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Sólo cuando se sabe algo se siente
la necesidad de saber más.
Es cuando no se sabe nada que
la curiosidad desaparece.

Josep Pla i Casadevall (1897-1981)

1 Introduction

Some classical methods used to solve certain differential equations can be
unified by associating to the equation a group of transformations leaving
it invariant. This idea, due to Sophus Lie, is at the origin of differential
Galois theory. The group associated to the differential equation gives then
information on the properties of the solutions. However, most differential
equations do not admit a nontrivial group of transformations. In the case of
ordinary homogeneous linear differential equations, there exists a satisfactory
Galois theory introduced by Émile Picard and Ernest Vessiot. The group
associated to the differential equation is in this case a linear algebraic group
and a characterization of equations solvable by quadratures is given in terms
of the Galois group. In the middle of the 20th century, Picard-Vessiot theory
was clarified by Ellis Kolchin, who also built the foundations of the theory of
linear algebraic groups. Kolchin used the differential algebra developed by
Joseph F. Ritt and established the Fundamental Theorem of Picard-Vessiot
theory, which is the counterpart of its homonymous theorem in polynomial
Galois theory.

Our lecture notes develop Picard-Vessiot theory from an elementary point
of view, based on the modern theory of algebraic groups. They are mainly
aimed at graduate students with a basic knowledge of abstract algebra and
differential equations. The necessary topics of algebraic geometry and linear
algebraic groups are included in the appendices.
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In chapter 2, we introduce differential rings and differential extensions
and consider differential equations defined over an arbitrary differential field.
In chapter 3, we prove that we can associate to an ordinary linear differ-
ential equation defined over a differential field K, of characteristic 0 with
algebraically closed field of constants, a uniquely determined minimal ex-
tension L of K containing the solutions of the equation, the Picard-Vessiot
extension. In chapter 4, we introduce the differential Galois group of an
ordinary linear differential equation defined over the field K as the group
of differential K-automorphisms of its Picard-Vessiot extension L and prove
that it is a linear algebraic group. In chapter 5, we prove the fundamen-
tal theorem of Picard-Vessiot theory, which gives a bijective correspondence
between intermediate fields of a Picard-Vessiot extension and Zariski closed
subgroups of its Galois group. In chapter 6, we give the characterization of
homogeneous linear differential equations solvable by quadratures in terms of
their differential Galois group. Chapter 10 is an appendix by Professor Juan
J. Morales-Ruiz on the application of Picard-Vessiot theory to the study of
integrability of Hamiltonian systems.

These lecture notes are based on the courses on Differential Galois The-
ory given by the authors at the University of Barcelona and the Cracow
University of Technology. Some parts of them were presented at the Differ-
ential Galois Theory Seminar at the Mathematical Institute of the Cracow
University of Technology during the academic year 2006-2007. The authors
would like to thank the members of the DGT Seminar, especially Dr. Marcin
Skrzyński and Dr. Artur Piȩkosz for his useful remarks on the previous ver-
sion of these notes. Warm thanks go to Professor Juan J. Morales-Ruiz for
kindly accepting to write down the appendix on his theory which completes
this monograph with an insight on mechanical applications of differential
Galois theory.

During the work on this monograph both authors were supported by
the Polish Grant N20103831/3261 and the Spanish Grant MTM2006-04895.
During her stay at the Cracow University of Technology, Teresa Crespo was
supported by the Spanish fellowship PR2006-0528.
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2 Differential rings

2.1 Derivations

Definition 2.1 A derivation of a ring A is a map d : A → A such that

d(a + b) = da + db , d(ab) = d(a) b + a d(b).

We write as usual a′ = d(a) and a′′, a′′′, . . . , a(n) for successive derivations.
By induction, one can prove Leibniz’s rule

(ab)(n) = a(n) b + · · ·+
(

n

i

)
a(n−i)b(i) + · · ·+ a b(n).

If a′ commutes with a, we have (an)′ = nan−1a′. If A has an identity ele-
ment 1, then necessarily d(1) = 0, since d(1) = d(1.1) = d(1).1 + 1.d(1) ⇒
d(1) = 0. If a ∈ A is invertible with inverse a−1, we have a.a−1 = 1 ⇒
a′a−1 + a(a−1)′ = 0 ⇒ (a−1)′ = −a−1a′a−1. Hence, if a′ commutes with a,
we get (a−1)′ = −a′/a2.

Proposition 2.1 If A is an integral domain, a derivation d of A extends to
the quotient field Qt(A) in a unique way.

Proof. For
a

b
∈ Qt(A), we must have (

a

b
)′ =

a′b− ab′

b2
, so there is uniqueness.

We extend the derivation to Qt(A) by defining (
a

b
)′ :=

a′b− ab′

b2
. If c ∈

A \ {0}, we have

(ac

bc

)′
=

(ac)′bc− ac(bc)′

b2c2
=

(a′c + ac′)bc− ac(b′c + bc′)
b2c2

=
a′b− ab′

b2
,

so the definition is independent of the choice of the representative. Now we
have

(a

b
+

c

d

)′
=

(
ad + bc

bd

)′
=

(ad + bc)′bd− (ad + bc)(bd)′

b2d2
=

(a′d + ad′ + b′c + bc′)bd− (ad + bc)(b′d + bd′)
b2d2

=
a′b− ab′

b2
+

c′d− cd′

d2
,
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(a

b
· c

d

)′
=

(ac

bd

)′
=

(ac)′bd− ac(bd)′

b2d2
=

(a′c + ac′)bd− ac(b′d + bd′)
b2d2

=

(a′b− ab′)c
b2d

+
(c′d− cd′)a

d2b
=

a′b− ab′

b2
· c

d
+

a

b
· c′d− cd′

d2
.

2

Remark 2.1 If A is a commutative ring with a derivation and S a multi-
plicative system of A, following the same steps as in the proof of proposition
2.1, we can prove that the derivation of A extends to the ring S−1A in a
unique way.

2.2 Differential rings

Definition 2.2 A differential ring is a commutative ring with identity en-
dowed with a derivation. A differential field is a differential ring which is a
field.

Examples.

1. Every commutative ring A with identity can be made into a differential
ring with the trivial derivation defined by d(a) = 0,∀a ∈ A.

Over Z and over Q, the trivial derivation is the only possible one, since
d(1) = 0, and by induction, d(n) = d((n−1)+1) = 0 and so d(n/m) = 0.

2. The ring of all infinitely differentiable functions on the real line with the
usual derivative is a differential ring.

3. The ring of analytic functions in the complex plane with the usual deriva-
tive is a differential ring. In this case, it is an integral domain and so the
derivation extends to its quotient field which is the field of meromorphic
functions.

4. Let A be a differential ring, let A[X] be the polynomial ring in one inde-
terminate over A. A derivation in A[X] extending that of A should satisfy
(
∑

aiX
i)′ =

∑
(a′iX

i +aiiX
i−1X ′). We can then extend the derivation of

A to A[X] by assigning to X ′ an arbitrary value in A[X]. Analogously,
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if A is a field, we can extend the derivation of A to the field A(X) of
rational functions. By iteration, we can give a differential structure to
A[X1, . . . , Xn] for a differential ring A and to A(X1, . . . , Xn) for a differ-
ential field A.

5. Let A be a differential ring. We consider the ring A[Xi] of polynomials
in the indeterminates Xi, i ∈ N ∪ {0}. By defining X ′

i = Xi+1, a unique
derivation of A[Xi] is determined. We change notation and write X =
X0, X

(n) = Xn. We call this procedure the adjunction of a differential
indeterminate and we use the notation A{X} for the resulting differential
ring. The elements of A{X} are called differential polynomials in X (they
are ordinary polynomials in X and its derivatives).

If A is a differential field, then A{X} is a differential integral domain
and its derivation extends uniquely to the quotient field. We denote this
quotient field by A〈X〉, its elements are differential rational functions
of X .

6. If A is a differential ring, we can define a derivation in the ring Mn×n(A)
of square n × n matrices by defining the derivative of a matrix as the
matrix obtained by applying the derivation of A to all its entries. Then
for n ≥ 2, Mn×n(A) is a noncommutative ring with derivation.

In any differential ring A, the elements with derivative 0 form a subring
C, called the ring of constants . If A is a field, so is C. The field of constants
contains the image of the ring morphism Z → A, 1 7→ 1. In the sequel, CK

will denote the constant field of a differential field K.

Definition 2.3 Let I be an ideal of a differential ring A. We say that I is
a differential ideal if a ∈ I ⇒ a′ ∈ I, that is if d(I) ⊂ I.

If I is a differential ideal of the differential ring A, we can define a deriva-
tion in the quotient ring A/I by d(a) = d(a). It is easy to check that this
definition does not depend on the choice of the representative in the coset
and indeed defines a derivation in A/I.

Definition 2.4 If A and B are differential rings, a map f : A → B is a
differential morphism if it satisfies

1. f(a + b) = f(a) + f(b), f(ab) = f(a)f(b), ∀a, b ∈ A; f(1) = 1.
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2. f(a)′ = f(a′), ∀a ∈ A.

If I is a differential ideal, the natural morphism A → A/I is a differential
morphism. The meaning of differential isomorphism, differential automor-
phism is clear.

Proposition 2.2 If f : A → B is a differential morphism, then Ker f is a
differential ideal and the isomorphism f : A/ Ker f → Im f is a differential
isomorphism.

Proof. For a ∈ Ker f , we have f(a′) = f(a)′ = 0, so a′ ∈ Ker f , hence Ker f
is a differential ideal.

For any a ∈ A, we have (f(a))′ = (f(a))′ = f(a′) = f(a′) = f(a′), so f is
a differential isomorphism. 2

2.3 Differential extensions

An inclusion A ⊂ B of differential rings is an extension of differential rings if
the derivation of B restricts to the derivation of A. If S is a subset of B, we
denote by A{S} the differential A-subalgebra of B generated by S over A,
that is the smallest subring of B containing A, the elements of S and their
derivatives. If K ⊂ L is an extension of differential fields, S a subset of L,
we denote by K〈S〉 the differential subfield of L generated by S over K. If
S is a finite set, we say that the extension K ⊂ K〈S〉 is differentially finitely
generated.

Proposition 2.3 If K is a differential field, K ⊂ L a separable algebraic
field extension, the derivation of K extends uniquely to L. Moreover, every
K-automorphism of L is a differential one.

Proof. If K ⊂ L is a finite extension, we have L = K(α), for some α,
by the primitive element theorem. If P (X) is the irreducible polynomial
of α over K, by applying the derivation to P (α) = 0, we obtain P (d)(α) +
P ′(α)α′ = 0, where P (d) denotes the polynomial obtained from P by deriving
its coefficients and P ′ the derived polynomial. So, α′ = −P (d)(α)/P ′(α) and
the derivation extends uniquely.

Let us look now at the existence. We have L ' K[X]/(P ). We can extend
the derivation of K to K[X] by defining X ′ := −P (d)(X)h(X) for h(X) ∈
K[X] such that h(X)P ′(X) ≡ 1 (mod P ). If h(X)P ′(X) = 1+k(X)P (X), we
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have d(P (X)) = P (d)(X)+P ′(X)d(X) = P (d)(X)+P ′(X)(−P (d)(X)h(X)) =
P (d)(X)(1 − P ′(X)h(X)) = −P (d)(X)k(X)P (X). Therefore (P ) is a differ-
ential ideal and the quotient field K[X]/(P ) is a differential ring.

The general case K ⊂ L algebraic is obtained from the finite case by
applying Zorn lemma.

Now, if σ is a K-automorphism of L, σ−1dσ is also a derivation of L
extending that of K and by uniqueness, we obtain σ−1dσ = d, and so dσ =
σd, which gives that σ is a differential automorphism. 2

Remark 2.2 Let K be a differential field with positive characteristic p (for
example Fp(T ) with derivation given by T ′ = 1), let P (X) = Xp−a ∈ K[X],
with a 6∈ Kp, and let α be a root of P . If the element a ∈ K is not a constant,
then it is not possible to extend the derivation of K to L := K(α). If the
element a is a constant, we can extend the derivation of K to L by assigning
to α′ any value in L.

Definition 2.5 If K ⊂ L is a differential field extension, α an element in L,
we say that α is

- a primitive element over K if α′ ∈ K;

- an exponential element over K if α′/α ∈ K.

2.4 The ring of differential operators

Let K be a differential field with a nontrivial derivation d. A linear differ-
ential operator L with coefficients in K is a polynomial in d,

L = and
n + an−1d

n−1 · · ·+ a1d + a0, with ai ∈ K.

If an 6= 0, we say that L has degree n. If an = 1, we say that L is
monic. The ring of linear differential operators with coefficients in K is
the noncommutative ring K[d] of polynomials in the variable d with coef-
ficients in K where d satisfies the rule da = a′ + ad for a ∈ K. We have
deg(L1L2) = deg(L1) + deg(L2) and then the only left or right invertible
elements of K[d] are the elements of K \ {0}. A differential operator acts on
K and on differential extensions of K with the interpretation d(y) = y′. To
the differential operator L = andn + an−1d

n−1 + · · ·+ a1d + a0, we associate
the linear differential equation
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L(Y ) = anY (n) + an−1Y
(n−1) + · · ·+ a1Y

′ + a0Y = 0.

As for the polynomial ring in one variable over the field K, we have a
division algorithm on both left and right.

Lemma 2.1 For L1,L2 ∈ K[d] with L2 6= 0, there exist unique differential
operators Ql, Rl (resp. Qr, Rr ) in K[d] such that

L1 = QlL2 + Rl and deg Rl < degL2

(resp. L1 = L2Qr + Rr and deg Rr < degL2.)

The proof of this fact follows the same steps as in the polynomial case.

Corollary 2.1 For each left (resp. right) ideal I of K[d], there exists an
element L ∈ K[d], unique up to a factor in K \ {0}, such that I = K[d]L
(resp. I = LK[d]).

Taking into account this corollary, for two linear differential operators
L1,L2, the left greatest common divisor will be the unique monic generator
of K[d]L1 + K[d]L2 and the left least common multiple will be the unique
monic generator of K[d]L1 ∩K[d]L2. Analogously, we can define right GCD
and LCM. We can compute left and right GCD with a modified version of
Euclides algorithm.
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3 Picard-Vessiot extensions

3.1 Homogeneous linear differential equations

From now on, K will denote a field of characteristic zero.
We consider homogeneous linear differential equations over a differential

field K, with field of constants C:

L(Y ) := Y (n) + an−1Y
(n−1) + · · ·+ a1Y

′ + a0Y = 0, ai ∈ K.

If K ⊂ L is a differential extension, the set of solutions of L(Y ) = 0 in L is
a CL-vector space, where CL denotes the constant field of L. We want to see
that its dimension is at most equal to the order n of L.

Definition 3.1 Let y1, y2, . . . , yn be elements in a differential field K. The
determinant

W = W (y1, y2, . . . , yn) :=

∣∣∣∣∣∣∣∣∣

y1 y2 · · · yn

y′1 y′2 · · · y′n
...

...
. . .

...

y
(n−1)
1 y

(n−1)
2 · · · y

(n−1)
n

∣∣∣∣∣∣∣∣∣
is the wrońskian (determinant) of y1, y2, . . . , yn.

Proposition 3.1 Let K be a differential field with field of constants C, and
let y1, . . . , yn ∈ K. Then y1, . . . , yn are linearly independent over C if and
only if W (y1, . . . , yn) 6= 0.

Proof. Let us assume that y1, . . . , yn are linearly dependent over C, let∑n
i=1 ciyi = 0, ci ∈ C not all zero. By differentiating n−1 times this equality,

we obtain
∑n

i=1 ciy
(k)
i = 0, k = 0, . . . , n− 1. So the columns of the wrońskian

are linearly dependent, hence W (y1, . . . , yn) = 0.
Reciprocally, let us assume W (y1, . . . , yn) = 0. We then have n equalities∑n

i=1 ciy
(k)
i = 0, k = 0, . . . , n − 1, with ci ∈ K not all zero. We can assume

c1 = 1 and W (y2, . . . , yn) 6= 0. By differentiating equality k, we obtain∑n
i=1 ciy

(k+1)
i +

∑n
i=2 c′iy

(k)
i = 0 and subtracting equality (k + 1), we get∑n

i=2 c′iy
(k)
i = 0, k = 0, . . . , n − 2. We then obtain a system of homogeneous

linear equations in c′2, . . . , c
′
n with determinant W (y2, . . . , yn) 6= 0, so c′2 =

· · · = c′n = 0, that is, the ci are constants. 2
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Taking this proposition into account, we can say ”linearly (in)dependent”
over constants without ambiguity, since the condition of (non)cancellation of
the wrońskian is independent of the field.

Proposition 3.2 Let L(Y ) = 0 be a homogeneous linear differential equa-
tion of order n over a differential field K. If y1, . . . , yn+1 are solutions of
L(Y ) = 0 in a differential extension L of K, then W (y1, . . . , yn+1) = 0.

Proof. The last row in the wrońskian is (y
(n)
1 , . . . , y

(n)
n+1), which is a linear

combination of the preceding ones. 2

Corollary 3.1 L(Y ) = 0 has at most n solutions in L linearly independent
over the field of constants. 2

If L(Y ) = 0 is a homogeneous linear differential equation of order n over
a differential field K, y1, . . . , yn are n solutions of L(Y ) = 0 in a differential
extension L of K, linearly independent over the field of constants, we say
that {y1, . . . , yn} is afundamental set of solutions of L(Y ) = 0 in L. Any
other solution of L(Y ) = 0 in L is a linear combination of y1, . . . , yn with
constant coefficients. The next proposition can be proved straightforwardly.

Proposition 3.3 Let L(Y ) = 0 be a homogeneous linear differential equa-
tion of order n over a differential field K and let {y1, . . . , yn} be a basis
of the solution space of L(Y ) = 0 in a differential extension L of K. Let
zj =

∑n
i=1 cijyi, j = 1, . . . , n, with cij constants, then

W (z1, . . . , zn) = det(cij) ·W (y1, . . . , yn).

3.2 Existence and uniqueness of the Picard-Vessiot ex-
tension

We define now the Picard-Vessiot extension of a homogeneous linear differ-
ential equation which is the analogue of the splitting field of a polynomial.

Definition 3.2 Given a homogeneous linear differential equation L(Y ) = 0
of order n over a differential field K, a differential extension K ⊂ L is a
Picard-Vessiot extension for L if
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1. L = K〈y1, . . . , yn〉, where y1, . . . , yn is a fundamental set of solutions of
L(Y ) = 0 in L.

2. Every constant of L lies in K, i.e. CK = CL.

Remark 3.1 Let k be a differential field, K = k〈z〉, with z′ = z, and con-
sider the differential equation Y ′−Y = 0. As z is a solution to this equation,
if we are looking for an analogue of the splitting field, it would be natural to
expect that the Picard-Vessiot extension for this equation would be the triv-
ial extension of K. Now, if we adjoin a second differential indeterminate and
consider L = K〈y〉, with y′ = y, the extension K ⊂ L satisfies condition 1
in definition 3.2. Now, we have (y/z)′ = 0, so the extension K ⊂ L adds the
new constant y/z. Hence condition 2 in the definition of the Picard-Vessiot
extension guarantees its minimality.

In the case when K is a differential field with algebraically closed field of
constants C, we shall prove that there exists a Picard-Vessiot extension L of
K for a given homogeneous linear differential equation L defined over K and
that it is unique up to differential K-isomorphism.

The idea for the existence proof is to construct a differential K-algebra
containing a full set of solutions of the differential equation

L(Y ) = Y (n) + an−1Y
(n−1) + · · ·+ a1Y

′ + a0Y = 0

and then to make the quotient by a maximal differential ideal to obtain an
extension not adding constants.

We consider the polynomial ring in n2 indeterminates

K[Yij, 0 ≤ i ≤ n− 1, 1 ≤ j ≤ n]

and extend the derivation of K to K[Yij] by defining

(1)
Y ′

ij = Yi+1,j, 0 ≤ i ≤ n− 2,
Y ′

n−1,j = −an−1Yn−1,j − · · · − a1Y1j − a0Y0j.

