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Preface

The calculus of variations has a long history of interaction with other branches
of mathem atics such as geom etry and differential equations, and with physics,
particularly mechanics. M ore recently, the calculus of variations has found
applications in other fields such as economics and electrical engineering. M uch
of the mathematics underlying control theory, for instance, can be regarded
as part of the calculus of variations.

This book is an introduction to the calculus of variations for mathemati-
cians and scientists. The reader interested prim arily in mathem atics will find
results of interest in geometry and differential equations. 1 have paused at
times to develop the proofs of some of these results, and discuss briefly var-
ious topics not normally found in an introductory book on this subject such
as the existence and uniqueness of solutions to boundary-value problems, the
inverse problem , and M orse theory. 1 have made ttpassive use'' of f-unctional
analysis (in particular normed vector spaces) to place certain results in con-
text and reassure the mathem atician that a suitable framework is available
for a more rigorous study. For the reader interested m ainly in techniques and
applications of the calculus of variations, 1 leavened the book with num er-
ous exam ples m ostly from physics. ln addition, topics such as Hamilton's
Principle, eigenvalue approximations, conservation laws, and nonholonomic
constraints in mechanics are discussed. M ore importantly, the book is written
on two levels. The technical details for many of the results can be skipped
on the initial reading. The student can thus learn the m ain results in each
chapter and return as needed to the proofs for a deeper understanding. Sev-
eral key results in this subject have tractable analogues in finite-dimensional
optimization. W here possible, the theory is motivated by first reviewing the
theory for finite-dimensional problem s.

The book can be used for a one-semester course, a shorter course, or in-
dependent study. The final chapter on the second variation has been written
with these options in mind, so that the student can proceed directly from
Chapter 3 to this topic. Throughout the book, asterisks have been used to
flag m aterial that is not central to a first course.



The target audience for this book is advanced undergraduate beginning
graduate students in m athem atics, physics, or engineering. The student is as-
sumed to have some fam iliarity with linear ordinary differential equations,
m ultivariable calculus, and elementary real analysis. Some of the more theo-
retical material from these topics that is used throughout the book such as
the im plicit f-unction theorem and Picard's theorem for differential equations
has been collected in Appendix A for the convenience of the reader.

Like many textbooks in mathem atics, this book can trace its origins back
to a set of lecture notes. The transformation from lecture notes to textbook,
however, is nontrivial, and one is faced with myriad choices that, in part, re-
flect one's own interests and experiences teaching the subject. W hile writing
this book 1 kept in mind three quotes spanning a few generations of mathe-
m aticians. The first is from the introduction to a volume of Spivak's multi-

volume treatise on differential geometry (641 :
1 feel somewhat like a man who has tried to cleanse the Augean stables
with a Johnnplklop.

lt is tem pting, when writing a textbook, to give some modicum of com plete-
ness. W hen faced with the enormity of literature on this subject, however,
the task proves daunting, and it soon becomes clear that there is just too
m uch material for a single volum e. ln the end, 1 could not face picking up
the Johnny-lklop, and my solution to this dilem ma was to be savage with
m y choice of topics. Keeping in mind that the goal is to produce a book
that should serve as a text for a one-semester introductory course, there were
m any painful omissions. Firstly, 1 have tried to steer a reasonably consistent
path by keeping the focus on the simplest type problems that illustrate a
particular aspect of the theory. Secondly, 1 have opted in m ost cases for the
ttno frills'' version of results if the ttf-ull feature'' version would take us too
far afield, or require a substantially m ore sophisticated mathematical back-
ground. Topics such as piecewise s11100th extremals, fields of extremals, and
numerical methods arguably belong in any introductory account. Nonethe-
less, 1 have omitted these topics in favour of other topics, such as a solution
m ethod for the Hamilton-lacobi equation and Noether's theorem, that are
accessible to the general mathematically literate undergraduate student but
often postponed to a second course in the subject.

The second quote com es from the introduction to Titchm arsh's book on

eigenf-unction expansions (701 :
1 believe in the future of tmathematics for physicists', but it seems
desirable that a writer on this subject should understand 130th physics
as well as mathematics.

The words of Titchmarsh remind me that, although 1 am a m athematician
interested in the applications of mathematics, 1 am not a physicist, and it
is best to leave detailed accounts of physical models in the hands of experts.
This is not to say that the material presented here lies in some vacuum of pure



m athematics, where we merely acknowledge that the material has found som e
applications. lndeed, the book is written with a definite slant towards ttapplied
m athematics,'' but it focuses on no particular field of applied m athem atics in
any depth. Often it is the application not the mathem atics that perplexes
the student, and a study in depth of any particular field would require either
the student to have the necessary prerequisites or the author to develop the
subject. The former case restricts the potential audience', the latter case shifts
away from the main topic. ln any event, 1 have not tried to write a book on
the calculus of variations with a particular emphasis on one of its many fields
of applications. There are m any splendid books that merge the calculus of
variations with particular applications such as classical mechanics or control
theory. Such texts can be read with profit in conjunction with this book.

The third quote com es from G.H. Hardy, who m ade the following comm ent
about A.R. Forsyth's 656-page treatise (271 on the calculus of variations :1

ln this enormous volume, the author never succeeds in proving that
the shortest distance between two points is a straight line.

Hardy did not mince words when it came to mathematics. The prospective
author of any text on the calculus of variations should bear in mind that,
although there are many mathematical avenues to explore and endless minu-
tia? to discuss, certain basic questions that can be answered by the calculus
of variations in an elementary text should be answered. There are certain
problems such as geodesics in the plane and the catenary that can be solved
within our self-im posed regime of elementary theory. 1 do not hesitate to use
these sim ple problems as examples. At the same tim e, 1 also hope to give the
reader a glimpse of the power and elegance of a subject that has fascinated
m athematicians for centuries.

1 wish to acknowlege the help of m y former students, whose input shaped
the final form of this book. 1 wish also to thank Fiona Davies for helping m e
with the figures. Finally, 1 would like to acknowledge the help of my colleagues
at the lnstitute of Fundamental Sciences, M assey University.

The earlier drafts of m any chapters were written while travelling on vari-
ous mountaineering expeditions throughout the South lsland of New Zealand.
The hospitality of Clive M arsh and Heather North is gratef-ully acknowledged
along with that of Andy Backhouse and Zoe Hart. 1 should also like to ac-
knowledge the New Zealand Alpine Club, in whose huts 1 wrote m any early

(and later) drafts during periods of bad weather. ln particular, 1 would like
to thank Graham and Eileen Jackson of Unwin Hut for providing a second
home conducive to writing (and climbing).
Fox Glacier, New Zealand Bruce van Brunt
February 2003

1 F. Smithies reported this comment in an unpublished talk, ttl-lardy as 1 Knew
Him,'' given to the Bvitislt Society Jtpr f/zc Histovy 6,/ Matltematics 19 December
1990.
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Introduction

1. 1 lntroduction

The calculus of variations is concerned with finding extrema and, in this sense,
it can be considered a branch of optim ization. The problem s and techniques
in this branch, however, differ markedly from those involving the extrema
of f-unctions of several variables owing to the nature of the dom ain on the
quantity to be optimized. A functional is a mapping from a set of functions
to the real numbers. The calculus of variations deals with finding extrema
for functiona.ls as opposed to f-unctions. The candidates in the competition
for an extremum are thus functions as opposed to vectors in R'', and this
gives the subject a distinct character. The f-unctionals are generally defined
by definite integrals', the sets of f-unctions are often defined by boundary con-
ditions and smoothness requirements, which arise in the formulation of the
problem model.

The calculus of variations is nearly as old as the calculus, and the two

subjects were developed somewhat in parallel. ln 1927 Forsyth (271 noted that
the subject ttattracted a rather fickle attention at more or less isolated intervals
in its growth.'' ln the eighteenth century, the Bernoulli brothers, Newton,
Leibniz, Euler, Lagrange, and Legendre contributed to the subject, and their
work was extended significantly in the next century by Jacobi and W eierstraB.

Hilbert (381 , in his renowned 1900 lecture to the lnternational Congress of
Mathematicians, outlined 23 (now famous) problems for mathematicians. His
231.d problem is entitled Fnrtlter developvtent o.f tlte mc//ztacls o.f tlte calcnln,s
o.f variations. lmmediately before describing the problem, he remarks:

. . . 1 should like to close with a general problem , nam ely with the
indication of a branch of mathematics repeatedly m entioned in this
lecture- which, in spite of the considerable advancement lately given
it by W eierstraB, does not receive the general appreciation which in
my opinion it is due- l mean the calculus of variations.



2 1 lntroduction

Hilbert's lecture perhaps struck a chord with m athematicians.l In the early
twentieth century Hilbert, Noether, Tonelli, Lebesgue, and Hadamard am ong
others made significant contributions to the field. Although by Forsyth's tim e
the subject may have ttattracted rather fickle attention,'' many of those who
did pay attention are numbered am ong the leading m athematicians of the
last three centuries. The reader is directed to Goldstine (361 for an in-depth
account of the history of the subject up to the late nineteenth century.

The enduring interest in the calculus of variations is in part due to its ap-
plications. Of particular note is the relationship of the subject with classical
m echanics, where it crosses the boundary from being merely a mathemati-
cal tool to encompassing a general philosophy. Variational principles abound
in physics and particularly in mechanics. The application of these principles

usually entails finding functions that minimize definite integrals (e.g., energy
integrals) and hence the calculus of variations comes naturally to the fore.
Hamilton's Principle in classical m echanics is a prom inent example. An earlier
example is Fermat's Principle of M inim um Tim e in geom etrical optics. The
development of the calculus of variations in the eighteenth and nineteenth
centuries was m otivated largely by problems in mechanics. M ost textbooks on
classical mechanics (old and new) discuss the calculus of variations in some
depth. Conversely, many books on the calculus of variations discuss applica-
tions to classical mechanics in detail. ln the introduction of Carath4odory's
book (211 he states:

1 have never lost sight of the fact that the calculus of variations, as it
is presented in Part 11, should above all be a servant of mechanics.

Certainly there is an intimate relationship between m echanics and the cal-
culus of variations, but this should not completely overshadow other fields
where the calculus of variations also has applications. Aside from applications
in traditional fields of continuum m echanics and electromagnetism , the calcu-
lus of variations has found applications in economics, urban planning, and a
host of other ttnontraditional fields.'' lndeed, the theory of optim al control is
centred largely around the calculus of variations.

Finally it should be noted the calculus of variations does not exist in a
m athematical vacuum or as a closed chapter of classical analysis. Historically,
this field has always intersected with geometry and differential equations,
and continues to do so. ln 1974, Stampacchia (171, writing on Hilbert's 231.d
problem, sum med up the situation:

One might infer that the interest in this branch of Analysis is weak-
ening and that the Calculus of Variations is a Chapter of Classical
Analysis. ln fact this inference would be quite wrong since new prob-
lem s like those in control theory are closely related to the problems of

1 His nineteenth and twentieth problems were also devoted to the calculus of vari-
ations.



the Calculus of Variations while classical theories, like that of bound-
ary value problems for partial differential equations, have been deeply
affected by the developm ent of the Calculus of Variations. M oreover,
the natural developm ent of the Calculus of Variations has produced
new branches of mathematics which have assumed different aspects
and appear quite different from the Calculus of Variations.

The field is far from dead and it continues to attract new researchers.
ln the remainder of this chapter we discuss som e typical problems in the

calculus of variations that are easy to model (although perhaps not so easy
to solve). These problems illustrate the above comments and give the reader
a taste of the subject. We return to most of these examples later in the book
as the mathematics to solve them develops.

1.2 The C atenary and Brachystochrone Problem s

1.2.1 The Catenary

Consider a thin heavy uniform flexible cable suspended from the top of two

poles of height yçj and yï spaced a distance d apart (figure 1.1). At the base of
each pole the cable is assum ed to be coiled. The cable follows up the pole to
the top, runs through a pulley, and then spans the distance d to the next pole.
The problem is to determine the shape of the cable between the two poles.

The cable will assum e the shape that makes the potential energy minimum .
The potential energy associated with the vertical parts of the cable will be
the same for any configuration of the cable and hence we may ignore this
component. lf ?rz denotes the m ass per unit length of the cable and g the
gravitational constant, the potential energy of the cable between the poles is
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Z' 

,,z,:vtsl ds,u,s (?,) - jv
where s denotes arclength, and yls) denotes the height of the cable above the
ground s units in length along the cable from the top of the pole at (zo, y(j).
The number L denotes the arclength of the cable from (zo, y(tl to (z1, 3/1).
Unfortunately, we do not know L in this formulation. W e can, however, re-
cast the above expression for W's in terms of Cartesian coördinates since we
do know the coördinates of the pole tops. The differential arclength elem ent
in Cartesian coördinates is given by ds = 1 + y?2, and this leads to the
following expression for W ' ,p

Note that unlike our first expression for W 's, the above one involves the deriva-
tive of y. W e have implicitly assumed here that the solution curve can be
represented by a f-unction y : gzt), z11 --+ R and that this f-unction is continuous
and at least piecewise differentiable. Given the nature of the problem these
Seem reasonable assumptions.

The cable will assume the shape that minim izes W 's. The constant factor
m,g in the expression for W 's can be ignored for the purposes of optimizing the
potential energy. The essence of the problem is thus to determ ine a f-unction
y such that the quantity

is minimum. The model requires that any candidate :'è for an extremum sat-
isfies the boundary conditions

:ih(alo) = #0, 5(z1) = #1.

ln addition, the candidates must also be continuous and at least piecewise

differentiable in the interval gzt), z11 .
W e find the extrema for J in Chapter 2, where we show that the shape of

the cable can be described by a hyperbolic cosine f-unction. The curve itself is
called a catenary.z

The same functional J arises in a problem in geom etry concerning a m in-
imal surface of revolution, i.e., a surface of revolution having m inimal surface
area. Suppose that the z-axis corresponds to the axis of rotation. Any surface
of revolution can be generated by a curve in the zp-plane (figure 1.2). The
2 The name ttcatenary'' is particularly descriptive. The name comes from the Latin
word catena meaning chain. Catenary refers to the curve formed by a uniform
chain hanging freely between two poles. Leibniz is credited with coining the term
(ca. 1691).



problem thus translates to finding the curve y that generates the surface of
revolution having the minim al surface area. As with the catenary problem, we
make the assumption that y can be described by a function y : gzt), z11 --+ R
that is continuous and piecewise differentiable in the interval gzt), z11 . Under
these assumptions we have that the surface area of the corresponding surface
of revolution is

Here we need also make the assumption that ylz) > 0 for all z CE gzt), z11.3 The
problem of finding the minim al surface thus reduces to finding the f-unction y
such that the quantity

zj 

u yyJ(tv) - J ïl 1 + yJ 20

is m inimum . The two problems thus produce the same f-unctional to be m ini-
m ized. The generating curve that produces the minim al surface of revolution
is thus a catenary. The surface itself is called a catenoid.

3 lf p = 0 at some point k (E (zo , z 1 ) we can still generate a rotationally symmetric
ttobject,'' but technically it would not be a surface. Near (k, 0, 0) the ttobject''
would resemble (i.e., be homeomorphic to) a double cone. The double cone fails
the requirements to be a surface because any neighbourhood containing the com-
mon vertex is not homeomorphic to the plane.
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Let us return to the original problem . A modification of the problem would
be to first specify the length of the cable. Evidently, if L is the length of the
cable we must require that

L k (zl - zo)2 + (#1 - y(jlz

in order that the cable span the two poles. M oreover, it is intuitively clear
that in the case of equality there is only one configuration possible viz., the

line segment from (zo, y(tl to (z1, 3/1). ln this case, there is no optimization to
be done as there is only one candidate. W e may thus restrict our attention to
the case

L > (z1 - zo)2 + (3/1 - yv)2.
Given a cable of length L, the problem is to determine the shape the cable

assumes when supported between the poles. The problem was posed by Jacob
Bernoulli in 1690. By the end of 1691 the problem was solved by Leibniz,
Huygens, and Jacob's younger brother Johann Bernoulli. lt should be noted
that Galileo had earlier considered the problem , but he thought the catenary
was essentially a parabola.'l

Since the arclength L of the cable is given, we can use expression (1.1)
to look for a minimum potential energy configuration. lnstead, we start
with expression (1.2). The modified problem is now to find the f-unction
y : gzt), z11 --+ R such that W's is minimized subject to the arclength con-
straint

1 + y?2 dz

and the boundary conditions

!/(zo) = yçj, !/(z1) = yk.

This problem is thus an exam ple of a constrained variational problem . The

constraint (1.6) can be regarded as an integral equation (with, it is hoped,
nonunique solutions). Constraints such as (1.6) are called isoperimetric. We
discuss problems having isoperimetric constraints in Chapter 4.

Suppose that we use expression (1.1), which prim,a Jacie seems simpler
than expression (1.2). We know L, so that the limits of the integral are known,
but the param eter s is special and corresponds to arclength. W e must some-
how build in the requirement that s is arclength if we are to use expression

(1.1). ln order to do this we must use a parametric representation of the curve
(z(s), !/(s)), s CE (0, fvl . The arclength parameter for such a curve is character-
ized by the differential equation

z/2(s) + :(//2(s) = 1.



z(0) = z(), z(L) = zl
:v(0) = yçj, y(L) = yk.

ln general, a constraint of this kind is m ore difllcult to deal with than an
isoperimetric constraint.

1.2.2 Brachystochrones

The history of the calculus of variations essentially begins with a problem

posed by Johann Bernoulli (1696) as a challenge to the mathematical com-
munity and in particular to his brother Jacob. (There was significant sibling
rivalry between the two brothers.) The problem is important in the history of
the calculus of variations because the method developed by Johann's pupil,
Euler, to solve this problem provided a sufllciently general fram ework to solve
other variational problem s.

The problem that Johann posed was to find the shape of a wire along
which a bead initially at rest slides under gravity from one end to the other
in minimal time. The endpoints of the wire are specified and the motion of
the bead is assum ed frictionless. The curve corresponding to the shape of the
wire is called a brachystochrones or a curve of fastest descent.

The problem attracted the attention of a number of m athem atical lum inar-
ies including Huygens, L'Hôpital, Leibniz, and Newton, in addition of course
to the Bernoulli brothers, and later Euler and Lagrange. This problem was at
the cutting edge of mathematics at the turn of the eighteenth century.

Jacob was up to the challenge and solved the problem. Meanwhile tand
independently) Johann and Leibniz also arrived at correct solutions. Newton
was late to the party because he learned about the problem some six m onths
later than the others. Nonetheless, he solved the problem that same evening
and sent his solution anonym ously the next day to Johann. Newton's cover
was blown instantly. Upon looking at the solution, Johann exclaim ed (tAh! 1
recognize the paw of the lion.''

To model Bernoulli's problem we use Cartesian coördinates with the pos-
itive l/-axis oriented in the direction of the gravitational force (figure 1.3).
Let (zo, y(tl and (z1, 3/1) denote the coördinates of the initial and final posi-
tions of the bead, respectively. Here, we require that ztl < zl and yçj < yï.
The Bernoulli problem consists of determining, among the curves that have

(zo, y(tl and (z1, 3/1) as endpoints, the curve on which the bead slides down
from (zo, y(tl to (z1, 3/1) in minimum time. The problem makes sense only for
continuous curves. We make the additional simplifjring (but reasonable) as-
sumptions that the curve can be represented by a function y : gzt), z11 --+ R
5 The word comes from the Greek words bvakltistos meaning ddshortest'' and klwonos
m eaning tim e.
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t-

L Js

T(y) = lj s(s),
where L denotes the arclength of the curve, s is the arclength param eter, and
z? is the velocity of the bead s units down the curve from (zo, y(j). As with
the catenary problem , we do not know the value of L, so we must seek an
alternative formulation.
Our first job is to get an expression for the velocity in terms of the f-unction

y. W e use the law of conservation of energy to achieve this. At any position

(z, !/(z)) on the curve, the sum of the potential and kinetic energies of the
bead is a constant. Hence

1 a
c = j.zrz.?p (z()) + vrtgylzv).

Solving equation (1.9) for z? gives

2c
r(z) = -- - 2gy(z).

Equation (1.8) thus implies that
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Christiaan discovered that a bead sliding down a cycloid generated by a circle
of radius p under gravity reaches the bottom of the cycloid arch after the
period r p g wlterever on the arch the bead starts from rest. This notable
property of the cycloid earned it the appellation isochrone. The cycloid thus
sports the names isochrone and brachystochrone.6 Christiaan used the curve
to good effect and designed what was then considered a remarkably accurate
pendulum clock based on the laudable properties of the cycloid, which was
used to govern the m otion of the pendulum . The reader m ay find a diagram
of the pendulum and further details on this interesting curve in an article by

Tee (671 wherein several original references may be found.
Finally, we note that brachystochrone problem s have proliferated in the

three centuries following Bernoulli's challenge. Some models subjected the
bead to a resisting medium whilst others changed the force field from a simple
uniform gravitational field to m ore complicated scenarios. Research is still
progressing on brachystochrones. The reader is directed to the work of Tee
(671, (681, (691 for more references.

1.3 H am ilton's Principle

There are many fine books on classical (analytical) mechanics (e.g., (11 , (61 ,
(351, (481 , (491 , (591 , and (731) and we make no attempt here to give even a basic
account of this seemingly vast subject. Nonetheless, it would be demeaning
to the calculus of variations to ignore its rich heritage and fruitful interaction
with classical mechanics. M oreover, many of our exam ples come from classical
m echanics, so a few words from our sponsor seem in order.

Classical mechanics is teeming with variational principles of which Hamil-
ton's Principle is perhaps the most important. I ln this section we give a brief
ttno frills'' statement of Hamilton's Principle as it applies to the m otion of
particles. The serious student of mechanics should consult one of the m any
specialized texts on this subject.

Let us first consider the motion of a single particle in R3. Let r(f) =
(z(f), y(t), z(f)) denote the position of the particle at time f. The kinetic
energy of this particle is given by

1 2 2 2T' 
=  - w  (:i) (f) + # (f) + .,2 (f)) ,2

where ?rz is the m ass of the particle and ' denotes d dt. W e assume that the
forces on the particle can be derived from a single scalar function. Specifically,
we assum e there is a function U' such that:
6 It is also called a tautochrone, but we do not count this since the word is derived
from the Greek word tauto meaning ttsame.'' The prefzx iso comes from the Greek
word isos which also means ttsame.''
V One need only scan through Lanczos' book (481 to find the ttprinciple of Vir-
tual W ork '' ttlzphaïtlembert's Principle '' ttGauss' Principle of Least Constraint ''
ttlacobi's Principle '' and of course ttl-lamilton's Principle'' among others.
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1. U' depends only on time and position; i.e., U' = U(f, z, y, z);
2. the force f = (/1, A, /a) acting on the particle has the components

:U :U :U/
1 = - , /2 = - , /a = - .t'?z ç')y t'?z

The function U' is called the potential energy. Let

L = T - U.

The function L is called the Lagrangian. Suppose that the initial position of

the particle r(fo) and final position r(f1) are specified. Hamiltonhs Principle
states that the path of the particle r(f) in the time interval (f(), f11 is such that
the f-unctional

is stationary, i.e., a local extremum or a ttsaddle point.'' (We define ttstation-
ary'' more precisely in Section 2.2.) ln the lingo of mechanics J is called the
action integral or simply the action.
Problems in mechanics often involve several particles (or spatial coördinatesl;

m oreover, Cartesian coördinates are not always the best choice. Variational
principles are thus usually given in terms of generalized coördinates.
The letter q has been universally adopted to denote generalized position
coördinates. The configuration of a system at time t is thus denoted by
q(f) = (t?1(f), . . . , t?,z(f)), where the qk are position variables. 1f, for exam-
ple, the system consists of three free particles in 1:.3 then n, =  9.

The kinetic energy T of a system is given by a quadratic form in the
generalized velocities tik,

L(t, q, ù) - T(q, ù) - t-tf, q).
ln this framework Hamilton's Principle takes the following form .

Theorem 1.3.1 (Hamiltonhs Principle) Tlte mta/ït?zz o.f a sps/cm o.f parti-
cles q(f) /'rt?m a g/wczz initial conjiguration q(fo) to a given jinal conjignration
q(f1) in t/Jc tim,e ïzz/crrtzl (f(), f11 is suclt tltat t/Jc Junctional

is stationary.
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(x(r), y(r))

The dynamics of a system of particles is thus completely contained in the
single scalar function L. W e can derive the familiar equations of m otion from

Hamilton's Principle (cf. Section 3.2). The reader might rightf-ully question
whether the motion predicted by Ham ilton's Principle depends on the choice
of coördinates. The variational approach would surely be of limited value were
it sensitive to the observer's choice of coördinates. W e show in Section 2.5 that
Hamilton's Principle produces equations that are necessarily invariant with
respect to coördinate choices.

Exam ple 1.3.1: Sim ple Pendulum
Consider a sim ple pendulum of mass ?rz and length f in the plane. Let
(z(f), y(t)) denote the position of the mass at time f. Since z2 + y2 = :2
we need in fact only one position variable. Rather than use z or y it is natural
to use polar coördinates and characterize the position of the mass at time t
by the angle 4(t) between the vertical and the string to which the mass is
attached (figure 1.5). Now, the kinetic energy is

1 z z 1 zrp (j;T = j.wt:il (f) + # (f)) = j.zrzé ,

and the potential energy is

t- = vtzgît = zrz#tl - cos4(f)),

where g is a gravitation constant. Thus,

1 a aL(4, ./') - .jzr?.z $ - ?wz#tl - cos 4),

and Ham ilton's Principle im plies that the motion from a given initial angle
4(t(j) to a flxed angle 4(f1) is such that the f-unctional

J(/) -

is stationary.
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Exam ple 1.3.2 : K epler problem
The Kepler problem models planetary motion. lt is one of the m ost heavily
studied problems in classical mechanics. Keeping with our no frills approach,
we consider the sim plest problem of a single planet orbiting around the sun,
and ignore the rest of the solar system. Assum ing the sun is fixed at the origin,
the kinetic energy of the planet is

lwt:ilz (f) + 2)2 (f)) = j.1 zrz ,/.2 (f) + ,,.2 (j)J2(j)j ?T=è
where r and 0 denote polar coördinates and ?rz is the m ass of the planet.
W e can deduce the potential energy f-unction U' from the gravitational law of
attraction

Gnziv/ =  -  
z ,r

where / is the force (acting in the radial direction), M is the mass of the sun,
and G is the universal gravitation constant. Given that

:U/
=  -  

,ôr

C?vzavfU(r) =  -  j Jlr) dr = - p ;
1 g2 

.y w2j2j .y Gm,MLlr, 0) = zrz .V r
Hamilton's Principle implies that the motion of the planet from an initial

observation (r(fo), p(f())) to a final observation (r(f1), p(f1)) is such that

is stationary.

The reader may be wondering about the fate of the constant of integration
in the last example. Any potential energy of the form --G'm,M  r + const. will
produce the requisite force /. ln the pendulum problem we tacitly assumed
that the potential energy was proportional to the height of the mass above the
m inimum possible height. ln fact, for the purposes of describing the dynamics

it does not matter; i.e., U(f, q) and U(f, q) + cl produce the same results for
any constant c1. W e are optimizing J and the addition of a constant in the
Lagrangian simply alters the f-unctional J(q) to ./(q) = J(q) + const. lf one
functional is stationary at q the other must also be stationary at q.

ln the lore of classical mechanics there is another variational principle
that is sometimes called the ttprinciple of Least Action'' or ttlklaupertuis'
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Principle,'' which predates Hamilton's Principle. This principle is sometim es
conf-used with Hamilton's and the situation is not mitigated by the fact that
Hamilton's Principle is sometim es called the Principle of Least Action. S M au-
pertuis' Principle concerns systems that are conservative. ln a conservative
system we have that the total energy of the system at any tim e t along the
path of motion is constant. ln other words, L + U' = k, where k is a con-
stant. For this special case L = 2T - k, and Hamilton's Principle leads to
M aupertuis' Principle that the f-unctional

tl

A-tql - T(q, il) dt
te

is stationary along a path of motion. Hence, M aupertuis' Principle is a special
case of Hamilton's Principle. M ost books on classical m echanics discuss these
principles (along with others). Lanczos (481 gives a particularly complete and
readable account that, in addition to mechanics, deals with the history and
philosophy of these principles. The eminent scientist E. Mach (511 also writes
at length about the history, significance, and philosophy underlying these
principles. His perspective and sympathies are somewhat different from those
of Lanczos. 9

1.4 Som e Variational Problem s from  G eom etry

1.4.1 D idots Problem

Dido was a Carthaginian queen (ca. 850 B.C.? ) who came from a dysf-unctional
family. Her brother, Pygmalion, murdered her husband (who was also her
uncle) and Dido, with the help of various gods, fled to the shores of North
Africa with Pygmalion in pursuit. Upon landing in North Africa, legend has it
that she struck a deal with a local chief to procure as much land as an oxhide
could contain. She then selected an ox and cut its hide into very narrow strips,
which she joined together to form a thread of oxhide more than two and a half
m iles long. Dido then used the oxhide thread and the North African sea coast
to define the perimeter of her property. lt is not clear what the immediate
reaction of the chief was to this particular interpretation of the deal, but it is

8 The translators of Landau and Lilhitz (491, p. 131, go so far as to draft a table
to elucidate the different usages.

9 M ach is not so generous with Maupertuis. ln connexion with M aupertuis' Prin-
ciple he writes ddlt appears that M aupertuis reached this obscure expression by
an unclear mingling of his ideas of vis wïwtz and the principle of virtual velocities''
(p. 365). ln defense of Mach, we must note that Maupertuis suffered no lack of
critics even in his own day. Voltaire wrote the satire Histoive d,u docteuv .412a/:-/a cf
d,u 'rztzz/ de Saint Malo about Maupertuis. The situation at Frederick the Great's
court regarding Maupertuis, König, and Voltaire is the stuff of soap operas (see
Pars (591 p. 634).
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clear that Dido sought to enclose the maximum area within her ox and the
sea. The city of Carthage was then built within the perimeter defined by the
thread and the sea coast. Dido called the place Byrsa m eaning hide of bull.10

The problem that Dido faced on the shores of North Africa (aside from
family difllculties) was to determine the optimal path along which to place
the oxhide thread so as to provide Byrsa with the maximum am ount of land.
Dido did not have the luxury of waiting some 2500 years for the calculus of
variations to develop and thus settled for an ttintuitive solution.''
Dido's problem entailed determining the curve y of flxed length (the

thread) such that the area enclosed by y and a given curve o' (the North
African shoreline) is maximum. Although this is perhaps the original version
of Dido's problem , the term has been used to cover the m ore basic problem :
am ong all closed curves in the plane of perimeter L determine the curve that
encloses the maxim um area. The problem did not escape the attention of an-
cient mathematicians, and as early as perhaps 200 B.C. the m athematician
Zenodorusll is credited with a proof that the solution is a circle. Unfortu-
nately, there were some technical loopholes in Zenodorus' proof (he compared
the area of a circle with that of polygons having the same perimeter). The
first com plete proof of this result was given some 2000 years later by Karl
W eierstraB in his Berlin lectures.
Prior to WeierstraB, Steiner (ca. 1841) proved that zl/ there exists a ttfig-

ure'' y whose area is never less than that of any other ttfigure'' of the sam e
perimeter, then y is a circle. Not content with one proof, Steiner gave five
proofs of this result. The proofs are based on sim ple geometric considerations
(no calculus of variations). The operative word in the statement of his result,
however, is ttif.'' Steiner's contemporary, Dirichlet, pointed out that his proofs
do not actually establish the existence of such a figure. W eierstraB and his fol-
lowers resolved these subtle aspects of the problem . A lively account of Dido's
problem and the first of Steiner's proofs can be found in Körner (451 .

Some simple geometrical arguments can be used to show that if y is a

simple closed curve solution to Dido's problem then y is convex (cf. Körner,
op. cï/.). This means that a chord joining any two points on y lies within y
10 The reader will find various bits and pieces of Dido's history scattered in Latin
works by authors such as Justin and Virgil. One account of the hide story comes
from the Aeneid Bk. 1 vs. 367. The story gets even better once Aeneas arrives on
the scene. Finally good ideas never die. lt is said that the Anglo-saxon chieftains
Hengist and Horsa (ca. 449 A. D.) acquired their land by circling it with oxhide
strips (371 . Beware of real estate transactions that involve an ox.

1 1 The proof may have been known even earlier, but Zenodorus in any event is
the author of the proof that appears in the commentary of Theon to Ptolemy's
Almagest. Zenodorus quotes Archimedes (who died in 2 12 B.C.) and is quoted
by Pappus (ca. 340 A.D.). Aside from these rough dates we do not know exactly
when Zenodorus lived. At any rate the solution was of little comfort to Dido's
heirs as the Romans obliterated Carthage Byrsa in the third Punic war just after
200 B.C. and sowed salt on the scorched ground so that nothing would grow.
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and the area enclosed by y. The convexity of y is then used to show that
Dido's problem can be distilled down to the problem of finding a f-unction
!/ : (alo, zll --+ R such that

21

yittvl - tvtzl dz
20

is maximum subject to the constraint that the arclength of the curve y'j-
described by y is L 2. lf we assume that y is at least piecewise differentiable
then this am ounts to the condition

r, z 1-
-  =  1 + y ? 2 d z .
2 zo

The problem with this formulation is that we do not know the limits of the
integral. The geometrical character of the problem indicates that we do not

need to know 130th ztl and zl (we could always normalize the construction so
that ztl = 0 < z1), but we do need to know zl - zo. This problem is effectively
the opposite of the problem we had with the first formulation of the catenary.
Since we know arclength, a natural formulation to use would be one in terms
of arclength.
Suppose that y'j- is described parametrically by (z(s), !/(s)), s CE (0, L 21 ,

where s is arclength. Suppose further that z and y are at least piecewise
differentiable. Green's theorem in the plane can then be used to show that
the area of the set enclosed by y'j- and the z-axis is

z-/21
.4(tv) - j' yls) 1 - y'2(s) ds,

0

where we have used the relation z?2(s) + y?2 (s) = 1. The basic Dido problem
is thus to determine a positive function y : (0, L 21 --+ R such that -4 is
m aximum .

1.4.2 G eodesics

Let E be a surface, and let yo, pl be two distinct points on E . The geodesic
problem concerns finding the curvets) on E with endpoints yb, pl for which
the arclength is m inimum . A curve having this property is called a geodesic.
The theory of geodesics is one of the most developed subjects in differential
geometry. The general theory is complicated analytically by the situation that
simple, common surfaces such as the sphere require more than one vector
function to describe them completely. ln the language of geometry, the sphere
is a manifold that requires at least two charts. W e have encountered and side-
stepped the analogous problem for curves, and we do so here in the interest of
simplicity. W e focus on the local problem and refer the reader to any general



text on differential geometry such as Stoker (661 or Willmore (751 for a more
precise and in-depth treatm ent of geodesics.lz

Suppose that E is described by the position vector function r : tz --+ 1:.3
where o' is a nonem pty connected open subset of R2, and for (u, z?) CE c,

rtz', z,) - (z(z', z,), ylu, z,), ztz', z,)) .
W e assum e that r is a s11100th f-unction on (z;

functions of (u, z?), and that

t'?r t'?rI A -  I / 0 ,ç')u t'?r

so that r is a one-to-one m apping of o' onto E. lf y is a curve on E, then
there is a curve ym in o' that maps to y under r. Any curve on E m ay thus
be regarded as a curve in o'. Suppose that the points yb and pl correspond
to rtl = rtztt), zo) and rl = rtztl, z?1), respectively. Any curve y from rtl to rl
maps to a curve ym from t'?.to, z?()) to tul, z?1).

For the geodesic problem we restrict our attention to s11100th sim ple curves
(no self-intersections) on E from rtl to r1. Let F denote the set of all such
curves. Thus, if y CE F, then there exists a parametrization of y of the form

lt,(f) = r(zt(f) , z?(f)) , t e

' 

g'àt), flj ,

where
t'?r 2 t'?r t'?r t'?r 2

E = F = . , G =ôu du 37 37
The f-unctions E, F, and G are called com ponents of the first fundam ental
form  or m etric tensor. Note that these components depend only on zt and
v. Note also that the identity

t'?r t'?r
A = EG - ./7'2

ôu 37

12 A more specialized discussion can be found in Postnikov (621 .
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f = .Elzt/2 + 2F't/r/ + (7r/2

is positive definite.
The arclength of y is given by

utfol - z'o, rtfol - 't?o
utfzl - z'z, rtfzl - 't?z.

Exam ple 1.4.1: G eodesics on a Sphere
Let E be an octant of the unit sphere. The surface E can be described para-
m etrically by

=  I (cos .tz cos z?, cos zt sin z?, - sin zt) 12

The arclength integral is thus

A feature of the basic geodesic problem described above is that it does
not involve the f-unction r directly. The arclength of a curve depends only on
the three scalar f-unctions E , F, and G. Geodesics are part of the intrinsic
geom etry of the surface, i.e., the geometry defined by the metric tensor. The
m etric tensor does not define a surface uniquely even m odulo translations and



rotations. There are any number of distinct surfaces in 1:.3 that have the sam e
m etric tensor. For exam ple, a plane, a cone, and a cylinder all have the sam e
m etric tensor. lf a cylinder is ttunrolled'' and ttflattened'' to form a portion of
the plane, then a geodesic on the cylinder would become a geodesic on the
plane.

One direction for a generalization of the above problem is to focus on the
space a. f;l 1:.2 and dehne the components of the metric tensor. For notational
simplicity, let zt = ztl, z? = zt2, and u = @, z?). We can choose scalar functions
gjk : tz --+ R j, k = 1, 2 and define the arclength element ds by

(/.$:2 = 
.g11((/tt1)2 + gyztyttltyuz + wytyuzgztl + ggg Ld.tg2)2

= g kduiiduk

where the last expression uses the Einstein summation convention: summation
of repeated indices when one is a superscript and the other is a subscript. Of
course we must place som e restrictions on the gjk in order to ensure that our
arclength element is positive and that the length of a curve does not depend
on the choice of coördinates u. W e can take care of these concerns by requiring
that the gjk produce a quadratic form that is positive definite and that the
gjk form a second order covariant tensor. To mim ic the earlier case we also
impose the sym metry condition

so that
(/.52 = 

.g11((/tt1)2 + z.qyz(/ttlty.ttz + gggLdu2)2. (J.J6)
ln term s of the former notation, E = .t.711, F = .ty12 = .t.721, and G = gnLt. For
this case, the positive definite requirem ent amounts to the condition

2 > ()
.t.711.t.722 - .t?12

with .ty11 > 0. The condition that the gjk form a second-order covariant tensor
means that under a s11100th coördinate transformation from u = (ul, zt2) to
fl = (fl1, i)2), the components pklu) transform to jis?ztl4l according to the
relation

ç'luii t'?'tzk
.lilm = gjk g ogjvn .t'?fl

The set o' equipped with such a tensor can be viewed as defining a geometrical

object in itself (as the surface E was). lt is a special case of what is called a
Riemannian manifold. Let .''tt denote this geometrical object. A curve ym in
o' generates a curve y in .Azt , and the arclength is given by

tl

Z('7) = .qjikttiilttk' t/f
te

where (zt1(f), zt2(f)), t (E gft;, f1j is a parametrization of q . The condition that
the gjk form a second-order covariant tensor ensures that L(y) is invariant
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with respect to changes in the curvilinear coördinates u used to represent
.''tt . Note also that L(y) is invariant with respect to orientation-preserving
arametrizations of ymp .
The advantage of the above abstraction is that it can be readily m odified to

accommodate higher dimensions. Suppose that o' f;l R?z and u = (ul, . . . , u?zl.
We can define an zz-dimensional (Riemannian) manifold .Azt by introducing a
m etric tensor with components gjk such that:

1. the quadratic form gjkduiiduk is positive definite;
2. gjk = gkj fOr j, k = 1, 2, . . . , zz;
3. under any s11100th transformation u = uttll the gjk transform to .qlv.n
according to the relation

ç'lut t'?ztk
9lm = 9jk j s?z .ôh dû

A curve y on .Azt is generated by a curve Jf in o' (; R''. Suppose that u(f) =
(zt1(f), . . . , .?.t?z(f)), t (E gfl), f1j is a parametrization of Jf. The arclength of y is
then defined as

tl

Z('7) = .qjikttiilttk' dt.
te

A generalization of the geodesic problem is thus to find the curvets) ym in o'
with specified endpoints utl = u(fo), ul = u(f1) such that L(y) is a minimum.

Geodesics are of interest not only in differential geometry, but also in
mathematical physics and other subjects. lt turns out that many problems
can be interpreted as geodesic problems on a suitably defined m anifold.l3 In
this regard, the geodesic problem is even more im portant because it provides
a unifjring fram ework for many problems.

1.4.3 M inim al Surfaces

W e have already encountered a special minim al surface problem in our dis-
cussion of the catenary. The rotational symmetry of the problem reduced the
problem to that of finding a f-unction y of a single variable z, the graph of
which generates the surface of revolution having minimal surface area. Locally,
any surface can be represented in ttgraphical'' form ,

rlz, y) = (z, y, zlz, y)),
where r is the position function in R3. Unless som e sym metry condition is
imposed, a surface param etrization requires two independent variables. Thus
the problem of finding a surface with m inim al surface area involves two inde-
pendent variables in contrast to the problem s discussed earlier.

13 ln the theory of relativity, where differential geometry is widely used, the condi-
tion that the metric tensor be positive definite is relaxed to positive semidefinite.



Given a sim ple closed space curve y, the basic minim al surface problem
entails finding, am ong all s11100th sim ply connected surfaces with y as a bound-
ary, the surface having minimal surface area. Suppose that the curve y can be
represented parametrically by (z(f), y(t), z(f)) for t CE )(), f11 , and for simplic-
ity suppose that the projection of y on the zp-plane is also a simple closed
curve; i.e., the curve Jf described by (z(f), y(t)) for t CE )(), f11 is a simple closed
curve in the zp-plane. Let J2 denote the region in the zp-plane enclosed by Jf.
Suppose further that we restrict the class of surfaces under consideration to
those that can be represented in the form (1.17), where z is a sm00th f-unction
for (z, y) CE .Q. The differential area element is given by

CI-,,b - 1 + (,''?z) 2 + ts''?zl 2 cs dy,
and the surface area is thus

.,tzl - j j 1 + (,'''zz) 2 + (?-?.,,) 2 dz o.J2
The (simplified) minimal surface problem thus concerns determining a s11100th
function z : J2 --+ R such that z(z(f), y(t)) = z(f) for t CE (f(), f11, and dtzl is a
m inimum . There is a substantial body of information about minim al surfaces.

The reader can find an overview of the subject in Osserman (581 .

1.5 O ptim al H arvest Strategy

Our final exam ple in this chapter concerns a problem in economics dealing
with finding a harvest strategy that maximizes profit. Here, we follow the
example given by Wan (711 , p. 6 and use a fishery to illustrate the model.
Let ylt) denote the total tonnage of fish at time t in a region J2 of the

ocean, and let yc denote the carrying capacity of the region J2 for the fish.
The growth of the fish population without any harvesting is typically modelled
by a first-order differential equation

y'lt) - /(f, y). (1.18)

lf y is small compared to yc, then / is often approximated by a linear f-unction
in y; i.e., /(f, y) = ky + g(t), where k is a constant. More complicated models
are available for a wider range of ylt) such as logistic growth

f, y) - kylt) (1 - Vtf) 1 ./( Vc
The ordinary differential equation (1.18) is accompanied by an initial condi-
tion
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3/(0) = :%
that reflects the initial fish population.

Suppose now that the fish are harvested at a rate 'tt;(f). Equation (1.18)
for the population growth can then be modified to the relation

y'lt) - /(f, y) - zc(f). (1.20)
Given the f-unction /, the problem is to determine the f-unction w so that the
profit in a given time interval T is maximum .

lt is reasonable to expect that the cost of harvesting the fish depends on
the season, the fish population, and the harvest rate. Let c(f, y, 'tt;) denote
the cost to harvest a unit of fish biomass. Suppose that the fish com mands a
price p per unit fish biomass and that the price is perhaps season dependent,
but not dependent on the volume of fish on the m arket. The profit gained by

harvesting the fish in a small time increment is (p(f) - c(f, y, 'tt;))'tt;(f) dt. Given
a fixed period T with which to plan the strategy, the total profit is thus

T

Ply, z&) - (r(f) - ctf, y, zc))zc(f) dt.
0

The problem is to identifjr the f-unction w so that P is maximum .
The above problem is an example of a constrained variational problem. The

functional P is optimized subject to the constraint defined by the differential
equation (1.20) (a nonholonomic constraint) and initial condition (1.19). We
can convert the problem into an unconstrained one by simply eliminating
w from the integrand defining P using equation (1.20). The problem then
becomes the determination of a function y that maximizes the total profit.
This approach is not necessarily desirable because we want to keep track of
'tt;, the only physical quantity we can regulate.

A feature of this problem that distinguishes it from earlier problems is the
absence of a boundary condition for the fish population at time T. Although
we are given the initial fish population, it is not necessarily desirable to specify

the final fish population after time T. As Wan points out, the condition y(T) =
0, for example, is not always the best strategy: ttgreen issues'' aside, it m ay cost
far more to harvest the last few fish than they are worth. This sim ple model
thus provides an example of a variational problem with only one endpoint
fixed in contrast to the catenary and brachystochrone.

ln passing we note that econom ic models such as this one are generally
fram ed in terms of ttpresent value.'' A pound sterling invested earns interest,
and this should be incorporated into the overall profit. lf the interest is com-
pounded continuously at a rate r, then a pound invested yields crt pounds
after time f. Another way of looking at this is to view a pound of income at
time t as worth c-rt pounds now. Considerations of this sort lead to profit
functiona.ls of the form
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ln this chapter we develop a necessary condition for a f-unction to yield an
extremum for a f-unctional. The centrepiece of the chapter is a second-order
differential equation, the Euler-lsagrange equation, which plays a rôle analo-
gous to the gradient of a f-unction. W e first motivate the analysis by reviewing
necessary conditions for functions to have local extrema. The Euler-lsagrange
equations are derived in Section 2.2 and some special cases where the differ-
ential equation can be sim plified are discussed in Section 2.3. The remaining
three sections are devoted to more qualitative topics concerning degenerate
cases, invariance, and existence of solutions. W e postpone a discussion of suf-
ficient conditions until Chapter 10.

2.1 The Finite-llim ensional Case

The theory underlying the necessary conditions for extrema in the calculus
of variations is motivated by that for f-unctions of n, independent variables.
Problems in the calculus of variations are inherently infinite-dimensional. The
character of the analytical tools needed to solve infinite-dimensional problems
differs from that required for finite-dimensional problems, but many of the
underlying ideas have tractable analogues in finite dimensions. ln this section
we review a necessary condition for a function of n, independent variables to
have a local extremum.

2.1.1 Functions of One Variable

Let / be a real-valued function defined on the interval f f;l R. The f-unction
/ : f --+ R is said to have a local maximum at z CE f if there exists a number
tî > 0 such that for any k CE (z - 6, z + 6) (:z f , Jlk) < /(z). The f-unction
/ : f --+ R is said to have a local minimum at z CE f if -/ has a local
m aximum at z. A f-unction m ay have several local extrema in a given interval.
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lt may be that a function attains a maximum or minimum value for the
entire interval. The f-unction / : f --+ R has a global maximum on f at
z CE f if Jlk) < /(z) for all k CE f . The function / is said to have a global
minimum on f at z CE f if -/ has a global maximum at z. Note that if f
has boundary points then / may have a global maximum on the boundary. lf
/ is differentiable on f then the presence of local maxima or minima on f is
characterized by the first derivative.

Theorem 2.1.1 Let / be a real-valned J'unction dtjferentiable on tlte
interval I . f/ / Itas a local cz/rcm'tzm at z CE f tlten /? (z) = 0.
Proof: The proof of this result is essentially the same for a local maximum
or minimum . Suppose that z is a local m aximum . Then there is a number

tî > 0 such that for any k CE (z - 6, z + 6) (:z f the inequality /(z) k Jlk) is
satisfied. Now the derivative of / at z is given by

/'(z) - lina (/(:) - /(z)) (: - z).l
- >z

The numerator of this limit is never positive since /(z) is a maximum, but
the denominator is positive when k > z and negative when k < z. Since the
function / is differentiable at z the right- and left-sided limits exist and are
equal. The only way this can be true is if /?(z) = 0. En

lt is illuminating to examine the situation for s11100th f-unctions. W e use
the generic term ttsmooth'' to indicate that the f-unction has as many continu-
ous derivatives as are necessary to perform whatever operations are required.
Suppose that / is sm00th in the interval (z - 6, z + 6), where tî > 0. Let
k - z = 6p. Taylor's theorem indicates that, for tî sufllciently small, / can be
represented by

2
g t tî z ?? otya;/( ) - /(z) + 'î07/ (z) + u.p / (z) + .

lf /?(z) # 0 and tî is small, the sign of Jlk) - /(z) is determined by p/?(z).
Suppose that /?(z) # 0. lf / has a local extremum at z then the sign of
Jlk) - /(z) cannot change in (z - 6, z + 6), so that p/?(z) must have the same
sign for all p. But it is clear that p can be positive or negative and hence

p/?(z) can be positive or negative. We must therefore have that /?(z) = 0. lf
/?(z) = 0, then the above expansion indicates that the sign of the difference is
that of the quadratic term, i.e. , the sign of /?? (z) . lf this derivative is negative
then /(z) is a local maximum; if it is positive then /(z) is a local minimum.
lt may be that /??(z) = 0. ln this case the sign of the difference depends on
the cubic term , which contains a factor p3. Like the linear term , however, this
factor can be either positive or negative depending on the choice of p. Thus, if
/???(z) # 0, /(z) cannot be a local extremum. We can continue in this manner
as long as / has the requisite derivatives in (z - 6, z + 6).

For a differentiable function it is easy to see graphically why the condition
/?(z) = 0 is necessary for a local extremum. The Taylor expansion for a



s11100th f-unction indicates that at any point z at which the first derivative
vanishes an 0/) change in the independent variable produces an 0(62) change
in the f-unction value as tî --+ 0. For this reason points such as z are called
stationary points. The f-unctions /zz(z) = z'', where n, CE N, z CE R provide
simple paradigms for the various possibilities

Example 2.1.1: Let /(z) = 3z2 - z3. The function / is sm00th for z CE
R and therefore if any local extrema exist they must satisfjr the equation
6z-3z2 = 0. This equation is satisfied if z = 0 or z = 2. The second derivative

is 6 - 6z, so that ///(0) = 6 and consequently /(0) is a local minimum. On
the other hand, ///(2) = -6 and thus /(2) is a local maximum.

Exam ple 2.1.2 :

,2 sin2 (1 z), if z ,# 0/(z) - t (), if z = ().
This f-unction is differentiable for all z CE R. Now //(0) = 0, and thus z = 0
is a stationary point but the derivative is not continuous there and so ///(0)
does not exist. We can deduce that / has a local minimum at z = 0 because
/(z) k 0 for a11 z CE R.

Example 2.1.3: Let /(z) = IzI. This function is differentiable for all z CE
R - (0/.. The derivative is given by //(z) = -1 for z < 0, and //(z) = 1 for
z > 0. Thus / cannot have a local extremum in R (0/.. Nonetheless it is clear
that /(0) = 0 is a local (and global) minimum for / in R.

Example 2.1.4: Let /(z) = c2. This f-unction is sm00th for all z CE R and
its derivative never vanishes; consequently, / does not have any local extrema.

The relationship between local and global extrem a is lim ited. Certainly if

/ has a global extremum at some interior point z of an interval then /(z)
is also a local extremum. 1f, in addition, / is differentiable in f , then it must
also satisfjr the condition /?(z) = 0. But it may be (as often is the case) that
a global extremum is attained at one of the boundary points of f , in which
case even if / is differentiable nothing regarding the value of the derivative
can be asserted.



