

Enyo:	Up	and	Running
Roy	Sutton

Beijing	•	Cambridge	•	Farnham	•	Köln	•	Sebastopol	•	Tokyo

Preface
HTML5	technologies	hold	the	promise	of	providing	compelling	user	experiences	through
the	web	browser.	The	Web	has	evolved	as	a	platform	for	delivering	content	to	users
regardless	of	the	operating	system	their	computers	(or	smartphones,	tablets,	and	smart
TVs)	use.	As	users	spend	more	time	on	the	Web,	they	not	only	expect	to	receive	content
but	also	perform	the	actions	of	their	daily	lives.	The	Web	is	evolving	from	static	pages	to
true	web	applications.

Enyo	is	a	JavaScript	framework	designed	to	help	developers	create	compelling	interactive
web	applications	(or	apps).	What	makes	Enyo	special?	Why	should	you	be	interested	in	it?
I’ll	try	to	tackle	those	questions	and,	along	the	way,	help	you	get	productive	in	Enyo.

Where	Did	Enyo	Come	From?
Enyo	grew	out	of	the	need	to	create	applications	for	the	HP	TouchPad	tablet.	It	was
designed	to	be	an	easy-to-learn,	high-performance	framework	that	provided	a	pleasing	and
consistent	user	interface.	As	Enyo	grew,	HP	realized	that	the	technologies	could	be	applied
not	only	to	tablets	but	also	to	the	larger	screens	of	desktops	and	the	smaller	screens	of
smartphones.

On	January	25,	2012,	HP	announced	they	were	going	to	release	Enyo	as	an	open	source
project	under	the	Apache	2.0	license.	Development	moved	to	GitHub	and	the	broader
JavaScript	community	was	invited	to	participate.	Since	that	time,	Enyo	has	matured	and
now	offers	robust	tools	for	developing	web	apps	on	a	wide	variety	of	platforms.	In	March
of	2013,	LG	Electronics	acquired	the	webOS	group	from	HP	and	the	core	Enyo	team
focused	on	adapting	the	framework	for	creating	smart	TV	applications.

Core	Beliefs
The	Enyo	team	believes	very	strongly	in	the	power	of	the	open	Web.	To	that	end,	Enyo
embraces	the	following	concepts:

	
Enyo	and	its	code	are	free	to	use,	always.
Enyo	is	open	source	—	development	takes	place	in	the	open	and	the	community	is
encouraged	to	participate.
Enyo	is	truly	cross-platform	—	you	should	not	have	to	choose	between	mobile	and
desktop,	or	between	Chrome	and	Internet	Explorer.
Enyo	is	extensible.
Enyo	is	built	to	manage	complexity	—	Enyo	promotes	code	reuse	and	encapsulation.
Enyo	is	lightweight	and	fast	—	Enyo	is	optimized	for	mobile	and	its	core	is	small.

What’s	Enyo	Good	For?
Enyo	is	designed	for	creating	apps.	While	a	discussion	of	exactly	what	an	app	is	could
probably	fill	a	book	this	size,	when	I	say	“apps”	I’m	referring	to	an	interactive	application
that	runs	in	a	web	browser	(even	if	the	browser	itself	may	be	transparent	to	the	user).

This	is	to	say	Enyo	is	not	designed	for	creating	web	pages.	Enyo	apps	run	in	the	browser
and	not	on	the	server.	This	doesn’t	mean	Enyo	cannot	interact	with	data	stored	on	servers;
it	certainly	can.	And	it	doesn’t	mean	that	Enyo	can’t	be	served	to	the	browser	by	a	web
server;	it	can.

Who	Is	This	Book	For?
This	book	is	written	for	web	developers	looking	to	learn	new	ways	of	developing
applications	or	for	programmers	who	are	interested	in	learning	web	app	design.	It	is	not
intended	as	an	“introduction	to	programming”	course.	While	designing	with	Enyo	is	easy,
I	expect	some	familiarity	with	HTML,	CSS,	or	JavaScript.