Note that this definition is correct, as we can obtain the preceding ring by
defining the ring K{X1, . . . , Xn} in n differential indeterminates and making
the quotient by the differential ideal generated by the elements

X
(n)
j + an−1X

(n−1)
j + · · ·+ a1X

′
j + a0Xj, 1 ≤ j ≤ n,
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that is the ideal generated by these elements and their derivatives. Let
R := K[Yij][W

−1] be the localization of K[Yij] in the multiplicative system
of the powers of W = det(Yij). The derivation of K[Yij] extends to R in a
unique way. The algebra R is called the full universal solution algebra for L.

From the next two propositions we shall obtain that a maximal differential
ideal P of the full universal solution algebra R is a prime ideal, hence R/P
is an integral domain and that the quotient field of R/P has the same field
of constants as K.

Proposition 3.4 Let K be a differential field and K ⊂ R be an extension of
differential rings. Let I be a maximal element in the set of proper differential
ideals of R. Then I is a prime ideal.

Proof. By passing to the quotient R/I, we can assume that R has no proper
differential ideals. Then we have to prove that R is an integral domain. Let
us assume that a, b are nonzero elements in R with ab = 0. We claim that
dk(a)bk+1 = 0,∀k ∈ N. Indeed ab = 0 ⇒ 0 = d(ab) = ad(b) + d(a)b and,
multiplying this equality by b, we obtain d(a)b2 = 0. Now, if it is true for k,
0 = d(dk(a)bk+1) = dk+1(a)bk+1 + (k + 1)dk(a)bkd(b) and, multiplying by b,
we obtain dk+1(a)bk+2 = 0.

Let J now be the differential ideal generated by a, that is, the ideal
generated by a and its derivatives. Let us assume that no power of b is zero.
By the claim, all elements in J are then zero divisors. In particular J 6= R
and, as J contains the nonzero element a, J is a proper differential ideal of
R, which contradicts the hypothesis. Therefore, some power of b must be
zero.

As b was an arbitrary zero divisor, we have that every zero divisor in R
is nilpotent, in particular an = 0, for some n. We choose n to be minimal.
Then 0 = d(an) = nan−1d(a). As K ⊂ R, we have nan−1 6= 0 and so d(a)
is a zero divisor. We have then proved that the derivative of a zero divisor
is also a zero divisor and so a and all its derivatives are zero divisors and
hence nilpotent. In particular, J 6= R, so J would be proper and we obtain
a contradiction, proving that R is an integral domain. 2

Proposition 3.5 Let K be a differential field, with field of constants C, and
let K ⊂ R be an extension of differential rings, such that R is an integral
domain, finitely generated as a K-algebra. Let L be the quotient field of R.
We assume that C is algebraically closed and that R has no proper differential
ideals. Then, L does not contain new constants, i.e. CL = C.
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Proof. 1. First we prove that the elements in CL \ C cannot be algebraic
over K. If α ∈ K \ K, from the proof of proposition 2.3, we have α′ =
−P (d)(α)/P ′(α), for P (X) = Xk +ak−1X

k−1 + · · ·+a1X +a0 the irreducible
polynomial of α over K. Then α′ = 0 ⇒ P (d)(X) = a′k−1X

k−1 + · · ·+ a′1X +
a′0 = 0, so P (X) ∈ C[X] and α ∈ C.

2. Next we have CL ⊂ R. Indeed for any b ∈ CL, we have b = f/g, with
f, g ∈ R. We consider the ideal of denominators of b, J = {h ∈ R : hb ∈ R}.
We have h ∈ J ⇒ hb ∈ R ⇒ (hb)′ = h′b ∈ R ⇒ h′ ∈ J . Then J is
a differential ideal. By hypothesis, R does not contain proper differential
ideals, so J = R, hence b = 1.b ∈ R.

3. Here we show that for any b ∈ CL, there exists an element c ∈ C such
that b− c is not invertible in R. Then the ideal (b− c)R is a differential ideal
different from R, and is therefore zero. Thus b = c ∈ C.

We now use some results from algebraic geometry. Let K be the algebraic
closure of K, R = R ⊗K K. If the element b ⊗ 1 − c ⊗ 1 = (b − c) ⊗ 1 is
not a unit in R, then the element b − c will be nonunit in R. So we can
assume that K is algebraically closed. Let V be the affine algebraic variety
with coordinate ring R. Then b defines a K-valued function f over V . By
Chevalley theorem (theorem 7.2), its image f(V ) is a constructible set in the
affine line A1 and hence either a finite set of points or the complement of a
finite set of points. In the second case, as C is infinite, there exists c ∈ C
such that f(v) = c, for some v ∈ V so that f − c vanishes at v and so b− c
belongs to the maximal ideal of v. Hence, b − c is a nonunit. If f(V ) is
finite, it consists of a single point, since R is a domain and therefore V is
irreducible. So, f is constant and b lies in K, hence in C. 2

Theorem 3.1 Let K be a differential field with algebraically closed constant
field C. Let L(Y ) = 0 be a homogeneous linear differential equation defined
over K. Let R be the full universal solution algebra for L and let P be a
maximal differential ideal of R. Then P is a prime ideal and the quotient
field L of the integral domain R/P is a Picard-Vessiot extension of K for L.

Proof. R is differentially generated over K by the solutions of L(Y ) = 0
and by the inverse of the wrońskian, so R/P as well. By proposition 3.4, P
is prime. As P is a maximal differential ideal, R/P does not have proper
differential ideals, so by proposition 3.5, CL = C. Moreover, the wrońskian
is invertible in R/P and so in particular is nonzero in L. We have then that
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L contains a fundamental set of solutions of L and is differentially generated
by it over K. Hence L is a Picard-Vessiot extension of K for L. 2

In order to obtain uniqueness of the Picard-Vessiot extension, we first
prove a normality property.

Proposition 3.6 Let L1, L2 be Picard-Vessiot extensions of K for a homo-
geneous linear differential equation L(Y ) = 0 of order n and let K ⊂ L be a
differential field extension with CL = CK. We assume that σi : Li → L are
differential K-morphisms, i = 1, 2. Then σ1(L1) = σ2(L2).

Proof. Let Vi := {y ∈ Li : L(y) = 0}, i = 1, 2, V := {y ∈ L : L(y) = 0}.
Then Vi is a CK-vector space of dimension n and V is a CK-vector space of
dimension at most n. Since σi is a differential morphism, we have σi(Vi) ⊂
V, i = 1, 2 and so, σ1(V1) = σ2(V2) = V . From Li = K〈Vi〉, i = 1, 2, we get
σ1(L1) = σ2(L2). 2

Corollary 3.2 Let K ⊂ L ⊂ M be differential fields. Assume that L is a
Picard-Vessiot extension of K and that M has the same constant field as K.
Then any differential K-automorphism of M sends L onto itself. 2

Corollary 3.3 An algebraic Picard-Vessiot extension is a normal algebraic
extension. 2

In the next theorem we establish uniqueness up to K-isomorphism of the
Picard-Vessiot extension.

Theorem 3.2 Let K be a differential field with algebraically closed field of
constants C. Let L(Y ) = 0 be a homogeneous linear differential equation
defined over K. Let L1, L2 be two Picard-Vessiot extensions of K for L(Y ) =
0. Then there exists a differential K-isomorphism from L1 to L2.

Proof. We can assume that L1 is the Picard-Vessiot extension constructed
in theorem 3.1. The idea of proof is to construct a differential extension
K ⊂ E with CE = C and differential K-morphisms L1 → E, L2 → E and
apply proposition 3.6. We consider the ring A := (R/P ) ⊗K L2, which is a
differential ring finitely generated as a L2-algebra, with the derivation defined
by d(x⊗ y) = dx⊗ y + x⊗ dy. Let Q be a maximal proper differential ideal
of A. Its preimage in R/P by the map R/P → A defined by a 7→ a ⊗ 1
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is zero, as R/P does not contain proper differential ideal, and it cannot be
equal to R/P , as, in this case, Q would be equal to A. So R/P injects in
A/Q by a 7→ a⊗ 1, and the map L2 → A/Q given by b 7→ 1⊗ b is also
injective. Now by proposition 3.4, Q is prime and so A/Q is an integral
domain. Let E be its quotient field. Now we can apply proposition 3.5 to
the L2-algebra A/Q and obtain CE = CL2 = CK . By applying proposition
3.6 to the maps L1 ↪→ A/Q ↪→ E and L2 ↪→ A/Q ↪→ E we obtain that there
exists a differential K-isomorphism L1 → L2. 2

We now state together the results obtained in Theorems 3.1 and 3.2.

Theorem 3.3 Let K be a differential field with algebraically closed field of
constants C, let L(Y ) = Y (n) + an−1Y

(n−1) + · · ·+ a1Y
′ + a0Y = 0 be defined

over K. Then there exists a Picard-Vessiot extension L of K for L and it is
unique up to differential K-isomorphism.

We end this section with a proposition which will be used to obtain the
Fundamental Theorem of Picard-Vessiot Theory. The reader can compare
this result with the analogue property of Galois extensions in classical Galois
Theory.

Proposition 3.7 a) If K ⊂ L is a Picard-Vessiot extension for L(Y ) = 0
and x ∈ L \ K, then there exists a differential K-automorphism σ of L
such that σ(x) 6= x.

b) Let K ⊂ L ⊂ M be extensions of differential fields, where K ⊂ L and
K ⊂ M are Picard-Vessiot. Then any σ ∈ G(L|K) can be extended to a
differential automorphism of M .

Proof. a) We can assume that L is the quotient field of R/P with R the full
universal solution algebra for L and P a maximal differential ideal of R. Let
x = a/b, with a, b ∈ R/P . Then x ∈ A := (R/P )[b−1] ⊂ K. We consider the
differential K-algebra T := A ⊗K A ⊂ L ⊗K L. Let z = x ⊗ 1 − 1 ⊗ x ∈ T .
Since x 6∈ K, we have z 6= 0, z′ 6= 0 (if z was a constant, it would be in K)
and z is no nilpotent (zn = 0, for a minimal n would imply nzn−1z′ = 0). We
localize T at z and pass to the quotient T [1/z]/Q by a maximal differential
ideal Q of T [1/z]. Since z is a unit, its image z in T [1/z]/Q is nonzero. We
have maps τi : A → T [1/z]/Q, i = 1, 2, induced by w 7→ w ⊗ 1, w 7→ 1 ⊗ w.
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The maximality of P implies that R/P has no nontrivial differential ideals,
so neither has A, hence the τi are injective. Therefore they both extend
to differential K-embeddings of L into the quotient field E of T [1/z]/Q. By
proposition 3.5, E is a no new constants extension of K, so by proposition 3.6,
τ1(L) = τ2(L). On the other hand, τ1(x) − τ2(x) = z 6= 0, so τ1(x) 6= τ2(x).
Thus τ = τ−1

1 τ2 is a K-differential automorphism of L with τ(x) 6= x.
b) As L ⊂ M is Picard-Vessiot (for the same differential equation L as
K ⊂ M , seen as defined over L), we can assume that M is the quotient field
of R1/P , where R1 = L⊗K R with R the full universal solution algebra for L
and P a maximal differential ideal of R1. Then the extension of σ ∈ G(L|K)
to M is induced by σ ⊗ IdR. 2

Corollary 3.4 If K ⊂ L is a Picard-Vessiot extension with differential Ga-
lois group G(L|K), we have LG(L|K) = K, i.e. the subfield of L which is fixed
by the action of G(L|K) is equal to K.

Proof. The inclusion K ⊂ LG(L|K) is clear, the inclusion LG(L|K) ⊂ K is given
by Proposition 3.7 a). 2
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4 Differential Galois group

Definition 4.1 If K ⊂ L is a differential field extension, the group G(L|K)
of differential K-automorphisms of L is called differential Galois group of
the extension K ⊂ L. In the case when K ⊂ L is a Picard-Vessiot extension
for L(Y ) = 0, the group G(L|K) of differential K-automorphisms of L is
also referred to as the Galois group of L(Y ) = 0 over K. We shall use the
notation GalK(L) or Gal(L) if the base field is clear from the context.

We want to see now that the differential Galois group of a Picard-Vessiot
extension is a linear algebraic group. First we see that the Galois group of a
homogeneous linear differential equation of order n defined over the differen-
tial field K is isomorphic to a subgroup of the general linear group GL(n,C)
over the constant field C of K. Indeed, if y1, y2, . . . , yn is a fundamental set of
solutions of L(Y ) = 0, for each σ ∈ Gal(L) and for each j ∈ {1, . . . , n}, σ(yj)
is again a solution of L(Y ) = 0, and so σ(yj) =

∑n
i=1 cijyi, for some cij ∈ CK .

Thus we can associate to each σ ∈ Gal(L) the matrix (cij) ∈ GL(n,C).
Moreover, as L = K〈y1, . . . , yn〉, a differential K-automorphism of L is de-
termined by the images of the yj. Hence, we obtain an injective morphism
Gal(L) → GL(n,C) given by σ 7→ (cij). We shall see in proposition 4.1
below that Gal(L) is closed in GL(n,C) with respect to the Zariski topology
(which is defined in chapter 7). First, we look at some examples.

4.1 Examples

Example 4.1 We consider the differential extension L = K〈α〉, with α′ =
a ∈ K such that a is not a derivative in K. We say that L is obtained from
K by adjunction of an integral. We shall prove that α is transcendent over
K, K ⊂ K〈α〉 is a Picard-Vessiot extension and G(K〈α〉|K) is isomorphic
to the additive group of C = CK .

Let us assume that α is algebraic over K and write P (X) = Xn +∑n
i=1 biX

n−i its irreducible polynomial over K. Then 0 = P (α) = αn +∑n
i=1 biα

n−i ⇒ 0 = nαn−1a + b′1α
n−1 + terms of degree < n− 1 ⇒ na + b′1 =

0 ⇒ a = (−b1/n)′ which gives a contradiction.
We prove now that K〈α〉 does not contain new constants. Let us assume

that the polynomial
∑n

i=0 biα
n−i, with bi ∈ K, is constant. Differentiating, we

obtain 0 = b′0α
n+(nb0a+b′1)α

n−1+terms of degree < n−1 ⇒ b′0 = nb0a+b′1 =
0 ⇒ a = −b′1/nb0 = (−b1/nb0)

′, contradicting the hypothesis. Let us assume
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that the rational function f(α)/g(α) is constant, with g monic, of degree

≥ 1, minimal. Differentiating, we obtain 0 =
f(α)′g(α)a− f(α)g(α)′a

g(α)2
⇒

f(α)

g(α)
=

f(α)′

g(α)′
, with g(α)′ a nonzero polynomial of lower degree that g, since

g(α) is not a constant and g is monic. This is a contradiction.

We observe that 1 and α are solutions of Y ′′ − a′

a
Y ′ = 0, linearly inde-

pendent over the constants, so K ⊂ K〈α〉 is a Picard-Vessiot extension.
A differential K-automorphism of K〈α〉 maps α to α+ c, with c ∈ C and

a mapping α 7→ α + c induces a differential K-automorphism of K〈α〉, for

each c ∈ C. So G(K〈α〉|K) ' C '
{(

1 c
0 1

)}
⊂ GL(2, C).

Example 4.2 We consider the differential extension L = K〈α〉, with α′/α =
a ∈ K \ {0}. We say that L is obtained from K by adjunction of the expo-
nential of an integral. It is clear that K〈α〉 = K(α) and α is a fundamental
set of solutions of the differential equation Y ′ − aY = 0. We assume that
CL = CK . We shall prove that if α is algebraic over K, then αn ∈ K for
some n ∈ N. The Galois group G(L|K) is isomorphic to the multiplicative
group of C = CK if α is transcendent over K and to a finite cyclic group if
α is algebraic over K.

Let us assume that α is algebraic over K and let P (X) = Xn+an−1X
n−1+

· · · + a0 its irreducible polynomial. Differentiating, we get 0 = P (α)′ =
P (d)(α) + P ′(α)α′ = P (d)(α) + P ′(α)aα = anαn +

∑n−1
k=0(a

′
k + akak)α

k. Then
P divides this last polynomial and so a′k + akak = anak ⇒ a′k = a(n −
k)ak, 0 ≤ k ≤ n − 1. Hence (αn−k/ak)

′ = 0. In particular, αn = ca0 for
some c ∈ CL = CK , hence αn = b ∈ K. Then P (X) divides Xn − b and so
P (X) = Xn − b.

For σ ∈ G(L|K), we have σ(α)′ = σ(α′) = σ(aα) = aσ(α) ⇒ (σ(α)/α)′ =
0 ⇒ σ(α) = cα for some c ∈ CL = CK . If α is transcendent over K, for each
c ∈ CK , we can define a differential K-automorphism of L by α 7→ cα. If
αn = b ∈ K, then σ(α)n = σ(αn) = σ(b) = b ⇒ cn = 1 ⇒ c must be an nth
root of unity and Gal(L|K) is a finite cyclic group.

Example 4.3 We consider a differential field K, an irreducible polynomial
P (X) ∈ K[X] of degree n and a splitting field L of P (X) over K. We shall
see that K ⊂ L is a Picard-Vessiot extension. We know by proposition 2.3
that we can extend the derivation in K to L in a unique way by defining for
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each root x of P (X) in L, x′ = −P (d)(x)h(x) for h(X) ∈ K[X] such that
h(X)P ′(X) ≡ 1(mod P ). Moreover by reducing modulo P , we can obtain an
expression of x′ as a polynomial in x of degree smaller than n. By deriving the
expression obtained for x′, we obtain an expression for x′′ as a polynomial
in x which again by reducing modulo P will have degree smaller than n.
Iterating the process, we obtain expressions for the successive derivatives of
x as polynomials in x of degree smaller than n. Therefore x, x′, . . . , x(n−1)

are linearly dependent over K. If we write down this dependence relation,
we obtain a homogeneous linear differential equation with coefficients in K
satisfied by all the roots of the polynomial P . Now, let us assume that, while
computing the successive derivatives of a root x of P , the first dependence
relation found gives the differential equation

(2) Y (k) + ak−1Y
(k−1) + · · ·+ a1Y

′ + a0Y = 0, ai ∈ K, k ≤ n.

Then, there exist k roots x1, . . . , xk of P with W (x1, . . . , xk) 6= 0 since oth-
erwise we would have found a differential equation of order smaller than k
satisfied by all the roots of P . Hence, L is a Picard-Vessiot extension of K
for the equation (2) and by proposition 2.3 the differential Galois group of
K ⊂ L coincides with its algebraic Galois group.

4.2 The differential Galois group as a linear algebraic
group

Proposition 4.1 Let K be a differential field with field of constants C,
L = K〈y1, . . . , yn〉 a Picard-Vessiot extension of K. There exists a set S
of polynomials F (Xij), 1 ≤ i, j ≤ n, with coefficients in C such that

1) If σ is a differential K-automorphism of L and σ(yj) =
∑n

i=1 cijyi, then
F (cij) = 0,∀F ∈ S.

2) Given a matrix (cij) ∈ GL(n,C) with F (cij) = 0,∀F ∈ S, there exists a
differential K-automorphism σ of L such that σ(yj) =

∑n
i=1 cijyi.

Proof. Let K{Z1, . . . , Zn} be the ring of differential polynomials in n indeter-
minates over K. We define a differential K-morphism from K{Z1, . . . , Zn}
in L by Zj 7→ yj. The kernel Γ is a prime differential ideal of K{Z1, . . . , Zn}.
Let L[Xij], 1 ≤ i, j ≤ n be the ring of polynomials in the indeterminates Xij
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with the derivation defined by X ′
ij = 0. We define a differential K-morphism

from K{Z1, . . . , Zn} to L[Xij] such that Zj 7→
∑n

i=1 Xijyi. Let ∆ be the
image of Γ in this mapping. Let {wk} be a basis of the C-vector space L.
We write each polynomial in ∆ as a linear combination of the wk with co-
efficients polynomials in C[Xij]. We take S to be the collection of all these
coefficients.
1. Let σ be a differential K-automorphism of L and σ(yj) =

∑n
i=1 cijyi. We

consider the diagram

Zj 7→ yj

Zj K{Z1, . . . , Zn} −→ L
| | |
| | | σ
↓ ↓ ↓∑
Xijyi L[Xij] −→ L

Xij 7→ cij

It is clearly commutative. The image of Γ by the upper horizontal arrow
followed by σ is 0. Its image by the left vertical arrow followed by the lower
horizontal one is ∆ evaluated in Xij = cij. Therefore all polynomials of ∆
vanish at cij. Writing this down in the basis {wk}, we see that all polynomials
of S vanish at cij.
2. Let us now be given a matrix (cij) ∈ GL(n,C) such that F (cij) = 0 for
every F in S. We define a differential morphism

K{Z1, . . . , Zn} → K{y1, . . . , yn}
Zj 7→ ∑

i cijyi
.