26 2 The First Variation

2.1.2 Functions of Several Variables

The definitions for local and global extrema in n, dimensions are formally the
same as for the one-variable case. Let J2 f;l R?z be a region and suppose that
/ : J2 --+ R. For tî > 0 and x = (z1, z2 , . . . , z,zl , let

The function / : J2 --+ R has a global mmximum (global minimum) on
J2 at x CE J2 if /(k) < /(x) (/(k) k /(x)) for a11 #) CE fî. The function /
has a local mmximum (local minimum) at x CE J2 if there exists a number
tî > 0 such that for any Ek CE B (x; 6) (:z .62, Jlk) < /(x) (/(2) k /(x)). As
with the one-variable case if J2 has boundary points / may have a global
m aximum minimum on the boundary.

Necessary conditions for a s11100th function of two independent variables
to have local extrema can be derived from considerations sim ilar to those used
in the single-variable case. Suppose that / : J2 --+ R is a s11100th f-unction on
the region J2 f;l R2, and that / has a local extremum at x = (z1, z2) CE .Q.
Then there exists an tî > 0 such that /(k) - /(x) does not change sign for all
Ek CE .B (x; 6). Let lk = x + 6p, where p = (p1, m) CE R2. For tî small, Taylor's
theorem implies

and the sign of Jlk) - /(x) is given by the linear term in the Taylor expansion,
unless this term is zero. But, if x + tîr/ CE B (x; 6), then x - tîr/ CE B (x; 6) and
these points yield different signs for the linear term unless it is zero. lf x is a
local extremum we must therefore have that

:/ :/('?z, '?a) ' ( , ) - 0,:z1 :z2

for all p CE R2. In particular, equation (2.2) must hold for the special choices
el = (1, 0) and ez = (0, 1). The former choice implies that t'?/ t'?zl = 0 and
the latter choice implies that t'?/ t'?zz = 0. We thus have that if / has a local
extremum at x then

V/ (X) = 0.
Geometrically, equation (2.2) implies that the tangent plane to the graph of
/ is horizontal at a local extremum. Points x at which V/(x) = 0 are called
stationary points. lf x is a stationary point and lk = x-h6p, then J(k) - /(x)
is 0(62) as tî --+ 0, in contrast to the generic case where an 0(6) change in the
independent variables produces an 0/) change in the difference.



Example 2. 1.5: Let /(z1, z2) = z21 - z2z + z3y . The stationary points for
/ are given by V/(z1, z2) = (2z1 + 3z21, -2zz) = 0. This equation has two
solutions (0, 0) and (-2 3, 0). lt can be shown that (0, 0) produces neither a
local minimum nor a local maximum for / (it is a saddle point). ln contrast,
at (-2 3, 0) it can be shown that / has a local maximum.

Example 2.1.6: The monkey saddlel is a surface described by /(z1, z2) =
zz3 -  3z2yzz. If x is a stationary point for / then the equations

-  6z1za = 0,
3z2 - 3z2 = O2 1 

,

must be satisfied and this means that zl = z2 = 0. The f-unction / does not
have a local extremum at this point. Note that even the second derivatives at
this point are zero.

The extension of the above arguments to f-unctions of n, independent vari-
ables is straightforward. Let / : J2 --+ R be a s11100th f-unction on the region
J2 (:z R'', and suppose that / has a local extremum at x CE .Q. Then, for tî > 0
sufllciently small, the sign of /(k) - /(x) does not change for all k CE B (x; 6).
Let k = x + 6p, where p = (p1, w, . . . , p,z). For tî is sufllciently small, Taylor's
theorem implies

and the sign of / (2) - / (x) is determined by the linear term in the Taylor
expansion, provided this term is not zero. But the linear term must be zero
since x + tîr/ and x - tîr/ are 130th in .B (x; 6); hence,

p ' V/(x) = 0

for a11 p CE R''. The special choices el = (1, 0, . . . , 0), e2 = (0, 1, . . . , 0), . . . , ezz =
(0, 0, . . . , 1) for p yield the n, conditions t'?/ t'?zk = 0 at x for k = 1, 2, . . . , zz.
ln sum mary we have the following result.

Theorem 2.1.2 Let / : J2 --+ R be a smtata//z J'unction on tlte region J2 f;l R''.
f/ / Itas a local cz/rcm'tzm at a point x CE J2 tlten

V/ (X) = 0.
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2.2 The Euler-tzagrange Equation

Local extrem a for a f-unctional can be defined in a manner analogous to that
used for functions of n, variables. The transition from finite to infinite dim en-
sional domains, however, carries with it som e complications. For instance,
there may be several vector spaces for which the problem is well defined, and
once a f-unction space is chosen, there may be several suitable norm s avail-

able. The vector space C'zgzt), zll, for example, can be equipped with any of
the 11 . Ilk,x norms, k - 1, 2, . . . , n or even a.ny LP norm. 2 Unlike the finite-
dimensional case, different norms need not be equivalent and thus may lead to
different extrema. Functions ttclose'' in one norm need not be close in another
norm. ln applications, the choice of a vector space and norm form an integral
part of the mathematical model.

Let J : X --+ R be a f-unctional defined on the function space (.X, 11 . II)
and let S f;l X . The f-unctional J is said to have a local m axim um in S at
y CE S if there exists an tî > 0 such that J(L) - J(y) < 0 for all :'è CE S such
that 115 - :v11 < E. The functional J is said to have a local minimum in S at
y CE S if y is a local m aximum in S for -J. ln this chapter, the set S is a set
of f-unctions satisfying certain boundary conditions.

Functions :'è CE S in an 6-neighbourhood of a f-unction y CE S can be repre-
sented in a convenient way as a perturbation of y. Specifically, if :'è CE S and
115 - :v11 < 6, then there is some p CE X such that

b = # + 6r/.

All the functions in an 6-neighbourhood of y can be generated from a suitable
set HL of f-unctions p. Certainly any such p must be an element of X, but p
must also be such that y + tîr/ CE S. The set IL is thus defined by

Since the inequalities defining the extrem a must be valid when tî is replaced
by any number é such that 0 < ? < 6, it is clear that tî can always be made
arbitrarily small when convenient. The auxiliary set IL can thus be replaced
by the set

.bI = (p CE X : y + tîr/ CE Sj,
for the purposes of analysis.

At this stage we specialize to a particular class of problem called the fixed
endpoint variational problem, 3 and work with the vector space Czgzl), z1j
that consists of f-unctions on gzt), z11 that have continuous second derivatives.
Let J : Czgzt), z1j --+ R be a functional of the form
2 See Appendix B.1.
3 M ore accurately, it is called the nonparametric fixed endpoint problem in the
plane.
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where / is a function assumed to have at least second-order continuous partial
derivatives with respect to z, y, and y?. Given two values yçj , yï CE R, the
fixed endpoint variational problem consists of determining the functions y CE
(72 gzt), z1j such that !/(zo) = yçj, !/(z1) = 3/1, and J has a local extremum in S
at y CE S. Here,

S = (!/ CE (72 gzt), z1j : ylzçj) = yçj and !/(z1) = 3/1/.,

.bI = (p CE (72 gzl), z1j : p(z()) = p(z1) = 0j

(cf. figure 2.1).
Suppose that J has a local extremum in S at y. For definiteness, let us

assume that J has a local m aximum at y. Then there is an tî > 0 such that
J(L) - J(y) < 0 for all L(t CE S such that 115 - :v11 < E. For a.ny ?) e S there is an
p CE .bI such that :'è = y + 6p, and for tî small Taylor's theorem implies that

/(z, b, ?)/) - /(z, y + tî07, y' + 6p/)

?) + , t,?''/ +,?? '.t ) + 0/2).= /(z, y, y ,ç')y t'?:t/
Here, we regard / as a function of the three independent variables z, y, and
y?

, and the partial derivatives in the above expression are all evaluated at the
point (z, y, !/?). Now,
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The quantity
zl oj ojé

'.l(r/, #) = r/ -1- 07/ drt'?!/ ç'ly?20

is called the first variation of J. Evidently, if p CE .bI then -p CE .bI, and
JJ(p, y) = -JJ(-p, y). For tî small, the sign of JIL) - J(y) is determined by
the sign of the first variation, unless JJ(p, y) = 0 for all p CE .bI. The condition
that J(y) be a local maximum in S, however, requires that J(L) - J(y) does
not change sign for any :'è CE S such that 115 - :v11 < 6; consequently, if J(y) is
a local m aximum then

zt oj ojé
'.7'(r/, #) = r/ + // dr = 0,ç')y t'93/?20

for all p CE .bI. A sim ilar chain of arguments can be used to show that equation

(2.6) must be satisfied for all p CE .bI if J has a local minimum in S at y.
So far we have shown that if J has a local extremum in S at y then equation

(2.6) must be satisfied for a11 p CE .bI. As in the finite-dimensional case, the
converse is not true: satisfaction of equation (2.6) does not necessarily mean
that y produces a local extremum for J. lf y satisfies equation (2.6) for all
p CE f.J, we say that J is stationary at y, and following comm on convention, y
is called an extrem al for J even though it may not produce a local extremum
for J.

Equation (2.6) is the infinite-dimensional analogue of the equation (2.5).
Recall that the condition V/ = 0 is derived from the fact that p . V/ = 0
m ust hold for all p CE R''. By a suitable choice of vectors in R?z it was shown
that each component of V/ must vanish separately. A similar strategy can
be used to divorce the necessary condition (2.6) from the arbitrary f-unction
p. lt is not yet clear, however, which special choices of f-unctions in .bI will
accomplish this. Moreover the integrand in equation (2.6) contains not only
p but also z/ to complicate matters.
The p? term in equation (2.6) can be eliminated using integration by parts.

ln detail,

zl oj oj zj zt (j oj/ dz = p - p dzr/ o t o t 'jt,/ oytzo # # zo zo
zl (j oj

= - v: dz,IV ôy?20
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j 2 ' p t t'?/ - yd ( oô /, j ). (s - () .ôy y20
Now,

*/ d */ */ *2/ d2/ t d2/ tt
'

t)'7 ç-2 ? ('? ozoy? ('???('????V ç'lvoy'ïl 'ôy y y

and given that / has at least two continuous derivatives, we see that for any
Jzccl y CE (72 gzt), z1j the f-unction E : gzt), z11 --+ R defined by

t'?/ d t'?/E(z) =  

oy - gg (oy,(
is continuous on the interval gzt), z11 . Here, for a given f-unction y the partial
derivatives defining E are evaluated at the point (z, ylz) , y? (z)) . ln fact, E can
be regarded as an element in the Hilbert space fvzgzll, z1j4 and since any p CE f'f
is also in L2 gzt), z1j we can draw a closer analogy with the finite-dimensional
case by noting that equation (2.7) is equivalent to the inner product condition

for a11 p CE .bI. As with the finite-dim ensional case, we can show that the
above condition leads to E = 0 by considering a special subset of .bI. First we
establish two technical results.

Lem m a 2.2.1 Let ct and ,d be two real zz'tzm scrs suclt tltat ct < ,3. Tlten tltere
ezists a Junction v CE C2(R) suclt tltat zztzl > 0 Jor all z CE (ct, ,d) and zztzl = 0
Jor all z CE R - (ct, ,J).
Proof: Let

(z - 0,)3(p - z)3, if z (E (ct,,J)zztzl - '() otherwise
.

The function v clearly has all the properties claimed in the lemm a except
perhaps continuous derivatives at z = ct and z = ,3. Now,

,(z) - ,(a) Ii
na 

(z - G)'(/ - z)' - 0li
m  =

z--ycr'h z - ct z--ycr'h z - ct

=  lina (z - a)2(p - z)3 = 0,z--ycr'h

and

4 Hilbert spaces are discussed in Appendix B.2. Any function continuous on the
interval gzo , zl j is in this space. There are a lot ttrougher'' functions in this space
as well.
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M?(z) - M?(a) jkru 3(z - a)2 (4 - z)2 (p :- a - 2 z) - 0li
rn ==

z--ycr'h I - ct z--ycr'h I - ct

=  lina 3(z - a)(p - z)2(p + a - 2z) = 0,
z--ycr'h

and

if z CE (ct, ,t?)

otherwise

and it is clear that
lim zz??(z) = zz??(ct) = 0

lim zz??(z) = zz??(,J) = 04
z->:

and

hence, v CE (72(R).

Proof: Suppose that g ,# 0 for some c CE gzt), z11 . W ithout loss of generality it
can be assumed that glc) > 0, and by continuity that c CE (zo, z1). Since g is
continuous on gzt), z11 there are numbers ct, ,d such that ztl < ct < c < ,d < zl
and glz) > 0 for z CE (ct, ,d). Lemma 2.2.1 implies that there exists a f-unction
v CE Czgzlj, z1j such that zztzl > 0 for all z CE (ct, /7) and zztzl = 0 for all
z CE gzt), z11 - (ct, ,d). Therefore, v CE .bI and
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wltere / Itas continuon,s partial derivatives o.f second order 'ttlï//z respect to z, y,
and :(/? and ztl < z1. Let

d t'?/ t'?/( oy? ) - oy - 027
Jor all z CE gzo , z11 .
Equation (2.9) is a second-order (generally nonlinear) ordinary differential
equation that any (smooth) extremal y must satisfjr. This differential equation
is called the Euler-Lagrange equation. The boundary values associated
with this equation for the fixed endpoint problem are

!/(zo) = #0, !/(z1) = #1.

The Euler-lsagrange equation is the infinite-dim ensional analogue of the
equation (2.5). ln the transition from finite to infinite dimensions, an algebraic
condition for the determ ination of points x CE R?z which might lead to local
extrem a is replaced by a boundary-value problem involving a second-order
differential equation.

Exam ple 2.2.1: G eodesics in the Plane
Let (zo, y(tl = (0, 0) and (z1, 3/1) = (1, 1). The arclength of a curve described
by !/(z), z CE (0, 11 is given by

The geodesic problem in the plane entails determining the f-unction y such
that the arclength is minimum . W e limit our investigation to functions in
(72 g0, lj such that

v(0) - 0, v(1) - 1.
lf y is an extrem al for J then the Euler-lsagrange equation must be satisfied;
hence,

d t'?/ t'?/ d :(/
-  =  -  () = ()477 ôy? ta?/ Tf 1 + y?2
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#(z) = clz + c2,

where cz is another constant of integration. Since 3/(0) = 0, we see that cz = 0,
and since 3/(1) = 1, we see that cl = 1. Thus, the only extremal y is given by
ylz) = z, which describes the line segment from (0, 0) to (1, 1) in the plane
(as expected). We have not shown that this extremal is in fact a minimum.
(This is shown in Example 10.7.1.)

Example 2.2.2 : Let (zo , y(tl
functional defined by

J(tv) -

The Euler-lsagrange equation for this functional is

// y. uuuu z# # .

The homogeneous solution is yulz) = clcostz) + czsintz), where cl and cz are
constants, and the particular solution is yplz) = z. The general solution to
the Euler-lsagrange equation is thus given by

sintz)ylz) = z - .sintl)

Exam ple 2.2.3: Let k denote some positive constant and let J be the
functional defined by

X

J(tv) - (tv/2 - kyz) dz,
0

with endpoint conditions 3/(0) = 0 and !/(r) = 0. lf y is an extremal for J then
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d ,(2y ) + 2ky =  0;

ylz) = clcos (VIz) + cz sin (VIz) .

Now 3/(0) = 0 implies that cl = 0, and !/(r) = 0 implies that czsintvffr) = 0.
lf sf-k is not an integer, then cz = 0, and the only extremal is y = 0. lf sf-k is
an integer, then sintx/lr) = 0 and cz can be any number. ln the latter case
we have an infinite number of extremals of the form ylz) = czsintxf-/cz).

Exercises 2.2 :

1. Alternative Proof of Condition (2.6): Let y CE S and p CE .bI be flxed
functions. Then the quantity J(y + 6p) can be regarded as a f-unction of
the single real variable E. Show that the equation d.l (/6 = 0 at tî = 0 leads

to condition (2.6) under the same hypotheses for /.
2. The First Variation: Let J : S --+ J2 and K  : S --+ J2, be f-unctionals
defined by

where / and g are s11100th f-unctions of the indicated arguments and J2 (;
R.
(a) Show that for any real numbers -4 and B,

(i.e., tî is a linear operator), and

('?J ('?Jé
(7(Jl A-llp, y) = éJ(p, y) + éA-lp, y)('?J (-)I,L-

(a ttchain rule'' for the J operator).
3. Let n, be any positive integer. Extend Lem ma 2.2.1 by showing that there
exists a v CE C''(R) such that zztzl > 0 for all z CE (ct, /7) and v = 0 for all
z CE R (ct, ,d).
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4. Let J be the f-unctional defined by

with boundary conditions 3/(0) = 0 and 3/(1) = 1. Find the extremalts) in
(72 g0, lj for J.

5. Consider the f-unctional defined by

1

J(tv) - z4tv'2 dz
- 1

(a) Show that no extremals in C2g-1, lj exist which satisfjr the boundary
conditions 3/(-1) = -1, 3/(1) = 1.

(b) Without resorting to the Euler-lsagrange equation, prove that J can-
not have a local minimum in the set

2.3 Som e Special Cases

The Euler-lsagrange equation is a second-order nonlinear differential equation,
and such equations are usually difllcult to sim plify let alone solve. There
are, however, certain cases when this differential equation can be simplified.
W e exam ine two such cases in this section. W e suppose throughout that the
functional satisfies the conditions of Theorem 2.2.3.

2.3.1 Case 1: N o Explicit v D ependence

Suppose that the f-unctional is of the form

21

J(:v) - /(z, y') dz,
20

where the variable y does not appear explicitly in the integrand. Evidently,
the Euler-lsagrange equation reduces to

where cl is a constant of integration. Now t'?/ ç'ly? is a known function of z
and y?, so that equation (2.14) is a first-order differential equation for y. ln
principle, equation (2.14) is solvable for y?, provided t'?2/ (')y?2 :/: O 5 so that
equation (2.14) could be recast in the form
5 One can invoke a variant of the implicit function theorem (Appendix A.2).
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:(/ = .t?(al, c1),

for some function g and then integrated. ln practice, however, solving equation

(2.14) for y? can prove formidable if not impossible, and there may be several
solutions available. Nonetheless, the absence of y in the integrand simplifies the
problem of solving a second-order differential equation to solving an implicit
equation and quadratures.

Exam ple 2.3.1:

The Euler-lsagrange equation for this functional leads to the equation

0 1 C* V/
== == c1?

ç'ly? 1 + /2#

where cl is a constant of integration. Note that 13// 1 + :4/21 < 1 so that
Icll < czo . Equation (2.15) can be solved for y? to get

Exam ple 2.3.2 : G eodesics on a Sphere

ln Example 1.4.1, let zt = 0 and r = 4. Suppose that we choose t = zt, so that
we regard 4 as a function of 0. The arclength f-unctional for the sphere is then

where 4/ denotes d4 d0. The integrand does not contain 4 explicitly, and
therefore the Euler-lsagrange equation gives

4/ sin2 p
== C1,

1 + 4?2sin2 p

where cl is a constant. Now, 4?2sin4 0 < 4?2sin2 0 < 1+4?2sin2 0 and therefore
- 1 < cl < 1. Hence, we can replace cl by the constant sin ct. Equation (2.17)
implies
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sin ct4/ =  .
2 2 ,

sin 0 sin 0 - sin ct

thus,

tan ct
costy + ,J) = ,tan 0

or in Cartesian coördinates,

z cos ,d - y sin,d = z tan ct.

Equation (2.19) is the equation of a plane through the centre of the sphere.
The geodesic corresponds to the intersection of this plane with the sphere',
hence, it must be an arc of great circle.

2.3.2 Case ll: N o Explicit tr D ependence

Theorem 2.3.1 Let J be a J'unctional o.f tlte /'ta?wz

:/I'I(y, tv') - y' - /.ôy?

Proof: Suppose that y is an extremal for J. Now,

and since y is an extremal, the Euler-lsagrange equation (2.9) is satisfied;
hence,
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d ,I1'(y
, tv ) - 0.dz

Consequently, .bI must be constant along an extrem al.

Note that the f-unction .bI depends only on y and y?, and thus the equation

V(#, !//) = const.

is a Jrs/-order differential equation for the extremal y.
Exam ple 2.3.3: Catenary

The catenary problem (Section 1.2) has a f-unctional of the form
z 1 

4, jya;.J(tv) - J ïl 1 + yF 20

The above integrand does not contain z explicitly and therefore

2V 
- J1 -q /2 1 '#

where cl is a constant. lf cl = 0, then the only solution to equation (2.21) is
y = 0. Suppose that cl ,# 04 then equation (2.21) can be replaced by

(2.22)

(z -cal/ct 2 2c1c == # -r # -- c
1,
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therefore,

22 2 C1
= # V # - C1 V

+ ::2 - c2# 1

The extremals are thus given by

I - C2
ylz) = clcosht ).

C1

Exam ple 2.3.4: Brachystochrone
The brachystochrone problem (Section 1.2) has a functional of the form

The integrand does not depend on z explicitly; thus,

:/Hly
, y') - y' - /ôy?

is constant along an extrema.l. lf y is an extremal for J then it must satisfy
the first-order differential equation

(1 + :v/2) = c1,y

where sl = cl 2. Now,

dy = --zlslcos '?l sin '?l dbb
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dz = cot # dy = -4s1 cosz .4 dbb
=  - 2s1(1 + cos(2#)) d'().

Therefore,

z = sz - s1(2'?) + sin(2#)), (2.25)
where s2 is an integration constant. Equations (2.24) and (2.25) provide a
parametric solution to the problem . The solution curve is a well-known class
of plane curves called cycloids (Section 1.2).

The simplification when / does not depend on y explicitly is more or less
obvious from the Euler-lsagrange equation', the simplification when z is absent
in / is less obvious. ln particular, what leads one to consider a f-unction such
as .bI in the first place? Equation (2.20) is an example of a conservation
law : along any extrem al, the quantity .bI is conserved. ln problems concern-
ing classical mechanics, .bI often represents the total energy of the system .
One can thus be led to consider a function such as .bI from the physics of
whatever the f-unctional is m odelling if a conservation law is known. M athe-
m atically, this approach is not very satisfactory. One im mediately questions
whether other conservation laws exist and if there are any other special cases
for the integra.nd leading to conservation laws. ln fact, there are ways to de-
duce conservation laws mathematically. Noether's theorem provides a general
fram ework in which to derive conservation laws. W e discuss this theorem in
Chapter 9.

Exercises 2.3:

1. Find the general solution to the Euler-lsagrange equation corresponding
to the f-unctional 21

J(tv) - /(z) 1 + y'2 dz,
20

where ztl > 0, and investigate the special cases: (i) /(z) = xf-z, (ii) /(z) =
I .

2. Find the extrema.ls for the functional defined by

# dI
,3z

XG

where zo > 0.
3. Let
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2.4 A Degenerate C ase

ln the examples so far, the integrand of the f-unctional depends on y? in som e
nonlinear way. lf the integrand is linear in y?, the problem becomes degenerate
in a sense that is explained in this section.

Suppose that J is a functional of the form

zl 

t yqy y)) cy,J (#) = jvv (X (tr , #) # -1- ,

d 

yttz v - (y''9A + '9B( - ().'.')-;' ' oy oy
d tg-zt ? DA
yttz, y) - + y ,27 dz ôy

dd OB
-  =  0.d

z oy

But

so that the Euler-lsagrange equation reduces to

(2.26)

Note that equation (2.26) is not even a differential equation for yL it is an
implicit equation for y that may or may not have solutions depending on

the given functions -4 and .B. Moreover, equation (2.26) contains no arbitrary
constants so that arbitrary boundary conditions cannot be imposed on any
solutions.
lt may be that equation (2.26) is satisfied for all z and y; i.e., ytz = By is

an identity. ln this case equation (2.26) places no restriction on y, but it does
imply the existence of a f-unction 4tz, y) such that 4y = -4 and 4z = B. ln
this case the integra.nd can be written as

tg 4 ? tg 4 XdJ = + y = ;
tgz ôy dz

so that J depends only on 4 and the endpoints (zo, !/(zo)) and (z1, !/(z1)). The
value of J is thus independent of y, so that the integral is path independent.

6 Equation (2.26) is a well-known integrability condition (cf. (441 , p. 529).
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is independent of the choice of y. A function 4 can be found by integrating
the equations B = 4z and -4 = 4y. For example 4z = B = 2z!/; hence,

4 = z2y + (7(y),

4 - ,2 + c?(?y) = -4 = z2 + :jy2# ,

4 = z2y + y3 + k

J(y) - 4(z,, ?/(z,)) - 4(zo, ?/(zo))
- zltvz + yl - (zptvo + :(/(')).

(Note that the arbitrary constant k vanishes from the final answer.)

ln summary, variational problems with integrands of the form dtz, yly? +
B (z, y) are degenerate in that either y is determined implicitly and can satisfy
only very special sets of boundary data, or the value of the corresponding func-
tional does not depend on the choice of y. ln the latter case the determination
of local extrema is vacuous.

An imm ediate concern is that there m ay be other forms of integrands that
lead to path independent functionals. These functiona.ls are characterized by
the property that the Euler-lsagrange equation reduces to an identity valid
for all z and y in the space under consideration. The next theorem shows that
in fact the integrand must be linear in y? for such an identity to be valid.

Theorem 2.4.1 Snppose tltat tlte Junctional J satishes tlte conditions o.f Tlte-
tarcm 2.2.3 and tltat tlte Enler-Lagrange equation (2.9) rccluccs to an identity.
Tlten, tlte integrand m'tzs/ be linear ïzz y?) and tlte valn,e o

.f tlte jhnctional ïs
independent o.f y.

Proof: lf the Euler-lsagrange equation is an identity, then

('V t'?2/ t#2/ (92// 
.  // u:uu ()- - y y

t'?!/ ç'lzoy? t'Atgl/? (')y?2

for all z CE gzt), z11 and y CE S. Now, :(/?? appears only in the last term on the
left-hand side of the equation, and since equation (2.27) must hold for all
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/(z, y, y') - yttz, yly' + B (z, y),

2.5 lnvariance of the Euler-tzagrange Equation

The principles in physics that lead to variational formulations do not depend
on coördinate systems. Geometrical problems such as the determination of
geodesics are likewise ttcoördinate free'' in character. The path of a particle,
for instance, does not depend on the coördinate system the observer uses to
describe it; a geodesic does not depend on a particular parametrization of
the surface. These types of problems can be framed in term s of maxim izing
functiona.ls and ultimately lead to solutions to an Euler-lsagrange equation.
On physical (and geometrical) grounds one thus expects the Euler-lsagrange
equation to also be invariant with respect to coördinate transformations. ln
this section we take an inform al but practical look at the invariance of the
Euler-lsagrange equation.

A coördinate transformation

z = ztzt, z?), y = ylu, z?),

is called sm ooth if the f-unctions z and y have continuous partial derivatives
with respect to zt and v. A s11100th transformation is called nonsingular if
the Jacobian

8(1, #) z,z y.a=  det
t'?tu, z?) alv yv

satisfies the condition
t'?tz, y)# 0

. (2.29)t'?tu, z?)
Here we use the notation z,z = t'?z ç')u etc. for succinctness. Note that condi-
tion (2.29) implies that the transformation is invertible: to every pair (z, y)
there corresponds a unique pair (u, z?) satisfjring equation (2.28).7 We assume
that the coördinate transformation defined by equation (2.28) is sm00th and
nonsingular.

Let J be a functional of the form
21

J(tv) - /(z, y, tv') dz, (2.30)
20



S = (!/ CE (72 gzt), z1j : ylzçj) = yçj and !/(z1) = 3/1/.,

where yçj and yï are given numbers. Suppose now that we write the f-unctional

in terms of the (u, z?) coördinates and, for definiteness, let us regard z? as a
function of zt. Then,

d dy du l/,z + yvl')%
-  -

dz dz du zu + zvè'

and

ztl = ztztt), zo1, zl = ztul, z?1),
yçj = yluçj, r0), yk = :v('tz1, r1).

For clarity, let

and let T be the set defined by

Given a curve in the zp-plane described by a function y = y(z), the trans-
formation (2.28) defines the curve in the ztzsplane described by some f-unction
z? = z?(zt). The essence of the invaria.nt question is: if z? CE T is an extremal for
K, is y CE S and extremal for J (and vice versal? The next theorem resolves
this question.

Theorem 2.5.1 Let y CE S and z? CE T be two Junctions tltat satisj'y tlte smtata//z
nonsingnlar transjbrvtation (2.28) . Tlten y ïs an cz/rcmtzl Jor J z/ and only zl/
z? is an eztrevtal Jor K.
Proof: Suppose that z? CE T is an extremal for K . Then, z? satisfies the Euler-
Lagrange equation

d ('?F (')F
-  =  (). (2.a2)X  (% ôv
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y.u + yv ?)F('tz
, 't?, i)) = /(z('tz, r), ylu, r), y

,
)(z,z + zv't'?l,

zu + zv
so that

(')F t'?/ t'? yu + yvè=  
t (z. + zvï?) s.ç')è t'?!/ zu + zvè

and

(')F t'?/ t'?/ t'?/ t'? yu + yvè= zv + yv + ? s . v (zu + zv'llç')v t'?z ç')y t'??/ zu + zv

A straightforward but tedious calculation shows that

d ('?F (')F t'?tz, y) ( d t'?/ t'?/- 
ov - olu, r) l.

.

'

.'z;- oy? - oy) ./-f ç')è (2.33)

d t'?/ t'?/
-  =  0,X  t'A/ ç')y

lt is philosophically reassuring that the path of a particle is independent
of the observer's choice of coördinates. There is also a practical im plication:
coördinate transformations can be m ade in the f-unctional before the Euler-
Lagrange equation is formulated. An exam ple sufllces to illustrate the value
of this observation.

Exam ple 2.5.1: Let J be the functional defined by

d :712 + y2 1 + y?2? 
-  y = ().W  1 + y?2 V z2 + y2



z = z(4, r) = r cos 4,
y = y(4, r) = r sin 4.

This transformation is evidently sm00th, and since

the transformation is nonsingular, provided r ,# 0. Now, suppose that r is
regarded as a function of 4, then

3// + !/r/ r cos 4 + sin 4//
# = = ,

z/ + zr/ -r sin 4 + cos 4/

1 + y?2 dz = .:2 + /2 d$.
so that

The functional J thus becomes

Nlrl = /1
.,(, Ftr' /) d$'

The integra.nd does not depend on 4 explicitly, and therefore the correspond-
ing Euler-lsagrange equation has a first integral

?'. =  r c2.,.4 -  11 ,



48 2 The First Variation

51
= sin(-24 + sz)W

= - sintz/l cos s2 + costz/l sin s2
=  - 2 sin 4 cos 4 cos sz + (2 cosz 4 - 1) sin sz.

ln terms of the original Cartesian coördinate system, the above expression is
equivalent to

s =  zzsin sz - 2zy cos s2 - Usin sz.1

Exercises 2.5:

1. Change of Variable: Let '??û : (f(), f11 --+ R be a sm00th f-unction on the
interval )(), f11 such that '?)?(f) > 0 for a11 t CE (f(), f11 and let '?)(fo) = zo,
'?)(f1) = z1. Using the transformation z = '?)(f), the functional J defined
by

where, for F(f) = y('()(t)), 'fr denotes (/F dt and
J7 (f, 1$ f') -- / (,9 (f), 1$ f') ?9?(f).

Prove by direct calculation that



2.6 Existence of Solutions to the Boundary-value
Problem *

ln this section we discuss briefly and inform ally the question of existence and
uniqueness of solutions to the boundary-value problem associated with finding
extrem als. Generally questions of this nature are difllcult to answer even for
specific cases owing to two features. Firstly, the Euler-lsagrange equation is
usually a nonlinear differential equation and thus difllcult if not impossible to
solve analytically. Secondly, boundary-value problems are global in character:

the solutions must be defined on the entire interval gzt), z11 . ln contrast to
initial-value problem s, which are local in character,S there are few general
results analogous to Picard's theoremg available. Our discussion is limited
primarily to examples that illustrate some of the pathologies of boundary-
value problem s. An example of a general existence result for certain boundary-
value problems is given at the end of this section.

Under the conditions of Theorem 2.2.3, the determination of extrem als for
a functional J of the form

with ztl < zl and given boundary values yçj, 3/1, entails finding solutions to
the Euler-lsagrange equation

d t'?/ t'?/
-  =  () (2.a9)27 ôy? ta?/

subject to the conditions

!/(zo) = yçj, !/(z1) = yk.

ln this context a solution to the boundary-value problem is a f-unction y such
that:

(a) y CE C2(zo, zll;
(b) y satisfies the Euler-lsagrange equation (2.39) for all z CE gzt), z11 ; and
(c) y satisfies the boundary conditions (2.40).
The definition of a solution can certainly be relaxed to include ttrougher''
functions such as piecewise s11100th functions, but we do not pursue this gen-
eralization and limit our discussion to s11100th solutions.

M uch of the discussion in the earlier sections of this chapter focused on
determining the general solution ylz, c1, c2) to equation (2.39). Even if the
8 Initial-value problems entail solving a differential equation subject to conditions
of the form ptzo ) = po , p/tzo) = po/ . The conditions are defined at the same point
zo and the solution need exist only in a small neighbourhood of zo.

9 See Appendix A.3.
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two-parameter family of f-unctions that comprises the general solution can be
found, however, there is no guarantee that constants cl and cz can be found
such that

#(J7l0 , C1, C2) = :% , #(J7l1, C1, C2) = #1,
for a given choice of points (zo, y(tl and (z1, 3/1). ln fact, there is no a priori
reason why ylz, c1, c2) need even be in the space Czgzt), z1j for any particular
choice of constants. lt m ay be that no solution exists to the boundary-value
problem even though a general solution can be found to the Euler-lsagrange

equation. At the other extreme, equations (2.41) may have an infinite number
of solutions for cl and or c2, and in this case the boundary-value problem
would have an infinite number of solutions. Fuxamples 2.2.1, 2.2.3, and Exer-
cises 2.2-5 illustrate some of the possible scenarios.

Exam ple 2.2.1: The general solution for geodesics in the plane is

#(z, c1, c2) = c1z + c2,

and given any set of points (zo, y(j), (z1, 3/1) (such that ztl ,# z1) it is clear
that the f-unction

yk - yçj tvoall - tvlalo#(z) = I +
z 1 - ztl z 1 - ztl

is the unique solution to the boundary-value problem .

Exam ple 2.2.3: The general solution to this problem is

ylz, c1, c2) - clcostx/-tz) + casintx/-tz),

ylz) - casintx/lz)

is a solution to the boundary-value problem. ln the above expression cz is an
arbitrary number and hence there are an infinite number of solutions to the
boundary-value problem .

Exercises 2.2-5: The general solution to the Euler-lsagrange equation is of
the form

tv(-1, 0, c2) - -1
:v(1, 0, c2) = 14and



A more involved but illum inating example is afforded by the catenary. 10

Exam ple 2.6.1: Catenary Recall that the functional J defined by

with boundary conditions ylzçj) = yçj k 0 and !/(z1) = yï k 0 models the
shape of a uniform flexible cable suspended from a pole of height yçj to another
pole of height 3/1, where the poles are a distance of zl - ztl apart. The cable
is assumed to be coiled at the base of each pole so that there is no restriction
regarding the arclength of cable between the poles.

There are three im portant parameters in the model: the heights yçj and 3/1,
and the separation distance zl - z(). W e can always normalize the problem
by assuming that the separation distance is one unit, say ztl = 0 and zl = 1.
W e can then work with the parameters yçj and yï.

Recall from Exam ple 2.3.3 that the general solution to the boundary-value
problem is

yv = slcoshtsz) ,
1

yï = slcosh -  + s2 .
r;1

At this stage let us specialize (and simplify) the problem by assuming that
yçj = 1. Although this does not capture all the possibilities, it does display
the basic pathologies. W e thus look at the availability of solutions for various
values of the remaining parameter yï > 0. Under the assum ption that yçj = 1,
the above equations imply that





garding the existence and uniqueness of solutions were resolved only because
the general solution was available explicitly. Typically, the Euler-lsagrange
equation cannot be solved and we do not have the luxury of knowing the gen-
eral solution before we investigate these questions. Even if we cannot solve the
Euler-lsagrange equation analytically, qualitative properties such as existence
and uniqueness of solutions to the boundary-value problem are nonetheless
important. These properties test the veracity of the model especially when
experiment shows that a solution must exist. M oreover, the investigation of
solution existence and uniqueness highlights any special param eter regions
where no solution or multiple solutions may exist. Generally this type of in-
vestigation provides useful information in preparation for a more efllcient nu-
m erical approach to the problem.

There is, unfortunately, a paucity of general results concerning boundary-
value problems involving nonlinear second-order differential equations, and

the results that are available are often fettered with numerous special tand
usually complicated) conditions. lt is well beyond the scope of this book to
give even a brief overview of the various results techniques used to address ex-
istence uniqueness questions for boundary-value problems. lnstead, we leave
the reader with an ttolder'' but useful result due to Bernstein (71 , which we do
not prove.

Theorem 2.6.1 (Bernstein) Consider tlte boundary-valn,e problevt tltat con-
sists o.f solving t/Jc equation

#V = FV, #, #/), (2.43)

subject to t/Jc bonndary conditions

!/(zo) = :%, !/(z1) = #1,

wltere l/tl and !/1 are given real nnmbers and ztl # z1. Suppose tltat on tlte set
J2 = gzt), z11 x R x R tlte Junction F ïs continuon,s and Itas continuon,s y'tzràïtzl
derivatives 'ttlï//z respect to y and !/?. Suppose Jnrtlter tltat tltere ezists a positive
constant p, suclt tltat

t'?F(z, y, !/?)> 
p,('L'y

IF(z, y, :v/)1 < yttz, yly'z + B(z, y).

Tlten, tltere ezists precisely one Junction y suclt tltat equations (2.43) and
(2.44) are satished.
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R em arks'.

(a) We need continuity in a set such as J2 since y is unknown and hence its
range as well as that of y? is unknown.

(b) Although the theorem does not state it explicitly, a solution requires y to
be at least twice differentiable. This means that y and y? are continuous

functions on the interval gzt), z11 . Since F is continuous, equation (2.43)
implies that :(/?? must also be continuous on the interval gzt), z11 ; i.e. , y CE
(72 gzl), z1j .
ln closing, we stress that existence and uniqueness results for the boundary-

value problem do not necessarily transfer to the original variational problem ,
which is generally concerned with finding local extrema. The catenary is an
example of this situation. The basic question concerns the existence of a lo-
cal extremum for a given functional not m erely an extrema.l. Some results
concerning this question can be found in Carath4odory loc. cit. and Ewing
(261.



Som e G eneralizations

3.1 Functionals C ontaining H igher-o rder D erivatives

The arguments leading to the Euler-lsagrange equation in Section 2.2 can
be extended to functiona.ls involving higher-order derivatives. Naturally, the
function spaces must be further restricted to account for the higher-order
derivatives. Consider a functional of the form

21

J(y) - /(z, y, y', y'') dz,
20

along with boundary conditions of the form ylzçj) = yçj, !/?(zo) = y6, !/(z1) =
3/1, and y? (z1) = 3//1. Here we assume that / has continuous partial derivatives
of the third order with respect to z, y, !/?, and :(/?? and that y CE C4(zo, z11 .
The set S is thus

and the set LI is defined by

Suppose that J has a local extrem um in S at y CE S. Proceeding as in

Section 2.2, let :'2 = y + tîr/ and consider the difference J(L) - J(y). Taylor's
theorem implies that

and consequently,

J(?)) - .J(y) - zj-, (w,t'?/ + w,? t'?.t + ,?? t'?.t )) cu + 0/2).ç''y t'?tv' ôy''20
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The first variation for this f-unctional is therefore

zt o.f ('?/ o.ftî'.llr/, #) = r/ + 07/ + r/// dI.t'?# t'?!? t'?!?/20

dz

using the boundary conditions p(zo) = 0 and p(z1) = 0, and so condition
(3.1) reduces to the equation

21 t'?/ d t'?/ d2 ('?/
r/ - + dr = 0,ç')y 2V ç'ly? dz2 ('?:(/??20

which must hold for all p CE .bI. The integrand / by assumption has continuous
third order partial derivatives so that for any y CE C4(zo, z11 the term

t'?/ d t'?/ d2 ('?/E(z) = - y  o t + ts z oyttt'?!/ y

must be continuous on the interval gzt), z11 . A suitable modification of Lemma
2.2.2 (cf. Exercises 2.2-3) can be used to show that y must satisfy the fourth-
order Euler-lsagrange differential equation

d2 ('?/ d ('?/ ('?/
-  + = ().dz2 ('?:(/?? W  ('ly? t'?:l/

The above equation is a necessary condition for a f-unction y CE S to be an
extrem al for the f-unctional J.



3. 1 Functionals Containing Higher-order Derivatives

Exam ple 3.1.1:

(ï'&) (z) = g,#

which has the general solution

1 4 a 2
ylz) = pz + c1z + c2z + caz + c4,Y

where the cks are constants. The conditions 3/(0) = 0 and 3//(0) = 0 imply that
c4 = ca = 0. The conditions 3/(1) = 1 and 3//(1) = 1 imply that p 41 + cl + c2 =
1 and p 31 + 3c1 + 2c2 = 14 hence, cl = -1 - p 12 and c2 = 2 + p 24. The
extrem al is thus given by

(z) - X - 1 + X) z3 + 2 + X) z2.y 24 12 24
Results such as Theorem 2.3.1 have analogues for f-unctionals containing

higher-order derivatives. For the second-order case, if the integrand does not
contain y explicitly then it is plain that a first integral for the Euler-lsagrange
equation can be obtained, viz.,

d t'?/ t'?/
-  = const.IV ç'ly'? t'A/

t'?/ ? d t'?/ t'?/
.bI(y, :(/ !///) = :(// - y - - / = covtst., o tt (yz o tt o t# # #

Exam ple 3.1.2 :

zt (1 .y. y?,),J(:v) - ,, dz.
zo #

The integrand defining J does not contain y explicitly', therefore, any extremal
y satisfies the differential equation

d ( t'?/ hj t'?/'k t'?!/// ) - t'?!// '''U C1'27

where cl is som e constant. The integrand also does not contain z explicitly,
and so for any extremal
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where cz is another constant. The above expression can be recast in the form

kïy? + k,?? 
=  1!/ 

?z z ,(1 + y )
where lll and k, are constants. The two simplifications thus enable us to reduce

the fourth-order Euler-lsagrange equation (3.3) to a second-order differential
equation. We can solve equation (3.5) parametrically: let

? =  t an .4 ;#

(/clcos '??û sin '??û + kzcosz #) #? = 1.
lntegrating 130th sides of the above equation yields

lll k, 1
z = ks + --

zf- (1 - cos(2#)) + -j- '??û + j sintz#l ,

where ks is an integration constant. Simplifjring the above expression and
using lll = 4s1, k, = 4s2, sa = ks + lll 4 gives

z = sa + 2sz'?) + szsintz't)) - slcostzkl.

Equations (3.6) and (3.7) imply that
dy = tan '??û dz

=  (2s2(1 + cos(2#)) + 2s1sin(2#)) tan '??û dbb
=  (2s1 + zszsintz#l - 2s1cos(2#)) dbb;

hence,

y = s4 + 2s1'?) - szcostzkl + slsintzkl, (3.8)
where s4 is another integration constant. The solution is thus given param et-
rically by equations (3.7) and (3.8).

The methods used for integrands containing second-order derivatives can
be extended to integrands containing derivatives of the sàth order. W e leave
as an exercise the proof that the Euler-lsagrange equation for a f-unctional of
the form
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Exercises 3. 1:

1. Find the general solution for the extremals to the f-unctional J defined by

2. Conservation Law: Suppose the integrand / defining the f-unctional
J does not depend on z explicitly. Prove that equation (3.4) is satisfied
along any extremal.

3. For the f-unctional J defined by

1

J(tv) - y' 1 + (:v//)2 dz,
0

find an extremal satisfying the conditions 3/(0) = 0, 3//(0) = 0, 3/(1) = 1,
and 3//(1) = 2.

4. D egenerate Case: Let J be a functional of the form

where -4 and B are s11100th f-unctions of z, y, and y?. Prove that the Euler-
Lagrange equation for this f-unctional is a differential equation of at most
second order and that consequently any solutions can satisfjr at m ost two
arbitrary boundary conditions.

5. Let J and K  be functiona.ls defined by

F(z, y, y', y'') = /(z, y, y', y'') + (7tz, y, y').d
z
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6. Let J be a f-unctional of the form

where yln's denotes the sàth derivative of y.

(a) Formulate the flxed endpoint variational problem for this f-unctional
and prove that any s11100th extremal must satisfjr the Euler-lsagrange
equation (3.9). Note any assumptions on the function / and the func-
tion space.

(b) If / is of the form yttz, y, !/?, . . . , !/(rL-1)):4/(?z) + .B (z, y, :(/?, . . . , :4/(rL-1))
what is the m aximum order the Euler-lsagrange equation can be?

3.2 Several Dependent V ariables

Variational problems typically involve f-unctionals that depend on several de-
pendent variables. ln classical m echanics, for example, even the m otion of a

single particle in space requires three dependent variables (z(f), y(t), z(f)) to
describe the position of the particle at time f. ln this section we derive the
Euler-lsagrange equations for functionals that depend on several dependent
variables and one independent variable.
Let C12gf(;, f1j denote the set of f-unctions q : (f(), f11 --+ R?z such that for

q = (t?1, q2, . . . , qnl we have qk CE C2gf(), f1j for k = 1, 2, . . . , zz. The set C12 gflj, f1j
iS a. Vector Spafle al'lcl a. l'lorm SLICIA a.S

11q11 - k- mz,aax,...,-zs
s
gz
u
-
p
z-j 
I'?k(')I

can be defined on this space. As with the single dependent variable case, the
choice of norm really depends on the application.

Consider a functional of the form

tl

J(q) - Llt, q, ù) dt,
to

where ' denotes differentiation with respect to f, and L is a f-unction having
continuous partial derivatives of second order with respect to f, qk, and q'k,
for k = 1, 2, . . . , zz. Given two vectors qo, ql CE R'', the fixed endpoint prob-
lem consists of determining the local extrema for J subject to the conditions
q(fo) = qo and q(f1) = q1. Here,

S = (q CE C12 gfl), f1j : q(f()) = qll and q(f1) = qlj.

Again we can represent a ttnearby'' f-unction qn as a perturbation,

m 
= (j + (;vkq ,



where p = (p1, w, . . . , p,z). For this case,

.bI = (p CE C2gf(), f1j : z7(f()) = z7(f1) = Oj.

consequently,

The first variation for this f-unctional is thus

tt ,z ogy tj?.rsé J ('?
, q) - j,, ,j)(). , tpk oc, + bk og )) dt .

DJITI, tR) = 0

for all p CE .bI.
Condition (3.11) is more complicated than its analogue (2.6) owing to the

presence of n, arbitrary f-unctions and their derivatives, but judicious choices of
functions p CE .bI can be made to make the problem more tractable. Consider
the set of f-unctions .r..J1 defined by .r..J1 = ((p1, 0, . . . , 0) CE ff).. Condition (3.11)
m ust hold for all p CE ff1, and for any p CE .r..J1 this condition reduces to

tl qgjg ('y.rs .y gjg ('y.rs (y y .(;.Jzo ôqk (% z
W e know from Section 2.2 that this condition leads to the Euler-lsagrange
equation

-  =  0,)'i t'?til ç'kï
as a necessary condition for an extrem al. Evidently we can modify the above
approach by selecting appropriate subsets of .bI to argue that if J has a local
extremum at q then
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-  =  0,7/ t'Al ç'kï
-  =  0,X' t'Az ç'k,

The above condition is a system of n, second-order differential equations for
the n, unknown functions t71, . . . , qn. Note that if q satisfies this system then

condition (3.11) is satisfied for any p CE .bI. ln summary, we have the following
result.

wltere q = (t71, q,, . . . , qnl, and L Itas continuon,s second-order y'tzràïtzl deriva-
tives 'ttlï//z respect to f, qk, and q'k , k = 1, 2, . . . , n,. L et

S = (q CE (72 gft), f1j : q(f()) = qtl a.nd q(f1) = qlj,

-  =  0/@ ô4k :vk

Jor k = 1, 2, . . . , n,.

Exam ple 3.2.1: Let

with q(0) = qo, q(1) = q1. The Euler-lsagrange equations for this f-unctional
correspond to the system

1(ï,p)2
q, - 2(2 - -t.?2 = 0.2

The characteristic equation for this linear differential equation is



1
2/./ - 2/.:2 - = 0,

which has roots

The general solution to equation (3.16) is therefore

where the cks are determined by the boundary conditions q(0) = q(), q(1) =
q1. The function t71(f) can be readily deduced from qnlt) by use of equation
(3.15).

The special cases detailed in Section 2.3 can also be extended to several
dependent variables. ln particular, if L does not depend on t explicitly it can
be shown that

along any extremal.

Exam ple 3.2.2 : The fam iliar equations of motion for a particle can be

derived from Hamilton's Principle (Section 1.3). Let q(f) = (t71(f), q,(t), t?a (f))
denote the Cartesian coördinates of a free particle of mass ?rz at time f. The
kinetic energy of this particle is

1T(q
, ù) - j.wttit + .1/ + /).

Let U(f, q) denote the potential energy. The Lagrangian is

The Euler-lsagrange equations (3.13) give immediately the Lagrange equations
of motion,
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:U
'tvtkk = -w-,

Uqk

for k = 1, 2, 3. Recall from Section 1.3 that the kth component of force, A on
the particle is given by

('?UX =  -  
.0qk

Hence, the Euler-lsagrange equations im ply Newtonts equation

where a = ('2i is the acceleration and f = (/1, A, /a) is the force on the particle.
For this exam ple note that if the potential energy U' does not depend on

time explicitly then neither does L. ln this case, we have the conservation law

(3.17), which gives

Exercises 3.2 :

1 a aLlt
, q, ù) - - (ti, + tia) - gq,,2

where g is a constant.
(a) Find the extremals for the f-unctional J defined by
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s = stf, q)
4. Let

t'?s '' t'?s
&(f, q, ù) - + S 4k.t'?f ôqk

k=1

(a) Prove that the Euler-lsagrange equations (3.13) for the f-unctional

are satisfied for any s11100th function y. (This is the degenerate case.)
(b) Let

tl

J(q) - Llt, q, il) dt
te

and

3.3 Two lndependent Variables*

This book is concerned prim arily with f-unctionals whose integrands contain
a single independent variable. W e pause here, however, to discuss briefly the
first variation for functiona.ls defined by multiple integrals. W e focus on the
simplest case when the integrand contains two independent variables.

Let J2 be a simply connected bounded region in 1:.2 with boundary ('?.Q and

closure L = :.62 LJ tî. Let (72 (J-)) denote the space of all f-unctions zt : L --+ R
such that zt has continuous derivatives of second order. Consider a f-unctional
J : (72 (.0) --+ R of the form

J(z') - /(z, y, ''.',r, q) dz dy,
ue

where p = ztz, q = uy, and / is a s11100th function of z, y, zt, p, and q.
An analoyue of the flxed-endpoint variational problem is to find a f-unction
zt CE C2(J2) such that J is an extremum subject to a boundary condition of
the form

z'tz, y) - z'otz, y), (z, y) e ôtî, (3.19)
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W e can approach this problem in the sam e manner as the single inde-
pendent variable case. Suppose that zt is an extremal for J subject to the
boundary condition (3.19), and let

Z(z, y) = 'tzlz, y) + 6r/lz, y) .

