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Abstract: The Principal Component Analysis Network (PCANet), which is one of the recently 

proposed deep learning architectures, achieves the state-of-the-art classification accuracy in 

various databases. However, the performance of PCANet may be degraded when dealing with 

color images. In this paper, a Quaternion Principal Component Analysis Network (QPCANet), 

which is an extension of PCANet, is proposed for color images classification. Compared to 

PCANet, the proposed QPCANet takes into account the spatial distribution information of color 

images and ensures larger amount of intra-class invariance of color images. Experiments 

conducted on different color image datasets such as Caltech-101, UC Merced Land Use, Georgia 

Tech face and CURet have revealed that the proposed QPCANet achieves higher classification 

accuracy than PCANet.  
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1. Introduction 

Image classification is among the very active research topics in the field of pattern recognition 

and computer vision. It is a challenging task because image contents are subject to various 

changes in terms of illumination, rotation, scaling or more complex deformation. To effectively 

solve this problem, numerous approaches have been proposed in the past decades. They can be 

divided into two groups: the first one consists of extracting manually low-level intrinsic features, 

and the second one relies on deep architectures for learning from data sets of interest. For the first 

group, the most commonly used methods are based on scale-invariant feature transforms [1], [2]. 

The second group, which is considered as a reasonable way to overcome the limitations of 

manual extraction of features, has became an important research focus in recent years. The 

objective of deep learning [3] is to extract intrinsic features from data by multi-level architecture, 

with the hope that higher-level features represent more concise semantics of the data. There are 

several approaches to build deep architectures such as deep belief networks (DBN), auto-encoders 

(AE), etc. DBN [4] is a multilayer generative model, which uses an unsupervised learning 

algorithm and greedily trains one layer at a time. After this learning step, it is trained to perform 

classification in a supervised way. Hinton and Zemel [5] proposed the AE approach, which is 

trained locally by means of an unsupervised learning algorithm.  

The key factor of the success of deep learning in image classification is the use of 

convolutional architecture [6-12]. Convolutional deep neural network was inspired by the 

structure of the visual system. An example of such an architecture is the convolutional neural 

networks (CNN) [7, 13] using the error gradient. It allows achieving the state-of-the-art 

performance on several pattern recognition tasks. LeCun’s CNN consists of multiple trainable 

stages stacked on top of each other, followed by a supervised classifier. Each stage is organized in 

layers of two types: convolutional layers and subsampling layers. Recently, Mallat and Bruna [14, 

15] proposed a wavelet scattering network (ScatNet) built upon prefixed wavelets as 

convolutional filters and modulus transform as a nonlinear operators. Hence there is no need for 
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learning parameters at all. Unlike other empirically justified deep learning algorithms, ScatNet 

[14, 15] is mathematically justified. More recently, Chan et al. [16] proposed a new deep learning 

architecture, namely, Principal Components Analysis Network (PCANet). It uses the most basic 

and simple operations to emulate the processing layers of CNN. In fact, the data-adapting filter 

bank of convolutional layers in each stage is obtained by the principal components analysis (PCA) 

filters. The nonlinear operation used here is the binary hashing. In the last stage of PCANet, the 

block-wise histograms of the binary codes are used for pooling. Surprisingly, such a simple deep 

architecture is quite on par with and often better than the state-of-the-art techniques of features 

selection (prefixed, hand-crafted, or learned from deep architecture) for most image classification 

tasks, including face images, hand-written digits, texture images, and object images. 

Many researchers [17-19] pointed out that color images can provide a large amount of 

information of the real-world objects. However, most of the above classification algorithms (CNN, 

ScatNet, PCANet, etc.) were only proposed for gray images. Thus, similar researches that are 

suitable for color images classification need to be conducted.  

