


Microsoft Hyper-V PowerShell 
Automation

Manage, automate, and streamline your Hyper-V 
environment effectively with advanced PowerShell 
cmdlets

Vinith Menon

P U B L I S H I N G

professional expert ise dist i l led

BIRMINGHAM - MUMBAI



Microsoft Hyper-V PowerShell Automation

Copyright © 2015 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval 
system, or transmitted in any form or by any means, without the prior written 
permission of the publisher, except in the case of brief quotations embedded in 
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy 
of the information presented. However, the information contained in this book is 
sold without warranty, either express or implied. Neither the author, nor Packt 
Publishing, and its dealers and distributors will be held liable for any damages 
caused or alleged to be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the 
companies and products mentioned in this book by the appropriate use of capitals. 
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: January 2015

Production reference: 1230115

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK.

ISBN 978-1-78439-153-9

www.packtpub.com

www.packtpub.com


Credits

Author
Vinith Menon

Reviewers
Alexander Kellett

Roy Verrips

Commissioning Editor
Dipika Gaonkar

Acquisition Editor
Sonali Vernekar

Content Development Editor
Priyanka Shah

Technical Editors
Pragnesh Bilimoria

Edwin Moses

Copy Editors
Gladson Monteiro

Jasmine Nadar

Project Coordinator
Neha Thakur

Proofreaders
Simran Bhogal

Maria Gould

Ameesha Green

Paul Hindle

Indexer
Monica Ajmera Mehta

Production Coordinator
Conidon Miranda

Cover Work
Conidon Miranda



About the Author

Vinith Menon has extensive experience in the IT industry. At the beginning of his 
career, he was working with a leading consulting firm as a senior systems engineer 
managing Windows Server and the VMware virtualization environment. He was 
also extensively involved in automation using scripting.

Later, he worked with another platinum-level consulting company as a senior 
software engineer and managed Microsoft Hyper-V and NetApp environments 
for Avanade using PowerShell scripting. Vinith has done automation for tasks that 
earlier required manual work using Opalis and integrated them with PowerShell 
scripting. He has also built integration packs using PowerShell for Microsoft System 
Center Orchestrator. He has extensive knowledge of Hyper-V and the management 
of virtual machine environments using System Center Virtual Machine Manager. 
He has in-depth technical expertise in PowerShell scripting, Active Directory, server 
administration, and network management.

Vinith is now part of Microsoft Business Unit Technology Evangelism with 
NetApp. At the moment, he is interested in the automation of various PowerShell 
scripting, Microsoft Hyper-V virtualization, Microsoft Exchange, and System 
Center technologies such as SCSM, SCOM, and SCORCH 2012. As a subject matter 
expert of Hyper-V and PowerShell, he blogs and supports the NetApp PowerShell 
community.

Vinith is very passionate about automation and PowerShell scripting. You can find 
him frequently blogging about virtualization, PowerShell, and all automation-related 
information that deals with Microsoft System Center, Windows Server, and client 
operating systems. He is also an active member of the PowerShell Bangalore User 
Group and loves sharing his knowledge with like-minded techies.



About the Reviewers

Alexander Kellett is a relatively recent convert to the Windows world after many 
years of Linux and Mac OS X experience. After years of struggling to automate 
virtual machine deployment on other platforms, PowerShell and Hyper-V are  
a breath of fresh air. His passions include devops, Clojure (script), cooking, and 
natural languages.

Roy Verrips has been a system administrator since the mid-nineties for 
environments that include Novell NetWare, Linux/Unix, Microsoft Windows, and 
even OS X servers. Starting as far back as 2005, he grasped the advances in system 
administration that virtualizing allowed, and has since worked extensively on 
virtualizing servers and workstations using KEMU, VMware, KVM, VirtualBox,  
and Microsoft Hyper-V.

Roy's work has included virtualizing an OS X VDI environment (http://www.
aquaconnect.net/cs-united-christian-church-of-dubai). In 2014, he received 
a CIO 50 award for virtualizing a luxury hotel's 18 physical servers down to a 3-node 
Hyper-V cluster (http://www.cnmeonline.com/news/cio-50-awards-2014-full-
list-of-winners).

Roy wrote his first batch file when he was 9 years old and has been working in the 
field of command-line programming ever since, most recently using PowerShell 
extensively as his preferred utility language.

I'd like to thank my wife, Angela, for her love, ongoing support, 
encouragement, and never-ending patience. God has blessed me so 
richly with many things, that is, salvation, my wife, my children, and 
my Christian family. I'm nothing without any of these.

http://www.aquaconnect.net/cs-united-christian-church-of-dubai)
http://www.aquaconnect.net/cs-united-christian-church-of-dubai)
http://www.cnmeonline.com/news/cio-50-awards-2014-full-list-of-winners
http://www.cnmeonline.com/news/cio-50-awards-2014-full-list-of-winners


www.PacktPub.com

Support files, eBooks, discount offers, 
and more
For support files and downloads related to your book, please visit www.PacktPub.com.

Did you know that Packt offers eBook versions of every book published, with PDF and ePub 
files available? You can upgrade to the eBook version at www.PacktPub.com and as a print 
book customer, you are entitled to a discount on the eBook copy. Get in touch with us at 
service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign up for a 
range of free newsletters and receive exclusive discounts and offers on Packt books and eBooks.

TM

https://www2.packtpub.com/books/subscription/packtlib

Do you need instant solutions to your IT questions? PacktLib is Packt's online digital book 
library. Here, you can search, access, and read Packt's entire library of books.

Why subscribe?
•	 Fully searchable across every book published by Packt
•	 Copy and paste, print, and bookmark content
•	 On demand and accessible via a web browser

Free access for Packt account holders
If you have an account with Packt at www.PacktPub.com, you can use this to access PacktLib 
today and view 9 entirely free books. Simply use your login credentials for immediate access.

Instant updates on new Packt books
Get notified! Find out when new books are published by following @PacktEnterprise on 
Twitter or the Packt Enterprise Facebook page.

www.PacktPub.com
www.PacktPub.com
www.PacktPub.com
https://www2.packtpub.com/books/subscription/packtlib
www.PacktPub.com


Table of Contents
Preface	 1
Chapter 1: New PowerShell Cmdlets in Hyper-V on Windows  
Server 2012 R2	 5

Installing and configuring Hyper-V using PowerShell	 6
Fundamental concepts of Hyper-V management with the Hyper-V 
management shell	 7
Shared virtual hard disks	 9
Live virtual hard disk resizing	 12

Expanding the virtual hard disk	 13
Resizing the virtual hard disk	 14

The storage quality of the service feature	 15
Virtual machine generation	 16
Updated features in integration services	 17
Updated features for exporting a virtual machine	 18
Updated features in Hyper-V Replica	 18
Summary	 19

Chapter 2: Managing Your Hyper-V Virtual Infrastructure	 21
Extracting information about Hyper-V hosts and the associated  
virtual machines	 22
Creating, deleting, starting, and stopping virtual machines	 28

Creating a virtual machine	 29
Deleting a virtual machine 	 31
Starting and stopping a virtual machine	 31

Configuring properties on virtual machines	 33
Managing VHDs on virtual machines	 39

Summary	 45



Table of Contents

[ ii ]

Chapter 3: Managing Your Hyper-V Virtual Machines	 47
Managing virtual switches and virtual network adapters	 48

Managing a virtual machine's migration networks	 49
Configuring virtual machine network adapters with a virtual switch	 51
Configuring virtual machine network failover settings	 52
Adding, removing, and renaming virtual machine network adapters	 53
Configuring a virtual machine's network adapter VLANs	 54
Configuring Hyper-V virtual switches and their properties	 56
Creating and removing Hyper-V virtual switches	 63
Managing virtual machine migrations	 63
Managing virtual machine imports, exports, and snapshots	 64
Importing and exporting virtual machines	 65
Managing virtual machine snapshots	 67
Managing virtual machine backups with Hyper-V Replica	 70

Managing virtual machine connections	 75
Summary	 76

Chapter 4: Creating Reusable PowerShell Scripts Using  
Hyper-V PowerShell Module Cmdlets	 77

Creating reusable scripts for virtual machine creation utilizing ODX	 78
Creating reusable scripts for virtual machine live migration	 83
Creating reusable scripts to manage export and import of virtual  
machine snapshots	 84
Creating reusable scripts to automate installation of Integration  
Service in virtual machines	 86
Summary	 91

Chapter 5: The Next Step – Integration with SCVMM	 93
Why integrate with SCVMM?	 93

Core fabric management	 94
Resource optimization	 95
Infrastructure enhancements	 95
Cloud management	 96

PowerShell cmdlets in integration with SCVMM	 97
Summary	 100

Chapter 6: Troubleshooting Hyper-V Environment Issues  
and Best Practices Using PowerShell	 101

Troubleshooting the Hyper-V environment using the event log	 102
Troubleshooting the Hyper-V environment using BPA	 105
The PowerShell community	 107
Summary	 107

Index	 109



Preface
Microsoft Hyper-V PowerShell Automation comes with a set of real-world scenarios and 
detailed scripts that will help you get started with PowerShell for Hyper-V and learn 
what administrative tasks you can do with PowerShell.

This book starts with the essential topics relating to PowerShell and then introduces 
the new features in Hyper-V version 3.0. This book explores the cmdlets in Hyper-V 
version 3.0 that can be used to manage and automate all configuration activities for 
managing the Hyper-V environment. The cmdlets are executed across the network 
using Windows Remote Management.

This book goes in depth and looks at the new features that are made available with 
Hyper-V version 3.0, and breaks down the mystery and confusion that surrounds 
which feature to use when. It also teaches you the PowerShell way to automate the 
usage of these features.

What this book covers
Chapter 1, New PowerShell Cmdlets in Hyper-V on Windows Server 2012 R2, explores  
the new features in Hyper-V Windows Server 2012 R2 and the associated cmdlets  
to manage these features.

Chapter 2, Managing Your Hyper-V Virtual Infrastructure, explores in depth the cmdlets 
that are available in the Hyper-V PowerShell module. This also covers cmdlets  
to manage properties of Hyper-V hosts, associated virtual machines, and virtual  
hard disks.

Chapter 3, Managing Your Hyper-V Virtual Machines, covers cmdlets to manage virtual 
switches, virtual machine migrations, snapshots, and also Hyper-V Replica.



Preface

[ 2 ]

Chapter 4, Creating Reusable PowerShell Scripts Using Hyper-V PowerShell Module 
Cmdlets, takes a deep dive into how to approach various complex administrative 
tasks and explores solutions for them by developing PowerShell scripts based on  
the Hyper-V PowerShell module.

Chapter 5, The Next Step – Integration with SCVMM, explores the advantages of 
integrating Hyper-V with SCVMM and the additional Hyper-V cmdlets that  
come with SCVMM.

Chapter 6, Troubleshooting Hyper-V Environment Issues and Best Practices Using 
PowerShell, explores the PowerShell way to troubleshoot a Hyper-V deployment.  
It also looks at the BPA Hyper-V module that helps to make sure that Hyper-V  
is deployed as per the best practices recommended by Microsoft.

What you need for this book
This book requires that you have Windows PowerShell 3.0, which is available out 
of the box in Windows Server 2012 and Windows Server 2012 R2. The latter has the 
Hyper-V role enabled on it. Windows PowerShell 3.0 is also available for earlier 
versions of Windows as part of Microsoft's Windows Management Framework 3.0. 
You should also have System Center Virtual Machine Manager 2012 and Windows 
Server 2012 R2 with you.

Who this book is for
This book is great for administrators who are new to automating Hyper-V 
administrative tasks using PowerShell. If you are familiar with the PowerShell 
command line and have some experience with the Windows Server, this book is 
perfect for you.

Conventions
In this book, you will find a number of text styles that distinguish between different 
kinds of information. Here are some examples of these styles and an explanation of 
their meaning.

Code words in text, database table names, folder names, filenames, file extensions, 
pathnames, dummy URLs, user input, and Twitter handles are shown as follows: 
"Let's look at the ways you can automate and manage your shared .vhdx guest 
clustering configuration using PowerShell."



Preface

[ 3 ]

A block of code is set as follows:

$Guid = [System.Guid]::NewGuid()
Set-SCCloud -JobGroup $Guid
$HostGroup = Get-SCVMHostGroup -Name "HostGroup02"
New-SCCloud -JobGroup $Guid -Name "Cloud02" -VMHostGroup  
  $HostGroup -Description "This is a cloud for HostGroup02"

Any command-line input or output is written as follows:

Copy-VMFile "Fileserver_VM1" -SourcePath "D:\Test.txt" - 
  DestinationPath "C:\Temp\Test.txt" -CreateFullPath -FileSource Host

New terms and important words are shown in bold. Words that you see on the 
screen, for example, in menus or dialog boxes, appear in the text like this: "Next, click 
on Shrink."

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about 
this book—what you liked or disliked. Reader feedback is important for us as it helps 
us develop titles that you will really get the most out of.

To send us general feedback, simply e-mail feedback@packtpub.com, and mention 
the book's title in the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing 
or contributing to a book, see our author guide at www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things  
to help you to get the most from your purchase.

www.packtpub.com/authors


Preface

[ 4 ]

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes 
do happen. If you find a mistake in one of our books—maybe a mistake in the text or 
the code—we would be grateful if you could report this to us. By doing so, you can 
save other readers from frustration and help us improve subsequent versions of this 
book. If you find any errata, please report them by visiting http://www.packtpub.
com/submit-errata, selecting your book, clicking on the Errata Submission Form 
link, and entering the details of your errata. Once your errata are verified, your 
submission will be accepted and the errata will be uploaded to our website or added 
to any list of existing errata under the Errata section of that title.

To view the previously submitted errata, go to https://www.packtpub.com/books/
content/support and enter the name of the book in the search field. The required 
information will appear under the Errata section.

Piracy
Piracy of copyrighted material on the Internet is an ongoing problem across all 
media. At Packt, we take the protection of our copyright and licenses very seriously. 
If you come across any illegal copies of our works in any form on the Internet, please 
provide us with the location address or website name immediately so that we can 
pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected  
pirated material.

We appreciate your help in protecting our authors and our ability to bring  
you valuable content.

Questions
If you have a problem with any aspect of this book, you can contact us at 
questions@packtpub.com, and we will do our best to address the problem.

http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support


New PowerShell Cmdlets  
in Hyper-V on Windows 

Server 2012 R2
The Hyper-V PowerShell module includes several significant features that extend 
its use, improve its usability, and allow you to control and manage your Hyper-V 
environment with more granular control.

Various organizations have moved on from Hyper-V (V2) to Hyper-V (V3). In 
Hyper-V (V2), the Hyper-V management shell was not built-in and the PowerShell 
module had to be manually installed. In Hyper-V (V3), Microsoft has provided an 
exhaustive set of cmdlets that can be used to manage and automate all configuration 
activities of the Hyper-V environment. The cmdlets are executed across the network 
using Windows Remote Management.

