
.

http://www.it-ebooks.info/

Getting	Started	with	Julia	Programming

Table	of	Contents

Getting	Started	with	Julia	Programming

Credits

About	the	Author

About	the	Reviewers

www.PacktPub.com

Support	files,	eBooks,	discount	offers,	and	more

Why	subscribe?

Free	access	for	Packt	account	holders

Preface

What	this	book	covers

What	you	need	for	this	book

Who	this	book	is	for

Conventions

Reader	feedback

Customer	support

Downloading	the	example	code

Errata

Piracy

Questions

The	Rationale	for	Julia

The	scope	of	Julia

Julia’s	place	among	the	other	programming	languages

A	comparison	with	other	languages	for	the	data	scientist

MATLAB

R

Python

Useful	links

Summary

1.	Installing	the	Julia	Platform

Installing	Julia

Windows	version	–	usable	from	Windows	XP	SP2	onwards

Ubuntu	version

OS	X

Building	from	source

Working	with	Julia’s	shell

Startup	options	and	Julia	scripts

Packages

Adding	a	new	package

Installing	and	working	with	Julia	Studio

Installing	and	working	with	IJulia

Installing	Sublime-IJulia

Installing	Juno

Other	editors	and	IDEs

How	Julia	works

Summary

2.	Variables,	Types,	and	Operations

Variables,	naming	conventions,	and	comments

Types

Integers

Floating	point	numbers

Elementary	mathematical	functions	and	operations

Rational	and	complex	numbers

Characters

Strings

Formatting	numbers	and	strings

Regular	expressions

Ranges	and	arrays

Other	ways	to	create	arrays

Some	common	functions	for	arrays

How	to	convert	an	array	of	chars	to	a	string

Dates	and	times

Scope	and	constants

Summary

3.	Functions

Defining	functions

Optional	and	keyword	arguments

Anonymous	functions

First-class	functions	and	closures

Recursive	functions

Map,	filter,	and	list	comprehensions

Generic	functions	and	multiple	dispatch

Summary

4.	Control	Flow

Conditional	evaluation

Repeated	evaluation

The	for	loop

The	while	loop

The	break	statement

The	continue	statement

Exception	handling

Scope	revisited

Tasks

Summary

5.	Collection	Types

Matrices

Tuples

Dictionaries

Keys	and	values	–	looping

Sets

Making	a	set	of	tuples

Example	project	–	word	frequency

Summary

6.	More	on	Types,	Methods,	and	Modules

Type	annotations	and	conversions

Type	conversions	and	promotions

The	type	hierarchy	–	subtypes	and	supertypes

Concrete	and	abstract	types

User-defined	and	composite	types

When	are	two	values	or	objects	equal	or	identical?

Multiple	dispatch	example

Types	and	collections	–	inner	constructors

Type	unions

Parametric	types	and	methods

Standard	modules	and	paths

Summary

7.	Metaprogramming	in	Julia

Expressions	and	symbols

Eval	and	interpolation

Defining	macros

Built-in	macros

Testing

Debugging

Benchmarking

Starting	a	task

Reflection	capabilities

Summary

8.	I/O,	Networking,	and	Parallel	Computing

Basic	input	and	output

Working	with	files

Reading	and	writing	CSV	files

Using	DataFrames

Other	file	formats

Working	with	TCP	sockets	and	servers

Interacting	with	databases

Parallel	operations	and	computing

Creating	processes

Using	low-level	communications

Parallel	loops	and	maps

Distributed	arrays

Summary

9.	Running	External	Programs

Running	shell	commands

Interpolation

Pipelining

Calling	C	and	FORTRAN

Calling	Python

Performance	tips

Tools	to	use

Summary

10.	The	Standard	Library	and	Packages

Digging	deeper	into	the	standard	library

Julia’s	package	manager

Installing	and	updating	packages

Publishing	a	package

Graphics	in	Julia

Using	Gadfly	on	data

Summary

A.	List	of	Macros	and	Packages

Macros

List	of	packages

Index

Getting	Started	with	Julia	Programming

Getting	Started	with	Julia	Programming
Copyright	©	2015	Packt	Publishing

All	rights	reserved.	No	part	of	this	book	may	be	reproduced,	stored	in	a	retrieval	system,
or	transmitted	in	any	form	or	by	any	means,	without	the	prior	written	permission	of	the
publisher,	except	in	the	case	of	brief	quotations	embedded	in	critical	articles	or	reviews.

Every	effort	has	been	made	in	the	preparation	of	this	book	to	ensure	the	accuracy	of	the
information	presented.	However,	the	information	contained	in	this	book	is	sold	without
warranty,	either	express	or	implied.	Neither	the	author,	nor	Packt	Publishing,	and	its
dealers	and	distributors	will	be	held	liable	for	any	damages	caused	or	alleged	to	be	caused
directly	or	indirectly	by	this	book.

Packt	Publishing	has	endeavored	to	provide	trademark	information	about	all	of	the
companies	and	products	mentioned	in	this	book	by	the	appropriate	use	of	capitals.
However,	Packt	Publishing	cannot	guarantee	the	accuracy	of	this	information.

First	published:	February	2015

Production	reference:	1200215

Published	by	Packt	Publishing	Ltd.

Livery	Place

35	Livery	Street

Birmingham	B3	2PB,	UK.

ISBN	978-1-78328-479-5

www.packtpub.com

http://www.packtpub.com

Credits
Author

Ivo	Balbaert

Reviewers

Pascal	Bugnion

Michael	Otte

Dustin	E.	Stansbury

Commissioning	Editor

Kevin	Colaco

Acquisition	Editor

Kevin	Colaco

Content	Development	Editor

Neeshma	Ramakrishnan

Technical	Editors

Mrunmayee	Patil

Shali	Sasidharan

Copy	Editor

Rashmi	Sawant

Project	Coordinator

Purav	Motiwalla

Proofreaders

Mario	Cecere

Paul	Hindle

Indexer

Monica	Ajmera	Mehta

Production	Coordinator

Conidon	Miranda

Cover	Work

Conidon	Miranda

About	the	Author
Ivo	Balbaert	is	currently	a	lecturer	in	(web)	programming	and	databases	at	CVO
Antwerpen	(www.cvoantwerpen.be),	a	community	college	in	Belgium.	He	received	a	PhD
degree	in	applied	physics	from	the	University	of	Antwerp	in	1986.	He	worked	for	20	years
in	the	software	industry	as	a	developer	and	consultant	in	several	companies,	and	for	10
years	as	a	project	manager	at	the	University	Hospital	of	Antwerp.	From	2000	onward,	he
switched	to	partly	teaching	and	developing	software	(KHM	Mechelen,	CVO	Antwerp).

He	also	wrote	an	introductory	book	in	Dutch	about	developing	in	Ruby	and	Rails,
Programmeren	met	Ruby	en	Rails,	Van	Duuren	Media.	In	2012,	he	authored	a	book	on	the
Go	programming	language,	The	Way	To	Go,	iUniverse.	In	2013,	in	collaboration	with
Dzenan	Ridzanovic,	he	authored	Learning	Dart	and	Dart	Cookbook,	both	by	Packt
Publishing.

I	would	like	to	thank	the	technical	reviewers	Pascal	Bugnion,	Michael	Otte,	and	Dustin
Stansbury	for	the	many	useful	remarks	that	improved	the	text.

http://www.cvoantwerpen.be

About	the	Reviewers
Pascal	Bugnion	is	a	data	scientist	with	a	strong	analytical	background	as	well	as	a	passion
for	software	development.	He	pursued	a	materials	science	undergraduate	degree	at	Oxford
University.	He	then	went	on	to	complete	a	PhD	in	computational	physics	at	Cambridge
University,	during	which	he	developed	and	applied	the	quantum	Monte	Carlo	methods	to
solidstate	physics.	This	resulted	in	four	publications,	including	an	article	in	Physical
Review	Letters,	the	leading	physics	journal.	He	now	works	as	a	database	architect	for	SCL
Elections,	a	company	that	specializes	in	predicting	voter	behavior.

Pascal	is	strongly	interested	in	contributing	to	open	source	software,	especially	the	Python
scientific	stack.	He	has	contributed	to	NumPy,	matplotlib,	and	IPython,	and	maintains
ScikitMonaco,	a	Python	library	for	Monte	Carlo	integration	as	well	as	GMaps,	a	Python
module	for	embedding	Google	maps	in	IPython	notebooks.

Michael	Otte	has	interests	that	include	the	application	of	artificial	intelligence	to	robotics,
with	a	focus	on	path	planning	algorithms	and	multirobot	systems.	He	has	been	using	the
Julia	language	since	2012	to	implement	motion	planning,	graph	search,	and	other
algorithms,	many	of	which	have	appeared	in	top	peer-reviewed	publications.	See
www.ottelab.com	for	more	details.	He	is	currently	a	research	associate	with	the
Department	of	Aerospace	Engineering	Sciences	at	the	University	of	Colorado	at	Boulder.
Prior	to	this,	he	was	a	postdoctoral	associate	with	the	Laboratory	for	Information	and
Decision	Systems	(LIDS)	at	the	Massachusetts	Institute	of	Technology.	He	received	his
PhD	and	MS	degrees	at	the	University	of	Colorado	at	Boulder	in	computer	science	and	a
BS	degree	in	aeronautical	engineering	and	computer	science	from	Clarkson	University.

Dustin	Stansbury	received	his	BS	degree	in	both	physics	and	psychology	from
Appalachian	State	University	and	his	PhD	degree	in	vision	science	from	the	University	of
California,	Berkeley.	His	graduate	research	focused	on	developing	hierarchical	statistical
models	of	the	mammalian	visual	and	auditory	systems.	He	currently	works	in	the	field	of
music	retrieval	and	regularly	contributes	to	his	machine	learning	blog,	theclevermachine.

Dustin	has	contributed	a	chapter	to	the	text	book,	Scene	Vision:	Making	sense	of	what	we
see,	MIT	Press	2014,	Cambridge	MA.

http://www.ottelab.com

www.PacktPub.com

Support	files,	eBooks,	discount	offers,	and
more
For	support	files	and	downloads	related	to	your	book,	please	visit	www.PacktPub.com.

Did	you	know	that	Packt	offers	eBook	versions	of	every	book	published,	with	PDF	and
ePub	files	available?	You	can	upgrade	to	the	eBook	version	at	www.PacktPub.com	and	as
a	print	book	customer,	you	are	entitled	to	a	discount	on	the	eBook	copy.	Get	in	touch	with
us	at	<service@packtpub.com>	for	more	details.

At	www.PacktPub.com,	you	can	also	read	a	collection	of	free	technical	articles,	sign	up
for	a	range	of	free	newsletters	and	receive	exclusive	discounts	and	offers	on	Packt	books
and	eBooks.

https://www2.packtpub.com/books/subscription/packtlib

Do	you	need	instant	solutions	to	your	IT	questions?	PacktLib	is	Packt’s	online	digital
book	library.	Here,	you	can	search,	access,	and	read	Packt’s	entire	library	of	books.

http://www.PacktPub.com
http://www.PacktPub.com
mailto:service@packtpub.com
http://www.PacktPub.com
https://www2.packtpub.com/books/subscription/packtlib

Why	subscribe?
Fully	searchable	across	every	book	published	by	Packt
Copy	and	paste,	print,	and	bookmark	content
On	demand	and	accessible	via	a	web	browser

Free	access	for	Packt	account	holders
If	you	have	an	account	with	Packt	at	www.PacktPub.com,	you	can	use	this	to	access
PacktLib	today	and	view	9	entirely	free	books.	Simply	use	your	login	credentials	for
immediate	access.

http://www.PacktPub.com

Preface
Julia	is	a	new	programming	language	that	was	developed	at	MIT	in	the	Applied
Computing	Group	under	the	supervision	of	Prof.	Alan	Edelman.	Its	development	started	in
2009,	and	it	was	first	presented	publicly	in	February	2012.	It	is	still	a	fairly	young
language	when	you	look	at	the	current	Version	number	(0.3),	but	its	foundation	is	stable;
the	core	language	has	had	no	backwards	incompatible	changes	since	Version	0.1.	It	is
based	on	clear	and	solid	principles,	and	its	popularity	is	steadily	increasing	in	the
technical,	data	scientist,	and	high-performance	computing	arenas.	In	the	section	The
Rationale	for	Julia,	we	present	an	overview	of	the	principles	on	which	Julia	is	based	and
compare	them	to	other	languages.

What	this	book	covers
Chapter	1,	Installing	the	Julia	Platform,	guides	you	with	the	installation	of	all	the
necessary	components	required	for	a	Julia	environment.	It	teaches	you	how	to	work	with
Julia’s	console	(the	REPL)	and	discusses	some	of	the	more	elaborate	development	editors
you	can	use.

Chapter	2,	Variables,	Types,	and	Operations,	discusses	the	elementary	built-in	types	in
Julia,	and	the	operations	that	can	be	performed	on	them,	so	that	you	are	prepared	to	start
writing	the	code	with	them.

Chapter	3,	Functions,	explains	why	functions	are	the	basic	building	blocks	of	Julia,	and
how	to	effectively	use	them.

Chapter	4,	Control	Flow,	shows	Julia’s	elegant	control	constructs,	how	to	perform	error
handling,	and	how	to	use	coroutines	(called	Tasks	in	Julia)	to	structure	the	execution	of
your	code.

Chapter	5,	Collection	Types,	explores	the	different	types	that	group	individual	values,	such
as	arrays	and	matrices,	tuples,	dictionaries,	and	sets.

Chapter	6,	More	on	Types,	Methods,	and	Modules,	digs	deeper	into	the	type	concept	and
explains	how	this	is	used	in	multiple	dispatch	to	get	C-like	performance.	Modules,	a
higher	code	organizing	concept,	are	discussed	as	well.

Chapter	7,	Metaprogramming	in	Julia,	touches	on	the	deeper	layers	of	Julia,	such	as
expressions	and	reflection	capabilities,	and	demonstrates	the	power	of	macros.

Chapter	8,	I/O,	Networking,	and	Parallel	Computing,	shows	how	to	work	with	data	in
files	and	databases	using	DataFrames.	We	can	explore	the	networking	capabilities,	and
shows	how	to	set	up	a	parallel	computing	environment	with	Julia.

Chapter	9,	Running	External	Programs,	looks	at	how	Julia	interacts	with	the	command
line	and	other	languages	and	also	discusses	performance	tips.

Chapter	10,	The	Standard	Library	and	Packages,	digs	deeper	into	the	standard	library	and
demonstrates	the	important	packages	for	visualization	of	data.

Appendix,	List	of	Macros	and	Packages,	provides	you	with	handy	reference	lists	of	the
macros	and	packages	used	in	this	book.

What	you	need	for	this	book
To	run	the	code	examples	in	the	book,	you	will	need	the	Julia	platform	for	your	computer,
which	can	be	downloaded	from	http://julialang.org/downloads/.	To	work	more
comfortably	with	Julia	scripts,	a	development	environment	such	as	IJulia,	Sublime	Text,
or	LightTable	is	advisable.	Chapter	1,	Installing	the	Julia	Platform,	contains	detailed
instructions	to	set	up	your	Julia	environment.

http://julialang.org/downloads/

Who	this	book	is	for
This	book	is	intended	for	the	data	scientist	and	for	all	those	who	work	in	technical	and
scientific	computation	projects.	It	will	get	you	up	and	running	quickly	with	Julia	to	start
simplifying	your	projects	applications.	The	book	assumes	that	you	already	have	some
basic	working	knowledge	of	high-level	dynamic	languages	such	as	MATLAB,	R,	Python,
or	Ruby.

Conventions
In	this	book,	you	will	find	a	number	of	text	styles	that	distinguish	between	different	kinds
of	information.	Here	are	some	examples	of	these	styles	and	an	explanation	of	their
meaning.

Code	words	in	text,	database	table	names,	folder	names,	filenames,	file	extensions,
pathnames,	dummy	URLs,	user	input,	and	Twitter	handles	are	shown	as	follows:	“As	an
example,	we	use	the	data-file	winequality.csv	that	contains	1599	sample	measurements,
12	data	columns.”

A	block	of	code	is	set	as	follows:

using	DataFrames

fname	=	"winequality.csv"

data	=	readtable(fname,	separator	=	';')

When	we	wish	to	draw	your	attention	to	a	particular	part	of	a	code	block,	the	relevant
lines	or	items	are	set	in	bold:

using	DataFrames

fname	=	"winequality.csv"

data	=	readtable(fname,	separator	=	';')

Any	command-line	input	or	output	is	written	as	follows:

julia	main.jl

New	terms	and	important	words	are	shown	in	bold.	Words	that	you	see	on	the	screen,
for	example,	in	menus	or	dialog	boxes,	appear	in	the	text	like	this:	“Navigate	to
Configuration	|	System	Administration	|	ODBC	Data	Sources.”

Note
Warnings	or	important	notes	appear	in	a	box	like	this.

Tip
Tips	and	tricks	appear	like	this.

Reader	feedback
Feedback	from	our	readers	is	always	welcome.	Let	us	know	what	you	think	about	this
book—what	you	liked	or	disliked.	Reader	feedback	is	important	for	us	as	it	helps	us
develop	titles	that	you	will	really	get	the	most	out	of.

To	send	us	general	feedback,	simply	e-mail	<feedback@packtpub.com>,	and	mention	the
book’s	title	in	the	subject	of	your	message.

If	there	is	a	topic	that	you	have	expertise	in	and	you	are	interested	in	either	writing	or
contributing	to	a	book,	see	our	author	guide	at	www.packtpub.com/authors.

mailto:feedback@packtpub.com
http://www.packtpub.com/authors

Customer	support
Now	that	you	are	the	proud	owner	of	a	Packt	book,	we	have	a	number	of	things	to	help
you	to	get	the	most	from	your	purchase.

Downloading	the	example	code
You	can	download	the	example	code	files	from	your	account	at	http://www.packtpub.com
for	all	the	Packt	Publishing	books	you	have	purchased.	If	you	purchased	this	book
elsewhere,	you	can	visit	http://www.packtpub.com/support	and	register	to	have	the	files	e-
mailed	directly	to	you.

http://www.packtpub.com
http://www.packtpub.com/support

Errata
Although	we	have	taken	every	care	to	ensure	the	accuracy	of	our	content,	mistakes	do
happen.	If	you	find	a	mistake	in	one	of	our	books—maybe	a	mistake	in	the	text	or	the
code—we	would	be	grateful	if	you	could	report	this	to	us.	By	doing	so,	you	can	save	other
readers	from	frustration	and	help	us	improve	subsequent	versions	of	this	book.	If	you	find
any	errata,	please	report	them	by	visiting	http://www.packtpub.com/submit-errata,
selecting	your	book,	clicking	on	the	Errata	Submission	Form	link,	and	entering	the
details	of	your	errata.	Once	your	errata	are	verified,	your	submission	will	be	accepted	and
the	errata	will	be	uploaded	to	our	website	or	added	to	any	list	of	existing	errata	under	the
Errata	section	of	that	title.

To	view	the	previously	submitted	errata,	go	to
https://www.packtpub.com/books/content/support	and	enter	the	name	of	the	book	in	the
search	field.	The	required	information	will	appear	under	the	Errata	section.

http://www.packtpub.com/submit-errata
https://www.packtpub.com/books/content/support

Piracy
Piracy	of	copyrighted	material	on	the	Internet	is	an	ongoing	problem	across	all	media.	At
Packt,	we	take	the	protection	of	our	copyright	and	licenses	very	seriously.	If	you	come
across	any	illegal	copies	of	our	works	in	any	form	on	the	Internet,	please	provide	us	with
the	location	address	or	website	name	immediately	so	that	we	can	pursue	a	remedy.

Please	contact	us	at	<copyright@packtpub.com>	with	a	link	to	the	suspected	pirated
material.

We	appreciate	your	help	in	protecting	our	authors	and	our	ability	to	bring	you	valuable
content.

mailto:copyright@packtpub.com

Questions
If	you	have	a	problem	with	any	aspect	of	this	book,	you	can	contact	us	at
<questions@packtpub.com>,	and	we	will	do	our	best	to	address	the	problem.

mailto:questions@packtpub.com

The	Rationale	for	Julia
This	introduction	will	present	you	with	the	reasons	why	Julia	is	quickly	growing	in
popularity	in	the	technical,	data	scientist,	and	high-performance	computing	arena.	We	will
cover	the	following	topics:

The	scope	of	Julia
Julia’s	place	among	other	programming	languages
A	comparison	with	other	languages	for	the	data	scientist
Useful	links

The	scope	of	Julia
The	core	designers	and	developers	of	Julia	(Jeff	Bezanson,	Stefan	Karpinski,	and	Viral
Shah)	have	made	it	clear	that	Julia	was	born	out	of	a	deep	frustration	with	the	existing
software	toolset	in	the	technical	computing	disciplines.	Basically,	it	boils	down	to	the
following	dilemma:

Prototyping	is	a	problem	in	this	domain	that	needs	a	high-level,	easy-to-use,	and
flexible	language	that	lets	the	developer	concentrate	on	the	problem	itself	instead	of
on	low-level	details	of	the	language	and	computation.
The	actual	computation	of	a	problem	needs	maximum	performance;	a	factor	of	10	in
computation	time	makes	a	world	of	difference	(think	of	one	day	versus	ten	days),	so
the	production	version	often	has	to	be	(re)written	in	C	or	FORTRAN.
Before	Julia,	practitioners	had	to	be	satisfied	with	a	“speed	for	convenience”	trade-
off,	use	developer-friendly	and	expressive,	but	decades-old	interpreted	languages
such	as	MATLAB,	R,	or	Python	to	express	the	problem	at	a	high	level.	To	program
the	performance-sensitive	parts	and	speed	up	the	actual	computation,	people	had	to
resort	to	statically	compiled	languages	such	as	C	or	FORTRAN,	or	even	the	assembly
code.	Mastery	on	both	the	levels	is	not	evident:	writing	high-level	code	in	MATLAB,
R,	or	Python	for	prototyping	on	the	one	hand,	and	writing	code	that	does	the	same
thing	in	C,	which	is	used	for	the	actual	execution.

Julia	was	explicitly	designed	to	bridge	this	gap.	It	gives	you	the	possibility	of	writing
high-performance	code	that	uses	CPU	and	memory	resources	as	effectively	as	can	be
done	in	C,	but	working	in	pure	Julia	all	the	way	down,	reduces	the	need	for	a	low-
level	language.	This	way,	you	can	rapidly	iterate	using	a	simple	programming	model
from	the	problem	prototype	to	near-C	performance.	The	Julia	developers	have	proven
that	working	in	one	environment	that	has	the	expressive	capabilities	as	well	as	the
pure	speed	is	possible	using	the	recent	advances	in	Low	Level	Virtual	Machine	Just
in	Time	(LLVM	JIT)	compiler	technologies	(for	more	information,	see
http://en.wikipedia.org/wiki/LLVM).

In	summary,	they	designed	Julia	to	have	the	following	specifications:

Julia	is	open	source	and	free	with	a	liberal	(MIT)	license.
It	is	designed	to	be	an	easy-to-use	and	learn,	elegant,	clear	and	dynamic,	interactive
language	by	reducing	the	development	time.	To	that	end,	Julia	almost	looks	like	the
pseudo	code	with	an	obvious	and	familiar	mathematical	notation;	for	example,	here	is
the	definition	for	a	polynomial	function,	straight	from	the	code:

x	->	7x^3	+	30x^2	+	5x	+	42

Notice	that	there	is	no	need	to	indicate	the	multiplications.

It	provides	the	computational	power	and	speed	without	having	to	leave	the	Julia
environment.
Metaprogramming	and	macro	capabilities	(due	to	its	homoiconicity	(refer	to	Chapter
7,	Metaprogramming	in	Julia),	inherited	from	Lisp),	to	increase	its	abstraction	power.

http://en.wikipedia.org/wiki/LLVM

Also,	it	is	usable	for	general	programming	purposes,	not	only	in	pure	computing
disciplines.
It	has	built-in	and	simple	to	use	concurrent	and	parallel	capabilities	to	thrive	in	the
multicore	world	of	today	and	tomorrow.

Julia	unites	this	all	in	one	environment,	something	which	was	thought	impossible	until
now	by	most	researchers	and	language	designers.

The	Julia	logo

Julia’s	place	among	the	other
programming	languages
Julia	reconciles	and	brings	together	the	technologies	that	before	were	considered	separate,
namely:

The	dynamic,	untyped,	and	interpreted	languages	on	the	one	hand	(Python,	Ruby,
Perl,	MATLAB/Octave,	R,	and	so	on)
The	statically	typed	and	compiled	languages	on	the	other	(C,	C++,	Fortran,	and
Fortress)

How	can	Julia	have	the	flexibility	of	the	first	and	the	speed	of	the	second	category?

Julia	has	no	static	compilation	step.	The	machine	code	is	generated	just-in-time	by	an
LLVM-based	JIT	compiler.	This	compiler,	together	with	the	design	of	the	language,	helps
Julia	to	achieve	maximal	performance	for	numerical,	technical,	and	scientific	computing.
The	key	for	the	performance	is	the	type	information,	which	is	gathered	by	a	fully
automatic	and	intelligent	type	inference	engine,	that	deduces	the	type	from	the	data
contained	in	the	variables.	Indeed,	because	Julia	has	a	dynamic	type	system,	declaring	the
type	of	variables	in	the	code	is	optional.	Indicating	types	is	not	necessary,	but	it	can	be
done	to	document	the	code,	improve	tooling	possibilities,	or	in	some	cases,	to	give	hints	to
the	compiler	to	choose	a	more	optimized	execution	path.	This	optional	typing	discipline	is
an	aspect	it	shares	with	Dart.	Typeless	Julia	is	a	valid	and	useful	subset	of	the	language,
similar	to	traditional	dynamic	languages,	but	it	nevertheless	runs	at	statically	compiled
speeds.	Julia	applies	generic	programming	and	polymorphic	functions	to	the	limit,	writing
an	algorithm	just	once	and	applying	it	to	a	broad	range	of	types.	This	provides	common
functionality	across	drastically	different	types,	for	example:	size	is	a	generic	function
with	50	concrete	method	implementations.	A	system	called	dynamic	multiple	dispatch
efficiently	picks	the	optimal	method	for	all	of	a	function’s	arguments	from	tens	of	method
definitions.	Depending	on	the	actual	types	very	specific	and	efficient	native	code
implementations	of	the	function	are	chosen	or	generated,	so	its	type	system	lets	it	align
closer	with	primitive	machine	operations.

Note
In	summary,	data	flow-based	type	inference	implies	multiple	dispatch	choosing
specialized	execution	code.

However,	do	keep	in	mind	that	types	are	not	statically	checked.	Exceptions	due	to	type
errors	can	occur	at	runtime,	so	thorough	testing	is	mandatory.	As	to	categorizing	Julia	in
the	programming	language	universe,	it	embodies	multiple	paradigms,	such	as	procedural,
functional,	metaprogramming,	and	also	(but	not	fully)	object	oriented.	It	is	by	no	means	an
exclusively	class-based	language	such	as	Java,	Ruby,	or	C#.	Nevertheless,	its	type	system
offers	a	kind	of	inheritance	and	is	very	powerful.	Conversions	and	promotions	for	numeric
and	other	types	are	elegant,	friendly,	and	swift,	and	user-defined	types	are	as	fast	and
compact	as	built-in	types.	As	for	functional	programming,	Julia	makes	it	very	easy	to

design	programs	with	pure	functions	and	has	no	side	effects;	functions	are	first-class
objects,	as	in	mathematics.

Julia	also	supports	a	multiprocessing	environment	based	on	a	message	passing	model	to
allow	programs	to	run	via	multiple	processes	(local	or	remote)	using	distributed	arrays,
enabling	distributed	programs	based	on	any	of	the	models	for	parallel	programming.

Julia	is	equally	suited	for	general	programming	as	is	Python.	It	has	as	good	and	modern
(Unicode	capable)	string	processing	and	regular	expressions	as	Perl	or	other	languages.
Moreover,	it	can	also	be	used	at	the	shell	level,	as	a	glue	language	to	synchronize	the
execution	of	other	programs	or	to	manage	other	processes.

Julia	has	a	standard	library	written	in	Julia	itself,	and	a	built-in	package	manager	based	on
GitHub,	which	is	called	Metadata,	to	work	with	a	steadily	growing	collection	of	external
libraries	called	packages.	It	is	cross	platform,	supporting	GNU/Linux,	Darwin/OS	X,
Windows,	and	FreeBSD	for	both	x86/64	(64-bit)	and	x86	(32-bit)	architectures.

A	comparison	with	other	languages	for	the
data	scientist
Because	speed	is	one	of	the	ultimate	targets	of	Julia,	a	benchmark	comparison	with	other
languages	is	displayed	prominently	on	the	Julia	website	(http://julialang.org/).	It	shows
that	Julia’s	rivals	C	and	Fortran,	often	stay	within	a	factor	of	two	of	fully	optimized	C
code,	and	leave	the	traditional	dynamic	language	category	far	behind.	One	of	Julia’s
explicit	goals	is	to	have	sufficiently	good	performance	that	you	never	have	to	drop	down
into	C.	This	is	in	contrast	to	the	following	environments,	where	(even	for	NumPy)	you
often	have	to	work	with	C	to	get	enough	performance	when	moving	to	production.	So,	a
new	era	of	technical	computing	can	be	envisioned,	where	libraries	can	be	developed	in	a
high-level	language	instead	of	in	C	or	FORTRAN.	Julia	is	especially	good	at	running
MATLAB	and	R-style	programs.	Let’s	compare	them	somewhat	more	in	detail.

http://julialang.org/

MATLAB
Julia	is	instantly	familiar	to	MATLAB	users;	its	syntax	strongly	resembles	that	of
MATLAB,	but	Julia	aims	to	be	a	much	more	general	purpose	language	than	MATLAB.
The	names	of	most	functions	in	Julia	correspond	to	the	MATLAB/Octave	names,	and	not
the	R	names.	Under	the	covers,	however,	the	way	the	computations	are	done,	things	are
extremely	different.	Julia	also	has	equally	powerful	capabilities	in	linear	algebra,	the	field
where	MATLAB	is	traditionally	applied.	However,	using	Julia	won’t	give	you	the	same
license	fee	headaches.	Moreover,	the	benchmarks	show	that	it	is	from	10	to	1,000	times
faster	depending	on	the	type	of	operation,	also	when	compared	to	Octave	(the	open	source
version	of	MATLAB).	Julia	provides	an	interface	to	the	MATLAB	language	with	the
package	MATLAB.jl	(https://github.com/lindahua/MATLAB.jl).

https://github.com/lindahua/MATLAB.jl

R
R	was	until	now	the	chosen	development	language	in	the	statistics	domain.	Julia	proves	to
be	as	usable	as	R	in	this	domain,	but	again	with	a	performance	increase	of	a	factor	of	10	to
1,000.	Doing	statistics	in	MATLAB	is	frustrating,	as	is	doing	linear	algebra	in	R,	but	Julia
fits	both	the	purposes.	Julia	has	a	much	richer	type	system	than	the	vector-based	types	of
R.	Some	statistics	experts	such	as	Douglas	Bates	heavily	support	and	promote	Julia	as
well.	Julia	provides	an	interface	to	the	R	language	with	the	package	Rif.jl
(https://github.com/lgautier/Rif.jl).

https://github.com/lgautier/Rif.jl

Python
Again,	Julia	has	a	performance	head	start	of	a	factor	of	10	to	30	times	as	compared	to
Python.	However,	Julia	compiles	the	code	that	reads	like	Python	into	machine	code	that
performs	like	C.	Furthermore,	if	necessary	you	can	call	Python	functions	from	within	Julia
using	the	PyCall	package	(https://github.com/stevengj/PyCall.jl).

Because	of	the	huge	number	of	existing	libraries	in	all	these	languages,	any	practical	data
scientist	can	and	will	need	to	mix	the	Julia	code	with	R	or	Python	when	the	problem	at
hand	demands	it.

Julia	can	also	be	applied	to	data	analysis	and	big	data,	because	these	often	involve
predictive	analysis,	modeling	problems	that	can	often	be	reduced	to	linear	algebra
algorithms,	or	graph	analysis	techniques,	all	things	Julia	is	good	at	tackling.

In	the	field	of	High	Performance	Computing	(HPC),	a	language	such	as	Julia	has	long
been	lacking.	With	Julia,	domain	experts	can	experiment	and	quickly	and	easily	express	a
problem	in	such	a	way	that	they	can	use	modern	HPC	hardware	as	easily	as	a	desktop	PC.
In	other	words,	a	language	that	gets	users	started	quickly	without	the	need	to	understand
the	details	of	the	underlying	machine	architecture	is	very	welcome	in	this	area.

https://github.com/stevengj/PyCall.jl

Useful	links
The	following	are	the	links	that	can	be	useful	while	using	Julia:

The	main	Julia	website	can	be	found	at	http://julialang.org/
For	documentation,	refer	to	http://docs.julialang.org/en/latest
View	the	packages	at	http://pkg.julialang.org/indexorg.html
Subscribe	to	the	mailing	lists	at	http://julialang.org/community/
Get	support	at	an	IRC	channel	from	http://webchat.freenode.net/?channels=julia

http://julialang.org/
http://docs.julialang.org/en/latest
http://pkg.julialang.org/indexorg.html
http://julialang.org/community/
http://webchat.freenode.net/?channels=julia

Summary
In	this	introduction,	we	gave	an	overview	of	Julia’s	characteristics	and	compared	them	to
the	existing	languages	in	its	field.	Julia’s	main	advantage	is	its	ability	to	generate
specialized	code	for	different	input	types.	When	coupled	with	the	compiler’s	ability	to
infer	these	types,	this	makes	it	possible	to	write	the	Julia	code	at	an	abstract	level	while
achieving	the	efficiency	associated	with	the	low-level	code.	Julia	is	already	quite	stable
and	production	ready.	The	learning	curve	for	Julia	is	very	gentle;	the	idea	being	that
people	who	don’t	care	about	fancy	language	features	should	be	able	to	use	it	productively
too	and	learn	about	new	features	only	when	they	become	useful	or	needed.

Chapter	1.	Installing	the	Julia	Platform
This	chapter	guides	you	through	the	download	and	installation	of	all	the	necessary
components	of	Julia.	The	topics	covered	in	this	chapter	are	as	follows:

Installing	Julia
Working	with	Julia’s	shell
Start-up	options	and	Julia	scripts
Packages
Installing	and	working	with	Julia	Studio
Installing	and	working	with	IJulia
Installing	Sublime-IJulia
Installing	Juno
Other	editors	and	IDEs
Working	of	Julia

By	the	end	of	this	chapter,	you	will	have	a	running	Julia	platform.	Moreover,	you	will	be
able	to	work	with	Julia’s	shell	as	well	as	with	editors	or	integrated	development
environments	with	a	lot	of	built-in	features	to	make	development	more	comfortable.

Installing	Julia
The	Julia	platform	in	binary	(that	is,	executable)	form	can	be	downloaded	from
http://julialang.org/downloads/.	It	exists	for	three	major	platforms	(Windows,	Linux,	and
OS	X)	in	32-	and	64-bit	format,	and	is	delivered	as	a	package	or	in	an	archive	format.	You
should	use	the	current	official	stable	release	when	doing	serious	professional	work	with
Julia	(at	the	time	of	writing,	this	is	Version	0.3).	If	you	would	like	to	investigate	the	latest
developments,	install	the	upcoming	version	(which	is	now	Version	0.4).	The	previous	link
contains	detailed	and	platform-specific	instructions	for	the	installation.	We	will	not	repeat
these	instructions	here	completely,	but	we	will	summarize	some	important	points.

http://julialang.org/downloads/

Windows	version	–	usable	from	Windows	XP	SP2
onwards
You	need	to	keep	the	following	things	in	mind	if	you	are	using	the	Windows	OS:

1.	 As	a	prerequisite,	you	need	the	7zip	extractor	program,	so	first	download	and	install
http://www.7-zip.org/download.html.

2.	 Now,	download	the	julia-n.m.p-win64.exe	file	to	a	temporary	folder	(n.m.p	is	the
version	number,	such	as	0.2.1	or	0.3.0;	win32/win64	are	respectively	the	32-	and
64-bit	version;	a	release	candidate	file	looks	like	julia-0.4.0-rc1-nnnnnnn-win64
(nnnnnnn	is	a	checksum	number	such	as	0480f1b).

3.	 Double-click	on	the	file	(or	right-click,	and	select	Run	as	Administrator	if	you	want
Julia	installed	for	all	users	on	the	machine).	Clicking	OK	on	the	security	dialog
message,	and	then	choosing	the	installation	directory	(for	example,	c:\julia)	will
extract	the	archive	into	the	chosen	folder,	producing	the	following	directory	structure,
and	taking	some	400	MB	of	disk	space:

The	Julia	folder	structure	in	Windows

4.	 A	menu	shortcut	will	be	created	which,	when	clicked,	starts	the	Julia	command-line
version	or	Read	Evaluate	Print	Loop	(REPL),	as	shown	in	the	following
screenshot:

http://www.7-zip.org/download.html

The	Julia	REPL

5.	 On	Windows,	if	you	have	chosen	C:\Julia	as	your	installation	directory,	this	is	the
C:\Julia\bin\julia.exe	file.	Add	C:\Julia\bin	to	your	PATH	variable	if	you	want
the	REPL	to	be	available	on	any	Command	Prompt.	The	default	installation	folder	on
Windows	is:	C:\Users\UserName\AppData\Local\Julia-n.m.p	(where	n.m.p	is	the
version	number,	such	as	0.3.2).

6.	 More	information	on	Julia	in	the	Windows	OS	can	be	found	at
https://github.com/JuliaLang/julia/blob/master/README.windows.md.

Ubuntu	version
For	Ubuntu	systems	(Version	12.04	or	later),	there	is	a	Personal	Package	Archive	(PPA)
for	Julia	(can	be	found	at	https://launchpad.net/~staticfloat/+archive/ubuntu/juliareleases)
that	makes	the	installation	painless.	All	you	need	to	do	to	get	the	stable	version	is	to	issue
the	following	commands	in	a	terminal	session:

sudo	add-apt-repository	ppa:staticfloat/juliareleases

sudo	add-apt-repository	ppa:staticfloat/julia-deps

sudo	apt-get	update

sudo	apt-get	install	julia

If	you	want	to	be	at	the	bleeding	edge	of	development,	you	can	download	the	nightly
builds	instead	of	the	stable	releases.	The	nightly	builds	are	generally	less	stable,	but	will
contain	the	most	recent	features.	To	do	so,	replace	the	first	of	the	preceding	commands
with:

sudo	add-apt-repository	ppa:staticfloat/julianightlies

This	way,	you	can	always	upgrade	to	a	more	recent	version	by	issuing	the	following
commands:

sudo	apt-get	update

sudo	apt-get	upgrade

The	Julia	executable	lives	in	/usr/bin/julia	(given	by	the	JULIA_HOME	variable	or	by	the
which	julia	command)	and	the	standard	library	is	installed	in	/usr/share/julia/base,
with	shared	libraries	in	/usr/lib/x86_64-linux-gnu/Julia.

For	other	Linux	versions,	the	best	way	to	get	Julia	running	is	to	build	from	source	(refer	to
the	next	section).

https://launchpad.net/~staticfloat/+archive/ubuntu/juliareleases

OS	X
Installation	for	OS	X	is	straightforward—using	the	standard	software	installation	tools	for
the	platform.	Add	/Applications/Julia-
n.m.app/Contents/Resources/julia/bin/Julia	to	make	Julia	available	everywhere	on
your	computer.

If	you	want	code	to	be	run	whenever	you	start	a	Julia	session,	put	it	in
/home/.juliarc.jl	on	Ubuntu,	~/.juliarc.jl	on	OS	X,	or
c:\Users\username\.juliarc.jl	on	Windows.	For	instance,	if	this	file	contains	the
following	code:

println("Greetings!	!	?")

Then,	Julia	starts	up	in	its	shell	(or	REPL	as	it	is	usually	called)	with	the	following	text	in
the	screenshot,	which	shows	its	character	representation	capabilities:

Using	.juliarc.jl

Building	from	source
Perform	the	following	steps	to	build	Julia	from	source:

1.	 Download	the	source	code,	rather	than	the	binaries,	if	you	intend	to	contribute	to	the
development	of	Julia	itself,	or	if	no	Julia	binaries	are	provided	for	your	operating
system	or	particular	computer	architecture.	Building	from	source	is	quite
straightforward	on	Ubuntu,	so	we	will	outline	the	procedure	here.	The	Julia	source
code	can	be	found	on	GitHub	at	https://github.com/JuliaLang/julia.git.

2.	 Compiling	these	will	get	you	the	latest	Julia	version,	not	the	stable	version	(if	you
want	the	latter,	download	the	binaries,	and	refer	to	the	previous	section).

3.	 Make	sure	you	have	git	installed;	if	not,	issue	the	command:

sudo	apt-get	-f	install	git

4.	 Then,	clone	the	Julia	sources	with	the	following	command:

git	clone	git://github.com/JuliaLang/julia.git

This	will	download	the	Julia	source	code	into	a	julia	directory	in	the	current	folder.

5.	 The	Julia	building	process	needs	the	GNU	compilation	tools	g++,	gfortran,	and	m4,
so	make	sure	that	you	have	installed	them	with	the	following	command:

sudo	apt-get	install	gfortran	g++	m4

6.	 Now	go	to	the	Julia	folder	and	start	the	compilation	process	as	follows:

cd	julia

make

7.	 After	a	successful	build,	Julia	starts	up	with	the	./julia	command.
8.	 Afterwards,	if	you	want	to	download	and	compile	the	newest	version,	here	are	the

commands	to	do	this	in	the	Julia	source	directory:

git	pull

make	clean

make

For	more	information	on	how	to	build	Julia	on	Windows,	OS	X,	and	other	systems,	refer
to	https://github.com/JuliaLang/julia/.

Tip
Using	parallelization

If	you	want	Julia	to	use	n	concurrent	processes,	compile	the	source	with	make	-j	n.

There	are	two	ways	of	using	Julia.	As	described	in	the	previous	section,	we	can	use	the
Julia	shell	for	interactive	work.	Alternatively,	we	can	write	programs	in	a	text	file,	save
them	with	a	.jl	extension,	and	let	Julia	execute	the	whole	program	sequentially.

https://github.com/JuliaLang/julia.git
https://github.com/JuliaLang/julia/

Working	with	Julia’s	shell
We	started	with	Julia’s	shell	in	the	previous	section	(refer	to	the	preceding	two
screenshots)	to	verify	the	correctness	of	the	installation,	by	issuing	the	julia	command	in
a	terminal	session.	The	shell	or	REPL	is	Julia’s	working	environment,	where	you	can
interact	with	the	Just	in	Time	(JIT)	compiler	to	test	out	pieces	of	code.	When	satisfied,
you	can	copy	and	paste	this	code	into	a	file	with	a	.jl	extension,	such	as	program.jl.
Alternatively,	you	can	continue	the	work	on	this	code	from	within	a	text	editor	or	an	IDE,
such	as	the	ones	we	will	point	out	later	in	this	chapter.	After	the	banner	with	Julia’s	logo
has	appeared,	you	get	a	julia>	prompt	for	the	input.	To	end	this	session,	and	get	to	the	OS
Command	Prompt,	type	CTRL	+	D	or	quit(),	and	hit	ENTER.	To	evaluate	an	expression,
type	it	and	press	ENTER	to	show	the	result,	as	shown	in	the	following	screenshot:

Working	with	the	REPL	(1)

If,	for	some	reason,	you	don’t	need	to	see	the	result,	end	the	expression	with	a	;
(semicolon)	such	as	6	*	7.	In	both	the	cases,	the	resulting	value	is	stored,	for
convenience,	in	a	variable	named	ans	that	can	be	used	in	expressions,	but	only	inside	the
REPL.	You	can	bind	a	value	to	a	variable	by	entering	an	assignment	as	a	=	3.	Julia	is
dynamic,	and	we	don’t	need	to	enter	a	type	for	a,	but	we	do	need	to	enter	a	value	for	the
variable,	so	that	Julia	can	infer	its	type.	Using	a	variable	b	that	is	not	bound	to	the	a	value,
results	in	the	ERROR:	b	not	defined	message.	Strings	are	delineated	by	double	quotes
(""),	as	in	b	=	"Julia".	The	following	screenshot	illustrates	these	workings	with	the
REPL:

Working	with	the	REPL	(2)

Previous	expressions	can	be	retrieved	in	the	same	session	by	working	with	the	up	and
down	arrow	keys.	The	following	key	bindings	are	also	handy:

To	clear	or	interrupt	a	current	command,	press	CTRL	+	C
To	clear	the	screen	(but	variables	are	kept	in	memory),	press	CTRL	+	L
To	reset	the	session	so	that	variables	are	cleared,	enter	the	command	workspace()	in
the	REPL

Commands	from	the	previous	sessions	can	still	be	retrieved,	because	they	are	stored	(with
a	timestamp)	in	a.julia_history	file	(in	/home/$USER	on	Ubuntu,	c:\Users\username
on	Windows,	or	~/.julia_history	on	OS	X).	Ctrl	+	R	(produces	a	(reverse-i-search)
':	prompt)	searches	through	these	commands.

