[terative Estimation of Rotation and Translation
using the Quaternion

Mark D. Wheeler Katsushi Ikeuchi

December 10, 1995
CMU-CS-95-215

School of Computer Science
Carnegie Mellon University

Pittsburgh, PA 15213

Abstract

In this paper, we consider some practical issues when using the quaternion to represent rota-
tion in conjunction with gradient- or Jacobian-based search algorithms. Iterative estimation
techniques often incorporate gradient or Jacobian information to simultaneously solve for
the parameters with respect to many non-linear constraints. We derive a simple form for the
Jacobian of the rotation matrix with respect to its quaternion parameters and then use this
form to predict some practical numerical problems of using gradient and Jacobian informa-
tion for iterative search. These problems can be eliminated by some straightforward steps
which we describe.

This research has been supported in part by the Advanced Research Projects Agency under the De-
partment of the Army, Army Research Office grant number DAAH04-94-G-0006, and in part by the Office
of Naval Research grant number N00014-93-1-1220. Views and conclusions contained in this document are
those of the authors and should not be interpreted as necessarily representing official policies or endorse-
ments, either expressed or implied, of the Department of the Army, the Department of the Navy or the
United State Government.

Keywords: computer vision, pose estimation, rotation and translation, quaternions,
Jacobian, gradient, conditioning

1. Introduction

The need to estimate rotation and translation parameters, commonly referred to as pose
estimation, is ubiquitous in the field of computer vision. Solving for rotation by itself is
difficult and is exacerbated when coupled with translations. In some situations, a closed
form solution for the optimal rotation and translation is available. In many problems, non-
linearities and constraints often make it impossible to find a closed form solution. For these
situations, iterative solutions are often required. These iterative solutions often use gradient
or Jacobian information to make the search efficient.

In this paper, we consider some practical issues when estimating rotation and translation
using gradient- and Jacobian-based search algorithms. Quaternions have proved a valuable
representation for estimating and manipulating rotations [FH86, Hor87]; their use for such
problems is motivated in Section 2. Quaternions and their relevant properties are described in
Section 3. In Section 4, we derive a particularly simple form of the Jacobian of rotation with
respect to its quaternion parameters. This form is fundamental to rotation, some reasons
for which are discussed in Section 5. The form of the Jacobian allows us to predict some
numerical problems when using the gradient and Jacobian of rotation in practice. These
problems and their solutions are described in Section 6.

2. Why Quaternions?

A common problem in computer vision is solving for rigid body motions or poses consisting
of a rotation and translation in 3D space. For example!, given a set of points @; and
correspondences p,, it is often of interest to compute the 3x3 rotation matrix R and 3-vector
translation ¢ such that

Rx; 4+t = p,. (1)
Although this system of equations is essentially linear, a number of problems arise when
formulating solutions that account for the non-linear constraints on the components of R.
The constraints arise from using nine values of rotation matrix R to represent three inde-
pendent variables of 3D rotation. The rotation matrix is constrained to be orthogonal which
is satisfied when RTR = I (i.e., the rows and columns are orthonormal). Also, the rotation
must not be a reflection; this is satisfied when the determinant is 1 (i.e., |R| = 1).

A number of techniques have been developed to deal with this added complexity. One of
the most convenient is the quaternions representation. We will describe quaternions in some
detail in what follows, but first we provide the reader a list of some of the advantages and
mathematical niceties of the quaternion representation of rotation.

e Maintaining the constraints (orthogonal with unit determinant) of rotation is made
simple with quaternions by standard vector normalization.

'We will use the convention of showing vector variables in bold and matrices as capital letters.

1

e Quaternions can be composed/multiplied in a straightforward manner to accumulate
the effects of composed rotations.

e The inverse of a quaternion (specifying the inverse rotation) is obtained by simply
negating 3 components of the quaternion vector.

e The rotation between two rotations can be computed by multiplying one quaternion
with the inverse of the other.

e One can easily transform a quaternion into an axis-and-angle representation. Using
this and the previous item, one can compute a rotational distance metric between two
rotations—the angle of rotation between them.

e (Quaternions can be easily transformed to a 3x3 rotation matrix for efficient computa-
tion when rotating vectors.

e It has been shown by Faugeras and Hebert [FH86] and Horn[Hor87] that with the
quaternion representation, the rotation can be solved for in closed form when corre-
spondences between three-dimensional point sets are available.