Here, tî is a small parameter and p CE C2(.0). In addition, it is required that fl
satisfy the boundary condition (3.19) and hence

Tl(1, #) = 0

/(z, y, fl,:, 1) - /(z, y, z' + tîp,r + 6pz, q + Evly)
:/ :/ :/-  /(z, y, u,r, q) + tî '? + '?z + vly ot'?.?.t ç')p q

+ (?(62),

j j t n '(t + w 'gopî + n, :,7 ) dz o - o ,.() q
for all p CE (72 (J')) satisfjring condition (3.20). Lemma 2.2.2 can be general-
ized to accommodate multiple integrals. As with the fixed-endpoint problem ,
however, we need to eliminate the derivatives of the arbitrary f-unction from

condition (3.21).
Green's theorem states that

/ / ( 7t + 'l''y ) d- '''v -J2
for any functions 4, '??û : L --+ R such that 4, '?), 4z, and bby are continuous. Let

:/4 
= p ,ôp
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Here, -* denotes partial differentiation holding (only) y flxed, and -* de-Pz oy
notes partial differentiation holding z flxed. Condition (3.20) implies that the
boundary integral is zero; therefore,

Condition (3.21) thus implies

/ /,- n ) ,1 ( :.t) + '-toy ( 'o'q ) - 't) d- '', - o.
Equation (3.22) must be satisfied for arbitrary p, and the coefllcient of p in

the integrand is a continuous f-unction since zt CE C2(.0) and / is sm00th. We
can thus invoke a generalization of Lem ma 2.2.2 to get the necessary condition

tg ( t9/ (j .y j ( t9/ (j . tg / .(; .tgz ôp tA ôu
Equation (3.23) is a second-order partial differential equation for the unknown
function zt, which must also satisfy the boundary condition (3.19). This differ-
ential equation is the analogue of equation (2.9)4 it is also called the Euler-
Lagrange equation.

Exam ple 3.3.1: Let J2 be the disc defined by :712 + y2 < 1, and 1et

(3.24)

uölz, y) = 2z2 - 1

(3.26)

(Laplace's equation). lf J has an extremum at zt CE C2(.0), then zt must be
a solution to the partial differential equation (3.26) and satisfy the boundary
condition (3.25). The reader can verifjr that the function zttz, y) = :712 - y2 is
a solution to this simple problem .

t'?zu (')2u
+ = 0

t'?z2 (')y2
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Exam ple 3.3.2 : Let r : J2 --+ 1:.3 be a function of the form

rlz, y) = (z, y, 'tzlz, !/)).

J(zt) = j j 1 + p2 + q2 dz dy.
Suppose we consider the minimal surface problem (Section 1.4), which consists
of finding a minimum for J subject to boundary conditions of the form (3.19).
Geometrically, the problem entails finding a surface that can be described
parametrically in the form (3.27) such that the surface contains the (closed)
space curve y described by rtl : :.62 --+ 1:.3 where

rotz, y) - (z, y, z'otz, y)),

and the surface area is minimum com pared to other s11100th surfaces contain-
ing the space curve y. The Euler-lsagrange equation for this problem reduces
to

(1 + pzlt - 2ws + (1 + qzlr = 0,
where

t'Wtt ('72tt ('72tt
r = , s = , t = .

t'?z2 ('lzç')y (12
The mean curvature of a surface described parametrically in the form (3.27)
is given by

(1 + pzlt - zpqs + (1 + qzlr'FI =  

,2(1 + 372 + :2)3/2
so that solutions to the minimal surface problem are characterized geom etri-
cally by the condition

lf J has an extrem um at zt, then zt must satisfjr an equation of the form

ytr + 2.Bs + Ct + D = 0, (3.30)

where -4, .B, C, and D are f-unctions of the variables z, y, zt, p, q. The Euler-
Lagrange equation is thus a quasilinear second-order partial differential equa-
tion for the extremal zt. Boundary-value problems involving such equations can
be exceedingly difllcult to solve and basic questions concerning the existence
and uniqueness of solutions for specific problems can be difllcult to answer.
The boundary conditions for these problems play a central part in the so-
lution m ethod, and there are concerns here that do not manifest them selves
strongly in the one-variable case such as whether the problem is well-posed.
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A well-posed boundary-value problem has a unique solution, and the solution
is stable with respect to sm all perturbations of the boundary conditions.

W e eschew a general discussion on well-posed boundary-value problem s.
Sufllce it to say that the matter is complicated especially for quasilinear tand
fully nonlinear) partial differential equations. The reader is referred to stan-
dard works such as Garabedian (301 and John (421 for a fuller introductory
account.

ln some cases, it is possible to classify the Euler-lsagrange equation, and
then general results concerning the class of equation can be exploited. The

differential equation (3.30) is called:
(a) hyperbolic, if AC - .B2 < 0',
(b) parabolic, if AC - .B2 = 0',
(c) elliptic, if AC - .B2 > 0.
The classification is based on the existence of a special class of curves called
characteristics on the integral surface. Roughly speaking, a characteristic
is a curve on the integral surface along which the differential equation and
the initial boundary data do not determine all the second-order derivatives
uniquely. Hyperbolic equations have integral surfaces with two real families
of characteristics. Parabolic equations have integral surfaces with only one
characteristic. Elliptic equations have integral surfaces with no real character-
istics. The presence of characteristics influences strongly the type of problem
for which the differential equation is well-posed. The type of boundary-value
problem considered in this section is called a D irichlet problem . lt is well
known that Dirichlet problem s involving hyperbolic partial differential equa-
tions are ill-posed. ln contrast, Dirichlet problems are generally well-posed for
elliptic partial differential equations.

ln general, the coefllcients -4, B , and C depend on the variables z, y, zt, p, q,
so that an Euler-lsagrange equation need not fit into any of the categories m en-
tioned. The signs and magnitudes of these coefllcients can change, an equa-
tion m ay be hyperbolic at some points in J2 and elliptic at other points. M ore
importantly, the coefllcients depend on the solution itself. The classification
really depends on the equation, the domain, and the solution. Nonetheless,
there are cases where the equation can be classified without knowing solu-
tions. lf the coefllcients are a11 constants, for example, then the classification
depends purely on these constants. Laplace's equation (3.26) is clearly elliptic',
the wave equation,

r - t = 0,

is clearly hyperbolic. The reader can also verify that equation (3.29) is elliptic.
Gilbarg and Trudinger (341 discuss the Dirichlet problem for quasilinear elliptic
partial differential equations of this type in some depth.
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3.4 The lnverse Problem *

The variational formulation of a boundary-value problem has some advan-
tages. For exam ple, in Chapter 5 we show how one can exploit the isoperi-
m etric problem to approximate eigenvalues for Sturm-lsiouville problem s. ln
Chapter 8, we show how variational problem s lead to Hamilton's equations
and the Hamilton-lacobi equation, which may be solvable through separation

of variables. ln addition, Noether's theorem (Chapter 9) provides a systematic
algorithm for finding conservation laws for variational problem s. 1 These and

other features (e.g., Rayleigh-ltitz numerical methods) make it attractive to
identifjr a given differential equation as the Euler-lsagrange equation of som e
functiona.l.

Given a differential equation

?? -  F(z y, ?y?) = 0,# ,

the inverse problem is to determine a f-unction /(z, y, !//) such that y is a
solution to (3.31) if and only if y is a solution to the Euler-lsagrange equation

d t9/ t9/
-  =  0.2V % ? tg?/

ln this section we discuss briefly and informally some qualitative aspects of
the inverse problem.

Let us first consider the general second-order linear differential equation

y?? + Py? + Qy - G = 0, (3.33)

where P, Q, and G are functions of z. We know from the theory of differential
equations that such equations can be put in an equivalent self-adjoint form

(>'#/)/ + qïl - # = 0,

where
2

p = exp P31) t/$ ,
20

A quick comparison with equation (3.32) shows that equation (3.34) is equiv-
alent to the Euler-lsagrange equation for

ln this manner, we see that the general linear equation (3.33) can always be
transform ed into an Euler-lsagrange equation. W e discuss this relationship for
Sturm-lsiouville problems in more detail in Section 5.1.

1 ln fact, there are versions of Noether's theorem that do not require a variational
formulation. Anco and Bluman g2j , g3j describe the algorithm.
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y''J ' ' + y'hy' + hy' - Jy - 0,y y

and ?/?? can be eliminated from the above equation using (3.31) to give

Fl'y/y' + VJyy' + /zp/ - h = 0.

Equation (3.35) can be regarded as a second-order partial differential equation
for the function /. From a practical standpoint, the above equation is of
limited value owing to the paucity of methods for solving such equations.

Fortunately, it is possible to transform equation (3.35) into a first-order partial
differential equation for li = Jy/y' . Differentiating 130th sides of equation (3.35)
with respect to y? gives

Fy' Jy/y' + Fly/y/y' + y'Jyy/y' + Jzy/y' = 0',

(3.36)
There is a general method for solving first-order partial differential equations,
the method of characteristics, that entails solving a system of four ordinary
differential equations. W e do not go into this m ethod here, but simply note
that it can be used to show that solutions to equation (3.36) exist,z and hence
the general second-order nonlinear equation (3.31) does have a variational
formulation.

The inverse problem for system s of second-order differential equations
poses a m ore formidable problem . Fortunately, there is a result that helps
characterize systems that have variational formulations. Let

denote a system of n, second-order differential equations for q = (t71, . . . , qn),
and let

Aj (f, q, il, ik) = Ej(L), (3.37)

for j = 1, . . . , zz, is that A satisfies the following integrability conditions, 3

2 We could also appeal to results such as the Cauchy-lfowalevski theorem ( (301 ) if
F is analytic in z, p, and p/ .

3 These conditions correspond to the requirement that the Fréchet derivative of A

be self-adjoint (cf. (571, p. 355).



3 Some Generalizations

for j, k = 1, . . . , zz. Relations (3.38) are called the Helmholtz conditions.
lf the Aj satisfjr the Helmholtz conditions, then it can be shown that the
function L defined by

1 n

Llt, q, ù) = /))() qkzkklt, $q, .i'tl, .i'ik) dl
0 k= 1

satisfies equation (3.37). The Helmholtz conditions are discussed in more de-
tail in (571 .

Note that failure of the Helmholtz conditions does not preclude the possi-
bility of a system having a variational formulation. Although these conditions
preclude direct relationships such as (3.37), it may be that there is a multiplier
m atrix B, for example, such that

Here, B is a nonsingular n, x n, matrix with entries bij = bij (f, q, ($. For
example, consider the simple case n, = 1, dtz, y, !/?, !/??) = :(/?? - F(z, y, !/?). For
this case, the Helmholtz conditions reduce to the condition Fy' = 0. But we

know that all the second-order equations of the form (3.31) have a variational
formulation. Suppose now that we introduce a multiplier B = B (z, y, !/?) and
apply the Helmholz conditions to B (!/?? - F). Then, the Helmholtz condition
reduces to

FBy' + y'By + .B. + Fy'B = 0,

which is the same as differential equation (3.36).
The determ ination of a m atrix B such that BA satisfies the Helmholz

condition is called the ttmultiplier problem'' in the calculus of variations. The
difllculties and conditions on the bij escalate substantially for n, k 2. The
reader can find a summ ary of the problem , generalizations, and further results
in the monograph by Anderson and Thompson (41.



Isoperim etric Problem s

Variational problems are often accompanied by one or more constraints. The
presence of a constraint further limits the space S in which we search for
extrem als. Constraints may be prescribed in any number of ways. For exam-
ple, one might require the functions q CE S to satisfjr an algebraic condition,
a differential equation, or an inequality. Often there are different ways to
impose the same constraint. ln this chapter we discuss problem s that have
isoperimetric constraints. Problem s that have algebraic equations or differen-
tial equations as constraints are discussed in Chapter 6.

4.1 The Finite-llim ensional Case and Lagrange
M ultipliers

lt is useful to investigate a simple finite-dimensional example of a constrained
optimization problem to gain some insight into the infinite-dimensional case.
M oreover, the theory underlying the Lagrange multiplier technique for varia-
tional problems rests on that for finite-dim ensional problem s. ln this section
we review Lagrange multipliers for finite-dimensional optimization problem s.

4.1.1 Single Constraint

Consider the problem of determining local extrema for a f-unction / : 1:.2 --+ R
subject to the condition that the values of / are sampled on a curve y (:z R2.
ln other words, determine the points on y at which / has a local extremum
relative to values of / sampled at nearby points on y. This problem is inher-
ently one-dimensional in character, but the approach to locating the extrema
really depends on the constraint used to define y. W e assume for simplicity
that / is a s11100th f-unction and that y is a s11100th curve.

There are many ways to define a curve. Suppose, for example, that y is
defined param etrically by some f-unction r : f --+ R2, where f f;l R is an
interva.l, and for t CE f ,
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r(f) = (z(f), y(t)) .
Then we can build the constraint directly into the problem by constructing
the function F : f --+ R defined by F(f) = /(z(f), !/(f)). Given that the
parametrization is sm00th, a necessary condition for a local extremum at t is

d :/ ? : / ?17(t) = z (f) + y (f) = 0.

Now, z(f) and ylt) are known and thus t'?/ t'?z and t'?/ t'?z are known functions
of f. ln principle we can thus solve the above equation for the values of t (if
any) that make F an extremum. Note that a special case of the parametric
representation is the ttgraphical'' representations r(z) = (z, !/(z)) and r(!/) =
(z(:v), y).
A curve may be defined implicitly by an equation of the form glz, y) = 0.

lf g is a s11100th f-unction and Tg ,# 0, then in principle we could solve the
equation for one of the variables and proceed as described above.l In practice,
however, finding an explicit solution might not be possible or convenient.
M oreover, even if g is s11100th for all values of z and y, the resulting solution for
z or y may not be. Consider, for example, the equation glz, y) = z2+:(/2- 1 = 0
that describes the unit circle centred at (0, 0). lf we solve this equation for,
say y, we get ylz) = 1 - z2, and y is not sm00th at z = +I. Yet another
concern with this approach is that it often leads to an artificial distinction of
dependent variables. ln many problems in geometry and physics the variables
are all on the same footing and it is not desirable to make such a distinction
for the purposes of analysis.

An elegant technique that avoids the problem of directly solving implicit
equations involves the introduction of a constant called a Lagrange multiplier.
The technique has a simple geometrical interpretation. Suppose that / and g
are s11100th functions. We wish to find a necessary condition for / to have a
local extremum subject to the constraint

.1.1(1, #) = 0.

W e suppose further that
% .qlz, y) # 0. (4.2)

The equation (4.1) defines a curve y implicitly, and since Tg ,# 0 the
curve is smooth', i.e. , y has a well-defined unit tangent vector at each point
that varies smoothly along y. This means that locally y can be represented
parametrically by a s11100th vector function r(f) = (z(f), !/(f)), t CE f , such that
r?(f) ,# 0 for all t CE f . A necessary condition for / to have a local extremum
on y at (z(f), y(t)) is
1 lf one of the derivatives is nonzero, then we can use the implicit function theorem
to assert the existence of a solution to the equation. Unfortunately the theorem
does not actually provide a means of obtaining the solution.
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J : / , :/ ,/ (z (f)
, v(f)) -- yz z (f) -F : v (f) -- 0.27 

y

d :# ? ôg t
.v(z(f), :v(f)) - o

z
z (f) + o y (f) - 0,70 

y

for all t CE f . Equation (4.2) implies that at any point on y at least one of the
derivatives ç')g t'?z, ç')g t'?!/ is nonzero. Suppose for definiteness that ç')g t'?!/ ,# 0.
Then equation (4.4) implies that

and consequently equation (4.3) can be replaced by

z ? ( t ) t'? / ...y.t'? t'? / ç')g) t'?z ôy - ôy t'?z ) - 0.V
Now r?(f) = (z?(f), y?(t)) # 0 so that z?(f) and y?(t) cannot 130th be zero;
hence, equation (4.5) precludes the possibility that z?(f) = 0. Equation (4.3)
thus reduces to the condition

t'? / 
....
j.t'? t'? / t'? g

-  =  0,
t'?z ç')y t'?!/ t'?z

which is equivalent to the condition

V/ A Tg = 0,

(cross) product.where A denotes the exterior
v w CE 1:.2

Iv A wl = IvI IwI sin 4,
where 4 is the angle between v and w. Equation (4.6) indicates that V/ is
parallel to Tg at an extremum (i.e., 4 = 0). Since V/ and Tg are parallel,
there is a constant ,L such that V/ = hs'g. The necessary condition (4.3) thus
reduces to the condition

V(/ - hg) - 0.
The constant ,L is called a Lagrange m ultiplier.
lt is evident graphically that V/ is parallel to Tg at an extremum. Figure

4.1 depicts level curves of / and the curve y. The conditions on g ensure that
y does not have any discontinuities or ttcorners,'' and since / is s11100th /
has s11100th level curves. Suppose that / has an extremum on y at (z, y). lf
the level curve of / through the point (z, y) intersects y transversally, then
/ is increasing decreasing along y at (z, y) and hence (z, y) will not yield an
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extremum for / on y. The level curve of / through (z, y) must therefore be
tangent to y at (z, y) and consequently the unit normal to y must be parallel
to the unit normal to the level curve at (z, y). ln other words, V/ is parallel
to Tg at (z, y).
Under the above conditions, if / has an extremum subject to condition

(4.1), then equation (4.7) must be satisfied. This vector equation provides
two scalar equations for the three unknown quantities z, y, and à. Equation

(4.1) provides the third equation.

Example 4.1.1: Find the local extrema for the function defined by /(z, y) =
z2 -  y2 subject to the condition glz, y) = :712 + y2 - 1 = 0.
Equation (4.7) implies that

V (z2 - y2 - à(z2 + y2 - 1)j = (),

z(1 + 1) = 0,
:v(-1 + 1) = 0.

The first equation indicates that either z = 0 or ,L = -1. Suppose that z = 0.
Then the second equation implies that either y = 0 or ,L = 1, but z = 0 and
the condition z2 + y2 - 1 = 0 implies that y = +I. Thus, there are critical

points at (0, 1) and (0, -1). Suppose instead that z ,# 0 and ,L = -1. Then
the second equation implies that -23/ = 0, i.e., y = 0, so that the constraint

implies that z = +I. Hence there are critical points at (1, 0) and (-1, 0).
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The Lagrange multiplier technique can be adapted to problem s in higher
dimensions. For exam ple, to find the extrema for a f-unction of the form
/(z, y, z) subject to a constraint of the form glz, y, z) = 0, we can form
the function F = / - hg, where ,L is an unknown constant, and look for so-
lutions to the three equations given by VF = 0, where V is the operator
(t'? t'?z, t'? 0y, t'? 0z). The constraint provides the fourth equation for the un-
known quantities z, y, z, and à. This approach is valid provided Tg ,# 0. ln
summ ary, we have the following result.

Theorem 4.1.1 (Lagrange Multiplier Rule) Let J2 (J R?z be a rcg/t?zz and
let / : J2 --+ R and g : J2 --+ R be smtata//z Junctions. IJ / Itas a local cz/rcm'tzm
at x CE J2 subject to tlte condition tltat .ty(x) = 0 and z/ V.ty(x) # 0, tlten tltere
ïs a zz'tzm scr ,L suclt tltat

X7(/(x) - lp(x)) - 0.

4.1.2 M ultiple Constraints

Let x = (z1, zz, . . . , z,zl and let / : J2 --+ R be a s11100th f-unction defined on
a region J2 f;l R''. lf n, > 2 it is possible to impose more than one constraint.
Suppose that ?rz < n, and consider the problem of finding the local extrema of
/ in J2 subject to the ?rz constraints

#k(X) = 0,

where k = 1, 2, . . . , ?rz and the functions gk : J2 --+ R are sm 00th. For the simple
case where n, = 2 and ?rz = 1, we saw that / and g share the same tangent
line at an extremum . ln higher dim ensions the analogue of this condition is

that the tangent space (hyperplane) of / at a critical point x is contained in
the tangent space defined by the gk at x. Geometrically, this means that the

normal vector V/(x) lies in the normal space Nglx) spanned by the vectors
V .tyk(x). ln terms of linear algebra, the vector V/(x) is linearly dependent on
the set of vectors Ls'gk (x), k = 1, 2, . . . , zrz).. Thus, if / has a local extremum
at x, then there exist constants àl, ,Lz, . . . , à,,z such that
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The approach is valid provided V/(x) is linearly dependent on the V.tyk(x),
and this condition leads to the generalization of the condition Tglz, y) ,# 0.
Let M (x) be the n, x ?rz matrix

and let M y (x) be the augmented matrix

M g (x ) - ( Mtyx ) j .
The linear dependence of V/ is assured if

Rank M
.r (x) < Rank M (x).

Condition (4.10) provides the analogue of the gradient condition (4.2). ln
summ ary, we have the following extension of Theorem 4.1.1.

Theorem 4.1.2 Let J2 (= R?z be a region and let / : J2 --+ R and gk : J2 --+ R
be szrztata//z Junctions Jor k = 1, . . . , zrz. f/ / Itas a local cz/rcm'tzm at x CE J2
subject to tlte ?rz constraints tltat gk (x) = 0, and z/ ineqztality (4.10) is satished
at x, tlten tltere ezist constants àl, ,Lz, . . . , à,,z suclt tltat

Exam ple 4.1.2 : Find the local extrem a for the f-unction defined by

/(x) = z2 2 - zlzza

subject to the conditions

.v1(x) - z2 + za - 1 = 0,1

.v2(x) - zl + za - 1 = 0.

Here, n, = 3 and ?rz = 2. Equation (4.9) produces the equations

z2 + 2à1z1 + .:2 = 0,

I 1 + .X 1 = 0,

z a - ,à.2 = 0,

that along with the constraints provide five equations for the five quantities
z1, z2, za, àl, and ,Lz. This system of equations has the two solutions w =
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M(w) = ( -2 1 0 j ,1 0 1
which has rank 2. The augmented matrix is

- 2 1 0

M /,(w) = 1 0 1 ,
0 1 2

and since the determinant of M y (x) is zero, we must have that Rank M y(w) <
Rank M (w). A similar calculation indicates that condition (4.10) is also satis-
fied for the second solution. Hence, if / has any local extrema under the given
constraints then they must occur at either w or z.

4.1.3 A bnorm al Problem s

The Lagrange multiplier technique breaks down if condition (4.2) (or condition
(4.10)) is not satisfied. The technique, however, can be adapted to cope with
these cases.

W e consider here only the optimization problem of finding the local ex-
trema for a f-unction / of two independent variables subject to a single con-
straint g = 0. We assume (as always) that / and g are s11100th f-unctions. lf
(z, y) is a local extremum for this problem and Tglz, y) ,# 0, then we have
the existence of a number ,L such that V (/ (z, y) - hglz, y)) = 0. We call a
problem of this type normal. ln contrast, if (z, y) is a local extremum for the
problem and Tglz, y) = 0, then the existence of a Lagrange multiplier is not
assured. This type of problem is called abnorm al.
lf glz, y) = 0 and Tglz, y) = 0 then the implicit f-unction theorem cannot

be invoked to deduce that the equation g = 0 can be solved uniquely for z in
terms of y or vice versa. Geometrically, this m eans that the set of solutions
to g = 0 need not form a s11100th curve in a neighbourhood of (z, y). This
does not mean that the curve must have some singularity at (z, y) so that the
tangent vector to the curve is not well-defined, only that it is a possibility.
Various nasty things can happen to ttcurves'' defined by an implicit relation
when the gradient vanishes. For exam ple, it may be that the curve has a
ttcorner'' or a cusp at this point. Another possibility is that the curve has a

self-intersection, or that two distinct solution curves intersect at (z, y). An
even more degenerate possibility is that (z, y) represents an isolated point
in the set of solutions to the equation. ln these cases it is clear that the
geometrical argum ents leading to the existence of a Lagrange multiplier are
not applicable. The following barrage of examples illustrates these pathologies.
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1 - 2àz = 0 (4.15)
- 1 - 2hy = 0. (4.16)

But the equation z2 + y2 = O has only one solution, viz., (z, y) = (0, 0),
and for this solution there is no ,L such that equations (4.15) and (4.16)
are satisfied. The problem is abnormal because Tglz, y) = (2z, 2y) = 0 at
the only candidate for optimization (z, y) = (0, 0). Technically, the func-
tion / has an extremum at this point under the constraint g = 0 because
there are no other choices. ln this problem / is passive and plays no rôle in
the optim ization process: the constraint dictates the critical point. Note that
V/(0, 0) - (1, -1) # 0.

W e can adapt Theorem 4.1.1 to include the abnormal case by introducing
an additional multiplier ,L(). Suppose that / has a local extremum at (z, y)
subject to the constraint g = 0. Let

/J = hltj + ,Ll.ty.

lf Tglz, y) ,# 0 then the problem is normal. Hence we can choose zïtl = 1 and
use Theorem 4.1.1 to show that there is a zïl such that

V/àtz, y) - V (/(z, y) + l1.v(z, y)) - 0.

Suppose now that the problem is abnormal so that glz, y) = 0 and Tglz, y) =
0. Then we can salvage the condition V/Jtz, y) = 0 by requiring that

àoV/(z, y) = 0.

lf V/(z, y) ,# 0, then we must choose zïtl = 0. The other constant zïl in this
case is not determined. lf V/(z, y) = 0, then any choices of zïtl and zïl will
sufllce.

Exam ple 4.1.5 illustrates the case where zïtl = 0. lf we must choose zïtl = 0,
then the function / does not participate in the optimization. Example 4.1.4
illustrates the case where V/ and Tg are 130th zero and we are at liberty to
choose any values for zïtl and àl.

The above discussion shows that, for any scenario, we can always find two
numbers ,L(), zïl such that at least one of them is nonzero and V/Jtz, y) = 0.
W e summarize this formally in the next theorem. A sim ilar extension can be
m ade to Theorem 4.1.2.

Theorem 4.1.3 (Extended M ultiplier Rule) Let J2 (J R?z be a region
and let / : J2 --+ R and g : J2 --+ R be smtata//z Junctions. IJ / Itas a local
cz/rcm'tzm at x CE J2 subject to tlte condition tltat .ty(x) = 0 tlten tltere are
nnm bers ,Llp and ,à.1 not 30th, zero suclt tltat
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4.2 The lsoperim etric Problem

where / is a s11100th function of z, y, and y?. The isoperimetric problem
consists of determining the extremals of J satisfying boundary conditions of
the form

!/(zo) = #0, !/(z1) = :v1

where g is a given f-unction of z, y, and y?, and L is a specified constant.
Conditions of the form (4.19) are called isoperimetric constraints.z In this
section we derive a necessary condition for a function to be a s11100th extremal
to the isoperim etric problem.
Suppose that J has an extremum at y, subject to the boundary and

isoperimetric conditions. W e can proceed as we would for the unconstrained
problem and consider neighbouring f-unctions of the form :'2 = y + 6p, where
p CE (72 gzt), z1j and p(zo) = p(z1) = 0, but the constraint (4.19) complicates
m atters because it places an additional restriction on the term tîr/ and there-
fore results that are based on the arbitrary character of p such as Lem ma 2.2.2
are not valid without further modifying the function space .bI. lf we proceed in
this manner we will have to determine the class of f-unctions in .bI such that :'è
satisfies the isoperimetric condition. W e can avoid this problem by introduc-
ing another function and param eter. W e thus consider neighbouring functions
of the form

b = # + 61071 + 62072, (4.20)
where the 6ks are small parameters, pk (z) CE Czgz()? zlj, and pklzt)) = pklJrll =
0 for k = 1, 2. Roughly speaking, the introduction of the additional term 62072
can be viewed as a ttcorrection term .'' The f-unction pl can be regarded as
arbitrary, but the term 62072 must be selected so that :'2 satisfies the condition
(4.19).
2 Literally, the word isopevimetvic means same perimeter. The most famous isoperi-
metric problem is Dido's problem (Section 1.4), where the constraint took the
form of a specified arclength. lndeed many isoperimetric problems have arclength
constraints. The usage of the term ttisoperimetric constraint'' in the literature has
simply come to mean conditions of the form (4. 19) of which arclength is a promi-
nent example.
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Even with the introduction of the extra term (ïnvtz, it is not immediately
obvious that we can always choose an arbitrary pl and then find an appro-
priate term to meet the isoperim etric problem. Consider, for example, the
constraint

along with the boundary conditions 3/(0) = 0 and 3/(1) = 1. There is only one
s11100th f-unction that will meet this constraint, viz., the f-unction ylz) = z,
and therefore there are no variations of the form (4.20) available (apart from
:'è = y). This situation arises because the choice L = ,/-2 happens to be the
minimal value the f-unctional f can take. Note that ylz) = z must also be an
extrem al for the functional f . Extremals such as the above one that cannot
be varied owing to the constraint are called rigid extrem als.

Although rigid extremals are a concern, it turns out that for the isoperi-
m etric problem they have a tractable characterization. Consider the quantity

For a fixed choice of pk we can regard f (L) as a f-unction of the parameters
61, 62, say f (L) = S(61, 62). Since g is a s11100th function we have that E is
also a s11100th f-unction. Moreover, if J has an extremum at y subject to the
boundary and isoperimetric condition, we have that S(0, 0) = L. We can
appeal to the implicit f-unction theorem to assert that for 11611 - maxtl6ll , I62 1)
sufllciently small there exists a curve 62 = 62 (61) (or 61 = t51(t52)) such that
S(61, 62(61)) = L, Provided

VS # 0

at (0, 0) . Thus, if y is a rigid extremal, then VS = 0 at (0, 0). We return to an
interpretation of this condition later in this section. For the present, we shall

suppose that condition (4.21) is satisfied so that we avoid rigid extremals.
Rather than use the Taylor series approach of Chapter 4, it is easier here

to convert the problem to a finite-dim ensional constrained optim ization prob-
lem as discussed in Section 4.1. Suppose that y is a sm 00th extremal to the

isoperimetric problem and that condition (4.21) is satisfied. Then there are
neighbouring functions of the form (4.20) which meet the boundary condi-
tions (4.18) and the isoperimetric condition (4.19), where pl is an arbitrary
function.
The quantity J(L) can be regarded as a function of the parameters 61, 62.

Let J(L) = 8(61, 62). Since J has an extremum at y subject to the constraint
f (y) = L, the f-unction @ must have an extremum at (0, 0) subject to the
constraint S(61, 62) - L = 0. The results of the previous section indicate that
for any critical point (61, 62) there is a constant ,L such that

V (&(6z, 6a) - l(,8'(6z, 6a) - L)) - 0.
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(t? (6z, 6a) - lEE(6z, 6a)) -- 0,t% 1 E=c,

(t? (6z, 6a) - lEF(6z, 6a)) -- 0.t'?62 E=t)

and

(4.23)

Now,

and integrating by parts we see that

t'? zl t'?/ d t'?/8(61, 62) 
,.(, 

=  j, pl oy - z:yy oy, dz.t%1
Similarly, we have that

t'? zl ç')g d t'?.qS(61, 62) = pl y- - y;- o , dz.t/l E-c, zo y y

Equation (4.22) can thus be written
2 1 

y y ,( y.d ('? / . ('? / . zj ( y.d ('? g . ....y.('? (; 4. ; y . (; .Jzo (-$y' t'?:v %' t'?:v
The function pl is arbitrary and Lemm a 2.2.2 implies that

d :F DF
-  =  0,X  tl? ôy

where
F = / - hg.

The extremal y must therefore satisfjr the Euler-lsagrange equation (4.24).
The concern now is that equation (4.23) might overdetermine the problem. ln
fact, the same arguments used to derive equation (4.24) lead to the expression

zl d oy oyJzo 62 W tX/ - 0:4/ V* U' 0'
which is always satisfied for any w provided equation (4.24) is satisfied.



86 4 lsoperimetric Problems

z 1 uo (y o gJzo V1 t'?# - W t'?#/ V* '''U 0

z 1 uo (y o oJzo 62 ('L'y - W ('L'y? V* '''U 0*and

d t'?.ty ç')g
-  =  0.d

z t'A/ ç')y
The latter equation is automatically satisfied if equation (4.25) is satisfied.
Hence the condition that VS = 0 at tî = 0 reduces to condition (4.25), and
this means that y is an extrem al for the functional f . Rigid extremals for
the isoperimetric problem are thus characterized as functions that are also
extrem als for the f-unctional defining the isoperimetric condition.

ln sum mary, we have the following result.

Theorem 4.2.1 Snppose tltat J Itas an cz/rcm'tzm at y CE (72 gzt), z1j subject to
tlte boundary conditions (4.18) and tlte ïscwcrïzrzc/r/c constraint (4.19) . Snp-
pose Jnrtlter tltat y ïs not an cz/rczrztzl Jor tlte Junctional I . Tlten tltere ezists
a constant ,L suclt tltat y satishes equation (4.24) .

ln light of the above theorem, the isoperim etric problem reduces to the
unconstrained fixed endpoint problem with / replaced by F. The general
solution to the Euler-lsagrange equation (4.24) will contain two constants of
integration along with the constant à. The boundary conditions (4.18) and the
constraint (4.19) provide three equations for these constants. ln this sense, the
isoperimetric problem is more complicated than the unconstrained problem
of Section 2.2. Another complication with the isoperimetric problem is the
possibility of rigid extrem als. To validate the m ethod we must verifjr that

the solution to the Euler-lsagrange equation (4.24) is not also a solution to
equation (4.25), i.e., an extremal for f .
lf y is an extremal for J subject to the isoperimetric condition f = L, and y

is not an extremal for f , then the problem is called norm al. The ttnorm ality''

of this problem is inherited from condition (4.21), which indicates that the
finite-dimensional problem of determining the local extrema for @ subject to
the condition E = 0 is normal. ln the same spirit, if y is an extremal for f ,

then VS(0, 0) = 0 and the problem is called abnormal. Because we can relate
the isoperimetric problem back to a finite-dim ensional optimization problem ,
we can readily extend Theorem 4.2.1 to cope with abnormal problems by
introducing an additional multiplier ,L().
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Theorem 4.2.2 Snppose tltat J Itas an cz/rcm'tzm at y CE (72 gzt), z1j subject to
tlte boundary conditions (4.18) and tlte ïscwcr/zrzc/rïc constraint (4.19) . Tlten
tltere ezist two zz'tzm ôcrs zïtl and zïl not 30th, zero suclt tltat

d :AX DK
-  =  0,27 ôy? ta?/

wltere K = hltj - ,Ll.ty. f/ y ïs not an eztrevtal Jor I tlten we mtz?/ take zïtl = 1.
f/ y ïs an eztrevtal Jor I tlten we take zïtl = 0, unless y ïs also an eztrevtal Jor
J. In tlte latter case neitlter zïtl nor zïl is determined.

Exam ple 4.2.1: Catenary
Consider the catenary problem discussed in Section 1.2 and Exam ple 2.3.3, but
now suppose the length of the cable is specified. This leads to an isoperim etric
problem. For simplicity, let ztl = 0, zl = 1, and let the poles be of the sam e
height /J > 0. W e thus seek an extremal to the functional

subject to
1

L (#) = 1 + #/2 dz = Z,
o

and the boundary conditions 3/(0) = 3/(1) = h,. Here L > 1 denotes the length
of the cable.
The extremals for f consist of line segments (Fuxample 2.2.1). Since L > 1,

no solution to the Euler-lsagrange equation (4.24) that satisfies the boundary
and isoperimetric conditions can be an extrem al for f . Thus, if J has a local
m inimum at y, then Theorem 4.2.1 implies that y is a solution to equation

(4.24) with F = (y - ,L) 1 + y?2 .
Now, the f-unction F does not contain z explicitly; hence, we have the first

integral

(cf. Section 2.3). Let zt = y - à. Then 'tz/ = y?, and the above equation reduces
to
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z - cz
utzl = clcosh ,

cl

where c2 is a constant. The extremals to this problem are thus of the form

(4.26)

# - l = slcoshtsa)

and

therefore,

The isoperimetric condition implies that

The isoperimetric condition thus reduces to

1L 
=  zslsinh ,

2s1

upon using equation (4.29). Let ï = 1 2s1. Equation (4.30) is equivalent to

L1 = sinhtï).

Equation (4.31) is evidently satisfied for ï = 0, but this solution cor-
responds to an infinite value for sl and thus produces the f-unction y =
à-hcoshto) = ctmsf., which cannot be a solution to the isoperimetric problem.
Since L > 1, however, there are precisely two nonzero solutions 1% and -j to
equation (4.31) (see figure 4.4). We always have two solutions to the equa-
tions generated by the boundary conditions and the isoperimetric constraint.
For the nonzero solution 1, we have that sl = 1 2ï, s2 = -1, and therefore
equation (4.27) yields



ëw
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curve described by y is L > 2, and the area enclosed by y and the line segm ent
(-1, 11 of the z-axis is an extremum. (This is a simplified version of Dido's
problem.)
The area under a curve y : (-1, 11 --+ R is given by

and the arclength of the curve described by y is given by

We thus seek an extremum for J subject to the constraint f (y) = L. Note
that the extremals for f are line segments. Since L > 2, no solution to the
Euler-lsagrange equation (4.24) satisfjring the boundary and the isoperimetric
conditions can also be an extremal for f .

lf J has an extremum at y under the constraint f (y) = L, then y is a
solution to equation (4.24) with F = y - ,L 1 + y?2. The Euler-lsagrange
equation is thus equivalent to the equation

(4.33)

Equation (4.33) indicates that the curve described by y must be of constant
curvature s = 1 111', i.e., the curve must be an arc of a circle of radius Ill .

Another way of deducing the shape of the extrem al curve is to note that
F does not contain z explicitly and hence the quantity .bI = y?F / - F musty
be constant along any extrema.l. Therefore,

(y + c1) 1 + y'2 = ,L.4

:2? 
.  .  j. .V 2(y + c1)

W e thus have that
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y + cl (y . z .y cz,
pl àa -  (y :- c,)a V

where cz is a constant. Let

y + cl = ,L sin 4.

Equations (4.36) and (4.37) are the parametric equations for a circle of radius
Ill centred at (-ca, -c1).

The extrema.ls are thus of the form

(z + ca)2 + (y + c,)2 - l2.

(-1 + c2)2 + ct = 12

and

L = 2 I l I I 41 ,

where 4 denotes the angle between the p-axis and the line containing the
points (0, -c1), (1, 0) (figure 4.5). ln terms of the constant c1, the isoperimetric
condition and equation (4.38) imply that

1L 
=  2 c21 + 1 arctan (-) .

cl

The condition that y is a function (i.e., single-valued) on (-1, 11 places the
somewhat artificial restriction that cl k 0, so that the centre of the circle is
not above the z-axis. This in turn places a restriction on L for solutions of
this type. lt is easy to see geometrically that we must have 2 < L < r under
these circumstances. W ith these conditions it can be argued geom etrically
(and analytically) that equation (4.41) has a unique solution for cl in terms
of L, and that equation (4.38) has a unique positive solution for à. We revisit
this problem in Exam ple 4.3.3, where we lift the restriction that y be single-
valued.

The Lagrange multiplier ,L plays a seemingly formal but useful rôle in the
solution of isoperim etric problem s. Example 4.2.2 shows that ,L can correspond
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to a physically geometrically significant parameter in the problem and this
prompts us to look a bit deeper into the rôle of à. The f-unctional J can be
written in the form

Suppose that J has an extremum at y. The general solution to the corre-
sponding Euler-lsagrange equation will depend on zo, z1, yçj, 3/1, and L. The
Lagrange multiplier ,L will also depend on these parameters. Suppose now that
the boundary conditions are fixed. Then we may regard J as a function of the
parameter L. Now

zt ( ('?F . d (,?Fyj (r)y (yz .y ('?à qy ..y-zt oqv, y, yt) tyaiyj .y ajyU' wlzo (')y X t'?!// OL ('?Z zo
where the first integral on the last line was derived by integration by parts.
Since y is an extremal for the problem , the first integral on the last line must
vanish. The second term on the last line vanishes because y must satisfy the
isoperimetric constraint. W e therefore have that

OJ
=  à.OL
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The Lagrange multiplier therefore corresponds to the rate of change of the
extremum J(y) with respect to the isoperimetric parameter L.

W e note a certain duality that exists for the isoperimetric problem . Sup-
pose that ,L ,# 04 then any extremal y to the problym with F = / - hg must
also be an extremal to a problem with G = g - hJ, where ,$ = 1 à. More
specifically, suppose that y minimizes J subject to the isoperimetric constraint
f (y) = L. Let K denote the minimum value J(y) . Then

K = J(y) - àtf (y) - L),

and thus
L - I(y) - ,$(Jy) - K'4.

We have that J - hl = -à(f - zs J) and this indicates that the minimum
for the f-unctional (V3 F dz corresponds to the maximum for the f-unctional<20
(V3 G dz. A similar statement can be made if y produces a maximum for JJ20

subject to f (y) = L. We thus have the following result.
Theorem 4.2.3 Snppose tltat y produces a mïzzïmw,m mtzzïmw,m valn,e Jor
J subject to tlte constraint I (y) = L and tltat ,L ,# 0. Let K = J(y) . Tlten y
produces a mtzzïm'tzm mïzzïm'tzm Jor I subject to tlte constraint J(y) = ff,
and I (y) = L.

ln view of the above result, suppose we revisit, for exam ple, the catenary
problem of Fuxample 4.2.1. W e saw that the catenary is the curve along which
the potential energy is an extremum subject to the condition that the cable
is of length L. ln fact, it can be shown that the potential energy is minimum
along a catenary for the appropriate choice of j. Theorem 4.2.3 shows that,
for a fixed value of potential energy, the catenary is the curve along which the
arclength is m aximized.

The duality relationship also helps to elucidate the condition that y not
be an extrem al for f in Theorem 4.2.1. lf y is an extremal for f , then in the
dual problem ,$ = 0. This means that f (y) = L, independent of the constraint
J(y) = K, so that K can be prescribed without changing the extremum for
f . Alternatively, if ,L = 0, then J(y) = K, independent of the constraint
f (y) = L, so that the problem does not depend on the constraint. At any
rate, if ,L is not finite or if ,L = 0 the problem is degenerate.

Exercises 4.2 :

' 

ydz.z(?7) - jv
Find the extremals for J subject to the conditions 3/(0) = 0, 3/(1) = 2, and
f (:v) - L.
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1 ''T ''T
J(r) = * .,.2 d0, J(r) = .,.2 + r?2 d0,è 

() ()

where r? = dr d0. Find an extremal for J subject to the conditions r(0) =
0, r(r) = 0, and f (r) = L > 0.

3. Let J and f be the f-unctionals defined by

I(y) = intjyz dz.

Suppose that y is an extremal for J subject to the conditions 3/(0) = 1,
3/(1) = 2, and f (y) = L.
(a) Find a first integral for the Euler-lsagrange equations for this problem

and show that for L = 3,

ylz) = 4 - 3(z - 1)2.

(b) For L = 7 3 show that there exists a linear f-unction that is an ex-
trem al for the problem.

(c) For L = 5 2 show that this problem admits the solution ,L = 0. Find
the extrem al corresponding to this value.

4. Let yt(!/) be a s11100th f-unction and let

and

Formulate the Euler-lsagrange equations for the isoperimetric problem
with 3/(0) = 0, 3/(1) = 1, and f (y) = L > V-2. Show that ,L = 0, and that
there are an infinite number of solutions to the problem . Explain without

using the Euler-lsagrange equations (or any conservation laws) why there
must be an infinite number of solutions to this problem .

5. Let y be the extrem al to the catenary problem of Example 4.2.1. Show

that for L sufllciently large there is an z CE (0, 1) such that ylz) < 0.

4.3 Som e G eneralizations on the lsoperim etric Problem

ln this section we present some modest generalizations on the isoperim etric
problem discussed in Section 4.2. M ost of the details are left to the reader.



4.3.1 Problem s Containing H igher-order D erivatives

Suppose that J and f are f-unctionals of the form

where / and g are sm00th f-unctions. The same analysis used in the previous
section can be used to show that any s11100th extremal to J subject to the
isoperimetric constraint f (y) = L must satisfy the Euler-lsagrange equation

d2 :F d :F ôF
-  + = (),dz2 (A?? X  (:?/? ôy (4.42)

where, for some constant à,
F = / - hg.

The existence of the constant ,L is assured provided y is not also an extremal
for the functional f . lndeed, it is straightforward to prove an analogous result
for functionals containing derivatives of order higher than two. Abnormal
problems can be treated in a manner similar to that used for the basic problem
in Section 4.2.

Exam ple 4.3.1: Let

-  =  0,2V % ? tg?/

but ç')g t'93/? = 0 and ç')g t'??/ = 1, so that f has no extremals. Any s11100th

extremal to the problem must therefore satisfy equation (4.42), which reduces
to

2:4/1f'&) (z) - ,L = 0.
The above differential equation has a general solution of the form
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where the cks are constants of integration. The boundary conditions 3/(0) = 0
and 3//(0) = 0 imply that ctl = 0 and cl = 0, respectively. At z = 1, the
boundary conditions yield the equations

à u
.c o .

c
+ + = 1.V 4 3

The solution to this linear system of equations is ,L = 6!, c2 = 30, and ca =
- 60. The extremal is thus

4.3.2 M ultiple lsoperim etric Constraints

21

Ikly) - gklz, y, y') dz,
20

for k = 1, 2, . . . , 111.. Here, we assume that the f-unctions / and gk are sm00th,
and that some boundary conditions !/(zo) = yçj, !/(z1) = yï are prescribed.
A generalization of the isoperimetric problem consists of determining the ex-
tremals to J subject to the ?rz isoperimetric constraints fk (y) = Zk, where the
Lk are specified numbers. The Lagrange multiplier technique can be adapted
to this type of problem, but the analogue of the condition that y is not an
extrem al for the isoperim etric f-unctional is less tractable. W e discuss the case
zrz = 2.
Suppose that y is an extremal for J subject to the constraints f1(!/) = Lï

and %(y) = L,. ln order to meet 130th constraints and still have an arbitrary
term in our variation of y we use a neighbouring function of the form



where tî = (61, 62, 6a) and p = (p1, w, pa). ln addition, we require that pk CE
(72 gzt), z1j and p(zo) = p(z1) = 0. There is still the problem of rigid extremals.
W e do not enter into a general discussion of this problem . lnstead, we use the
conditions developed at the end of Section 4.1 for finite-dimensional problems
with multiple constraints.
As in the single constraint case we can regard JIL), f1(?)), and f2(?)) as

functions of E. Let

0(6) =

and for k = 1, 2 let

Sk(6) =

lf y is an extremal for the problem , then 0 is an extremal for the f-unction
0- subject to the constraints Ek = Zk. W e know from Section 4.1 that there
exist constants zïl and zïz such that the critical point m ust satisfy the vector
equation

V ( 0- - ,L 1 =$E% - ,L 2 ELt ) = 0 ,6=: 0

oe z. o.f (/ o.f-  () - j o oy - s. oy, cfzç'kj E=c, zo
(')Ek 21 0gk d t'Vk=  () = vv - dz,t'90 E-c, zo ç')y W  ç'ly?

so that equation (4.43) produces the three equations

zt oy (y oyJzo * t'?# - W t'?#/ V* U' 0'
where

F = / - ,Ll.tyl - hngLt.
Now we can regard the term 6lpl as an arbitrary f-unction with the term s tîzr/z
and 6apa used as ttcorrection'' term s so that the constraints are met. W e can
thus apply Lemma 2.2.2 to equation (4.44) with j = 1, and this gives the
Euler-lsagrange equation

d ('?F (')F
-  =  0.d

z t'A/ ç')y
As with the single constraint case, the other equations for j = 2, 3 are satisfied
automatically if equation (4.45) is satisfied regardless of what f-unctions the pk
might be. The general solution to equation (4.45) will contain two constants



98 4 lsoperimetric Problems

of integration along with the constants zïl and ,Lz. The boundary conditions
and the isoperim etric constraints can be used to determ ine these constants.

The condition that ensures the existence of constants àl, ,L2 such that
equation (4.45) produces an extremal to the problem is less easy to interpret
than the single constraint case. W e know from Section 4.1 that this condition
translates to inequality (4.10). For this problem we have that

VS'1(0) c.ll c.12 ctlaM (0) =  =  

,VS'2(0) c.21 ct22 ctaa
where

M (0) ctll tA12 tA13M 
.f ( 0 ) - ( v (,y) ( () ) ) - o,yy a, ) o,yy a, za o,yy a, ,s ,

zl oj (y oj
,t73.j = Tlj - ? dI.

t'?!/ dz t'?!/20

The Lagrange multiplier technique will be valid provided there exist s11100th
functions pk such that:

(a) r/k (tro) = Tlk (al1) = 04
(b) y + (6, p) satisfies the isoperimetric constraints for 11611 small; and
(c) Rank M /,(0) < Rank M (0).
Exam ple 4.3.2 :

/2 dz# ,

and

f1(?/) -

L(y) -

Find the extremals for J subject to the constraints fl = 2, f2 = 1 2 and the
boundary conditions 3/(0) = 3/(1) = 0.

Let
.y' = y?2 - ,à y - ïgzy.1

The Euler-lsagrange equation for this choice of F is

23/// + ,à.1 + ,Lzz = 0,



which has the general solution

l z3 à z22 1
y = - - + c1z + c(;?6 4

where ctl and cl are constants of integration. The boundary condition 3/(0) = 0
implies that ctl = 0, and the boundary condition 3/(1) = 0 yields the equation

zïl .:2
cl = -  + - .4 6

The isoperimetric constraints provide the equations

2 - - -J. -  + ,

=  -  -  + .i 16 30 3

is a solution to the Euler-lsagrange equation that satisfies the isoperim etric
and boundary conditions. Note that, for arbitrary p,

1

ct2.j = 1rlj dI,
o

and

4.3.3 Several D ependent Variables

tl

J(q) - Llt, q, ù) dt,
te
tl

f (q) - glt, q, ù) dt,
te
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where q = (t71, q,, . . . , qn), ' denotes d dt, and L and g are s11100th functions.
lf q is a s11100th extremal for J subject to the boundary conditions q(fo) = qo,
q(f1) = ql and the isoperimetric condition f (q) = f, and q is not an extremal
for f , then there exists a constant ,L such that q satisfies the n, Euler-lsagrange
equations

d ('?F (')F
-  =  (), (4.46)7/ Aj t'kj

where j = 1, 2, . . . , n, , and

Exam ple 4.3.3: Let us revisit the problem of determ ining a curve y of

length f > 2 containing the points P-1 = (-1, 0) and P1 = (1, 0) such
that the closed curve formed by y and the line segm ent from P - 1 to P1
encloses maximum area. W e show that any s11100th extrem al for this problem
m ust correspond to a circular arc, but we lift the restriction that y must be
described by a scalar f-unction y.

Suppose that q(f) = (z(f), !/(f)), t CE (f(), f11 is an extremal for the problem.
Green's theorem implies that the area under the curve is

and the isoperim etric condition is

d -1Jl 1 1
-  q'y - j'# = 0,)-@ :2 + :2

d -l# 1 1+ 
z + Jl = 0.27 :2 + :2 'l' 'l'

W e therefore have that
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hence, the extremal must be a circular arc of radius ,L with centre at (c1, co1. lt
follows readily from the boundary conditions that cl = 0. The other constants
require more effort, but can be obtained essentially as described in Example
4.2.2. Note that now the constant c2 may be negative or positive depending
on f.

Exercises 4.3 :

where z = z(f), y = y(t), and ? denotes d dt. Suppose that (z, y) is an
extremal for J subject to the constraint f (z, y) = K, where K is a positive
constant. Prove that neither z(f) nor ylt) can be identically zero on the
interval (f(), f11 and that there is a constant .,4 such that

2 2 3/2z = .4 (z + y ) .

