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Computational Geometry I

D.T. Lee
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1.1 Introduction

Computational geometry, since its inception [66] in 1975,has received a great deal of attention
from researchers in the area of design and analysis of algorithms. It has evolved into a discipline
of its own. It is concerned with the computational complexity of geometric problems that arise in
various disciplines such as pattern recognition, computer graphics, geographical information system,
computer vision, CAD/CAM, robotics, VLSI layout, operations research, and statistics. In contrast
with the classical approach to proving mathematical theorems about geometry-related problems,
this discipline emphasizes the computational aspect of these problems and attempts to exploit
the underlying geometric properties possible, e.g., the metric space, to derive efficient algorithmic
solutions.

An objective of this discipline in the theoretical context is to study the computational complex-
ity (giving lower bounds) of geometric problems, and to devise efficient algorithms (giving upper
bounds) whose complexity preferably matches the lower bounds. That is, not only are we interested
in the intrinsic difficulty of geometric computational problems under a certain computation model,
but we are also concerned with the algorithmic solutions that are efficient or provably optimal in the
worst or average case. In this regard, the asymptotic time (or space) complexity of an algorithm,
i.e., the behavior of an algorithm, as the input size approaches infinity, is of interest. Due to its
applications to various science and engineering related disciplines, researchers in this field have
begun to address the efficacy of the algorithms, the issues concerning robustness and numerical sta-
bility [33,82], and the actual running times of their implementations. In order to value and get better
understanding of the geometric algorithms in action, a computational problem solving environment

1-1
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has been developed at the Institute of Information Science and the Research Center for Information
Technology Innovation, Academia Sinica, Taiwan. Actual implementations of several geomet-
ric algorithms have been incorporated into a Java-based algorithm visualization and debugging
software system, dubbed GeoBuilder (http://webcollab.iis.sinica.edu.tw/Components/GeoBuilder/),
which supports remote compilation, visualization of intermediate execution results, and other run-
time features, e.g., visual debugging, etc. This system facilitates geometric algorithmic researchers
in testing their ideas and demonstrating their findings in computational geometry. GeoBuilder sys-
tem is embedded into a knowledge portal [51], called OpenCPS (Open Computational Problem
Solving), (http://www.opencps.org/) and possesses three important features. First, it is a platform-
independent software system based on Java’s promise of portability, and can be invoked by Sun’s
Java Web Start technology in any browser-enabled environment. Second, it has the collabora-
tion capability for multiple users to concurrently develop programs, manipulate geometric objects,
and control the camera. Finally, its three-dimensional (3D) geometric drawing bean provides an
optional function that can automatically position the camera to track 3D objects during algo-
rithm visualization [79]. GeoBuilder develops its rich client platform based on Eclipse RCP and
has already built in certain functionalities such as remote addition, deletion, and saving of files as
well as remote compiling, and execution of LEDA C/C++ programs, etc., based on a multipage
editor. Other notable geometric software projects include, among others, CGAL (http://www.cgal.
org/) [32] and LEDA (http://www.algorithmic-solutions.com/leda/about/index.htm.) [60].

In this and the following chapter (Chapter 2) we concentrate mostly on the theoretical development
of this field in the context of sequential computation, and discuss a number of typical topics and the
algorithmic approaches. We will adopt the real RAM (random access machine) model of computation
in which all arithmetic operations, comparisons, kth root, exponential, or logarithmic functions take
unit time.

1.2 Convex Hull

The convex hull of a set of points in �k is the most fundamental problem in computational geometry.
Given is a set of points in �k, and we are interested in computing its convex hull, which is defined
to be the smallest convex set containing these points. There are two ways to represent a convex hull.
An implicit representation is to list all the extreme points, whereas an explicit representation is to
list all the extreme d-faces of dimensions d = 0, 1, . . . , k − 1. Thus, the complexity of any convex
hull algorithm would have two parts, computation part and the output part. An algorithm is said to
be output-sensitive if its complexity depends on the size of the output.

1.2.1 Convex Hulls in Two and Three Dimensions

For an arbitrary set of n points in two and three dimensions, we can compute its convex hull using the
Graham scan, gift-wrapping method, or divide-and-conquer paradigm, which are briefly described
below.

Note that the convex hull of an arbitrary set S of points in two dimensions is a convex polygon.
We’ll describe algorithms that compute the upper hull of S, since the convex hull is just the union
of the upper and lower hulls. Let v0 denote the point with minimum x-coordinate; if there are more
than one, pick the one with the maximum y-coordinate. Let vn−1 be similarly defined except that
it denotes the point with the maximum x-coordinate. In two dimensions, the upper hull consists
of two vertical lines passing through v0 and vn−1, respectively and a sequence of edges, known as a
polygonal chain, C = {vji−1 , vji | i = 1, 2, . . . , k}, where vj0 = v0 and vjk = vn−1, such that the entire
set S of points lies on one side of or below the lines Li containing each edge vji−1 , vji . See Figure 1.1a
for an illustration of the upper hull. The lower hull is similarly defined.
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FIGURE 1.1 The upper hull of a set of points (a) and illustration of the Graham scan (b).

The Graham scan computes the convex hull by (1) sorting the input set of points in ascending
order of their x-coordinates (in case of ties, in ascending order of their y-coordinates), (2) connecting
these points into a polygonal chain P stored as a doubly linked list L, and (3) performing a linear
scan to compute the upper hull of the polygon [66].

The triple (vi, vj, vk) of points is said to form a right turn if and only if the determinant∣∣∣∣∣∣
xi yi 1
xj yj 1
xk yk 1

∣∣∣∣∣∣ < 0,

where (xi, yi) are the x- and y-coordinates of vi. If the determinant is positive, then the triple (vi, vj, vk)
of points is said to form a left turn. The points vi, vj, and vk are collinear if the determinant is zero.
This is also known as the side test, determining on which side of the line defined by points vi and vj
the point vk lies.

It is obvious that when we scan points in L in ascending order of x-coordinate, the middle point
of a triple (vi, vj, vk) that does not form a right turn is not on the upper hull and can be deleted. The
following is the algorithm.

ALGORITHM GRAHAM_SCAN

Input: A set S of points sorted in lexicographically ascending order of their (x, y)-coordinate
values.

Output: A sorted list L of points in ascending x-coordinates.

begin
if (|S| == 2) return (v0, vn−1);
i = 0; vn−1 =next(vn−1); /* set sentinel */
pa = v0; pb =next(pa), pc =next(pb);
while (pb �= vn−1) do

if (pa, pb, pc) forms a right turn
then begin /* advance */

pa = pb; pb = pc;
pc = next(pb);

end
else begin /* backtrack */

delete pb;
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if (pa �= v0)
then pa = prev(pa);
pb = next(pa); pc = next(pb);

end
pt =next(v0);
L = {v0, pt};
while (pt �= vn−1) do

begin
pu =next(pt);
L = L ∪ {pt , pu};
pt = pu;

end;
return (L);

end.

Step (i) being the dominating step, ALGORITHM GRAHAM_SCAN, takes O(n log n) time. Figure 1.1b
shows the initial list L and vertices not on the upper hull are removed from L. For example, pb is
removed since (pa, pb, pc) forms a left turn; pc is removed since (pa, pc, pd) forms a left turn; pd, and
pe are removed for the same reason.

One can also use the gift-wrapping technique to compute the upper hull. Starting with a vertex that
is known to be on the upper hull, say the point v0 = vi0 . We sweep clockwise the half-line emanating
from v0 in the direction of the positive y-axis. The first point vi1 this half-line hits will be the next
point on the upper hull. We then march to vi1 , repeat the same process by sweeping clockwise the
half-line emanating from vi1 in the direction from vi0 to vi1 , and find the next vertex vi2 . This process
terminates when we reach vn−1. This is similar to wrapping an object with a rope. Finding the next
vertex takes time proportional to the number of points not yet known to be on the upper hull.
Thus, the total time spent is O(nH), where H denotes the number of points on the upper hull. The
gift-wrapping algorithm is output-sensitive, and is more efficient than the ALGORITHM GRAHAM_SCAN

if the number of points on the upper hull is small, i.e., O(log n).
One can also compute the upper hull recursively by divide-and-conquer. This method is more

amenable to parallelization. The divide-and-conquer paradigm consists of the following steps.

ALGORITHM UPPER_HULL_D&C (2d-Point S)

Input: A set S of points.
Output: A sorted list L of points in ascending x-coordinates.

1. If |S| ≤ 3, compute the upper hull UH(S) explicitly and return (UH(S)).
2. Divide S by a vertical line L into two approximately equal subsets Sl and Sr such that

Sl and Sr lie, respectively, to the left and to the right of L.
3. UH(Sl) = Upper_Hull_D&C(Sl).
4. UH(Sr) = Upper_Hull_D&C(Sr).
5. UH(S) = Merge(UH(Sl), UH(Sr)).
6. return (UH(S)).

The key step is the Merge of two upper hulls, each of which is the solution to a subproblem derived
from the recursive step. These two upper hulls are separated by a vertical line L. The Merge step
basically calls for computation of a common tangent, called bridge over line L, of these two upper
hulls (Figure 1.2).

The computation of the bridge begins with a segment connecting the rightmost point l of the left
upper hull to the leftmost point r of the right upper hull, resulting in a sorted list L. Using the Graham
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FIGURE 1.2 The bridge p, q over the vertical line L.

scan one can obtain in linear time the two endpoints of the bridge, (p, q shown in Figure 1.2), such
that the entire set of points lies on one side of the line, called supporting line, containing the bridge.
The running time of the divide-and-conquer algorithm is easily shown to be O(n log n) since the
Merge step can be done in O(n) time.

A more sophisticated output-sensitive and optimal algorithm which runs in O(n logH) time
has been developed by Kirkpatrick and Seidel [48]. It is based on a variation of the divide-and-
conquer paradigm, called divide-and-marriage-before-conquest method. It has been shown to be
asymptotically optimal; a lower bound proof of Ω(n logH) can be found in [48]. The main idea
in achieving the optimal result is that of eliminating redundant computations. Observe that in the
divide-and-conquer approach after the bridge is obtained, some vertices belonging to the left and
right upper hulls that are below the bridge are deleted. Had we known that these vertices are not on
the final hull, we could have saved time without computing them. Kirkpatrick and Seidel capitalized
on this concept and introduced the marriage-before-conquest principle putting Merge step before
the two recursive calls.

The divide-and-conquer scheme can be easily generalized to three dimensions. The Merge step
in this case calls for computing common supporting faces that wrap two recursively computed
convex polyhedra. It is observed by Preparata and Shamos [66] that the common supporting faces
are computed from connecting two cyclic sequences of edges, one on each polyhedron (Figure 1.3).
See [3] for a characterization of the two cycles of seam edges. The computation of these supporting

Common supporting
faces

FIGURE 1.3 Common supporting faces of two disjoint convex polyhedra.
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faces can be accomplished in linear time, giving rise to an O(n log n) time algorithm. By applying the
marriage-before-conquest principle Edelsbrunner and Shi [28] obtained an O(n log2 H) algorithm.

The gift-wrapping approach for computing the convex hull in three dimensions would mimic
the process of wrapping a gift with a piece of paper. One starts with a plane supporting S, i.e.,
a plane determined by three points of S such that the entire set of points lie on one side. In general,
the supporting face is a triangle Δ(a, b, c). Pivoting at an edge, say (a, b) of this triangle, one rotates
the plane in space until it hits a third point v, thereby determining another supporting face Δ(a, b, v).
This process repeats until the entire set of points are wrapped by a collection of supporting faces.
These supporting faces are called 2-faces, the edges common to two supporting faces, 1-faces, and
the vertices (or extreme points) common to 2-faces and 1-faces are called 0-faces. The gift-wrapping
method has a running time of O(nH), where H is the total number of i-faces, i = 0, 1, 2.

The following optimal output-sensitive algorithm that runs in O(n logH) time in two and three
dimensions is due to Chan [13]. It is a modification of the gift-wrapping method (also known as the
Jarvis’ March method) and uses a grouping technique.

ALGORITHM 2DHULL (S)

1. For i = 1, 2, . . . do
2. P ← HULL2D (S,H0,H0), where H0 = min{22i

, n}
3. If P �= nil then return P.

FUNCTION HULL2D (S, m,H0)

1. Partition S into subsets S1, S2, . . . , S� n
m �, each of size at most m

2. For i = 1, 2, . . . , � n
m� do

3. Compute CH(Si) and preprocess it in a suitable data structure
4. p0 ← (0, −∞), p1 ← the rightmost point of S
5. For j = 1, 2, . . . ,H0 do
6. For i = 1, 2, . . . , � n

m� do
7. Compute a point qi ∈ Si that maximizes ∩pj−1pjqi

8. pj+1 ← a point q from {q1, . . . , q� n
m �} maximizing ∩pj−1pjq

9. If pj+1 = p1 then return list (p1, . . . , pj)

10. return nil

Let us analyze the complexity of the algorithm. In Step 2, we use an O(m log m) time algo-
rithm for computing the convex hull for each subset of m points, e.g., Graham’s scan for S
in two dimensions, and Preparata–Hong algorithm for S in three dimensions. Thus, it takes
O(( n

m )m log m) = O(n log m) time. In Step 5 we build a suitable data structure that supports
the computation of the supporting vertex or supporting face in logarithmic time. In two dimensions
we can use an array that stores the vertices on the convex hull in say, clockwise order. In three dimen-
sions we use Dobkin–Kirkpatrick hierarchical representation of the faces of the convex hull [24].
Thus, Step 5 takes H0(

n
m )O(log m) time. Setting m = H0 gives an O(n logH0) time. Note that

setting m = 1 we have the Jarvis’ March, and setting m = n the two-dimensional (2D) convex hull
algorithm degenerates to the Graham’s scan. Since we do not know H in advance, we use in Step 2
of ALGORITHM 2DHULL(S) a sequence Hi = 22i

such that H1 + · · · +Hk−1 < H ≤ H1 + · · · +Hk to
guess it. The total running time is

O

( k∑
i=1

n logHi

)
= O

⎛
⎝�log logH�∑

i=1
n2i

⎞
⎠ = O

(
n logH

)
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1.2.2 Convex Hulls in k Dimensions, k > 3

For convex hulls of higher dimensions, Chazelle [16] showed that the convex hull can be computed
in time O(n log n + n�k/2�), which is optimal in all dimensions k ≥ 2 in the worst case. But this
result is insensitive to the output size. The gift-wrapping approach generalizes to higher dimensions
and yields an output-sensitive solution with running time O(nH), where H is the total number of
i-faces, i = 0, 1, . . . , k − 1 and H = O(n�k/2�) [27]. One can also use beneath–beyond method [66]
of adding points one at a time in ascending order along one of the coordinate axis.∗ We compute
the convex hull CH(Si−1) for points Si−1 = {p1, p2, . . . , pi−1}. For each added point pi we update
CH(Si−1) to get CH(Si) for i = 2, 3, . . . , n by deleting those t-faces, t = 0, 1, . . . , k − 1, that are
internal to CH(Si−1 ∪ {pi}). It has been shown by Seidel [27] that O(n2 +H log h) time is sufficient,
where h is the number of extreme points. Later Chan [13] obtained an algorithm based on gift-
wrapping method using the data structures for ray-shooting queries in polytopes developed by
Agarwal and Matoušek [1] and refined by Matoušek and Schwarzkopf [58], that runs in O(n logH+
(nH)1−1/(�k/2�+1) logO(1) n) time. Note that the algorithm is optimal when k = 2, 3. In particular, it
is optimal when H = O(n1/(�k/2�)/ logδ n) for a sufficiently large δ.

We conclude this section with the following theorem [13].

THEOREM 1.1 The convex hull of a set S of n points in �k can be computed in O(n logH) time
for k = 2 or k = 3, and in O(n logH + (nH)1−1/(�k/2�+1) logO(1) n) time for k > 3, where H is the
number of i-faces, i = 0, 1, . . . , k − 1.

1.2.3 Convex Layers of a Planar Set

The convex layers C(S) of a set S of n points in the Euclidean plane is obtained by a process, known
as onion peeling, i.e., compute the convex hull of S and remove its vertices from S, until S becomes
empty. Figure 1.4 shows the convex layer of a point set. This onion peeling process of a point set
is central in the study of robust estimators in statistics, in which the outliers, points lying on the
outermost convex layers, should be removed. In this section we describe an efficient algorithm due
to Chazelle [14] that runs in optimal O(n log n) time.

As described in Section 1.2.1, each convex layer of C(S) can be decomposed into two convex
polygonal chains, called upper and lower hulls (Figure 1.5).

FIGURE 1.4 Convex layers of a point set.

∗ If the points of S are not given a priori, the algorithm can be made on-line by adding an extra step of checking if the
newly added point is internal or external to the current convex hull. If it is internal, just discard it.
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FIGURE 1.5 Decomposition of each convex layer into upper and lower hulls.
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FIGURE 1.6 The hull graph of upper hull (a) and a complete binary tree representation (b).

Let l and r denote the points with the minimum and maximum x-coordinate, respectively,
in a convex layer. The upper (respectively, lower) hull of this layer runs clockwise (respectively,
counterclockwise) from l to r. The upper and lower hulls are the same if the convex layer has one
or two points. Assume that the set S of points p0, p1, . . . , pn−1 are ordered in nondescending order
of their x-coordinates. We shall concentrate on the computation of upper hulls of C(S); the other
case is symmetric. Consider the complete binary tree T (S) with leaves p0, p1, . . . , pn−1 from left to
right. Let S(v) denote the set of points stored at the leaves of the subtree rooted at node v of T and
let U(v) denote its upper hull of the convex hull of S(v). Thus, U(ρ), where ρ denotes the root of T ,
is the upper hull of the convex hull of S in the outermost layer. The union of all the upper hulls U(v)
for all nodes v is a tree, called hull graph [14]. (A similar graph is also computed for the lower hull
of the convex hull.) To minimize the amount of space, at each internal node v we store the bridge
(common tangent) connecting a point in U(vl) and a point in U(vr), where vl and vr are the left
and right children of node v, respectively. Figure 1.6a and b illustrates the binary tree T and the
corresponding hull graph, respectively.

Computation of the hull graph proceeds from bottom up. Computing the bridge at each node takes
time linear in the number of vertices on the respective upper hulls in the left and right subtrees. Thus,
the total time needed to compute the hull graph is O(n log n). The bridges computed at each node v
which are incident upon a vertex pk are naturally separated into two subsets divided by the vertical
line L(pk) passing through pk. Those on the left are arranged in a list L(pk) in counterclockwise
order from the positive y direction of L(pk), and those on the right are arranged in a list R(pk) in
clockwise order. This adjacency list at each vertex in the hull graph can be maintained fairly easily.
Suppose the bridge at node v connects vertex pj in the left subtree and vertex pk in the right subtree.
The edge pj, pk will be inserted at the first position in the current lists R(pj) and L(pk). That is, edge
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pj, pk is the top edge in both lists R(pj) and L(pk). It is easy to retrieve the vertices on the upper hull
of the outermost layer from the hull graph beginning at the root node of T .

To compute the upper hull of the next convex layer, one needs to remove those vertices on the first
layer (including those vertices in the lower hull). Thus, update of the hull graph includes deletion of
vertices on both upper hull and lower hull. Deletions of vertices on the upper hull can be performed
in an arbitrary order. But if deletions of vertices on the lower hull from the hull graph are done in
say clockwise order, then the update of the adjacency list of each vertex pk can be made easy, e.g.,
R(pk) = ∅. The deletion of a vertex pk on the upper hull entails removal of edges incident on pk in the
hull graph. Let v1, v2, . . . , vl be the list of internal nodes on the leaf-to-root path from pk. The edges
in L(pk) and R(pk) are deleted from bottom up in O(1) time each, i.e., the top edge in each list gets
deleted last. Figure 1.6b shows the leaf-to-root path when vertex p20 is deleted. Figure 1.7a–f shows
the updates of bridges when p20 is deleted and Figure 1.7g is the final upper hull after the update is
finished. It can be shown that the overall time for deletions can be done in O(n log n) time [14].