Minimum	Requirements
The	absolute	minimum	requirement	for	working	through	the	book	is	a	web	browser	that	is
compatible	with	Enyo	and	access	to	the	jsFiddle	website.	To	get	the	most	out	of	the	book,
I	recommend	a	PC	(Mac,	Windows,	or	Linux),	a	code	editor,	and	a	modern	web	browser.
A	web	server,	such	as	a	local	installation	of	Apache	or	a	hosting	account,	can	be	helpful
for	testing.	Git	and	Node.js	round	out	the	tools	needed	for	the	full	experience.

Information	on	setting	up	your	environment	to	develop	Enyo	applications	can	be	found	in
Appendix	A.	This	book	was	based	off	Enyo	version	2.5.1,	though	it	should	apply	to	later
versions.

http://jsfiddle.net
http://git-scm.com/
http://nodejs.org

Typographic	Conventions
The	following	conventions	are	used	in	this	book:

Italic

Ital	indicates	new	terms,	URLs,	email	addresses,	filenames,	and	file	extensions.
Constant	width

CW	is	used	for	program	listings,	as	well	as	within	paragraphs	to	refer	to	program
elements	such	as	variable	or	function	names,	databases,	data	types,	environment
variables,	statements,	and	keywords.

Constant	width	bold

CWB	shows	commands	or	other	text	that	should	be	typed	literally	by	the	user.
Constant	width	italic

CWI	shows	text	that	should	be	replaced	with	user-supplied	values	or	by	values
determined	by	context.

TIP
This	icon	precedes	a	link	to	runnable	code	samples	on	jsFiddle.

TIP
This	icon	precedes	a	tip,	suggestion,	or	note.

WARNING
This	icon	precedes	a	warning	or	clarification	of	a	confusing	point.

http://jsFiddle.net

Using	Code	Examples
This	book	is	here	to	help	you	get	your	job	done.	In	general,	if	this	book	includes	code
examples,	you	may	use	the	code	in	this	book	in	your	programs	and	documentation.	You	do
not	need	to	contact	us	for	permission	unless	you’re	reproducing	a	significant	portion	of	the
code.	For	example,	writing	a	program	that	uses	several	chunks	of	code	from	this	book
does	not	require	permission.	Selling	or	distributing	a	CD-ROM	of	examples	from	O’Reilly
books	does	require	permission.	Answering	a	question	by	citing	this	book	and	quoting
example	code	does	not	require	permission.	Incorporating	a	significant	amount	of	example
code	from	this	book	into	your	product’s	documentation	does	require	permission.

We	appreciate,	but	do	not	require,	attribution.	An	attribution	usually	includes	the	title,
author,	publisher,	and	ISBN.	For	example:	“Enyo:	Up	and	Running,	2nd	Edition,	by	Roy
Sutton	(O’Reilly).	Copyright	2015	Roy	Sutton,	978-1-491-92120-3.”

If	you	feel	your	use	of	code	examples	falls	outside	fair	use	or	the	permission	given	above,
feel	free	to	contact	us	at	permissions@oreilly.com.

mailto:permissions@oreilly.com

Safari®	Books	Online
NOTE

Safari	Books	Online	is	an	on-demand	digital	library	that	delivers	expert	content	in	both	book	and	video	form	from
the	world’s	leading	authors	in	technology	and	business.

Technology	professionals,	software	developers,	web	designers,	and	business	and	creative
professionals	use	Safari	Books	Online	as	their	primary	resource	for	research,	problem
solving,	learning,	and	certification	training.

Safari	Books	Online	offers	a	range	of	plans	and	pricing	for	enterprise,	government,
education,	and	individuals.

Members	have	access	to	thousands	of	books,	training	videos,	and	prepublication
manuscripts	in	one	fully	searchable	database	from	publishers	like	O’Reilly	Media,
Prentice	Hall	Professional,	Addison-Wesley	Professional,	Microsoft	Press,	Sams,	Que,
Peachpit	Press,	Focal	Press,	Cisco	Press,	John	Wiley	&	Sons,	Syngress,	Morgan
Kaufmann,	IBM	Redbooks,	Packt,	Adobe	Press,	FT	Press,	Apress,	Manning,	New	Riders,
McGraw-Hill,	Jones	&	Bartlett,	Course	Technology,	and	hundreds	more.	For	more
information	about	Safari	Books	Online,	please	visit	us	online.

