comparison with the resonance Raman
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spectrum computed for the S2 electronic excitation shows the opposite pattern, with

a strong band at 1547 cm−1 and a somewhat less intense one at 1631 cm−1. The

predicted spectrum at resonance with the S2 state seems to be in a better overall

agreement with the experimental resonance Raman spectrum at 266 nm than the

computed spectrum at resonance with the S1 state, see supplementary information for

more details. This findings underscore the importance of an accurate determination of

the relative position of the frequency of the incident radiation relative to the electronic

excitation spectrum of the molecule. The linear regression between experimental and

computed excitations used here is perhaps the simplest possible correction scheme,

while more rigorous approaches would contributions from the A terms, as is expected

for an excitation close to resonance.

The experimental resonance Raman spectrum for the 218 nm excitation is charac-

terized by a strong vibrational band at 1367 cm−1 assigned to an in-plane purine ring

vibration. The ν(C6=O) Raman band is observed at 1685 cm−1. The corresponding

computed spectrum is obtained for the 203 nm (6.11 eV) excitation. The intermediate

π → π∗ excited state S10 of guanosine of low intensity (computed excitation energy

6.25 eV) has the largest contribution to the computed resonance Raman spectrum.

It might be associated with the electronic transition observed at 215 nm (5.77 eV) in

circular dichroism (CD) spectra of guanosine [228]. Due to the low oscillator strength

of the S10 transition (0.05), the resonance Raman intensity is derived from both the A

and the B terms. The strongest vibrational band in the computed resonance Raman

spectrum at 203 nm excitation purine ring stretch mode predicted at 1416 cm−1.

The experimental resonance Raman spectrum at 200 nm shows a strong pyrimidine
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ring stretching band at 1578 cm−1 vibrational band as well as three Raman peaks of

nearly equal intensity at 1679 cm−1, 1489 cm−1, and 1364 cm−1, which are assigned

to the ν(C6=O) stretch, a pyrimidine ring stretch, and an imidazole ring stretch,

respectively. The low-frequency part of the resonance Raman spectrum is dominated

by the ring breathing mode. The computed resonance Raman spectrum at 187 nm

(6.63 eV) is close in energy to the strongly allowed π → π∗ state (S13) at 6.79 eV.

The pyrimidine ring stretch vibration at 1631 cm−1 is predicted as the strongest

vibrational band. The intensities of the the ν(C6=O) vibration at 1829 cm−1, the

imidazole ring vibration at 1547 cm−1, and the ring deformation mode at 1416 cm−1,

which correspond to the three intense Raman bands observed experimentally, are

underestimated relative to the strongest Raman peak. Since the excitation at 200

nm is close to strict resonance, the A terms are dominant in the resonance Raman

spectrum.

The non-resonant Raman spectrum of guanosine at 514.5 nm is shown in Fig. 6.1(d).

Assignments of the non-resonant Raman spectra of guanine and its derivatives have

been published previously [229–231]. As expected for Raman spectra far from reso-

nance, the B terms are dominant, while the A terms are comparatively small. The

non-resonant case is characterized by a significant number of excited electronic states,

each contributing only a small amount to Raman cross sections. Under these circum-

stances, the closure of the sum over states is applicable, and the resulting Raman

cross sections are represented as a ground state response property [191, 195]. The

sum-over-states results for guanosine Raman spectra at 514.5 nm including 20 excited

electronic states is in very good agreement with the conventional result obtained from
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derivatives of frequency-dependent electronic polarizabilities, see supplementary in-

formation.

The changes observed in the experimental resonance Raman spectra can be well

described within the sum-over-states formalism. A comprehensive assignment of Ra-

man peaks can be achieved. The relative changes in resonance Raman spectra de-

pend on a the relative position of the frequency of the incident radiation within the

electronic excitation spectrum. Thus a balanced description of a large number of

electronic excitations is required, which represents a considerable challenge for the

existing DFT methodology. Generally, the sum-over-states approach reproduces the

characteristic changes in the overall shape of resonance Raman spectra reasonably

well. This suggests that the main source of error in these calculations is due to elec-

tronic excitation energies, while the local properties of excited states, such as energy

gradients and derivatives of transition dipole moments, are better reproduced. Sim-

ilar results have been found for relaxed structures of excited states [206, 212, 213].

