6 Discrete Processes in Biology

sively on what causes these geometric designs and patterns in plants, although the
subject has been pursued for over three centuries.?

Fibonacci stumbled unknowingly onto the esoteric realm of 7 through a ques-
tion related to the growth of rabbits (see problem 14). Equation (1) is arguably the
first mathematical idealization of a biological phenomenon phrased in terms of a re-
cursion relation, or in more common terminology, a difference equation.

Leaving aside the mystique of golden rectangles, parastichies, and rabbits, we
find that in more mundane realms, numerous biological events can be idealized by
models in which similar discrete equations are involved. Typically, populations for
which difference equations are suitable are those in which adults die and are totally
replaced by their progeny at fixed intervals (i.e., generations do not overlap). In
such cases, a difference equation might summarize the relationship between popula-
tion density at a given generation and that of preceding generations. Organisms that
undergo abrupt changes or go through a sequence of stages as they mature (i.e.,
have discrete life-cycle stages) are also commonly described by difference equa-
tions.

The goals of this chapter are to demonstrate how equations such as (1) arise in
modeling biological phenomena and to develop the mathematical techniques to solve
the following problem: given particular starting population levels and a recursion re-
lation, predict the population level after an arbitrary number of generations have
elapsed. (It will soon be evident that for a linear equation such as (1), the mathemat-
ical sophistication required is minimal.)

‘To acquire a familiarity with difference equations, we will begin with two
rather elementary examples: cell division and insect growth. A somewhat more elab-
orate problem we then investigate is the propagation of annual plants. This topic will
furnish the opportunity to discuss how a slightly more complex model is derived.
Sections 1.3 and 1.4 will outline the method of solving certain linear difference
equations. As a corollary, the solution of equation (1) and its connection to the
golden mean will emerge.

1.1 BIOLOGICAL MODELS USING DIFFERENCE EQUATIONS
Cell Division

Suppose a population of cells divides synchronously, with each member producing a

daughter cells.? Let us define the number of cells in each generation with a subscript,

that is, M, M,, . . . , M, are respectively the number of cells in the first, second,
. , nth generations. A simple equation relating successive generations is

Mn+l = aMnc (2/‘

2. An excellent summary of the phenomena of phyllotaxis and the numerous theories that
have arisen to explain the observed patterns is given by R. V. Jean (1984). His book contains nu-
merous suggestions for independent research activities and problems related to phyllotaxis. See
also Thompson (1942),

3. Note that for real populations only @ > 0 would make sense; a < 0 is unrealistic, and
a = 0 would be uninteresting.
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Let us suppose that initially there are M, cells. How big will the population be after
n generations? Applying equation (2) recursively results in the following:

M, = a(aM,-,) = a[a(aMn—z)] = ... =g"" M. (3)
Thus, for the nth generation
M, = a"M,. (4)

We have arrived at a result worth remembering: The solution of a simple linear dif-
ference equation involves an expression of the form (some number)”, where n is the
generation number. (This is true in general for linear difference equations.) Note that
the magnitude of a will determine whether the population grows or dwindles with
time. That is,

la] > 1 M, increases over successive generations,
la] <1 M, decreases over successive generations,
a =1 M, is constant.

An Insect Population

Insects generally have more than one stage in their life cycle from progeny to matu-
rity. The complete cycle may take weeks, months, or even years. However, it is cus- -
tomary to use a single generation as the basic unit of time when attempting to write a
model for insect population growth. Several stages in the life cycle can be depicted
by writing several difference equations. Often the system of equations condenses to
a single equation in which combinations of all the basic parameters appear.

As an example consider the reproduction of the poplar gall aphid. Adult female
aphids produce galls on the leaves of poplars. All the progeny of a single aphid are
contained in one gall (Whitham, 1980). Some fraction of these will emerge and sur-
vive to adulthood. Although generally the capacity for producing offspring
(fecundity) and the likelihood of surviving to adulthood (survivorship) depends on
their environmental conditions, on the quality of their food, and on the population
sizes, let us momentarily ignore these effects and study a naive model in which all
parameters are constant.

First we define the following:

a, = number of adult female aphids in the nth generation,
p» = number of progeny in the nth generation,

m = fractional mortality of the young aphids,

f = number of progeny per female aphid,

r = ratio of female aphids to total adult aphids.

