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3.1 DENSITY DEPENDENCE IN SINGLE-SPECIES POPULATIONS!

An assumption that growth rate, reproductive rate, or survivorship depends on the
density of the population leads us to consider models of the following form:

Ni+1 = f(N) (1)

where f(N,) is some (nonlinear) function of the population density.

Quite often single-species populations (of insects, for example) are described
by such equations, where fis a function that is fit to data obtained by following suc-
cessive generations of the population. Here we consider several models of this type
and demonstrate their properties.

1. A model by Varley, Gradwell, and Hassell (1973) consists of the single equation

N = A o

Here A is the reproductive rate, assumed to be greater than 1, and 1/a N;? is the
fraction of the population that survives from infancy to reproductive adulthood. The
equation is thus best understood in the form

1
N;-f-l = (_ Ng—b) (AN‘)- (3)
* )
I no. of progeny at generation ¢

fraction that survives to generation ¢t + 1

where a, b, A > 0. Since-the fraction of survivors can at most equal but not exceed
1, we find that the population must exceed a certain size, N, > N. for this model to
be biologically reasonable (see problem 1).

Populations satisfying equation (3) can be maintained at steady density levels.
To observe this we look for the steady-state solutions to (3) by setting

A_’ = NH-] = Ng.
Substituting into (3) we find that
N = A s
N=-N"" (4)

Cancelling the common factor N and rearranging terms gives us

/\ 1/b
= (;) )

£y = 2 Ni-s

<l

Next, we let

1. This section contains material compiled by Laurie Roba.
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and proceed to test for the stability of N. We find that perturbations 8, from this
steady state must satisfy

N"‘ 8r+l=f(ﬁ+ 6:)
=y + &
_f(N)+d1viﬁ8‘+"

Since N = f(N), recall that this simplifies to

~ 4
&H—dNﬁ&.
But
Hl AL ] =1 -
2N | 5 =~ bN 1= b. (6)

Thus stability of N hinges on whether the quantity 1 ~ & is of magnitude smaller
than 1; that is, N will be stable provided that

or
0<b <2 (7)

It is clear that b = O is a situation in which survivorship is not density-dependent;
that is, the population grows at the rate A/a. Thus the lower bound for the stabiliz-
ing values of b makes sense. It is at first less clear from an intuitive point of view
why values of b greater than 2 are not consistent with stability; it appears that den-
sity dependence that is too strong is destabilizing due to the potential for boom-and-
bust cycles.

2. A second model cited in the literature (for example, May, 1975) consists of the
equation

N1 = N, exp r(1 — N/JK), (8)

where r, K are positive constants. The quantity A = exp r(1 — N,/K) could be con-
sidered the density-dependent reproductive rate of the population. Again, by carry-
ing out stability analysis we observe that

N =Nui =K
is the nontrivial steady state. To analyze its stability properties we remark that for
fWN) = Nexpr(1 — N/K) 9)
we have
f'(N) = [exp r(1 — N/K)X1 — Nr/K). (10)

Evaluated at N = K, (10) leads to
fEK)Y=1-K@Fr/K)=1-r. (11)



76

Discrete Processes in Biology

Thus stability is obtained when

[1-rl<1, o O0<r<2. (12)

We observe that when N < X the reproductive rate A > 1, whereas when N > K,
A < 1 (see problem 3). This property is shared with equation (11) of Chapter 2
where K = 1. K is said to be the carrying capacity of the environment for the popu-
lation. In the next chapter we shall see examples of similar density-dependent rela-
tionships within the framework of continuous populations.

3. Yet a third model, proposed by Hassell (1975), is given by the equation
Nyt = AN(1 + aN)™, (13)

for A, a, b positive constants. Analysis of this equation is left as a problem for the
reader.

One generally observes with models such as 1, 2, and 3 (and with other dis-
crete equations such as the prototype given in Chapter 2) that the dynamical behav-
ior depends in a sensitive way on parameter settings. Typically such equations have
stable cycles of arbitrary periods as well as chaotic behavior. Each model thus de-
scribes a highly complex range of dynamic behavior if parameter values are pushed
to high values. For example, equation (13) has the behavioral regimes mapped out
on the Ab parameter plane shown in Figure 3.1. The values A = 100 and b = 6 fall
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Figure 3.1 Stability boundaries for the density-
dependent parameter b and the population growth
rate A from equation (13). The solid lines separate
the regions of monotonic, oscillatory damping,
stable limit cycles, and chaos. The broken line
indicates where two-point limit cycles give rise to
higher-order cycles. The solid circles come from
analyses of life table data; the hollow circles from

analyses of laboratory experiments. [Reproduced
from Michael P. Hassell, The Dynamics of
Anthropod Predator-Prey Systems. Monographs in
Population Biology 13. Copyright © 1978 by
Princeton University Press. Fig. 2.5 (after Hassell,
Lawton, May 1976) reprinted by permission of
Princeton University Press.]
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in the chaotic domain, so that populations fluctuate wildly. The values A = 100 and
b = 0.5, correspond to a stable steady state, so that a perturbed population under-
goes monotonic damping back to its steady-state level.