THEOREM 1.2 The convex layers of a set of n points in the plane can be computed in O(n log n)

time.

Nielsen [64] considered the problem of computing the first k layers of convex hull of a planar
point set S that arises in statistics and pattern recognition, and gave an O(n logHk) time algorithm,
where Hk denotes the number of points on the first k layers of convex hull of S, using the grouping
scheme of Chan [13].

1.2.4 Applications of Convex Hulls

Convex hulls have applications in clustering, linear regression, and Voronoi diagrams (see Chapter 2).
The following problems have solutions derived from the convex hull.

Problem C1 (Set Diameter) Given a set S of n points, find the two points that are the farthest
apart, i.e., find pi, pj ∈ S such that d(pi, pj) = max{d(pk, pl)} ∀pk, pl ∈ S, where d(p, q) denotes the
Euclidean distance between p and q.

In two dimensions O(n log n) time is both sufficient and necessary in the worst case [66]. It is
easy to see that the farthest pair must be extreme points of the convex hull of S. Once the convex
hull is computed, the farthest pair in two dimensions can be found in linear time by observing that
it admits a pair of parallel supporting lines. Various attempts, including geometric sampling and
parametric search method, have been made to solve this problem in three dimensions. See e.g., [59].

Clarkson and Shor [20] gave a randomized algorithm with an optimal expected O(n log n) time.
Later Ramos [67] gave an optimal deterministic algorithm, based on a simplification of the ran-
domization scheme of Clarkson and Shor [20], and derandomization making use of the efficient
construction of ε-nets by Matoušek [57].

Problem C2 (Smallest enclosing rectangle) Given a set S of n points, find the smallest rectangle that
encloses the set.

Problem C3 (Regression line) Given a set S of n points, find a line such that the maximum distance
from S to the line is minimized.

These two problems can be solved in optimal time O(n log n) using the convex hull of S [54] in
two dimensions. In k dimensions Houle et al. [43] gave an O(n�k/2+1�) time and O(n�(k+1)/2�) space
algorithm. The time complexity is essentially that of computing the convex hull of the point set.
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FIGURE 1.7 Update of hull graph.

1.3 Maxima Finding

In this section we discuss a problem concerned with the extremes of a point set which is somewhat
related to that of convex hull problems. Consider a set S of n points in �k in the Cartesian coordinate
system. Let (x1(p), x2(p), . . . , xk(p)) denote the coordinates of point p ∈ �k. Point p is said to
dominate point q, denoted p � q, (or q is dominated by p, denoted q � p) if xi(p) ≥ xi(q) for
all 1 ≤ i ≤ k. A point p is said to be maximal (or a maximum) in S if no point in S dominates
p. The maxima-finding problem is that of finding the set M(S) of maximal elements for a set S of
points in �k.



Atallah/Algorithms and Theory of Computation Handbook: Second Edition C820X_C001 Finals Page 11 2009-10-19

Computational Geometry I 1-11

1.3.1 Maxima in Two and Three Dimensions

In two dimensions the problem can be done fairly easily by a plane-sweep technique. (For a more
detailed description of plane-sweep technique, see, e.g., [50] or Section 1.5.1) Assume that the set
S of points p1, p2, . . . , pn are ordered in nondescending order of their x-coordinates, i.e., x(p1) ≤
x(p2) ≤ · · · ≤ x(pn).

We shall scan the points from right to left. The point pn is necessarily a maximal element. As we
scan the points, we maintain the maximum y-coordinate among those that have been scanned so
far. Initially, maxy = y(pn). The next point pi is a maximal element if and only if y(pi) > maxy.
If y(pi) > maxy, then pi ∈ M(S), and maxy is set to y(pi), and we continue. Otherwise pi � pj for
some j > i. Thus, after the initial sorting, the set of maxima can be computed in linear time. Note
that the set of maximal elements satisfies the property that their x- and y-coordinates are totally
ordered: If they are ordered in strictly ascending x-coordinate, their y-coordinates are ordered in
strictly descending order.

In three dimensions we can use the same strategy. We will scan the set in descending order of
the x-coordinate by a plane P orthogonal to the x-axis. Point pn as before is a maximal element.
Suppose we have computed M(Si+1), where Si+1 = {pi+1, . . . , pn}, and we are scanning point pi.
Consider the orthogonal projection Sx

i+1 of the points in Si+1 to P with x = x(pi). We now have an

Y

Z

Pi

FIGURE 1.8 Update of max-
imal elements.

instance of an on-line 2D maximal problem, i.e., for point pi, if px
i � px

j
for some px

j ∈ Sx
i+1, then it is not a maximal element, otherwise it is

(px
i denotes the projection of pi onto P). If we maintain the points

in M(Sx
i+1) as a height-balanced binary search tree in either y- or

z-coordinate, then testing whether pi is maximal or not can be done
in logarithmic time. If it is dominated by some point in M(Sx

i+1),
then it is ignored. Otherwise, it is in M(Sx

i+1) (and also in M(Si+1));
M(Sx

i+1) will then be updated to be M(Sx
i ) accordingly. The update

may involve deleting points in M(Sx
i+1) that are no longer maximal

because they are dominated by px
i . Figure 1.8 shows the effect of adding

a maximal element px
i to the set M(Sx

i+1) of maximal elements. Points
in the shaded area will be deleted. Thus, after the initial sorting, the set
of maxima in three dimensions can be computed in O(n logH) time,
as the on-line 2D maximal problem takes O(logH) time to maintain M(Sx

i ) for each point pi, where
H denotes the size of M(S).

Since the total number of points deleted is at most n, we conclude the following.

LEMMA 1.1 Given a set of n points in two and three dimensions, the set of maxima can be
computed in O(n log n) time.

For two and three dimensions one can solve the problem in optimal time O(n logH), where H
denotes the size of M(S). The key observation is that we need not sort S in its entirety. For instance,
in two dimensions one can solve the problem by divide-and-marriage-before-conquest paradigm.
We first use a linear time median finding algorithm to divide the set into two halves L and R with
points in R having larger x-coordinate values than those of points in L. We then recursively compute
M(R). Before we recursively computeM(L) we note that points in L that are dominated by points in
M(R) can be eliminated from consideration. We trim L before we invoke the algorithm recursively.
That is, we compute M(L′) recursively, where L′ ⊆ L consists of points q �� p for all p ∈ M(R). A
careful analysis of the running time shows that the complexity of this algorithm is O(n logH). For
three dimensions we note that other than the initial sorting step, the subsequent plane-sweep step
takes O(n logH) time. It turns out that one can replace the full-fledged O(n log n) sorting step with
a so-called lazy sorting of S using a technique similar to those described in Section 1.2.1 to derive an
output-sensitive algorithm.
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THEOREM 1.3 Given a set S of n points in two and three dimensions, the set M(S) of maxima can
be computed in O(n logH) time, where H is the size of M(S).

1.3.2 Maxima in Higher Dimensions

The set of maximal elements in �k, k ≥ 4, can be solved by a generalization of plane-sweep
method to higher dimensions. We just need to maintain a data structure for M(Si+1), where
Si+1 = {pi+1, . . . , pn}, and test for each point pi if it is a maximal element in Si+1, reducing the
problem to one dimension lower, assuming that the points in S are sorted and scanned in descending
lexicographical order. Thus, in a straightforward manner we can compute M(S) in O(nk−2 log n)

time. However, we shall show below that one can compute the set of maxima in O(n logk−2 n) time,
for k > 3 by, divide-and-conquer. Gabow et al. [36] gave an algorithm which improved the time by
a O

(
log n

log log n

)
factor to O(n log log n logk−3 n).

Let us first consider a bichromatic maxima-finding problem. Consider a set of n red and a set
of m blue points, denoted R and B, respectively. The bichromatic maxima-finding problem is to
find a subset of points in R that are not dominated by any points in B and vice versa. That is, find
M(R, B) = {r|r �� b, b ∈ B} and M(B, R) = {b|b �� r, r ∈ R}.

In three dimensions, this problem can be solved by plane-sweep method in a manner similar to
the maxima-finding problem as follows. As before, the sets R and B are sorted in nondescending
order of x-coordinates and we maintain two subsets of points M

(
Rx

i+1
)

and M
(

Bx
j+1

)
, which are

the maxima of the projections of Ri+1 and Bj+1 onto the yz-plane for Ri+1 = {ri+1, . . . , rn} ⊆ R
and Bj+1 = {bj+1, . . . , bm} ⊆ B, respectively. When the next point ri ∈ R is scanned, we test if rx

i

is dominated by any points in M
(

Bx
j+1

)
. The point ri ∈ M(R, B), if rx

i is not dominated by any

points in M
(

Bx
j+1

)
. We then update the set of maxima for Rx

i = Rx
i+1 ∪ {rx

i }. That is, if rx
i � q

for q ∈ M
(
Rx

i+1
)
, then M

(
Rx

i
) = M

(
Rx

i+1
)
. Otherwise, the subset of M

(
Rx

i+1
)

dominated by rx
i

is removed, and rx
i is included in M

(
Rx

i
)
. If the next point scanned is bj ∈ B, we perform similar

operations. Thus, for each point scanned we spend O(log n + log m) time.

LEMMA 1.2 The bichromatic maxima-finding problem for a set of n red and m blue points in
three dimensions can be solved in O(N log N) time, where N = m + n.

Using Lemma 1.2 as basis, one can solve the bichromatic maxima-finding problem in �k in
O(N logk−2 N) time for k ≥ 3 using multidimensional divide-and-conquer.

LEMMA 1.3 The bichromatic maxima-finding problem for a set of n red and m blue points in �k

can be solved in O(N logk−2 N) time, where N = m + n, and k ≥ 3.

Let us now turn to the maxima-finding problem in �k. We shall use an ordinary divide-
and-conquer method to solve the maxima-finding problem. Assume that the points in S ⊆ �k

have been sorted in all dimensions. Let Lx denote the median of all the x-coordinate values.
We first divide S into two subsets S1 and S2, each of size approximately |S|/2 such that the points in
S1 have x-coordinates larger than Lx and those of points in S2 are less than Lx. We then recursively
compute M(S1) and M(S2). It is clear that M(S1) ⊆ M(S). However, some points in M(S2) may
be dominated by points in M(S1), and hence, are not in M(S). We then project points in S onto
the hyperplane P : x = Lx. The problem now reduces to the bichromatic maxima-finding problem
in �k−1, i.e., finding among M(S2) those that are maxima with respect to M(S1). By Lemma 1.3 we
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know that this bichromatic maxima-finding problem can be solved in O(n logk−3 n) time. Since the
merge step takes O(n logk−3 n) time, we conclude the following.

THEOREM 1.4 The maxima-finding problem for a set of n points in�k can be solved in O(n logk−2 n)

time, for k ≥ 3.

We note here also that if we apply the trimming operation of S2 with M(S1), i.e., removing
points in S2 that are dominated by points in M(S1), before recursion, one can compute M(S) more
efficiently as stated in the following theorem.

THEOREM 1.5 The maxima-finding problem for a set S of n points in �k, k ≥ 4, can be solved in
O(n logk−2 H) time, where H is the number of maxima in S.

1.3.3 Maximal Layers of a Planar Set

The maximal layers of a set of points in the plane can be obtained by a process similar to that of
convex layers discussed in Section 1.2.3. A brute-force method would yield an O(δ · n logH) time,
where δ is the number of layers and H is the maximum number of maximal elements in any layer.
In this section we shall present an algorithm due to Atallah and Kosaraju [7] for computing not only
the maximal layers, but also some other functions associated with dominance relation.

Consider a set S of n points. As in the previous section, let DS(p) denote the set of points in S
dominated by p, i.e., DS(p) = {q ∈ S|q � p}. Since p is always dominated by itself, we shall assume
DS(p) does not include p, when p ∈ S. The first subproblem we consider is the maxdominance
problem, which is defined as follows: for each p ∈ S, find M(DS(p)). That is, for each p ∈ S we are
interested in computing the set of maximal elements among those points that are dominated by p.
Another related problem is to compute the labels of each point p from the labels of those points in
M(DS(p)). More specifically, suppose each point is associated with a weight w(p). The label lS(p) is
defined to be w(p) if DS(p) = ∅ and is w(p) + max{lS(q), q ∈ M(DS(p))}. The max function can be
replaced with min or any other associative functional operation. In other words, lS(p) is equal to the
maximum among the labels of all the points dominated by p. Suppose we let w(p) = 1 for all p ∈ S.
Then those points with labels equal to 1 are points that do not dominate any points. These points can
be thought of as minimal points in S. That a point pi has label λ implies there exists a sequence of λ

points pj1 , pj2 , . . . , pjλ = pi, such that pj1 � pj2 � · · · � pjλ = pi. In general, points with label λ are
on the λth minimal layer and the maximum label gives the number of minimal layers. If we modify
the definition of domination to be p dominates q if and only if x(p) ≤ x(q) and y(p) ≤ y(q), then the
minimal layers obtained using the method to be described below correspond to the maximal layers.

Let us now discuss the labeling problem defined earlier. We recall a few terms as used in [7].∗
Let L and R denote two subsets of points of S separated by a vertical line, such that x(l) ≤ x(r)

for all l ∈ L and r ∈ R. leaderR(p), p ∈ R is the point Hp in DR(p) with the largest y-coordinate.
StripL(p, R), p ∈ R is the subset of points ofDL(p) dominated by p but with y-coordinates greater than
leaderR(p), i.e., StripL(p, R) = {q ∈ DL(p)|y(q) > y(Hp)} for p ∈ R. LeftL(p, R), p ∈ R, is defined to
be the largest lS(q) over all q ∈ StripL(p, R) if StripL(p, R) is nonempty, and −∞ otherwise.

Observe that for each p ∈ RM(DS(p)) is the concatenation ofM(DR(p)) and StripL(p, R). Assume
that the points in S = {p1, p2, . . . , pn} have been sorted as x(p1)< x(p2)< · · · < x(pn). We shall
present a divide-and-conquer algorithm that can be called with R = S and Left∅(p, S) = −∞ for all
p ∈ S to compute lS(p) for all p ∈ S. The correctness of the algorithm hinges on the following lemma.

∗ Some of the notations are slightly modified. In [7] min is used in the label function, instead of max. See [7] for details.
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LEMMA 1.4 For any point p ∈ R, if DS(p) �= ∅, then lS(p) = w(p) + max{LeftL(p, R), max{lS(q),
q ∈ M(DR(p))}}.

ALGORITHM MAXDOM_LABEL(R)

Input: A consecutive sequence of m points of S, i.e., R = {pr , pr+1, . . . , pr+m−1} and for each
p ∈ R, LeftL(p, R), where L = {p1, p2, . . . , pr−1}. Assume a list QR of points of R sorted
by increasing y-coordinate.

Output: The labels lS(q), q ∈ R.

1. If m = 1 then we set lS(pr) to w(pr)+ LeftL(pr , R), if LeftL(pr , R) �= −∞ and to w(pr) if
LeftL(pr , R) = −∞, and return.

2. Partition R by a vertical line V into subsets R1 and R2 such that |R1| = |R2| = m/2 and
R1 is to the left of R2. Extract from QR the lists QR1 and QR2 .

3. Call MAXDOM_LABEL(R1). Since LeftL(p, R1) equals LeftL(p, R), this call will return the
labels for all q ∈ R1 which are the final labels for q ∈ R.

4. Compute LeftR1(p, R2).
5. Compute LeftL∪R1(p, R2), given LeftR1(p, R2) and LeftL(p, R). That is, for each p ∈ R2,

set LeftL∪R1(p, R2) to be max{LeftR1(p, R2), LeftL(p, R)}.
6. Call MAXDOM_LABEL(R2). This will return the labels for all q ∈ R2 which are the final

labels for q ∈ R.

All steps other than Step 4 are self-explanatory. Steps 4 and 5 are needed in order to set up the
correct invariant condition for the second recursive call. The computation of LeftR1(p, R2) and its
complexity is the key to the correctness and time complexity of the algorithm MAXDOM_LABEL(R).
We briefly discuss this problem and show that this step can be done in O(m) time. Since all other
steps take linear time, the overall time complexity is O(m log m).

Consider in general two subsets L and R of points separated by a vertical line V , with L lying to
the left of R and points in L ∪ R are sorted in ascending y-coordinate (Figure 1.9). Suppose we have
computed the labels lL(p), p ∈ L. We compute LeftL(p, R) by using a plane-sweep technique scanning

qStripL (q, R)

r4

r2

r1

r3= leaderR (r4)

v
L R

FIGURE 1.9 Computation of LeftL(p, R).
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points in L ∪ R in ascending y-coordinate. We will maintain for each point r ∈ R StripL(r, R) along
with the highest and rightmost points in the subset, denoted 1stL(r, R) and lastL(r, R), respectively,
and leaderR(r). For each point p ∈ L ∩ StripL(r, R) for some r ∈ R we maintain a label max_l(p),
which is equal to max{lL(q)|q ∈ StripL(r, R) and y(q) < y(p)}.

A stack STR will be used to store leaderR(ri)of ri ∈ R such that any element rt in STR is leaderR(rt+1)
for point rt+1 above rt , and the top element ri of STR is the last scanned point in R. For instance
in Figure 1.9 STR contains r4, r3, r2, and r1 when r4 is scanned. Another stack STL is used to store
StripL(r, R) for a yet-to-be-scanned point r ∈ R. (The staircase above r4 in Figure 1.9 is stored in
STL. The solid staircases indicate StripL(ri, R) for ri, i = 2, 3, 4.)

Let the next point scanned be denoted q. If q ∈ L, we pop off the stack STL all points that are
dominated by q until q′. And we compute max_l(q) to be the larger of lL(q) and max_l(q′). We then
push q onto STL. That is, we update STL to make sure that all the points in STL are maximal.

Suppose q ∈ R. Then StripL(q, R) is initialized to be the entire contents of STL and let 1stL(q, R)

be the top element of STL and lastL(q, R) be the bottom element of STL.
If the top element of STR is equal to leaderR(q), we set LeftL(q, R) to max_l(q′), where q′ is

1stL(q, R), initialize STL to be empty, and continue to scan the next point. Otherwise we need to
pop off the stack STR all points that are not dominated by q, until q′, which is leaderR(q). As shown
in Figure 1.9, ri, i = 4, 3, 2 will be popped off STR when q is scanned. As point ri is popped off
STR, StripL(ri, R) is concatenated with StripL(q, R) to maintain its maximality. That is, the points
in StripL(ri, R) are scanned from 1stL(ri, R) to lastL(ri, R) until a point, if any, αi is encountered
such that x(αi) > x(lastL(q, R)). max_l(q′), q′ = 1stL(q, R), is set to be the larger of max_l(q′) and
max_l(α), and lastL(q, R) is temporarily set to be lastL(ri, R). If no such αi exists, then the entire
StripL(ri, R) is ignored. This process repeats until leaderR(q) of q is on top of STR. At that point, we
would have computed StripL(q, R) and LeftL(q, R) is max_l(q′), where q′ = 1stL(q, R). We initialize
STL to be empty and continue to scan the next point.

It has been shown in [7] that this scanning operation takes linear time (with path compression),
so the overall algorithm takes O(m log m) time.

THEOREM 1.6 Given a set S of n points with weights w(pi), pi ∈ S, i = 1, 2, . . . , n, ALGORITHM

MAXDOM_LABEL(S) returns lS(p) for each point p ∈ S in O(n log n) time.

Now let us briefly describe the algorithm for the maxdominance problem. That is to find for each
p ∈ S, M(DS(p)).

ALGORITHM MAXDOM_LIST(S)

Input: A sorted sequence of n points of S, i.e., S = {p1, p2, . . . , pn}, where x(p1)<

x(p2) < · · · < x(pn).
Output: M(DS(p)) for each p ∈ S and the list QS containing the points of S in ascending

y-coordinates.