We would like to add to this list that the quaternion representation of rotation has some
advantageous differential properties (to be described later). These differential properties
combined with the properties of quaternions described above make quaternions particularly
well suited to requirements of iterative gradient- or Jacobian-based search for rotation and
translation. In this paper, we derive a simple form for the gradient and Jacobian of rotation
with respect to quaternions. The form of the Jacobian leads to a straightforward analysis
of the problem presented by scale when solving for rotation and translation, and leads to
simple steps to ensure scale invariant performance of search algorithms.

3. Quaternions

In this section, we will define the quaternion and its essential properties for representing and
algebraicly manipulating rotations. For further details on quaternions the reader is referred
to [Ham69, FH86, Hor87, McC90]. The quaternion g is a four vector [u, v, w, S]T which
is often considered as a three-vector w = [u, v, w]T and a scalar s. We will often refer to
q as [u, S]T for notational simplicity. The dot product and vector norm for quaternions is
defined as usual

g, gy, = U Uy + 5182

lal=(g-q)°%.

Multiplication is defined over quaternions as

qquZ[[81UQ—|—82’lL1—|—’lL1><’lL2], SlSz—ul"lI,Q]T. (2)

The complex conjugate of a quaternion is defined by negating the vector component and is
denoted q = [—u, S]T. The complex conjugate of a unit quaternion, |q| = 1, is the inverse
of the quaternion with respect to multiplication, i.e.,

99 = q;

where q; = [0, 0, 0, 1]T (we will refer to this often). From Equation 2, one can see that
qq; = q;9 = q which is why we refer to g; as the identity quaternion.

A unit quaternion g can be used to perform a rigid rotation of a vector = [z, v, Z]T by
two quaternion multiplications

q,

n @ r

xr =q
0

where the scalar component of @ is simply set to zero. Observe that quaternion multiplication
is not commutative; this is consistent with the fact that general three-dimensional rotations
do not commute; however, quaternion multiplication is associative and distributive.

Working from this definition of quaternion rotation, one can derive a formula for the
corresponding orthogonal (Euclidean) 3x3 rotation matrix from a unit quaternion

82+ u? — v — w? 2 (uv—sw) 2 (uw+ sv)
R.(q) = 2 (uv+ sw) s —u? 4+ v? — w? 2 (vw—su)
2 (uw — sv) 2 (vw+ su) 8§ —u? — v 4 w?

We use the subscript w in R, to denote that this is the rotation matrix when given a unit
quaternion. Given an arbitrary quaternion, R, would no longer be unitary but rather a
scaled rotation matrix. The reader can verify that for the identity quaternion (defined
above) R(q;) = I, the 3x3 identity matrix.

Finally, we define the relationship between quaternions and the axis-and-angle represen-
tation. A unit quaternion g can be straightforwardly interpreted to specify a rotation of
angle § around the unit vector w using the relations

0

w = sin — w
2

0

S = cos—.
2

This relationship can be derived (see [Hor87]) from Rodrigues’ formula for axis-and-angle
rotation

&' =cosfx +sinb(wxa)+ (1l —cosb)(w-z)w (3)
where @ is the vector being rotated.

The next section will examine some differential properties of quaternions with respect to
rotation.

4. The Jacobian of Rotation With Respect to Quaternions

In this section, we explore a special case which greatly simplifies the form of the Jacobian of
rotation with respect to quaternions. This form is later used to predict numerical problems
that will occur for iterative search methods utilizing Jacobians and gradients with respect
to quaternion rotation parameters.

The rigid transformation of Equation 1 is now a function of g instead of the nine elements

of R
x' = R(q)x; +t, (4)

and the derivatives with respect to q (which is all that we are interested in at the moment)
are only a function of the rotation term.