In this chapter, we will cover:

•	 The basics of setting up a Hyper-V environment using PowerShell 
•	 The fundamental concepts of Hyper-V management with the Hyper-V 

management shell
•	 The updated features in Hyper-V

Here is a list of all the new features introduced in Hyper-V in Windows Server 2012 
R2. We will be going in depth through the important changes that have come into  
the Hyper-V PowerShell module with the following features and functions:

•	 Shared virtual hard disk
•	 Resizing the live virtual hard disk
•	 Installing and configuring your Hyper-V environment



New PowerShell Cmdlets in Hyper-V on Windows Server 2012 R2

[ 6 ]

Installing and configuring Hyper-V using 
PowerShell
Before you proceed with the installation and configuration of Hyper-V, there are 
some prerequisites that need to be taken care of:

•	 The user account that is used to install the Hyper-V role should have 
administrative privileges on the computer

•	 There should be enough RAM on the server to run newly created  
virtual machines

Once the prerequisites have been taken care of, let's start with installing the  
Hyper-V role:

1.	 Open a PowerShell prompt in Run as Administrator mode:

2.	 Type the following into the PowerShell prompt to install the Hyper-V role 
along with the management tools; once the installation is complete, the 
Hyper-V Server will reboot and the Hyper-V role will be successfully installed:
Install-WindowsFeature –Name Hyper-V -IncludeManagementTools - 
  Restart

3.	 Once the server boots up, verify the installation of Hyper-V using the Get-
WindowsFeature cmdlet:
Get-WindowsFeature -Name hyper*



Chapter 1

[ 7 ]

You will be able to see that the Hyper-V role, Hyper-V PowerShell 
management shell, and the GUI management tools are successfully installed:

Fundamental concepts of Hyper-V 
management with the Hyper-V 
management shell
In this section, we will look at some of the fundamental concepts of Hyper-V 
management with the Hyper-V management shell. Once you get the Hyper-V role 
installed as per the steps illustrated in the previous section, a PowerShell module 
to manage your Hyper-V environment will also get installed. Now, perform the 
following steps:

1.	 Open a PowerShell prompt in the Run as Administrator mode.
2.	 PowerShell uses cmdlets that are built using a verb-noun naming system 

(for more details, refer to Learning Windows PowerShell Names at http://
technet.microsoft.com/en-us/library/dd315315.aspx). Type the 
following command into the PowerShell prompt to get a list of all the 
cmdlets in the Hyper-V PowerShell module:
Get-Command -Module Hyper-V

Hyper-V in Windows Server 2012 R2 ships with about 178 cmdlets. These 
cmdlets allow a Hyper-V administrator to handle very simple, basic tasks 
to advanced ones such as setting up a Hyper-V replica for virtual machine 
disaster recovery.

http://technet.microsoft.com/en-us/library/dd315315.aspx
http://technet.microsoft.com/en-us/library/dd315315.aspx


New PowerShell Cmdlets in Hyper-V on Windows Server 2012 R2

[ 8 ]

3.	 To get the count of all the available Hyper-V cmdlets, you can type the 
following command in PowerShell:
Get-Command -Module Hyper-V | Measure-Object

The Hyper-V PowerShell cmdlets follow a very simple approach and are 
very user friendly. The cmdlet name itself indirectly communicates with 
the Hyper-V administrator about its functionality. The following screenshot 
shows the output of the Get command:

For example, in the following screenshot, the Remove-VMSwitch cmdlet itself 
says that it's used to delete a previously created virtual machine switch:

4.	 If the administrator is still not sure about the task that can be performed  
by the cmdlet, he or she can get help with detailed examples using the 
Get-Help cmdlet. To get help on the cmdlet type, type the cmdlet name in 
the prescribed format. To make sure that the latest version of help files are 
installed on the server, run the Update-Help cmdlet before executing the 
following cmdlet:

Get-Help <Hyper-V cmdlet> -Full



Chapter 1

[ 9 ]

The following screenshot is an example of the Get-Help cmdlet:

Shared virtual hard disks
This new and improved feature in Windows Server 2012 R2 allows an administrator 
to share a virtual hard disk file (the .vhdx file format) between multiple virtual 
machines. These .vhdx files can be used as shared storage for a failover cluster 
created between virtual machines (also known as guest clustering). A shared virtual 
hard disk allows you to create data disks and witness disks using .vhdx files with 
some advantages:

•	 Shared disks are ideal for SQL database files and file servers
•	 Shared disks can be run on generation 1 and generation 2 virtual machines



New PowerShell Cmdlets in Hyper-V on Windows Server 2012 R2

[ 10 ]

This new feature allows you to save on storage costs and use the .vhdx files for guest 
clustering, enabling easier deployment rather than using virtual Fibre Channel or 
Internet Small Computer System Interface (iSCSI), which are complicated and 
require storage configuration changes such as zoning and Logic Unit Number  
(LUN) masking.

In Windows Server 2012 R2, virtual iSCSI disks (both shared and unshared virtual 
hard disk files) show up as virtual SAS disks when you add an iSCSI hard disk to a 
virtual machine. Shared virtual hard disks (.vhdx ) files can be placed on Cluster 
Shared Volumes (CSV) or a Scale-Out File Server cluster

Let's look at the ways you can automate and manage your shared .vhdx guest 
clustering configuration using PowerShell. In the following example, we will 
demonstrate how you can create a two-node file server cluster using the shared 
VHDX feature. After that, let's set up a testing environment within which we can 
start learning these new features. The steps are as follows:

1.	 We will start by creating two virtual machines each with 50 GB OS drives, 
which contains a sysprep image of Windows Server 2012 R2. Each virtual 
machine will have 4 GB RAM and four virtual CPUs.

D:\vhd\base_1.vhdx and D:\vhd\base_2.vhdx 
are already existing VHDX files with sysprepped image 
of Windows Server 2012 R2.

The following code is used to create two virtual machines:
New-VM –Name "Fileserver_VM1" –MemoryStartupBytes 4GB – 
  NewVHDPath d:\vhd\base_1.vhdx -NewVHDSizeBytes 50GB

New-VM –Name "Fileserver_VM2" –MemoryStartupBytes 4GB – 
  NewVHDPath d:\vhd\base_2.vhdx -NewVHDSizeBytes 50GB

2.	 Next, we will install the file server role and configure a failover cluster on 
both the virtual machines using PowerShell.

You need to enable PowerShell remoting on both the file 
servers and also have them joined to a domain.



Chapter 1

[ 11 ]

The following is the code:

Install-WindowsFeature -computername Fileserver_VM1 File- 
  Services, FS-FileServer, Failover-Clustering

Install-WindowsFeature -computername Fileserver_VM1 RSAT- 
  Clustering –IncludeAllSubFeature

Install-WindowsFeature -computername Fileserver_VM2 File- 
  Services, FS-FileServer, Failover-Clustering

Install-WindowsFeature -computername Fileserver_VM2 RSAT- 
  Clustering -IncludeAllSubFeature

3.	 Once we have the virtual machines created and the file server and failover 
clustering features installed, we will create the failover cluster as per 
Microsoft's best practices using the following set of cmdlets:
New-Cluster -Name Cluster1 -Node FileServer_VM1,  
  FileServer_VM2 -StaticAddress 10.0.0.59 -NoStorage – 
  Verbose

You will need to choose a name and IP address that fits your organization.

4.	 Next, we will create two vhdx files named sharedvhdx_data.vhdx (which 
will be used as a data disk) and sharedvhdx_quorum.vhdx (which will be 
used as the quorum or the witness disk). To do this, the following commands 
need to be run on the Hyper-V cluster:
New-VHD -Path  
  c:\ClusterStorage\Volume1\sharedvhdx_data.VHDX -Fixed - 
  SizeBytes 10GB

New-VHD -Path  
  c:\ClusterStorage\Volume1\sharedvhdx_quorum.VHDX -Fixed - 
  SizeBytes 1GB



New PowerShell Cmdlets in Hyper-V on Windows Server 2012 R2

[ 12 ]

5.	 Once we have created these virtual hard disk files, we will add them as 
shared .vhdx files. We will attach these newly created VHDX files to the 
Fileserver_VM1 and Fileserver_VM2 virtual machines and specify the 
parameter-shared VHDX files for guest clustering:
Add-VMHardDiskDrive –VMName Fileserver_VM1 -Path  
  c:\ClusterStorage\Volume1\sharedvhdx_data.VHDX – 
  ShareVirtualDisk

Add-VMHardDiskDrive –VMName Fileserver_VM2 -Path  
  c:\ClusterStorage\Volume1\sharedvhdx_data.VHDX – 
  ShareVirtualDisk

6.	 Finally, we will be making the disks available online and adding them to  
the failover cluster using the following command:
Get-ClusterAvailableDisk | Add-ClusterDisk

Once we have executed the preceding set of steps, we will have a highly available  
file server infrastructure using shared VHD files.

Live virtual hard disk resizing
With Windows Server 2012 R2, a newly added feature in Hyper-V allows the 
administrators to expand or shrink the size of a virtual hard disk attached to the SCSI 
controller while the virtual machines are still running. Hyper-V administrators can 
now perform maintenance operations on a live VHD and avoid any downtime by not 
temporarily shutting down the virtual machine for these maintenance activities.

Prior to Windows Server 2012 R2, to resize a VHD attached to the virtual machine, 
it had to be turned off leading to costly downtime. Using the GUI controls, the VHD 
resize can be done by using only the Edit Virtual Hard Disk wizard. Also, note that 
the VHDs that  were previously expanded can be shrunk.

The Windows PowerShell way of doing a VHD resize is by using the  
Resize-VirtualDisk cmdlet. Let's look at the ways you can automate a VHD resize 
using PowerShell. In the next example, we will demonstrate how you can expand 
and shrink a virtual hard disk connected to a VM's SCSI controller. We will continue 
using the virtual machine that we created for our previous example. We have a  
pre-created VHD of 50 GB that is connected to the virtual machine's SCSI controller.



Chapter 1

[ 13 ]

Expanding the virtual hard disk
Let's resize the aforementioned virtual hard disk to 57 GB using the  
Resize-Virtualdisk cmdlet:

Resize-VirtualDisk -Name "scsidisk" -Size (57GB)

Next, if we open the VM settings and perform an inspect disk operation, we'll be able 
to see that the VHDX file size has become 57 GB:

Also, one can verify this when he or she logs into the VM, opens disk management, 
and extends the unused partition. You can see that the disk size has increased to 57GB:



New PowerShell Cmdlets in Hyper-V on Windows Server 2012 R2

[ 14 ]

Resizing the virtual hard disk
Let's resize the earlier mentioned VHD to 57 GB using the Resize-Virtualdisk 
cmdlet:

1.	 For this exercise, the primary requirement is to shrink the disk partition by 
logging in to the VM using disk management, as you can see in the following 
screenshot; we're shrinking the VHDX file by 7 GB:

2.	 Next, click on Shrink. Once you complete this step, you will see that the 
unallocated space is 7 GB. You can also execute this step using the Resize-
Partition PowerShell cmdlet:
Get-Partition -DiskNumber 1 | Resize-Partition -Size 50GB

The following screenshot shows the partition:

3.	 Next, we will resize/shrink the VHD to 50 GB:
Resize-VirtualDisk -Name "scsidisk" -Size (50GB)



Chapter 1

[ 15 ]

Once the previous steps have been executed successfully, run a re-scan disk using 
disk management and you will see that the disk size is 50GB:

The storage quality of the service feature
The storage quality of service (QoS) feature in Windows Server 2012 R2 allows us 
to set a specific level of I/O throughput for virtual machines. This is best done on 
virtual machines that are resource-hungry. You can effectively set an automatic hard 
cap by specifying the maximum input/output operations per second (IOPS) for a 
virtual hard disk associated with a particular virtual machine.

This allows the administrator to set a throttle limit on the IOPS consumed by a 
virtual machine, thereby controlling it from consuming resources of other virtual 
machines. So, let me show you an example on how you can set the storage level QoS 
for the virtual machine. We will be using the sample virtual machine that we used 
for our previous example, by making use of the following code:

Get-VM Fileserver_VM1| Get-VMHardDiskDrive -ControllerType SCSI |  
  Set-VMHardDiskDrive -MaximumIOPS 100 -MinimumIOPS 2  

As you can see in the previous example, we get the virtual machine properties for 
FileServer_VM1 or FileServer_VM2 using Get-VM. Next, we get the VHD drives 
attached to the SCSI controller on the virtual machine using Get-vmharddiskdrive. 
Finally, we set the maximum and minimum IOPs for the virtual machine using the  
set-vmharddiskdrive cmdlet.



New PowerShell Cmdlets in Hyper-V on Windows Server 2012 R2

[ 16 ]

Once we execute this cmdlet on a PowerShell prompt, we are able to see that the QoS 
properties for the VM have been modified:

Virtual machine generation
With the introduction of the concept of virtual machine generation in Windows Server 
2012 R2, the virtual machines have been classified broadly into two generations: 
generation 1 and generation 2. Generation 1 VMs can boot only from a disk attached 
to the IDE controller or network boot from a legacy network adapter. In addition, 
the boot configurations are taken care by BIOS. Generation 2 virtual machines are 
UEFI-based, which gives us features like secure boot; it allows us to boot the virtual 
machines from the SCSI disk and there is no requirement for an IDE controller-
based boot method. Also, it allows network boot over the synthetic network adapter. 
Generation 2 virtual machines are UEFI based; this feature is supported only on 
windows 2012 or later versions and only on 64-bit operating systems. The boot time  
in generation 2 virtual machines is quicker than generation 1 virtual machines.



Chapter 1

[ 17 ]

Creating either generation 1 or generation 2 virtual machines is very simple with 
PowerShell. You just need to specify an integer value for the generation parameter. 
The following examples show how you can go about doing this:

•	 To create a generation 1 virtual machine, you can specify the generation  
type as 1, as shown in the following example:
New-VM –Name "new 3" –MemoryStartupBytes 1GB –VHDPath  
  d:\vhd\BaseImage.vhdx -Generation 1

For these examples, you have the BaseImage.vhdx file 
placed at d:\vhd.

•	 Similarly, to create a generation 2 virtual machine, you can specify the 
generation type as 2, as shown in the following example:
New-VM –Name "new 3" –MemoryStartupBytes 1GB –VHDPath  
  d:\vhd\BaseImage.vhdx -Generation 2

Updated features in integration services
The newly updated integration services in Hyper-V allow the administrator to copy 
a file to a VM without shutting it down and also without accessing a network. For 
this feature to work, the Guest Services feature needs to be enabled on a virtual 
machine's integration services properties; this feature is disabled by default and can 
be enabled on virtual machines using the Enable-VMIntegrationService Windows 
PowerShell cmdlet. The following command shows how you can enable this feature 
on a virtual machine:

Enable-VMIntegrationService -Name "Guest Service Interface" - 
  VMName Fileserver_VM1

Once this feature is enabled, you can use the Copy-VMFile cmdlet to copy files to 
a virtual machine. The following command shows how you can use this cmdlet to 
copy files to a virtual machine:

Copy-VMFile "Fileserver_VM1" -SourcePath "D:\Test.txt" - 
  DestinationPath "C:\Temp\Test.txt" -CreateFullPath -FileSource Host



New PowerShell Cmdlets in Hyper-V on Windows Server 2012 R2

[ 18 ]

Updated features for exporting a virtual 
machine
With the updated Hyper-V features in Windows Server 2012 R2, you can export  
a live VM and its snapshot without shutting down the VM, which had to be done  
in Windows 2012. This helps the administrator to avoid unnecessary downtime  
for the virtual machine export. There are two cmdlets that can be used for the live 
export of virtual machines and its snapshots; these are the Export-VM and the 
Export-VMSnapshot cmdlets.

The Export-VM cmdlet exports a virtual machine to disk. This cmdlet creates a folder 
at a specified location with three subfolders: Snapshots, Virtual Hard Disks, and 
Virtual Machines. The Snapshots and Virtual Hard Disks folders contain the 
snapshots and the VHDs of the specified virtual machine respectively. The Virtual 
Machines folder contains the configuration XML of the specified virtual machine. 
The following command exports all virtual machines to root of the D drive. Each 
virtual machine will be exported to its own folder:

Get-VM | Export-VM –Path D:\

The export of a live VM is very different from the export of a snapshot of a live VM. 
The export of a live VM can be done by creating a snapshot first, then exporting it, 
and then finally removing the snapshot. The following cmdlet shows you how to  
do this:

Get-VM | Checkpoint-VM| Export-VMSnapshot -path d:\ | Remove- 
  VMSnapshot 

The Export-VMSnapshot cmdlet exports a virtual machine snapshot to disk:

PS C:\>Export-VMSnapshot –Name 'Base Image' –VMName TestVM –Path D:\

The preceding command exports the Base Image snapshot of the TestVM virtual 
machine to D:\.