This morphism is the composition of the left vertical arrow and the lower
horizontal one in the diagram above. By the hypothesis on (cij), and the
definition of the set S, we see that the kernel of this morphism contains Γ
and so, we have a K-morphism

σ : K{y1, . . . , yn} → K{y1, . . . , yn}
yj 7→ ∑

i cijyi
.

It remains to prove that it is bijective. If u is a nonzero element in the kernel
I, then u cannot be algebraic over K, since in this case, the constant term
of the irreducible polynomial of u over K would be in I and then I would be
the whole ring. But, if u is transcendent, we have
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trdeg[K{y1, . . . , yn} : K] > trdeg[K{σy1, . . . , σyn} : K].

On the other hand,

trdeg[K{yj, σyj} : K] = trdeg[K{yj, cij} : K] = trdeg[K{yj} : K]

and analogously we obtain trdeg[K{yj, σyj} : K] = trdeg[K{σyj} : K],
which gives a contradiction. Since the matrix (cij) is invertible, the image
contains y1, . . . , yn and so σ is surjective.

Therefore we have that σ is bijective and can be extended to an auto-
morphism

σ : K〈y1, . . . , yn〉 → K〈y1, . . . , yn〉.
2

This proposition gives that G(L|K) is a closed (in the Zariski topology)
subgroup of GL(n, C) and then a linear algebraic group (see section 8.1).

Remark 4.1 The proper closed subgroups of GL(1, C) ' C∗ are finite and
hence cyclic groups. So for a homogeneous linear differential equation of
order 1 the only possible Galois groups are C∗ or a finite cyclic group, as we
saw directly in Example 4.2 above.

Remark 4.2 In Example 4.1 above, the element α is a solution of the non-
homogeneous linear equation Y ′ − a = 0 and we saw that K ⊂ K〈α〉 is a

Picard-Vessiot extension for the equation Y ′′− a′

a
Y ′ = 0. More generally, we

can associate to the equation L(Y ) = Y (n)+an−1Y
(n−1)+· · ·+a1Y

′+a0Y = b,

the homogeneous equation L(Y ) = 0, where L = (d − b′

b
)L. It is easy to

check that if y1, . . . , yn is a fundamental set of solutions of L(Y ) = 0 and y0

is a particular solution of L(Y ) = b, then y0, y1, . . . , yn is a fundamental set
of solutions of L(Y ) = 0.

Remark 4.3 The full universal solution algebra K[Yij][W
−1] constructed

before proposition 3.4 is clearly isomorphic, as a K-algebra, to
K ⊗C C[GL(n,C)], where C[GL(n,C)] = C[X11, . . . , Xnn, 1/ det] denotes
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the coordinate ring of the algebraic group GL(n, C) (see section 8.1). If we
let GL(n,C) act on itself by right translations, i.e.

GL(n,C)×GL(n,C) → GL(n,C)
(g, h) 7→ hg−1 ,

the corresponding action of GL(n,C) on C[GL(n,C)] is

GL(n,C)× C[GL(n,C)] → C[GL(n,C)]
(g, f) 7→ ρg(f) : h 7→ f(hg)

(see section 8.4). If we take f to be the function Xij sending a matrix
in GL(n,C) to its entry ij, we have ρg(Xij)(h) = Xij(hg) = (hg)ij =∑n

k=1 hikgkj.
Now to an element σ ∈ G = G(L|K) such that σ(Yij) =

∑
gkjYik, we

associate the matrix (gij) ∈ GL(n,C). So the isomorphism

K[Yij][W
−1] → K ⊗C C[GL(n,C)]

Yij 7→ Xi+1,j

is also an isomorphism of G-modules.
Moreover, via the K-algebra isomorphism between K[Yij][W

−1] and
K ⊗C C[GL(n,C)] we can make GL(n,C) act on the full universal solu-
tion algebra R = K[Yij][W

−1]. Then, if P is the maximal differential ideal
of R considered in theorem 3.1, the Galois group G(L|K) can be defined as
{σ ∈ GL(n,C) : σ(P ) = P}. So the Galois group G(L|K) is the stabi-
lizer of the C-vector subspace P of R. Using C-bases of P and Ann(P ) ⊂
Hom(R, C), we can write down equations for G(L|K) in GL(n,C). This
gives a second proof that G(L|K) is a closed subgroup of the algebraic group
GL(n,C).

Proposition 4.2 Let K be a differential field with field of constants C. Let
K ⊂ L be a Picard-Vessiot extension with differential Galois group G. Let T
be the K-algebra R/P considered in theorem 3.1. We have an isomorphism of
K[G]-modules K ⊗K T ' K ⊗C C[G], where K denotes the algebraic closure
of the field K.

Proof. We shall use two lemmas. For any field F , we denote by F [Yij, 1/ det]
the polynomial ring in the indeterminates Yij, 1 ≤ i, j ≤ n localized with
respect to the determinant of the matrix (Yij).
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Lemma 4.1 Let L be a differential field with field of constants C. We con-
sider A := L[Yij, 1/ det] and extend the derivation on L to A by setting
Y ′

ij = 0. We consider B := C[Yij, 1/ det] as a subring of L[Yij, 1/ det]. The
map I 7→ IA from the set of ideals of B to the set of differential ideals of A
is a bijection. The inverse map is given by J 7→ J ∩B.

Proof. Choose a basis {vs}s∈S1 of L over C, including 1. Then {vs}s∈S1 is
also a free basis of the B-module A. The differential ideal IA consists of the
finite sums

∑
s λsvs with all λs ∈ I. Hence IA ∩B = I.

We prove now that any differential ideal J of A is generated by I = J∩B.
Let {us}s∈S2 be a basis of B over C. Any element b ∈ J can be written
uniquely as a finite sum

∑
s µsus, with µs ∈ L. By the length l(b) we will

mean the number of subindices s with µs 6= 0. By induction on the length of
b, we shall show that b ∈ IA. When l(b) = 0, 1, the result is clear. Assume
l(b) > 1. We may suppose that µs1 = 1 for some s1 ∈ S2 and µs2 ∈ L \ C
for some s2 ∈ S2. Then b′ =

∑
s µ′sus has a length smaller than l(b) and so

b′ ∈ IA. Similarly (µ−1
s2

b)′ ∈ IA. Therefore (µ−1
s2

)′b = (µ−1
s2

b)′ − µ−1
s2

b′ ∈ IA.
Since C is the field of constants of L, one has (µ−1

s2
)′ 6= 0 and so b ∈ IA. 2

Lemma 4.2 Let K be a differential field with field of constants C. Let K ⊂
L be a Picard-Vessiot extension with differential Galois group G(L|K). We
consider A := L[Yij, 1/ det], B := K[Yij, 1/ det]. The map I 7→ IA from the
set of ideals of B to the set of G(L|K)-stable ideals of A is a bijection. The
inverse map is given by J 7→ J ∩B.

Proof. The proof is similar to that of lemma 4.1. We have to verify that any
G(L|K)-stable ideal J of A is generated by I = J ∩ B. Let {us}s∈S be a
basis of B over K. Any element b ∈ J can be written uniquely as a finite
sum

∑
s µsus, with µs ∈ L. By the length l(b) we will mean the number of

subindices s with µs 6= 0. By induction on the length of b, we shall show
that b ∈ IA. When l(b) = 0, 1, the result is clear. Assume l(b) > 1. We
may suppose that µs1 = 1 for some s1 ∈ S. If all µs ∈ K, then b ∈ IA. If
not, there exists some s2 ∈ S with µs2 ∈ L \K. For any σ ∈ G, the length
of σb − b is less that l(b). Thus σb − b ∈ IA. By proposition 3.7 a), there
exists a σ with σµs2 6= µs2 . As above, one finds σ(µ−1

s2
b)− µ−1

s2
b ∈ IA. Then

(σµ−1
s2
−µ−1

s2
)b = σ(µ−1

s2
b)−µ−1

s2
b−σ(µ−1

s2
)(σb− b) ∈ IA. As σµ−1

s2
−µ−1

s2
∈ L∗,

it follows that b ∈ IA. 2
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Proof of Proposition 4.2.
We consider the K-algebra R = K[Yij, 1/ det] with derivation defined by

Y ′
ij = Yi+1,j, 0 ≤ i ≤ n− 2,

Y ′
n−1,j = −an−1Yn−1,j − · · · − a1Y1j − a0Y0j.

as in section 3.2. We consider as well the L-algebra L[Yij, 1/ det] with deriva-
tion defined by the derivation in L and the preceding formulae. We consider
now the C-algebra C[Xst, 1/ det] where Xst, 1 ≤ s, t ≤ n are indeterminates,
det denotes the determinant of the matrix (Xst) and recall that C[Xst, 1/ det]
is the coordinate algebra C[GL(n,C)] of the algebraic group GL(n,C). We
consider the action of the group G on GL(n,C) by translation on the left,
i.e.

G×GL(n, C) → GL(n,C)
(g, h) 7→ gh

which gives the following action of G on C[GL(n,C)]

G× C[GL(n,C)] → C[GL(n,C)]
(g, f) 7→ λg(f) : h 7→ f(g−1h)

If we take f to be Xst, the action of an element σ of G on Xst is multiplication
on the left by the inverse of the matrix of σ as an element in GL(n,C). We
consider C[Xst, 1/ det] with this G-action and the inclusion C[Xst, 1/ det] ⊂
L[Xst, 1/ det]. Now we define the relation between the indeterminates Yij

and Xst to be given by (Yij) = (rab)(Xst), where rab are the images of the Yab

in the quotient R/P of the ring R by the maximal differential ideal P . We
observe that the G-action we have defined on the Xst is compatible with the
G-action on L if we take the Yij to be G-invariant. Now, the definition of the
derivation for the Yij and the rab gives X ′

st = 0. We have then the following
rings

K[Yij,
1

det
] ⊂ L[Yij,

1

det
] = L[Xst,

1

det
] ⊃ C[Xst,

1

det
]

each of them endowed with a derivation and a G-action which are com-
patible with each other. Combining lemmas 4.1 and 4.2, we obtain a bi-
jection between the set of differential ideals of K[Yij, 1/ det] and the set of
G(L|K)-stable ideals of C[Xst, 1/ det]. A maximal differential ideal of the
first ring corresponds to a maximal G(L|K)-stable ideal of the second. So,
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Q = PL[Yij, 1/ det] ∩ C[Xst, 1/ det] is a maximal G(L|K)-stable ideal of the
ring C[Xst, 1/ det]. By its maximality, Q is a radical ideal and defines a sub-
variety W of GL(n,C), which is minimal with respect to G(L|K)-invariance.
Thus W is a left coset in GL(n,C) for the group G(L|K) seen as a sub-
group of GL(n,C). Now, by going to the algebraic closure K of K, we
have an isomorphism from GK to WK and, correspondingly, an isomorphism
K ⊗C C[G] ' K ⊗C C[W ] between the coordinate rings.

On the other hand, we have ring isomorphisms

L⊗K T = L⊗K (K[Yij,
1

det
]/P )

' L[Yij,
1

det
]/(PL[Yij,

1

det
]) ' L⊗C (C[Xst,

1

det
]/Q)

and so L⊗K T ' L⊗C C[W ].
We then have L ⊗K T ' L ⊗C C[W ], for L the algebraic closure of L.
This corresponds to an isomorphism of affine varieties VL ' WL, where we
denote by V the affine subvariety of GL(n,K) corresponding to the ideal P of
K[Yij, 1/ det]. But both W and V are defined over K and so, by proposition
7.4, we obtain VK ' WK . Coming back to the corresponding coordinate
rings, we obtain K ⊗K T ' K ⊗C C[W ]. Composing with the isomorphism
obtained above, we have K ⊗K T ' K ⊗C C[G], as desired. 2

Corollary 4.1 Let K ⊂ L be a Picard-Vessiot extension with differential
Galois group G(L|K). We have

dim G(L|K) = trdeg[L : K].

Proof. The dimension of the algebraic variety G is equal to the Krull di-
mension of its coordinate ring C[G] (see chapter 7). It can be checked that
the Krull dimension of a C-algebra remains unchanged when tensoring by a
field extension of C. Then proposition 4.2 gives that the Krull dimension of
C[G] is equal to the Krull dimension of the algebra T (where T denotes as
in proposition 4.2 the K-algebra R/P considered in theorem 3.1), which by
Noether’s normalization Lemma (proposition 7.8) is equal to the transcen-
dence degree of L over K. 2
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5 Fundamental theorem

The aim of this chapter is to establish the fundamental theorem of Picard-
Vessiot theory, which is analogous to the fundamental theorem in classical
Galois theory.

If K ⊂ L is a Picard-Vessiot extension and F an intermediate differential
field, i.e. K ⊂ F ⊂ L, it is clear that F ⊂ L is a Picard-Vessiot extension
(for the same differential equation as K ⊂ L, viewed as defined over F ) with
differential Galois group G(L|F ) = {σ ∈ G(L|K) : σ|F = IdF}. If H is a
subgroup of G(L|K), we denote by LH the subfield of L fixed by the action
of H, i.e. LH = {x ∈ L : σ(x) = x , ∀σ ∈ H}. Note that LH is stable under
the derivation of L.

Proposition 5.1 Let K ⊂ L be a Picard-Vessiot extension, G(L|K) its dif-
ferential Galois group. The correspondences

H 7→ LH , F 7→ G(L|F )

define inclusion inverting mutually inverse bijective maps between the set of
Zariski closed subgroups H of G(L|K) and the set of differential fields F with
K ⊂ F ⊂ L.

Proof. It is clear that for H1, H2 subgroups of G(L|K), we have H1 ⊂ H2 ⇒
LH1 ⊃ LH2 and that for F1, F2 intermediate differential fields, F1 ⊂ F2 ⇒
G(L|F1) ⊃ G(L|F2).

It is also straightforward to see that, for a subgroup H of G, we have
the equality LG(L|LH) = LH , and, for an intermediate field F , we have
G(L|LG(L|F )) = G(L|F ).

We have to prove that LG(L|F ) = F for each intermediate differential
field F of K ⊂ L and H = G(L|LH) for each Zariski closed subgroup H of
G(L|K). The first equality follows from the fact observed above that F ⊂ L
is a Picard-Vessiot extension and corollary 3.4. For the second equality, it
is clear that if H is a subgroup of G(L|K), the elements in H fix LH el-
ementwise. We shall prove now that, if H is a subgroup (not necessarily
closed) of G = G(L|K), then H ′ := G(L|LH) is the Zariski closure of H in
G. Assume the contrary, i.e. that there exists a polynomial f on GL(n,C)
(where C = CK and L|K is a Picard-Vessiot extension for an order n dif-
ferential equation) such that f|H = 0 and f|H′ 6= 0. If L = K〈y1, . . . , yn〉,
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we consider the matrices A = (y
(i)
j )0≤i≤n−1,1≤j≤n, B = (u

(i)
j )0≤i≤n−1,1≤j≤n,

where u1, . . . , un are differential indeterminates. We let the Galois group
act on the right, i.e we define the matrix Mσ of σ ∈ G(L|K) such that
(σ(y1), . . . , σ(yn)) = (y1, . . . , yn)Mσ. We note that, as W (y1, . . . , yn) 6= 0,
the matrix A is invertible and we define the polynomial F (u1, . . . , un) =
f(A−1B) ∈ L{u1, . . . , un}. It has the property that F (σ(y1), . . . , σ(yn)) = 0,
for all σ ∈ H but not all σ ∈ H ′. Assume we are taking F among all poly-
nomials with the preceding property having the smallest number of nonzero
monomials. We can assume that some coefficient of F is 1. For τ ∈ H, let
τF be the polynomial obtained by applying τ to the coefficients of F . Then
(τF )(σ(y1), . . . , σ(yn)) = τ(F ((τ−1σ(y1), . . . , τ

−1σ(yn))) = 0, for all σ ∈ H.
So, F−τF is shorter than F and vanishes for (σ(y1), . . . , σ(yn)) for all σ ∈ H.
By the minimality assumption, it must vanish for (σ(y1), . . . , σ(yn)), for all
σ ∈ H ′. If F − τF is not identically zero, we can find an element a ∈ L
such that F − a(F − τF ) is shorter than F and has the same property as F .
So F − τF ≡ 0, for all τ ∈ H, which means that the coefficients of F are
H-invariant. Therefore, F has coefficients in LH = LH′

. Now, for σ ∈ H ′,
F (σ(y1), . . . , σ(yn)) = (σF )(σ(y1), . . . , σ(yn)) = σ(F (y1, . . . , yn)) = 0. This
contradiction completes the proof. 2

Proposition 5.2 Let K ⊂ L be a differential field extension with differential
Galois group G = G(L|K).

a) If H is a normal subgroup of G, then LH is G-stable.

b) If F is an intermediate differential field of the extension, which is G-
stable, then G(L|F ) is a normal subgroup of G. Moreover the restriction
morphism

G(L|K) → G(F |K)
σ 7→ σ|F

induces an isomorphism from the quotient G/G(L|F ) into the group of all
differential K-automorphisms of F which can be extended to L.

Proof. a) For σ ∈ G, a ∈ LH , we want to see that σa ∈ LH . If τ ∈ H, we
have τσa = σa ⇔ σ−1τσa = a and this last equality is true as a ∈ LH and
σ−1τσ ∈ H, by the normality of H.
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b) To see that G(L|F ) is normal in G, we must see that for σ ∈ G, τ ∈
G(L|F ), σ−1τσ belongs to G(L|F ), i.e. it fixes every element a ∈ F . Now
σ−1τσa = a ⇔ τσa = σa and this last equality is true since σa ∈ F because
F is G-stable. Now as F is G-stable, we can define a morphism ϕ : G(L|K) →
G(F |K) by σ 7→ σ|F . The kernel of ϕ is G(L|F ) and its image consists of
those differential K-automorphisms of F which can be extended to L. 2

Definition 5.1 We shall call an extension of differential fields K ⊂ L nor-
mal if for each x ∈ F \ K, there exists an element σ ∈ G(L|K) such that
σ(x) 6= x.

Proposition 5.3 Let K ⊂ L be a Picard-Vessiot extension, G := G(L|K)
its differential Galois group.

a) Let H be a closed subgroup of G. If H is normal in G, then the differential
field extension K ⊂ F := LH is normal.

b) Let F be a differential field with K ⊂ F ⊂ L. If K ⊂ F is a Picard-
Vessiot extension, then the subgroup H = G(L|F ) is normal in G(L|K).
In this case, the restriction morphism

G(L|K) → G(F |K)
σ 7→ σ|F

induces an isomorphism G(L|K)/G(L|F ) ' G(F |K).

Proof. a) By proposition 3.7, for x ∈ F \K, there exists σ ∈ G such that
σx 6= x. By proposition 5.2 a), we know that F is G-stable, hence σ|F is an
automorphism of F .
b) By corollary 3.2, F is G-stable. Then by proposition 5.2 b), H = G(L|F )
is a normal subgroup of G = G(L|K).

For the last part, taking into account proposition 5.2 b), it only remains to
prove that the image of the restriction morphism is the whole group G(F |K)
which comes from proposition 3.7 b). 2

The next proposition establishes the more difficult part of the Fundamen-
tal Theorem, namely that the intermediate field F corresponding to a normal
subgroup of G is a Picard-Vessiot extension of K. This result is not proved
in Kaplansky’s book [K], which refers to a paper by Kolchin [Ko1]. In fact,
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Kolchin establishes the fundamental theorem for strongly normal extensions
and characterizes Picard-Vessiot extensions as strongly normal extensions
with a linear algebraic group. Our proof is inspired in [P-S] and [Ż] but not
all details of it can be found there. The proof given in [M] uses a different
algebra T .

Proposition 5.4 Let K ⊂ L be a Picard-Vessiot extension, G(L|K) its dif-
ferential Galois group. If H is a normal closed subgroup of G(L|K), then the
extension K ⊂ LH is a Picard-Vessiot extension.