For a given single-species population, density fluctuations may or may not be
described well by a model such as equation (13). If so, parameters such as b and A
can be estimated by following the observed levels of the population over successive
generations. Such observations are called life table data. Studies of this sort have
been carried out under a variety of conditions, both in the field and in laboratory set-
tings (see Hassell et al., 1976). Typical species observed in the field have included
insects such as the moth Zeiraphera diniana and the parasitoid fly Cyzenis albicans.
Laboratory data on beetles and on the blowfly Lucilia cuprina (Nicholson, 1954)
have also been collected.

Pooling results of many observations in the literature and in their own experi-
ments, Hassell et al. (1976) plotted the parameter values b and A of some two dozen
species on the bA parameter plane. In all but two of these cases, the values of b and
A obtained were well within the region of stability; that is, they reflected either
monotonic or oscillatory return to the steady states.

Hassell et al. (1976) found two examples of unstable populations. The only
one occurring in a natural system was that of the colorado potato beetle (shown as a
circled dot in Figure 3.1), which is known to fluctuate periodically in certain situa-
tions. A single laboratory population, that of the blowfly (Nicholson, 1954), was
found to have (A, b) values corresponding to the chaotic regime in Figure 3.1. Some
controversy surrounds the acceptance of this single example as a true case of chaotic
population dynamics.

From their particular set of examples, Hassel et al. (1976) concluded that com-
plex behavioral regimes typical of discrete difference equations are not frequently
observed in reality. Of course, to place this deduction in its proper context, we
should remember that only a relatively small sample of species has been sufficiently
well studied to be represented, and that Figure 3.1 describes the fit to one particular
model, chosen somewhat arbitrarily from many equally plausible ones.

One of the contributions of mathematical modeling and analysis to the study of
population behavior has been in bringing forward questions that might otherwise
have been of lesser interest. Comparison between observations and model predic-
tions indicate that many dynamical behavior patterns, which are theoretically possi-
ble, are not observed in nature. We are thereby led to inquire which effects in natu-
ral systems have stabilizing influences on populations that might otherwise behave
chaotically.

Hassell et al. (1976) comment on some of the key elements of studies based on
data collected in the field versus those collected under controlled laboratory condi-
tions. In the former, the survival of a population may depend on multiple factors in-
cluding predation, parasitism, competition, and environmental conditions (see Sec-
tions 3.2—3.4). Thus a description of the population by a single-species model is, at
best, a crude approximation.

Laboratory experiments on the other hand, can provide conditions in which a
population is truly isolated from other species. In this sense, such data is more suit-
able for interpretation by single-species models. However, the influence of a some-
what artificial setting may result in effects (such as competition in close
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confinement) that are not significant in the natural setting. Thus, data for laboratory
studies such as those of Nicholson’s blowflies, in which erratic chaotic behavior is
observed, may reflect not a realistic trend but rather an artifact observed only in
the laboratory.

3.2 TWO-SPECIES INTERACTIONS: HOST-PARASITOID SYSTEMS

Discrete difference-equation models apply most readily to groups such as insect pop-
ulations where there is a rather natural division of time into discrete generations. In
this section we examine a particular two-species model that has received consider-
able attention from experimental and theoretical population biologists, that of the
host-parasitoid system.

Found almost entirely in the world of insects, such two-species systems have
several distinguishing features. Typical of insect species, both species have a num-
ber of life-cycle stages that include eggs, larvae, pupae and adults. One of the spe-
cies, called the parasitoid, exploits the second in the following way: An adult female
parasitoid searches for a host on which to oviposit (deposit its eggs). In some cases
eggs are attached to the outer surface of the host during its larval or pupal stage. In
other cases the eggs are injected into the host’s flesh. The larval parasitoids develop
and grow at the expense of their host, consuming it and eventually killing it before
they pupate. The life cycles of the two species, shown in Figure 3.2, are thus closely
intertwined.