Typing	?	starts	up	the	help	mode	(help?>)	to	give	quick	access	to	Julia’s	documentation.
Information	on	function	names,	types,	macros,	and	so	on,	is	given	when	typing	in	their
name.	Alternatively,	to	get	more	information	on	a	variable	a,	type	help(a),	and	to	get
more	information	on	a	function	such	as	sort,	type	help(sort).	To	find	all	the	places
where	a	function	such	as	println	is	defined	or	used,	type	apropos("println"),	which
gives	the	following	output:

Base.println(x)

Base.enumerate(iter)

Base.cartesianmap(f,	dims)

Thus,	we	can	see	that	it	is	defined	in	the	Base	module,	and	is	used	in	two	other	functions.
Different	complete	expressions	on	the	same	line	have	to	be	separated	by	a	;	(semicolon)
and	only	the	last	result	is	shown.	You	can	enter	multi-line	expressions	as	shown	in	the
following	screenshot.	If	the	shell	detects	that	the	statement	is	syntactically	incomplete,	it
will	not	attempt	to	evaluate	it.	Rather,	it	will	wait	for	the	user	to	enter	additional	lines	until
the	multi-line	statement	can	be	evaluated.

Working	with	the	REPL	(3)

A	handy	autocomplete	feature	also	exists.	Type	one	or	more	letters,	press	the	Tab	key
twice,	and	then	a	list	of	functions	starting	with	these	letters	appears.	For	example:	type	so,
press	the	Tab	key	twice,	and	then	you	get	the	list	as:	sort	sort!	sortby	sortby!
sortcols	sortperm	sortrows.

If	you	start	a	line	with	;,	the	rest	of	the	line	is	interpreted	as	a	system	shell	command	(try
for	example,	ls,	cd,	mkdir,	whoami,	and	so	on).	The	Backspace	key	returns	to	the	Julia
prompt.

A	Julia	script	can	be	executed	in	the	REPL	by	calling	it	with	include.	For	example,	for
hello.jl,	which	contains	the	println("Hello,	Julia	World!")	command,	the
command	is	as	follows:

julia>	include("hello.jl")

The	preceding	command	prints	the	output	as	follows:

		Hello,	Julia	World!

Experiment	a	bit	with	different	expressions	to	get	some	feeling	for	this	environment.

Note
You	can	get	more	information	at	http://docs.julialang.org/en/latest/manual/interacting-
with-julia/#key-bindings.

http://docs.julialang.org/en/latest/manual/interacting-with-julia/#key-bindings

Startup	options	and	Julia	scripts
Without	any	options,	the	julia	command	starts	up	the	REPL	environment.	A	useful
option	to	check	your	environment	is	julia	–v.	This	shows	Julia’s	version,	for	example,
julia-version	0.3.2+2.	(The	versioninfo()function	in	REPL	is	more	detailed,	the
VERSION	constant	gives	you	only	the	version	number:	v"0.3.2+2").	An	option	that	lets
you	evaluate	expressions	on	the	command	line	itself	is	–e,	for	example:

		julia	-e	'a	=	6	*	7;

		println(a)'

The	preceding	commands	print	out	42	(on	Windows,	use	"	instead	of	the	'	character).

Some	other	options	useful	for	parallel	processing	will	be	discussed	in	Chapter	9,	Running
External	Programs.	Type	julia	–h	for	a	list	of	all	options.

A	script.jl	file	with	Julia	source	code	can	be	started	from	the	command	line	with	the
following	command:

julia	script.jl	arg1	arg2	arg3

Here	arg1,	arg2,	and	arg3	are	optional	arguments	to	be	used	in	the	script’s	code.	They	are
available	from	the	global	constant	ARGS.	Take	a	look	at	the	args.jl	file	as	follows:

for	arg	in	ARGS

		println(arg)

end

The	julia	args.jl	1	Dart	C	command	prints	out	1,	Dart,	and	C	on	consecutive	lines.

A	script	file	also	can	execute	other	source	files	by	including	them	in	the	REPL;	for
example,	main.jl	contains	include("hello.jl")	that	will	execute	the	code	from
hello.jl	when	called	with	julia	main.jl.

Tip
Downloading	the	example	code

You	can	download	the	example	code	files	from	your	account	at	http://www.packtpub.com
for	all	the	Packt	Publishing	books	you	have	purchased.	If	you	purchased	this	book
elsewhere,	you	can	visit	http://www.packtpub.com/support	and	register	to	have	the	files	e-
mailed	directly	to	you.

http://www.packtpub.com
http://www.packtpub.com/support

Packages
Most	of	the	standard	library	in	Julia	(can	be	found	in	/share/julia/base	relative	to
where	Julia	was	installed)	is	written	in	Julia	itself.	The	rest	of	Julia’s	code	ecosystem	is
contained	in	packages	that	are	simply	Git	repositories.	They	are	most	often	authored	by
external	contributors,	and	already	provide	functionality	for	such	diverse	disciplines	such
as	bioinformatics,	chemistry,	cosmology,	finance,	linguistics,	machine	learning,
mathematics,	statistics,	and	high-performance	computing.	A	searchable	package	list	can	be
found	at	http://pkg.julialang.org/.	Official	Julia	packages	are	registered	in	the
METADATA.jl	file	in	the	Julia	Git	repository,	available	on	GitHub	at
https://github.com/JuliaLang/METADATA.jl.

Julia’s	installation	contains	a	built-in	package	manager	Pkg	for	installing	additional	Julia
packages	written	in	Julia.	The	downloaded	packages	are	stored	in	a	cache	ready	to	be	used
by	Julia	given	by	Pkg.dir(),	which	are	located	at
c:\users\username\.julia\vn.m\.cache,	/home/$USER/.julia/vn.m/.cache,	or
~/.julia/vn.m/.cache.	If	you	want	to	check	which	packages	are	installed,	run	the
Pkg.status()	command	in	the	Julia	REPL,	to	get	a	list	of	packages	with	their	versions,	as
shown	in	the	following	screenshot:

Packages	list

The	Pkg.installed()	command	gives	you	the	same	information,	but	in	a	dictionary	form
and	is	usable	in	code.	Version	and	dependency	management	is	handled	automatically	by
Pkg.	Different	versions	of	Julia	can	coexist	with	incompatible	packages,	each	version	has
its	own	package	cache.

Tip
If	you	get	an	error	with	Pkg.status()	such	as	ErrorException("Unable	to	read

http://pkg.julialang.org/

directory	METADATA."),	issue	a	Pkg.init()	command	to	create	the	package	repository
folders,	and	clone	METADATA	from	Git.	If	the	problem	is	not	easy	to	find	or	the	cache
becomes	corrupted	somehow,	you	can	just	delete	the	.julia	folder,	enter	Pkg.init(),	and
start	with	an	empty	cache.	Then,	add	the	packages	you	need.

Adding	a	new	package
Before	adding	a	new	package,	it	is	always	a	good	idea	to	update	your	package	database	for
the	already	installed	packages	with	the	Pkg.update()command.	Then,	add	a	new	package
by	issuing	the	Pkg.add("PackageName")	command,	and	execute	using	PackageName	in
code	or	in	the	REPL.	For	example,	to	add	2D	plotting	capabilities,	install	the	Winston
package	with	Pkg.add("Winston	").	To	make	a	graph	of	100	random	numbers	between	0
and	1,	execute	the	following	commands:

using	Winston

plot(rand(100))

The	rand(100)	function	is	an	array	with	100	random	numbers.	This	produces	the
following	output:

A	plot	of	white	noise	with	Winston

After	installing	a	new	Julia	version,	update	all	the	installed	packages	by	running
Pkg.update()	in	the	REPL.	For	more	detailed	information,	you	can	refer	to
http://docs.julialang.org/en/latest/manual/packages/.

http://docs.julialang.org/en/latest/manual/packages/

Installing	and	working	with	Julia	Studio
Julia	Studio	is	a	free	desktop	app	for	working	with	Julia	that	runs	on	Linux,	Windows,	and
OS	X	(http://forio.com/labs/julia-studio/).	It	works	with	the	0.3	release	on	Windows
(Version	0.2.1	for	Linux	and	OS	X,	at	this	time,	if	you	want	Julia	Studio	to	work	with
Julia	v0.3	on	Linux	and	OS	X,	you	have	to	do	the	compilation	of	the	source	code	of	the
Studio	yourself).	It	contains	a	sophisticated	editor	and	integrated	REPL,	version	control
with	Git,	and	a	very	handy	side	pane	with	access	to	the	command	history,	filesystem,
packages,	and	the	list	of	edited	documents.	It	is	created	by	Forio,	a	company	that	makes
software	for	simulations,	data	explorations,	interactive	learning,	and	predictive	analytics.
In	the	following	screenshot,	you	can	see	some	of	Julia	Studio’s	features,	such	as	the
Console	section	and	the	green	Run	button	(or	F5)	in	the	upper-right	corner.	The	simple
program	fizzbuzz.jl	prints	for	the	first	100	integers	for	"fizz"	if	the	number	is	a
multiple	of	3,	"buzz"	if	a	multiple	of	5,	and	"fizzbuzz"	if	it	is	a	multiple	of	15.

Julia	Studio

Notice	the	#	sign	that	indicates	the	beginning	of	comments,	the	elegant	and	familiar	for
loop	and	if	elseif	construct,	and	how	they	are	closed	with	end.	The	1:100	range	is	a
range;	mod	returns	the	remainder	of	the	division;	the	function	mod(i,	n)	can	also	be
written	as	an	i	%	n	operator.	Using	four	spaces	for	indentation	is	a	convention.	Recently,
Forio	also	developed	Epicenter,	a	computational	platform	for	hosting	the	server-side
models	(also	in	Julia),	and	building	interactive	web	interfaces	for	these	models.

http://forio.com/labs/julia-studio/

Installing	and	working	with	IJulia
IJulia	(https://github.com/JuliaLang/IJulia.jl)	is	a	combination	of	the	IPython	web	frontend
interactive	environment	(http://ipython.org/)	with	a	Julia-language	backend.	It	allows	you
to	work	with	IPython’s	powerful	graphical	notebook	(which	combines	code,	formatted
text,	math,	and	multimedia	in	a	single	document)	with	qtconsole	and	regular	REPL.
Detailed	instructions	for	installation	are	found	at	the	GitHub	page	for	IJulia
(https://github.com/JuliaLang/IJulia.jl)	and	in	the	Julia	at	MIT	notes
(https://github.com/stevengj/julia-mit/blob/master/README.md).	Here	is	a	summary	of
the	steps:

1.	 Install	Version	1.0	or	later	of	IPython	via	easy_install	or	pip	(on	OS	X	and
Windows,	this	is	included	in	the	Anaconda	Python	installation).	On	Linux,	use	apt-
get	install	ipython.	(For	more	information,	refer	to	the	IPython	home	page).

2.	 Install	PyQt4	or	PySide	for	qtconsole.
3.	 Install	the	IJulia	package	from	the	REPL	with	Pkg.add("IJulia").
4.	 Install	the	PyPlot	package	with	Pkg.add("PyPlot").

You	can	work	with	IJulia	in	either	of	two	ways:

Start	an	IPython	notebook	in	your	web	browser	by	typing	the	following	command	in
a	console:

ipython	notebook	--profile	julia

Start	qtconsole	with:

ipython	qtconsole	--profile	Julia

The	IJulia	dashboard	on	Ubuntu

Verify	that	you	have	started	IJulia.	You	must	see	IJ	and	the	Julia	logo	in	the	upper-left
corner	of	the	browser	window.	Julia	code	is	entered	in	the	input	cells	(input	can	be
multiline)	and	then	executed	with	Shift	+	Enter.	Here	is	a	small	example:

https://github.com/JuliaLang/IJulia.jl
http://ipython.org/
https://github.com/JuliaLang/IJulia.jl
https://github.com/stevengj/julia-mit/blob/master/README.md

An	IJulia	session	example

In	the	first	input	cell,	the	value	of	b	is	calculated	from	a:

a	=	5

b	=	2a^2	+	30a	+	9

In	the	second	input	cell,	we	use	PyPlot	(this	requires	the	installation	of	matplotlib;	for
example,	on	Linux,	this	is	done	by	sudo	apt-get	install	python-matplotlib).

The	linspace(0,	5)	command	defines	an	array	of	100	equally	spaced	values	between	0
and	5,	y	is	defined	as	a	function	of	x	and	is	then	shown	graphically	with	the	plot	as
follows:

using	PyPlot

x	=	linspace(0,	5)

y	=	cos(2x	+	5)

plot(x,	y,	linewidth=2.0,	linestyle="--")

title("a	nice	cosinus")

xlabel("x	axis")

ylabel("y	axis")

Save	a	notebook	in	file	format	(with	the	extension	.ipynb)	by	downloading	it	from	the
menu.	If	working	in	an	IPython	notebook	is	new	for	you,	you	can	take	a	look	at	the	demo

at	http://ipython.org/notebook.html	to	get	started.	After	installing	a	new	Julia	version,
always	run	Pkg.build("IJulia")	in	the	REPL	in	order	to	rebuild	the	IJulia	package	with
this	new	version.

http://ipython.org/notebook.html

Installing	Sublime-IJulia
The	popular	Sublime	Text	editor	(http://www.sublimetext.com/3)	now	has	a	plugin	based
on	IJulia	(https://github.com/quinnj/Sublime-IJulia)	authored	by	Jacob	Quinn.	It	gives	you
syntax	highlighting,	autocompletion,	and	an	in-editor	REPL,	which	you	basically	just
open	like	any	other	text	file,	but	it	runs	Julia	code	for	you.	You	can	also	select	some	code
from	a	code	file	and	send	it	to	the	REPL	with	the	shortcut	CTRL	+	B,	or	send	the	entire
file	there.	Sublime-IJulia	provides	a	frontend	to	the	IJulia	backend	kernel,	so	that	you	can
start	an	IJulia	frontend	in	a	Sublime	view	and	interact	with	the	kernel.	Here	is	a	summary
of	the	installation,	for	details	you	can	refer	to	the	preceding	URL:

1.	 From	within	the	Julia	REPL,	install	the	ZMQ	and	IJulia	packages.
2.	 From	within	Sublime	Text,	install	the	Package	Control	package

(https://sublime.wbond.net/installation).
3.	 From	within	Sublime	Text,	install	the	IJulia	package	from	the	Sublime	command

palette.
4.	 Ctrl	+	Shift	+	P	opens	up	a	new	IJulia	console.	Start	entering	commands,	and	press
Shift	+	Enter	to	execute	them.	The	Tab	key	provides	command	completion.

http://www.sublimetext.com/3
https://github.com/quinnj/Sublime-IJulia
https://sublime.wbond.net/installation

Installing	Juno
Another	promising	IDE	for	Julia	and	a	work	in	progress	by	Mike	Innes	and	Keno	Fisher	is
Juno,	which	is	based	on	the	Light	Table	environment.	The	docs	at
http://junolab.org/docs/installing.html	provides	detailed	instructions	for	installing	and
configuring	Juno.	Here	is	a	summary	of	the	steps:

1.	 Get	LightTable	from	http://lighttable.com.
2.	 Start	LightTable,	install	the	Juno	plugin	through	its	plugin	manager,	and	restart

LightTable.

Light	Table	works	extensively	with	a	command	palette	that	you	can	open	by	typing	Ctrl	+
SPACE,	entering	a	command,	and	then	selecting	it.	Juno	provides	an	integrated	console,
and	you	can	evaluate	single	expressions	in	the	code	editor	directly	by	typing	Ctrl	+	Enter
at	the	end	of	the	line.	A	complete	script	is	evaluated	by	typing	Ctrl	+	Shift	+	Enter.

http://junolab.org/docs/installing.html
http://lighttable.com

Other	editors	and	IDEs
For	terminal	users,	the	available	editors	are	as	follows:

Vim	together	with	Julia-vim	works	great	(https://github.com/JuliaLang/julia-vim)
Emacs	with	julia-mode.el	from	the
https://github.com/JuliaLang/julia/tree/master/contrib	directory

On	Linux,	gedit	is	very	good.	The	Julia	plugin	works	well	and	provides	autocompletion.
Notepad++	also	has	Julia	support	from	the	contrib	directory	mentioned	earlier.

The	SageMath	project	(https://cloud.sagemath.com/)	runs	Julia	in	the	cloud	within	a
terminal	and	lets	you	work	with	IPython	notebooks.	You	can	also	work	and	teach	with
Julia	in	the	cloud	using	the	JuliaBox	platform	(https://juliabox.org/).

https://github.com/JuliaLang/julia-vim
https://github.com/JuliaLang/julia/tree/master/contrib
https://cloud.sagemath.com/
https://juliabox.org/

How	Julia	works
(You	can	safely	skip	this	section	on	a	first	reading.)

Julia	works	with	an	LLVM	JIT	compiler	framework	that	is	used	for	just-in-time	generation
of	machine	code.	The	first	time	you	run	a	Julia	function,	it	is	parsed	and	the	types	are
inferred.	Then,	LLVM	code	is	generated	by	the	JIT	(just-in-time)	compiler,	which	is	then
optimized	and	compiled	down	to	native	code.	The	second	time	you	run	a	Julia	function,
the	native	code	already	generated	is	called.	This	is	the	reason	why,	the	second	time	you
call	a	function	with	arguments	of	a	specific	type,	it	takes	much	less	time	to	run	than	the
first	time	(keep	this	in	mind	when	doing	benchmarks	of	Julia	code).	This	generated	code
can	be	inspected.	Suppose,	for	example,	we	have	defined	a	f(x)	=	2x	+	5	function	in	a
REPL	session.	Julia	responds	with	the	message,	f	(generic	function	with	1	method);	the
code	is	dynamic	because	we	didn’t	have	to	specify	the	type	of	x	or	f.	Functions	are	by
default	generic	because	they	are	ready	to	work	with	different	data	types	for	their	variables.
The	code_llvm	function	can	be	used	to	see	the	JIT	bytecode,	for	example,	the	version
where	the	x	argument	is	of	type	Int64:

julia>	code_llvm(f,	(Int64,))

define	i64	@"julia_f;1065"(i64)	{

top:

		%1	=	shl	i64	%0,	1,	!dbg	!3248

		%2	=	add	i64	%1,	5,	!dbg	!3248

		ret	i64	%2,	!dbg	!3248

}

The	code_native	function	can	be	used	to	see	the	assembly	code	generated	for	the	same
type	of	x:

julia>	code_native(f,	(Int64,))

								.text

Filename:	none

Source	line:	1

								push				RBP

								mov					RBP,	RSP

Source	line:	1

								lea					RAX,	QWORD	PTR	[RCX	+	RCX	+	5]

								pop					RBP

								ret

Compare	this	with	the	code	generated	when	x	is	of	type	Float64:

julia>	code_native(f,	(Float64,))

								.text

Filename:	none

Source	line:	1

								push				RBP

								mov					RBP,	RSP

Source	line:	1

								vaddsd		XMM0,	XMM0,	XMM0

								movabs		RAX,	48532256

								vaddsd		XMM0,	XMM0,	QWORD	PTR	[RAX]

								pop					RBP

								ret

Julia	code	is	fast	because	it	generates	specialized	versions	of	functions	for	each	data	type.
Julia	implements	automatic	memory	management.	The	user	doesn’t	have	to	worry	about
allocating	and	keeping	track	of	the	memory	for	specific	objects.	Automatic	deletion	of
objects	that	are	not	needed	any	more	(and	hence,	reclamation	of	the	memory	associated
with	those	objects)	is	done	using	a	garbage	collector	(GC).	The	garbage	collector	runs	at
the	same	time	as	your	program.	Exactly	when	a	specific	object	is	garbage	collected	is
unpredictable.	In	Version	0.3,	the	GC	is	a	simple	mark-and-sweep	garbage	collector;	this
will	change	to	an	incremental	mark-and-sweep	GC	in	Version	0.4.	You	can	start	garbage
collection	yourself	by	calling	gc(),	or	if	it	runs	in	the	way	you	can	disable	it	by	calling
gc_disable().

The	standard	library	is	implemented	in	Julia	itself.	The	I/O	functions	rely	on	the	libuv
library	for	efficient,	platform-independent	I/O.	The	standard	library	is	also	contained	in	a
package	called	Base,	which	is	automatically	imported	when	starting	Julia.

Summary
By	now,	you	should	have	been	able	to	install	Julia	in	a	working	environment	you	prefer.
You	should	also	have	some	experience	with	working	in	the	REPL.	We	will	put	this	to
good	use	starting	in	the	next	chapter,	where	we	will	meet	the	basic	data	types	in	Julia,	by
testing	out	everything	in	the	REPL.

Chapter	2.	Variables,	Types,	and
Operations
Julia	is	an	optionally	typed	language,	which	means	that	the	user	can	choose	to	specify	the
type	of	arguments	passed	to	a	function	and	the	type	of	variables	used	inside	a	function.
Julia’s	type	system	is	the	key	for	its	performance;	understanding	it	well	is	important,	and	it
can	pay	to	use	type	annotations,	not	only	for	documentation	or	tooling,	but	also	for
execution	speed.	This	chapter	discusses	the	realm	of	elementary	built-in	types	in	Julia,	the
operations	that	can	be	performed	on	them	as	well	as	the	important	concepts	of	types	and
scope.

The	following	topics	are	covered	in	this	chapter:

Variables,	naming	conventions,	and	comments
Types
Integers
Floating	point	numbers
Elementary	mathematical	functions	and	operations
Rational	and	complex	numbers
Characters
Strings
Regular	expressions
Ranges	and	arrays
Dates	and	times
Scope	and	constants

You	will	need	to	follow	along	by	typing	in	the	examples	in	the	REPL,	or	executing	the
code	snippets	in	the	code	files	of	this	chapter.

Variables,	naming	conventions,	and
comments
Data	is	stored	in	values	such	as	1,	3.14,	"Julia",	and	every	value	has	a	type,	for	example,
the	type	of	3.14	is	Float64.	Some	other	examples	of	elementary	values	and	their	data
types	are	42	of	the	Int64	type,	true	and	false	of	the	Bool	type,	and	'X'	of	the	Char	type.

Julia,	unlike	many	modern	programming	languages,	differentiates	between	single
characters	and	strings.	Strings	can	contain	any	number	of	characters	and	are	specified
using	double	quotes,	and	single	quotes	are	only	used	for	character	literals.	Variables	are
the	names	that	are	bound	to	values	by	assignments,	such	as	x	=	42.	They	have	the	type	of
the	value	they	contain	(or	reference);	this	type	is	given	by	the	typeof	function.	For
example,	typeof(x)	returns	Int64.

The	type	of	a	variable	can	change,	because	putting	x	=	"I	am	Julia"	now	results	in
typeof(x)	returning	ASCIIString.	In	Julia,	we	don’t	have	to	declare	a	variable	(that
indicates	its	type)	such	as	in	C	or	Java	for	instance,	but	a	variable	must	be	initialized	(that
is	bound	to	a	value),	so	that	Julia	can	deduce	its	type.

julia>	y	=	7

7				

typeof(y)			#	Int64

julia>	y	+	z

ERROR:	z	not	defined

In	the	preceding	example,	z	was	not	assigned	a	value	before	using	it,	so	we	got	an	error.
By	combining	variables	through	operators	and	functions	such	as	the	+	operator	(as	in	the
preceding	example),	we	get	expressions.	An	expression	always	results	in	a	new	value
after	computation.	Contrary	to	many	other	languages,	everything	in	Julia	is	an	expression,
so	it	returns	a	value.	That’s	why	working	in	a	REPL	is	so	great	because	you	can	see	the
values	at	each	step.

The	type	of	variables	determines	what	you	can	do	with	them,	that	is,	the	operators	with
which	they	can	be	combined,	in	this	sense,	Julia	is	a	strongly-typed	language.	In	the
following	example,	x	is	still	a	String	value,	so	it	can’t	be	summed	with	y	which	is	of	type
Int64,	but	if	we	give	x	a	float	value,	the	sum	can	be	calculated,	as	shown	in	the	following
example:

julia>	x	+	y

ERROR:	`+`	has	no	method	matching	+(::ASCIIString,	::Int64)

julia>	x	=	3.5;	x	+	y

10.5

Here,	the	semicolon	(;)	ends	the	first	expression	and	suppresses	its	output.	Names	of	the
variables	are	case	sensitive.	By	convention,	lower	case	is	used	with	multiple	words
separated	by	an	underscore.	They	start	with	a	letter	and	after	that,	you	can	use	letters,
digits,	underscores,	and	exclamation	points.	You	can	also	use	Unicode	characters.	Use
clear,	short,	and	to	the	point	names.	Here	are	some	valid	variable	names:	mass,

moon_velocity,	current_time,	pos3,	and	ω1.	However,	the	last	two	are	not	very
descriptive,	and	they	could	better	be	replaced	with,	for	example,	particle_position	and
particle_ang_velocity.

A	line	of	code	preceded	by	a	hash	sign	(#)	is	a	comment,	as	we	can	see	in	the	following
example:

#	Calculate	the	gravitational	acceleration	grav_acc:

gc	=	6.67e-11	#	gravitational	constant	in	m3/kg	s2

mass_earth	=	5.98e24		#	in	kg

radius_earth	=	6378100	#	in	m

grav_acc	=	gc	*	mass_earth	/	radius_earth^2	#	9.8049	m/s2	

Multi-line	comments	are	helpful	for	writing	comments	that	span	across	multiple	lines	or
commenting	out	code.	Julia	will	treat	all	the	text	between	#=	and	=#	as	a	comment.	For
printing	out	values,	use	the	print	or	println	functions	as	follows:

julia>	print(x)

3.5

If	you	want	your	printed	output	to	be	in	color,	use	print_with_color(:red,	"I	love
Julia!")	that	returns	the	argument	string	in	the	color	indicated	by	the	first	argument.

The	term	object	(or	instance)	is	frequently	used	when	dealing	with	variables	of	more
complex	types.	However,	we	will	see	that	when	doing	actions	on	objects,	Julia	uses
functional	semantics.	We	write	action(object)	instead	of	object.action(),	as	we	do	in
more	object-oriented	languages	such	as	Java	or	C#.

In	a	REPL,	the	value	of	the	last	expression	is	automatically	displayed	each	time	a
statement	is	evaluated	(unless	it	ends	with	a	;	sign).	In	a	standalone	script,	Julia	will	not
display	anything	unless	the	script	specifically	instructs	it	to.	This	is	achieved	with	a	print
or	println	statement.	To	display	any	object	in	the	way	the	REPL	does	in	code,	use
display(object).

Types
Julia’s	type	system	is	unique.	Julia	behaves	as	a	dynamically-typed	language	(such	as
Python	for	instance)	most	of	the	time.	This	means	that	a	variable	bound	to	an	integer	at
one	point	might	later	be	bound	to	a	string.	For	example,	consider	the	following:

julia>	x	=	10

10

julia>	x	=	"hello"

"hello"

However,	one	can,	optionally,	add	type	information	to	a	variable.	This	causes	the	variable
to	only	accept	values	that	match	that	specific	type.	This	is	done	through	a	type	annotation.
For	instance,	declaring	x::ASCIIString	implies	that	only	strings	can	be	bound	to	x;	in
general,	it	looks	like	var::TypeName.	These	are	used	most	often	to	qualify	the	arguments	a
function	can	take.	The	extra	type	information	is	useful	for	documenting	the	code,	and
often	allows	the	JIT	compiler	to	generate	better	optimized	native	code.	It	also	allows	the
development	environments	to	give	more	support,	and	code	tools	such	as	a	linter	that	can
check	your	code	for	possible	wrong	type	use.

Here	is	an	example:	a	function	with	the	calc_position	name	defined	as	the	function
calc_position(time::Float64),	indicates	that	this	function	takes	one	argument	named
time	of	the	type	Float64.

Julia	uses	the	same	syntax	for	type	assertions	that	are	used	to	check	whether	a	variable	or
an	expression	has	a	specific	type.	Writing	(expr)::TypeName	raises	an	error	if	expr	is	not
of	the	required	type.	For	instance,	consider	the	following:

julia>	(2+3)::ASCIIString

ERROR:	type:	typeassert:	expected	ASCIIString,	got	Int64

Notice	that	the	type	comes	after	the	variable	name,	unlike	in	most	other	languages.	In
general,	the	type	of	a	variable	can	change	in	Julia,	but	this	is	detrimental	to	performance.
For	utmost	performance,	you	need	to	write	type-stable	code.	Code	is	type-stable	if	the
type	of	every	variable	does	not	vary	over	time.	Carefully	thinking	in	terms	of	the	types	of
variables	is	useful	in	avoiding	performance	bottlenecks.	Adding	type	annotations	to
variables	updated	in	the	inner	loop	of	a	critical	region	of	code	can	lead	to	drastic
improvements	in	the	performance	by	helping	the	JIT	compiler	remove	some	type
checking.	To	see	an	excellent	example	where	this	is	important,	read	the	article	available	at
http://www.johnmyleswhite.com/notebook/2013/12/06/writing-type-stable-code-in-julia/.

A	lot	of	types	exist,	in	fact,	a	whole	type	hierarchy	is	built	in	in	Julia.	If	you	don’t	specify
the	type	of	a	function	argument,	it	has	the	type	Any,	which	is	effectively	the	root	or	parent
of	all	types.	Every	object	is	at	least	of	the	universal	type	Any.	At	the	other	end	of	the
spectrum,	there	is	type	None	that	has	no	values.	No	object	can	have	this	type,	but	it	is	a
subtype	of	every	other	type.	While	running	the	code,	Julia	will	infer	the	type	of	the
parameters	passed	in	a	function,	and	with	this	information,	it	will	generate	optimal
machine	code.

http://www.johnmyleswhite.com/notebook/2013/12/06/writing-type-stable-code-in-julia/

You	can	define	your	own	custom	types	as	well,	for	instance,	a	Person	type.	By
convention,	the	names	of	types	begin	with	a	capital	letter,	and	if	necessary,	the	word
separation	is	shown	with	CamelCase,	such	as	BigFloat	or	AbstractArray.

If	x	is	a	variable,	then	typeof(x)	gives	its	type,	and	isa(x,	T)	tests	whether	x	is	of	type
T.	For	example,	isa("ABC",	String)	returns	true,	and	isa(1,	Bool)	returns	false.

Everything	in	Julia	has	a	type,	including	types	themselves,	which	are	of	type	DataType:
typeof(Int64)	returns	DataType.	Conversion	of	a	variable	var	to	a	type	Type1	can	be
done	using	the	type	name	(lower-cased)	as	a	function	type1(var),	for	example,
int64(3.14)	returns	3.

However,	this	raises	an	error	if	type	conversion	is	impossible	as	follows:

julia>	int64("hello")

ERROR:	invalid	base	10	digit	'h'	in	"hello"

Integers
Julia	offers	support	for	integer	numbers	ranging	from	types	Int8	to	Int128,	with	8	to	128
representing	the	number	of	bits	used,	and	with	unsigned	variants	with	a	U	prefix,	such	as
UInt8.	The	default	type	(which	can	also	be	used	as	Int)	is	Int32	or	Int64	depending	on
the	target	machine	architecture.	The	bit	width	is	given	by	the	variable	WORD_SIZE.	The
number	of	bits	used	by	the	integer	affects	the	maximum	and	minimum	value	this	integer
can	have.	The	minimum	and	maximum	values	are	given	by	the	functions	typemin()	and
typemax()	respectively,	for	example,	typemax(Int16)	returns	32767.

If	you	try	to	store	a	number	larger	than	that	allowed	by	typemax,	overflow	occurs.	For
example:

julia>	typemax(Int)

9223372036854775807	#	might	be	different	on	32	bit	platform

julia>	ans	+	1

-9223372036854775808

Overflow	checking	is	not	automatic,	so	an	explicit	check	(for	example,	the	result	has	the
wrong	sign)	is	needed	when	this	can	occur.	Integers	can	also	be	written	in	binary	(0b),
octal	(0o),	and	hexadecimal	(0x)	format.

For	computations	needing	arbitrary-precision	integers,	Julia	has	a	BigInt	type.	These
values	can	be	constructed	as	BigInt("number"),	and	support	the	same	operators	as
normal	integers.	Conversions	between	numeric	types	are	automatic,	but	not	between	the
primitive	types	and	the	Big-	types.	The	normal	operations	of	addition	(+),	subtraction	(-),
and	multiplication	(*)	apply	for	integers.	A	division	(/)	always	gives	a	floating	point
number.	If	you	only	want	integer	divisor	and	remainder,	use	div	and	rem.	The	symbol	^	is
used	to	obtain	the	power	of	a	number.	The	logical	values,	true	and	false,	of	type	Bool
are	also	integers	with	8	bits.	0	amounts	to	false,	and	1	(in	fact,	also	all	values	other	than
0)	to	true;	for	example,	bool(-56)	returns	true.	Negation	can	be	done	with	the	!
operator;	for	example,	!true	is	false.	Comparing	numbers	with	==	(equal),	!=	or	<	and	>
return	a	Bool	value,	and	comparisons	can	be	chained	after	one	another	(as	in	0	<	x	<	3).

Floating	point	numbers
Floating	point	numbers	follow	the	IEEE	754	standard	and	represent	numbers	with	a
decimal	point	such	as	3.14	or	an	exponent	notation	4e-14,	and	come	in	the	types	Float16
up	to	Float64,	the	last	one	used	for	double	precision.

Single	precision	is	achieved	through	the	use	of	the	Float32	type.	Single	precision	float
literals	must	be	written	in	scientific	notation,	such	as	3.14f0,	but	with	f	,where	one
normally	uses	e.	That	is,	2.5f2	indicates	2.5*10^2	with	single	precision,	while	2.5e2
indicates	2.5*10^2	in	double	precision.	Julia	also	has	a	BigFloat	type	for	arbitrary-
precision	floating	numbers’	computations.

A	built-in	type	promotion	system	takes	care	of	all	the	numeric	types	that	can	work
together	seamlessly,	so	that	there	is	no	explicit	conversion	needed.	Special	values	exist:
Inf	and	-Inf	for	infinity,	and	NaN	is	used	for	“not	a	number”-values	such	as	the	result	of
0/0	or	Inf	–	Inf.

Floating	point	arithmetic	in	all	programming	languages	is	often	a	source	of	subtle	bugs
and	counter-intuitive	behavior.	For	instance:

julia>	0.1	+	0.2

0.30000000000000000004

This	happens	because	of	the	way	the	floating	point	numbers	are	stored	internally.	Most
numbers	cannot	be	stored	internally	with	a	finite	number	of	bits,	such	as	1/3	has	no	finite
representation	in	base	10.	The	computer	will	choose	the	closest	number	it	can	represent,
introducing	a	small	round	off	error.	These	errors	might	accumulate	over	the	course	of
long	computations,	creating	subtle	problems.

Maybe	the	most	important	consequence	of	this	is	the	need	to	avoid	using	equality	when
comparing	floating	point	numbers:

julia>	0.1	+	0.2	==	0.3

false

A	better	solution	is	to	use	>=	or	<=	comparisons	in	Boolean	tests	that	involve	floating	point
numbers,	wherever	possible.

Elementary	mathematical	functions	and
operations
You	can	view	the	binary	representation	of	any	number	(integer	or	float)	with	the	bits
function,	for	example,	bits(3)	returns
"0011".

To	round	a	number,	use	the	round()	or	iround()	functions:	the	first	returns	a	floating
point	number,	and	the	last	returns	an	integer.	All	standard	mathematical	functions	are
provided,	such	as	sqrt(),	cbrt(),	exp(),	log(),	sin(),	cos(),	tan(),	erf()	(the	error
function),	and	many	more	(refer	to	the	following	URL).	To	generate	a	random	number,	use
rand().

Use	parentheses	()	around	expressions	to	enforce	precedence.	Chained	assignments	such
as	a	=	b	=	c	=	d	=	1	are	allowed.	The	assignments	are	evaluated	right-to-left.
Assignments	for	different	variables	can	be	combined,	as	shown	in	the	following	example:

		a	=	1;	b	=	2;	c	=	3;	d	=	4

		a,	b	=	c,	d

Now,	a	has	value	3	and	b	has	value	4.	In	particular,	this	makes	an	easy	swap	possible:

				a,	b	=	b,	a			#	now	a	is	4	and	b	is	3

Like	in	many	other	languages,	the	Boolean	operators	work	on	the	true	and	false	values
for	and,	or,	and	not	have	as	symbols	&&,	||,	and	!	respectively.	Julia	applies	a	short-
circuit	optimization	here.	That	means:

In	a	&&	b,	b	is	not	evaluated	when	a	is	false	(since	&&	is	already	false)
In	a	||	b,	b	is	not	evaluated	when	a	is	true	(since	||	is	already	true)

The	operators	&	and	|	are	also	used	for	non-short-circuit	Boolean	evaluations.

Julia	also	supports	bitwise	operations	on	integers.	Note	that	n++	or	n--	with	n	as	an
integer	does	not	exist	in	Julia,	as	it	does	in	C++	or	Java.	Use	n	+=	1	or	n	-=	1	instead.

For	more	detailed	information	on	operations,	such	as	the	bitwise	operators,	special
precedence,	and	so	on,	refer	to	http://docs.julialang.org/en/latest/manual/mathematical-
operations/.

http://docs.julialang.org/en/latest/manual/mathematical-operations/

Rational	and	complex	numbers
Julia	supports	these	types	out	of	the	box.	The	global	constant	im	represents	the	square	root
of	-1,	so	that	3.2	+	7.1im	is	a	complex	number	with	floating	point	coefficients,	so	it	is	of
the	type	Complex{Float64}.

This	is	the	first	example	of	a	parametric	type	in	Julia.	For	this	example,	we	can	write	this
as	Complex{T},	where	type	T	can	take	a	number	of	different	type	values	such	as	Int32	or
Int64.

All	operations	and	elementary	functions	such	as	exp(),	sqrt(),	sinh(),	real(),	imag(),
abs(),	and	so	on	are	also	defined	on	complex	numbers;	for	example,	abs(3.2	+	7.1im)
=	7.787810988975015.

If	a	and	b	are	two	variables	that	contain	a	number,	use	complex(a,b)	to	form	a	complex
number	with	them.	Rational	numbers	are	useful	when	you	want	to	work	with	exact	ratios
of	integers,	for	example,	3//4,	which	is	of	type	Rational{Int64}.	Again,	comparisons
and	standard	operations	are	defined:	float()	converts	to	a	floating	point	number,	and
num()	and	denum()	gives	the	numerator	and	denominator.	Both	types	work	together
seamlessly	with	all	the	other	numeric	types.

Characters
Like	C	or	Java,	but	unlike	Python,	Julia	implements	a	type	for	a	single	character,	the	Char
type.	A	character	literal	is	written	as	'A',	typeof('A')	returns	Char.	A	Char	type	is,	in
fact,	a	32-bit	integer	whose	numeric	value	is	a	Unicode	code	point,	and	they	range	from
'\0'	to	'\Uffffffff'.	Convert	this	to	its	code	point	with	int():	int('A')	returns	65,
int('α')	returns	945,	so	this	takes	two	bytes.

The	reverse	also	works:	char(65)	returns	'A',	char(945)	returns	'\u3b1',	the	code	point
for	α	(3b1	is	hexadecimal	for	945).

Unicode	characters	can	be	entered	by	a	\u	in	single	quotes,	followed	by	four	hexadecimal
digits	(0-9,	A-F),	or	\U	followed	by	eight	hexadecimal	digits.	The	function
is_valid_char()	can	test	whether	a	number	returns	an	existing	Unicode	character:
is_valid_char(0x3b1)	returns	true.	The	normal	escape	characters	such	as	\t	(tab),	\n
(newline),	\',	and	so	on	also	exist	in	Julia.

Strings
Literal	strings	are	always	ASCII	(if	they	only	contain	ASCII	letters)	or	UTF8	(if	they
contain	characters	that	cannot	be	represented	in	ASCII),	as	in	this	example:

julia>	typeof("hello")

ASCIIString

julia>	typeof("Güdrun")

UTF8String

UTF16	and	UTF32	are	also	supported.	Strings	are	contained	in	double	quotes	("	")	or	triple
quotes	('''	''').	They	are	immutable,	which	means	that	they	cannot	be	altered	once	they
have	been	defined:

julia>	s	=	"Hello,	Julia"

julia>	s[2]	=	"z"

ERROR:	'setindex!'	has	no	method	matching	setindex!...

A	String	is	a	succession,	or	an	array	of	characters	(see	the	Ranges	and	arrays	section)	that
can	be	extracted	from	the	string	by	indexing	it,	starting	from	1:	with	str	=	"Julia",	then
str[1]	returns	the	Char	'J',	and	str[end]	returns	the	Char	'a',	the	last	character	in	the
string.	The	index	of	the	last	byte	is	also	given	by	endof(str),	and	length()	returns	the
number	of	characters.	These	two	are	different	if	the	string	contains	multi-byte	Unicode
characters,	for	example,	endof("Güdrun")	gives	7,	while	length("Güdrun")	gives	6.

Using	an	index	less	than	one	or	greater	than	the	index	of	the	last	byte	gives	BoundsError.
In	general,	strings	can	contain	Unicode	characters,	which	can	take	up	to	four	bytes,	so	not
every	index	is	a	valid	character	index.	For	example,	for	str2	=	"I	am	the	α:	the
beginning",	we	have	str2[10]	that	returns	'\u3b1'	(the	two-byte	character	representing
α),	str2[11]	returns	ERROR:	invalid	UTF-8	character	index	(because	this	is	the
second	byte	of	the	α	character)	and	str2[12]	returns	colon	(:).

We	see	25	characters,	length(str2)	returns	25,	but	the	last	index	given	by	endof(str2)
returns	26.	For	this	reason,	looping	over	a	string’s	characters	can	best	be	done	as	an
iteration	and	not	using	the	index,	as	follows:

for	c	in	str2

				println(c)

end

A	substring	can	be	obtained	by	taking	a	range	of	indices:	str[3:5]	or	str[3:end]	returns
"lia".	A	string	that	contains	a	single	Char	is	different	from	that	Char	value:	'A'	==	"A"
returns	false.

Julia	has	an	elegant	string	interpolation	mechanism	for	constructing	strings:	$var	inside	a
string	is	replaced	by	the	value	of	var,	and	$(expr),	where	expr	is	an	expression,	is
replaced	by	its	computed	value.	When	a	is	2	and	b	is	3,	the	following	expression	"$a	*	$b
=	$(a	*	b)"	returns	"2	*	3	=	6".	If	you	need	to	write	the	$	sign	in	a	string,	escape	it	as
\$.

You	can	also	concatenate	strings	with	the	*	operator	or	with	the	string()	function:	"ABC"

*	"DEF"	returns	"ABCDEF",	and	string("abc",	"def",	"ghi")	returns	"abcdefghi".

Strings	prefixed	with	:	are	of	type	Symbol,	such	as	:green;	we	already	used	it	in	the
print_with_color	function.	They	are	more	efficient	than	strings	and	are	used	for	IDs	or
keys.	Symbols	cannot	be	concatenated.	They	should	only	be	used	if	they	are	expected	to
remain	constant	over	the	course	of	the	execution	of	the	program.	The	String	type	is	very
rich,	and	it	has	354	functions	defined	on	it,	given	by	methodswith(String).	Some	useful
methods	include:

search(string,	char):	This	returns	the	index	of	the	first	matching	char	in	string,
or	the	range	of	a	substring:	search("Julia",'l')	returns	3.
replace(string,	str1,	str2):	This	changes	substrings	str1	to	str2	in	string,	for
example,	replace("Julia","u",	"o")	returns	"Jolia".
split(string,	char	or	[chars]):	This	splits	a	string	on	the	specified	char	or
chars,	for	example,	split("34,Tom	Jones,Pickwick	Street	10,Aberdeen",	',')
returns	the	four	strings	in	an	array:	["34","Tom	Jones","Pickwick	Street
10","Aberdeen"];	if	char	is	not	specified,	the	split	is	done	on	space	characters
(spaces,	tabs,	newlines,	and	so	on).

Formatting	numbers	and	strings
The	@printf	macro	(we’ll	look	deeper	into	macros	in	Chapter	7,	Metaprogramming	in
Julia)	takes	a	format	string	and	one	or	more	variables	to	substitute	into	this	string	while
being	formatted.	It	works	in	a	manner	similar	to	printf	in	C.	You	can	write	a	format
string	that	includes	placeholders	for	variables.	For	example:

julia>	name	=	"Pascal"

julia>	@printf("Hello,	%s	\n",	name)	#	returns	Hello,	Pascal

If	you	need	a	string	as	the	return	value,	use	the	macro	@sprintf.

The	following	chapter	2\formatting.jl	script	shows	the	most	common	formats	(show	is
a	basic	function	that	prints	a	text	representation	of	an	object,	often	more	specific	than
print):

#	d	for	integers:

@printf("%d\n",	1e5)	#>	100000

x	=	7.35679

#	f	=	float	format,	rounded	if	needed:

@printf("x	=	%0.3f\n",	x)	#>	7.357

aa	=	1.5231071779744345

bb	=	33.976886930000695

@printf("%.2f	%.2f\n",	aa,	bb)	#>	1.52	33.98

#	or	to	create	another	string:

str	=	@sprintf("%0.3f",	x)

show(str)	#>	"7.357"

println()

#	e	=	scientific	format	with	e:

@printf("%0.6e\n",	x)	#>	7.356790e+00

#	c	=	for	characters:

@printf("output:	%c\n",	'α')	#>	output:	α

#	s	for	strings:

@printf("%s\n",	"I	like	Julia")

#	right	justify:

@printf("%50s\n",	"text	right	justified!")