Then we write equations to represent the successive populations of aphids and
use these to obtain an expression for the number of adult females in the nth genera-
tion if initially there were a, females:
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Each female produces f progeny; thus
Pr+t = fan. (5)

no. of proglny no. of females in
in{n + 1)st previous generation
generation no. of offspring per female

Of these, the fraction 1 — m survives to adulthood, yielding a final proportion of r
females. Thus

Gney = r(1 — m)PnH- (6)

While equations (5) and (6) describe the aphid population, note that these can be
combined into the single statement

Gn+1 = fr(l — m)a,. (7)
For the rather theoretical case where f, r, and m are constant, the solution is
a, = [fr(1 — m)l'ao, (8)

where qy is the initial number of adult females.

Equation (7) is again a first-order linear difference equation, so that solution (8) fol-
lows from previous remarks. The expression fr(1 — m) is the per capita number of
adult females that each mother aphid produces.

1.2 PROPAGATION OF ANNUAL PLANTS

Annual plants produce seeds at the end of a summer. The flowering plants wilt and
die, leaving their progeny in the dormant form of seeds that must survive a winter to
give rise to a new generation. The following spring a certain fraction of these seeds
germinate. Some seeds might remain dormant for a year or more before reviving.
Others might be lost due to predation, disease, or weather. But in order for the
plants to survive as a species, a sufficiently large population must be renewed from
year to year.

In this section we formulate a model to describe the propagation of annual
plants. Complicating the problem somewhat is the fact that annual plants produce
seeds that may stay dormant for several years before germinating. The problem thus
requires that we systematically keep track of both the plant population and the re-
serves of seeds of various ages in the seed bank.

Stage 1: Statement of the Problem

Plants produce seeds at the end of their growth season (say August), after which they
die. A fraction of these seeds survive the winter, and some of these germinate at the
beginning of the season (say May), giving rise to the new generation of plants. The
fraction that germinates depends on the age of the seeds.
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Stage 2: Definitions and Assumptions

We first collect all the parameters and constants specified in the problem. Next we
define the variables. At that stage it will prove useful to consult a rough sketch such
as Figure 1.2.

Parameters:
v = number of seeds produced per plant in August,
a = fraction of one-year-old seeds that germinate in May,
B = fraction of two-year-old seeds that germinate in May,
o = fraction of seeds that survive a given winter.

In defining the variables, we note that the seed bank changes several times during
the year as a result of (1) germination of some seeds, (2) production of new seeds,
and (3) aging of seeds and partial mortality. To simplify the problem we make the
following assumption: Seeds older than two years are no longer viable and can be

neglected.
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Figure 1.2 Annual plants produce vy seeds per plant
each summer. The seeds can remain in the ground
for up to two years before they germinate in the
springtime. Fractions « of the one-year-old and 8

of the two-year-old seeds give rise to a new plant
generation. Over the winter seeds age, and a
certain proportion of them die. The model for this
system is discussed in Section 1.2.
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Consulting Figure 1.2, let us keep track of the various quantities by defining

p» = number of plants in generation n,
S1 = number of one-year-old seeds in April (before germination),
S2 = number of two-year-old seeds in April (before germination),
S} = number of one-year-old seeds left in May (after some have germinated),
§2 = number of two-year-old seeds left in May (after some have germinated),
S? = number of new seeds produced in August.

Later we will be able to eliminate some of these variables. In this first attempt at for-

mulating the equations it helps to keep track of all these quantities. Notice that su-
perscripts refer to age of seeds and subscripts to the year number.

Stage 3: The Equations

In May, a fraction a of one-year-old and B of two-year-old seeds produce the plants.

Thus
_ (plants from ) (plants from )
" one-year-old seeds two-year-old seeds/’
pn = aS, + BS:. (9a)
The seed bank is reduced as a result of this germination. Indeed, for each age class,
we have
et et = ({2 t) x (c7Em, ember).
Thus
Si=(1 - &S}, (9b)
§i = (1 - p)s:. (9¢)
In August, new (0-year-old) seeds are produced at the rate of y per plant:
S2 = YPn. (9d)

Over the winter the seed bank changes by mortality and aging. Seeds that were new
in generation n will be one year old in the next generation, n + 1. Thus we have

Sii1 = 0S8y, (9e)
S.2.+1 = U'n-g-r]t (9ﬂ

Stage 4: Condensing the Equations

We now use information from equations (9a—f) to recover a set of two equations
linking successive plant and seed generations. To do so we observe that by using
equation (9d) we can simplify (9¢) to the following:

Sne1 = a(yp»). (10)
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Similarly, from equation (9b) equation (9f) becomes

52, = a(l - a)Sk. (11)
Now let us rewrite equation (9a) for generation n + 1 and make some substitutions:
Par1 = aSns1 + BSEiy. (12)

Using (10), (11), and (12) we arrive at a system of two equations in which plants and
one-year-old seeds are coupled:

Pnv1 = aoyp, + Ba(l — a)Sa, (13a)
Sr+1 = OYpn (13b)
Notice that it is also possible to eliminate the seed variable altogether by first rewrit-
ing equation (13b) as
Sz = OYPa-1 (14)
and then substituting it into equation (13a) to get
Pnrt = @O yp. + Bo¥(l ~ a)ypn-1. (15)

We observe that the model can be formulated in a number of alternative ways,
as a system of two first-order equations or as one second-order equation (15). Equa-
tion (15) is linear since no multiples p,p. or terms that are nonlinear in p, occur; it is
second order since two previous generations are implicated in determining the
present generation.

Notice that the system of equations (13a and b) could also have been written as
a single equation for seeds.

Stage 5: Check

To be on the safe side, we shall further explore equation (15) by interpreting one of
the terms on its right hand side. Rewriting it for the nth generation and reading from
right to left we see that p, is given by

Pn = aoypn—1 + Bo(l — a)oyp,-2
1] I —
| | seeds produced
| | two years ago
L
I N
.

which then survived first
winter
Y
and failed to germinate last year

— y

Y
survived last winter
L _
Y
and were among the fraction of two-year-old
seeds that germinated

7

|
L
L
|
H
[
l

|

The first term is more elementary and is left as an exercise for the reader to translate.
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1.3 SYSTEMS OF LINEAR DIFFERENCE EQUATIONS

The problem of annual plant reproduction leads to a system of two first-order differ-
ence equations (10,13), or equivalently a single second-order equation (15). To un-
derstand such equations, let us momentarily turn our attention to a general system of
the form

Xa+1 = AnXa t* G12Yn, (16a)

Yat1 = QuXa T Q2 Ys. (16b)
As before, this can be converted to a single higher-order equation. Starting with
(16a) and using (16b) to eliminate y,+,, we have

Xn+2 = QuXp+1 T A12Yn+1
= auXaer1 T an(anx. + axnys).

From equation (16a),
a1i2yYn = Xn+1 — Q11 Xn.
Now eliminating y. we conclude that
Xn+2 = AuXpr1 T Q200X + @01 ~ A1),
or more simply that
Xns2 = (an + @2)xns1 + (anay — anaxn)x, = 0. (17)

In a later chapter, readers may remark on the similarity to situations encountered in
reducing a system of ordinary differential equations (ODEs) to single ODEs (see
Chapter 4). We proceed to discover properties of solutions to equation (17) or equiv-
alently, to (16a, b).

Looking back at the simple first-order linear difference equation (2), recall that
solutions to it were of the form

X, = CA". (18)

While the notation has been changed slightly, the form is still the same: constant de-
pending on initial conditions times some number raised to the power n. Could this
type of solution work for higher-order linear equations such as (17)?

We proceed to test this idea by substituting the expression x, = CA" (in the
form of x.+1 = CA"*' and x,., = CA"*?) into equation (17), with the result that

CA"2 — (an + an)CA™! + (anay, — anaxn)A” = 0.

Now we cancel out a common factor of CA”. (It may be assumed that CA" # 0 since
x, = 0 is a trivial solution.) We obtain

A? = (an + an)A + (anan — arany) = 0. (19)

Thus a solution of the form (18) would in fact work, provided that A satisfies the
quadratic equation (19), which is generally called the characteristic equation of

(17).
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To simplify notation we label the coefficients appearing in equation (19) as

follows:
= -+ .
3 an an (2 0 )
Y = axap — ana.
The solutions to the characteristic equation (there are two of them) are then:
+ VB~ dy
Mo=B f X (21)

These numbers are called eigenvalues, and their properties will uniquely determine
the behavior of solutions to equation (17). (Note: much of the terminology in this
section is common to linear algebra; in the next section we will arrive at identical re-
sults using matrix notation.)