1. If n = 1 then we set M(DS(p1)) = ∅ and return.
2. Call ALGORITHM MAXDOM_LIST(L), where L = {p1, p2, . . . , pn/2}. This call returnsM(DS(p))

for each p ∈ L and the list QL.
3. Call ALGORITHM MAXDOM_LIST(R), where R = {pn/2+1, . . . , pn}. This call returnsM(DR(p))

for each p ∈ R and the list QR.
4. Compute for each r ∈ R StripL(r, R) using the algorithm described in Step 4 of ALGORITHM

MAXDOM_LABEL(R).
5. For every r ∈ R compute M(DS(p)) by concatenating StripL(r, R) and M(DR(p)).
6. Merge QL and QR into QS and return.
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Since Steps 4, 5, and 6, excluding the output time, can be done in linear time, we have the
following.

THEOREM 1.7 The maxdominance problem of a set S of n points in the plane can be solved in
O(n log n + F) time, where F = ∑

p∈S |M(DS(p))|.

Note that the problem of computing the layers of maxima in three dimensions can be solved in
O(n log n) time [12].

1.4 Row Maxima Searching in Monotone Matrices

The row maxima-searching problem in a matrix is that given an n × m matrix M of real entries, find
the leftmost maximum entry in each row.

A matrix is said to be monotone, if i1 > i2 implies that j(i1) ≥ j(i2), where j(i) is the index of the
leftmost column containing the maximum in row i. It is totally monotone if all of its submatrices
are monotone.

In fact if every 2 × 2 submatrix M[i, j; k, l] with i < j and k < l is monotone, then the matrix is
totally monotone. Or equivalently if M(i, k) < M(i, l) implies M(j, k) < M(j, l) for any i < j and
k < l, then M is totally monotone.

The algorithm for solving the row maxima-searching problem is due to Aggarwal et al. [2], and
is commonly referred to as the SMAWK algorithm. Specifically the following results were obtained:
O(m log n) time for an n × m monotone matrix, and θ(m) time, m ≥ n, and θ(m(1 + log(n/m)))

time, m < n, if the matrix is totally monotone.
We use as an example the distance matrix between pairs of vertices of a convex n-gon P, represented

as a sequence of vertices p1, p2, . . . , pn in counterclockwise order. For an integer j, let ∗j denote
((j − 1) mod n) + 1. Let M be an n × (2n − 1) matrix defined as follows. If i < j ≤ i + n − 1 then
M[i, j] = d(pi, p∗j), where d(pi, pj) denotes the Euclidean distance between two vertices pi and pj. If
j ≤ i then M[i, j] = j − i, and if j ≥ i + n then M[i, j] = −1. The problem of computing for each
vertex its farthest neighbor is now the same as the row maxima-searching problem.

Consider submatrix M[i, j; k, l], with i < j and k < l, that has only positive entries, i.e., i < j < k <

l < i + n. In this case vertices pi, pj, p∗k, and p∗l are in counterclockwise order around the polygon.
From the triangle inequality we have d(pi, p∗k)+ d(pj, p∗l) ≥ d(pi, p∗l)+ d(pj, p∗k). Thus, M[i, j; k, l]
is monotone. The nonpositive entries ensure that all other 2 × 2 submatrices are monotone. We will
show below that the all farthest neighbor problem for each vertex of a convex n-gon can be solved
in O(n) time.

A straightforward divide-and-conquer algorithm for the row maxima-searching problem in
monotone matrices is as follows.

ALGORITHM MAXIMUM_D&C

1. Find the maximum entry j = j(i), in the ith row, where i = �n
2 �.

2. Recursively solve the row maxima-searching problem for the submatrices M[1, . . . , i − 1;
1, . . . , j] when i, j > 1 and M[i + 1, . . . , n; j, . . . , m] when i < n and j < m.

The time complexity required by the algorithm is given by the recurrence

f (n, m) ≤ m + max
1≤j≤m

(f (�n/2� − 1, j) + f (�n/2�, m − j + 1))

with f (0, m) = f (n, 1) = constant. We have f (n, m) = O(m log n).
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Now let us consider the case when the matrix is totally monotone. We distinguish two cases:
(a) m ≥ n and (b) m < n.

Case (a): Wide matrix m ≥ n.
An entry M[i, j] is bad if j �= j(i), i.e., column j is not a solution to row i. Column j, M[∗, j]
is bad if all M[i, j], 1 ≤ i ≤ n are bad.

LEMMA 1.5 For j1 < j2 if M[r, j1] ≥ M[r, j2], then M[i, j2], 1 ≤ i ≤ r, are bad; otherwise
M[i, j1], r ≤ i ≤ n, are bad.

Consider an n × n matrix C, the index of C is defined to be the largest k such that C[i, j], 1 ≤ i < j,
1 ≤ j ≤ k are bad.

The following algorithm REDUCE reduces in O(m) time a totally monotone m × n matrix M to an
n × n matrix C, a submatrix of M, such that for 1 ≤ i ≤ n it contains column Mj(i). That is, bad
columns of M (which are known not to contain solutions) are eliminated.

ALGORITHM REDUCE(M)

1. C ← M; k ← 1;
2. while C has more than n columns do

case C(k, k) ≥ C(k, k + 1) and k < n: k ← k + 1;
C(k, k) ≥ C(k, k + 1) and k = n: Delete column Ck+1;
C(k, k) < C(k, k + 1): Delete column Ck; if k > 1 then k ← k − 1

end case

3. return(C)

The following algorithm solves the maxima-searching problem in an n×m totally monotone matrix,
where m ≥ n.

ALGORITHM MAX_COMPUTE(M)

1. B ← REDUCE(M);
2. if n = 1 then output the maximum and return;
3. C ← B[2, 4, . . . , 2�n/2�; 1, 2, . . . , n];
4. Call MAX_COMPUTE(C);
5. From the known positions of the maxima in the even rows of B, find the maxima in the

odd rows.

The time complexity of this algorithm is determined by the following recurrence:

f (n, m) ≤ c1n + c2m + f (n/2, n)

with f (0, m) = f (n, 1) = constant. We therefore have f (n, m) = O(m).

Case (b): Narrow matrix m < n.
In this case we decompose the problem into m subproblems each of size �n/m� × m as
follows. Let ri = �in/m�, for 0 ≤ i ≤ m. Apply MAX_COMPUTE to the m×m submatrix
M[r1, r2, . . . , rm; 1, 2, . . . , m] to get c1, c2, . . . , cm, where ci = j(ri). This takes O(m) time.
Let c0 = 1. Consider submatrices Bi = M[ri−1+1, ri−1+2, . . . , ri−1; ci−1, ci−1+1, . . . , ci]
for 1 ≤ i ≤ m and ri−1 ≤ ri − 2. Applying the straightforward divide-and-conquer
algorithm to the submatrices, Bi, we obtain the column positions of the maxima for all
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remaining rows. Since each submatrix has at most �n/m� rows, the time for finding the
maxima is at most c(pi − pi−1 + 1) log(n/m) for some constant c. Summing over all
1 ≤ i ≤ m we get the total time, which is O(m(1 + log(n/m))). The bound can be shown
to be tight [2].

The applications of the matrix-searching algorithm include the problems of finding all farthest
neighbors for all vertices of a convex n-gon (O(n) time), and finding the extremal (maximum
perimeter or area) polygons (inscribed k-gons) of a convex n-gon (O(kn + n log n)). If one adopts
the algorithm by Hershberger and Suri [42] the above problems can be solved in O(n) time. It is also
used in solving the Largest Empty Rectangle Problem discussed in Section 2.3.6 of this book.

1.5 Decomposition

Polygon decomposition arises in pattern recognition [77] in which recognition of a shape is facilitated
by first decomposing it into simpler components, called primitives, and comparing them to templates
previously stored in a library via some similarity measure. This class of decomposition is called
component-directed decomposition. The primitives are often convex.

1.5.1 Trapezoidalization

We will consider first trapezoidalization of a polygon P with n vertices, i.e., decomposition of the
interior of a polygon into a collection of trapezoids with two horizontal sides, one of which may
degenerate into a point, reducing a trapezoid to a triangle. Without loss of generality let us assume
that no edge of P is horizontal. For each vertex v let us consider the horizontal line passing through
v, denoted Hv. The vertices of P are classified into three types. A vertex v is regular if the other two
vertices adjacent to v lie on different sides of Hv. A vertex v is a V-cusp if the two vertices adjacent
to v are above Hv, and is a Λ-cusp if the two vertices adjacent to v are below Hv. In general the
intersection of Hv and the interior of P consists of a number of horizontal segments, one of which
contains v. Let this segment be denoted v�, vr, where v� and vr are called the left and right projections
of v on the boundary of P, denoted ∂P, respectively. If v is regular, either v, v� or v, vr lies totally
in the interior of P. If v is a V-cusp or Λ-cusp, then v�, vr either lies totally in the interior of P or
degenerates to v itself.

Consider only the segments v�, vr that are nondegenerate. These segments collectively partition
the interior of P into a collection of trapezoids, each of which contains no vertex of P in its interior
(Figure 1.10a).

The trapezoidalization can be generalized to a planar straight-line graph G(V , E), where the
entire plane is decomposed into trapezoids, some of which are unbounded. This trapezoidalization
is sometimes referred to as horizontal visibility map of the edges, as the horizontal segments
connect two edges of G that are visible (horizontally) (Figure 1.10b). The trapezoidalization of a
planar straight-line graph G(V , E) can be computed by plane-sweep technique in O(n log n) time,
where n = |V| [66], while the trapezoidalization of a simple polygon can be found in linear time [15].

The plane-sweep algorithm works as follows. The vertices of the graph G(V , E) are sorted in
descending y-coordinates. We will sweep the plane by a horizontal sweep-line from top down.
Associated with this approach there are two basic data structures containing all relevant information
that should be maintained.

1. Sweep-line status, which records the information of the geometric structure that is being
swept. In this example the sweep-line status keeps track of the set of edges intersecting
the current sweep-line.
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FIGURE 1.10 Trapezoidalization of a polygon (a) and horizontal visibility map of a planar straight line graph (b).

2. Event schedule, which defines a sequence of event points that the sweep-line status will
change. In this example, the sweep-line status will change only at the vertices.

The event schedule is normally represented by a data structure, called priority queue. The content
of the queue may not be available entirely at the start of the plane-sweep process. Instead, the list of
events may change dynamically. In this case, the events are static; they are the y-coordinates of the
vertices. The sweep-line status is represented by a suitable data structure that supports insertions,
deletions, and computation of the left and right projections, vl and vr, of each vertex v. In this
example a red-black tree or any height-balanced binary search tree is sufficient for storing the edges
that intersect the sweep-line according to the x-coordinates of the intersections. Suppose at event
point vi−1 we maintain a list of edges intersecting the sweep-line from left to right. Analogous to the
trapezoidalization of a polygon, we say that a vertex v is regular if there are edges incident on v that
lie on different sides of Hv; a vertex v is a V-cusp if all the vertices adjacent to v are above Hv; v is a
Λ-cusp if all the vertices adjacent to v are below Hv. For each event point vi we do the following.

1. vi is regular. Let the leftmost and rightmost edges that are incident on vi and above Hvi
are E�(vi) and Er(vi), respectively. The left projection vi� of vi is the intersection of Hvi
and the edge to the left of E�(vi) in the sweep-line status. Similarly the right projection
vir of vi is the intersection of Hvi and the edge to the right of Er(vi) in the sweep-line
status. All the edges between E�(vi) and Er(vi) in the sweep-line status are replaced in an
order-preserving manner by the edges incident on vi that are below Hvi .

2. vi is a V-cusp. The left and right projections of vi are computed in the same manner as
in Step 1 above. All the edges incident on vi are then deleted from the sweep-line status.

3. vi is a Λ-cusp. We use binary search in the sweep-line status to look for the two adjacent
edges E�(vi) and Er(vi) such that vi lies in between. The left projection vi� of vi is the
intersection of Hvi and E�(vi) and the right projection vir of vi is the intersection of Hvi
and Er(vi). All the edges incident on vi are then inserted in an order-preserving manner
between E�(vi) and Er(vi) in the sweep-line status.

Figure 1.11 illustrates these three cases. Since the update of the sweep-line status for each event point
takes O(log n) time, the total amount of time needed is O(n log n).

THEOREM 1.8 Given a planar straight-line graph G(V , E), the horizontal visibility map of G can
be computed in O(n log n) time, where n = |V|. However, if G is a simple polygon then the horizontal
visibility map can be computed in linear time.
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FIGURE 1.11 Updates of sweep-line status. (a) vi is regular (b) vi is a V-cusp and (c) vi is a Λ-cusp.

1.5.2 Triangulation

In this section we consider triangulating a planar straight-line graph by introducing noncrossing
edges so that each face in the final graph is a triangle and the outermost boundary of the graph forms
a convex polygon. Triangulation of a set of (discrete) points in the plane is a special case. This is a
fundamental problem that arises in computer graphics, geographical information systems, and finite
element methods. Let us start with the simplest case.

1.5.2.1 Polygon Triangulation

Consider a simple polygon P with n vertices. It is obvious that to triangulate the interior of P (into
n − 2 triangles) one needs to introduce at most n − 3 diagonals. A pioneering work is due to Garey
et al. [37] who gave an O(n log n) algorithm and a linear algorithm if the polygon is monotone.
A polygon is monotone if there exists a straight line L such that the intersection of ∂P and any line
orthogonal to L consists of no more than two points. The shaded area in Figure 1.12 is a monotone
polygon.
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FIGURE 1.12 Decomposi-
tion of a simple polygon into
monotone subpolygons.

The O(n log n) time algorithm can be illustrated by the following
two-step procedure.

1. Decompose P into a collection of monotone subpolygons
with respect to the y-axis in time O(n log n).

2. Triangulate each monotone subpolygons in linear time.

To find a decomposition of P into a collection of monotone polygons
we first obtain the horizontal visibility map described in Section 1.5.1.
In particular we obtain for each cusp v the left and right projections
and the associated trapezoid below Hv if v is a V-cusp, and above Hv
if v is a Λ-cusp. (Recall that Hv is the horizontal line passing through
v.) For each V-cusp v we introduce an edge v, w where w is the vertex
through which the other base of the trapezoid below passes. t, u and v, w
in Figure 1.10a illustrate these two possibilities, respectively. For each

Λ-cusp we do the same thing. In this manner we convert each vertex into a regular vertex, except
the cusps v for which vl, vr lies totally outside of P, where vl and vr are the left and right projections
of v in the horizontal visibility map. This process is called regularization [66]. Figure 1.12 shows a
decomposition of the simple polygon in Figure 1.10a into a collection of monotone polygons.

We now describe an algorithm that triangulates a monotone polygon P in linear time. Assume
that the monotone polygon has v0 as the topmost vertex and vn−1 as the lowest vertex. We have
two polygonal chains from v0 to vn−1, denoted L and R, that define the left and right boundary of
P, respectively. Note that vertices on these two polygonal chains are already sorted in descending
order of their y-coordinates. The algorithm is based on a greedy method, i.e., whenever a triangle
can be formed by connecting vertices either on the same chain or on opposite chains, we do so
immediately. We shall examine the vertices in order, and maintain a polygonal chain C consisting
of vertices whose internal angles are greater than π. Initially C consists of two vertices v0 and v1 that
define an edge v0, v1. Suppose C consists of vertices vi0 , vi1 , . . . , vik , k ≥ 1. We distinguish two cases
for each vertex v� examined, l < n − 1. Without loss of generality we assume C is a left chain, i.e.,
vik ∈ L. The other case is treated symmetrically.

1. v� ∈ L. Let vij be the last vertex on C that is visible from v�. That is, the internal angle
∩(vij , vij′ , v�), where j < j′ ≤ k, is less than π, and either vij = vi0 or the internal angle
∩(vij−1 , vij , v�) is greater than π. Add diagonals v�, vij′ , for j ≤ j′ < k. Update C to
be composed of vertices vi0 , vi1 , . . . , vij , v�.

2. v� ∈ R. In this case we add diagonals v�, vij′ , for 0 ≤ j′ ≤ k. C is updated to be composed
of vik and v� and it becomes a right chain.

Figure 1.13a and b illustrates these two cases, respectively, in which the shaded portion has been
triangulated.

Fournier and Montuno [34] and independently Chazelle and Incerpi [17] showed that triangu-
lation of a polygon is linear-time equivalent to computing the horizontal visibility map. Based on
this result Tarjan and Van Wyk [76] first devised an O(n log log n) time algorithm that computes
the horizontal visibility map and hence, an O(n log log n) time algorithm for triangulating a simple
polygon. A breakthrough result of Chazelle [15] finally settled the longstanding open problem, i.e.,
triangulating a simple polygon in linear time. But the method is quite involved. As a result of this
linear triangulation algorithm, a number of problems can be solved asymptotically in linear time.
Note that if the polygons have holes, the problem of triangulating the interior is shown to require
Ω(n log n) time [5].
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FIGURE 1.13 Triangulation of a monotone polygon. (a) v� on the left chain and (b) v� on the right chain.

1.5.2.2 Planar Straight-Line Graph Triangulation

The triangulation is also known as the constrained triangulation. This problem includes the triangu-
lation of a set of points. A triangulation of a given planar straight-line graph G(V , E) with n = |V|
vertices is a planar graph G(V , E) such that E ⊆ E and each face is a triangle, except the exterior one,
which is unbounded. A constrained triangulation G(V , E) of a G(V , E) can be obtained as follows.

1. Compute the convex hull of the set of vertices, ignoring all the edges. Those edges that
belong to the convex hull are necessarily in the constrained triangulation. They define
the boundary of the exterior face.

2. Compute the horizontalvisibility map for the graph, G′ = G ∪ CH(V), where CH(V)

denotes the convex hull of V , i.e., for each vertex, its left and right projections are
calculated, and a collection of trapezoids are obtained.

3. Apply the regularization process by introducing edges to vertices in the graph G′ that are
not regular. An isolated vertex requires two edges, one from above and one from below.
Regularization will yield a collection of monotone polygons that comprise collectively the
interior of CH(V).

4. Triangulate each monotone subpolygon.

It is easily seen that the algorithm runs in time O(n log n), which is asymptotically optimal. (This
is because the problem of sorting is linearly reducible to the problem of constrained triangulation.)

1.5.2.3 Delaunay and Other Special Triangulations

Sometimes we want to look for quality triangulation, instead of just an arbitrary one. For instance,
triangles with large or small angles is not desirable. The Delaunay triangulation of a set of points
in the plane is a triangulation that satisfies the empty circumcircle property, i.e., the circumcircle of
each triangle does not contain any other points in its interior. It is well-known that the Delaunay
triangulation of points in general position is unique and it will maximize the minimum angle. In fact,
the characteristic angle vector of the Delaunay triangulation of a set of points is lexicographically
maximum [49]. The notion of Delaunay triangulation of a set of points can be generalized to a
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planar straight-line graph G(V , E). That is, we would like to have G as a subgraph of a triangulation
G(V , E ′), E ⊆ E ′, such that each triangle satisfies the empty circumcircle property: no vertex visible
from the vertices of triangle is contained in the interior of the circle. This generalized Delaunay
triangulation is thus a constrained triangulation that maximizes the minimum angle. The generalized
Delaunay triangulation was first introduced by the author and an O(n2) (respectively, O(n log n))
algorithm for constructing the generalized triangulation of a planar graph (respectively a simple
polygon) with n vertices was given in [52]. As the generalized Delaunay triangulation (also known
as constrained Delaunay triangulation) is of fundamental importance, we describe in Section 1.5.2.4
an optimal algorithm due to Chew [19] that computes the constrained Delaunay triangulation for a
planar straight-line graph G(V , E) with n vertices in O(n log n) time. Triangulations that minimize
the maximum angle or maximum edge length [29] were also studied. But if the constraints are on
the measure of the triangles, for instance, each triangle in the triangulation must be nonobtuse,
then Steiner points must be introduced. See Bern and Eppstein (in [26, pp. 23–90]) for a survey
of triangulations satisfying different criteria and discussions of triangulations in two and three
dimensions. Bern and Eppstein gave an O(n log n + F) algorithm for constructing a nonobtuse
triangulation of polygons using F triangles. Bern et al. [11] showed that F is O(n) and gave an
O(n log n) time algorithm for simple polygons without holes, and an O(n log2 n) time algorithm for
polygons with holes. For more results about acute triangulations of polygons and special surfaces
see [56,83,84] and the references therein. The problem of finding a triangulation of a set of points
in the plane whose total edge length is minimized, known as the minimum weight triangulation,
is listed as an open problem (called minimum length triangulation) in Johnson’s NP-complete
column [45]. On the assumption that this problem is NP-hard, many researchers have obtained
polynomial-time approximation algorithms for it. See Bern and Eppstein [10] for a survey of
approximation algorithms. Only recently this problem was settled in the affirmative by Mulzer
and Rote [63].