The	following	output	is	obtained	on	running	the	preceding	script:

100000

x	=	7.357

1.52	33.98

"7.357"

7.356790e+00

output:	α

I	like	Julia

																			text	right	justified!

A	special	kind	of	string	is	VersionNumber	that	takes	the	form	v"0.3.0"	(note	the
preceding	v),	with	optional	additional	details.	They	can	be	compared,	and	are	used	for
Julia’s	versions,	but	also	in	the	package	versions	and	dependency	mechanism	of	Pkg	(refer
to	the	Packages	section	of	Chapter	1,	Installing	the	Julia	Platform).	If	you	have	the	code
that	works	differently	for	different	versions,	use	something	as	follows:

if	v"0.3"	<=	VERSION	<	v"0.4-"

#	do	something	specific	to	0.3	release	series

end

Regular	expressions
To	search	for	and	match	patterns	in	text	and	other	data,	regular	expressions	are	an
indispensable	tool	for	the	data	scientist.	Julia	adheres	to	the	Perl	syntax	of	regular
expressions.	For	a	complete	reference,	refer	to	http://www.regular-
expressions.info/reference.html.	Regular	expressions	are	represented	in	Julia	as	a	double
(or	triple)	quoted	string	preceded	by	r,	such	as	r"..."	(optionally,	followed	by	one	or
more	of	the	i,	s,	m,	or	x	flags),	and	they	are	of	type	Regex.	The	chapter	2\regexp.jl
script	shows	some	examples.

In	the	first	example,	we	will	match	the	e-mail	addresses	(#>	shows	the	result):

email_pattern	=	r".+@.+"

input	=	"john.doe@mit.edu"

println(ismatch(email_pattern,	input))	#>	true

The	regular	expression	pattern	+	matches	any	(non-empty)	group	of	characters.	Thus,	this
pattern	matches	any	string	that	contains	@	somewhere	in	the	middle.

In	the	second	example,	we	will	try	to	determine	whether	a	credit	card	number	is	valid	or
not:

visa	=	r"^(?:4[0-9]{12}(?:[0-9]{3})?)$"		#	the	pattern

input	=	"4457418557635128"

ismatch(visa,	input)		#>	true

if	ismatch(visa,	input)

				println("credit	card	found")

				m	=	match(visa,	input)

				println(m.match)	#>	4457418557635128

				println(m.offset)	#>	1

				println(m.offsets)	#>	[]

end

The	function	ismatch(regex,	string)	returns	true	or	false,	depending	on	whether	the
given	regex	matches	the	string,	so	we	can	use	it	in	an	if	expression.	If	you	want	the
detailed	information	of	the	pattern	matching,	use	match	instead	of	ismatch.	This	either
returns	nothing	when	there	is	no	match,	or	an	object	of	type	RegexMatch	when	the	pattern
is	found	(nothing	is,	in	fact,	a	value	to	indicate	that	nothing	is	returned	or	printed,	and	it
has	type	Nothing).

The	RegexMatch	object	has	the	following	properties:

match	contains	the	entire	substring	that	matches	(in	this	example,	it	contains	the
complete	number)
offset	tells	at	what	position	the	matching	begins	(here,	it	is	1)
offsets	gives	the	same	information	as	the	preceding	line,	but	for	each	of	the
captured	substrings
captures	contains	the	captured	substrings	as	a	tuple	(refer	to	the	following	example)

Besides,	checking	whether	a	string	matches	a	particular	pattern,	regular	expressions	can
also	be	used	to	capture	parts	of	the	string.	We	do	this	by	enclosing	parts	of	the	pattern	in

http://www.regular-expressions.info/reference.html

parentheses	().	For	instance,	to	capture	the	username	and	hostname	in	the	e-mail	address
pattern	used	earlier,	we	modify	the	pattern	as:

email_pattern	=	r"(.+)@(.+)"

Notice	how	the	characters	before	@	are	enclosed	in	brackets.	This	tells	the	regular
expression	engine	that	we	want	to	capture	this	specific	set	of	characters.	To	see	how	this
works,	consider	the	following	example:

email_pattern	=	r"(.+)@(.+)"

input	=	"john.doe@mit.edu"

m	=	match(email_pattern,	input)

println(m.captures)	#>	["john.doe","mit.edu"]

Here	is	another	example:

m	=	match(r"(ju|l)(i)?(a)",	"Julia")

println(m.match)	#>	"lia"

println(m.captures)	#>	l	-	i	-	a

println(m.offset)	#>	3

println(m.offsets)	#>	3	-	4	-	5

The	search	and	replace	functions	also	take	regular	expressions	as	arguments,	for
example,	replace("Julia",	r"u[\w]*l",	"red")	returns	"Jredia".	If	you	want	to	work
with	all	the	matches,	matchall	and	eachmatch	come	in	handy:

str	=	"The	sky	is	blue"

reg	=	r"[\w]{3,}"	#	matches	words	of	3	chars	or	more

r	=	matchall(reg,	str)

show(r)	#>	["The","sky","blue"]

iter	=	eachmatch(reg,	str)

for	i	in	iter

				println("\"$(i.match)\"	")

end

The	matchall	function	returns	an	array	with	RegexMatch	for	each	match.	eachmatch
returns	an	iterator	iter	over	all	the	matches,	which	we	can	loop	through	with	a	simple	for
loop.	The	screen	output	is	"The",	"sky",	and	"blue"	printed	on	consecutive	lines.

Ranges	and	arrays
When	we	execute	search("Julia","uli"),	the	result	is	not	an	index	number,	but	a	range
2:4	that	indicates	the	index	interval	for	the	searched	substring.	This	comes	in	handy	when
you	have	to	work	with	an	interval	of	numbers,	for	example,	one	up	to	thousand:	1:1000.
The	type	of	this	object	typeof(1:1000)	is	UnitRange{Int64}.	By	default,	the	step	is	1,
but	this	can	also	be	specified	as	the	second	number;	0:5:100	gives	all	multiples	of	5	up	to
100.	You	can	iterate	over	a	range	as	follows:

#	code	from	file	chapter2\arrays.jl			

for	i	in	1:2:9

					println(i)

end

This	prints	out	1	3	5	7	9	on	consecutive	lines.

In	the	previous	section	on	Strings,	we	already	encountered	the	Array	type	when	discussing
the	split	function:

a	=	split("A,B,C,D",",")

typeof(a)	#>	Array{SubString{ASCIIString},1}

show(a)	#>	SubString{ASCIIString}["A","B","C","D"]

Julia’s	arrays	are	very	efficient,	powerful,	and	flexible.	The	general	type	format	for	an
array	is	Array{Type,	n},	with	n	number	of	dimensions	(we	will	discuss	multidimensional
arrays	or	matrices	in	Chapter	5,	Collection	Types).	As	with	the	complex	type,	we	can	see
that	the	Array	type	is	generic,	and	all	the	elements	have	to	be	of	the	same	type.	A	one-
dimensional	array	(also	called	a	Vector	in	Julia)	can	be	initialized	by	separating	its	values
by	commas	and	enclosing	them	in	square	brackets,	for	example,	arr	=	[100,	25,	37]
is	a	3-element	Array{Int64,1};	the	type	is	automatically	inferred	with	this	notation.	If
you	want	explicitly	the	type	to	be	Any,	then	define	it	as	follows:	arra	=	Any[100,	25,
"ABC"].	Notice	that	we	don’t	have	to	indicate	the	number	of	elements.	Julia	takes	care	of
that	and	lets	an	array	grow	dynamically	when	needed.

Arrays	can	also	be	constructed	by	passing	a	type	parameter	and	number	of	elements:

					arr2	=	Array(Int64,5)	#	is	a	5-element	Array{Int64,1}

					show(arr2)	#>	[0,0,0,0,0]

When	making	an	array	like	this,	you	cannot	be	sure	that	it	will	be	initialized	to	0	values
(refer	to	the	Other	ways	to	create	arrays	section	to	learn	how	to	initialize	an	array).

You	can	define	an	array	with	0	elements	of	type	Float64	as	follows:

						arr3	=	Float64[]	#>	0-element	Array{Float64,1}

To	populate	this	array,	use	push!;	for	example,	push!(arr3,	1.0)	returns	1-element
Array{Float64,1}.

Creating	an	empty	array	with	arr3	=	[]	is	not	very	useful	because	the	element	type	is
Any.	Julia	wants	to	be	able	to	infer	the	type!

Arrays	can	also	be	initialized	from	a	range:

				arr4	=	[1:7]	#>	7-element	Array{Int64,1}:	[1,2,3,4,5,6,7]

Of	course,	when	dealing	with	large	arrays,	it	is	better	to	indicate	the	final	number	of
elements	from	the	start	for	the	performance.	Suppose	you	know	beforehand	that	arr2	will
need	10^5	elements,	but	not	more.	If	you	do	sizehint(arr2,	10^5),	you’ll	be	able	to
push!	at	least	10^5	elements	without	Julia	having	to	reallocate	and	copy	the	data	already
added,	leading	to	a	substantial	improvement	in	performance.

Arrays	store	a	sequence	of	values	of	the	same	type	(called	elements),	indexed	by	integers
1	through	the	number	of	elements	(as	in	mathematics,	but	unlike	most	other	high-level
languages	such	as	Python).	As	with	strings,	we	can	access	the	individual	elements	with	the
bracket	notation;	for	example,	with	arr	being	[100,	25,	37],	arr[1]	returns	100,	and
arr[end]	is	37.	Use	an	invalid	index	result	in	an	exception	as	follows:

		arr[6]	#>	ERROR:	BoundsError()

You	can	also	set	a	specific	element	the	other	way	around:

arr[2]	=	5	#>	[100,	5,	37]

The	main	characteristics	of	an	array	are	given	by	the	following	functions:

The	element	type	is	given	by	eltype(arr),	in	our	example,	is	Int64
The	number	of	elements	is	given	by	length(arr),	here,	3
The	number	of	dimensions	is	given	by	ndims(arr),	here,	1
The	number	of	elements	in	dimension	n	is	given	by	size(arr,	n),	here,	size(arr,
1)	returns	3

It	is	easy	to	join	the	array	elements	to	a	string	separated	by	a	comma	character	and	a
space,	for	example,	with	arr4	=	[1:7]:

				join(arr4,	",	")	#>	"1,	2,	3,	4,	5,	6,	7"

We	can	also	use	this	range	syntax	(called	a	slice	as	in	Python)	to	obtain	subarrays:

				arr4[1:3]	#>#>	3-element	array	[1,	2,	3]

				arr4[4:end]	#>	3-element	array	[4,	5,	6,	7]

Slices	can	be	assigned	to,	with	one	value	or	with	another	array:

arr	=	[1,2,3,4,5]

arr[2:4]	=	[8,9,10]

println(arr)	#>	1	8	9	10	5

Other	ways	to	create	arrays
For	convenience,	zeros(n)	returns	an	n	element	array	with	all	the	elements	equal	to	0.0,
and	ones(n)	does	the	same	with	elements	equal	to	1.0.

linspace(start,	stop,	n)	creates	a	vector	of	n	equally	spaced	numbers	from	start	to
stop,	for	example:

eqa	=	linspace(0,	10,	5)

show(eqa)	#>	[0.0,2.5,5.0,7.5,10.0]

You	can	use	cell	to	create	an	array	with	undefined	values:	cell(4)	creates	a	four	element
array	{Any,1}	with	four	#undef	values	as	shown:

{#undef,#undef,#undef,#undef}

To	fill	an	array	arr	with	the	same	value	for	all	the	elements,	use	fill!(arr,	42),	which
returns	[42,	42,	42].	To	create	a	five-element	array	with	random	Int32	numbers,
execute	the	following:

v1	=	rand(Int32,5)

5-element	Array{Int32,1}:

		905745764

		840462491

	-227765082

	-286641110

								16698998

To	convert	this	to	an	array	of	Int64	elements,	just	execute	int64(v1).

Some	common	functions	for	arrays
If	b	=	[1:7]	and	c	=	[100,200,300],	then	you	can	concatenate	b	and	c	with	the
following	command:

		append!(b,	c)	#>	Now	b	is	[1,	2,	3,	4,	5,	6,	7,	100,	200,	300]

The	array	b	is	changed	by	applying	this	append!	method,	that’s	why,	it	ends	in	an
exclamation	mark	(!).	This	is	a	general	convention.

Tip
A	function	whose	name	ends	in	a	!	changes	its	first	argument.

Likewise	push!	and	pop!	respectively,	append	one	element	at	the	end,	or	take	one	away
and	return	that,	while	the	array	is	changed:

						pop!(b)	#>	300,	b	is	now	[1,	2,	3,	4,	5,	6,	7,	100,	200]

			push!(b,	42)	#	b	is	now	[1,	2,	3,	4,	5,	6,	7,	100,	200,	42]	

If	you	want	to	do	the	same	operations	on	the	front	of	the	array,	use	shift!	and	unshift!:

		shift!(b)	#>	1,	b	is	now	[2,	3,	4,	5,	6,	7,	100,	200,	42]

		unshift!(b,	42)	#	b	is	now	[42,	2,	3,	4,	5,	6,	7,	100,	200,	42]

To	remove	an	element	at	a	certain	index,	use	the	splice!	function	as	follows:

		splice!(b,8)	#>	100,	b	is	now	[42,	2,	3,	4,	5,	6,	7,	200,	42]

Checking	whether	an	array	contains	an	element	is	very	easy	with	the	in	function:

				in(42,	b)	#>	true	,	in(43,	b)	#>	false

To	sort	an	array,	use	sort!.	If	you	want	the	array	to	be	changed	in	place,	or	sort	if	the
original	array	must	stay	the	same:

sort(b)	#>	[2,3,4,5,6,7,42,42,200],	but	b	is	not	changed:

println(b)	#>	[42,2,3,4,5,6,7,200,42]

sort!(b)	#>																																																				println(b)	

#>	b	is	now	changed	to	[2,3,4,5,6,7,42,42,200]

To	loop	over	an	array,	you	can	use	a	simple	for	loop:

for	e	in	arr

				print("$e	")	#	or	process	e	in	another	way

end

If	a	dot	(.)	precedes	operators	such	as	+	or	*,	the	operation	is	done	element	wise,	that	is,
on	the	corresponding	elements	of	the	arrays.	For	example,	if	a1	=	[1,	2,	3]	and	a2	=
[4,	5,	6],	then	a1	.*	a2	returns	the	array	[4,	10,	18].	On	the	other	hand,	if	you	want
the	dot	(or	scalar)	product	of	vectors,	use	the	dot(a1,	a2)	function	,which	returns	32,	so
dot(a1,	a2)	gives	the	same	result	as	sum(a1	.*	a2).

Other	functions	such	as	sin()	simply	work	by	applying	the	operation	to	each	element,	for
example,	sin(arr).	Lots	of	other	useful	methods	exist,	such	as	repeat([1,	2,	3],
inner	=	[2]),	which	produces	[1,1,2,2,3,3].

The	methodswith(Array)	function	returns	358	methods.	You	can	use	help	in	the	REPL	or
search	the	documentation	for	more	information.

When	you	assign	an	array	to	another	array,	and	then	change	the	first	array,	both	the	arrays
change.	Consider	the	following	example:

a	=	[1,2,4,6]

a1	=	a

show(a1)	#>	[1,2,4,6]

a[4]	=	0

show(a)	#>	[1,2,4,0]

show(a1)	#>	[1,2,4,0]

This	happens	because	they	point	to	the	same	object	in	memory.	If	you	don’t	want	this,	you
have	to	make	a	copy	of	the	array.	Just	use	b	=	copy(a)	or	b	=	deepcopy(a)	if	some
elements	of	a	are	arrays	that	have	to	be	copied	recursively.

As	we	have	seen,	arrays	are	mutable	(in	contrast	to	strings)	and	as	arguments	to	a	function
they	are	passed	by	reference:	as	a	consequence	the	function	can	change	them,	as	in	this
example:

a	=	[1,2,3]

function	change_array(arr)

		arr[2]	=	25

end

change_array(a)

println(a)	#>[1,	25,	3]

How	to	convert	an	array	of	chars	to	a	string
Suppose	you	have	an	array,	arr	=	['a',	'b',	'c'].	Which	function	on	arr	do	we	need
to	return	all	characters	in	one	string?	The	function	join	will	do	the	trick:	join(arr)
returns	the	string	"abc";	utf32(arr)	does	the	same	thing.

The	string(arr)	function	does	not,	it	returns	['a',	'b',	'c'].	However,	string(arr…)
does	return	"abc".	This	is	because	...	is	the	splice	operator	(also	known	as	splat)	that
causes	the	contents	of	arr	to	be	passed	as	individual	arguments	rather	than	passing	arr	as
an	array.

Dates	and	times
To	get	the	basic	time	information,	you	can	use	the	time()	function	that	returns,	for
example,	1.408719961424e9,	the	number	of	seconds	since	a	predefined	date	called	the
epoch	(normally,	the	1st	of	January	1970	on	Unix	system),	This	is	useful	for	measuring
the	time	interval	between	two	events,	for	example,	to	benchmark	how	long	a	long
calculation	takes:

start_time	=	time()

#	long	computation

time_elapsed	=	time()	-	start_time

println("Time	elapsed:	$time_elapsed")

Most	useful	function	is	strftime(time())	that	returns	a	string	in	"22/08/2014
17:06:13"	format.

If	you	want	more	functionality	greater	than	equal	to	0.3	when	working	in	Julia,	take	a	look
at	the	Dates	package.	Add	this	to	the	environment	with	Pkg.add("Dates")	(it	provides	a
subset	of	the	functionality	of	the	Dates	module	mentioned	next).	There	is	also	the	Time
package	by	Quinn	Jones.	Take	a	look	at	the	docs	to	see	how	to	use	it
(https://github.com/quinnj/Datetime.jl/wiki/Datetime-Manual).

Starting	from	Julia	Version	0.4,	you	should	use	the	Dates	module	built	into	the	standard
library,	with	Date	for	days	and	DateTime	for	times	down	to	milliseconds.	Additional	time
zone	functionality	can	be	added	through	the	Timezones.jl	package.

The	Date	and	DateTime	functions	can	be	constructed	as	follows	or	with	simpler	versions
with	less	information:

d	=	Date(2014,9,1)	returns	2014-09-01
dt	=	DateTime(2014,9,1,12,30,59,1)	returns	2014-09-01T12:30:59.001

These	objects	can	be	compared	and	subtracted	to	get	the	duration.	Date	parts	or	fields	can
be	retrieved	through	accessor	functions,	such	as	Dates.year(d),	Dates.month(d),
Dates.week(d),	and	Dates.day(d).	Other	useful	functions	exist,	such	as	dayofweek,
dayname,	daysinmonth,	dayofyear,	isleapyear,	and	so	on.

https://github.com/quinnj/Datetime.jl/wiki/Datetime-Manual

Scope	and	constants
The	region	in	the	program	where	a	variable	is	known	is	called	the	scope	of	that	variable.
Until	now,	we	have	only	seen	how	to	create	top-level	or	global	variables	that	are
accessible	from	anywhere	in	the	program.	By	contrast,	variables	defined	in	a	local	scope
can	only	be	used	within	that	scope.	A	common	example	of	a	local	scope	is	the	code	inside
a	function.	Using	global	scope	variables	is	not	advisable	for	several	reasons,	notably	the
performance.	If	the	value	and	type	can	change	at	any	moment	in	the	program,	the	compiler
cannot	optimize	the	code.

So,	restricting	the	scope	of	a	variable	to	local	scope	is	better.	This	can	be	done	by	defining
them	within	a	function	or	a	control	construct,	as	we	will	see	in	the	following	chapters.
This	way,	we	can	use	the	same	variable	name	more	than	once	without	name	conflicts.

Let’s	take	a	look	at	the	following	code	fragment:

#	code	in	chapter	2\scope.jl

x	=	1.0	#	x	is	Float64

x	=	1	#	now	x	is	Int

#	y::Float64	=	1.0	#	LoadError:	"y	is	not	defined"

function	scopetest()

				println(x)	#	1,	x	is	known	here,	because	it's	in	global	scope

				y::Float64	=	1.0	#	y	must	be	Float64,	this	is	not	possible	in	global	

scope

end

scopetest()

println(y)	#>	ERROR:	y	not	defined,	only	defined	in	scope	of	scopetest()

Variable	x	changes	its	type,	which	is	allowed,	but	because	it	makes	the	code	type-unstable,
it	could	be	the	source	of	a	performance	hit.	From	the	definition	of	y	in	the	third	line,	we
see	that	type	annotations	can	only	be	used	in	local	scope	(here,	in	the	scopetest()
function).

Some	code	constructs	introduce	scope	blocks.	They	support	local	variables.	We	have
already	mentioned	functions,	but	for,	while,	try,	let,	and	type	blocks	can	all	support	a
local	scope.	Any	variable	defined	in	a	for,	while,	try,	or	let	block	will	be	local	unless	it
is	used	by	an	enclosing	scope	before	the	block.

The	following	structure,	called	a	compound	expression,	does	not	introduce	a	new	scope.
Several	(preferably	short)	sub-expressions	can	be	combined	in	one	compound	expression
if	you	start	it	with	begin,	as	in	this	example:

x	=	begin

		a	=	5

		2	*	a

end	#	now	x	is	10

println(a)	#>	a	is	5	

After	end,	x	has	value	10	and	a	is	5.	This	can	also	be	written	with	()	as:

x	=	(a	=	5;	2	*	a)

The	value	of	a	compound	expression	is	the	value	of	the	last	sub-expression.	Variables
introduced	in	it	are	still	known	after	the	expression	ends.

Values	that	don’t	change	during	program	execution	are	constants,	which	are	declared	with
const.	In	other	words,	they	are	immutable	and	their	type	is	inferred.	It	is	a	good	practice
to	write	their	name	in	uppercase	letters,	like	this:

const	GC	=	6.67e-11	#	gravitational	constant	in	m3/kg	s2			

Julia	defines	a	number	of	constants,	such	as	ARGS	(an	array	that	contains	the	command-line
arguments),	VERSION	(the	version	of	Julia	that	is	running),	and	OS_NAME	(the	name	of	the
operating	system	such	as	Linux,	Windows,	or	Darwin),	mathematical	constants	(such	as
pi	and	e),	and	datetime	constants	(such	as	Friday,	Fri,	August,	and	Aug).

If	you	try	to	give	a	global	constant	a	new	value,	you	get	a	warning,	but	if	you	change	its
type,	you	get	an	error	as	follows:

julia>	GC	=	3.14

						Warning:	redefining	constant	GC

julia>	GC	=	10

						ERROR:	invalid	redefinition	of	constant	GC

Constants	can	only	be	assigned	a	value	once,	and	their	type	cannot	change,	so	they	can	be
optimized.	Use	them	whenever	possible	in	the	global	scope.

So	global	constants	are	more	about	type	than	value,	which	makes	sense,	because	Julia	gets
its	speed	from	knowing	the	correct	types.	If,	however,	the	constant	variable	is	of	a	mutable
type	(for	example,	Array,	Dict	(refer	to	Chapter	8,	I/O,	Networking,	and	Parallel
Computing)),	then	you	can’t	change	it	to	a	different	array,	but	you	can	always	change	the
contents	of	that	variable:

julia>	const	ARR	=	[4,7,1]

julia>	ARR[1]	=	9

julia>	show(ARR)	#>	[9,7,1]

julia>	ARR	=	[1,	2,	3]

		Warning:	redefining	constant	ARR

To	review	what	we	have	learned	in	this	chapter,	we	play	a	bit	with	characters,	strings,	and
arrays	in	the	following	program	(strings_arrays.jl):

#	a	newspaper	headline:

str	=	"The	Gold	and	Blue	Loses	a	Bit	of	Its	Luster"

println(str)

nchars	=	length(str)

println("The	headline	counts	$nchars	characters")	#	43

str2	=	replace(str,	"Blue",	"Red")

#	strings	are	immutable

println(str)	#	The	Gold	and	Blue	Loses	a	Bit	of	Its	Luster

println(str2)

println("Here	are	the	characters	at	position	25	to	30:")

subs	=	str[25:30]

print("-$(lowercase(subs))-")	#	"-a	bit	-"

println("Here	are	all	the	characters:")

for	c	in	str

				println(c)

end

arr	=	split(str,'	')

show(arr)																																																									#

["The","Gold","and","Blue","Loses","a","Bit","of","Its","Luster"]

nwords	=	length(arr)

println("The	headline	counts	$nwords	words")	#	10

println("Here	are	all	the	words:")

for	word	in	arr

				println(word)

end

arr[4]	=	"Red"

show(arr)	#	arrays	are	mutable

println("Convert	back	to	a	sentence:")

nstr	=	join(arr,	'	')

println(nstr)	#	The	Gold	and	Red	Loses	a	Bit	of	Its	Luster

#	working	with	arrays:

println("arrays:	calculate	sum,	mean	and	standard	deviation	")

arr	=	[1:100]

typeof(arr)	#>

println(sum(arr))	#>	5050

println(mean(arr))	#>	50.5

println(std(arr))	#>	29.011491975882016

Summary
In	this	chapter,	we	reviewed	some	basic	elements	of	Julia,	such	as	constants,	variables,
and	types.	We	also	learned	how	to	work	with	the	basic	types	such	as	numbers,	characters,
strings,	and	ranges,	and	encountered	the	very	versatile	array	type.	In	the	next	chapter,	we
will	look	in	depth	at	the	functions	and	we	will	realize	that	Julia	deserves	to	be	called	a
functional	language.

Chapter	3.	Functions
Julia	is	foremost	a	functional	language	because	computations	and	data	transformations	are
done	through	functions;	they	are	first-class	citizens	in	Julia.	Programs	are	structured
around	defining	functions	and	to	overload	them	for	different	combinations	of	argument
types.	This	chapter	discusses	this	keystone	concept,	covering	the	following	topics:

Defining	functions
Optional	and	keyword	arguments
Anonymous	functions
First-class	functions	and	closures
Recursive	functions
Map,	filter,	and	list	comprehensions
Generic	functions	and	multiple	dispatch

Defining	functions
A	function	is	an	object	that	gets	a	number	of	arguments	(the	argument	list,	arglist)	as	the
input,	then	does	something	with	these	values	in	the	function	body,	and	returns	none,	one,
or	more	value(s).	Multiple	arguments	are	separated	by	commas	(,)	in	arglist	(in	fact,
they	form	a	tuple,	as	do	the	return	values;	refer	to	the	Tuples	section	of	Chapter	5,
Collection	Types).	The	arguments	are	also	optionally	typed,	and	the	type(s)	can	be	user-
defined.	The	general	syntax	is	as	follows:

function	fname(arglist)

				#	function	body…

				return	value(s)

end

A	function’s	argument	list	can	also	be	empty,	then	it	is	written	as	fname().

Here	is	a	simple	example:

		#	code	in	chapter	3\functions101.jl

function	mult(x,	y)

							println("x	is	$x	and	y	is	$y")

							return	x	*	y

			end

Function	names	such	as	mult	are	by	convention	in	lower	case,	without	underscores.	They
can	contain	Unicode	characters,	which	are	useful	in	mathematical	notations.	The	return
keyword	in	the	last	line	is	optional;	we	could	have	written	the	line	as	x	*	y.	In	general,
the	value	of	the	last	expression	in	the	function	is	returned,	but	writing	return	is	mostly	a
good	idea	in	multi-line	functions	to	increase	the	readability.

The	function	is	called	with	n	=	mult(3,	4)	returns	12,	and	assigns	the	return	value	to	a
new	variable	n.	You	can	also	execute	a	function	just	by	calling	fname(arglist)	if	you
only	need	its	side	effects	(that	is,	how	the	function	affects	the	program	state;	for	instance,
by	changing	the	global	variables).	The	return	keyword	can	also	be	used	within	a
condition	in	other	parts	of	the	function	body	to	exit	the	function	earlier,	as	in	this	example:

function	mult(x,	y)

				println("x	is	$x	and	y	is	$y")

				if	x	==	1	

						return	y	

				end

				x	*	y

end

In	this	case,	return	can	also	be	used	without	a	value	so	that	the	function	returns	nothing.

Functions	are	not	limited	to	returning	a	single	value.	Here	is	an	example	with	multiple
return	values:

function	multi(n,	m)

				n*m,	div(n,m),	n%m

end

This	returns	the	tuple	(16,4,0)	when	called	with	multi(8,	2).	The	return	values	can	be
extracted	to	other	variables	such	as	x,	y,	z	=	multi(8,	2),	then	x	becomes	16,	y
becomes	4,	and	z	becomes	0.	In	fact,	you	can	say	that	Julia	always	returns	a	single	value,
but	this	value	can	be	a	tuple	that	can	be	used	to	pass	multiple	variables	back	to	the
program.

We	can	also	have	a	variable	with	number	of	arguments	using	so-called	the	varargs
function.	They	are	coded	as	follows:

function	varargs(n,	m,	args…)

				println("arguments	:	$n	$m	$args")

end

Here,	n	and	m	are	just	positional	arguments	(there	can	be	more	or	none	at	all).	The	args…
argument	takes	in	all	the	remaining	parameters	in	a	tuple.	If	we	call	the	function	with
varargs(1,	2,	3,	4),	then	n	is	1,	m	is	2,	and	args	has	the	value	(3,	4).	When	there	are
still	more	parameters,	the	tuple	can	grow,	or	if	there	are	none,	it	can	be	empty	().The	same
splat	operator	can	also	be	used	to	unpack	a	tuple	or	an	array	into	individual	arguments,	for
example,	we	can	define	a	second	variable	argument	function	as	follows:

function	varargs2(args…)

				println("arguments2:	$args")

end

With	x	=	(3,	4),	we	can	call	varargs2	as	varargs2(1,	2,	x…).	Now,	args	becomes	the
tuple	(1,	2,	3,	4);	the	tuple	x	was	spliced.	This	also	works	for	arrays.	If	x	=	[10,	11,
12],	then	args	becomes	(1,	2,	10,	11,	12).	The	receiving	function	does	not	need	to	be
a	variable	argument	function,	but	then	the	number	of	spliced	parameters	must	exactly
match	the	number	of	arguments.

It	is	important	to	realize	that	in	Julia,	all	the	arguments	to	functions	(with	the	exception	of
plain	data	such	as	numbers	and	chars)	are	passed	by	reference.	Their	values	are	not	copied
when	they	are	passed,	which	means	they	can	be	changed	from	inside	the	function,	and	the
changes	will	be	visible	to	the	calling	code.

For	example,	consider	the	following	code:

function	insert_elem(arr)

		push!(arr,	-10)

end

arr	=	[2,	3,	4]

insert_elem(arr)

#	arr	is	now	[2,	3,	4,	-10]

As	this	example	shows,	arr	itself	has	been	modified	by	the	function.

Due	to	the	way	Julia	compiles,	a	function	must	be	defined	by	the	time	it	is	actually	called
(but	it	can	be	used	before	that	in	other	function	definitions).

It	can	also	be	useful	to	indicate	the	argument	types	to	restrict	the	kind	of	parameters
passed	when	calling.	Our	function	header	for	floating	point	numbers	would	then	look	as
function	mult(x::Float64,	y::Float64).	When	we	call	this	function	with	mult(5,	6),

we	receive	an	error,	ERROR:	`mult`	has	no	method	matching	mult(::Int64,
::Int64),	proving	that	Julia	is	indeed	a	strongly	typed	language.	It	does	not	accept	integer
parameters	for	the	floating	point	arguments.

If	we	define	a	function	without	types,	it	is	generic;	the	Julia	JIT	compiler	is	ready	to
generate	versions	called	methods	for	different	argument	types	when	needed.	Define	the
previous	function	mult	in	the	REPL,	and	you	will	see	the	output	as	mult	(generic
function	with	1	method).

There	is	also	a	more	compact,	one-line	function	syntax	(the	assignment	form)	for	short
functions,	for	example,	mult(x,	y)	=	x	*	y.	Use	this	preferably	for	simple	one-line
functions,	as	it	will	lend	the	code	greater	clarity.	Because	of	this,	mathematical	functions
can	also	be	written	in	an	intuitive	form:	f(x,	y)	=	x^3	–	y	+	x	*	y;	f(3,	2)	#=>	31.

A	function	defines	its	own	scope;	the	set	of	variables	that	are	declared	inside	a	function
are	only	known	inside	the	function,	and	this	is	also	true	for	the	arguments.	Functions	can
be	defined	as	top	level	(global)	or	nested	(a	function	can	be	defined	within	another
function).	Usually,	functions	with	related	functionality	are	grouped	in	their	own	Julia	file,
which	is	included	in	a	main	file.	Or	if	the	function	is	big	enough,	it	can	have	its	own	file,
preferably	with	the	same	name	as	the	function.

Optional	and	keyword	arguments
When	defining	functions,	one	or	more	arguments	can	be	given	a	default	value	such	as
f(arg	=	val).	If	no	parameter	is	supplied	for	arg,	then	val	is	taken	as	the	value	of	arg.
The	position	of	these	arguments	in	the	function’s	input	is	important,	just	as	it	is	for	normal
arguments;	that’s	why	they	are	called	optional	positional	arguments.	Here	is	an	example
of	a	f	function	with	an	optional	argument	b:

#	code	in	chapter	3\arguments.jl:

f(a,	b	=	5)	=	a	+	b

If	f(1),	then	it	returns	6,	f(2,	5)	returns	7,	and	f(3)	returns	8.	However,	calling	it	with
f()	or	f(1,2,3)	returns	an	error,	because	there	is	no	matching	function	f	with	zero	or
three	arguments.	These	arguments	are	still	only	defined	by	position:	calling	f(2,	b	=	5)
raises	an	error	as	ERROR:	function	f	does	not	accept	keyword	arguments.

Until	now,	arguments	were	only	defined	by	position.	For	code	clarity,	it	can	be	useful	to
explicitly	call	the	arguments	by	name,	so	they	are	called	optional	keyword	arguments.
Because	the	arguments	are	given	explicit	names,	their	order	is	irrelevant,	but	they	must
come	last	and	be	separated	from	the	positional	arguments	by	a	semi-colon	(;)	in	the
argument	list,	as	shown	in	this	example:

											k(x;	a1	=	1,	a2	=	2)	=	x	*	(a1	+	a2)

Now	k(3,	a2	=	3)	returns	12,	k(3,	a2	=	3,	a1	=	0)	returns	9	(so	their	position	doesn’t
matter),	but	k(3)	returns	9	(demonstrating	that	the	keyword	arguments	are	optional).
Normal,	optional	positional,	and	keyword	arguments	can	be	combined	as	follows:

function	allargs(normal_arg,	optional_positional_arg=2;	keyword_arg="ABC")

				print("normal	arg:	$normal_arg"	-)

				print("optional	arg:	$optional_positional_arg"	-)

				print("keyword	arg:	$keyword_arg")

end

If	we	call	allargs(1,	3,	keyword_arg=4),	it	prints	normal	arg:	1	-	optional	arg:	3
-	keyword	arg:	4.

A	useful	case	is	when	the	keyword	arguments	are	splatted	as	follows:

function	varargs2(;args…)

				args

end

Calling	this	with	varargs2(k1="name1",	k2="name2",	k3=7)	returns	a	3-element
Array{Any,1}	with	the	elements:	(:k1,"name1")	(:k2,"name2")	(:k3,7).	Now,	args	is
a	collection	of	the	(key,	value)	tuples,	where	each	key	comes	from	the	name	of	the
keyword	argument,	and	it	is	also	a	symbol	(refer	to	the	Strings	section	of	Chapter	2,
Variables,	Types,	and	Operations)	because	of	the	colon	(:)	as	prefix.

Anonymous	functions
The	function	f(x,	y)	at	the	end	of	the	Defining	functions	section	can	also	be	written	with
no	name,	as	an	anonymous	function:	(x,	y)	->	x^3	–	y	+	x	*	y.	We	can,	however,
bind	it	to	a	name	such	as	f	=	(x,	y)	->	x^3	–	y	+	x	*	y,	and	then	call	it,	for	example,
as	f(3,	2).	Anonymous	functions	are	also	often	written	using	the	following	syntax:

function	(x)

				x	+	2

end

(anonymous	function)

julia>	ans(3)

5

Often,	they	are	also	written	with	a	lambda	expression	as	(x)	->	x	+	2.	Before	the	stab
character	“->”	are	the	arguments,	and	after	the	stab	character	we	have	the	return	value.
This	can	be	shortened	to	x	->	x	+	2.	A	function	without	arguments	would	be	written	as
()	->	println("hello,	Julia").

Here	is	an	anonymous	function	taking	three	arguments:	(x,	y,	z)	->	3x	+	2y	-	z.
When	the	performance	is	important,	try	to	use	named	functions	instead,	because	calling
anonymous	functions	involves	a	huge	overhead.	Anonymous	functions	are	mostly	used
when	passing	a	function	as	an	argument	to	another	function,	which	is	precisely	what	we
will	discuss	in	the	next	section.

First-class	functions	and	closures
In	this	section,	we	will	demonstrate	the	power	and	flexibility	of	functions	(example	code
can	be	found	in	chapter	3\first_class.jl).	First,	functions	have	their	own	type:	typing
typeof(mult)	in	the	REPL	returns	Function.	Functions	can	also	be	assigned	to	a	variable
by	their	name:

julia>	m	=	mult	

julia>	m(6,	6)	#>	36.

This	is	useful	when	working	with	anonymous	functions,	such	as	c	=	x	->	x	+	2,	or	as
follows:

julia>	plustwo	=	function	(x)

																					x	+	2

																	end

(anonymous	function)

julia>	plustwo(3)

5

Operators	are	just	functions	written	with	their	arguments	in	an	infix	form,	for	example,	x
+	y	is	equivalent	to	+(x,	y).	In	fact,	the	first	form	is	parsed	to	the	second	form	when	it	is
evaluated.	We	can	confirm	it	in	the	REPL:	+(3,4)	returns	7	and	typeof(+)	returns
Function.

A	function	can	take	a	function	(or	multiple	functions)	as	its	argument	that	calculates	the
numerical	derivative	of	a	function	f,	as	defined	in	the	following	function:

function	numerical_derivative(f,	x,	dx=0.01)

		derivative	=	(f(x+dx)	-	f(x-dx))/(2*dx)

		return	derivative

end

The	function	can	be	called	as	numerical_derivative(f,	1,	0.001),	passing	an
anonymous	function	f	as	an	argument:

f	=	x	->	2x^2	+	30x	+	9

println(numerical_derivative(f,	1,	0.001))	#>	33.99999999999537	

A	function	can	also	return	another	function	(or	multiple	functions)	as	its	value.	This	is
demonstrated	in	the	following	code	that	calculates	the	derivative	of	a	function	(which	is
also	a	function):

function	derivative(f)

				return	function(x)		

		#	pick	a	small	value	for	h

								h	=	x	==	0	?	sqrt(eps(Float64))	:	sqrt(eps(Float64))	*	x

								xph	=	x	+	h

								dx	=	xph	-	x

								f1	=	f(xph)	#	evaluate	f	at	x	+	h

								f0	=	f(x)	#	evaluate	f	at	x

								return	(f1	-	f0)	/	dx		#	divide	by	h

				end

end

As	we	can	see,	both	are	excellent	use	cases	for	anonymous	functions.

Here	is	an	example	of	a	counter	function	that	returns	(a	tuple	of)	two	anonymous
functions:

function	counter()

				n	=	0

				()	->	n	+=	1,	()	->	n	=	0

end

We	can	assign	the	returned	functions	to	variables:

		(addOne,	reset)	=	counter()

Notice	that	n	is	not	defined	outside	the	function:

			julia>	n

			ERROR:	n	not	defined

Then,	when	we	call	addOne	repeatedly,	we	get	the	following	code:

addOne()	#=>	1

addOne()	#=>	2

addOne()	#=>	3

reset()		#=>	0

What	we	see	is	that	in	the	counter	function,	the	variable	n	is	captured	in	the	anonymous
functions.	It	can	only	be	manipulated	by	the	functions,	addOne	and	reset.	The	two
functions	are	said	to	be	closed	over	the	variable	n	and	both	have	references	to	n.	That’s
why	they	are	called	closures.

Currying	(also	called	a	partial	application)	is	the	technique	of	translating	the	evaluation	of
a	function	that	takes	multiple	arguments	(or	a	tuple	of	arguments)	into	evaluating	a
sequence	of	functions,	each	with	a	single	argument.	Here	is	an	example	of	function
currying:

function	add(x)

				return	function	f(y)

								return	x	+	y

				end

end

The	output	returned	is	add	(generic	function	with	1	method).

Calling	this	function	with	add(1)(2)	returns	3.	This	example	can	be	written	more
succinctly	as	add(x)	=	f(y)	=	x	+	y	or	with	an	anonymous	function,	as	add(x)	=	y	->
x	+	y.	Currying	is	especially	useful	when	passing	functions	around,	as	we	will	see	in	the
Map,	filters,	and	list	comprehensions	section.

Recursive	functions
Functions	can	be	nested,	as	demonstrated	in	the	following	example:

function	a(x)

				z	=	x	*	2

				function	b(z)

								z	+=	1

				end

				b(z)

end

d	=	5

a(d)	#=>	11

A	function	can	also	be	recursive,	that	is,	it	can	call	itself.	To	show	some	examples,	we
need	to	be	able	to	test	a	condition	in	code.	The	simplest	way	to	do	this	in	Julia	is	to	use	the
ternary	operator	?	of	the	form	expr	?	b	:	c	(ternary	because	it	takes	three	arguments).
Julia	also	has	a	normal	if	construct	(refer	to	the	Conditional	evaluation	section	of	Chapter
4,	Control	Flow).	expr	is	a	condition	and	if	it	is	true,	then	b	is	evaluated	and	the	value	is
returned,	else	c	is	evaluated.	This	is	used	in	the	following	recursive	definition	to	calculate
the	sum	of	all	the	integers	up	to	and	including	a	certain	number:

sum(n)	=		n	>	1	?	sum(n-1)	+	n	:	n

The	recursion	ends	because	there	is	a	base	case:	when	n	is	1,	this	value	is	returned.	Or	here
is	the	famous	function	to	calculate	the	nth	Fibonacci	number	that	is	defined	as	the	sum	of
the	two	previous	Fibonacci	numbers:

		fib(n)	=	n	<	2	?	n	:	fib(n-1)	+	fib(n-2)

When	using	recursion,	care	should	be	taken	to	define	a	base	case	to	stop	the	calculation.
Also,	although	Julia	can	nest	very	deep,	watch	out	for	stack	overflow	because	until	now,
Julia	does	not	do	tail	call	optimization	automatically.	If	you	run	into	this	problem,	Zach
Allaun	suggests	a	nice	workaround	in	the	blog	at	http://blog.zachallaun.com/post/jumping-
julia.

http://blog.zachallaun.com/post/jumping-julia

Map,	filter,	and	list	comprehensions
Maps	and	filters	are	typical	for	functional	languages.	A	map	is	a	function	of	the	form
map(func,	coll),	where	func	is	a	(often	anonymous)	function	that	is	successively
applied	to	every	element	of	the	coll	collection,	so	map	returns	a	new	collection.	Some
examples	are	as	follows:

map(x	->	x	*	10,	[1,	2,	3])	returns	[10,	20,	30]
cubes	=	map(x->	x^3,	[1:5])	returns	[1,	8,	27,	64,	125]

Map	can	also	be	used	with	functions	that	take	more	than	one	argument.	In	this	case,	it
requires	a	collection	for	each	argument,	for	example,	map(*,	[1,	2,	3],	[4,	5,	6])
works	per	element	and	returns	[4,	10,	18].

When	the	function	passed	to	map	requires	several	lines,	it	can	be	a	bit	unwieldy	to	write
this	as	an	anonymous	function.	For	instance,	consider	using	the	following	function:

map(x->	begin

											if	x	==	0	return	0

											elseif	iseven(x)	return	2

											elseif	isodd(x)	return	1

											end

							end,[-3:3])

This	function	returns	[1,2,1,0,1,2,1].	This	can	be	simplified	with	a	do	block	as	follows:

map([-3:3])	do	x

				if	x	==	0	return	0

				elseif	iseven(x)	return	2

				elseif	isodd(x)	return	1

				end

end

The	do	x	statement	creates	an	anonymous	function	with	the	argument	x	and	passes	it	as
the	first	argument	to	map.