Proof. Let us explain first the idea of the proof. Assume that we have a
finitely generated K-subalgebra T of L satisfying the following conditions.

a) T is G-stable and its quotient field Qt(T ) is equal to L,

b) for each t ∈ T , the C-vector space generated by {σt : σ ∈ G} is finite
dimensional,

c) the subalgebra TH = {t ∈ T : σt = t, ∀σ ∈ H} is a finitely generated
K-algebra,

d) F := LH is the quotient field Qt(TH) of TH .

With all these assumptions, let us prove that TH is generated over K
by the space of solutions of a homogeneous linear differential equation with
coefficients in K. First let us observe that, as H ¢ G, TH is G-stable, i.e.
τ(TH) = TH , for all τ ∈ G. Indeed, let t ∈ TH , τ ∈ G. We want to see that
τt ∈ TH . For σ ∈ H, we have στt = τt ⇔ (τ−1στ)t = t and the last equality
is true as the normality of H implies τ−1στ ∈ H. Thus TH is a G-stable
subalgebra of T and the restriction of the action of G to TH gives an action
of the quotient group G/H on TH .

We now take a finite-dimensional subspace V1 ⊂ TH over C which gen-
erates TH as a K-algebra and which is G-stable. Note that such a V1 exists
by conditions b) and c). Let z1, . . . , zm be a basis of V1, then the wrońskian
W (z1, . . . , zm) is not zero. The differential equation in Z

W (Z, z1, . . . , zm)

W (z1, . . . , zm)
= 0

is satisfied by any z ∈ V1. Now, by expanding the determinant in the nu-
merator with respect to the first column, we see that each coefficient of the
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equation is a quotient of two determinants and that all these determinants
are multiplied by the same factor det σ|V1 under the action of the element
σ ∈ G. So these coefficients are fixed by the action of G and so, by using
corollary 3.4, we see that they belong to K. Thus TH = K〈V1〉, where V1

is a space of solutions of a linear differential equation with solutions in K.
Therefore F = LH = Qt(TH) is a Picard-Vessiot extension of K.

Let T now be the K-algebra R/P considered in the construction of the
Picard-Vessiot extension (see theorem 3.1). We shall prove that T satisfies
the conditions stated above.

a) By construction G acts on T and the quotient field Qt(T ) of T is equal
to L.

b) Taking into account remark 4.3, we can apply lemma 8.3a) and obtain
that the orbit of an element t ∈ T by the action of G generates a finite
dimensional C-vector space.

c) We consider the isomorphism of G-modules given by proposition 4.2 and
restrict the action to the subgroup H. The group H acts on both K⊗K T
and K⊗C C[G] by acting on the second factor. We then have K⊗K TH '
K⊗C C[G]H . By proposition 8.10, C[G]H ' C[G/H] as C-algebras. Now
C[G/H] is a finitely generated C-algebra and so K ⊗K TH is a finitely
generated K-algebra. Now we apply the following two lemmas to obtain
that TH is a finitely generated K-algebra.

Lemma 5.1 Let K be a field, K an algebraic closure of K, A a K-
algebra. If K ⊗K A is a finitely generated K-algebra, then there exists a
finite extension K̃ of K such that K̃⊗KA is a finitely generated K̃-algebra.

Proof. Let {vs}s∈S be a K-basis of K and let {λi ⊗ ai}i=1,...,n generate
K ⊗K A as a K-algebra. If we write down the elements λi in the K-basis
of K, only the v′ss with s in some finite subset S ′ of S are involved. We

take K̃ = K({vs}s∈S′). Then the elements {vs ⊗ ai}s∈S′,i=1,...,n generate

K̃ ⊗K A as a K̃-algebra. 2

Lemma 5.2 Let K be a field, A a finitely generated K-algebra and let U
be a finite group of automorphisms of A. Then the subalgebra AU = {a ∈
A : σa = a , ∀σ ∈ U} of A is a finitely generated K-algebra.
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Proof. For each element a ∈ A, let us define

S(a) =
1

N

∑
σ∈U

σa, where N = |U |,

and let us consider the polynomial

Pa(T ) =
∏
σ∈U

(T − σa) = TN +
N∑

i=1

(−1)iaiT
N−i.

The coefficients ai are the symmetric functions in the roots of Pa(T )
and by the Newton formulae can be expressed in terms of the S(ai), i =
1, . . . , N. Let u1, . . . , um now generate A as a K-algebra. We consider the
subalgebra B of AU generated by the elements S(uj

i ), i = 1, . . . , m, j =
1, . . . , N . We have Pui

(ui) = 0 and so uN
i can be written as a linear

combination of 1, . . . , uN−1
i with coefficients in B. Hence each monomial

ua1
1 . . . uam

m can be written in terms of monomials ua1
1 . . . uam

m , with ai < N
and coefficients in B. Therefore each element a ∈ A can be written in the
form

a =
∑
ai<N

ϕa1...amua1
1 . . . uam

m , with ϕa1...am ∈ B.

Now, if a ∈ AU , we have

a = S(a) =
∑
ai<N

ϕa1...amS(ua1
1 . . . uam

m ).

Thus AU can be generated over K by the finite set

{S(ua1
1 . . . uam

m )}ai<N ∪ {S(UN
i )}i=1,...,m.

2

Now by applying lemma 5.1 to K ⊗K TH , we obtain that K̃ ⊗K TH is a
finitely generated K̃-algebra for some finite extension K ⊂ K̃ and then
also a finitely generated K-algebra. Now we can assume that the extension
K ⊂ K̃ is normal and consider the Galois group U = Gal(K̃|K) acting
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on K̃ ⊗K A on the left factor. By applying lemma 5.2, we can conclude
that TH ' K ⊗K TH ' K̃U ⊗K TH ' (K̃ ⊗K TH)U is a finitely generated
K-algebra.

d) We prove now that LH is the quotient field of TH .

Let a ∈ LH \ {0}. We want to write a as a quotient of elements in
TH . We consider the ideal J = {t ∈ T : ta ∈ T} of denominators of
a. Since a is H-invariant, J is H-stable, i.e. HJ = J . Let s ∈ J \ {0}.
Taking into account remark 4.3, we can apply lemma 8.3a) and obtain
that the elements τs, τ ∈ H generate a finite dimensional vector space
E over C. Let s1, . . . , sp be a basis of E and w = W (s1, . . . , sp) be the
wrońskian. By expanding the determinant with respect to the first row,
we see that w ∈ J . We have τw = det(τ|E) · w, for all τ ∈ H. We note
that τ 7→ det(τ|E) defines a character χ of H, i.e. an algebraic group
morphism χ : H → Gm(C), where Gm denotes the multiplicative group.
We say that w is a semi-invariant with weight χ (see section 8.8). Let
t = wa. It belongs to T , because w ∈ J , and is a semi-invariant with the
same weight as w, because a is H-invariant. So a can be written as t/w the
quotient of two semi-invariants. If we find a semi-invariant u with weight
1/χ, then we would have a = (tu)/(wu) the quotient of two invariants as
desired. We consider the subalgebra of T consisting of the semi-invariants
of weight 1/χ, that is T1/χ = {t ∈ T : τt = t/χ(τ) , ∀τ ∈ H}. We want to
prove T1/χ 6= 0.

To this end, we first consider the action of H on the coordinate ring C[G]
of the algebraic group G and prove C[G]η 6= 0, for each character η of
H. Let us denote X(H) the character group of the group H. Let H0

be the intersection of the kernels of all characters of H. It is a normal
subgroup of H and contains the commutator subgroup of H, so H/H0 is
commutative. By theorem 8.2, H/H0 is isomorphic to the direct prod-
uct of its closed subgroups (H/H0)s = {h ∈ H/H0 : h is semisimple}
and (H/H0)u = {h ∈ H/H0 : h is unipotent}. We recall that an ele-
ment x ∈ GL(n,C) is called nilpotent if xk = 0 for some k ∈ N, unipo-
tent if it is the sum of the identity element and a nilpotent element,
semisimple if it is diagonalizable over C. By lemma 8.8, (H/H0)u is con-
jugate to a subgroup of the upper triangular unipotent group U(n,C).
Hence a nontrivial character of (H/H0)u would give a nontrivial char-
acter of the additive group Ga(C), but Ga(C) does not have nontrivial
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characters (see section 8.8), so (H/H0)u does not have nontrivial char-
acters either. We then have X(H) = X(H/H0) = X((H/H0)s). We
write H ′ for (H/H0)s. If η is a character of H ′, we have η ∈ C[H ′]
and moreover, for each x, y ∈ H ′, we have (x.η)(y) = η(xy) = η(x)η(y)
which gives x.η = η(x)η, so η is a semi-invariant of weight η and we get
C[H ′]η 6= 0. Now the inclusion H ′ ↪→ G/H0 corresponds to an epimor-
phism between the coordinate rings π : C[G/H0] → C[H ′]. We want to
see that π|C[G/H0]η : C[G/H0]η → C[H ′]η is also an epimorphism. Let a be
a nonzero element in C[H ′]η. Let α ∈ C[G/H0] such that π(α) = a. By
lemma 8.3a), there exists a finite dimensional H ′-stable subspace E1 of
C[G/H0] containing α. As H ′ is semisimple and commutative, it is diag-
onalizable, i.e. conjugate in the general linear group to a subgroup of the
group of diagonal matrices (cf. lemma 8.8). Therefore the representation
of H ′ on E1 diagonalizes in a certain basis α1, · · · , αp. We can choose it
such that α1, · · · , αl, with l < p are a basis of E1 ∩ Ker π. We have α =∑n

j=1 cjαj ⇒ τ(α) =
∑n

j=1 cjηj(τ)αj, then π(τ(α)) =
∑n

j=1 cjηj(τ)π(αj)
and, on the other hand, π(τ(α)) = τ(π(α)) = τ(a) = η(τ)

∑n
j=1 cjπ(αj).

We have cj 6= 0 for some j > l and so ηj(τ) = η(τ) which gives that αj is
a semi-invariant with weight η. We then obtain 0 6= C[G/H0]η ⊂ C[G]η.

Now we consider again the isomorphism of G-modules given by proposi-
tion 4.2 with action restricted to the subgroup H. As the group H acts
on both K ⊗K T and K ⊗C C[G] by acting on the second factor, we have
C[G]1/χ 6= 0 ⇒ (K ⊗C C[G])1/χ 6= 0 ⇒ (K ⊗K T )1/χ 6= 0 ⇒ T1/χ 6= 0.
To obtain the last implication, we use the fact that if t ∈ K ⊗K T , we
have t ∈ K̃ ⊗K T , for some finite extension K̃ of K. We can assume
that K ⊂ K̃ is a normal extension and take U = G(K̃|K). Then, if

t ∈ (K̃ ⊗K T )1/χ, the element
∑

σ∈U σt is a semi-invariant with weight

1/χ (as H acts in K̃ ⊗K T by acting on the right factor and U by acting
on the left factor, both actions commute) and belongs to K ⊗K T ' T .

2

Now, propositions 5.1, 5.3 and 5.4 together establish the fundamental
theorem of Picard-Vessiot theory.

Theorem 5.1 (Fundamental Theorem) Let K ⊂ L be a Picard-Vessiot
extension, G(L|K) its differential Galois group.
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1. The correspondences

H 7→ LH , F 7→ G(L|F )

define inclusion inverting mutually inverse bijective maps between the
set of Zariski closed subgroups H of G(L|K) and the set of differential
fields F with K ⊂ F ⊂ L.

2. The intermediate differential field F is a Picard-Vessiot extension of K
if and only if the subgroup H = G(L|F ) is normal in G(L|K). In this
case, the restriction morphism

G(L|K) → G(F |K)
σ 7→ σ|F

induces an isomorphism G(L|K)/G(L|F ) ' G(F |K).
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6 Liouville extensions

The aim of this chapter is to characterize linear differential equations solv-
able by quadratures. This is the analogue of characterization of algebraic
equations solvable by radicals.

6.1 Liouville extensions

Definition 6.1 A differential field extension K ⊂ L is called a Liouville
extension if there exists a chain of intermediate differential fields K = F1 ⊂
F2 ⊂ · · · ⊂ Fn = L such that Fi+1 = Fi〈αi〉, where each αi is either a
primitive element over Fi, i.e. α′i ∈ Fi, or an exponential element over Fi,
i.e. α′i/αi ∈ Fi.

Proposition 6.1 Let L be a Liouville extension of the differential field K,
having the same field of constants as K. Then the differential Galois group
G(L|K) of L over K is solvable.

Proof. We assume that the extension K ⊂ L has a chain of intermediate
differential fields as in definition 6.1. From examples 4.1 and 4.2, we obtain
that K ⊂ F2 is a Picard-Vessiot extension with commutative differential
Galois group. By corollary 3.2, every K-differential automorphism of L sends
F2 onto itself. By proposition 5.2 b), G(L|F2) is a normal subgroup of G(L|K)
and G(L|K)/G(L|F2) is a subgroup of G(F2|K), hence commutative. By
iteration, we obtain that G(L|K) is solvable. 2

The next proposition is the first step for a converse of proposition 6.1. In
fact we shall consider generalized Liouville extensions, admitting also alge-
braic extensions as constructing blocks.

Proposition 6.2 Let K ⊂ L be a normal extension of differential fields. As-
sume that there exist elements u1, . . . , un ∈ L such that for every differential
automorphism σ of L we have

(3) σ uj = a1j u1 + · · ·+ aj−1,j uj−1 + ajj uj , j = 1, . . . , n,

with aij constants in L (depending on σ). Then K〈u1, . . . , un〉 is a Liouville
extension of K.
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Proof. The first of the equations (3) is σu1 = a11u1. Differentiating, we obtain
σu′1 = a11u

′
1 and so u′1/u1 is invariant under each σ (we can assume u1 6= 0

for otherwise it could simply be suppressed). By the normality of K ⊂ L,
we obtain u′1/u1 ∈ K. Hence the adjunction of u1 to K is the adjunction
of an exponential. Next we divide each of the next n − 1 equations by the
equation σu1 = a11u1 and differentiate. The result is

σ

(
uj

u1

)′
=

a2j

a11

(
u2

u1

)′
+ · · ·+ aj−1,j

a11

(
uj−1

u1

)′
+

ajj

a11

(
uj

u1

)′
.

This is a set of equations of the same form as (3) in the elements (uj/u1)
′,

with j = 2, . . . , n. By induction on n, the adjunction of (uj/u1)
′ to K yields

a Liouville extension. Then adjoining uj/u1 themselves means adjoining
integrals. 2

6.2 Generalized Liouville extensions

Definition 6.2 A differential field extension K ⊂ L is called a generalized
Liouville extension if there exists a chain of intermediate differential fields
K = F1 ⊂ F2 ⊂ · · · ⊂ Fn = L such that Fi+1 = Fi〈αi〉, where each αi es
either a primitive element over Fi, or an exponential element over Fi, or is
algebraic over Fi.

Theorem 6.1 Let K be a differential field with algebraically closed field of
constants C. Let L be a Picard-Vessiot extension of K. Assume that the
identity component G0 of G = G(L|K) is solvable. Then L can be obtained
from K by a finite normal extension, followed by a Liouville extension.

Proof. Let F = LG0 . We know by proposition 8.1 that G0 is a normal
subgroup of G of finite index. Then K ⊂ F is a finite normal extension
and G(L|F ) ' G0. Then by theorem 8.3, we can apply proposition 6.2 and
obtain that F ⊂ L is a Liouville extension. 2

To prove an inverse to this theorem we shall use the following lemma.

Lemma 6.1 Let K be a differential field with algebraically closed field of
constants C. Let L be a Picard-Vessiot extension of K. Let L1 = L〈z〉 be an
extension of L with no new constants. Write K1 = K〈z〉. Then K1 ⊂ L1 is
a Picard-Vessiot extension and its differential Galois group is isomorphic to
G(L|L ∩K1).
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Proof. It is clear that K1 ⊂ L1 is a Picard-Vessiot extension as both fields
have the same field of constants and the extension is generated by the solu-
tions of the differential equation associated to the Picard-Vessiot extension
K ⊂ L. By corollary 3.2, any K-differential automorphism of L1 sends L
onto itself. Thus restriction to L gives a morphism ϕ : G(L1|K1) → G(L|K).
An automorphism of L1 in Ker ϕ fixes both K1 and L and so is the iden-
tity. Hence ϕ is injective and G(L1|K1) is isomorphic to a closed subgroup
of G(L|K). The corresponding intermediate field of the extension K ⊂ L is
L∩K1 and by the fundamental theorem 5.1 we get G(L1|K1) ' G(L|L∩K1).
2

Theorem 6.2 Let K be a differential field with algebraically closed field of
constants C. Let L be a Picard-Vessiot extension of K. Assume that L
can be embedded in a differential field M which is a generalized Liouville
extension of K with no new constants. Then the identity component G0 of
G = G(L|K) is solvable (whence by theorem 6.1, L can be obtained from K
by a finite normal extension, followed by a Liouville extension).

Proof. We make an induction on the number of steps in the chain from
K to M . Let K〈z〉 be the first step. Then, by induction, the differential
Galois group of L〈z〉 over K〈z〉 has a solvable component of the identity. By
lemma 6.1, this group is isomorphic to the subgroup H of G corresponding
to L∩K〈z〉. Assume that z is algebraic over K. Then, H has finite index in
G. In this case, by proposition 8.1, G0 = H0, hence solvable. If z is either an
integral or an exponential, by examples 4.1 and 4.2, K〈z〉 is a Picard-Vessiot
extension of K with commutative Galois group. Thus all differential fields
between K and K〈z〉 are normal over K. In particular, L ∩K〈z〉 is normal
over K with a commutative differential Galois group. Thus H is normal in
G with G/H commutative. So by lemma 8.10, the identity component G0 of
G is solvable. 2
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7 Appendix on algebraic varieties

In this appendix, we gather some topics on algebraic varieties which are
used in the Picard-Vessiot theory, and develop them as far as possible using
an elementary approach. For the proofs of the results and more details on
algebraic geometry we refer the reader to [Hu], [Kl] and [Sp].

In this chapter C will denote an algebraically closed field.

7.1 Affine varieties

The set Cn = C × · · · × C will be called affine n-space and denoted by An.
We define an affine variety as the set of common zeros in An of a finite
collection of polynomials. To each ideal I of C[X1, . . . , Xn] we associate the
set V(I) of its common zeros in An. By Hilbert’s basis theorem, the C-algebra
C[X1, . . . , Xn] is Noetherian, hence each ideal of C[X1, . . . , Xn] has a finite
set of generators. Therefore the set V(I) is an affine variety. To each subset
S ⊂ An we associate the collection I(S) of all polynomials vanishing on S.
It is clear that I(S) is an ideal and that we have inclusions S ⊂ V(I(S)),
I ⊂ I(V(I), which are not equalities in general. We define the radical

√
I of

an ideal I by

√
I := {f(X) ∈ C[X1, . . . , Xn] : f(X)r ∈ I for some r ≥ 1}.

It is an ideal containing I. A radical ideal is an ideal equal to its radical.
We can easily see the inclusion

√
I ⊂ I(V(I)). Equality is given by the next

theorem.

Theorem 7.1 (Hilbert’s Nullstellensatz) If I is any ideal in C[X1, . . . , Xn],
then

√
I = I(V(I)).

As a consequence, we have that V and I set a bijective correspondence
between the collection of all radical ideals of C[X1, . . . , Xn] and the collection
of all affine varieties of An.

The following proposition is easy to prove.

Proposition 7.1 The correspondence V satisfies the following equalities:

a) An = V(0), ∅ = V(C[X1, . . . , Xn]),
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b) If I and J are two ideals of C[X1, . . . , Xn], V(I) ∪ V(J) = V(I ∩ J),

c) If Iα is an arbitrary collection of ideals of C[X1, . . . , Xn], ∩αV(Iα) =
V(

∑
α Iα).

We have then that affine varieties in An satisfy the axioms of closed sets
in a topology. This is called Zariski topology. Hilbert’s basis theorem implies
the descending chain condition on closed sets and therefore the ascending
chain condition on open sets. Hence An is a Noetherian topological space.
This implies that it is quasicompact. However the Hausdorff condition fails.

Recall that a topological space X is said to be irreducible if it cannot
be written as the union of two proper, nonempty, closed subsets. Recall as
well that a Noetherian topological space X can be written as a union of its
irreducible components, i.e. its finitely many maximal irreducible subspaces.

Proposition 7.2 A closed set V in An is irreducible if and only if its ideal
I(V ) is prime. In particular, An itself is irreducible.

