Space Efficient Convex Hull Algorithms

What is Convex Hull ?

Let S={s[o],s[1],...... ,s[n-1]3
be a set of n distinct points
in the Euclidean space.
The convex hull of S is the
minimal convex region
that contains every point
of S.

So the convex hull of Sis a
convex polygon whose
vertices are points of S.

Various Algorithms in 2D

Easy algorithm — O(n3)

Jarvi's March — O(n?)

Preparata’s and Shamos'’s Quick Hull — O(n?)

Graham'’s Scan — O(n logn) ['72]

Kirkpatrick’s and Seidel’s algorithm — O(n logh) ['83]
Chan’s output sensitive algorithm — O(n logh)['96]
Incremental algorithm — O(n2) but can be reduced to O(n
logn)

Divide and Conquer algorithm — O(n logn)

Space Efficient Algorithms

An algorithm is space efficient if its implementation requires
little or no extra memory except to store the input

For convex hull, these algorithms take the input points as an
array and output the vertices of the convex hull in the same
array

The additional working storage is kept to a minimum

Two types

In-place - input array and O(1) extra memory
Insitu - inputarray and O(log n) extra memory

Why Space Efficient Algorithms ?

They allow for the processing of larger data sets.

They don't need to store input and output points separately
which requires storing 2n points.

They typically avoid virtual memory paging and external 1/O
bottlenecks.

They exhibit greater locality of reference so it is practical for
implementation in modern computer architectures with
memory hierarchies.

In-place O(n logn) algorithm

Based on Graham’s
algorithm

Uses in-place sorting
algorithm

Uses the concept of upper
and lower convex hull

It determines the upper hull
first and then the lower hull
The convex hull vertices of
both hulls are stored in the
same array where the input
resides

(GRAHAM-INPLACE-ScaN(S.n.d)

I: INPLACE-SORT(S,n d]

2he1

Yfori=1..n-1do

4 EMH;Hmdmhwrm =2,k -1],5]]) do

5 h~h-1{poptop element from the stack |
6 swap S|i| < S[h]

hehtl
& return

In-place O(n logn) algorithm

S

Compute upper hull
a S[1] S[2]......5[h-2] b S[h] S[h+1]S[n-1]

Move a

b a S[h] S[h+1] S[n-1]

Compute lower hull

S[0] S[1]......S[h + h’-2]

Output hull

Optimized In-place O(n logn)
algorithm

Find the two extreme pointsaandb

Partition the input array into two parts

One part contains vertices that can only appear on the upper
hull

Same is true for lower hull

Each point (except a and b) is examined only one call of
Graham'’s algorithm

Optimized In-place O(n logn)
algorithm

S
Compute upper hull

Upper hull candidates | Lowe hull candidates

Compute upper hull

a Upper Hull b | Lower hull candidates

Move a shift

Upper Hull | b a Lower hull candidates |

Compute lower hull

Convex hull |
Output hull

In-place O(n logh) algorithm

Based on Chan’s algorithm

It runs in rounds and during the it"
round it finds the first g;=22 points on
the convex hull.

During round i, it partitions the input
points into n/g, groups of size g, and
compute the convex hull of each group.
The vertices are output in clockwise
order beginning with the leftmost.
Each successive vertex is obtained by
finding tangents from the previous
vertex to each of the n/g; convex hull.

In-place O(n logh) algorithm

Complexity : O(n logh)

We want a space efficient implementation

n/g; groups of size g, are build by taking groups of
consecutive elementsin S

Compute hull using Graham-Inplace-Hull

Two questions

When tangent finding started where to put the founded
hull vertices ?

To find the tangent from a point to a group how to find
the size of the group’s hull ?

Question-1 Solution

Store the convex hull vertices at the beginning of S in the
order they are found.

When finding the kt" vertex swap it with S[k-1]
But due to this two changes occur.

Convex hull of the 15t group is changed

Convex hull of the group containing the newly found

vertex is changed
What to do 77

Re-compute their convex hulls.

Question-1 Solution

But what is the effect of the re-computations in the overall
running time ?
During one step at round i that has at most g, steps

One convex hull vertex is found.

Two re-computation is done that takes O(g; logg))

Total cost of re-computation is O(g;? logg))

Total cost of round i is O(g;? logg, + n logg,) which is
bounded by O(n logg,).
So overall complexity O(n logh).

Question-2 Solution

We need keep track the size of the convex hull of each group
without storing them.

How it can be done ?? Using Reordering trick.

G[o],G[1]........ G[g;-1] denotes the elements of group G.

The sign of G[j] is +1 if G[j] < G[j+1] and — otherwise [where
< denotes lexicographic comparison].

So first elements G[o]....G[h-2] of convex hull of G form a
sequence of 12 or more +'s followed by o or more —'s.

Other space efficient algorithm

Chan, Snoeyink and Yap’s algorithm
Recursive

Partition the problem into two roughly equal size
partitions

Finds a point p on the convex hull that leaves roughly the
same no of vertices on each side.