A	filter	is	a	function	of	the	form	filter(func,	coll),	where	func	is	a	(often
anonymous)	Boolean	function	that	is	checked	on	each	element	of	the	collection	coll.
Filter	returns	a	new	collection	with	only	the	elements	on	which	func	is	evaluated	to	true.
For	example,	the	following	code	filters	the	even	numbers	and	returns	[2,	4,	6,	8,	10]:

filter(n	->	iseven(n),	[1:10])

An	incredibly	powerful	and	simple	way	to	create	an	array	is	to	use	a	list	comprehension.
This	is	a	kind	of	an	implicit	loop	that	creates	the	result	array	and	fills	it	with	values.	Some
examples	are	as	follows:

arr	=	Float64[x^2	for	x	in	1:4]	creates	4-element	Array{Float64,1}	with
elements	1.0,	4.0,	9.0,	and	16.0
cubes	=	[x^3	for	x	in	[1:5]]	returns	[1,	8,	27,	64,	125]
mat1	=	[x	+	y	for	x	in	1:2,	y	in	1:3]	creates	a	2	x	3	Array{Int64,2}:
2	3	4

3	4	5

table10	=	[x	*	y	for	x=1:10,	y=1:10]	creates	a	10	x	10	Array{Int64,2},	and
returns	the	multiplication	table	of	10
arrany	=	Any[i	*	2	for	i	in	1:5]	creates	5-element	Array{Any,1}	with
elements	2,	4,	6,	8,	and	10

For	more	examples,	you	can	refer	to	the	Dictionaries	section	in	Chapter	5,	Collection
Types.

Constraining	the	type	as	with	arr	is	often	helpful	for	the	performance.	Using	typed
comprehensions	everywhere	for	explicitness	and	safety	in	production	code	is	certainly	a
best	practice.

Generic	functions	and	multiple	dispatch
We	already	saw	that	functions	are	inherently	defined	as	generic,	that	is,	they	can	be	used
for	different	types	of	their	arguments.	The	compiler	will	generate	a	separate	version	of	the
function	each	time	it	is	called	with	arguments	of	a	new	type.	A	concrete	version	of	a
function	for	a	specific	combination	of	argument	types	is	called	a	method	in	Julia.	To
define	a	new	method	for	a	function	(also	called	overloading),	just	use	the	same	function
name	but	a	different	signature,	that	is,	with	different	argument	types.	A	list	of	all	the
methods	is	stored	in	a	virtual	method	table	(vtable)	on	the	function	itself;	methods	do	not
belong	to	a	particular	type.	When	a	function	is	called,	Julia	will	do	a	lookup	in	that	vtable
at	runtime	to	find	which	concrete	method	it	should	call	based	on	the	types	of	all	its
arguments;	this	is	Julia’s	mechanism	of	multiple	dispatch,	which	neither	Python,	nor	C++
or	Fortran	implements.	It	allows	open	extensions	where	normal	object-oriented	code
would	have	forced	you	to	change	a	class	or	subclass	an	existing	class	and	thus	change
your	library.	Note	that	only	the	positional	arguments	are	taken	into	account	for	multiple
dispatch,	and	not	the	keyword	arguments.

For	each	of	these	different	methods,	specialized	low-level	code	is	generated,	targeted	to
the	processor’s	instruction	set.	In	contrast	to	object-oriented	(OO)	languages,	vtable	is
stored	in	the	function,	and	not	in	the	type	(or	class).	In	OO	languages,	a	method	is	called
on	a	single	object,	object.method(),	which	is	generally	called	single	dispatch.	In	Julia,
one	can	say	that	a	function	belongs	to	multiple	types,	or	that	a	function	is	specialized	or
overloaded	for	different	types.	Julia’s	ability	to	compile	code	that	reads	like	a	high-level
dynamic	language	into	machine	code	that	performs	like	C	almost	entirely	is	derived	from
its	ability	to	do	multiple	dispatch.

To	make	this	idea	more	concrete,	a	function	such	as	square(x)	=	x	*	x	actually	defines	a
potentially	infinite	family	of	methods,	one	for	each	of	the	possible	types	of	the	argument
x.	For	example,	square(2)	will	call	a	specialized	method	that	uses	the	CPU’s	native
integer	multiplication	instruction,	whereas	square(2.0)	will	use	the	CPU’s	native	floating
point	multiplication	instruction.

Let’s	see	multiple	dispatch	in	action.	We	will	define	a	function	f	that	takes	two	arguments
n	and	m	returning	a	string,	but	in	some	methods	the	type	of	n	or	m	or	both	is	annotated
(Number	is	a	supertype	of	Integer,	refer	to	the	The	type	hierarchy	–	subtypes	and
supertypes	section	in	Chapter	6,	More	on	Types,	Methods,	and	Modules):

f(n,	m)	=	"base	case"

f(n::Number,	m::Number)	=	"n	and	m	are	both	numbers"

f(n::Number,	m)	=	"n	is	a	number"

f(n,	m::Number)	=	"m	is	a	number"

f(n::Integer,	m::Integer)	=	"n	and	m	are	both	integers"

This	returns	f	(generic	function	with	5	methods).

When	n	and	m	have	no	type	as	in	the	base	case,	then	their	type	is	Any,	the	supertype	of	all
types.	Let’s	take	a	look	at	how	the	most	appropriate	method	is	chosen	in	each	of	the
following	function	calls:

f(1.5,	2)	returns	n	and	m	are	both	numbers
f(1,	"bar")	returns	n	is	a	number
f(1,	2)	returns	n	and	m	are	both	integers
f("foo",	[1,2])	returns	base	case

Calling	f(n,	m)	will	never	result	in	an	error,	because	if	no	other	method	matches,	the	base
case	will	be	invoked	when	we	add	a	new	method:

f(n::Float64,	m::Integer)	=	"n	is	a	float	and	m	is	an	integer"

The	call	to	f(1.5,2)	now	returns	n	is	a	float	and	m	is	an	integer.

To	get	a	quick	overview	of	all	the	versions	of	a	function,	type	methods(fname)	in	the
REPL.	For	example,	methods(+)	shows	a	listing	of	149	methods	for	a	generic	function	+:

+(x::Bool)	at	bool.jl:36

+(x::Bool,y::Bool)	at	bool.jl:39

…

+(a,b,c)	at	operators.jl:82

+(a,b,c,xs…)	at	operators.jl:83

You	can	even	take	a	look	in	the	source	code	at	how	they	are	defined,	as	in	base/bool.jl
in	the	local	Julia	installation	or	at
https://github.com/JuliaLang/julia/blob/master/base/bool.jl,	where	we	can	see	the	addition
of	bool	variables	equals	to	the	addition	of	integers:	+(x::Bool,	y::Bool)	=	int(x)	+
int(y),	where	int(false)	is	0	and	int(true)	is	1.

As	a	second	example,	methods(sort)	shows	#	4	methods	for	generic	function
"sort".

The	macro	@which	gives	you	the	exact	method	that	is	used	and	where	in	the	source	code
that	method	is	defined,	for	example,	@which	2	*	2	returns	*(x::Int64,	y::Int64)	at
int.jl:47.	This	also	works	the	other	way	around.	If	you	want	to	know	which	methods	are
defined	for	a	certain	type,	or	use	that	type,	ask	methodswith(Type).	For	example,
methodswith(String)	gives	the	following	output:

354-element	Array{Method,1}:

	write(io::IO,s::String)	at	string.jl:68

	download(url::String,filename::String)	at	interactiveutil.jl:322

	…

In	the	source	for	the	write	method,	it	is	defined	as	follows:

write(io::IO,	s::String)	=	for	c	in	s	write(io,	c)	end

As	already	noted,	type	stability	is	crucial	for	the	optimal	performance.	A	function	is	type-
stable	if	the	return	type(s)	of	all	the	output	variables	can	be	deduced	from	the	types	of	the
inputs.	So	try	to	design	your	functions	with	type	stability	in	mind.

Some	crude	performance	measurements	(execution	time	and	memory	used)	on	the
execution	of	the	functions	can	be	obtained	from	the	macro	@time,	for	example:

@time	fib(35)

elapsed	time:	0.115188593	seconds	(6756	bytes	allocated)					9227465														

https://github.com/JuliaLang/julia/blob/master/base/bool.jl

@elapsed	only	returns	the	execution	time.	@elapsed	fib(35)	returns	0.115188593.

In	Julia,	the	first	call	of	a	method	invokes	the	Low	Level	Virtual	Machine	Just	In	Time
(LLVM	JIT)	compiler	backend	(refer	to	the	How	Julia	works	section	in	Chapter	1,
Installing	the	Julia	Platform),	to	emit	machine	code	for	it,	so	this	warm-up	call	will	take	a
bit	longer.	Start	timing	or	benchmarking	from	the	second	call	onwards,	after	doing	a	dry
run.

When	writing	a	program	with	Julia,	first	write	an	easy	version	that	works.	Then,	if
necessary,	improve	the	performance	of	that	version	by	profiling	it	and	then	fixing
performance	bottlenecks.	We’ll	come	back	to	the	performance	measurements	in	the
Performance	tips	section	of	Chapter	9,	Running	External	Programs.

Summary
In	this	chapter,	we	saw	that	functions	are	the	basic	building	blocks	of	Julia.	We	explored
the	power	of	functions,	their	arguments	and	return	values,	closures,	maps,	filters,	and
comprehensions.	However,	to	make	the	code	in	a	function	more	interesting,	we	need	to
see	how	Julia	does	basic	control	flow,	iterations,	and	loops.	This	is	the	topic	of	the	next
chapter.

Chapter	4.	Control	Flow
Julia	offers	many	of	the	control	statements	that	are	familiar	to	the	other	languages,	while
also	simplifying	the	syntax	for	many	of	them.	However,	tasks	are	probably	new;	they	are
based	on	the	coroutine	concept	to	make	computations	more	flexible.

We	will	cover	the	following	topics:

Conditional	evaluation
Repeated	evaluation
Exception	handling
Scope	revisited
Tasks

Conditional	evaluation
Conditional	evaluation	means	that	pieces	of	code	are	evaluated,	depending	on	whether	a
Boolean	expression	is	either	true	or	false.	The	familiar	if-elseif-else-end	syntax	is
used	here,	which	is	as	follows:

#	code	in	Chapter	4\conditional.jl

var	=	7

if	var	>	10

				println("var	has	value	$var	and	is	bigger	than	10.")

elseif	var	<	10

				println("var	has	value	$var	and	is	smaller	than	10.")

else

				println("var	has	value	$var	and	is	10.")

end

#	=>	prints	"var	has	value	7	and	is	smaller	than	10."

The	elseif	(of	which,	there	can	be	more	than	one)	or	else	branches	are	optional.	The
condition	in	the	first	branch	is	evaluated,	only	the	code	in	that	branch	is	executed	when	the
condition	is	true	and	so	on;	so	only	one	branch	ever	gets	evaluated.	No	parentheses	around
condition(s)	are	needed,	but	they	can	be	used	for	clarity.	Each	expression	tested	must
effectively	result	in	a	true	or	false	value,	and	no	other	values	(such	as	0	or	1)	are	allowed.

Because	every	expression	in	Julia	returns	a	value,	so	also	does	the	if	expression.	We	can
use	this	expression	to	do	an	assignment	depending	on	a	condition.	In	the	preceding	case,
the	return	value	is	nothing	since	that	is	what	println	returns.

However,	in	the	following	snippet,	the	value	15	is	assigned	to	z:

a	=	10

b	=	15

z	=	if	a	>	b		a

				else						b

				end

These	kind	of	expressions	can	be	simplified	using	the	ternary	operator	?	(which	we
introduced	in	the	Recursive	functions	section	in	Chapter	3,	Functions)	as	follows:

z	=	a	>	b	?	a	:	b

Here,	only	a	or	b	is	evaluated	and	parentheses	()	can	be	added	around	each	clause,	as	it
is	necessary	for	clarity.	The	ternary	operator	can	be	chained,	but	then	it	often	becomes
harder	to	read.	Our	first	example	can	be	rewritten	as	follows:

var	=	7

varout	=	"var	has	value	$var"

cond	=	var	>	10	?	"and	is	bigger	than	10."	:	var	<	10	?	"and	is	smaller	

than	10"	:	"and	is	10."

println("$varout	$cond")	#	var	has	value	7	and	is	smaller	than	10

Using	short-circuit	evaluation	(refer	to	the	Elementary	mathematical	functions	section	in
Chapter	2,	Variables,	Types,	and	Operations),	the	statements	with	if	only	are	often
written	as	follows:

if	<cond>	<statement>	end	is	written	as	<cond>	&&	<statement

if	!<cond>	<statement>	end	is	written	as	<cond>	||	<statement>

To	make	this	clearer,	the	first	can	be	read	as	<cond>	and	then	<statement>,	and	the
second	as	<cond>	or	else	<statement>.

This	feature	can	come	in	handy	when	guarding	the	parameter	values	passed	into	the
arguments,	which	calculates	the	square	root,	like	in	the	following	function:

function	sqroot(n::Int)

				n	>=	0	||	error("n	must	be	non-negative")

				n	==	0	&&	return	0

				sqrt(n)

end

sqroot(4)	#=>	2.0

sqroot(0)	#=>	0.0

sqroot(-6)	#=>	ERROR:	n	must	be	non-negative

The	error	statement	effectively	throws	an	exception	with	the	given	message	and	stops	the
code	execution	(refer	to	the	Exception	handling	section	in	this	chapter).

Julia	has	no	switch/case	statement,	and	the	language	provides	no	built-in	pattern	matching
(although	one	can	argue	that	multiple	dispatch	is	a	kind	of	pattern	matching,	which	is
based	not	on	value,	but	on	type).	If	you	need	pattern	matching,	take	a	look	at	the
PatternDispatch	and	Match	packages	that	provide	this	functionality.

Repeated	evaluation
Julia	has	a	for	loop	for	iterating	over	a	collection	or	repeating	some	code	a	certain	number
of	times.	You	can	use	a	while	loop	when	the	repetition	depends	on	a	condition	and	you
can	influence	the	execution	of	both	loops	through	break	and	continue.

The	for	loop
We	already	encountered	the	for	loop	when	iterating	over	the	elements	e	of	a	collection
coll	(refer	to	the	Strings	and	Ranges	and	Arrays	sections	in	Chapter	2,	Variables,	Types,
and	Operations).	This	takes	the	general	form:

#	code	in	Chapter	4\repetitions.jl

for	e	in	coll

			#	body:	process(e)	executed	for	every	element	e	in	coll

end

Here,	coll	can	be	a	range,	a	string,	an	array,	or	any	other	iterable	collection	(for	other
uses,	also	refer	to	Chapter	5,	Collection	Types).	The	variable	e	is	not	known	outside	the
for	loop.	When	iterating	over	a	numeric	range,	often	=	(equal	to)	is	used	instead	of	in:

				for	n	=	1:10		

							print(x^3)		

				end

(This	code	can	be	a	one-liner,	but	is	spread	over	three	lines	for	clarity.)	The	for	loop	is
generally	used	when	the	number	of	repetitions	is	known.

Tip
Use	for	i	in	1:n	rather	than	for	i	in	[1:n]	since	the	latter	allocates	an	array	while	the
former	uses	a	simpler	range	object.

If	you	need	to	know	the	index	when	iterating	over	the	elements	of	an	array,	run	the
following	code:

arr	=	[x^2	for	x	in	1:10]

for	i	=	1:length(arr)

			println("the	$i-th	element	is	$(arr[i])")

end

A	more	elegant	way	to	accomplish	this	is	using	the	enumerate	function	as	follows:

for	(ix,	val)	in	enumerate(arr)

			println("the	$ix-th	element	is	$val")

end

Nested	for	loops	are	possible,	as	in	this	code	snippet,	for	a	multiplication	table:

for	n	=	1:5

				for	m	=	1:5

								println("$n	*	$m	=	$(n	*	m)")

				end

end

However,	the	nested	for	loops	can	often	be	combined	into	a	single	outer	loop	as	follows:

for	n	=	1:5,	m	=	1:5

				println("$n	*	$m	=	$(n	*	m)")

end

The	while	loop
When	you	want	to	use	looping	as	long	as	a	condition	stays	true,	use	the	while	loop,	which
is	as	follows:

a	=	10;	b	=	15

while	a	<	b

				#	body:	process(a)

				println(a)

				a	+=	1

end

#	prints	on	consecutive	lines:	10	11	12	13	14

In	the	body	of	the	loop,	something	has	to	change	the	value	of	a	so	that	the	initial	condition
becomes	false	and	the	loop	ends.	If	the	initial	condition	is	false	at	the	start,	the	body	of	the
while	loop	is	never	executed.

If	you	need	to	loop	over	an	array	while	adding	or	removing	elements	from	the	array,	use	a
while	loop	as	follows:

arr	=	[1,2,3,4]

while	!isempty(arr)

				print(pop!(arr),	",	")

end

The	preceding	code	returns	the	output	as	4,	3,	2,	1.

The	break	statement
Sometimes,	it	is	convenient	to	stop	the	loop	repetition	inside	the	loop	when	a	certain
condition	is	reached.	This	can	be	done	with	the	break	statement,	which	is	as	follows:

a	=	10;	b	=	150

while	a	<	b

				#	process(a)

				println(a)

				a	+=	1

				if	a	>=	50	

							break	

				end

end

This	prints	out	the	numbers	10	to	49,	and	then	exits	the	loop	when	a	break	is	encountered.
Here	is	an	idiom	that	is	often	used;	how	to	search	for	a	given	element	in	an	array,	and	stop
when	we	have	found	it:

arr	=	rand(1:10,	10)

println(arr)

#	get	the	index	of	search	in	an	array	arr:

searched	=	4

for	(ix,	curr)	in	enumerate(arr)

		if	curr	==	searched

				println("The	searched	element	$searched	occurs	on	index	$ix")

				break

		end

end

A	possible	output	might	be	as	follows:

[8,4,3,6,3,5,4,4,6,6]

The	searched	element	4	occurs	on	index	2

The	break	statement	can	be	used	in	the	for	loops	as	well	as	in	the	while	loops.	It	is,	of
course,	mandatory	in	a	while	true…	end	loop.

The	continue	statement
What	should	you	do	when	you	want	to	skip	one	(or	more)	loop	repetitions?	Then
nevertheless,	continue	with	the	next	loop	iteration.	For	this,	you	need	continue,	as	in	this
example:

for	n	in	1:10	

		if	3	<=	n	<=	6

				continue	#	skip	current	iteration

		end

		println(n)

end

This	prints	out,	1	2	7	8	9	10,	skipping	the	numbers	3	to	6,	using	a	chained	comparison.

There	is	no	repeat-until	or	do-while	construct	in	Julia.	A	do-while	loop	can	be
simulated	as	follows:

while	true

#	code

		condition	||	break

end

Exception	handling
When	executing	a	program,	abnormal	conditions	can	occur,	which	force	the	Julia	runtime
to	throw	an	exception	or	error,	show	the	exception	message	and	the	line	where	it	occurred,
and	then	exit.	For	example	(follow	along	with	the	code	in	chapter	4\errors.jl):

Using	the	wrong	index	for	an	array,	for	example,	arr	=	[1,2,3]	and	then	asking	for
arr[0]	causes	a	program	to	stop	with	ERROR:	BoundsError()
Calling	sqrt()	on	a	negative	value,	for	example,	sqrt(-3)	causes	ERROR:
DomainError:	sqrt	will	only	return	a	complex	result	if	called	with	a

complex	argument,	try	sqrt(complex(x));	The	sqrt(complex(-3))	function
gives	the	correct	result	0.0	+	1.7320508075688772im
A	syntax	error	in	Julia	code	will	usually	result	in	LoadError

Similar	to	these	there	are	18	predefined	exceptions	that	Julia	can	generate	(refer	to
http://docs.julialang.org/en/latest/manual/control-flow/#man-exception-handling).	They
are	all	derived	from	a	base	type,	Exception.

How	can	you	signal	an	error	condition	yourself?	You	can	call	one	of	the	built-in
exceptions	by	throwing	such	an	exception;	that	is,	calling	the	throw	function	with	the
exception	as	an	argument.	Suppose	an	input	field,	code,	can	only	accept	the	codes	listed	in
codes	=	["AO",	"ZD",	"SG",	"EZ"].	If	code	has	the	value,	AR,	the	following	test
produces	DomainError:

if	code	in	codes

				println("This	is	an	acceptable	code")

else

				throw(DomainError())

end

A	rethrow()	statement	can	be	useful	to	hand	the	current	exception	to	a	higher	calling
code	level.

Note	that	you	can’t	give	your	own	message	as	an	argument	to	DomainError().	This	is
possible	with	the	error(message)	function	(refer	to	the	Conditional	evaluation	section)
with	a	String	message.	This	results	in	a	program	to	stop	with	an	ErrorException
function	and	an	ERROR:	message	message.

Some	other	useful	functions	that	do	not	cause	the	program	flow	to	stop	and	that	can	help
you	with	testing	and	debugging	are	as	follows:

warn("Something	is	not	right	here"):	This	prints	or	writes	to	the	standard	error
output	(in	red	in	the	REPL),	WARNING:	Something	is	not	right	here
info("Did	you	know	this?"):	This	prints	(in	blue	in	the	REPL),	INFO:	Did	you
know	this?

Creating	user-defined	exceptions	can	be	done	by	deriving	from	the	base	type,	Exception,
such	as	type	CustomException	<:	Exception	end	(for	an	explanation	of	<,	refer	to	the
The	type	hierarchy	–	subtypes	and	supertypes	section	in	Chapter	6,	More	on	Types,
Methods,	and	Modules).	These	can	also	be	used	as	arguments	to	be	thrown.

http://docs.julialang.org/en/latest/manual/control-flow/#man-exception-handling

In	order	to	catch	and	handle	the	possible	exceptions	yourself	so	that	the	program	can
continue	to	run,	Julia	uses	the	familiar	try-catch-finally	construct	which	includes:

The	dangerous	code	that	comes	in	the	try	block
The	catch	block	that	stops	the	exception	and	allows	you	to	react	to	the	code	that
threw	the	exception

Here	is	an	example:

			a	=	[]

try

							pop!(a)

catch	ex

							println(typeof(ex))		

				showerror(STDOUT,	ex)

end

This	example	prints	the	output	as	follows:

	ErrorException

					array	must	be	non-empty

Popping	an	empty	array	generates	an	exception	(as	does	push!(a,1),	but	then	this	is
because	a	is	not	typed).	The	variable,	ex,	contains	the	exception	object,	but	a	plain	catch
without	a	variable	can	also	be	used.	The	showerror	function	is	a	handy	function;	its	first
argument	can	be	any	I/O	stream,	so	it	could	be	a	file.

To	differentiate	between	the	different	types	of	exceptions	in	the	catch	block,	you	can	use
the	following	code:

		try	

				#	try	this	code

		catch	ex

				if	isa(ex,	DomainError)

						#	do	this

				elseif	isa(ex,	BoundsError)

						#	do	this

				end

		end

Similar	to	if	and	while,	try	is	an	expression,	so	you	can	assign	its	return	value	to	a
variable.	So,	run	the	following	code:

ret	=	try

				a	=	4	*	2

				catch	ex

			end

After	running	the	preceding	code,	ret	contains	the	value	8.

Sometimes,	it	is	useful	to	have	a	set	of	statements	to	be	executed	no	matter	what,	for
example,	to	clean	up	resources.	Typical	use	cases	are	when	reading	from	a	file	or	a
database.	We	want	the	file	or	the	database	connection	to	be	closed	after	the	execution,
regardless	of	whether	an	error	occurred	while	the	file	or	database	was	being	processed.
This	is	achieved	with	the	finally	clause	of	a	try-catch-finally	construct,	as	in	this

code	snippet:

f	=	open("file1.txt")	#	returns	an	IOStream(<file	file1.txt>)

try

				#	operate	on	file	f

catch	ex

finally

				close(f)

end

The	try-catch-finally	full	construct	guarantees	that	the	finally	block	is	always
executed,	even	when	there	is	a	return	in	try.	In	general,	all	the	three	combinations	try-
catch,	try-finally,	and	try-catch-finally	are	possible.

Tip
It	is	important	to	realize	that	try-catch	should	not	be	used	in	performance	bottlenecks,
because	the	mechanism	weighs	on	performance.	Whenever	feasible,	test	a	possible
exception	with	normal	conditional	evaluation.

Scope	revisited
The	for,	while,	and	try	blocks	(but	not	the	if	blocks)	all	introduce	a	new	scope.
Variables	defined	in	these	blocks	are	only	known	to	that	scope.	This	is	called	the	local
scope,	and	nested	blocks	can	introduce	several	levels	of	local	scope.

Variables	with	the	same	name	in	different	scopes	can	safely	be	used	simultaneously.	If	a
variable	exists	both	in	global	(that	is	top	level)	and	local	scope,	you	can	distinguish
between	which	one	you	want	to	use	by	prefixing	them	with	the	global	or	local	keyword:

global:	This	indicates	that	you	want	to	use	the	variable	from	the	outer,	global	scope.
This	applies	to	the	whole	of	the	current	scope	block.
local:	This	means	that	you	want	to	define	a	new	variable	in	the	current	scope.

The	following	example	will	clarify	this	as	follows:

#	code	in	Chapter	4\scope.jl

x	=	9	

function	funscope(n)

		x	=	0	#	x	is	in	the	local	scope	of	the	function

		for	i	=	1:n

				local	x	#	x	is	local	to	the	for	loop

				x	=	i	+	1

				if	(x	==	7)

								println("This	is	the	local	x	in	for:	$x")	#=>	7

				end

		end

		x

		println("This	is	the	local	x	in	funscope:	$x")	#=>	0

		global	x	=	15

end

funscope(10)

println("This	is	the	global	x:	$x")	#=>	15

This	prints	out	the	following	result:

This	is	the	local	x	in	for:	7

This	is	the	local	x	in	funscope:	0

This	is	the	global	x:	15

If	the	local	keyword	was	omitted	from	the	for	loop,	the	second	print	statement	would
print	out	11	instead	of	7:

This	is	the	local	x	in	for:	7

This	is	the	local	x	in	funscope:	11

This	is	the	global	x:	15

What	is	the	output	when	the	global	x	=	15	statement	is	left	out?	In	this	situation,	the
program	prints	out	this	result:

This	is	the	local	x	in	for:	7

This	is	the	local	x	in	funscope:	11

This	is	the	global	x:	9

Tip
However,	needless	to	say,	such	name	conflicts	obscure	the	code	and	are	a	source	for	bugs,
so	try	to	avoid	them	if	possible.

If	you	need	to	create	a	new	local	binding	for	a	variable,	use	the	let	block.	Execute	the
following	code	snippet:

anon	=	cell(2)	#	returns	2-element	Array{Any,1}:	#undef		#undef

for	i	=	1:2

		anon[i]	=	()->	println(i)

		i	+=	1

end

Here,	both	anon[1]	and	anon[2]	are	anonymous	functions.	When	they	are	called	with
anon[1]()	and	anon[2](),	they	print	2	and	3	(the	values	of	i	when	they	were	created	plus
one).	What	if	you	wanted	them	to	stick	to	the	value	of	i	at	the	moment	of	their	creation?
Then,	you	have	to	use	let	and	change	the	code	to	this:

anon	=	cell(2)

for	i	=	1:2

		let	i	=	i

						anon[i]	=	()->	println(i)	

		end

		i	+=	1

end

Now,	anon[1]()	and	anon[2]()	print	1	and	2	respectively.	Because	of	let,	they	kept	the
value	of	i	the	same	as	when	they	were	created.

The	let	statement	also	introduces	a	new	scope.	You	can,	for	example,	combine	it	with
begin	like	this:

begin

				local	x	=	1

				let

							local	x	=	2

							println(x)	#>	2

				end

				x

				println(x)	#>	1

end

The	for	loops	and	comprehensions	differ	in	the	way	they	scope	an	iteration	variable.
When	i	is	initialized	to	0	before	a	for	loop,	after	executing	for	i	=	1:10	end,	the
variable	i	is	now	10:

i	=	0

for	i	=	1:10

end

println(i)		#>	10

After	executing	a	comprehension	such	as	[i	for	i	=	1:10],	the	variable	i	is	still	0:

i	=	0

[i	for	i	=	1:10]

println(i)		#>	0

Tasks
Julia	has	a	built-in	system	for	running	tasks,	which	are,	in	general,	known	as	coroutines.
With	this,	a	computation	that	generates	values	(with	a	produce	function)	can	be	suspended
as	a	task,	while	a	consumer	task	can	pick	up	the	values	(with	a	consume	function).	This	is
similar	to	the	yield	keyword	in	Python.

As	a	concrete	example,	let’s	take	a	look	at	a	fib_producer	function	that	calculates	the
first	n	Fibonacci	numbers	(refer	to	the	Recursive	functions	section	in	Chapter	3,
Functions),	but	it	doesn’t	return	the	numbers,	it	produces	them:

#	code	in	Chapter	4\tasks.jl

function	fib_producer(n)

				a,	b	=	(0,	1)

				for	i	=	1:n

								produce(b)

								a,	b	=	(b,	a	+	b)

				end

end

If	you	call	this	function	as	fib_producer(5),	it	waits	indefinitely.	Instead	you	have	to
envelop	it	as	a	task	that	takes	a	function	with	no	arguments:

tsk1	=	Task(()	->	fib_producer(10))

This	gives	the	following	output	as	Task	(runnable)	@0x0000000005696180.	The	tasks’
state	is	runnable.	To	get	the	Fibonacci	numbers,	start	consuming	them	until	nothing
returns,	and	the	task	is	finished	(state	is	done):

consume(tsk1)	#=>	1

consume(tsk1)	#=>	1

consume(tsk1)	#=>	2

consume(tsk1)	#=>	3

consume(tsk1)	#=>	5

consume(tsk1)	#=>	8

consume(tsk1)	#=>	13

consume(tsk1)	#=>	21

consume(tsk1)	#=>	34

consume(tsk1)	#=>	55

consume(tsk1)	#=>	nothing	#	Task	(done)	@0x0000000005696180

It	is	as	if	the	fib_producer	function	was	able	to	return	multiple	times,	once	for	each
produce	call.	Between	calls	to	fib_producer,	its	execution	is	suspended,	and	the
consumer	has	control.

The	same	values	can	be	more	easily	consumed	in	a	for	loop,	where	the	loop	variable
becomes	one	by	one	the	produced	values:

for	n	in	tsk1

				println(n)

end

This	produces	1	1	2	3	5	8	13	21	34	55.

The	Task	constructor	argument	must	be	a	function	with	0	arguments,	that’s	why	it	is
written	as	an	anonymous	function,	()	->	fib_producer(10).

There	is	a	macro	@task	that	does	the	same	thing:

tsk1	=	@task	fib_producer(10)

The	produce	and	consume	functions	use	a	more	primitive	function	called	yieldto.
Coroutines	are	not	executed	in	different	threads,	so	they	cannot	run	on	separate	CPUs.
Only	one	coroutine	is	running	at	once,	but	the	language	runtime	switches	between	them.
An	internal	scheduler	controls	a	queue	of	runnable	tasks	and	switches	between	them	based
on	events,	such	as	waiting	for	data,	or	data	coming	in.

Tasks	should	be	seen	as	a	form	of	cooperative	multitasking	in	a	single	thread.	Switching
between	tasks	does	not	consume	stack	space,	unlike	normal	function	calls.	In	general,
tasks	have	very	low	overhead;	so	you	can	use	lots	of	them	if	needed.	Exception	handling
in	Julia	is	implemented	using	Tasks	as	well	as	servers	that	accept	many	incoming
connections	(refer	to	the	Working	with	TCP	sockets	and	servers	section	in	Chapter	8,	I/O,
Networking,	and	Parallel	Computing).

True	parallelism	in	Julia	is	discussed	in	the	Parallel	operations	and	computing	section	of
Chapter	8,	I/O,	Networking,	and	Parallel	Computing.

Summary
In	this	chapter,	we	explored	the	different	control	constructs	such	as	if	and	while.	We	also
saw	how	to	catch	exceptions	with	try/catch,	and	how	to	throw	our	own	exceptions.	Some
subtleties	of	scope	were	discussed,	and	finally	we	got	an	overview	of	how	to	use
coroutines	in	Julia	with	tasks.	Now,	we	are	well	equipped	to	explore	more	complex	types
that	consist	of	many	elements.	This	is	the	topic	of	the	next	chapter,	Collection	types.

Chapter	5.	Collection	Types
Collection	of	values	appear	everywhere	in	programs,	and	Julia	has	the	most	important
built-in	collection	types.	In	Chapter	2,	Variables,	Types,	and	Operations,	we	introduced
two	important	types	of	collections:	arrays	and	tuples.	In	this	chapter,	we	will	look	more
deeply	at	multidimensional	arrays	(or	matrices)	and	in	the	tuple	type	as	well.	A	dictionary
type,	where	you	can	look	up	a	value	through	a	key,	is	indispensable	in	a	modern	language,
and	Julia	has	this	too.	Finally,	we	will	explore	the	set	type.	Like	arrays,	all	these	types	are
parameterized;	the	type	of	their	elements	can	be	specified	at	object	construction	time.

Collections	are	also	iterable	types,	the	types	over	which	we	can	loop	with	for	or	an
iterator	producing	each	element	of	the	collection	successively.	The	iterable	types	include
string,	range,	array,	tuple,	dict,	and	set.

So,	the	following	are	the	topics	for	this	chapter:

Matrices
Tuples
Dictionaries
Sets
An	example	project:	word	frequency

Matrices
We	know	that	the	notation	[1,	2,	3]	is	used	to	create	an	array.	In	fact,	this	notation
denotes	a	special	type	of	array,	called	a	(column)	vector	in	Julia,	as	shown	in	the
following	screenshot:

To	create	this	as	a	row	vector	(1	2	3),	use	the	notation	[1	2	3]	with	spaces	instead	of
commas.	This	array	is	of	type	1	x	3	Array{Int64,2},	so	it	has	two	dimensions.	(The
spaces	used	in	[1,	2,	3]	are	for	readability	only,	we	could	have	written	this	as	[1,2,3]).

A	matrix	is	a	two-	or	multi-dimensional	array	(in	fact,	a	matrix	is	an	alias	for	the	two-
dimensional	case).	In	fact,	we	can	write	this	as	follows:

Array{Int64,	1}	==	Vector{Int64}	#>	true

Array{Int64,	2}	==	Matrix{Int64}	#>	true

As	matrices	are	so	prevalent	in	data	science	and	numerical	programming,	Julia	has	an
amazing	range	of	functionalities	for	them.

To	create	a	matrix,	use	space-separated	values	for	the	columns	and	semicolon-separated
for	the	rows:

//	code	in	Chapter	5\matrices.jl:

matrix	=	[1	2;	3	4]	

				2x2	Array{Int64,2}:

				1		2

				3		4

So	the	column	vector	from	the	beginning	can	also	be	written	as	[1;	2;	3].	However,	you
cannot	use	commas	and	semicolons	together.

To	get	the	value	from	a	specific	element	in	the	matrix,	you	need	to	index	it	by	row	and
then	by	column,	for	example,	matrix[2,	1]	returns	the	value	3	(row	2,	column	1).

Using	the	same	notation,	one	can	calculate	products	of	matrices	such	as	[1	2]	*	[3	;	4]
is	calculated	as	[1	2]	*	[3	4],	which	returns	the	value	11	(which	is	equal	to	1*3	+	2*4).

To	create	a	matrix	from	random	numbers	between	0	and	1,	with	3	rows	and	5	columns,	use
ma1	=	rand(3,	5),	which	shows	the	following	results:

3x5	Array{Float64,2}:

	0.0626778		0.616528		0.60699			0.709196		0.900165

	0.511043			0.830033		0.671381		0.425688		0.0437949

	0.0863619		0.621321		0.78343			0.908102		0.940307

The	ndims	function	can	be	used	to	obtain	the	number	of	dimensions	of	a	matrix.	Consider
the	following	example:

	julia>	ndims(ma1)	#>	2	

	julia>	size(ma1)	#>	a	tuple	with	the	dimensions	(3,	5)	

To	get	the	number	of	rows	(3),	run	the	following	command:

	julia>			size(ma1,1)	#>	3

The	number	of	columns	(5)	is	given	by:

	julia>	size(ma1,2)	#>	5

	julia>	length(ma1)	#>	15,	the	number	of	elements

That’s	why,	you	will	often	see	this	nrows,	ncols	=	size(ma),	where	ma	is	a	matrix,
nrows	is	the	number	of	rows,	and	ncols	is	the	number	of	columns.

If	you	need	an	identity	matrix,	where	all	the	elements	are	zero,	except	for	the	elements	on
the	diagonal	that	are	1.0,	use	the	eye	function	with	the	argument	3	for	a	3	x	3	matrix:

idm	=	eye(3)

3x3	Array{Float64,2}:

	1.0		0.0		0.0

	0.0		1.0		0.0

	0.0		0.0		1.0

You	can	easily	work	with	parts	of	a	matrix,	known	as	slices	that	are	similar	to	those	used
in	Python	and	NumPy	as	follows:

idm[1:end,	2]	or	shorter	idm[:,	2]	returns	the	entire	second	column
idm[2,	:]	returns	the	entire	second	row
idmc	=	idm[2:end,	2:end]	returns	the	output	as	follows:

2x2	Array{Float64,2}

				1.0		0.0

				0.0		1.0

idm[2,	:]	=	0	sets	the	entire	second	row	to	0
idm[2:end,	2:end]	=	[5	7	;	9	11]	will	change	the	entire	matrix	as	follows:

				1.0		0.0		0.0

				0.0		5.0		7.0

				0.0		9.0		11.0

All	these	slicing	operations	return	copies	of	the	original	matrix	in	Julia	v0.3.	For	instance,
a	change	to	idmc	from	the	previous	example	will	not	change	idm.	To	obtain	a	view	of	the
matrix	idm,	rather	than	a	copy,	use	the	sub	function	(see	?sub	for	details).	From	v0.4
onwards,	slicing	will	create	views	into	the	original	array	rather	than	copying	the	data.

To	make	an	array	of	arrays	(a	jagged	array),	use	jarr	=	fill(Array(Int64,1),3)	and

then	start	initializing	every	element	as	an	array,	for	example:

jarr[1]=[1,2]

jarr[2]=[1,2,3,4]

jarr[3]=[1,2,3]	jarr	#=>

3-element	Array{Array{Int64,1},1}:

	[1,2]

	[1,2,3,4]

	[1,2,3]

If	ma	is	a	matrix	say,	[1	2;	3	4],	then	ma'	is	the	transpose	matrix	[1	3;	2	4]:

ma:			1		2												ma'		1			3

						3		4																	2			4

(ma'	is	an	operator	notation	for	the	transpose(ma)	function.)

Multiplication	is	defined	between	matrices,	as	in	mathematics,	so	ma	*	ma'	returns	the	2	x
2	matrix	or	type	Array{Int64,2}	as	follows:

5				11

11			25

If	you	need	element-wise	multiplication,	use	ma	.*	ma',	which	returns	2	x	2
Array{Int64,2}:

1			6

6		16

The	inverse	of	a	matrix	ma	(if	it	exists)	is	given	by	the	inv(ma)	function.	The	inv(ma)
function	returns	2	x	2	Array{Float64,2}:

	-2.0			1.0

	1.5			-0.5

The	inverse	means	that	ma	*	inv(ma)	produces	the	identity	matrix:

		1.0			0.0

		0.0			1.0

Note
Trying	to	take	the	inverse	of	a	singular	matrix	(a	matrix	that	does	not	have	a	well-defined
inverse)	will	result	in	LAPACKException	or	SingularException,	depending	on	the	matrix
type.

Tip
Suppose	you	want	to	solve	the	ma1	*	X	=	ma2	equation,	where	ma1,	X,	and	ma2	are
matrices.	The	obvious	solution	is	X	=	inv(ma1)	*	ma2.	However,	this	is	actually	not	that
good.	It	is	better	to	use	the	built-in	solver,	where	X	=	ma1	\	ma21.	If	you	have	to	solve	the
X	*	ma1	=	ma2	equation,	use	the	solution	X	=	ma2	/	ma1.	The	solutions	that	use	/	and	\
are	much	more	numerically	stable	and	also	much	faster.

If	v	=	[1.,2.,3.]	and	w	=	[2.,4.,6.],	and	you	want	to	form	a	3	x	2	matrix	with	these
two	column	vectors,	then	use	hcat(v,	w)	(for	horizontal	concatenation)	to	produce	the

following	output:

				1.0		2.0

				2.0		4.0

				3.0		6.0

vcat(v,w)	(for	vertical	concatenation)	results	in	a	one-dimensional	array	with	all	the	six
elements	with	the	same	result	as	append!(v,	w).

Thus,	hcat	concatenates	vectors	or	matrices	along	the	second	dimension	(columns),	while
vcat	concatenates	along	the	first	dimension	(rows).	The	more	general	cat	can	be	used	to
concatenate	multi-dimensional	arrays	along	arbitrary	dimensions.

There	is	an	even	simpler	literal	notation;	to	concatenate	two	matrices	a	and	b	with	the
same	number	of	rows	to	a	matrix	c,	just	execute,	c	=	[a	b],	now	b	is	appended	to	the
right	of	a.	To	put	b	beneath	c,	type	c	=	[a;	b],	which	is	the	same	as	c	=	[a,	b].	Here	is
a	concrete	example,	a	=	[1	2;	3	4]	and	b	=	[5	6;	7	8]:

a B c	=	[a	b] c	=	[a;	b] c	=	[a,	b]

1	2

3	4

5	6

7	8

1	2	5	6

3	4	7	8

1	2

3	4

5	6

7	8

1	2

3	4

5	6

7	8

The	reshape	function	changes	the	dimensions	of	a	matrix	to	new	values	if	this	is	possible,
for	example:

reshape(1:12,	3,	4)	#>	returns	a	3x4	array	with	the	values	1	to	12

3x4	Array{Int64,2}:

	1		4		7		10

	2		5		8		11

	3		6		9		12

a	=	rand(3,	3)		#>	produces	a	3x3	Array{Float64,2}

3x3	Array{Float64,2}:

	0.332401			0.499608		0.355623

	0.0933291		0.132798		0.967591

	0.722452			0.932347		0.809577

reshape(a,	(9,1))	#>	produces	a	9x1	Array{Float64,2}:

9x1	Array{Float64,2}:

	0.332401

	0.0933291

	0.722452

	0.499608

	0.132798

	0.932347

	0.355623

	0.967591

	0.809577

reshape(a,	(2,2))	#>	does	not	succeed:

ERROR:	DimensionMismatch("new	dimensions	(2,2)	must	be	consistent	with	

array	size	9")

When	working	with	arrays	that	contain	arrays,	it	is	important	to	realize	that	such	an	array

contains	references	to	the	contained	arrays,	not	their	values.	If	you	want	to	make	a	copy	of
an	array,	you	can	use	the	copy()	function,	but	this	produces	only	a	“shallow	copy”	with
references	to	the	contained	arrays.	In	order	to	make	a	complete	copy	of	the	values,	we
need	to	use	the	deepcopy()	function.

The	following	example	makes	this	clear:

x	=	cell(2)	#>	2-element	Array{Any,1}:	#undef	#undef

x[1]	=	ones(2)	#>	2-element	Array{Float64}	1.0	1.0

x[2]	=	trues(3)	#>	3-element	BitArray{1}:	true	true	true

x	#>	2-element	Array{Any,1}:	[1.0,1.0]	Bool[true,true,true]

a	=	x	

b	=	copy(x)	

c	=	deepcopy(x)	

#	Now	if	we	change	x:

x[1]	=	"Julia"

x[2][1]	=	false

x	#>	2-element	Array{Any,1}:	"Julia"	Bool[false,true,true]

a	#>	2-element	Array{Any,1}:	"Julia"	Bool[false,true,true]

is(a,	x)	#>	true,	a	is	identical	to	x

b	#>	2-element	Array{Any,1}:	[1.0,1.0]	Bool[false,true,true]

is(b,	x)	#>	false,	b	is	a	shallow	copy	of	x

c	#>	2-element	Array{Any,1}:	[1.0,1.0]	Bool[true,true,true]

is(c,	x)	#>	false

The	value	of	a	remains	identical	to	x	when	this	changes,	because	it	points	to	the	same
object	in	memory.	The	deep	copy	c	function	remains	identical	to	the	original	x.	The	b
value	retains	the	changes	in	a	contained	array	of	x,	but	not	if	one	of	the	contained	arrays
becomes	another	array.

As	to	performance,	there	is	a	consensus	that	using	fixed-size	arrays	can	offer	a	real	speed
boost.	If	you	know	the	size,	your	array	arr	will	reach	from	the	start	(say	75),	then	indicate
this	with	sizehint	to	the	compiler	so	that	the	allocation	can	be	optimized	as	follows:

sizehint(arr,	75)	(from	v0.4	onwards	use	sizehint!(arr,	75))

To	further	increase	the	performance,	consider	using	the	statically-sized	and	immutable
vectors	and	matrices	of	the	package	ImmutableArrays,	which	is	a	lot	faster,	certainly	for
small	matrices	and	particularly	for	vectors.

Tuples
A	tuple	is	a	fixed-sized	group	of	values	separated	by	commas	and	optionally	surrounded
by	parentheses	().	The	type	of	these	values	can	be	the	same,	but	it	doesn’t	have	to;	a
tuple	can	contain	values	of	different	types,	unlike	arrays.	A	tuple	is	a	heterogeneous
container,	whereas	an	array	is	a	homogeneous	container.	The	type	of	a	tuple	is	just	a	tuple
of	the	types	of	the	values	it	contains.	So,	in	this	sense,	a	tuple	is	very	much	the	counterpart
of	an	array	in	Julia.	Also,	changing	a	value	in	a	tuple	is	not	allowed;	tuples	are	immutable.