Updated features in Hyper-V Replica
Windows Server 2012 R2 brings in new and updated features to Hyper-V Replica 
called extended replication, which allows the replica information from the primary 
site to be sent to a third extended replica server that will be used to further business 
continuity protection. Also, there is an addition of the feature that allows us  
to configure the frequency of replication, which was previously a fixed value.  
Hyper-V Replica provides a comprehensive disaster recovery solution for the  
Hyper-V infrastructure.



Chapter 1

[ 19 ]

The Hyper-V Replica feature in Windows Server 2012 R2 allows you to configure 
replication intervals to three intervals: 30 seconds, 5 minutes, and 15 minutes. In 
Windows Server 2012, it was hardcoded to a 5 minute interval.

The concept of extended replica allows you to send an additional copy of the VM 
to an extended replica server. This allows a VM copy to be present in three or more 
separate locations, which allows us to keep multiple copies of the virtual machines 
that are mission-critical. When you create an extended replica of a virtual machine,  
it can be kept at either 5 minutes or 15 minutes.

The following syntax can be used to configure Hyper-V. Here, we use the Enable-
VMReplication cmdlet to enable replication of a VM VM01 virtual machine onto an 
extended replica Hyper-v server called HYPERVSERVER3 on a replication server port 
of 80 with the replication frequency of 300 seconds (5 minutes):

Enable-VMReplication –VMName VM01 -ReplicaServerName HYPERVSERVER3  
  -ReplicaServerPort 80 -AuthenticationType Kerberos - 
  ReplicationFrequencySec 300

Summary
In this chapter, we went through the basics of setting up a Hyper-V environment 
using PowerShell. We also explored the fundamental concepts of Hyper-V 
management with Hyper-V management shell.

In the next chapter, we will be covering the installation and configuration of your 
Hyper-V environment on a Windows Server 2012 R2 environment using PowerShell. 
Also, we will learn how to set up your PowerShell environment to get started using 
the Hyper-V management shell.





Managing Your Hyper-V 
Virtual Infrastructure

Managing Hyper-V virtual infrastructure components is an integral part of a 
Hyper-V administrator's day-to-day activities. Performing these administrative tasks 
manually is time-consuming and leads to a reduction in productivity; replacing these 
repetitive tasks with PowerShell leads to better consistency (no typos or execution of 
incorrect tasks). This also helps a senior administrator delegate these tasks to other 
members in the team and audit the tasks performed by those individuals so that he 
or she can concentrate on other important tasks that lead to a better learning curve 
and improve the creative ability of the administrator to automate complex tasks.

In the current chapter and Chapter 3, Managing Your Hyper-V Virtual Machines, we 
will explore the various PowerShell cmdlets in depth that can be used to automate 
these set of repetitive tasks performed by an administrator.

In this chapter, we will cover the following:

•	 Extracting information about Hyper-V hosts and the associated virtual 
machines

•	 Creating, deleting, starting, and stopping virtual machines
•	 Configuring properties on virtual machines



Managing Your Hyper-V Virtual Infrastructure

[ 22 ]

Extracting information about Hyper-V 
hosts and the associated virtual 
machines
Microsoft offers the ability to extract information related to the Hyper-V 
infrastructure using PowerShell. It is now possible to perform virtual machine 
management from the command line using the Hyper-V PowerShell module.

Let's start exploring the ways in which you can extract information related to  
a Hyper-V host.

For Hyper-V deployments that are not clustered, host-level information can  
be extracted by the Get-VMHost cmdlet:

Get-VMHost | fl *

Open up a PowerShell prompt in your Windows Server 2012 R2 Hyper-V server  
in the Run as Administrator mode and type the following cmdlets:

•	 Get-ClusterNode: This cmdlet shows details of the nodes in the cluster
•	 Get-ClusterNode | select @{l='ComputerName';e={$_.name}}:  

This cmdlet shows the names of the Hyper-V hosts in the cluster
•	 Get-VMHost –computername <HVHostName>: This cmdlet shows details  

of the Hyper-V hosts

Now, by combining all the preceding cmdlets together, we can extract host-level 
information:

Get-ClusterNode | select @{l='ComputerName';e={$_.name}} |  
  Get-VMHost | fl *

As you can see in the preceding command, we used the Get-ClusterNode cmdlet 
to first get a list of all the nodes in the Hyper-V cluster. Next, we created a custom 
property for computername and passed it to the Get-VMHost cmdlet to extract 
information about all the Hyper-V hosts in the cluster.

Once you type the cmdlet, you will be able to see lots of details regarding the host. 
If you were to do this manually, it would need you to open up a GUI and access the 
console properties one by one and extract the required information. The following 
screenshot shows details with respect to the host:



Chapter 2

[ 23 ]

As you can see in the preceding screenshot, we get the default virtual machine disk 
and machine path, properties for virtual machine migrations, the processor count, 
host memory size, and even detailed properties on network adapters and the status 
of NUMA.

You might have noticed that some of the properties that relate to the NUMA 
node and network adapters appear in curly braces. This indicates that there are 
subproperties inside them and you can extract this information by expanding  
their properties.

Let's explore these properties using the expandproperty parameter in the  
select-object cmdlet.

Type the next set of cmdlets in the PowerShell prompt to extract details of  
the Hyper-V host NUMA node:

Get-VMHost | select -ExpandProperty hostnumastatus



Managing Your Hyper-V Virtual Infrastructure

[ 24 ]

The following screenshot shows the output:

You can also extract the information seen in the preceding screenshot using the  
Get-VMHostNumaNode cmdlet:

Get-ClusterNode | select @{l='ComputerName';e={$_.name}} |  
  Get-VMHostNumaNode | fl *

Next, let's extract information about the internal and external network adapters  
of the Hyper-V hosts using the technique shown in the previous example:

Get-VMHost | select -ExpandProperty InternalNetworkAdapters | fl *



Chapter 2

[ 25 ]

Similarly, you can extract information about the external network adapters too using 
the following cmdlet:

Get-VMHost | select -ExpandProperty ExternalNetworkAdapters | fl *



Managing Your Hyper-V Virtual Infrastructure

[ 26 ]

Likewise, we can also extract a variety of information about the virtual machines 
running on Hyper-V hosts.

Type the following cmdlet to extract the list of all the virtual machines that reside on 
Hyper-V cluster nodes:

Get-ClusterNode | select @{l='ComputerName';e={$_.name}} | %  
  {Get-VM -ComputerName $_.computername}

You can also extract information about individual virtual machines using the 
following syntax. In the following example, I'll redirect the cmdlet towards a single 
virtual machine and extract information about it:

Get-VM <Virtual machine Name> | fl *



Chapter 2

[ 27 ]

Similarly, there are other sets of cmdlets that can be used to extract information 
about a virtual machine, which includes its BIOS, DVD dive information, firmware, 
integration service, and so on.

To get a list of all the cmdlets that can be used to extract information about the 
Hyper-V infrastructure and that includes the virtual machines and the Hyper-V host, 
type the following cmdlet in the command line:

Get-Command get-vm*



Managing Your Hyper-V Virtual Infrastructure

[ 28 ]

PowerShell has an autocomplete feature; so if you type Get-VM and press Tab, it will 
rotate through the various autocomplete options. Also, note that after you select 
your desired cmdlet, pressing Space, then -, and then pressing Tab again will rotate 
through the parameters that are available:

Creating, deleting, starting, and stopping 
virtual machines
Creating, deleting, starting, or stopping a virtual machine is one of the most 
repetitive tasks that a Hyper-V administrator needs to perform, but with PowerShell, 
all these tasks can be scripted and made simpler to execute.



Chapter 2

[ 29 ]

Creating a virtual machine
Creating a virtual machine is relatively simple with PowerShell using the New-VM 
PowerShell cmdlet. Before you execute the commands to create a VM, let's look at 
Get-VM, which gives the list of all the VMs that are present on the Hyper-V host 
cluster. The following command gets the nodes that are part of the Hyper-V cluster. 
It creates a value by property and name called ComputerName and passes it to the 
Get-VM cmdlet:

Get-ClusterNode | select @{l='ComputerName';e={$_.name}} | Get-VM

Windows Server 2012 R2 introduced the concept of generation 1 and generation 2 
virtual machines, and the same can be created with PowerShell:

Then, we use the New-VM cmdlet to create virtual machines with the prefix VMtest 
followed by the Hyper-V hostname, which comes from the pipeline. The following 
example gets the details of all the nodes of the Hyper-V cluster:

Get-ClusterNode | select @{l='ComputerName';e={$_.name}} | %  
  {New-VM -Name VMtest$($_.computername) – 
  Generation 2 -MemoryStartupBytes 2GB -ComputerName $_.computername  
  }

The following screenshot illustrates the output of the preceding command:



Managing Your Hyper-V Virtual Infrastructure

[ 30 ]

As you can see in the preceding example, I created two virtual machines, 
vmtesthyperv01 and vmtresthyperv02, on both the nodes of the Hyper-V cluster. 
The New-VM cmdlet accepts different parameters and can be customized based on 
user needs. For more details on the New-VM cmdlet, explore detailed examples using 
the following syntax:

Get-Help New-VM -Examples

Creating a virtual machine with the New-VM cmdlet comes into play when you need 
to create a large number of virtual machines with similar specifications. With the 
simple PowerShell magic of the for-each loop, you can create hundreds of virtual 
machines with a single cmdlet that use a differencing disk. You can also start the 
virtual machine when it gets created:

1..100 | % {

New-VHD –ParentPath c:\Base.vhdx –Path c:\Diff_VM_$_.vhdx –Differencing;

New-VM -Name vm$_ -MemoryStartupBytes 2GB –VHDPath c:\Diff_VM_$_.vhdx;

Start-VM vm$_

}



Chapter 2

[ 31 ]

Deleting a virtual machine 
Deleting a virtual machine is relatively simple with PowerShell. Using the  
Remove-VM PowerShell cmdlet, just type the cmdlet in your PowerShell window  
to delete the two virtual machines we created in the previous example.

The following example gets the details of all the nodes of the Hyper-V cluster. Next, 
we use the Remove-VM cmdlet to remove virtual machines with the prefix VMtest 
followed by the Hyper-V hostname that comes from the pipeline:

Get-ClusterNode | select @{l='ComputerName';e={$_.name}} | %  
  {Remove-VM -Name VMtest$($_.computername) –ComputerName  
  $_.computername }

You can also delete a set of virtual machines without any user intervention by a 
single PowerShell cmdlet using the for-each loop. The following command will 
delete 100 virtual machines that had the prefix VM in front of them:

1..100 | % {

Remove-VM -Name vm$_ -Force 

}

Starting and stopping a virtual machine
Starting and stopping a virtual machine is relatively simple with PowerShell using 
the Start-VM or Stop-VM PowerShell cmdlet. All you need to do is type the cmdlet 
in your PowerShell window.

In the following example, we will get the details of all the virtual machines on each 
of the Hyper-V hosts that are a part of the Hyper-V cluster, and start them:

Get-ClusterNode | select @{l='ComputerName';e={$_.name}} | % {Get-VM  
  -ComputerName $_.computername | Start-VM}



Managing Your Hyper-V Virtual Infrastructure

[ 32 ]

The following screenshot illustrates the output of the preceding command:

We follow a similar exercise to stop the virtual machines. To do this, we just need 
to replace the Start-VM cmdlet with Stop-VM. As you can see in the following 
command, once we issue the cmdlet, it confirms the action and stops / shuts  
down the VM:

Get-ClusterNode | select @{l='ComputerName';e={$_.name}} | %  
  {Get-VM -ComputerName $_.computername | Stop-VM}

The output is displayed in the following screenshot:



Chapter 2

[ 33 ]

Configuring properties on virtual 
machines
Configuring properties on virtual machines can be done using PowerShell cmdlets 
that have the Set verb in them. To get a list of all the PowerShell cmdlets that can 
be used to set a virtual machine's properties, type command shown in the following 
screenshot, in the PowerShell prompt:

As you can see in the preceding screenshot, there are a number of properties that 
can be set for the virtual machine, including the BIOS, DVD drive, virtual machine 
memory, and also network adapter properties. Also, there is a Set-VMHost cmdlet 
that allows you to set some of the properties related to the Hyper-V host. Let's go 
through these cmdlets one by one.



Managing Your Hyper-V Virtual Infrastructure

[ 34 ]

Type the following cmdlet in the PowerShell prompt to change the automatic stop 
action of all the VMs running on both nodes of the Hyper-V cluster:

Get-ClusterNode | select @{l='ComputerName';e={$_.name}} | %  
  {Get-VM -ComputerName $_.computername |  
  Set-VM -AutomaticStopAction shutdown }

The VMs need to be in the shutdown state to change 
AutomaticStopAction.

The following screenshot shows this command:

The command shown in the preceding screenshot sets the automatic stop action on 
all the virtual machines to shutdown.

Next, let's change the virtual machine's start up order for all the virtual machines 
running on both nodes of the Hyper-V cluster by typing the following cmdlet in a 
PowerShell prompt:

Get-ClusterNode | select @{l='ComputerName';e={$_.name}} | %  
  {Get-VM -ComputerName $_.computername | Set-VMBios - 
  StartupOrder @("Floppy", "LegacyNetworkAdapter", "CD", "IDE")}

The following screenshot displays this command:

The command shown in the preceding screenshot sets the virtual machine's  
startup order to an order that starts from a floppy to a legacy network adapter  
to CD and then IDE. For generation 2 virtual machines, you will need to use the  
Get-VMFirmware and Set-VMFirmware cmdlets instead. The following example 
shows how you can use the Get-VMFirmware cmdlet to extract firmware details  
of a generation 2 VM:

Get-VMFirmware testvm



Chapter 2

[ 35 ]

Similarly, you can change firmware properties of a virtual machine using the Set-
VMFirmware cmdlet. The following cmdlet allows you to set the Secure Boot property 
on the VM:

Set-VMFirmware "testvm" -EnableSecureBoot Off

Now, if we perform a Get-VMFirmware test, we will see that the SecureBoot option 
for the VM has been disabled:

Next, let's see how we can make configuration changes to virtual processors in a 
virtual machine. For the following cmdlet example to work, the virtual machines 
should be in the stopped state:

Get-ClusterNode | select @{l='ComputerName';e={$_.name}} | %  
  {Get-VM -ComputerName $_.computername | Set-VMProcessor -Count 2  
  -Reserve 10 -Maximum 75 -RelativeWeight 200}

The command shown in the preceding screenshot configures all the virtual machines 
with two virtual processors, a reserve of 10 percent, a limit of 75 percent, and a 
relative weight of 200. The reserve property specifies the percentage of processor 
resources to be reserved for a particular virtual machine (allowed values range from 
0 to 100). The maximum parameter specifies the maximum percentage of resources 
available to the virtual machine processor to be configured (allowed values range 
from 0 to 100). The relative weight specifies the priority for allocating the physical 
machine's processing power to a virtual machine that is relative to others  
(allowed values range from 1 to 10,000).



Managing Your Hyper-V Virtual Infrastructure

[ 36 ]

Next, let's see how you can play around with names pipes using the Set-VMComPort 
cmdlet. The following cmdlet, when executed, sets the second VM's COM port on all 
the virtual machines to a defined value:

Get-ClusterNode | select @{l='ComputerName';e={$_.name}} | %  
  {Get-VM -ComputerName $_.computername |  
  Set-VMComPort Number 2 -Path  "\\.\pipe\TestPipe"}

The command shown in the preceding screenshot configures the second COM port 
on all the virtual machines specified by the number 2 to connect to the named pipe 
TestPipe on the local computer. The named pipe option connects the virtual serial 
port to a Windows-named pipe on the host operating system or a computer on the 
network.