A simple model for this system has the following common set of assumptions:

1. Hosts that have been parasitized will give rise to the next generation of
parasitoids.

2. Hosts that have not been parasitized will give rise to their own progeny.

3. The fraction of hosts that are parasitized depends on the rate of encounter of
the two species; in general, this fraction may depend on the densities of one or
both species.

While other effects causing mortality abound in any natural system, it is in-
structive to consider only this minimal set of interactions first and examine their con-
sequences. We therefore define the following:

N, = density of host species in generation ¢,

P, = density of parasitoid in generation ¢,

f = f(N,, P) = fraction of hosts not parasitized,
A = host reproductive rate,
¢ = average number of viable eggs laid by a parasitoid on a single host.

Then our three assumptions lead to:

N:+1 = number of hosts in previous generation X fraction not parasitized
X reproductive rate (A),
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Figure 3.2 Schematic representation of a host. Infected hosts die, giving rise to parasitoid

host-parasitoid system. The adult female parasitoid  progeny. Uninfected hosts may develop into adults
deposits eggs on or in either larvae or pupae of the  and give rise to the next generation of hosts.

Py = number of hosts parasitized in previous generation X fecundity of
parasitoids (c).

Noting that 1 — f is the fraction of hosts that are parasitized, we obtain

Ny = /\Nrf(Nn P), (14a)
P = cN{1 — f(N,, P)]. (14b)

These equations outline a general framework for host-parasitoid models. To
proceed further it is necessary to specify the term f(N,, P) and how it depends on the
two populations. In the next section we examine one particular form suggested by
Nicholson and Bailey (1935).

3.3 THE NICHOLSON-BAILEY MODEL

A_J. Nicholson was one of the first biologists to suggest that host-parasitoid systems
could be understood using a theoretical model, although only with the help of the
physicist V. A. Bailey were his arguments given mathematical rigor. (See Kingsland,
1985 for a historical account.)
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Nicholson and Bailey made two assumptions about the number of encounters
and the rate of parasitism of a host:

4. Encounters occur randomly. The number of encounters N, of hosts by
parasitoids is therefore proportional to the product of their densities.

Ne = aNJ‘R‘, (.15)

where a is a constant, which represents the searching efficiency of the
parasitoid. (This kind of assumption presupposes random encounters and is
known as the law of mass action. It is a common approximation which will
reappear in many mathematical models; see Chapters 4, 6, and 7.)

5.  Only the first encounter between a host and a parasitoid is significant. (Once a
host has been parasitized it gives rise to exactly c¢ parasitoid progeny; a second
encounter with an egg-laying parasitoid will not increase or decrease this
number.)

The Poisson Distribution and Escape from Parasitism

The Poisson distribution is a probability distribution that describes the occurrence of
discrete, random events (such as encounters between a predator and its prey). The
probability that a certain number of events will occur in some time interval (such as the
lifetime of the host) is given by successive terms in this distribution. For example, the
probability of r events is

etu

pln) = - (16)

where u is the average number of events in the given time interval. (For more details
on the Poisson distribution consult any elementary text in statistics, for example, Hogg
and Craig, 1978.) In the case of host-parasitoid encounters, the average number of
encounters per host per unit time is

u= % (17)
Note that by equation (15) this is the same as
u = ab,. (18)
Thus, for example, the probability of exactly two encounters would be given by
e %
p@) == @P)

The likelihood of escaping parasitism is the same as the probability of zero encounters
during the host lifetime, or p(0). Thus

fN., P) =p(0) = 87 (@P)° = e, (19)
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Based on the latter assumption it proves necessary to distinguish only between
those hosts that have had no encounters and those that have had n encounters, where
n = 1.

Because the encounters are assumed to be random, one can represent the prob-
ability of r encounters by some distribution based on the average number of encoun-
ters that take place per unit time. It transpires that an appropriate probability distri-
bution for describing this-situation is that of Poisson, highlighted briefly in the box
on page 80.

Combining assumptions 4 and 5 with the comments about the Poisson distribu-
tion leads us to the expression for the fraction that escapes parasitism,

f(N:, P) = p(0) = e™ 7, (20)

given by the zero term of the Poisson distribution.