In	Chapter	2,	Variables,	Types,	and	Operations,	we	saw	fast	assignment,	which	is	made
possible	by	tuples:

//	code	in	Chapter	5\tuples.jl:

a,	b,	c,	d	=	1,	22.0,	"World",	'x'

This	expression	assigns	a	value	1,	b	becomes	22.0,	c	takes	up	the	value	World,	and	d
becomes	x.

The	expression	returns	a	tuple	(1,	22.0,"World",'x'),	as	the	REPL	shows	as	follows:

If	we	assign	this	tuple	to	a	variable	t1	and	ask	for	its	type,	we	get	the	following	result:

		typeof(t1)	#>	(Int64,Float64,ASCIIString,Char)

The	argument	list	of	a	function	(refer	to	the	Defining	functions	section	in	Chapter	3,
Functions)	is,	in	fact,	also	a	tuple.	Similarly,	Julia	simulates	the	possibility	of	returning
multiple	values	by	packaging	them	into	a	single	tuple,	and	a	tuple	also	appears	when	using
functions	with	variable	argument	lists.	()	represents	the	empty	tuple,	and	(1,)	is	a	one-
element	tuple.	The	type	of	a	tuple	can	be	specified	explicitly	through	a	type	annotation
(refer	to	the	Types	section	in	Chapter	2,	Variables,	Types,	and	Operations),	such	as	('z',
3.14)::(Char,	Float64).

The	following	snippet	shows	that	we	can	index	tuples	in	the	same	way	as	arrays:	brackets,
indexing	starting	from	1,	slicing,	and	index	control:

t3	=	(5,	6,	7,	8)

t3[1]	#>	5

t3[end]	#>	8

t3[2:3]	#>	(6,	7)

t3[5]	#>	BoundsError

t3[3]	=	9	#>	Error:	'setindex'	has	no	matching…

author	=	("Ivo",	"Balbaert",	59)

author[2]	#>	"Balbaert"

To	iterate	over	the	elements	of	a	tuple,	use	a	for	loop:

for	i	in	t3

				println(i)

end	#	#>	5		6		7		8

A	tuple	can	be	unpacked	or	deconstructed	like	this:	a,	b	=	t3;	now	a	is	5	and	b	is	6.
Notice	that	we	don’t	get	an	error	despite	the	left-hand	side	not	being	able	to	take	all	the
values	of	t3.	To	do	this,	we	would	have	to	write	a,	b,	c,	d	=	t3.

In	the	following	example,	the	elements	of	the	author	tuple	are	unpacked	into	separate
variables:	first_name,	last_name,	and	age	=	author.

So,	tuples	are	nice	and	simple	types,	which	make	a	lot	of	things	possible.	We’ll	find	them
back	in	the	next	section	as	elements	of	a	dictionary.

Dictionaries
When	you	want	to	store	and	look	up	the	values	based	on	a	unique	key,	then	the	Dictionary
type	Dict	(also	called	hash,	associative	collection,	or	map	in	other	languages)	is	what	you
need.	It	is	basically	a	collection	of	two-element	tuples	of	the	form	(key,	value).	To
define	a	dictionary	d1	as	a	literal	value,	the	following	syntax	is	used:

//	code	in	Chapter	5\dicts.jl:

d1	=	[1	=>	4.2,	2	=>	5.3]

It	returns	Dict{Int64,Float64}	with	2	entries:	2	=>	5.3	1	=>	4.2,	so	there	are	two
key-value	tuples	here,	(1,	4.2)	and	(2,	5.3);	the	key	appears	before	the	=>	symbol	and
the	value	appears	after	it,	and	the	tuples	are	separated	by	commas.	The	[]	indicates	a
typed	dictionary;	all	the	keys	must	have	the	same	type,	and	the	same	is	true	for	the	values.
A	dynamic	version	of	a	dictionary	can	be	defined	with	{	}:

d1	=	{1	=>	4.2,	2	=>	5.3}	is	Dict{Any,Any}
d2	=	{"a"	=>	1,	(2,3)	=>	true}	is	Dict{Any,Any}

Any	is	also	inferred	when	a	common	type	among	the	keys	or	values	cannot	be	detected.	In
general,	dictionaries	that	have	type	{Any,	Any}	tend	to	lead	to	lower	performance	since
the	JIT	compiler	does	not	know	the	exact	type	of	the	elements.	Dictionaries	used	in
performance-critical	parts	of	the	code	should	therefore	be	explicitly	typed.	Notice	that	the
(key,	value)	pairs	are	not	returned	(or	stored)	in	the	key	order.	If	the	keys	are	of	type	Char
or	String,	you	can	also	use	Symbol	as	the	key	type,	which	could	be	more	appropriate
since	Symbols	are	immutable.	For	example,	d3	=	[:A	=>	100,	:B	=>	200],	which	is
Dict{Symbol,Int64}.

Use	the	bracket	notation	with	a	key	as	an	index	to	get	the	corresponding	value,	d3[:B]
returns	200.	However,	the	key	must	exist,	else	we	will	get	an	error,	d3[:Z]	that	returns
ERROR:	key	not	found:	:Z.	To	get	around	this,	use	the	get	method	and	provide	a	default
value	that	is	returned	instead	of	the	error,	get(d3,	:Z,	999)	returns	999.

Here	is	a	dictionary	that	resembles	an	object,	storing	the	field	names	as	symbols	in	the
keys:

dmus	=	[:first_name	=>	"Louis",	:surname	=>	"Armstrong",	:occupation	=>	

"musician",	:date_of_birth	=>	"4/8/1901"]

To	test	if	a	(key,	value)	tuple	is	present,	you	can	use	in	as	follows:

in((:Z,	999),	d3)	or	(:Z,	999)	in	d3	returns	false
in((:A,	100),	d3)	or	(:A,	100)	in	d3	returns	true

Dictionaries	are	mutable:	if	we	tell	Julia	to	execute	d3[:A]	=	150,	then	the	value	for	key
:A	in	d3	has	changed	to	150.	If	we	do	this	with	a	new	key,	then	that	tuple	is	added	to	the
dictionary:

d3[:C]	=	300

d3	is	now	[:A	=>	150,	:B	=>	200,	:C	=>	300],	and	it	has	three	elements:	length(d3)

returns	3.

d4	=	Dict()	is	an	empty	dictionary	of	type	Any,	and	start	populating	it	in	the	same	way	as
in	the	example	with	d3.

d5	=	Dict{Float64,	Int64}()	is	an	empty	dictionary	with	key	type	Float64	and	value
type	Int64.	As	to	be	expected,	adding	keys	or	values	of	another	type	to	a	typed	dictionary
is	an	error.	d5["c"]	=	6	returns	ERROR:	'convert'	has	no	method	matching
convert(::Type{Float64},	::ASCIIString)	and	d3["CVO"]	=	500	returns	ERROR:	CVO
is	not	a	valid	key	for	type	Symbol.

Deleting	a	key	mapping	from	a	collection	is	also	straightforward.	delete!(d3,	:B)
removes	(:B,	200)	from	the	dictionary,	and	returns	the	collection	that	contains	only	:A
=>	100.

Keys	and	values	–	looping
To	isolate	the	keys	of	a	dictionary,	use	the	keys	function	ki	=	keys(d3),	with	ki	being	a
KeyIterator	object,	which	we	can	use	in	a	for	loop	as	follows:

for	k	in	keys(d3)

				println(k)

end

This	prints	out	A	and	B.	This	gives	us	also	an	easier	way	to	test	if	a	key	exists	with	in,	for
example,	:A	in	keys(d3)	returns	true	and	:Z	in	keys(d3)	returns	false.

An	equivalent	method	is	haskey(d3,	:A),	which	also	returns	true.	If	you	want	to	work
with	an	array	of	the	keys,	use	collect(keys(d3))	that	returns	a	two-element
Array{Symbol,1}	that	contains	:A	and	:B.	To	obtain	the	values,	use	the	values	function:
vi	=	values(d3),	with	vi	being	a	ValueIterator	object,	which	we	can	also	loop	through
with	for:

for	v	in	values(d3)

				println(v)

end

This	returns	100	and	200,	but	the	order	in	which	the	values	or	keys	are	returned	is
undefined.

Creating	a	dictionary	from	arrays	with	keys	and	values	is	trivial	because	we	have	a	Dict
constructor	that	can	use	these.	For	example:

keys1	=	["J.S.	Bach",	"Woody	Allen",	"Barack	Obama"]	and

values1	=		[1685,	1935,	1961]

Then,	d5	=	Dict(keys1,	values1)	results	in	a	Dict{ASCIIString,Int64}	with	three
entries	as	follows:

d5	=	["J.S.	Bach"	=>	1685,	"Woody	Allen"	=>	1935,	"Barack	Obama"	=>	1961]

Working	with	both	the	key	and	value	pairs	in	a	loop	is	also	easy.	For	instance,	the
following	for	loop	over	d5	is	as	follows:

for	(k,	v)	in	d5

							println("$k	was	born	in	$v")	

			end

This	will	print	the	following	output:

J.S.	Bach	was	born	in	1685

Barack	Obama	was	born	in	1961

Woody	Allen	was	born	in	1935		

Or	alternatively,	using	an	index	in	every	(key,value)	tuple	of	d5:

for	p	in	d5

		println("$(p[1])	was	born	in	$(p[2])")	

end

If	the	key-value	pairs	are	arranged	in	a	single	array,	like	this:

			dpairs	=	["a",	1,	"b",	2,	"c",	3]	

Then,	you	can	build	a	dictionary	from	this	array	with	the	following	comprehension:

			d6	=	[dpairs[i]	=>	dpairs[i+1]	for	i	in	1:2:length(dpairs)]	

Here,	1:2:length(dpairs)	iterates	over	the	array	in	steps	of	two:	i	will	therefore	take	on
values	1,	3,	and	5.

If	you	want	it	typed,	prefix	it	with	(String	=>	Int64)	like	this:

d6	=	(String	=>	Int64)[dpairs[i]	=>	dpairs[i+1]	for	i	in	

1:2:length(dpairs)]	

Here	is	a	nice	example	of	the	use	of	a	dictionary	with	the	built-in	function	factor.	The
function	factor	takes	an	integer	and	returns	a	dictionary	with	the	prime	factors	as	the
keys,	and	the	number	of	times	each	prime	appears	in	the	product	as	values:

function	showfactor(n)

	d	=	factor(n)

				println("factors	for	$n")

				for	(k,	v)	in	d

								print("$k^$v\t")

				end

end

@time	showfactor(3752)	outputs	the	following	result:

factors	for	3752

7^1					2^3					67^1				elapsed	time:	0.000458578	seconds	(2472	bytes	

allocated)

Here	are	some	more	neat	tricks,	where	dict	is	a	dictionary:

Copying	the	keys	of	a	dictionary	to	an	array	with	a	list	comprehension:

arrkey	=	[key	for	(key,	value)	in	dict]

This	is	the	same	as	collect(keys(dict)).

Copying	the	values	of	a	dictionary	to	an	array	with	a	list	comprehension:

arrval	=	[value	for	(key,	value)	in	dict]

This	is	the	same	as	collect(values(dict))

Make	an	array	with	the	first	n	values	of	a	dictionary	when	the	keys	are	the	integers
from	1	to	n	and	beyond:

arrn	=	[dict[i]	for	i	=	1:n]

This	can	also	be	written	as	a	map,	arrn	=	map((i)	->	dict[i],	[1:n])

From	Julia	v0.4	onwards,	the	following	literal	syntaxes	or	the	Dict	constructors	are
deprecated:

d1	=	[1	=>	4.2,	2	=>	5.3]

d2	=	{"a"=>1,	(2,3)=>true}

capitals	=	(String	=>	String)["France"=>	"Paris",	"China"=>"Beijing"]

d5	=	Dict(keys1,	values1)

They	take	the	new	forms	as	follows:

d1	=	Dict(1	=>	4.2,	2	=>	5.3)

d2	=	Dict{Any,Any}("a"=>1,	(2,3)=>true)

capitals	=	Dict{String,	String}("France"=>	"Paris","China"=>"Beijing")	#	

from	v0.4	onwards

d5	=	Dict(zip(keys1,	values1))

Tip
This	is	indicated	for	all	the	examples	in	the	accompanying	code	file,	dicts.jl.	It	can	be
difficult	to	make	packages	to	work	on	both	the	versions.	The	Compat	package
(https://github.com/JuliaLang/Compat.jl)	was	created	to	help	with	this,	as	it	provides
compatibility	constructs	that	will	work	in	both	the	versions	without	warnings.

https://github.com/JuliaLang/Compat.jl

Sets
Array	elements	are	ordered,	but	can	contain	duplicates,	that	is,	the	same	value	can	occur	at
different	indices.	In	a	dictionary,	keys	have	to	be	unique,	but	the	values	do	not,	and	the
keys	are	not	ordered.	If	you	want	a	collection	where	order	does	not	matter,	but	where	the
elements	have	to	be	unique,	then	use	a	Set.	Creating	a	set	is	easy	as	this:

//	code	in	Chapter	5\sets.jl:

s	=	Set({11,	14,	13,	7,	14,	11})

The	Set()	function	creates	an	empty	set.	The	preceding	line	returns	Set{Int64}
({7,14,13,11}),	where	the	duplicates	have	been	eliminated.	From	v0.4	onwards,	the	{}
notation	with	sets	is	deprecated;	you	should	use	s	=	Set(Any[11,	14,	13,	7,	14,
11]).	In	the	accompanying	code	file,	the	latest	version	is	used.

The	operations	from	the	set	theory	are	also	defined	for	s1	=	Set({11,	25})	and	s2	=
Set({25,	3.14})	as	follows:

union(s1,	s2)	produces	Set{Any}({3.14,25,11})
intersect(s1,	s2)	produces	Set{Any}({25})
setdiff(s1,	s2)	produces	Set{Any}({11}),	whereas	setdiff(s2,	s1)	produces
Set{Any}({	3.14})

issubset(s1,	s2)	produces	false,	but	issubset(s1,	Set({11,	25,	36}))
produces	true

To	add	an	element	to	a	set	is	easy:	push!(s1,	32)	adds	32	to	set	s1.	Adding	an	existing
element	will	not	change	the	set.	To	test,	if	a	set	contains	an	element,	use	in.	For	example,
in(32,	s1)	returns	true	and	in(100,	s1)	returns	false.

Be	careful	if	you	want	to	define	a	set	of	arrays:	Set([1,2,3])	produces	a	set	of	integers
Set{Int64}({2,3,1});	to	get	a	set	of	arrays,	use	Set({[1,2,3]})	that	returns	Set{Any}
({[1,2,3]}).

Sets	are	commonly	used	when	we	need	to	keep	a	track	of	objects	in	no	particular	order.
For	instance,	we	might	be	searching	through	a	graph.	We	can	then	use	a	set	to	remember
which	nodes	of	the	graph	we	already	visited	in	order	to	avoid	visiting	them	again.
Checking	whether	an	element	is	present	in	a	set	is	independent	of	the	size	of	the	set.	This
is	extremely	useful	for	very	large	sets	of	data.	For	example:

		x	=	Set([1:100])

		@time	2	in	x		#	elapsed	time	4.888e-6	seconds

		x2	=	Set([1:1000000])

		@time	2	in	x2	#	elapsed	time	5.378e-6	seconds

Both	the	tests	take	approximately	the	same	time,	despite	the	fact	that	x2	is	four	orders	of
magnitude	larger	than	x.

Making	a	set	of	tuples
You	can	start	by	making	an	empty	set	as	this:	st	=	Set{(Int,	Int)}().

Then,	you	can	use	push!	to	start	filling	it	up:	push!(st,	(1,2)),	which	returns	a
Set{(Int64,Int64)}({(1,2)}),	and	so	on.	Another	possibility	is	to	use	[],	for	example,
st2	=	Set({(1,	2),	(5,	6)})	produces	a	set	with	the	two	tuples	(1,2)	and	(5,6).

Let’s	take	a	look	at	the	Collections	module	if	you	need	more	specialized	containers.	It
contains	a	priority	queue	as	well	as	some	lower	level	heap	functions.

Example	project	–	word	frequency
A	lot	of	the	concepts	and	techniques	that	we	have	seen	so	far	in	the	book	come	together	in
this	little	project.	Its	aim	is	to	read	a	text	file,	remove	all	the	characters	that	are	not	used	in
words,	and	count	the	frequencies	of	the	words	in	the	remaining	text.	This	can	be	useful,
for	example,	when	counting	the	word	density	on	a	web	page,	the	frequency	of	DNA
sequences,	or	the	number	of	hits	on	a	website	that	came	from	various	IP	addresses.	This
can	be	done	in	some	10	lines	of	code.	For	example,	when	words1.txt	contains	the
sentence	to	be,	or	not	to	be,	that	is	the	question!,	then	this	is	the	output	of	the
program:

Word	:	frequency	

be	:	2

is	:	1

not	:	1

or	:	1

question	:	1

that	:	1

the	:	1

to	:	2

Here	is	the	code	with	comments:

#	code	in	chapter	5\word_frequency.jl:

#	1-	read	in	text	file:

str	=	readall("words1.txt")

#	2-	replace	non	alphabet	characters	from	text	with	a	space:

nonalpha	=	r"(\W\s?)"	#	define	a	regular	expression

str	=	replace(str,	nonalpha,	'	')

digits	=	r"(\d+)"

str	=	replace(str,	digits,	'	')

#	3-	split	text	in	words:

word_list	=	split(str,	'	')

#	4-	make	a	dictionary	with	the	words	and	count	their	frequencies:

word_freq	=	Dict{String,	Int64}()

for	word	in	word_list

				word	=	strip(word)

				if	isempty(word)	continue	end

				haskey(word_freq,	word)	?	

						word_freq[word]	+=	1	:			

						word_freq[word]	=	1

end

#	5-	sort	the	words	(the	keys)	and	print	out	the	frequencies:

println("Word	:	frequency	\n")

words	=	sort!(collect(keys(word_freq)))

for	word	in	words

				println("$word	:	$(word_freq[word])")

end

The	isempty	function	is	quite	general	and	can	be	used	on	any	collection.

Try	the	code	out	with	the	example	text	files	words1.txt	or	words2.txt.	See	the	output	in

results_words1.txt	and	results_words2.txt.

Summary
In	this	chapter,	we	looked	at	the	built-in	collection	types	Julia	has	to	offer.	We	saw	the
power	of	matrices,	the	elegance	of	dictionaries,	and	the	usefulness	of	tuples	and	sets.
However,	to	dig	deeper	into	the	fabric	of	Julia,	we	need	to	learn	how	to	define	new	types,
another	concept	necessary	to	organize	the	code.	We	must	know	how	types	can	be
constructed,	and	how	they	are	used	in	multiple	dispatch.	This	is	the	main	topic	of	the	next
chapter,	where	we	will	also	see	modules,	which	serve	to	organize	code,	but	at	an	even
higher	level	than	types.

Chapter	6.	More	on	Types,	Methods,	and
Modules
Julia	has	a	rich	built-in	type	system,	and	most	data	types	can	be	parameterized,	such	as
Array{Float64,	2}	or	Dict{Symbol,	Float64}.	Typing	a	variable	(or	more	exactly	the
value	it	is	bound	to)	is	optional,	but	indicating	the	type	of	some	variables,	although	it	is
not	statically	checked,	can	gain	some	of	the	advantages	of	static	type	systems	as	in	C++,
Java,	or	C#.	A	Julia	program	can	run	without	any	indication	of	types,	which	can	be	useful
in	a	prototyping	stage,	and	it	will	still	run	fast.	However,	some	type	indications	can
increase	the	performance	by	allowing	more	specialized	multiple	dispatch.	Moreover,
typing	function	parameters	makes	the	code	easier	to	read	and	understand.	The	robustness
of	the	program	is	also	enhanced	by	throwing	exceptions	in	cases	where	certain	type
operations	are	not	allowed.	These	failures	will	manifest	during	testing,	or	the	code	can
provide	an	exception	handling	mechanism.

All	functions	in	Julia	are	inherently	generic	or	polymorphic,	that	is,	they	can	operate	on
different	types	of	their	arguments.	The	most	appropriate	method	(an	implementation	of	the
function	where	argument	types	are	indicated)	will	be	chosen	at	runtime	to	be	executed,
depending	on	the	type	of	arguments	passed	to	the	function.	As	we	will	see	in	this	chapter,
you	can	also	define	your	own	types,	and	Julia	provides	a	limited	form	of	abstract	types
and	subtyping.

A	lot	of	these	topics	have	already	been	discussed	in	the	previous	chapters;	for	example,
refer	to	the	Generic	functions	and	multiple	dispatch	section	in	Chapter	3,	Functions.	In
this	chapter,	we	broaden	the	previous	discussions	by	covering	the	following	topics:

Type	annotations	and	conversions
The	type	hierarchy	–	subtypes	and	supertypes
Concrete	and	abstract	types
User-defined	and	composite	types
Type	unions
Parametric	types
Parametric	and	constructor	methods
Standard	modules	and	paths

Type	annotations	and	conversions
As	we	saw	previously,	type	annotating	a	variable	is	done	with	the	::	operator,	such	as	in
the	function	definition,	function	write(io::IO,	s::String)	#…	end,	where	the
parameter	io	has	to	be	of	type	IO,	and	s	of	type	String.	To	put	it	differently,	io	has	to	be
an	instance	of	type	IO,	and	s	an	instance	of	type	String.	The	::	operator	is,	in	fact,	an
assertion	that	affirms	that	the	value	on	the	left	is	of	the	type	on	the	right.	If	this	is	not	true,
a	typeassert	error	is	thrown.	Try	this	out	in	the	REPL:

#	see	the	code	in	Chapter	6\conversions.jl:

(31+42)::Float64

We	get	an	ERROR:	type:	typeassert:	expected	Float64,	got	Int64	error	message.

This	is	in	addition	to	the	method	specialization	for	multiple	dispatch,	an	important	reason
why	type	annotations	are	used	in	function	signatures.

The	operator	::	can	also	be	used	in	the	sense	of	a	type	declaration,	but	only	in	local	scope
such	as	in	functions,	as	follows:

n::Int16	or	local	n::Int16	or	n::Int16	=	5

Every	value	assigned	to	n	will	be	implicitly	converted	to	the	indicated	type	with	the
convert	function.

Type	conversions	and	promotions
The	convert	function	can	also	be	used	explicitly	in	the	code	as	convert(Int64,	7.0),
which	returns	7.

In	general,	convert(Type,	x)	will	attempt	to	put	the	x	value	in	an	instance	of	Type.	In
most	cases,	type(x)	will	also	do	the	trick,	as	in	int64(7.0).

The	conversion,	however,	doesn’t	always	work:

When	precision	is	lost:	convert(Int64,	7.01)	returns	an	ERROR:
InexactError()error	message,	however,	int64(7.01)	rounds	off	and	converts	to	the
nearest	integer,	producing	the	output	as	7
When	the	target	type	is	incompatible	with	the	source	value:	convert(Int64,	"CV")
returns	an	ERROR:	`convert`	has	no	method	matching	convert(::Type{Int64},
::ASCIIString)	error	message

This	last	error	message	really	shows	us	how	multiple	dispatch	works;	the	types	of	the
input	arguments	are	matched	against	the	methods	available	for	that	function.

We	can	define	our	own	conversions	by	providing	new	methods	for	the	convert	function.
For	example,	for	information	on	how	to	do	this,	refer	to
http://docs.julialang.org/en/latest/manual/conversion-and-promotion/#conversion.

Julia	has	a	built-in	system	called	automatic	type	promotion	to	promote	arguments	of
mathematical	operators	and	assignments	to	a	common	type:	in	4	+	3.14,	the	integer	4	is
promoted	to	a	Float64	value,	so	that	the	addition	can	take	place	that	results	in
7.140000000000001.	In	general,	promotion	refers	to	the	conversion	of	values	of	different
types	to	one	common	type.	This	can	be	done	with	the	promote	function,	which	takes	a
number	of	arguments,	and	returns	a	tuple	of	the	same	values,	converting	them	to	a
common	type.	An	exception	is	thrown	if	promotion	is	not	possible.	Some	examples	are	as
follows:

promote(1,	2.5,	3//4)	returns	(1.0,	2.5,	0.75)
promote(1.5,	im)	returns	(1.5	+	0.0im,	0.0	+	1.0im)
promote(true,	'c',	1.0)	returns	(1.0,	99.0,	1.0)

Thanks	to	the	automatic	type	promotion	system	for	numbers,	Julia	doesn’t	have	to	define,
for	example,	the	+	operator	for	any	combinations	of	numeric	types.	Instead,	it	is	defined	as
+(x::Number,	y::Number)	=	+(promote(x,y)...).

It	basically	says	that	first,	promote	the	arguments	to	a	common	type,	and	then	perform	the
addition.	A	number	is	a	common	supertype	for	all	values	of	numeric	types.	To	determine
the	common	promotion	type	of	the	two	types,	use	promote_type(Int8,	Uint16)	to	find
whether	it	returns	Int64.

This	is	because	somewhere	in	the	standard	library	the	following	promote_rule	function
was	defined	as	promote_rule(::Type{Int8},	::Type{Uint16})	=	Int64.

You	can	take	a	look	at	how	promoting	is	defined	in	the	source	code	of	Julia	in
base/promotion.jl.	These	kinds	of	promotion	rules	can	be	defined	for	your	own	types

http://docs.julialang.org/en/latest/manual/conversion-and-promotion/#conversion

too	if	needed.

The	type	hierarchy	–	subtypes	and
supertypes
(Follow	along	with	the	code	in	Chapter	6\type_hierarchy.jl.)

In	Julia,	every	value	has	a	type,	for	example,	typeof(2)	is	Int64	(or	Int32	on	32-bit
systems).	Julia	has	a	lot	of	built-in	types,	in	fact,	a	whole	hierarchy	starting	from	the	type
Any	at	the	top.	Every	type	in	this	structure	also	has	a	type,	namely,	DataType,	so	it	is	very
consistent:	typeof(Any),	typeof(Int64),	typeof(Complex{Int64}),	and
typeof(DataType)	all	return	DataType.	So,	types	in	Julia	are	also	objects;	all	concrete
types,	except	tuple	types,	which	are	a	tuple	of	the	types	of	its	arguments,	are	of	type
DataType.

This	type	hierarchy	is	like	a	tree;	each	type	has	one	parent	given	by	the	super	function:

super(Int64)	returns	Signed
super(Signed)	returns	Integer
super(Integer)	returns	Real
super(Real)	returns	Number
super(Number)	returns	Any
super(Any)	returns	Any

A	type	can	have	a	lot	of	children	or	subtypes	as	follows:

subtypes(Integer)	form	5-element	Array{Any,1}	that	contains	BigInt,	Bool,
Char,	Signed,	and	Unsigned
subtypes(Signed)	form	5-element	Array{Any,1}	that	contain	Int128,	Int16,
Int32,	Int64,	and	Int8
subtypes(Int64)	is	0-element	Array{Any,1},	and	it	has	no	subtypes

To	indicate	the	subtype	relationship,	the	operator	<	is	used:	Bool	<:	Integer	and	Bool	<:
Any	return	true,	while	Bool	<:	Char	is	false.	An	equivalent	form	uses	the	issubtype
function:	issubtype(Bool,	Integer)	is	true,	but	issubtype(Float64,	Integer)	returns
false.

Here	is	a	visualization	of	part	of	this	type	tree:

Concrete	and	abstract	types
In	this	hierarchy,	some	types,	such	as	Number,	Integer,	and	Signed,	are	abstract,	which
means	that	they	have	no	concrete	objects	or	values	of	their	own.	Instead,	objects	or	values
are	of	concrete	types	given	by	the	result	of	applying	typeof(value),	such	as	Int8,
Float64,	and	UTF8String.	For	example,	the	concrete	type	of	the	value	5	is	Int64	given	by
typeof(5)	(on	a	64-bit	machine).	However,	a	value	has	also	the	type	of	all	of	its
supertypes,	for	example,	isa(5,	Number)	returns	true	(we	introduced	the	isa	function	in
the	Types	section	of	Chapter	2,	Variables,	Types,	and	Operations).

Concrete	types	have	no	subtypes	and	might	only	have	abstract	types	as	their	supertypes.
Schematically,	we	can	differentiate	them	as	follows:

Type Instantiate Subtypes

concrete Y N

abstract N Y

An	abstract	type	(such	as	Number	and	Real)	is	only	a	name	that	groups	multiple	subtypes
together,	but	it	can	be	used	as	a	type	annotation	or	used	as	a	type	in	array	literals.	These
types	are	the	nodes	in	the	type	hierarchy	that	mainly	serve	to	support	the	type	tree.	Also,
note	that	an	abstract	type	cannot	have	any	fields.

Julia’s	type	tree	can	be	graphically	visualized	by	running	the	following	command:

julia	julia_types.jl	>	tree.txt

Here	is	a	little	fragment	of	its	output:

The	abstract	type	Any	is	the	supertype	of	all	types,	and	all	the	objects	are	also	instances	of
Any.

At	the	other	end	is	None;	all	types	are	supertypes	of	None	and	no	object	is	an	instance	of
None.	The	None	type	has	no	values	and	no	subtypes,	it	is	unlikely	that	you	will	ever	have
to	use	this	type.

Different	from	None	is	the	type	Nothing;	this	has	one	value	named	nothing.	When	a
function	is	only	used	for	its	side	effects,	convention	dictates	that	it	returns	nothing.	We
have	seen	this	with	the	println	function,	where	the	printing	is	the	side	effect,	for	instance:

x	=	println("hello")	#>	hello

x	==	nothing	#>	true

From	v0.4	onwards,	these	types	are	named	differently:	None	becomes	Union(),	and
Nothing	becomes	Void.

User-defined	and	composite	types
In	Julia,	as	a	developer,	you	can	define	your	own	types	to	structure	data	used	in
applications.	For	example,	if	you	need	to	represent	points	in	a	three-dimensional	space,
you	can	define	a	type	Point	as	follows:

#	see	the	code	in	Chapter	6\user_defined.jl:

type	Point

				x::Float64

				y::Float64

				z::Float64

end

The	type	Point	is	a	concrete	type,	objects	of	this	type	can	be	created	as	p1	=	Point(2,
4,	1.3),	and	it	has	no	subtypes:	typeof(p1)	returns	Point	(constructor	with	2
methods),	subtypes(Point)	returns	0-element	Array{Any,1}.

Such	a	user-defined	type	is	composed	of	a	set	of	named	fields	with	an	optional	type
annotation;	that’s	why	it	is	a	composite	type,	and	its	type	is	also	DataType.	If	the	type	of	a
named	field	is	not	given,	then	it	is	Any.	A	composite	type	is	similar	to	a	struct	in	C	or	a
class	without	methods	in	Java.

Unlike	in	other	object-oriented	languages	such	as	Python	or	Java,	where	you	call	a
function	on	an	object	such	as	object.func(args),	Julia	uses	the	func(object,	args)
syntax.

Julia	has	no	classes	(as	types	with	functions	belong	to	that	type);	this	keeps	the	data	and
functions	separate.	Functions	and	methods	for	a	type	will	be	defined	outside	that	type.
Methods	cannot	be	tied	to	a	single	type,	because	multiple	dispatch	connects	them	with
different	types.	This	provides	more	flexibility,	because	when	adding	a	new	method	for	a
type,	you	don’t	have	to	change	the	code	of	the	type	itself,	as	you	would	have	to	do	with
the	code	of	the	class	in	object-oriented	languages.

The	names	of	the	fields	that	belong	to	a	composite	type	can	be	obtained	with	the	names
function	of	the	type	or	an	object:	names(Point)	or	names(p1)	returns	3-element
Array{Symbol,1}:	:x	:y	:z.

A	user-defined	type	has	two	default	implicit	constructors	that	have	the	same	name	as	the
type	and	take	an	argument	for	each	field.	You	can	see	this	by	asking	for	the	methods	of
Point:	methods(Point)	returns	2	methods	for	generic	function	"Point":
Point(x::Float64,	y::Float64,	z::Float64)	and	Point(x	,y	,z).	Here,	the	field
values	can	be	of	type	Any.

You	can	now	make	objects	simply	like	this:

				orig	=	Point(0,	0,	0)

				p1	=	Point(2,	4,	1.3).

Fields	that	together	contain	the	state	of	the	object	can	be	accessed	by	the	name	as	in:	p1.y
that	returns	4.0.

Objects	of	such	a	type	are	mutable,	for	example,	I	can	change	the	z	field	to	a	new	value
with	p1.z	=	3.14,	resulting	in	p1	now	having	the	value	Point(2.0,	4.0,	3.14).	Of
course,	types	are	checked:	p1.z	=	"A"	results	in	an	error.

Objects	as	arguments	to	functions	are	passed	by	reference,	so	that	they	can	be	changed
inside	the	function	(for	example,	refer	to	the	function	insert_elem(arr)	in	the	Defining
types	section	of	Chapter	3,	Functions).

If	you	don’t	want	your	objects	to	be	changeable,	replace	type	with	the	keyword
immutable,	for	example:

immutable	Vector3D

				x::Float64

				y::Float64

				z::Float64

end	

Calling	p	=	Vector3D(1,	2,	3)	returns	Vector3D(1.0,	2.0,	3.0)	and	p.y	=	5	returns
ERROR:	type	Vector3D	is	immutable.

Tip
Immutable	types	enhance	the	performance,	because	Julia	can	optimize	the	code	for	them.
Another	big	advantage	of	immutable	types	is	thread	safety:	an	immutable	object	can	be
shared	between	threads	without	needing	synchronization.

If,	however,	such	an	immutable	type	contains	a	mutable	field	such	as	an	array,	the	contents
of	that	field	can	be	changed.	So,	define	your	immutable	types	without	mutable	fields.

A	type	once	defined	cannot	be	changed.	If	we	try	to	define	a	new	type	Point	with	fields	of
type	Int64,	or	with	added	fields,	we	get	an	ERROR:	invalid	redefinition	of	constant
TypeName	error	message.

A	new	type	that	is	exactly	the	same	as	an	existing	type	can	be	defined	as	an	alias,	for
instance,	typealias	Point3D	Point.	Now,	objects	of	type	Point3D	can	also	be	created:
p31	=	Point3D(1,	2,	3)	that	returns	Point(1.0,	2.0,	3.0).	Julia	also	uses	this
internally;	the	alias	Int	is	used	for	either	Int64	or	Int32,	depending	on	the	architecture	of
the	system	that	is	being	used.

When	are	two	values	or	objects	equal	or	identical?
To	check	whether	two	values	are	equal	or	not	can	be	decided	by	the	==	operator,	for
example,	5	==	5	and	5	==	5.0	are	both	true.	To	see	whether	the	two	objects	x	and	y	are
identical,	they	must	be	compared	with	the	is	function,	and	the	result	is	a	Boolean	value,
true	or	false:

is(x,	y)	->	Bool

The	is(x,	y)	function	can	also	be	written	with	the	three	=	signs	as	x	===	y.

Objects	such	as	numbers	are	immutable	and	they	are	compared	at	the	bits	level:	is(5,	5)
returns	true	and	is(5,	5.0)	returns	false.

For	objects	that	are	more	complex,	such	as	strings,	arrays,	or	objects	that	are	constructed
from	composite	types,	the	addresses	in	memory	are	compared	to	check	whether	they	point
to	the	same	memory	location.	For	example,	if	q	=	Vector3D(4.0,	3.14,	2.71),	and	r	=
Vector3D(4.0,	3.14,	2.71),	then	is(q,	r)	returns	false.

Multiple	dispatch	example
Let’s	now	explore	an	example	about	people	working	in	a	company	to	show	multiple
dispatch	in	action.	Let’s	define	an	abstract	type	Employee	and	a	type	Developer	that	is	a
subtype:

abstract	Employee

type	Developer	<:	Employee

				name::String

				iq

				favorite_lang::String

end

We	cannot	make	objects	from	an	abstract	type:	calling	Employee()	only	returns	an	ERROR:
type	cannot	be	constructed	error	message.

The	type	Developer	has	two	implicit	constructors,	but	we	can	define	another	outer
constructor	that	uses	a	default	constructor	as	follows:

Developer(name,	iq)	=	Developer(name,	iq,	"Java")

Outer	constructors	provide	additional	convenient	methods	to	construct	objects.	Now,	we
can	make	the	following	two	developer	objects:

devel1	=	Developer("Bob",	110)	that	returns	Developer("Bob",110,"Java")
devel2	=	Developer("William",	145,	"Julia")	that	returns
Developer("William",145,"Julia")

Similarly,	we	can	define	a	type	Manager	and	an	instance	of	it	as	follows:

				type	Manager

								name::String

								iq

								department::String

				end

				man1	=	Manager("Julia",	120,	"ICT")	

Concrete	types,	such	as	Developer	or	Manager,	cannot	be	subtyped:

				type	MobileDeveloper	<:	Developer

				platform

end

This	returns	ERROR:	invalid	subtyping	in	definition	of	MobileDeveloper.

If	we	now	define	a	function	cleverness	as	cleverness(emp::Employee)	=	emp.iq,	then
cleverness(devel1)	returns	110,	but	cleverness(man1)	returns	an	ERROR:
`cleverness`	has	no	method	matching	cleverness(::Manager)	error	message;	the
function	has	no	method	for	a	manager.

Suppose	we	introduce	a	function	cleverer	with	the	following	argument	types:

function	cleverer(d::Developer,	e::Employee)

				println("The	developer	$(d.name)	is	cleverer	I	think!")

end

The	cleverer(devel1,	devel2)	function	will	now	print	"The	developer	Bob	is
cleverer	I	think!"	(Clearly,	the	function	isn’t	yet	coded	right,	we	are	biased	in	thinking
that	developers	are	always	more	intelligent).	It	matches	a	method	because	devel2	is	also
an	employee.	However,	cleverer(devel1,	man1)	will	give	an	ERROR:	`cleverer`	has
no	method	matching	cleverer(::Developer,::Manager)	error	message,	as	a	manager	is
not	an	employee,	and	a	method	with	this	signature	was	not	defined.

We	now	define	another	method	for	cleverer	as	follows:

function	cleverer(e::Employee,	d::Developer)

				if	e.iq	<=	d.iq

								println("The	developer	$(d.name)	is	cleverer!")

				else

								println("The	employee	$(e.name)	is	cleverer!")

				end

end

Now	an	ambiguity	arises;	Julia	detects	a	problem	in	the	definitions	and	gives	us	the
following	warning:

Warning:	New	definition

				cleverer(Employee,Developer)	at	none:2

is	ambiguous	with:

				cleverer(Developer,Employee)	at	none:2.

To	fix,	define

				cleverer(Developer,Developer)

before	the	new	definition.

The	ambiguity	is	that	if	cleverer	is	called	with	e	being	a	Developer,	which	of	the	two
defined	methods	should	be	chosen?	Julia	takes	a	pragmatic	standpoint	and
cleverer(devel1,	devel2)	still	gives	the	same	outcome.	However,	now	we	will	define
the	more	specific	(and	correct)	method	as	follows:

function	cleverer(d1::Developer,	d2::Developer)

				if	d1.iq	<=	d2.iq

								println("The	developer	$(d2.name)	is	cleverer!")

				else

								println("The	developer	$(d1.name)	is	cleverer!")

				end

end

Now,	cleverer(devel1,	devel2)	prints	"The	developer	William	is	cleverer!"	as
well	as	cleverer(devel2,	devel1).	This	illustrates	multiple	dispatching.	When	defined,
the	more	specific	method	definition	(here,	the	second	method	cleverer)	is	chosen.	More
specific	means	the	method	with	more	specialized	type	annotations	for	its	arguments.	More
specialized	doesn’t	only	mean	subtypes,	it	can	also	mean	using	type	aliases.

Tip
Always	avoid	method	ambiguities	by	specifying	an	appropriate	method	for	the
intersection	case.

Types	and	collections	–	inner	constructors
Here	is	another	type	with	only	default	constructors:

#	see	the	code	in	Chapter	6\inner_constructors.jl

type	Person

				firstname::String

				lastname::String

				sex::Char

				age::Float64

				children::Array{String,	1}

end

p1	=	Person("Alan",	"Bates",	'M',	45.5,	["Jeff",	"Stephan"])

This	example	demonstrates	that	an	object	can	contain	collections	such	as	arrays	or
dictionaries.	Custom	types	can	also	be	stored	in	a	collection,	just	like	built-in	types,	for
example:

people	=	Person[]

This	returns	0-element	Array{Person,1}.

push!(people,	p1)

push!(people,	Person("Julia",	"Smith",	'F',	27,	["Viral"]))

The	show(people)	function	now	returns	the	following	output:

[Person("Alan","Bates",'M',45.5,String["Jeff","Stephan"]),

	Person("Julia","Smith",'F',27.0,String["Viral"])]

Now,	we	can	define	a	function	fullname	on	type	Person.	You	notice	that	the	definition
stays	outside	the	type’s	code:

fullname(p::Person)	=	"$(p.firstname)	$(p.lastname)"		

Or,	slightly	more	performant:

fullname(p::Person)	=	string(p.firstname,	"	",	p.lastname)

Now,	print(fullname(p1))	returns	Alan	Bates.

If	you	need	to	include	error	checking	or	transformations	as	part	of	the	type	construction
process,	you	can	use	inner	constructors	(so-called	because	they	are	defined	inside	the	type
itself),	as	shown	in	the	following	example:

type	Family

					name::String

					members::Array{String,	1}

					big::Bool

		Family(name::String)	=	new(name,	String[],	false)

		Family(name::String,	members)	=	new(name,	members,			length(members)	>	4)

end

We	can	make	a	Family	object	as	follows:

fam	=	Family("Bates-Smith",	["Alan",	"Julia",	"Jeff",	"Stephan",	"Viral"])

Then	the	output	is	as	follows:

Family("Bates-Smith",String["Alan","Julia","Jeff","Stephan","Viral"],true)

The	keyword	new	can	only	be	used	in	an	inner	constructor	to	create	an	object	of	the
enclosing	type.	The	first	constructor	takes	one	argument	and	generates	a	default	for	the
other	two	values.	The	second	constructor	takes	two	arguments	and	infers	the	value	of	big.
Inner	constructors	give	you	more	control	over	how	values	of	the	type	can	be	created.	Here,
they	are	written	with	the	short	function	notation,	but	if	they	are	multiline,	they	would	use
the	normal	function	syntax.

Note	that	when	you	use	inner	constructors,	there	are	no	default	constructors	anymore.
Outer	constructors	calling	a	limited	set	of	inner	constructors	is	often	the	best	practice.

Type	unions
In	geometry,	a	two-dimensional	point	and	a	vector	are	not	the	same,	even	if	they	both	have
an	x	and	y	component.	In	Julia,	we	can	also	define	them	as	different	types	as	follows:

			#	see	the	code	in	Chapter	6\unions.jl

type	Point

				x::Float64

				y::Float64

end

type	Vector2D

				x::Float64

				y::Float64

end

Here	are	the	two	objects:

p	=	Point(2,	5)	that	returns	Point(2.0,	5.0)
v	=	Vector2D(3,	2)	that	returns	Vector2D(3.0,	2.0)

Suppose	we	want	to	define	the	sum	for	these	types	as	a	point	that	has	coordinates	as	the
sum	of	the	corresponding	coordinates:

+(p,	v)

This	results	in	an	ERROR:	`+`	has	no	method	matching	+(::Point,	::Vector2D)	error
message.

Even	after	defining	the	following,	+(p,	v)	still	returns	the	same	error	because	of	multiple
dispatch	(Julia	has	no	way	of	knowing	that	+(p,v)	should	be	the	same	as	+(v,p)):

+(p::Point,				q::Point)	=	Point(p.x	+	q.x,	p.y	+	q.y)

+(u::Vector2D,	v::Vector2D)	=	Point(u.x	+	v.x,	u.y	+	v.y)

+(u::Vector2D,	p::Point)	=	Point(u.x	+	p.x,	u.y	+	p.y)

Only	when	we	define	the	type	matching	method	as	+(p::Point,	v::Vector2D)	=
Point(p.x	+	v.x,	p.y	+	v.y),	we	get	a	result	+(p,	v)	that	returns	Point(5.0,7.0).

Now,	you	can	ask	the	question:	doesn’t	multiple	dispatch	and	many	types	give	rise	to	code
duplication	as	in	the	case	here?

However,	this	is	not	so	because	in	such	a	case,	we	can	define	a	union	type	VecOrPoint:

VecOrPoint	=	Union(Vector2D,	Point)

If	p	is	a	point,	it	is	also	of	type	VecOrPoint,	and	the	same	is	true	for	a	Vector2D	v:	isa(p,
VecOrPoint)	and	isa(v,	VecOrPoint)	both	return	true.

Now,	we	can	define	one	+	method	that	works	for	any	of	the	preceding	four	cases:

+(u::VecOrPoint,	v::	VecOrPoint)	=	VecOrPoint(u.x	+	v.x,	u.y	+	v.y)

So,	now	we	only	need	one	method	instead	of	four.

Parametric	types	and	methods
An	array	can	take	elements	of	different	types,	so,	we	can	have,	for	example,	arrays	of	the
following	types:	Array{Int64,1},	Array{Int8,1},	Array{Float64,1},	or
Array{ASCIIString,	1},	and	so	on.	That	is	why	an	Array	is	a	parametric	type;	its
elements	can	be	of	any	arbitrary	type	T,	written	as	Array{T,	1}.