Find the extremals for J subject to the conditions f1(!/) = trl, %(y) = i'Lt
and the boundary conditions 3/(0) = 0, 3/(1) = 1.
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A pplications to E igenvalue Problem s*

Eigenvalue problem s infest applied mathem atics. These problems consist of
finding nontrivial solutions to a linear differential equation subject to bound-
ary conditions that admit the trivial solution. The differential equation con-
tains an eigenvalue param eter, and nontrivial solutions exist only for special
values of this param eter, the eigenvalues. Generally, finding the eigenvalues
and the corresponding nontrivial solutions poses a formidable task.

Certain eigenvalue problems can be recast as isoperim etric problems. 1n-
deed, many of the eigenvalue problem s have their origin in the calculus of
variations. Although the Euler-lsagrange equation is essentially the original
differential equation and thus of limited value for deriving solutions, the vari-
ational formulation is helpful for extracting results about the distribution of
eigenvalues. ln this chapter we discuss a few simple applications of the varia-
tional approach to Sturm-lsiouville problem s. The standard reference on this
material is Courant and Hilbert (251 . Moiseiwitsch (541 also discusses at length
eigenvalue problems in the framework of the calculus of variations. Our brief
account is a blend of material from Courant and Hilbert op. cit. and W an
(711 .

5.1 The Sturm -tziouville Problem

The (regular) Sturm-lsiouville problem entails finding nontrivial solutions to
differential equations of the form

ctotvtzol + ,t%:(/'(zo) - 0,

c.1:v(z1) + /71:v'(z1) - 0.
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Here, q and r are functions continuous on the interval (z() , z11 , and p CE
Clgzt), z1j . ln addition, p(z) > 0 and r(z) > 0 for all z CE gzt), zll. The ctk
and pk in the boundary conditions are constants such that ct2k + /V2 :/: 0, and
,L is a param eter.
Generically, the only solution to equation (5.1) that satisfies the boundary

conditions (5.2) is the trivial solution, ylz) = 0 for all z CE gzt), z11 . There are,
however, certain values of ,L that lead to nontrivial solutions. These special
values are called eigenvalues and the corresponding nontrivial solutions are
called eigenfunctions. The set of all eigenvalues for the problem is called the
spectrum .

An extensive theory has been developed for the Sturm-lsiouville problem .
Here, we limit ourselves to citing a few basic results and direct the reader to

standard works such as Birkhoff and Rota (91 , Coddington and Levinson (241 ,
and Titchmarsh (701 for further details.

The ttnatural'' function space in which to study the Sturm-lsiouville
problem is the (real) Hilbert space L2 gzt), z1j , which consists of functions
/ : (alo, zll --+ R such that

r(z)/2(z) dz,

21

II/IIa - /2(z) dz,
20

because r is continuous on (z() , z11 and positive', hence, r is bounded above
and below by positive num bers.z

Some notable results from the theory are:

1 Strictly spealdng, the integrals defining the Hilbert space are Lebesgue integrals
and the elements of the space are equivalence classes of functions. W e deal here
with solutions to the Sturm-luiouville problem and these functions are continuous
on gzo , z lj . For such functions the Lebesgue and Riemann integrals are equivalent.
Note that L 2 gzo, zj j also includes much ttrougher'' functions that are not Riemann
integrable.

2 See Appendix B. 1.
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(a) There exist an infinite number of eigenvalues. All the eigenvalues are real
and isolated. The spectrum can be represented as a m onotonic increasing
sequence tà,zj with limzz-sx àzz = xt. The least element in the spectrum
is called the first eigenvalue.

(b) The eigenvalues are simple. This means that there exists precisely one
eigenf-unction (apart from multiplicative factors) corresponding to each
eigenvalue.

(c) lf à,,z and àzz are distinct eigenvalues with corresponding eigenfunctions
4,.. and 4n., respectively, the orthogonality relation

($m, Y,z) = 0

is satisfied. (Note that (/z,z, 4mj > 0, since 4,.. is a nontrivial solution.)
(d) The set of all eigenfunctions t4zzj forms a basis for the space fvzgzll, z1j .
ln other words, for any function / CE L2 gzt), z1j there exist constants (tzszj
such that the series

X

lim rII/ - j)ll aayalla - 0.k-x
n= 1

The series representing / is called an eigenfunction expansion or gen-
eralized Fourier series of /.
The Sturm-lsiouville problem can be recast as a variational problem. W e

do this for the case /% = /71 = 0. The formulation for the general boundary
conditions (5.2) can be found in Wan, op. cï/., p. 285. Let J be the functional
defined by

v(zo) - v(z1) - 0,
and the isoperim etric constraint

The Euler-lsagrange equation for the f-unctional f is

- 2r(z)p(z) = 0,
which is satisfied only for the trivial solution y = 0, because r is positive. No
extremals for f can therefore satisfjr the isoperimetric condition (5.5). lf y is
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d :F DF
-  =  0,X  tl? ôy

F = /2 + 2 - hpyz37# qy .

But the Euler-lsagrange equation for this choice of F is equivalent to the
differential equation (5.1). The isoperimetric problem thus corresponds to the
Sturm-lsiouville problem augmented by the normalizing condition (5.5), which
simply scales the eigenf-unctions. Here, the Lagrange multiplier plays the rôle
of the eigenvalue parameter.

Example 5.1.1: Let p(z) = 1, qlz) = 0, r(z) = 1, and gzt), z11 = (0, rl .
Then the Euler-lsagrange equation reduces to

!/V(z) + .X!/(z) = 0,

and the boundary conditions are

tv(0) - :v(r) - 0.

(z) - Ae''n--D + Be-wn-M# ,

where -4 and B are constants. The boundary conditions imply that -4 = B = 0,
and therefore there are only trivial solutions if ,L < 0. lf ,L = 0, then equation

(5.7) has the general solution

#(z) = Xal + 0.

Again the boundary conditions imply that -4 = B = 0, and therefore preclude
the possibility of nontrivial solutions. Hence, any eigenvalues for this problem
m ust be positive.

lf ,L > 0, then the general solution to equation (5.7) is

y ( z ) = -4 c o s ( hfS z ) + B s i n ( hfS z ) .

B s in ( hf-h r ) = 0 .
Equation (5.9) is satisfied for B # 0 provided sf-h is a positive integer, and
this leads to the nontrivial solution ylz) = B sintxf-àz). The eigenvalues for
this problem are therefore àzz = n?, and the first eigenvalue is zïl = 1. The
eigenf-unctions corresponding to àzz are of the form
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$n.V) = .D sinlzzz),

where B is an arbitrary constant.
ln term s of the isoperim etric problem , there are an infinite number of

Lagrange multipliers that can be used. Each Lagrange multiplier corresponds
to an eigenvalue, and the linearity of the Euler-lsagrange equation im plies that
any function of the form

such that the Fourier series is convergent and twice term by term differen-
tiable, is an extremal for the problem, provided / satisfies the isoperimetric
condition (5.5) . Now,

where we have used the orthogonality relation

0, if ?rz ,# zz,(sintzrzz)
, sintzzzl) = a kf w . a .2:

Hence, any eigenfunction expansion of the form (5.11) having the requisite
convergence properties and satisfjring the condition

* 2
1

'JF
>= 1

is an extrem al for the problem . Any finite combination of the eigenfunctions
such as

where

for exam ple, is an extrem al.
lf we are searching am ong the eigenf-unction expansions for extremals that

make J a minimum, then the situation changes considerably. Suppose that /
is an eigenfunction extremal for the problem . Then
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Here, we have used the orthogonality relation

2
:v1(z) = - sintz),

r

and for this extrem al
J'(3/1) = 1.

ln fact, yï produces the minimum value for J. To see this, let / be another
extrem al for the problem . Then the completeness property of the Fourier
series implies that / can be expressed as an eigenf-unction expansion of the
form (5.11), where the coefllcients an satisfy relation (5.12). lf / is distinct
from yï then there is an integer ?rz k 2 such that avrv ,# 0. Now,

and hence J(/) > J(yï).
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Exercises 5. 1:

1. The Cauchy-Euler equation is

? l(z7(z)) + - :v(z) - 0.

Show that

y (z ) = c 1 c os h ,$../--1- ln z ) + ca s in h ,/-.$- l n z ) ,
where cl and cz are constants, is a general solution to this equation. Given
the boundary conditions 3/(0) = yle'n') = 0 find the eigenvalues.

2. Reformulate the differential equation

ylivs (z) + (à + p(z))?/(z) = ()

5.2 The First Eigenvalue

The first eigenvalue in Example 5.1.1 has the notable property that the cor-
responding eigenfunction produced the minimum value for J. lf fact, this
relationship persists for the general Sturm-lsiouville problem.

Theorem 5.2.1 Let zïl be tlte hrst eigenvaln,e Jor tlte S/w,rzq-.rzïchkzwïllc prob-
Jcm (5.1) nitlt l'taqzzzcltzr?/ conditions (5.4), and let 3/1 be tlte corresponding
eigenjunction nonvtalized to satisj'y tlte ïscwcr/mc/rïc constraint (5.5) . Tlten,
tzmtazzg Junctions ïzz Czgzt), z1j tltat satisj'y tlte boundary conditions (5.4) and
tlte ïscwcrïmc/r/c condition (5.5), tlte Jnnctional J dehned by equation (5.3) is
mïzzïm'tzm at y = yï. M oreover,

J'(3/1) = à1.

Proof: Suppose that J has a m inim um at y. Then y is an extremal and thus
satisfies equation (5.1) and conditions (5.4) and (5.5). Multiplying equation
(5.1) by y and integrating from ztl to zl gives

The first term on the left-hand side of the above expression is zero since
!/(zo) = !/(z1) = 0', the integral on the left-hand side of the equation is one by
the isoperimetric condition. Hence we have
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J(tv) - 1.

Any extremal to the problem must be a nontrivial solution to equation (5.1)
because of the isoperim etric condition', consequently, ,L must be an eigenvalue.
By property (a) there must be a least element in the spectrum, the first
eigenvalue àl, and a corresponding eigenf-unction yï normalized to meet the

isoperimetric condition. Hence the minimum value for J is zïl and J(yï) = àl.

Eigenvalues for the Sturm-lsiouville problem signal a bifurcation: in a
deleted neighbourhood of an eigenvalue there is only the trivial solution avail-

able; at an eigenvalue there are nontrivial solutions (multiples of the eigen-
function) available in addition to the trivial solution. ln applications such as
those involving the stability of elastic bodies, eigenvalues indicate potential
abrupt changes. Often the most vital piece of information in a model is the
location of the first eigenvalue. For example, an engineer may wish to design
a column so that the first eigenvalue in the problem modelling the deflection
of the column is sufllciently high that it will not be attained under normal
loadings.S

Theorem 5.2.1 suggests a characterization of the first eigenvalue in terms
of the f-unctionals J and f . Let R be the f-unctional defined by

J(y)
.J?y) = gv) .

The f-unctional R is called the Rayleigh quotient for the Sturm-lsiouville
problem. lf f (y) = 1, then for any nontrivial solution y we have

l - R(y).

W e can, however, drop this normalization restriction on f because 130th J and
f are homogeneous quadratic functions in y and y? so that any normalization

factors cancel out in the quotient. Relation (5.14) is thus valid for any non-
trivial solution, and we can m ake use of this observation to characterize the
first eigenvalue as the minimum of the Rayleigh quotient.

Theorem  5.2.2 Let S/ denote tlte set o.f all Junctions ïzz Czgzt), z1j that sat-
isj'y tlte boundary conditions (5.4) ezcept tlte trivial solution y EEE 0. Tlte zrzïzz-
ïzrz'tzzrz o.f tlte Rayleiglt quotient R Jor tlte S/urzrz-fz iouville problevt (5.1), (5.4)
over all Jnnctions ïzz S? is tlte hrst eigenvalue; ï. c.,

mirà R(y) = ll.yqS

3 The governing differential equation for this model is in fact of fourth order
, but

similar comments apply. The variational formulation of this model is discussed in
Courant and Hilbert op. cit. p. 272.
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b = !/ + 6r/,

where tî is small and p is a s11100th f-unction such that p(zo) = p(z1) = 0, to
ensure that :'è CE S?. Now,

1 1
-- q- ()(,),f(5) I(y)

where f (y) # 0, and

'? ((-vy')' + qy - Ary) dz

W e thus have

and since R is minimum at y, the terms of order tî must vanish in the above
expression for arbitrary p. W e can apply Lem ma 2.2.2 to the numerator of
the order tî term and deduce that y must satisfy equation (5.1). Since y CE S?,
the constant .,4 must be an eigenvalue. Any extremal for R m ust therefore be
a nontrivial solution to the Sturm-lsiouville problem .

lf à,,z is an eigenvalue for the problem and yv.n is a corresponding eigen-
function, then the calculation in the proof of Theorem 5.2.1 can be used to
show that

Jlym)Xl#,?z) = = As?z.f (ym)
Since R is minimum at y and .4 is the corresponding eigenvalue we have that

l,,z = Rlyml k .4



5 Applications to Eigenvalue Problems'e

Generally, the eigenvalues tand hence eigenf-unctions) for a Sturm-lsiouville
problem cannot be determ ined explicitly. Bounds for the first eigenvalue, how-
ever, can be obtained using the Rayleigh quotient. Upper bounds for zïl can
be readily obtained since zïl is a minimum value: for any function 4 CE S? we
have

R(4) k l1, (5.16)
so that an upper bound can be derived by using any f-unction in S?. Lower
bounds require a bit m ore work.

To get a lower bound, the strategy is to construct a comparison problem
that can be solved explicitly, the first eigenvalue ;$1 of which is guaranteed
to be no greater than àl. To construct a comparison problem, we make the
following sim ple observations.

(a) Let # CE Clgzt), z1j be any function such that p(z) k #(z) > 0 for all
z CE gzt), z11 , and let tl/ CE C0 gzt), z1j be any function such that qlz) k t)'(z)
for all z CE gzt), z11 . Then, for

7(v) < J(y).
(b) Let ,iz CE C0 gzt), z11 be any function such that 'F(z) k r(z) >
z CE gzt), z11 . Then, for

I(y) k Ily).

J(y) J(y) pv)
,.2-ky) - yy) s; go) -

and hence
,à1 < àl. (5.17)

lnequality (5.17) is useful only if we can determine ;$1 explicitly. We have
considerable freedom, however, in our choices for #, t)', and ,i%, and the simplest
choice is when these f-unctions are constants', i.e.,

#(z) = min p(z) EEE pzzz,
ze yo,zlj

q(z) = min qlz) EEE qvn,
ze yo,zlj

'F(z) = max r(z) EEE ru.
ze yo,zlj
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(-vmy')' + qmy - ârpi.y - 0;

1 n2r2
.
y Pma = + qm .

ru (zo - z1)2
W e thus get the lower bound

1 p .,.2
.à1 = r'z + qm s; ll.

ru (zo - z1)2
Exam ple 5.2.1: M athieuhs Equation

Let p(z) = r(z) = 1, and qlz) = 20 costzz), where 0 CE R is a constant. Let
ztl = 0 and zl = r. For this choice of functions equation (5.1) is equivalent to

yn + (,à. - 20 cos(2z)) y = 0,

and the boundary conditions are

tv(0) - :v(r) - 0.

The expression (5.20) is called M athieuhs equation, and its solutions have
been investigated in depth (cf. Mclsachlan (521 and W hittaker and Watson
(741). lf 0 = 0, then the problem reduces to that studied in Example 5.1.1. lf
0 ,# 0, then the nontrivial solutions to this problem cannot be expressed in
closed form in terms of elem entary f-unctions. lndeed, this problem defines a
new class of functions (sczzj called Mathieu functions? that correspond to
the eigenfunctions of the problem. The determination of the eigenvalues for
this problem is a more complicated affair compared to the simple problem of
Example 5.1.1. Briefly, it can be shown that the first eigenvalue zïl and the
corresponding eigenf-unction sc1 are given asym ptotically by

1 z 1 a 1 4 11 :; 6
zïl = 1 - 0 - -0 + - 0 - 0 - 0 + O(0 ), (5.22)8 64 1536 36864
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for IpI small (cf. Mclsachlan, op. cit. p. 10-14).
ln contrast, a rough lower bound for zïl can be readily gleaned from in-

equality (5.19). Suppose that 0 k 0, and let pv.n = ru = 1, qv.n = -2p <
20 costzz). lnequality (5.19) then implies

1 - 20 < àl. (5.23)

Given the asymptotic expression (5.22), if 0 k 0 is small then the lower bound
(5.23) can be verified directly. But inequality (5.23) is also valid for 0 large,
and this is not so obvious.

Note that if 0 < 0, we cannot use qvrv = 20 in our com parison problem
since -2p k 20 costzz) for z CE gzt), z11 . For this case we can use qv.n = 20 and
thus get the lower bound

1 + 20 < zïl .

Exercises 5.2 :

1. Mathieu's equation (5.20) can have a first eigenvalue zïl that is negative
depending on the constant 0. W rite out the Rayleigh quotient for M ath-
ieu's equation. Now, 4 = sintz) is in the space S?. Use this f-unction and
inequality (5.16) to get an upper bound for àl, and show that zïl < 0
whenever 0 > 1. Compare this with expression (5.22). (For the choice
0 = 5 the value of zïl is given in table 5.1 at the end of Section 5.3.)

2. H alm hs equation is

(1 + z2)2?y??(z) + àyytzl = 0.

Under the boundary conditions 3/(0) = !/(r) = 0, find a lower bound for
,L 1.

3. The Titchm arsh equation is

!/??(z) + (,à. - z2N.):(/(z) = 0,

where n, is a nonnegative integer. Under the boundary conditions 3/(0) =
3/(1) = 0 show that the first eigenvalue zïl satisfies r2 < àl < 11. (The
function 4 = z(z - 1) can be used to get the upper bound.)
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5.3 H igher Eigenvalues

The Rayleigh quotient can be used to fram e a variational characterization of
higher eigenvalues. The eigenf-unctions for the Sturm-lsiouville problem are
m utually orthogonal, and this relationship can be exploited to give such a
characterization. For example, it can be shown that the eigenvalue zïz corre-
sponds to the m inim um of R am ong f-unctions in y CE S? that also satisfy the
orthogonality condition

(#, #1) = 0,
where yï is an eigenf-unction corresponding to àl. M ore generally, we have the
following result the proof of which we omit.

Theorem 5.3.1 Let yk denote the eigenlhnction associated 'ttlï//z the eigen-
valn,e àk , and let Ssz/ be the set o

.f Jnnctions y CE S/ s'uch that

(#, Vk ) = 0

Jor k = 1, 2, . . . , n, - 1. Tlten

la - mir) 1t(y).piE&

The above theorem is of lim ited practical value because, in general, the
eigenvalues àl, . . . , àzz-l and corresponding eigenf-unction 3/1, . . . , l/,z-l are not
known explicitly. Constraints such as (5.24) require precise knowledge of the
eigenf-unctions as opposed to approximations. Fortunately, we can characterize
higher eigenvalues with a ttm ax-m in'' type principle involving the Rayleigh
quotient, and circumvent the problem of finding eigenfunctions. The next
results we state without proof. Som e details can be found in W an op. cï/., p.
284, and in Courant and Hilbert op. cï/., p. 406.

(y, zk) -- 0,

.'îa sk la.

Lemm a 5.3.2 is a key result used to establish the following ttmax-min'' prin-
ciple for higher eigenvalues.

àa - max (4a(z)),
zefza-l
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à,ztzl - ryi
,))(.&(:(/) : (y, zk) - 0, k - 1, . . . , n - 1).#

(-vy')' + qy - hry - 0,

:v(0) - :v(r) - 0,

4''(f) - /(f)4(f) + l4(f) - 0,

4(0) - 4(t) - 0,
by the transform ation

z v (j.j cj)(j = ,(,,/,V y y L = jj p j j j y x wtz; gy.f = lj stz;

//# 
.%/ = + 
,

g r

where g = 4 rp. We can thus restrict our attention to the problem (5.26),
(5.27).5 The Rayleigh quotient for this problem is

J(4)
.R(4) = gi

i)l ,
where

and

k = max I / (f) I , (5.28)
tegoyj

and

5 This formulation is called the Liouville norm al form  of the problem . Details
on this transformation and extensions to more general intervals can be found in
Birkhoff and Rota g9j, p. 320.
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Then,

and, since J-F(4) k J(4) k J- (44,

.2+(4) k .2(4) k R- (4);

1.D(4) - .2(4)1 < k,

tr ?z 
cjj/0 41k(4) -  .f(4) (5.30)

The Rayleigh quotient defined by equation (5.30) is associated with the
Sturm-lsiouville problem

r#? + .14 = 0,

4(0) - 4(t) - 0,
and the eigenvalues for this problem are given by

lnequality (5.29) indicates that R(4) can differ from X(4) by no more than
+/c. By the ttmax-min'' principle for higher eigenvalues we see that àzz and àzz
can differ by no m ore than +/c and thus deduce the asymptotic relation

(5.34)

as n, --+ xt. The f-unction / influences only the 0(1) term (a term that is
bounded as n, --+ cx))4 àzz is approximately /,2.,.r2 :2 for large values of zz. lf we
return back to the original problem, the relation (5.34) can be recast as
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2 
.4>> a

2
n? 1 ''T r(z)lim = dz .

zz --. x  X-zz (/-'i' (; p ( z )

Note that q does not influence the leading order behaviour for the asymptotic
distribution of eigenvalues.
Equation (5.35), for example, predicts that the higher eigenvalues for

Mathieu's equation (Fuxample 5.2.1) are

lzz = /,2 + ()(1),

as n, --+ xt. ln fact, the approximation is not tttoo bad'' for 0 small even with

n, small (cf. Table 5. 1) .
ln closing, we note that the results of this chapter can be extended for

the general Sturm-lsiouville boundary conditions (5.2). Some extensions can
also be made to cope with singular Sturm-lsiouville problems. The reader is
directed to Courant and Hilbert, op. cit. Chapter 5, for a fuller discussion and
a wealth of examples from m athem atical physics.

Exercises 5.3:

1. For Mathieu's equation (5.20) show that Ilzz - n? I < 20 for a11 zz.
2. Determine a constant .,4 such that for Halm's equation (Exercise 5.2-2)

àzz = .,4zz2 + 0(1).
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6.1 H olonom ic C onstraints

glt, q) - 0,

#(f, Cl, tk) = 0.

The analysis underlying variational problem s with holonomic constraints is
noticeably simpler than that for problems with nonholonomic constraints. ln
this section we focus on holonomic constraints and postpone our discussion
of nonholonomic constraints until the next section. For simplicity we consider
the sim plest case when n, = 2.

Let J be a functional of the form

and suppose that J has an extremum at q subject to the boundary conditions
q(fo) = qo, q(f1) = q1, and the condition (6.1). For consistency we require
that gltçj, qo) = 0 and .ty(f1, q1) = 0. We assume that L and g are sm00th
functions. W e also m ake the assumption that

1 The curious name for this type of constraint stems from the Greek word ltolos
meaning whole or entire. ln this context holonomic means ttintegrable.'' This type
of constraint is also called ddfinite ''

2 Some authors use this term specifically to identify constraints that are not in-
tegrable i.e. cannot be reduced to a holonomic condition. For our purposes we
simply call any constraint involving derivatives nonholonomic.
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('L'g t'?.t?Tg =  , :# 08qk t'?t?2

for the extremal q in the interval (f(), f11 . Given that Tg ,# 0, we could (at least
in principle) solve equation (6.1) for one of the qk.3 We could thus apply the
constraint imm ediately and reduce the problem to an unconstrained problem
involving a single dependent variable. This approach, however, is fraught with
the same problems as its finite-dimensional analogue discussed in Section 4.1.
Fortunately, the Lagrange multiplier technique can be adapted to cope with
these types of problems.
We seek a necessary condition on q for J(q) to be an extremum. As before,

we perturb q to get some nearby curve ('k = q + tîr/ and use the condition
J(4) - J(q) = 0(62) to get a necessary condition. We assume that the qk
are in C2gf(;, f1j for k = 1, 2. A f-unction ('k = (41, t)'2) is called an allowable
variation for the problem if qmk CE (72 gfl), flj, ('ij(f(;) = q(;, ('k(f1) = q1, and
# (f , t*1) = 0.
Our first concern is whether there are any allowable variations (apart from

the trivial one ('k = q). As with the isoperimetric problem, there may be rigid
extremals. Let p = (p1, z?a). The conditions on an allowable variation require
that the pk be in the set (72 gflj, f1j and that r/(f()) = p(f1) = 0. ln addition, we
must also have that glt, q + 6p) = 0. Now, q is a flxed function and Tg ,# 0
at (f, q) for t CE (f(), f11 . Suppose for definiteness and simplicity that

(')g / 0
('L'qz

for all t CE (f(), f11 . Then the implicit f-unction theorem implies that the equation
glt, q + 6p) = 0 can be solved for m in terms of pl and 6, provided I6I is
sufllciently sm all. The sm oothness of the derivatives of g also ensures that
w is in the set (72 gfl), f1j . We can thus regard pl as an arbitrary f-unction
in (72 gfl), f1j such that p1(f()) = p1(f1) = 0, and w as the solution to the
equation glt, q + 6p) = 0. The implicit f-unction theorem guarantees a unique
solution to this equation. ln particular, we know that at t = tçj we have

p1(fo) = 0 and that (f(), qo) is the solution to gltçj, qtl + 6p) = 04 hence,
w (f()) = 0. A similar argument can be framed to show that m (f1) = 0.
Thus we always have nontrivial allowable variations provided condition (6.3)
is satisfied. This condition can be relaxed to condition (6.2), but we do not
pursue this generalization.
Suppose that ('i. is an allowable variation. Since J is stationary at q, the

condition J(h) - J(q) = 0(62) leads to the equation
tl (')L d (-?.r/ (')L d (-?.r/

-  pl + - 072 dt = 0.
to %k dz t'?til ('k2 dz *2

W e cannot proceed as in Section 3.2 to deduce the Euler-lsagrange equations
from the above expression because w cannot be varied independently of p1:

3 W e can use the implicit function theorem to assert the existence of such solutions.
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these f-unctions are connected by the constraint (6.1). Suppose that we choose
som e s11100th but arbitrary function pl that satisfies the boundary conditions.
The implicit function theorem indicates that for I6I small there is a solution w
to the equation glt, qn ) = 0, that depends on tî and pl. For a flxed but arbitrary
pl we can thus regard m as a f-unction of E. M oreover, the implicit f-unction
theorem implies that, for I6I sufllciently small, m is a s11100th function of E.
Now g (f, 4) = 0, and thus

d t'?.q ç')g
.v(f, ù) = pl + m = 0.27 

E,-o ôqï t'Az

ç')gA?
a (L) = l(f) .ç'Lkz

W e can now apply Lemma 2.2.2 and thus deduce that

(')L d (-8.r/ ç')g
-  + l(f) = 0.%

k Z t'Ml ç''qk

Equations (6.7) and (6.8) provide two differential equations for the three
unknown f-unctions t71, q,, and à. The constraint (6.1) provides the third equa-
tion. The f-unction ,L is also called a Lagrange multiplier. Equations (6.7) and
(6.8) can be written in the compact form
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d :F DF
-  =  0,7/ ôq'k txk

where k = 1, 2, and F = L - hg.
The derivation of equations (6.9) has the merit of simplicity, yet it seems

disappointingly narrow. The Lagrange multiplier has a tractable geometrical
interpretation in finite-dimensional problem s and even in the isoperim etric
problem. Here, the approach seems somewhat destitute of geometry. ln fact,
there is a satisfactory geometrical interpretation available, but it requires cer-
tain concepts from differential geometry such as fibre bundles that would lead
us astray from an introductory account. The reader is referred to Giaquinta
and Hildebrandt (321 for a geometry-based proof of the Lagrange multiplier
technique.

ln sum mary, we have the following necessary condition.

Theorem 6.1.1 Snppose tltat q = (t71, q,) ïs a szrztata//z eztrevtal Jor tlte J'unc-
tional J subject to tlte Fztaltazztazrzïc constraint glt, q) = 0, and tltat Tglt, q) ,# 0
Jor t CE (f(), f11 . Tlten tltere ezists a Jnnction ,L o.f t suclt tltat q satishes tlte
Enler-Lagrange equations (6.9) .
Exam ple 6.1.1: Let

and
.q (f , q) = I qI2 - 1.

Find the extremals for J subject to the constraint glt, q) = 0 and the bound-
ary conditions q(0) = (1, 0) and q(r 2) = (0, 1).

For this problem

F = 1412 + 1 - l(f) (IqI2 - 1) ,
and the Euler-lsagrange equations are

t?1(f) - cos 4(f), q, (f) - sin 4(f).

Now q'ï - -4' siny, 4, - ( cos 4, and hence 1ù12 = 4'2. The Euler-lsagrange
equations in terms of 4 are
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and eliminating the function ,L yields the equation

4 = co

/(f) = cof -1- cl,

where cl is another constant of integration. The general solution of the Euler-
Lagrange equation for the extremal q is therefore

t?1(f) - costcl,f + c1) ,
q, (f) - sintct)f + c1) .

The boundary condition q(0) = (1, 0) indicates that cl = 2zzr for some integer
zz. The boundary condition q(r 2) = (0, 1) implies that ctl = 4w + 1 for some
integer zrz. The extremal is thus given by

q(f) - (costf), sintfl) ,

Exam ple 6.1.2 : Sim ple Pendulum
The parametric equations for the motion of a sim ple pendulum of mass ?rz and
length f can be derived using Lagrange multipliers. Let q(f) = (t71(f), q, (f))
denote the position of the pendulum at time f. Here we associate q, with the
vertical com ponent of position. The m otion of the pendulum from time tçj to
time f1 is such that the f-unctional
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tl

J(q) - s'rz I 'k12 + gq,) dtte
is an extremum subject to the condition4

2 + (q, - f)2 - é2 = 0.qk

Here, the term ?rz 2 1ù12 is the kinetic energy and the term gqn, where g is the
gravitation constant, is the potential energy. The Euler-lsagrange equations
for the motion of a pendulum are thus

ti'l + 2l(f)t?1 = 0,
ti'2 - g + 2l(f) (t?2 - f) = 0.

The method outlined in this section can be generalized in some obvious
ways as was done for the isoperim etric problem . For example, we could in-
clude functionals depending on higher-order derivatives, multiple holonomic
constraints, or functiona.ls depending on n, dependent variables, n, > 2. W e do

not pursue these generalizations. The reader is referred to the literature (4121 ,
(211, (271, (311, (321) for details on these generalizations.

W e close this section with a derivation of the equations for geodesics on a
surface defined implicitly by glz, y, z) = 0.
Exam ple 6.1.3: Geodesics Let g be a sm 00th function of the variables
z, y, z. lf Tg ,# 0, then an equation of the form

.q(1, #, .2C) = 0

describes a surface implicitly. For example, if glz, y, z) = z2 + y2 + .,,2 - 1,
then equation (6.11) describes a sphere of radius 1 centred at the origin.
A general space curve y of finite length is described (at least locally) by

parametric equations of the form

r(f) = (z(f), '!/(f)z(f)),

4 For the connoisseur of technical terms, constraints that do not involve time explic-
itly are called scleronom ic in mechanics. Constraints that involve time explicitly
are called rheonomic. Condition (6. 10) can thus be called a scleronomic holo-
nomic constraint. Need we say more?



Let E denote the surface described by equation (6.11) and let Ptl and P1 be
two distinct points on E. A geodesic on E from Ptl to P1 is a curve on E
with endpoints Ptl and P1 such that the arclength is stationary. Assum ing
that such a curve can be represented by a (single) parametric function of the
form (6.11) with r(fo) = Ptl and r(f1) = P1, a geodesic is thus a curve such
that the f-unctional J is stationary subject to the constraint (6.11). Let

F = z?2 + y?2 + z?2 - à(f).q(z? yt z).

The (smooth) geodesics on E must therefore satisfjr the Euler-lsagrange equa-
tions

d z' t'?.q+ l(f) = 0,)-@ 
z?2 + y?2 + a?2 t'?z

d y ? 
.....qt'?+ l(f) =  0,'/7 z?2 + y?2 + z?2 ç')y

d z? ('?l(f)-X = 0.+7/ z?2 + y?2 + a?2 ç')z

Exercises 6. 1:

1. Geodesics on a Cylinder: The equation glz, y, z) = :712 + y2 - 1 = 0
defines a right circular cylinder. Use the multiplier rule to show that the
geodesics on the cylinder are helices.

2. Catenary on a Cylinder: Let

tl

J (q) - qz ti 2, + tia2 + ti 2a dt ,
te

and

6.2 N onholonom ic Constraints

ln this section we discuss variational problems that have nonholonomic con-
straints. These problems are also called Lagrange problem s. The Lagrange
problem thus consists of determ ining the extrema for functionals of the form
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tl

J(q) - Llt, q, ù) dt,
te

subject to the boundary conditions

q(fo) = qo, q(f1) = q1,

and a condition of the form

#(f, q, tk) = 0.

lt is clear that Lagrange problems include problems with holonom ic con-

straints as a special case, but not every constraint of the form (6.15) can
be integrated to yield a holonom ic constraint. For example, suppose n, = 3
and

glt, q, tk) - f'tqltil + Q(q)ti2 + .&tqltia - 0.
Then it is well known that this equation is integrable only if

p ( 'DQ - 'DR j + c ( o'gR - 'DP j + w ( o'9p - 'DQ j - oç'kz t'?t?2 qk t-ka qz t-kl
(cf. (611, p. 140), and hence the constraint (6.16) can be converted into a
holonomic one only for certain functions P, Q, R. For quasilinear nonholo-
nomic constraints such as (6.16) the dimension n, is crucial. lf n, = 2 and the
constraint is of the form

#(q)I1 + Q(q)I2 - 0

then, in principle, this constraint can be reduced to a holonom ic condition.
For example, assuming Q(q) ,# 0, we could recast the above constraint as an
ordinary differential equation

dq, f'(q)
dqk Q(q)

and appeal to Picard's theorem to assert the existence of a solution q, (t71)
to this differential equation. lf n, > 2, then condition (6.17) is not generically
satisfied for P, Q, R and hence the condition is not integrable.

lsoperimetric problems can also be converted into Lagrange problems. Sup-
pose that the isoperim etric condition

tizz-hl - glt, q, ù) - 0,



t?zz+1(f1) - t?zz+1(fo) - f.

ln this manner we can recast the isoperim etric problem as a Lagrange problem .
Problems that contain derivatives of order two or higher in the integra.nd

can also be regarded as Lagrange problems. For instance, consider a basic
variational problem that involves a f-unctional of the form

11 - q2 = 0.

This reformulation leads to a functional of the form (6.13) along with the
above nonholonom ic constraint.

The theory behind the Lagrange problem is well developed for problems
involving one independent variable,s but the proof of the Lagrange multiplier
rule for nonholonomic constraints is more complicated than that for isoperi-
m etric or holonomic constraints. ln addition, the application of the rule itself
is awkward owing to the condition for an extrem al to be norm al. Some of
the difllculties that surround the Lagrange problem concern the possibility of
rigid extremals. Consider, for instance, the problem of finding extremals for
the f-unctional J defined by

subject to the constraint

g (f , q, tk) = ti21 + tJ:2 = 0 ,

and the boundary conditions q(fo) = qo, q(f1) = q1. The only (real) solution
to the constraint equation is (1 = (% = 0, so that qï and q, are constant
functions. lf q(fo) # q(f1) then there are no solutions that meet the constraint
and the boundary conditions. lf q(f()) = q(f1), then the only solution to the
constraint equation that satisfies the boundary conditions is q = q(fo), and
in this case J(q) = t71(0) (f1 - f()). ln short, there are no arbitrary variations
available for this problem because only one function satisfies the constraint
and the boundary conditions.

ln the remainder of this section we present without proof the Lagrange
m ultiplier rule for nonholonomic constraints and limit our discussion to the

5 The Lagrange problem for several independent variables is less complete (cf. Gi-
aquinta and Hildebrandt (321 ).
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simplest cases and examples. Fuller accounts of the Lagrange problem resplen-
dent with gory details can be found in (101 , (121 , (211 , and (631 .

W e begin first with a general multiplier rule that includes the abnormal
Case.

Theorem 6.2.1 Let J be tlte Jnnctional dehned by (6.13), wltere q =
(t71, . . . , qnl and L ïs a smtata//z Junction o.f f, q, and (k. Suppose tltat J Itas
an cz/rcm'tzm at q CE (72 gfl), f1j subject to the louzzcltzr?/ conditions (6.14) and
tlte constraint (6.15), wltere g ïs a smtata//z Junction o.f f, q, and (k suclt tltat
t'?.ty ç'kj ,# 0 Jor stamc j, 1 < j < n,. Tlten tltere ctc/s/s a constant zïtl and a
jhnction ,L1(f) not 30th, zero suclt tltat Jor

Klt, q, ù) - hçjlult, q, ù) - l1(f).v(f, q, (%,

q is a s/lu/ï/n to the systent

-  =  0,7/ A k t'kk

wltere k = 1, . . . , n,.

The above result includes the abnormal case, which corresponds to zïtl = 0.

ln this case the f-unction zïl is not identically zero on the interval (f(), f11 , and
equation (6.21) implies that

d tày ç'z.q () - ayy o% .(),2-/ ç'ltkk qk
for k = 1, . . . , zz. W e thus see that if q is an extremal for the problem with
zïtl = 0 then zïl must be a nontrivial solution to (6.22). The existence of a non-
trivial solution zïl thus characterizes the abnormal case. A s11100th extremal
q is thus called abnorm al if there exists a nontrivial solution to system

(6.22)4 otherwise, it is called normal. We have the following result for normal
extrem als.

d :F DF
-  =  0,)è' A k txk

F(f, q, ù) = L(t, q, tl) - l1(f).v(f, q, (%.

Note that, unlike the other constrained problems, the differential equations
(6.23) will contain the term i 1', moreover, the condition (6.15) is a differen-
tial equation, so that solving problems with nonholonomic constraints entails
solving a system of n, + 1 differential equations.



Exam ple 6.2.1:

tl

J(q) - (qI + vl) dt.
te

Find the extremals for J subject to the boundary conditions (6.14) and the
constraint

.v(f, q, tk) = 11 + qk + q2 = 0.
Usually, the practical approach to constrained problems is to first identify

the candidates for extrem a.ls and then study whether the problem is in fact
normal, i.e., proceed under the assumption that the problem is normal. For
this sim ple problem , however, we can deduce readily that any extrem als to

the problem must be normal. Specifically, equation (6.22) for k = 2 gives

which has only the trivial solution. W e thus know in advance that we have
only normal extremals.

Let
F(f, q, tk) = t?21 + v22 - .X1(f) (j1 + qï + qLj) .

Theorem 6.2.2 shows that if q is an extremal then it m ust satisfy the following
system ,

il - 11 + 2t?1 = 0
11 - 2q, = 0.

These equations and the constraint (6.24) imply

4'k - 2t?1 = 04

and
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Exam ple 6.2.2 : Catenary
Let us revisit the catenary problem, but this tim e as a Lagrange problem .
Suppose that the length of the cable is f and the endpoints are given by
(alo, #0) and (tr1, :4/1), Where

ltr - tr012 -1- (# - :4/012 < /2 .

The potential energy functional is given by

where s denotes arclength. ln order to ensure that s is arclength we need to
add the constraint

/2 /2 y. =  ()z + y -

(cf. Section 1.2). Using the notation of this section, let qï = z, q, = y, and
s = f. W e thus seek an extremum for the functional

(6.26)

subject to the constraint

.v(q) - 41 + t2 - 1 - 0,
and the boundary conditions

q(0) - (zo, yçjl, q(t') - (z1, :v1).

W e can show directly that any abnormal extrem als to this problem must
be lines. Suppose that there is a nontrivial solution to equation (6.22). Then
there are constants cl and c2 such that

1111 - c1,
1112 - c2.

The constraint (6.27) implies that
.42 = c2 + c21 1 2,

and consequently qï and q, must be linear functions of f. The boundary con-

ditions (6.28) and the inequality (6.25), however, preclude linear solutions.
Let

F = q2 - .1. 1 (121 + tiz2 - 1) .

Equations (6.23) give

2.:111 = /c1,
2.:14% = t + k,,

(6.29)
(6.30)
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1
.41 = j. k; + (f + /ca)2;

h-, jt + pcatj .j. ksqk = Sin /c1
q, - kl + (f + /c2)2 + /c4,

hence,

where ks and k4 are constants. The fam iliar param etrization of the catenary
in terms of the hyperbolic cosine can thus be recovered from the above expres-
sions. Note that this problem is merely a reformulation of the isoperim etric
problem so that the com ments concerning the satisfaction of the boundary
conditions (Example 4.2.1) still apply.

Exercises 6.2 :

and

#(f, q, tk) = ftil + 12 + qz - 1.
Find the extremals for J subject to the constraint glt, q, (k) = 0 and
boundary conditions of the form q(fo) = qo, q(f1) = q1.

2. Let J be a f-unctional of the form (6.13), where n, = 3 and let g be of
the form (6.16). Suppose that there exists a f-unction ylt, q) such that the
nonconstant extrem als for the constrained problem satisfjr

d tgfv DL t%
- - == s (f, cj) ,èi ô4k :vk ô4k

6.3 N onholonom ic Constraints in M echanics*

W e digress briefly here to discuss the ticklish subject of nonholonomic con-
straints that occur in problems from classical mechanics. W e must first set
the record straight concerning our use of the term ttnonholonomic.'' The me-
chanics connoisseur is doubtless affronted by our slovenly use of this term



6 Holonomic and Nonholonomic Constraints

as a label for any constraint given as a differential equation. From our per-
spective, it is a handy catch-all term for such constraints, and it has the
pleasing merit that we need not continually distinguish nonintegrable from
integrable constraints. M athematically, Theorem 6.2.1 is valid for integrable
and nonintegrable constraints alike, so the distinction is not important. From
a mechanics perspective, however, the term is always used in its pure sense:

a nonholonomic condition is a differential equation (or system of differential
equations) that is not integrable. One cannot, even in principle, convert such
a constraint to a holonom ic one without essentially solving the problem first.
The distinction in m echanics is importa.nt not so much for mathematical rea-
sons, but for physical reasons: a m ore general variational principle is needed
to derive the equations of m otion for problem s with nonholonomic constraints
in mechanics.

Typically, nonholonomic conditions in mechanics are of the form

i.e., linear in the generalized velocities. Such constraints arise, for exam ple, as
ttno slip'' conditions for rolling objects. For instance, the problem of a penny
rolling on the horizontal zp-plane such that the disc is always vertical has
constraints of the form

:il - a sin p4' - ()
# + a cos p4' - 0

where a is a constant, 0 is the angle between the axis of the disc and the
z-axis, and 4 is the angle of rotation about the disc axis. A constraint of this
form cannot be reduced to a holonom ic one.

Given the prominence of nonholonom ic constraints in mechanics, the
reader might wonder why we have studiously avoided them in the previous
section. The direct answer is that the ttno frills'' version of Hamilton's Prin-
ciple given in Section 1.3 is generally not applicable to these problems. The
appropriate principle for these problems is dhytlem berths Principle, which
states that the total virtual work of the forces is zero for all (reversible) vari-
ations that satisfjr the given kinem atical conditions. Here, the forces include
impressed forces along with inertial forces (forces resulting from a mass in
accelerated motion).

Loosely speaking, we can think of d'Alembert's Principle as the condition
(qL = 0. Ham ilton's Principle comes from d'Alembert's Principle by integra-
tion with respect to tim e. For holonomic problems we have

tl tl

(qL dt = J L dt,
te te

but, as Pars (591 (p. 528) points out, for nonholonomic problems
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tl tl

(qL dt ,# J L dt,
te te

in general.

For nonholonomic problems with ?rz constraints of the form (6.31) d'Alembert's
Principle yields equations of the form

d ('?z, (-)L '''
-  o - ïll fzktqltzkptf, q),'t')-@' ov qj 

k.,

where L is the (unmodified) Lagrangian, i.e., T - U, and the f-unctions p.k
are multipliers to be determined along with q using the n, Euler-lsagrange
equations and the ?rz differential equations (6.31). ln general, the system (6.33)
is not equivalent to the Euler-lsagrange equations of Theorem 6.2.1 using the
modified Lagrangian L - (,L1.ty1 + . . . + hvrvgvrv), because this approach assumes
that Hamilton's Principle is valid. Pars (Jt?c. cï/.) gives an insightful discussion
of Hamilton's Principle as it relates to nonholonom ic problem s and gives a

simple concrete example to illustrate relation (6.32). The rolling penny and
other nonholonomic problems are treated in detail by Pars (op. cï/.), Webster
(721, and W hittaker (731.

There appear to be divergent streams of thought regarding the rôle of

Hamilton's Principle in nonholonomic problems. Goldstein (351 and others
m aintain that Hamilton's Principle can be extended to cover nonholonomic

problems', Rund (631 states that such a principle is not applicable to nonholo-
nomic problems. The confusion of opinion on this matter is in no sm all part
due to different interpretations of Ham ilton's Principle and the use of the term
nonholonom ic. W e end this section with the following quote from Goldstein

(op. cï/., p. 49) that perhaps brings the real issue into perspective.
ln view of the difllculties in formulating a variational principle for
nonholonomic systems, and the relative ease with which the equa-
tions of motion can be obtained directly, it is natural to question the
usef-ulness of the variational approach in this case.
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Problem s w ith V ariable Endpoints

7.1 N atural Boundary C onditions

The flxed endpoint variational problem entails finding the extremals for a
functional subject to a given set of boundary conditions. For a functional J
of the form 21

/(z, ïl, tv') dr
20

these boundary conditions take the form ylzçj) = yçj, !/(z1) = 3/1, where yçj and
yï are specified numbers. lf the functional contains higher order derivatives,
then m ore boundary conditions are required. Variational problems arising in
physics and geom etry, however, are not always accompanied by the appropri-
ate number of boundary conditions. For example, the shape of a cantilever
beam is such that the potential energy is minimum. At the clam ped end of
the beam we have boundary conditions of the form 3/(0) = 0 and 3//(0) = 0
reflecting the nature of the support. At the free end, however, there are no
conditions imposed on y. lndeed, it is part of the problem to determ ine y
and y? at this end. Now, the differential equation describing the shape of the
beam is of fourth order, and four boundary conditions are thus required for
uniqueness. W e expect a unique solution to the problem and hence there must
be som e boundary data implicit in the variational formulation of the problem .
W e discuss this problem further in Exam ple 7.1.3.

One of the striking features of calculus of variations is that the m ethods
always supply exactly the right number of boundary conditions. There are
essentially two types of boundary conditions. There are boundary conditions
that are imposed on the problem such as those at the clamped end of the beam ,
and there are boundary conditions that arise from the variational process in
lieu of imposed conditions. The latter type of boundary condition is called a
natural boundary condition. Even if no boundary conditions are im posed, the
process takes care of itself and, as we show, the condition that the f-unctional
be stationary leads to precisely the correct number of boundary conditions
for the problem .
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Let J : (72 gzt), z1j --+ R be a functional of the form (7.1), where / is
a s11100th f-unction. W e consider the problem of determining the functions
y CE (72 gzt), z1j such that J has an extremum. No boundary conditions will be
imposed on y. ln this section, we derive a necessary condition for J to have
an extrem um  at y.

Suppose that J has an extremum at y. W e can proceed as in Section 2.2
by considering the value of J at a ttnearby'' f-unction L. Let

b = # + 6r/,

where tî is a small parameter and p CE (72 gzl), z1j . Since no boundary conditions
are imposed, we do not require p to vanish at the endpoints (Figure 7.1).
Following the analysis of Section 2.2, the condition that JIL) - J(y) be of
order 62 as tî --+ 0 leads to the condition

21 qylr)j .y yt (')/ ( gy .(;Jzo (% t'?tv'
(cf. equation (2.6)), and integrating the term containing p? by parts gives the
condition

('?/ zt zt ('?/ d ('?/r/ + r/ - dr = 0.
('L'y? zo zo ('L'y X  t'?tv?

For the fixed endpoint problem the term p t'?/ ç'ly? vanished at the endpoints
because p(zo) = p(z1) = 0. For the present problem this term does not vanish
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for all p under consideration. Nonetheless, equation (7.2) must be satisfied for
all p CE Czgzt), zlj, and in particular the subclass f.f of functions that do
vanish at the endpoints. Since equation (7.2) must be satisfied for all p CE .bI
the arguments of Section 2.2 apply and therefore

d t'?/ t'?/
-  =  0,2V % ? t'??/

for any y at which J has an extremum. Equation (7.2) must be satisfied for
all p CE Czgzt), zlj, however, and this includes functions that do not vanish at
the endpoints; consequently, equations (7.2) and (7.3) imply that

:/ :/r/ ? - r/ ? = 0,
ç')y zt ç')y zo

t9/
=  0.

Similarly, we can find f-unctions that vanish at zl but not at zo. This obser-
vation leads to the condition

t9/ =  0.

ln summary, if J has an extremum at y CE Czgzt), z1j , and there are no
imposed boundary conditions, then y m ust satisfjr the Euler-lsagrange equa-

tion (7.3) along with equations (7.5) and (7.6). Equations (7.5) and (7.6) are
relations involving y and its derivatives at the endpoints', i.e., they are bound-
ary conditions. Because these conditions arise in the variational formulation
of the problem and not from considerations outside the f-unctional, they are
called natural boundary conditions.

The above process is com pletely ttmodular'' in the sense that if boundary
conditions are im posed at each end, then the variational formulation requires p
to vanish at the endpoints, and thus there are no natural boundary conditions.
lf only one boundary condition is imposed at say zo, then p is required to
vanish at ztl but not at zl; hence, the problem is supplem ented by the natural
boundary condition (7.5). lf no boundary conditions are imposed, then we
have 130th natural boundary conditions.

Exam ple 7.1.1: Determ ine a function y such that the f-unctional

1 + y?2 dz

is an extremum.
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Geometrically, the above problem corresponds to the problem of finding a
curve y with one endpoint on the line z = 0 and the other on the line z = 1
such that the arclength of y is an extremum. lntuitively, we see that any
function of the form y = const. will produce a curve of minim um arclength.
Let us see if the natural boundary conditions lead us to this conclusion.

Any extremal to the problem must satisfjr the Euler-lsagrange equation

(7.3). From Example 2.2.1 we know that solutions of this equation are of the
form y = zrzz + 5, i.e., line segm ents. No boundary conditions are im posed on
the problem and hence the natural boundary conditions (7.5) and (7.6) must
be satisfied. Now, for y = zrzz + 5,

t9/ y? zrz
=  =  ,

t'V 1 + y?2 1 + m2

so that the natural boundary conditions are satisfied only if ?rz = 0. This
m eans that y = 5, where there is no restriction on the value of the constant
5.

Exam ple 7.1.2 : Catenary
Suppose that we revisit the catenary problem but impose only one boundary
condition. W e thus seek to find a f-unction y such that the f-unctional

is an extremum subject to the boundary condition 3/(0) = /J > 0.
The general solution to the Euler-lsagrange equation for this f-unctional

was determined in Exam ple 2.3.3. Hence we know that y is of the form

/J = slcoshtsz).

No boundary condition has been imposed at z = 14 consequently, y must
satisfy the natural boundary condition (7.5). Therefore,

t'?/ :v(1):4?(1)=  =  0.
('ly? z=1 1 + y?2 (1)

Since /J > 0, sl # 0 and consequently 3/(1) ,# 0. We must therefore have that
3//(1) = 04 i.e.,
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along with the condition

t'?/ d t'?/ t'?/ zt? 
-  )) - = ().Tl (.y ?? 'j(./ oyt? oy? za#

Equation (7.8) spawns the four boundary conditions

for the fourth-order ordinary differential equation (7.7). The proof of these
assertions is left as an exercise.