http://safaribooksonline.com
https://www.safaribooksonline.com/explore/
https://www.safaribooksonline.com/pricing/
https://www.safaribooksonline.com/enterprise/
https://www.safaribooksonline.com/government/
https://www.safaribooksonline.com/academic-public-library/
https://www.safaribooksonline.com/our-library/
http://safaribooksonline.com/

How	to	Contact	Us
Please	address	comments	and	questions	concerning	this	book	to	the	publisher:
	O’Reilly	Media,	Inc.	
	1005	Gravenstein	Highway	North	
	Sebastopol,	CA	95472	
	800-998-9938	(in	the	United	States	or	Canada)	
	707-829-0515	(international	or	local)	
	707-829-0104	(fax)	

We	have	a	web	page	for	this	book,	where	we	list	errata,	examples,	and	any	additional
information.	You	can	access	this	page	at	http://bit.ly/enyo-upandrunning_2e.

To	comment	or	ask	technical	questions	about	this	book,	send	email	to
bookquestions@oreilly.com.

For	more	information	about	our	books,	courses,	conferences,	and	news,	see	our	website	at
http://www.oreilly.com.

Find	us	on	Facebook:	http://facebook.com/oreilly

Follow	us	on	Twitter:	http://twitter.com/oreillymedia

Watch	us	on	YouTube:	http://www.youtube.com/oreillymedia

http://bit.ly/enyo-upandrunning_2e
mailto:bookquestions@oreilly.com
http://www.oreilly.com
http://facebook.com/oreilly
http://twitter.com/oreillymedia
http://www.youtube.com/oreillymedia

Acknowledgments
First	and	foremost	I	would	like	to	thank	my	wife	Connie	Elliott	and	son	Ian	for	their	help
and	forbearance	as	I	prepared	the	book	you	now	hold	(even	if	only	virtually).	Next,	I
would	like	to	thank	the	team	at	O’Reilly,	in	particular	Simon	St.	Laurent	and	Megan
Blanchette,	who	really	made	the	process	of	getting	this	book	finished	as	painless	as
possible,	Kara	Ebrahim,	who	slew	typos	and	wrangled	words	into	their	proper	places,	and
Kristen	Brown,	who	made	the	second	edition	painless.	V.	L	Elliott	played	a	special	role	in
helping	bring	structure	to	the	original	thoughts	for	this	book.	Further,	thanks	to	those
readers	(technical	and	otherwise)	who	helped	reduce	the	number	of	errors	herein.	Special
thanks	to	Ben	Combee	and	Arthur	Thornton	for	their	efforts	in	spotting	technical	errors	in
the	first	edition.	Many	thanks	to	Jim	Tang	for	keeping	the	official	Enyo	documentation	in
order	and	for	spotting	errors	in	the	second	edition.	I’d	also	like	to	acknowledge	the	dozens
of	individuals	at	HP	and	LG	(from	Silicon	Valley	to	France,	Korea,	and	India)	who	have
had	a	hand	in	developing,	testing,	supporting	and	evangelizing	Enyo,	and	our	numerous
contributors	from	the	broader	Enyo	community.	There	are	far	too	many	people	to	name
here,	but	without	their	hard	work	and	passion,	Enyo	would	not	be	what	it	is	today.	Finally,
special	mention	goes	to	the	creators	of	Enyo,	Scott	Miles	and	Steve	Orvell,	without	whom
this	book	wouldn’t	exist.

Content	Updates
January	8,	2015
A	lot	has	happened	with	Enyo	since	the	first	edition	of	the	book.	Most	notable	are	the
addition	of	data	binding	to	the	core	(Bindings	and	Observers)	and	the	new	Moonstone
smart	TV	UI	library	(Moonstone	Controls).	Other	changes	include	the	deprecation	of
published	properties	and	the	introduction	of	the	new	set()	and	get()	methods
(Properties),	the	switch	from	g11n	to	iLib	for	internationalization	(Going	Global),	and	the
new	Application	object	(Application).	If	you	read	the	previous	edition	of	this	book,	you
will	want	to	focus	on	the	new	chapter	(Chapter	5)	and	then	check	individual	chapters	for
changes.