The problem of triangulating a set P of points in �k, k ≥ 3, is less studied. In this case the convex
hull of P is to be partitioned into F nonoverlapping simplices, the vertices of which are points in P.
A simplex in k-dimensions consists of exactly k + 1 points, all of which are extreme points. In �3

O(n log n +F) time suffices, where F is linear if no three points are collinear, and O(n2) otherwise.
Recently Saraf [71] gave a simpler proof that acute triangulations for general polyhedral surfaces
exist and also showed that it is possible to obtain a nonobtuse triangulation of a general polyhedral
surface. See [26] for more references on 3D triangulations and Delaunay triangulations in higher
dimensions.

1.5.2.4 Constrained Delaunay Triangulation

Consider a planar straight-line graph G(V , E), where V is a set of points in the plane, and edges
in E are nonintersecting except possibly at the endpoints. Let n = |V|. Without loss of generality
we assume that the edges on the convex hull CH(V) are all in E. These edges, if not present, can be
computed in O(n log n) time (cf. Section 1.2.1).

In the constrained Delaunay triangulation GDT(V , E) the edges in E \E are called Delaunay edges.
It can be shown that two points p, q ∈ V define a Delaunay edge if there exists a circle K passing
through p and q which does not contain in its interior any other point visible from p and from q.

Let us assume without loss of generality that the points are in general position that no two have
the same x-coordinate, and no four are cocircular. Let the points in V be sorted by ascending order
of x-coordinate so that x(pi) < x(pj) for i < j. Let us associate this set V (and graph G(V , E)) with
it a bounding rectangle RV with diagonal points U(u.x, u.y), L(l.x, l.y), where u.x = x(pn), u.y =
max y(pi), l.x = x(p1), l.y = min y(pi). That is, L is at the lower left corner with x- and y-coordinates
equal to the minimum of the x- and y-coordinates of all the points in V , and U is at the upper right
corner. Given an edge pi, pj, i < j, its x-interval is the interval (x(pi), x(pj)). The x-interval of the
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FIGURE 1.14 Computation of constrained Delaunay triangulation for subgraphs in adjacent bounding rectangles.

bounding rectangle RV , denoted by XV , is the interval (x(p1), x(pn)). The set V will be recursively
divided by vertical lines L’s and so will be the bounding rectangles. We first divide V into two
halves Vl and Vr by a line L(X = m), where m = 1

2 (x(p�n/2�) + x(p�n/2�+1)). The edges in E that
lie totally to the left and to the right of L are assigned respectively to the left graph G�(V�, E�) and
to the right graph Gr(Vr, Er), which are associated respectively with bounding rectangle RV�

and
RVr whose x-intervals are XV�

= (x(p1), m) and XVr = (m, x(pn)), respectively. The edges p, q ∈ E
that are intersected by the dividing line and that do not span∗ the associated x-intervalXV will each get
cut into two edges and a pseudo point ε(p, q) on the edge is introduced. Two edges, called half-edges,
p, ε(p, q) ∈ E� and ε(p, q), q ∈ Er are created. Figure 1.14a shows the creation of half-edges with
pseudo points shown in hollow circles. Note that the edge p, q in the shaded area is not considered
“present” in the associated bounding rectangle, u, v spans the x-interval for which no pseudo point
is created, and s, t is a half-edge that spans the x-interval of the bounding rectangle to the left of the
dividing line (L).

∗ An edge p, q, x(p) < x(q) is said to span an x-interval (a, b), if x(p) < a and x(q) > b.
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It can be shown that for each edge p, q ∈ E, the number of half-edges so created is at most
O(log n). Within each bounding rectangle the edges that span its x-interval will divide the bounding
rectangle into various parts. The constrained Delaunay triangulation gets computed for each part
recursively. At the bottom of recursion each bounding rectangle contains at most three vertices
of V , the edges incident on them, plus a number of half-edges spanning the x-interval including
the pseudo endpoints of half-edges. Figure 1.14b illustrates an example of the constrained Delaunay
triangulation at some intermediate step. No edges shall intersect one another, except at the endpoints.

As is usually the case for divide-and-conquer paradigm, the Merge step is the key to the method.
We describe below the Merge step that combines constrained Delaunay triangulations in adjacent
bounding rectangles that share a common dividing vertical edge L.

1. Eliminate the pseudo points along the boundary edge L, including the Delaunay edges
incident on those pseudo points. This results in a partial constrained Delaunay triangula-
tion within the union of these two bounding rectangles. Figure 1.14c illustrates the partial
constrained Delaunay triangulation as a result of the removal of the Delaunay edges inci-
dent on the pseudo points on the border of the constrained Delaunay triangulation
shown in Figure 1.14b.

2. Compute new Delaunay edges that cross L as follows. Let A and B be the two endpoints
of an edge that crosses L with A on the left and B on the right of L, and A, B is known
to be part of the desired constrained Delaunay triangulation. That is, either A, B is an
edge of E or a Delaunay edge just created. Either A or B may be a pseudo point. Let
A, C be the first edge counterclockwise from edge A, B. To decide if A, C remains to be a
Delaunay edge in the desired constrained Delaunay triangulation, we consider the next
edge A, C1, if it exists counterclockwise from A, C. If A, C1 does not exist, or A, C is in
E, A, C will remain. Otherwise we test if the circumcircle K(A, C, C1) contains B in its
interior. If so, A, C is eliminated, and the test continues on A, C1. Otherwise, A, C stays.
We do the same thing to test edges incident on B, except that we consider edges incident
on B in clockwise direction from B, A. Assume now we have determined that both A, C
and B, D remain. The next thing to do is to decide which of edge B, C and A, D should
belong to the desired constrained Delaunay triangulation. We apply the circle test: test
if circle K(A, B, C) contains D in the interior. If not, B, C is the desired Delaunay edge.
Otherwise A, D is. We then repeat this step.

Step 2 of the merge step is similar to the method of constructing unconstrained Delaunay triangu-
lation given in [52] and can be accomplished in linear time in the number of edges in the combined
bounding rectangle. The dotted lines in Figure 1.14d are the Delaunay edges introduced in Step 2.
We therefore conclude with the following theorem.

THEOREM 1.9 Given a planar straight-line graph G(V , E) with n vertices, the constrained Delaunay
triangulation of G can be computed in O(n log n) time, which is asymptotically optimal.

An implementation of this algorithm can be found in http://www.opencps.org/Members/ta/
Constrained Delaunay Triangulation/cpstype_view

A plane-sweep method, for constructing the constrained Delaunay triangulation was also pre-
sented by De Floriani and Puppo [23] and by Domiter and Žalik [25]. The constrained Delaunay
triangulation has been used as a basis for the so-called Delaunay refinement [31,40,61,68] for gener-
ating triangular meshes satisfying various angle conditions suitable for use in interpolation and the
finite element method. Shewchuk [75] gave a good account of this subject and has also developed a
tool, called Triangle: A Two-Dimensional Quality Mesh Generator and Delaunay Triangulator [74].
See http://www.cs.cmu.edu/∼quake/triangle.html for more details.
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1.5.3 Other Decompositions

Partitioning a simple polygon into shapes such as convex polygons, star-shaped polygons, spiral
polygons, etc., has also been investigated. After a polygon has been triangulated one can partition the
polygon into star-shaped polygons in linear time. This algorithm provided a very simple proof of the
traditional art gallery problem originally posed by Klee, i.e., �n/3� vertex guards are always sufficient
to see the entire region of a simple polygon with n vertices. But if a partition of a simple polygon into
a minimum number of star-shaped polygons is desired, Keil [47] gives an O(n5N2 log n) time, where
N denotes the number of reflex vertices. However, the problem of decomposing a simple polygon
into a minimum number of star-shaped parts that may overlap is shown to be NP-hard [53,65]. This
problem sometimes is referred to as the covering problem, in contrast to the partitioning problem,
in which the components are not allowed to overlap. The problem of partitioning a polygon into a
minimum number of convex parts can be solved in O(N2n log n) time [47]. It is interesting to note
that it may not be possible to partition a simple polygon into convex quadrilaterals, but it is always
possible for rectilinear polygons. The problem of determining if a convex quadrilateralization of a
polygonal region (with holes) exists is NP-complete. It is interesting to note that �n/4� vertex guards
are always sufficient for the art gallery problem in a rectilinear polygon. An O(n log n) algorithm
for computing a convex quadrilateralization or positioning at most �n/4� guards is known (see [65]
for more information). Modifying the proof of Lee and Lin [53], Schuchardt and Hecker [72]
showed that the minimum covering problem by star-shaped polygons for rectilinear polygons is
also NP-hard. Most recently Katz and Roisman [46] proved that even guarding the vertices of a
rectilinear polygon with minimum number of guards is NP-hard. However, the minimum covering
problem by r-star-shaped polygons or by s-star-shaped polygons for rectilinear polygons can be
solved in polynomial time [62,80]. When the rectilinear polygon to be covered is monotone or
uni-s-star-shaped,∗ then the minimum covering by r-star-shaped polygons can be found in linear
time [38,55].

For variations and results of art gallery problems the reader is referred to [65,73,78]. Polynomial
time algorithms for computing the minimum partition of a simple polygon into simpler parts while
allowing Steiner points can be found in [5].

The minimum partition problem for simple polygons becomes NP-hard when the polygons are
allowed to have holes [47]. Asano et al. [4] showed that the problem of partitioning a simple polygon
with h holes into a minimum number of trapezoids with two horizontal sides can be solved in
O(nh+2) time, and that the problem is NP-complete if h is part of the input. An O(n log n) time
3-approximation algorithm was presented.

The problem of partitioning a rectilinear polygon with holes into a minimum number of rectangles
(allowing Steiner points) arises in VLSI artwork data. Imai and Asano [44] gave an O(n3/2 log n) time
and O(n log n) space algorithm for partitioning a rectilinear polygon with holes into a minimum
number of rectangles (allowing Steiner points). The problem of covering a rectilinear polygon
(without holes) with a minimum number of rectangles, however, is NP-hard [21,41].

Given a polyhedron with n vertices and r notches (features causing nonconvexity), Ω(r2) con-
vex components are required for a complete convex decomposition in the worst case. Chazelle
and Palios [18] gave an O((n + r2) log r) time O(n + r2) space algorithm for this problem. Bajaj
and Dey addressed a more general problem where the polyhedron may have holes and internal
voids [9]. The problem of minimum partition into convex parts and the problem of determining if
a nonconvex polyhedron can be partitioned into tetrahedra without introducing Steiner points are
NP-hard [69].

∗ Recall that a rectilinear polygon P is s-star-shaped, if there exists a point p in P such that all the points of P are s-visible
from p. When the staircase paths connecting p and all other s-visible points q in P are of the same (uniform) orientation,
then the rectilinear polygon is uni-s-star-shaped.
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1.6 Research Issues and Summary

We have covered in this chapter a number of topics in computational geometry, including convex
hulls, maximal-finding problems, decomposition, and maxima searching in monotone matrices.
Results, some of which are classical, and some which represent the state of the art of this field, were
presented. More topics will be covered in Chapter 2.

In Section 1.2.3 an optimal algorithm for computing the layers of planar convex hulls is presented.
It shows an interesting fact: within the same time as computing the convex hull (the outermost layer)
of a point set in two dimensions, one can compute all layers of convex hull. Whether or not one
can do the same for higher dimensions �k, k > 2, remains to be seen. Although the triangulation
problem of a simple polygon has been solved by Chazelle [15], the algorithm is far from being
practical. As this problem is at the heart of this field, a simpler and more practical algorithm is of
great interest. Recall that the following two minimum covering problems have been shown to be
NP-hard: the minimum covering of rectilinear polygons by rectangles [21,41], and the minimum
covering of rectilinear polygons by star-shaped polygons [46,72]. However, the minimum covering of
rectilinear polygons by r-star-shaped polygons or by s-star-shaped polygons, as described above, can
be found in polynomial time. There seems to be quite a complexity gap. Note that the components
in the decomposition in these two cases, rectangles versus r-star-shaped polygons and star-shape
polygons versus s-star-shaped polygons, are related in the sense that the former one is a special
case of the latter. That is, a rectangle is an r-star-shaped polygon and a star-shaped primitive of a
rectilinear polygon is s-star-shaped. But the converse is not true. When the primitives used in the
covering problem are more restricted, they seem to make the minimum covering problem harder
computationally. But when and if the fact that the minimum covering of a rectilinear polygon
by s-star-shaped polygons solvable in polynomial time can be used to approximate the minimum
covering by primitives of more restricted types is not clear. The following results, just to give some
examples, were known. Eidenbenz et al. [30] presented inapproximability results of some art gallery
problems and Fragoudakis et al. [35] showed certain maximization problems of guarded boundary
of an art gallery to be APX-complete. There is a good wealth of problems related to art gallery or
polygon decomposition that are worth further investigation.

1.7 Further Information

For some problems we present efficient algorithms in pseudocode and for others that are of more
theoretical interest we only give a sketch of the algorithms and refer the reader to the original articles.
The text book by de Berg et al. [22] contains a very nice treatment of this topic. The reader who
is interested in parallel computational geometry is referred to [6]. For current research results, the
reader may consult the Proceedings of the Annual ACM Symposium on Computational Geometry,
Proceedings of the Annual Canadian Conference on Computational Geometry, and the following three
journals, Discrete & Computational Geometry, International Journal of Computational Geometry &
Applications, and Computational Geometry: Theory and Applications. More references can be found
in [39,50,70,81]. The ftp site <ftp://ftp.cs.usask.ca/pub/geometry/geombib.tar.gz> contains close to
14,000 entries of bibliography in this field.

David Avis announced a convex hull/vertex enumeration code, lrs, based on reverse search and
made it available. It finds all vertices and rays of a polyhedron in �k for any k, defined by a system
of inequalities, and finds a system of inequalities describing the convex hull of a set of vertices
and rays. More details can be found at this site http://cgm.cs.mcgill.ca/∼avis/C/lrs.html. See Avis
et al. [8] for more information about other convex hull codes. Those who are interested in the
implementations or would like to have more information about other software available can consult
http://www.geom.umn.edu/software/cglist/.
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The following WWW page on Geometry in Action maintained by David Eppstein at
http://www.ics.uci.edu/∼eppstein/geom.html and the Computational Geometry Pages by J. Erickson
at http://compgeom.cs. uiuc.edu/∼jeffe/compgeom/ give a comprehensive description of research
activities of computational geometry.

Defining Terms

Asymptotic time or space complexity: Asymptotic behavior of the time (or space) complexity of
an algorithm when the size of the problem approaches infinity. This is usually denoted in big-Oh
notation of a function of input size. A time or space complexity T(n) is O(f (n)) means that there
exists a constant c > 0 such that T(n) ≤ c · f (n) for sufficiently large n, i.e., n > n0, for some n0.
CAD/CAM: Computer-aided design and computer-aided manufacturing, a discipline that concerns
itself with the design and manufacturing of products aided by a computer.
Characteristic angle vector: A vector of minimum angles of each triangle in a triangulation arranged
in nondescending order. For a given point set the number of triangles is the same for all triangulations,
and therefore each of these triangulation has a characteristic angle vector.
Divide-and-marriage-before-conquest: A problem-solving paradigm derived from divide-and-
conquer. A term coined by the Kirkpatrick and Seidel [48], authors of this method. After the divide
step in a divide-and-conquer paradigm, instead of conquering the subproblems by recursively solving
them, a merge operation is performed first on the subproblems. This method is proven more effective
than conventional divide-and-conquer for some applications.
Extreme point: A point in S is an extreme point if it cannot be expressed as a convex combination
of other points in S. A convex combination of points p1, p2, . . . , pn is Σn

i=1αipi, where αi, ∀i is
nonnegative, and Σn

i=1αi = 1.

Geometric duality: A transform between a point and a hyperplane in �k that preserves incidence
and order relation. For a point p = (μ1, μ2, . . . , μk), its dual D(p) is a hyperplane denoted by
xk = Σk−1

j=1 μjxj − μk; for a hyperplane H : xk = Σk−1
j=1 μjxj + μk, its dual D(H) is a point denoted

by (μ1, μ2, . . . , −μk). See [22,27] for more information.
Height-balanced binary search tree: A data structure used to support membership, insert/delete
operations each in time logarithmic in the size of the tree. A typical example is the AVL tree or
red-black tree.
NP-hard problem: A complexity class of problems that are intrinsically harder than those that can
be solved by a Turing machine in nondeterministic polynomial time. When a decision version of
a combinatorial optimization problem is proven to belong to the class of NP-complete problems,
which includes well-known problems such as satisfiability, traveling salesman problem, etc., an
optimization version is NP-hard. For example, to decide if there exist k star-shaped polygons whose
union is equal to a given simple polygon, for some parameter k, is NP-complete. The optimization
version, i.e., finding a minimum number of star-shaped polygons whose union is equal to a given
simple polygon, is NP-hard.
On-line algorithm: An algorithm is said to be online if the input to the algorithm is given one at a
time. This is in contrast to the off-line case where the input is known in advance. The algorithm that
works online is similar to the off-line algorithms that work incrementally, i.e., it computes a partial
solution by considering input data one at a time.
Planar straight-line graph: A graph that can be embedded in the plane without crossings in which
every edge in the graph is a straight line segment. It is sometimes referred to as planar subdivision
or map.
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Star-shaped polygon: A polygon P in which there exists an interior point p such that all the points
of P are visible from p. That is, for any point q on the boundary of P, the intersection of the line
segment p, q with the boundary of P is the point q itself.
r-Star-shaped polygon: A (rectilinear) polygon P in which there exists an interior point p such that
all the points of P are r-visible from p. Two points in P are said to be r-visible if there exists a rectangle
in P that totally contains these two points.
s-Star-shaped polygon: A (rectilinear) polygon P in which there exists an interior point p such that
all the points of P are s-visible from p. Two points in P are said to be s-visible if there exists a staircase
path in P that connects these two points. Recall that a staircase path is a rectilinear path that is
monotone in both x- and y-directions, i.e., its intersection with every horizontal or vertical line is
either empty, a point, or a line segment.
Steiner point: A point that is not part of the input set. It is derived from the notion of Steiner tree.
Consider a set of three points determining a triangle Δ(a, b, c) all of whose angles are smaller than
120◦, in the Euclidean plane. Finding a shortest tree interconnecting these three points is known to
require a fourth point s in the interior such that each side of Δ(a, b, c) subtends the angle at s equal
to 120◦. The optimal tree is called the Steiner tree of the three points, and the fourth point is called
the Steiner point.
Visibility map: A planar subdivision that encodes the visibility information. Two points p and q are
visible if the straight line segment p, q does not intersect any other object. A horizontal (or vertical)
visibility map of a planar straight-line graph is a partition of the plane into regions by drawing a
horizontal (or vertical) straight line through each vertex p until it intersects an edge e of the graph
or extends to infinity. The edge e is said to be horizontally (or vertically) visible from p.
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2.1 Introduction

This chapter is a follow-up of Chapter 1, which deals with geometric problems and their efficient
solutions. The classes of problems that we address in this chapter include proximity, optimization,
intersection, searching, point location, and some discussions of geometric software that has been
developed.