Exam ple 7.1.3: W e apply the above results to the study of sm all deflections
of a beam of length f having uniform cross section under a 100 .1 Let y :

(0, f1 --+ R describe the shape of the beam and p : (0, f1 --+ R be the load per
unit length on the beam . Assuming small deflections, the potential energy
from elastic forces is

The total potential energy is thus

The shape of the beam is such that J is a minimum ; therefore, y must satisfy

the Euler-lsagrange equation (7.7), and this produces the equation

(ï,J)(z) - P(:r)
y .

S

Equation (7.13) has the general solution

1 This example is based on one given in Lanczos (481 , p. 70.
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'

p(-)-/-,z- - jv
and the differential equation (7.13) implies that

s (:(/??(t) - :4///(0)) = F.

The terms 3////(0) and !/???(tr) can be interpreted as the reaction forces at z = 0
and z = tr, respectively, to keep the beam in equilibrium. The moment (torque)
produced by the impressed force is

and hence

lf we sum the moments at the z = 0 end of the beam, the term f!/???(f) is
the moment produced by the reaction force at z = f, and the terms s!/??(0)
and s!/??(f) can be interpreted as the reaction moments at z = 0 and z = f,
respectively.

Having m ade a physical interpretation of the higher derivatives of y at
the endpoints, we now examine the problem under a variety of boundary
conditions corresponding to support system s for the beam.

Case 1: D ouble Clam ped B eam
Suppose that the beam is clamped at each end (figure 7.3). The beam is ttflxed
in the wall'' at each end so that at z = 0 we have 3/(0) = 3//(0) = 0, and at z = f
we have y(f) = y?(f) = 0. Here, there are four imposed boundary conditions.
All the allowable variations in this problem require that p(0) = p?(0) = 0 and
p(é) = p?@) = 0 so that no natural boundary conditions arise.
Case ll: Cantilever B eam
Suppose that the beam is clamped at z = 0 (figure 7.4). Then the boundary
conditions 3/(0) = 3//(0) = 0 are imposed. No boundary conditions are im-
posed at the other end of the beam and, consequently, the natural boundary
conditions (7.10) and (7.12) must be satisfied.z Equation (7.10) yields the
relation

8J ??
= ny (é) = 0,ç'ly'? z=z

2 The assumption here is made that the unclamped endpoint of the beam still lies

on the line z = f (small deflections).
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(p(x)
y(0) = 0
y:(0) = 0

)7/) = 0

)7:/) = (

Fig. 7.3.

(p(x)
y(0) = 0
y:(0) = 0

Fig. 7.4.

d t'?/ t'?/-  = s?y???(é) = ()
# #

which states that the reaction force at z = i' is zero. ln view of the nature of
the cantilever support, the natural boundary conditions reflect the physically
evident situation at z = f required for equilibrium .

Case 111: Sim ply Supported Beam
Suppose that the beam is pinned at the ends, but no restrictions are made
concerning the derivatives of y at the endpoints (figure 7.5). The imposed
boundary conditions are 3/(0) = 0 and y(f) = 0. No restrictions are made on
the values of p? at the endpoints, and hence we have the natural boundary
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(p(x)
y(0) = 0

conditions (7.9) and (7.10). The natural boundary conditions are 3///(0) = 0
and !/??(t) = 04 i.e., the reaction moments at each endpoint are zero.
Case lV : U nsupported B eam
Suppose that the beam is unsupported. Then there are no imposed boundary
conditions and we need all four natural boundary conditions. The natural
boundary conditions are 3///(0) = 0, 3////(0) = 0, !/??(é) = 0, and !/???(é) = 0.
These conditions state that the reaction force and m oment at each end of the
beam are zero. Note that the boundary conditions also imply

by equation (7.15), and

by equation (7.16). But the f-unction p(z) is prescribed and may or may not
satisfy equations (7.17) and (7.18). The natural boundary conditions thus tell
us that the problem has a solution only if p is such that the total impressed
force and total impressed m oment is zero. Again, the natural boundary con-
ditions lead us to physically sensible requirements.

The unsupported beam affords a glimpse of a result known as the Fred-
holm  alternative. The Fredholm alternative is usually encountered in the
context of integral equations, but it is a general result applicable to linear oper-
ators. Briefly, the major mathematical difference between Case IV and the ear-
lier cases is that the homogeneous equation :4/(f'&) (z) = 0 with the given bound-
ary conditions has only the trivial solution in the first three cases, whereas,
in the fourth case, there are nontrivial solutions of the form ylz) = c1z + ctl
available.S In particular, we have the nontrivial solutions Fl = z and 'l'rtl = 1.
The Fredholm alternative states that the original boundary-value problem will
have solutions only if p is orthogonal to 130th 'l'rtl and F1; i.e.,

3 ln general
, the Fredholm alternative is concerned with solutions to the adjoint of

the homogeneous equation. Here the linear operator is self-adjoint. See Hochstadt
(391 or Kreyszig (461 for more details on the Fredholm alternative.
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'

p(z) clz - ()( y-tl , p) - jv
and

Exercises 7. 1:

1. For the brachystochrone problem (Example 2.3.4), let ztl = 0, zl = 1.
Given the condition 3/(0) = 1 show that the extremal satisfies the condition
3//(1) = 0 and find an implicit equation for 3/(1).

2. A simplified version of the Ram sey growth model in economics concerns
a functional of the form

Here, J corresponds to the tttotal product,'' M  is the capital, and the
ck are positive constants. The problem is to find the best use of capital

such that J is minimized in a given planning period (0, T1 . Now, the initial
capital .JUf(0) = Mçj is known, but the final capital .JUf(T) is not prescribed.
Use the natural boundary conditions to find the extremal for J and the
final capital .JUf(T).

3. Derive the natural boundary conditions (7.9) to (7.12) for f-unctionals that
involve second-order derivatives.

4. Let q = (t71, . . . , qnl and
tl

J(q) - Llt, q, ù) dt.
te

Derive the natural boundary conditions that an extremal must satisfjr if

neither q(fo) nor q(f1) are prescribed.

7.2 The G eneral Case

ln the last section we considered problems where perhaps no boundary condi-
tions are prescribed. Although the variations need not satisfjr the same condi-

tions at the endpoints, the z coördinates of the endpoints remained fixed (cf.
figure 7.1). Even this restriction is not suitable for certain variational prob-
lem s. ln this section we consider the general case where 130th the independent
and the dependent endpoint coördinates may be variable.
Let y : gzt), z11 --+ R be a s11100th f-unction that describes a curve y with

endpoints Ptl = (zo, y(tl and P1 = (z1, 3/1), and let :'2 : (:/0, J@?11 --+ R be
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Fig. 7.6.

a s11100th f-unction that describes a curve ym with endpoints Pn () =  (:0, :'kl
and Pn 1 = (:1, j1) (figure 7.6). For the ensuing analysis we wish to compare
curves that are ttclose'' to each other', however, the functions y and :'è are not
necessarily defined on the same interval, and the norms discussed in Section
2.2 are not suitable. We can nonetheless extend the definitions of y and :'2
so that they are defined over a common interval. Let :tl = mintzt), J@?()j and
:/1 = maxtzl, :1/.. As we are interested in small variations on y, we can extend
the functions y and :'2 to the common interval /0, Jiill using a Taylor series
approximation where necessary. For example, if Jiitl = ztl and zl < :1, then
we can extend the definition of y as follows,

to get a f-unction y% CE Czg:@t), :1j . We assume that all such extensions have
been made and retain the symbols y and (. We define the distance between y
and :'è as

where IPk - iz'k I = lzk - Jîlklz + (yk - V)2. l-lere? 11 ' 11 is the norm defined
by
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sup I?/(z) I ,
z (E ye ,t'é 1 j

Or

11:v11 - sup I:v(z)I + sup I?/'(z)I,
ze Et'éo ,t'é1 q zelt'éo ,t'é1 q

whichever is appropriate to the problem under consideration. Let J be a func-
tional of the form

:1

J(5) - /(z, b, 7) dz.
:o

b = !/ + 6r/,

where p CE (72 gtijl), Jiilj . No conditions aside from this smoothness condition are
prescribed on p, but the condition d(L, y) = 0/) requires that the quantities
kk - zk and Lk - T/k be of order 6. Let

kk = zk + 6.Xk,

bk = Vk V 6Vk,

for k = 0, 1. Then,

and since tî is sm all
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W e therefore have

+ 0/2).

b - ylkù) - ylzù + 67/0) + 6ptzo + 67/0)
= :% -1- 6 V .

r/lzol = 'l'ro - Xèy' (tro) + 0(6) .
Similarly at the other endpoint

r/(z1) = 1'rl - .X1!/'(z1) + 0(6).

Substituting relations (7.20) and (7.21) into equation (7.19) yields

The functional J is stationary at y and therefore the terms of order tî m ust be
zero for all variations in the above expression. W e can always choose variations

such that Xk = Fk = 0 (i.e., lkxed endpoint variations). Arguing as in Section
7.1 we therefore deduce that y must satisfjr the equation
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d t9/ t9/-  =  0.2V % ? tg?/

ln addition, y must satisfy the endpoint condition

21
p6y - fftîz = 0,

20

where

:/
p= ,ôy?

H - y'p - /,

tî y (z k ) = Fk ,
Jztzk) = Xk.

Equation (7.23) is the starting point for more specialized problems. These
problems concern variations where the endpoints satisfy relations of the form

gk lalo, #o, trl, #1) = 0.

Evidently, no more than four such relations can be prescribed, since four equa-

tions would determine the endpoints (assuming the relations are functionally
independent). The fixed endpoint problem thus corresponds to the case where
four such relations are given. The natural boundary problem s of the previous
section correspond to three (or two) such relations imposed on the problem.
For example, the case of one fixed endpoint, say (zo, y(j), is characterized by
the three conditions ztl = ctazzsf., yçj = ctm sf., and zl = const. These equa-
tions are then supplemented by the natural boundary condition at (z1, 3/1) to
provide the fourth equation. ln this problem only the variation (qy at (z1, 3/1)
is arbitrary.

Typically, variational problems come with relations of the form

gklrj, #.j) = 0,

for j = 1, 2 so that the endpoint variations of (zo, y(tl are not linked to those of
(z1, 3/1). ln this case we can always include variations that leave one endpoint
fixed, and this leads to the two conditions

ln the next section we focus on variational problem s with endpoint re-
lations of the form (7.24). Geometrically such relations correspond to the
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requirement that an endpoint (zk, yk) 1ie on the curve defined by the implicit
equation glzk, yk) = 0.

lt is worth noting that, in general, some relationship must be im posed
am ong the endpoints to get compatible boundary conditions. Otherwise, the
situation is much like the unsupported beam  in the previous section. ln par-
ticular, suppose that no relations are im posed on the endpoints. Certainly

equations (7.25) and (7.26) are satisfied, but since éz and (qy are indepen-
dent and arbitrary at each endpoint we have that p = 0 and .bI = 0 at each
endpoint. Hence we have the boundary conditions

t'?/
=  0,

ç'ly?

J = 0,

that must be satisfied at each endpoint. Since any extremal must also satisfy
the Euler-lsagrange equation (7.22), the boundary conditions (7.27) imply

zt o
.fJzo 'gy tf''' - 0*

dH t9/
dz dz

ln addition, we know that

(cf. Section 2.3)4 hence, the boundary conditions (7.28) also give

21 ('?/dz = 0.
t'?z20

Equations (7.29) and (7.30) pose additional restrictions on y that are generally
not compatible with the Euler-lsagrange equations. For instance, suppose that
/ does not depend on z explicitly. Then we know that .bI = const. along any
extremal (Section 2.3) . Since .bI = 0 at the endpoints we have that .bI = 0 for
all z and hence

Jly, y') - A(y)y'.

Finally, we note that the above arguments can be extended to cope with
functiona.ls that depend on several dependent variables. Let

where q = (t71, q,, . . . , qnl and L is a s11100th f-unction. lf J is stationary at q
then it can be shown that
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-  =  O@@ ô4k *vk

n

E rktî'?k - Hôt - 0
k=1

for k = 1, . . . , zz, and

at the endpoints tçj and f1. Here, the quantities pk and f'f are defined as

DL
Pk = ,ô4k (7.33)

and 6qk, éf are defined in a manner analogous to (qy and éz.

Exercises 7.2 :

rrransversality Conditions

and consider the problem of finding s11100th f-unctions y such that J is sta-
tionary, at one end ylzçj) = yçj, and at the other end y is required to lie on a
curve F described param etrically by

r($) - tzr ($), yr ($)),

for ï CE R. We know from Section 7.2 that any candidate for a solution to
this problem must be a solution to the Euler-lsagrange equation (7.22) that
passes through the point (zo, y(tl and intersects the curve F (figure 7.7). A
solution to this problem, however, will also have to satisfjr equation (7.26),
and this may (and generally does) limit the choice of extremals. lf we return
to the analysis of the previous section for this problem, we know that ?)(z1)
and ;(z1) are related through equation (7.34)4 i.e., all variations must have
an endpoint on the curve F. This means that we can associate the ttvirtual
displacement'' (qy at z = zl with dyr dl and the ttvirtual displacement'' Jz
with dzr d1. Condition (7.26) thus becomes
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dyr dzr
p - H = 0,dl dl

where p and .bI are evaluated at z = z1. ln this fram ework we do not know a
priori what value to assign to z1, but we do know that the point (z1, !/(z1))
lies on the curve F. lf we know either zl or !/(z1), then we would also know
at which value of ï to evaluate the derivatives in equation (7.35) . We can
thus regard equation (7.35) as either an equation for ï or an equation for
z1. Geometrically, the vector (t/z.r d1, dyr d1) is a tangent vector on F. lf
v = (p, -f.f), we see that equation (7.35) corresponds to the condition that
v be orthogonal to the tangent vector. Equation (7.35) is sometimes called a
transversality condition.

Evidently, the above analysis can be readily extended to cope with the
problem of finding extrema for J when one endpoint is required to be on a
curve Ftl and the other endpoint on a curve F1. lf the curve Ftl is described by

(zro (c), tvro (c)), c e Eco, czl and the curve z-l by (zz-j ($), yn ($)), .i' CE ($(), &j ,
then

dyr, t/zz'o
n - LI = 0d

a ' da

t/tvz't t/zz't
p - LI = 0.dl dl

Exam ple 7..3. 1 ; Let
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(x1, y1)

.A
r 

=  -I, r(o = (xst(y), yst(y))y
r

> 1
(0, 0)

Fig. 7.8.

and consider the problem of finding the functionts) y for which J is stationary
subject to the condition that 3/(0) = 0 and that (z1, !/(z1)) lies on the curve
described by (7.34).

Geometrically, we are finding the distance of a plane curve F from the
origin. The extremals for this problem will be line segments through the ori-
gin, and we seek among the segments that intersect F the one for which the
arclength is an extremum (figure 7.8).

For this problem,
t'?/ y?

# = =tg ? ?2 '# 1+ #

W e thus have
dyr y' dzr 1

+ = 04dl 1 
+ y?2 dl 1 + y?2
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dzr dyr dy( 
, ) ' (1, ) - 0.dl dl dz

Geometrically, equation (7.39) implies that for a stationary value of J, the
tangent to the extremal (i.e. , the line segment) must be orthogonal to the
tangent to F.

A bit of reflection shows that condition (7.39) can yield any number of
solutions depending on the curve F. lf for instance F is an arc of a circle cen-
tred at the origin then any extremal will satisfy the orthogonality condition.
For illustration, let us suppose that F corresponds to the curve described by

a 1
r($) - ($ - 1, .i' + j.),

for ï CE R. We know that the extremals for this problem are of the form
y = zrzz. Now,

dzr dyr dy( (y , (y ) ' (1, (s) = (1, 20(1, zrzl = 04

21m, + 1 = 04

1ï =  -  .

2w

The extremal and F have the point (z1, !/(z1)) in common and therefore

The above relation provides two equations for zl and zrz. After some algebra
we see that ?rz must satisfjr the relation

4w 3 + 1 = 0.

and hence the only extremal satisfying condition (7.39) is
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ro(c) - (- a2, c),
r,($) - ($, ($ - 1)2),

where c, ï CE R, respectively. We consider the problem of finding an extremal
y for J subject to the condition that (zo, y(tl lies on Ftl and (z1, 3/1) lies on
F1. W e know from Exam ple 7.3.1 that the extrema.ls must be of the form
y = zrzz + b for some constants ?rz and 5. The f-unctions p and .bI are given by

equations (7.37) and (7.38), respectively; hence,

p = ,1 + w 2

and
1S

= -  .

1 + w 2

The transversality conditions (7.36) thus imply
?rz - 2c# = 0

2za(ï# - 1) H- 1 == 0,
(7.40)
(7.41)

and similarly

and the relations

1j'# =  1 - .
2m

Transversality conditions can be derived for problems that involve several
dependent variables. Consider, for example, the problem of finding s11100th

functions q = (t71, q,) such that the f-unctional
tl

J(q) - Llt, q, il) dt
te
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is stationary subject to the condition that q(fo) = qtl (flxed endpoint) and
q(f1) is required to lie on a surface E given by t = #(q). Evidently, an extremal
to the problem must satisfy the Euler-lsagrange equations (7.31) and the two
boundary conditions given by the fixed endpoint. W e can glean the appropriate
boundary conditions at the other endpoint from equation (7.32).
Equation (7.32) must be satisfied for all variations near q with an endpoint

on E . ln particular, we can consider variations with endpoints q, = const. on

E. For this special class of variations equation (7.32) gives

3?lét?l - V éf = 0,

DL :#-  # = 0.
t%2 ç'kz

Exam ple 7.3.3:

q(0) - 0,
and

We seek an extremal for J subject to the condition that the endpoint q(f1) lies
on the surface defined by '?). Geometrically, the problem amounts to finding
the curve in 1:.3 from the origin to the surface defined by '??û (a cone with vertex
at (1, 1, 0)) such that arclength is minimum.

The Euler-lsagrange equations show that q is of the form

(j = ctf + p,

Now,
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kk
Pk = ,1 + (2 + jz21

and

ff = r1I1 + /212 - f
1

1 + 12 + (21 2

so that the transversality conditions (7.45) and (7.46) yield
t'?'?)kk + = 0,
ç'kk

for k = 1, 2. Geometrically, the above condition indicates that at the fl end-

point the tangent vector to the extremal (11, t%) is parallel to V'?); i.e. , the
extrem al is normal to the surface. The transversality condition reduces to

t?k(f1) - 1 ctkfl - 1
(vz(fz) - 1)2 :- (v2(f1) - 1)2 fl

hence,

Equation (7.47) implies
2 2 j.ct 1 + (22 = ,

The extremal is thus given by the line

t
qklt) - ,W

Exercises 7.3 :

1. The functional for the brachystochrone is

zl j. y. yt2

J (tv) - jv y dz .
Find an extremal for J subject to the condition that 3/(0)
(z1, !/(z1)) lies on the curve y = z - 1.
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2. Let 21

J(tv) - (y'2 + tv2) dz.
o

Find an extremal for J subject to the condition that 3/(0) = 0 and
(z1, !/(z1)) lies on the curve y = 1 - z. Determine the appropriate con-
stants in term s of implicit relations.

3. Lagrange multipliers provide an alternative approach to deriving transver-

sality conditions. Consider the problem where the (z1, 3/1) endpoint is re-
quired to be on the curve defined by glz, y) = 0, and let

where ,L is a Lagrange multiplier and :'è = y + 6p. Derive the transversality
condition

t'? g 
...
J.t'?

P + V  = 0
t'?z ç')y

at (z1, 3/1). (1n this problem, the Jz and (qy variations are independent.)
4. Let q = (t71, q,) and consider a f-unctional of the form

tl

J(q) - zztf, q) 1 + 41 + t11 dt,
to

along with the boundary condition q(fo) = qtl (flxed endpoint) and the
condition that the fl endpoint lie on a surface E defined by t = #(q).
Show that the extrem als must be orthogonal to E.

5. Let q = (t71, q,) and
tl

J(q) - (4 + 4 + 2qïq,4 dt.
0

Given the condition that q(0) = 0 and that fl = t71(f1) determine the form
of the extrem al for J and derive the im plicit equations for the integration
constants and f1.

6. Let q = (t71, . . . , qn). Derive the general transversality conditions for a
functional J to have an extremum subject to one endpoint fixed and the
other endpoint on a hypersurface defined implicitly by .ty(q, t) = 0.
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T he H am iltonian Form ulation

Given the existence of a certain transform ation, the n, Euler-lsagrange equa-
tions associated with a variational problem can be converted into an equivalent
system of 2/, first-order ordinary differential equations. These equations are
called Ham ilton's equations, and they have som e special properties. ln particu-
lar, the derivatives in this system are uncoupled, and the differential equations

can be derived from a single (scalar) f-unction called the Hamiltonia.n. Given
a Hamiltonian system, another Ham iltonian system can be constructed by a
special type of transform ation called a symplectic map. lt may be possible to
find a symplectic map that produces a Hamiltonian system that can be solved
and thereby used to solve the original problem. The search for such a m ap
leads to a partial differential equation called the Ham ilton-lacobi equation.

ln this chapter we discuss the connexions between the Euler-lsagrange
equations and Ham ilton's equations. W e first discuss a certain transform a-
tion, the Legendre transformation, and then use it to derive Hamilton's equa-
tions. Symplectic m aps are discussed briefly in the third section, and the
Hamilton-lacobi equation is then derived. The motivation in this chapter for
the alternative formulation is solving the Euler-lsagrange equations. W e thus
focus on the use of the Hamilton-lacobi equation as a tool for solving cer-
tain variational problems. ln particular, we discuss the m ethod of additive
separation for solving the Hamilton-lacobi equation. This method has m any
limitations, but there is a paucity of analytical techniques for solving varia-
tional problems, and the Hamilton-lacobi equation provides one additional

(albeit specialized) tool that has applications to problems of interest. Beyond
being simply a tool for solving the Euler-lsagrange equations, the Hamilton-
Jacobi equation is im portant in its own right. lt plays a central rôle in the
theory underlying the calculus of variations.
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8.1 The Legendre rrransform ation

The reader has doubtless encountered point transformations and used them
to solve differential equations or evaluate integrals. A point transform ation

from one pair (z, !/(z)) to another pair (.X, F(.X)) consists of relations of the
form

x = xtz, y)
F = F(z, y).

Another type of transformation that plays an important part in differential
equations and geometry is called a contact transform ation. Contact trans-
form ations differ from point transformations in that the functions defining
the transformation depend on the derivatives of the dependent variable. One
of the simplest and most useful contact transformations is called the Legen-
dre transform ation. This transformation has som e rem arkable properties
and provides the link between the Euler-lsagrange equations and Hamilton's
equations. W e consider first the simplest Legendre transformation involving
one independent variable.

Let y : gzt), z11 --+ R be a s11100th function, and define the new variable p
by

r -- v'(z). (8.1)
Equation (8.1) can be used to define the variable z in terms of p provided
!/??(z) # 0. For definiteness, let us suppose that

:(//(z) > 0 (8.2)

for all z CE gzt), zll. lnequality (8.2) implies that the curve y described by
r(z) = (z, !/(z)), z CE gzt), z11 is strictly convex upwards in shape. The new vari-
able p corresponds to the slope of the tangent line (figure 8.1). Geometrically,
one can see that under these conditions any point on y is determined uniquely
by the slope of its tangent line. Suppose now that we introduce the f-unction

/(r) - -tv(z) + vz. (8.3)
Here, we regard z as a function of p. Equations (8.1) and (8.3) provide a
transformation from the pair (z, !/(z)) to the pair (p, #(p)). This is an example
of a Legendre transformation. A remarkable property of this transformation
is that it is an involution', i.e., the transformation is its own inverse. To see
this, note that
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where we have used equation (8.1). Note also that
- H(p) + zp = - (-!/(z) + pz) + pz = !/(z).

These calculations show that if we apply the Legendre transform ation to the

pair (p, #(p)) we recover the original pair (z, !/(z)).
Example 8.1.1: Let ylz) = z4 4. Then

s?y) - .j.4 ty.ss,z/s() - pk/z - z,
and that
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M any of the functiona.ls studied so far have integrands of the form
/(z, y, !/?). Suppose that we regard the arguments of / as three independent
variables, and define a new variable p as

:/
p = .ç'ly?

ln this transformation we regard z and y as passive variables (i.e., not par-
ticipating directly in the transformation) and y? as an active variable. ln
other words, we are looking for a transformation from the zl-tuple (z, y, !/?, /)
to the zl-tuple (z, y, p, .bI4. As in the previous example, we can regard equation
(8.4) as a relation for y? in terms of p, provided

t'?2/ / 0
.

(')y?2

The function LI is defined by

Vlz, y, 3?) = -/(z, y, !//) + Vv.

Using the sam e arguments as before, we see that this transformation is also
an involution.

Example 8.1.2 : Let /(z, y, !/?) = 1 + y?2. Then

t'?/ y?
# = = ;ôy? 1 + y?2

? P
# = ,

1 - 2/

since y? and p must be of the same sign. The function LI is thus

The quantities p and .bI defined by the Legendre transformation have al-
ready com e into prominence in the theory. For example, it is precisely the
quantity .bI that is constant along extremals when / does not contain z ex-
plicitly (Section 2.3). Moreover, .bI appears as a term in the general endpoint
condition derived in Section 7.2. Note that, for the passive variables in the
transform ation,
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DII t9/
dz dz
*# */
ôy dp

Let us now consider a Legendre transformation involving a f-unction
L(t, q, ù), where L is a s11100th function and q = (t71, q,, . . . , ty,zl. ln this trans-
form ation the variables t and q are regarded as passive. Let

pk = ,Ak

for k = 1, 2, . . . , zz. Equations (8.7) connect the active variables tkk and pk.
The implicit f-unction theorem can be invoked to show that equations (8.7)
can (in principle) be solved for the tkk provided the n, x n, Hessian matrix

192 L ()2 L :2z,
.î,t91.î,t)1 'î'tjtiî'tja ' ' ' 'î'titigla

192 L ()2 L :2z,
X'lza = 'gtiaptit 'gtjaptja ' ' ' 'gtiaptia

0%L :2l p2o
:(a:(1 plapla ''' :(a:(a

is nonsingular, i.e., satisfies the Jacobian condition

where the variables (k are regarded as functions of p = (p1, pa, . . . , p,z), q and
t .

The Legendre transformation defined by equations (8.7) and (8.9) is also
an involution. ln particular,

n

- ff(f, q, p) + kkpk - L(t, q, ù).
k=1

The function .bI in the above transformation is called a H am iltonian func-
tion and the f-unction L is called a Lagrangian. The ttnew'' coördinates
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(f, q, p) are sometimes called generalized coördinates. The set of points
defined by the pairs (q, p) is called the phase space.

ln mechanics the variables pk are called the generalized m om enta. The
name stems from f-unctionals modelling the motion of particles (Section 1.3).
The integrand in this case is of the form

Llt, q, ù) - T(f, q, ù) - t-tf, q),

where T is the kinetic energy, U' is the potential energy, and q represents the
positions of the particles at time f. For a single particle of mass ?rz in space,

if q = (t71, q,, tya) are the Cartesian coördinates of the particle, then

1 z 1T(f
, q, ù) - j.z'zltkl - .jzrzt/ + 4 + t11);

DL :T
pk = = = Trzlk,

t'Ak t'Xk
and pk is thus a component of the momentum vector. For j particles in space,
we have n, = 3j and each pk is a component of a momentum vector.

Exercises 8.1:

8.2 H am ilton's Equations

Let J be a functional of the form
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DL
Pk = ,Ak

and

tkk = - ,&
/?k

where .bI is defined by equation (8.9). Now t and q are passive variables in
this transformation so that

(').FI t'?fv
ç')t t'?f '

DII tgfv

8qk t'Xk
Since q is an extremal we have from equations (8.13) that

DL d tgfv
= 70 ç''kk = *'t'k

k

and therefore equation (8.17) implies that
DH>

k = -gy.

The solutions q to the Euler-lsagrange equations (8.13) are thus mapped to
solutions (q, p) to the equations (8.15) and (8.18) under the Legendre trans-
formation. Conversely, suppose that (q, p) is a solution to equations (8.15)

:2 .u' 1and (8.18), and that the n, x n, matrix with elements ( o oqk ) is nonsingular;
i.e.,

t'? (11, ti2, . . . , kn.l=  detlklx ,# 0.
tg (r1, r2, . . . , ra)

Then equations (8.15) define a Legendre transformation from (f, q, p, .bI) to
(f, q, (k, L) with L as defined by equation (8.11). We thus have that equations
(8.14) and (8.17) are satisfied, and hence equation (8.18) implies that

(').FI t'M  dpk ('?.L d ('?.L (')L
+ = - + = - ws + = (),8

qk txk dt txk Jf Ak txk
1 Note that

0 (ti1 , tiz, . . . , (.al 0 (y'1 , p2, . . . , y'.a) 1
0 (y'1 , p, , . . . , pn ) 0 (ti1 , (2 , . . . , tiw.) =

so that condition (8. 19) is satisfied if and only if condition (8.8) is satisfied.
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so that q is a solution to the Euler-lsagrange equations (8.13). The involutive
character of the Legendre transform ation thus indicates that the problem of
solving the system of n, Euler-lsagrange equations is equivalent to the problem
of solving the system of 2/, equations (8.15) and (8.18).

Prim,a Jacie, it seems that we have gained little by exchanging n, second-
order differential equations for 2/, first-order differential equations, but the
new system of equations has some attractive features. The Euler-lsagrange
equations are second order and generically nonlinear in the first derivatives.
M oreover, the first derivatives in this system are generally coupled. The new
equations are of first order. The derivatives are uncoupled, and the system can
be derived from a single generating f-unction, the Hamiltonian. The system of

of 2/, equations (8.15) and (8.18) is called a Hamiltonian system, and the
equations are called H am iltonhs equations.

ln the transition from the Euler-lsagrange equations to Hamilton's equa-
tions n, new variables, the generalized mom enta, are introduced. ln Hamilton's
equations, the position variables q and the generalized momenta variables p
are on the same footing and regarded as independent. This approach can be

somewhat conf-using at first encounter given that q and ('l (hence q and p) are
dependent in the original problem.z The concern here is that q and (k are not
independent and therefore cannot be varied independently. ln contrast, q and
p are independent in Hamilton's equations and can thus be varied indepen-
dently. ln fact, the Legendre transformation that defines the new variables p
also ensures that these variables can be varied independent of q. To see this,
we introduce the f-unctional j defined by

tj n

-/(q, p) - ptk - Hlt, q, p) dt,
to jzzz 1

where q and p are regarded as independent variables and tkk is the derivative
of qk (i.e., not regarded as a f-unction of p). Evidently the integrands defining
J and .1 are equivalent under the Legendre transformation and hence J = J.
Suppose now that we vary the pk but leave the qk fixed. Let

13 = p + 6/7,

tl n

J-(q, 13) - J-(q, p) - H(t, q, p) - H(t, q, 13) + k (>.f - pj) dt
to jzzz 1

tl N. Lr).yg
= tî pj - + tkj dt + (?(62).ç'èpjt

o j=ï

2 W e are not alone. ln his book Applied DIj-ferential Geometry Burke (201 addresses
the dedication as follows: tt'i'o all those who like me have wondered how in the
hell you can change (k without changing t?.''
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J'(q,l3) - J'(q,p) - 0/2).

This calculation shows that variations on p do not affect variations on j.
Although q and p are independent variables in j, only the variations of q
affect the variation of j. This situation is also reflected in the derivation of
Hamilton's equations. Specifically, equation (8.15) is valid for any pair (ù, p)
as it is a property of the Legendre transformation; in contrast, equation (8.18)
comes directly from the Euler-lsagrange equation. Only functions q and p
corresponding to an extrem al for J will satisfy these equations.

Exam ple 8.2.1: Sim ple Pendulum
Consider the pendulum of Example 1.3.1. The kinetic energy is

1 z z 1 z
rp (j;T = j.zrz (:il (f) + # (f)) = j.zr?.z ,

and the potential energy is

Hamilton's Principle implies that the motion of the pendulum is such that
the f-unctional

J(/) -

is an extremum. Let q = 4 and

Then
(')L z

p = = wty j,
(%

p1 = 
z .zrzé

so that

The Ham iltonian .bI is given by
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Hamilton's equations are thus

For this exam ple .bI corresponds to the total energy of the pendulum. The
Euler-lsagrange equation is

d tgfv DL z
-  = zz?f 4 + vrtgf sin q = 04)-@ (% ôq

> vrtgf sin q g( 
= = = - sin qt0 2 

zrzé2 é

in agreement with the Euler-lsagrange equation.

Exam ple 8.2.2 : G eom etrical Optics
Let (z(z), ylz), z), z CE gzt), z11 describe a space curve y. The optical path
length of y in a medium with refractive index zztz, y, z) is given by

Zlf, q, tk) = zzlf, q) 1 + 1ù12

is called the optical Lagrangian. Here q = (t71, q,), zztf, q) = zztz, y, z), and
' denotes d dt. The generalized momenta are given by
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and hence

Pk
2 2 21't -  /)1 - pjj

and l-lamilton's equations are

We have already encountered the Hamiltonian (in a slightly different guise)
in Section 2.3. W e know from Chapter 2 that if L does not contain the vari-
able t explicitly, then .bI is constant along any extremal. lt is clear from the
Legendre transformation that L contains t explicitly if and only if .bI contains
t explicitly. Hamiltonian systems that do not depend on t explicitly are called
conservative. The pendulum in Exam ple 8.2.1 is an example of a conserva-
tive system. ln this example .bI = const. corresponds to the condition that the
total energy of the system is conserved. The Hamiltonian system derived in
Example 8.2.2 is not conservative unless the refractive index is independent of
z. Note that a nonconservative system such as this one may still have conser-
vation laws. Note also that a nonconservative system can be converted into a
conservative one by the introduction of a new ttposition'' variable correspond-
ing to t in the original formulation and using a new variable for tttime.'' For
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solving specific problem s, however, this observation is of limited value because
the first integral afforded by a conservative system is offset by the introduction
of a new dependent variable. Nonetheless, it is a useful observation because,
when convenient, we can always reformulate a problem to get a conservative
system and thus use general results for conservative systems.

Exercises 8.2 :

1. The Lagrangian for a linear harmonic oscillator is

where ?rz is m ass and k is a restoring force coefllcient. Show that

1 a a aHlt
, qtp) - (r + a? q ) ,2/2

where

= -  y
Derive and solve the Euler-lsagrange equation assuming ?rz and k are con-
stants. Derive Hamilton's equations and verifjr that the solution obtained
for the Euler-lsagrange equation is also a solution for Ham ilton's equa-
tions.

2. Derive Hamilton's equations for the catenary (Exercises 8.1-1). Verifjr that
the solution found in Fuxample 2.3.3 is also a solution of Ham ilton's equa-
tions.

3. For any s11100th functions 1(f, q, p) and 0- (f, q, p), the Poisson bracket
is defined by

'' 
(-)+ t'?t,?l (-)+ t'?t,?l(*

, 81 - /)() - .ç'kk t'?rk ôpk t'kk
k=1

Let .bI be the Hamiltonian function associated with a functional J, and
suppose that along the extremals for J

*(q, P) = const.

The function li is then called a first integral of the system . Show that

(*, V1 = 0.
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8.3 Sym plectic M aps

DHI
k = ,8pk

for k = 1, 2, . . . , zz. A sym plectic m apS is a transformation of the form

Qk = Qklf, q, P),

Pk = f?k (f , q, p) ,

such that the Hamiltonian system (8.21) transforms into another Hamiltonian
system

. t:/zQ
k = ,

(3pk

where .H* is a f-unction of f
, Q, and P. ln short, a symplectic map is a transfor-

m ation on the generalized coördinates that preserves the Hamiltonian struc-
ture. Sym plectic maps are also called canonical transform ations. These
m aps loom large in the classical m echanics lore. The reader is directed to Abra-
ham and Marsden (11 , Arnold (61 , Goldstein (351 , Lanczos (481 , and W hittaker
(731 among numerous other works on classical mechanics. ln this section we
briefly discuss symplectic maps primarily as a herald to the Hamilton-lacobi
equation.

W e know from the previous section that Ham iltonian systems such as

(8.21) and (8.23) can be associated with the extremals to the f-unctionals

3 The word symplectic comes from the Greek word sumplektikos meaning ttinter-
twined.'' There is also a bone in the skull of a fish by this name.
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respectively, where

lf we regard q and p as independent variables and ('l as the derivative of q,
then the Euler-lsagrange equations for the f-unctional

tl n

J(q, p) - pkkk - H(t, q, p) dt
to kccc 1

are precisely Hamilton's equations (8.21), and the solutions to equations (8.21)
correspond to the extremals for J. A similar remark holds for the other func-
tional j
We say that two functiona.ls J and j are variationally equivalent if

they produce the sam e set of extremals. A symplectic m ap is essentially a
transformation from the (q, p) phase space to the (Q, P) phase space such
that the resulting f-unctionals J and j are variationally equivalent.

ln Section 2.5 we showed that any nonsingular coördinate transformation
leads to a variationally equivalent f-unctional. This result can be extended to
functiona.ls involving several dependent variables. Transformations that in-
volve only position coördinates lead to variationally equivalent f-unctionals
and hence this class of transformations is sym plectic. But transformations
of this type are too restrictive, and, in the spirit of the Hamiltonian ap-
proach, we should let the momenta variables participate in transformations
as independent variables. The problem is, if the pk transform , the resulting
transform ation need not be symplectic.

One m ethod for constructing symplectic m aps involves the introduction
of a generating f-unction. The method is based on the observation that two
functiona.ls are variationally equivalent if their integrands differ by a perfect

differential (cf. Exercises 3.2-4). Suppose that there is a sm00th function li
such that

Then the corresponding functiona.ls J and j are variationally equivalent and
the transformation (8.22) is symplectic. We can use the transformation (8.22)
to convert li to a function of f, q, and Q, and equation (8.24) can thus be
recast in the form
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d+ ..x ? om om - x. om
-  1--, t

-
txk'ik + oQ

k Qk) + ot 'dt k=1

vk = , Pk = - ,8
qk t'?ok

and

W(f, Q, P) - Hlt, q, p) + ot . (8.26)

Equations (8.25) provide relations for the symplectic map. Equation (8.26)
provides an expression for the transformed Hamiltonian f-unction.

Exam ple 8.3.1: H arm onic Oscillator
The Ham iltonian for a linear harmonic oscillator in one dim ension is of the
form

1 2 2 2
.bI = (p + a? q ) ,2w

where q corresponds to the position of a particle of mass ?rz at time f, p is the
momentum, and a? is a constant relating to the restoring force (see Fuxercises
8.2-1). The Hamiltonian system for the equation of motion is

Let
2Xq

*(t?, Q) - cot Q.2
This peculiar generating f-unction is chosen so that the resulting Hamiltonian
system is particularly sim ple.'l The mom enta coördinates are

p = = (vq cot Q,

and

p = - = a . (y.2y)(')Q 2 
sin= Q

Equations (8.27) and (8.28) can be used to determine the symplectic map
(8.22). lt is more convenient, however, to give the inverse transformation equa-
tions

2P
q = sin Q,

p = 2a?# cos Q.

4 Goldstein (351 , p. 389 provides a derivation of the transformation.
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This is a particularly simple system to solve.5 W e have

2ca a?
q = 

s, 
s i n -

w  t + c 1 ) ,
2= ca cos Y t + c1) .p =

Exercises 8.3 :

Derive similar equations for a sym plectic map if li is regarded as a f-unction
of p and Q.

2. Let li = S '' qkok. Show that this generating f-unction leads to a sym-k=1
plectic map that essentially interchanges the spatial variables with the
momenta variables. This further shows that these variables are on the
same footing in the Ham iltonian framework.

5 Of course
, it is even easier to solve the Euler-luagrange equation directly, but this

example gives a simple illustration of how a symplectic map can be used to reduce
Hamilton's equations to a simple form.
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3. Let li = S'' qkpk. Show that this function merely generates the identityk= 1
transform ation.

4. Let li = S '' gk (f, ql#k. Show that this generating function leads tok=1
point transformations; i.e., the Qk depend only on q and f.

8.4 The H am ilton-lacobi Equation

Although symplectic maps are of intrinsic interest, they are also of practi-
cal interest because they may lead to simpler Ham iltonian systems. ln this
section we target a particularly simple Ham iltonian system that can be read-
ily solved. The problem is to derive a generating f-unction that produces a
symplectic map leading to the simpler system. lt turns out that the generat-
ing function must satisfjr a first-order (generally nonlinear) partial differential
equation called the H am ilton-lacobi equation. Once a general solution
is found to the Hamilton-lacobi equation, the solution to the Hamiltonian
system can be derived by solving a set of implicit equations. The problem
of solving a Hamiltonian system can thus be exchanged for the problem of
solving a single partial differential equation. From a practical standpoint, a
single partial differential equation is generally at least as difllcult to solve
as a system of ordinary differential equations, and in this sense the victory
m ay seem Pyrrhic. Nonetheless, there are special cases of interest when the
Hamilton-lacobi equation can be solved. W e discuss some of these cases in
the next section. Although our motivation here is to solve Ham ilton's equa-
tions, it turns out that the Hamilton-lacobi equation plays a pivotal rôle in
the theory. The real profit from this reformulation is a deeper understanding
of variational processes.

8.4.1 The General Problem

Suppose that a generating function li can be found such that the transformed
Hamiltonian is a constant, say X = 0. The symplectic map produced by li
then yields the Ham iltonian system

that can easily be solved to get

where the ctk and X are constants. Since X = 0, equation (8.26) implies that
li must satisfjr
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I'Ilt, q, p) + - 0.ç')t

ln the above equation, the function li is regarded as a f-unction of q and Q.
To eliminate the pk variables in this expression we can use equation (8.25),
and thus get

ff f,v1,...,va, ,..., + - 0.ô
qk :va ôt

Equation (8.31) is a first-order partial differential equation for the generating
function li called the H am ilton-lacobi equation. Hamilton derived the
equation in 18344 in 1837 Jacobi m ade a precise connexion between solutions

of the differential equation (8.31) and the corresponding Hamiltonian system
(Theorem 8.4.1).
Exam ple 8.4.1: G eom etrical Optics
The Ham iltonian derived for the path of a light ray in Exam ple 8.2.2 is

LI (f , q, p ) = - n? - ,,21 - p2: .

The Ham ilton-lacobi equation for this problem is

(')11 2 (')1i 2 (')+
-  /,2 -  -  + = ()4% k t'?t?z ç')t

The Hamilton-lacobi equation has two notable features. Firstly, the func-
tion li does not appear explicitly in the differential equation. Only the partial
derivatives of li are present in the equation. Secondly, the differential equation
does not depend on any of the Qk variables or partial derivatives of li with
respect to the Qk. ln essence, this means that if li is a solution to equation
(8.31) then so is any f-unction of the form li + /(Q), where / is an arbitrary
function. The f-unction li depends on the Qk, and one might rightfully query
exactly how these variables enter into the problem given no Qk dependence
in the differential equation. The answer is that the Qk enter into the problem
as initial data for the differential equation. Typically partial differential equa-
tions such as (8.31) are solved subject to a condition that li take prescribed
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values along a curve in the q space. Our problem is to find a generating func-
tion that produces the sim plified Hamiltonian system , and this am ounts to
finding a general solution to (8.31) containing n, arbitrary f-unctions of Q. No
uniqueness is expected for solutions to this problem ', we need the arbitrary
functions in order to invert the transformation to solve for the qk. W e explain
this more precisely after we introduce the concept of a complete solution.
Although we speak of arbitrary f-unctions of Q entering into solutions of

the Hamilton-lacobi equation, we know by construction that the Qk are in
fact constants and hence the arbitrary f-unctions of Q are also constants. W e
can thus regard a general solution to equation (8.31) as a function of the form
1(f, q, ct), where ct = (ctl, . . . , ctzzl, and the ctk are parameters that can be
thought of as the Qk when convenient. A solution li = 1(f, q, ct) is called
com plete6 if li has continuous second derivatives with respect to the qk, the
ctk and t variables, and the matrix M  defined by

*2 m *2 (f) :21
i5' i5' i5' i5' ' ' ' i5' i5't?1 t5t 1 t11 (22 t11 t5t zw

M  . . .
*2 m *2 (f) :21

i5' i5' i5' i5' ' ' ' i5' i5'qvv t2l qvv t2 2 qvv tzzw

is nonsingular; i.e.,

detlkl ,# 0, (8.33)
in the relevant q, ct domain of the problem. The condition (8.33) is a Jacobian
condition for the solvability of the qk given the f-unctions 0* . The next resultqa k
is fundam ental to the theory: it connects a com plete solutlon to the Hamilton-
Jacobi equation with the general solution to Hamilton's equations.

Theorem 8.4.1 (Hamilton-lacobi) Snppose tltat 1(f, q, ct) is a complete
solution to t/Jc Hamilton-lacobi equation (8.31). Tlten tlte general solution to
t/Jc Hamiltonian systevt

t'?# (').FI
tik = , f'k = - (8.34)8pk t'Ak

is given by t/Jc equations

=  - pk,ô
ak

= pkt:v
k

wltere tlte ,dk are zz arbitrary constants.

Proof: Suppose that 1(f, q, ct) is a complete solution to the Hamilton-lacobi
equation (8.31). Then li satisfies condition (8.33), and the implicit f-unction
6 Some authors call these solutions com plete integrals.
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theorem implies that equations (8.35) can be solved for the qk in terms of f,
the ctk, and the ,3k. Once this is accomplished equations (8.36) define the pk
in terms of these variables as well. Hence, equations (8.35) and (8.36) define
the f-unctions

qk - qklt, c., p),
pk - pk (f, c., p),

for k = 1, 2, . . . , zz. Here, ,d = (,d1, . . . , ,3n.). To establish the result we need to
show that the qk and pk defined by equations (8.35) and (8.36) satisfjr the
Hamiltonian system (8.34).

Substituting the solution li into the Hamilton-lacobi equation and differ-
entiating with respect to ct1 yields

('? ( (-81 At (% + x'X (% + ('?.rz
qV + ot ) - ocvïot + k-:J-,

. , 
ocvïoqk opk - 0.

t'?ct,

Now the equation

=  - ,d1t'?ctl

m ust be satisfied identically, and therefore differentiating with respect to t
J'ields;

d (*  (*21 SL (921 dqk
=  + = 0. (8.38)2-/ t'?ctl ç'ltôcvï t'kkt:ctl dtk= 1

By hypothesis, the solution is complete and thus all the second-order deriva-
tives of li are continuous; hence,

ô2+ :21
=  ,ç'ltôaï t'?ctlt'?f

a o,+ ogY X - = 0
ôqkôaj tgpk

k=1

V Strictly spealdng
, we should use 0 ot instead of d dt to denote partial differenti-

ation with respect to f holding the ak and pk constant. We nonetheless use d dt
or ' to denote this differentiation to avoid confusion with the operator 0 ot in the
Hamilton-lacobi equation which denotes differentiation with respect to f holding
the qk (as well as the ak and pdkl constant.
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M  = 0.

qk = 0
pk

for all k = 1, 2, . . . , zz.
To get the second set of Ham ilton equations we again substitute the solu-

tion li into the Hamilton-lacobi equation but now differentiate with respect
to qj. For j = 1,

($+ t:.r.f n ($+ (:.r..r
+ + S = 0.ôqïôt tAl ôqïôqk tgpk

k=1

The equation

11 = ç'èqk

m ust be satisfied identically and therefore

d om ..?az - o,+
>z - ù-io - oto

qï + 1112 oqkoqïbkqk 
k=1

o2+ - o2+ ou
-  oqïot + 11E) oqïoqk opk '

k=1
(8.42)

where we have used equations (8.40) and the relations

($+ (:21
=  

,ç'ltôqk t'Akt'?f
($+ (:21

=  

,ôqkôqk t-klt-kk

that follow from the continuity of the second derivatives. Subtracting equation
(8.41) from equation (8.42) gives

DH
/1 = - .ç'zqk

Similar argum ents can be used to show that

ôH>
k = - -c- ,

Uqk

for k = 2, 3, . . . , 'n,.
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From the standpoint of solving Ham ilton's equations, the above theorem
shows that we need not be concerned with the absence of initial data for
equation (8.31) and the resulting nonuniqueness. Any complete solution to
the Ham ilton-lacobi equation sufllces to enable us to construct a solution
to Hamilton's equations involving 2/, arbitrary constants and hence a gen-
eral solution to the underlying Euler-lsagrange equations. Given a variational
problem we can thus outline a procedure to get the solution based on the
Hamilton-lacobi equation as follows:

(a) determine the Hamiltonian .bI for the given problem;
(b) form the Hamilton-lacobi equation;
(c) find a complete solution li to the Hamilton-lacobi equation;
(d) form the equations

X = - ,ç'lak

where the pk are constants; and
(e) solve the n, equations in part (d) for the qk to get a general solution
qlf, ct, /$).

Exam ple 8.4.2 : G eom etrical Optics
Suppose that the optical medium in Exam ple 8.4.1 has a refractive index
n, = ysf-qï, where p. > 1 is a constant. The relevant domain for this problem
is qï k 1 (so that n, k 1).8 The Hamilton-lacobi equation for this problem is

( om y 2 .y ( om y 2 .y ( o+) 2 zycg.t'kl (9qz t'?f
The reader m ay verifjr directly that

is a solution to equation (8.43). The matrix M is given by

where -4 = j.tzqï - tctzy + ct2zl ? and hence
G2detlkl =  .W

8 Recall that the refractive index is the ratio of the speed of light in 'vacuo to the
speed of light in the medium .
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ôI a1d
/71 = - = z - qz

t'?ctl p,

(')+ cta-ztpz = - = - f,
t'?ctz v,2

/,2 a c.l + c.lt?1(f, c., p) - (/% + f) + zc.1 p,
G 1

qzlt, c., /t7) - t + /% - ,t?1.
G2

Although part (d) in the above plan may in itself be a formidable task
to accomplish in practice, the crux is part (c). First-order nonlinear partial
differential equations are generally harder to solve than system s of ordinary
differential equations. The only general solution technique for these partial
differential equations involves the use of characteristics, which are defined by
a system of ordinary differential equations. lt turns out that the system of
differential equations defining the characteristics is equivalent to the origi-

nal Hamiltonian system. ln general, to implement part (c) of the above plan
we first have to solve Hamilton's equations in order to solve the Hamilton-
Jacobi equation. This rather defeats the purpose of using the Hamilton-lacobi
equation to solve the original problem . Generically, the Ham ilton-lacobi for-
m ulation does not actually help to find solutions. There are cases, however,
when the solution to the Hamilton-lacobi equation can be found without re-
sorting to characteristics. Solution techniques such as separation of variables
do not rely on knowledge of the characteristics and therefore circumvent the
problem of integrating Hamilton's equations first. The success of the solution
technique depends crucially on the type of Hamiltonian, but it turns out that
a number of problems of interest have Hamiltonians that allow a separation
of variables. W e discuss this technique in the next section.