Proof. Write I = I(V ). Suppose that V is irreducible and let f1, f2 ∈
C[X1, . . . , Xn] such that f1f2 ∈ I. Then each x ∈ V is a zero of f1 or f2,
hence V ⊂ V(I1)∪V(I2), for Ii the ideal generated by fi, i = 1, 2. Since V is
irreducible, it must be contained within one of these two sets, i.e. f1 ∈ I or
f2 ∈ I, and I is prime.

Reciprocally, assume that I is prime but V = V1 ∪ V2, with V1, V2 closed
in V . If none of the Vi’s covers V , we can find fi ∈ I(Vi) but fi 6∈ I, i = 1, 2.
But f1f2 vanish on V , so f1f2 ∈ I, contradicting that I is prime. 2

A principal open set of An is the set of nonzeros of a single polynomial.
We note that principal open sets are a basis of the Zariski topology. We
recall that a subspace of a topological space is irreducible if and only if its
closure is. The closure in the Zariski topology of a principal open set is the
whole affine space. Hence, as An is irreducible, we obtain that principal open
sets are irreducible.

If V is closed in An, each polynomial f(X) ∈ C[X1, . . . , Xn] defines a
C-valued function on V . But different polynomials may define the same
function. It is clear that we have a 1-1 correspondence between the distinct
polynomial functions on V and the residue class ring C[X1, . . . , Xn]/I(V ).
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We denote this ring by C[V ] and call it the coordinate ring of V . It is
a finitely generated algebra over C and is reduced (i.e. without nonzero
nilpotent elements) because I(V ) is a radical ideal. If V is an affine variety,
f ∈ C[V ], we define Vf := {P ∈ V : f(P ) 6= 0} which is clearly an open
subset of V .

If V is irreducible, equivalently if I(V ) is a prime ideal, C[V ] is an integral
domain. We can then consider its field of fractions C(V ), which is called
function field of V . Elements f ∈ C(V ) are called rational functions on V .
Any rational function can be written f = g/h, with g, h ∈ C[V ]. In general,
this representation is not unique. We can only give f a well defined value at
a point P if there is a representation f = g/h, with h(P ) 6= 0. In this case
we say that the rational function f is regular at P . The domain of definition
of f is defined to be the set

dom(f) = {P ∈ V : f is regular at P}.

Proposition 7.3 Let V be an irreducible variety. For a rational function
f ∈ C(V ), the following hold

a) dom(f) is open and dense in V .

b) dom(f) = V ⇔ f ∈ C[V ].

c) If h ∈ C[V ] and Vh := {P ∈ V : h(P ) 6= 0}, then dom(f) ⊃ Vh ⇔ f ∈
C[V ][1/h].

Part b) of the above proposition says that the polynomial functions are
precisely the rational functions that are ”everywhere regular”.

The local ring of V at a point P ∈ V is the ring

{f ∈ C(V ) : f is regular at P}.
It is isomorphic to the ring C[V ]MP

obtained by localizing the ring C[V ] at
the maximal ideal MP = {f ∈ C[V ] : f(P ) = 0}. This is indeed a local ring,
i.e. it has a unique maximal ideal, namely MP C[V ]MP

.

We shall see now that a principal open set can be seen as an affine variety.
If Vf = {x ∈ An : f(x) 6= 0}, for some f ∈ C[X1, . . . , Xn], the points
of Vf are in 1-1 correspondence with the points of the closed set of An+1:
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{(x1, . . . , xn, xn+1) : f(x1, . . . , xn) xn+1 − 1 = 0}, hence Vf has an affine
variety structure and its coordinate ring is C[Vf ] = C[X1, . . . , Xn, 1/f ], i.e.
the ring C[X1, . . . , Xn] localized in the multiplicative system of the powers
of f(X).

More generally, for V an affine variety, f ∈ C[V ], the algebra of regular
functions on the principal open set Vf := {x ∈ V : f(x) 6= 0} is the algebra
C[V ]f , i.e. the algebra C[V ] localized in the multiplicative system {fn, n ≥
0}.

Now let V ⊂ An,W ⊂ Am be arbitrary affine varieties. A morphism
ϕ : V → W is a mapping of the form ϕ(x1, . . . , xn) = (ϕ1(x), . . . , ϕm(x)),
where ϕi ∈ C[V ]. A morphism ϕ : V → W is continuous for the Zariski
topologies involved. Indeed if Z ⊂ W is the set of zeros of polynomial
functions fi on W , then ϕ−1(Z) is the set of zeros of the functions fi ◦ ϕ on
V . With a morphism ϕ : V → W , an algebra morphism ϕ∗ : C[W ] → C[V ] is
associated, defined by ϕ∗(f) = f ◦ϕ. If ϕ : V → W is a morphism for which
ϕ(V ) is dense in W , then ϕ∗ is injective. The morphism ϕ : V → W is an
isomorphism if there exists a morphism ψ : W → V such that ψ ◦ ϕ = IdV

and ϕ ◦ ψ = IdW , or equivalently ϕ∗ : C[W ] → C[V ] is an isomorphism
of C-algebras (with its inverse being ψ∗). We say that the varieties V, W
defined over the same field C are isomorphic if there exists an isomorphism
ϕ : V → W .
If V is an algebraic variety defined over C and L is a field containing C, we
shall denote by VL the variety obtained from V by extending scalars to L.
The coordinate ring of VL is L[V ] = L⊗C[V ]. It is clear that if V,W are affine
varieties defined over C, we have V ' W ⇒ VL ' WL. The next proposition
gives the converse of this implication for algebraically closed fields.

Proposition 7.4 Let K,L be algebraically closed fields, K ⊂ L. Let V, W be
affine algebraic varieties defined over K. Let VL,WL be the varieties obtained
from V, W by extending scalars to L. If VL and WL are isomorphic, then V
and W are isomorphic.

Proof. As the statement ”V and W are isomorphic” can be written in the
first order language of the theory of fields, the proposition follows from the
fact that the theory of algebraically closed field is model complete (see [F-J]
Corollary 8.5). 2
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We will often need to consider maps on an affine variety V which are not
everywhere defined, so we introduce the following concept.

Definition 7.1 a) A rational map ϕ : V → An is an n-tuple (ϕ1, . . . , ϕn) of
rational functions ϕ1, . . . , ϕn ∈ C(V ). The map ϕ is called regular at a point
P of V if all ϕi are regular at P . The domain of definition dom(ϕ) is the set
of all regular points of ϕ, i.e. dom(ϕ) = ∩n

i=1 dom(ϕi).
b) For an affine variety W ∈ An, a rational map ϕ : V → W is a rational
map ϕ : V → An such that ϕ(P ) ∈ W for all regular points P ∈ dom(ϕ).

Proposition 7.5 Let ϕ : V → W a morphism of varieties. Then ϕ(V )
contains a nonempty open subset of its closure ϕ(V ).

Given a rational map ϕ : V → W , it is not always possible to define a
morphism ϕ∗ : C(W ) → C(V ) given by ϕ∗(f) = f ◦ϕ. In order to determine
when this is possible, we introduce the following concept.

Definition 7.2 A rational map ϕ : V → W is called dominant if ϕ(dom(ϕ))
is a Zariski dense subset of W .

Proposition 7.6 For irreducible affine varieties V and W , the following
hold.

a) Every dominant rational map ϕ : V → W induces a C-linear morphism
ϕ∗ : C(W ) → C(V ).

b) If f : C(W ) → C(V ) is a C-linear morphism, then there exists a unique
dominant rational map ϕ : V → W with f = ϕ∗.

c) If ϕ : V → W and ψ : W → X are dominant, then ψ ◦ϕ : V → X is also
dominant and (ψ ◦ ϕ)∗ = ϕ∗ ◦ ψ∗.

Definition 7.3 Let V,W be irreducible affine varieties. A rational map
ϕ : V → W is called birational (or a birational equivalence) if there is a
rational map ψ : W → V with ϕ ◦ ψ = IdW and ψ ◦ ϕ = IdV .

Definition 7.4 Two irreducible varieties V and W are said to be birationally
equivalent if there is a birational equivalence ϕ : V → W .

Proposition 7.7 Let V, W be irreducible affine varieties. For a rational
map ϕ : V → W , the following statements are equivalent.
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a) ϕ is birational.

b) ϕ is dominant and ϕ∗ : C(W ) → C(V ) is an isomorphism.

c) There are open sets V0 ⊂ V and W0 ⊂ W such that the restriction ϕ|V0 :
V0 → W0 is an isomorphism.

7.2 Abstract affine varieties

We have considered so far affine varieties as closed subsets of affine spaces.
We shall see now that they can be defined in an intrinsic way (i.e. not
depending on an embedding in an ambient space) as topological spaces with
a sheaf of functions satisfying adequate conditions.

Definition 7.5 A sheaf of functions on a topological space X is a function
F which assigns to every nonempty open subset U ⊂ X a C-algebra F(U)
of C-valued functions on U such that the following two conditions hold:

a) If U ⊂ U ′ are two nonempty open subsets of X and f ∈ F(U ′), then the
restriction f|U belongs to F(U).

b) Given a family of open sets Ui, i ∈ I, covering U and functions fi ∈ F(Ui)
for each i ∈ I, such that fi and fj agree on Ui∩Uj, for each pair of indices
i, j, there exists a function f ∈ F(U) whose restriction to each Ui equals
fi.

Definition 7.6 A topological space X together with a sheaf of functions
OX is called a geometric space. We refer to OX as the structure sheaf of the
geometric space X.

Definition 7.7 Let (X,OX) and (Y,OY ) be geometric spaces. A morphism

ϕ : (X,OX) → (Y,OY )

is a continuous map ϕ : X → Y such that for every open subset U of Y and
every f ∈ OY (U), the function ϕ∗(f) = f ◦ ϕ belongs to OX(ϕ−1(U)).

Remark 7.1 We shall often denote the morphism ϕ : (X,OX) → (Y,OY )
by ϕ : X → Y .
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Example 7.1 Let X be an affine variety. To each nonempty open set U ⊂ X
we assign the ring OX(U) of regular functions on U . Then (X,OX) is a
geometric space. Moreover the two notions of morphism agree.

Let (X,OX) be a geometric space and Z be a subset of X with induced
topology. We can make Z into a geometric space by defining OZ(V ) for an
open set V ⊂ Z as follows: a function f : V → C is in OZ(V ) if and only
if there exists an open covering V = ∪iVi in Z such that for each i we have
f|Vi

= gi|Vi
for some gi ∈ OX(Ui) where Ui is an open subset of X containing

Vi. It is not difficult to check that OZ is a sheaf of functions on Z. We will
refer to it as the induced structure sheaf and denote it by OX |Z . Note that
if Z is open in X then a subset V ⊂ Z is open in Z if and only if it is open
in X, and OX(V ) = OZ(V ).

Let X be a topological space and X = ∪iUi be an open cover. Given
sheaves of functions OUi

on Ui for each i, which agree on each Ui ∩ Uj, we
can define a natural sheaf of functions OX on X by gluing the OUi

. Let U
be an open subset in X. Then OX(U) consists of all functions on U, whose
restriction to each U ∩ Ui belongs to OUi

(U ∩ Ui).
Let (X,OX) be a geometric space. If x ∈ X we denote by vx the map

from functions on X to C obtained by evaluation at x:

vx(f) = f(x).

Definition 7.8 A geometric space (X,OX) is called an abstract affine vari-
ety if the following three conditions hold.

a) OX(X) is a finitely generated C-algebra, and the map from X to the
set HomC(OX(X), C) of C-algebra morphisms defined by x 7→ vx is a
bijection.

b) For each f ∈ OX(X), f 6= 0, the set

Xf := {x ∈ X : f(x) 6= 0}

is open, and every nonempty open set in X is a union of some Xf ’s .

c) OX(Xf ) = OX(X)f , where OX(X)f denotes the C-algebra OX(X) local-
ized at f .
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Remark 7.2 It can be checked that affine varieties with sheaves of regular
functions are abstract affine varieties. We claim that, conversely, every ab-
stract affine variety is isomorphic (as a geometric space) to an affine variety
with the sheaf of regular functions. Indeed, let (X,OX) be an abstract affine
variety. Since OX(X) is a finitely generated algebra of functions, we can
write OX(X) = C[X1, . . . , Xn]/I for some radical ideal I. By the property
a) of abstract affine varieties and the Nullstellensatz (theorem 7.1), we can
identify X with V(I) as a set, and OX(X) with the ring of regular functions
on V(I). The Zariski topology on V(I) has the principal open sets as its base,
so it now follows from b) that the identification of X and V(I) is a homeo-
morphism. Finally, by c), OX(Xf ) and the ring of regular functions on the
principal open set Xf are also identified. This is enough to identify OX(U)
with the ring of regular functions on U for any open set U , as regularity is a
local condition.

The preceding argument shows that the affine variety can be recovered
completely from its algebra OX(X) of regular functions, and conversely.

Example 7.2 In view of remark 7.2, a closed subset of an abstract affine
variety is an abstract affine variety (as usual, with the induced sheaf).

7.3 Auxiliary results

We shall now define the product of two affine varieties. If V ⊂ An,W ⊂ Am

are closed subsets, then V ×W ⊂ An × Am = An+m is clearly a closed set,
hence the cartesian product of two affine varieties is an affine variety. We
have an isomorphism C[V ×W ] ' C[V ]⊗ C[W ].

We shall introduce now the notion of dimension of an affine variety. If X
is a topological space, we define the dimension of X to be the supremum of
all integers n such that there exists a chain Z0 ⊂ Z1 ⊂ · · · ⊂ Zn of distinct
irreducible closed subsets of X. We define the dimension of an affine variety
to be its dimension as a topological space. For example dimAn = n. Clearly
the dimension of an affine variety is the maximum of the dimensions of its
irreducible components. For a ring A, we define the Krull dimension of A to
be the supremum of all integers n such that there exists a chain P0 ⊂ P1 ⊂
· · · ⊂ Pn of distinct prime ideals of A. If V ⊂ An is an affine variety, by
proposition 7.2, irreducible closed subsets of V correspond to prime ideals
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of C[X1, . . . , Xn] containing I(V ) and these in turn correspond to prime
ideals of C[V ]. Hence the dimension of V is equal to the Krull dimension
of its coordinate ring C[V ]. Now by Noether’s normalization lemma below
(proposition 7.8), if V is irreducible, the Krull dimension of C[V ] is equal
to the transcendence degree trdeg[C(V ) : C] of the function field C(V ) of V
over C.

Proposition 7.8 (Noether’s normalization Lemma) Let C be an arbi-
trary field, R a finitely generated integral domain over C with quotient field
F , d = trdeg[F : C]. Then there exist elements y1, . . . , yd ∈ R, algebraically
independent over C such that R is integral over C[y1, . . . , yd].

A subset of a topological space X is called locally closed if it is the inter-
section of an open set with a closed set. A finite union of locally closed sets
is called a constructible set..

Theorem 7.2 (Chevalley theorem) Let ϕ : V → W be a morphism of
varieties. Then ϕ maps constructible sets to constructible sets. In particular,
ϕ(V ) is constructible in W .

We now define the tangent space of an affine variety at a point. If
V is an affine variety in An defined by polynomials f(X1, . . . , Xn), x =
(x1, . . . , xn) a point in V , we define the tangent space to V at the point
x as the linear variety Tan(V )x ⊂ An defined by the vanishing of all dxf =∑n

i=1(∂f/∂Xi)(x)(Xi−xi), for f ∈ I(V ). If Mx is the maximal ideal of C[V ]
consisting of the functions vanishing at x, we have C[V ]/Mx ' C, hence
Mx/M

2
x is a C-vector space. It can be proved that Tan(V )x ' (Mx/M

2
x)
∗,

where ∗ denotes the dual vector space, i.e. (Mx/M
2
x)
∗ = Hom(Mx/M

2
x, C).

Note that the definition of the tangent space as (Mx/M
2
x)
∗ is intrinsic, i.e.

does not depend on an embedding of the affine variety in an ambient space.
For any point x in an affine variety V we have dim Tan(V )x ≥ dim V . We

say that x is a simple point if we have equality. It can be proved that the
subset of simple points of V is dense in V . A variety is called nonsingular if
all its points are simple.

We now state a version of Zariski’s main theorem. For its proof, we refer
the reader to [Sp].
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Theorem 7.3 Let ϕ : X → Y be a morphism of irreducible varieties that is
bijective and birational. Assume Y to be nonsingular. Then ϕ is an isomor-
phism.

We end this appendix with a proposition which will be used in the con-
struction of the quotient of an algebraic group by a subgroup.

Proposition 7.9 Let X and Y be irreducible varieties and let ϕ : X → Y
be a dominant morphism. Let r := dim X − dim Y . There is a nonempty
open subset U of X with the following properties.

a) The restriction of ϕ to U is an open morphism U → Y ;

b) If Y ′ is an irreducible closed subvariety of Y and X ′ an irreducible com-
ponent of ϕ−1(Y ′) that intersects U , then dim X ′ = dim Y ′+ r. In partic-
ular, if y ∈ Y , any irreducible component of ϕ−1y that intersects U has
dimension r;

c) If C(X) is algebraic over C(Y ), then for all x ∈ U the number of points
of the fiber ϕ−1(ϕx) equals [C(X) : C(Y )].

Remark 7.3 In proposition 7.9, a) can be replaced by the following stronger
property:
a’) For any variety Z, the restriction of ϕ to U defines an open morphism
U × Z → Y × Z.
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8 Appendix on algebraic groups

In this appendix, we introduce the notion of algebraic group and develop
some important points in this theory, such as the concept of solvable algebraic
group, the existence of quotients and Lie-Kolchin theorem. Throughout the
appendix, C will denote an algebraically closed field of characteristic 0.

8.1 The notion of algebraic group

Definition 8.1 An algebraic group over C is an algebraic variety G defined
over C, endowed with a structure of group and such that the two maps
µ : G × G → G, where µ(x, y) = xy and ι : G → G, where ι(x) = x−1, are
morphisms of varieties.

Translation by an element y ∈ G, i.e. x 7→ xy is clearly a variety auto-
morphism of G, and therefore all geometric properties at one point of G can
be transferred to any other point, by suitable choice of y. For example, since
G has simple points (see chapter 7), all points must be simple, hence G is
nonsingular.

Examples.
The additive group Ga is the affine line A1 with group law µ(x, y) = x+y,

so ι(x) = −x and e = 0. The multiplicative group Gm is the principal open
set C∗ ⊂ A1 with group law µ(x, y) = xy, so ι(x) = x−1 and e = 1. Each
of these two groups is irreducible, as a variety, and has dimension 1. It can
be proven that they are the only algebraic groups (up to isomorphism) with
these two properties.

The general linear group GL(n,C) is the group of all invertible n × n
matrices with entries in C with matrix multiplication. The set M(n,C) of all
n×n matrices over C may be identified with the affine space of dimension n2

and GL(n,C) with the principal open subset defined by the nonvanishing of
the determinant. Viewed thus as an affine variety, GL(n,C) has a coordinate
ring generated by the restriction of the n2 coordinate functions Xij, together
with 1/ det(Xij). The formulas for matrix multiplication and inversion make
it clear that GL(n, C) is an algebraic group. Notice that GL(1, C) = Gm.

Taking into account that a closed subgroup of an algebraic group is
again an algebraic group, we can construct further examples. We con-
sider the following subgroups of GL(n,C): the special linear group SL(n,C)
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:= {A ∈ GL(n,C) : det A = 1}; the upper triangular group T(n,C) :=
{(aij) ∈ GL(n,C) : aij = 0, i > j}; the upper triangular unipotent group
U(n,C) := {(aij) ∈ GL(n,C) : aii = 1, aij = 0, i > j}; the diagonal group
D(n,C) := {(aij) ∈ GL(n,C) : aij = 0, i 6= j}.

The direct product of two or more algebraic groups, i.e. the usual direct
product of groups endowed with the Zariski topology, is again an algebraic
group. For example D(n,C) may be viewed as the direct product of n copies
of Gm, while affine n-space may be viewed as the direct product of n copies
of Ga.

8.2 Connected algebraic groups

Let G be an algebraic group. We assert that only one irreducible component
of G contains the unit element e. Indeed, let X1, . . . , Xm be the distinct
irreducible components containing e. The image of the irreducible variety
X1×· · ·×Xm under the product morphism is an irreducible subset X1 · · ·Xm

of G which again contains e. So X1 · · ·Xm lies in some Xi. On the other
hand, each of the components X1, . . . , Xm clearly lies in X1 · · ·Xm. Then m
must be 1.