We begin by eliminating the restriction to unit quaternions in our analysis. We can
enforce the constraint that the rotation matrix is orthogonal without requiring g to be a
unit vector by dividing the matrix by the squared length of the quaternion

1
k(q) - qRu(q)- (5)
This constraint is necessary in general to ensure the Jacobian and gradient accurately reflect
the differential properties of a change in the quaternion parameters. As one might guess,
the addition of this constraint greatly complicates the form of the Jacobian; however, as we
will see shortly, this constraint actually slightly simplifies the Jacobian when evaluated at
the identity quaternion, q;.

If we are computing the Jacobian of

' = f(q,z) = R(q)x

with respect to g, things are greatly simplified if we know g = gq;. Setting things up to
make sure we evaluate all derivatives at g; is quite painless. Say that quaternion specifying
the current rotation of the data is g.. We can easily change coordinate systems so that our
current quaternion is q; by simply premultiplying all of the model points by R(q.). That is,
replace @ with . = R(q.)z.

By premultiplying the data with the current rotation, we will now solve for a rotation that
composes with our current rotation position instead of attempting to solve for the corrections
of our current rotation parameters. The premultiplication should not increase the number
of computations for most applications since R(q,)& must be computed anyway to compute
error terms. After estimating this rotation, we can easily compute the quaternion of the
complete rotation by quaternion multiplication (i.e., ¢' = qq.).

Fundamentally, we have not changed the problem since

f(qlvwc) = f(qc7w)7

4

and we can still represent the same set of rotations. However, the form for the Jacobian is
much simpler when evaluated at q; as we will see.

We now derive the Jacobian matrix <= (f(q,)) at q;

&q
of OR
oq " iq v
Tig=q, °Tlg=q,
Using z(q) = ﬁ and Equations 5, this can be broken up as follows
oR 0R, 0z
Sa = z(qy) Sa Sa Ru.(q;) (6)
1lq-q, 1lq-q, °9lq-q,
IR,)
= 5 + 5—2 1, (7)
1lq-q, °9lq-q,

using R(q;) = I and z(q;) = 1.

The first term can be computed by realizing that only the components in R,(q) with a
factor of s in it will have a value in the derivative evaluated at q;

SRy _ [SRy SRy SRy SRy]
°d lq=q, v lg=q, v lg=q, wlg=q, % lg=q;
00 0 00 2 0 =2 0 200
= | 00 —2 0 00 2 00 0 20].
02 0 -2 00 0 00 00 2
The second term is easily found to be
0z
— I=-2:(q;)q;I=-2q;,1=10,0,0, —2] L.
0q |-
q9=9;

Summing up the terms from Equation 7, we see that the term %—f g4=q, disappears (which

is not true at other points in general). The normalization factor z(q) effectively cancels out
any gain in [from increasing or decreasing the s component at ¢ = q;; thus, the gradient
of normalized rotation accurately reflects the effect of changes in the parameters. Since the
Jacobian evaluated at g; is nonzero only in the u, v and w components, we only have three
rotation parameters to estimate.

We can now return to the original gradient equation and multiply through to get
of OR
— — x
%9 %9 lq-q,
0 22 =2y 0
= —2z 0 22 0
2y 2z 0 0

q=q,

5

where ® = [, y, Z]T. Ignoring the last column of the Jacobian, the result will be familiar to
most readers as —2 times the skew-symmetric matrix of ®. For example, the cross product
of two vectors can be expressed as a matrix-vector multiplication

0 —z y
xxa=Cz)a= z 0 —z |a,
-y x 0

where we refer to C'(@) as the skew-symmetric matrix of @. Notice that, by the skew-
symmetry of C'(x), CT = —(C. Thus, we have a very simple form for the Jacobian of our
function at q;

§f| 4R

= — x =20 ()", (8)

lg-q, 99lq=q,

The above derivation enables us to trivially and efficiently compute the gradient/Jacobian

of any rotation with respect to quaternion parameters. The computation of these entities

at quaternions other than g; requires many more operations and involves a term for the s
component as well.