The classical representation of color images usually combines the values of R, G, B - channels 

into one vector. Under this simple representation, the spatial relationships between the color 

pixels of the image are destroyed, and the dimension of images is three times of that of classical 

gray-scale images. As a result, it is crucial to seek a way to better represent color images by 

taking into consideration the spatial relationships between R, G, B channels. Quaternion is a 

powerful mathematical tool that allows representing color images [20-23]. In this way, color 

images can be represented by quaternion as a whole and the intrinsic structures of color images 

and the relationships between R, G, B channels can thus be preserved. 

On the other hand, principal components analysis concepts have been extended to quaternion 

algebra in recent years [24, 25]. Bihan and Sangwine [24] and Pei et al. [25] proposed a new 

feature extraction method for color image, called Quaternion Principal Components Analysis 

(QPCA), which is able to extract more robust and informative features from color image than 
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classical PCA. These studies emphasize that QPCA is superior to PCA in color image 

representation. 

In this paper, we propose a new color image feature extraction technique, namely Quaternion 

Principal Component Analysis Network (QPCANet) that extends and adapts the principals of 

PCANet approach to quaternions. We represent color images in quaternion domain and extract 

QPCA features, which are then put into simple quaternion binary hashing to get final QPCANet 

features. Support Vector Machine (SVM) [26, 27] is finally used as feature classifier. The 

performances of the proposed method (i.e QPCANet) are then evaluated and compared to those of 

PCANet on color image databases for many classification tasks, including face recognition, 

object recognition, texture classification and land use classification. 

The rest of the paper is organized as follows. In Section 2, the quaternion algebra is briefly 

introduced as well as its use for color image representation. Section 3 is dedicated to the 

presentation of the architecture of QPCANet and also shows how the multi-stage QPCANet 

works. In Section 4, classification performances of QPCANet and PCANet are evaluated and 

compared on various color datasets. The paper ends with concluding remarks reported in Section 

5. 

 

2. Quaternion algebra and quaternion representation of color image 

The field of quaternion numbers is denoted by H . A quaternion number x is a hypercomplex 

number, which consists of one real part and three imaginary parts: 

( ) ( ) ( ) ( )x S x I x i J x j K x k                              (1) 

where ( ), ( ), ( ), ( )S x I x J x K x   ( denotes the field of real numbers) and i, j and k are three 

imaginary units obeying the following rules: 

2 2 2 1, , ,i j k ijk ij ji k jk kj i ki ik j                         (2) 

Eq. (1) can also be expressed using the following 2-tuple or 4-tuple notations: 
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   ( ) ( ) ( ) ( ) ( )x S x S x I x J x K x v                          (3) 

where S(x) is a scalar part of x and v forms the vector part. For the special case where S(x) = 0, 

i.e. x = I(x)i + J (x) j +K(x)k , x is called a pure quaternion. 

The conjugate of a quaternion is defined as: 

   * ( ) ( ) ( ) ( ) ( )x S x S x I x J x K x     v                      (4) 

The l2 norm of a quaternion x is defined as 2 2 2 2( ) ( ) ( ) ( )x S x I x J x K x     and its 

inverse is given by 1

2

*x
x

x

  . If 1x  , then x is called a unit quaternion. An important 

characteristic of the quaternion algebra is its non-commutatively under multiplication. For a 

complete review of quaternion properties, please refer to [28]. 

A color image can be represented in the quaternion domain as follow [20]:  

Qy, z) = Ry, z)i  Gy, z)j  By, z)k                   (5) 

where Ry, z), Gy, z) and By, z) are respectively the red, green, and blue components of the pixel 

at position y, z). Thus each color pixel is represented as a pure quaternion and its imaginary parts 

represent the color channels. This gives birth to the quaternion image Q.  

 

3. Quaternion Principal Component Analysis Network (QPCANet) 

The architecture of the proposed QPCANet is depicted in Fig. 1. In this section, we analyze the 

structure of QPCANet for color image classification, and we show how to build a multi-stage 

QPCANet. 