Denote by G0 this unique irreducible component of e and call it the
identity component of G .

Proposition 8.1 Let G be an algebraic group.

a) G0 is a normal subgroup of finite index in G, whose cosets are the con-
nected as well as irreducible components of G.

b) Each closed subgroup of finite index in G contains G0.

c) Every finite conjugacy class of G has at most as many elements as
[G : G0].

Proof. a) For each x ∈ G0, x−1G0 is an irreducible component of G contain-
ing e, so x−1G0 = G0. Therefore G0 = (G0)−1, and further G0G0 = G0, i.e.
G0 is a (closed) subgroup of G. For any x ∈ G, xG0x−1 is also an irreducible
component of G containing e, so xG0x−1 = G0 and G0 is normal. Its (left or
right) cosets are translates of G0, and so must also be irreducible components
of G; as G is a Noetherian space there can only be finitely many of them.
Since they are disjoint, they are also the connected components of G.

53



b) If H is a closed subgroup of finite index in G, then each of its finitely
many cosets is also closed. The union of those cosets distinct from H is also
closed and then, H is open. Therefore the left cosets of H give a partition of
G0 into a finite union of open sets. Since G0 is connected and meets H, we
get G0 ⊂ H.
c) Write n = [G : G0] and assume that there exists an element x ∈ G with a
finite conjugacy class having a number of elements exceeding n. The mapping
from G to G defined by a 7→ axa−1 is continuous. The inverse image of each
conjugate of x is closed and, as there are finitely many of them, also open.
This yields a decomposition of G into more than n open and closed sets, a
contradiction. 2

We shall call an algebraic group G connected when G = G0. As is usual in
the theory of linear algebraic groups, we shall reserve the word ”irreducible”
for group representations.

The additive group Ga(C) and the multiplicative group Gm(C) are con-
nected groups. The group GL(n,C) is connected as it is a principal open set
in the affine space of dimension n2. The next proposition will allow us to
deduce the connectedness of some other algebraic groups. We first establish
the following lemma.

Lemma 8.1 Let U, V be two dense open subsets of an algebraic group G.
Then G = U · V .

Proof. Since inversion is a homeomorphism, V −1 is again a dense open set.
So is its translate xV −1, for any given x ∈ G. Therefore, U must meet xV −1,
forcing x ∈ U · V . 2

For an arbitrary subset M of an algebraic group G, we define the group
closure GC(M) of M as the intersection of all closed subgroups of G con-
taining M .

Proposition 8.2 Let G be an algebraic group, fi : Xi → G, i ∈ I, a family
of morphisms from irreducible varieties Xi to G, such that e ∈ Yi = fi(Xi)
for each i ∈ I. Set M = ∪i∈IYi. Then

a) GC(M) is a connected subgroup of G.

b) For some finite sequence a = (a1, . . . , an) in I, GC(M) = Y e1
a1

. . . Y en
an

,
ei = ±1.
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Proof. We can if necessary enlarge I to include the morphisms x 7→ fi(x)−1

from Xi to G. For each finite sequence a = (a1, . . . , an) in I, set Ya :=
Ya1 . . . Yan . The set Ya is constructible, as it is the image of the irreducible
variety Xa1×· · ·×Xan under the morphism fa1×· · ·×fan composed with mul-
tiplication in G, and moreover Y a is an irreducible variety passing through
e. Given two finite sequences b, c in I, we have Y bY c ⊂ Y (b,c), where (b, c)
is the sequence obtained from b and c by juxtaposition. Indeed, for x ∈ Yc,
the map y 7→ yx sends Yb into Y(b,c), hence by continuity Y b into Y (b,c), i.e.
Y bYc ⊂ Y (b,c). In turn, x ∈ Y b send Yc into Y (b,c), hence Y c as well. Let us
now take a sequence a for which Y a is maximal. For each finite sequence b,
we have Y a ⊂ Y aY b ⊂ Y (a,b) = Y a. Setting b = a, we have Y a stable under
multiplication. Choosing b such that Yb = Y −1

a , we also have Y a stable under
inversion. We have then that Y a is a closed subgroup of G containing all Yi

so Y a = GC(M), proving a).
Since Ya is constructible, lemma 8.1 shows that Y a = Ya · Ya = Y(a,a), so

the sequence (a, a) satisfies b). 2

Corollary 8.1 Let G be an algebraic group, Yi, i ∈ I, a family of closed
connected subgroups of G which generate G as an abstract group. Then G is
connected. 2

Corollary 8.2 The algebraic groups SL(n,C), U(n,C), D(n,C), T(n,C)
(see section 8.1) are connected.

Proof. Let Uij be the group of all matrices with 1’s on the diagonal, arbitrary
entry in the (i, j) position and 0’s elsewhere, for 1 ≤ i, j ≤ n, i 6= j. Then
the Uij are isomorphic to Ga(C), and so connected, and generate SL(n,C).
Hence by corollary 8.1, SL(n, C) is connected. The Uij with i < j generate
U(n,C), whence U(n,C) is connected.

The group D(n,C) is the direct product of n copies of Gm(C), whence
connected. Finally, T(n,C) is generated by U(n,C) and D(n,C), whence is
also connected. 2

8.3 Subgroups and morphisms

Proposition 8.3 Let H be a subgroup of an algebraic group G, H its closure.

a) H is a subgroup of G.

55



b) If H is constructible, then H = H.

Proof. a) Inversion being a homeomorphism, it is clear that H −1 = H−1 =
H. Similarly, translation by x ∈ H is a homeomorphism, so x H = xH = H,
i.e. HH ⊂ H. In turn, if x ∈ H, Hx ⊂ H, so H x = Hx ⊂ H. This says
that H is a group.
b) If H is constructible, it contains a dense open subset U of H. Since H is
a group, by part a), lemma 8.1 shows that H = U · U ⊂ H ·H = H. 2

For a subgroup H of a group G we define the normalizer NG(H) of H in
G as

NG(H) = {x ∈ G : xHx−1 = H}.
If a subgroup H ′ of G is contained in NG(H), we say that H ′ normalizes H.

Proposition 8.4 Let A, B be closed subgroups of an algebraic group G. If
B normalizes A, then AB is a closed subgroup of G.

Proof. Since B ⊂ NG(A), AB is a subgroup of G. Now AB is the image of
A × B under the product morphism G × G → G; hence it is constructible,
and therefore closed by proposition 8.3 b). 2

By definition a morphism of algebraic groups is a group homomorphism
which is also a morphism of algebraic varieties.

Proposition 8.5 Let ϕ : G → G′ be a morphism of algebraic groups. Then

a) Ker ϕ is a closed subgroup of G.

b) Im ϕ is a closed subgroup of G′.

c) ϕ(G0) = ϕ(G)0

Proof. a) ϕ is continuous and Ker ϕ is the inverse image of the closed set {e}.
b) ϕ(G) is a subgroup of G′. It is also a constructible subset of G′, by theorem
7.2 , so it is closed by proposition 8.3 b).
c) ϕ(G0) is closed by b) and connected; hence it lies in ϕ(G)0. As it has
finite index in ϕ(G), it must be equal to ϕ(G)0, by proposition 8.1b). 2
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8.4 Linearization of affine algebraic groups

We have seen that any closed subgroup of GL(n,C) is an affine algebraic
group. We shall see now that the converse is also true.

Let G be an algebraic group, V an affine variety. We say that V is a
G-variety if the algebraic group G acts on the affine variety V , i.e. we have
a morphism of algebraic varieties

G× V → V
(g, v) 7→ g.v

satisfying g1.(g2.v) = (g1g2).v, for any g1, g2 in G, v in V , and e.v = v, for
any v ∈ V .

Let V, W be G-varieties. A morphism ϕ : V → W is a G-morphism, or is
said to be equivariant if ϕ(g.v) = g.ϕ(v), for g ∈ G, v ∈ V .

The action of G over V induces an action of G on the coordinate ring
C[V ] of V defined by

G× C[V ] → C[V ]
(g, f) 7→ g.f : v 7→ f(g−1.v)

In particular, we can consider two different actions of G on its coordinate
ring C[G] associated to the action of G on itself by left or right translations.
To the action of G on itself by left translations defined by

G×G → G
(g, h) 7→ gh

corresponds the action

G× C[G] → C[G]
(g, f) 7→ λg(f) : h 7→ f(g−1h)

To the action of G on itself by right translations defined by

G×G → G
(g, h) 7→ hg−1

corresponds the action

G× C[G] → C[G]
(g, f) 7→ ρg(f) : h 7→ f(hg)
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We can use right translations to characterize membership in a closed
subgroup:

Lemma 8.2 Let H be a closed subgroup of an algebraic group G, I the ideal
of C[G] vanishing on H. Then H = {g ∈ G : ρg(I) ⊂ I}.
Proof. Let g ∈ H. If f ∈ I, ρg(f)(h) = f(hg) = 0 for all h ∈ H, hence
ρg(f) ∈ I, i.e. ρg(I) ⊂ I. Assume now ρg(I) ⊂ I. In particular, if f ∈ I,
then ρg(f) vanishes at e ∈ H, then f(g) = f(eg) = ρg(f)(e) = 0, so g ∈ H.
2

Lemma 8.3 Let G be an algebraic group and V an affine variety both defined
over an algebraically closed field C. Assume that G acts on V and let F be
a finite dimensional subspace of the coordinate ring C[V ] of V .

a) There exists a finite dimensional subspace E of C[V ] including F which
is stable under the action of G.

b) F itself is stable under the action of G if and only if ϕ∗F ⊂ C[G]⊗C F ,
where ϕ : G× V → V is given by ϕ(g, x) = g−1.x

Proof. a) If we prove the result in the case in which F has dimension 1, we
can obtain it for a finite dimensional F by summing up the subspaces E corre-
sponding to the subspaces of F generated by one vector of a chosen basis of F .
So we may assume that F =< f > for some f ∈ C[V ]. Let ϕ : G× V → V
be the morphism giving the action of G on V , ϕ∗ : C[V ] → C[G × V ]
= C[G] ⊗ C[V ] the corresponding morphism between coordinate rings. Let
us write ϕ∗f =

∑
gi ⊗ fi ∈ C[G] ⊗ C[V ] (note that this expression is not

unique). For g ∈ G, x ∈ V , we have (g.f)(x) = f(g−1.x) = f(ϕ(g−1, x)) =
(ϕ∗f)(g−1, x) =

∑
gi(g

−1)fi(x) and then g.f =
∑

gi(g
−1)fi. So every trans-

late g.f of f is contained in the finite dimensional C-vector space of C[V ]
generated by the functions fi. So E = 〈g.f | g ∈ G〉 is a finite-dimensional
G-stable vector space containing f .
b) If ϕ∗F ⊂ C[G]⊗C F , then the proof of a) shows that the functions fi can
be taken to lie in F , i.e. F is stable under the action of G. Conversely, let
F be stable under the action of G and extend a vector space basis {fi} of F
to a basis {fi} ∪ {hj} of C[V ]. If ϕ∗f =

∑
ri⊗ fi +

∑
sj ⊗ hj, for g ∈ G, we

have g.f =
∑

ri(g
−1)fi +

∑
sj(g

−1)hj. Since this element belongs to F , the
functions sj must vanish identically on G, hence must be 0. We then have
ϕ∗F ⊂ C[G]⊗C F . 2
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Theorem 8.1 Let G be an affine algebraic group. Then G is isomorphic to
a closed subgroup of some GL(n,C).

Proof. Choose generators f1, . . . , fn for the coordinate algebra C[G]. By
applying lemma 8.3 a), we can assume that the fi are a C-basis of a C-
vector space F which is G-stable when considering the action of G by right
translations. If ϕ : G × G → G is given by (g, h) 7→ hg, by lemma 8.3 b),
we can write ϕ∗fi =

∑
j mij ⊗ fj, where mij ∈ C[G]. Then ρg(fi)(h) =

fi(hg) =
∑

j mij(g)⊗fj(h), whence ρg(fi) =
∑

j mij(g)⊗fj. In other words,
the matrix of ρg|F in the basis {fi} is (mij(g)). This shows that the map
ψ : G → GL(n, C) defined by g 7→ (mij(g)) is a morphism of algebraic
groups.

Notice that fi(g) = fi(eg) =
∑

mij(g)fj(e), i.e. fi =
∑

fj(e)mij. This
shows that the mij also generate C[G]; in particular, ψ is injective. Moreover
the image group G′ = ψ(G) is closed in GL(n,C) by proposition 8.5 b). To
complete the proof we therefore only need to show that ψ : G → G′ is an
isomorphism of varieties. But the restriction to G′ of the coordinate functions
Xij are sent by ψ∗ to the respective mij, which were just shown to generate
C[G]. So ψ∗ is surjective, and thus identifies C[G′] with C[G]. 2

8.5 Homogeneous spaces

Let G be an algebraic group. A homogeneous space for G is a G-variety V on
which G acts transitively. An example of homogeneous space for G is V = G
with the action given by left or right translations introduced in section 8.4.

Lemma 8.4 Let V be a G-variety.

a) For v ∈ V , the orbit G.v is open in its closure.

b) There exist closed orbits.

Proof. By applying proposition 7.5 to the morphism G → V , g 7→ g.v, we
obtain that G.v contains a nonempty open subset U of its closure. Since G.v
is the union of the open sets g.U, g ∈ G, assertion a) follows. It implies that
for v ∈ V , the set Sv = G.v \G.v is closed. It is also G-stable, hence a union
of orbits. As the descending chain condition on closed sets is satisfied, there
is a minimal set Sv. By a), it must be empty. Hence the orbit G.v is closed,
proving b). 2
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Lemma 8.5 Let G be an algebraic group and G0 its identity component. Let
V be a homogeneous space for G.

a) Each irreducible component of V is a homogeneous space for G0.

b) The components of V are open and closed and V is their disjoint union.

Proof. Let V ′ be the orbit of G0 in V . Since G acts transitively on V , it
follows from proposition 8.1 that V is the disjoint union of finitely many
translates g.V ′. Each of them is a G0-orbit and is irreducible. It follows from
lemma 8.4 that all G0-orbits are closed. Now a) and b) readily follow. 2

Proposition 8.6 Let G be an algebraic group and let ϕ : V → W be an
equivariant morphism of homogeneous spaces for G. Put r = dim V −dim W .

a) For any variety Z the morphism (ϕ, Id) : V × Z → W × Z is open.

b) If W ′ is an irreducible closed subvariety of W and V ′ an irreducible com-
ponent of ϕ−1W ′, then dim V ′ = dim W ′ + r. In particular, if y ∈ W ,
then all irreducible components of ϕ−1y have dimension r.

Proof. Using lemma 8.5, we reduce the proof to the case when G is connected
and V, W are irreducible. Then ϕ is surjective, hence dominant. Let U ∈ V
be an open subset with the properties of proposition 7.9 and remark 7.3.
Then all translates g.U enjoy the same properties. Since these cover V , we
have a) and b). 2

8.6 Decomposition of algebraic groups

Let x ∈ End V , for V a finite dimensional vector space over C. Then x is
nilpotent if xn = 0 for some n (equivalently if 0 is the only eigenvalue of x).
At the other extreme, x is called semisimple if the minimal polynomial of x
has distinct roots (equivalently if x is diagonalizable over C). If x ∈ End V ,
by Jordan decomposition, we obtain

Lemma 8.6 Let x ∈ End V .

a) There exist unique xs, xn ∈ End V such that xs is semisimple, xn is nilpo-
tent and x = xs + xn.
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b) There exist polynomials P (T ), Q(T ) ∈ C[T ], without constant term such
that xs = P (x), xn = Q(x). In particular xs and xn commute with any
endomorphism of V which commutes with x.

c) If W1 ⊂ W2 are subspaces of V , and x maps W2 into W1, then so do xs

and xn.

d) Let y ∈ End V . If xy = yx, then (x+y)s = xs +ys and (x+y)n = xn +yn.
2

If x ∈ GL(V ), its eigenvalues are nonzero, and so xs is also invertible.
We can write xu = 1 + x−1

s xn and then we obtain x = xs + xn = xs(1 +
x−1

s xn) = xs · xu. We call an element in GL(V ) unipotent if it is the sum
of the identity and a nilpotent endomorphism or, equivalently, if 1 is its
unique eigenvalue. For x ∈ GL(V ), the decomposition x = xs · xu, with
xs semisimple, xu unipotent, is unique. Clearly the only element in GL(V )
which is both semisimple and unipotent is identity. From lemma 8.6, we
obtain

Lemma 8.7 Let x ∈ GL(V ).

a) There exist unique xs, xu ∈ GL(V ) such that xs is semisimple, xu is unipo-
tent, x = xsxu and xsxu = xuxs.

b) xs and xu commute with any endomorphism of V which commutes with x.

c) If W is a subspace of V stable under x, then W is stable under xs and xu.

d) Let y ∈ GL(V ). If xy = yx, then (xy)s = xsys and (xy)u = xuyu. 2

If G is a linear algebraic group, we consider the subsets

Gs = {x ∈ G : x = xs} and Gu = {x ∈ G : x = xu}.

Let us denote by T (n,C) (resp. D(n,C)) the ring of all upper triangular
(resp. all diagonal) matrices in M(n,C). A subset M of M(n,C) is said to
be triangularizable (resp. diagonalizable) if there exists x ∈ GL(n,C) such
that xMx−1 ⊂ T (n,C) (resp. D(n,C)).
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Lemma 8.8 If M ⊂ M(n,C) is a commuting set of matrices, then M is
triangularizable. If M has a subset N consisting of diagonalizable matrices,
N can be diagonalized at the same time.

Proof. Let V = Cn and proceed by induction on n. If x ∈ M, λ ∈ C, the
subspace W = Ker(x − λI) is evidently stable under the endomorphisms of
V which commute with x, hence it is stable under M . Unless M consists of
scalar matrices (then we are done), it is possible to choose x and λ such that
0 6= W 6= V . By induction, there exists a nonzero v1 ∈ W such that Cv1 is
M -stable. Applying the induction hypothesis next to the induced action of
M on V/Cv1, we obtain v2, . . . vn ∈ V completing the basis for V , such that
M stabilizes each subspace Cv1 + · · ·+Cvi (1 ≤ i ≤ n). The transition from
the canonical basis of V to (v1, . . . vn) therefore triangularizes M .

Now if N does not already consist of scalar matrices, we can choose x
above to lie in N . Since x is diagonalizable, V = W ⊕W ′, where the sum
W ′ of remaining eigenspaces of x is nonzero. As before, both W and W ′ are
M -stable. The induction hypothesis allows us to choose basis of W and W ′

which triangularize M while simultaneously diagonalizing N . 2

Theorem 8.2 Let G be a commutative linear algebraic group. Then Gs, Gu

are closed subgroups, connected if G is connected, and the product map
ϕ : Gs ×Gu → G is an isomorphism of algebraic groups.

Proof. As G is commutative, by lemma 8.7 d), Gs and Gu are subgroups
of G. The subset Gu is closed since the subset of all unipotent matrices x in
GL(V ) can be defined as the zero set of the polynomials implied by (x−1)n =
0. As G is commutative, by lemma 8.7 a), ϕ is a group isomorphism. By
lemma 8.8, we may assume that G ⊂ T(n,C) and Gs ⊂ D(n,C). This
forces Gs = G ∩D(n,C), so Gs is also closed. Moreover, ϕ is a morphism of
algebraic groups.

It has to be shown that the inverse map is a morphism of algebraic groups.
To this end, it suffices to show that x 7→ xs and x 7→ xu are morphisms.
Since, xu = x−1

s x, if the first map is a morphism, the second will also be.
Now, if x ∈ G, xs is the diagonal part of x, hence x 7→ xs is a morphism.
Furthermore, if G is connected, so are Gs and Gu since there are morphic
images of G. 2
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8.7 Solvable algebraic groups

For a group G, we denote by [x, y] the commutator xyx−1y−1 of two elements
x, y ∈ G. If A and B are two subgroups of G we denote by [A,B] the subgroup
generated by all commutators [a, b] with a ∈ A, b ∈ B. The identity

(4) z[x, y]z−1 = [zxz−1, zyz−1]

shows that [A,B] is normal in G if both A and B are normal in G.
We denote by Z(G) the center of a group G, i.e.