Starting the search at g; has some other advantages for gradient-based searches of rota-
tion. Consider performing a line minimization in the (negative) gradient direction. Remem-
ber the gradient direction with respect to g will have no s component and will be of the

form
of

0q|g_q,

and each step of the each successive rotation in this direction will be of the form

dg = = [du, dv, dw, 0]".

q = q; + Mg = [Mdu, 1]" (9)

where du = [du, dv, dw]. Remember that ¢’ does not need to be normalized (we did that in
Equation 5). This means that the rotation axis of our corresponding line search is constant

while the angle
1
1
A? + 1) (10)

increases with A (assume |dg| = 1). If the gradient is evaluated at q # q;, we get a gradient
with s # 0 and our steps in the search are now of the form

=2 cos_l(

qg(\) =q.+ Mg = [u. + Mdu, SC—I—)\dS]T. (11)

It is interesting to note that searching across an arbitrary line in the 4D quaternion space
is equivalent to searching along # while rotating around a fixed rotation axis. Details of this
relationship are presented in the Appendix.

Also note that 6 is not a linear function of A Equations 10 and 18. It is very close to a
linear relationship for small angles and reasonably so for § < 90°. Beyond this linear region

6

the search may run into trouble. The gradient search can compensate for this by linearly
increasing the value of 8 directly, but this should rarely be necessary.

As we have shown above, the quaternions possess some advantageous differential prop-
erties which make it amenable to gradient- and Jacobian-based iterative search. Since they
are easily composable, we can maintain a single rotation estimate while simplifying the anal-
ysis by premultiplying our data with the current rotation estimate. The Jacobian can be
computed very efficiently, and line searches in quaternion space effectively equate to linearly
increasing the rotation angle (for all practical purposes) about a fixed rotation axis.

5. Rotation and the Cross Product

We showed that the Jacobian of rotation with respect to a quaternion has a particularly
simple form (a cross product) when evaluated at the identity quaternion. In fact, the cross
product is fundamental to rigid rotation. The differential equation [MLS94] describing a
point rotating around an axis w at a constant angular speed is

2(t) = w x ®(t). (12)

We can easily replace ¢ for # in this equation since the rotation rate is assumed to be a
constant angle per unit time. Thus, we arrive at the derivative of the position with respect
to rotation angle as a cross product of the axis of rotation with the point vector.

In our derivation, Equations 9 and 10 show that the search along the line () is equivalent
to increasing the rotation angle # around axis du. Thus, we would expect that the Jacobian
of rotation with respect to the axis parameters would be the transpose of the skew-symmetric
matrix of & or C(x)?. A related fact is that the tangent operator [McC90] of any rotation
matrix is a skew-symmetric matrix (a vector cross product) where the corresponding vector
is the axis of rotation. Multiplying a point by the tangent operator of a rotation matrix will
give the point’s tangent direction of motion under that rotation.

We would expect the same relationship for other rotation representations. The infinitesi-
mal rotation approximation [Gol80, Hor87, KH94] and Rodrigues’ formula are in fact derived
from Equation 12 [MLS94]. From Rodrigues’ formula, the relationship between the Jacobian
of rotation and the cross product is readily apparent (note the term sinfw x @).

The same cross product relationship is obtained when using the z-y-z Euler angle repre-
sentation [SI91],
R(0,,0,,0:) = R.(0.) R,(0,) R-(0:)

where R.(0) is the rotation of angle 6 about the z-axis. When evaluating the Jacobian for
zero angles of rotation, the Jacobian reduces to the skew-symmetric matrix of the rotating
point. However, accumulating the Euler angles is much more difficult and singularities in
their representation must dealt with.

