Set Theory Master program Logic and algorithms Exam problems, February 2018

Problem 0. [(ZF)] Let A be a non-empty set of ordinal numbers. Prove that $\bigcap A$ is the least element of A.

Problem 1. [(ZFC)] Let $\mathcal{A} = \langle A, \leq \rangle$ be a linearly ordered set. Prove that \mathcal{A} is woset if and only if there is no strictly decreasing ω -sequence in \mathcal{A} .

Problem 2. [(ZF)] Let α be an ordinal. By (primitive) recursion define the ω -sequence $\{\alpha_n\}_{n<\omega}$ as follows: $\alpha_0 = \aleph_{\alpha}, \ \alpha_{S(n)} = \aleph_{\alpha_n}$ for $n < \omega$. Let $\beta = \bigcup \{ \alpha_n \mid n < \omega \}.$ Prove that:

(1)
$$\beta = \aleph_{\beta}$$

- (2) the sequence $\{\alpha_n\}_{n < \omega}$ is strictly monotone; (3) $\beta = \mu \gamma [\alpha \le \gamma \& \gamma = \aleph_{\gamma}].$

Problem 3. Let F be an ordinal operation, i.e. F is a formula operation and $\forall \alpha \operatorname{Ord}(F(\alpha))$. F is called:

- monotone (or strictly increasing) if $\alpha < \beta \Rightarrow F(\alpha) < F(\beta)$;
- continuous if $\operatorname{Lim}(\alpha) \Rightarrow F(\alpha) = \bigcup \{F(\beta) \mid \beta < \alpha\};$
- normal if it is monotone and continuous.

Prove that the \aleph is a normal operation (without loss of generality assume that the value of this operation for non-ordinals is \emptyset).

Prove that if F is a normal operation then:

- 1. $\forall \alpha \exists \beta (\alpha < \beta \& F(\beta) = \beta;$
- 2. $\neg \exists A \forall \gamma (\gamma \in A \iff \gamma = F(\gamma)).$

Problem 4. [(ZFC)] Let $\mathcal{A} = \langle A, \preceq \rangle$ be a poset. A set $B, B \subseteq A$, is called cofinal in \mathcal{A} if $(\forall a \in A) (\exists b \in B) (a \leq b)$.

Prove that if \mathcal{A} is linearly ordered then there exists a woset $\langle B, \preceq \rangle$ such that B is cofinal in \mathcal{A}

Problem 5. For each limit ordinal α the ordinal $cf(\alpha)$ is defined as the least ordinal γ such that there exists a nondecreasing γ -sequence of ordinals $\beta_0, \ldots, \beta_{\xi}, \ldots, \xi < \gamma$ such that $\alpha = \bigcup \{\beta_{\xi} \mid \xi < \gamma\}.$ Prove that:

1. $\forall \alpha(\text{Lim}(\alpha) \Rightarrow \text{Card}(\text{cf}(\alpha)));$

2. $\forall \alpha(\operatorname{Lim}(\alpha) \Rightarrow \operatorname{cf}(\operatorname{cf}(\alpha)) = \operatorname{cf}(\alpha));$

3.
$$\forall \alpha(\operatorname{Lim}(\alpha) \Rightarrow \operatorname{cf}(\aleph_{\alpha}) = \operatorname{cf}(\alpha))$$

4. [(ZFC)] $\forall \alpha(\operatorname{Suc}(\alpha) \Rightarrow \operatorname{cf}(\aleph_{\alpha}) = \aleph_{\alpha})$

Problem 6. [(ZFC)] A subset C of \aleph_1 is called *closed* if the supremum of any ω -sequence $\{\alpha_n\}_{n < \omega}$ of ordinals from C belongs to C also, i.e.

$$(\forall n < \omega)(\alpha_n \in C \Rightarrow \bigcup \{\alpha_n \mid n < \omega\} \in C.$$

Let A be at most countable nonempty set of closed unbounded in \aleph_1 sets of ordinals from \aleph_1 . Prove that $\bigcap A$ is uncountable, closed and unbounded in \aleph_1 .

Problem 7. A binary relation R on a set A is called *well-founded* if every non-empty subset B of A has an R-minimal element, that is $x_0 \in B$ such that there is no $x \in B$ with $\langle x, x_0 \rangle \in R$.

(A) [(ZF)] Prove the following induction principle on the well-founded relations. Let $\varphi(x, \overline{u})$ be a set-theoretical property. Let R be a well-founded relation on a set A. Let the parameters \overline{u} be fixed. If

$$(\forall x \in A)(\forall y(\langle y, x \rangle \in R \Rightarrow \varphi(y, \overline{u})) \Rightarrow \varphi(x, \overline{u})),$$

then $(\forall x \in A)\varphi(x, \overline{u})$.

- (B) [(ZF)] Let R be a binary relation on A. Prove that if there exists a function f such that Dom(f) = A, $\forall x (x \in \text{Range}(f) \Rightarrow \text{Ord}(x))$ and $(\forall x \in A)(\forall y \in A)(\langle x, y \rangle \in R \Rightarrow f(x) < f(y))$ then R is a well-founded relation on A.
- (C) [(ZF)] Let R be a well-founded relation on A. Define by (primitive) recursion a transfinite sequence $A_0, \ldots, A_\alpha, \ldots$ as follows:

$$\begin{split} A_0 &= \varnothing, \\ A_{S(\alpha)} &= \{ y \mid \forall x (\langle x, y \rangle \in R \Rightarrow x \in A_\alpha) \}, \\ \operatorname{Lim}(\alpha) &\Rightarrow A_\alpha = \bigcup \{ A_\beta \mid \beta < \alpha \}. \end{split}$$

Prove that:

- 1. $\forall \alpha \forall \beta (\alpha < \beta \Rightarrow A_{\alpha} \subseteq A_{\beta});$
- 2. $\exists \alpha (A_{\alpha} = A_{S(\alpha)});$
- 3. $\exists \alpha (A_{\alpha} = A);$
- 4. if the function f is defined for each $a \in A$ as follows $f(a) = \mu \alpha [a \in A_{S(\alpha)}],$

then for any $a \in A$ it holds $f(a) = \bigcup \{S(f(x)) \mid \langle x, a \rangle \in R\}$ and $\operatorname{Range}(f) = \mu \alpha [A_{\alpha} = A].$