Next, let's see how you can configure virtual machines to use an ISO file:

Get-ClusterNode | select @{l='ComputerName';e={$_.name}} | %  
  {Get-VM -ComputerName $_.computername | Get-VMDvdDrive |  
  Set-VMDvdDrive -path "\\smb3share\vol_Vinith_Infra\ 
  en_sql_server_2012_enterprise_edition_x86_x64_dvd_813294.iso"}

The command shown in the preceding screenshot configures the virtual DVD drives 
of all the virtual machines to use the SQL 2012 installation ISO as its media.

The command, shown in the following screenshot, retrieves the Fibre Channel host 
bus adapter on a virtual machine and sets the world wide names property in them:

Next, let's configure a virtual machine's HBA adapters using PowerShell:

Get-ClusterNode | select @{l='ComputerName';e={$_.name}} | %  
  {Get-VM -ComputerName $_.computername | Get-VMFibreChannelHba |  
  Set-VMFibreChannelHba –GenerateWwn}



Chapter 2

[ 37 ]

The command shown in the preceding screenshot configures a Fibre Channel  
host bus adapter to be generated automatically on all virtual machines with  
world-wide names.

Next, let's have a look at an example of how you can enable Secure Boot on a VM. 
Note that this option can be configured only on generation 2 virtual machines. In  
the following example, we will configure Secure Boot on all virtual machines in  
our Hyper-V cluster, assuming that they all belong to generation 2:

The example shown in the preceding screenshot enables secure boot functionality  
on the virtual machine on your Hyper-V cluster.

Next, let's look at an example to configure a virtual machine to use a virtual floppy 
drive (VFD). We will use the logic illustrated in the previous example to set a floppy 
drive on a set of virtual machines. A VFD is used by some applications in legacy 
virtual machines.

Generation 2 virtual machines do not support floppy drives.

The command shown in the preceding screenshot connects C:\Test.vfd to the 
virtual floppy disk of the virtual machine testvm. Next, let's look at an example that 
shows how we can configure a virtual machine to use a VHD. The following example 
moves the VHD on all the virtual machines from IDE 1.0 to IDE 1.1.

The following screenshot assumes that you have a hard disk on the 1.0 controller:



Managing Your Hyper-V Virtual Infrastructure

[ 38 ]

The examples we covered in this section dealt with Hyper-V VMs. Now, let's look 
at examples to configure properties on the Hyper-V host itself. We will configure 
our Hyper-V host to allow maximum number of live and storage migrations. The 
following example sets all the Hyper-V hosts that are part of the Hyper-V cluster  
to allow 10 simultaneous live and storage migrations:

Get-ClusterNode | select @{l='ComputerName';e={$_.name}} | %  
  {Set-VMHost -MaximumVirtualMachineMigrations 10 – 
  MaximumStorageMigrations 10}

You can verify that the configuration change for 10 live and storage migrations  
is successfully set by accessing the Hyper-V settings via the Hyper-V manager's  
GUI console:

You can also extract this information from a cmdlet, shown as follows:

Get-ClusterNode | select @{l='ComputerName';e={$_.name}} | %  
  {Get-VMHost} | select ComputerName, MaximumStorageMigrations,  
  MaximumVirtualMachineMigrations

Next, let's configure the remote video adapter on VMs:



Chapter 2

[ 39 ]

The example shown in the preceding screenshot sets the maximum resolution of the 
RemoteFX adapter on all virtual machines to 1920 x 1200. Note that the RemoteFx 
Video adapter should be added to the virtual machine for this cmdlet to work:

The example shown in the preceding screenshot configures the entire virtual 
storage area network (SAN) with the specified WorldWideNodeName and 
WorldWidePortName values.

Managing VHDs on virtual machines
To get a list of cmdlets that can be used to manage VHDs, type the following 
command in your PowerShell window:

Get-Command *vhd*

Let's go through some of these cmdlets, shown in the following screenshot, to 
manage a virtual hard disk. Hyper-V allows you to convert the format, version  
type, and block size of a VHD file.

The Convert-VHD cmdlet allows you to do this. Type the following cmdlet to  
convert all the virtual hard disks at a specified location from type .vhdx to .vhd.



Managing Your Hyper-V Virtual Infrastructure

[ 40 ]

The following example converts a set of disks present at a location, from the source 
disk of the .VHDX format to a destination-fixed disk of the .VHD format; VHDtype 
specifies the type of converted VHD:

Allowed values for the parameter, VHDtype, are Fixed, Dynamic, and 
Differencing. The default type is determined by the type of source 
VHD.

The Dismount-VHD or Mount-VHD cmdlet allows you to dismount or mount an 
attached VHD. Type the cmdlet shown in the following screenshot to mount and 
dismount a set of VHDs present at a user-specified location:

The command shown in the preceding screenshot dismounts an attached VHD where 
the path to the VHD file path is c:\clustrstorage\volume2\testvhdx.vhdx:

The example shown in the preceding screenshot mounts a VHD where the path to 
the VHD file is C:\ClusterStorage\Volume2\testvhdx.vhdx:



Chapter 2

[ 41 ]

The example shown in the preceding screenshot mounts a set of VHDs present at a 
location in the read-only mode.

Get-VHD C:\ClusterStorage\Volume2\*.vhdx | % {Mount-VHD –Path $_.path  
  –PassThru | Get-Disk | Get-Partition | Get-Volume}

The example shown in the preceding screenshot attaches a set VHD to the system 
from a predefined location and gets the volumes associated with it.

Get-VHD C:\ClusterStorage\Volume2\*.vhdx



Managing Your Hyper-V Virtual Infrastructure

[ 42 ]

The command shown in the preceding screenshot gets the details of VHDs that are 
stored at a predefined location.

Get-VHD C:\ClusterStorage\Volume2\*.vhdx | % {Mount-VHD –Path $_.path –
PassThru | Get-Disk}

The example shown in the preceding screenshot gets the VHD details attached to the 
system with the associated disk numbers.

Get-ClusterNode | select @{l='ComputerName';e={$_.name}} | %  
  {Get-VM -ComputerName $_.computername | Select-Object vmid |  
  Get-VHD | ft}

The example shown in the preceding screenshot gets the VHD objects associated 
with all the virtual machines that are a part of the Hyper-V cluster using the pipeline 
feature for the Path parameter.

Merge-VHD C:\ClusterStorage\Volume1\VM4\VM4_ 
  48706D46-8C3C-414B-B535-DA905237BE81.avhdx



Chapter 2

[ 43 ]

The example shown in the preceding screenshot merges the avhdx file present at a 
location to its parent VHD. The Merge-VHD cmdlet merges VHDs in a differencing 
VHD chain. The merge happens from a specified source-child disk to a specified 
destination child disk. Merge is an offline operation; the VHD chain must not be 
attached when this is initiated.

The example shown in the preceding screenshot runs the compact operation in the 
Retrim mode on a set of VHDs present at a location.

Before executing the next cmdlet, make sure that the drive is 
dismounted/offline or is in the read-only mode.

Optimize-VHD –Path c:\test\dynamic.vhdx –Mode Quick

The example shown in the preceding screenshot runs the compact operation in  
the Quick mode on a set of VHDs.



Managing Your Hyper-V Virtual Infrastructure

[ 44 ]

The example shown in the preceding screenshot shrinks the VHDX files present at 
a location to a size of 150 GB (assuming that the VHD object associated with the file 
path has a minimum size less than or equal to 150 GB).

Before executing the next cmdlet, make sure that the drive is 
dismounted / offline or is in the read-only mode.

Get-VHD C:\ClusterStorage\Volume2\*.vhdx | %  
  {Resize-VHD –Path $_.path –ToMinimumSize}

The example shown in the preceding screenshot shrinks the VHDX files present at a 
predefined location to its minimum possible size.

This example shown in the preceding screenshot sets the physical sector size of all 
the VHDX files present at a location to 512 bytes.

Get-VHD C:\ClusterStorage\Volume2\*.vhdx | % {Test-VHD –Path $_.path}

The example shown in the preceding screenshot tests whether the VHD chain at a 
location is in a usable state.



Chapter 2

[ 45 ]

Summary
In this chapter, we covered important cmdlets related to configuring and extracting 
properties about virtual machines and their associated Hyper-V hosts. In the next 
chapter, we will cover the other set of relevant cmdlets that can be used to automate 
Hyper-V administrative tasks in detail.





Managing Your Hyper-V 
Virtual Machines

In this chapter, we will continue to explore the PowerShell cmdlets available in the 
Hyper-V PowerShell module to manage virtual machine infrastructure components. 
This chapter has been subdivided into smaller sections and we will be covering the 
following topics:

•	 Managing virtual switches and virtual network adapters in virtual machines
•	 Managing virtual machine migrations
•	 Managing virtual machine imports, exports, and snapshots
•	 Managing virtual machine backups with Hyper-V Replica
•	 Managing virtual machine connect

We will start by taking a deep dive into cmdlets, which can help us manage the 
virtual machine switches and network adapters; this will help us to understand the 
various ways to automate network configuration for virtual machines. Next, we 
will explore the cmdlets that allow a Hyper-V admin to manage virtual machine 
migrations across hosts and clusters. After that, we will explore cmdlets that allow 
us to export, import, and use snapshot-based technology on virtual machines, which 
aids in the quick testing of installed applications on virtual machines and also serves 
as a backup mechanism. Next, we will also explore the cmdlets related to Hyper-V 
Replica—a new disaster recovery technology—which allows an administrator to 
back up a virtual machine to a secondary site and maintain its high availability 
when the primary data center goes offline. Lastly, we will explore virtual machine 
connect—a new feature that uses the VMBus as a connection path and allows the 
administrator to connect to virtual machines without using a network connection.



Managing Your Hyper-V Virtual Machines

[ 48 ]

Managing virtual switches and virtual 
network adapters
The Hyper-V PowerShell module comes with a set of cmdlets, which can be used to 
manage the virtual machine network adapters and virtual switches. Virtual machine 
networks and switches form the core networking component of virtual machines. 
Virtual switch is a software-based network switch that helps in connecting virtual 
machines to virtual and physical networks. They can be of three types: external, 
internal, and private. Once the virtual switches are created, the virtual network 
adapters created for a virtual machine can be tagged to these virtual switches, 
allowing the virtual machine to connect to both physical and virtual networks. 
The virtual network adapters assigned to a virtual machine require it to have the 
required drivers provided by integration services to be installed on it.

Open a PowerShell prompt, and type the cmdlets shown in the following screenshot 
to get a list of all the cmdlets that are available to manage the virtual network and 
virtual switches:

Let's explore these cmdlets and look at their real-world applications.



Chapter 3

[ 49 ]

Managing a virtual machine's migration 
networks
Let's look at how to add an IPv4 address range as a possible live migration network 
on the local Hyper-V host by using a subnet mask:

1.	 Open a PowerShell prompt and type the command shown in the following 
screenshot:

2.	 Once we execute the cmdlet shown in the preceding screenshot, we will be 
able to see that the network has been added as a live migration network in 
the Hyper-V manager:

This can also be attained by executing the Get-VMMigrationNetwork cmdlet:



Managing Your Hyper-V Virtual Machines

[ 50 ]

3.	 Similarly, one can use the Remove-VMMigrationNetwork cmdlet to remove 
the virtual machine migration network that has been assigned to the 
Hyper-V host.

4.	 The command shown in the following screenshot removes all the networks 
starting with the address, 192.168, for the migration:

5.	 To get a list of all the virtual machine's live migration networks on the 
system, type the cmdlet shown in the following screenshot:

Next, we will look at an example, which adds an Access Control List (ACL) 
to allow the virtual machine, testvm, to send and receive from traffic on  
the IP subnet, 192.168.11.0/24. Executing this cmdlet creates an ACL  
that can be applied to specific traffic that is passing through a virtual 
machine network.

6.	 You can also use the Get-NetworkadapterAcl cmdlet to verify the changes 
that were made:



Chapter 3

[ 51 ]

Configuring virtual machine network adapters 
with a virtual switch
Now, we will look at the cmdlets that can be used to manage virtual machine 
migration networks, and later, we will look at some examples on how you can use 
the Connect and Disconnect network adapter cmdlets to assign a network adapter 
to a virtual switch.

The InternetAccess cmdlet will connect a virtual network adapter named Internet 
present in virtual machines Test1 and Test2 to a virtual switch named. For the 
command shown in the following screenshot to work, the prerequisite is that there 
should be a network adapter named Internet present on both these virtual machines:

Another use case would be to connect all the virtual machine network adapters 
present on a virtual machine to a virtual switch. The next example shows how this 
can be done by using the PowerShell pipeline. The cmdlet shown in the following 
screenshot illustrates how you can connect all the virtual network adapters in a 
virtual machine, Test1, to a virtual switch, InternetAccess:

Similarly, let's look at another use case to disconnect all the virtual machine networks 
from a virtual switch that is available on all the virtual machines hosted on the 
Hyper-V host. The cmdlet shown in the following screenshot disconnects all the 
virtual network adapters whose switch name is InternetAccess in all the virtual 
machines on the local Hyper-V server:



Managing Your Hyper-V Virtual Machines

[ 52 ]

Next, we will take a look at an easy way to extract all the virtual networks attached 
to the virtual machine. Executing the cmdlet shown in the following screenshot gives 
more details about the virtual switch MAC addresses and also the IP addresses:

The cmdlet shown in the preceding screenshot when run with the –All switch gives 
details on all the virtual network adapters on both the virtual machines and the 
management switches:

Configuring virtual machine network failover 
settings
Hyper-V allows an administrator to configure failover capabilities for a virtual 
machine's network adapter IP address after the Hyper-V Replica recovers 
the virtual machine at the disaster recovery site; these failover details can be 
extracted and set up by using the next cmdlet. The cmdlet shown in the following 
screenshot configures a failover IPv4 address for the virtual network adapter, 
NetworkAdapter01, on a virtual machine, VM01:



Chapter 3

[ 53 ]

The cmdlet shown in the following screenshot clears the current failover IPv4 settings 
on the virtual network adapter, NetworkAdapter01, for a virtual machine, VM01:

The cmdlet shown in the following screenshot  clears the current failover IPv6 settings 
on a virtual network adapter NetworkAdapter01 for a virtual machine, VM01:

The cmdlet shown in the following screenshot obtains the failover IP address 
configuration of all the virtual network adapters attached to a virtual machine 
named VM01:

Adding, removing, and renaming virtual 
machine network adapters
Adding a new virtual machine network adapter to a virtual machine is relatively 
simple by using the Add-VMNetworkAdapter cmdlet. The cmdlet shown in the 
following screenshot adds a network adapter, New Network, to a virtual machine 
named SCOM2012R2_1:



Managing Your Hyper-V Virtual Machines

[ 54 ]

You can also remove the virtual machine network adapter attached to a virtual 
machine by using the Remove-VMNetworkAdapter cmdlet. The example shown in 
the following screenshot removes the network adapter, Network Adapter, from a 
virtual machine named SCOM2012R2_1:

Similarly, the example shown in the following screenshot renames all the virtual 
network adapters of a virtual machine, SCOM2012R2, to NewNetwork:

 

Configuring a virtual machine's network 
adapter VLANs
Hyper-V PowerShell cmdlets also allow the administrator to assign a VLAN to a 
virtual machine network. The cmdlet shown in the following screenshot sets the 
virtual network adapter(s) in the virtual machine, scom2012r2_1, to the Access 
mode; also, the traffic sent by this virtual machine is tagged with the VLAN ID, 2:

 



Chapter 3

[ 55 ]

The Get-VMNetworkAdapterVlan cmdlet can also be used to extract the preceding 
information. We can also untag virtual machines from a VLAN. The example shown 
in the following screenshot gets the virtual machine, scom2012r2, and sets the 
virtual network adapters in the virtual machine to the Untagged mode:

 



Managing Your Hyper-V Virtual Machines

[ 56 ]