6. Scale Problems for Rotation and Translation Gradients and Jacobians

Any method that relies on gradients of Jacobians of a function with respect to rotation and
translation will encounter one or more problems of scale. There are two scaling problems
with respect to algorithms using gradients. The first problem is that gradient of rotation and
translation parameters is dependent on the scale of the data. The second problem, closely
related to the first, is that the scale of the data can cause numerical problems for techniques
using the Jacobian matrix with respect to rotation and translation. The third problem is
that gradient-based searches can be adversely affected by changes in the scaling of dissimilar
variables in the search space as is the case with rotation and translation.

The fundamental problem is that rotation and translation are inherently incomparable. In
controls theory, the special Euclidean group (SF(3)), the product space of rigid translations
and rotations in three dimensions, is known to be non-metric [MLS94]. That is there is no
intrinsic scaling of the six dimensional rotation and translation space that forms a strict
metric space. This is a fundamental problem, but in practice, task specific knowledge can
be used to generate effective solutions. We detail the problems and solutions below.

Because of the fundamental relationship between rotation and the cross product (de-
scribed in Section 5), the findings of this section are not limited to the quaternion represen-
tation of rotation but are applicable for all representations of rotation.

6.1. Scale’s Effect on Gradient Directions

A problem affecting both gradient- and Jacobian-based methods is that the amount of change
due to rotation and translation is related to the scale of the data. The problem is that a unit
of rotation results in a change in the function that is dependent on the scale of the vector
being rotated, while a unit translation is independent of the data. Roughly, as the scale
increases, the sensitivity of the rotation parameters increases at a rate that is much faster
than that of the translation parameters. This is not a good situation for a gradient-based
search. The implication is that if we have a given problem and simply scale the data, the
algorithm which uses gradients will give two different solutions when rescaled.

From the derivation of the rotational Jacobian in Equation 8, one can quickly derive the
gradient of the following example, a typical least squares error function,

f=(Rq)z+t—p)
Roughly, the rotational gradient is of the form

sf

5q = 4C(azc)T(azc +t—p)

= —4=z.) x (t—p)

and the translational gradient is of the form
df
5 =
where &, = R(q.) . If the scale of our data, @ and p, (assume ¢ is zero, or equivalently that
it is already subtracted from p), is roughly ¥, then

2w, +t —p) (13)

§
‘—f‘ ~ sinf |x.||p| o< ©?
oq

using the relation between the angle between two vectors and the magnitude of their cross
product, while

of sin 6

St sin(90 — &)
using the law of sines and assuming that @, and p approximately form an isosceles triangle.
Thus, the scale of our data increases, the gradient direction shifts towards a pure rotation,
and vice versa as the scale decreases.

%|wc_p|% |wc|OCZ

When the gradient is a pure translation or pure rotation, gradient-based searches will
have poor convergence characteristics. Imagine that the desired pose is a pure translation.
The gradient with respect to rotation will dominate, and infinitesimal steps will have to
be taken during each line minimization to ensure that progress is made?. What would be
desirable for most applications is that the solution to a problem at a scale where rotation
and translation have roughly the same influence would be the same (modulo scaling of)
regardless if the data were rescaled or not. To effect this is not difficult, it simply involves
normalizing the data to some canonical frame (say a unit cube). It is a good idea to include
the normalization in any algorithm that will deal with objects of different sizes, otherwise
algorithm performance may magically get worse when applying it to a new domain.

For gradient-based searches, normalization can be efficiently performed by dividing the
rotational gradient by the squared scale and the translation gradient by the scale, and then
rescaling the translation when the function is evaluated. Thus, the gradient can be used
by the search algorithm (e.g., conjugate gradient search) in the normalized frame while the
function evaluation and gradient evaluation work on the unnormalized data. The solution
then remains the same at all scales.