2.2 Proximity

Geometric problems abound pertaining to the questions of how close two geometric entities are
among a collection of objects or how similar two geometric patterns match each other. For example,
in pattern classification and clustering, features that are similar according to some metric are to be
clustered in a group. The two aircrafts that are the closest at any time instant in the air space will have
the largest likelihood of collision with each other. In some cases one may be interested in how far

2-1
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apart or how dissimilar the objects are. Some of these proximity-related problems will be addressed
in this section.

2.2.1 Closest Pair

Consider a set S of n points in �k. The closest pair problem is to find in S a pair of points whose
distance is the minimum, i.e., find pi and pj, such that d(pi, pj) = mink�=l{d(pk, pl), for all points
pk, pl ∈ S}, where d(a, b) denotes the Euclidean distance between a and b. (The result below holds
for any distance metric in Minkowski’s norm.) Enumerating all pairs of distances to find the pair
with the minimum distance would take O(k · n2) time. As is well-known, in one dimension one can
solve the problem much more efficiently: Since the closest pair of points must occur consecutively on
the real line, one can sort these points and then scan them in order to solve the closest pair problem
in O(n log n) time. The time complexity turns out to be the best possible, since the problem has a
lower bound of Ω(n log n), following from a linear time transformation from the element uniqueness
problem [90].

But unfortunately there is no total ordering for points in �k for k ≥ 2, and thus, sorting is not
applicable. We will show that by using divide-and-conquer approach, one can solve this problem in

O(n log n) optimal time. Let us consider the case when k = 2. In the following, we only compute
the minimum distance between the closest pair; the actual identity of the closest pair that realizes the
minimum distance can be found easily by some straightforward bookkeeping operations. Consider
a vertical separating line V that divides S into S1 and S2 such that |S1| = |S2| = n/2. Let δi denote
the minimum distance defined by the closest pair of points in Si, i = 1, 2. Observe that the minimum
distance defined by the closest pair of points in S is either δ1, δ2, or d(p, q) for some p ∈ S1 and
q ∈ S2. In the former case, we are done. In the latter, points p and q must lie in the vertical strip of
width δ = min{δ1, δ2} on each side of the separating line V (Figure 2.1). The problem now reduces
to that of finding the closest pair between points in S1 and S2 that lie inside the strip L of width 2δ.
This subset of points L possesses a special property, known as sparsity, i.e., for each square box∗
of length 2δ the number of points in L is bounded by a constant c = 4 · 3k−1, since in each set Si,
there exists no point that lies in the interior of the δ-ball centered at each point in Si, i = 1, 2 [90]
(Figure 2.2). It is this sparsity property that enables us to solve the bichromatic closest pair problem
in O(n) time.

S1

δ1 S1 S2

S2

δ2
δ δ

(b)(a)

FIGURE 2.1 Divide-and-conquer scheme for closest pair problem. Solutions to subproblems S1 and S2 (a) and
candidates must lie in the vertical strip of width δ on each side of V (b).

∗ A box is a hypercube in higher dimensions.
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(b)

A maximum of 12 points
in the box of width 2δ

2δ

2δ
S2

S1

V

(a)

δδ

δ

δ

FIGURE 2.2 The box of width 2δ dissected by the separating line has at most 12 points; each point in S2 needs to
examine at most 6 points in S1 to find its closest neighbor (a) and the box of width 2δ dissected by the separating line
has at most 12 points (b).

The bichromatic closest pair problem is defined as follows. Given two sets of red and blue points,
denoted R and B, find the closest pair r ∈ R and b ∈ B, such that d(r, b) is minimum among all
possible distances d(u, v), u ∈ R, v ∈ B. Let S i ⊆ Si denote the set of points that lie in the vertical
strip. In two dimensions, the sparsity property ensures that for each point p ∈ S1 the number of
candidate points q ∈ S2 for the closest pair is at most six (Figure 2.2). We, therefore, can scan these
points S1 ∪ S2 in order along the separating line V and compute the distance between each point
in S1 (respectively, S2) scanned and its six candidate points in S2 (respectively, S1). The pair that
gives the minimum distance δ3 is the bichromatic closest pair. The minimum distance of all pairs of
points in S is then equal to δS = min{δ1, δ2, δ3}.

Since the merge step takes linear time, the entire algorithm takes O(n log n) time. This idea
generalizes to higher dimensions, except that to ensure the sparsity property of the set L, the
separating hyperplane should be appropriately chosen so as to obtain an O(n log n)-time algorithm
[90], which is asymptotically optimal.

We note that the bichromatic closest pair problem is in general more difficult than the clos-
est pair problem. Edelsbrunner and Sharir [46] showed that in three dimensions the number of
possible closest pairs is O((|R| · |B|)2/3 + |R| + |B|). Agarwal et al. [3] gave a randomized algo-
rithm with an expected running time of O((mn log m log n)2/3 + m log2 n + n log2 m) in �3 and
O((mn)1−1/(	k/2
+1)+ε + m log n + n log m) in �k, k ≥ 4, where m = |R| and n = |B|. Only when
the two sets possess the sparsity property defined above can the problem be solved in O(n log n) time,
where n = |R|+|B|. A more general problem, known as the fixed radius all nearest neighbor problem
in a sparse set [90], i.e., given a set M of points in �k that satisfies the sparsity condition, finds that
all pairs of points whose distance is less than a given parameter δ can be solved in O(|M| log |M|)
time [90].

The closest pair of vertices u and v of a simple polygon P such that u, v lies totally within P can be
found in linear time [55]; u, v is also known as a diagonal of P.

2.2.2 Voronoi Diagrams

The Voronoi diagram V(S) of a set S of points, called sites, S = {p1, p2, . . . , pn} in �k is a partition
of �k into Voronoi cells V(pi), i = 1, 2, . . . , n, such that each cell contains points that are closer to
site pi than to any other site pj, j �= i, i.e.,

V
(
pi

) =
{

x ∈ Rk
∣∣∣ d

(
x, pi

) ≤ d
(
x, pj

)∀pj ∈ Rk, j �= i
}

.
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(a)

q

(b)

pi

FIGURE 2.3 The Voronoi diagram of a set of 16 points in the plane (a) and its dual graph a Delaunay triangulation (b).

In two dimensions, V(S) is a planar graph and is of size linear in |S|. In dimensions k ≥ 2, the total
number of d-faces of dimensions d = 0, 1, . . . , k − 1, in V(S) is O(n	k/2
).

Figure 2.3a shows the Voronoi diagram of 16 point sites in two dimensions. Figure 2.3b shows
the straight-line dual graph of the Voronoi diagram, which is called the Delaunay triangulation
(cf. Section 1.5.2). In this triangulation, the vertices are the sites, and the two vertices are connected
by an edge, if their Voronoi cells are adjacent.

2.2.2.1 Construction of Voronoi Diagrams in Two Dimensions

The Voronoi diagram possesses many proximity properties. For instance, for each site pi, the closest
site must be among those whose Voronoi cells are adjacent to V(pi). Thus, the closest pair problem
for S in �2 can be solved in linear time after the Voronoi diagram has been computed. Since this
pair of points must be adjacent in the Delaunay triangulation, all one has to do is to examine all
the adjacent pairs of points and report the pair with the smallest distance. A divide-and-conquer
algorithm to compute the Voronoi diagram of a set of points in the Lp-metric for all 1 ≤ p ≤ ∞
is known [62]. There is a rich body of literature concerning the Voronoi diagram. The interested
reader is referred to the surveys [41,93].

We give below a brief description of a plane-sweep algorithm, known as the wavefront approach,
due to Dehne and Klein [38]. Let S = {p1, p2, . . . , pn} be a set of point sites in �2 sorted in ascending
x-coordinate value, i.e., x(p1) < x(p2) < · · · < x(pn). Consider that we sweep a vertical line L from
left to right and as we sweep L, we compute the Voronoi diagram V(St), where

St = {
pi ∈ S

∣∣x (
pi

)
< t

} ∪ {Lt} .

Here Lt denotes the vertical line whose x-coordinate equals t. As is well-known, V(St) will contain
not only straight-line segments, which are portions of perpendicular bisectors of two-point sites,
but also parabolic curve segments, which are portions of bisectors of one-point site and Lt . The
wavefront Wt , consisting of a sequence of parabolae, called waves, is the boundary of the Voronoi
cell V(Lt) with respect to St . Figure 2.4a and b illustrate two instances, V(St) and V(St′). Those
Voronoi cells that do not contribute to the wavefront are final, whereas those that do will change as
L moves to the right. There are two possible events at which the wavefront needs an update. One,
called site event, is when a site is hit by L and a new wave appears. The other, called spike event, is
when an old wave disappears. Let pi and pj be two sites such that the associated waves are adjacent
in Wt . The bisector of pi and pj defines an edge of V(St) to the left of Wt . Its extension into the cell
V(Lt) is called a spike. The spikes can be viewed as tracks along which two neighboring waves travel.
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FIGURE 2.4 The Voronoi diagrams of (a) V(St) and (b) V(St′ ).

A wave disappears from Wt , once it has reached the point where its two neighboring spikes intersect.
In Figure 2.4a dashed lines are spikes and v is a potential spike event point. Without p7 the wave of p3
would disappear first and then the wave of p4. After p7, a site event, has occurred, a new point v′ will
be created and it defines an earlier spike event than v. v′ will be a spike event point at which the wave
of p4 disappears and waves of p5 and p7 become adjacent. Note that the spike event corresponding
to v′ does not occur at Lt , when t = x(v′). Instead, it occurs at Lt , when t = x(v′) + d(v′, p4). If
there is no site event between Lx(p7) and Lt , then the wave of p4 will disappear. It is not difficult to
see that after all site events and spike events have been processed at time τ, V(S) is identical to V(Sτ)

with the wavefront removed.
Since the waves in Wt can be stored in a height-balanced binary search tree and the site events and

spike events can be maintained as a priority queue, the overall time and space needed are O(n log n)

and O(n), respectively.
Although Ω(n log n) is the lower bound for computing the Voronoi diagram for an arbitrary set

of n sites, this lower bound does not apply to special cases, e.g., when the sites are on the vertices
of a convex polygon. In fact, the Voronoi diagram of a convex polygon can be computed in linear
time [5]. This demonstrates further that additional properties of the input can sometimes help reduce
the complexity of the problem.

2.2.2.2 Construction of Voronoi Diagrams in Higher Dimensions

The Voronoi diagrams in �k are related to the convex hulls �k+1 via a geometric duality transfor-
mation. Consider a set S of n sites in �k, which is the hyperplane H0 in �k+1 such that xk+1 = 0, and
a paraboloid P in �k+1 represented as xk+1 = x2

1 + x2
2 + · · · + x2

k. Each site pi = (μ1, μ2, . . . , μk)

X1

X2

FIGURE 2.5 The paraboloid
transformation of a site in one
dimension to a line tangent to
a parabola.

is transformed into a hyperplane H(pi) in �k+1 denoted as xk+1 =
2Σk

j=1μjxj − (Σk
j=1μ

2
j ). That is, H(pi) is tangent to the paraboloid P at

point P(pi)= (μ1, μ2, . . . , μk, μ2
1 + μ2

2 + · · · + μ2
k), which is just the

vertical projection of site pi onto the paraboloid P . See Figure 2.5 for
an illustration of the transformation in one dimension. The half-space
defined byH(pi) and containing the paraboloidP is denoted asH+(pi).
The intersection of all half-spaces

⋂n
i=1 H+(pi) is a convex body and

the boundary of the convex body is denoted by CH(H(S)). Any point
q ∈ �k lies in the Voronoi cell V(pi), if the vertical projection of q onto
CH(H(S)) is contained in H(pi). The distance between point q and its
closest site pi can be shown to be equal to the square root of the vertical
distance between its vertical projection P(q) on the paraboloid P and
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on CH(H(S)). Moreover every κ-face of CH(H(S)) has a vertical projection on the hyperplane H0

equal to the κ-face of the Voronoi diagram of S in H0.
We thus obtain the result which follows from the theorem for the convex hull in Chapter 1.

THEOREM 2.1 The Voronoi diagram of a set S of n points in �k, k ≥ 2 can be computed in
O(n logH) time for k = 2, and in O(n logH+ (nH)1−1/(�(k+1)/2�+1) logO(1) n) time for k > 2, where
H is the number of i-faces, i = 0, 1, . . . , k.

It has been shown that the Voronoi diagram in �k, for k = 3, 4, can be computed in O((n + H)

logk−1 H) time [12].

2.2.2.3 Farthest Neighbor Voronoi Diagram

The Voronoi diagram defined in Section 2.2.2 is also known as the nearest neighbor Voronoi
diagram. The nearest neighbor Voronoi diagram partitions the space into cells such that each
site has its own cell, which contains all the points that are closer to this site than to any other site. A
variation of this partitioning concept is a partition of the space into cells, each of which is associated
with a site, and contains all the points that are farther from the site than from any other site. This dia-
gram is called the farthest neighbor Voronoi diagram. Unlike the nearest neighbor Voronoi diagram,
the farthest neighbor Voronoi diagram only has a subset of sites which have a Voronoi cell associated
with them. Those sites that have a nonempty Voronoi cell are those that lie on the convex hull of
S. A similar partitioning of the space is known as the order κ-nearest neighbor Voronoi diagram, in
which each Voronoi cell is associated with a subset of κ sites in S for some fixed integer κ such that
these κ sites are the closest among all other sites. For κ = 1, we have the nearest neighbor Voronoi
diagram, and for κ = n − 1, we have the farthest neighbor Voronoi diagram. The construction of
the order κ-nearest neighbor Voronoi diagram in the plane can be found in, e.g., [90]. The order
κ Voronoi diagrams in �k are related to the levels of hyperplane arrangements in �k+1 using the
paraboloid transformation discussed in Section 2.2.2.2. See, e.g., [2] for details. Below is a discussion
of the farthest neighbor Voronoi diagram in two dimensions.

Given a set S of sites s1, s2, . . . , sn, the f -neighbor Voronoi cell of site si is the locus of points that
are farther from si than from any other site sj, i �= j, i.e.,

f _V (si) = {
p ∈ �2∣∣ d

(
p, si

) ≥ d
(
p, sj

)
, si �= sj

}
.

The union of these f -neighbor Voronoi cells is called the farthest neighbor Voronoi diagram of S.
Figure 2.6 shows the farthest neighbor Voronoi diagram for a set of 16 sites. Note that only sites that
are on the convex hull CH(S) will have a nonempty f -neighbor Voronoi cell [90] and that all the
f -neighbor Voronoi cells are unbounded.

Since the farthest neighbor Voronoi diagram in the plane is related to the convex hull of the
set of sites, one can use the divide-and-marriage-before-conquest paradigm to compute the farthest
neighbor Voronoi diagram of S in two dimensions in time O(n logH), whereH is the number of sites
on the convex hull. Once the convex hull is available, the linear time algorithm [5] for computing
the Voronoi diagram for a convex polygon can be applied.

2.2.2.4 Weighted Voronoi Diagrams

When the sites have weights such that the distance from a point to the sites is weighted, the structure
of the Voronoi diagram can be drastically different than the unweighted case. We consider a few
examples.
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FIGURE 2.6 The farthest neighbor Voronoi diagram of a set of 16 sites in the plane.

c

a

q

d
b

FIGURE 2.7 The power dia-
gram in two dimensions.
δ(q, a) = δ(q, b) = length of
q, c.

Example 2.1: Power Diagrams

Suppose each site s in �k is associated with a nonnegative weight,
ws. For an arbitrary point p in �k the weighted distance from p to s is
defined as

δ(s, p) = d(s, p)2 − w2
s .

If ws is positive, and if d(s, p) ≥ ws, then
√

δ(s, p) is the length of the
tangent of p to the ball, b(s), of radius ws and centered at s. δ(s, p) is
also called the power of p with respect to the ball b(s). The locus of
points p equidistant from two sites s �= t of equal weight will be
a hyperplane called the chordale of s and t (see Figure 2.7). Point q is
equidistant to sites a and b, and the distance is the length of the tangent
line q, c = q, d.

The power diagram in two dimensions can be used to compute the contour of the union of n
disks, and the connected components of n disks in O(n log n) time, and in higher dimensions, it
can be used to compute the union or intersection of n axis-parallel cones in �k with apexes in a
common hyperplane in time O(CHk+1(n)), the multiplicative-weighted nearest neighbor Voronoi
diagram (defined below) for n points in �k in time O(CHk+2(n)), and the Voronoi diagrams for n
spheres in �k in time O(CHk+2(n)), where CH�(n) denotes the time for constructing the convex hull
of n points in �� [93]. For the best time bound for CH�(n), See Section 1.1. For more results on the
union of spheres and the volumes see [45].

Example 2.2: Multiplicative-Weighted Voronoi Diagrams

Suppose each site s ∈ �k is associated with a positive weight ws. The distance from a point p ∈ �k

to s is defined as

δmulti−w(s, p) = d(p, s)/ws.

In two dimensions, the locus of points equidistant to two sites s �= t is a disk, if ws �= wt , and
a perpendicular bisector of line segment s, t, if ws = wt . Each cell associated with a site s consists
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of all points closer to s than to any other site and may be disconnected. In the worst case, the
multiplicative-weighted nearest neighbor Voronoi diagram of a set S of n points in two dimensions
can have O(n2) regions and can be computed in O(n2) time. But in one dimension, the diagram can
be computed optimally in O(n log n) time. On the other hand, the multiplicative-weighted farthest
neighbor Voronoi diagram has a very different characteristic. Each Voronoi cell associated with a site
remains connected, and the size of the diagram is still linear in the number of sites. An O(n log2 n)-
time algorithm for constructing such a diagram is given in [66]. See [80] for more applications of the
diagram.

Example 2.3: Additive-Weighted Voronoi Diagrams

Suppose each site s ∈ �k is associated with a positive weight ws. The distance of a point p ∈ �k to a
site s is defined as

δadd−w(s, p) = d(p, s) − ws.

In two dimensions, the locus of points equidistant to two sites s �= t is a branch of a hyperbola,
if ws �= wt , and a perpendicular bisector of line segment s, t, if ws = wt . The Voronoi diagram has
properties similar to the ordinary unweighted diagram. For example, each cell is still connected and
the size of the diagram is linear. If the weights are positive, the diagram is the same as the Voronoi
diagram of a set of spheres centered at site s and of radius ws, and in two dimensions, this diagram
for n disks can be computed in O(n log n) time [15,81], and in k ≥ 3, one can use the notion of power
diagram (cf. Example 2.1) to compute the diagram [93].

2.2.2.5 Generalizations of Voronoi Diagrams

We consider two variations of Voronoi diagrams that are of interest and have applications.

v

Si

FIGURE 2.8 The geodesic
Voronoi diagram within a sim-
ple polygon.

Example 2.4: Geodesic Voronoi Diagrams

The nearest neighbor geodesic Voronoi diagram is a Voronoi diagram
of sites in the presence of obstacles. The distance from point p to a
site s, called the geodesic distance between p and s, is the length of the
shortest path from p to s avoiding all the obstacles (cf. Section 2.6.1).
The locus of points equidistant to two sites s and t is in general a
collection of hyperbolic segments. The cell associated with a site is the
locus of points whose geodesic distance to the site is shorter than to
any other site [86]. The farthest neighbor geodesic Voronoi diagram can
be similarly defined. Efficient algorithms for computing either kind of
geodesic Voronoi diagram for k point sites in an n-sided simple polygon
in O((n + k) log(n + k)) time can be found in [86]. Figure 2.8 illustrates the geodesic Voronoi diagram
of a set of point sites within a simple polygon; the whole shaded region is V(si).