Equation (17) is linear; like all examples in this chapter it contains only scalar
multiples of the variables—no quadratic, exponential, or other nonlinear expres-
sions. For such equations, the principle of linear superposition holds: if several dif-
ferent solutions are known, then any linear combination of these is again a solution.
Since we have just determined that A7 and A% are two solutions to (17), we can con-
clude that a general solution is

Xn = A1AT + As0S, (22)

provided A; # A;. (See problem 3 for a discussion of the case A, = A;.) This ex-
pression involves two arbitrary scalars, A, and A;, whose values are not specified by
the difference equation (17) itself. They depend on separate constraints, such as par-
ticular known values attained by x. Note that specifying any two x values uniquely
determines A, and A,. Most commonly, x; and x;, the levels of a population in the
first two successive generations, are given (initial conditions); A, and A, are deter-
mined by solving the two resulting linear algebraic equations (for an example see
Section 1.7). Had we eliminated x instead of y from the system of equations (16),
we would have obtained a similar result. In the next section we show that general so-
lutions to the system of first-order linear equations (16) indeed take the form

X = A1AT + A2AL,
y» = B1A1 + B2A%.

The connection between the four constants A;, A, B;, and B; will then be
made clear.

(23)

1.4 A LINEAR ALGEBRA REVIEW*

Results of the preceding section can be obtained more directly from equations (16a,
b) using linear algebra techniques. Since these are useful in many situations, we will
briefly review the basic ideas. Readers not familiar with matrix notation are encour-

4. To the instructor: Students unfamiliar with linear algebra and/or complex numbers can
omit Sections 1.4 and 1.8 without loss of continuity. An excellent supplement for this chapter is
Sherbert (1980).
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aged to consult Johnson and Riess (1981), Bradley (1975), or any other elementary
linear algebra text.
Recall that a shorthand way of writing the system of algebraic linear equations,

ax + by = 0, (24)
cx +dy =0,
using vector notation is:
Mv = 0,
where M is a matrix of coefficients and v is the vector of unknowns. Then for sys-
tem (24),
M = (‘c' 3) and  v= (;) (25)

Note that Mv then represents matrix multiplication of M (a 2 X 2 matrix) with v (a
2 X 1 matrix).

Because (24) is a set of linear equations with zero right-hand sides, the vector

g is always a solution. It is in fact, a unique solution unless the equations are
“redundant.” A test for this is to see whether the determinant of M is zero; i.e.,
detM = ad — bc = 0. (26)

When det M = 0, both the equations contain the same information so that in reality,
there is only one constraint governing the unknowns. That means that any combina-
tion of values of x and y will solve the problem provided they satisfy any one of the
equations, e.g.,

x = —by/a.
Thus there are many nonzero solutions when (26) holds.

To apply this notion to systems of difference equations, first note that equa-
tions (16) can be written in vector notation as

Ver1 = MV, (27a)
where

v= (3 am
and

m- (o o) @0

It has already been remarked that solutions to this system are of the form
_ [AA"
V., = (B/\")' (28a)

Substituting (28a) into (27a) we obtain

AA"'H — {an au)(A/\")
(B)L"H) - (02: az/\BA"/’ (28b)
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We expand the RHS to get
AT = auAA" + auB/\", (286‘)
Bl\"+1 = 021AI\" + azzB/\".

We then cancel a factor of A" and rearrange terms to arrive at the following system
of equations:

0 = A(an — A) + Ban,
0 = A(az) + Blax — A).

-t 2 )
Qi ap — AJ\B/’
These are now linear algebraic equations in the quantities A and B. One solution is
always A = B = 0, but this is clearly a trivial one because it leads to
V=0,

a continually zero level of both x, and y,. To have nonzero solutions for A and B we
must set the determinant of the matrix of coefficients equal to zero;

(29)

This is equivalent to

an — A an _
det(az: an — A) 0. (30)
This leads to
(an — A)az — A) — apaxy = 0, (31)

which results, as before, in the quadratic characteristic equation for the eigenvalues
A. Rearranging equation (31) we obtain

AA=Br+y=0
where
B =an + az,
v = (anaz — anaxn).
As before, we find that
B x VB -4y
2

are the two eigenvalues. The quantities 3, v, and 82 — 4y have the following names
and symbols:

/\1,2 =

B = an + az = Tr M = the trace of the matrix M
Y = anaxn — apan = det M = the determinant of M
B? — 4y = disc(M) = the discriminant of M.