Z(G) = {x ∈ G : xy = yx , ∀y ∈ G}.

Lemma 8.9 a) If the index [G : Z(G)] is finite, then [G,G] is finite.

b) Let A,B be normal subgroups of G, and suppose the set S = {[x, y] : x ∈
A, y ∈ B} is finite. Then [A,B] is finite.

Proof. a) Let n = [G : Z(G)] and let S be the set of all commutators in
G. Then S generates [G,G]. For x, y ∈ G, it is clear that [x, y] depends
only on the cosets of x, y modulo Z(G); in particular, Card S ≤ n2. Given a
product of commutators, any two of them can be made adjacent by suitable
conjugation, e.g. [x1, y1][x2, y2][x3, y3] = [x1, y1][x3, y3][z

−1x2z, z
−1y2z], where

z = [x3, y3]. Therefore, it is enough to show that the (n + 1)th power of an
element of S is the product of n elements of S, in order to conclude that
each element of [G,G] is the product of at most n3 factors from S. This in
turn will force [G,G] to be finite. Now [x, y]n ∈ Z(G) and so we can write
[x, y]n+1 = y−1[x, y]ny[x, y] = y−1[x, y]n−1[x, y2]y, and the last expression can
be written as a product of n commutators by using identity (4).
b) We can assume that G = AB. Taking into account identity (4), we
see that G acts on S by inner automorphisms. If H is the kernel of the
resulting morphism from G in the group Sym(S) of permutations of S, then
clearly, H is a normal subgroup of finite index in G. Moreover, H centralizes
C = [A,B]. It follows that H ∩ C is central in C and of finite index. By a),
[C, C] is finite (as well as normal in G, since C ¢ G). So we can replace G
by G/[C, C], i.e. we can assume that C is abelian.

Now the commutators [x, y], x ∈ A, y ∈ C, lie in S and commute with
each other. As C is abelian and normal in G, [x, y]2 = (xyx−1)2y−2 = [x, y2]
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is another such commutator. This clearly forces [A,C] to be finite (as well
as normal in G). Replacing G by G/[A,C], we may further assume that A
centralizes C. This implies that the square of an arbitrary commutator is
again a commutator. It follows that [A,B] is finite. 2

Proposition 8.7 Let A,B be closed subgroups of an algebraic group G.

a) If A is connected, then [A,B] is closed and connected. In particular, [G,G]
is connected if G is.

b) If A and B are normal in G, then [A,B] is closed (and normal) in G. In
particular, [G,G] is always closed.

Proof. a) For each b ∈ B, we can define the morphism ϕb : A → G, a 7→ [a, b].
Since A is connected and ϕb(e) = e, by proposition 8.2, the group generated
by all ϕb(A), b ∈ B is closed and connected and this is exactly [A,B].
b) It follows from part a) that [A0, B] and [A,B0] are closed, connected (as
well as normal) subgroups of G, so by proposition 8.4 their product C is
a closed normal subgroup of G. To show that [A,B] is closed, it therefore
suffices to show that C has finite index in [A,B], which is a purely group-
theoretic question. In the abstract group G/C, the image of A0 (resp. B0)
centralizes the image of B (resp. A). Since the indices [A : A0] and [B : B0]
are finite, this implies that there are only finitely many commutators in G/C
constructible from the images of A and B. Lemma 8.9 b) then guarantees
that [A,B]/C is finite. 2

For an abstract group G, we define the derived series DiG inductively by

D0G = G , Di+1G = [DiG,DiG], i ≥ 0.

We say that G is solvable if its derived series terminates in e.
If G is an algebraic group, D1G = [G,G] is a closed normal subgroup of

G, connected if G is, by proposition 8.7. By induction the same holds true for
all DiG. If G is a connected solvable algebraic group of positive dimension,
we have dim[G,G] < dim G.

It is easy to see that an algebraic group G is solvable if and only if there
exists a chain of closed subgroups G = G0 ⊃ G1 ⊃ · · · ⊃ Gn = e such that
Gi ¢ Gi−1 and Gi−1/Gi is abelian, for i = 1, . . . , n.

The following results from group theory are well known.
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Proposition 8.8 a) Subgroups and homomorphic images of a solvable group
are solvable.

b) If N is a normal solvable group of G for which G/N is solvable, then G
itself is solvable.

c) If A and B are normal solvable subgroups of G, so is AB. 2

The following lemma is used in the characterization of Liouville exten-
sions.

Lemma 8.10 Let G be an algebraic group, H a closed subgroup of G. Sup-
pose that H is normal in G and G/H is abelian. Suppose further that the
identity component H0 of H is solvable. Then the identity component G0 of
G is solvable.

Proof. We have [G,G] ⊂ H, whence [G0, G0] ⊂ H. By proposition 8.7,
[G0, G0] is connected. Hence [G0, G0] ⊂ H0. By hypothesis H0 is solvable,
whence [G0, G0] is solvable and then G0 is solvable. 2

Example 8.1 We consider the groups T(n,C) and U(n,C). We know by
corollary 8.2 that they are connected. We shall now see that they are solvable.
Write T = T(n,C), U = U(n,C). First, since the diagonal entries in the
product of two upper triangular matrices are just the respective products of
diagonal entries it is clear that [T, T ] ⊂ U . Now we know that U is generated
by the subgroups Uij with i < j, each of them isomorphic to Ga (see the proof
of corollary 8.2). By proposition 8.7, we have that [D,Uij] ⊂ Uij is closed and
connected, and clearly this group is nontrivial. Then Uij ⊂ [D, Uij] ⊂ [T, T ].
We have then proved [T, T ] = U .

Now we want to prove that U is solvable. This will imply that T is
solvable as well. Let us denote by T the full set of upper triangular matrices
viewed as a ring. The subset N of matrices with 0 diagonal is a 2-sided
ideal of T . So each ideal power N h is again a two-sided ideal. For an
element u ∈ U , such that u = 1 + a, with a ∈ N , we have (1 + a)−1 =
1 − a + a2 − a3 + · · · + (−1)n−1an−1. If we set Uh = 1 + N h, we obtain
[Uh, Ul] ⊂ Uh+l. In particular, U is solvable.

The next theorem establishes that the connected solvable subgroups of
GL(n,C) are exactly the conjugate subgroups of T(n,C).
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Theorem 8.3 (Lie-Kolchin) Let G be a connected solvable subgroup of
GL(n,C), n ≥ 1. Then G is triangularizable.

Proof. Let V = Cn. Let us assume first that G is reducible, i.e. that V
admits a nontrivial invariant subspace W . If a basis of W is extended to a
basis of V , the matrices representing G have the form

(
ϕ(x) ∗

0 ψ(x)

)
.

The morphism x 7→ ϕ(x) is a morphism of algebraic groups. As G is con-
nected, ϕ(G) ⊂ GL(W ) is also connected as well as solvable (proposition 8.8
a)). By induction on n, ϕ(G) can be triangularized. Analogously, we obtain
that ψ(G) can be triangularized as well. We then obtain the triangularization
for G itself. We may then assume that G is irreducible.

By proposition 8.7, the commutator subgroup [G,G] of G is connected,
so by induction on the length of the derived series, we can assume that [G,G]
is in triangular form.

Let V1 be the subspace of V generated by all common eigenvectors of
[G, G]. We have V1 6= 0, since the triangular form of [G,G] yields at least
one common eigenvector. Now, for each x ∈ G, y ∈ [G,G], we have x−1yx ∈
[G, G], hence for each v ∈ V1, (x−1yx)(v) = λv, for some λ ∈ C, equivalently
y(xv) = λxv. So, V1 is G-stable. Since G is irreducible, V1 = W , which
means that [G,G] is in diagonal form.

Now, any element in [G, G] is a diagonal matrix. Its conjugates in G are
again in [G,G], hence also diagonal. The only possible conjugates are then
obtained by permuting the eigenvalues. Hence each element in [G,G] has a
finite conjugacy class. By proposition 8.1c), [G,G] lies in the center of G.

Assume that there is a matrix y ∈ [G,G] which is not a scalar. Let λ be
an eigenvalue of y, and W the corresponding eigenspace. Since y commute
with all elements in G, W is G-invariant, hence W = V , y = λ · 1.

Since [G,G] is the commutator subgroup of G, its elements have deter-
minant 1. Hence the diagonal entries must be n-th roots of unity. There
are only a finite number of these, so [G,G] is finite. But by proposition 8.7,
[G, G] is connected, then [G,G] = 1, which means that G is commutative.
The result then follows from lemma 8.8. 2
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8.8 Characters and semi-invariants

Definition 8.2 A character of an algebraic group G is a morphism of alge-
braic groups G → Gm.

For example, the determinant defines a character of GL(n,C). If χ1, χ2

are characters of an algebraic group G, so is their product defined by (χ1χ2)(g)
= χ1(g)χ2(g). This product gives the set X(G) of all characters of G the
structure of a commutative group.

Examples.
1. A morphism χ : Ga → Gm would be given by a polynomial χ(x) satisfying
χ(x + y) = χ(x)χ(y). We obtain then X(Ga) = 1.
2. Given a character χ of SL(n,C), by composition with the morphism
Ga → SL(n,C), x 7→ I + xeij, where we denote by eij the matrix with
entry 1 in the position (i, j) and 0’s elsewhere, we obtain a character of Ga.
As the subgroups Uij = {I + xeij : x ∈ C} generate SL(n,C), we obtain
X(SL(n,C)) = 1.
3. A character of Gm is defined by x 7→ xn, for some n ∈ Z, hence X(Gm) '
Z. As D(n,C) ' Gm × · · · ×Gm, we obtain X(D(n,C)) ' Z× · · · × Z.

If G is a closed subgroup of GL(V ), for each χ ∈ X(G), we define Vχ =
{v ∈ V : g.v = χ(g)v for all g ∈ G}. Evidently Vχ is a G-stable subspace of
V . Any nonzero element of Vχ is called a semi-invariant of G of weight χ.
Conversely if v is any nonzero vector which spans a G-stable line in V , then
it is clear that g.v = χ(g)v defines a character χ of G.

More generally, if ϕ : G → GL(V ) is a rational representation, then the
semi-invariants of G are by definition those of ϕ(G).

Lemma 8.11 Let ϕ : G → GL(V ) be a rational representation. Then the
subspaces Vχ, χ ∈ X(G), are in direct sum; in particular, only finitely many
of them are nonzero.

Proof. Otherwise, we could choose minimal n ≥ 2 and nonzero vectors
vi ∈ Vχi

, for distinct χi, 1 ≤ i ≤ n, such that v1 + · · ·+ vn = 0. Since the χi

are distinct, χ1(g) 6= χ2(g) for some g ∈ G. But 0 = ϕ(g)(
∑

vi) =
∑

χi(g)vi,
so

∑
χ1(g)−1χi(g)vi = 0. The coefficient of v2 is different from 1; so we can

subtract this equation from the equation
∑

vi = 0 to obtain a nontrivial
dependence involving ≤ n− 1 characters, contradicting the choice of n. 2
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We assume now that H is a closed normal subgroup of G and consider
the spaces Vχ for χ ∈ X(H). We claim that each element of ϕ(G) maps Vχ

in some Vχ′ . To prove this claim, we can assume that G ⊂ GL(V ). If g ∈
G, h ∈ H, v ∈ Vχ, then h.(g.v) = (hg).v = g(g−1hg).v = g.(χ(g−1hg).v) =
χ(g−1hg)g.v and the function h 7→ χ(g−1hg) is clearly a character χ′ of H,
so g maps Vχ into Vχ′ .

8.9 Quotients

The aim of this section is to prove that if G is an algebraic group and H
a closed normal subgroup of G, then the quotient G/H has the natural
structure of an algebraic group, with coordinate ring C[G/H] ' C[G]H .

If V is a finite dimensional C-vector space, then GL(V ) acts on exterior
powers of V by g.(v1 ∧ · · · ∧ vk) = g.v1 ∧ · · · ∧ g.vk. If M is a d-dimensional
subspace of V , it is especially useful to look at the action on L = ∧dM , which
is a 1-dimensional subspace of ∧dV .

Lemma 8.12 For g ∈ GL(V ), we have (∧dg)(L) = L if and only if gM =
M .

Proof. The ”if” part is clear. For the other implication, we can choose a
basis v1, . . . , vn in V such that v1, . . . , vd is a basis of M , and, for some l ≥ 0,
vl+1, . . . , vl+d is a basis of gM . By hypothesis (∧dg)(v1∧· · ·∧vd) is a multiple
of v1 ∧ · · · ∧ vd but, on the other hand, it is a multiple of vl+1 ∧ · · · ∧ vl+d

forcing l = 0. 2

Proposition 8.9 Let G be an algebraic group, H a closed subgroup of G.
Then there is a rational representation ϕ : G → GL(V ) and a 1-dimensional
subspace L of V such that H = {g ∈ G : ϕ(g)L = L}
Proof. Let I be the ideal in C[G] vanishing on H. It is a finitely generated
ideal. By lemma 8.3, there exists a finite dimensional subspace W of C[G],
stable under all ρg, g ∈ G, which contains a given finite generating set of
I. Set M = W ∩ I, so M generates I. Notice that M is stable under all
ρg, g ∈ H, since by lemma 8.2, H = {g ∈ G : ρgI = I}. We claim that
H = {g ∈ G : ρgM = M}. Assume that we have ρgM = M . As M generates
I, we have ρgI = I, hence g ∈ H.

Now take V = ∧dW,L = ∧dM , for d = dim M . By lemma 8.12, we have
the desired characterization of H. 2
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Theorem 8.4 Let G be an algebraic group, H a closed normal subgroup
of G. Then there is a rational representation ψ : G → GL(W ) such that
H = Ker ψ.

Proof. By proposition 8.9, there exists a morphism ϕ : G → GL(V ) and
a line L such that H = {g ∈ G : ϕ(g)L = L}. Since each element in H
acts on L by scalar multiplication, this action has an associated character
χ0 : H → C. Consider the sum in V of all nonzero Vχ for all characters χ of
H. By lemma 8.11, this sum is direct and of course includes L. Moreover,
we saw in the last paragraph in section 8.8 that ϕ(G) permutes the various
Vχ since H is normal in G. So we can assume that V itself is the sum of the
Vχ.

Now let W be the subspace of End V consisting of those endomorphisms
which stabilize each Vχ, χ ∈ X(H). There is a natural isomorphism W '
⊕End Vχ. Now GL(V ) acts on End V by conjugation. Notice that the sub-
group ϕ(G) stabilizes W , since ϕ(G) permutes the Vχ and W stabilizes each
of them. We then obtain a group morphism ψ : G → GL(W ) given by
ψ(g)(h) = ϕ(g)|W hϕ(g)−1

|W ; so ψ is a rational representation. Let us check

now H = Ker ψ. If g ∈ H, then ϕ(g) acts as a scalar on each Vχ, so conju-
gating by ϕ(g) has no effect on W , hence g ∈ Ker ψ. Conversely, let g ∈ G,
ψ(g) = I. This means that ϕ(g) stabilizes each Vχ and commutes with
End Vχ. But the center of End Vχ is the set of scalars, so ϕ(g) acts on each
Vχ as a scalar. In particular, ϕ(g) stabilizes L ⊂ Vχ0 , forcing g ∈ H. 2

Corollary 8.3 The quotient G/H can be given a structure of linear algebraic
group endowed with an epimorphism π : G → G/H.

Proof. We consider the representation ψ : G → GL(W ) with kernel H
given by theorem 8.4 and its image Y = Im ψ. By theorem 7.2, Y is a
constructible set and, as it is a subgroup of GL(W ), by proposition 8.3, it
is a closed subgroup of GL(W ). We have a group isomorphism G/H ' Y ,
hence we can translate the linear algebraic group structure of Y to G/H.
Moreover ψ induces an epimorphism of algebraic groups π : G → G/H. 2

Definition 8.3 Let G be an algebraic group, H a closed subgroup of G.
A Chevalley quotient of G by H is a variety X together with a surjective
morphism π : G → X such that the fibers of π are exactly the cosets of H
in G.
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In corollary 8.3, we have established that there exists a Chevalley quotient
of an algebraic group G by a closed normal subgroup H. However it is not
clear if Chevalley quotients are unique up to isomorphism.

Definition 8.4 Let G be an algebraic group, H a closed subgroup of G.
A categorical quotient of G by H is a variety X together with a morphism
π : G → X that is constant on all cosets of H in G with the following
universal property: given any other variety Y and a morphism ϕ : G → Y
that is constant on all cosets of H in G there is a unique morphism ϕ : X → Y
such that ϕ = ϕ ◦ π.

It is clear that categorical quotients are unique up to unique isomorphism.
Our aim is to prove that Chevalley quotients are categorical quotients. We
then will have a quotient of G by H defined uniquely up to isomorphism and
satisfying the universal property.

Theorem 8.5 Chevalley quotients are categorical quotients.

Proof. First we construct a categorical quotient in the category of geometric
spaces. Define G/H to be the set of cosets of H in G. Let π : G → G/H
be the map defined by x 7→ xH. Give G/H the structure of topological
space by defining U ⊂ G/H to be open if and only if π−1(U) is open in G.
Next define a sheaf O = OG/H of C-valued functions on G/H as follows: if
U ⊂ G/H is open, then O(U) is the ring of functions f on U such that f ◦ π
is regular on π−1(U) (this defines indeed a sheaf of functions). In order to
check the universal property, let ψ : G → Y be a morphism of geometric
spaces constant on the cosets of H in G. We get the induced map of sets
ψ : G/H → Y , xH 7→ ψ(x), satisfying clearly ψ = ψ ◦ π. We prove that
ψ is a morphism of geometric spaces. To check continuity, take an open
subset V ⊂ Y and note that U := ψ −1(V ) is open in G/H, by the definition
of the topology in G/H and the continuity of ψ. Finally, for f ∈ OY (U),
ψ ∗(f) ∈ OG/H , because π∗(ψ ∗(f)) ∈ OG(ψ−1(V )).

Now we take (G/H, π) as above and let (X, ψ) be a Chevalley quo-
tient. Using the universal property established above, we get a unique G-
equivariant morphism ψ : G/H → X such that ψ = ψ ◦ π. We will prove
that ψ is an isomorphism of geometric spaces, which will imply that G/H is
a variety and that X is a categorical quotient.

By lemma 8.5, we can assume that G is a connected algebraic group.
First of all, it is clear that ψ is a continuous bijection. If U ⊂ G/H is open,
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then ψ(U) = ψ(π−1(U)) and by proposition 8.6 a), it follows that ψ(U) is
open, which implies that ψ is a homeomorphism.

In order to prove that ψ is an isomorphism, the following has to be estab-
lished: If U is a principal open set in X, the homomorphism of C-algebras
OX(U) → OG/H(ψ −1(U)) defined by ψ ∗ is an isomorphism. By definition
of OG/H this means that, for any regular function f on V = ψ−1(U) such
that f(gh) = f(g), ∀g ∈ V, h ∈ H, there is a unique regular function F on
U such that F (ψ(g)) = f(g). Let Γ = {(g, f(g)) : g ∈ V } ⊂ V × A1 be
the graph of f and put Γ′ = (ψ, Id)(Γ), so Γ′ ⊂ U × A1. Since Γ is closed
in V × A1, proposition 8.6 a) shows that (ψ, Id)(V × A1 \ Γ) = U × A1 \ Γ
is open in U × A1. Hence Γ′ is closed in U × A1. Let λ : Γ′ → U be the
morphism induced by the projection on the first component. It follows from
the definition that λ is bijective and birational. By Zariski’s main theorem
7.3, λ is an isomorphism. This implies that there exists a regular function F
on U such that Γ′ = {(u, F (u)) : u ∈ U}, which is what we wanted to prove.
This finishes the proof of the theorem. 2

We recall that the action of G on itself by translation on the left gives an
action of G on its coordinate ring C[G] defined by λg(f)(g′) = f(g−1g′) for
f ∈ C[G], g, g′ ∈ G (see section 8.4).

Proposition 8.10 Let G be an algebraic group, H a closed normal subgroup
of G. We have C[G/H] ' C[G]H .