 

3.1 QPCA filter bank 

Suppose that we have N quaternion input patterns 1{ }N

i iQ  of size m  n and corresponding 

labels for training. Quaternion input pattern can either be a quaternion image or a meaningful 
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quaternion matrix. For simplicity, we assume that the patch size is k1  k2 , k1 and k2 are positive 

odd integers. We collect all (mk11)  (nk21) quaternion patches around each pixel of the ith 

quaternion input pattern. Then each quaternion patch is centered by subtracting its mean. We get 

thus zero-mean quaternion patches for the ith quaternion input pattern. We note these quaternion 

features 
1 2,1 ,2 ,( 1) ( 1)[ , , , ]i i i i m k n k     q q q q , and each element of qi belongs to 1 2k kH . Repeating 

the above process, we can get all quaternion patches of N input patterns for training. By 

constructing the same matrix for all quaternion patches and by putting them together, we obtain 

  1 2 1 2( 1 ) ( 1 )

1 2[ , , , ] k k N m k n k

N

      q q q q H                       (6) 

The covariance matrix of q is computed as: 

  
1 2

*

( 1)( 1)N m k n k
 

   

qq
                         (7) 

The above matrix admits a quaternion eigenvalue decomposition [24, 25, 29, 30]: 

*  WΩW                                 (8) 

where 1 2 1 2k k k kW H is a unitary matrix that contains the eigenvectors of   and 1 2 1 2k k k kΩ  is 

a diagonal matrix with eigenvalues on its diagonal. The values on the diagonal of Ω are arranged 

in decreasing magnitude order and the corresponding eigenvectors, i.e. the principal components 

of q, are arranged accordingly in W. The bigger the eigenvalue is, the more important the 

quaternion principal component will be. These principal component vectors are also called QPCA 

filters or QPCA filter bank. It was shown in [24] that QPCA is invariant to spatial rotation of 

color image. 

Let L be the desired number of QPCA filters. We choose then the first L eigenvectors of W to 

form the new matrix 1 2k k LW H  where each of its columns is seen as a filter lW :  

1 2 , 1,2, ,k k

l l L W H                                (9) 

These filters form the filter bank of quaternion input patterns 1{ }N

i iQ . This filter bank captures 

the main variations of all quaternion patches. We will use the filter bank to extract the feature 
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maps from quaternion input patterns by convolutional operations. 

 

3.2 Convolutional operation 

A quaternion input pattern Qi is convolved with the above filter bank to form quaternion 

feature maps: 

, 1,2, , , 1,2, ,l

i i l i N l L   F Q W                         (10) 

where ∗ denotes 2D quaternion convolution. Note that the 2D convolution of quaternion 

matrices is also linear. The boundary of Qi is padded by zero quaternion (i.e. zero-padding), 

whose real part and three imaginary parts are zeros, so as to ensure that l

iF  and Qi have the size 

m  n. Qi can then be transformed into several quaternion feature maps l

iF  according to the 

numbers of QPCA filters. We denote by 1{ } { }l L

i i lF F   the set of quaternion feature maps of Qi. 

It turns out that each element of 1{ }N

i iF  can also be used as quaternion input pattern. By 

repeating the above process one can expect to derive high-level features. 

 

3.3. Quaternion feature maps weighting and pooling  

Quaternion feature maps extracted by convolution operation should be binarized, weighted, and 

then summed in order to reduce the number of quaternion feature maps. Thus, each quaternion 

feature map ( ) ( ) ( ) ( ) ,l l l l l

i i i i iS I i J j K k   F F F F F  is binarized by applying the Heaviside step 

function H) to its four parts (the value of H) is one for positive entries and zero otherwise). The 

binarized quaternion feature map is denoted by        l l l l l

i i i i iS I i J j K k   F F F F F  and the 

resulting maps are weighted to form a new single quaternion pattern: 

       1

1

2
L

l l

i i i i i

l

S I i J j K k



    i
T F T T T T .                      (11) 

Note that the pixel values of        , , ,i i i iS I J KT T T T  are integers belonging to the interval 
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0,2 1L   . 