Configuring Hyper-V virtual switches and 
their properties
Now that we have explored the cmdlets for managing virtual network adapters, let's 
look at the cmdlets to manage and configure Hyper-V virtual switches. The Hyper-V 
PowerShell module also comes with cmdlets to manage virtual machine switches. 
To get the list of cmdlets that can be used to manage the virtual switch, type the 
command shown in the following screenshot in a PowerShell prompt:

Next, let's look at some of the cmdlets from each of the sections shown in the 
preceding screenshot. You can add a VM switch to a resource pool using the  
Add-VMSwitch cmdlet. Grouping the VM switches to resource pools allows them  
to be managed more easily. The example shown in the following screenshot adds  
a virtual switch, Test, to the Ethernet resource pool, Engineering Department:

Next, let's look at another example where we assign a virtual machine switch named 
Test on the Hyper-V host to the Engineering Department resource pool using the 
PowerShell pipeline. The example shown in the following screenshot adds a virtual 
switch, Test, to the Ethernet resource pool, Engineering Department:



Chapter 3

[ 57 ]

Let's see an example of how to work with port security for a virtual machine 
switch. The example shown in the following screenshot adds a feature to the virtual 
machine, VM2. The feature here is port security that is supported by the extension—
Microsoft Virtual Ethernet Switch Native Extension:

Let's see an example of how to add some features to a virtual switch. The example 
shown in the following screenshot illustrates how you can add a feature to the 
virtual switch, External:

You can also enable and disable a virtual machine switch extension using 
PowerShell. The next example shows how you can do this. The following example 
disables the WFP, "Microsoft Windows Filtering Platform", on the virtual 
switch, Internal Switch:

The example shown in the following screenshot enables the WFP, "Microsoft 
Windows Filtering Platform", on a virtual switch named External:

The example shown in the following screenshot gets virtual switches from one or 
more virtual Hyper-V hosts:



Managing Your Hyper-V Virtual Machines

[ 58 ]

The example shown in the following screenshot gets all the virtual switches that 
connect to the external network:

The example shown in the following screenshot gets all the virtual switch extensions 
available to the virtual switch, InternalSwitch:



Chapter 3

[ 59 ]

The example shown in the following screenshot gets the port data of the VM switch 
extension for the virtual machine, scom2012r2:

The example shown in the following screenshot gets a feature configured on the 
virtual machine, scom2012r2, by the Ethernet Switch Port security settings:

The example shown in the following screenshot gets the switch data from a virtual 
switch extension that is configured on the virtual switch, External:



Managing Your Hyper-V Virtual Machines

[ 60 ]

The example shown in the following screenshot gets all the virtual switch extensions 
that are installed on the system:

The example shown in the following screenshot gets the features that are configured 
on a virtual switch:



Chapter 3

[ 61 ]

The example shown in the following screenshot gets all port-level features, 
supported by various virtual switch extensions, which are installed on the system 
and can be configured on a virtual network adapter on Hyper-V:

The example shown in the preceding screenshot gets all the virtual switch extensions 
that support switch-level features that can be configured on a virtual switch:



Managing Your Hyper-V Virtual Machines

[ 62 ]

The example shown in the following screenshot removes a feature configured on  
the virtual network adapter(s) of a virtual machine:

The example shown in the following screenshot converts a virtual switch named  
WA to an internal switch:

The example shown in the following screenshot sets the minimum bandwidth 
allocation threshold to 500 Mbps on a virtual switch named CA, for all virtual 
machines without explicit minimum bandwidth configuration:

The example shown in the following screenshot configures a feature on a virtual 
network adapter on a virtual machine, VM2:

The feature shown in the following screenshot configures a feature on a virtual 
switch, External:



Chapter 3

[ 63 ]

Creating and removing Hyper-V virtual 
switches
Now, let's create a new virtual machine switch for handling Quality of Service 
(QoS) traffic for a Hyper-V host using the New-VMSwitch cmdlet. The previous 
example creates a new QoS switch, which binds to a network adapter called  
Team-NIC2-VMNetwork and supports a weight-based minimum bandwidth:

The example shown in the following screenshot removes a virtual switch named  
QoS Switch:

The example shown in the following screenshot renames the virtual switch, QoS 
Switch, as IIS Switch:

Managing virtual machine migrations
Hyper-V PowerShell cmdlets allow you to move the virtual machine from one host 
to another. It not only allows you to move only the virtual machine, but also the 
virtual machine and the associated storage, if needed.

Type the following command to get the list of all cmdlets that can be used to move 
the virtual machine from one Hyper-V host to another:

gcm *move* -Module hyper-v

The following screenshot shows the output of the preceding command:



Managing Your Hyper-V Virtual Machines

[ 64 ]

As you can see, there are two cmdlets present—one to move a virtual machine and 
the other to move the virtual machine along with the virtual machine storage. The 
command shown in the following screenshot migrates a live virtual machine live 
called "New Virtual Machine" to a remote Hyper-V host named server2:

The command shown in the following screenshot moves a virtual machine, Test VM, 
to a remote computer server and places the files associated with the virtual machine 
in the specified locations under D:\TestVM on the remote computer:

The command shown in the following screenshot moves the virtual machine,  
Test VM, to the remote computer, remoteServer, and moves all the files  
associated with the virtual machine to D:\TestVM on the remote computer:

The command shown in the following screenshot moves all the files associated  
with a virtual machine, Test VM, to D:\TestVM:

Managing virtual machine imports, exports, 
and snapshots
Exporting virtual machines allows you to have a backup of the virtual machine that 
is stored safely at a predefined location and can be later imported if the live VM goes 
offline or is corrupted. Taking snapshots of virtual machines allows you to create a 
state as backup of the virtual machine. It also allows the application admin to test 
configuration changes on a VM after installing an application or applying a hotfix. 
These differences from the snapshot can be either applied to the virtual machine to go 
back to a state in time or can be merged with the current state of the virtual machine.



Chapter 3

[ 65 ]

Importing and exporting virtual machines
Using the Hyper-V PowerShell cmdlets, you can either import, export, or take virtual 
machine snapshots. The Import-VM cmdlet imports a virtual machine from a file. The 
next example shows how you can use this cmdlet to import a virtual machine into 
your environment.

The following example imports the virtual machine by copying its files to the default 
virtual machine and the virtual hard drive storage locations of the Hyper-V host. 
The imported virtual machine will be given a new unique identifier and not the one 
in the configuration file. This is useful when you want to import multiple copies 
of a virtual machine since each virtual machine must have a unique identifier. The 
following screenshot shows how the Import-VM cmdlet imports a virtual machine 
into your environment:

The example shown in the following screenshot imports the virtual machine from its 
configuration file. The virtual machine is registered in place, so its files are not copied:

Importing a virtual machine to a different Hyper-V host can be a bit tricky, as there 
can be compatibility issues between the destination Hyper-V host and the current 
Hyper-V host from which the virtual machine was exported.

The following example shows a similar example. Here, we are trying to import a 
virtual machine, which was exported from a different Hyper-V host. This led to 
an error, asking us to run the Compare-VM cmdlet to find out the virtual machine's 
incompatibilities with the Hyper-V host:

Next, we use the Compare-VM cmdlet to save the compatibility report:



Managing Your Hyper-V Virtual Machines

[ 66 ]

Formatting the compatibility report reveals that the virtual network adapter was 
connected to the switch, Production, during the export, and the current Hyper-V 
host has no switch by that name:

$report.Incompatibilities | Format-Table –AutoSize

The following screenshot displays the output:

Next, we disconnect the network adapter, which caused an error as per the 
compatibility report. To disconnect the virtual network adapter, run the following 
cmdlet:

$report.Incompatibilities[0].Source | Disconnect-VMNetworkAdapter

Once the incompatibilities are fixed, we again generate a new compatibility report  
to determine if the virtual machine is compatible with the Hyper-V host:

Compare-VM –CompatibilityReport $report

We can see that there are no incompatibility messages in the output of $report:



Chapter 3

[ 67 ]

Now, when we try to import the virtual machine whose configuration was not  
earlier compatible with the Hyper-V host, we see that the virtual machine gets 
imported successfully:

Similarly, to export a virtual machine, you can use the Export-VM cmdlet. The 
Export-VM cmdlet exports a virtual machine to disk. This cmdlet creates a folder at 
a specified location with three subfolders: Snapshots, Virtual Hard Disks, and 
Virtual Machines. The Snapshots and Virtual Hard Disk folders contain the 
snapshots and the virtual hard disks of the specified virtual machine respectively. 
The Virtual Machines folder contains the configuration XML of the specified 
virtual machine. The example shown in the following screenshot exports the virtual 
machine, Test, to the root of the D drive:

The example shown in the following screenshot exports all the virtual machines to 
the root of the D drive. Each virtual machine will be exported to its own folder:

Managing virtual machine snapshots
The virtual machine snapshot nomenclature in PowerShell has been changed to 
Checkpoint-VM. To get the list of all cmdlets that can be used to checkpoint a VM, 
type the command shown in the following screenshot in a PowerShell prompt:



Managing Your Hyper-V Virtual Machines

[ 68 ]

Let's start exploring some of these cmdlets. Let's start with the cmdlet, which allows 
you to take a VM snapshot of the Checkpoint-VM cmdlet. The Checkpoint-VM 
cmdlet creates a snapshot of a virtual machine. Type the command shown in the 
following screenshot in a PowerShell prompt to checkpoint a VM.

The command shown in the following screenshot checks the virtual machine, Test,  
on the Hyper-V host, Server1, and creates a snapshot of it:

Another example of checkpointing a VM is shown in the following command line:

CheckpointVM –Name Test –Computername Server1 – 
  Snapshotname "My New Snapshot"

There are a number of cmdlets, which are available to manage the virtual machine 
snapshots. To get a list of all the cmdlets that can be used to manage the virtual 
machine snapshots, type the command shown in the following screenshot in a 
PowerShell prompt:

The example shown in the following screenshot exports a snapshot, Base Image, of 
the virtual machine, TestVM, to D:\:

The example shown in the following screenshot gets all the snapshots of the virtual 
machine, TestVM:



Chapter 3

[ 69 ]

The example shown in the following screenshot gets all the standard snapshots of 
the virtual machine, TestVM:

The example shown in the following screenshot gets the immediate parent of a 
snapshot before applying the updates to the virtual machine, TestVM:

The example shown in the following screenshot gets the immediate child snapshots 
of $snapshot before applying updates to the virtual machine, TestVM:

The example shown in the following screenshot deletes all the snapshots of the 
virtual machine, TestVM, whose names start with Experiment:

Note that removing a snapshot takes a little while, depending on how old the 
snapshot is and how much data has changed between the dates of the merge. The 
following example deletes all the snapshots of the virtual machine, TestVM, that are 
older than 90 days:



Managing Your Hyper-V Virtual Machines

[ 70 ]

The example shown in the following screenshot renames the snapshot, 
Configuration 2, of the virtual machine, TestVM, to Configuration 2: applied 
all updates:

The example shown in the following screenshot restores the snapshot, Base image, 
of the virtual machine, TestVM:

The example shown in the following screenshot applies the most recent snapshot to 
all the virtual machines with no confirmation prompts:

Managing virtual machine backups with 
Hyper-V Replica
Hyper-V Replica was a new feature introduced in Windows Server 2012. In 
Windows 2012 R2, some new enhancements were introduced into Hyper-V Replica, 
which include the replica frequency throttling and the feature to extend the replica.

The example shown in the following screenshot configures the replication of testvm 
on the local Hyper-V host and directs replication traffic to port 80 on a replica server 
named server04.test.com, using Kerberos as the type of authentication:

 

The example shown in the following screenshot configures the replication of all the 
virtual machines on the local Hyper-V host and directs replication traffic to port 
80 on a replica server named server04.test.com, using Kerberos as the type of 
authentication:



Chapter 3

[ 71 ]

The example shown in the following screenshot gets the replication settings of all the 
replication-enabled virtual machines on the local Hyper-V host:

The example shown in the following screenshot gets the replication settings of all the 
virtual machines in the Replicating state:

The example shown in the following screenshot gets the replication configuration of 
the local replica server:

The example shown in the following screenshot imports the initial replication files 
for a virtual machine named VM01 from the location, d:\VMImportLocation\VM01:

The example shown in the following screenshot gets the replication monitoring 
details of a virtual machine named VM01:

The example shown in the following screenshot gets the replication monitoring 
details of all the virtual machines that have a replication health as Warning:



Managing Your Hyper-V Virtual Machines

[ 72 ]

Virtual machine replication can be removed by using the Remove-VMReplication 
cmdlet. The example shown in the following screenshot removes the replication 
relationships from all the replication-enabled virtual machines on the local  
Hyper-V host:

The example shown in the following screenshot resets the replication statistics  
of all the replication-enabled virtual machines on the local Hyper-V host:

The example shown in the following screenshot resynchronizes replication of the 
virtual machine, VM01:

The example shown in the following screenshot schedules the resynchronization of 
the replication for the virtual machine, VM01, to start at 5:00 AM on August 1, 2012:

The example shown in the following screenshot configures the recovery history and 
the application-consistent recovery points of the virtual machine, VM01:

The example shown in the following screenshot reverses the replication of the virtual 
machine, VM01:



Chapter 3

[ 73 ]

The example shown in the following screenshot configures the local host as a replica 
server and specifies Kerberos for authentication:

Set-VMReplicationServer $true –AllowedAuthenticationType Kerberos

The example shown in the following screenshot starts initial replication over the 
network for all the virtual machines on the local Hyper-V host for which the initial 
replication is pending:

The example shown in the following screenshot starts initial replication over the 
network for the virtual machines whose destination path is mentioned, on the local 
Hyper-V host for which initial replication is pending:

The example shown in the following screenshot stops the initial replication of all the 
virtual machines whose initial replication is in progress on the local replica server:

The example shown in the following screenshot stops all ongoing replications of 
virtual machines on the local Hyper-V server:

The example shown in the following screenshot suspends replication of all virtual 
machines on the local Hyper-V host:



Managing Your Hyper-V Virtual Machines

[ 74 ]

Throttling the Hyper-V Replica traffic involves changing the port used for the 
Hyper-V Replica from the default 80 to 443 (which can be done in the GUI or via 
Windows PowerShell). Then, use QoS to limit bandwidth at different times of the 
day for that port. This effectively throttles the transmission of the write logs.

We need to use the NetQoS policy to throttle the replica traffic; this can be done 
via PowerShell using the New-NetQosPolicy cmdlet. Based on the destination port 
(the port on which the replica server has been configured to receive replication 
traffic—maybe it's port 80 in your case) or the destination subnet, you can specify 
a throttling value, (-ThrottleRateActionBitsPerSecond), or assign a weight, 
MinBandwidthWeightAction.

The New-NetQosPolicy cmdlet creates a new network QoS policy. A QoS policy 
consists of two main parts: match conditions (also known as filters) and actions. 
Match conditions such as the name by which an application is run on Windows 
Server 2012 and later versions or a TCP port number decide to what traffic the policy 
is relating. Parameters such as DSCPAction and ThrottleRateAction determine 
how the policy will handle the matched traffic. Besides match conditions and actions, 
there are also some general parameters such as NetworkProfile and Precedence 
that the users can customize for a QoS policy. These are shown in the following 
screenshot:

The illustrated solution of replica shown in the preceding screenshot throttling 
would be to limit traffic based on the destination port. In this case, all the traffic  
from the Hyper-V host to a specific destination port gets throttled.

Windows 2012 R2 introduced some major enhancements in Hyper-V Replica. A new 
feature is extended replication. In extended replication, your replica server forwards 
changes that occur on the primary virtual machines to a third server—the extended 
replica server. After a planned or unplanned failover from the primary server to 
the replica server, the extended replica server provides further business continuity 
protection. You can configure extended replication by using the –Extended option  
in Windows PowerShell.