Chapter	1.	Light	It	Up
One	of	the	best	ways	to	get	familiar	with	Enyo	is	to	get	a	taste	for	what	an	Enyo	app	looks
like.	We’re	going	to	do	a	little	virtual	time	travel	and	fast-forward	to	a	point	just	after	you
finish	reading	this	book.	We’re	going	to	imagine	you	work	for	a	software	company	that
produces	apps	for	customers.

A	New	Project
Your	boss	just	came	and	told	you	that	he	needs	a	light	implemented	in	JavaScript	right
away.	He	tells	you	that	your	company’s	best	client	needs	to	be	able	to	embed	a	light	app
on	their	web	page	and	it	must	work	cross-platform.	Fortunately,	you’ve	just	finished
reading	this	book	and	are	excited	to	use	Enyo	on	a	project.

You	decide	to	make	a	nice	yellow	circle	and	draw	that	on	the	screen:
enyo.ready(function()	{

				enyo.kind({

								name:	‘Light’,

								style:	‘width:	50px;	height:	50px;	border-radius:	50%;’	+

												‘background:	yellow;’

				});

				new	enyo.Application({	name:	‘app’,	view:	‘Light’	});

});

TIP
Try	it	out:	jsFiddle.

With	Enyo,	you	don’t	(usually)	have	to	worry	about	the	HTML	that	makes	up	your	app.
Enyo	creates	it	all	for	you.	In	this	case,	you’ve	created	a	new	kind	(Enyo’s	building	blocks
are	called	kinds,	you	recall)	called	Light	and	you	used	a	little	CSS	magic	you	found	on
the	Web	to	draw	a	circle	without	the	use	of	images	or	the	canvas.

While	using	Enyo’s	Application	component,	you	placed	the	new	kind	into	the	page’s
body	element,	causing	Enyo	to	create	the	HTML.	You	recall	that	the	enyo.ready()
method	executes	code	when	the	framework	is	fully	loaded.	You	inspect	the	HTML	for	the
circle	using	your	favorite	browser’s	debugging	tool	and	see	that	Enyo	created	a	div
element	for	you	and	applied	the	style	you	supplied.	Not	bad	for	a	few	minutes’	work.

http://jsfiddle.net/gh/gist/enyo/2.5.1/43e92ce63e30289237da/
http://davidwalsh.name/css-circles

Improvements
Now	that	you’re	feeling	good	about	what	you	did,	you	check	in	the	first	version	of	the
code	to	the	company’s	source	code	management	system.	You	know	from	past	experience
that	sales	will	probably	need	the	light	in	more	colors	than	yellow.	So,	you	decide	to	use
Enyo’s	property	feature	to	set	the	color	when	the	kind	is	created:

enyo.kind({

				name:	‘Light’,

				color:	‘yellow’,

				style:	‘width:	50px;	height:	50px;	border-radius:	50%;’,

				create:	function()	{

								this.inherited(arguments);

								this.colorChanged();

				},

				colorChanged:	function(oldValue)	{

								this.applyStyle(‘background-color’,	this.color);

				}

});

TIP
Try	it	out:	jsFiddle.

TIP
This	code	(and	the	following	samples)	does	not	include	the	enyo.ready()	line	and	the	instantiation	of	the
Application	kind,	but	you’ll	still	need	it.	We’ll	only	focus	on	the	areas	that	changed.

You	note	that	you’ve	added	a	default	color	for	the	light,	in	case	none	is	defined,	and
you’ve	added	a	function	that	Enyo	will	call	if	anyone	updates	the	light	color	after	the	kind
has	been	created.	You	had	to	add	some	code	to	the	create()	function	that	Enyo	calls	on
all	components	so	that	you	can	set	the	initial	color.	First,	you	test	that	you	can	set	the	color
at	create	time	by	passing	in	a	JavaScript	object	with	the	color	value	you	want:

new	enyo.Application({	name:	‘app’,	view:	{	kind:	‘Light’,	color:	‘green’	}	});

Looks	like	that	works	as	expected.	Now	you	can	test	that	you	can	set	the	color	after
creation:

var	app	=	new	enyo.Application({	name:	‘app’,	view:	Light	});

app.set(‘view.color’,	‘blue’);

TIP
Try	it	out:	jsFiddle.