In	general,	types	can	take	type	parameters,	so	that	type	declarations	actually	introduce	a
whole	family	of	new	types.	Returning	to	the	Point	example	of	the	previous	section,	we	can
generalize	it	to	the	following:

			#	see	the	code	in	Chapter	6\parametric.jl

type	Point{T}

		x::T

		y::T

end

(This	is	conceptually	similar	to	generic	types	in	Java	or	templates	in	C++).

This	abstract	type	creates	a	whole	family	of	new	possible	concrete	types	(but	they	are	only
compiled	as	needed	at	runtime),	such	as	Point{Int64},	Point{Float64},	and
Point{String}.

These	are	all	subtypes	of	Point:	issubtype(Point{String},	Point)	that	return	true.
However,	this	is	not	the	case	when	comparing	different	Point	types,	whose	parameter
types	are	subtypes	of	one	another:	issubtype(Point{Float64},	Point{Real})	returns
false.

To	construct	objects,	you	can	indicate	the	type	T	in	the	constructor,	as	in	p	=
Point{Int64}(2,	5),	but	this	can	be	shortened	to	p	=	Point(2,	5),	or	let’s	consider
another	example:	p	=	Point("London",	"Great-Britain").

If	you	want	to	restrict	the	parameter	type	T	to	only	the	subtypes	of	Real,	this	can	be
written	as	follows:

type	Point{T	<:	Real}

		x::T

		y::T

end

Now,	the	statement	p	=	Point("London",	"Great-Britain")	results	in	an	ERROR:
`Point{T<:Real}`	has	no	method	matching	Point{T<:Real}(::ASCIIString,	:

ASCIIString)	error	message,	because	String	is	not	a	subtype	of	Real.

Much	in	the	same	way,	methods	also	optionally	can	have	type	parameters	immediately
after	their	name	and	before	the	tuple	of	arguments,	for	example,	to	constrain	two
arguments	to	be	of	the	same	type	T,	run	the	following	command:

add{T}(x::T,	y::T)	=	x	+	y

Now,	add(2,	3)	returns	5	and	add(2,	3.0)	returns	an	ERROR:	`add`	has	no	method
matching	add(::Int64,	::Float64)	error	message.

Here,	we	restrict	T	to	be	a	subtype	of	Number	in	add	as	follows:

add{T	<:	Number}(x::T,	y::T)	=	x	+	y

As	another	example,	here	is	how	to	check	whether	a	vecfloat	function	only	takes	a	vector
of	floating	point	numbers	as	the	input.	Simply,	define	it	with	a	type	parameter	T	as
follows:

		function	vecfloat{T	<:	FloatingPoint}(x::Vector{T})	

#	code			

end

Inner	constructors	can	also	take	type	parameters	in	their	definition.

Standard	modules	and	paths
The	code	of	Julia	packages	(also	called	libraries)	is	contained	in	a	module,	whose	name
starts	with	an	uppercase	letter	by	convention	like	this:

			#	see	the	code	in	Chapter	6\modules.jl

module	Package1

#	code

end

This	serves	to	separate	all	its	definitions	from	those	in	the	other	modules,	so	that	no	name
conflicts	occur.	Name	conflicts	are	solved	by	qualifying	the	function	by	the	module	name.
For	example,	the	packages	Winston	and	Gadfly	both	contain	a	function	plot.	If	needed
these	two	versions	in	the	same	script,	we	would	write	this	as	follows:

import	Winston

import	Gadfly

Winston.plot(rand(4))

Gadfly.plot(x=[1:10],	y=rand(10))

All	variables	defined	in	the	global	scope	are	automatically	added	to	the	Main	module.
Thus,	when	you	write	x	=	2	in	the	REPL,	you	are	adding	the	variable	x	to	the	Main
module.

Julia	starts	with	Main	as	the	current	top-level	module.	The	module	Core	contains	all	built-
in	identifiers,	and	it	is	always	available.	The	standard	library	is	also	available.	All	of	its
code	(the	contents	of	/base)	is	contained	in	the	modules	Base,	Pkg,	Collections,
Graphics,	Test,	and	Profile.

The	type	of	a	module	is	Module:	typeof(Base)	that	returns	Module.	If	we	call
names(Main),	we	get,	for	example,	6-element	Array{Symbol,1}:	:ans,	:a,
:vecfloat,	:Main,	:Core,	:Base,	depending	on	what	you	have	defined	in	the	REPL.

All	the	top-level	defined	variables	and	functions,	together	with	the	default	modules	are
stored	as	symbols.	The	whos()	function	lists	these	objects	with	their	types:

Base																									Module

Core																									Module

Main																								Module

a																															Int64

ans																											6-element	Array{Symbol,1}

vecfloat																				Function

This	can	also	be	used	for	another	module,	for	example,	whos(Winston)	lists	all	the
exported	names	from	the	module	Winston.

A	module	can	make	some	of	its	internal	definitions	such	as	constants,	variables,	types,
functions,	and	so	on	visible	to	other	modules	(make	them	public)	by	declaring	them	with
export,	for	example:

export	Type1,	perc

If	a	module	LibA	(among	others)	is	defined	in	a	modules_ext.jl	file,	then	the	statement

require("modules_ext.jl")	will	load	this	in	the	current	code.	Using	LibA,	will	make	all
its	exported	names	available	in	the	current	namespace;	this	is	what	we	did	in	the	REPL	to
load	a	package.

For	the	preceding	example,	using	Package1	will	make	the	type	Type1	and	function	perc
available	in	other	modules	that	import	them	through	this	statement.	All	the	other
definitions	remain	invisible	(or	private).

Here	is	a	more	concrete	example.	Suppose	we	define	a	TemperatureConverter	module	as
follows:

#code	in	Chapter	6\temperature_converter.jl

module	TemperatureConverter

		export	as_celsius

		function	as_celsius(temperature,	unit)

				if	unit	==	:Celsius

						return	temperature

				elseif	unit	==	:Kelvin

						return	kelvin_to_celsius(temperature)

				end

		end

		function	kelvin_to_celsius(temperature)

				#	'private'	function

				return	temperature	+	273

		end

end

We	can	now	use	this	module	in	another	program	as	follows:

#code	in	Chapter	6\using_module.jl

require("temperature_converter.jl")

using	TemperatureConverter

println("$(as_celsius(100,	:Celsius))")	#>	100

println("$(as_celsius(100,	:Kelvin))")	#>	373

#	println("$(kelvin_to_celsius(0))")	#>	ERROR:	kelvin_to_celsius	not	

defined

The	function	kelvin_to_celsius	was	not	exported,	and	so	is	not	known	in	the	program
using_module.jl.

In	general,	there	are	different	ways	of	importing	definitions	from	another	module	LibA	in
the	current	module:

First,	make	use	of	using	LibA,	then	LibA	will	be	searched	for	exported	definitions	if
needed.	A	function	from	LibA	can	then	be	used	without	qualifying	it	with	the	module
name.
If	you	want	to	be	more	selective,	you	can	execute	using	LibB.varB	or	the	shorthand,
using	LibC:	varC,	funcC.

The	import	LibD.funcD	statement	only	imports	one	name	and	can	also	be	used	if
funcD	was	not	exported;	the	function	funcD	must	be	used	as	LibD.funcD.
Use	importall	LibE	to	import	all	the	exported	names	in	LibE.

Imported	variables	are	read-only,	and	the	current	module	cannot	create	variables	with	the
same	names	as	the	imported	ones.	A	source	file	can	contain	many	modules,	or	one	module
can	be	defined	in	several	source	files.	If	a	module	contains	a	function	__init__(),	this
will	be	executed	when	the	module	is	first	loaded.

As	we	saw	in	Chapter	1,	Installing	the	Julia	Platform,	a	module	can	also	include	other
source	files	in	their	entirety	with	include("file1.jl"),	but	then,	the	included	files	are
not	modules.	Using	include("file1.jl")	is,	to	the	compiler,	no	different	to	copying
file1.jl	and	pasting	it	directly	in	the	current	file	or	the	REPL.

The	variable	LOAD_PATH	contains	a	list	of	directories	where	Julia	looks	for	(module)	files
when	running	the	using,	import,	or	include	statements.	It	can	be	set	up	at	the	operating
system	level:	in	a	start-up	script	such	as	.bashrc	or	.profile,	or	in	Environment
Variables	on	Windows.	You	can	extend	this	variable	in	the	code	using	push!:

		push!(LOAD_PATH,	"new/path/to/search")

Modules	are	compiled	on	load,	which	slows	down	Julia’s	start-up	time	in	the	current
version.	This	will	improve	considerably	once	precompiling	of	modules	is	possible,	which
is	planned	for	Version	0.4.

Summary
In	this	chapter,	we	delved	into	types	and	type	hierarchy	in	Julia.	We	got	a	much	better
understanding	of	types	and	how	functions	work	on	them	through	multiple	dispatch.	The
next	chapter	will	reveal	another	power	tool	in	Julia:	metaprogramming	and	macros.

Chapter	7.	Metaprogramming	in	Julia
Everything	in	Julia	is	an	expression	that	returns	a	value	when	executed.	Every	piece	of	the
program	code	is	internally	represented	as	an	ordinary	Julia	data	structure,	also	called	an
expression.	In	this	chapter,	we	will	see	that	by	working	on	expressions,	how	a	Julia
program	can	transform	and	even	generate	the	new	code,	which	is	a	very	powerful
characteristic,	also	called	homoiconicity.	It	inherits	this	property	from	Lisp,	where	code
and	data	are	just	lists,	and	where	it	is	commonly	referred	to	with	the	phrase:	“code	is	data
and	data	is	code“.	We	will	explore	this	metaprogramming	power	by	covering	the
following	topics:

Expressions	and	symbols
Eval	and	interpolation
Defining	macros
Built-in	macros
Reflection	capabilities

Expressions	and	symbols
An	abstract	syntax	tree	(AST)	is	a	tree	representation	of	the	abstract	syntactic	structure
of	the	source	code	written	in	a	programming	language.	When	Julia	code	is	parsed	by	its
LLVM	JIT	compiler,	it	is	internally	represented	as	an	abstract	syntax	tree.	The	nodes	of
this	tree	are	simple	data	structures	of	type	expression	Expr.

(For	more	information	on	abstract	syntax	trees,	refer	to
http://en.wikipedia.org/wiki/Abstract_syntax_tree).

An	expression	is	simply	an	object	that	represents	Julia	code.	For	example,	2	+	3	is	a	piece
of	code,	which	is	an	expression	of	type	Int64	(follow	along	with	the	code	in	Chapter
7\expressions.jl).	Its	syntax	tree	can	be	visualized	as	follows:

To	make	Julia	see	this	as	an	expression	and	block	its	evaluation,	we	have	to	quote	it,	that
is,	precede	it	by	a	colon	(:)	as	in	:(2	+	3).	When	you	evaluate	:(2	+	3)	in	the	REPL,	it
just	returns	:(2	+	3),	which	is	of	type	Expr:	typeof(:(2	+	3))	returns	Expr.	In	fact,	the
:	operator	(also	called	the	quote	operator)	means	to	treat	its	argument	as	data,	not	as	code.

If	this	code	is	more	than	one	line,	enclose	them	between	the	quote	and	end	keywords	to
turn	the	code	into	an	expression,	for	example,	this	expression	just	returns	itself:

quote

				a	=	42

				b	=	a^2

				a	-	b

end

In	fact,	this	is	the	same	as	:(a	=	42;	b	=	a^2;	a	-	b).	quote	…	end	is	just	another	way
to	convert	blocks	of	code	into	expressions.

We	can	give	such	an	expression	a	name,	such	as	e1	=	:(2	+	3).	We	can	then	inquire	if	e1
has	fields	with	names(e1),	which	returns	3-element	Array{Symbol,1}:	:head,	:args,
:typ.

These	return	the	following	information:

e1.head	returns	:call,	indicating	the	kind	of	expression,	which	here	is	a	function
call
e1.args	returns	3-element	Array{Any,1}:	:+	2	3

http://en.wikipedia.org/wiki/Abstract_syntax_tree

e1.typ	returns	Any;	it	is	used	by	the	type	inference	mechanism	to	store	type
annotations

Indeed	the	expression	2	+	3	is,	in	fact,	a	call	of	the	+	function	with	the	argument	2	and	3:
2	+	3	==	+	(2,	3)	returns	true.	The	args	argument	consists	of	a	symbol	:+	and	two
literal	values	2	and	3.	Expressions	are	made	of	symbols	and	literals.	More	complicated
expressions	will	consist	of	literal	values,	symbols,	and	sub-	or	nested	expressions,	which
can,	in	turn,	be	reduced	to	symbols	and	literals.

For	example,	consider	the	expression	e2	=	:(2	+	a	*	b	-	c),	which	can	be	visualized
by	the	following	syntax	tree:

e2	consists	of	e2.args,	which	is	a	3-element	Array{Any,1}	that	contains	:-	and	:c,	which
are	symbols,	and	:(2	+	a	*	b),	which	is	also	an	expression.	This	last	expression,	in	turn,
is	itself	an	expression	with	args	:+,	2,	and	:(a	*	b);	:(a	*	b)	is	an	expression	with
arguments	and	symbols:	:*,	:a,	and	:b.	We	can	see	that	this	works	recursively;	we	can
simplify	every	subexpression	in	the	same	way	until	we	end	up	with	elementary	symbols
and	literals.

In	the	context	of	an	expression,	symbols	are	used	to	indicate	access	to	variables;	they
represent	the	variable	in	the	tree	structure	of	the	code.	In	fact,	the	“prevent	evaluation”
character	of	the	quote	operator	(:)	is	already	at	work	with	the	symbols:	after	x	=	5	,	x
returns	5	,	but	:x	returns	:x.

With	this	knowledge,	we	can	conclude	that	the	definition	of	the	type	Expr	in	Julia	goes	as
follows:

type	Expr

		head::Symbol

		args::Array{Any,1}

		typ

end

The	dump	function	presents	the	abstract	syntax	tree	for	its	argument	in	a	nice	way.	For
example,	dump(:(2	+	a	*	b	-	c))	returns	the	output,	as	shown	in	the	following
screenshot:

Eval	and	interpolation
With	the	definition	of	type	Expr	from	the	preceding	section,	we	can	also	build	expressions
directly	from	the	constructor	for	Expr,	for	example:	e1	=	Expr(:call,	*,	3,	4)	returns
:((*)(3,	4))	(follow	along	with	the	code	in	Chapter	7\eval.jl).

The	result	of	an	expression	can	be	computed	with	the	eval	function,	eval(e1),	which
returns	12	in	this	case.	At	the	time	an	expression	is	constructed,	not	all	the	symbols	have
to	be	defined,	but	they	have	to	be	at	the	time	of	evaluation,	otherwise	an	error	occurs.

For	example,	e2	=	Expr(:call,	*,	3,	:a)	returns	:((*)(3,	a))	and	eval(e2)	then,
gives	ERROR:	a	not	defined.	Only	after	we	say,	for	example,	a	=	4	does	eval(e2)	and
returns	12.

Expressions	can	also	change	the	state	of	the	execution	environment,	for	example,	the
expression	e3	=	:(b	=	1)	assigns	a	value	to	b	when	evaluated,	and	even	defines	b	if	it
doesn’t	exist	already.

To	make	writing	expressions	a	bit	simpler,	we	can	use	the	$	operator	to	do	interpolation
in	expressions;	as	with	$	in	strings,	and	this	will	evaluate	immediately	when	the
expression	is	made.	The	expressions	a	=	4	and	b	=	1,	e4	=	:(a	+	b)	return	:(a	+	b)
and	e5	=	:($a	+	b)	returns	:(4	+	b);	both	the	expressions	evaluate	to	5.	So,	there	are
two	kinds	of	evaluations	here:

Expression	interpolation	(with	$)	evaluates	when	the	expression	is	constructed	(at
parse	time)
Quotation	(with	:	or	quote)	evaluates	only	when	the	expression	is	passed	to	eval	at
runtime

We	now	have	the	capability	to	build	the	code	programmatically;	inside	a	Julia	program,
we	can	construct	the	arbitrary	code	while	it	is	running,	and	then	evaluate	this	with	eval.
So,	Julia	can	generate	the	code	from	inside	itself	during	the	normal	program	execution.

This	happens	all	the	time	in	Julia	and	it	is	used,	for	example,	to	do	things	such	as	to
generate	bindings	for	external	libraries,	to	reduce	the	repetitive	boilerplate	code	needed	to
bind	big	libraries,	or	to	generate	lots	of	similar	routines	in	other	situations.	Also,	in	the
field	of	robotics,	the	ability	to	generate	another	program	and	then,	run	it	is	very	useful.	For
example:	a	chirurgical	robot	learns	how	to	move	by	perceiving	a	human	surgeon
demonstrate	a	procedure.	Then,	the	robot	generates	the	program	code	from	that
perception,	so	that	it	is	able	to	perform	the	procedure	by	itself.

One	of	the	most	powerful	Julia	tools	emerging	from	what	we	discussed	until	now	is
macros,	which	exist	in	all	the	languages	of	the	Lisp	family.

Defining	macros
In	the	previous	chapters,	we	already	used	macros,	such	as	@printf	in	Chapter	2,
Variables,	Types,	and	Operations,	and	@time	in	Chapter	3,	Functions.	Macros	are	like
functions,	but	instead	of	values,	they	take	expressions	(which	can	also	be	symbols	or
literals)	as	input	arguments.	When	a	macro	is	evaluated,	the	input	expression	is	expanded,
that	is,	the	macro	returns	a	modified	expression.	This	expansion	occurs	at	parse	time	when
the	syntax	tree	is	being	built,	not	when	the	code	is	actually	executed.

The	following	highlights	the	difference	between	macros	and	functions	when	they	are
called	or	invoked:

Function:	It	takes	the	input	values	and	returns	the	computed	values	at	runtime
Macro:	It	takes	the	input	expressions	and	returns	the	modified	expressions	at	parse
time

In	other	words,	a	macro	is	a	custom	program	transformation.	Macros	are	defined	with	the
keyword	as	follows:

macro	mname	

#	code	returning	expression	

end

It	is	invoked	as	@mname	exp1	exp2	or	@mname(exp1,	exp2)	(the	@	sign	distinguishes	it
from	a	normal	function	call).	The	macro	block	defines	a	new	scope.	Macros	allow	us	to
control	when	the	code	is	executed.

Here	are	some	examples:

A	first	simple	example	is	a	macint	macro,	which	does	the	interpolation	of	its
argument	expression	ex:

#	see	the	code	in	Chapter	7\macros.jl)

macro	macint(ex)

				quote

								println("start")

								$ex

								println("after")

				end

end

@macint	println("Where	am	I?")	will	result	in:

start

Where	am	I?

after

The	second	example	is	an	assert	macro	that	takes	an	expression	ex	and	tests
whether	it	is	true	or	not,	in	the	last	case,	an	error	is	thrown:

macro	assert(ex)

:($ex	?	nothing	:	error("Assertion	failed:	",	

						$(string(ex))))

end

For	example:	@assert	1	==	1.0	returns	nothing.	@assert	1	==	42	returns	ERROR:
Assertion	failed:	1	==	42.

The	macro	replaces	the	expression	with	a	ternary	operator	expression,	which	is
evaluated	at	runtime.	To	examine	the	resulting	expression,	use	the	macroexpand
function	as	follows:

macroexpand(:(@assert	1	==	42))

This	returns	the	following	expression:

:(if	1	==	42

								nothing

		else

								error("Assertion	failed:	",	"1	==	42")

		end)

This	assert	function	is	just	a	macro	example,	use	the	built-in	assert	function	in	the
production	code	(refer	to	the	Testing	subsection	of	the	Built-in	macro’s	section).

The	third	example	mimics	an	unless	construct,	where	branch	is	executed	if	the
condition	test	is	not	true:

macro	unless(test,	branch)

				quote

								if	!$test

												$branch

								end

				end

end

Suppose	arr	=	[3.14,	42,	'b'],	then	@unless	42	in	arr	println("arr	does
not	contain	42")	returns	nothing,	but	@unless	41	in	arr	println("arr	does
not	contain	41")	prints	out	the	following	command:

arr	does	not	contain	41

Here,	macroexpand(:(@unless	41	in	arr	println("arr	does	not	contain
41")))	returns	the	following	output:

quote		#	none,	line	3:

				if	!(41	in	arr)	#	line	4:

								println("arr	does	not	contain	41")

				end

end

The	fourth	example	shows	how	to	convert	an	array	of	strings	to	an	array	of	type	T
with	a	convarr	macro.

Suppose	the	array	is	arr	=	["a",	"b",	"c"],	then,	we	define	a	macro	as	follows:

macro	convarr(arr,	T)

				:(reshape($T[$arr…],	size($arr)...))

end

Notice	how	the	destination	type	T	is	general.	The	reshape	function	is	used	here	to
redimension	the	array	(this	is	its	signature:	Base.reshape(arr,	dims))	so,	this
macro	will	work	for	arrays	of	arbitrary	dimensions.

For	example,	calling	@convarr	arr	Symbol	returns	3-element	Array{Symbol,1}	:a
:b	:c.

Unlike	functions,	macros	inject	the	code	directly	in	the	namespace	in	which	they	are
called,	possibly	this	is	also	in	a	different	module	than	in	which	they	were	defined.	It	is
therefore	important	to	ensure	that	this	generated	code	does	not	clash	with	the	code	in	the
module	in	which	the	macro	is	called.	When	a	macro	behaves	appropriately	like	this,	it	is
called	a	hygienic	macro.	The	following	rules	are	used	when	writing	hygienic	macros:

Declare	the	variables	used	in	the	macro	as	local,	so	as	not	to	conflict	with	the	outer
variables
Use	the	escape	function	esc	to	make	sure	that	an	interpolated	expression	is	not
expanded,	but	instead	is	used	literally
Don’t	call	eval	inside	a	macro	(because	it	is	likely	that	the	variables	you	are
evaluating	don’t	even	exist	at	that	point)

These	principles	are	applied	in	the	following	timeit	macro	that	times	the	execution	of	an
expression	ex	(like	the	built-in	macro	@time):

macro	timeit(ex)

				quote

								local	t0	=	time()			

								local	val	=	$(esc(ex))

								local	t1	=	time()			

								print("elapsed	time	in	seconds:	")

								@printf	"%.3f"	t1	-	t0

								val

				end

end

The	expression	is	executed	through	$,	and	t0	and	t1	are	respectively	the	start	and	end
times.

@timeit	factorial(10)	returns	elapsed	time	in	seconds:	0.0003628800.

@timeit	a^3	returns	elapsed	time	in	seconds:	0.0013796416.

Hygiene	with	macros	is	all	about	differentiating	between	the	macro	context	and	the	calling
context.

Macros	are	valuable	tools	to	save	you	a	lot	of	tedious	work	and	with	the	quoting	and
interpolation	mechanism,	they	are	fairly	easy	to	create.	You	will	see	them	being	used
everywhere	in	Julia	for	lots	of	different	tasks.	Ultimately,	they	allow	you	to	create	domain-
specific	languages	(DSLs).	To	get	a	better	idea	of	this	concept,	we	suggest	you	experiment
with	the	other	examples	in	the	accompanying	code	file.

Built-in	macros
Needless	to	say	the	Julia	team	has	put	macros	to	good	use.	To	get	the	help	information
about	a	macro,	enter	a	?	in	the	REPL,	and	type	@macroname	after	the	help>	prompt,	or
type	help("@macroname").	Apart	from	the	built-in	macros	we	encountered	in	the
examples	in	the	previous	chapters,	here	are	some	other	very	useful	ones	(refer	to	the	code
in	Chapter	7\built_in_macros.jl).

Testing
The	@assert	macro	actually	exists	in	the	standard	library.	The	standard	version	also
allows	you	to	give	your	own	error	message,	which	is	printed	after	ERROR:	assertion
failed.

The	Base.Test	library	contains	some	useful	macros	to	compare	the	numbers:

using	Base.Test

@test	1	==	3

This	returns	ERROR:	test	failed:	1	==	3.

@test_approx_eq	tests	whether	the	two	numbers	are	approximately	equal.
@test_approx_eq	1	1.1	returns	ERROR:	assertion	failed:	|1	-	1.1|	<=
2.220446049250313e-12	because	they	are	not	equal	within	the	machine	tolerance.
However,	you	can	give	the	interval	as	the	last	argument	within	which	they	should	be	equal
to	@test_approx_eq_eps	1	1.1	0.2,	which	returns	nothing,	so	1	and	1.1	are	within	0.2
from	each	other.

Debugging
If	you	want	to	look	up	in	the	source	code	where	and	how	a	particular	method	is	defined,
use	@which,	for	example:	if	arr	=	[1,	2]	then	@which	sort(arr)	returns
sort(v::AbstractArray{T,1})	at	sort.jl:334.

@show	shows	the	expression	and	its	result,	which	is	handy	for	checking	the	embedded
results:	456	*	789	+	(@show	2	+	3)	gives	2	+	3	=>	5	359789.

Benchmarking
For	benchmarking	purposes,	we	already	know	@time	and	@elapsed;	@timed	gives	you	the
@time	results	as	a	tuple:

@time	[x^2	for	x	in	1:1000]	prints	elapsed	time:	3.911e-6	seconds	(8064	bytes
allocated)	and	returns	1000-element	Array{Int64,1}:	….

@timed	[x^2	for	x	in	1:1000]	returns	([1,	4,	9,	16,	25,	36,	49,	64,	81,	100	…
982081,	984064,	986049,	988036,	990025,	992016,	994009,	996004,	998001,

1000000],	3.911e-6,	8064,	0.0).

@elapsed	[x^2	for	x	in	1:1000]	returns	3.422e-6.

If	you	are	specifically	interested	in	the	allocated	memory,	use	@allocated	[x^2	for	x	in
1:1000]	which	returns	8064.

To	time	code	execution,	call	tic()	to	start	timing,	execute	the	function,	and	then	use
toc()	or	toq()	to	end	the	timer:

tic()	

[x^2	for	x	in	1:1000]

The	toc()	function	prints	elapsed	time:	0.024395069	seconds.

Starting	a	task
Tasks	(refer	to	the	Tasks	section	in	Chapter	4,	Control	Flow)	are	independent	units	of	code
execution.	Often,	we	want	to	start	executing	them,	and	then	continue	executing	the	main
code	without	waiting	for	the	task	result.	In	other	words,	we	want	to	start	the	task
asynchronously.	This	can	be	done	with	the	@async	macro:

a	=	@async	1	+	2	#	Task	(done)	@0x000000002d70faf0

consume(a)	#	3

For	a	list	of	the	built-in	macros	we	encountered	in	this	book,	consult	the	list	of	macros	in
Appendix,	List	of	Macros	and	Packages.

Reflection	capabilities
We	saw	in	this	chapter	that	the	code	in	Julia	is	represented	by	expressions	that	are	data
structures	of	type	Expr.	The	structure	of	a	program	and	its	types	can	therefore	be	explored
programmatically	just	like	any	other	data.	This	means	that	a	running	program	can
dynamically	discover	its	own	properties,	which	is	called	reflection.	We	already	have
encountered	many	of	these	functions	before:

typeof	and	subtypes	to	query	the	type	hierarchy	(refer	to	Chapter	6,	More	on
Types,	Methods,	and	Modules)
methods(f)	to	see	all	the	methods	of	a	function	f	(refer	to	Chapter	3,	Functions)
names	and	types:	given	a	type	Person:

type	Person

				name::	String

				height::Float64

end

Then,	names(Person)	returns	the	field	names	as	symbols:	2-element
Array{Symbol,1}:	:name	:height.

Person.types	returns	a	tuple	with	the	field	types	(String,	Float64).

To	inspect	how	a	function	is	represented	internally,	you	can	use	code_lowered:

		code_lowered(+,	(Int,	Int))

This	returns	the	following	output:

1-element	Array{Any,1}:

:($(Expr(:lambda,	{:x,:y},	{{},{{:x,:Any,0},{:y,:Any,0}},{}},	:(begin		

#	int.jl

,	line	33:

					return	box(Int64,add_int(unbox(Int64,x),unbox(Int64,y)))

				end))))

Or,	you	can	use	code_typed	to	see	the	type-inferred	form:

code_typed(+,	(Int,	Int))

This	returns	the	following:

1-element	Array{Any,1}:

	:($(Expr(:lambda,	{:x,:y},	{{},{{:x,Int64,0},{:y,Int64,0}},{}},	:

(begin		#	int.

jl,	line	33:

								return	

box(Int64,add_int(x::Int64,y::Int64))::Int64end::Int64))))

Tip
Using	code_typed	can	show	you	whether	your	code	is	type	optimized	for
performance:	if	the	Any	type	is	used	instead	of	an	appropriate	specific	type	you	would
expect,	then	type	indication	in	your	code	can	certainly	be	improved,	leading	most

likely	to	speed	up	the	program’s	execution.

To	inspect	the	code	generated	by	the	LLVM	engine,	use	code_llvm,	and	to	see	the
assembly	code	generated,	use	code_native	(refer	to	the	How	Julia	works	section	in
Chapter	1,	Installing	the	Julia	Platform).

While	reflection	is	not	necessary	for	many	of	the	programs	that	you	will	write,	it	is	very
useful	for	IDEs	to	be	able	to	inspect	the	internals	of	an	object	as	well	as	for	the	tools
generating	the	automatic	documentation	and	for	profiling	tools.	In	other	words,	reflection
is	indispensable	for	tools	that	need	to	inspect	the	internals	of	the	code	objects
programmatically.

Summary
In	this	chapter,	we	explored	the	expression	format	in	which	Julia	is	parsed.	Because	this
format	is	a	data	structure,	we	can	manipulate	this	in	the	code,	and	this	is	precisely	what
macros	can	do.	We	explored	a	number	of	them,	and	also	some	of	the	built-in	ones	that	can
be	useful.	In	the	next	chapter,	we	will	extend	our	vision	to	the	network	environment	in
which	Julia	runs,	and	we	will	explore	its	powerful	capabilities	for	parallel	execution.

Chapter	8.	I/O,	Networking,	and	Parallel
Computing
In	this	chapter,	we	will	explore	how	Julia	interacts	with	the	outside	world,	reading	from
standard	input	and	writing	to	standard	output,	files,	networks,	and	databases.	Julia
provides	asynchronous	networking	I/O	using	the	libuv	library.	We	will	see	how	to	handle
data	in	Julia.	We	will	also	discover	the	parallel	processing	model	of	Julia.

In	this	chapter,	the	following	topics	are	covered:

Basic	input	and	output
Working	with	files	(including	the	CSV	files)
Using	DataFrames
Working	with	TCP	sockets	and	servers
Interacting	with	databases
Parallel	operations	and	computing

Basic	input	and	output
Julia’s	vision	on	input/output	(I/O)	is	stream-oriented,	that	is,	reading	or	writing	streams
of	bytes.	We	will	introduce	different	types	of	streams,	such	as	file	streams,	in	this	chapter.
Standard	input	(stdin)	and	standard	output	(stdout)	are	constants	of	the	type	TTY	(an
abbreviation	for	the	old	term,	Teletype)	that	can	be	used	in	the	Julia	code	to	read	from
and	write	to	(refer	to	the	code	in	Chapter	8\io.jl):

read(STDIN,	Char):	This	command	waits	for	a	character	to	be	entered,	and	then
returns	that	character;	for	example,	when	you	type	in	J,	this	returns	‘J’
write(STDOUT,	"Julia"):	This	command	types	out	Julia5	(the	added	5	is	the
number	of	bytes	in	the	output	stream;	it	is	not	added	if	the	command	ends	in	a
semicolon	(;))

STDIN	and	STDOUT	are	simply	streams	and	can	be	replaced	by	any	stream	object	in	the
read/write	commands.	readbytes	is	used	to	read	a	number	of	bytes	from	a	stream
into	a	vector:

readbytes(STDIN,3):	This	command	waits	for	an	input,	for	example,	abe	reads	3
bytes	from	it,	and	then	returns	3-element	Array{Uint8,1}:	0x61	0x62	0x65
readline(STDIN):	This	command	reads	all	the	inputs	until	a	newline	character	\n	is
entered,	for	example,	type	Julia	and	press	ENTER,	this	returns	“Julia\r\n”	on
Windows	and	“Julia\n”	on	Linux

If	you	need	to	read	all	the	lines	from	an	input	stream,	use	the	eachline	method	in	a	for
loop,	for	example:

stream	=	STDIN

for	line	in	eachline(stream)

				print("Found	$line")

				#	process	the	line

end

For	example:

First	line	of	input

Found	First	line	of	input

2nd	line	of	input

Found	2nd	line	of	input

3rd	line…

Found	3rd	line…

To	test	whether	you	have	reached	the	end	of	an	input	stream,	use	eof(stream)	in
combination	with	a	while	loop	as	follows:

		while	!eof(stream)

							x	=	read(stream,	Char)

							println("Found:	$x")	

#	process	the	character

end

We	can	experiment	with	replacing	stream	by	STDIN	in	these	examples.

Working	with	files
To	work	with	files,	we	need	the	IOStream	type.	IOStream	is	a	type	with	the	supertype	IO
and	has	the	following	characteristics:

The	fields	are	given	by	names(IOStream)

4-element	Array{Symbol,1}:		:handle			:ios				:name			:mark

The	types	are	given	by	IOStream.types

(Ptr{None},	Array{Uint8,1},	String,	Int64)

The	file	handle	is	a	pointer	of	the	type	Ptr,	which	is	a	reference	to	the	file	object.

Opening	and	reading	a	line-oriented	file	with	the	name	example.dat	is	very	easy:

//	code	in	Chapter	8\io.jl

fname	=	"example.dat"																																	

f1	=	open(fname)

fname	is	a	string	that	contains	the	path	to	the	file,	using	escaping	of	special	characters	with
\	when	necessary;	for	example,	in	Windows,	when	the	file	is	in	the	test	folder	on	the	D:
drive,	this	would	become	d:\\test\\example.dat.	The	f1	variable	is	now	an
IOStream(<file	example.dat>)	object.

To	read	all	lines	one	after	the	other	in	an	array,	use	data	=	readlines(f1),	which	returns
3-element	Array{Union(ASCIIString,UTF8String),1}:

"this	is	line	1.\r\n"

"this	is	line	2.\r\n"

"this	is	line	3."

For	processing	line	by	line,	now	only	a	simple	loop	is	needed:

for	line	in	data

		println(line)	#	or	process	line	

end

close(f1)

Always	close	the	IOStream	object	to	clean	and	save	resources.	If	you	want	to	read	the	file
into	one	string,	use	readall	(for	example,	see	the	program	word_frequency	in	Chapter	5,
Collection	Types).	Use	this	only	for	relatively	small	files	because	of	the	memory
consumption;	this	can	also	be	a	potential	problem	when	using	readlines.

There	is	a	convenient	shorthand	with	the	do	syntax	for	opening	a	file,	applying	a	function
process,	and	closing	it	automatically.	This	goes	as	follows	(file	is	the	IOStream	object	in
this	code):

open(fname)	do	file

				process(file)

end

As	you	can	recall,	in	the	Map,	filter,	and	list	comprehensions	section	in	Chapter	3,
Functions,	do	creates	an	anonymous	function,	and	passes	it	to	open.	Thus,	the	previous

code	example	would	have	been	equivalent	to	open(process,	fname).	Use	the	same
syntax	for	processing	a	file	fname	line	by	line	without	the	memory	overhead	of	the
previous	methods,	for	example:

open(fname)	do	file

				for	line	in	eachline(file)

								print(line)	#	or	process	line

				end

end

Writing	a	file	requires	first	opening	it	with	a	"w"	flag,	then	writing	strings	to	it	with	write,
print,	or	println,	and	then	closing	the	file	handle	that	flushes	the	IOStream	object	to	the
disk:

fname	=			"example2.dat"

f2	=	open(fname,	"w")

write(f2,	"I	write	myself	to	a	file\n")

#	returns	24	(bytes	written)

println(f2,	"even	with	println!")

close(f2)

Opening	a	file	with	the	"w"	option	will	clear	the	file	if	it	exists.	To	append	to	an	existing
file,	use	"a".

To	process	all	the	files	in	the	current	folder	(or	a	given	folder	as	an	argument	to
readdir()),	use	this	for	loop:

for	file	in	readdir()

		#	process	file

end

Reading	and	writing	CSV	files
A	CSV	file	is	a	comma-separated	file.	The	data	fields	in	each	line	are	separated	by
commas	“,”	or	another	delimiter	such	as	semicolons	“;“.	These	files	are	the	de-facto
standard	for	exchanging	small	and	medium	amounts	of	tabular	data.	Such	files	are
structured	so	that	one	line	contains	data	about	one	data	object,	so	we	need	a	way	to	read
and	process	the	file	line	by	line.	As	an	example,	we	will	use	the	data	file	Chapter
8\winequality.csv	that	contains	1,599	sample	measurements,	12	data	columns,	such	as
pH	and	alcohol	per	sample,	separated	by	a	semicolon.	In	the	following	screenshot,	you
can	see	the	top	20	rows:

In	general,	the	readdlm	function	is	used	to	read	in	the	data	from	the	CSV	files:

#	code	in	Chapter	8\csv_files.jl:

fname	=	"winequality.csv"

data	=	readdlm(fname,	';')

The	second	argument	is	the	delimiter	character	(here,	it	is	;).	The	resulting	data	is	a
1600x12	Array{Any,2}	array	of	the	type	Any	because	no	common	type	could	be	found:

				"fixed	acidity"			"volatile	acidity"						"alcohol"			"quality"

						7.4																0.7																					9.4									5.0

						7.8																0.88																				9.8									5.0

						7.8																0.76																				9.8									5.0

			…

If	the	data	file	is	comma	separated,	reading	it	is	even	simpler	with	the	following
command:

data2	=	readcsv(fname)

The	problem	with	what	we	have	done	until	now	is	that	the	headers	(the	column	titles)
were	read	as	part	of	the	data.	Fortunately,	we	can	pass	the	argument	header=true	to	let

Julia	put	the	first	line	in	a	separate	array.	It	then	naturally	gets	the	correct	datatype,
Float64,	for	the	data	array.	We	can	also	specify	the	type	explicitly,	such	as	this:

data3	=	readdlm(fname,	';',	Float64,	'\n',	header=true)

The	third	argument	here	is	the	type	of	data,	which	is	a	numeric	type,	String	or	Any.	The
next	argument	is	the	line	separator	character,	and	the	fifth	indicates	whether	or	not	there	is
a	header	line	with	the	field	(column)	names.	If	so,	then	data3	is	a	tuple	with	the	data	as
the	first	element	and	the	header	as	the	second,	in	our	case,	(1599x12	Array{Float64,2},
1x12	Array{String,2})	(There	are	other	optional	arguments	to	define	readdlm,	see	the
help	option).	In	this	case,	the	actual	data	is	given	by	data3[1]	and	the	header	by
data3[2].

Let’s	continue	working	with	the	variable	data.	The	data	forms	a	matrix,	and	we	can	get	the
rows	and	columns	of	data	using	the	normal	array-matrix	syntax	(refer	to	the	Matrices
section	in	Chapter	5,	Collection	Types).	For	example,	the	third	row	is	given	by	row3	=
data[3,	:]	with	data:	7.8	0.88	0.0	2.6	0.098	25.0	67.0	0.9968	3.2	0.68	9.8
5.0,	representing	the	measurements	for	all	the	characteristics	of	a	certain	wine.

The	measurements	of	a	certain	characteristic	for	all	wines	are	given	by	a	data	column,	for
example,	col3	=	data[:,	3]	represents	the	measurements	of	citric	acid	and	returns	a
column	vector	1600-element	Array{Any,1}:	"citric	acid"	0.0	0.0	0.04	0.56	0.0
0.0	…	0.08	0.08	0.1	0.13	0.12	0.47.

If	we	need	columns	2-4	(volatile	acidity	to	residual	sugar)	for	all	wines,	extract	the
data	with	x	=	data[:,	2:4].	If	we	need	these	measurements	only	for	the	wines	on	rows
70-75,	get	these	with	y	=	data[70:75,	2:4],	returning	a	6	x	3	Array{Any,2}	output	as
follows:

0.32			0.57		2.0

0.705		0.05		1.9

…

0.675		0.26		2.1

To	get	a	matrix	with	the	data	from	columns	3,	6,	and	11,	execute	the	following	command:

z	=	[data[:,3]	data[:,6]	data[:,11]]

It	would	be	useful	to	create	a	type	Wine	in	the	code.

For	example,	if	the	data	is	to	be	passed	around	functions,	it	will	improve	the	code	quality
to	encapsulate	all	the	data	in	a	single	data	type,	like	this:

type	Wine

				fixed_acidity::Array{Float64}

				volatile_acidity::Array{Float64}

				citric_acid::Array{Float64}

				#	other	fields

				quality::Array{Float64}

end

Then,	we	can	create	objects	of	this	type	to	work	with	them,	like	in	any	other	object-
oriented	language,	for	example,	wine1	=	Wine(data[1,	:]...),	where	the	elements	of

the	row	are	splatted	with	the	...	operator	into	the	Wine	constructor.

To	write	to	a	CSV	file,	the	simplest	way	is	to	use	the	writecsv	function	for	a	comma
separator,	or	the	writedlm	function	if	you	want	to	specify	another	separator.	For	example,
to	write	an	array	data	to	a	file	partial.dat,	you	need	to	execute	the	following	command:

writedlm("partial.dat",	data,	';')

If	more	control	is	necessary,	you	can	easily	combine	the	more	basic	functions	from	the
previous	section.	For	example,	the	following	code	snippet	writes	10	tuples	of	three
numbers	each	to	a	file:

//	code	in	Chapter	8\tuple_csv.jl

fname	=	"savetuple.csv"

csvfile	=	open(fname,"w")

#	writing	headers:

write(csvfile,	"ColName	A,	ColName	B,	ColName	C\n")

for	i	=	1:10

		tup(i)	=	tuple(rand(Float64,3)...)

		write(csvfile,	join(tup(i),","),	"\n")

end

close(csvfile)

Using	DataFrames
If	you	measure	n	variables	(each	of	a	different	type)	of	a	single	object	of	observation,	then
you	get	a	table	with	n	columns	for	each	object	row.	If	there	are	m	observations,	then	we
have	m	rows	of	data.	For	example,	given	the	student	grades	as	data,	you	might	want	to
know	“compute	the	average	grade	for	each	socioeconomic	group“,	where	grade
and	socioeconomic	group	are	both	columns	in	the	table,	and	there	is	one	row	per	student.

The	DataFrame	is	the	most	natural	representation	to	work	with	such	a	(m	x	n)	table	of
data.	They	are	similar	to	pandas	DataFrames	in	Python	or	data.frame	in	R.	A	DataFrame
is	a	more	specialized	tool	than	a	normal	array	for	working	with	tabular	and	statistical	data,
and	it	is	defined	in	the	DataFrames	package,	a	popular	Julia	library	for	statistical	work.
Install	it	in	your	environment	by	typing	in	Pkg.add("DataFrames")	in	the	REPL.	Then,
import	it	into	your	current	workspace	with	using	DataFrames.	Do	the	same	for	the
packages	DataArrays	and	RDatasets	(which	contains	a	collection	of	example	datasets
mostly	used	in	the	R	literature).

A	common	case	in	statistical	data	is	that	data	values	can	be	missing	(the	information	is	not
known).	The	DataArrays	package	provides	us	with	the	unique	value	NA,	which	represents
a	missing	value,	and	has	the	type	NAtype.	The	result	of	the	computations	that	contain	the
NA	values	mostly	cannot	be	determined,	for	example,	42	+	NA	returns	NA.	(Julia	v0.4	also
has	a	new	Nullable{T}	type,	which	allows	you	to	specify	the	type	of	a	missing	value).	A
DataArray{T}	array	is	a	data	structure	that	can	be	n-dimensional,	behaves	like	a	standard
Julia	array,	and	can	contain	values	of	the	type	T,	but	it	can	also	contain	the	missing	(Not
Available)	values	NA	and	can	work	efficiently	with	them.	To	construct	them,	use	the	@data
macro:

//	code	in	Chapter	8\dataarrays.jl

using	DataArrays

using	DataFrames

dv	=	@data([7,	3,	NA,	5,	42])

This	returns	5-element	DataArray{Int64,1}:	7	3	NA	5	42.

The	sum	of	these	numbers	is	given	by	sum(dv)	and	returns	NA.	One	can	also	assign	the	NA
values	to	the	array	with	dv[5]	=	NA;	then,	dv	becomes	[7,	3,	NA,	5,	NA]).	Converting
this	data	structure	to	a	normal	array	fails:	convert(Array,	dv)	returns	ERROR:
NAException.