8.4.2 Conservative System s

A special but important case concerns conservative Hamiltonian systems. The
Hamiltonian does not depend on explicitly t for such systems, and we know
from Section 3.2 that .bI is constant along any extremal. W e can exploit this
situation because we know that the variable t can be separated out in the
complete solution to the Hamilton-lacobi equation. ln other words, we know
that there is a complete solution of the form

where .bI = J(a) = const. along the extremal q(f, ct, ,d). We can simplify
matters further by identifying one of the coördinates, say Qn = ctzz, with
J(a). This approach produces the partial differential equation
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ff v1,...,va, ,..., = aa,ô
qk :va

which we call the reduced H am ilton-lacobi equation.
The f-unction !#' in the solution to the Ham ilton-lacobi equation is evidently

a solution to the reduced Hamilton-lacobi equation. M oreover, it is clear that
li is a complete solution if !#' is a complete solution', i.e., !#' has continuous
derivatives of second order and the matrix

is nonsingular.
The function !#' is of interest as a generating f-unction for a symplectic m ap

in its own right. The symplectic map S : (q, p) --+ (Q, P) produced by !#'
transforms the Hamiltonian #tq, p) to the Hamiltonian X(Q, P) = Qzz. The
new position and m om enta coördinates must satisfy the equations

a u'm
Q' = - - = Ok ,

ôlok
t'? H- 0 i f 1 s; k s; n -  1b ,
(')ok -1, if k = zz,

and hence the Qk are constants for k = 1, 2, . . . , zz, and the Pk are constants
for k = 1, 2, . . . , n, - 1. The anomalous coördinate is fk because fk = pvv - f,
where pvv is a constant.

The symplectic map S has an interesting geometrical interpretation. For a
given constant E, the condition #tq, p) = E produces a hypersurface in the
zzz-dimensional phase space and a (hyperlcylinder in the 2/, + l-dimensional
(f, q, p) space. The extremals correspond to a family of curves that lie on the
cylinder. The symplectic m ap S transforms the picture dram atically. ln the
(f, q, p) space, the cylinder is transformed to a hyperplane and, even more
remarkable, the family of extrem a.ls in the original space is transformed into
a fam ily of extremals in the new space, where each extremal is a straight line
inclined at an angle r 4 to the f-axis. Roughly speaking, the symplectic m ap
S ttflattens out'' the cylinders .bI = E and ttstraightens up'' the extremals.

lf the Ham iltonian system is conservative, we generally start with the
reduced Hamilton-lacobi equation. Once a complete solution !#' is determ ined
we can return to the solution li = W-ctzzf and proceed as before. This am ounts
to solving the equations

k = 1, 2, . . . , n, - 1,
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for the qk in terms of t and the constants ct, ,3. The absence of t in the
Hamiltonian simplifies the problem slightly, but all the comments about the
difllculty of solving the Hamilton-lacobi equation still apply to the reduced
equation.

Exam ple 8.4.3: H arm onic Oscillator
The linear harmonic oscillator of Exam ple 8.3.1 has the Ham iltonian

1 a a aH 
-  (p + a? q ) .2.,,,z

The reduced Ham ilton-lacobi equation is thus

1 ))ov)22- nq
('?!P

=  zzrzct - (v2()2

where ct > 0 is a constant. The generating f-unction is therefore of the form

W e need only one arbitrary constant for a com plete solution so we can ignore
the integration constant. A solution to the reduced Ham ilton-lacobi equation
is thus

!ff ( q , ct ) = S q tz 2 - q 2 + a 2 s i n - 1 -V 1 )2 a '
where

2m a a?
q ( L ) = - 

sj 
s i n -

w  ( ,d + t ) 1 ,
which is equivalent to the solution found in Example 8.3.1.
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Exercises 8.4 :

21

J(tv) - tv/2 dz.
20

Derive the Hamilton-lacobi equation corresponding to this f-unctional.
Solve the Euler-lsagrange equation for this f-unctional and construct a
solution to the Hamilton-lacobi equation.

2. Let n, = vtly) denote the refractive index in an optical medium. Fermat's
Principle implies that the path of a light ray from a point (zo, y(tl to a
point (z1, 3/1) is an extremal of the f-unctional

21

J'(:4/) = Tz(#) 1 + :v/2 dz.
20

where ct and ,d are constants. Use this solution to find the corresponding
extremals im plicitly.

3. The Lagrangian for the motion of a particle of unit m ass in the plane
under the action of a uniform field is

where q denotes the Cartesian coördinates of the particle and g is a con-
stant (Example 3.2.2). Derive the Hamilton-lacobi equation and show
that a solution to this equation is

8.5 Separation of Variables

The only chance we have of solving a problem using the Hamilton-lacobi
equation without essentially solving the Hamiltonian system first is if a solu-
tion to the partial differential equation can be obtained without resorting to
characteristics. One solution technique that avoids characteristics is called the
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m ethod of additive separation or simply separation of variables.g In
this section we present the method and give some exam ples. W e also discuss
conditions under which we know that a separable solution exists. W e limit our
discussion to conservative systems.

8.5.1 The M ethod of Additive Separation

:W :Wff 
v1,..., qn, ,..., - ;? - 0,ô

qk :va

where E is a constant. Suppose that the terms qï and oo'F appear in this
V1

equation only through the combination .ty1(t71, oo'F ), where gï is some knownV1
function. Equation (8.46) could be then recast in the form

W = !l%(t?1, Q) + X1 (t?2, . . . , qn, Q) .

Substituting the above expression for !P' into equation (8.47) gives

t'9lp'l ('IRï t'9f/1JP 
p1(v1, ), v2,...,va, ,..., - ;? - 0,ôqk :v2 ôqn

and this equation must be satisfied for a continuum of qï values. Assum ing gï
is a differentiable function, this means that

DF :F % ï=  =  04%k tgpl % k

.t?,(t?,, !P','(t?,)) - (7,(Q),

where C1 is an arbitrary function of Q and / denotes d dqï. Equation (8.50)
is a first-order ordinary differential equation for !P'1.
The best scenario is if each pair qk , ('?!P 0qk enter into equation (8.46) only

through a combination gklqk, ('?!P oqk). ln this case, the partial differential
equation can be written in the form

9 The latter term also includes the method of multiplicative separation, which we
do not use.
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:W :WJP 
p1(v1, ),...,pa(va, ) - ;? - 0,ôqk :va

!#' = !&(t?1, Q) + *2 (t?2, Q) + ' ' ' + Snlqn, Q).

gk (qk, IP'J (qk)) - (7k(Q).

Here, the Ck are f-unctions of Q satisfjring the equation

F(C1(Q), . . . , Czz(Q)) - E - 0,

but are otherwise arbitrary. A reduced Hamilton-lacobi equation is called
separable if there exists a complete solution !#' of the form (8.51). The func-
tion !#' is called a separable solution.

The method of additive separation amounts to the steps:

(a) assume a solution of the form (8.51) and substitute it into equation (8.46).,
(b) identify the gk and form the differential equations (8.52)., and
(c) solve the ordinary differential equations for the !&.
Once the separable solution !#' is determ ined, a complete solution li = !#' - Et
can be obtained for the Hamilton-lacobi equation and we can proceed to find
the position functions qk as discussed in the previous section.

The obvious weakness with the above method is that a separable solution
need not exist: there is no guarantee that the requisite gk can be found.
The existence of separable solutions depends on the Hamiltonian and even a
simple coördinate transformation of the position variables can affect whether
a separable solution is available. Conditions under which we can predict the
existence of a separable solution are discussed in the next subsection.

Exam ple 8.5.1: ln Cartesian coördinates, the motion of a particle in space
under the action of gravity acting in the qs direction produces the Hamiltonian

1 a a aH 
-  (r1 + p, + ra) + nzgqz,2.,,,z

where ?rz is the m ass of the particle and g is a gravitational constant. The
reduced Hamilton-lacobi equation is

( (3$) 2 .y ( (:lp' yj 2 .y ( ôbp yj 2 .y ggygogy .-rys,.s .(y%k t'?t?2 ç'èqz
where E, the total energy of the particle, is a constant. Suppose that equation
(8.54) has a solution of the form
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!#' - !&(t?1, Q) + !&(t?2, Q) + Watva, Q).

W e can thus take
ç'lbp'k . t'?lp'k

gk (qk, o ) = o ,
qk qk

for k = 1, 2, and
t'?lpa t'?!p 2 

zgzlqz, o
qs ) - joqs ) + 2,,z gqz.

W e have that
ç'èô'k

=  ck (Q),ô
qk

for k = 1, 2, so that

Wk = Ck (Q)t2k -1- Nk (Q) ,
where the K k are arbitrary f-unctions. The differential equation involving gs
yields

=  (7a(Q) - zm,zgqst'k
a

=  zzrz.& - c?(Q) - c#(Q) - zvrtzgqs ,

where ffa is another arbitrary f-unction. A separable solution to equation (8.54)
is therefore

.i = zzrz.& - c?(Q) - c#(Q) - zvtzzgqs .

For a com plete solution we need only three arbitrary constants present in !P'.
Let C1(Q) = Q1 = ct1 and C2(Q) = Q2 = ctz. The constant E is also arbitrary
in the above solution so we may take E = Qa = cta and let ff(Q) = 0. The
solution !#' is then of the form
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J1 = zzrzcta - a2 - (12 - zvtzzgqs .1 2

.5,2,,p.The matrix M with entries ( o o.k ) is given byqa

so that detlkl ,# 0, and the solution is thus complete.
Equipped with a com plete solution to the reduced Hamilton-lacobi equa-

tion, we can proceed to determine the position f-unctions q from the equations

The above example is a somewhat complicated method for obtaining a
solution that can readily be obtained from the Euler-lsagrange equations. The
next problem is not quite so easy to solve using the Euler-lsagrange equations.

Exam ple 8.5.2 : The motion of a particle in a plane under a central force
field whose potential per unit mass is U' leads to a Hamiltonian of the form

Here, qï = r and q, = 0 are polar coördinates. The reduced Hamilton-lacobi
equation leads to the differential equation

.e))2 +z(v(.?,) - s)) + ((,,.e))2 - (,,qî ) (oqï q,
and hence we may take
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t9!&
= (22 ,

ç'èq,

and

A solution to the reduced Hamilton-lacobi equation is thus

Now,

so that
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and hence the angular momentum of the particle is conserved.

8.5.2 Conditions for Separable Solutions*

The method of additive separation enables us to circumvent the problem of
integrating Hamilton's equations or the equivalent system of Euler-lsagrange
equations. Unfortunately, the m ethod is not generally applicable to Hamilton-
Jacobi equations and its success depends largely on the form of the Hamilto-
nian. As rem arked earlier, even coördinate transform ations affect the process.
W e saw in Exam ple 8.5.2 that the reduced Hamilton-lacobi equation for the
central force problem is separable in polar coördinates. The same problem ,
however, is not separable when it is formulated in Cartesian coördinates (see
Example 8.5.3). Some problems have more than one coördinate system in
which the Hamilton-lacobi equation is separable', others have no coördinate
systems that lead to separable solutions.lo

The im portance of identifying Ham ilton-lacobi equations that are sepa-

rable was recognized soon after the equation was first derived. Liouville (ca.
1846) studied the problem for the case n, = 2. For a special but important
class of Hamiltonians he established necessary and sufllcient conditions for

separability. Later, Stàckel (ca. 1890) generalized the results of Liouville for
systems where n, k 3. 80th Liouville and Stàckel were concerned with Hamil-
tonians where the underlying coördinate system is orthogonal. Levi-civita (ca.
1904) generalized the results for nonorthogonal coördinate systems. There are
still m any unanswered questions concerning the separability of the Hamilton-
Jacobi equation. The monograph by Kalnins (431 details some of the newer,
m ore specialized results in this field. Kalnins also discusses some of the basic
questions and provides a number of key references on the subject. Here, we
limit our discussion to a few elem entary results with exam ples.

A significant class of problems in mechanics has a Ham iltonian of the form

#tq, p) - T(q, p) + t-(q),

where U' is a potential energy term , and T is a kinetic energy term of the form

1 N'

T(q, p) - -; )é ck(q)r2,
k=1

10 The famous ttthree body problem'' is among these.
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where the Ck are positive f-unctions. The feature to note in the above form for
.bI is that the pk appear only in the combination p2k (this indicates that the
underlying coördinate system is orthogonal). Hamiltonians of this form lead
to a reduced Ham ilton-lacobi equation of the form

Tz 21 *!P
S Ck + U = ctl,V ôqk
k=1

where ctl is a constant. The results of Liouville and Stàckel concern essentially
equations of the form (8.55).

Theorem 8.5.1 (Liouville) .4 necessary and s'tz//cïczz/ condition Jor tlte
Hamilton-lacobi equation

.!. to Loovl-2 qk

81C
1 =  ,

cl + c2
/22Q  = 

,
cl + c2

vk + vzU =  .

cl + c2

and

Proof: W e first show that the equations for C1, C2, and U' are necessary
conditions for separability. Suppose that equation (8.56) is separable. Then
there exists a complete solution !#' of the form

!P'(q, c.) - !&(t?1, c.) + !&(t?2, c.),

' t C1 ( t'?Z 12'i ôqï
For simplicity, let

yt - ) ( o'9 !P ) 2 ,qk
.r? - ) ( o'9 !P ) 2 .q2
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Note that -4 depends only on qï and B depends only on q,. Equation (8.57) is
satisfied for a continuum of ct1 and 0,2 values, and differentiating this equation
with respect to ct1 yields

Q XI + C2O1 = 1,

(71-42 + (72.D2 = 0. (8.59)

A .5,,.p1 p'zra jt'9lp'l t'9!& '-' çb'qL , aqz
-4l.!?z - -4z.!?l = ,%

k tX2 (9 (ctl, ct2)
where the final factor on the right-hand side is a Jacobian term . The solution

!#' is complete and therefore the terms ç'lô'j t'Ak cannot vanish identically.
Moreover, detlkl ,# 0, so that the Jacobian term cannot vanish identically. We
m ay thus choose a particular set of values ctl, (12 such that these terms are

nonzero and solve equations (8.58) and (8.59) to get
+  ->

c = A2 c = /21 
Aj. p..k , 2 Aj. &  .
Aa - B A - B2 2 2

Since -4 does not depend on q,, neither -4l nor -42 depend on q,; a sim ilar
statement can be made regarding .P1 and BL? . W e may thus take p,1 = 1 -42 ,

/.:2 = -1 .B,, tzl = ytl -4z, and (z2 = -.P1 .BX. We can use equation (8.56) to
show that

hence, the equations for the Ck and U' are necessary conditions for separability.
To establish sufllciency, consider a Hamilton-lacobi equation of the form

1 
s, ( oop y 2 .j. y, ( oop y 2 .j. s,, + v, ..,,2(c1 + c2) qk :2 cl + (z2
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where 0,2 is a constant. Hence,

21
1 = -  tcta + ctltzl - zzll dqï,

p,1

and
21

2 = -  (-ct2 + ctltzl - v,) t/to .
/22

(Note that p,l, /.:2 > 0 since C1, C2 > 0 by hypothesis.) lt remains only to
show that the solution !#' determined in this m anner is complete. The solution
!#' has continuous second-order derivatives provided

M oreover,
-  crj 1
Mtv'r Mtv'r

M  = ,
Ga 1

Mav'f Mav'f

and thus
-  ((r1 + (rzldetlkl =  ,# 0.MzMavoq

The solution is thus complete in the domain defined by D > 0, E > 0.

Exam ple 8.5.3: The reduced Hamilton-lacobi equation of Fuxample 8.5.2

can be readily put in the form (8.61). The reduced Hamilton-lacobi equation
from this exam ple is equivalent to

1 :g? 2 :g? 2 2 Tz(v,)2 qk
t?1 + + = ct1,2

q2 (41 ('lq, q21 1

and we m ay take p,1 = v21 ? y, = 1, tzl = ql ? (rz = 0, vïqzg U (ty1) ? and v, = 0. We
could have thus concluded that a separable solution exists before we embarked
on finding it.

Suppose, however, that the problem was initially posed in Cartesian
coördinates (z, y). The reduced Hamilton-lacobi equation in this coördinate
system is

2 21 ('?!P ('?!P
+ + V( z2 + y2) = ctl.V t'?z ç')y

For the central force problem, the potential function U' must depend on z and
y only through the com bination z2 + y2. This means that we cannot get U'

in the separated form required by Liouville's theorem (unless U' is constant)
and hence no separable solution exists for this equation.
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The sufllciency part of the above theorem can be easily extended to higher
dimensions. Specifically, it can be shown that a Ham ilton-lacobi equation of
the form

2 21 ('?!P ('?!P vï + . . . + vn
p,1 + ' ' ' + p,,z + = ct1,2(c1 + . . . + c

,zl ç'Lkï t'?tyzz cl + . . . + czz
(8.62)

where the functions vk, Jzk, and ck depend only on qkt VrLk=1 O'k > 0, and
p.k > 0, adm its a complete solution of the form

W(q, ct) = !l%(t?1, ct) + ' ' ' + Tvblqn., ct).

ln fact, !P' is given by

e, - j
and

2W
k = (ctlck - L/k - Ctkl (lqk ,

p,k

for k = 2, . . . , zz. Reduced Hamilton-lacobi equations of the type (8.62) are
said to be in Liouville form .

lf n, = 2, then a Ham ilton-lacobi equation must be reducible to Liouville
form for a separable solution to exist. lf n, k 3, however, there are equations
that are not reducible to Liouville form that are nonetheless separable. Stàckel
studied this problem and arrived at the following characterization.

Theorem 8.5.2 (St:ckel) .4 necessary and s'tz//cïczz/ condition Jor tlte rc-
duced Hamilton-lacobi equation (8.55) to be separable ïs tltat tltere ctc/s/s a
nonsingnlar mtz/rïz U witlt entries ukj, where Jor j = 1, . . . , n,, ukj is a Xzzc-
tion o.f qk only, and a ctalqzmzz vtatriz w = (t&1, . . . , tcalT', where wk is a
Junction o.f qk only, s'tzc/z that

(8.63)

j = 2 . . . n,

Proof: The proof of Stàckel's theorem is similar to that given for Liouville's
theorem. W e give only a sketch of the proof here. W e first establish that
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equations (8.63) to (8.65) are necessary for a separable solution. Suppose that
the Hamilton-lacobi equation (8.55) is separable. Then there exists a complete
solution of the form

!#' = !;% (t71, ct) + . . . + ô'vv (qn., ct) .

Substituting the above solution into equation (8.55) and differentiating with
respect to the aj gives the equations

'' 

t'?lp'k (% Wkïlz ck - 1
ôqk t'?ctltxkk= 1

and
X 

t'?lffk t'?z!J%/é) Ck = 1, j = 2, . . . , zz.
ç'kk t'?ctjtxkk= 1

tglpl tgl/kzl = . . . detlkl,8
qk t'ka

where M is the matrix with entries (t'92!P' ('lcvjôqkj. Since W is a complete
solution we have that .::1 cannot vanish identically and therefore we may choose
a particular set of ct such that .::1 ,# 0. We can thus take

ôbïrk *21
'Ctkj = ,ôqk t'Mjtxk

and substituting these expressions into equations (8.67) and (8.68) yields equa-
tions (8.63) and (8.64). Note that the matrix U thus defined is nonsingular
since .::1 # 0 for our choice of ct. The Hamilton-lacobi equation (8.55) implies
that the potential term U' can be written in the form

Tz 21 t'V k
t- = ct1 - j. S Ck ,0qk

k=1

and using equation (8.63) this equation is equivalent to
- 

ck c. z'tzkz - .) ( 8*k ) 2t' - :2 ,ç'kkk
= 1

so that equation (8.65) is satisfied with
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Although the Ck may depend on t71, . . . , qn, the coefllcient of each Ck in the
above equation involves only ('?!P ôqk and qk. W e can thus construct a solution

of the form (8.66) from the equations

opk () 2( oqk

The equations (8.63) to (8.65) are sometimes called the St:ckel condi-
tions. The matrix U is nonsingular and hence equations (8.63) and (8.64)
can be solved for the Ck. The inverse m atrix S = U -1 is called a St:ckel
m atrix.

lf the reduced Hamilton-lacobi equation is separable, then the underlying
Hamiltonian and Lagrangian system s can be solved by quadratures. lt is in-
teresting to note that in this case the Hamilton-lacobi formulation and the
Stàckel matrix can also be used to derive n, conservation laws (first integrals)
for the system. ln detail, if there exists a complete solution to equation (8.55)
of the form (8.66) then the Wk satisfjr equations (8.70). Now

DH
Ik = = Ckpk,:

pk

:Wk
k - Ck - Ck h,k (qk, c.).ô

qk

and therefore

(Note that the Ck depend on t71, . . . , qn and so the tkk depend on these vari-
ables.) Rearranging equation (8.71) and using the definition of h,k gives
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and using the inverse matrix S, this expression yields the conservation laws

- 

s kj -1 ( --z.i () 2 ,- wj - ctk ,E zc1 .fj=

where, in familiar spherical coördinate notation, qï = r, q, = 0, and qs = 4,
(z = vlcos q, sin qs, y = vlsin q, sin qs, z = vlcos qs). The corresponding
reduced Hamilton-lacobi equation is of the form

' y()' ck ( 'î'!l- )) 2 + v(.?,) - ct,,è oqk
k=1

where ct1 is a constant, and

1 1C
1 = -  , C2 = z ,

?rz Trtqk

Clzlll + C2'tzal + Cazlal = 1,
C1'tz12 + (72u22 + Cazlaa = 0,

The first equation is satisfied if ztll = ?rz and 'tzzl = ztal = 0. The second
equation is satisfied if 'tzlz = 0, 'tzzz = -1 sin2 q,, and 'tzaz = 1. The third
equation is satisfied if ztla = -1 ql , ztza = 1, and ttaa = 0. Hence we have the
m atrix

() - 1W  
a

and since
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detu = -?rz ,# 0,

U is nonsingular for qï > 0, 0 < q, < r. The choices 'tt;1 = ?rzutt7ll, w, =
zt?a = 0 sufllce to meet the Stàckel condition (8.65). We can thus conclude
that the reduced Hamilton-lacobi equation is separable. Now,

and hence

The Stàckel matrix S is given by

and it can be shown that the three conservation laws associated with the
system correspond to the conservation of energy, angular mom entum about

the polar axis (the z-component of the angular momentum), and the angular
m om entum .

Finally, it is interesting to note that if we generalize the problem to allow

for a general potential f-unction U(q), the Stàckel condition (8.65) implies that
U' must be of the form

1 1t-(q) - t-
1(t?1) + t-2(t?2) + z Uatt?alql ql sin q,

in order that the corresponding reduced Hamilton-lacobi equation be separa-
ble.

The results of Liouville and Stàckel apply to Ham iltonians where the un-
derlying t71, . . . , qn coördinate system is orthogonal (there are no cross terms
tkjtkk, j :/: k, in the kinetic energy function). lt is natural to enquire whether a
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characterization of separable system s exists for nonorthogonal systems. The
following result, which we state without proof,ll applies to coördinate systems
not necessarily orthogonal.

Theorem 8.5.3 (Levi-civita) .4 necessary and s'tz/lcïczz/ condition Jor tlte
reduced Hamilton-lacobi equation dejined by

*.I..J *.I..J (92/.f d.;..J d.;..J (%/.f
8vk tgrj nqkçgqj - 8vk tgo nqkçgvj

*.I..J *.I..J (92/.f d.;..J d.;..J (%/.f
-  + :
ç'kk t'?rj ôpkôqj t'kk ç''qj t'?rkt-?rj

Theorem 8.5.3 is a launching point for much of the work on separable
systems, particularly with the characterization of coördinate systems in which
certain Hamilton-lacobi equations can be separated. The reader is directed

to Kalnins (431 for further results and references.
ln closing this section (and chapter) we comment again that although

the Hamiltonian formulation and the Hamilton-lacobi equation are often of
limited practical value for actually solving the Euler-lsagrange equations, they
are useful in developing the underlying theory and m aking connexions across
seem ingly disparate theories such as electrom agnetism and geometrical optics.
ln defense of the Hamilton-lacobi equation as a tool for solving a variational
problem, the sobering reality is that there is no general m ethod for finding
solutions analytically. For a limited but im porta.nt class of Hamiltonians, the
Hamilton-lacobi equation is separable and produces general solutions. ln its
wake it also brings a wealth of byproducts such as conservation laws.

Exercises 8.5:

zztz, y) - /(z) + .q(y),
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Determine the associated Ham ilton-lacobi equation and use Liouville's
theorem to show that it must be separable. Reduce the problem of find-
ing the extrem als to quadratures. Note that this functional also models
geodesics on a class of surfaces called Liouville surfaces.

2. The m otion of a particle under gravity on a s11100th spherical surface of
radius R gives a kinetic energy term

1 2 2 2 
(/,2Ttp, 4) - j.zrz.n (ti + sin p ),

U(p) = vrtglt cos 0.

Here, 0 and 4 are polar angles, with 0 being measured from the upward
vertical. Derive the Hamilton-lacobi equation and show that it is separa-
ble. Reduce the problem of finding the extrema.ls to quadratures.

3. The motion of a particle of mass ?rz in parabolic coördinates (ï, p, 4) =
(t?1, q2, t?a) gives a Hamiltonian of the form

2 2 + gzp2 p2v1r1 2 a
H - - + + v(q).?rz qk + q, 2:- 1:2

Let
/(t?1) + glqz)t-(q) -  .

qk + q2

Use Stàckel's theorem to show that the corresponding Hamilton-lacobi
equation is separable. Find a separable solution.



N oether's T heorem

9.1 Conservation Law s

for all extrema.ls of J then relation (9.2) is called a kth order conservation
law for J (and the associated Euler-lsagrange equation). For example,

t9/LI = y? - /% ?

(Theorem 2.3.1). The definition of a conservation law can be adapted to cope
with f-unctionals that involve several dependent variables. The definition can
also be generalized for functiona.ls that involve several independent variables.
ln this case 4 is a vector function, and conservation laws are characterized by
the divergence condition



202 9 Noether's Theorem

Conservation laws usually have an important interesting physical interpre-
tation (e.g., conservation of energy). ln addition, they can materially simplify
the problem of finding extrema.ls when the order of the conservation law is less
than that for the corresponding Euler-lsagrange equation. The Euler-lsagrange
equation for the f-unctional defined by (9.1) is of order 2zz, and equation (9.2)
implies that

$(I #, #/, . . . , :4/12)) = covtst .
lf k < 2/, then the above relation is a differential equation of lower order that
each extremal must satisfjr. Such relations are called a first integral to the
Euler-lsagrange equation. The right-hand side of the relation is a constant of
integration that is determined by boundary conditions.

Given a functional of the form (9.1), it is not obvious how one might derive
a conservation law, or for that matter, if it even has a conservation law.
lf the f-unctional arises from some m odel, then the application itself might
suggest the existence of a conservation law (e.g., conservation of energy).
Some f-unctionals may have several conservation laws; others m ay have no
conservation laws. The problem is thus to develop a systematic method to
identifjr functionals that have conservation laws and derive an algorithm for
their construction.

A central result called Noether's theorem links conservation laws with
certain invariance properties of the f-unctional, and it provides an algorithm
for finding the conservation law. ln this chapter, we present a simple version
of Noether's theorem that is motivated prim arily by the pragmatic desire to
find first integrals. W e limit our discussion mostly to the simplest case when
n, = 1. A m ore complete study of Noether's theorem can be found in Blum an

and Kumei (111 and Olver (571 especially for the case of several independent
variables.

9.2 Variational Sym m etries

W e consider a one-parameter fam ily of transformations of the form

X = 0 (z , y; 6) , F = # (z , y; 6) ,
where 0 and '??û are s11100th f-unctions of z, y, and the parameter E. ln addition,
we require

0(z, y; 0) - z, '?/'(z, y; 0) - y, (9.8)
so that the parameter value tî = 0 corresponds to the identity transformation.
Examples of such fam ilies are given by the translation transform ations
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X  = z + 6, F = y,

X  = z , F = y + tî ,

and a rotation transform ation

X = z cos 6 + y sin 6,

(r)(X, F) ( pz 0y )- 
!
h- 4z 4, ,) 't'?tz, y)

zl(z, y; 6) - oz''l)y - oy''l)z.with determinant

zl(z, y; 0) - 1,

Z(z, y; 6) / 0

for I6I sufllciently small. Relation (9.12) implies that the transformation (9.7)
has a unique inverse

z = &(.X', F; 6), y = !P'(.X', F; 6),

provided I6I is small (Theorem A.2.2). For example, the inverse of transfor-
mation (9.9) is

z = X cos tî - F sin 6, y = X  sin tî + F cos E.

For a given function ylz) we can use relations (9.13) to eliminate z and
determine F as a f-unction of X . ln the following discussion we have occasion
to consider F as a function of X and some conf-usion might arise. W e thus use

the symbol '1z)(.X) to distinguish this case from F(z). Consider, for example,
the transformation (9.9). Here z = X - tî and hence for any y

:v(z) - F(z) - y(X - 6) - X (A').

1f, for instance, ylz) = costz), then 'l1 (.X) = cost.x - 6). For another example,
consider transformation (9.11) with ylz) = z. Then,
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cos 6 - sin 6X(A-) =  X .
sin 6 + cos 6

W e also use the notation

t(A-) - Y)(A-).dx

Note that, for transformation (9.7), (9.13),

dz - (ex + /y.f)(A-)) dx,
dy - (ex + !py.t(A-)) dx,

ex + lpvt (x)y'lz) - .e
x + mwtt-v-l

and hence

(9.14)
(9.15)

We studied the effect of point transformations such as (9.7) on varia-
tional problems in Section 2.5 (for flxed values of 6). Theorem 2.5.1 shows
that the transformed problem is variationally equivalent to the original prob-
lem . Generically, however, the integrand defining the f-unctional changes un-
der a transform ation. Of special interest here are transformations that do not
change the form of the integrand.

The integrand /(z, y, !/?) of the functional J is said to be variationally
invariant over the interval gzt), z11 under the transformation (9.7) if, for all tî
sufllciently small, in any subinterval h, 51 f;l gzo , z11 we have

b

/(z, tvtzl, tv'(z)) dz -
G

b- 

?(x,u(x),t(x))-/x
./'--

for all s11100th functions y on h, 51 . Here,

aE - 0(a, :v(tz); 6), bE - 0(b, :v(5); 6).

ln this case the transformation (9.7) is called a variational symmetry of J.
Exam ple 9.2.1: Let ztl = 0, zl = 1,

/(z, y, !//) = !/Q(z) + / (z),

tv'(z) - t(.X').
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Exam ple 9.2.2 : Let ztl = 0, zl = 1,

/(z, y, y') - y'2(z) + z?/(z),

y'2(z) + zyzlz) - f)2(..v) + (..v - 4y)2(..v)
-  / x, u(A'),t(A')) - .î'l''7(A'),

ln fact, it can be shown that transformation (9.9) is a variational symmetry
for any functional of the form (9.4). lt can also be shown that transformation
(9.10) is a variational symmetry for any f-unctional of the form

W e consider transformations of the form

T = P(f, q; 6), Qk = bbk (f, q; 6),
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0(t, q; 0) - f, bbk (f, q; 0) - qk.
Similar arguments to those used for the previous case can be used to show
that the transformation (9.19) is invertible. The integrand L(t, q, (k) is vari-
ationally invariant over (f(), f11 under the transformation (9.19) if, for all I6I
small, in any subinterval h, /71 f;l (f(), f11 , we have

'

z-(f,q,k)-/f -/- '- o(z',q-(z'), q--(z'))t/z',/-
.

for all sm00th f-unctions q on gct, ,d1. Here, ct: = 0(a, qtctl; 6), /% = 0@, q(,d); 6),
and / denotes d dT.

Exam ple 9.2.3:

Qk = qk

Q? = ' cos tî + q'Lj sin tîE1 qk ,
Q? = - ' sin tî + q'Ljcos 6,:2 qk

so that

1 , , KLIT
, QE, Q'E) = j.?rz (Q2 + QZ) + z zQE1 + QEa
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Hence, for any gct, /71 f;l (0, 11 we have

and consequently L is variationally invariant under transformation (9.22). We
thus see that this f-unctional has at least two variational symmetries.

Exercises 9.2 :

21

J(tv) - ztv'z dz.
20

Show that the transformation

X = z + 62z ln z, F = (1 + E)y

is a variational syrnrnetry for J.

9.3 N oether's Theorem

We know from Section 2.3 that the quantity .bI (the Hamiltonian) defined
by equation (9.3) is constant along any extremal for f-unctionals of the form
(9.4) and from Section 9.2 that such f-unctionals have the variational symmetry
(9.9). ln addition, we know (Section 2.3) that any f-unctional of the form (9.18)
has a conservation law, viz.,

and that the transformation (9.10) is a variational symmetry for such a func-
tional. Although this is a special selection, we m ay suspect that the exis-
tence of a conservation law is linked with that of a variational sym metry. ln
this section we present a result called Noether's theorem, which shows that
each variational symmetry for a functional corresponds to a conservation law.
Noether's theorem also provides the conservation law.

Before we state Noether's theorem , we need to introduce another term .
Taylor's theorem shows that transformation (9.7) can be written

00 zX 
=  ptz, y; 0) + tî + O(6 )(% (

z,?7;o)
t'?'?) 2F 

= .?)(z, y; 0) + tî + O(6 ),(% (
z,?7;o)
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provided I6I is small. Let

$(z, y) - oc 1 (z,,;(,),
:4( .plz, #) =(-965 (z,:.?;())

Then, relation (9.8) gives

x - z + ,$ + 0(,2),
y- - y + ,,y + 0(,2),

.k- as z + E1
Y' ss y + Erl.

The f-unctions ï and p are called the infinitesimal generators for the trans-
formation (9.7). Similarly, the infinitesimal generators for a transformation of
the form (9.19) are given by

Theorem 9.3.1 (Noether) Suppose tltat /(z, y, !/?) is variationally ïzzwtzrï-
ant on gzt), z11 under transjbnvtation (9.7) nitlt ïzz/zzï/csïmtzl generators ï and
p. Tlten

t'?/ t'?/ ?
r/ + ï' / - !/ = covtst.t'93/? ç'ly?

along any eztrevtal o.f

r/r - SV = covtst.

The left-hand side of this equation is precisely the same quantity encountered

in the general variation condition (7.23). Noether's theorem can be proved
using a calculation similar to that leading to this condition. The m ain differ-
ence is that we are no longer dealing with arbitrary variations', instead, we are
restricted to the one-parameter family of f-unctions defined by transformation

(9.7).
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proor: Let

.1(y) - /(z, y, :v') dz,
G

where a and b are numbers such that a < 5, gtz, 51 f;l gzt), z11 , but otherwise
arbitrary. Here, we regard .1 as a f-unctional with variable limits of integration.
By hypothesis / is variationally invaria.nt and hence for any X, 'l1 defined by
transformation (9.7) we have

Suppose that y is an extremal for j. For I6I small we can regard 'l1 along
with the limits aE, 5, as a special case of a variation with free endpoints, since
condition (9.27) is stronger than simply requiring that J(X) - .1(y) = 0(62).
We may thus use the calculations leading to equation (7.23). Here,

-k- - z + .1 + (?(62) = z + EXv,
'l1 - y + 6p + 0(62) = z + 6'II.

W e cannot argue as in Section 7.2 that the Euler-lsagrange equation is satisfied
because we are not free to choose the special class of endpoint variations that
vanish. W e can nonetheless assert that the Euler-lsagrange equation is satisfied
by 'l1 because extrema.ls map to extremals under point transformations (The-
orem 2.5.1), and the invariance of / implies that the Euler-lsagrange equation
is unchanged for these transformations. W e are thus led to the relation

zp - I.FI = 0. (9.28)
G

Exam ple 9.3.1: W e can rapidly recover Theorem 2.3.1 from Noether's
theorem. Let J be a functional of the form (9.4). We know from Section 9.2
that the translational transformation (9.9) is a variational symmetry for J.
Now,

ô0$(z
, y) = = 1,:

6 E-o

:#
plz, y) = = 0.:6 E-o

Equation (9.25) thus implies
t'?/y? - / = H = const.
t'A/

along any extremal.
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$(z, y) - -2z ln z,
ptz, y) - y.

Noether's theorem indicates that

zyy? - !/?2z21n z = const. (9.29)
along the extremals for J. W e can verify that the above expression is satisfied
for all extremals by differentiating the left-hand side of equation (9.29) and
applying the Euler-lsagrange equation,

(tr#/)/ = 0

/ = const.zy ,

Noether's theorem can be generalized to accommodate f-unctionals that
involve several dependent variables. ln this case, it takes the following form .

Theorem 9.3.2 (Noether) Suppose tltat L(t, q, (k) is variationally ïzzwtzrï-
ant on (f(), f11 under tlte transjbnvtation (9.19), wltere q = (t71, . . . , qnl . Let ï
and pk be tlte ïzz/zzï/csïzrztzl generators Jor t/zïs transjbrvtation,

Pk = ,n4k

and

tlte fftzmïl/tazzïtzzz . Tlten

(9.30)
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along any eztrevtal o.f
tl

J(q) - Llt, q, ù) dt.
te

Exam ple 9.3.3: Consider the Lagrangian L of Example 9.2.3. W e know

that the translational transformation (9.22) is a variational symmetry. For
this transformation ï = 1, pk = 0, and Noether's theorem gives

.bI = const. (9.31)

along extremals. The rotational transformation (9.23) is also a variational
symmetry. ln this case ï = 0, and

ra = - Ulcos 6 + Asin 6)(96 E=o

=  (-vlsin tî + qzcos 6)
6=: 0

and

Equation (9.30) thus gives

kkqz - qzqk = const.

along extremals.

The Lagrangian in the above exam ple com es from the Kepler problem

(Example 1.3.2), where q denotes the position of the planet. Equation (9.31)
indicates that energy is conserved along the orbit of the planet (see Example
3.2.2). The second conservation law (9.32) is less obvious. This equation cor-
responds to Kepler's second law of planetary motion, viz., the conservation
of ttareal velocity.'' ln the next example we explore connexions between som e
well-known conservation laws from classical m echanics and the corresponding
variational sym metries.

1T((k) - j.?wz (ti/ + t11 + ti1) ,

where ?rz denotes the mass of the particle. Let U(f, q) denote the potential
energy. Hamilton's Principle implies that q is an extrem al for
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tl

J(q) - Llt, q, ù) dt,
te

where the Lagrangian is

L(t, q, ù) - T((k) - t-tf, q).

The well-known conservation laws of energy, m omentum , and angular m o-
m entum correspond to translational or rotational variational symmetries for
J.
A . Conservation of Energy
Suppose that L is variationally invariant under the transformation

LI = T + U = covtst.,

so that the total energy is conserved along an extremal.
B . Conservation of M om entum
Suppose that L is variationally invariant under the transformation

Q 1 = qk + 6,

rl = = r2ll = c/asf.,*1
1

which indicates that the qï component of momentum is conserved.
C. Conservation of A ngular M om entum
Suppose that L is variationally invariant under the transformation

(9.36)
(9.37)

Then ï = 0, pl = q,, m = -t71, and pa = 0. For this case Noether's theorem
yields

Pkqz - Pzqk = covtst.

Now, the momentum vector is p = (p1, yu, pa), and the angular momentum
about the origin is p A q. Evidently, the term pïq, - pnqï is the qs component
of the angular momentum vector', hence, Noether's theorem im plies that this
component of the angular momentum is conserved.
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Noether's theorem thus provides a nice mechanism for interpreting well-
known conservation laws in terms of variational symm etries. For Lagrangians
of the form (9.33) we can readily deduce the appropriate variational symme-
tries from the potential energy f-unction U. 1f, for instance, U' does not contain
t explicitly then we have the conservation of energy. lf U' does not depend on
one of the qk then we know that the corresponding component of mom entum

is conserved. lf U' corresponds to a central force, i.e., U' = U(f, r), where say
r2 = q2ï + (7z2? then we have that the qs com ponent of the angular mom entum
is conserved.

9.4 Finding Variational Sym m etries

The reader will appreciate at this stage that the crttx with Noether's Theorem
is finding the variational sym metry. ln fact, it is clear from the statement of
Noether's theorem that we need find only the infinitesimal generators of a
variational sym metry in order to construct the corresponding conservation
law. ln this section we give a method for finding variational symm etries. The
m ethod is based on the following result, the proof of which we can be found

in Wan (711, or in a more general form, in Giaquinta and Hildebrandt (321.
Theorem  9.4.1 Let

t'?/ t'?/ ? ? ? t'?/ ?
.i' + vlo + (p - y .i' ) , + .i' / = 0,t'?z y t'??/

tg p 
.. .% ?? = + y 

,T (: (:z y

tg ï 
...% tj'? = + y .

tgz X

and

Equation (9.38) can be used to find the infinitesimal generators p and ï.
Prim,a Jacie, it seems that we have one differential equation for two unknown
functions, but the equation must hold for any y not just extremals, and it
is this condition that yields additional equations. The condition (9.38) is a
relation of the form

l/lslz, #, !//) = 0,
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that must hold for all y. The unknown functions p and ï depend only on z
and y, so that we do know how W' depends on y? in terms of ï and p. Now,
equation (9.39) is an identity that must hold pointwise on gztlzll for any choice
of y. Since we may always choose !/(z#) and !/?(z#) independently at any point
zt CE gztlzll , we can regard y? as an independent variable for this identity. This
means that we can supplement equation (9.39) with equations of the form

(:kW'
=  0,ôy?k (9.40)

l4S(z, y, y') - Ay'z + By' + C

where -4, .B, and C are f-unctions that depend explicitly on z, y, 1, p along with
the partial derivatives of the generators. Then, equation (9.40) implies that
the coefllcients of 3//2 y? must vanish', i.e., .,4 = .B = 0, and hence C = 0. These
three equations can then be used to determine ï and p. Note that we expect
an overdetermined system , since variational symmetries are special and not
every functional has them. Moreover, if there exist ï and p that satisfy these
equations we expect these f-unctions to be determ ined to within a constant
of integration because no initial data are specified. The above com ments are
perhaps best illustrated through specific examples.

Exam ple 9.4.1: Consider the f-unctional of Exercise 9.2-1. For this func-
tional, equation (9.38) is

$:4//2 + 2zy' tpz + y'vly - y'L - :4//2ï ) + z!//2 (#z + yl1 )# #
= -I1yy'3 + (ï + 2zvly - zïz) 3//2 + zzpzl//

where ïz = 01 t'?z etc. The coefllcients of 3//3 y?2 and y? must vanish', hence,

z$y = 0,

$ + 2z% - zïz = 0,

zpz = 0,

1 Of course, we could argue that similar expressions can be ascertained by differ-
entiating 'w- with respect to the other independent variables z and p but we do
not know r/ or ï at this stage (this is the purpose of studying the equation) and
hence we do not know how 'w- depends on z and p.
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for all z CE gzt), z11 and y. Equation (9.41) implies that ly = 04 hence, ï = ï(z).
Similarly, equation (9.43) implies that p = 1)y. Since ï depends only on z, and
p depends only on y, equation (9.42) is satisfied only if vly = ctmsf.; therefore,

07/) = c1# -1- C2,

where cl and cz are constants. Equation (9.42) now gives the first-order dif-
ferential equation

(9.45)

ï = -2c1z ln z + caz,

where ca is a constant. Equations (9.44) and (9.46) thus define a three-
parameter family of infinitesimal generators that correspond to variational
symmetries. The infinitesimal generators for the transform ation of Exercise
9.2-2 correspond to the choice c2 = ca = 0, cl = 1.

Exam ple 9.4.2 : Let J be the functional defined by

For this f-unctional, equation (9.38) leads to the relations

z2ï = O# ,

2z$+ 2z207 - z2# = O# 2 ,

2z207 + y'sl = 02 # ,

4078/3 + lzy'i = 0, (9.50)

which the infinitesimal generators ï and p must satisfjr for the corresponding
transformation to be a variational symmetry. Equation (9.47) implies that
ï = ï(z); hence, equation (9.49) implies that p = p(!/). Equation (9.48) thus
shows that vly = covtst., and equation (9.50) shows that ïz = const. The
functions ï and p must therefore be of the form

ï' = clz + c2, p = czy + c4.

2z (clz + ca) + 2z2ca - z2c1 = 0,
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ca = 0, 2ca + cl = 0.

Substituting expressions (9.51) into equation (9.50) gives

4#3 (csy + c4) + c1/ = 0,

which must be satisfied for a11 y; hence,

4ca + cl = 0.

The only choice of constants that satisfies 130th (9.52) and (9.53) is cl = ca =
0, so that ï = 0, p = 0 is the only solution to (9.38) for all z CE gzt), z11 and all
y. ln this case there are no variational symmetries for the f-unctional.

where q = (t71, . . . , qnl and n, > 1, is somewhat more complicated than that
given in Theorem 9.4.1. Let ï and pl, . . . , pzz be the infinitesimal generators
for the transformation (9.19), and let

where

Theorem 9.4.2 Tlte transjbrvtation (9.51) is a variational spmmc/r?/ Jor tlte
Junctional dehned by (9.54) z/ and only zl/

r(1) vtfvl + Lj = 0p

Jor all smtata//z q on (f(), f11 .
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Exam ple 9.4.3: K epler Problem
Let

(')L
=  0,

ç')t
tgfv qkK

oqk (.?? + qk)z/,

Now,

and

(-$1 t'?$ t'?rp t'?rpl
k = , lt = , r/j,k = , r/j,t = ot .oqk t'?f oqk

Equation (9.55) is thus
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.K'I,A
-zrztia p2,t +

ql + qq
lt plt?l + 072:2+K 

-

2 2 2 2 3/2qï + q, (t?1 + q,)

The sam e arguments used in the n, = 1 case can be leveled at the above
equation, which is an identity for all q. The coefllcients of tJ13 and t)z3 must
vanish, and this means that ï depends only on f. Since ï1 = 1, = 0, the
coefllcients of the other cubic term s in the derivatives also vanish. ln a sim ilar
way we argue that the coefllcients of (k2 etc. vanish, and this leads to the
following system of equations for 1, pl and w.

(9.57)
(9.58)
(9.59)
(9.60)
(9.61)

Equations (9.59) and (9.60) show that the pk do not depend on f. Since ï
depends only on f, equations (9.56) and (9.57) indicate that there is a constant
cl such that

(9.62)
r/1 1 = C1,

1)2 2 = C1;

'?l - clt?l + g(q,),
'?2 - clto + h.lqk),

where g and /J are f-unctions to be determined. Substituting the above expres-

sions for the pk into equation (9.58) gives

+ - = 0,
('zqz &tyl

= - = cz.
ç'kz t'?t?l
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r/l = clt?l + c2472 + ca,

072 = -c2t?1 + clA + c4 ,

which, using equation (9.62), reduces to

cl ( t?21 + (722 ) - ca q 1 - c4 q, = 0 . (9 . 6 3)

Now, equation (9.63) is an identity that must be satisfied for all q. We thus
conclude that cl = ca = c4 = 0.

Equation (9.55) thus shows that the infinitesimal generators of a varia-
tional symmetry of J must be of the form

V1 == C2q2t

wx == -- cz gy?

$ XX C5,

where cs is another constant of integration. W e thus have a two-parameter
family of generators that lead to variational symmetries. lf cz = 0 and cs ,# 0,
then the transformation is a time translation. lf cz ,# 0 and cs = 0, then the
transformation is a rotation (cf. case C, Example 9.3.4). Theorem 9.4.2 shows
that the only variational symm etries of J are combinations of rotations and
time translations.

Noether's theorem as given in this chapter along with conditions for vari-
ational symm etries can be further generalized to accommodate f-unctionals
involving higher-order derivatives and or several independent variables. The
quantity y,r(1)v(fv) is called the first prolongation of the vector field v tde-
fined by the infinitesimal generators) acting on L. lf a functional has an inte-
grand that involves derivatives of order n, then a higher prolongation pr('')v(fv)
is needed. The expression for pr('')v(fv) escalates in complexity as n, increases,
but the condition for a variational symm etry rem ains deceptively sim ple, viz.,

r(,z)v(z,) + L1' - 0.p

The reader is directed to Bluman and Kumei (111 and Olver (571 for the general
expression of pr('')v(fv) in terms of the generators and their derivatives. Here,
we have given only a basic ttno frills'' version of Noether's theorem and the
reader is encouraged to consult the above references for deeper insights into
this result.
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Exercises 9.3:

1. Consider the f-unctional of Exam ple 9.4.1. Show that the transformation
F = y, X = (1+ 6lz is a variational symmetry and find the corresponding
conservation law.

2. The Em den-Fow ler equation of astrophysics is

2 5?? +. .y? +. y . ()# ,
I

which arises as the Euler-lsagrange equation for the f-unctional

z 1 z2 j
.J(y) = -  y'2 - -y6 dz.2 3

20

Find the infinitesimal generators that lead to a variational symmetry for
this functional and establish the conservation law

z2 Ly'y + 2:71 (:4/2 + yö) ) = const.
3. The Thom as-Ferm i equation

corresponds to the Euler-lsagrange equation for the functional

21 1 ?z 2 3/5/2
J(,) - 

-, (L.y + g. ,s ) dz.
Show that this f-unctional does not have a variational symmetry. (Exact
solutions to the Thomas-Fermi and Emden-Fowler equations are discussed

in detail in (81 .)
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The Euler-lsagrange equation form s the centrepiece of the necessary condi-
tion for a functional to have an extremum . The Euler-lsagrange equation is

analogous to the first derivative (or gradient) test for optimization problems
in finite dimensions, and we know from elementary calculus that a vanishing
first derivative is not sufllcient for a local extremum. Likewise, satisfaction of
the Euler-lsagrange equation is not a sufllcient condition for a local extremum
for a functional. ln essence, we need a result analogous to the second deriva-
tive test in order to assert that a solution to the Euler-lsagrange equation
produces a local extremum. ln this chapter we investigate the next term in
the expansion of J(L) - J(y), the second variation, and develop more refined
necessary conditions for local extrem a. W e also develop sufllcient conditions
for a function y to produce a local extremum for a functional J. W e restrict
our attention almost exclusively to the basic flxed endpoint problem in the
plane.

10.1 The Finite-llim ensional Case

The reader is doubtless aware of the second derivative test for determining
whether a stationary point is a local extremum for a function of one variable.
ln this section we review a few concepts from the finite-dimensional case,
primarily to motivate our study of conditions for functiona.ls to have extrema.
W e begin with the fam iliar case of two independent variables.
Let / : J2 --+ R be a s11100th function on the region J2 (:z R2. Let x =

(z1, z2) CE J2 and let k = x + 6p, where tî > 0 and p = (p1, w) CE R2. If tî is
sm all, Taylor's theorem implies that

k) - /(x) + 6 tnztft'v + '?207'Y) )/( :z1 :za
,2 :2/(x) :2/(x) :2 /(x)+ 
jï t TI :zt + 2p1p2 ozzoz, + pl :zj )
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+ 0/3).

lf / has a stationary point at x then V/(x) = 0 (cf. Section 2.1), and the
Taylor expansion reduces to

62
/(2) - /(x) + -j-Q('?) + (?/2),

where
, t'?2/(x) t%/(x) , t%/(x)Q('?) - '?, , + 2p1072 + '?a z .t'?zl t'?zltr?zz t'?zz

The nature of a stationary point is determined by the lowest-order derivatives
that are nonzero at x. lf one of the second derivatives is nonzero, then the
sign of J(k) - /(x) is controlled by the sign of Q.

For nonzero p CE R2, the quadratic term may be always positive or always
negative, but it may be that this term is positive for som e p and negative
for others. The character of the extremum revolves around what signs Q may
have for various choices of p, and we can track the sign changes by examining

when Q(p) = 0. lf p ,# 0, then either pl or m is nonzero. Without loss of
generality suppose that w ,# 0. Now, Q is a continuous f-unction of p, and if
Q changes sign, there must be some p ,# 0 such that Q(p) = 0. Hence, there
m ust be a real solution to the quadratic equation

p.l 2 .%/(x) p
..?- .%?(x) .%?(x)(w) ozî + 2p: ozïoz, + t'sy - 0.