You	remember	that	when	you	use	set(),	Enyo	will	automatically	call	the	colorChanged()
method	for	you	when	the	color	changes.	Looks	like	that	works	well,	too.

You	check	in	the	latest	version	of	the	code	and	shoot	an	e-mail	off	to	your	boss.	Your
latest	change	added	a	bit	more	code	but	you	know	that	you’ll	be	able	to	use	that	light
component	again	and	again,	regardless	of	what	color	sales	promises.

http://jsfiddle.net/gh/gist/enyo/2.5.1/394bfcbd7e5f738d0ca9/
http://jsfiddle.net/gh/gist/enyo/2.5.1/170bc8cce1936aeecf32/

Curveball
Not	long	after	you	send	off	the	e-mail,	the	phone	rings.	Your	boss	explains	that	sales
finally	let	him	know	that	the	light	they	needed	was	actually	a	traffic	light,	with	red	on	the
top,	yellow	in	the	middle,	and	green	on	the	bottom.

Fortunately,	you’ve	done	the	hard	work.	Getting	the	traffic	light	done	should	be	a	breeze
now.	You	recall	that	Enyo	supports	composition,	allowing	you	to	make	a	new	kind	by
combining	together	other	kinds.	Diving	back	into	the	code,	you	create	a	new
TrafficLight	kind:

enyo.kind({

				name:	‘TrafficLight’,

				components:	[

								{	name:	‘stop’,	kind:	‘Light’,	color:	‘red’	},

								{	name:	‘slow’,	kind:	‘Light’,	color:	‘yellow’	},

								{	name:	‘go’,	kind:	‘Light’,	color:	‘green’	}

]

});

TIP
Try	it	out:	jsFiddle.

Not	bad,	if	you	do	say	so	yourself.	You	reused	the	Light	kind	you	created	and	you	didn’t
have	to	copy	all	that	code	over	and	over.	You	push	your	changes	up,	shoot	another	e-mail
off	to	your	boss	and	wait	for	the	phone	to	ring	again.

http://jsfiddle.net/gh/gist/enyo/2.5.1/643b6b85b9e01f449359/

QA	on	the	Line
The	next	call	is	not,	surprisingly,	from	your	boss,	but	from	the	QA	department.	They	did
some	testing	with	the	lights	and	found	that	they	don’t	turn	off.	They	mention	something
about	the	specs	for	the	light,	saying	that	tapping	the	light	should	toggle	it	on	and	off.
While	wondering	how	they	managed	to	get	ahold	of	specs	you’d	never	seen,	you	begin
thinking	about	how	you’ll	implement	that.	You	quickly	hang	up	after	asking	for	a	copy	of
the	specs.

You	remember	that	Enyo	has	an	event	system	that	allows	you	to	respond	to	various	events
that	occur.	You	can	add	a	new	property	for	the	power	state	of	the	light	and	you	can	toggle
it	when	you	receive	a	tap	event	(an	event	you	know	is	optimized	to	perform	well	on
mobile	devices	with	touch	events).	After	thinking	some	more	about	the	problem,	you
realize	you	don’t	really	want	to	change	your	existing	light	kind.	You	remember	that	Enyo
supports	inheritance,	allowing	you	to	create	a	new	light	that	has	all	the	same	behaviors	as
your	existing	light,	plus	the	new	behaviors	you	need:

enyo.kind({

				name:	‘PoweredLight’,

				kind:	‘Light’,

				powered:	true,

				handlers:	{

								‘ontap’:	‘tapped’

				},

				create:	function()	{

								this.inherited(arguments);

								this.poweredChanged();

				},

				tapped:	function(sender,	event)	{

								this.set(‘powered’,	!this.get(‘powered’));

				},

				poweredChanged:	function(oldValue)	{

								this.applyStyle(‘opacity’,	this.powered	?	‘1’	:	‘0.2’);

				}

});

TIP
Try	it	out:	jsFiddle.