O(n logh) algorithm which can be implemented using O(
logn) additional storage for median finding.

So in-situ algorithm.

Other space efficient algorithm

Kirkpatrick and Seidel’s algorithm
Recursive

Partition the problem into two roughly equal size
partitions

Finds an edge of the upper hull that leaves approximately
the same no of points on each side.

O(n logh) algorithm which can be implemented using O(
logn) additional storage

So in-situ algorithm.

Convex Hull of a Polygonal Line

The polygon is given instead of the points
So no need to sort the input points.
Algorithms

Sklansky ['72]

McCallum, Avis ['79]

Lee ['83]

Graham, Yao ['83]
Bhattacharya, ElGindy ['84]
Preparata and Shamos ['85]
Shin, Woo ['86]

Melkman ['87]

Lee’s Algorithm

Works for closed polygonal line

A lobe of a polygon P is a region exterior to P, which is
bounded by P and one line segment L between two vertices
of the convex hull of P.

After any iteration the stack contains the convex hull of all
vertices that have been examined, except vertices which are
known to be inthe body of a lobe.

Locate they .. and push it on the stack. Then push the next
vertex counterclockwise.

Lee’s Algorithm

Stack contains the blue points . Call the
next vertex as the active vertex.

The line L is formed by the top two vertices
on the stack.

Step-1: If the vertex is not to the left of L

Delete the top element of the stack.

If y..isleft, push the vertex and get the
next one. Compute L. Go back to [1].
If the vertex is to the left of L -

Case-1: In the lobe of the top two vertices
of the stack. \

Ignore the vertex, make the next \

vertex active and go back to [1].

Lee’s Algorithm

Case 2: Notinthe lobe, but inside the B

convex polygon of the stack. N

Ignore the vertex, make the next
vertex active and go back to [1].

Case 3:Is notin yellow or pink region (it's
to the left of both dashed lines).

Push the vertex onto the stack. Compute L
S

L and go back to [1]. \

Terminate wheny_ . Is examined again.

How to make space efficient

Store the stack in the prefix of the array.

The points inside the convex hull are stored in the same
array.

To do this swap is performed instead of assignment during
push and pop operations.

The algorithm produces a permutation of the input and
index h such that

S[1]...S[h] form a convex polygon

S[h+1]....S[n] are inside the convex hull.
Runtime is linear using O(1) extra memory because they, ..
can be found in linear time with O(2) memory.

Melkman’s algorithm

Works for open and closed polygonal line.

It determines and stored those vertices that form the hull for
all vertices considered so far.

When the next vertex is encountered:

If itis inside then ignore.

If it is outside then it becomes a new hull vertex.
It uses deque that has both top and bottom and given by
D ={dpop s diop}
The elements d; are vertices that form a polyline. When d

=d,,,, then D forms a polygon.

top

Melkman’s algorithm

In the Melkman hull algorithm,
after processing vertex P, the
deque D, satisfies:

The polygon D, is the ccw
convex hull H, of the vertices
W, ={P, ..., P} already
processed.
diop = dpoy IS the most recent
vertex processed that was
added to D,.
If P, isinside H,_,, thenD, =
D, ., and no processing.

Melkman’s algorithm

When P, is exterior to H,_,, we change D,_, to produce a
new deque D, by adding P, to both the bottom and top of
the deque and P, will be inside the new polygon defined by
D,.

Oher points already in D,_, may get absorbed into the new
hull H, and they need to be removed before P, is added to
the deque ends.

Vertices are removed from the two ends of D,_, until the
lines from P, to the remaining deque endpoints form
tangentstoH,_,.

Complexity is O(n) because it consists just a series of simple
isLeft () tests.

How to make space efficient

The main problem is how to implement a deque of n
elements in place.

That means use of only the first n cells of the array when n
points have been processed.

This is as hard as stable partitioning.

So techniques for stable partitioning can be adapted here.
Double linked list may be used for constant time deque
operations but extra spaces are needed by the pointers.
So pointers are not stored explicitly but encoded implicitly
via permutations of the input elements.

The scheme is complex so there is a scope to find an efficient
way to provide space efficiency here.

Thanks

	Space Efficient Convex Hull Algorithms
	What is Convex Hull ?
	Various Algorithms in 2D
	Space Efficient Algorithms
	Why Space Efficient Algorithms ?
	In-place O(n logn) algorithm
	In-place O(n logn) algorithm
	Optimized In-place O(n logn) algorithm
	Optimized In-place O(n logn) algorithm
	In-place O(n logh) algorithm
	In-place O(n logh) algorithm
	Question-1 Solution
	Question-1 Solution
	Question-2 Solution
	Other space efficient algorithm
	Other space efficient algorithm
	�Convex Hull of a Polygonal Line�
	Lee’s Algorithm
	Lee’s Algorithm
	Lee’s Algorithm
	How to make space efficient
	Melkman’s algorithm
	Melkman’s algorithm
	Melkman’s algorithm
	How to make space efficient
	Thanks