However, we note that all comparisons include relative Raman cross sections only.

Accurate determination of absolute Raman cross sections is a challenging taks both

for experiments and computation and is not considered here.

Raman excitation profiles (REPs) describe the dependence of Raman scattering

cross sections on excitation frequency. In Fig. 6.2 we show the REPs for the ring

breathing modes of adenosine, guanosine, cytidine, and uridine. These low-frequency

totally symmetric vibrational modes correspond to an in-phase expansion or contrac-

tion of the entire heteroaromatic ring system. Experimental spectra are from Ref. 232.

For consistency, the correction for systematic errors in excitation energies derived for
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Figure 6.2: Experimental and computed Raman excitation profiles of ring breathing
modes of nucleosides. Experimental data for nucleoside 5′-monophosphates are from
Ref. 232. Solid lines in experimental data are obtained by interpolation and serve
solely to guide the eye. Note that different energy scales are applied to experimental
and computed Raman excitation profiles. See text for computational details.
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guanosine (see above for details) is used for all nucleosides.

The ring breathing mode of adenosine (Fig. 6.2(a)) is observed at 729 cm−1 in

experimental spectra, while the computed vibrational frequency is 747 cm−1. The

experimental REP shows two maxima at the positions of the electronic absorption

bands of adenosine. They are assigned to the strongly allowed π → π∗ excited states

S2 and S7, respectively. The Raman cross section of the ring breathing mode is larger

at resonance with the higher-energy absorption band, in line with experimental data.

Since the ring breathing vibration is totally symmetric, its intensity is almost entirely

due to A term contributions.

The ring breathing mode of guanosine (Fig. 6.2(b)) is observed at 670 cm−1; the

computed vibrational frequency is 612 cm−1. Two broad maxima are observed in the

experimental REP at the positions of the two electronic absorption bands. The first

REP maximum at 4.5–5.0 eV covers the two closely lying dipole-allowed states S1 and

S2, while the second REP maximum peaked at ca. 6 eV includes the weakly allowed

S10 state as well as the strongly absorbing S13 and S17 states. The larger Raman cross

section at the second maximum is reproduced by theoretical results. The significant

contribution from B terms, which grows with increasing excitation energy, suggests

that the ring breathing modes is strongly coupled to non-totally symmetric vibrations.

Experimental and computed REPs of the ring breathing mode of cytidine are

shown in Fig. 6.2(c). Experimental vibrational frequency is 782 cm−1, the computed

frequency is 792 cm−1. Two moderately strong maxima are present in the experi-

mental REP, followed by a significant increase at the high-energy edge of the REP.

The two maxima are attributed to the two π → π∗ transitions of cytidine (S1 and
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S4). The increase at above 6.2 eV is due to the S8 and higher-lying excited states.

While the Raman cross sections are almost exclusively due to A terms at the first

maxima, the contribution of B terms increases at higher excitation energies. The ring

breathing mode of uridine shows a single broad peak at about 4.7 eV (Fig. 6.2(d)),

which is assigned to the strongly allowed S2 excited state. Experimental vibrational

frequency of the ring breathing mode is 783 cm−1, computed value is 781 cm−1.

The two limiting cases of the sum-over-states expression are the strictly resonant

situation, in which one resonant electronic state dominates the sum, with the A terms

outweighing the corresponding B terms. In this case, the sum reduces to the short-

time approximation [233]. The other limiting case, far from resonance, is usually

well described by the polarizability theory of Placzek [195], in which polarizability

derivatives are often even approximated by their static limits. As was pointed out

by Albrecht, B terms are dominant in the non-resonant case [190], while A terms

are all but negligible. The polarizability approximation is usually adequate for the

range of excitation frequencies below the lowest electronic excitation. In the inter-

mediate regime, e. g., above the first electronic excitation, both A and B terms from

different electronic excited states contribute to Raman cross section, and a smooth

interpolation, such as the one offered by the present approach, becomes necessary.