Example 2.5: Skew Voronoi Diagrams

A directional distance function between two points in the plane is introduced in Aichholzer et al. [8]
that models a more realistic distance measure. The distance, called skew distance, from point p to
point q is defined as

d̃(p, q) = d(p, q) + k · dy(p, q),

where dy(p, q) = y(q) − y(p), and k ≥ 0 is a parameter. This distance function is asymmetric and
satisfies d̃(p, q) + d̃(q, p) = 2d(p, q), and the triangle inequality. Imagine we have a tilted plane T



Atallah/Algorithms and Theory of Computation Handbook: Second Edition C820X_C002 Finals Page 9 2009-10-5

Computational Geometry II 2-9

obtained by rotating the xy-plane by an angle α about the x-axis. The height (z-coordinate) h(p) of a
point p on T is related to its y-coordinate by h(p) = y(p) · sin α.

The distance function defined above reflects the cost that is proportional to the difference of their
heights; the distance is smaller going downhill than going uphill. That is, the distance from p to q
defined as d̃(p, q) = d(p, q) + κ · (h(q) − h(p)) for κ > 0 serves this purpose; d̃(p, q) is less than
d̃(q, p), if h(q) is smaller than h(p).

Because the distance is directional, one can define two kinds of Voronoi diagrams defined by the
set of sites. A skew Voronoi cell from a site p, Vfrom(p), is defined as the set of points that are closest
to p than to any other site. That is,

Vfrom(p) = {
x
∣∣d̃(p, x) ≤ d̃(q, x)

}
for all q �= p. Similarly one can define a skew Voronoi cell to a site p as follows:

Vto(p) = {
x
∣∣d̃(x, p) ≤ d̃(x, q)

}
for all q �= p.

The collection of these Voronoi cells for all sites is called the skew (or directional) Voronoi
diagram.

For each site p, we define an r-disk centered at p, denoted fromr(p) to be the set of points to which
the skew distance from p is r. That is, fromr(p) = {x|d̃(p, x) = r}. Symmetrically, we can also define
an r-disk centered at p, denoted tor(p) to be the set of points from which the skew distance to p is r.
That is, tor(p) = {x|d̃(x, p) = r}. The subscript r is omitted, when r = 1. It can be shown that tor(p)

is just a mirror reflection of fromr(p) about the horizontal line passing through p. We shall consider
only the skew Voronoi diagram which is the collection of the cells Vfrom(p) for all p ∈ S.

LEMMA 2.1 For k > 0, the unit disk from(p) is a conic with focus p, directrix the horizontal line
at y-distance 1/k above p, and eccentricity k. Thus, from(p) is an ellipse for k < 1, a parabola for
k = 1, and a hyperbola for k > 1. For k = 0, from(p) is a disk with center p (which can be regarded
as an ellipse of eccentricity zero).

Note that when k equals 0, the skew Voronoi diagram reduces to the ordinary nearest neighbor
Voronoi diagram. When k < 1, it leads to known structures: By Lemma 2.1, the skew distance d̃ is
a convex distance function and the Voronoi diagrams for convex distance functions are well studied
(see, e.g., [93]). They consist of O(n) edges and vertices, and can be constructed in time O(n log n)

by divide-and-conquer.
When k ≥ 1, since the unit disks are no longer bounded, the skew Voronoi diagrams have different

behavior from the ordinary ones. As it turns out, some of the sites do not have nonempty skew
Voronoi cells in this case. In this regard, it looks like ordinary farthest neighbor Voronoi diagram
discussed earlier.

Let L0(p, k) denote the locus of points x such that d̃(p, x) = 0. It can be shown that for k = 1,
L0(p, k) is a vertical line emanating downwards from p; and for k > 1, it consists of two rays,
emanating from, and extending below, p, with slopes 1/(

√
k2 − 1) and −1/(

√
k2 − 1), respectively.

Let N(p, k) denote the area below L0(p, k) (for k > 1). Let the 0-envelope, E0(S), be the upper
boundary of the union of all N(p, k) for p ∈ S. E0(S) is the upper envelope of the graphs of all
L0(p, k), when being seen as functions of the x-coordinate. For each point u lying above E0(S), we
have d̃(p, u) > 0 for all p ∈ S, and for each point v lying below E0(S), there is at least one p ∈ S with
d̃(p, v) < 0. See Figure 2.9 for an example of a 0-envelope (shown as the dashed polygonal line) and
the corresponding skew Voronoi diagram. Note that the skew Voronoi cells associated with sites q
and t are empty. The following results are obtained [8].
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FIGURE 2.9 The 0-envelope and the skew Voronoi diagram when k = 1.5.

LEMMA 2.2 For k > 1, the 0-envelope E0(S) of a set S of n sites can be computed in O(n logH)

time and O(n) space, where H is the number of edges of E0(S).

LEMMA 2.3 Let p ∈ S and k > 1, then Vfrom(p) �= ∅, if and only if p ∈ E0(S). Vfrom(p) is
unbounded if and only if p lies on the upper hull of E0(S). For k = 1, Vfrom(p) is unbounded for all p.

THEOREM 2.2 For any k ≥ 0, the skew Voronoi diagram for n sites can be computed in O(n logH)

time and O(n) space, where H is the number of nonempty skew Voronoi cells in the resulting Voronoi
diagram.

The sites mentioned so far are point sites. They can be of different shapes. For instance, they can
be line segments or polygonal objects. The Voronoi diagram for the edges of a simple polygon P that
divides the interior of P into Voronoi cells is also known as the medial axis or skeleton of P [90]. The
distance function used can also be the convex distance function or other norms.

2.3 Optimization

The geometric optimization problems arise in operations research, Very Large-Scale Integrated
Circuit (VLSI) layout, and other engineering disciplines. We give a brief description of a few
problems in this category that have been studied in the past.

2.3.1 Minimum Cost Spanning Tree

The minimum (cost) spanning tree (MST) of an undirected, weighted graph G(V , E), in which
each edge has a nonnegative weight, is a well-studied problem in graph theory and can be solved
in O(|E| log |V|) time [90]. When cast in the Euclidean or other Lp-metric plane in which the
input consists of a set S of n points, the complexity of this problem becomes different. Instead of
constructing a complete graph with edge weight being the distance between its two endpoints, from
which to extract an MST, a sparse graph, known as the Delaunay triangulation of the point set, is
computed. The Delaunay triangulation of S, which is a planar graph, is the straight-line dual of the
Voronoi diagram of S. That is, two points are connected by an edge, if and only if the Voronoi cells
of these two sites share an edge. (cf. Section 1.5.2.3). It can be shown that the MST of S is a subgraph
of the Delaunay triangulation. Since the MST of a planar graph can be found in linear time [90], the
problem can be solved in O(n log n) time. In fact, this is asymptotically optimal, as the closest pair
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of the set of points must define an edge in the MST, and the closest pair problem is known to have
an Ω(n log n) lower bound, as mentioned in Section 2.2.1.

This problem in dimensions three or higher can be solved in subquadratic time. Agarwal et al.
[3] showed that the Euclidean MST problem for a set of N points in �k can be solved in time
O(Tk(N, N) logk N), where Tk(m, n) denotes the time required to compute a bichromatic closest
pair among m red and n blue points in �k. If Tk(N, N) = Ω(N1+ε), for some fixed ε> 0, then the
running time improves to be O(Tk(N, N)). They also gave a randomized algorithm with an expected
time of O((N log N)4/3) in three dimensions and of O(N2(1−1/(	k/2
+1))+ε) for any positive ε in
k ≥ 4 dimensions [3]. Interestingly enough, if we want to find an MST that spans at least k nodes
in a planar graph (or in the Euclidean plane), for some parameter k ≤ n, then the problem, called
k-MST problem, is NP-hard [92]. Approximation algorithms for the k-MST problem can be found
in [18,75].

2.3.2 Steiner Minimum Tree

The Steiner minimum tree (SMT) of a set of vertices S ⊆ V in an undirected weighted graph G(V , E)

is a spanning tree of S ∪ Q for some Q ⊆ V such that the total weight of the spanning tree is
minimum. This problem differs from MST in that we need to identify a set Q ⊆ V of Steiner vertices
so that the total cost of the spanning tree is minimized. Of course, if S = V , SMT is the same as
MST. It is the identification of the Steiner vertices that makes this problem intractable. In the plane,
we are given a set S of points and are to find the shortest tree interconnecting points in S, while
additional Steiner points are allowed. Both Euclidean and rectilinear (L1-metric) SMT problems are
known to be NP-hard. In the geometric setting, the rectilinear SMT problem arises mostly in VLSI
net routing, in which a number of terminals need to be interconnected using horizontal and vertical
wire segments using the shortest wire length. As this problem is intractable, heuristics are proposed.
For more information, the reader is referred to a special issue of Algorithmica on Steiner trees, edited
by Hwang [57]. Most heuristics for the L1 SMT problem are based on a classical theorem, known as
the Hanan grid theorem, which states that the Steiner points of an SMT must be at the grid defined by
drawing horizontal and vertical lines through each of the given points. However, when the number
of orientations permitted for routing is greater than 2, the Hanan grid theorem no longer holds
true. Lee and Shen [65] established a multi-level grid theorem, which states that the Steiner points
of an SMT for n points must be at the grid defined by drawing λ lines in the feasible orientation
recursively for up to n − 2 levels, where λ denotes the number of orientations of the wires allowed
in routing. That is, the given points are assumed to be at the 0th level. At each level, λ lines in the
feasible orientations are drawn through each new grid point created at the previous level. In this
λ-geometry plane, feasible orientations are assumed to make an angle iπ/λ with the positive x-axis.
For the rectilinear case, λ = 2, Figure 2.10 shows that Hanan grid is insufficient for determining a
Steiner SMT for λ = 3. Steiner point s3 does not lie on the Hanan grid.

S1 S1

S2

(a)

S3

(b)

S2

FIGURE 2.10 Hanan grid theorem fails for λ = 3. Steiner point s3 does not lie on the Hanan grid (a), but they line
on a second-level grid (b).
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DEFINITION 2.1 The performance ratio of any approximation A in metric space M is defined as

ρM(A) = inf
P∈M

Ls(P)

LA(P)

where Ls(P) and LA(P) denote, respectively, the lengths of a Steiner minimum tree and of the
approximation A on P in space M. When the MST is the approximation, the performance ratio is
known as the Steiner ratio, denoted simply as ρ.

It is well-known that the Steiner ratios for the Euclidean and rectilinear SMTs are
√

3
2 and 2

3 ,

respectively [57]. The λ-Steiner ratio∗ for the λ-geometry SMTs is no less than
√

3 cos(π/2λ)
2 . The

following interesting result regarding Steiner ratio is reported in [65], which shows that the Steiner
ratio is not an increasing function from 2

3 to
√

3
2 , as λ varies from 2 to ∞.

THEOREM 2.3 The λ-Steiner ratio is
√

3
2 , when λ is a multiple of 6, and

√
3 cos(π/2λ)

2 when λ is a
multiple of 3 but not a multiple of 6.

2.3.3 Minimum Diameter Spanning Tree

The minimum diameter spanning tree (MDST) of an undirected weighted graph G(V , E) is a spanning
tree such that its diameter, i.e., total weight of the longest path in the tree, is minimum. This arises
in applications to communication network where a tree is sought such that the maximum delay,
instead of the total cost, is to be minimized. Using a graph-theoretic approach one can solve this
problem in O(|E||V| log |V|) time. However, by the triangle inequality one can show that there exists
an MDST such that the longest path in the tree consists of no more than three segments [56]. Based
on this an O(n3)-time algorithm was obtained.

THEOREM 2.4 Given a set S of n points, the minimum diameter spanning tree for S can be found
in θ(n3) time and O(n) space.

We remark that the problem of finding a spanning tree whose total cost and the diameter are both
bounded is NP-complete [56]. In [92], the problem of finding a minimum diameter cost spanning
tree is studied. In this problem for each pair of vertices vi and vj there is a weighting function wi,j
and the diameter cost of a spanning tree is defined to be the maximum over wi,j ∗ di,j, where di,j
denotes the distance between vertices vi and vj. To find a spanning tree with minimum diameter
cost as defined above is shown to be NP-hard [92].

Another similar problem that arises in VLSI clock tree routing is to find a tree from a source
to multiple sinks such that every source-to-sink path is the shortest rectilinear path and the total
wire length is to be minimized. This problem, also known as rectilinear Steiner arborescence problem
(see [57]), has been shown to be NP-complete [98]. A polynomial time approximation scheme
of approximation ratio (1 + 1/ε) in time O(nO(ε) log n) was given by Lu and Ruan [70]. Later a
simple 2-approximation algorithm in time O(n log n) was provided by Ranmath [91]. The problem
of finding a minimum spanning tree such that the longest source-to-sink path is bounded by a given
parameter is shown also to be NP-complete [96].

∗ The λ-Steiner ratio is defined as the greatest lower bound of the length of SMT over the length of MST in the
λ-geometry plane.
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2.3.4 Minimum Enclosing Circle

Given a set S of points the problem is to find the smallest disk enclosing the set. This problem is
also known as the (unweighted) one-center problem. That is, find a center such that the maximum
distance from the center to the points in S is minimized. More formally, we need to find the center
c ∈ �2 such that maxpj∈S d(c, pj) is minimized. The weighted one-center problem, in which the
distance function d(c, pj) is multiplied by the weight wj, is a well-known min–max problem, also
referred to as the emergency center problem in operations research. In two dimensions, the one-center
problem can be solved in O(n) time. The minimum enclosing ball problem in higher dimensions
is also solved by using linear programming technique [103]. The general p-center problem, i.e.,
finding p circles whose union contains S such that the maximum radius is minimized, is known to
be NP-hard. For a special case when p = 2, Eppstein [48] gave an O(n log2 n) randomized algorithm
based on parametric search technique, and Chan [22] gave a deterministic algorithm with a slightly
worse running time. For the problem of finding a minimum enclosing ellipsoid for a point set in �k

and other types of geometric location problem see, e.g., [47,103].

2.3.5 Largest Empty Circle

This problem, in contrast to the minimum enclosing circle problem, is to find a circle centered in
the interior of the convex hull of the set S of points that does not contain any given point and the
radius of the circle is to be maximized. This is mathematically formalized as a max–min problem,
the minimum distance from the center to the set is maximized. The weighted version is also known
as the obnoxious center problem in facility location. For the unweighted version, the center must be
either at a vertex of the Voronoi diagram for S in the convex hull or at the intersection of a Voronoi
edge and the boundary of the convex hull. O(n log n) time is sufficient for this problem. Following the
same strategy one can solve the largest empty square problem for S in O(n log n) time as well, using
the Voronoi diagram in the L∞-metric [62]. The time complexity of the algorithm is asymptotically
optimal, as the maximum gap problem, i.e., finding the maximum gap between two consecutive
numbers on the real line, which requires Ω(n log n) time, is reducible to this problem [90]. In
contrast to the minimum enclosing ellipsoid problem is the largest empty ellipsoid problem, which
has also been studied [43].

2.3.6 Largest Empty Rectangle

In Section 1.2.4, we mentioned the smallest enclosing rectangle problem. Here, we look at the
problem of finding the largest rectangle that is empty. Mukhopadhyay and Rao [78] gave an O(n3)-
time and O(n2)-space algorithm for finding the largest empty arbitrarily oriented rectangle of a set
of n points. A special case of this problem is to find the largest area restricted rectangle with sides
parallel to those of the original rectangle containing a given set S of n points, whose interior contains
no points from S. The problem arises in document analysis of printed-page layout in which white
space in the black-and-white image of the form of a maximal empty rectangle is to be recognized. A
related problem, called the largest empty corner rectangle problem, is that given two subsets Sl and Sr
of S separated by a vertical line, find the largest rectangle containing no other points in S such that
the lower left corner and the upper right corner of the rectangle are in Sl and Sr , respectively. This
problem can be solved in O(n log n) time, where n = |S|, using fast matrix searching technique (cf.
Section 1.4). With this as a subroutine, one can solve the largest empty restricted rectangle problem
in O(n log2 n) time. When the points define a rectilinear polygon that is orthogonally convex,the
largest empty restricted rectangle that can fit inside the polygon can be found in O(nα(n)) time,
where α(n) is the slowly growing inverse of Ackermann’s function using a result of Klawe and
Kleitman [61]. When the polygon P is arbitrary and may contain holes, Daniels et al. [36] gave an
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O(n log2 n) algorithm, for finding the largest empty restricted rectangle in P. Orlowski [82] gave an
O(n log n + s) algorithm, where s is the number of restricted rectangles that are possible candidates,
and showed that s is O(n2) in the worst case and the expected value is O(n log n).

2.3.7 Minimum-Width Annulus

Given a set S of n points find an annulus (defined by two concentric circles) whose center lies
internal to the convex hull of S such that the width of the annulus is minimized. This problem arises
in dimensional tolerancing and metrology which deals with the specification and measurement
of error tolerances in geometric shapes. To measure if a manufactured circular part is round, an
American National Standards Institute (ANSI) standard is to use the width of an annulus covering
the set of points obtained from a number of measurements. This is known as the roundness
problem [51,99,100]. It can be shown that the center of the annulus can be located at the intersection
of the nearest neighbor and the farthest neighbor Voronoi diagrams, as discussed in Section 2.2.2.
The center can be computed in O(n log n) time [51]. If the input is defined by a simple polygon P
with n vertices, then the problem is to find a minimum-width annulus that contains the boundary
of P. The center of the smallest annulus can be located at the medial axis of P [100]. In particular,
the problem can be solved in O(n log n + k), where k denotes the number of intersection points of
the medial axis of the simple polygon and the farthest neighbor Voronoi diagram of the vertices of
P. In [100], k is shown to be θ(n2). However, if the polygon is convex, one can solve this problem
in linear time [100]. Note that the minimum-width annulus problem is equivalent to the best circle
approximation problem, in which a circle approximating a given shape (or a set of points) is sought
such that the error is minimized. The error of the approximating circle is defined to be the maximum
over all distances between points in the set and the approximating circle. To be more precise, the
error is equal to one half of the width of the smallest annulus. See Figure 2.11.

If the center of the smallest annulus of a point set can be arbitrarily placed, the center may lie at
infinity and the annulus degenerates to a pair of parallel lines enclosing the set of points. When the
center is to be located at infinity, the problem becomes the well-known minimum-width problem,
which is to find a pair of parallel lines enclosing the set such that the distance between them is
minimized. The width of a set of n points can be computed in O(n log n) time, which is optimal
[67]. In three dimensions the width of a set is also used as a measure for flatness of a plate, a flatness
problem in computational metrology. Chazelle et al. [28] gave an O(n8/5+ε)-time algorithm for this
problem, improving over a previously known algorithm that runs in O(n2) time.

Shermer and Yap [97] introduced the notion of relative roundness, where one wants to minimize
the ratio of the annulus width and the radius of the inner circle. An O(n2) algorithm was presented.
Duncan et al. [42] define another notion of roundness, called referenced roundness, which becomes
equivalent to the flatness problem when the radius of the reference circle is set to infinity. Specifically
given a reference radius ρ of an annulus A that contains S, i.e., ρ is the mean of the two concentric

(a) (b)

FIGURE 2.11 Minimum-width annulus (a) and the best circle approximation (b).
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circles defining the annulus, find an annulus of a minimum width among all annuli with radius ρ

containing S, or for a given ε > 0, find an annulus containing S whose width is upper bounded by ε.
They presented an O(n log n) algorithm for two dimensions and a near quadratic-time algorithm for
three dimensions. In contrast to the minimum-width annulus problem is the largest empty annulus
problem, in which we want to find the largest-width annulus that contains no points. The problem
is much harder and can be solved in O(n3 log n) time [39].

2.4 Geometric Matching

Matching in general graphs is one of the classical subjects in combinatorial optimization and has
applications in operations research, pattern recognition, and VLSI design. Only geometric versions
of the matching problem are discussed here. For graph-theoretic matching problems, see [83].