6.2. Scale’s Effect on the Condition of the Normal Equations

Hartley [Har95] recently showed that the scale of the data can cause numerical problems
for Longuet-Higgens’ 8-point algorithm for computing the fundamental matrix of two un-
calibrated cameras. He showed that by simply normalizing the data before applying the

2A seemingly straightforward solution is to iteratively move in pure translations or pure rotations. This
may be effective in some cases; but it suffers from the same problems of pure gradient-descent search. For
example, if the error 1s pure translation, a step in rotation that reduces the error will later have to be undone
to reach the desired result.

algorithm, the condition number of the solution matrix is greatly improved resulting in
reduced error. The same logic applies here when using the Jacobian to perform Newton-
Raphson search as in [Low91]. The Jacobian of Equation 4 with respect to q and ¢ has the
form

J=|Cla)" 1|

where . = R(q.) «. This gives the normal equations matrix

T l C(ag()i(ﬁc)T C(}nc)] |

As one can see, the upper left block of J will have a magnitude that is proportional to
the square of the scale of the data while the lower right hand block remains constant. For
example the respective blocks will be proportional to
2 %
T
JJ x l S] .
Thus, the condition of the matrix will worsen (i.e., the matrix becomes nearly singular)
when the scale of the data is not close to one. The result of which is inaccuracies in the
resulting solution when inverting the matrix to solve the normal equations. The condition
of the normal equations can be greatly improved by simply normalizing the data.

Hartley [Har95] also pointed out that the data should be centered as well so that large
offsets in the data do not consume the numerical precision. This is true here as well. In
practice only the rotated data, @, needs to be centered.

6.3. Scaling of Dissimilar Parameters in Gradient-based Search

The third problem is a fundamental problem of gradient-based search methods [BS70]. The
scaling behavior of dissimilar parameters (in our case, rotation and translation in rigid body
motion) can wreak havoc on any gradient-based search algorithm. If the effective scales
of the parameters are not roughly equal, the function being minimized tends to form a
long trough which will make gradient-based /local-search methods inefficient. For example,
consider a gradient-descent search [BS70, PF'TV91] of a long narrow elliptical trough in two
dimensions with the minimum at the center of the ellipse (see Figure 1 (a)). For most points,
the gradient points in the direction of the narrow axis. The search will go back and forth
down the trough taking many small steps. However, for the case of a perfect circular bowl
(see Figure 1 (b)), the gradient always points directly to the minima which may be found in
a small number of line searches. The difference between the two functions is simply scaling
of the variables. A simple example of the effect that changing scales has on search efficiency
is shown in Figure 1. In Figure 1 (a), the objective function is an elliptical bowl, and the
gradient descent and conjugate gradient search steps are shown. In contrast, if the objective
function variables are appropriately scaled (equivalent to a change in variable z = z/¢) as
in Figure 1 (b), the objective function becomes a perfect circular bowl and both gradient
descent and conjugate gradient quickly reach the minimum.

10

_ .22 2
@ Vo202, 2 (b) f=x%c %+ y
=xc +y _ z=xlc
Gradient Conjugate Gradient
Descent | Gradient Descent -~~~ Conjugate
P AT -, Gradient

a . /(A/;\:/ AN) Y X ‘/ r/r// »\\\\\ \\ z
T \ NV / [! s

Figure 1: The number of line minimizations of gradient-based methods are dependent on the
relative scale of the variables. (a) poorly scaled function f, (b) a simple change of variable,
from x to z, improves search efficiency. The optimum value of & and y can be found in one
line minimization by both methods.

For other gradient methods such as conjugate-gradient search [BS70, PFTV91] the scaling
presents a practical problem. In theory, conjugate-gradient search avoids the problem of zig-
zagging down long elliptical troughs, in practice it can become unmanageable to compute.
This algorithm requires that the successive gradients are conjugate. This assumes that the
minima along each line search are very accurate, especially across narrow sections of the
trough where small steps produce large changes in the gradient direction. This is not in
general possible without incurring a large number of function evaluations. When the trough
is not so elongated, the accuracy requirement is relaxed since small steps do not drastically
effect the gradient direction.

For our problem (rotation and translation estimation), the scaling issue is a little more
complicated because the two parameters are not linearly related. The problem is that it’s
difficult to say how much rotation should accompany some amount of translation as you
search. The specific data of the problem ultimately determines the shape of the function.
However, the parameters can be scaled to change the shape so that it more closely resembles
a bowl than a long trough.