If disc M < 0, we observe that the eigenvalues are complex (see Section 1.8); if
disc M = 0, the eigenvalues are equal.
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Corresponding to each eigenvalue is a nonzero vector v; = (A‘:), called an
eigenvector, that satisfies )

Mv,' = )l.-v,-
This matrix equation is merely a simplified matrix version of (28¢c) obtained by can-

celling a factor of A" and then applying the result to a specific eigenvalue A;. Alter-
natively the system of equations (29) in matrix form is

(an - A an )(A:) =0
as an — A/ \B; )

It may be shown (see problem 4) that provided a2 # O,

' Bi M - an

an

is an eigenvector corresponding to A;. Furthermore, any scalar multiple of an eigen-
vector is an eigenvector; i.e., if v is an eigenvector, then so is av for any scalar a.

1.5 WILL PLANTS BE SUCCESSFUL?

With the methods of Sections 1.3 and 1.4 at our disposal let us return to the topic of
annual plant propagation and pursue the investigation of behavior of solutions to
equation (15). The central question that the model should resolve is how many seeds
a given plant should produce in order to ensure survival of the species. We shall ex-
plore this question in the following series of steps.

To simplify notation, let a = acyand b = Bo*(1 — a)y. Then equation (15) becomes

Prst — Pn — bpn-y = 0, (32)
with corresponding characteristic equation
A2—ad—-b=0. (33)
Eigenvalues are
1
A2 = -2-(a + Va? + 4b) (34)
o

where

is a positive quantity since a < 1.
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We have arrived at a rather cumbersome expression for the eigenvalues. The follow-
ing rough approximation will give us an estimate of their magnitudes.

Initially we consider a special case. Suppose few two-year-old seeds germinate
in comparison with the one-year-old seeds. Then B/« is very small, making & small
relative to 1. This means that at the very least, the positive eigenvalue A; has mag-
nitude

A;=-a%(l+\/i-)=2£‘y§9-=a‘ya.

Thus, to ensure propagation we need the following conditions:
A1, oya > 1, vy > 1/oa. (35a)

By this reasoning we may conclude that the population will grow if the number of
seeds per plant is greater than 1/ca. To give some biological meaning to equation
(35a), we observe that the quantity o-ya represents the number of seeds produced by
a given plant that actually survive and germinate the following year. The approxima-
tion 8 = 0 means that the parent plant can only be assured of replacing itself if it
gives rise to at least one such germinated seed. Equation (35a) gives a “strong condi-
tion” for plant success where dormancy is not playing a role. If 8 is not negligibly
small, there will be a finite probability of having progeny in the second year, and
thus the condition for growth of the population will be less stringent. It can be
shown (see problem 17e) that in general A, > 1 if

1
ao + Bo¥(l — a)’

When B8 = 0 this condition reduces to that of (35a). We postpone the discussion of
this case to problem 12 of Chapter 2.

As a final step in exploring the plant propagation problem, a simple computer
program was written in BASIC and run on an IBM personal computer. The two sam-
ple runs derived from this program (see Table 1.1) follow the population for 20 gen-
erations starting with 100 plants and no seeds. In the first case & = 0.5, y = 0.2,
o = 0.8, 8 = 0.25, and the population dwindles. In the second case « and 8 have
been changed to a = 0.6, B = 0.3, and the number of plants is seen to increase
from year to year. The general condition (35b) is illustrated by the computer simula-
tions since, upon calculating values of the expressions 1/ac and 1/(ac +
Bo*(1 — a)) we obtain (a) 2.5 and 2.32 in the first simulation and (b) 2.08 and 1.80
in the second. Since ¥ = 2.0 in both cases, we observe that dormancy played an es-
sential role in plant success in simulation b.