Given a weighted undirected complete graph on a set of 2n vertices, a complete matching is a set
of n edges such that each vertex has exactly one edge incident on it. The weight of a matching is
the sum of the weights of the edges in the matching. In a metric space, the vertices are points in the
plane and the weight of an edge between two points is the distance between them. The Euclidean
minimum weight matching problem is that given 2n points, find n matching pairs of points (pi, qi)
such that Σd(pi, qi) is minimized.

It was not known if geometric properties can be exploited to obtain an algorithm that is faster
than the θ(n3) algorithm for general graphs (see [83]). Vaidya [101] settled this question in the
affirmative. His algorithm is based on a well-studied primal-dual algorithm for weighted matching.
Making use of additive-weighted Voronoi diagram discussed in Section 2.2.2.4 and the range search
tree structure (see Section 2.7.1), Vaidya solved the problem in O(n2.5 log4 n) time. This algorithm
also generalizes to �k but the complexity is increased by a logk n factor.

The bipartite minimum weight matching problem is defined similarly, except that we are given
a set of red points R = {r1, r2, . . . , rn} and a set of blue points B = {b1, b2, . . . , bn} in the plane,
and look for n matching pairs of points (r, b) ∈ R × B with minimum cost. In [101] Vaidya gave
an O(n2.5 log n)-time algorithm for Euclidean metric and an O(n2 log3 n) algorithm for L1-metric.
Approximation algorithms for this problem can be found in [7] and in [58].

If these 2n points are given as vertices of a polygon, the problems of minimum weight matching
and bipartite matching can be solved in O(n log n) time if the polygon is convex and in O(n log2 n)

time if the polygon is simple. In this case, the weight of each matching pair of vertices is defined to
be the geodesic distance between them [71]. However, if a maximum weight matching is sought, a
log n factor can be shaved off [71].

Because of the triangle inequality, one can easily show that in a minimum weight matching, the
line segments defined by the matched pairs of points cannot intersect one another. Generalizing
this nonintersecting property the following geodesic minimum matching problem in the presence of
obstacles can be formulated. Given 2m points and polygonal obstacles in the plane, find a matching of
these 2m points such that the sum of the geodesic distances between the matched pairs is minimized.
These m paths must not cross each other (they may have portions of the paths overlapping each
other). There is no efficient algorithm known to date, except for the obvious method of reducing
it to a minimum matching of a complete graph, in which the weight of an edge connecting any
two points is the geodesic distance between them. Note that finding a geodesic matching without
optimization is trivial, since these m noncrossing paths can always be found. This geodesic minimum
matching problem in the general polygonal domain seems nontrivial. The noncrossing constraint
and the optimization objective function (minimizing total weight) makes the problem hard.

When the matching of these 2m points is given a priori, finding m noncrossing paths minimizing
the total weight seems very difficult. This resembles global routing problem in VLSI for which m
two-terminal nets are given, and a routing is sought that optimizes a certain objective function,
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FIGURE 2.12 An instance
of three noncrossing pair
matching problem.

including total wire length, subject to some capacity constraints. The
noncrossing requirement is needed when single-layer routing or planar
routing model is used. Global routing problems in general are NP-
hard. Since the paths defined by matching pairs in an optimal routing
cannot cross each other, paths obtained by earlier matched pairs become
obstacles for subsequently matched pairs. Thus, the sequence in which
the pairs of points are matched is very crucial. In fact, the path defined
by a matched pair of points need not be the shortest. Thus, to route
the matched pairs in a greedy manner sequentially does not give an
optimal routing. Consider the configuration shown in Figure 2.12 in
which R = X, Y , Z, B = x, y, z, and points (X, x), (Y , y), and (Z, z) are
to be matched. Note that in this optimal routing, none of the matched
pairs is realized by the shortest path, i.e., a straight line. This problem
is referred to as the shortest k-pair noncrossing path problem. However, if the m matching pairs of
points are on the boundary of a simple polygon, and the path must be confined to the interior of the
polygon, Papadopoulou [84] gave an O(n+m) algorithm for finding an optimal set of m noncrossing
paths, if a solution exists, where n is the number of vertices of the polygon.

Atallah and Chen [14] considered the following bipartite matching problem: Given n red and n blue
disjoint isothetic rectangles in the plane, find a matching of these n red–blue pairs of rectangles such
that the rectilinear paths connecting the matched pairs are noncrossing and monotone. Surprisingly
enough, they showed that such a matching satisfying the constraints always exists and gave an
asymptotically optimal O(n log n) algorithm for finding such a matching.

To conclude this section we remark that the min–max versions of the general matching or bipartite
matching problems are open. In the red-blue matching, if one of the sets is allowed to translate,
rotate, or scale, we have a different matching problem. In this setting, we often look for the best
match according to min–max criterion, i.e., the maximum error in the matching is to be minimized.
A dual problem can also be defined, i.e., given a maximum error bound, determine if a matching
exists, and if so, what kind of motions are needed. For more information about various types of
matching, see a survey by Alt and Guibas [9].

2.5 Planar Point Location

Planar point location is a fundamental problem in computational geometry. Given a planar sub-
division, and a query point, we want to find the region that contains the query point. Figure 2.13
shows an example of a planar subdivision. This problem arises in geographic information systems,
in which one often is interested in locating, for example, a certain facility in a map. Consider the
skew Voronoi diagram, discussed earlier in Section 2.2.2.5, for a set S of emergency dispatchers.
Suppose an emergency situation arises at a location q and that the nearest dispatcher p is to be called
so that the distance d̃(p, q) is the smallest among all distances d̃(r, q), for r ∈ S. This is equivalent to
locating q in the Voronoi cellVfrom(p) of the skew Voronoi diagram that contains q. In situations like
this, it is vital that the nearest dispatcher be located quickly. We therefore address the point location
problem under the assumption that the underlying planar map is fixed and the main objective is
to have a fast response time to each query. Toward this end we preprocess the planar map into a
suitable structure so that it would facilitate the point location task.

An earlier preprocessing scheme is based on the slab method [90], in which parallel lines are drawn
through each vertex, thus, partitioning the plane into parallel slabs. Each parallel slab is further
divided into subregions by the edges of the subdivision that can be linearly ordered. Any given query
point q can thus be located by two binary searches; one to locate among the n+1 horizontal slabs the
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FIGURE 2.13 Chain decomposition method for a planar subdivision.

slab containing q, and followed by another to locate the region defined by a pair of consecutive edges
which are ordered from left to right. We use a three tuple, (P(n), S(n), Q(n))= (preprocessing time,
space requirement, query time) to denote the performance of the search strategy. The slab method
gives an (O(n2), O(n2), O(log n)) algorithm. Since preprocessing time is only performed once, the
time requirement is not as critical as the space requirement, which is permanently engaged. The
primary goal of any search strategy is to minimize the query time and the space required. Lee
and Preparata [90] first proposed a chain decomposition method to decompose a monotone planar
subdivision with n points into a collection of m ≤ n monotone chains organized in a complete
binary tree. Each node in the binary tree is associated with a monotone chain of at most n edges,
ordered in y-coordinate. This set of monotone chains forms a totally ordered set partitioning the
plane into collections of regions. In particular, between two adjacent chains, there are a number
of disjoint regions. The point location process begins with the root node of the complete binary
tree. When visiting a node, the query point is compared with the node, hence, the associated chain,
to decide on which side of the chain the query point lies. Each chain comparison takes O(log n)

time, and the total number of nodes visited is O(log m). The search on the binary tree will lead to
two adjacent chains, and, hence, identify a region that contains the point. Thus, the query time is
O(log m log n) = O(log2 n). Unlike the slab method in which each edge may be stored as many as
O(n) times, resulting in O(n2) space, it can be shown that with an appropriate chain assignment
scheme, each edge in the planar subdivision is stored only once. Thus, the space requirement is
O(n). For example, in Figure 2.13, the edges shared by the root chain C4 and its descendant chains
are assigned to the root chain; in general, any edge shared by two nodes on the same root-to-leaf
path will be assigned to the node that is an ancestor of the other node. The chain decomposition
scheme gives rise to an (O(n log n), O(n), O(log2 n)) algorithm. The binary search on the chains
is not efficient enough. Recall that after each chain comparison, we will move down the binary
search tree to perform the next chain comparison and start over another binary search on the same
y-coordinate of the query point to find an edge of the chain, against which a comparison is made to
decide if the point lies to the left or right of the chain. A more efficient scheme is to be able to perform
a binary search of the y-coordinate at the root node and to spend only O(1) time per node as we
go down the chain tree, shaving off an O(log n) factor from the query time. This scheme is similar
to the ones adopted by Chazelle and Guibas [37,90] in fractional cascading search paradigm and by
Willard [37] in his range tree-search method. With the linear time algorithm for triangulating a simple
polygon (cf. Section 1.5), we conclude with the following optimal search structure for planar point
location.

THEOREM 2.5 Given a planar subdivision of n vertices, one can preprocess the subdivision in linear
time and space such that each point location query can be answered in O(log n) time.
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The point location problem in arrangements of hyperplanes is also of significant interest. See,
e.g., [30]. Dynamic versions of the point location problem, where the underlying planar subdivision
is subject to changes (insertions and deletions of vertices or edges), have also been investigated.
See [34] for a survey of dynamic computational geometry.

2.6 Path Planning

This class of problems is mostly cast in the following setting. Given is a set of obstacles O, an object,
called robot, and an initial and final position, called source and destination, respectively. We wish
to find a path for the robot to move from the source to the destination avoiding all the obstacles.
This problem arises in several contexts. For instance, in robotics this is referred to as the piano
movers’ problem or collision avoidance problem, and in VLSI design this is the routing problem for
two-terminal nets. In most applications, we are searching for a collision avoidance path that has
the shortest length, where the distance measure is based on the Euclidean or L1-metric. For more
information regarding motion planning see, e.g., [11,94].

2.6.1 Shortest Paths in Two Dimensions

In two dimensions, the Euclidean shortest path problem in which the robot is a point, and the
obstacles are simple polygons, is well studied. A most fundamental approach is by using the notion
of the visibility graph. Since the shortest path must make turns at polygonal vertices, it is sufficient to
construct a graph whose vertices include the vertices of the polygonal obstacles, the source and the
destination, and whose edges are determined by vertices that are mutually visible, i.e., the segment
connecting the two vertices does not intersect the interior of any obstacle. Once the visibility graph is
constructed with edge weight equal to the Euclidean distance between the two vertices, one can then
apply the Dijkstra’s shortest path algorithms [90] to find the shortest path between the source and
destination. The Euclidean shortest path between two points is referred to as the geodesic path and
the distance as the geodesic distance. The visibility graph for a set of polygonal obstacles with a total
of n vertices can be computed trivially in O(n3) time. The computation of the visibility graph is the
dominating factor for the complexity of any visibility graph-based shortest path algorithm. Research
results aiming at more efficient algorithms for computing the visibility graph and the geodesic path
in time proportional to the size of the graph have been obtained. For example, in [89] Pocchiola and
Vetger gave an optimal output-sensitive algorithm that runs in O(F + n log n) time and O(n) space
for computing the visibility graph, where F denotes the number of edges in the graph.

Mitchell [74] used the continuous Dijkstra wavefront approach to the problem for general polyg-
onal domain of n obstacle vertices and obtained an O(n3/2+ε)-time algorithm. He constructed the
shortest path map that partitions the plane into regions such that all points q that lie in the same
region have the same vertex sequence in the shortest path from the given source to q. The shortest
path map takes O(n) space and enables us to perform the shortest path queries, i.e., find the shortest
path from the given source to any query points, in O(log n) time. Hershberger and Suri [54] on
the other hand used plane subdivision approach and presented an O(n log2 n)-time and O(n log n)-
space algorithm to compute the shortest path map of a given source point. They later improved the
time bound to O(n log n). It remains an open problem if there exists an algorithm for finding the
Eucliedan shortest path in a general polygonal domain of h obstacles and n vertices in O(n + h log h)

time and O(n) space. If the source-destination path is confined in a simple polygon with n vertices,
the shortest path can be found in O(n) time [37].

In the context of VLSI routing, one is mostly interested in rectilinear paths (L1-metric) whose
edges are either horizontal or vertical. As the paths are restricted to be rectilinear, the shortest path
problem can be solved more easily. Lee et al. [68] gave a survey on this topic.
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In a two-layer routing model, the number of segments in a rectilinear path reflects the number of
vias, where the wire segments change layers, which is a factor that governs the fabrication cost. In
robotics, a straight-line motion is not as costly as making turns. Thus, the number of segments (or
turns) has also become an objective function. This motivates the study of the problem of finding a
path with the least number of segments, called the minimum link path problem [76].

These two cost measures, length and number of links, are in conflict with each other. That is, the
shortest path may have far too many links, whereas a minimum link path may be arbitrarily long
compared with the shortest path. A path that is optimal in both criteria is called the smallest path.
In fact it can be easily shown that in a general polygonal domain, the smallest path does not exist.
However, the smallest rectilinear path in a simple rectilinear polygon exists, and can be found in linear
time. Instead of optimizing both measures simultaneously one can either seek a path that optimizes
a linear function of both length and the number of links, known as the combined metric [104], or
optimizes them in a lexicographical order. For example, we optimize the length first, and then the
number of links, i.e., among those paths that have the same shortest length, find one whose number
of links is the smallest and vice versa. In the rectilinear case see, e.g., [104]. Mitchell [76] gave a
comprehensive treatment of the geometric shortest path and optimization problems.

A generalization of the collision avoidance problem is to allow collision with a cost. Suppose each
obstacle has a weight which represents the cost if the obstacle is penetrated. Lee et al. [68] studied
this problem in the rectilinear case. They showed that the shortest rectilinear path between two
given points in the presence of weighted rectilinear polygons can be found in O(n log3/2 n) time and
space. Chen et al. [31] showed that a data structure can be constructed in O(n log3/2 n) time and
O(n log n) space that enables one to find the shortest path from a given source to any query point in
O(log n +H) time, where H is the number of links in the path. Another generalization is to include
in the set of obstacles some subset F ⊂ O of obstacles, whose vertices are forbidden for the solution
path to make turns. Of course, when the weight of obstacles is set to be ∞, or the forbidden set
F = ∅, these generalizations reduce to the ordinary collision avoidance problem.

2.6.2 Shortest Paths in Three Dimensions

The Euclidean shortest path problem between two points in a three-dimensional polyhedral envi-
ronment turns out to be much harder than its two-dimensional counterpart. Consider a convex
polyhedron P with n vertices in three dimensions and two points s and d on the surface of P. The
shortest path from s to d on the surface will cross a sequence of edges, denoted by ξ(s, d). ξ(s, d) is
called the shortest path edge sequence induced by s and d and consists of distinct edges. For given s
and d, the shortest path from s to d is not unique. However, ξ(s, d) is unique. If ξ(s, d) is known, the
shortest path between s and d can be computed by a planar unfolding procedure so that these faces
crossed by the path lie in a common plane and the path becomes a straight-line segment.

The shortest paths on the surface of a convex polyhedron P possess the following topological
properties: (1) they do not pass through the vertices of P and do not cross an edge of P more than
once, (2) they do not intersect themselves, i.e., they must be simple, and (3) except for the case
of the two shortest paths sharing a common subpath, they intersect transversely in at most one
point, i.e., they cross each other. If the shortest paths are grouped into equivalent classes according
to the sequences of edges that they cross, then the number of such equivalent classes denoted by
|ξ(P)| is θ(n4), where n is the number of vertices of P. These equivalent classes can be computed in
O(|ξ(P)|n3 log n) time. Chen and Han [32] gave an O(n2) algorithm for finding the shortest path
between a fixed source s and any destination d, where n is the number of vertices and edges of the
polyhedron, which may or may not be convex. If s and d lie on the surface of two different polyhedra,
O(NO(k)) time suffices for computing the shortest path between them amidst a set of k polyhedra,
where N denotes the total number of vertices of these obstacles.
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FIGURE 2.14 The possible shortest path edge sequence between points s and d.

The crux of the problem lies in the fact that the number of possible edge sequences may be
exponential in the number of obstacles, if s and d lie on the surface of different polyhedra. It was
established that the problem of determining the shortest path edge sequence is indeed NP-hard [11].
Figure 2.14 shows an example of the possible shortest path edge sequence induced by s and d in the
presence of three convex polyhedra. Approximation algorithms for this problem can be found in,
e.g., Choi et al. [35] and a recent article [76] for a survey.

2.7 Searching

This class of problems is cast in the form of query-answering. Given a collection of objects, with
preprocessing allowed, one is to find the objects that satisfy the queries. The problem can be static
or dynamic, depending on the fact that if the database to be searched is allowed to change over the
course of query-answering sessions, and it is studied mostly in two modes, count mode and report
mode. In the former case, only the number of objects satisfying the query is to be answered, whereas
in the latter, the actual identity of the objects is to be reported. In the report mode, the query time
of the algorithm consists of two components, the search time and the retrieval time, and expressed
as QA(n) = O(f (n) + F), where n denotes the size of the database, f (n) a function of n, and F the
size of output. Sometimes we may need to perform some semigroup operations to those objects that
satisfy the query. For instance, we may have weights w(v) assigned to each object v, and we want to
compute Σw(v) for all v ∩ q �= ∅. This is referred to as semigroup range searching. The semigroup
range searching problem is the most general form: if the semigroup operation is set union, we get
report-mode range searching problem and if the semigroup operation is just addition (of uniform
weight), we have the count-mode range searching problem. We will not discuss the semigroup range
searching here. It is obvious that algorithms that handle the report-mode queries can also handle the
count-mode queries (F is the answer). It seems natural to expect that the algorithms for count-mode
queries would be more efficient (in terms of the order of magnitude of the space required and query
time), as they need not search for the objects. However, it was argued that in the report-mode range
searching, one could take advantage of the fact that since reporting takes time, the more to report, the
sloppier the search can be. For example, if we were to know that the ratio n/F is O(1), we could use
a sequential search on a linear list. This notion is known as the filtering search [90]. In essence, more
objects than necessary are identified by the search mechanism, followed by a filtering process leaving
out unwanted objects. As indicated below, the count-mode range searching problem is harder than
the report-mode counterpart.
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2.7.1 Range Searching

This is a fundamental problem in database applications. We will discuss this problem and the
algorithm in the two-dimensional space. The generalization to higher dimensions is straightforward
using a known technique, called multidimensional divide-and-conquer [90]. Given is a set of n
points in the plane, and the ranges are specified by a product (l1, u1)× (l2, u2). We would like to find
points p = (x, y) such that l1 ≤ x ≤ u1 and l2 ≤ y ≤ u2. Intuitively we want to find those points
that lie inside a query rectangle specified in the range. This is called orthogonal range searching, as
opposed to other kinds of range searching problems discussed below, e.g., half-space range searching,
and simplex range searching, etc. Unless otherwise specified, a range refers to an orthogonal range.
We discuss the static case, as this belongs to the class of decomposable searching problems, the
dynamization transformation techniques can be applied. We note that the range tree structure
mentioned below can be made dynamic by using a weight-balanced tree, called BB(α) tree.

For count-mode queries, it can be solved by using the locus method as follows. In two dimensions,
we can divide the plane into O(n2) cells by drawing a horizontal and a vertical line through each
point. The answer to the query q, i.e., find the number of points dominated by q (those points
whose x- and y-coordinates are both no greater than those of q), can be found by locating the cell
containing q. Let it be denoted by Dom(q). Thus, the answer to the count-mode range queries can
be obtained by some simple arithmetic operations of Dom(qi) for the four corners, q1, q2, q3, q4,
of the query rectangle. Let q4 be the northeast corner and q2 be the southwest corner. The answer
will be Dom(q4) − Dom(q1) − Dom(q3) + Dom(q2). Thus, in �k, we have Q(k, n) = O(k log n),
S(k, n) = P(k, n) = O(nk). To reduce space requirement at the expense of query time has been a
goal of further research on this topic. Bentley introduced a data structure called the range trees [90].
Using this structure the following results were obtained: for k ≥ 2, Q(k, n) = O(logk−1 n), S(k, n) =
P(k, n) = O(n logk−1 n). See [1,4] for more recent results.