Chapter 3

[ 75 ]

Managing virtual machine connections
With Windows Server 2012 R2 Hyper-V, Hyper-V is able to redirect local resources 
to a virtual machine session using the Virtual Machine Connection tool. This 
enhanced session mode connection uses the remote desktop connection session via 
the virtual machine bus (VMBus). Therefore, the network connectivity to the virtual 
machine is not required.

Let's look at the cmdlets that will be used to manage the virtual machine  
connect feature:

The preceding command gets a list of all the users who have access to connect  
to any virtual machine on the local computer. The following example assumes  
that the Grant-VMConnectAccess cmdlet has been run previously for at least one  
user account:

The command shown in the following screenshot provides a user with virtual\
administrator access to connect to a virtual machine named exchange1:

The command shown in the following screenshot revokes the access of user, 
virtual\administrator, to connect to a virtual machine named exchange1:



Managing Your Hyper-V Virtual Machines

[ 76 ]

Summary
In this chapter, we covered some of the most commonly used administrative  
tasks and saw the PowerShell way of automating them. In the next chapter,  
we will look at ways to create reusable PowerShell scripts for day-to-day Hyper-V 
management activities using the cmdlet concepts that you learned in the previous 
and current chapters.



Creating Reusable 
PowerShell Scripts Using 

Hyper-V PowerShell  
Module Cmdlets

In this chapter, we will look at how to create reusable PowerShell scripts for  
day-to-day Hyper-V management activities using cmdlets. We will be utilizing the 
core cmdlets that we learned in the previous two chapters to create these reusable 
scripts. We have subdivided this chapter into four sections, which will cover the core 
automation strategies that can be used to manage repetitive administrative tasks:

•	 Creating reusable scripts for virtual machine creation utilizing offloaded  
data transfers (ODX)

•	 Creating reusable scripts for virtual machine live migration 
•	 Creating reusable scripts to manage a virtual machine's snapshots, export, 

and import
•	 Creating reusable scripts to automate installation of Integration Service in 

virtual machines



Creating Reusable PowerShell Scripts Using Hyper-V PowerShell Module Cmdlets

[ 78 ]

Creating reusable scripts for virtual 
machine creation utilizing ODX
Using the core virtual machine cmdlets included in Hyper-V PowerShell, we can 
automate the process of virtual machine creation. With Windows Server 2012, 
Windows Server 2012 R2, and System Center Virtual Machine Manager 2012 R2,  
we can speed up the process of virtual machine provisioning utilizing ODX, so let's 
look at what exactly ODX is.

ODX is a new technology feature supported by the latest Windows Server 2012 
and Windows Server 2012 R2 operating systems that offloads the standard copy 
operations from Windows networks to the underlying storage system. For example, 
a virtual hard disk, when copied over the network for a virtual machine provisioning 
process, would take hours to complete the copy process depending on the virtual 
hard disk size as the copy process takes place over the network.

ODX is enabled by default in Windows Server 2012 and Windows Server 2012 R2. 
You can check whether it's enabled or disabled using a simple registry key check 
using PowerShell:

1.	 In a PowerShell prompt with administrative rights, execute the following 
command:
Get-ItemProperty hklm:\system\currentcontrolset\control\ 
  filesystem -Name "FilterSupportedFeaturesMode"

As you can see, when we execute this command on the test server, it shows 
that ODX is disabled since the value is set to one:

2.	 Now, to enable ODX, we need to set this registry key value to 0.



Chapter 4

[ 79 ]

3.	 Execute the following PowerShell command to enable ODX:
Set-ItemProperty hklm:\system\currentcontrolset\ 
  control\filesystem -Name "FilterSupportedFeaturesMode"  
  -Value 0 –Type Dword

4.	 Now, let's explore a PowerShell script that you can reuse in your 
environment to automate the creation of virtual machines using ODX. 
We will be using the concept of PowerShell remoting to do this. We have 
explained the various cmdlets in the following code, which when executed 
together as a PowerShell script will help you to automate the virtual machine 
provisioning process. I have broken the script into small sections explaining 
in detail what each cmdlet is expected to do when it is executed:

°° Enter the following command in a PowerShell window:
########################################################    

#Create Credential Objects to Connect to the Hyper-V Host    

########################################################    

$password = Read Host -AsSecureString

$credential = New-Object  
  System.Management.Automation.PsCredential 
  ("HVHOST\admin",$password)    

Using the preceding piece of code, we created a variable called $password 
into which we saved a predefined password to a secure string using the 
ConvertTo-SecureString cmdlet. Once we created a secured password, we 
created a $credential variable that contains the credential object. This way 
of accepting credentials allows the administrator to save the credentials in a 
variable that can be reused, and it avoids the usage of the Get-Credential 
cmdlet, which gives a pop up every time a user tries to authenticate to a 
system or the Hyper-V host:



Creating Reusable PowerShell Scripts Using Hyper-V PowerShell Module Cmdlets

[ 80 ]

°° In this section, we will create a remote PowerShell session to the 
Hyper-V host using the credentials that we saved in the $credential 
variable. We will also use the CredSSP-based authentication 
mechanism:
########################################################    

#Create PowerShell Remote sessions to the Hyper-V Host    

########################################################    

$session = New-PSSession -ComputerName  
  <Hyper-V Host Name> -credential $credential 

Invoke-Command -Session $session -ScriptBlock {     

°° In this section, we will create a new directory using the New-Item 
cmdlet to save the virtual machine in a clustered shared storage 
location; this will contain the virtual machine configuration file and 
its virtual hard disk:
########################################################    

#Create a New directory to save the virtual machine contents    

########################################################    

   

New-Item -Path "C:\ClusterStorage\Volume1\VMS" - 
  Name <Virtual Machine Name> -ItemType directory -Force    

°° In this section, we will use the magic of ODX by copying over the 
virtual machine hard disk to the destination virtual machine location 
using the Copy-Item cmdlet. Now, as I have ODX enabled, the Copy-
Item cmdlet copies across the virtual machines super-fast to the 
destination location utilizing the underlying storage technologies:
###########################################################
##########  

#Use ODX based copy process to copy across the VHD in 
seconds    

############################################################
########################    

Copy-Item "C:\ClusterStorage\Volume1\vhd\ 
  win2k12r2_sysprepped.vhdx" "C:\ClusterStorage\Volume1\VMS\ 
  <Virtual Machine Name>"    



Chapter 4

[ 81 ]

°° In this section, we will change the current directory to the location 
where we copied over the virtual machine hard disk. We will rename 
the virtual hard disk to a more user friendly name, which will consist 
of the virtual machine's name for easy administration, using the Set-
Location cmdlet:
Set-Location "C:\ClusterStorage\Volume1\VMS\ 
  <Virtual Machine Name>"    

$VMPath = "C:\ClusterStorage\Volume1\VMS\ 
  <Virtual Machine Name>"    

Rename-Item win2k12r2_sysprepped.vhdx -NewName " 
  <Virtual Machine Name>-OS.vhdx"    

°° In this section, we will create the virtual machine using the New-VM 
cmdlet and assign the virtual machine a memory of 4 GB and the 
virtual machine hard disk path and virtual machine path of $VHDPath 
and $VMPath respectively, and also a virtual switch named "Virtual 
Switch V1":

############################################################
##################   

#Create Virtual Machine on the Hyper-V host and Configure 
its  
  properties    

############################################################
##################  

Import-Module hyper-v    

  

$VHDPath = "C:\ClusterStorage\Volume1\ VMS\ 
  <Virtual Machine Name>/"<Virtual Machine Name>-OS.vhdx "    

    

New-VM -ComputerName $PH -MemoryStartupBytes 4GB -Name  
  <Virtual Machine Name>-VHDPath $VHDPath -Path $VMPath  
  -SwitchName "Virtual Switch V1"     

  

  

############################################################
#############################    

#Set Vm properties before start, enable dynamic memory  
  for memory optimization    



Creating Reusable PowerShell Scripts Using Hyper-V PowerShell Module Cmdlets

[ 82 ]

Set-VM -name <Virtual Machine Name>-ProcessorCount 4 - 
  DynamicMemory -AutomaticStartAction StartIfRunning - 
  AutomaticStopAction Save     

   

############################################################
#############################

# Disable Time Sync on a VM so that it sync's time from 
   a domain controller    

Disable-VMIntegrationService -VMName <Virtual Machine  
  Name> -Name "Time Synchronization" 

Start-VM <Virtual Machine Name> -Verbose  

Once the virtual machine gets created, we can use the Set-VM cmdlet to set 
the virtual machine properties such as processor count, dynamic memory, 
and the automatic start and stop action. We will also disable the "Time 
Synchronization" VM Integration Service so that the virtual machine 
does not sync its clock with the time set on the Hyper-V host. Once all the 
configuration activities are completed, we will start the virtual machine using 
the Start-VM cmdlet:

##################################################################
##################    

#Make the Virtual Machines Highly Available and add them to the 
clustered instance    

##################################################################
##################    

Import-Module failoverclusters    

    

Add-ClusterVirtualMachineRole -VirtualMachine <Virtual Machine 
Name>

5.	 Next, we will make the virtual machine highly available using the Add-
ClusterVirtualMachineRole cmdlet so that its services remain highly 
available in the event of a host Hyper-V virtual machine crash.



Chapter 4

[ 83 ]

Creating reusable scripts for virtual 
machine live migration
Reusable scripts help the Hyper-V administrator to automate various mundane 
tasks. Let's explore ways to automate one of the most commonly used virtual 
machine tasks. To do this, let's look at a script that can be used to automate the  
live migration of virtual machines across various Hyper-V hosts in a cluster.

Similar to the previous script, let's break this script into various components to 
understand its execution step by step. Also, in the scripting technique illustrated  
as follows, we will be using the concept of PowerShell workflows to migrate the 
virtual machines across the Hyper-V host cluster live in a parallel manner and not  
a sequential one:

workflow Move-LiveVM

{

param(

[Parameter(Mandatory)]

[string]$SourceHyperVhost,

[Parameter(Mandatory)]

[string]$DestinationHyperVhost,

[Parameter(Mandatory)]

[string]$ClusterName

)

Using the preceding piece of code, we created a PowerShell workflow called Move-
LiveVM, which gets its input from the $SourceHyperVhost (which is the source 
Hyper-V host name), $DestinationHyperVhost (which is the destination Hyper-V 
host name), and $clustername (which is the Hyper-V cluster name) parameters. 
All these are mandatory parameters and need to be input passed by the user during 
workflow execution:



Creating Reusable PowerShell Scripts Using Hyper-V PowerShell Module Cmdlets

[ 84 ]

$vminfo = Get-ClusterGroup -cluster $clustername | Where-Object 
-filterscript  {$_.grouptype -match "VirtualMachine" -and $_.ownernode 
-match $SourceHyperVhost} 

Foreach -parallel  ($vm in $vminfo)

{

Move-ClusterVirtualMachineRole $vm -Node $DestinationHyperVhost 
-MigrationType live  -Cluster $clustername

}

}

Next, we extracted the virtual machine cluster group name for all the virtual 
machines that were highly available and used a for-each loop with the – parallel 
parameter to move the virtual machines to the destination Hyper-V host using live 
migration in parallel.

Creating reusable scripts to manage 
export and import of virtual machine 
snapshots
Next, we will look at some scripts that can be used to automate the virtual  
machine import, export, and snapshot processes. This section is relatively simple  
as we will be using a for-each loop to iterate across all virtual machines and  
perform these activities.

For this particular example, we will be using a single script to illustrate all  
three processes:

$vminfo = Get-VM



Chapter 4

[ 85 ]

As you can see in the preceding piece of code, we will extract the information about 
all the virtual machines and store it in a variable, $vminfo:

Foreach ($vm in $vminfo)

{

Next, let's iterate across all the virtual machines stored in the $vminfo variable and 
create a snapshot of the virtual machines using the Checkpoint-VM cmdlet:

Checkpoint-VM -Name $vm.name -SnapshotName BeforeInstallingUpdates

}

Next, let's export all the virtual machines to a location using the Export-VM cmdlet. 
We can use a similar for-loop technique to export all the virtual machines in our 
Hyper-V server to a predefined location:

$vminfo = Get-VM

Foreach ($vm in $vminfo)

{

Export-VM –Name $vm.name –Path D:\Export

}

Once we export all these virtual machines to a predefined location, we can also 
import them using the Import-VM cmdlet. We can again use a similar for loop 
technique to import the virtual machines:

$vminfo=GET-CHILDITEM D:\Export -recurse –include *.exp

Through the preceding piece of code, we can get the details of all the virtual 
machines that have been exported in our example:

$VMinfo | FOREACH { 

IMPORT-VM -path $_.Fullname -Copy -VhdDestinationPath  
  $VMDefaultDrive –

VirtualMachinePath $VMDefaultPath -SnapshotFilePath  
  $VMDefaultPath -SmartPagingFilePath $VMDefaultPath -GenerateNewId 

}



Creating Reusable PowerShell Scripts Using Hyper-V PowerShell Module Cmdlets

[ 86 ]

In the preceding code snippet, we iterate across all the virtual machines that have 
been exported and import them into Hyper-V Manager from the exports.

Creating reusable scripts to automate 
installation of Integration Service in 
virtual machines
Next, we will look at some scripts that can be used to automate the installation  
of Integration Service in virtual machines. These scripts support Windows  
Server 2012, Hyper-V Version 3, and their later versions from the perspective  
of Microsoft hypervisor.

This example is illustrated as follows by creating a function that gets Integration 
Service installed.

Let's consider four parameters for this function, which include the virtual machine 
name, the Hyper-V hostname, the username, and the password:

function Install-VMIntegrationService 

{

    [CmdletBinding()] 

    

    Param 

    ( 

      # Param1 help description 

      [Parameter(Mandatory=$true,ValueFromPipelineByPropertyName= 
        $true,Position=0)] 

        $VMName, 

 

        # Param2 help description 

        [Parameter(Mandatory=$true, 
          ValueFromPipelineByPropertyName=$true,Position=1)] 

        $VMComputerName, 

 

          # Param2 help description 

        [Parameter(Mandatory=$true, 
          ValueFromPipelineByPropertyName=$true,Position=2)] 



Chapter 4

[ 87 ]

        $username, 

 

          # Param2 help description 

        [Parameter(Mandatory=$true, 
          ValueFromPipelineByPropertyName=$true,Position=3)] 

        $password 

        ) 

Next, let's iterate across all the virtual machines and their associated Hyper-V host 
using multiple for-each loops. Consider four parameters for this function, which 
include the virtual machine name, the Hyper-V hostname, the username, and  
the password:

  foreach ($vm in $vmname) 

 

    { 

 

    foreach ($comp in $VMComputerName) 

 

    { 

Next, we will create a credential object, which will be used to invoke remote 
PowerShell sessions in the virtual machines to get the Integration Service version.