You	made	use	of	the	handlers	block	to	add	the	events	you	want	to	listen	for	and	specified
the	name	of	the	method	you	wanted	to	call.	You	recall	that	in	Enyo,	you	use	the	name	of
the	event	instead	of	the	event	itself	because	Enyo	will	automatically	bind	the	methods	to
each	instance	of	your	kind	so	it	can	access	the	methods	and	data	of	your	kind’s	instance.

In	your	tap	handler,	you	used	the	partner	to	the	set()	method,	get(),	to	retrieve	the
current	value	of	the	powered	property	and	toggle	it.	In	the	poweredChanged()	function,
you	apply	a	little	opacity	to	the	light	to	give	it	a	nice	look	when	it’s	powered	off	(you	can
read	a	local	property	directly	without	get()).	You	update	the	TrafficLight	kind,	give	it	a
quick	test	in	the	browser,	and	verify	that	everything	looks	good.

http://jsfiddle.net/gh/gist/enyo/2.5.1/353ebcc64124da89ed2d/

The	E-mail
Just	after	you	commit	the	latest	changes,	you	receive	a	copy	of	the	specs	from	QA.	Looks
like	you’ve	got	everything	covered	except	for	a	logging	feature.	The	specs	call	for	a	log	to
be	maintained	of	which	light	was	activated	or	deactivated	and	the	time	of	the	event.
Events,	huh?	Sounds	like	it’s	time	to	revisit	Enyo	events.	You	recall	from	your	training
that	Enyo	allows	kinds	to	create	their	own	events,	to	which	other	kinds	can	subscribe.

You	quickly	add	a	new	event	to	the	PoweredLight	kind	called	onStateChanged.	You	know
that	Enyo	automatically	creates	a	method	called	doStateChanged()	that	you	can	call	to
send	the	event	to	a	subscriber.	You	quickly	add	the	relevant	code:

enyo.kind({

				name:	‘PoweredLight’,

				kind:	‘Light’,

				powered:	true,

				events:	{

								‘onStateChanged’	:	”

				},

				handlers:	{

								‘ontap’:	‘tapped’

				},

				create:	function()	{

								this.inherited(arguments);

								this.poweredChanged();

				},

				tapped:	function(sender,	event)	{

								this.set(‘powered’,	!this.get(‘powered’));

				},

				poweredChanged:	function(oldValue)	{

								this.applyStyle(‘opacity’,	this.powered	?	‘1’	:	‘0.2’);

								this.doStateChanged({	powered	:	this.powered	});

				}

});

Now	you	just	need	to	subscribe	to	the	event	in	the	TrafficLight	kind.	You	could,	of
course,	subscribe	to	onStateChanged	in	each	Light	definition,	but	you	remember	that	the
handlers	block	lets	you	subscribe	to	events	a	kind	receives	regardless	of	which	child
originates	them.	You	know	you	can	use	the	sender	parameter	to	check	to	see	which	light
sent	the	event	and	you	can	use	the	event	parameter	to	access	the	object	sent	by	the	light:

enyo.kind({

				name:	‘TrafficLight’,

				handlers:	{

								‘onStateChanged’:	‘logStateChanged’

				},

				components:	[

								{	name:	‘stop’,	kind:	‘PoweredLight’,	color:	‘red’	},

								{	name:	‘slow’,	kind:	‘PoweredLight’,	color:	‘yellow’	},

								{	name:	‘go’,	kind:	‘PoweredLight’,	color:	‘green’	}

],

				logStateChanged:	function(sender,	event)	{

								enyo.log(sender.name	+	‘	powered	‘	+	(event.powered	?	‘on’	:	‘off’)

												+	‘	at	‘	+	new	Date());

				}

});

TIP
Try	it	out:	jsFiddle.

A	quick	logging	function	and	a	handlers	block	later	and	things	are	starting	to	look
finished.	After	the	code	has	been	checked	in	and	QA	has	signed	off,	you	can	relax	and
start	planning	that	vacation	—	as	if	that	will	happen.

http://jsfiddle.net/gh/gist/enyo/2.5.1/dd093c184570f35d36a5/

Summary
We’ve	just	worked	through	a	simple	Enyo	application	and	explored	several	of	the
concepts	that	make	using	Enyo	productive.	We	saw	how	easy	it	is	to	quickly	prototype	an
application	and	how	Enyo	kept	the	code	maintainable	and	potentially	reusable.	With	this
foundation,	we’ll	be	able	to	explore	the	deeper	concepts	of	Enyo	in	the	coming	chapters.