To place this linear model in proper context, we should add various qualifying
remarks. Clearly we have made many simplifying assumptions. Among them, we
have assumed that plants do not interfere with each other’s success, that germination
and survival rates are constant over many generations, and that all members of the
plant population are identical. The problem of seed dispersal and dormancy has been
examined by several investigators. For more realistic models in which other factors
such as density dependence, environmental variability, and nonuniform distributions
of plants are considered, the reader may wish to consult Levin, Cohen, and Hastings

vy > (35b)
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Table 1.1 Changes in a Plant Population over 20 Generations: (a) & = 0.5, B = 0.25, v = 2.0,
oc=08(b)a=06 =03, y=20 0=038

Generation Plants New seeds One-year-old seeds Two-year old seeds
0 100.0 0.0 0.0 0.0
1 80.0 200.0 160.0 0.0
2 80.0 160.0 128.0 64.0
3 76.8 160.0 128.0 51.2
4 74.2 153.6 122.8 51.2
5 71.6 148.4 118.7 49.1
6 69.2 143.3 114.6 47.5
7 66.8 138.4 110.7 45.8
8 64.5 133.6 106.9 4.3
9 62.3 129.1 103.2 42.7

10 60.1 124.6 99.7 41.3
11 58.1 120.3 96.3 39.8
12 56.1 116.2 93.0 38.5
13 54.2 112.2 89.8 37.2
14 52.3 108.4 86.7 359
15 50.5 104.7 83.7 34.6
16 48.8 101.1 80.8 33.5
17 47.1 97.6 78.1 323
18 45.5 94.2 75.4 31.2
19 43.9 91.0 72.8 30.1
20 42.4 87.9 70.3 29.1

Generation Plants New seeds One-year-old seeds Two-year-old seeds
0 100.0 0.0 0.0 0.0
1 96.0 200.0 160.0 0.0
2 107.5 192.0 153.6 51.2
3 117.9 215.0 172.0 49.1
4 129.7 235.9 188.7 55.0
5 142.6 259.5 207.6 60.3
6 156.9 285.3 228.3 66.4
7 172.5 313.8 251.0 73.0
8 189.7 345.1 276.0 80.3
9 208.6 379.5 303.6 88.3

10 229.4 417.3 333.8 97.1
11 252.3 458.9 367.1 106.8
12 277.4 504.6 403.7 117.4
13 305.1 554.9 443.9 129.1
14 3355 610.3 488.2 142.0
15 369.0 671.1 536.9 156.2
16 405.8 738.0 590.4 171.8
17 446.2 811.6 649.2 188.9
18 490.7 892.5 714.0 207.7
19 539.6 981.4 785.1 228.4

20 593.4 1079.2 863.4 251.2
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(1984) and references therein. A related problem involving resistance to herbicides
is treated by Segel (1981).

Recent work by Ellner (1986) is relevant to the basic issue of delayed germina-
tion in annual plants. Apparently, there is some debate over the underlying biologi-
cal advantage gained by prolonging the opportunities for germination. Germination
is usually controlled exclusively by the seed coat, whose properties derive geneti-
cally from the mother plant. Mechanical or chemical factors in the seed coat may
cause a delay in germination. As a result some of the seeds may not be able-to take
advantage of conditions that favor seedling survival. In this way the mother plant
can maintain some influence on its progeny long after their physical separation. It is
held that spreading germination over a prolonged time period may help the mother
plant to minimize the risk of losing all its seeds to chance mortality due to environ-
mental conditions. From the point of view of the offspring, however, maternal con-
trol may at times be detrimental to individual survival. This parent-offspring conflict
occurs in a variety of biological settings and is of recent popularity in several theo-
retical treatments. See Ellner (1986) for a discussion.

1.6 QUALITATIVE BEHAVIOR OF SOLUTIONS TO LINEAR DIFFERENCE
EQUATIONS

To recapitulate the results of several examples, linear difference equations are char-
acterized by the following properties:

1.  An mth-order equation typically takes the form
GoXn T AXn-1 + * * * + AmXn-m = b,
or equivalently,
GoXn+m + A1 Xpam—1 + * ¢+ GnXy = bn.

2. The order m of the equation is the number of previous generations that directly
influence the value of x in a given generation.

3. When g0, @, . . . , a, are constants and b, = 0, the problem is a
constant-coefficient homogeneous linear difference equation; the method
established in this chapter can be used to solve such equations. Solutions are
composed of linear combinations of basic expressions of the form

xa = CA", (36)

4. Values of A appearing in equation (36) are obtained by finding the roots of the
corresponding characteristic equation

GA™ + A"+ - - - +a, =0.

5. The number of (distinct) basic solutions to a difference equation is determined
by its order. For example, a first-order equation has one solution, and a
second-order equation has two. In general, an mth-order equation, like a
system of m coupled first-order equations, has m basic solutions.
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6. The general solution is a linear superposition of the m basic solutions of the
equation (provided all values of A are distinct).