How	to	get	rid	of	these	NA	values,	supposing	we	can	do	so	safely?	We	can	use	the	dropna
function,	for	example,	sum(dropna(dv))	returns	15.	If	you	know	that	you	can	replace
them	with	a	value	v,	use	the	array	function:

repl	=	-1

sum(array(dv,	repl))	#	returns	13

A	DataFrame	is	a	kind	of	an	in-memory	database,	versatile	in	the	ways	you	can	work	with
the	data.	It	consists	of	columns	with	names	such	as	Col1,	Col2,	Col3,	and	so	on.	Each	of
these	columns	are	DataArrays	that	have	their	own	type,	and	the	data	they	contain	can	be

referred	to	by	the	column	names	as	well,	so	we	have	substantially	more	forms	of	indexing.
Unlike	two-dimensional	arrays,	columns	in	a	DataFrame	can	be	of	different	types.	One
column	might,	for	instance,	contain	the	names	of	students	and	should	therefore	be	a	string.
Another	column	could	contain	their	age	and	should	be	an	integer.

We	construct	a	DataFrame	from	the	program	data	as	follows:

//	code	in	Chapter	8\dataframes.jl

using	DataFrames

#	constructing	a	DataFrame:

df	=	DataFrame()

df[:Col1]	=	1:4

df[:Col2]	=	[e,	pi,	sqrt(2),	42]

df[:Col3]	=	[true,	false,	true,	false]

show(df)

Notice	that	the	column	headers	are	used	as	symbols.	This	returns	the	following	4	x	3
DataFrame	object:

We	could	also	have	used	the	full	constructor	as	follows:

df	=	DataFrame(Col1	=	1:4,	Col2	=	[e,	pi,	sqrt(2),	42],Col3	=	[true,	false,	

true,	false])

You	can	refer	to	the	columns	either	by	an	index	(the	column	number)	or	by	a	name,	both
of	the	following	expressions	return	the	same	output:

show(df[2])

show(df[:Col2])

This	gives	the	following	output:

[2.718281828459045,	3.141592653589793,	1.4142135623730951,42.0]

To	show	the	rows	or	subsets	of	rows	and	columns,	use	the	familiar	splice	(:)	syntax,	for
example:

To	get	the	first	row,	execute	df[1,	:].	This	returns	1x3	DataFrame.

	|	Row	|	Col1	|	Col2				|	Col3	|

	|-----|------|---------|------|

	|	1			|	1				|	2.71828	|	true	|

To	get	the	second	and	third	row,	execute	df	[2:3,	:]
To	get	only	the	second	column	from	the	previous	result,	execute	df[2:3,	:Col2].
This	returns	[3.141592653589793,	1.4142135623730951].
To	get	the	second	and	third	column	from	the	second	and	third	row,	execute	df[2:3,
[:Col2,	:Col3]],	which	returns	the	following	output:

2x2	DataFrame

	|	Row	|	Col2				|	Col3		|

	|----	|-----			-|-------|

	|	1			|	3.14159	|	false	|

	|	2			|	1.41421	|	true		|

The	following	functions	are	very	useful	when	working	with	DataFrames:

The	head(df)	and	tail(df)	functions	show	you	the	first	six	and	the	last	six	lines	of
data	respectively.
The	names	function	gives	the	names	of	the	columns	names(df).	It	returns	3-element
Array{Symbol,1}:	:Col1	:Col2	:Col3.
The	eltypes	function	gives	the	data	types	of	the	columns	eltypes(df).	It	gives	the
output	as	3-element	Array{Type{T<:Top},1}:	Int64	Float64	Bool.
The	describe	function	tries	to	give	some	useful	summary	information	about	the	data
in	the	columns,	depending	on	the	type,	for	example,	describe(df)	gives	for	column
2	(which	is	numeric)	the	min,	max,	median,	mean,	number,	and	percentage	of	NAs:

Col2

Min						1.4142135623730951

1st	Qu.		2.392264761937558

	Median			2.929937241024419

Mean					12.318522011105483

	3rd	Qu.		12.856194490192344

	Max						42.0

	NAs						0

	NA%						0.0%

To	load	in	data	from	a	local	CSV	file,	use	the	method	readtable.	The	returned	object	is	of
type	DataFrame:

//	code	in	Chapter	8\dataframes.jl

using	DataFrames

fname	=	"winequality.csv"

data	=	readtable(fname,	separator	=	';')

typeof(data)	#	DataFrame

size(data)	#	(1599,12)

Here	is	a	fraction	of	the	output:

The	readtable	method	also	supports	reading	in	gzipped	CSV	files.

Writing	a	DataFrame	to	a	file	can	be	done	with	the	writetable	function,	which	takes	the
filename	and	the	DataFrame	as	arguments,	for	example,	writetable("dataframe1.csv",
df).	By	default,	writetable	will	use	the	delimiter	specified	by	the	filename	extension	and
write	the	column	names	as	headers.

Both	readtable	and	writetable	support	numerous	options	for	special	cases.	Refer	to	the
docs	for	more	information	(refer	to	http://dataframesjl.readthedocs.org/en/latest/).	To
demonstrate	some	of	the	power	of	DataFrames,	here	are	some	queries	you	can	do:

Make	a	vector	with	only	the	quality	information	data[:quality]
Give	the	wines	with	alcohol	percentage	equal	to	9.5,	for	example,	data[
data[:alcohol]	.==	9.5,	:]

Here,	we	use	the	.==	operator,	which	does	element-wise	comparison.
data[:alcohol]	.==	9.5	returns	an	array	of	Boolean	values	(true	for	datapoints,
where	:alcohol	is	9.5,	and	false	otherwise).	data[boolean_array,	:]	selects
those	rows	where	boolean_array	is	true.

Count	the	number	of	wines	grouped	by	quality	with	by(data,	:quality,	data	->
size(data,	1)),	which	returns	the	following:

6x2	DataFrame

|	Row	|	quality	|	x1		|

|-----|---------|-----|

|	1				|	3						|	10		|

|	2				|	4						|	53		|

|	3				|	5						|	681	|

|	4				|	6						|	638	|

|	5				|	7						|	199	|

|	6				|	8						|	18		|

The	DataFrames	package	contains	the	by	function,	which	takes	in	three	arguments:

A	DataFrame,	here	it	takes	data
A	column	to	split	the	DataFrame	on,	here	it	takes	quality
A	function	or	an	expression	to	apply	to	each	subset	of	the	DataFrame,	here	data
->	size(data,	1),	which	gives	us	the	number	of	wines	for	each	quality	value

http://dataframesjl.readthedocs.org/en/latest/

Another	easy	way	to	get	the	distribution	among	quality	is	to	execute	the	histogram	hist
function	hist(data[:quality])	that	gives	the	counts	over	the	range	of	quality
(2.0:1.0:8.0,[10,53,681,638,199,18]).	More	precisely,	this	is	a	tuple	with	the	first
element	corresponding	to	the	edges	of	the	histogram	bins,	and	the	second	denoting	the
number	of	items	in	each	bin.	So	there	are,	for	example,	10	wines	with	quality	between	2
and	3,	and	so	on.

To	extract	the	counts	as	a	variable	count	of	type	Vector,	we	can	execute	_,	count	=
hist(data[:quality]);	the	_	means	that	we	neglect	the	first	element	of	the	tuple.	To
obtain	the	quality	classes	as	a	DataArray	class,	we	will	execute	the	following:

class	=	sort(unique(data[:quality]))

We	can	now	construct	a	df_quality	DataFrame	with	the	class	and	count	columns	as
df_quality	=	DataFrame(qual=class,	no=count).	This	gives	the	following	output:

6x2	DataFrame

|	Row	|	qual	|	no		|

|-----|------|-----|

|	1			|	3				|	10		|

|	2			|	4				|	53		|

|	3			|	5				|	681	|

|	4			|	6				|	638	|

|	5			|	7				|	199	|

|	6			|	8				|	18		|

In	the	Using	Gadfly	on	data	section	of	Chapter	10,	The	Standard	Library	and	Packages,
we	will	see	how	to	visualize	DataFrames.

To	deepen	your	understanding	and	learn	about	the	other	features	of	Julia	DataFrames
(such	as	joining,	reshaping,	and	sorting),	refer	to	the	documentation	available	at
http://dataframesjl.readthedocs.org/en/latest/.

http://dataframesjl.readthedocs.org/en/latest/

Other	file	formats
Julia	can	work	with	other	human-readable	file	formats	through	specialized	packages:

For	JSON,	use	the	JSON	package.	The	parse	method	converts	the	JSON	strings	into
Dictionaries,	and	the	json	method	turns	any	Julia	object	into	a	JSON	string.
For	XML,	use	the	LightXML	package
For	YAML,	use	the	YAML	package
For	HDF5	(a	common	format	for	scientific	data),	use	the	HDF5	package
For	working	with	Windows	INI	files,	use	the	IniFile	package

Working	with	TCP	sockets	and	servers
To	send	data	over	a	network,	the	data	has	to	conform	to	a	certain	format	or	protocol.	The
Transmission	Control	Protocol	(TCP/IP)	is	one	of	the	core	protocols	to	be	used	on	the
Internet.	The	following	screenshot	shows	how	to	communicate	over	TCP/IP	between	a
Julia	Tcp	server	and	a	client	(see	the	code	in	Chapter	8\tcpserver.jl):

The	server	(in	the	upper-left	corner)	is	started	in	a	Julia	session	with	server	=
listen(8080)	that	returns	a	TcpServer	object	listening	on	the	port	8080.	The	line	conn	=
accept(server)	waits	for	an	incoming	client	to	make	a	connection.	Now,	in	a	second
terminal	(in	the	lower-right	corner),	start	the	netcat	(nc)	tool	at	the	prompt	to	make	a
connection	with	the	Julia	server	on	port	8080,	for	example,	nc	localhost	8080.	Then,	the
accept	function	creates	a	TcpSocket	object	on	which	the	server	can	read	or	write.

Then,	the	server	issues	the	command	line	=	readline(conn),	blocking	the	server	until	it
gets	a	full	line	(ending	with	a	newline	character)	from	the	client.	The	client	types	"hello
Julia	server!"	followed	by	ENTER,	which	appears	at	the	server	console.	The	server	can
also	write	text	to	the	client	over	the	TCP	connection	with	the	write(conn,	"message	")
function,	which	then	appears	at	the	client	side.	The	server	can,	when	finished,	close	the
TcpSocket	connection	to	close	the	TCP	connection	with	close(conn);	this	also	closes	the
netcat	session.

Of	course,	a	normal	server	must	be	able	to	handle	multiple	clients.	Here,	you	can	see	the
code	for	a	server	that	echoes	back	to	the	clients	everything	they	send	to	the	server:

//	code	in	Chapter8\echoserver.jl

server	=	listen(8081)

while	true

		conn	=	accept(server)

		@async	begin

				try

						while	true

								line	=	readline(conn)

								println(line)		#	output	in	server	console

								write(conn,line)

						end

				catch	ex

						print("connection	ended	with	error	$ex")

				end

		end	#	end	coroutine	block

end

To	achieve	this,	we	place	the	accept()	function	within	an	infinite	while	loop,	so	that	each
incoming	connection	is	accepted.	The	same	is	true	for	reading	and	writing	to	a	specific
client;	the	server	only	stops	listening	to	that	client	when	the	client	disconnects.	Because
the	network	communication	with	the	clients	is	a	possible	source	of	errors,	we	have	to
surround	it	within	a	try/catch	expression.	When	an	error	occurs,	it	is	bound	to	the	ex
object.	For	example,	when	a	client	terminal	exits,	you	get	the	connection	ended	with
error	ErrorException("stream	is	closed	or	unusable")	message.

However,	we	also	see	a	@async	macro	here,	what	is	its	function?	The	@async	macro	starts
a	new	coroutine	(refer	to	the	Tasks	section	in	Chapter	4,	Control	Flow)	in	the	local	process
to	handle	the	execution	of	the	begin-end	block	that	starts	right	after	it.	So,	the	macro
@async	handles	the	connection	with	each	particular	client	in	a	separate	coroutine.	Thus,
the	@async	block	returns	immediately,	enabling	the	server	to	continue	accepting	new
connections	through	the	outer	while	loop.	Because	coroutines	have	a	very	low	overhead,
making	a	new	one	for	each	connection	is	perfectly	acceptable.	If	it	weren’t	for	the	async
block,	the	program	would	block	it	until	it	was	done	with	its	current	client	before	accepting
a	new	connection.

On	the	other	hand,	the	@sync	macro	is	used	to	enclose	a	number	of	@async	(or	@spawn	or
@parallel	calls,	refer	to	the	Parallel	operations	and	computing	section),	and	the	code
execution	waits	at	the	end	of	the	@sync	block	until	all	the	enclosed	calls	are	finished.

Start	this	server	example	by	typing	the	following	command:

julia	echoserver.jl

We	can	experiment	with	a	number	of	netcat	sessions	in	separate	terminals.	Client	sessions
can	also	be	made	by	typing	in	a	Julia	console:

		conn	=	connect(8081)	#>	TcpSocket(open,	0	bytes	waiting)

						write(conn,	"Do	you	hear	me?\n")

The	listen	function	has	some	variants,	for	example,	listen(IPv6(0),2001)	creates	a
TCP	server	that	listens	on	port	2001	on	all	IPv6	interfaces.	Similarly,	instead	of	readline,
there	are	also	simpler	read	methods:

read(conn,	Uint8):	This	method	blocks	until	there	is	a	byte	to	read	from	conn,	and
then	returns	it.	Use	convert(Char,	n)	to	convert	a	Uint8	value	into	Char.	This	will
let	you	see	the	ASCII	letter	for	Uint8	you	read	in.
read(conn,	Char):	This	method	blocks	until	there	is	a	byte	to	read	from	conn,	and
then	returns	it.

The	important	aspect	about	the	communication	API	is	that	the	code	looks	like	the
synchronous	code	executing	line	by	line,	even	though	the	I/O	is	actually	happening
asynchronously	through	the	use	of	tasks.	We	don’t	have	to	worry	about	writing	callbacks
as	in	some	other	languages.	For	more	details	about	the	possible	methods,	refer	to	the	I/O
and	Network	section	at	http://docs.julialang.org/en/latest/stdlib/base/.

http://docs.julialang.org/en/latest/stdlib/base/

Interacting	with	databases
Open	Database	Connectivity	(ODBC)	is	a	low-level	protocol	for	establishing
connections	with	the	majority	of	databases	and	datasources	(for	more	details,	refer	to
http://en.wikipedia.org/wiki/Open_Database_Connectivity).

Julia	has	an	ODBC	package	that	enables	Julia	scripts	to	talk	to	ODBC	data	sources.	Install
the	package	through	Pkg.add("ODBC"),	and	at	the	start	of	the	code,	run	using	ODBC.

The	package	can	work	with	a	system	Data	Source	Name	(DSN)	that	contains	all	the
concrete	connection	information,	such	as	server	name,	database,	credentials,	and	so	on.
Every	operating	system	has	its	own	utility	to	make	DSNs.	In	Windows,	the	ODBC
administrator	can	be	reached	by	navigating	to	Configuration	|	System	Administration	|
ODBC	Data	Sources;	on	other	systems,	you	have	IODBC	or	Unix	ODBC.

For	example,	suppose	we	have	a	database	called	pubs	running	in	a	SQL	Server	or	a
MySQL	Server,	and	the	connection	is	described	with	a	DSN	pubsODBC.	Now,	I	can
connect	to	this	database	as	follows:

//	code	in	Chapter	8\odbc.jl

using	ODBC

ODBC.connect("pubsODBC")

This	returns	an	output	as	follows:

ODBC	Connection	Object

Connection	Data	Source:	pubsODBC

pubsODBC	Connection	Number:	1

				Contains	resultset?	No

You	can	also	store	this	connection	object	in	a	variable	conn	as	follows:

		conn	=	ODBC.connect("pubsODBC")

This	way,	you	are	able	to	close	the	connection	when	necessary	through	disconnect(conn)
to	save	the	database	resources,	or	handle	multiple	connections.

To	launch	a	query	on	the	titles	table,	you	only	need	to	use	the	query	function	as	follows:

		results	=	query("select	*	from	titles")

The	result	is	of	the	type	DataFrame	and	dimensions	18	x	10,	because	the	table	contains	18
rows	and	10	columns,	for	example,	here	are	some	of	the	columns:

http://en.wikipedia.org/wiki/Open_Database_Connectivity

If	you	haven’t	stored	the	query	results	in	a	variable,	you	can	always	retrieve	them	from
conn.resultset,	where	conn	is	an	existing	connection.	Now	we	have	all	the
functionalities	of	DataFrames	at	our	disposal	to	work	with	this	data.	Launching	data
manipulation	queries	works	in	the	same	way:

updsql	=	"update	titles	set	type	=	'psychology'	where	title_id='BU1032'"

query(updsql)

When	successful,	the	result	is	a	0x0	DataFrame.	In	order	to	see	which	ODBC	drivers	are
installed	on	the	system,	ask	for	listdrivers().	The	already	available	DSNs	are	listed
with	listdsns().

Julia	already	has	database	drivers	for	Memcache,	FoundationDB,	MongoDB,	Redis,
MySQL,	SQLite,	and	PostgreSQL	(for	more	information,	refer	to
https://github.com/svaksha/Julia.jl/blob/master/Database.md#postgresql).

https://github.com/svaksha/Julia.jl/blob/master/Database.md#postgresql

Parallel	operations	and	computing
In	our	multicore	CPU	and	clustered	computing	world,	it	is	imperative	for	a	new	language
to	have	excellent	parallel	computing	capabilities.	This	is	one	of	the	main	strengths	of
Julia,	providing	an	environment	based	on	message	passing	between	multiple	processes
that	can	execute	on	the	same	machine	or	on	remote	machines.	In	that	sense,	it	implements
the	actor	model	(as	Erlang,	Elixir,	and	Dart	do),	but	we’ll	see	that	the	actual	coding
happens	on	a	higher	level	than	receiving	and	sending	messages	between	processes,	or
workers	(processors)	as	Julia	calls	them.	The	developer	only	needs	to	manage	explicitly
the	main	process	from	which	all	other	workers	are	started.	The	message	send	and	receive
operations	are	simulated	by	higher-level	operations	that	look	like	function	calls.

Creating	processes
Julia	can	be	started	as	a	REPL	or	as	a	separate	application	with	a	number	of	workers	n
available.	The	following	command	starts	n	processes	on	the	local	machine:

//	code	in	Chapter	8\parallel.jl

julia	-p	n			#	starts	REPL	with	n	workers

These	workers	are	different	processes,	not	threads,	so	they	do	not	share	memory.

To	get	the	most	out	of	a	machine,	set	n	equal	to	the	number	of	processor	cores.	For
example,	when	n	is	8,	then	you	have,	in	fact,	9	workers:	one	for	the	REPL	shell	itself,	and
eight	others	that	are	ready	to	do	parallel	tasks.	Every	worker	has	its	own	integer	identifier,
which	we	can	see	by	calling	the	workers	function	workers().	This	returns	the	following:

8-element	Array{Int64,1}	containing:			2		3		4		5		6		7		8		9

Process	1	is	the	REPL	worker.	We	can	now	iterate	over	the	workers	with	the	following
command:

for	pid	in	workers()

		#	do	something	with	each	process	(pid	=	process	id)

end

Each	worker	can	get	its	own	process	ID	with	the	function	myid().	If	at	a	certain	moment,
you	need	more	workers,	adding	new	ones	is	easy:

addprocs(5)

This	returns	5-element	Array{Any,1}	that	contains	their	process	identifiers	10	11	12	13
14.	The	default	method	adds	workers	on	the	local	machine,	but	the	addprocs	method
accepts	arguments	to	start	processes	on	remote	machines	via	SSH.	This	is	the	secure	shell
protocol	that	enables	you	to	execute	commands	on	a	remote	computer	via	a	shell	in	a
totally	encrypted	manner.

The	number	of	available	workers	is	given	by	nprocs(),	in	our	case,	this	is	14.	A	worker
can	be	removed	by	calling	rmprocs()	with	its	identifier,	for	example,	rmprocs(3)	stops
the	worker	with	ID	3.

All	these	workers	communicate	via	TCP	ports	and	run	on	the	same	machine,	which	is	why
it	is	called	a	local	cluster.	To	activate	workers	on	a	cluster	of	computers,	start	Julia	as
follows:

		julia	--machinefile	machines	driver.jl

Here,	machines	is	a	file	that	contains	the	names	of	the	computers	you	want	to	engage,	like
this:

						node01

						node01

						node02

						node02

						node03

Here	node01,	node02,	and	node03	are	the	three	names	of	computers	in	the	cluster,	and	we
want	to	start	two	workers	each	on	node01	and	node02,	and	one	worker	on	node03.

The	driver.jl	file	is	the	script	that	runs	the	calculations	and	has	the	process	identifier	1.
This	command	uses	a	password-less	SSH	login	to	start	the	worker	processes	on	the
specified	machines.	The	following	screenshot	shows	all	the	eight	processors	on	an	eight
core	machine	when	engaged	in	a	parallel	operation:

The	horizontal	axis	is	time,	and	the	vertical	is	the	CPU	usage.	On	each	core,	a	worker
process	is	engaged	in	a	long-running	Fibonacci	calculation.

Processors	can	be	dynamically	added	or	removed	to	a	master	Julia	process,	both	locally	on
symmetric	multiprocessor	systems,	remotely	on	a	computer	cluster	as	well	as	in	the	cloud.
If	more	versatility	is	needed,	you	can	work	with	the	ClusterManager	type	(see
http://docs.julialang.org/en/latest/manual/parallel-computing/).

http://docs.julialang.org/en/latest/manual/parallel-computing/

Using	low-level	communications
Julia’s	native	parallel	computing	model	is	based	on	two	primitives:	remote	calls	and
remote	references.	At	this	level,	we	can	give	a	certain	worker	a	function	with	arguments
to	execute	with	remotecall,	and	get	the	result	back	with	fetch.	As	a	trivial	example	in	the
following	code,	we	call	upon	worker	2	to	execute	a	square	function	on	the	number	1000:

		r1	=	remotecall(2,	x	->	x^2,	1000)	

This	returns	RemoteRef(2,1,20).

The	arguments	are:	the	worker	ID,	the	function,	and	the	function’s	arguments.	Such	a
remote	call	returns	immediately,	thus	not	blocking	the	main	worker	(the	REPL	in	this
case).	The	main	process	continues	executing	while	the	remote	worker	does	the	assigned
job.	The	remotecall	function	returns	a	variable	r1	of	type	RemoteRef,	which	is	a
reference	to	the	computed	result,	that	we	can	get	using	fetch:

		fetch(r1)	which	returns		1000000

The	call	to	fetch	will	block	the	main	process	until	worker	2	has	finished	the	calculation.
The	main	processor	can	also	run	wait(r1),	which	also	blocks	until	the	result	of	the	remote
call	becomes	available.	If	you	need	the	remote	result	immediately	in	the	local	operation,
use	the	following	command:

		remotecall_fetch(5,	sin,	2pi)	which		returns	-2.4492935982947064e-16

This	is	more	efficient	than	fetch(remotecall(..)).

You	can	also	use	the	@spawnat	macro	that	evaluates	the	expression	in	the	second	argument
on	the	worker	specified	by	the	first	argument:

r2	=	@spawnat	4	sqrt(2)	#	lets	worker	4	calculate	sqrt(2)

		fetch(r2)		#	returns	1.4142135623730951

This	is	made	even	easier	with	@spawn,	which	only	needs	an	expression	to	evaluate,
because	it	decides	for	itself	where	it	will	be	executed:	r3	=	@spawn	sqrt(5)	returns
RemoteRef(5,1,26)	and	fetch(r3)	returns	2.23606797749979.

To	execute	a	certain	function	on	all	the	workers,	we	can	use	a	comprehension:

		r	=	[@spawnat	w	sqrt(5)	for	w	in	workers()]

		fetch(r[3])	#	returns	2.23606797749979

To	execute	the	same	statement	on	all	the	workers,	we	can	also	use	the	@everywhere
macro:

@everywhere	println(myid())	1

								From	worker	2:		2

								From	worker	3:		3

								From	worker	4:		4

								From	worker	7:		7

								From	worker	5:		5

								From	worker	6:		6

								From	worker	8:		8

								From	worker	9:		9

All	the	workers	correspond	to	different	processes;	they	therefore	do	not	share	variables,
for	example:

x	=	5	#>	5

@everywhere	println(x)	#>	5

		#	exception	on	2	exception	on	:	4:	ERROR:	x	not	defined…

The	variable	x	is	only	known	in	the	main	process,	all	the	other	workers	return	the	ERROR:
x	not	defined	error	message.

@everywhere	can	also	be	used	to	make	the	data	like	the	variable	w	that	is	available	to	all
processors,	for	example,	@everywhere	w	=	8.

The	following	example	makes	a	source	file	defs.jl	available	to	all	the	workers:

		@everywhere	include("defs.jl")

Or	more	explicitly	a	function	fib(n)	as	follows:

@everywhere	function	fib(n)

		if	(n	<	2)	then

				return	n

		else	return	fib(n-1)	+	fib(n-2)

		end

		end

In	order	to	be	able	to	perform	its	task,	a	remote	worker	needs	access	to	the	function	it
executes.	You	can	make	sure	that	all	workers	know	about	the	functions	they	need	by
loading	the	source	code	functions.jl	with	require,	making	it	available	to	all	workers:

		require("functions")

In	a	cluster,	the	contents	of	this	file	(and	any	files	loaded	recursively)	will	be	sent	over	the
network.

Tip
A	best	practice	is	to	separate	your	code	into	two	files:	one	file	(functions.jl)	that
contains	the	functions	and	parameters	that	need	to	be	run	in	parallel,	and	the	other	file
(driver.jl)	that	manages	the	processing	and	collecting	the	results.	Use	the
require("functions")	command	in	driver.jl	to	import	the	functions	and	parameters	to
all	processors.

An	alternative	is	to	specify	the	files	to	load	on	the	command	line.	If	you	need	the	source
files	file1.jl	and	file2.jl	on	all	the	n	processors	at	start-up	time,	use	the	syntax	julia
-p	n	-L	file1.jl	-L	file2.jl	driver.jl,	where	driver.jl	is	the	script	that
organizes	the	computations.

Data	movement	between	workers	(such	as	when	calling	fetch)	needs	to	be	reduced	as
much	as	possible	in	order	to	get	performance	and	scalability.

If	every	worker	needs	to	know	a	variable	d,	this	can	be	broadcast	to	all	processes	with	the
following	code:

for	pid	in	workers()

				remotecall(pid,	x	->	(global	d;	d	=	x;	nothing),	d)

end

Each	worker	then	has	its	local	copy	of	data.	Scheduling	of	the	workers	is	done	with	tasks
(refer	to	the	Tasks	section	of	Chapter	4,	Control	Flow),	so	that	no	locking	is	required,	for
example,	when	a	communication	operation	such	as	fetch	or	wait	is	executed,	the	current
task	is	suspended,	and	the	scheduler	picks	another	task	to	run.	When	the	wait	event
completes	(for	example,	the	data	shows	up),	the	current	task	is	restarted.

In	many	cases,	however,	you	do	not	have	to	specify	or	create	processes	to	do	parallel
programming	in	Julia,	as	we	will	see	in	the	next	section.

Parallel	loops	and	maps
A	for	loop	with	a	large	number	of	iterations	is	a	good	candidate	for	parallel	execution,
and	Julia	has	a	special	construct	to	do	this:	the	@parallel	macro,	which	can	be	used	for
the	for	loops	and	comprehensions.

Let’s	calculate	an	approximation	for	Π	using	the	famous	Buffon’s	needle	problem.	If	we
drop	a	needle	onto	a	floor	with	equal	parallel	strips	of	wood,	what	is	the	probability	that
the	needle	will	cross	a	line	between	two	strips?	Let’s	take	a	look	at	the	following
screenshot:

Without	getting	into	the	mathematical	intricacies	of	this	problem	(if	you	are	interested,	see
http://en.wikipedia.org/wiki/Buffon’s_needle),	a	function	buffon(n)	can	be	deduced	from
the	model	assumptions	that	return	an	approximation	for	Π	when	throwing	the	needle	n
times	(assuming	the	length	of	the	needle	l	and	the	width	d	between	the	strips	both	equal	to
1):

//	code	in	Chapter	8\parallel_loops_maps.jl

function	buffon(n)

		hit	=	0

		for	i	=	1:n

				mp	=	rand()

				phi	=	(rand()	*	pi)	-	pi	/	2	#	angle	at	which	needle	falls

				xright	=	mp	+	cos(phi)/2	#	x	location	of	needle

				xleft	=	mp	-	cos(phi)/2

				#	does	needle	cross	either	x	==	0	or	x	==	1?

				p	=	(xright	>=	1	||	xleft	<=	0)	?	1	:	0

				hit	+=	p

		end

		miss	=	n	-	hit

		piapprox	=	n	/	hit	*	2

end

With	ever	increasing	n,	the	calculation	time	increases,	because	the	number	of	the	for
iterations	that	have	to	be	executed	in	one	thread	on	one	processor	increases,	but	we	also
get	a	better	estimate	for	Π:

@time	buffon(100000)

elapsed	time:	0.005487779	seconds	(96	bytes	allocated)			3.1467321186947355

@time	buffon(100000000)

http://en.wikipedia.org/wiki/Buffon's_needle

elapsed	time:	5.362294859	seconds	(96	bytes	allocated)			3.1418351308191026

However,	what	if	we	could	spread	the	calculations	over	the	available	processors?	For	this,
we	have	to	rearrange	our	code	a	bit.	In	the	sequential	version,	the	variable	hit	is	increased
on	every	iteration	inside	the	for	loop	with	the	amount	p	(which	is	0	or	1).	In	the	parallel
version,	we	rewrite	the	code,	so	that	this	p	is	exactly	the	result	of	the	for	loop	(one
calculation)	done	on	one	of	the	processors	engaged.

Julia	also	provides	a	@parallel	macro	that	acts	on	a	for	loop,	splitting	the	range,	and
distributing	it	to	each	process.	It	optionally	takes	a	“reducer”	as	its	first	argument.	If	a
reducer	is	specified,	the	results	from	each	remote	procedure	will	be	aggregated	using	the
reducer.	In	the	following	example,	we	use	the	(+)	function	as	a	reducer,	which	means	that
the	last	values	of	the	parallel	blocks	on	each	worker	will	be	summed	to	calculate	the	final
value	of	hit:

function	buffon_par(n)

		hit	=	@parallel	(+)	for	i	=	1:n

						mp	=	rand()

						phi	=	(rand()	*	pi)	-	pi	/	2

						xright	=	mp	+	cos(phi)/2

						xleft	=	mp	-	cos(phi)/2

							(xright	>=	1	||	xleft	<=	0)	?	1	:	0

				end

		miss	=	n	-	hit

		piapprox	=	n	/	hit	*	2

end

On	my	machine	with	eight	processors,	this	gives	the	following	results:

@time	buffon_par(100000)

elapsed	time:	0.005903334	seconds	(296920	bytes	allocated)		

3.136762860727729

@time	buffon_par(100000000)

elapsed	time:	0.849702686	seconds	(300888	bytes	allocated)		

3.141665751394711

We	see	much	better	performance	for	the	higher	number	of	iterations	(a	factor	of	6.3	in	this
case).	By	changing	a	normal	for	loop	into	a	parallel	reducing	version,	we	were	able	to	get
substantial	improvements	in	the	calculation	time,	at	the	cost	of	higher	memory
consumption.	In	general,	always	test	whether	the	parallel	version	really	is	an	improvement
over	the	sequential	version	in	your	specific	case!

The	first	argument	of	@parallel	is	the	reducing	operator	(here,	(+)),	the	second	is	the	for
loop,	which	must	start	on	the	same	line.	The	calculations	in	the	loop	must	be	independent
from	one	another,	because	the	order	in	which	they	run	is	arbitrary,	given	that	they	are
scheduled	over	the	different	workers.	The	actual	reduction	(summing	up	in	this	case)	is
done	on	the	calling	process.

Any	variables	used	inside	the	parallel	loop	will	be	copied	(broadcasted)	to	each	process.
Because	of	this,	the	code	like	the	following	will	fail	to	initialize	the	array	arr,	because
each	process	has	a	copy	of	it:

arr	=	zeros(100000)

@parallel	for	i=1:100000

		arr[i]	=	i

end

After	the	loop,	arr	still	contains	all	the	zeros,	because	it	is	the	copy	on	the	master	worker.

If	the	computational	task	is	to	apply	a	function	to	all	elements	in	some	collection,	you	can
use	a	parallel	map	operation	through	the	pmap	function.	The	pmap	function	takes	the
following	form:	pmap(f,	coll),	applies	a	function	f	on	each	element	of	the	collection
coll	in	parallel,	but	preserves	the	order	of	the	collection	in	the	result.	Suppose	we	have	to
calculate	the	rank	of	a	number	of	large	matrices.	We	can	do	this	sequentially	as	follows:

function	rank_marray()

		marr	=	[rand(1000,1000)	for	i=1:10]

		for	arr	in	marr

						println(rank(arr))

		end

end

@time	rank_marray()	#	prints	out	ten	times	1000

elapsed	time:	4.351479797	seconds	(166177728	bytes	allocated,	1.43%	gc	

time)

Here,	parallelizing	also	gives	benefits	(a	factor	of	1.6):

function	prank_marray()

		marr	=	[rand(1000,1000)	for	i=1:10]

		println(pmap(rank,	marr))

end

@time	prank_marray()

elapsed	time:	2.785466798	seconds	(163955848	bytes	allocated,	1.96%	gc	

time)

The	@parallel	macro	and	pmap	are	both	powerful	tools	to	tackle	map-reduce	problems.

Distributed	arrays
When	computations	have	to	be	done	on	a	very	large	array	(or	arrays),	the	array	can	be
distributed,	so	that	each	process	works	in	parallel	on	a	different	part	of	the	array.	In	this
way,	we	can	make	use	of	the	memory	resources	of	multiple	machines,	and	allow	the
manipulation	of	arrays	that	would	be	too	large	to	fit	on	one	machine.

The	specific	data	type	used	here	is	called	a	distributed	array	or	DArray;	most	operations
behave	exactly	as	on	the	normal	Array	type,	so	the	parallelism	is	invisible.	With	DArray,
each	process	has	local	access	to	just	a	part	of	the	data,	and	no	two	processes	share	the
same	data.	For	example,	the	following	code	creates	a	distributed	array	of	random	numbers
with	dimensions	100	x	100	and	is	divided	over	four	workers.	The	data	division	given	by
the	third	argument	says	to	divide	the	number	of	columns	evenly	over	the	four	workers:

//	code	in	Chapter	8\distrib_arrays.jl:

arr	=	drand((100,100),	workers()[1:4],	[1,4])

		100x100	DArray{Float64,2,Array{Float64,2}}:	…

The	following	properties	of	the	DArray	arr	makes	this	clear:

		arr.pmap	#	on	which	workers	?	4-element	Array{Int64,1}:	2	3	4	5

arr.indexes	#		which	worker	has	which	data	indices1x4	

Array{(UnitRange{Int64},UnitRange{Int64}),2}:

	(1:100,1:25)		(1:100,26:50)		(1:100,51:75)		(1:100,76:100)

arr.cuts	#		where	the	data	is	partitioned

2-element	Array{Array{Int64,1},1}:

	[1,101]

	[1,	26,	51,	76,	101]

arr.chunks	#	references	on	the	workers:

1x4	Array{RemoteRef,2}:

RemoteRef(2,1,11164)		RemoteRef(3,1,11165)		…		RemoteRef(5,1,11167)

DArrays	can	also	be	created	with	the	@parallel	macro	as	follows:

da	=	@parallel	[2i	for	i	=	1:10]	

#	10-element	DArray{Int64,1,Array{Int64,1}}:	…

The	following	code	snippet	is	often	used	to	construct	a	distributed	array	divided	over	the
available	workers:

DArray((10,10))	do	I

				println(I)

				return	zeros(length(I[1]),length(I[2]))

end

(I	is	a	tuple	of	index	ranges,	which	is	constructed	automatically).

This	returns	the	following	output	of	a	10x10	array	filled	with	zeros	divided	over	the
available	workers:

								From	worker	2:		(1:5,1:3)

								From	worker	8:		(1:5,9:10)

								From	worker	4:		(1:5,4:5)

								From	worker	3:		(6:10,1:3)

								From	worker	5:		(6:10,4:5)

								From	worker	7:		(6:10,6:8)

								From	worker	6:		(1:5,6:8)

								From	worker	9:		(6:10,9:10)

10x10	DArray{Float64,2,Array{Float64,2}}:		0.0		0.0		0.0		0.0	….

For	more	information	on	distributed	arrays,	refer	to
http://docs.julialang.org/en/latest/manual/parallel-computing/#distributed-arrays.

Julia’s	model	for	building	a	large	parallel	application	works	by	means	of	a	global
distributed	address	space.	This	means	that	you	can	hold	a	reference	to	an	object	that	lives
on	another	machine	participating	in	a	computation.	These	references	are	easily
manipulated	and	passed	around	between	machines,	making	it	simple	to	keep	track	of
what’s	being	computed	where.	Also,	machines	can	be	added	in	mid	computation	when
needed.

http://docs.julialang.org/en/latest/manual/parallel-computing/#distributed-arrays

Summary
In	this	chapter,	we	explored	a	lot	of	material.	We	learned	how	the	I/O	system	in	Julia	is
constructed,	how	to	work	with	files	and	DataFrames,	and	how	to	connect	with	databases
using	ODBC.	The	basics	of	network	programming	in	Julia	was	also	discussed,	and	then
we	got	an	overview	of	the	parallel	computing	functionality,	from	the	primitive	operations
to	map-reduce	functions	and	distributed	arrays.	In	the	next	chapter,	we	will	take	a	look	at
how	Julia	interacts	with	the	command	line	and	with	other	languages,	and	discuss	some
performance	tips.

Chapter	9.	Running	External	Programs
Sometimes,	your	code	needs	to	interact	with	programs	in	the	outside	world,	be	it	the
operating	system	in	which	it	runs,	or	other	languages	such	as	C	or	FORTRAN.	This
chapter	shows	how	straightforward	it	is	to	run	external	programs	from	Julia	and	covers	the
following	topics:

Running	shell	commands—interpolation	and	pipelining
Calling	C	and	FORTRAN
Calling	Python
Performance	tips—a	summary

Running	shell	commands
To	interact	with	the	operating	system	from	within	the	Julia	REPL,	there	are	a	few	helper
functions	available	as	follows:

pwd():	This	function	prints	the	current	directory,	for	example,	"d:\\test"
cd("d:\\test\\week1"):	This	function	helps	to	navigate	to	subdirectories
In	the	interactive	shell,	you	can	also	use	the	shell	mode	using	the	;	modifier:

;	ls:	This	prints,	for	example,	file1.txt	shell.jl	test.txt	tosort.txt
;	mkdir	folder:	This	makes	a	directory	named	folder
;	cd	folder:	This	helps	to	navigate	to	folder

However,	what	if	you	want	to	run	a	shell	command	by	the	operating	system	(the	OS)?
Julia	offers	an	efficient	shell	integration	through	the	run	function,	which	takes	an	object	of
type	Cmd	that	is	defined	by	enclosing	a	command	string	in	backticks	(``):

#	Code	in	Chapter	9\shell.jl:

			cmd	=	`echo	Julia	is	smart`

typeof(cmd)	#>	Cmd	

				run(cmd)	#	returns	Julia	is	smart

				run(`date`)	#>	Sun	Oct	12	09:44:50	GMT	2014

cmd	=	`cat	file1.txt`

run(cmd)	#	prints	the	contents	of	file1.txt

Tip
Be	careful	to	enclose	the	command	text	in	backticks	(`),	not	single	quotes	(').

If	the	execution	of	cmd	by	the	OS	goes	wrong,	run	throws	a	failed	process	error.	You
might	want	to	first	test	the	command	before	running	it;	success(cmd)	will	return	true	if	it
will	execute	successfully,	otherwise	it	returns	false.

Julia	forks	commands	as	child	processes	from	the	Julia	process.	Instead	of	immediately
running	the	command	in	the	shell,	backticks	create	a	Cmd	object	to	represent	the	command,
which	can	then	be	run,	connected	to	other	commands	via	pipes,	and	read	or	write	to	it.

Interpolation
String	interpolation	with	the	$	operator	is	allowed	in	a	command	object	like	this:

		file	=	"file1.txt"

cmd	=	`cat	$file`	#	equivalent	to	`cat	file1.txt`

run(cmd)	#>	prints	the	contents	of	file1.txt

This	is	very	similar	to	the	string	interpolation	with	$	in	strings	(refer	to	the	Strings	section
in	Chapter	2,	Variables,	Types,	and	Operations).

Pipelining
Julia	defines	a	pipeline	operator	with	symbol	|>	to	redirect	the	output	of	a	command	as	the
input	to	the	following	command:

		run(`cat	$file`	|>	"test.txt")

This	writes	the	contents	of	the	file	referred	to	by	$file	into	test.txt,	which	is	shown	as
follows:

				run("test.txt"	|>	`cat`)

This	pipeline	operator	can	even	be	chained	as	follows:

				run(`echo	$("\nhi\nJulia")`	|>	`cat`	|>	`grep	-n	J`)	#>	3:Julia

If	the	file	tosort.txt	contains	B	A	C	on	consecutive	lines,	then	the	following	command
will	sort	the	lines:

				run(`cat	"tosort.txt"`	|>	`sort`)	#	returns	A	B	C

Another	example	is	to	search	for	the	word	“is”	in	all	the	text	files	in	the	current	folder;
use	the	following	command:

			run(`grep	is	$(readdir())`)	

To	capture	the	result	of	a	command	in	Julia,	use	readall	or	readline:

a	=	readall(`cat	"tosort.txt"`	|>	`sort`)

Now	a	has	the	value	“A\r\nB\r\nC\n“.

Multiple	commands	can	be	run	in	parallel	with	the	&	operator:

		run(`cat	"file1.txt"`	&	`cat	"tosort.txt"`)

This	will	print	the	lines	of	the	two	files	intermingled,	because	the	printing	happens
concurrently.

Using	this	functionality	requires	careful	testing,	and	probably,	the	code	will	differ
according	to	the	operating	system	on	which	your	Julia	program	runs.	You	can	obtain	the
OS	from	the	variable	OS_NAME,	or	use	the	macros	@windows,	@unix,	@linux,	and	@osx,
which	were	specifically	designed	to	handle	platform	variations.	For	example,	let’s	say	we
want	to	execute	the	function	fun1()	if	we	are	on	Windows,	else	the	function	fun2().	We
can	write	this	as	follows:

@windows	?	fun1()	:	fun2()

Calling	C	and	FORTRAN
While	Julia	can	rightfully	claim	to	obviate	the	need	to	write	some	C	or	FORTRAN	code,	it
is	possible	that	you	will	need	to	interact	with	the	existing	C	or	FORTRAN	shared	libraries.
Functions	in	such	a	library	can	be	called	directly	by	Julia,	with	no	glue	code,	or	boilerplate
code	or	compilation	needed.	Because	Julia’s	LLVM	compiler	generates	native	code,
calling	a	C	function	from	Julia	has	exactly	the	same	overhead	as	calling	the	same	function
from	C	code	itself.	However,	first,	we	need	to	know	a	few	more	things:

For	calling	out	to	C,	we	need	to	work	with	pointer	types;	a	native	pointer	Ptr{T}	is
nothing	more	than	the	memory	address	for	a	variable	of	type	T
At	this	lower	level,	the	term	bitstype	is	also	used;	bitstype	is	a	concrete	type
whose	data	consists	of	bits,	such	as	Int8,	Uint8,	Int32,	Float64,	Bool,	and	Char
To	pass	a	string	to	C,	it	is	converted	to	a	contiguous	byte	array	representation	with
the	function	bytestring();	given	Ptr	to	a	C	string,	it	returns	a	Julia	string.

Here	is	how	to	call	a	C	function	in	a	shared	library	(calling	FORTRAN	is	done	similarly):
suppose	we	want	to	know	the	value	of	an	environment	variable	in	our	system,	say	the
language,	we	can	obtain	this	by	calling	the	C	function	getenv	from	the	shared	library
libc:

#	code	in	Chapter	9\callc.jl:

lang	=	ccall((:getenv,	"libc"),	Ptr{Uint8},	(Ptr{Uint8},),	"LANGUAGE")

This	returns	Ptr{Uint8}	@0x00007fff8d178dad.	To	see	its	string	contents,	execute
bytestring(lang),	which	returns	en_US.

In	general,	ccall	takes	the	following	arguments:

A	(:function,	"library")	tuple	with	the	name	of	the	C	function	(here,	getenv)	is
used	as	a	symbol,	and	the	library	name	(here,	libc)	as	a	string
The	return	type	(here,	Ptr{Uint8}),	which	can	be	any	bitstype,	or	Ptr
A	tuple	of	types	of	the	input	arguments	(here,	(Ptr{Uint8}),	note	the	tuple)
The	actual	arguments	if	there	are	any	(here,	"LANGUAGE")

It	is	generally	advisable	to	test	for	the	existence	of	a	library	before	doing	the	call.	This	can
be	tested	like	this:	find_library(["libc"]),	which	returns	"libc",	when	the	library	is
found	or	""	when	it	cannot	find	the	library.

When	calling	a	FORTRAN	function,	all	inputs	must	be	passed	by	reference.	Arguments	to
C	functions	are,	in	general,	automatically	converted,	and	the	returned	values	in	C	types	are
also	converted	to	Julia	types.	Arrays	of	Booleans	are	handled	differently	in	C	and	Julia
and	cannot	be	passed	directly,	so	they	must	be	manually	converted.	The	same	applies	for
some	system	dependent	types	(refer	to	the	following	references	for	more	details).