Chapter	2.	Core	Concepts

Introduction
In	this	chapter,	we’ll	cover	the	core	concepts	of	Enyo	that	we	only	touched	on	in	the	last
chapter.	You	will	be	able	to	write	powerful	apps	after	absorbing	the	information	in	just	this
chapter.	We’ll	go	over	the	concepts	one	by	one	and	illustrate	each	with	code	you	can	run
in	your	browser.

One	of	the	driving	ideas	behind	Enyo	is	that	you	can	combine	simple	pieces	to	create
more	complex	ones.	Enyo	introduces	four	concepts	to	assist	you:	kinds,	encapsulation,
components,	and	layout.	We’ll	cover	components	and	layout	more	thoroughly	in	Chapter	3
and	Chapter	4,	respectively.

Kinds
Enyo	is	an	object-oriented	framework.	It	is	true	that	every	JavaScript	application
regardless	of	framework	(or	lack	thereof)	contains	objects.	However,	Enyo’s	core	features
provide	a	layer	on	top	of	JavaScript	that	makes	it	easier	to	express	object-oriented
concepts	such	as	inheritance	and	encapsulation.

In	Enyo,	kinds	are	the	building	blocks	that	make	up	apps.	The	widgets	that	appear	on
screen	are	instances	of	kinds,	as	are	the	objects	that	perform	Ajax	requests.	Kinds	are	not
strictly	for	making	visual	components.	Basically,	kinds	provide	a	template	from	which	the
actual	objects	that	make	up	your	app	are	generated.

Be	Kind
One	of	the	simplest	possible	declarations	for	a	kind	is:

enyo.kind({	name:	‘MyKind’	});

NAMES
Kinds	don’t	even	need	names.	Enyo	will	automatically	assign	unique	names,	though	you	won’t	know	what	they
are.	Anonymous	kinds	are	often	used	in	Enyo	apps.	You	saw	one	in	Chapter	1	when	the	color	of	the	light	was	set
to	green	in	the	view	declaration.
Top-level	kinds	(those	declared	outside	of	other	kinds)	automatically	get	a	global	object	created	with	that	name
(for	example,	Light	in	the	previous	chapter).	It	is	possible	to	put	kinds	into	a	namespace	by	separating	name	parts
with	periods.	For	example,	using	name:	myApp.Light	will	result	in	a	myApp	object	with	a	Light	member.
Namespaces	provide	a	good	mechanism	for	preventing	naming	conflicts	with	your	apps,	particularly	when	using
reusable	components.
As	a	convention,	we	use	uppercase	names	for	kind	definitions	and	lowercase	names	for	instances	of	kinds	(those
kinds	declared	in	the	components	block).

enyo.kind()	is	a	“factory”	for	creating	new	kinds.	In	this	case,	we	get	a	new	object	that
inherits	from	the	Enyo	control	kind,	enyo.Control.	Control	is	the	base	component	for
objects	that	will	render	when	placed	on	a	web	page.

When	creating	kinds,	you	pass	in	an	object	that	defines	the	starting	state	of	the	kind	as
well	as	any	methods	it	will	need.	For	example,	control	kinds	have	a	content	property:

enyo.kind({	name:	‘MyKind’,	content:	‘Hello	World!’	});

As	you	saw	in	Chapter	1,	when	rendered	onto	a	page	this	code	will	create	a	div	tag	with
the	content	placed	in	it.	To	render	this	into	a	body	on	a	web	page,	you	specify	it	as	the
view	of	an	Application.

We	can	add	behaviors	to	our	kind	by	adding	methods	(for	example,	the	tap	handling
method	we	added	to	the	Light	kind).	As	you	may	recall,	we	referenced	the	method	name
in	the	handlers	block	using	a	string.	We	use	strings	so	Enyo	can	bind	our	methods	as
kinds	are	created.