For pure quadratic functions, a standard technique for rescaling the variables to form
spherical objective functions is called preconditioning. Preconditioning involves computing
an approximation of the inverse of the quadratic coefficient matrix of the objective function.
The system is premultiplied with this approximation and if successful the condition number
of the linear system can be improved (the objective is transformed to be more spherical than
elongated).

Preconditioning and scaling the data will generally improve the performance of gradient-
based searches. This problem is tolerable in the sense that for a given application, prior
knowledge and experience can often be used to determine appropriate scales for the parame-
ters. As we have seen in the previous section, scaling parameters by their relative magnitudes

11

is not sufficient to ensure that the function has shape conducive for efficient gradient-based
search. However, the two problems can be solved simultaneously if the data is scaled to
a canonical frame such that the parameters effective scales are roughly equivalent in this
frame. That is, we can choose one effective scaling of the data so that our function is “bowl
shaped” with respect to the scaled data. Preconditioning can also be achieved by sensitivity
analysis [Gle94] in which the parameters are scaled by their respective magnitude in the
Jacobian. This is roughly equivalent to normalization of the data to a specific scale.

Another related issue is performing line search which usually requires some knowledge
on the bounds of the search parameter A. In object tracking for example [Low91, Gen92],
this can be determined a priori from the task at hand by setting some limits on rotational
and translational velocity. Knowing these limits, one can efficiently bracket the minima in a
given direction of dg and dt and gradient-based search techniques (e.g., conjugate gradient
[PFTVI1]) can be effectively applied. The minima can be bracketed by choosing A such
that the limits of one of the parameters is reached. This should ensure that the minima can
be efficiently found by one of many line minimization algorithms (see [PFTV91] for some
examples).

7. Summary and Conclusions

We have described the use of quaternions for performing gradient- and Jacobian-based search
of rotation and translation parameters. In this paper, we derive a simple form for the gradient
and Jacobian of rotation with respect to quaternions. We used this form to predict numerical
problems in gradient- and Jacobian-based searches resulting from the scale of the data.

Quaternions have a number of advantages when representing rotations as noted in Sec-
tion 2. As we have shown, quaternions also has some advantageous differential properties
which make it amenable to gradient- and Jacobian-based iterative search. Namely, they are
easily composable, the Jacobian can be computed extremely quickly, and line searches in
quaternion space effectively equate to linearly increasing the rotation angle (for all practical
purposes) about a fixed rotation axis. One conceptual problem that many have with quater-
nions is of using 4 parameters to describe rotations which only have 3 degrees of freedom.
However, if the data is premultiplied as suggested, the parameters being estimated essentially
reduce to 3.

Three scale-related problems with Jacobian/gradient search of rotation and translation are
discussed in detail. The first problem is that the scale of the data determines the direction
of the gradient. Simply normalizing or transforming the data or gradient to a canonical
reference frame can ensure that the algorithm performs properly independent of the scale of
the data.

The second problem concerns the use of Jacobians of rotation in the normal equations.
We showed that the condition of the normal equations is dependent on the scale of the data;
hence, inverting the normal matrix will incur significant numerical errors if the scale of the

12

data is not near unity. This finding is similar to the finding of Hartley [Har95] with respect
to Longuet-Higgens’ 8-point algorithm.

Finally, even when the data is scaled appropriately, the relative scale of the parameters can
greatly affect the convergence characteristics and computational expense of gradient-based
searches. Task specific knowledge and experience can be used to determine the appropriate
scaling in most cases. The two problems can be solved simultaneously if the canonical
reference frame is chosen such that the rotation and translation parameters are roughly of
the same scale at unity.

The lesson to be learned is to make sure the data is appropriately scaled before applying
search algorithms relying on gradients or Jacobians with respect to rotation and translation.

A Line Searches in Quaternion Space

Equation 5 of Section 4, while greatly complicating the algebraic form of the rotation matrix,
allows us to search arbitrary lines® in four dimensional quaternion space. We are no longer
restricted to the unit sphere. The line search corresponds to searching along an arc of the
unit quaternion sphere (the quaternion is implicitly projected onto the unit sphere). It is
interesting to note that this quaternion line search is equivalent to searching along 6 while
rotating around a fixed rotation axis.