The nature of the solutions to this equation is determined by the discriminant,

t%/ d2/ (92/Z 
=  -  ( 12t'?z2 ('?zz t'?z t'?zz '1 2 1

of the quadratic form Q at x. There can be at most two solutions to this
quadratic equation. lf real solutions exist, then Q may change sign. lf there
are no real solutions to the quadratic equation then Q, being a continuous
function, will never change sign. W hether Q = 0 has a nontrivial solution
depends on the sign of .4: if 1(x) < 0 and :2 / ('?zzy :/: O (or (92 / (')zzz L,;lk 0) at
x then Q is indefinite and vanishes along two distinct lines. For this case, a
small neighbourhood of x, B (x; 6), can be divided into four sets, two in which
Q > 0 and two in which Q < 0. ln this case Q is called indefinite. Evidently,
x cannot produce a local extremum because the sign of J(k) - /(x) depends
on the choice of p. Stationary points x for which 1(x) < 0 are called saddle
points.
ln contrast, if 1(x) > 0, then there are no real solutions to the quadratic

equation; consequently, Q cannot change sign. ln this case Q is called definite,
and x corresponds to a local extremum . The type of extremum can be deduced
from the exam ination of any particular curve through x. The simplest such
curves correspond to ')4(p1) = (p1, 0) and y, (w) = (0, w). lf x is a local



m aximum minimum, then pl = 0 corresponds to a local maximum minimum
for &1(p1) (and w = 0 corresponds to a local maximum minimum for 'p(w)).
Thus /(x) is a local maximum if t'?2/(x) ('?zzy < O (or ('?2/(x) ('?zzz < 0)? and
a local minimum if :2 /(x) ('?zzy > 0 (or ('?2/(x) ('?zzz > 0) .
lt may be that 1(x) = 0 even though the second derivatives of / at x

are not all zero. ln this case there is a line (z1(f), z2(f)) in B (x; 6) through
x = (z1(0), z2(0)) where Q vanishes. The nature of this point is determined
by the third-order (or higher) derivatives. lf 1(x) = 0, then x is called a
degenerate stationary point (or parabolic point). We must examine the
cubic terms (or higher-order terms) in the expansion to discern the nature of
the stationary point.
Note that if all the second derivatives of / vanish at x then it is clear that

the sign of /(x) - /(k) is determined by the third-order derivatives. These
m ust also vanish at x for a local extremum , and if this is the case, the quartic
terms control the sign.

The above approach can be adapted to f-unctions of three or more inde-
pendent variables, although the increase in variables escalates the number of
possibilities and the complexity of the computations. Let / : J2 --+ R be a
s11100th f-unction on the region J2 (:z R?z and suppose x = (z1, z2, . . . , z,zl is
a stationary point. Then, as in the two-variable case, we have V/(x) = 0,
and the sign of /(x) - Jlk) is controlled by the quadratic terms in the Taylor
expansion. Let Ek = x-h6p, where tî > 0 and p = (p1, pz, . . . , p,zl. The quadratic
terms in the Taylor expansion may be written in the form

(p(,y) - pwl-ltxlzy,

*2.J(x) *2.J(x) é)2.j(x)
é) ig ig ' ' ' ig igzj zl za zl za
*2/(x) *2/(x) *2/(x)
: : : ''' pz pz

l1(X) == *2 *1 *2 2 O

192 .flx) *2 .flx) 1)2 .j(x)
ç'l i9 ç'l i9 ' ' ' ç'l2a 21 2a 22 2

The nature of a stationary point depends on whether H is definite. lf H is
definite, then / has a local extremum at x; if H is indefinite, then x corre-
sponds to some type of saddle point. The M orse lemma can be used to classify
the types of stationary points provided the Hessian matrix at the stationary

point has the same rank as the number of independent variables (i.e., H is
nondegenerate). Stationary points satisfying this condition are called nonde-
generate.

Lemma 10.1.1 (M orse Lemma) Let xtl be a nondegenerate stationary point
Jor tlte smtata//z Junction J. Tlten tltere ezists a smtata//z invertible coordinate
transjbrvtation zj --+ zj (v), wltere v = (z?1, zu, . . . , r,zl dehned ïzz a neigltbour-
Itood .;V(xo) o.f xtl suclt tltat tlte identity
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/ (X) = .11 (V) = / (Xo ) - '& 21 - '&z2 - . . . - z?z2
2 2+ tlà
-hl + ' ' ' + vn

Itolds t/zrtatw/zta'tz/ Nlx(j) . Tlte integer ,L is called tlte ïzzde:r o.f / at xo.
A proof of this lemma can be found in (531 . The f-unction z?21 + zj + . . . +

z?z2 -  zu2 y - . . . - zu2 is called a M orse à-saddle. The index is an invari-+
ant under s11100th invertible coördinate transformations', therefore, it can be
used to classifjr nondegenerate stationary points. A M orse zz-saddle is a local
m aximum ; a M orse G saddle is a local minimum . lf ,L is not 0 or zz, then the
Morse à-saddle indicates that the difference /(x) - /(k) can be positive or
negative depending on the choice of x. The M orse lem ma has another con-
sequence: the stationary points of the saddle are isolated, and since s11100th
invertible coördinate transformations leave isolated stationary points isolated,
all nondegenerate stationary points must be isolated.

There is a wealth of results regarding conditions under which a quadratic
form is definite. An exam ple is provided by the following theorem.

Theorem 10.1.2 (Sylvester Criterion) Let X = (.X1, A3, . . . , Ak) and let
A denote an zz x n, spmmc/rïc vtatriz 'ttlï//z entries tzu . .4 necessary and suh
jicient condition Jor a quadratic /brm XT'AX to be positive clc/zzï/c, is tltat
cwcr!/ principal mïzzt?r determinant o.f A is positive. In y'tzràïctltzr, det A > 0
and every diagonal elevtent ajj ïs positive.

Suppose that x is a stationary point for / and let
/z11 /z12 ' ' ' /àl,z
/z21 /z22 ' ' ' ltzn.

H = ,

/à,zl ltvbz ' ' ' ltvbn.

denote the Hessian matrix at x. The above theorem indicates that the
quadratic form is positive definite if /z11 > 0 and the determinants of the
m atrices

/z11 /z12
/z21 /à22 '

10.2 The Second Variation

Let us return to the basic flxed endpoint variational problem . Recall that we
seek a s11100th f-unction y : gzt), z11 --+ R such that !/(zo) = yçj, !/(z1) = 3/1, and
the f-unctional
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21

/(z, ïl, tv') dr
20

is an extremum . W e make the blanket assum ption throughout this chapter
that / is s11100th in the indicated arguments. More specifically, we need / to
have derivatives of at least third order for some of our argum ents. W e assum e
that for any given extremal y, /(z, !/(z), !/?(z)) is s11100th in a neighbourhood
of ztl and in a neighbourhood of z1.

Suppose that J has an extremum at y, and let :'è be a ttnearby'' f-unction of
the form :'è = y-j-evl, where tî > 0 is a small and p is a s11100th function on gzt), z11
such that p(zo) = p(z1) = 0. Our brief foray into the finite-dimensional case
indicates that we need to consider the 0(62) terms of J(L) - J(y) in order
to glean information regarding the nature of the extremal. Taylor's theorem
implies

d2/ d2/ d2/h
y = 2 , l'yy' = o (.y ? , l'y/y' = o /2 ,ô

y y y y

where, unless otherwise noted, the partial derivatives are evaluated at (z, y, !/?).
Thus,

26 

2 aJ(5) - J(:v) - 6JJ('?, y) + - J J('?, y) + O(6 ),2

21

J2J('?, y) - (z?2&, + 2p07/&,, + z?/2&,,,) dz.
20

The term J2J(p, y) is called the second variation of J. The second variation
plays a rôle analogous to the Q(p) term in the finite-dimensional case. Since
y is an extremal for J we have that JJ(p, y) = 0, and hence

62

J(5) - J(tv) - -j-J2J('?, y) + 0/3).

The sign of J(L) - J(y) thus depends on the sign of J2J(p, y), and conse-
quently the nature of the extremal thus depends on whether the second vari-
ation changes sign for different choices of p. Note that, at this stage, we have
already solved the Euler-lsagrange equations so that y is known and hence the

functions hy, /:/:// , and Jy/y' are known in terms of z. This situation parallels
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that for the finite-dimensional case, where we know the num erical values of
the entries in the Hessian matrix.

Using the notation of Section 2.2, let S denote the set of f-unctions y
s11100th on gzt), z11 such that !/(zo) = yçj and !/(z1) = yï. Let .bI denote the
set of functions p s11100th on gzt), z11 such that p(zo) = p(z1) = 0. The above
arguments yield the following necessary condition.

J2J(p, y) k 0
Jor all p CE H; zl/ y ïs a local mtzzïzzwm, tlten

J2J(p, y) < 0

Jor all p CE H.
The above result is of lim ited value at present, because we have no m ethod

to test the second variation for sign changes. lnequality (10.3) is analogous to a
positive semidefinite condition on a Hessian m atrix, and we have seen how the
addition of independent variables escalates the number of possibilities (types
of saddles) and the complexity of verifjring whether the matrix is definite. For
the infinite-dimensional case we thus expect tests for establishing sign changes
in the second variation to be complicated. lt is thus a pleasant surprise that
certain conditions can be derived that are tractable and simple to im plement.

Exercises 10.2 :

(10.3)

1. Suppose that J is a f-unctional of the form

J(tv) -

3'î 
,53J( ) + 0/4)+ y!' p, y ,

where

zt osj (.?a/é3J(p, y) = (p/3 + 307/2,7ç'ly'3 ('?:4//24'7?y20
t'?3/ t93/V 307/072 + 079 ) dI.
t'92//t'92/2 (13

The functional J3J(p, y) is called the third variation of J.
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10.3 The Legendre Condition

ln this section we develop a necessary condition for a f-unctional to have a
local extremum . This result is called the Legendre condition. Unlike Theo-
rem 10.2.1, it is straightforward to apply and hence useful for filtering out
extrem als that do not produce a local m inimum or m aximum .

The second variation can be recast in a m ore convenient form that sepa-
rates the p terms from the p? terms in the integrand. Note that

2r/r/// / = (r/2)/ / /yy l/!/ ,
and hence

21 zj 21 d
2r/r///?7?7/ dr = Vhy' - 072 -- Ljyy/) dz

zo zo dz20
z 1 cl

= - ?72 -- Ljyy/) dz,d
z20

where we have used the conditions that p(zo) = = 0. The second
variation can thus be written

z 1 d
é2J('?, tv) - '/ hy - -- (S,') + p/2/,/,/ dz.d

z20

The essence of the Legendre condition is that the second variation must
change sign for certain choices of p CE .bI if /?y/:// changes sign. Before we
launch into a statement and proof of the Legendre condition, a few comm ents
to motivate the proof are in order. W e reiterate that the coefllcients of 072 and
p?2 are known f-unctions of z. Let .,4 and .B be the f-unctions defined by

d ,B (z) -  Jyylz, :v(z), :v'(z)) - (s (hy' (z, ylz), y (z))),

for z CE gzt), z11 . Since / and y are sm00th, 130th -4 and B are continuous
functions on the interval gzt), zll. The reason that the sign of -4 plays a pivotal
rôle in this theory is that there are functions p CE .bI for which Ip(z) I is small
for all z CE gzt), z11 , but Ip?(z) I is not. ln contrast, if Ip?(z) I is small for all
z CE gzt), z11 , then, since p must be s11100th and satisfjr the conditions p(zo) =
p(z1) = 0 for membership in .bI, we have that Ip(z) I is also small for all
z CE gzt), z11 . The simple mollifier

exp - .y-  ()-c) ) , if z CE (c - y, c + -/1p(z) =
(), if z ( gc - y, c + aj ,
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where c CE (zo, z1), and y > 0 is some suitably small number, illustrates this
scenario. lt can be shown that this function is s11100th 1 and vanishes at ztl
and zl so that it is in the set .bI. Now the m aximum value of p is 1 c, but the
mean value theorem shows that there is a least one value of z CE (c- y, c) such
that p?(z) = 1 (&c), and the continuity of the derivative thus implies that
there is a subinterval f (:z (c - y, c) for which p?(z) > 1 (2&c) for all z CE f .
The issue at stake, of course, is not the pointwise behaviour of Ip?(z) I but

rather the influence of this f-unction on the integral defining the second varia-
tion. The subinterval f , after all, might be rather small, and although p?2 (z)
is large for z CE f compared to 072 (z) the overall effect on the value of the
integral m ight be sm all owing to the small length of f . W e must keep in mind,
however, that we can construct a function p CE .bI that is essentially a superpo-

sition of any number of mollifiers, each with a different value for c CE (zo, z1)
with y > 0 chosen sufllciently small so that their supports (i.e., intervals in
which they are nonzero) do not intersect. The net effect is that f-unctions in
.bI can always be found such that the derivative terms dominate the second
variation. A superposition of m ollifiers m akes the importance of the sign of
-4 transparent, at least conceptually. Rather than chase the above mollifiers
any f-urther, however, we opt (in the interests of computational simplicity)
for a sim pler function that captures the sam e behaviour for the proof of the
Legendre condition.

Theorem 10.3.1 (Legendre Condition) Let J be a Junctional o.f tlte Arm
(10.2), wltere / is a smtata//z jhnction o.f z, y, and !/?, and suppose tltat J Itas
a local mïzzïm'tzm in S at y. Tlten,

Jy/y' k 0

Jor all z CE gzo , z11 .
Proof: Using the notation introduced above, suppose that there is a c CE

gzt), z11 such that dtcl < 0. Since J has a local minimum at y, Theorem 10.2.1
implies that J2J(p, y) k 0 for all p CE .bI. The theorem is thus established if it
can be shown that there is an v CE .bI such that J2J(zz, y) < 0.
Since -4 is continuous on gzt), z11 there is an y > 0 such that dtzl < dtcl 2

for all z CE (c - y, c + &). We construct a f-unction in .bI that effectively filters
out the influence of -4 and B for all z not in (c - y, c + ')') and magnifies the
contribution of the derivative. Let

kyj4 xtz-c) () kf z s y - y, c + mjzztzl = S n' '
0, if z ( gc - y, c + &'1 .
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<,,.j siyja ''vtz-c) (j cos ''r(z-c) () , if z (E gc - y, c + 'yjv'lz) = 'è' 'è' 'è'
0, if z ( gc - y, c + &1.

W e can get a rough upper bound on the v? contribution to the second variation
as follows.

Since B is continuous on gc - y, c-h :1 there is an N > 0 such that 1.D (z)I < N
for all z CE gc - y, c + :1 ; hence, a rough upper bound for the v contribution
to the second variation is given by

Now,
16-4(c)r2J2J(zz, y) < + 2Ny,

so that the second variation is negative for v, if y is chosen arbitrarily sm all.
W e have the freedom to choose y small, so that there are functions in .bI that
m ake the second variation negative. This contradicts Theorem 10.2.1 and we
conclude that dtzl k 0 for all z CE gzt), z11 . En

Evidently, the above result can be readily modified for the case where J has

a local maximum at y. lnequality (10.7) is called the Legendre condition.
Aside from the theoretical benefits (which we reap later) the Legendre

condition is a practical tool for deciding whether a solution to the Euler-
Lagrange equation is even in the running for a solution.

Exam ple 10.3.1: Let

For a given set of boundary conditions at z = -1 and z = 1 we can find
the corresponding extremal explicitly for this f-unctional (see Exercises 2.3-1).
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However, we need not even do this to deduce that the extremals cannot give a
local extremum for J. W e can use elementary argum ents to show that J can
be made arbitrarily sm all, but the Legendre condition conveniently answers
the question. ln particular, we have for any s11100th y,

zJy/y' (z, y, y') - ,(1 
-F 7/213/2

Exam ple 10.3.2 : Catenary
Consider the catenary problem of Exam ple 4.2.1. W e consider the problem
here as an unconstrained flxed endpoint problem with the appropriate La-
grange multiplier, so that in the present notation

/(z, y, !//) = (!/ - à) 1 + :v/2,
where

Here, /J is the height of the poles supporting the cable and ï is one of two
possible nonzero solutions to

.r,j. = sinhty,
where L is the arclength of the cable. As discussed in Fuxam ple 4.2.1, we can
distinguish which solution is relevant from simple physical considerations. The
Legendre condition also makes a distinction. Now, for any y,

y - ,LJy/y' (z, y, y') - ,(1 -F 7/213/2
so that the sign of this derivative is the same as the sign of y - à. The solution
to the Euler-lsagrange equations is given by equation (4.32) and therefore

Recall that there is precisely one positive solution and one negative solution 1%
to equation (10.8). Only the positive solution satisfies the Legendre condition
for a local m inimum.

The Legendre condition cannot be converted into a sufllcient condition

even if we replace inequality (10.7) by the strengthened Legendre condi-
tion

Jy/y' > 0.
The following well-worn but simple exam ple illustrates this comm ent.
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Exam ple 10.3.3:

J(tv) -

and the boundary conditions 3/(0) = 0, y(f) = 0. We have seen in Chapter 5
that problems of this sort lead to Sturm-lsiouville type problems, and that the
existence of a nontrivial solution depends on the choice of f. (Modifjr Example
5.1.1 by fixing ,L = 1 and replace the upper limit r with f.) Suppose that we
choose f > r.

For this sim ple problem the strengthened Legendre condition is evidently
satisfied for any y, and the second variation is given by

Let
TI

p = sint ).tr
Clearly p CE .bI , and

The trivial solution y = 0 is an extrem al for the problem , but the above
calculation shows that it cannot give a local minimum for J.

Legendre himself tried to frame a sufllcient condition for a local minimum

around the inequality (10.9) but ran into various snags such as the above
example, and it becam e apparent that m ore inform ation was needed. The
essence of the problem is that the strengthened Legendre condition and Euler-
Lagrange equation place only pointwise restrictions on the functions. The

great circles on a sphere (i.e., the geodesics) give an intuitive example of why
global information is needed. Consider three points on the earth (which we
assume is a perfect sphere) all on the same great circle, say the North Pole,
London, and the South Pole. The shortest distance from London to the North
Pole is along the meridian connecting these points. But there are two choices:
one can proceed directly north, or one can go initially south, through the
South Pole, and then turn northwards to eventually arrive at the North Pole.
Evidently, the latter option produces a longer path, but pointwise the Euler-
Lagrange equation is satisfied on the meridian as is the Legendre condition.
lt is only when we look at ttthe big picture'' that we realize the latter option
cannot be even a local minimum : there are paths near the South Pole route
that are shorter (they avoid the South Pole at the ttlast minute'' and jump
onto a suitably close line of longitude and head north).
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Exercises 10.3:

0L

J(4) = 1 + sin2 p4/2 d0,
Po

where 4 is the polar angle, 0 is the azimuth angle, and 4/ denotes d4 d0.
Show that J satisfies the Legendre condition (10.7).

2. Let

10.4 The Jacobi N ecessary Condition

The major shortcoming of the Legendre condition is that it is a pointwise
restriction. Example 10.3.3 m akes it clear that other considerations are needed
before a sufllcient condition can be formulated. ln this section we present a
necessary condition that builds on the Legendre condition, but is distinctly
global in character. The key concept of a conjugate point is introduced, and
it turns out that this necessary condition paves the way for the formulation of
a sufllcient condition. W e focus on local minima trusting the reader to m ake
the necessary adjustments to get analogous results for local maxima.

10.4.1 A R eform ulation of the Second Variation

For a finite-dimensional optim ization problem we can appeal to the M orse
Lemm a 10.1.1 to argue that the relevant quadratic form can be written as a
sum difference of squares. This special transform ation of the quadratic form
allows us to classifjr critical points as described in Section 10.1. The infinite-
dimensional analogue of this process for a M orse O-saddle is to convert the
second variation into a f-unctional of the form

where T is a f-unction of z, p, and (indirectly) the extremal.z Ideally, we seek
a f-unction T such that T is identically zero on gzt), z11 only if p is identically
zero on gzt), z11 . ln this case, the sign of the second variation would depend
on that of / / / .y y

2 The analogy is made more precise in Gelfand and Fomin g31j, pp. 125-129. See
also (221 , pp. 571-572.



The idea of transforming the second variation into the form (10.10) dates
back to Legendre, who tried to establish the existence of T by completing
the square of the quadratic form. Although he failed to achieve a sufllcient
condition, his idea of com pleting the square proved fruitful.

W e know that the second variation can be written in the form

consequently, we can always add a term of the form (zcp2)? to the integra.nd
of the second variation without changing the value of the functional. The
strategy is to select a function w such that

/2 
.s 2 2 ? ,.2Jy/y'rl + r/ + (1L)rl ) = Jy/y' ,

for some T. We know from the Legendre condition that S/:// cannot change
sign in gzt), z11 if y produces a local extremum for J. We assume that the
strengthened Legendre condition (10.9) is satisfied. Thus,

? w B + w'
/ / / /2 + ./,72 + Lwyzl = / / / zy?2 + 2 ))))? + ,72 .y y r/ y y /,/,/ Jy'y'

Suppose that w satisfies the differential equation

././J
2 =  / / / (./ + w?)y y

for all z CE gzo , z11 . Then

(10.11)

so that the second variation could be recast in the form (10.10).
Following the analogy with the finite-dim ensional case, the second varia-

tion is called positive definite if J(p, y) > 0 for all p CE .bI - (0/.. Given a
solution to (10.11), we have

1- - p? + p
/ / / ''Ll '!/

? + p = 0.p Jy/y' (10.12)
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Since p CE .bI, however, the above differential equation is accompanied by the
conditions p(zo) = p(z1) = 0. Now, / is assumed s11100th in z, y, and y? and
y is a s11100th extremal; hence, Jy/y' is a s11100th f-unction. Picard's theorem
shows that there exists a unique solution to equation (10.12) that satisfies the
initial condition p(zo) = 0, and a quick inspection shows that this must be the
trivial solution p(z) = 0 for a11 z CE gzt), z11 . We thus see that T is identically
zero on gzt), z11 only if p is identically zero on this interval. Otherwise, under
the strengthened Legendre condition, the integral defining the second variation
m ust be positive. ln sum mary, we have the following lem ma.

Lemma 10.4.1 Let / be a szrztata//z Junction o.f z, y, and !/?, and let y be a
szrztata//z eztrevtal Jor tlte Junctional J dehned by (10.2) suclt tltat /?y/:// > 0 Jor
all z CE gzt), z11 . f/ tltere ïs a solution w to tlte clz#crczz/ïtzl equation (10.11)
valid on tlte interval gzt), z11 , tlten tlte second variation ïs positive dehnite.

The ttfly in the ointment'' is the existence of the solution 'tt;. W e can ap-
peal to Picard's theorem to assert the existence of local solutions to equation
(10.11), but this is not good enough. We need solutions that are defined over
the entire interval gzt), z11 rather than in some small subinterval. The refor-
mulation of J2J(p, y) thus hinges on whether a global solution w exists to
equation (10.11).

10.4.2 The Jacobi A ccessory Equation

Relation (10.11) is an example of a well-known class of equations called Ric-
cati equations. A standard solution technique for such equations entails con-
verting the nonlinear first-order equation to a second-order linear equation by
use of the transformation

/N

w = - /?y/:// (10. 13)
N

(cf. (411 , (611). Under this transformation, the Riccati equation becomes

d ,(Jy'y''u ) - B'u - 0;dz

d t d(/p/p/'tz ) - Xy - cu /pp/ 'tz = 0. (10.14)dz

Equation (10.14) is called the Jacobi accessory equation. lf there is a
solution zt to this equation that is valid on gzt), z11 and such that utzl ,# 0 for
all z CE gzt), z11 , then transformation (10.13) implies that the Riccati equation
(10.11) has a solution valid for z CE gzt), zll.

Certainly one advantage of working with a second-order linear ordinary
differential equation as opposed to a first-order nonlinear equation is that the
theory underlying the linear equation is well developed and perhaps m ore
tractable. lt is beyond the scope of this book to recount the theory in any



detail. The reader is directed to textbooks such as Birkhoff and Rota (91 for
a full discussion. lt sufllces here to mention a few results concerning the exis-
tence of solutions to the Jacobi accessory equation. Note that the sm oothness
assumptions on / and y mean that the coefllcients Jy/y' and B are s11100th
functions of z on gzt), z11 , and the strengthened Legendre condition ensures
that the problem is not singular.S W e can thus use Picard's theorem to deduce

that, given initial values utzol = 'tztl and zl/tzol = '?.t/(;, there exists a unique so-
lution zt = zttz, 'tzo, 'tt/()l to equation (10.14) that satisfies the initial conditions.
Picard's theorem guarantees only a local solution near zo, but we can now
appeal to standard results concerning the extension of such solutions to the

interval gzt), z11 . ln fact, it can be shown that there exist linearly independent
solutions ztl and u, to equation (10.14) such that any solution to (10.14) can
be represented in the form

z'(z) - ctzlztzl + /t7''.'atzl, (10.15)

where ct and ,d are constants. Finally, another result from the general theory
shows that the solution to the initial-value problem depends continuously on

the initial data; i.e., zttz, 'tzo, '?.t/(;l is continuous with respect to the parameters
zt and 'tz?o () .

W e need more than a global existence result for solutions to equation
(10.14): in order to assert the existence of a solution to the Riccati equation,
we need to show that there are solutions zt that do not vanish on the interval

gzt), zll. This problem leads us to the importa.nt concept of conjugate points.
Let s CE R - (zo). lf there exists a nontrivial solution zt to equation (10.14)
that satisfies utzol = utsl = 0, then s is called a conjugate point to zo.
Lemma 10.4.2 Let / satisj'y tlte conditions o.f fcmmtz 10.4.1, and snppose
tltat tltere are no conjugate points to ztl in (zo, z11 . Tlten, tltere ezists a solw
tion zt to equation (10.14) suclt tltat utzl ,# 0 Jor all z CE gzt), z11 .
Proof: (Sketch) Given that, for any initial conditions utz()l = zo, zl/tz()l = zt/(),
there exists a solution to equation (10.14) valid in gzt), z11 , we need to show
that the absence of a conjugate point to ztl in (zo, z11 implies the existence of
a solution zt that does not vanish on gzt), z11 .
Consider a family of initial conditions of the form utzol = 6, zl/tzol =

1, where tî is a small parameter. For each tî there is a solution zttz, 6) to
equation (10.14) valid in gzt), zll, and zt is a continuous f-unction of tî near
tî = 0. Moreover, the initial condition zl/tzol = 1 precludes the possibility of
zttz, 6) being a trivial solution. Now, 'tztzt), 0) = 0, and the absence of conjugate
points to ztl in (zo, z11 implies that zttz, 0) ,# 0 for all z CE (zo, zll. Thus either
zttz, 0) > 0 for all z CE (zo, z11 or zttz, 0) < 0 for all z CE (zo, z11 , because zt is
a continuous function of z. Suppose that zttz, 0) > 0. We know that zttz, 6)
is continuous with respect to tî and hence for tî sufllciently small we have
zttz, 6) > 0 except perhaps in a small neighbourhood of zo. To construct a
3 ln particular

, the coefficient of 'tz// is not zero.
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solution that is nonzero near ztl we choose tî > 0 so that 'tztzt), 6) = tî > 0,
and the condition zl/tzol = 1 ensures that zt is nonzero near zo. A similar
argument can be used for the case zttz, 0) < 0. Some technical details need
to be tightened up, but the essence of the argument is that the zeros (hence
conjugate points) must change continuously with the parameter E. lf we are
careful with our choice of sign for 6, the initial conditions imply that the zero

at ztl will shif't out of the interval gzt), z11 . En

Theorem 10.4.3 Let / be a szrztata//z J'unction o.f z, y, and !//, and let y be a
szrztata//z eztrevtal Jor tlte jhnctional J dehned by (10.2) suclt tltat /?y/?y/ > 0 Jor
all z CE (z() , z11 . f/ tltere are no points ïzz tlte interval (zo, z11 conjngate to ztl ,
tlten tlte second variation ïs positive dehnite.

Exam ple 10.4.1: Let

zt??(z) = 0',

hence the general solution is utzl = ct + ?(7z, where ct and ,d are constants.
Clearly, only the trivial solution can satisfjr the conditions utzol = 0 and
utsl = 0 for any s CE R - (zo). Hence, there are no points conjugate to zo.

u//tzl + utzl = 0.
Now, utzl = sintz) is a nontrivial solution to this equation, and zt(0) =
utrl = 0. Hence, r is a point conjugate to 0. We thus see that there is a point
conjugate to 0 in the interval (0, t1 .

Finally, we note that if we consider the second variation as a f-unctional
(of p) in its own right, the Jacobi accessory equation is the Euler-lsagrange
equation for this f-unctional. There is, however, a distinction to be m ade con-
cerning solutions. Specifically, the f-unctions p that solve the Euler-lsagrange
equation must vanish at the endpoints. ln contrast, we are actively seeking
solutions to the Jacobi accessory equation that do not vanish in (zo, z11 .



10.4.3 The Jacobi N ecessary Condition

Theorem 10.4.3 gives a sufllcient condition for the second variation to be pos-
itive definite. We show that the absence of conjugate points is also necessary
for positive definiteness. Before we launch into a statement of this result,
however, we establish two small lem mas.

Lemma 10.4.4 Let 'tz be solution to tlte Jacobi accessory equation (10.14) in
gzt), z11 . f/ tltere ïs a point c CE gzt), z11 suclt tltat utcl = 0 and u/tcl = 0, tlten
zt vtust be tlte trivial solution.

Proof: Suppose there is a point c CE gzt), z11 such that utcl = 0 and u/tcl = 0.
Consider the initial-value problem formed by the Jacobi accessory equation
and these conditions at z = c. Picard's theorem implies that there is a unique
solution to this problem in a neighbourhood of c; hence, this solution must
be the trivial solution. From the theory of linear differential equations we

know that this solution has a unique extension into the interval gzt), zll, and
consequently utzl = 0 for all z CE gzo , z11 . En

Lemma 10.4.5 Let zt be a solution to tlte Jacobi accessory equation (10.14)
in gzt), z11 suclt tltat zltzol = utzll = 0. Tlten

(10.16)

Proof: lntegration by parts gives this result imm ediately. Specifically, since
zt is a solution to (10.14),

Now,

therefore, equation (10.17) implies equation (10.16).
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Proof: W e begin with a proof of the first statement. Suppose that the second
variation is positive definite. W e can quickly eliminate the possibility of a
conjugate point at zl using Lemma 10.4.5. lf there exists a nontrivial solution
to the Jacobi accessory equation zt such that utzol = utzll = 0, then we may
take p = zt. Lem ma 10.4.5 shows that there is a nontrivial p CE .bI such that
the second variation vanishes contradicting the assumption that the second
variation is positive definite. We thus conclude that zl cannot be conjugate
to ztl .

To show that there is no point conjugate to ztl in (zo, z1) we follow the
proof given by Gelfand and Fomin (4311 , p. 109). The strategy is to construct
a family of positive-definite functionals K(p.), that depends on the parameter
p. CE (0, 11 , such that ff(1) is the second variation and ff(0) is free from con-
jugate points to zo. Any solution to the Jacobi accessory equation associated
with K  will thus be a continuous function of p.. W e exploit this continuity to

show that the absence of a conjugate point for ff(0) implies that for K(p.),
and in particular ff(1).

Let K  be the functional defined by

fftp,l - p,tPJ('?, y) + (1 - p,)f'('?),

W e know from Example 10.4.1 that P has no points conjugate to zo, and it
is clear that P is positive definite. Since J2J(p, y) is also positive definite we
see that K is positive definite for all p. CE (0, 11. The Jacobi accessory equation
associated with K  is

(10.18)

Now, any solution zttz, p,) to (10.18) is continuous with respect to p. CE (0, 11 .
lndeed, we can assert that zttz, p,) has a continuous derivative with respect to
p, for all p, in an open interval containing (0, 11 , because pth/y' + (1 - p.) > 0
for all p, CE (0, 11 , and this coefllcient (along with that for zt) is s11100th with
respect to the parameter p.. Thus, zt has continuous partial derivatives with
respect to 130th z and p.. Let ztz and ug denote these derivatives.
Let U denote the family of nontrivial solutions to (10.18) such that

'tztzt), p,) = 0 for all p, CE (0, 11 . Let X = gzt), z11 x (0, 11 and R = (zo, z1) x (0, 1).
Suppose that ff(1) has a conjugate point s CE (zo, z1). Then there is a zt CE U
such that uts, 1) = 0. Now, zt has continuous derivatives in X, and by Lemma
10.4.4 (applied to K(p.)) we have that ztz (s, 1) :# 0. We can thus invoke the

d ,Lllx
.%'y' + (1 - p,)) z' ). - lxB'u - 0.d

z



implicit f-unction theorem in a neighbourhood of (s, 1) to assert that there is
a unique function z = z(p,) such that zt(z(p,), p.) = 0 and z(1) = s. ln fact,
since ug is continuous, we have that zg has a continuous derivative, and

(10.19)

The function (z(p,), p.) thus describes parametrically a curve y in some neigh-
bourhood of (s, 1) with a continuous tangent that is nowhere horizontal;
hence, the intersection of y with the line p. = 1 must be transverse. Con-
sequently, y rn R ,# ()4 i.e., y must have points in the interior of X. Although
the implicit function theorem gives only the existence of a curve near (s, 1),
it is straightforward to see that y cannot simply terminate in R. Specifically,
suppose that y did terminate at some point @, 5) CE R. The conditions of the
implicit f-unction theorem are still satisfied and we thus conclude that there is

a unique nontrivial continuation of y in a neighbourhood of (c&, 5) contradict-
ing our assumption that (c&, 5) is a terminus for y. We conclude that y must
continue to the boundary of R.
Relation (10.19) makes it clear that any continuation of y cannot include

a point where the tangent is horizontal, since the conditions of the implicit
function theorem are satisfied at any point on this curve and this theorem
guarantees that z? is finite and continuous. W e thus see y cannot ttdouble

back'' and intersect the line p. = 1. Since ff(0) does not have any conjugate
points it is also clear that y cannot intersect the line p. = 0 except perhaps

at the point (zo, 0). ln any event, the only possible boundary curves that y
might intersect are the lines z = zl and z = ztl (figure 10.1). Suppose that
y intersects the line z = z1. Then, there is a p,1 and a zt CE U such that

'tztzt), p,1) = utzl, p,1) = 0. But the arguments used to prove Lemma 10.4.5
can be applied to fftp,ll to show that fftp,ll = 0 for the choice p = zt and this
contradicts the fact that K(p.) is positive definite. Hence y cannot intersect
the line z = z1.

Consider now the line z = zo. By construction we have 'tztzt), p.) = 0 for
all p. CE (0, 11 and hence the f-unction z(p,) = ztl is a solution of zttz, p.) = 0
for all p. CE (0, 11. The conditions of the implicit f-unction theorem are satisfied
at any point on this line and therefore z(p,) = ztl is the uniqn,e solution that
intersects this line. Evidently, y is distinct from this line because s > zo.
Hence, y cannot intersect the line z = zo. W e thus conclude that no such
curve y can exist and hence that ff(1) has no points conjugate to ztl in the
interval (zo, z1).

To prove the second statement, note that even if J2J k 0, the functional
K(p.) is still positive definite for all p. CE (0, 1). The proof that there is no point
conjugate to ztl in the interval (zo , z1) given above is thus valid. Lemma 10.4.5,
however, does not preclude zl from being a conjugate point since ff(1) can
be zero. En

? Mg
z (p,) - - .N

z
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R

Fig. 10.1.

Theorem 10.2.1 and the second part of Theorem 10.4.6 combine to form
a m ore refined necessary condition for a local m inimum known as Jacobihs
necessary condition.

Theorem 10.4.7 (Jacobi) Let y be a smtata//z eztrevtal Jor tlte Junctional

suclt tltat Jor all z CE gzt), z11
Jy/y' > 0

along y. IJ y produces a local zrzïzzïzrz'tzzrz Jor J tlten tltere are no points conjngate
to ztl in tlte ïzz/crrtzl (zo, z1).

Note that Jacobi's necessary condition does not preclude the possibility
that zl is conjugate to zo.

Exercises 10.4:

1. Derive the Riccati equation (10.11) associated with the f-unctional of Fux-
am ple 10.3.3. Solve the Riccati equation directly and show that there are
no solutions w defined for all z CE (0, tr1 if f > r.



10.5 A Sufficient Condition

2. Let
/(z y y') - y'2 - y'y + y2.

Show, using elementary arguments, that J2J(p, y) k 0 for a11 p (E .bI.
Derive the Jacobi accessory equation and show by solving this equation
that any nontrivial solution zt can have at m ost one zero.

3. Suppose that / does not depend on y explicitly and that / satisfies the
strengthened Legendre condition along an extremal !/(z). Prove that there
are no points conjugate to zo.

4. The proof of the first statement of Theorem 10.4.6 is considerably simpler
if we ttopen up'' the space .bI to a more general one X that includes piece-
wise s11100th f-unctions on gzt), z11 that vanish at ztl and z1. lf J2J(p, y) > 0
for a11 p CE X, p ,# 0, prove that there are no points conjugate to ztl in
(z(), z1) (cf. (711, p. 91).

10.5 A  Sullicient C ondition

ln Section 10.2 we derived the expression

(10.20)

which an extremal y for J satisfies for any ttneighbouring curve'' :'è = y + 6p.
The necessity of the condition J2J(p, y) k 0 for a local minimum is clear, but
the sufllciency of this condition is suspect. lndeed, we know from our brief tour
of finite-dimensional optimization that semidefinite quadratic form s do not
necessarily lead to local extrema. The problem is that if there is a nontrivial p
such that J2J(p, y) = 0, then the 0(63) terms in the above expansion control
the sign of JI() - J(y). Certainly, we can avoid this problem by requiring
that J2J(p, y) be positive definite, but even this strengthened requirement
has snags because there may be nontrivial p such that J2J(p, y) > 0 but of
order 6, in which case the sign of J(L) - J(y) depends on the higher order
terms for tî small. Harsher restrictions are needed to control the magnitude of
J2J(p, y) relative to the remainder terms.
Let 11 . 11 1 be the norm on the space (72 (gzt), zlj) defined by

11:11 1 - sup I:v(z) I + sup I?/'(z)I .
z (E (zo ,z1 j z (E gze ,z1 j

We say that a functional J : (72 (gzt), zlj) --+ R has a weak local minimum
at y CE S if there is a .::1 > 0 such that J(L) - J(y) k 0 for all :'è CE S such that
115 - :v11 1 < ..A. Similarly, J is said to have a weak local maximum at y CE S
if -J has a weak local minimum at y. The adjective ttweak'' creeps into the
definition to distinguish such extrema from strong extrem a, the definition
of which is identical to the weak extrema except that the norm 11 . 110, defined
by
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11:v110 - sup I:v(z)I,
ze gze ,z 1 j

is used. Clearly, 115 - :v11 1 < ..:1 implies that 11f/ - :v110 < ..A, but the converse is
not true. Hence, ttweak'' signifies that we are restricting the com petition to a
subset of the set of functions that are candidates for a strong extremum .

W e need to get an expression for the remainder term in the Taylor expan-

sion (10.20) in order to develop a sufllcient condition. Now, it can be shown
that there is a f-unction ?rztpl such that

l(b) - J'(:4/) = 62 (1 (i2.J(r/? y) + j*3 (zzr//2 + pr/2) dz( ?20 (10.21)
and v, p --+ 0 as IIpII 1 --+ 0.

The main result of this section is the following theorem, which applies to
the basic fixed endpoint problem .

Theorem 10.5.1 Let y CE S be an cz/rcmtzl Jor tlte Junctional

and suppose t/lcg along t/zïs eztrevtal t/Jc strengtltened Legendre condition

Jy/y' (al, #lal), !//(al)) > 0

is satished Jor all z CE gzt), z11 . Suppose /'urà/zcr tltat tltere are no points conjw
gate to ztl in (zo, z11 . Tlten J Itas a weak local mïzzïm'tzm in S at y.
Proof: Let p. CE R be a small parameter and consider the fam ily of f-unctionals
K  defined by

4 Taylor's theorenl has an extension to operators on general Banach sp aces (cf.
E221).

5 see g31j, pp. 101-102.
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The Jacobi accessory equation for K  is

(10.22)

The smoothness conditions on / and the strengthened Legendre condition
imply that there is a positive number a. such that Jy/y' k tz for all z CE gzt), z11 .
Thus, for all /.:2 < a, we have

/://:// - /.:2 > 0, (10.23)

for a11 z CE gzt), z11 , and this in turn means that the solutions zttz, p.) to equa-
tion (10.22) are continuous f-unctions of 130th z and p,, provided Ip,l is small. By
hypothesis we have that there are no points conjugate to ztl in (zo, z11 for the
case p. = 0, and the continuity of zt with respect to p. implies that there are no

points conjugate to ztl in (zo, z11 for all Ip,l sufllciently small. Therefore, there
is a p,1 > 0 such that for all p., with Ip,l < p,l, the functional K(p.) satisfies
the strengthened Legendre condition (10.23) and has no points conjugate to
ztl in (zo, z11 . Theorem 10.4.3 therefore implies that K(p.) is positive definite
for all Ip,l < p,l. We thus conclude that there is a number p > 0 such that

d , ,( (
.%'y' - /z ) z' ) - B'u - 0.dz

J 21
J2J('?, y) > p n/2 dz.

20
(10.24)

W e now consider the remainder term

Now,
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Thus,
zt (z - z(;)2 zl2 (j 1 /2 (jr/ I !V r/ I 

,220 20

and hence

(z, - zo)2 pI
vI (1 + z j < z;

consequently,

Thus, JIL) - J(y) > 0 for all nontrivial p, provided IIpII 1 sufllciently small,
and therefore y is a weak local minimum for J. En

Exercises 10.5:

1. The second variation J2J(p, y) is called positive and nondegenerate
(or strongly positive) if there is a constant .4 > 0 such that

(12 J (p, y) k .,4 I I p I I 21 .

10.6 M ore on Conjugate Points

The Jacobi necessary condition and the sufllcient condition of Section 10.5
130th require verification that there are no points conjugate to ztl in the interval
(zo, z1). ln this section we discuss a simple method for finding conjugate points
and a geom etrical interpretation of these points.



10.6.1 Finding Conjugate Points

Suppose that y is an extremal for the functional J. Recall that a point s CE R-
(z()) is conjugate to ztl if there is a nontrivial solution zt to the Jacobi accessory
equation (10.14) such that zltz()l = utsl = 0. ln order to test whether an
extremal has a conjugate point in the interval (zo, z11 we are thus obliged to
somehow procure a general solution zt to equation (10.14) and check whether
there is a zero of zt in the interval (zo, z11 . Although the Jacobi accessory
equation is linear, finding a general solution to such equations can prove a

formidable task. lt is thus a relief to discover that solutions to equation (10.14)
can be derived from the general solution to the Euler-lsagrange equation.

Suppose that y is a general solution to the Euler-lsagrange equation

d t'?/ t'?/
-  =  0,X  t'A/ ç')y (10.25)

associated with the f-unctional

The general solution to a second-order ordinary differential equation contains

two parameters c1, ca (constants of integration) and it can be shown that y
depends sm oothly on these parameters. Since y depends on cl and c2, so does
/ in the Euler-lsagrange equation, and the smoothness of / with respect to
y and y? implies that / also depends smoothly on cl and c2. Differentiating
equation (10.25) with respect to c1, noting that the smoothness assumptions
on / allow the orders of differentiation to be changed, gives

t'? ( d t'?/ .  t'?/ ) d ( t'? ( t'?/ ç')y , t'?/ ç'ly? (j (j:c, lk')'-;- ôy? ::q.7 - 't)'7 Lvôy? lk ç')y :c, -'- ôy? :c,
('? ((-).f (-??/ ('?/ ôy?- 3-; l.- oy :c, + oy? .%,)
d // :2/ ç')y :2/ ôy? ('?/
- 'z;' boyoy? :c, + ovoy? :c, + ov)

:2/ ç')y :2/ ôy? ('?/
-  (oyoy :c, + oyoy? :c, + oy)

Let ztl = ç')y tgcl. Then,
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ln this m anner we see that ztl must be a solution to the Jacobi accessory
equation (10.14). A similar argument shows that u, = ç')y t'?cz is also a solution
to equation (10.14). Wrc can t/z'tzs obtain solutions to tlte Jacobi accessory
equation by sïzrzy'l?/ dtjferentiating tlte general solution to tlte Enler-L agrange
equation 'ttlï//z respect to cl and cz . ln fact, it can be shown (4151, pp.68-72)
that ztl and u, form a basis for the solution space.
Let c = (c1, c2), k = (/c1, k,), and suppose that ylz, k) is a solution to

equation (10.25) that satisfies the boundary conditions of the flxed endpoint
problem. Let

ôy dp
'tzlltr, k) = , ?.12 (al, k) = .t'?cl c-k t'?cz c=k

Then, the general solution zttz, k) to equation (10.14) is given by

zttz, k) = ctztltz, k) + ,3u, (z, k),

where ct and ,d are constants. W e are interested in nontrivial solutions zt, so
that ct and ,d are not 130th zero. lf s is conjugate to zo, then there are values
of ct and ,d such that

z'tzo, k) = ctzlltzo, k) + ,dzlztzo, k) = 0,

and

hence,
z'2(s, klzlltzo, k) = uatzo, klzllts, k). (10.26)

Note that ztl and u, cannot 130th vanish at the sam e value of z, because this

would imply that the Wronskian W'(z) = ultzlu/z (z) - u/ltzluz (z) = 0 for
all values of z and hence that ztl and u, would be linearly dependent.6 Thus,
relation (10.26) is an equation for a conjugate point s. lf 'tzltzt), k) ,# 0 and
ults, k) ,# 0, the above relation is usually written in the form

uatzo, k) :.12 (s, k)
z'ltzo, k) zllts, k)

6 See g9j, pp. 42-45 for more details.



7(tr, Cl, C2) = CICOS I V tosin 1.
The above arguments show that

are solutions to the Jacobi accessory equation. (This can be verified directly,
since the Euler-lsagrange equation is equivalent to the Jacobi accessory equa-
tion for this integrand.) Hence, any conjugate point s to 0 must satisfy

ua(s)uz(0) - u,(s)ua(0);

The points conjugate to 0 are therefore of the form s = uluzzr, where n, =
1, 2, . . . . ln Example 10.3.3 we chose f > r and hence the interval (0, f)
included the point r, which is conjugate to 0.

Exam ple 10.6.2 : G eodesics in the Plane
Consider the arclength functional of Example 2.2.1, where /(z, y, !/?)
1 + y?2. The general solution of the Euler-lsagrange equation is

#ltr, c1, c2) = cltr + c2.

The corresponding solutions to the Jacobi accessory equation are ztl = z and
'?.tz = 1. Any point s that is conjugate to ztl must satisfy equation (10.26).
The only solution to this equation, however, is s = zo, and therefore there
are no points conjugate to zo. Since S/:// > 0, Theorem 10.5.1 implies J has
a weak local minimum at y. ln fact, we can do better than this (cf. Fuxample
10.7.1).

Exam ple 10.6.3: Catenary

Consider the catenary problem of Section 1.2, where /(z, y, !/?) = y 1 + y?2
and z CE (0, 11 . We showed in Example 2.3.3 that a general solution to the
Euler-lsagrange equation is of the form

where cl and cz are constants. Solutions ztl and u, to the Jacobi accessory
equation for this problem are thus
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Consider now the extremals associated with the boundary values

v(0) - 1, v(1) = 1.

ln Exam ple 2.6.1 we studied the general problem of determ ining the cl and cz
to satisfjr such boundary conditions. ln that example we argued that for any
value of 3/(1) > 0.6 there are precisely two solutions for the integration con-
stants. For this example, we thus know that there are two sets of param eters

that satisfy the boundary conditions. Equation (2.42) implies

cosh cz = coshtcosh cz + c2) ;

ulucz = cosh cz + c2.

Since cosh cz > 0 for all cz CE R, we must have

and
cosh cz = -2c2.

ztl = coshtcztl - 2z)) - cztl - zzlsinhtcz (1 - 2z)) ,
ztz = - sinhtcztl - 2z)) ,

where cz is a solution to equation (10.27). Let ï = c2(1-2z). Equation (10.26)
shows that a conjugate point to 0 must satisfjr the relation

(70th cz - cz = (70th ï - ï. (10.28)
Now, equation (10.27) has two solutions rl s:s -0.6 and r2 s:s -2.1, and for

any fixed cz equation (10.28) also has precisely two solutions, one of which is
simply ï = c2; i.e., z = 0 (see figure 10.2). For the choice c2 = r1, the second
solution to (10.28) corresponds to z s:s 2.4 ( (0, 11. The strengthened Legendre



1
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II=cII - (..:lc,)2 + (zlc,)2

is small. Since y is s11100th with respect to the ck, Taylor's theorem im plies
that

and hence, for any z CE gzt), z11 ,

The above relation shows that at any z CE gzt), z11 the distance between neigh-
bouring extremals is of order Il=cll as Ilzlc 11 --+ 0, and the leading order term
is the modulus of a solution to the Jacobi accessory equation. Suppose now
that there is a point s conjugate to zo. Then there exists a nontrivial solu-
tion zt = ctztl + ,3u, to equation (10.14) such that zltz()l = utzll = 0, and
hence there are lcl, zlcz such that Il=cll # 0 and zlclztltzl,) + zlcaztatzl,) -
xt:îclzlltsl + xt:îczzlztsl = 0. Relation (10.29) thus indicates that at zo, and any
conjugate points to zo, the distance between the neighbouring extremals is of
order II=cII2 as Il=cll --+ 0, since we can always scale our choice of zlcl a.nd
zlcz. Roughly speaking, equation (10.29) indicates that the neighbouring ex-
tremals ttnearly intersect'' at conjugate points. At any rate, conjugate points
bear the distinctive hallm ark of an envelope for the family of extremals.
Let /z(z, y, c) = 0 describe a one-parameter family .F of curves in the zy-

plane parametrized by c. A curve v is called an envelope of the family .F
if:

(a) at each point (;, L) CE v there is a y CE .F that is tangent to zz; and
(b) there are infinitely many curves in .F tangent to each arc of v.
Suppose that .F has an envelope v. Then at each point (:, L) CE v there is a
c = ctJ@, L) such that the curve described by /z(z, y, ctJ@, ()) = 0 is tangent to
v at (:, L). For simplicity, we assume here that /J is a s11100th function of z, y,
and c, and that the arc under consideration is such that c can be regarded

as a s11100th f-unction of t@?. (The latter assumption is true, for instance, if the
arc of v can be described parametrically in the form (;, ?)(:)) for k in some
interval f , where :'è is differentiable with respect to t@?, and LV(k) ,# 0 for all
k CE f .) On the envelope v, the f-unction /J must therefore satisfy

ltlk, :9, c(:)) - 0. (10.30)

d :& :& , :& ,hlk
, 5, c(:)) = + y (:) + c (:).dk :: dj d

c
(10.31)



+ ?) (:) = 0.ç')k (% (10.32)

Equations (10.31) and (10.32) thus give the condition

(10.33)

Equations (10.30) and (10.33) can be regarded as a pair of implicit equations
involving the three variables t@?, L, and c. Under the assumption that

=  0.
tgc

/ 0,(-?5

we can invoke the implicit function theorem to solve equation (10.30) for L,
and regard equation (10.33) as an implicit equation for c as a f-unction of k
(or vice versa). Once c is eliminated, equation (10.30) can then be used to
determine L(t as a function of k and hence the curve v.
Exam ple 10.6.4:

/z(z, y, c) = y - (z + c)3 = 0. (10.34)

The family of curves described by /J consists of the cubic curve y = z3 shifted
parallel to the z-axis by the value c. Now,

t'?/à z
=  - 3(z + c) ,t'?c

so that equation (10.33) gives c = -z. Equation (10.34) thus implies that
ylz) = 0, so that if there is an envelope v, it must be the z-axis. ln this case
the z-axis is an envelope for the fam ily of curves.