Next, we discuss the pooling stage of QPCANet. Since 
iT  has four parts, namely, 

       , , ,i i i iS I J KT T T T , each part is pooled separately. Let us first consider ( )iS T  for example. 

We divide ( )iS T  into B blocks. For each block, we perform a pooling operation, which is simply 

the estimation of the histogram (with 2 1L   bins) of the decimal values in each block. After this 

pooling process, we concatenate the histograms of the B blocks into one vector, that is, 

2( ( ))
L B

iBhist S T . After performing the same pooling operation on      , ,i i iI J KT T T , the 

obtained four vectors are concatenated to derive the feature vector, of the quaternion input pattern 

Qi, denoted by:  

            4 2

1 [ hist , hist , hist , hist ]
L B

i i i i iB S B I B J B K  f T T T T          (12) 

Chan et al. [16] showed that, depending on applications, the local blocks can be either 

overlapping or non-overlapping in PCANet. They suggested that non-overlapping blocks are 

suitable for face images, whereas the overlapping blocks are appropriate for hand-written digits, 

textures, and object images. We found that the recommendation is also suitable for QPCANet.  

 

3.4. Multi-stage architecture 

Now we are ready to describe the multi-stage architecture of QPCANet. As depicted in Fig. 1, 

the two-stage QPCANet (QPCANet-2) contains two QPCA filter banks (W1 and W2), two 

convolution layers (C1 and C2), a quaternion feature map weighting layer and pooling layer. The 

output of the last layer is fed to SVM [26, 27] for classification. The QPCA filter bank W1, which 

contains L1 QPCA filters, can be obtained from 1{ }N

i iQ , then layer C1 executes a convolution 

using the kernel W1 to get the sets of quaternion feature maps 1{ }N

i iF . The filter bank W2, which 

contains L2 QPCA filters, is computed from 1{ }N

i iF . The layer C2 executes a convolution using W2 

to get L1  L2 quaternion maps 2 2 1 1 21 2 111 21, , , , , , , ,L L L L L m n

i i i i i i

G G G G G G H , where ab

iG  
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denotes the bth quaternion feature map of a

iF  for Qi. Each 
ab

iG  is binarized and weighted as 

previously described. We then pool the L1  L2 quaternion feature maps, using the method 

reported in Section 3.3, to obtain the final feature vector
2

14 2

2

L
L B

i

f . 

One or more additional stages can be stacked like W1-C1-W2-C2-W3-C3…. But in our 

experiments, we found that QPCANet-2 is enough to get a good accuracy in color image 

classification and thus a deep architecture is not necessarily required. 

 

4. Experimental results 

To evaluate the efficiency and robustness of the proposed scheme, a set of experiments has 

been conducted on various datasets (Caltech-101, UC Merced Land Use, Georgia Tech face 

database and CURet texture database). 

Chan et al. [16] compared PCANet with many other methods (CNN [7], ScatNet [14, 15], etc) 

for the classification of gray-scale images. Therefore, in this study, we only compare the proposed 

QPCANet with PCANet for color image classification. Note that when using the PCANet to deal 

with color image, both the color-to-gray transformation (Gray PCANet) and three channels 

concatenation representation (RGB PCANet) are taken into consideration. 

 

4.1. Performance in Caltech-101 

We evaluate the performance of QPCANet on Caltech-101 dataset [31] for color image 

recognition. Caltech-101 contains a total of 9146 images including color and gray-level images, 

belonging to 101 distinct objects, including faces, watches, ants, pianos, etc. In this paper, we 

only consider 8733 color images in Caltech-101 dataset and discard all gray-level images. All 

color images were resized to be 32 × 32 pixels in order to reduce the computational time. We 

randomly select 15 color images as training images per class and the remaining ones are used for 

testing. The overlapping ratio of block is set to 0.5 to preserve appropriate feature invariance for 
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objects in Caltech-101. The block size in feature pooling stage is set to be 7 × 7, based on the 

experience [16]. Then we use a greedy algorithm to find the optimal number of QPCA filters in 

every stage of QPCANet by changing the patch size from 3 × 3 to 7 × 7. First we vary the L1 from 