For example, if we are searching along the quaternion space line of Equation 11 while
increasing A, we can express the current rotation as a composition of quaternions, i.e.,

q()) = q.+Mdq = q'q.
where g’ is the equivalent composing rotation to take q. to g(X). We can solve for
q =q(MNa.

using the inverse property of the conjugate. Since we know the latter two vectors we can
then multiply them out and algebraicly simplify them to

q = (q.+7dq)q. (14)

= (9.9.+Adq)q. (15)

(q; + \dq)q. (16)

= [A[scdu —dsu.+ u. x du], \q.-dq+1] (17)

assuming |g.| = |dg| = 1. The step size A does not influence the direction of the axis of
rotation but only the angle of the rotation. The angle of rotation can be found to be

Aa+1
0 =2cosH{——"—"— 1
o a1 (18)

3Lines passing through the origin can potentially cause problems, however, since a search along such a line
will not produce any change in the rotation angle, it is very unlikely that this singularity will be encountered
in practice.

13

where o = q, - dq and again assuming |q.| = |dq| = 1. Hence, an arbitrary line search
through quaternion space defines a smooth rotation about a fixed axis where the composed
rotation quaternion (current quaternion rotated by the search step) axis gradually shifts
from u. to du. Equations 17 and 18 are general forms of the results in Equations 9 and 10.

However, the simpler forms of Equations 9 and 10 are preferable for implementation and

analysis.

Acknowledgments

Thanks to George Paul for helpful comments.

References

[BST70]

[FHS6]

[Gen92]

[Gle94]

[Gol80]

[Ham69]

[Har95]

[Hor87]

[KT194]

[Low91]

[McC90]

Gordon S. Beveridge and Robert S. Schechter. Optimization: Theory and Prac-
tice. McGraw-Hill, 1970.

O.D. Faugeras and Martial Hebert. The representation, recognition, and locating

of 3-d objects. Intl. J. Robot. Research, 5(3):27-52, 1986.

Donald B. Gennery. Visual tracking of known three-dimensional objects. Intl. J.

Comput. Vision, 7(3):243-270, 1992.

Michael Gleicher. A differential approach to graphical interaction. PhD thesis,
Carnegie Mellon University, 1994.

Herbert Goldstein. Classical Mechanics. Addison-Wesley, 1980.

William R. Hamilton. FElements of Quaternions. New York Chelsea Pub. Co.,
1969.

Richard I. Hartley. In defense of the 8-point algorithm. In Proc. ICCYV, pages
1064-1070, 1995.

B.K.P. Horn. Closed-form solution of absolute orientation using unit quaternions.

J. Opt. Soc. Am., 4(4):629-642, 1987.

Rakesh Kumar and Allen Hanson. Robust methods for estimating pose and a
sensitivity analysis. Computer Vision, Graphics and Image Processing: Image

Understanding, 60(3):313-42, 1994.

David Lowe. Fitting parameterized three-dimensional models to images. [FEFE

Trans. Patt. Anal. Machine Intell., 13(5):441-450, 1991.

J. Michael McCarthy. An Introduction to Theoretical Kinematics. The MIT
Press, Cambridge, Massachusetts, 1990.

14

[MLS94]

[PFTV91]

[SI91]

R. M. Murray, Z. Li, and S. S. Sastry. A Mathematical Introduction to Robotic
Manipulation. Boca Raton: CRC Press, 1994.

William Press, Brian Flannery, Saul Teukolsky, and William Vetterling. Numer-
ical Recipes in C: The Art of Scientific Computing. Cambridge University Press,
1991.

Takashi Suehiro and Katsushi Tkeuchi. Towards an assembly plan from obser-
vation : fine localization based on face contact constraints. Technical Report

CMU-CS-91-168, Carnegie Mellon University, 1991.

15