Exam ple 10.6.5:

/z(z, y, c) = y2 + (z + c)2 - 1 = 0. (10.35)

The family .F corresponds to circles centred at (-c, 0) of radius 1. Here,
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=  2(z + c),dc

Note that satisfaction of equations (10.30) and (10.33) is a necessary but
not sufllcient condition for an envelope. A simple counterexam ple is given by
the family of lines defined by /z(z, y, c) = y - cz = 0. Equations (10.30) and
(10.33) are satisfied only if z = y = 0. The family has a ttfocus'' at (0, 0), but
this singularity is not an envelope.
Returning to the calculus of variations, if s is conjugate to ztl and zt =

ctztl + ,3u, is a nontrivial solution to the Jacobi accessory equation, then ct
and ,d cannot 130th be zero, and it is clear that we can choose zlcz such
that zlcz = Acï,3 ct (or zlcl such that zlcl = zlczct /7) and get a nontrivial
solution fl to equation (10.14) that vanishes at ztl and s. ln other words, for
the purposes of studying conjugate points we can let cz = cl/7 ct and thus
regard ylz, c1, c2) as a one-parameter family ylz, c). Now,

ç')y cl
.& = -  = - .tt?d

c a

so that at any conjugate point tç we have

- -X - 04
dc

consequently, the necessary condition for an envelope is satisfied at conjugate
points.

Envelopes abound in nature, and many arise through variational princi-
ples. For exam ple, caustics are form ed when light rays form an envelope. The
extrem als are the solutions to the Euler-lsagrange equations that arise from
Ferm at's Principle. A convenient example is the bright curve formed in a par-
tially full tea cup on a sunny day as a result of the sun's rays reflecting on
the inside of the cup.'/

Exam ple 10.6.6: Parabola of Safety
Another prom inent exam ple of an envelope is the so-called ttparabola of

safety'' familiar to artillery gunners (and combat pilots). The path of the
projectile is governed by Hamilton's Principle. Suppose that the cannon is
fixed at the origin, but that it may be elevated at any angle 4, 0 < 4 < r 2.
The resulting trajectories for projectiles leaving the cannon are the parabolas
given by

% True, these extremals are certainly not sr1100th, but if needed, we can restrict our
attention to the family of light rays after the reflection. The curve that forms the
caustic is called a nephroid.



(10.36)

so that

(10.37)

Equations (10.36) and (10.37) imply that
2 2

ylz) = - a .2g 2z?(; (10.38)

Equation (10.38) defines the parabola of safety. Each extremal in the family
defined by relation (10.36) lies below this parabola except at one point where
the extremal and the parabola intersect and have a com mon tangent. The
ttfiring zone'' is the space between the parabola of safety and the z-axis. The
projectiles never exit this zone, so a pilot can fly safely above the parabola.

An introduction to envelopes and applications is given by Boltyanskii (131 .
A more rigorous and advanced (but still quite accessible) account of envelopes
and other singularities is given by Bruce and Giblin (181.
Conjugate points need not always yield envelopes for a family of extremals.

The family of geodesics on a sphere through the North Pole, for instance,
defines a family of extremals (lines of longitude) that intersect at a common
point (the South Pole), which is a conjugate point that is certainly not an
envelope. There is, in fact, an optical device that m imics geodesics on a sphere.
The lens is called the M mxw ell fisheye. The refractive index for this lens is

where r denotes the distance from a flxed point, and a and ro are constants.
Born and Wolf (141, pp. 147-149 and Luneberg (501 pp. 197-214 discuss this
remarkable lens and certain generalizations.
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10.6.3 Saddle Points*

Theorem 10.4.7 shows that if an extremal produces a local m inimum for a
functional J, then it cannot have conjugate points in the interval (zo, z1).
Theorem 10.5.1 shows that extrema.ls that do not have conjugate points in
the interval (zo, z11 produce weak local minima for J. Geodesics on the sphere
from the North Pole to the South Pole show that if zl is conjugate to ztl
then the extremal (albeit not uniquely determined) may still produce a local
m inimum . These results can be easily adapted to the case of local m axima
of a f-unctional J by simply applying the results to the functional K  = -J
instead of J. W e can thus conclude that an extremal y corresponds to neither
a local minimum nor a local maximum if there is a point conjugate to ztl
in the interval (zo, z1). The question arises whether it is possible to classify
extremals with conjugate points in a manner analogous to that used in finite
dimensions for saddle points. Although such a classification m ay be of limited
interest in many physical applications, it turns out that it is certainly a fruitful
line of enquiry in topology and differential geometry.
The classification of extremals with conjugate points is the starting point

for a broad subject called ttrl'he Calculus of Variations in the Large'' pioneered
by M . M orse. lt is well beyond the scope of this book to give even a rudim en-
tary account of this topic, but we do give a few comments (no proofs), which
we hope will whet the appetite of the reader to look at a serious study of
this subject. A standard reference is the book by Morse (551 . Milnor (531 and
Spivak (651 also give accounts of the theory as it applies to geodesics. As with
the previous materia.l, we focus exclusively on candidates for local minim a and
the strengthened Legendre condition (10.9) is assumed to be satisfied.

The key to obtaining a classification of extrem a.ls lies in extending the
M orse index to infinite-dimensional spaces. ln finite-dim ensional spaces, the
M orse index counts the number of minus signs in the canonical representation

of / near xtl (Lemma 10.1.1). On a slightly deeper level, the Morse index cor-
responds to the maximum dimension of a subspace of R?z wherein the Hessian
m atrix is negative definite. This idea can be transferred to infinite dim en-
sional spaces. lf the function space is a Hilbert space, then a decomposition
of quadratic f-unctionals such as J2J analogous to that given in Lemm a 10.1.1

is possible (cf. (221 , pp. 571-572). Here we take the direct approach. Let y be
an extremal for the f-unctional J and let J2J : .bI x .rf --+ R be the correspond-
ing second variation. The M orse index ,L of y is defined to be the maximal
dimension of the subspace of .bI on which J2J is negative definite.

The problem with the above definition is that it is not clear how one might
determine à, or for that matter, if ,L is even finite. lt turns out that there is a
tractable way to calculate ,L thanks to the M orse index theorem. The general
statement of this result concerns functiona.ls that involve several dependent
variables, and the notion of multiplicity for conjugate points is needed. The
m ultiplicity of a point s conjugate to ztl is defined to be the number of
linearly independent solutions u to the Jacobi accessory equation that satisfy



utzt)) = u(s) = 0. For our case,S the general solution to the Jacobi accessory
equation (10.14) is of the form zt = ctztl + ,dzlz, where ztl and u, are linearly
independent solutions to (10.14) and ct, ,d are constants. lt is thus clear that
the m ultiplicity cannot exceed two. The problem of finding nontrivial solutions
to this boundary-value problem is a thinly disguised Sturm-lsiouville problem ,
and we know that all the eigenvalues associated with such problems are simple

(see Section 5.1). ln short, the multiplicity of conjugate points is one, for
functiona.ls of the type considered here.

A general statement of the M orse index theorem along with a proof is

given in Milnor (531. Here, we give a simple ttno frills'' version for extremals
to functionals of the form

Theorem 10.6.1 (Morse lndex Theorem) Let y be an eztrevtal Jor J.
Tlte indez ,L o.f J2J is equal to tlte zz'tzmùcr o.f points in (zo, z1) conjugate to
ztl . This indez ïs always jinite.

The above result allows us to classify extremals in a spirit similar to that
used to classify critical points in finite-dim ensional spaces. For instance, if
,L = 0 for an extremal, and zl is not conjugate to zo, then Theorem 10.5.1
indicates that J has a weak local minimum at y. For the f-unctional of Fuxample
10.3.3, the index ,L is at least 1 since r CE (0, f); if, say f = 7r 2, then ,L = 3,
since the conjugate points r, 2r, and 3r are all in (0, f). For this example
the coefllcients of the Jacobi accessory equation do not depend on y, so that
all extrem als with the sam e endpoints have the same index. Geodesics on
the sphere can have an index of 0 or 1 depending on whether they contain
antipodal points. Similarly, extremals for the catenary can have a M orse index
of 0 or 1 depending on the choice of solutions for the integration constants
(Example 10.6.3).
Exercises 10.6:

1. Derive the Jacobi accessory equation for the catenary and verify directly
that the f-unctions ztl and u, in Exam ple 10.6.3 are solutions to this equa-
tion.

2. ln Fuxample 10.6.3 suppose that the boundary values are 3/(0) = 1 and
3/(1) = coshtl). Find a solution (c1, c2) such that the corresponding ex-
trem al produces a weak local m inimum .

8 The Jacobi accessory equation is a vector differential equation when the functional
involves several dependent variables. For our case the Jacobi accessory equation
is scalar.
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3. Let
x/4

J(y) = (y2 - y?2 - 2y cosh z) dz.
o

Find the extrem als for J and show that for the flxed endpoint problem
these extremals produce weak local m axima.

4. Let
21

J(tv) - y' (1 + z2!//) dz,
20

where 0 < ztl < z1. Find the extrem als for J and the general solution
to the Jacobi accessory equation. Find any conjugate points to ztl and
determine the nature of the extremals for the flxed endpoint problem .

5. Let J be the f-unctional of Exercises 10.3-2.

(a) Derive a two-parameter family of functions ylz, c1, c2) that are ex-
trem als for J.

(b) Find the general solution to the Jacobi accessory equation and show
that there are no points conjugate to ztl for any choice of ztl and !/(zo).
Determine the nature of the extremals for this problem .

6. Let J be the f-unctional of Fuxercises 10.3-1 (geodesics on the sphere). The
extremals for J satisfjr the im plicit equation

tan 0 cost/ + c2) = tan c1,
where cl and cz are constants. Find the general solution to the Jacobi
accessory equation. lf -4 is the point with spherical coordinates (R, )o, %)
show that the points conjugate to -4 have coordinates (R, 40, % ulu r).

7. Let
h(1, #, c) = 3/5 - (tr + c)3.

Find the curve along with the points (z, y) that satisfy /z(z, y, c) = 0 and
equation (10.33). Does this curve form an envelope?

8. Let c and é be constants such that c > f > 0, and consider the one-
parameter family of circles given by

:2
/z(z, y, ct) = a2 1 - - 2ctz + (z2 + y2 + é2) = ().

Solve the equations /z(z, y, ct) = 0 and (10.33), and show that this family
of curves forms an envelope corresponding to the hyperbola

2 2I F
- .-  =  1.c2 -  :2 :2

This fam ily of circles arises in the study of the sound made by a supersonic
aircraft. ln the m odel, f is the height of the aircraft and c = fv zt, where
z? is the speed of the aircraft and zt is the speed of sound in air (hence
c > f for supersonic aircraft). The right branch of the hyperbola encloses
a region known as the zone of audibility. See (131 for more details and
other applications.
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10.7 Convex lntegrands

ln this section we present a sufllcient condition for a minimum that does not
involve conjugate points. The condition exploits the case where the integra.nd
is a convex f-unction of y and y?, and uses a basic result about convex functions
to establish the requisite inequalities. The requirement of convexity, however,
is harsh: many functionals such as that for the catenary do not have con-
vex integrands. Nonetheless, the test for convexity is straightforward and the
result is simple to use.

Recall that a set J2 f;l 1:.2 is convex if the line segments connecting any
two points z1, z2 CE J2 lie in .Q. ln other words, if z1, zz CE J2 then

w(f) = (1 - flzl + tz, CE J2

for all t CE (0, 11 . The sets R2, ((:(/, .?z;) (E 1:.2 : y2 + 072 < lj and tttt/? .?z;) (E R.2 :
1p1 < 1 and Izt?l < 1). are examples of convex sets.
Let J2 f;l 1:.2 be a convex set. A function / : J2 --+ R is said to be convex if

(10.39)

for all z1, zz CE J2 and all t CE (0, 11. Geometrically, inequality (10.39) implies
that the set M = ((z, z) CE J2 x R : z k /(z)) is a convex set. Roughly
speaking, M is the set of points that ttlies above'' the graph of /.

ln finite-dimensional optim ization, convexity is a desirable property be-
cause one can proceed directly to the classification of a critical point without
resorting to the Hessian m atrix. M ore importantly, the minimum thus found
is global in the sense that it is a minimum of / for a11 z CE .Q. The crucial in-
equality that leads to this result comes directly from the mean value theorem .
Let J2 f;l 1:.2 be a convex set and let / : J2 --+ R be a convex f-unction that

has continuous partial derivatives on .Q. Let z1, zz CE .Q. Then

/(w(f)) - /(z,) + ftza - z,) . V/(w(r)).
Equation (10.40) and inequality (10.39) imply

(10.40)

for all t CE (0, 1). Now, zl and z2 are fixed points in .62, but r depends
on t and 0 < r < f. Since the partial derivatives of / are continuous,
limt--so V/(w(r)) = V/(z1); hence, for any z1, zz CE .62,
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(za - z,) . V/(z,) s; /(za) - /(z,). (10.41)

Suppose now that zl is a stationary point for / so that V/(z1) = 0. The
above inequality shows that

/(z1) :é /(z2)
for all zz CE .Q. ln this manner we see that stationary points for convex func-
tions lead to a minimum for / in .Q.

W e can exploit the above result to develop a sufllcient condition for a
functional to have a minimum at an extremal. Let

21

J(tv) - /(z, y, tv') dz,
20

Jzz - ((:v, y') e 1:.2 : (z, y, ?/?) CE Dgj.

2 1 2 1 (j(b' -  y'l.%' (z, y, y') dz - - (.%' (z, y, y')) (5 - y) dz,d
z20 20

and hence
-- 

(,î - ,) (?,(z,?,, ?,?) - c,d (??,-(z,?,,?,?))) dz.J(5) - J(tv) kzo I
Now, y satisfies the Euler-lsagrange equation, so that the integrand in the
above inequality is zero; therefore,

J(5) - J(:v) k 0,
and consequently J has a minimum at y. ln summary we have the following
result.
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Theorem 10.7.1 Snppose tltat Jor eaclt z CE gzt), z11 tlte set Jzz is convez,
and tltat / is a convez jhnction o.f tlte variables (y, !/?) CE Jzz . f/ y ïs a smtata//z
eztrevtal Jor J, tlten J Itas a mïzzïm'tzm at y Jor tlte hzed endpoint problem,.

ln order to apply the above theorem we need a method for discerning
whether a given f-unction of two variables is convex. Fortunately, there is a
tractable characterization when / is a s11100th function. We omit the proof of
the next result.g

Theorem 10.7.2 Let J2 f;l 1R.2 be a convez set and let / : J2 --+ R be a J'unction
'ttlï//z continuon,s hrst- and second-order partial derivatives. Tlte Junction / is
convez z/ and only zl//t?r eaclt (y, 'tt;) CE fî..

The final inequality in the above theorem is sim ply the requirem ent that
the quadratic form Q introduced in Section 10.1 be positive semidefinite. Geo-
m etrically, this inequality ensures that the Gaussian curvature is nonnegative

and hence each point on the surface described by (y, 'tt;, Jly, zc)), (y, 'tt;) CE J2 is
either elliptic or parabolic. Elliptic and parabolic points are characterized by
the property that the tangent plane at (y, w, Jly, zc)) does not intersect the
surface in a neighbourhood of (y, 'tt;, Jly, zc)). The other inequalities ensure
that the surface always ttlies above'' the tangent plane. A paradigm for a con-
vex function is the paraboloid described by Jly, 'tt;) = y2 + w2 for (y, .tt;) (E R2.
A convexity condition for functions of three or more independent variables
can be derived using the Hessian matrix of Section 10.1. For example, if / is
a s11100th f-unction on the convex set J2 f;l R?z and the Hessian matrix for / is
positive definite, then / is a convex f-unction (cf. Theorem 10.1.2 for conditions
on the Hessian matrix).
Exam ple 10.7.1: G eodesics in the Plane
Let J be the arclength functional

J(tv) - J 1 + yF 20

hence, / is convex. Theorem 10.7.1 thus implies that (among sm00th curves)
line segments are the curves of shortest arclength between two points in the
plane.

9 A proof can be found in g15j, pp. 41-43.
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Exam ple 10.7.2 : Catenary
The integrand of the catenary problem (Fuxample 2.3.3) is /(z, y, !/?)
y 1 + y?. Now, hy = 0, but

so that .::1 < 0 for all y? ,# 0. The integrand is thus not convex. We could
have deduced this from Example 10.6.3, because there are conjugate points
for certain solutions of the boundary value equations.

Exam ple 10.7.3: Consider an integrand of the form

/(z, y, y') = (c1!/ - y' - c2)2

where cl and cz are constants. (The Ramsey growth model of Exercises 7.1-2
has an integra.nd of this form.) Here Jzz = R2, yy = 2c21 > 0, /?y/?y/ = 2 > 0,
and / / = -2c1 > 0. Hence, .::1 = 0, and the integra.nd is convex. Extremalsyy
to the flxed endpoint problem thus correspond to minima.

Exercises 10.7:

1. Let J2 be a convex set and suppose that / and g are convex f-unctions on
.Q. Show that the f-unction / + g is also convex.

2. Determine whether the integrand for the brachystochrone f-unctional (Fux-
ample 2.3.4) is convex.

3. Show that the functions y2 + y?2 and c!/ 1 + y?2 are convex.
4. ls the integrand convex for the f-unctional of Exercises 10.3-2?
5. Develop a result analogous to Theorem 10.7.1 for f-unctionals of the form

and apply it to the flxed endpoint problem for the beam of Exam ple 7.1.3.



A nalysis and D ifferential E quations

ln this appendix we review some elementary analytical concepts that are used
frequently in the book. The review is intended to be simply a brief sum mary
of a few key results from analysis and differential equations that are relevant
to material presented in the text. lt is not intended as a ttquick introduction''
to these topics: it is merely a budget of handy results collected for the con-
venience of the reader. The first two sections concern Taylor polynom ials and
the implicit function theorem . A full account of these topics resplendent with
proofs can be found in any book on real analysis or advanced calculus (e.g.,
(191, (561, (291). The third section deals with the theory of ordinary differen-
tial equations. Here, one can consult Birkhoff and Rota (91 , Coddington and
Levinson (241 , or Petrovski (601 for detailed presentations.

A .1 Taylor's Theorem

A good deal of the mathematics in this book relies on an exceedingly useful
result known as Taylor's theorem. W e com monly encounter transcendental
functions such as c2 or algebraic f-unctions such as 1 + z2, that need to be
approximated near a given point in term s of a polynom ia.l. Taylor's theorem
provides the analytical framework to do such approximations. Let us first
warm up with the mean value theorem.

Theorem A.1.1 (M ean Value Theorem) Let ztl and zl be real zz'tzmôcrs
suclt tltat ztl < z1. Let / be a Junction continuon,s ïzz gzt), z11 and dtferentiable
ïzz (zo, z1) . Tlten tltere ïs a zz'tzmscr ï suclt tltat ztl < ï < zl and

The mean value theorem is easy to explain geometrically. The slope of the

line segment that connects the points (zo, /(zo)) and (z1, /(z1)) is
/(z1) - /(zo)

W = .
I 1 - I ()
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The mean value theorem asserts that somewhere in the interval (zo, z1) the
graph of the function / has a tangent parallel to the line segment; i.e., ?rz =
//(ï) (figure A.1). lt is clear that there may be several values of ï CE (zo, z1)

Fig. Jt.1.

for which equation (A.1) is valid. The ttcatch'' is that the mean value theorem
does not give us any value for ï. We know only that it is in the open interval
(zo, z1), so that all the uncertainty of the representation lies in the derivative
term. We can nonetheless use this result to approximate / near ztl with some
control over the error through the derivative.

Note that the m ean value theorem can easily be interpreted to be a repre-
sentation of / at ztl in terms of /(z1) and the derivative term. ln other words,
the relation is symmetric and it does not matter whether ztl < zl or ztl > z1.

The point is that there is a number ï between these numbers such that (A.1)
is satisfied provided / satisfies the continuity and differentiability conditions
in the relevant interval.
The mean value theorem can be extended to provide representations of /

in terms of a nonlinear polynomial. This extension goes by various nam es such
as the ttgeneralized mean value theorem,'' the tthigher m ean value theorem ,''
ttrihaylor's theorem with rem ainder,'' or sim ply Taylor's theorem.

Theorem A.1.2 (Taylorhs Theorem) Let / be ajhnction s'uclt tltat itshrst
zz derivatives are continuon,s ïzz tlte interval gzt), zll, and /(r'-1-1) (z) ezists Jor
all z CE (zo, z1) . Tlten, tltere ïs a zz'tzmscr ï CE (zo, z1) suclt tltat

(z1 - zo)2 tt/(z1) - /(zo) + (z1 - zo)/'(zo) z / (zo) + . . .
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(z1 - zol?z (zz) (z1 - zo)''-F1+ / (z()) + /('z+1)($).
,z! (,z + 1)!

The polynom ial

is called the sàth degree Taylor polynomial of / at zo. The term

(tr1 - ttlnlrL'f'lXzz-hl = ' US /IXXZI ($)(
zz + 1)!

is called the remainder. lf there is a number M such that M  k I /''-F1(z) I
for all z CE (zo, z1), then we can approximate / by the Taylor polynomial fk
with an error bound of the form

(t7l 1 - I 0 ) K'X 1I /(zz) - F,ztzzll < 1)! M.(zz +

Note that if /''-F1(z) is continuous in the interval gzt), z11 , then this f-unction
m ust be bounded. Hence, for this case there is always a number M  such that
M k I /''-F1(z) I for all z CE (zt), zll.

Taylor's theorem can be generalized to f-unctions of several independent
variables. To keep things simple we give a version for two variables and restrict
the geom etry to discs in the plane. First, however, to avoid swimm ing in
notation we introduce the operator

For example,

W e also use the notation



264 A Analysis and Differential Equations

to indicate that the operator acts on / and the derivatives are evaluated at
the point (z, y) = (c, d).
Theorem A.1.3 Let DR = ((z, y) CE 1R.2 : (z - z())2 + Ly - yvlz < .J?2j ancl
suppose tltat / : Dp --+ 1:.2 Itas continuons partial derivatives np tltrough order
zz + 1 in DR. Tlten Jor any point (z1, 3/1) CE DR) tltere ïs a point (c&, 5) on tlte
line segrrtent connecting (z1, 3/1) to (zo, y(tl suclt tltat

As in the one-variable case we can use Taylor's theorem to approximate /
and control the error by finding suitable bounds for the n, + lth-order partial
derivatives. W e use this version of Taylor's theorem several times in the book.
One might draw comfort, however, from the fact that we seldom need terms
beyond the second order.

The reader is doubtless fam iliar with Taylor series or at least the special
case of M aclaurin series. For example, we are fam iliar with the series repre-
sentations

z CE R,

and it is natural to enquire if the Taylor polynomial tends to / as n, --+ 0o,
assuming / has derivatives of all orders. ln other words, if / has derivatives
of all orders in a neighbourhood of ztl does F,ztzl --+ /(z) as n, --+ lxt for all z
sufllciently close to zo?. The answer is no. The Cauchy f-unction

- 1/za f ()c i z ,# 
,/ (z) = 0 if z =  0,

provides a counterexample. lt can be shown using the definition of a derivative
that / has derivatives of all orders at z = 0 and that /('') (0) = 0 for all
n, = 1, 2, . . .. The Taylor polynom ial is thus



#,z (z) = 0,

for a11 zz. Hence limzz-sx F,ztzl = 0. lt is clear that /(z) > 0 for a11 z ,# 04
consequently, limzz-sx F,ztzl # /(z) except at z = 0. Functions that can be
represented by a convergent power series with a nonzero radius of convergence
are thus special. lf there exists a representation of / of the form

X

/(z) - avblz - zol'',
n=0

valid for all Iz - ztl I < p, where p is some positive number, then / is said to be
(real) analytic at z(). Such f-unctions always have Taylor series representations
at ztl and

j (sz) (z(;;
Gn =  .

af

Similar statements can be made concerning functions of several independent
variables.

Finally, we note that the Cauchy function can also be used to construct
a m ollifier. Roughly speaking, a m ollifier is a s11100th function that is zero
outside a bounded interval f and nonzero within f . Specifically, choose any
a CE R, a ,# 0, and consider the function

- 1/(tza-z2) kf jzj sj (z,WY) = Y0 if I
zI > a.

lt can be shown that ?rz has derivatives of a11 orders for all z CE R, and that
?rztzl > 0, if z CE (-tz, tz)', otherwise, ?rztzl = 0. Evidently, we can modifjr this
function so that given any two points tz, b with a < b we get a mollifier that is
zero outside @, 5) and positive inside (c&, 5). Such f-unctions are always useful.
ln this book, however, we tend to use simpler functions that have sim ilar
properties, but are not as sm00th. Such f-unctions have the merit of simplicity
for our calculations.

A .2 The lm plicit Function Theorem

Frequently, we are confronted with equations of the form

.q(I, !/) = 0,
which we need to either solve for z or y, or at least discern whether such an

equation defines y as a function of z (or vice versa). Often, we cannot solve
implicit equations, but it is important to know qualitative details such as
whether a solution exists and is unique. W e also usually need to know certain
analytical properties such as continuity of solutions. W hen we cannot find an
explicit solution (or need only qualitative properties), the implicit f-unction
theorem comes to our rescue.
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.t?lalo, #0) = 0,

and suppose tltat g ïs dtferentiable 'ttlï//z respect to y and tltat t'?.ty ç')y ïs con-
tïzzut?t?,s in .62. f/

glz, 4(z)) - 0',

3. tlte Junction 4 'ttlï//z tlte above properties ïs unique; and
4. 4 ïs continuon,s ïzz fzo

Moreover, zl/ ç')g t'?z ezists and ïs continuon,s ïzz .62, tlten tlte Junction 4 ïs
dtjferentiable Jor all z CE fzo , and

Loosely speaking, given a point (zo, y(tl at which glzçj, :4/0) = 0, the implicit
function theorem guarantees that implicit relations such as (A.2) are solvable
for y, provided g satisfies the requisite conditions. The solution 4 is local in
character: we do not know fzo explicitly. Also, it is worth noting that the above
theorem does not preclude the existence of another solution 0(z) to (A.2), but
it does preclude two distinct solutions 0, 4 such that 0(z(j) = 4(zo) = yçj. For
example, let glz, y) = z - y2 and ztl = yçj = 1. Evidently, g satisfies the
conditions of the implicit f-unction theorem and 4(z) = xf-z is the unique
solution with the properties listed in 1 and 2 of the im plicit f-unction theorem .

The function 0(z) = -'k/-z is also a solution to glz, y) = 0, but p(zo) ,# yçj.
The implicit function theorem can be extended to systems of implicit equa-

tions such as

J(1, #, 'tz, '&) = 0,

.q(1, #, 'tz, '&) = 0.

Suppose that we wish to solve the above system for, say, zt and z? in terms of z

and y in a neighbourhood of a point (zo, yçj, 'tzo, z?()) that satisfies the equations.
ln this case, condition (A.4) generalizes to the Jacobian condition



where the partial derivatives are evaluated at (zo, yçj, 'tzo, zo). Under conditions
analogous to those given in Theorem A.2.1 it can be shown that there is a
unique solution 4tz, y), #tz, y) with properties analogous to those of 4(z) in
Theorem A.2.1. An im portant special case of this result concerns coordinate
transform ations of the form

z = ztzt, z?),

y = yl'u, '&).

Theorem .A..2.2 (lnverse rrransformations) Let ztl = ztztt), zo) and 3/0 =
yluçj, z?()) . Suppose tltat tlte Jnnctions ztzt, z?) and ylu, z?) Itave continuon,s par-
tial derivatives o.f order 1 in a neigltbonrltood J2 (:z 1:.2 o.f tlte point tzo, z?(;) .
Suppose Jnrtlter tltat tlte Jacobian condition

t'?tz, y)J =  # 0
t'?tu, r)

1. 'tztztl , y(tl = 'tztl and z? (zo , y(tl = zo ,'
2. tlte identities

ztutz, y), ''Jtz, :v)) - z,
:v(z'(z, y), rtz, y)) - y,

are valid througltout N (zo , y(tl ,'
3. tlte Junctions zttz, y) and rtz, y) tltat satisj'y tlte above properties are 'tzzzït.wc,'

and

4. zttz, y) and rtz, y) Itave continuon,s y'tzràïtzl derivatives ïzz Nlzçj, 3/0), and
tg u 1 

..@= 'J' 
o ,tgz r

ôv 1 ny
dz 7:u

ôu 1 t:z

V - - 1/ t? 'U
ç')v 1 t'?z
%'L - J' ôu'
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I =  tl COS '&

y = 'tz sin v.

hence, the Jacobian is nonzero provided zt ,# 0. Clearly ztzt, z?) and ylu, z?)
satisfy the requisite smoothness conditions for any (u, z?) CE R2. We thus con-
clude that given any point t'?.to, zo), with 'tztl ,# 0, there is a neighbourhood of
t'?.to, zo) wherein the transformation is invertible. We see that

2 + #2)1/2zt = (z ,

= ar c t an -V ) .z? z
Although the above expressions for zt and z? involve multif-unctions, note that

the conditions 'tztzt), y(tl = 'tztl and rtzt), y(tl = 't?tl determine the branches
of these f-unctions. The exceptional point for this transformation is the pole
t'?.t(), zb) = (0, zb). Here, we know that the equations ztl = ztocos 't?tl = 0 and
yçj = ztosin zo = 0 place no restrictions on r(), so that there cannot be a unique
inverse.

A .3 Theory of O rdinary D ifferential Equations

M uch of our study of the calculus of variations revolves around the Euler-
Lagrange equation, which is a second-order nonlinear ordinary differential
equation. W e also need to study ordinary differential equations arising from

constraints and sufllcient conditions (the Jacobi accessory equation). Sufllce
it to say that ordinary differential equations loom large in the subject. Some
of the theory underlying these equations is developed as needed in the context
of its application. There are some results, however, that we use several tim es
and it is perhaps best to collect them in a single section for reference.

Given an equation of the form

.t?(al, !/, !//) = 0,
where y? denotes dy dz, we face a more formidable problem than that posed by
implicit equations. Assuming g satisfies the conditions of the im plicit f-unction
theorem with respect to y?, and glzçj, :o, y6 ) = 0, we can (at least in principle)
solve equation (A.9) for y? and thus study an equation of the form
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y'lz) - /(z, y) (A.10)

along with the condition
#(alo) = #0. (A. 11)

Equation (A.10) along with the condition (A.11) is an example of an initial-
value problem . There are no systematic solution techniques available for
solving such problems explicitly in closed form. lf / has some special properties
(e.g., if / is separable) then there are special methods for solution, but for
the general / we must concede defeat. As with the implicit function theorem,
we often do not need to know the solution explicitly, but we do need to
know whether a solution exists and perhaps some qualitative properties such
as uniqueness and sm oothness. The following result is basic to the theory
of differential equations and plays a rôle analogous to the implicit f-unction
theorem in that it guarantees the existence of a unique local solution.

Theorem A.3.1 (Picardhs Theorem) Snppose tltat /(z, y) ïs continuon,s
'ttlï//z respect to z ïzz a neigltbonrltood .;Vtzo, y(tl (:z 1:.2 o.f (z(;, yv)) and tltere is
a constant K > 0 suclt tltat Jor all (z, 3/1), (z, n) CE Nlzçj, :4/0)

I/(z, :va) - /(z, :vz)I < A'-ltva - tvzl. (A.12)

:v'(z) - /(z, y)

v(zo) - yù.
Jor all z CE Nlz(j), and

lnequality (A.12) is called the Lipschitz condition, and if / satisfies
this inequality for some K then / is called Lipschitz continuous in y. The
requirement of Lipschitz continuity is stronger than that of continuity. lf / is
Lipschitz continuous in y then it is continuous in y, but the converse is not
true. We note that if we loosen the requirement on / to continuity in y, then
we still have the existence of a solution (Peano's existence theorem, (601 , p.
29), but uniqueness is not guaranteed. For example, the simple problem

/ (al) = # 1/ 9# ,
:v(0) - 0

3/2

(z) - ((j?z) , ?,(z) - o.y
For our purposes we seldom need the generality afforded by the Lipschitz

condition. Usually, / is differentiable in y, and this is a stronger condition
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than Lipschitz continuity. Suppose, for example, that t'?/ ç')y is continuous in
the disc Xtzo, y(tl = ((z, y) : (z - zo)2 + (y - yv)2 < .J?2j? where R > 0. For
any choice of (z, 3/1), (z, n) CE Xtzo, y(tl we can apply the mean value theorem
to assert that there is a number ï between yï and y, such that

://(z
, y,) - /(z, :v1) + (:v2 - :v1) o (z,y).y

Since t'?/ ç')y is continuous in X(zo, y(tl it is bounded in this disc and hence
there is a K  > 0 such that

Thus, if /(z, y) has a continuous partial derivative with respect to y in a neigh-
bourhood of (zo, y(tl then we can find a suitable disc Xtzo, y(tl and conclude
that in this disc / is Lipschitz continuous in y.
A general solution to equation (A.10) contains a parameter (the constant

of integration) the value of which is determined by the condition (A.11). lt
is natural thus to enquire whether the general solution depends continuously
on this param eter. The next result gives conditions under which differential
equations containing parameters have solutions that are s11100th with respect
to the parameters. W e show that the initial condition parameters are a special
Case.

Theorem .A..3.2 (Dependence of Solutions on Parameters) Let ct =
(ct1, . . . , ctzzl and cîcyzzc tlte set .â? - (o, CE R,z : 1c.11 < p1, . . . , Ictzz I < pzz)p
wltere tlte ,dk are positive zz'tzmôcrs. Let J2 (J 1R.2 be an open set 'ttlï//z closnre J2
and dehne tlte set T = L x .B (:z R''-F2. Suppose that / : T --+ R has continn,-
ous derivatives 'ttlï//z respect to y, ctl, . . . , ctzz o.f order k k 0 on T', and tltat /
satishes tlte L ipscltitz condition

I/(z, y2, c.) - /(z, :v1, c.) I !; A'-ltva - tvzl

:v'(z) - /(z, y, c.) (A. 13)

4(zo, c.) - yù.

Basically, the above theorem shows that the solutions to differential equations
that contain parameters are s11100th in these parameters, provided / is s11100th
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in these parameters. Note that if k k 1 in the theorem then the Lipschitz
condition will be satisfied automatically.
Returning to equation (A.10), consider the transformation

'&J = # - yù Z = I - 2l: .

Under this transformation equation (A.10) is
zc?(z) = /(z + z(), w + y(j).

An immediate consequence of the above theorem is that the general solution

to (A.10) depends smoothly on the initial data zo, yçj, provided / is s11100th
in z and y near (zo, yv).

The results concerning the existence and uniqueness of solutions along
with the continuous dependence on param eters can be extended to initial-
value problems of the form

y'(z) - f (z, y),
ytzo) - yo,

where I . I is defined by

IyI = 1:112 + . . . + I:vzzI2
for all y = (3/1, . . . , !/zz).

A higher-order differential equation can be readily converted into a system
of differential equations. For exam ple, given the differential equation

?? =  /(z, y, y?),!/
let yï = y and n = y?. The above differential equation can then be recast as
the system

/8/1 = #2
,

3/1 = / (z, 8/1 , #2) .
ln this manner we can tackle questions concerning existence and uniqueness
for higher-order equations. The results, however, are local in character and
concern the initial-value problem , where y and y? are specified at a point zo.
The calculus of variations is impregnated with second-order differential equa-
tions, but most of the problems are boundary-value not initial-value problem s.
Boundary-value problems consist of determining solutions to a differential

that satisfjr conditions of the form !/(zo) = yçj and !/(z1) = 3/1, where ztl < z1.
These problems are global in character because we require a solution to be
valid throughout the interval gzt), z11 and satisfy the boundary conditions. The
theory behind such problem s is more com plicated than that for initial-value
problems. A sam ple of one existence result is given in Section 2.6.
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Function Spaces

W e give here a brief synopsis of some concepts from f-unctional analysis. Al-
though we do not rely heavily on this material, it is included because a deeper
understanding of the calculus of variations requires at least a nodding famil-
iarity with functional analysis. At a m inimum we need a sensible definition of
ttneighbouring functions,'' and certain concepts from Hilbert space are helpful
for topics such as eigenvalue problems. This said, the book has been written
so that it is not essential that the reader know f-unctional analysis. A person
ignorant of the subject can nonetheless progress through the book and read
virtually every section with profit. Com plete accounts of this material can be
found in any book on f-unctional analysis such as Kreyszig (461 or Hutson and
Pym (401. A concentrated account from a physicist's standpoint can be found
in Choquet-Bruhat et al. (221 .

B .1 N orm ed Spaces

The calculus of variations is essentially optimization in spaces of functions.
lt is thus useful to introduce som e concepts from functional analysis, and
basic am ong these concepts is that of a normed vector space. The reader has
probably encountered the concept of a finite-dimensional vector space in a
course on linear algebra. These spaces are modelled after the set of vectors in
R''. Vector spaces, however, can be defined more generally and need not be
finite dim ensional. ln fact, most the vector spaces of interest in the calculus
of variations are not finite dimensional. A vector space is a nonempty set
X  equipped with the operations of addition (t+'' and scalar multiplication.
For any elements /, g, /J in X and any scalars ct, ,d these operations have the
properties:

(i) / + g e .X';
(ii) / + g - g + /;
(iii) / + (.q + /z) - (/ + .q) + h.;
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Example B.1.1: The set of vectors ((z1, z2, . . . , z,zl : zk CE R, k =
1, 2, . . . , zzj is denoted by RrL. Let x = (z1, z2, . . . , z,zl and y = (3/1, n, . . . , ynl
be vectors in R''. lf addition is defined by

x + y = (zl + #1, z2 + ::2 , . . . , Ivb + ynl ,
and scalar multiplication by

(AX = ltAJr 1, tAlrz ? . . . ? Ctzszl ?

Example B.1.2 : Let Cgzt), z11 denote the set of all f-unctions / : gzt), z11 --+
R that are continuous on the interval (z() , z11 . 1f, for any /, g CE Cgzt), z11 ,
addition is defined by

Example B.1.3: Let fk denote the set of sequences (tzszj in R such that
the series SC'D Itzzzl is convergent, and define addition so that for a.ny twon=1
elements -4 = ttzzzl, B = (5zz),

.,4 + B = ttzzz + s,zl,
and scalar multiplication so that

ct.,zt = tcttzzz)..
Then é1 is also a vector space.
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The above exam ples show that the elements in different vector spaces can
be quite different in nature. M ore im portant, however, there is a significant
difference between a vector space such as R?z and one such as Cgztl , z11 hav-
ing to do with ttdimension.'' The space R?z has a basis: any set of n, linearly
independent vectors in R?z such as el = (1, 0, . . . , 0), e2 = (0, 1, . . . , 0) . . . ezz =
(0, 0, . . . , 1) forms a basis. The concept of dimension is tied to the number
of elements in a basis for spaces such as R'', but it is not clear what a basis

would be for a space like Cgzt), z11 . ln order to make some progress on gen-
eralizing the concept of dimension we need first to define what is meant by
a linearly independent set when the set itself might contain an infinite num-
ber of elements. We say that a set is linearly independent if every hnite
subset is linearly independent', otherwise it is called linearly dependent. lf
there exists a positive integer n, such that a vector space X has n, linearly
independent vectors but any set of n, + 1 vectors is linearly dependent, then
X  is called finite dim ensional. lf no such integer exists, then X  is called
infinite dim ensional.

A subspace of a vector space X is a subset of X which is itself a vector
space under the same operations of addition and scalar multiplication. For
example, the set of functions / : gzt), z11 --+ R such that / is differentiable
on gzt), z11 is a subspace of Cgzt), zll. Given any vectors z1, z2, . . . , zn in a
vector space X , a subspace can always be form ed by generating all the linear
combinations involving the zk, i.e., all the vectors of the form ctlzl + ctzzz +
. . . + ctzzzzz, where the ctks are scalars, is a subspace of X . Given any finite set
S (:z X  the subspace of X form ed in this manner is called the span of S and
denoted by (SI. lf S (:z X has an infinite number of elements then the span of
S is defined to be the set of all hnite linear combinations of elements of S.
Vector spaces of f-unctions such as Cgzt), z11 are called function spaces.

W e are concerned primarily with f-unction spaces, and to avoid repetition we
agree here that for any function space the operations of addition and scalar

multiplication are defined pointwise as was done for the space Cgzt), z11 in
Example B.1.2.
Vector spaces are purely algebraic objects. ln order to do any analysis

m ore structure is needed. ln particular, basic concepts such as convergence
require some means of measuring the ttdistance'' between objects in the vector
space. This leads us to the concept of a norm . A norm  on a vector space X
is a real-valued f-unction on X whose value at / CE X is denoted by 11 / 11 a.nd
which has the properties:

(i) 11/11 k 0;
(ii) 11/11 - 0 if and only if / = 04
(iii) 11ct/11 - Ic.l 11/11;
(iv) II/ + .v11 < 11/11 + 11.v11 (the triangle inequality).
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Example B.1.4: For any x CE R?z let 11 . IIc be defined by
Ilxllc - ((z2, + (za)2 + . . . + (zzz)2).'/2.

Then 11 . IIc is a norm on R,z. This function is called the Euclidean norm on
R''. Another norm on R?z is given by

Exam ple B.1.5:

11/11x - sup I/(z)I,
ze ye ,z1 j

is well defined for any / CE Cgzt), zll, and it can be shown that 11 . IIx is a
norm for Cgzt), zll. Alternatively, since any f-unction / in this vector space is
continuous, the function I /1 is integrable a.nd thus the function 11 . 11J? given by

2 1

II/IIz - I/(z)I dz
20

Example B.1.6: Let n, be a positive integer and let C'zgzt), z11 denote the
set of functions that have at least an sàth order continuous derivative on the

interval gzt), z11 . Since any f-unction that is differentiable on the interval gzt), z11
must also be continuous on this interval we have that Czb gzo , z11 (:z Cgztl , z11 for
n, = 1, 2, . . .. ln fact, we have the hierarchy Czb gzt), z11 (:z C''-1 gzt; , z1j (:z . . . (:z
Clgzt), z1j (:z Cgzt), zlj. We leave it to the reader to show that for n, = 1, 2, . . .
C'zgzt), z11 is a vector space and that the norms defined in Example B.1.5 are
also norms for C'zgzt), zll. Other norms, however, can be defined for the space
C'zgzt), z11 which take advantage of the extra property of differentiability. For
example, suppose n, = 1. Then the f-unction 11 . IIx,1 given by

II/IIx,z - sup I/(z)I + sup I/'(z)I
ze Ezo ,z1q ze (zo,zlj

for the space C'zgzt), z11 . Here, Jk denotes the kth derivative of / and /(0) = /.
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The above examples indicate that a given vector space may have several norms
leading to different normed vector spaces. For this reason, the notation (.X, 11 . II)
is often used to denote the vector space X equipped with the norm 11 . II.
Once a vector space is equipped with a norm 11 . 11 , a generalized distance

function (called the metric induced by the norm 11 . II) can be readily defined.
The distance dlJ, g) of an element / CE X from another element g CE X is
defined to be

dlJ, .q) - II/ - .VII.
The distance f-unction for the normed vector space (R'', 11 . IIc) corresponds
to the ordinary notion of Euclidean distance. The distance f-unction for the
normed vector space (C(zo, zll, 11 . IIx) measures the maximum vertical sepa-
ration of the graph of / from the graph of g.
Neighbourhoods of an element in a normed vector space (.X, 11 . II) can be

defined as in the fam iliar finite-dimensional case. Specifically, for tî > 0 we
define an 6-neighbourhood of an element / CE X as

B(J,', 11 ' II) - L.q e X : II/ - .vII < tî4..

We suppress the 11 . 11 in the above notation.
Convergence can be defined for sequences in a normed vector space in a

manner which mimics the familiar definition in real analysis. Let (.X, 11 . II) be
a normed vector space and let (/,zj denote an infinite sequence in X. The
sequence (/,zj is said to converge in the norm if there exists an / CE X
such that for every tî > 0 an integer N can be found with the property that
/zz CE B (/, 6) whenever n, > N. The element / is called the limit of the
sequence (/zz), and the relationship is denoted by limzz-sx /zz = / or simply
/zz --+ /. Note that convergence depends on the choice of norm: a sequence
may converge in one norm and diverge in another. Note also that the limit /
m ust also be an element in X .

ln a similar spirit, we can define Cauchy sequences for a normed vector
space. A sequence (/,zj in X is a Cauchy sequence (in the norm 11 . II) if for
any tî > 0 there is an integer N such that

I I Jm - X I I < 6,
whenever ?rz > N  and n, > N . Cauchy sequences play a vital rôle in the theory

of normed vector spaces. As with convergence, a sequence (/,zj in X may be
a Cauchy sequence for one choice of norm but not a Cauchy sequence for
another choice.

lt may be possible to define any number of norms on a given vector space
X . Two different norms, however, may yield exactly the same results concern-
ing convergence and Cauchy sequences. Two norms 11 . Ilrz and 11 . II: on a vector
space X are said to be equivalent if there exist positive numbers ct and ,d
such that for all / CE X,

c. 11 / 11 a < 11 / 11 b < /t? 11 / 11 a.
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lf the norms 11 . Ilrz and 11 . IIb are equivalent, then it is straightforward to show
that convergence in one norm implies convergence in the other, and that the
set of Cauchy sequences in (.X, 11 . IIrz) is the same as the set of Cauchy sequences
in (.X, 11 . IIb). Equivalent norms lead to the same analytical results.

ldentifjring norms as equivalent can be difllcult. ln finite-dimensional vec-
tor spaces, however, the situation is simple: all norm s defined on a finite-
dimensional vector space are equivalent. Thus the two norm s defined in Fux-
am ple B.1.4 are equivalent. The situation is different for infinite-dimensional
spaces. For example, it can be shown that the norms 11 . 11J? and 11 . IIx defined
on the space Cgzt), z11 in Example B. 1.5 are not equivalent.

B .2 Banach and H ilbert Spaces

The definitions for convergence and Cauchy sequences for normed vector
spaces are formally analogous to those given in elementary real analysis. Var-
ious results such as the uniqueness of the limit can be proved for general
normed vector spaces by essentially the sam e techniques used to prove anal-
ogous results in real analysis. The space (R'', 11 . IIc), however, has a special
property not inherent in the definition of a norm ed vector space. lt is well
known that a sequence in (R, 11 . IIc) converges if and only if it is a Cauchy se-
quence. This result does not extend to the general normed vector space. Every
convergent sequence in a normed vector space must be a Cauchy sequence,
but the converse is not true.

A norm ed vector space is called com plete if every Cauchy sequence in
the vector space converges. Complete normed vector spaces are called B a-
nach spaces. ln finite-dimensional vector spaces, com pleteness in one norm
implies completeness in any norm since all norms are equivalent. Thus, spaces

such as (R'', 11 . IIc) and (R'z, 11 . IIz') are Banach spaces. For finite-dimensional
vector spaces, completeness depends entirely on the vector space', for infinite-
dimensional vector spaces com pleteness depends also on the choice of norm .

The space (C(-1, 11 , 11 . IIx), for instance, is a Banach space, whereas the space
(C(-1, 11 , 11 . 11 1) is not. lf the norms 11 . Ilrz and 11 . IIb are equivalent, then the cor-
responding normed vector spaces are either 130th Banach or 130th incomplete
since the set of Cauchy sequences is the same for each space, and convergence

in one norm implies convergence in the other. The two norms 11 . 11 1 and 11 . IIx
on C(-1, 11 are evidently not equivalent.

ln passing we note that if a norm ed vector space is not complete, it is
possible to ttenlarge'' the vector space and redefine the norm so that the
resulting space is complete, and the value of the norm in the original space is
preserved. ln finite dimensions, the paradigm is the completion of the set of
rational numbers to form the set of real numbers. An example involving an
infinite-dimensional space is given by the space (C(z(), z11 , 11 . 111). This normed
space is not complete. lf the vector space Cgzt), z11 is expanded to include all
functions that are Lebesgue integrable over the interval gzt), z11 , and the norm
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is replaced by

where the Lebesgue integral is now used, then it can be shown that the re-
sulting space is complete.l

A special type of Banach space that plays a large rôle in analysis is called
a H ilbert space. Hilbert spaces are simpler than the general Banach space
owing to an additional structure called an inner product. Briefly, a (real)
inner product on a vector space X is a function (., .) on X x X such that
for any /, g, /J CE X and any ct CE C the following conditions hold.

(i) (/, /) k 0;
(ii) (/, /) - 0 if and only if / = 04
(iii) (/ + g, /z) - (/, /z) + (.q, /z);
(iv) (/, gs - (.q, /);
(v) (c./,.v) - c.4/,.v).
A vector space X equipped with an inner product (., .) is called an inner
product space and denoted by (.X, (., .)). Note that condition (i) indicates
that (/, /) is always a real nonnegative number. Note also that conditions (iii)
and (iv) imply that

(/,.v + /z) - (/, gs + (/, /z).

Then (., .) defines an inner product on R''. ln fact, the definition of the inner
product is modelled after the familiar inner product (dot product) defined for
R,z

Example 8.2.2 : Let f2 denote the set of sequences (tzszj such that the
series SC'D a2 is convergent. lf addition and scalar multiplication are definedn=1 n
the same way as for the space fk in Example B.1.3, then f2 is a vector space.
Suppose that a = ttzzz)., b = (5zz) CE f2, and let csz = maxttzsz, 5sz). Then the
series EC'D (c2 is convergent and hence the series EC'D tzszszz is absolutelyn=1 n n=1
convergent. An inner product on this vector space is defined by

1 Strictly speaking the function replacing the norm is not even a norm because

11 /II ol = 0 does not imply that / = 0. This problem is easily remedied using
equivalence classes; i.e. two functions / and g are equivalent if / = g almost
everm here.
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11/11 - (/, /),
is a norm on the vector space X . Thus, any inner product space leads to a
normed vector space. The special norm defined above is called the norm in-
duced by the inner product. The normed vector space form ed by the induced
norm may or may not be complete. lf (.X, N) is a Banach space then the inner
product space (.X, (., .)) is called a Hilbert space. A Hilbert space is thus an
inner product space that is complete in the norm induced by the inner prod-

uct. The inner product space (R'', (., .)) is an example of a finite-dimensional
Hilbert space. lt can be shown that the inner product space (f2, (., .)) of Fux-
am ple 8.2.2 is also a Hilbert space. Another infinite-dim ensional Hilbert space
of importance in analysis is the space fvzgztl, zlj.

Example B.2.3: Let fvzgztl, z1j denote the set of functions 2 / : gzt), z1j --+ R
such that the Lebesgue integral j /2(z) dz exists (i.e., the set of ttsquareEzo,ztq
integrable'' functions), and let (., .) be defined by

lt can be shown that for any /, g CE L2 gzt), z1j the above f-unction is well defined
and satisfies the axioms of an inner product. The resulting inner product space
is a Hilbert space.

Hilbert spaces have found widespread applications in pure and applied
m athematics. The extra structure afforded by an inner product gives rise to a
generalization of geometrical concepts in R''. ln particular, there is a straight-
folavard extension of the orthogonality based on the inner product. Recall that

in R?z two nonzero vectors u, v are orthogonal if and only if (u, v) = 0. For
the general Hilbert space, we say that two elements /, g are orthogonal if
(/, gj = 0. Thus, for example, in the space L2 gzt), z1j two f-unctions /, g are
orthogonal if

/(z).v(z) dz - 0.
Ezo,zt 1

As in the finite-dimensional case, given a set of elements in a general Hilbert
space it is possible to form an orthogonal set by an algorithm analogous to the

2 Strictly speaking, the elements of this set are equivalence classes of functions
modulo equality almost everywhere.
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Gram-schmidt process. lt is also possible to construct orthogonal bases for
Hilbert spaces. Although bases for general infinite-dimensional Banach spaces
play a somewhat nominal rôle (in contrast with finite-dimensional spaces),
bases play a significant rôle in the theory of Hilbert spaces.
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