Thus the assumption that parasitoids search independently and randomly and
that their searching efficiently is constant (depicted by the parameter a) leads to the
Nicholson-Bailey equations:

Niv1 = AN, e“"', (210)
P+1 = cN(1 — 7). (21b)

We now analyze this model using the methods developed in Chapter 2. The
steps include:

1. Solving for steady states.

2. Finding the coefficients of the Jacobian matrix (for the system linearized about
the steady state).

‘3. Checking the stability condition derived in Section 2.8.

Nicholson-Bailey Model: Equilibrium and Stability

Let
F(N, P) = ANe™®, (22a)
G(N, P) = cN(1 — &™), (22b)
Solving for steady states, we obtain the trivial solution N = 0, or
N=F({N,P) = N e, (23a)
P =GN, P) = cN(1 — &) (23b)
These imply that
P= —a—}-\ (24a)
e = 1/A, (24b)
N=-AlA (24c)

(A = Dac’
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From these equations we observe that A > 1 is required, since otherwise N would be a
negative quantity. Computing the coefficients a; of the Jacobian, we obtain

an = FuN, P) = Ae™% = 1, (25a)
ai = Fp(N, P) = —aANe @ = —aN, (25b)
an = GuN, P) = c(1 — &) = c(1 - 1/), (25¢)
an = Gp(N, P) = caNe™* = caN/A. (25d)

(Comment: The notation Fy(N, P) is shorthand for F/aN | .7.) To check the stability
of (N, P) the quantities we need to examine are thus

B=ay+an=1+caN/A=1+ Aln_/\l s (26a)
— — = AlnA
Y= anaxn — anan = caN/A + caN(1 — 1/A) = caN = o1 (26b)

We now show that y > 1. To do so we need to verify that A(In A)/(A — 1) > 1
or SA)=A—1—-—AlnA <0. Observe that S(1) =0, S'‘{A)=1—InA -~
A(1/A) = —In A. So S'(A) <O for A = 1. Thus S(A) is a decreasing function of A
and consequently S(A) < OforA = 1.

We have verified that y > 1 and so the stability condition given in Chapter 2,
equation (32), is violated. We conclude that the equilibrium (N, P) can never be stable.

From the analysis we observe that the Nicholson-Bailey model has a single
equilibrium

_ Alna
N = = 1)ac’ (27a)
P= E'a—* (27b)

and that the equilibrium is never stable; small deviations of either species from the
steady-state level leads to diverging oscillations. Curiously enough, a host-parasitoid
system consisting of a greenhouse whitefly and its parasitoid was found to have such
dynamics when grown under particular, albeit somewhat contrived, laboratory con-
ditions (see Hassell, 1978, for details). Figure 3.3 demonstrates the fluctuations ob-
served in this laboratory system and a comparison with the predictions of the Nichol-
son-Bailey model.

Most natural host-parasitoid systems are certainly more stable than the Nichol-
son-Bailey model seems to indicate. It would therefore seem that the model is not a
satisfactory representation of real host-parasitoid interactions. However, before dis-
missing it as an ineffective model we shall exploit this theoretical tool to experiment
with a number of conjectures on the effects (in natural systems) that might act as sta-
bilizing influences. In the following section we therefore focus on more realistic as-
sumptions about the searching behavior of the parasitoids and the host survival rate.
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Figure 3.3 The Nicholson-Bailey model, given by equations (21) where a = 0.068, ¢ = 1, and
equations (21a,b), predicts unstable oscillationsin A = 2. [From Michael P. Hassell, The Dynamics

the dynamics of a host-parasitoid system. The of Arthropod Predator-Prey Systems. Monographs
fluctuations of a greenhouse whitefly Trialeurodes in Population Biology 13. Copyright © 1978 by
vaporariorum ( @) and its chalcid parasitoid Princeton University Press. Fig. 2.3 (after Burnett,
Encarsia formosa ( Q) give evidence for such 1958) reprinted by permission of Princeton
behavior. The solid lines are predictions of University Press.]

3.4 MODIFICATIONS OF THE NICHOLSON-BAILEY MODEL?

Density Dependence in the Host Population

Since the Nicholson-Bailey model is unstable for all parameter values, we consider
first a modification of the assumptions underlying the host population dynamics and
investigate whether these are potentially stabilizing factors. Thus, consider the fol-

lowing assumption:

6. In the absence of parasitoids, the host population grows to some limited
density (determined by the carrying capacity K of its environment).

Thus the equations would be amended as follows:
Ni+1 = NA(N)e ™,
Py = N{(1 — e™*).