2 to 9 for QPCANet-1. The results are shown in Fig. 2(a). One can see that QPCANet-1 achieves 

the best result for patch size 3 × 3 and the accuracy of L1 = 8 is satisfied. Although the accuracy 

increases with the increase of L1 for other patch size, the optimal number of QPCANet-1 is set to 

8, which is the same as that of PCANet. 

Next, two-staged QPCANet is considered. We set L1 = 8 and vary L2 from 2 to 9. The patch size 

is changed from 3 × 3 to 7 × 7. We draw the accuracy of QPCANet-2 in Fig. 2(b). It can be seen 

that QPCANet achieves a good performance for L2 = 8. When L2 ≥ 8, the recognition rate for 

patch size 3 × 3 and 7 × 7 decreases, and there is no obvious increase in accuracy for patch size 5 

× 5. Considering the applications of QPCANet, we should make the parameters in this system as 

simple as possible. We have noticed empirically that even with simple parameters, the system can 

achieve good performance in color image classification. So, although some fine-tuned L1 and L2 

values could lead to performance improvement, we decided to set L1 = L2.  

 For fair comparisons, appropriate parameters of RGB PCANet and gray PCANet are required. 

For both RGB PCANet and Gray PCANet, we enlarged patch size from 3×3 to 7×7. The block 

size was fixed to 7×7 and overlapping ratio is set to 0.5. The feature maps extracted from the 

above networks were used with SVM [26, 27] as a classifier. The average accuracy over 5 

drawing of the training set is listed in Table 1. We see that the best performance (63.78%) is 

achieved by QPCANet-2 when patch size is 3 × 3. With the increase of the patch size the 

accuracy decreases. This illustrates that too big patch size is not appropriate for color object 

recognition with QPCANet. The performance improvement from QPCANet-1 to QPCANet-2 is 

not as large as that of RGB PCANet. But we note that the accuracy of QPCANet-1 is much better 

than other methods. IN fact, the behavior of QPCANet-1 is very close to that of Gray PCANet-2 

and RGB PCANet-2. This implies that we can achieve an acceptable result by just apply a simple 
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one-stage network of QPCA. 

By comparing Gray PCANet with RGB PCANet, a strange phenomenon draws our attention. 

Why the accuracy of RGB PCANet-1 is lower than that of Gray PCANet-1, but RGB PCANet-2 

outperforms Gray PCANet-2? First, let us consider some pictures extracted from Caltech-101 and 

reported in Fig. 3. We note that every horizontal pair of objects has the same main colors, but the 

objects are not belonging the same class. Thus, we cannot do a right classification only with color 

information. For color image classification, color information and boundary information seem 

equally important. Color information is harmful to color image classification when an algorithm 

has not enough representation ability. That is, color is a burden for some classification algorithms. 

It seems that RGB PCANet-1 is such an algorithm, which is not able to utilize simultaneously 

color information and boundary information. For Gray PCANet-1, we changed color images to 

gray-scale ones and thus only the boundary information, which is effectively utilized by Gray 

PCANet-1, is preserved. Therefore, it is not surprising that Gray PCANet-1 outperforms RGB 

PCANet-1.  

The performance improvement from RGB PCANet-1 to RGB PCANet-2 is surprising. RGB 

PCANet-2 seems to have enough ability to deal with both color information and boundary 

information. Compared to RGB PCANet-1, the representation ability of RGB PCANet-2 is 

significantly higher. RGB PCANet-2 also performs better than Gray PCANet-2 by utilizing color 

information of objects. Gray PCANet-2 does not perform significantly better than Gray 

PCANet-1 in this database. We can conclude that the accuracy of color object recognition is 

difficult to improve by only utilizing boundary information. 