For report-mode queries, by using filtering search technique the space requirement can be further
reduced by a log log n factor. If the range satisfies additional conditions, e.g., grounded in one of the
coordinates, say l1 = 0, or the aspect ratio of the intervals specifying the range is fixed, less space
is needed. For instance, in two dimensions, the space required is linear (a saving of log n/ log log n
factor) for these two cases. By using the so-called functional approach to data structures, Chazelle
developed a compression scheme to reduce further the space requirement. Thus, in k-dimensions,
k ≥ 2, for the count-mode range queries, we have Q(k, n) = O(logk−1 n) and S(k, n) = O(n logk−2 n)

and for report-mode range queries Q(k, n) = O(logk−1 n + F), and S(k, n) = O(n logk−2+ε n) for
some 0 < ε < 1 [1,4].

As regards the lower bound of range searching in terms of space–time trade-offs, Chazelle [23]
showed that in k-dimensions, if the query time is O(logc n+F) for any constant c, the space required
is Ω(n(log n/ log log n)k−1) for the pointer machine models and the bound is tight for any c ≥ 1, if
k = 2, and any c ≥ k − 1 + ε (for any ε > 0), if k > 2. See also [1,4] for more lower-bound results
related to orthogonal range searching problems.

2.7.2 Other Range Searching Problems

There are other range searching problems called simplex range searching problem and the half-
space range searching problem that have been well studied. A simplex range in �k is a range whose
boundary is specified by k + 1 hyperplanes. In two dimensions it is a triangle. For this problem,
there is a lower bound on the query time for simplex range queries: let m denote the space required,
Q(k, n) = Ω((n/ log n)m1/k), k > 2, and Q(2, n) = Ω(n/

√
m) [37].

The report-mode half-space range searching problem in the plane can be solved optimally in
Q(n) = O(log n + F) time and S(n) = O(n) space, using geometric duality transform [37]. But
this method does not generalize to higher dimensions. In [6], Agarwal and Matoušek obtained
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a general result for this problem: for n ≤ m ≤ n�k/2�, with O(m1+ε) space and preprocessing,
Q(k, n) = O((n/m1/�k/2�) log n + F). As half-space range searching problem is also decomposable,
standard dynamization techniques can be applied.

A general method for simplex range searching is to use the notion of partition tree. The search
space is partitioned in a hierarchical manner using cutting hyperplanes [25] and a search structure
is built in a tree structure. Using a cutting theorem of hyperplanes, Matoušek [72] showed that
for k-dimensions, there is a linear space search structure for the simplex range searching problem
with query time O(n1−1/k), which is optimal in two dimensions and within O(log n) factor of being
optimal for k > 2. For more detailed information regarding geometric range searching, see [72].

The above discussion is restricted to the case in which the database is a collection of points.
One may consider also other kinds of objects, such as line segments, rectangles, triangles, etc.,
whatever applications may take. The inverse of the orthogonal range searching problem is that of
point enclosure searching problem. Consider a collection of isothetic rectangles. The point enclosure
searching is to find all rectangles that contain the given query point q. We can cast these problems
as intersection searching problem, i.e., given a set S of objects, and a query object q, find a subset
F of S such that for any f ∈ F , f ∩ q �= ∅. We have then the rectangle enclosure searching
problem, rectangle containment problem, segment intersection searching problem, etc. Janardan
and Lopez [59] generalized the intersection searching in the following manner. The database is a
collection of groups of objects, and the problem is to find all the groups of objects intersecting a
query object. A group is considered to be intersecting the query object if any object in the group
intersects the query object. When each group has only one object, this reduces to the ordinary
searching problems.

2.8 Intersection

This class of problems arises in, for example, architectural design, computer graphics, etc. In an archi-
tectural design, no two objects can share a common region. In computer graphics, the well-known
hidden-line or hidden-surface elimination problems [40] are examples of intersection problems.
This class encompasses two types of problems, intersection detection and intersection computation.

2.8.1 Intersection Detection

The intersection detection problem is of the form: Given a set of objects, do any two intersect? For
instance, given n line segments in the plane, are there two that intersect? The intersection detection
problem has a lower bound of Ω(n log n) [90].

In two dimensions, the problem of detecting if two polygons of r and b vertices intersect was easily
solved in O(n log n) time, where n = r + b using the red–blue segment intersection algorithm [29].
However, this problem can be reduced in linear time to the problem of detecting the self-intersection
of a polygonal curve. The latter problem is known as the simplicity test and can be solved optimally
in linear time by Chazelle’s linear time triangulation algorithm (cf. Section 1.5). If the two polygons
are convex, then O(log n) suffices in detecting if they intersect [26]. Note that although detecting
if two convex polygons intersect can be done in logarithmic time, detecting if the boundary of the
two convex polygons intersect requires Ω(n) time [26]. Mount [77] investigated the intersection
detection of two simple polygons and computed a separator of m links in O(m log2 n) time if they
do not intersect.

In three dimensions, detecting if two convex polyhedra intersect can be solved in linear time [26]
by using a hierarchical representation of the convex polyhedron or by formulating it as a linear
programming problem in three variables.
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2.8.2 Intersection Reporting/Counting

One of the simplest of such intersecting reporting problems is that of reporting pairwise intersection,
e.g., intersecting pairs of line segments in the plane. An earlier result due to Bentley and Ottmann [90]
used the plane-sweep technique that takes O((n +F) log n) time, where F is the output size. This is
based on the observation that the line segments intersected by a vertical sweep-line can be ordered
according to the y-coordinates of their intersection with the sweep-line, and the sweep-line status
can be maintained in logarithmic time per event point, which is either an endpoint of a line segment
or the intersection of two line segments. It is not difficult to see that the lower bound for this problem
is Ω(n log n + F); thus, the above algorithm is O(log n) factor from the optimal. This segment
intersection reporting problem has been solved optimally by Chazelle and Edelsbrunner [27], who
used several important algorithm design and data structuring techniques, as well as some crucial
combinatorial analysis. In contrast to this asymptotically time-optimal deterministic algorithm, a
simpler randomized algorithm was obtained [37] for this problem which is both time- and space-
optimal. That is, it requires only O(n) space (instead of O(n +F) as reported in [27]). Balaban [16]
gave a deterministic algorithm that solves this problem optimally both in time and space.

On a separate front, the problem of finding intersecting pairs of segments from two different sets
was considered. This is called bichromatic line segment intersection problem.

Chazelle et al. [29] used hereditary segment trees structure and fractional cascading and solved both
segment intersection reporting and counting problems optimally in O(n log n) time and O(n) space.
(The termF should be included in case of reporting.) If the two sets of line segments form connected
subdivisions, then merging or overlaying these two subdivisions can be computed in O(n +F) [50].
Boissonnat and Snoeyink [20] gave yet another optimal algorithm for the bichromatic line segment
intersection problem, taking into account the notion of algebraic degree proposed by Liotta et al. [69].

The rectangle intersection reporting problem arises in the design of VLSI, in which each rect-
angle is used to model a certain circuitry component. These rectangles are isothetic, i.e., their
sides are all parallel to the coordinate axes. This is a well-studied classical problem, and opti-
mal algorithms (O(n log n + F) time) have been reported. See [4] for more information. The
k-dimensional hyperrectangle intersection reporting (respectively, counting) problem can be solved
in O(nk−2 log n+F) time and O(n) space (respectively, in time O(nk−1 log n)and space O(nk−2 log n)).
Gupta et al. [53] gave an O(n log n log log n + F log log n)-time and linear-space algorithm for the
rectangle enclosure reporting problem that calls for finding all the enclosing pairs of rectangles.

2.8.3 Intersection Computation

Computing the actual intersection is a basic problem, whose efficient solutions often lead to better
algorithms for many other problems.

Consider the problem of computing the common intersection of half-planes by divide-and-
conquer. Efficient computation of the intersection of the two convex polygons is required during the
merge step. The intersection of the two convex polygons can be solved very efficiently by plane-sweep
in linear time, taking advantage of the fact that the edges of the input polygons are ordered. Observe
that in each vertical strip defined by the two consecutive sweep-lines, we only need to compute the
intersection of two trapezoids, one derived from each polygon [90].

The problem of the intersecting two convex polyhedra was first studied by Muller and Preparata
[90], who gave an O(n log n) algorithm by reducing the problem to the problems of intersection
detection and convex hull computation. Following this result one can easily derive an O(n log2 n)

algorithm for computing the common intersection of n half-spaces in three dimensions by divide-
and-conquer. However, using geometric duality and the concept of separating plane, Preparata
and Muller [90] obtained an O(n log n) algorithm for computing the common intersection of n
half-spaces, which is asymptotically optimal. There appears to be a difference in the approach to
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solving the common intersection problem of half-spaces in two and three dimensions. In the latter, we
resorted to geometric duality instead of divide-and-conquer. This inconsistency was later resolved.
Chazelle [24] combined the hierarchical representation of convex polyhedra, geometric duality, and
other ingenious techniques to obtain a linear time algorithm for computing the intersection of two
convex polyhedra. From this result, several problems can be solved optimally: (1) the common
intersection of half-spaces in three dimensions can now be solved by divide-and-conquer optimally,
(2) the merging of two Voronoi diagrams in the plane can be done in linear time by observing
the relationship between the Voronoi diagram in two dimensions and the convex hull in three
dimensions (cf. Section 1.2), and (3) the medial axis of a simple polygon or the Voronoi diagram of
vertices of a convex polygon [5] can be solved in linear time.

2.9 Research Issues and Summary

We have covered in this chapter a number of topics in computational geometry, including proximity,
optimization, planar point location, geometric matching, path planning, searching, and intersection.
These topics discussed here and in the previous chapter are not meant to be exhaustive. New topics
arise as the field continues to flourish.

In Section 2.3, we discussed the problems of the smallest enclosing circle and the largest empty
circle. These are the two extremes: either the circle is empty or it contains all the points. The
problem of finding the smallest (respectively, largest) circle containing at least (respectively, at most)
k points for some integer 0 ≤ k ≤ n is also a problem of interest. Moreover, the shape of the object
is not limited to circles. A number of open problems remain. Given two points s and t in a simple
polygon, is it NP-complete to decide whether there exists a path with at most k links and of length
at most L? What is the complexity of the shortest k-pair noncrossing path problem discussed in
Section 2.4? Does there exist an algorithm for finding the Eucliedan shortest path in a general
polygonal demain of h obstacles and n vertices in O(n + h log h) time and O(n) space? How fast
can one solve the geodesic minimum matching problem for 2m points in the presence of polygonal
obstacles? Can one solve the largest empty restricted rectangle problem for a rectilinear polygon in
O(n log n) time? The best known algorithm to date runs in O(n log2 n) time [36]. Is Ω(n log n) a
lower bound of the minimum-width annulus problem? Can the technique used in [51] be applied to
the polygonal case to yield an O(n log n)-time algorithm for the minimum-width annulus problem?
In [76] Mitchell listed a few open problems worth studying. Although the minimum spanning tree
problem for general graph with m edges and n vertices can be solved optimally in O(T ∗(m, n))

time, where T ∗ is the minimum number of edge-weight comparisons and T ∗(m, n) = Ω(m) and
T ∗(m, n) = O(m · α(m, n)), where α(m, n) is the inverse of Ackermann’s function [88], an optimal
algorithm for the Euclidean minimum spanning tree is still open. The problem of finding a spanning
tree of bounded cost and bounded diameter is known to be NP-complete [96], but there is no known
approximation algorithm to date.

Researchers in computational geometry have begun to address the issues concerning the actual
running times of the algorithms and their robustness when the computations in their implementa-
tions are not exact [106]. It is understood that the real-RAM computation model with an implicit
infinite-precision arithmetic is unrealistic in practice. In addition to the robustness issue concern-
ing the accuracy of the output of an algorithm, one needs to find a new cost measure to evaluate
the efficiency of an algorithm. In the infinite-precision model, the asymptotic time complexity was
accepted as an adequate cost measure. However, when the input data have a finite-precision repre-
sentation and computation time varies with the precision required, an alternative cost measure is
warranted. The notion of the degree of a geometric algorithm could be an important cost measure
for comparing the efficiency of the algorithms when they are actually implemented [69]. For exam-
ple, Chen et al. [33] showed that the Voronoi diagram of a set of arbitrarily oriented segments can
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be constructed by a plane-sweep algorithm with degree 14 for certain regular k-gon metrics. This
notion of the degree of robustness could play a similar role as the asymptotic time complexity has in
the past for the real-RAM computation model.

On the applied side, there are efforts put into development of geometric software. A project known
as the Computational Geometry Algorithms Library (CGAL) project (http://www.cgal.org/) [49] is
an ongoing collaborative effort of researchers in Europe to organize a system library containing
primitive geometric abstract data types useful for geometric algorithm developers. This is concur-
rent with the Library of Efficient Data Types and Algorithms (LEDA) project [73] which was initiated
at the Max-Planck-Institut für Informatik, Saarbrücken, Germany, and now maintained by Algo-
rithmic Solutions Software GmbH (http://www.algorithmic-solutions.com/leda/about/index.htm.)
LEDA is a C++ class library for efficient data types and algorithms, and provides algorithmic
in-depth knowledge in geometric computing, combinatorial optimization, etc. In Asia, a web-
collaboratory project was initiated at the Institute of Information Science and the Research Center
for Information Technology Innovation, Academia Sinica, from which a geometric algorithm
visualization and debugging system, GeoBuilder, for 2D and 3D geometric computing has been devel-
oped (http://webcollab.iis.sinica.edu.tw/Components/GeoBuilder/). This system facilitates geomet-
ric algorithmic researchers in not only testing their ideas and demonstrating their findings, but also
teaching algorithm design in the classroom. GeoBuilder is embedded into a knowledge portal [64],
called OpenCPS (Open Computational Problem Solving) (http://www.opencps.org/), as a practice
platform for a course on geometric computing and algorithm visualization. The GeoBuilder system
possesses three important features: First, it is a platform-independent software system based on
Java’s promise of portability, and can be invoked by Sun’s Java Web Start technology in any browser-
enabled environment. Second, it has the collaboration capability for multiple users to concurrently
develop programs, manipulate geometric objects and control the camera. Finally, its 3D geometric
drawing bean provides an optional function that can automatically position the camera to track 3D
objects during algorithm visualization [102]. GeoBuilder develops its rich client platform based on
Eclipse RCP and has already built in certain functionalities such as remote addition, deletion, and
saving of files as well as remote compiling, and execution of LEDA C/C++ programs, etc. based on
a multipage editor. Other projects related to the efforts of building geometric software or problem-
solving environment, include GeoLab, developed at the Institute of Computing at UNICAMP
(State University of Campinas) as a programming environment for implementation, testing, and
animation of geometric algorithms (http://www.dcc.unicamp.br/∼rezende/GeoLab.htm), and XYZ
GeoBench, developed at Zürich, as a programming environment on Macintosh computers for geo-
metric algorithms, providing an interactive user interface similar to a drawing program which can
be used to create and manipulate geometric objects such as points, line segments, polygons, etc.
(http://www.schorn.ch/geobench/XYZGeoBench.html).

2.10 Further Information

Additional references about various variations of closest pair problems can be found in [17,21,60,95].
For additional results concerning the Voronoi diagrams in higher dimensions and the duality trans-
formation see [15]. For more information about Voronoi diagrams for sites other than points, in
various distance functions or norms, see [10,19,81,85,87,93]. A recent textbook by de Berg et al. [37]
contains a very nice treatment of computational geometry in general. The book by Narasimhan and
Smid [79] covers topics pertaining to geometric spanner networks. More information can be found in
[52,63,93,105]. The reader who is interested in parallel computational geometry is referred to [13].
For current research activities and results, the reader may consult the Proceedings of the Annual
ACM Symposium on Computational Geometry, Proceedings of the Annual Canadian Conference
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on Computational Geometry and the following three journals: Discrete & Computational Geome-
try, International Journal of Computational Geometry & Applications, and Computational Geometry:
Theory and Applications. The following site http://compgeom.cs.uiuc.edu/∼jeffe/compgeom/
biblios.html contains close to 14,000 entries of bibliography in this field.

Those who are interested in the implementations or would like to have more information about
available software can consult http://www.cgal.org/.

The following WWW page on Geometry in Action maintained by David Eppstein at http://www.
ics.uci.edu/∼eppstein/geom.html and the Computational Geometry Page by J. Erickson at http://
compgeom.cs.uiuc.edu/∼jeffe/compgeom give a comprehensive description of research activities of
computational geometry.

Defining Terms

ANSI: American National Standards Institute.
Bisector: A bisector of two elements ei and ej is defined to be the locus of points equidistant from
both ei and ej. That is, {p|d(p, ei) = d(p, ej)}. For instance, if ei and ej are two points in the Euclidean
plane, the bisector of ei and ej is the perpendicular bisector to the line segment ei, ej.

Cutting theorem: This theorem [25] states that for any set H of n hyperplanes in �k, and any
parameter r, 1 ≤ r ≤ n, there always exists a (1/r)-cutting of size O(rk). In two dimensions, a (1/r)-
cutting of size s is a partition of the plane into s disjoint triangles, some of which are unbounded,
such that no triangle in the partition intersects more than n/r lines inH. In �k, triangles are replaced
by simplices. Such a cutting can be computed in O(nrk−1) time.
Decomposable searching problems: A searching problem with query Q is decomposable if there
exists an efficiently computable associative, and commutative binary operator @ satisfying the
condition: Q(x, A ∪ B) = @(Q(x, A), Q(x, B)). In other words, one can decompose the searched
domain into subsets, find answers to the query from these subsets, and combine these answers to
form the solution to the original problem.
Degree of an algorithm or problem: Assume that each input variable is of arithmetic degree 1 and
that the arithmetic degree of a polynomial is the common arithmetic degree of its monomials, whose
degree is defined to be the sum of the arithmetic degrees of its variables. An algorithm has degree
d, if its test computation involves evaluation of multivariate polynomials of arithmetic degree d.
A problem has degree d, if any algorithm that solves it has degree at least d [69].
Diameter of a graph: The distance between two vertices u and v in a graph is the sum of weights of
the edges of the shortest path between them. (For an unweighted graph, it is the number of edges
of the shortest path.) The diameter of a graph is the maximum among all the distances between all
possible pairs of vertices.
Dynamic versus static: This refers to cases when the underlying problem domain can be subject to
updates, i.e., insertions and deletions. If no updates are permitted, the problem or data structure is
said to be static; otherwise, it is said to be dynamic.
Dynamization transformation: A data structuring technique can transform a static data structure
into a dynamic one. In so doing, the performance of the dynamic structure will exhibit certain
space-time trade-offs. See, e.g., [63,90] for more references.
Geometric duality: A transform between a point and a hyperplane in �k, that preserves incidence
and order relation. For a point p = (μ1, μ2, . . . , μk), its dual D(p) is a hyperplane denoted by
xk = Σk−1

j=1 μjxj − μk; for a hyperplane H : xk = Σk−1
j=1 μjxj + μk, its dual D(H) is a point denoted by

(μ1, μ2, . . . , −μk). There are other duality transformations. What is described in the text is called
the paraboloid transform. See [37,44,90] for more information.
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Height-balanced binary search tree: A data structure used to support membership, insert/delete
operations each in time logarithmic in the size of the tree. A typical example is the AVL tree or
red-black tree.
Orthogonally convex rectilinear polygon: A rectilinear polygon P is orthogonally convex if every
horizontal or vertical segment connecting two points in P lies totally within P.
Priority queue: A data structure used to support insert and delete operations in time logarithmic in
the size of the queue. The elements in the queue are arranged so that the element of the minimum
priority is always at one end of the queue, readily available for delete operation. Deletions only take
place at that end of the queue. Each delete operation can be done in constant time. However, since
restoring the above property after each deletion takes logarithmic time, we often say that each delete
operation takes logarithmic time. A heap is a well-known priority queue.
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