For the growth rate A(N,) we might adopt
/\(N:) = €Xp r(l - Nx/K),

2. This section is based on a review by David F. Dabbs.
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as in equation (8). Thus if P = 0, the host population grows up to density N; = K
and declines if N, > K. The revised model is

Ni+1 = N,exp [r(1 — N/K) — aP], (28a)
P = NA1 — e—d")- (28b)

This model was studied in some detail by Beddington et al. (1975). They found it
convenient to discuss its behavior in terms of the quantity ¢ where

g = N/K = the ratio of steady-state host density with and without parasitoids
present.

The value of ¢ indicates to what extent the steady-state population is depressed by
the presence of parasitoids.

Equations (28a,b) are sufficiently complicated that it is impossible to derive
explicit expressions for the states N and P. However, these can be expressed in terms
of g and P as follows:

r N/K) =L -
== N/K) = Sa 9, (29a)

N=P/1 - ). (29b)

It transpires that the resulting model is stable for a fairly wide range of realistic
parameter values, as desired. Even so, the return to equilibrium in these ranges is
typically rather complex. As parameters are changed, the equilibrium does lose its
stability property, so that cycles and other more complicated dynamics ensue. Bed-
dington et al. (1975) demonstrate that stability depends on r and the quantity
g = N/K with the system stable within the shaded range in Figure 3.4. We see that
for each value of r, there exists a range of g values for which the model is stable; the
larger the value of r, the narrower the range.

When the equations of a model are difficult to analyze explicitly, computer
simulations can prove particularly revealing. In Figures 3.5 through 3.8 the behavior

Prey reproductive rate (r}
3 4 b

Depression of prey equilibrium (g)

Figure 3.4 The density-dependent Nicholson-Bailey  high values of r. [Reprinted by permission from
model (equations 28) is stable within the hatched Nature, 255, 58—60. Copyright © 1975 Macmillan
area. Note how the area of stability narrows for Journals Limited.]
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of solutions to equations (28a,b) obtained with a simple computer simulation are dis-
played for a variety of parameter choices. A TURBO — PASCAL program, written
by David F. Dabbs and run on a personal computer, was used to generate successive
values of N, and P, and to plot these simultaneously. What is somewhat novel about
these plots is that in this two-variable system, time is suppressed and (N, P,) values
are plotted in the plane sometimes referred to as the NP phase plane. (In a later
chapter a similar technique will be applied to systems of two differential equations in
two variables.)

To interpret these figures, note that a central cross indicates the position of the
steady state of the equations. The initial values (No, Po) are specified at the top right-
hand corner of the graph. In Figure 3.5 successive values proceed in a counterclock-
wise manner, visiting each of the arms of the “spiral galaxy” in succession. In Fig-
ures 3.6 through 8, g = 0.40 is kept fixed, while r is given the values 0.50, 2.00,
2.20, and 2.65. _

For small values of r, the equilibrium point (N, P) is stable; any initial value
spirals in toward it (Figure 3.5) and will eventually reach it. As r grows past a cer-
tain value, the equilibrium becomes unstable and new patterns emerge.

no: 858 0.0 MO, PO: LM 13
K= A Niar, Bhar: 5.0 158
iz 208
MO 40 ) +
3.0 1
2.6 1 ‘
8.8 1 - + . ; } -t
00 30 68 9.0 124 150 180 2.0
N

Figure 3.5 A single approach to equiltbrivm from steady-state point, not inward along the spiral
an arbitrarily chosen outlying point. Note that the arms. [Computer-generated plot made by David F.
direction of flow is counterclockwise about the Dabbs.]
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Figure 3.6 This stable “limit” cycle is jagged about have smooth edges. [Computer-generated plot made
the edges. Similar cycles for smaller values of r by David F. Dabbs.]

Away from the single equilibrium point, the model will settle into a stable
limit cycle around the equilibrium point, as shown in Figure 3.6. Larger values of r
result in larger and larger cycles. Beyond a certain point there appear cycles whose
periods are multiples of 5 (Figure 3.7). Still larger values of  yield either chaos or
cycles of extremely high integral period. For large enough values of r, this chaotic
behavior will seem to fill in a sharply bounded area (Figure 3.8).

As Figure 3.4 indicates, ¢ and r are both involved in determining the dynamic
population behavior. This figure can be interpreted to mean that the greater the de-
pressing influence of parasitoids on their hosts, the lower the growth rate r that
suffices to induce chaotic dynamics.