Why QPCANet outperforms the two other methods (RGB PCANet, Gray PCANet) in color 

image classification? We think that the reason is the utilization of quaternion model of color 

image shown in Eq. (5). The quaternion representation of color image preserves the underlying 

spatial structures and relationships between R, G, B channels. QPCA is shown to be more suitable 

for color images representation, and allows enhancing the robustness of color images features 
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[29]. The shortcoming of RGB PCANet is that it neglects the structure and unity of color images.  

To conceptualize the learned QPCANet filters of patch size 3 × 3, we draw them in Fig. 4. In 

this figure, the first four rows correspond to the real part and three imaginary parts of the first 

stage QPCA filters, and the others correspond to the four parts of the second stage QPCA filters. 

The learned RGB PCANet filters of patch size 3 × 3 are shown in Fig. 5. The first three rows 

represent the one stage RGB PCA filters where each row corresponds to R, G, B channels, 

respectively. The last row represents the PCA filters of the second stage.  

All the filters depicted in figure 4 and 5 are scaled within [0, 1]. Some learned filters exhibit 

similar shapes however; their numerical values are not the same. We notice that some similar 

QPCA filters occur several times in the different parts of quaternion. Such a filter redundancies 

may improve the intra-class invariance of feature maps. For the first three rows in RGB PCA 

filters, we notice that the last seven RGB PCA filters of each row have the same shape although 

their numerical values are not the same. It means that the similar filtering operations are 

performed in R, G, B channels.  

 

4.2. Testing on UC Merced land use database 

Subsequently, we test the proposed QPCANet performance on UC Merced land use dataset 

[32]. UC Merced land use dataset is manually extracted from large images from the USGS 

National Map Urban Area Imagery collection for various urban areas around the country. The 

dataset, composed of 256 × 256 pixels RGB images with pixel resolution of one foot, was and 

manually partitioned into 21 classes. Each class contains 100 images. Fig. 6 shows 21 images 

each representing a distinct class. Some representative images from the dataset are also shown in 

Fig. 7, from which we find that the dataset contains abundant rotation information due to a 

different point of view of aerial photography. The land objects in one class are the mainly the 

same, but the angles of view are different. The intra-class variability will then increase the 

difficulty of color image classification. 
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The QPCANet is trained with the number of filters L1 = L2 = 8, block size is set to 8 × 8 and the 

overlapping ratio is fixed to 0.6. We changed patch size k1 × k2 from 3 × 3 to 7 × 7. Every image 

was scaled to 32 × 32 pixels to reduce computational time. We randomly selected 80 training 

images per class, and remaining ones were used for testing. We used the same parameters for 

RGB PCANet-2 and Gray PCANet. The results are reported in Table 2. Note that with the 

increase of patch size, the accuracy of all networks decreases. The best performance for various 

patch sizes is highlighted in bold. In UC Merced Land use dataset, one stage QPCANet 

outperforms all other one-stage networks. It is even better than some two-stage networks. This 

implies that only one-stage QPCANet can achieve acceptable results. QPCANet-2 for patch size 3 

× 3 helps increasing the performances by more than 6% of those of RGB PCANet-2. The Gray 

PCANet performs poorly in all cases. 

It turns out that QPCANet performs much better than both RGB PCANet and Gray PCANet in 

UC Merced Land Use database. The reason may be due to the nature of UC Merced land use 

database with contains a large amount of rotation type images. Quaternion representation gives a 

concise and all-in-one representation for rotation, and is known for its successful application in 

computer graphics, computer vision, and orbital mechanics of satellites, etc. [33-37]. We suspect 

that the quaternion model of color image gives more rotation invariance to QPCANet when 

compared to RGB PCANet. In the next section, we further experimentally verify this conjecture. 