     $pass =  ConvertTo-SecureString  -String $password - 
      AsPlainText -force 

    $cred = New-Object System.Management. 
      Automation.PsCredential($username,$pass) 

Next, we will mount the VMGuest.iso image to a virtual machine and compare the 
versions of Integration Service on the Hyper-V host and the virtual machine. I also 
extract the DVD drive letter:

    Set-VMDvdDrive -VMName $vm -Path  
  "C:\Windows\System32\vmguest.iso"  

 

    $DVDriveLetter = Get-VMDvdDrive -VMName $vm | select - 
      ExpandProperty id | Split-Path -Leaf 

 



Creating Reusable PowerShell Scripts Using Hyper-V PowerShell Module Cmdlets

[ 88 ]

    $HostICversion= Get-ItemProperty  
      "HKLM:\SOFTWARE\Microsoft\Windows  
      NT\CurrentVersion\Virtualization\GuestInstaller\ 
      Version" | select -ExpandProperty Microsoft-Hyper-V 
      -Guest-Installer 

    

    $VMICversion = Invoke-Command -ScriptBlock {Get-ItemProperty  
      "HKLM:\software\microsoft\virtual machine\ 
      auto" | select -ExpandProperty integrationservicesversion } - 
      ComputerName $comp -Credential $cred 

If we find that the versions of Integration Service on both the virtual machine and 
the Hyper-V host are the same, then we will unmount the VMGuest.iso DVD drive 
from the virtual machine, exit the script, and write a verbose message to the user 
informing him or her that the Integration Service version is up-to-date on the  
virtual machine:

    if($HostICversion -eq $VMICversion) { 

    Write-Verbose "Hyper-V Host IC Version and the VM $vm IC Version  
      are the same" -Verbose 

    $obj = New-Object psobject -Property @{ 

    'HostIntegration Services Version' =  $HostICversion 

    'VMIntegration Services Version' =  $VMICversion 

    'Hyper-V Host Name' = hostname 

    'VirtualMachine Name'= $vm 

    } 

    Write-Output $obj 

    Set-VMDvdDrive -VMName $vm -ControllerNumber1 - 
      ControllerLocation 0 -Path $null 

        

    } 



Chapter 4

[ 89 ]

If we find that the versions of Integration Service on both the virtual machine and 
the Hyper-V host are different, we will display a message to the user stating that the 
virtual machine has the old version of Integration Service:

else { 

    $VMICversion = Invoke-Command -ScriptBlock {Get-ItemProperty  
  "HKLM:\software\microsoft\virtual machine\auto" | select 
-ExpandProperty integrationservicesversion } -ComputerName $comp 
-Credential $cred 

    write-verbose  "$vm Old Integration Services Version  
  $VMICversion" -Verbose 

Next, we will use the Invoke-WMIMethod cmdlet to install Integration Service silently 
on the virtual machine; we will allow this command to enter sleep mode for 3 
seconds before execution:

    Invoke-WmiMethod -ComputerName $comp -Class Win32_Process -Name  
Create -ArgumentList "$($DVDriveLetter):\support\x86\setup.exe / 
quiet /norestart" -Credential $cred 

 

    

    

    start-sleep 3            

Next, we will use a while loop to check whether the process that started at the time 
of the installation of Integration Service was completed successfully; we will also 
display a message showing the progress of installation:

    while (@(Get-Process setup -computername $comp   -ErrorAction 
SilentlyContinue).Count -ne 0) { 

        Start-Sleep 3 

        Write-verbose "Waiting for Integration Service Install to  
          Finish on $comp ..." -Verbose 

    } 

Once the script verifies that Integration Service has been installed, we will have to 
restart the computer for the changes to take place. In the end, we will again compare 
the Integration Service version on both the virtual machine and the Hyper-V host, 
verify that it is the same, and give a user friendly output to the user stating the 
installation has been completed:

    write-verbose  "Completed the Installation of Integration  
      Services" -Verbose 



Creating Reusable PowerShell Scripts Using Hyper-V PowerShell Module Cmdlets

[ 90 ]

    write-verbose  "Restarting Computer for Changes to Take Place" 
-Verbose 

    

    Restart-Computer -ComputerName $comp -Wait -For WinRM -Force 
-Credential $cred 

    

    

    write-verbose  "$vm Is Online Now" -Verbose 

    $VMICversion = Invoke-Command -ScriptBlock {Get- 
      ItemProperty "HKLM:\software\microsoft\virtual  
      machine\auto" | select -ExpandProperty  
      integrationservicesversion } -ComputerName $comp  
      -Credential $cred 

    write-verbose  "$vm New Integration Services Version  
      $VMICversion" -Verbose 

    Set-VMDvdDrive -VMName $vm -ControllerNumber 1 - 
      ControllerLocation 0 -Path $null 

        

        } 

        

        }

    } 

 

    

 

 

 

} 



Chapter 4

[ 91 ]

Summary
In this chapter, we went in-depth into ways to build custom scripts for various  
day-to-day administrative activities. In the next chapter, we will cover in detail  
how to troubleshoot Hyper-V environment issues using the best practices for 
PowerShell cmdlets in Hyper-V.





The Next Step – Integration 
with SCVMM

The System Center Virtual Machine Manager (SCVMM) comes with several  
built-in PowerShell cmdlets that allow one to manage the Hyper-V environment,  
which is deployed at a very large scale. In this chapter, we will look at how 
to integrate our existing Hyper-V infrastructure with SCVMM, which is an 
enterprise-level Microsoft application that allows you to manage multiple Hyper-V 
environments and provides you with a single pane of glass management experience.

We have subdivided this chapter into two sections, which will give you an insight 
into the advantages of integration with SCVMM and also give you details on the 
PowerShell cmdlets that you will get after integration with SCVMM:

•	 Why integrate with SCVMM?
•	 The new PowerShell cmdlets after integration with SCVMM

Why integrate with SCVMM?
SCVMM 2012 R2 does not just manage virtual machines (VM) anymore. It does 
more than that and manages the entire virtualized data center, effectively managing 
the entire VM host lifecycle. SCVMM 2012 R2 can now communicate with bare metal 
machines with no installed operating system, execute bare metal virtualization, 
and manage and deploy Hyper-V clusters as well as talk directly to SAN storage. 
SCVMM allows you to manage an entire cloud—you can now abstract the host, 
storage, and networking into a unified pool of computing resources.



The Next Step – Integration with SCVMM

[ 94 ]

SCVMM has the ability to deploy the App-V server and deploy the virtualized 
applications to hosts as well as enabling the SQL server profiles to deploy 
customized database servers. App-V allows you to stream your applications and 
allows the administrator to provide software as a service. It can also be centrally 
managed via the App-V management console. SQL Server profiles in SCVMM allow 
you to create a profile to deploy a SQL Server instance on a virtual machine.

Overall, the SCVMM features can be categorized into fabrics and services and clouds:

•	 The fabric feature can be subcategorized into core fabric management, 
resource optimization, and infrastructure enhancements

•	 The services and clouds feature includes the cloud management features

Core fabric management
The core fabric management feature gives you the ability to manage all your 
hardware resources, which include bare metal provisioning and network and storage 
management. It also enables you to manage multiple hypervisors such as Hyper-V, 
VMware, and Citrix. Fabric management refers to managing all the features that 
are necessary to manage VMs. The core fabric management feature consists of three 
main subcomponents, which are the compute, network and storage resources:

•	 The compute resource: This resource allows one to manage multiple 
hypervisor platforms, server hardware such as iLO and IPMI, bare metal 
provisioning with cluster creation, and storage provisioning.

•	 The network resource: This resource allows one to define a logical  
network with VLANs and subnets per data center location, and assign  
IP and MAC addresses from pools. It also allows the automated  
provisioning of load balancers.

•	 The storage resource: This resource allows the infrastructure administrator 
to do storage provisioning and management using SMI-S, allows it to 
discover the storage-device-to-VM relationship and classify storage 
according to its capability. This also allows the administrator to discover 
and provide new LUNs and assign new storage using Hyper-V hosts and 
clusters, and also caters to rapid provisioning using LUN cloning.



Chapter 5

[ 95 ]

Resource optimization
The resource optimization feature allows the infrastructure administrator to run his 
or her Hyper-V environment at optimal settings, which include selecting the right 
power settings for the Hyper-V hosts using core parking, PRO integration with 
System Center Operations Manager (SCOM), and also dynamic optimization to 
proactively monitor the load of the VMs across the cluster.

The Resource optimization feature can be subdivided into three main 
subcomponents, which are listed as follows:

•	 Placement: This uses the star rating technique to optimally place the VMs  
on the right hosts. SCVMM has more than 100 placement checks for placing 
the VMs. It also supports custom placement rules and also its private  
cloud aware.

•	 Dynamic optimization: The Dynamic optimization feature does not require 
the pro-pack and, hence, has no dependency on SCOM. This feature manages 
the cluster level workload balancing scheme for better VM performance, and 
it utilizes live VM migration to move VM workloads. Dynamic optimizations 
can be set on manual and automatic modes.

•	 Power optimization: This feature effectively monitors the server that is 
being utilized and can power off the server during low levels of resource 
utilization. The administrator has the control to define a power optimization 
policy. The Power optimization feature is internally dependent on  
dynamic optimization.

Infrastructure enhancements
The infrastructure enhancement feature includes the new feature of highly available 
(HA) VMM servers, update management, and also extensive PowerShell support. 
The infrastructure enhancements feature can be subdivided into three main 
subcomponents, which are PowerShell, HA VMM server, and update management:

•	 PowerShell: SCVMM 2012 R2 is fully PowerShell v3 compatible. It is easily 
discoverable and also supports backward compatibility with the SCVMM 
2008 R2 scripting interface.

•	 HA VMM server: SCVMM 2012 R2 is cluster-aware and hence, supports 
high availability. This feature effectively eliminates VMM server as a single 
point of failure.



The Next Step – Integration with SCVMM

[ 96 ]

•	 Update management: The update management feature allows the 
administrator to update the cluster in an orchestrated manner. 
Administrators can define baselines and control the update life cycle,  
which includes on demand scan and remediation. This feature is fully 
integrated with Windows Server Update Services (WSUS).

Cloud management
Next, let's look at the features that come under cloud management. Cloud 
management allows the administrator to manage everything in a private cloud 
environment, which includes managing the network resources in private cloud  
and delegating self-service provisioning capabilities that allow to author deploy  
and manage the virtual machines in the private cloud.

The resource cloud management feature can be subdivided into two main 
subcomponents, which are the cloud capacity and capability profiles and  
delegation and quota.

•	 Cloud capacity and capability profiles: A cloud can host highly available 
VMs, allow the virtual machines to use dynamic and differencing disks, and 
also allow to enable network optimizations. It also allows you to dimension 
the VMs as per the cloud capacity, which includes setting the number of 
vCPUs, memory, storage, and the number of deployed VMs.

•	 Delegation and quota: SCVMM allows the administrator to define scopes. 
The scopes can be subdivided into three types including the everything 
scope. The everything scope cannot be modified and it can perform 
any administrative action. The everything scope is owned by the VMM 
administrator. Next, we have the scope set for host groups and clouds. This 
scope consists of the delegated and the read-only administrator. This scope 
allows us to set up fabric by configuring hosts, network, and storage. It 
allows us to create a cloud and assign it to self-service users. The final scope 
is the clouds-only scope. A self-service user forms a part of this scope. This 
scope allows us to deploy and manage VMs and services and also to author 
the templates. The quotas are set as per user limits.

I hope you have a good understanding on the effectiveness of using SCVMM 2012 R2 
to manage a Hyper-V infrastructure. Next, let's look at the new PowerShell cmdlets 
that come with SCVMM 2012 R2.



Chapter 5

[ 97 ]

PowerShell cmdlets in integration with 
SCVMM
System Center Virtual Machine Manager 2012 R2 has enormous PowerShell support. 
Every task that you can perform on the SCVMM console can also be performed  
using PowerShell. Also, there are some tasks in SCVMM that can only be performed  
using PowerShell.

There are two ways in which you can access the PowerShell console for SCVMM:

•	 The first technique is to launch it from the SCVMM console itself. Open the 
SCVMM console in administrator mode and click on the PowerShell icon in 
the GUI console. This will launch the PowerShell console with the imported 
virtualmachinemanager PowerShell module:

•	 You can also import the virtualmachinemanager PowerShell module 
using the Import-module cmdlet. Launch the PowerShell console in an 
administrative mode and type the following command:

Import-module virtualmachinemanager



The Next Step – Integration with SCVMM

[ 98 ]

This will import the cmdlets in the virtualmachinemanager module for 
administrative use. As you can see in the following screenshot, if I execute a 
Measure-Object cmdlet, PowerShell gives me 619 cmdlets that are available 
for Hyper-V infrastructure management:

New PowerShell cmdlets have been added to all features in SCVMM, which include 
networking, virtual machines, and cloud and storage management. So, let's look at 
some of these cmdlets and their examples:

•	 New-SCVirtualMachine: The New-SCVirtualMachine cmdlet allows you  
to create a new virtual machine. The virtual machine can be created either 
from a stopped virtual machine or a virtual machine template, which exists 
on a library host. It can also be created from a virtual hard disk (VHD)  
that contains third-party operating system.
The following sample code shows how you can create a highly available  
virtual machine:

# We create a Job guid here which is unique per virtual machine 
created using  
  the below set of cmdlets.
$JobGuid = [System.Guid]::NewGuid().ToString()

# Here we give the name of the virtual machine.
$VMName = "HA_VM01"

# In the below set of cmdlets we create a virtual network adapter,  
  virtual dvd drive, hardware profile and a disk  
  drive for the virtual machine.
New-SCVirtualNetworkAdapter -JobGroup $JobGuid  
  -PhysicalAddressType Dynamic -VLANEnabled $False
New-SCVirtualDVDDrive -JobGroup $JobGuid -Bus 1 -LUN 0



Chapter 5

[ 99 ]

New-SCHardwareProfile -Owner "scvmm\admin" -Name "HWProfile"  
  -CPUCount 1 -MemoryMB 512  -HighlyAvailable $True -NumLock  
  $False -BootOrder "CD", "IdeHardDrive", "PxeBoot",  
  "Floppy" -LimitCPUFunctionality
 $False -JobGroup $JobGuid
New-SCVirtualDiskDrive -IDE -Bus 0 -LUN 0  
  -JobGroup $JobGuid -Size 40960 -Dynamic –Filename  "HAV_M01_
disk.vhd"

# Here we give the details of the virtual machine host on which  
  this virtual machine will be created..
$VMHost = Get-SCVMHost | where {$_.Name -eq "Hyper-V01.admin.com"}
# Next we get the hardware profile and operating system  
  which should be used for the virtual machine.

$HardwareProfile = Get-SCHardwareProfile | where {$_.Name -eq 
"HWProfile"}
$OperatingSystem = Get-SCOperatingSystem | where  
  {$_.Name -eq "64-bit edition of Windows Server 2008 R2  
Datacenter"}

# next using the above set of input parameters we will  
  create the virtual machine.
New-SCVirtualMachine -Name $VMName -Description "" -VMMServer  
  "scVMMServer.scvmm.com" –Owner  "scvmm\admin" -VMHost  
  $VMHost -Path "R:\" -HardwareProfile $HardwareProfile -JobGroup  
  $JobGuid  -OperatingSystem $OperatingSystem -RunAsynchronously  
  -StartAction NeverAutoTurnOnVM -StopAction SaveVM

•	 New-SCCloud: The New-SCCloud cmdlet allows you to create a private  
cloud in VMM. This cannot be done using the Hyper-V PowerShell cmdlets.

The following sample code shows you how to create a private cloud using  
this cmdlet:

$Guid = [System.Guid]::NewGuid()
Set-SCCloud -JobGroup $Guid
$HostGroup = Get-SCVMHostGroup -Name "HostGroup02"
New-SCCloud -JobGroup $Guid -Name "Cloud02" -VMHostGroup  
  $HostGroup -Description "This is a cloud for HostGroup02"



The Next Step – Integration with SCVMM

[ 100 ]

Summary
In this chapter, you learned the real integration scenario of using SCVMM to manage 
our Hyper-V infrastructure. In the next chapter, we will cover in detail how to 
troubleshoot Hyper-V environment issues using the best practice PowerShell  
cmdlets in Hyper-V.



Troubleshooting Hyper-V 
Environment Issues and Best 

Practices Using PowerShell
In this chapter, we will look at how to troubleshoot your Hyper-V environment 
using PowerShell. We will also look at how you can use Best Practices Analyzer 
(BPA) for Hyper-V to troubleshoot the environment. We have subdivided 
this chapter into two main sections covering the strategies that can be used to 
troubleshoot the Hyper-V environment:

•	 Troubleshooting the Hyper-V environment using event log: In this 
section, we will explore the built-in cmdlets in Windows that can be used 
to troubleshoot and analyze the Hyper-V events that get registered in the 
Windows event logs.