The presented sum-over-states approach ignores the details of vibronic structure

and includes the contributions from a given electronic excited state in an aggregate

manner only. Thus, it is likely to be problematic for molecules with well-resolved

vibronic transitions such as small gas-phase species. However, vibronic structure is

typically “washed out” in most medium-size and large molecules or in the presence
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of a solvent so that the averaged description appears appropriate in these cases. The

contributions of different electronic excited states to the Raman scattering tensor

σQ(ω) are additive, cf. Eq. 6.2. Therefore, the quality of the description of the strictly

resonant case may be improved upon by treating the contribution of the resonant

electronic state in a more accurate way such as explicit time propagation [200, 201]

or summation over vibronic states [199].

The computed resonance Raman cross sections include excitation energies, transi-

tion moments and their geometric derivatives. As a consequence, they offer a sensitive

test of the TDDFT methodology. Our results indicate that largest source of error

for relative resonance Raman cross sections are excitation energies, and the results

are found to improve if the excitation energies are corrected for errors intrinsic to

the method. Corrections using experimental excitation energies might be used for

this purpose if available. Alternatively, corrections for excitation energies might be

obtained from more accurate theoretical methods such as coupled-cluster response

approaches.

6.4 Conclusion

In this work, we presented a simple approximation to resonance Raman cross

section based on the sum-over-states expression for frequency-dependent electronic

polarizabilities. Each electronic excited state contributes two types of terms to the

Raman cross section, which we term A and B terms, in analogy to Albrecht’s treat-

ment. The A terms are dominant in the strictly resonant case, while the B terms

determine the Raman cross sections in the non-resonant limit. By using both terms,
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the present method can treat the resonant and non-resonant cases on equal foot-

ing. Resonance Raman spectra and Raman excitation profiles of nucleosides can be

predicted with reasonable accuracy using the sum-over-states approach. The major

source of error seem to be electronic excitation energies, which are can be off by up to

0.5 eV with TDDFT. Improved description of resonance Raman spectra and Raman

excitation profiles is expected from a combination of the present sum-over-states for-

mulation with more accurate approaches for the few strictly resonant electronic states

as well as an first-principles framework for computing electronic state linewidths from

the open-system formulation of TDDFT [209].
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In this dissertation, quantum effects in biological systems were investigated by

simulations at the molecular level. To study the effect of the protein environment

on long-lived quantum coherences observed during the energy transfer process in the

FMO complex, the protein complex embedding the chromophores were simulated in

atomistic detail using molecular dynamics and TD-DFT. SC-IVR and DFT calcu-

lations were combined to give an accurate quantum dynamics. A formula for the

resonance Raman spectra was developed using TD-DFT and analytic gradients and

applied to the nucleic acid bases.

Our exciton propagation method with molecular dynamics and TD-DFT is a phe-

nomological model like the Haken-Strobl-Reineker method. The effect of the bath

is included as classical stochastic terms in the system Hamiltonian, and the reduced

density matrix is evaluated by averaging over the realization of quantum trajectories.

Although very convenient in carrying out the propagation using stochastic simulation,

this type of stochastic Liouville eqaution cannot reproduce the correct asymptotic
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behavior at a finite temperature. Several propagation methods based on trajecto-

ries generated by stochastic generators [59, 99, 234–237] or real time path integral

Monte Carlo [238–241] are known to produce exact dynamics. We expect that these

stochastic methods are more appropriate than master equation based approaches for

atomistic simulations. However, most of these stochastic approaches are obtained by

mathematical unraveling of the master equation or influence functional rather than

contemplating the physical system. Therefore, further investigations are needed to

combine these methods with atomistic simulations.

Simulation of the protein environment is currently limited to classical mechanics

due to the large degrees of freedom. As explored in Chapter 5, very accurate quan-

tum dynamics can be obtained on top of classical mechanics using SC-IVR. Another

possibility is to use mixed quantum-classical dynamics [242–245]. This formalism was

developed to treat the dynamics of a quantum subsystem interacting with a classical

bath by propagating the classical bath and the quantum reduced density matrix in

phase space using the Wigner representation. However, both of these methods are not

scalable enough to directly simulate the entire photosynthetic system. Other promis-

ing approaches would be to introduce the quantum correction factors to the classical

bath correlation. These factors have been studied in the context of vibrational en-

ergy relaxation [69, 70, 246] and are expected to be straightforwardly applicable to

the energy transfer dynamics.
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