Proof. We consider the epimorphism π given by corollary 8.3. If f ∈ C[G/H],

then f̃ = f ◦ π ∈ C[G]. Moreover, for h ∈ H, g ∈ G, we have λh(f̃)(g) =

f̃(h−1g) = (f ◦ π)(h−1g) = f(π(h−1g)) = f(π(g)) = f̃(g), so λh(f̃) = f̃ and

f̃ ∈ C[G]H .
If f ∈ C[G]H , then f is a morphism G → A1 which is constant on the

cosets of H in G. Hence, by the universal property of the quotient G/H
established in theorem 8.5, there exists F ∈ C[G/H] such that f = F ◦ π. 2
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9 Suggestions for further reading

1. In section 2.4, we introduced the ring K[d] of differential operators. To
a linear differential equation, we can associate a differential module, i.e.
a K[d]-module. The concept of differential module allows to study dif-
ferential equations in a more intrinsic way. The reader can look at [P-S]
chap. 2 for a detailed exposition and at [Mo] and [Ż] for more advanced
applications.

2. In his lecture at the 1966 International Congress of Mathematicians [Ko2],
E. Kolchin raised two important problems in the Picard-Vessiot theory.

1. Given a linear differential equation L(Y ) = 0 over a differential field
K, determine its Galois group (direct problem).

2. Given a differential field K, with field of constants C, and a linear
algebraic group G defined over C, find a linear differential equation
defined over K with Galois group G (inverse problem).

The paper [S] is a very good survey on direct and inverse problems in
differential Galois theory.

3. Linear differential equations defined over the field C(T ) of rational func-
tions over the field C of complex numbers can be given a more analytic
treatment. In this context we can define the singularities of the differ-
ential equation as the poles of its coefficients. By considering analytic
prolongation of the solutions along paths avoiding singular points, one
can define the monodromy group of the equation, which is a subgroup
of the Galois group. In the case of equations of Fuchsian type, the Ga-
lois group is equal to the Zariski closure of the monodromy group. Some
interesting topics in the analytic theory of differential equations are the
Riemann-Hilbert problem, Stokes phenomena, hypergeometric equations
and their generalizations. The interested reader can consult [Ż] , [Mo]
and [P-S], as well as the bibliography given there.

4. In the recent years, Morales and Ramis have used differential Galois the-
ory to obtain non-integrability criteria for Hamiltonian systems, which
generalize classical results of Poincaré and Liapunov as well as more re-
cent results of Ziglin. This theory is outlined in chapter 10, written by
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Professor Juan J. Morales-Ruiz. The reader can look also at the literature
suggested there.

5. Some interesting contributions to the theory of differential fields have
been made by model theorists. The proof of the existence of a differential
closure for a differential field uses methods of model theory in an essential
way. The first proof of the existence of an algorithm to determine the
Galois group of a linear differential equation is as well model theoretical
(see [Hr]). The paper [P] is an interesting survey on the relation between
differential algebra and model theory.
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10 Application to Integrability of Hamilto-

nian Systems

Appendix by Juan J. Morales-Ruiz

In the last years, a new revival of interest in the differential Galois theory
is being observed. This is partially due to the connections and applications
to other areas of mathematics: number theory [3, 4], asymptotic theory [6],
non-integrability of dynamical systems, etc. Here we are interested in the
applications to non-integrability. As we shall see, inside differential Galois
theory there is a very nice concept of “integrability”, i.e., solutions in closed
form. Furthermore, all information about the integrability of the equation
is coded in the identity component of the Galois group: a linear equation
is integrable if, and only if, the identity component of its Galois group is
solvable. We observe that this is the case, if and only if, the associated
Picard-Vessiot extension is a (generalized) Liouvillian extension (Section 6.2).

10.1 General non-integrability theorems

At the end of the nineteenth century Poincaré introduced the variational
equation of a dynamical system along a particular solution as a fundamental
tool to study the behavior of the given dynamical system in a neighborhood
of the solution [13]. Given a dynamical system,

(5) ż = X(z),

with a particular integral curve z = φ(t), the variational equation (VE ) along
z = φ(t) is

(6) ξ̇ = X ′(φ(t))ξ.

Equation (6) describes the linear part of the flow of (5) along z = φ(t).
Therefore, we formulate the following General Principle:

General Principle: If we assume that the dynamical system (5) is “in-
tegrable” in any reasonable sense, then it is natural to conjecture that the
linearized differential equation (6) must be also “integrable”.
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It seems clear that in order to convert this principle in a true conjecture
it is necessary to clarify what kind of “integrability ” is considered for equa-
tions (5) and (6).

As (6) is a first order linear differential system equation, it is natural to
consider the integrability of this equation in the context of the Galois theory
of linear differential equations. In order to apply differential Galois theory,
we need an algebraically closed field of constants (see chapter 5) so, in this
context, we shall assume the field of constants to be the complex field C.
Therefore, we go to the complex analytical category, i.e., all the equations
are complex analytical and defined over complex analytical spaces. We re-
mark that to a first order linear differential system equation given by a square
matrix of order n, we can associate a linear differential equation of order n
defined over the same differential field K such that the minimal differential
field extension of K containing the solutions is the same for both equations
(see e.g. [S] section 2.4 or [P-S]). So, we can define the Galois group of equa-
tion (6) as the Galois group of the associated scalar differential equation.

For complex analytical Hamiltonian systems the General Principle works
well and we obtained the following result, which in some sense may be con-
sidered as a generalization of a result by Ziglin in 1982 [16]. The essential
idea is to consider in the General Principle not only integrability of the varia-
tional equations (characterized by the solvability of the identity component of
its Galois group) but also commutativity of the identity component of the Ga-
lois group of the variational equations (equivalent to the abelianity of the Lie
algebra of this Galois group). This is natural because, for integrable Hamil-
tonian systems, we have an abelian Poisson Lie algebra of first integrals of
maximal dimension.

Let H be a complex analytical Hamiltonian function defined on a sym-
plectic manifold M of (complex) dimension 2n and let XH be the Hamiltonian
system defined by H. In canonical coordinates, z = (x1, ..., xn, y1, ..., yn), it
is given classically by

ẋi =
∂H

∂yi

,

ẏi = −∂H

∂xi

,

i = 1, ..., n.
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We recall here the definition of integrability for Hamiltonian systems ([1]).
One says that XH is completely integrable or Liouville integrable if there are
n functions f1 = H, f2,..., fn, such that

1. they are functionally independent i.e., the 1-forms dfi i = 1, 2, ..., n, are
linearly independent over a dense open set U ⊂ M , Ū = M ;

2. they form an involutive set, {fi, fj} = 0, i, j = 1, 2, ..., n.

We recall that in canonical coordinates the Poisson bracket has the clas-
sical expression

{f, g} =
n∑

i=1

∂f

∂yi

∂g

∂xi

− ∂f

∂xi

∂g

∂yi

.

We remark that in virtue of condition 2. above the functions fi, i =
1, ..., n are first integrals of XH . It is very important to precise the degree
of regularity of these first integrals. In our contribution we assume that
the first integrals are meromorphic. Unless otherwise stated, this is the
only type of integrability of Hamiltonian systems that we consider in the
next pages. Sometimes, to recall this fact we shall refer to meromorphic
(complete) integrability.

Now we can write the variational equations along a particular integral
curve z = φ(t) of the vector field XH

(7) ξ̇ = X ′
H(φ(t))ξ.

Using the linear first integral dH(z(t)) of the variational equation it is
possible to reduce this variational equation and to obtain the so-called normal
variational equation which, in suitable coordinates, can be written as a linear
Hamiltonian system

η̇ = JS(t)η,

where, as usual,

J =

(
0 I
−I 0

)

is the standard matrix of the symplectic form of dimension 2(n− 1).
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More generally, if, including the Hamiltonian, there are m meromorphic
first integrals independent over Γ and in involution, we can reduce the number
of degrees of freedom of the variational equation (7) by m and obtain the
normal variational equation (NVE) which, in suitable coordinates, can be
written as a 2(n−m)-dimensional linear system

(8) η̇ = JS(t)η,

where now J is the matrix of the symplectic form of dimension 2(n − m).
For more details about the reduction to the NVE, see [8](or [7]).

Theorem 10.1 [[8], see also [7]] Assume that a complex analytical Hamilto-
nian system is meromorphically completely integrable in a neighborhood of the
integral curve z = φ(t) . Then the identity components of the Galois groups
of the variational equations (7) and of the normal variational equations (8)
are commutative groups.

We remark that this is a typical version of several possible theorems. For
instance, when (7) has irregular singular points at the infinity, we only obtain
obstructions to the existence of rational first integrals, because in this case
the first integrals should be meromorphic also at the infinity.

Theorem 10.2 ([8], see also [7]) Assume that a complex analytical Hamil-
tonian system is meromorphically completely integrable in a neighborhood of
the integral curve z = φ(t), meromorphic also at the hypersurface at the in-
finity in the symplectic variety M . Then the identity component of the Galois
group of (7) and (8) is a commutative group. In particular, let M be an open
domain of a symplectic complex space and assume the points at infinity of
(7) (or (8)) are irregular singular points and the identity component of the
Galois group of (7) (or (8)) is not commutative, then the Hamiltonian system
is not integrable by rational first integrals.

In the above theorems the field of coefficients of (7) and (8) is K = M(Γ),
the field of meromorphic functions over the Riemann surface Γ, where Γ is
the Riemann surface defined by the analytic curve z = φ(t). Then Γ−Γ will
be the set of singular points of (7), i.e., poles of the coefficients. A particular
classical case is when K = C(t) = M(P1) is the field of rational functions,
i.e., the field of meromorphic functions over the Riemann sphere P1 . Another
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interesting example for the applications is a field of elliptic functions. From
a dynamical point of view, the singular points Γ − Γ correspond to either
equilibrium points, meromorphic singularities of the Hamiltonian field or
points at the infinity.

One of the essential points in the proof of the above theorems is the
following lemma, called the Key Lemma in reference [2]:

Lemma 10.1 (Key Lemma) ([8], see also [7]) Let f be a meromorphic
first integral of the dynamical system (5). Then the Galois group of (6) has
a non-trivial rational invariant.

We remark that this lemma is valid for general dynamical systems, not
only for Hamiltonian ones. Moreover, it is possible to generalize this lemma to
tensor invariants; for instance, to symplectic forms in the case of Hamiltonian
systems or to invariant volume forms. We shall not discuss this matter further
here.

Theorem 10.1 (and 10.2) has been generalized to higher order variational
equations VE k along Γ, with k > 1,(the solutions of these equations are the
quadratic, cubic, etc. contributions to the flow of the Hamiltonian system
along the particular solution z = φ(t) = φ(z0, t)), V E1 being equation (6)
(see [12]).

As a conclusion, we can say that all of our approach is based upon two
simple facts:

(i) A heuristic guiding principle, the General Principle.

(ii) The Key Lemma.

10.2 Hypergeometric Equation

In order to apply it to the homogeneous potentials in the next section, we
recall here a theorem by Kimura which characterizes the integrability of the
hypergeometric equation.

The hypergeometric (or Riemann) equation is the more general second
order linear differential equation over the Riemann sphere with three regular
singularities. If we place the singularities at x = 0, 1,∞ it is given by

d2ξ

dx2
+ (

1− α− α′

x
+

1− γ − γ′

x− 1
)
dξ

dx

+ (
αα′

x2
+

γγ′

(x− 1)2
+

ββ′ − αα′ − γγ′

x(x− 1)
)ξ = 0,(9)
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where (α, α′), (γ, γ′),(β, β′) are the exponents at the singular points and must
satisfy the Fuchs relation α+α′+γ+γ′+β+β′ = 1. We denote the exponent
differences by λ̂ = α− α′, ν̂ = γ − γ′ and µ̂ = β − β′.

We also use one of its reduced forms

(10)
d2ξ

dx2
+

c− (a + b + 1)x

x(x− 1)

dξ

dx
− ab

x(x− 1)
ξ = 0,

where a, b, c are parameters, with the exponent differences λ̂ = 1 − c, ν̂ =
c− a− b and µ̂ = b− a, respectively.

Now, we recall a theorem of Kimura which gives necessary and sufficient
conditions for the hypergeometric equation to be integrable, in the case when
the field of coefficients is K = C(x) = M(P1), i.e., the field of rational
functions.

Theorem 10.3 ([5]) The hypergeometric equation (9) is integrable if, and
only if, either
(i) At least one of the four numbers λ̂+ µ̂+ ν̂, −λ̂+ µ̂+ ν̂, λ̂− µ̂+ ν̂, λ̂+ µ̂− ν̂
is an odd integer, or
(ii) The numbers λ̂ or −λ̂, µ̂ or −µ̂ and ν̂ or −ν̂ belong (in an arbitrary
order) to some of the fifteen families given in Table 1, where l, m and q are
integers.

We recall that Schwarz’s table gives us the cases for which the Galois (and
monodromy) groups are finite (i.e., the identity component of the Galois
group is reduced to the identity element) and consists in fifteen families.
These families are families 2–15 of the table above and the family (1/2 +
Z) × (1/2 + Z) × Q (see, for instance, [14]). As this last family is already
contained in family 1 of the above table, all of the Schwarz’s families are
indeed contained in the above table.

10.3 Non-integrability of Homogeneous Potentials

Here we recall the main general non-integrability result about Hamiltonians
with homogeneous potentials obtained some years ago [9, 8].

Consider an n-degrees-of-freedom Hamiltonian system with Hamiltonian

(11) H(x,y) = T + V =
1

2
(y2

1 + ... + y2
n) + V (x1, ..., xn),
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1 1/2 + l 1/2 + m arbitrary complex number
2 1/2 + l 1/3 + m 1/3 + q
3 2/3 + l 1/3 + m 1/3 + q l + m + q even
4 1/2 + l 1/3 + m 1/4 + q
5 2/3 + l 1/4 + m 1/4 + q l + m + q even
6 1/2 + l 1/3 + m 1/5 + q
7 2/5 + l 1/3 + m 1/3 + q l + m + q even
8 2/3 + l 1/5 + m 1/5 + q l + m + q even
9 1/2 + l 2/5 + m 1/5 + q l + m + q even
10 3/5 + l 1/3 + m 1/5 + q l + m + q even
11 2/5 + l 2/5 + m 2/5 + q l + m + q even
12 2/3 + l 1/3 + m 1/5 + q l + m + q even
13 4/5 + l 1/5 + m 1/5 + q l + m + q even
14 1/2 + l 2/5 + m 1/3 + q l + m + q even
15 3/5 + l 2/5 + m 1/3 + q l + m + q even

Table 1: Theorem 10.3

V being a complex homogeneous function of integer degree k and 2 ≤ n.
From the homogeneity of V , it is possible to obtain an invariant plane

x = z(t)c,

y = ż(t)c,

where z = z(t) is a solution of the (scalar) hyperelliptic differential equation

ż2 =
2

k
(1− zk)

(where we assume case k 6= 0), and c = (c1, c2, ...cn) is a solution of the
equation

(12) c = V ′(c).

This is our particular solution, Γ, along which we compute the variational
equation, VE, and the normal variational equation, NVE. We shall call these
the homothetical solutions of the Hamiltonian system (11) and define as ho-
mothetical points the solutions of (12).
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The VE along Γ is given in the temporal parametrization by

η̈ = −z(t)k−2V ′′(c)η.

Assume V ′′(c) is diagonalizable. Due to the symmetry of the Hessian ma-
trix V ′′(c), it is possible to express the VE as a direct sum of second order
equations

η̈i = −z(t)k−2λiηi, i = 1, 2, ..., n,

where we maintain η for the new variable, λi being the eigenvalues of the ma-
trix V ′′(c). We call these eigenvalues Yoshida coefficients. One of the above
second order equations is the tangential variational equation, i.e. the equa-
tion corresponding to λn = k−1. This equation is trivially solvable, whereas
the NVE is an equation in the variables ξ := (η1, ..., ηn−1) := (ξ1, ..., ξn−1),
i.e.,

ξ̈ = −z(t)k−2diag(λ1, ..., λn−1)ξ.

Now, following Yoshida [15], we consider the change of variable (which
happens to be a finite branched covering map),

Γ → P1,

given by t 7→ x, where x =: z(t)k (here Γ is the compact hyperelliptic Rie-
mann surface of the hyperelliptic curve w2 = 2

k
(1− zk), see [9] or [7] for the

notation and technical details). By the symmetries of this problem, we ob-
tain as NVE a system of independent hypergeometric differential equations
in the new independent variable x

(ANVEi) x(1−x)
d2ξ

dx2
+(

k − 1

k
− 3k − 2

2k
x)

dξ

dx
+

λi

2k
ξ = 0, i = 1, 2, ..., n−1.

Each of these equations (ANVEi), corresponding to the Yoshida coeffi-
cient λi, is part of the system called the algebraic normal variational equation
ANVE. In fact, the ANVE is split into a system of n− 1 independent equa-
tions (ANVEi), i = 1, ..., n− 1. Then it is clear that the ANVE is integrable
if, and only if, each of the (ANVEi) is also integrable. In other words, the
identity component of the Galois Group of the ANVE is solvable if, and only
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k λ k λ

1 k p + p (p− 1) k
2

10 −3 25
24
− 1

24

(
12
5

+ 6p
)2

2 2 arbitrary z ∈ C 11 3 − 1
24

+ 1
24

(2 + 6p)2

3 −2 arbitrary z ∈ C 12 3 − 1
24

+ 1
24

(
3
2

+ 6p
)2

4 −5 49
40
− 1

40

(
10
3

+ 10p
)2

13 3 − 1
24

+ 1
24

(
6
5

+ 6p
)2

5 −5 49
40
− 1

40
(4 + 10p)2 14 3 − 1

24
+ 1

24

(
12
5

+ 6p
)2

6 −4 9
8
− 1

8

(
4
3

+ 4p
)2

15 4 −1
8

+ 1
8

(
4
3

+ 4p
)2

7 −3 25
24
− 1

24
(2 + 6p)2 16 5 − 9

40
+ 1

40

(
10
3

+ 10p
)2

8 −3 25
24
− 1

24

(
3
2

+ 6p
)2

17 5 − 9
40

+ 1
40

(4 + 10p)2

9 −3 25
24
− 1

24

(
6
5

+ 6p
)2

18 k 1
2

(
k−1

k
+ p (p + 1) k

)

Table 2: Theorem 10.4

if, each of the identity components of the Galois Groups of the (ANVEi)
i = 1, 2, . . . , n− 1, is solvable.

As was observed by Yoshida, each of the above (ANVEi) is a hyper-
geometric equation with three regular singular points at x = 0, x = 1 and
x = ∞. Furthermore the identity component of the Galois Group of the NVE
coincides with the identity component of the Galois Group of the ANVE (see
[9, 8]). Adapting Kimura’s table (Theorem 10.3) of integrable hypergeo-
metric equations to the new hypothesis, namely that the Galois differential
group of each of the variational equations must have a commutative identity
component, yields the following result:

Theorem 10.4 ([9], see also [7]) Let XH be a Hamiltonian system given
by (11). If XH is meromorphically completely integrable, then each pair
(k, λi) matches one of the items given in Table 2 (p being an arbitrary inte-
ger).

This theorem is a generalization of a necessary condition of integrability
obtained by Yoshida using the Ziglin approach [15].

So, in order to prove the non-integrability of a given Hamiltonian system
with a homogeneous potential, we follow the following steps:
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(i) we find the homothetical points, solutions ci of the equation

c = V ′(c)

(ii) we prove that for some of the ci in (i), at least one of the eigenvalues
of V ′′(ci) is not in Table 2.

10.4 Suggestions for further reading

In the original papers [9, 8, 10] and the book [7] the reader can find some
examples and references. Furthermore, in the last fifteen years new lines of
research have been opened, new results have been obtained, and old results
are included in a natural way in this framework. Some of them are the
following:

a) As stated above, the main theorems have been extended to the higher
order variational equations ([12]).

b) The obtention of new results of a global nature as oriented to the clas-
sification of integrable cases of homogeneous polynomial potentials.

c) New non-integrability results for several N -bodies problems.

d) New non-integrability results for several cosmological models.

e) Non-integrability results for other concrete families of systems like
Painlevé’s transcendents, including new simple proofs of old results,
for instance of the rigid body.

f) Obstructions to the existence of real analytical first integrals.

g) New contributions about connections of our approach with chaotic dy-
namics – more specifically splitting of separatrices.

h) The proposal of some extensions to non-holonomic mechanical systems,
control theory, and other not necessarily Hamiltonian systems.

Over fifty papers have been written by several authors about the above
topics. For concrete references see the recent survey [11].
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Universitat Politècnica de Catalunya
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