 

4.3. Face recognition on Georgia Tech face database 

Georgia Tech face database [38] contains images of 50 people in JPEG format. For each 

individual, 15 color images were collected at the Center for Signal and Image Processing at 

Georgia Institute of Technology. All images in the database are 640 × 480 pixels and the average 

size of faces in these images is 150 × 150 pixels. Most of the images were taken in two different 

sessions to take into account the variations in illumination conditions, facial expression, and 

appearance.  

http://en.wikipedia.org/wiki/Computer_graphics
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In this experiment, the face images are cropped with dimension 128 × 160 to guarantee 

classification accuracy. Some examples are shown in Fig. 8. To reduce the computational 

complexity, we resized all cropped images to 64 × 64 pixels. We randomly pick up 10 images in 

each class as train images, and the others are used as testing images. We found that one-stage 

networks provide excellent results. Therefore, two-stage networks are not considered here. The 

number of filters in networks is set to 8 and non-overlapping block is of size 8 × 8. The average 

accuracy of classifications over 10 times experiments are listed in Table 3. 

Next, we experimentally verify the hypotheses in UC Merced Land use: QPCANet outperforms 

RGB PCANet when color images to classify are related to each other by rotation. 

First, we choose only one cropped front face image from 20 individuals. These images are zero 

padded to form a square image of size 220 × 220 pixels. A representative padded image is shown 

in Fig. 9 (a). The padding ensures that the rotation operation will not induce any border effect. For 

each individual (i.e. class), we rotate the padded front image from 0° to 360° by a step of 10° to 

obtain 36 images for each class. Some rotated images are shown in Fig. 9 (b). We randomly select 

18 images from each class to train networks and the remaining ones are used in the testing 

procedure. All images are linearly scaled to 64 × 64 pixels. For all networks, the number of filters, 

and the (non-overlapping) block size are set to L1 = L2 = 8, and 8×8, respectively. The results of 

QPCANet and other networks are listed in Table 4. Surprisingly, the accuracy of all networks 

decreases with the increase of stage. When patch size is 5 × 5, the accuracy of QPCANet-1 

reaches 84.94% outperforming all the other methods. We can conclude that, compared to PCANet,  

QPCANet allows extracting features that are less sensitive to rotation. . 

 

4.4. Texture discrimination in CURet Dataset 

The CURet texture dataset [39] contains images of 61 materials that broadly span the range of 

different surfaces that we commonly see in our environment. Every class is composed of 92 

images of size 200 × 200 pixels. All images are linearly scaled to 32 × 32 pixels. The database is 
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randomly splited into a training set and a testing set, with 23 training images for each class. 

The QPCANet is trained with a number of filters L1 = L2 = 8, the overlapping ratio is set to 0.5 

and the block size is fixed 8 × 8. The RGB PCANet and Gray PCANet use the same parameters 

as that of QPCANet.  

The average recognition rates over 5 different random splits are given in Table 5. We see that 

QPCANet outperforms other networks whether the stage is one or two. When patch size is set to 

7 × 7, the performance of QPCANet-1 approximately equals that of RGB PCANet-2 and 

outperform that of Gray PCANet-2. We also notice that RGB PCANet-1 outperforms Gray 

PCANet-1. These performances are not the same as objects recognition in Caltech-101 because 

texture dataset does not have such complex property as object dataset. The performance of RGB 

PCANet is much higher than that of Gray PCANet due to the use of color information and 

boundary information of texture dataset at the same time. 

 

5. Conclusion 

In this paper, we have proposed QPCANet, a simple and tractable model for color image 

classification. QPCANet relies upon three steps: QPCA filter bank, convolutional operation, 

quaternion feature maps weighting and pooling. In QPCA filter bank, quaternion component are 

extracted from quaternion representation of color images. In convolution operation, the 

quaternion components extracted from QPCA filter bank are used to form several quaternion 

feature maps. In the quaternion features weighting and pooling step, quaternion features are 

binarized and weighted to obtain a discriminant features. The network outputs are then used for 

classification purpose by exploiting the SVM technique. The conducted experiments showed that 

QPCANet outperforms RGB PCANet and Gray PCANet in color image classification. 