Other Stabilizing Factors

As we have just shown, the Nicholson-Bailey model is rendered more stable, and
hence more realistic for most natural host-parasitoid systems, by taking into account
the limitations of the environment and the fact that populations are not capable of
infinite growth. Several other effects have been studied (notably by Beddington et
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Figure 3.7 This cycle shows a cycle whose period [Computer-generated plot made by David F.
is 5. Further increasing r slowly would produce Dabbs.]

cycles of periods 10, 20, 40, and so on.

al., 1978) in further exploring the interactions that stabilize the host-parasitoid popu-
lations. Two of these are as follows.

1. Efficiency of the parasitoids
The density of the attacking parasitoids may have some effect on their efficiency in
searching for hosts. It is observed that efficiency generally decreases somewhat
when the parasitoid population is too large. This effect is modeled by changing the
assumed form of f(N,, P,). One version studied by Beddington et al. (1978) is

fN,, P) = exp —(aP)'™", (30)
where m < 1. (See Beddington et al., 1978, for a discussion of this assumption and
predictions of the model.)

2. Heterogeneity of the environment (refuges)
A second factor that has been brought into closer scrutiny in recent years is the sup-
posed homogeneity of the environment. Researchers recognize that the physical set-
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Figure 3.8 This sharply bounded figure shows
definable areas without any points. For slightly
lower r values these areas are better defined; for

30 e
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higher t values they tend to fill in. [Computer-
generated plot made by David F. Dabbs.]

24.0 36.8

ting is never perfectly uniform, so part of the host population may be less exposed
and thus less vulnerable to attack. It has become popular to refer to patchy environ-
ments, which are spatially as well as temporally heterogeneous.

While a full treatment of spatial variation would lead us to models that involve
several independent variables (for example, time as well as physical position), it is
possible to consider a simple example that gives some broad indication of the ef-
fects. This is generally done by assuming that there exists a small refuge, represent-
ing some physical location to which some fraction of the attacked population can re-
treat for safety from the attackers. For example, let us assume that E is the fraction
of the carrying capacity population K that can be accommodated in safe refuges.
Then at any given time

EK/N, =

The equations would then be modified accordingly (see problem 11 and the
original articles cited by the sources listed in the References). It has been a recurrent

the fraction of the population that can retreat to a refuge,
the fraction vulnerable to attack.
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theme of articles by Hassell, May, and others that the patchiness of ecosystems leads
to stabilization. Part of the argument is that refuges serve as sites for maintaining
vulnerable species that might otherwise become extinct. Such sites also indirectly
benefit the exploiting species since a constant spillover of victims into the unpro-
tected areas guarantees a constant food source. You are encouraged to pursue these
topics by reading the excellent summaries and reviews and through further indepen-
dent research.

3.5 A MODEL FOR PLANT-HERBIVORE INTERACTIONS
Outlining the Problem

In Sections 3.1 to 3.4 we saw numerous models that describe particular responses of
a population to its environment, to another species, or to intraspecific competition.
A notable feature of many such models is that they contain functions that are chosen
to fit empirical data and that may or may not reveal any basic insight into underlying
population behavior. What does one do when a plethora of empirical data is unavail-
able and one knows only vague, general properties of the processes? Is it always
necessary to restrict attention to well-defined functional relationships when proceed-
ing with a model?

As the model in this section will demonstrate, often even when data are avail-
able, it may be an advantage to study the problem in a rather general framework be-
fore fitting exact functional forms to the empirical observations. In this section we
introduce a problem stemming from plant-herbivore systems and then use this gen-
eral approach to study its properties. The problem to be considered here is hypothet-
ical but sufficiently general to apply to a variety of cases. We use it to illustrate a
technique and later comment on its applicability.

Consider herbivores that feed on a vegetation and consume part of its
biomass.® Unlike predation it need not be true that the damage or consumption
inflicted by the herbivore, commonly called herbivory, necessarily leads to death of
the victim, which in this case is the host plant. Rather, herbivores might reduce the
biomass of vegetation they consume, possibly also causing other qualitative changes
in the plant. In this first attempt at modeling plant-herbivore interactions we will fo-
cus only on quantitative changes, i.e., changes in the biomass of the populations.
Some comments about plant quality will be made at the end of this section.

To give structure to the problem, we make the following broad assumptions:

1. Herbivores have discrete generations that correspond to the seasonality of the
vegetation.
(Comment: We can thus treat the problem using a set of difference
equations; the generation span will be identical for the two participants. This
assumption is fairly realistic. Many herbivores have coevolved with their host

3. The term biomass is often used as a measure of population size in units of mass rather
than, say, density or numbers of mdividuals.