The	ccall	function	will	also	automatically	ensure	that	all	of	its	arguments	will	be
preserved	from	garbage	collection	until	the	call	returns.	C	types	are	mapped	to	Julia	types,
for	example,	short	is	mapped	to	Int16,	and	double	to	Float64.

A	complete	table	of	these	mappings	as	well	as	a	lot	more	intricate	detail	can	be	found	in

the	Julia	docs	at	http://docs.julialang.org/en/latest/manual/calling-c-and-fortran-code/.	The
other	way	around	by	calling	Julia	functions	from	C	code	(or	embedding	Julia	in	C)	is	also
possible,	refer	to	http://docs.julialang.org/en/latest/manual/embedding/.	Julia	and	C	can
also	share	array	data	without	copying.	Another	way	that	C	code	can	call	Julia	code	is	in
the	form	of	callback	functions	(refer	to	http://julialang.org/blog/2013/05/callback/).

If	you	have	the	existing	C	code,	you	must	compile	it	as	a	shared	library	to	call	it	from
Julia.	With	GCC,	you	can	do	this	using	the	-shared	-fPIC	command-line	arguments.
Support	for	C++	is	more	limited	and	is	provided	by	the	Cpp	and	Clang	packages.

http://docs.julialang.org/en/latest/manual/calling-c-and-fortran-code/
http://docs.julialang.org/en/latest/manual/embedding/
http://julialang.org/blog/2013/05/callback/

Calling	Python
The	PyCall	package	provides	for	calling	Python	from	Julia	code.	As	always,	add	this
package	to	your	Julia	environment	with	Pkg.add("PyCall").	Then,	you	can	start	using	it
in	the	REPL	or	in	a	script	as	follows:

using	PyCall

pyeval("10*10")	#>	100

@pyimport	math

math.sin(math.pi	/	2)	#>	1.0

As	we	can	see	with	the	@pyimport	macro,	we	can	easily	import	any	Python	library;
functions	inside	such	a	library	are	called	with	the	familiar	dot	notation.

For	more	details,	refer	to	https://github.com/stevengj/PyCall.jl.

https://github.com/stevengj/PyCall.jl

Performance	tips
Throughout	this	book,	we	paid	attention	to	performance.	Here,	we	summarize	some	of	the
highlighted	performance	topics	and	give	some	additional	tips.	These	tips	need	not	always
be	used,	and	you	should	always	benchmark	or	profile	the	code	and	the	effect	of	a	tip,	but
applying	some	of	them	can	often	yield	a	remarkable	performance	improvement.	Using
type	annotations	everywhere	is	certainly	not	the	way	to	go,	Julia’s	type	inferring	engine
does	that	work	for	you:

Refrain	from	using	global	variables.	If	unavoidable,	make	them	constant,	or	at	least
annotate	the	types.	It	is	better	to	use	local	variables	instead;	they	are	often	only	kept
on	the	stack	(or	even	in	registers),	especially	if	they	are	immutable.
Structure	your	code	around	functions	that	do	their	work	on	local	variables	via	the
function	arguments,	and	this	returns	their	results	rather	than	mutating	the	global
objects.
Type	stability	is	very	important:

Avoid	changing	the	types	of	variables	over	time
The	return	type	of	a	function	should	only	depend	on	the	type	of	the	arguments

function	myFunc{T,U}(a::T,	b::U,	c::Int)

		#	code

end

Even	if	you	do	not	know	the	types	that	will	be	used	in	a	function,	but	you	do	know	it
will	always	be	of	the	same	type	T	and	U,	then	functions	should	be	defined	keeping
that	in	mind,	as	in	this	code	snippet:

If	large	arrays	are	needed,	indicate	their	final	size	with	sizehint	from	the	start	(refer
to	the	Ranges	and	Arrays	section	of	Chapter	2,	Variables,	Types,	and	Operations).
If	arr	is	a	very	large	array	that	you	no	longer	need,	you	can	free	the	memory	it
occupies	by	setting	arr	=	nothing.	The	occupied	memory	will	be	released	the	next
time	the	garbage	collector	runs.	You	can	force	this	to	happen	by	invoking	gc().
In	certain	cases	(such	as	real-time	applications),	disabling	garbage	collection
(temporarily)	with	gc_disable()	can	be	useful.
Use	named	functions	instead	of	anonymous	functions.
In	general,	use	small	functions.
Don’t	test	for	the	types	of	arguments	inside	a	function,	use	an	argument	type
annotation	instead.
If	necessary,	code	different	versions	of	a	function	(several	methods)	according	to	the
types,	so	that	multiple	dispatch	applies.	Normally,	this	won’t	be	necessary,	because
the	JIT	compiler	is	optimized	to	deal	with	the	types	as	they	come.
Use	types	for	keyword	arguments;	avoid	using	the	splat	operator	(…)	for	dynamic	lists
of	keyword	arguments.
Using	mutating	APIs	(functions	with	!	at	the	end)	is	helpful,	for	example,	to	avoid
copying	large	arrays.
Prefer	array	operations	to	comprehensions,	for	example,	x.^2	is	considerably	faster

than	[val^2	for	val	in	x].
Don’t	use	try/catch	in	the	inner	loop	of	a	calculation.
Use	immutable	types	(cfr.	package	ImmutableArrays).
Avoid	using	type	Any,	especially	in	collection	types.
Avoid	using	abstract	types	in	a	collection.
Type	annotate	fields	in	composite	types.
Avoid	using	a	large	number	of	variables,	large	temporary	arrays,	and	collections,
because	this	provokes	much	garbage	collection.	Also,	don’t	make	copies	of	variables
if	you	don’t	have	to.
Avoid	using	string	interpolation	($)	when	writing	to	a	file,	just	write	the	values.
Devectorize	your	code,	that	is,	use	explicit	for	loops	on	array	elements	instead	of
simply	working	with	the	arrays	and	matrices.	(This	is	exactly	the	opposite	advice	as
commonly	given	to	R,	MATLAB,	or	Python	users.)
If	appropriate,	use	a	parallel	reducing	form	with	@parallel	instead	of	a	normal	for
loop	(refer	to	Chapter	8,	I/O,	Networking,	and	Parallel	Computing).
Reduce	data	movement	between	workers	in	a	parallel	execution	as	much	as	possible
(refer	to	Chapter	8,	I/O,	Networking,	and	Parallel	Computing).
Fix	deprecation	warnings.
Use	the	macro	@inbounds	so	that	no	array	bounds	checking	occur	in	expressions	(if
you	are	absolutely	certain	that	no	BoundsError	occurs!).
Avoid	using	eval	at	runtime.

In	general,	split	your	code	in	functions.	Data	types	will	be	determined	at	function	calls,
and	when	a	function	returns.	Types	that	are	not	supplied	will	be	inferred,	but	the	Any	type
does	not	translate	to	the	efficient	code.	If	types	are	stable	(that	is,	variables	stick	to	the
same	type)	and	can	be	inferred,	then	your	code	will	run	fast.

Tools	to	use
Execute	a	function	with	certain	parameter	values,	and	then	use	@time	(refer	to	the	Generic
functions	and	multiple	dispatch	section	in	Chapter	3,	Functions)	to	measure	the	elapsed
time	and	memory	allocation.	If	too	much	memory	is	allocated,	investigate	the	code	for
type	problems.

Experiment	different	tips	and	techniques	in	the	script	array_product_benchmark.jl.	Use
code_typed	(refer	to	the	Reflection	capabilities	section	in	Chapter	7,	Metaprogramming	in
Julia)	to	see	if	type	Any	is	inferred.

There	is	a	linter	tool	(the	Lint	package)	that	can	give	you	all	kinds	of	warnings	and
suggestions	to	improve	your	code.	Use	it	as	follows:

		Pkg.add("Lint")

		using	Lint

lintfile("performance.jl")

This	produces	the	output	as	follows:

performance.jl	[]	33	ERROR	Use	of	undeclared	symbol	a

performance.jl	[with_keyword]	6	INFO	Argument	declared	but	not	used:	name

performance.jl	[]	21	INFO	A	type	is	not	given	to	the	field	name,	which	can	be	slow

Some	useful	type	checking	and	type	stability	investigation	can	be	done	with	the	package
TypeCheck,	for	example,	checking	the	return	types	of	a	function	or	checking	types	in	a
loop.

A	profiler	tool	is	available	in	the	standard	library	to	measure	the	performance	of	your
running	code	and	identify	possible	bottleneck	lines.	This	works	through	calling	your	code
with	the	@profile	macro	(refer	to	http://docs.julialang.org/en/latest/stdlib/profile/#stdlib-
profiling).	The	ProfileView	package	provides	a	nice	graphical	browser	to	investigate	the
profile	results	(follow	the	tutorial	at	https://github.com/timholy/ProfileView.jl).

For	more	tips,	examples,	and	argumentation	about	performance,	look	up
http://docs.julialang.org/en/latest/manual/performance-tips/.

A	debugger	can	be	found	at	https://github.com/toivoh/Debug.jl;	it	should	be	included	in
Julia	v0.4.

http://docs.julialang.org/en/latest/stdlib/profile/#stdlib-profiling
https://github.com/timholy/ProfileView.jl
http://docs.julialang.org/en/latest/manual/performance-tips/
https://github.com/toivoh/Debug.jl

Summary
In	this	chapter,	we	saw	how	easy	it	is	to	run	commands	at	the	operating	system	level.
Interfacing	with	C	is	not	that	much	more	difficult,	although	it	is	somewhat	specialized.
Finally,	we	reviewed	the	best	practices	at	our	disposal	to	make	Julia	perform	at	its	best.	In
the	last	chapter,	we	will	get	to	know	some	of	the	more	important	packages	when	using
Julia	in	real	projects.

Chapter	10.	The	Standard	Library	and
Packages
In	this	final	chapter	of	our	mini	tour	on	Julia,	we	look	anew	at	the	standard	library	and
explore	the	ever-growing	ecosystem	of	packages	for	Julia.	We	will	discuss	the	following
topics:

Digging	deeper	into	the	standard	library
Julia’s	package	manager
Publishing	a	package
Graphics	in	Julia
Using	Gadfly	on	data

Digging	deeper	into	the	standard	library
The	standard	library	is	written	in	Julia	and	comprises	of	a	very	broad	range	of
functionalities:	from	regular	expressions,	working	with	dates	and	times	(in	v	0.4),	a
package	manager,	internationalization	and	Unicode,	linear	algebra,	complex	numbers,
specialized	mathematical	functions,	statistics,	I/O	and	networking,	Fast	Fourier
Transformations	(FFT),	parallel	computing,	to	macros,	and	reflection.	Julia	provides	a
firm	and	broad	foundation	for	numerical	computing	and	data	science	(for	example,	much
of	what	NumPy	has	to	offer	is	provided).	Despite	being	targeted	at	numerical	computing
and	data	science,	Julia	aims	to	be	a	general	purpose	programming	language.

The	source	code	of	the	standard	library	can	be	found	in	the	share\julia\base	subfolder
of	Julia’s	root	installation	folder.	Coding	in	Julia	leads	almost	naturally	to	this	source
code,	for	example,	when	viewing	all	the	methods	of	a	particular	function	with	methods(),
or	when	using	the	@which	macro	to	find	out	more	about	a	certain	method	(refer	to	the
Generic	functions	and	multiple	dispatch	section	in	Chapter	3,	Functions).	IJulia	even
provides	hyperlinks	to	the	source	code,	as	shown	in	the	following	screenshot:

We	covered	some	of	the	most	important	types	and	functions	in	the	previous	chapters,	and
you	can	refer	to	the	manual	for	a	more	exhaustive	overview	at
http://docs.julialang.org/en/latest/stdlib/base/.

It	is	certainly	important	to	know	that	Julia	contains	a	wealth	of	functional	constructs	to
work	with	collections,	such	as	the	reduce,	fold,	min,	max,	sum,	any,	all,	map,	and	filter
functions.	Some	examples	are	as	follows:

filter(f,	coll)	applies	the	function	f	to	all	the	elements	of	the	collection	coll:

#	code	in	Chapter	10\stdlib.jl:

filter(x	->	iseven(x),	1:10)

This	returns	5-element	Array{Int64,1}	that	consists	of	2,	4,	6,	8,	and	10.

http://docs.julialang.org/en/latest/stdlib/base/

mapreduce(f,	op,	coll)	applies	the	function	f	to	all	the	elements	of	coll	and	then
reduces	this	to	one	resulting	value	by	applying	the	operation	op:

mapreduce(x	->	sqrt(x),	+,	1:10)	#>	22.4682781862041

#	which	is	equivalent	to:

sum(map(x	->	sqrt(x),	1:10))

The	pipeline	operator	(|>)	also	lets	you	write	very	functionally	styled	code.	Using	the
form	x	|>	f,	it	applies	the	function	f	to	the	argument	x,	and	the	results	of	this
function	can	be	chained	to	the	following	function.	With	this	notation,	we	can	rewrite
the	previous	example	as:

1:10	|>	(x	->	sqrt(x))	|>	sum

Or,	it	can	be	written	even	shorter	as	follows:

1:10	|>	sqrt	|>	sum

When	working	in	the	REPL,	it	can	be	handy	to	store	a	variable	in	the	operating	system’s
clipboard	if	you	want	to	clean	the	REPL’s	variables	memory	with	workspace().	Consider
the	ensuing	example:

a	=	42	

clipboard(a)

workspace()

a	#	returns	ERROR:	a	not	defined

a	=	clipboard()	#	returns	"42"

This	also	works	while	copying	information	from	another	application,	for	example,	a	string
from	a	website	or	from	a	text	editor.	On	Linux,	you	will	have	to	install	xclip	with	the
following	command:

sudo	apt-get	install	xclip

Julia’s	package	manager
The	Packages	section	in	Chapter	1,	Installing	the	Julia	Platform,	introduced	us	to	the
Julia’s	package	system	(some	370	packages	and	counting)	and	its	manager	program	Pkg.
Most	Julia	libraries	are	written	exclusively	in	Julia;	this	makes	them	not	only	more
portable,	but	also	an	excellent	source	for	learning	and	experimenting	with	Julia	in	your
own	modified	versions.	The	packages	that	are	useful	for	the	data	scientists	are	Stats,
Distributions,	GLM,	and	Optim.	You	can	search	for	applicable	packages	in	the
http://pkg.julialang.org/indexorg.html	repository.	For	a	list	of	the	packages	we
encountered	in	this	book,	consult	the	List	of	Packages	section	in	Appendix,	List	of	Macros
and	Packages,	after	this	chapter.

http://pkg.julialang.org/indexorg.html

Installing	and	updating	packages
It	is	advisable	to	regularly	(and	certainly,	before	installing	a	new	package)	execute	the
Pkg.update()	function	to	ensure	that	your	local	package	repository	is	up	to	date	and
synchronized,	as	shown	in	the	following	screenshot:

As	we	saw	in	Chapter	1,	Installing	the	Julia	Platform,	packages	are	installed	via
Pkg.add("PackageName")	and	brought	into	scope	using	PackageName.	This	presumes	the
package	is	published	on	the	METADATA	repository;	if	this	is	not	the	case,	you	can	clone	it
from	a	git	repository	as	follows:
Pkg.clone("git@github.com:EricChiang/ANN.jl.git").

An	alternative	way	is	to	add	one	or	more	package	names	to	the	REQUIRE	file	in	your	Julia
home	folder,	and	then	execute	Pkg.resolve()	to	install	them	and	their	dependencies.

If	you	need	to	force	a	certain	package	to	a	certain	version	(perhaps	an	older	version),	use
Pkg.pin(),	for	example,	use	Pkg.pin("HDF5",	v"0.4.3")	to	force	the	use	of	Version
0.4.3	of	package	HDF5,	even	when	you	already	have	v	0.4.4	installed.

Publishing	a	package
All	package	management	in	Julia	is	done	via	GitHub.	Here	are	the	steps	for	publishing
your	own	package:

1.	 Fork	the	package	METADATA.jl	on	GitHub,	get	the	address	of	your	fork,	and	execute
the	following:

$	git	clone	git@github.com:your-user-name/METADATA.jl.git

$	cd	METADATA.jl

2.	 Make	a	new	branch	with	the	following	commands:

$	git	branch	mypack

$	git	checkout	mypack

3.	 Add	the	stuff	for	your	package	in	a	folder,	say	MyPack.	Your	code	should	go	in	a	/src
folder,	which	should	also	contain	mypack.jl,	that	will	be	run	when	the	command
using	MyPack	is	issued.	The	tests	should	go	in	the	/tests	folder.	You	should	have	a
runtests.jl	file	in	the	folder	that	runs	the	tests	for	your	package.

A	text	file	named	REQUIRE	is	where	any	dependencies	on	other	Julia	packages	go;	it	is
also	where	you	specify	compatible	versions	of	Julia.

For	example,	it	can	contain	the	following:

julia	0.3-

BinDeps

@windows	WinRPM

This	certifies	that	this	package	is	compatible	with	Julia	v0.3	or	higher;	it	needs	the
package	BinDeps,	and	on	Windows	it	needs	the	package	WinRPM.

The	license	you	want	goes	in	LICENSE.md,	and	some	documentation	goes	in
README.md.

Then,	you	will	have	to	run	the	following	commands:

$	git	add	MyPack/*

$	git	commit	-m	"My	fabulous	package"

4.	 Then,	push	it	to	GitHub:

$	git	push	--set-upstream	origin	mypack

5.	 Go	to	the	GitHub	website	of	your	fork	of	METADATA.jl	and	a	green	button	Compare
&	pull	request	should	appear,	and	you’re	just	a	few	clicks	away	from	finishing	the
pull	request.

For	more	details,	refer	to	http://docs.julialang.org/en/release-
0.3/manual/packages/#publishing-your-package.

http://docs.julialang.org/en/release-0.3/manual/packages/#publishing-your-package

Graphics	in	Julia
Several	packages	exist	to	plot	data	and	visualize	data	relations,	which	are	as	follows:

Winston:	(refer	to	the	Packages	section	in	Chapter	1,	Installing	the	Julia	Platform)
This	package	offers	2D	MATLAB-like	plotting	through	an	easy	plot(x,	y)
command.	Add	a	graphic	to	an	existing	plot	with	oplot(),	and	save	it	in	the	PNG,
EPS,	PDF,	or	SVG	format	with	savefig().	From	within	a	script,	use	display(pl),
where	pl	is	the	plot	object	to	make	the	plot	appear.	For	a	complete	code	example,
refer	to	Chapter	10\winston.jl	(use	it	in	the	REPL).	For	more	information,	see	the
excellent	docs	at	http://winston.readthedocs.org/en/latest/	and
https://github.com/nolta/Winston.jl	for	the	package	itself.
PyPlot:	(refer	to	the	Installing	and	working	with	IJulia	section	in	Chapter	1,
Installing	the	Julia	Platform)	This	package	needs	Python	and	matplotlib	installed	and
works	with	no	overhead	through	the	PyCall	package.

Here	is	a	summary	of	the	main	commands:

plot(y),	plot(x,y)	plots	y	versus	x	using	the	default	line	style	and	color
semilogx(x,y),	semilogy(x,y)	for	log	scale	plots
title("A	title"),	xlabel("x-axis"),	and	ylabel("foo")	to	set	labels
legend(["curve	1",	"curve	2"],	"northwest")	to	write	a	legend	at	the
upper-left	side	of	the	graph
grid(),	axis("equal")	adds	grid	lines,	and	uses	equal	x	and	y	scaling
title(L"the	curve	$e^\sqrt{x}$")	sets	the	title	with	LaTeX	equation
savefig("fig.png"),	savefig("fig.eps")	saves	as	the	PNG	or	EPS	image

Gadfly:	This	provides	ggplot2-like	plotting	package	using	data-driven	documents
(d3)	and	is	very	useful	for	statistical	graphs.	It	renders	publication	quality	graphics	to
PNG,	PostScript,	PDF,	and	SVG,	for	the	last	mode	interactivity	such	as	panning,
zooming,	and	toggling.	Here	are	some	plotting	commands	(refer	to	Chapter
10\gadfly.jl,	and	use	it	in	the	REPL):

draw(SVG("gadfly.svg",6inch,3inch),	plot([x	->	x^2],0,	25))

pl	=	plot([x	->	cos(x)/x],	5,	25)

draw(PNG("gadfly.png",	300,	100),	pl)

We’ll	examine	a	concrete	example	in	the	next	section.	For	more	information,	refer	to
http://gadflyjl.org/.

http://winston.readthedocs.org/en/latest/
https://github.com/nolta/Winston.jl
http://gadflyjl.org/

Using	Gadfly	on	data
Let’s	apply	Gadfly	to	visualize	the	histogram	we	made	in	the	Using	DataFrames	section
of	Chapter	8,	I/O,	Networking,	and	Parallel	Computing,	when	examining	the	quality	of
wine	samples:

#	see	code	in	Chapter	8\DataFrames.jl:

using	Gadfly

p	=	plot(df_quality,	x="qual",	y="no",

									Geom.bar(),Guide.title("Class	distributions	(\"quality\")"))

draw(PNG(14cm,10cm),p)

This	produces	the	following	output:

Here	is	an	example	to	explore	medical	data:	medical.csv	is	a	file	that	contains	the
following	columns:	IX,	Sex,	Age,	sBP,	dBP,	Drink,	and	BMI	(IX	is	a	number	for	each	data
line,	sBP	and	dBP	are	systolic	and	diastolic	blood	pressure,	Drink	indicates	whether	the
person	drinks	alcohol,	and	BMI	is	the	body	mass	index).The	following	code	reads	in	the
data	in	a	DataFrame	df	file	that	contains	50	lines	and	seven	columns:

#	code	in	Chapter	10\medical.jl

using	Gadfly,	DataFrames

df	=	readtable("medical.csv")

print("size	is	",	size(df))	#>	size	is	(50,7)

df[1:3,	1:size(df,2)]

#	data	sample:

IX		Sex		Age		sBP				dBP		Drink		BMI

0				1			39		106.0		70.0		0				26.97

1				2			46		121.0		81.0		0				28.73

2				1			48		127.5		80.0		1				25.34

Let’s	transform	our	data	a	bit.	The	data	for	Sex	contains	1	for	female,	2	for	male.	Let’s
change	that	to	F	and	M	respectively.	Similarly,	change	0	to	N	and	1	to	Y	for	the	Drink	data.
DataFrames	has	a	handy	ifelse	function	ready	for	just	this	purpose:

#	transforming	the	data:

df[:Sex]	=	ifelse(df[:Sex].==1,	"F",	"M")	

df[:Drink]	=	ifelse(df[:Drink].==1,	"Y",	"N")

df[1:3,	1:size(df,2)]

#	transformed	data	sample:

IX		Sex		Age		sBP				dBP		Drink		BMI

0				F			39		106.0		70.0			N				26.97

1				M			46		121.0		81.0			N				28.73

2				F			48		127.5		80.0			Y				25.34

Use	describe(df)	to	get	some	statistical	numbers	on	the	data.	For	example,	the	standard
deviation	on	the	Age	value	is	given	by	std(df["Age"])	that	gives	8.1941.

Let’s	plot	systolic	blood	pressure	versus	age,	using	a	different	color	for	male	and	female,
and	apply	data	smoothing	to	draw	a	continuous	line	through	the	histogram	rendered	in	a
browser:

set_default_plot_size(20cm,	12cm)

plot(df,	x="Age",	y="sBP",	color="Sex",	Geom.smooth,		

Geom.bar(position=:dodge))

If	you	want	to	save	the	image	in	a	file,	give	the	plot	a	name	and	pass	that	name	to	the	draw

function:

pl	=	plot(df,	x="Age",	y="sBP",	color="Sex",	Geom.smooth,	

Geom.bar(position=:dodge))

draw(PDF("medical.pdf",	6inch,	3inch),	pl)

Lots	of	other	plots	can	be	drawn	in	Gadfly,	such	as	scatter	plots,	2D	histograms,	and	box
plots.

Summary
In	this	chapter,	we	looked	at	the	built-in	functionality	Julia	has	to	offer	in	its	standard
library.	We	also	peeked	at	some	of	the	more	useful	packages	to	apply	in	the	data	sciences.

We	hope	that	this	whirlwind	overview	of	Julia	has	shown	you	why	Julia	is	a	rising	star	in
the	world	of	scientific	computing	and	(big)	data	applications	and	that,	you	will	take	it	up
in	your	projects.

Appendix	A.	List	of	Macros	and	Packages

Macros
Chapter Name Section

2
@printf The	Formatting	numbers	and	strings	section	under	the	Strings	heading

@sprintf The	Formatting	numbers	and	strings	section	under	the	Strings	heading

3

@which Generic	functions	and	multiple	dispatch

@time Generic	functions	and	multiple	dispatch

@elapsed Generic	functions	and	multiple	dispatch

4 @task Tasks

7

@assert The	Testing	section	under	the	Built-in	macros	heading

@test The	Testing	section	under	the	Built-in	macros	heading

@test_approx_eq The	Testing	section	under	the	Built-in	macros	heading

@test_approx_eq_eps The	Testing	section	under	the	Built-in	macros	heading

@show The	Debugging	section	under	the	Built-in	macros	heading

@timed The	Benchmarking	section	under	the	Built-in	macros	heading

@allocated The	Benchmarking	section	under	the	Built-in	macros	heading

@async
The	Starting	a	task	section	under	the	Built-in	macros	heading	(also	refer	to	Chapter
8,	I/O,	Networking,	and	Parallel	Computing)

8

@data Using	DataFrames

@spawnat Parallel	Programming,	Using	low-level	communications

@async Working	with	TCP	Sockets	and	servers

@sync Working	with	TCP	Sockets	and	servers

@spawn Parallel	Programming,	Using	low-level	communications

@spawnat Parallel	Programming,	Using	low-level	communications

@everywhere Parallel	Programming,	Using	low-level	communications

@parallel Parallel	Programming,	Parallel	loops	and	maps

@windows Running	External	Programs

@unix Running	External	Programs

9
@linux Running	External	Programs

@osx Running	External	Programs

@inbounds Performance	tips

@profile Performance	tips

List	of	packages
Chapter Name Section

The	Rationale	for	Julia

MATLAB A	comparison	with	other	languages	for	the	data	scientist

Rif A	comparison	with	other	languages	for	the	data	scientist

PyCall A	comparison	with	other	languages	for	the	data	scientist

1

Winston Packages

IJulia Installing	and	working	with	IJulia

PyPlot Installing	and	working	with	IJulia

ZMQ Installing	Sublime-IJulia

Jewel Installing	Juno

2
Dates Dates	and	Times	(<=	v	0.3)

TimeZones Dates	and	Times	(>=	v	0.4)

5
ImmutableArrays Matrices

Compat Dictionaries

8

DataFrames Using	DataFrames

DataArrays Using	DataFrames

RDatasets Using	DataFrames

JSON Using	DataFrames

LightXML Using	DataFrames

YAML Using	DataFrames

HDF5 Using	DataFrames

IniFile Using	DataFrames

ODBC ODBC

9

Cpp Calling	C	and	FORTRAN

Clang Calling	C	and	FORTRAN

Lint Performance	tips

TypeCheck Performance	tips

ProfileView Performance	tips

10 Gadfly Graphics	in	Julia

Index
A

abstract	syntax	tree	(AST)
about	/	Expressions	and	symbols

abstract	type
about	/	Concrete	and	abstract	types

anonymous	functions
about	/	Anonymous	functions

arrays
and	ranges	/	Ranges	and	arrays
creating,	ways	/	Other	ways	to	create	arrays
functions	/	Some	common	functions	for	arrays
array	of	chars,	converting	to	string	/	How	to	convert	an	array	of	chars	to	a	string

automatic	type	promotion	/	Type	conversions	and	promotions

B
break	statement

about	/	The	break	statement

C
C

calling	/	Calling	C	and	FORTRAN
characters

about	/	Characters
closures

about	/	First-class	functions	and	closures
comments

about	/	Variables,	naming	conventions,	and	comments
composite	types

about	/	User-defined	and	composite	types
compound	expression	/	Scope	and	constants
concrete	types

about	/	Concrete	and	abstract	types
conditional	evaluation

about	/	Conditional	evaluation
constants

about	/	Scope	and	constants
continue	statement

about	/	The	continue	statement
convert	function	/	Type	conversions	and	promotions
coroutines

about	/	Tasks
CSV	file

reading	/	Reading	and	writing	CSV	files
writing	/	Reading	and	writing	CSV	files

currying	/	First-class	functions	and	closures

D
data

Gadfly,	using	/	Using	Gadfly	on	data
databases

interacting	with	/	Interacting	with	databases
DataFrames

using	/	Using	DataFrames
tail(df)	function	/	Using	DataFrames
names	function	/	Using	DataFrames
eltypes	function	/	Using	DataFrames
describe	function	/	Using	DataFrames
URL	/	Using	DataFrames

Data	Source	Name	(DSN)
about	/	Interacting	with	databases

dates	and	times
about	/	Dates	and	times

debugger
URL	/	Tools	to	use

describe	function	/	Using	DataFrames
dictionaries

about	/	Dictionaries
distributed	array	(DArray)

about	/	Distributed	arrays
distributed	arrays	(DArray)

URL	/	Distributed	arrays

E
elementary	mathematical	functions

about	/	Elementary	mathematical	functions	and	operations
URL	/	Elementary	mathematical	functions	and	operations

eltypes	function	/	Using	DataFrames
Emacs

URL	/	Other	editors	and	IDEs
eval

and	interpolation	/	Eval	and	interpolation
exception	handling

about	/	Exception	handling
URL	/	Exception	handling

expressions	/	Variables,	naming	conventions,	and	comments

F
Fast	Fourier	Transformations	(FFT)	/	Digging	deeper	into	the	standard	library
file	formats

about	/	Other	file	formats
files

working	with	/	Working	with	files
CSV	files,	reading	/	Reading	and	writing	CSV	files
CSV	files,	writing	/	Reading	and	writing	CSV	files

filter
about	/	Map,	filter,	and	list	comprehensions

first-class	functions
about	/	First-class	functions	and	closures

floating	point	numbers
about	/	Floating	point	numbers

for	loops
about	/	The	for	loop

/	Parallel	loops	and	maps
FORTRAN

calling	/	Calling	C	and	FORTRAN
functions

defining	/	Defining	functions
optional	positional	arguments	/	Optional	and	keyword	arguments
optional	keyword	arguments	/	Optional	and	keyword	arguments
anonymous	functions	/	Anonymous	functions
first-class	functions	/	First-class	functions	and	closures
closures	/	First-class	functions	and	closures
recursive	functions	/	Recursive	functions
map	/	Map,	filter,	and	list	comprehensions
filter	/	Map,	filter,	and	list	comprehensions
generic	functions	/	Generic	functions	and	multiple	dispatch
multiple	dispatch	/	Generic	functions	and	multiple	dispatch
and	macros,	differences	/	Defining	macros

G
Gadfly

about	/	Graphics	in	Julia
URL	/	Graphics	in	Julia
using,	on	data	/	Using	Gadfly	on	data

generic	functions
about	/	Generic	functions	and	multiple	dispatch

GitHub
URL	/	Building	from	source

global	keyword	/	Scope	revisited
graphics

in	Julia	/	Graphics	in	Julia

H
head(df)	function	/	Using	DataFrames
hygienic	macro	/	Defining	macros

I
IJulia

installing	/	Installing	and	working	with	IJulia
URL	/	Installing	and	working	with	IJulia
GitHub	page	/	Installing	and	working	with	IJulia
working	with	/	Installing	and	working	with	IJulia

inner	constructors
about	/	Types	and	collections	–	inner	constructors

integers
about	/	Integers

interpolation
and	eval	/	Eval	and	interpolation

IPython	notebook
URL	/	Installing	and	working	with	IJulia

J
Julia

installing	/	Installing	Julia
URL	/	Installing	Julia
Windows	version	/	Windows	version	–	usable	from	Windows	XP	SP2	onwards
Ubuntu	version	/	Ubuntu	version
building,	from	source	/	Building	from	source
shell,	working	with	/	Working	with	Julia’s	shell
key	bindings,	URL	/	Working	with	Julia’s	shell
startup	options	/	Startup	options	and	Julia	scripts
scripts	/	Startup	options	and	Julia	scripts
studio,	URL	/	Installing	and	working	with	Julia	Studio
working	/	How	Julia	works
variables	/	Variables,	naming	conventions,	and	comments
naming	conventions	/	Variables,	naming	conventions,	and	comments
comments	/	Variables,	naming	conventions,	and	comments
types	/	Types
integers	/	Integers
floating	point	numbers	/	Floating	point	numbers
characters	/	Characters
strings	/	Strings
dates	and	times	/	Dates	and	times
scope	/	Scope	and	constants
constants	/	Scope	and	constants
docs,	URL	/	Calling	C	and	FORTRAN,	Digging	deeper	into	the	standard	library
functions,	URL	/	Calling	C	and	FORTRAN
graphics	/	Graphics	in	Julia

JuliaBox	platform
URL	/	Other	editors	and	IDEs

Julia	Studio
installing	/	Installing	and	working	with	Julia	Studio

Juno
installing	/	Installing	Juno
URL	/	Installing	Juno

Just	in	Time	(JIT)	compiler	/	Working	with	Julia’s	shell

K
key-value	pairs

about	/	Keys	and	values	–	looping
keys

about	/	Keys	and	values	–	looping

L
libraries

about	/	Standard	modules	and	paths
LightTable

URL	/	Installing	Juno
linter	tool	/	Tools	to	use
list	comprehension

about	/	Map,	filter,	and	list	comprehensions
LLVM	JIT	compiler	backend

about	/	Generic	functions	and	multiple	dispatch
local	keyword	/	Scope	revisited
local	scope	/	Scope	revisited

M
macros	/	Macros

defining	/	Defining	macros
and	functions,	differences	/	Defining	macros
hygienic	macro	/	Defining	macros
built-in	macros	/	Built-in	macros
@printf	/	Macros
@sprintf	/	Macros
@which	/	Macros
@time	/	Macros
@elapsed	/	Macros
@task	/	Macros
@assert	/	Macros
@test	/	Macros
@test_approx_eq	/	Macros
@test_approx_eq_eps	/	Macros
@show	/	Macros
@timed	/	Macros
@allocated	/	Macros
@async	/	Macros
@data	/	Macros
@spawnat	/	Macros
@sync	/	Macros
@spawn	/	Macros
@everywhere	/	Macros
@parallel	/	Macros
@windows	/	Macros
@unix	/	Macros
@linux	/	Macros
@osx	/	Macros
@inbounds	/	Macros
@profile	/	Macros

macros,	built-in
testing	/	Testing
debugging	/	Debugging
benchmarking	/	Benchmarking
task,	starting	/	Starting	a	task

map
about	/	Map,	filter,	and	list	comprehensions

maps	/	Parallel	loops	and	maps
matrices

about	/	Matrices
method

about	/	Generic	functions	and	multiple	dispatch
methods	/	Parametric	types	and	methods
modules

about	/	Standard	modules	and	paths
multiple	dispatch

about	/	Generic	functions	and	multiple	dispatch
example	/	Multiple	dispatch	example

N
names	function	/	Using	DataFrames
naming	conventions

about	/	Variables,	naming	conventions,	and	comments

O
object-oriented	(OO)	languages

about	/	Generic	functions	and	multiple	dispatch
Open	Database	Connectivity	(ODBC)

about	/	Interacting	with	databases
operations

about	/	Elementary	mathematical	functions	and	operations
operators

about	/	First-class	functions	and	closures
optional	keyword	arguments

about	/	Optional	and	keyword	arguments
optional	positional	arguments

about	/	Optional	and	keyword	arguments
OS	X

installation	for	/	OS	X
overloading

about	/	Generic	functions	and	multiple	dispatch

P
packages

about	/	Packages,	Julia’s	package	manager
URL	/	Packages,	Adding	a	new	package,	Julia’s	package	manager,	Publishing	a
package
new	package,	adding	/	Adding	a	new	package
installing	/	Installing	and	updating	packages
updating	/	Installing	and	updating	packages
publishing	/	Publishing	a	package
MATLAB	/	List	of	packages
Rif	/	List	of	packages
PyCall	/	List	of	packages
Winston	/	List	of	packages
IJulia	/	List	of	packages
PyPlot	/	List	of	packages
ZMQ	/	List	of	packages
Jewel	/	List	of	packages
Dates	/	List	of	packages
TimeZones	/	List	of	packages
ImmutableArrays	/	List	of	packages
Compat	/	List	of	packages
DataFrames	/	List	of	packages
DataArrays	/	List	of	packages
RDatasets	/	List	of	packages
JSON	/	List	of	packages
LightXML	/	List	of	packages
YAML	/	List	of	packages
HDF5	/	List	of	packages
IniFile	/	List	of	packages
ODBC	/	List	of	packages
Cpp	/	List	of	packages
Clang	/	List	of	packages
Lint	/	List	of	packages
TypeCheck	/	List	of	packages
ProfileView	/	List	of	packages
Gadfly	/	List	of	packages

parallel	operations
and	computing	/	Parallel	operations	and	computing
processes,	creating	/	Creating	processes
low-level	communications,	using	/	Using	low-level	communications

parametric	type
about	/	Parametric	types	and	methods

paths

about	/	Standard	modules	and	paths
performance

tips	/	Performance	tips
Personal	Package	Archive	(PPA)

URL	/	Ubuntu	version
pipelining

about	/	Pipelining
processes

creating	/	Creating	processes
profiler	tool	/	Tools	to	use
ProfileView	package

URL	/	Tools	to	use
project

example	/	Example	project	–	word	frequency
PyPlot

about	/	Graphics	in	Julia
Python

calling	/	Calling	Python

Q
quote	operator	/	Expressions	and	symbols

R
ranges

and	arrays	/	Ranges	and	arrays
rational	and	complex	numbers

about	/	Rational	and	complex	numbers
read(STDIN,	Char)	command	/	Basic	input	and	output
Read	Evaluate	Print	Loop	(REPL)	/	Windows	version	–	usable	from	Windows	XP
SP2	onwards
recursive	functions

about	/	Recursive	functions
reflection

about	/	Reflection	capabilities
RegexMatch	object,	properties

match	/	Regular	expressions
offset	/	Regular	expressions
offsets	/	Regular	expressions
captures	/	Regular	expressions

regular	expressions
about	/	Regular	expressions
URL	/	Regular	expressions

remote	calls	/	Using	low-level	communications
remote	references	/	Using	low-level	communications
repeated	evaluation

about	/	Repeated	evaluation
for	loops	/	The	for	loop
while	loops	/	The	while	loop
break	statement	/	The	break	statement
continue	statement	/	The	continue	statement

rethrow()	statement	/	Exception	handling
round	off	error	/	Floating	point	numbers

S
SageMath	project

URL	/	Other	editors	and	IDEs
scope

about	/	Scope	and	constants,	Scope	revisited
sets

about	/	Sets
of	tuples,	creating	/	Making	a	set	of	tuples

shell	commands
running	/	Running	shell	commands

single	dispatch
about	/	Generic	functions	and	multiple	dispatch

slice	/	Ranges	and	arrays
splice	operator	(splat)	/	How	to	convert	an	array	of	chars	to	a	string
standard	input	(stdin)	/	Basic	input	and	output
standard	library

about	/	Digging	deeper	into	the	standard	library
standard	output	(stdout)	/	Basic	input	and	output
stream-oriented

about	/	Basic	input	and	output
string	interpolation

about	/	Interpolation
strings

about	/	Strings
and	formatting	numbers	/	Formatting	numbers	and	strings
array	of	chars,	converting	to	/	How	to	convert	an	array	of	chars	to	a	string

Sublime-IJulia
installing	/	Installing	Sublime-IJulia
URL	/	Installing	Sublime-IJulia

Sublime	Text
URL	/	Installing	Sublime-IJulia

subtypes	function	/	The	type	hierarchy	–	subtypes	and	supertypes
super	function	/	The	type	hierarchy	–	subtypes	and	supertypes

T
tasks

about	/	Tasks,	Starting	a	task
TCP	servers

working	with	/	Working	with	TCP	sockets	and	servers
TCP	sockets

working	with	/	Working	with	TCP	sockets	and	servers
Transmission	Control	Protocol	(TCP/IP)	/	Working	with	TCP	sockets	and	servers
tuples

about	/	Tuples
set,	creating	/	Making	a	set	of	tuples

type	annotations
about	/	Type	annotations	and	conversions

type	conversions
about	/	Type	conversions	and	promotions

type	hierarchy
about	/	The	type	hierarchy	–	subtypes	and	supertypes
supertypes	/	The	type	hierarchy	–	subtypes	and	supertypes
subtypes	/	The	type	hierarchy	–	subtypes	and	supertypes

type	parameters
about	/	Parametric	types	and	methods

types
about	/	Types

type	unions
about	/	Type	unions

U
Ubuntu	version,	Julia

OS	X	/	OS	X
Julia,	building	from	source	/	Building	from	source

user-defined	type
about	/	User-defined	and	composite	types
objects	/	When	are	two	values	or	objects	equal	or	identical?
values	/	When	are	two	values	or	objects	equal	or	identical?
multiple	dispatch,	example	/	Multiple	dispatch	example

V
variables

about	/	Variables,	naming	conventions,	and	comments
vector

about	/	Matrices
Vim

URL	/	Other	editors	and	IDEs

W
while	loops

about	/	The	while	loop
Windows	version,	Julia

about	/	Windows	version	–	usable	from	Windows	XP	SP2	onwards,	Ubuntu
version
URL	/	Windows	version	–	usable	from	Windows	XP	SP2	onwards

Winston
about	/	Graphics	in	Julia
URL	/	Graphics	in	Julia

Z
7zip	extractor	program

URL	/	Windows	version	–	usable	from	Windows	XP	SP2	onwards

	Getting Started with Julia Programming
	Credits
	About the Author
	About the Reviewers
	www.PacktPub.com
	Support files, eBooks, discount offers, and more
	Why subscribe?
	Free access for Packt account holders
	Preface
	What this book covers
	What you need for this book
	Who this book is for
	Conventions
	Reader feedback
	Customer support
	Downloading the example code
	Errata
	Piracy
	Questions
	The Rationale for Julia
	The scope of Julia
	Julia's place among the other programming languages
	A comparison with other languages for the data scientist
	MATLAB
	R
	Python
	Useful links
	Summary
	1. Installing the Julia Platform
	Installing Julia
	Windows version – usable from Windows XP SP2 onwards
	Ubuntu version
	OS X
	Building from source
	Working with Julia's shell
	Startup options and Julia scripts
	Packages
	Adding a new package
	Installing and working with Julia Studio
	Installing and working with IJulia
	Installing Sublime-IJulia
	Installing Juno
	Other editors and IDEs
	How Julia works
	Summary
	2. Variables, Types, and Operations
	Variables, naming conventions, and comments
	Types
	Integers
	Floating point numbers
	Elementary mathematical functions and operations
	Rational and complex numbers
	Characters
	Strings
	Formatting numbers and strings
	Regular expressions
	Ranges and arrays
	Other ways to create arrays
	Some common functions for arrays
	How to convert an array of chars to a string
	Dates and times
	Scope and constants
	Summary
	3. Functions
	Defining functions
	Optional and keyword arguments
	Anonymous functions
	First-class functions and closures
	Recursive functions
	Map, filter, and list comprehensions
	Generic functions and multiple dispatch
	Summary
	4. Control Flow
	Conditional evaluation
	Repeated evaluation
	The for loop
	The while loop
	The break statement
	The continue statement
	Exception handling
	Scope revisited
	Tasks
	Summary
	5. Collection Types
	Matrices
	Tuples
	Dictionaries
	Keys and values – looping
	Sets
	Making a set of tuples
	Example project – word frequency
	Summary
	6. More on Types, Methods, and Modules
	Type annotations and conversions
	Type conversions and promotions
	The type hierarchy – subtypes and supertypes
	Concrete and abstract types
	User-defined and composite types
	When are two values or objects equal or identical?
	Multiple dispatch example
	Types and collections – inner constructors
	Type unions
	Parametric types and methods
	Standard modules and paths
	Summary
	7. Metaprogramming in Julia
	Expressions and symbols
	Eval and interpolation
	Defining macros
	Built-in macros
	Testing
	Debugging
	Benchmarking
	Starting a task
	Reflection capabilities
	Summary
	8. I/O, Networking, and Parallel Computing
	Basic input and output
	Working with files
	Reading and writing CSV files
	Using DataFrames
	Other file formats
	Working with TCP sockets and servers
	Interacting with databases
	Parallel operations and computing
	Creating processes
	Using low-level communications
	Parallel loops and maps
	Distributed arrays
	Summary
	9. Running External Programs
	Running shell commands
	Interpolation
	Pipelining
	Calling C and FORTRAN
	Calling Python
	Performance tips
	Tools to use
	Summary
	10. The Standard Library and Packages
	Digging deeper into the standard library
	Julia's package manager
	Installing and updating packages
	Publishing a package
	Graphics in Julia
	Using Gadfly on data
	Summary
	A. List of Macros and Packages
	Macros
	List of packages
	Index