Additionally, we experimentally verified that QPCANet performs well in color images databases, 

which contains many rotation type images. In this work, we have shown that QPCANet is a 

powerful tool for color image classification and, when compared to PCANet, it allows deriving 
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features that are less sensitive to rotation.  
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Fig. 1. Architecture of two-stage QPCANet 

 
(a)                                    (b) 

Fig. 2. Recognition accuracy of QPCANet on Caltech-101 database for different number of 

QPCA filters and by changing patch size from 3 × 3 to 7 × 7. (a) The number of QPCA filters 

varies from 2 to 9 in one stage. (b) The number of QPCA filters varies from 2 to 9 in the second 

stage with L1=8 
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Fig. 3. Some pictures have the same main colors but are not belonging to the same category of 

objects 

 

 
 

Fig. 4. QPCA filters in the first stage (rows 1 to 4) and second stage (rows 5 to 8) 

 

 
 

Fig. 5. RGB PCA filters in the first stage and second stage 
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Fig. 6. All representative examples of classes in the UC Merced land use database 

 

 

 
 

Fig. 7. Rotation information in UC Merced land use database 

 

 

 

 
 

Fig. 8.  Sixteen individuals in Georgia Tech face database 
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(a)                                     (b) 

Fig. 9. Original representative padded front face image and some rotated images. (a) 

Representative padded front face image. (b) Some rotated face images in the new database. 

 

Table 1 

The accuracy (%) of color image classification in Caltech-101 database 

 

Patch 

Size 
QPCANet-1 QPCANet-2 

RGB 

PCANet-1 

RGB 

PCANet-2 

Gray 

PCANet-1 

Gray 

PCANet-2 

3 × 3 58.59 63.78 50.33 63.50 55.69 59.90 

5 × 5 57.55 60.28 47.27 63.31 55.43 60.09 

7 × 7 56.12 57.40 47.08 59.38 54.06 54.58 

 

Table 2 

Recognition rate (%) of land use images on UC Merced land use database 

 

Patch 

Size 
QPCANet-1 QPCANet-2 

RGB 

PCANet-1 

RGB 

PCANet-2 

Gray 

PCANet-1 

Gray 

PCANet-2 

3 × 3 70.24 79.05 65.24 73.33 65.00 66.67 

5 × 5 68.81 70.71 64.29 67.14 57.14 58.81 

7 × 7 68.10 67.62 62.14 63.10 55.24 56.90 

 

; 

Face recognition rates (%) of different networks on Georgia Tech face database 

 

Patch 

Size 
QPCANet-1 

RGB 

PCANet-1 

Gray 

PCANet-1 

3 × 3 100 99.2 99.2 

5 × 5 100 98.8 99.2 

7 × 7 100 99.6 99.2 

 

Table 4 

Comparison of face recognition rates (%) of rotation on Georgia Tech face database 

 

Patch 

Size 
QPCANet-1 QPCANet-2 

RGB 

PCANet-1 

RGB 

PCANet-2 

Gray 

PCANet-1 

Gray 

PCANet-2 

3 × 3 82.39 77.12 80.56 74.17 60.22 47.77 

5 × 5 84.94 79.17 71.49 68.61 69.44 61.66 

7 × 7 79.77 76.94 70.83 65.56 70.56 63.61 
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Table 5 

The accuracy (%) of texture classification on CURet dataset 

 

Patch 

Size 
QPCANet-1 QPCANet-2 

RGB 

PCANet-1 

RGB 

PCANet-2 

Gray 

PCANet-1 

Gray 

PCANet-2 

3 × 3 96.94 98.66 92.28 96.36 90.71 93.70 

5 × 5 97.81 98.57 95.60 98.08 95.60 96.56 

7 × 7 98.05 98.40 96.29 98.03 96.03 96.20 

 