7.  For real values of A the qualitative behavior of a basic solution (24) depends on
whether A falls into one of four possible ranges:

A=l A=-—1, 0<AKL<], -1<A<0.

To observe how the nature of a basic solution is characterized by this broad

classification scheme, note that

(@) For A > 1, A" grows as n increases; thus x, = CA" grows without
bound.

(b) For0 < A < 1, A" decreases to zero with increasing n; thus x. decreases
to zero.

(¢ For -1 < A <0, A" oscillates between positive and negative values
while declining in magnitude to zero.

(d) For A < —1, A" oscillates as in (c) but with increasing magnitude.

The cases where A = 1, A = 0, or A = —1, which are marginal points of de-

marcation between realms of behavior, correspond respectively to (1) the static

(nongrowing) solution where x = C, (2) x = 0, and (3) an oscillation between

the value x = C and x = —C. Several representative examples are given in

Figure 1.3.

Linear difference equations for which m > 1 have general solutions that com-
bine these broad characteristics. However, note that linear combinations of expres-
sions of the form (36) show somewhat more subtle behavior. The dominant eigen-
value (the value A; of largest magnitude) has the strongest effect on the solution; this
means that after many generations the successive values of x are approximately re-
lated by

Xn+1 = Aixn-

Clearly, whether the general solution increases or decreases in the long run de-
pends on whether any one of its eigenvalues satisfies the condition

[A] > 1.

If so, net growth occurs. The growth equation contains an oscillatory component if
one of the eigenvalues is negative or complex (to be discussed). However, any
model used to describe population growth cannot admit negative values of x,. Thus,
while oscillations typically may occur, they are generally superimposed on a larger-
amplitude behavior so that successive x, levels remain positive.

In difference equations for which m = 2, the values of A from which basic so-
lutions are composed are obtained by extracting roots of an mth-order polynomial.
For example, a second-order difference equation leads to a quadratic characteristic
equation. Such equations in general may have complex roots as well as repeated
roots. Thus far we have deliberately ignored these cases for the sake of simplicity.
We shall deal with the case of complex (and not real) A in Section 1.8 and touch on
the case of repeated real roots in the problems.
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Figure 1.3 Qualitative behavior of x, = C\" Xn
in the four cases (a) A > 1, (b)) 0 < A < 1, ﬁ
(€)=1<A<0,(d)Ar<—-1.
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1.7 THE GOLDEN MEAN REVISITED

We shall apply techniques of this chapter to equation (1), which stems from Fi-
bonacci’s work. Assuming solutions of the form (18), we arrive at a characteristic
equation corresponding to (1):

A=A+ 1.
Roots are
A=(1-V5/2 ad A=+ V52
Successive members of the Fibonacci sequence are thus given by the formula
X, = AA1 + BAZ.

Suppose we start the sequence with xo = 0 and x, = 1. This will uniquely determine
the values of the two constants A and B, which must satisfy the following algebraic
equations:

0=AA) + BA3 = A + B,
1 = AA, + BA; = [A(1 = V) + B(1 + V)].

It may be shown that A and B are given by
A=-1/V5 and B=+1/V5,

Thus the solution is

=] (1—\/3)"+ 1 (1+\/§)"
"TVs\ 2 Vs 2 /-

Observe that A; > 1 and ~1 < A; < 0. Thus the dominant eigenvalue is

A = (1 + V5)/2, and its magnitude guarantees that the Fibonacci numbers form

an increasing sequence. Since the second eigenvalue is negative but of magnitude

smaller than 1, its only effect is to superimpose a slight oscillation that dies out as n

increases. It can be concluded that for large values of n the effect of A, is negligible,
so that

xa = (1/V5)A3.

The ratios of successive Fibonacci numbers converge to

Xns1 1+ V5

x,,=A2= 2

Thus the value of the golden mean is (1 + V/5)/2 = 1.618033 . . . .

1.8 COMPLEX EIGENVALYUES IN SOLUTIONS TO DIFFERENCE EQUATIONS

The quadratic characteristic equation (19) can have complex eigenvalues (21) with
nonzero imaginary parts when 8% < 4. These occur in conjugate pairs,

M =a+bi and Az=a—bi,
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where a = B/2 and b = 1| B? ~ 4|2 A similar situation can occur in linear dif-
ference equations of any order greater than 1, since these are associated with polyno-
mial characteristic equations.