•	 Troubleshooting the Hyper-V environment using BPA: In this section,  
we will explore the Hyper-V BPA model-based cmdlets in the best practices 
module, which will be used to troubleshoot and verify whether the Hyper-V 
environment runs as per the best practice guidelines set by Microsoft.



Troubleshooting Hyper-V Environment Issues and Best Practices Using PowerShell

[ 102 ]

Troubleshooting the Hyper-V 
environment using the event log
The Hyper-V administrator can use the Get-EventLog cmdlet to get the events 
related to Hyper-V. Monitoring these events using the Event Viewer GUI is a very 
tedious task. The following screenshot shows a view of the event log in the Event 
Viewer GUI. Scrolling through these events is a tedious task, as there are a lot of 
system-related events that are not related to Hyper-V:

The Get-EventLog cmdlet can be directed to filter only the events that are related to 
Hyper-V. To do this, open up a PowerShell prompt in administrative mode and run 
the following command:

Get-EventLog system -source *Hyper-V* -after "07/21/2014"



Chapter 6

[ 103 ]

The preceding command will query for all events related to Hyper-V in the system 
event log that occurred after July 27, 2014. Once we execute the preceding command, 
we will get the output returned as follows:

As you can see, I get all the required information filtered out from thousands of 
events that were registered in the event log. To make it simpler, the output from the 
preceding command can be used when executing the Out-GridView cmdlet to get a 
small GUI-based result. Type the following command in the PowerShell prompt to 
get the GUI-based result:

Get-EventLog system -source *Hyper-V* -after "07/21/2014" |  
  Out-GridView



Troubleshooting Hyper-V Environment Issues and Best Practices Using PowerShell

[ 104 ]

Just append the Out-Gridview cmdlet to the first cmdlet to get the result as shown 
in the next screenshot. As you can see in the following screenshot, I get a nice UI 
console for my results, which I can filter further by adding criteria:

Hyper-V event logs can also be found at the application event log. These events have 
the vmic prefix on them. Run the following command in a PowerShell window and 
you will be able to see the Hyper-V-related event logs in the application event log:

Get-EventLog -LogName Application -Source vmic* -before "07/21/2014"  
  | Out-GridView

The preceding command will query the application event log and get details of all 
the events for Hyper-V that happened before July 27, 2014 and contains vmic as 
the prefix in the source text. Another way would be to use the Export-Csv cmdlet 
instead to the Out-GridView cmdlet to save the output into a CSV file.



Chapter 6

[ 105 ]

Troubleshooting the Hyper-V 
environment using BPA
The Hyper-V administrator can also use the BPA that is built in the Windows Server 
2012 to test whether the Hyper-V environment is running as per the best practices 
guidelines set by Microsoft. Microsoft Hyper-V Best Practices Analyzer checks the 
current configuration set of Hyper-V against a list of recommended configurations 
and generates warnings and alerts when there are deviations. Microsoft Hyper-V 
Best Practices Analyzer will also provide solutions to correct  
the warnings.

There are a number of BPA models that are available from Microsoft. To select the 
right BPA model for Hyper-V; run the following cmdlet in a PowerShell prompt:

Get-BpaModel | Select Id

Once we execute the preceding command, we will get a list of all the BPA models 
that exist on the server, including the Hyper-V one:



Troubleshooting Hyper-V Environment Issues and Best Practices Using PowerShell

[ 106 ]

Once we get the correct BPA model for Hyper-V, we need to execute this BPA model 
against the server using the Invoke-BpaModel cmdlet. Execute the command shown 
in the following screenshot in a PowerShell prompt in administrative mode to invoke 
the Hyper-V BPA model against the server:

Once the BPA model completes its execution against the server, we can get the 
results using the Get-BpaResult cmdlet:

Get-BpaResult Microsoft/Windows/Hyper-V | Group-Object severity

As you can see in the preceding screenshot, we executed the Get-BpaResult cmdlet 
and grouped the output based on the severity and the result shows that we have 2 
errors, 4 warnings, and 64 information messages.

Next, to filter out the BPA results to get only the errors in our Hyper-V environment, 
we need to execute the following command in the PowerShell prompt:

Get-BpaResult Microsoft/Windows/Hyper-V | ?{$_.severity -match  
  "error"} | select modelid,source,category,title,problem,resolution



Chapter 6

[ 107 ]

The PowerShell community
PowerShell has great community support. The following section provides you with 
many useful links to the project page and forums:

•	 Homepage: http://msdn.microsoft.com/en-us/library/windows/
desktop/

•	 Manual and documentation: http://technet.microsoft.com/library/
•	 Wiki: http://social.technet.microsoft.com/wiki/contents/
•	 Blog: http://blogs.msdn.com/b/powershell/

Summary
In this chapter, we covered how to troubleshoot Hyper-V environment issues using 
the best practice PowerShell cmdlets in Hyper-V. With the topics that we covered 
in this book, an administrator is expected to have a good understanding of using 
PowerShell to automate his or her administrative tasks for Hyper-V management.

http://msdn.microsoft.com/en-us/library/windows/desktop/
http://msdn.microsoft.com/en-us/library/windows/desktop/
http://technet.microsoft.com/library/
http://social.technet.microsoft.com/wiki/contents/
http://blogs.msdn.com/b/powershell/




Index
A
Access Control List (ACL)  50

B
Best Practices Analyzer (BPA)

used, for troubleshooting Hyper-V  
environment   105, 106

C
cloud management, SCVMM

about  96
cloud capacity and capability profiles  96
delegation and quota  96

Cluster Shared Volumes (CSV)  10
core fabric management, SCVMM

about  94
compute resource  94
network resource  94
storage resource  94

E
event log

used, for troubleshooting Hyper-V  
environment   102-104

Export-VM cmdlet  18
Export-VMSnapshot cmdlet  18

G
Get-EventLog cmdlet  102
guest clustering  9

H
Hyper-V

configuring, PowerShell used  6
hosts  22-27
installing, PowerShell used  6
properties, configuring  56-62
virtual infrastructure, managing  21
virtual switches, configuring  56-62
virtual switches, creating  63
virtual switches migrations,  

managing  63, 64
virtual switches, removing  63

Hyper-V environment
troubleshooting, BPA used  105, 106
troubleshooting, event log used  102-104

Hyper-V management
with Hyper-V management shell  7, 8

Hyper-V PowerShell module  5
Hyper-V Replica

updations  18, 19
used, for managing virtual machine  

backups  70-74

I
infrastructure enhancement, SCVMM

about  95
HA VMM server  95
PowerShell  95
update management  96

input/output operations per second  
(IOPS)  15

integration services, Hyper-V
updations  17



[ 110 ]

integration services, virtual machines
installation automating, reusable scripts 

used  86-89
Internet Small Computer System Interface 

(iSCSI)  10

L
Learning Windows PowerShell Names

URL  7
live virtual hard disk (live VHD)

expanding  13
resizing  12-14

Logic Unit Number (LUN)  10

N
network adapters, virtual machine

adding  53
configuring, virtual switches used  51, 52
removing  54
renaming  54
VLANs, configuring  54, 55

network failover configuration,  
virtual machine  52, 53

New-SCCloud cmdlet  99
New-SCVirtualMachine cmdlet  98

O
offloaded data transfers (ODX)  77-82

P
PowerShell

blog, URL  107
community  107
Homepage, URL  107
manual and documentation, URL  107
used, for configuring Hyper-V  6
used, for installing Hyper-V  6
wiki, URL  107

PowerShell cmdlets
in integration with SCVMM  97-99

Q
Quality of Service (QoS)  63

R
resource optimization, SCVMM

about  95
dynamic optimization  95
placement  95
power optimization  95

reusable scripts
creating, for virtual machine creation  

utilizing ODX  78-82
creating, for virtual machine live  

migration  83
creating, to automate installation  

of integration service in  
virtual machines  86

creating, to automate installation  
of Integration Service in  
virtual machines  87-89

creating, to manage virtual machine  
snapshots export  84, 85

creating, to manage virtual machine  
snapshots import  84, 85

S
SCVMM

cloud management  96
core fabric management  94
infrastructure enhancement  95
integration, need for  93, 94
PowerShell cmdlets  97-99
resource optimization  95

snapshots, virtual machine
managing  67-70

storage quality of service (QoS)  15
System Center Operations  

Manager (SCOM)  95
System Center Virtual Machine  

Manager. See  SCVMM



[ 111 ]

U
update management feature  96

V
virtual floppy drive (VFD)  37
virtual hard disks (VHD)

managing, on virtual machines  39-44
shared  9-12

virtual machine
backups, managing with Hyper-V  

Replica  70-74
configuring, to use ISO file  36
configuring, to use virtual floppy  

drive (VFD)  37, 38
connect, managing  75
creating  29, 30
creation utilizing ODX, reusable  

scripts used  78-82
deleting  31
exporting  65-67
exports, managing  64
export, updations  18
generation  16, 17
importing  65-67
imports, managing  64
live migration, reusable scripts creating  

for  83
migration networks, managing  49, 50
migrations, managing  63, 64
network adapters, adding  53
network adapters configuring, virtual 

switch used  51
network adapters, removing  54
network adapters, renaming  54
network adapter VLANs, configuring  54
network failover configuration  52, 53
properties, configuring  33-35
snapshots, managing  64-70
starting  31, 32
stopping  31, 32
storage area network (SAN)  39
VHDs, managing  39-44

virtual machine snapshots
used, for managing exports  84, 85
used, for managing imports  84, 85

virtual network adapters
managing  48

virtual switches
configuring  56-62
creating  63
managing  48
removing  63
used, for configuring virtual machine  

network adapters  51, 52

W
Windows Server Update Services  

(WSUS)  96





 

Thank you for buying  
Microsoft Hyper-V PowerShell Automation

About Packt Publishing
Packt, pronounced 'packed', published its first book, Mastering phpMyAdmin for Effective MySQL 
Management, in April 2004, and subsequently continued to specialize in publishing highly 
focused books on specific technologies and solutions.

Our books and publications share the experiences of your fellow IT professionals in adapting 
and customizing today's systems, applications, and frameworks. Our solution-based books give 
you the knowledge and power to customize the software and technologies you're using to get 
the job done. Packt books are more specific and less general than the IT books you have seen in 
the past. Our unique business model allows us to bring you more focused information, giving 
you more of what you need to know, and less of what you don't.

Packt is a modern yet unique publishing company that focuses on producing quality,  
cutting-edge books for communities of developers, administrators, and newbies alike.  
For more information, please visit our website at www.packtpub.com.

About Packt Enterprise
In 2010, Packt launched two new brands, Packt Enterprise and Packt Open Source, in order  
to continue its focus on specialization. This book is part of the Packt Enterprise brand, home  
to books published on enterprise software – software created by major vendors, including  
(but not limited to) IBM, Microsoft, and Oracle, often for use in other corporations. Its titles 
will offer information relevant to a range of users of this software, including administrators, 
developers, architects, and end users.

Writing for Packt
We welcome all inquiries from people who are interested in authoring. Book proposals should 
be sent to author@packtpub.com. If your book idea is still at an early stage and you would 
like to discuss it first before writing a formal book proposal, then please contact us; one of our 
commissioning editors will get in touch with you. 

We're not just looking for published authors; if you have strong technical skills but no writing 
experience, our experienced editors can help you develop a writing career, or simply get some 
additional reward for your expertise.



Hyper-V Network Virtualization 
Cookbook
ISBN: 978-1-78217-780-7             Paperback: 228 pages

Over 20 recipes to ease the creation of new virtual 
machines in the networking layer using Hyper-V 
Network Virtualization

1.	 Create, configure, and administer System 
Center 2012 R2 virtual networks with Hyper-V.

2.	 Design practical solutions to optimize your 
network solutions.

3.	 Learn how to control who can access a VM on 
a specific port to enhance the security of your 
virtual machine.

Windows Server 2012 Hyper-V 
Cookbook
ISBN: 978-1-84968-442-2            Paperback: 304  pages

Over 50 simple but incredibly effective recipes for 
mastering the administration of Windows Server 
Hyper-V

1.	 Take advantage of numerous Hyper-V best 
practices for administrators.

2.	 Get to grips with migrating virtual machines 
between servers and old Hyper-V versions, 
automating tasks with PowerShell, providing 
a high availability and disaster recovery 
environment, and much more.

3.	 A practical cookbook bursting with  
essential recipes.

Please check www.PacktPub.com for information on our titles



Building and Managing a Virtual 
Environment with Hyper-V Server 
2012 R2 [Video]
ISBN: 978-1-78217-698-5             Duration: 03:30 hours

Build, deploy, and manage Hyper-V in failover 
cluster environments

1.	 Configure node computers for participation  
in a Hyper-V cluster.

2.	 Tackle the complicated subjects of storage  
and networking in a Hyper-V cluster.

3.	 Maximize the uptime for the services provided  
by your virtual machines.

Hyper-V Replica Essentials
ISBN: 978-1-78217-188-1             Paperback: 96 pages

Ensure business continuity and improve your disaster 
recovery policy using Hyper-V Replica

1.	 A practical step-by-step guide that goes beyond 
theory and focuses on getting hands-on.

2.	 Ensure business continuity and faster  
disaster recovery.

3.	 Learn how to deploy a failover cluster and 
encrypt communication traffic.

Please check www.PacktPub.com for information on our titles


	Cover
	Copyright
	Credits
	About the Author
	About the Reviewers
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1: New PowerShell Cmdlets 
in Hyper-V on Windows Server 2012 R2
	Installing and configuring Hyper-V using PowerShell
	Fundamental concepts of Hyper-V management with the Hyper-V management shell
	Shared virtual hard disks
	Live virtual hard disk resizing
	Expanding the virtual hard disk
	Resizing the virtual hard disk

	The storage quality of the service feature
	Virtual machine generation
	Updated features in integration services
	Updated features for exporting a virtual machine
	Updated features in Hyper-V Replica
	Summary

	Chapter 2: Managing Your Hyper-V Virtual Infrastructure
	Extracting information about Hyper-V hosts and the associated virtual machines
	Creating, deleting, starting, and stopping virtual machines
	Creating a virtual machine
	Deleting a virtual machine 
	Starting and stopping a virtual machine

	Configuring properties on virtual machines
	Managing VHDs on virtual machines

	Summary

	Chapter 3: Managing Your Hyper-V Virtual Machines
	Managing virtual switches and virtual network adapters
	Managing a virtual machine's migration networks
	Configuring virtual machine network adapters with a virtual switch
	Configuring virtual machine network failover settings
	Add, remove, and rename virtual machine network adapters
	Configuring a virtual machine's network adapter VLANs
	Configuring Hyper-V virtual switches and their properties
	Creating and removing Hyper-V virtual switches
	Managing virtual machine migrations
	Managing virtual machine imports, exports, and snapshots
	Importing and exporting virtual machines
	Managing virtual machine snapshots
	Managing virtual machine backups with Hyper-V Replica

	Managing virtual machine connect ions
	Summary

	Chapter 4: Creating Reusable PowerShell Scripts Using Hyper-V PowerShell 
Module Cmdlets
	Creating reusable scripts for virtual machine creation utilizing ODX
	Creating reusable scripts for virtual machine live migration
	Creating reusable scripts to manage export and import of virtual machine snapshots
	Creating reusable scripts to automate installation of Integration Service in virtual machines
	Summary

	Chapter 5: The Next Step – Integration with SCVMM
	Why integrate with SCVMM?
	Core fabric management
	Resource optimization
	Infrastructure enhancements
	Cloud management

	PowerShell cmdlets in integration with SCVMM
	Summary

	Chapter 6: Troubleshooting Hyper-V Environment Issues and Best Practices Using PowerShell
	Troubleshooting the Hyper-V environment using the event log
	Troubleshooting Hyper-V environment using BPA
	PowerShell community
	Summary

	Index