When complex values of A are obtained, it is necessary to make sense of gen-
eral solutions that involve powers of complex numbers. For example,

x. = Ay(a + bi)" + Ax(a — bi)". (37)

To do so, we must first review several fundamental properties of complex numbers.

Review of Complex Numbers

A complex number can be represented in two equivalent ways. We may take a + bi to
be a point in the complex plane with coordinates (a, b). Equivalently, by specifying an
angle ¢ in standard position (clockwise from positive real axis to a + bi) and a
distance, r from (a, b) to the origin, we can represent the complex number by a pair
(r, ¢). These coordinates can be related by

a=rcos ¢, (38a)
b = rsin ¢. (38b)
Equivalently
r=(a*+ b%)'2, (39a)
¢ = arctan (b/a). (39b)

The following identities, together known as Euler's theorem, summarize these
relations; they can also be considered to define e'®:
a + bi = r(cos ¢ + isin @) = re'®, (40a)
a — bi = r(cos ¢ — isin @) = re™'¢, (40b)
This leads to the conclusion that raising a complex number to some power can be
understood in the following way:
(@ + bi)" = (re) = r"e'® = ¢ + di,
where
= p" cos no, (41a)
d = r" sin n¢. (41b)
Graphicaily the relationship between the complex numbers a + bi and ¢ + di is as
follows: the latter has been obtained by rotating the vector (a, b) by a multiple 7 of the
angle ¢ and then extending its length to a power n of its former length. (See Figure

1.4.) This rotating vector will be lead to an oscillating solution, as will be clarified
shortly.

Proceeding formally, we rewrite (37) using equations (40a,b):
Xn = Aj(a + bl)" + Az(a - bi)"
= A,r*(cos n¢ + i sin ng) + A,r"(cos nd — i sin n¢)
= Bir" cos n¢p + iBar" sin ne,
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Figure 1.4 (a) Representation of a complex number %
as a point in the complex plane in both cartesian

(a, b) and polar (r, ¢) coordinates. (b) A succession
of values of the complex numbers (1 + i)*. The
radius vector rotates and stretches as higher powers
are taken.

Imaginary axis

0 o e e —

Real axis

(a)

Y a+ iy
(1+i)®

()

where B; = A, + Az and B; = (A; — A;). Thus x, has a real part and an imaginary

part. For
Un = r" cos ne, (42a)
Un = r" sin ne, (42b)

we have
X, = Biu, + iB,0,. (43)

Because the equation leading to (43) is linear, it can be proved that the real and
imaginary parts of this complex solution are themselves solutions. It is then custom-
ary to define a real-valued solution by linear superposition of the real quantities u,
and v,:

Xn = Cu, + Cyv,

= r*C cos n¢ + C: sin n¢) (44)
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Figure 1.5 A “time sequence” of the real-valued n=0,1,...,10. The amplitude of oscillation is
solution given by equation (44) would display r*, and the frequency is 1/¢ where r and ¢ are
oscillations as above. Shown are values of x, for given in equation (39).

where r and ¢ are related to a and b by equations (38a,b) or (39a,b). (See Figure
1.5.)

Example
The difference equation

Xpe2 — 2Xpe + 2%, =0 (45)
has a characteristic equation
AZ=2A+2=0,
with the complex conjugate roots A = 1 £ i. Thusa = 1 and b = 1, so that
r=(a? + b3)"2 = V2,
¢ = arctan (b/a) = w/4.
Thus the real-valued general solution to equation (45) is
X = V2"[C) cos (nm/4) + C; sin (nm/4)]. (46)

We conclude that complex eigenvalues A = a * bi are associated with oscil-
latory solutions. These solutions have growing or decreasing amplitudes if
r=V@ +b)>1and r =V + b)) <1 respectively and constant ampli-
tudes if » = 1. The frequency of oscillation depends on the ratio b/a. We note also
that when (and only when) arctan (b/a) is a rational multiple of 7 and r = 1, the so-
lution will be truly periodic in that it swings through a finite number of values and
returns to these exact values at every cycle.

1.9 RELATED APPLICATIONS TO SIMILAR PROBLEMS

In this section we mention several problems that can be treated similarly but leave
detailed calculations for independent work in the problems.