Encapsulation
Encapsulation	is	a	fancy	computer	science	term	that	refers	to	restricting	outside	objects’
access	to	an	object’s	internal	features	through	providing	an	interface	for	interacting	with
the	data	contained	in	the	object.	JavaScript	does	not	have	very	many	ways	to	prohibit
access	to	an	object’s	data	and	methods	from	outside,	so	Enyo	promotes	encapsulation	by
giving	programmers	various	tools	and	conventions.

By	convention,	Enyo	kinds	should	have	no	dependencies	on	their	parent	or	sibling	kinds
and	they	should	not	rely	on	implementation	details	of	their	children.	While	it	is	certainly
possible	to	create	Enyo	kinds	that	violate	these	rules,	Enyo	provides	several	mechanisms
to	make	that	unnecessary.	Those	mechanisms	include	properties	and	events.

By	being	aware	of	encapsulation,	Enyo	programmers	can	tap	in	to	the	benefits	of	code
reuse,	easy	testing,	and	drop-in	components.

Properties
Kinds	can	declare	properties	(for	example,	the	color	and	powered	properties	from
Chapter	1).	The	property	system	allows	for	some	very	powerful	features,	such	as	two-way
data	binding	and	notification	for	changes	to	values.	We’ll	discuss	the	basic	features	of
properties	first	and	then	dive	into	the	more	advanced	features	of	bindings	and	observers.

Basic	Properties

Properties	are	accessed	using	the	get()	and	set()	methods	defined	on	all	kinds.	In
addition,	there	is	a	mechanism	for	tracking	changes	to	properties.	Properties	don’t	need	to
even	be	declared	on	a	kind,	though	you	should	at	least	document	their	presence	so	that
users	of	your	kinds	(including	yourself)	will	know	(remember)	that	they	exist.

enyo.kind({

				name:	‘MyKind’,

				myValue:	3

});

As	you	can	see,	you	also	specify	a	default	value	for	a	property.	Within	MyKind	you	can
read	the	property	directly	using	this.myValue.	When	you	are	accessing	myValue
externally	(e.g.,	from	a	parent	control),	you	should	use	the	get()	or	set()	methods.
Whenever	the	value	is	modified	using	the	setter,	Enyo	will	automatically	call	a	“changed”
method.	In	this	case,	the	changed	method	is	myValueChanged().	When	called,	the	changed
method	will	be	passed	the	previous	value	of	the	property	as	an	argument.

WARNING
The	set()	method	does	not	call	the	changed	method	if	the	value	to	be	set	is	the	same	as	the	current	value.	You
can,	however,	override	this	behavior	by	passing	a	truthy	value	as	a	third	argument	to	set().

If	you	look	back	to	our	earlier	discussion	on	kinds	you	may	have	noticed	that	we	passed	in
some	values	for	properties	when	we	were	declaring	our	kinds.	Those	values	set	the	initial
contents	of	those	properties.	Enyo	does	not	call	the	changed	method	during	construction.
If	you	have	special	processing	that	needs	to	occur,	you	should	call	the	changed	method
directly	within	create():

enyo.kind({

				name:	‘MyKind’,

				myValue:	3,

				create:	function()	{

								this.inherited(arguments);

								this.myValueChanged();

				},

				myValueChanged:	function(oldValue)	{

								//	Some	processing

				}

});

If	you	want	to	tie	the	value	of	a	property	to	another	property	within	your	kind	(such	as	the
content	of	a	control),	you	can	use	a	binding,	which	is	triggered	during	construction.	We’ll
cover	bindings	in	the	next	section.

WARNING
You	should	only	specify	simple	values	(strings,	numbers,	booleans,	etc.)	for	the	default	values	of	properties	and
member	variables.	Using	arrays	and	objects	can	lead	to	strange	problems.	See	Instance	Constructors	for	a	method
to	initialize	complex	values.

Bindings	and	Observers

The	set()	method	makes	it	possible	to	set	up	bindings	that	tie	the	value	of	two	properties
together.	You	can	even	monitor	properties	on	other	kinds.	Bindings	really	stand	out	when
it	comes	to	associating	data	with	the	contents	of	controls.	We’ll	cover	the	use	of	bindings
with	data-driven	applications	in	Chapter	5.

At	their	simplest,	bindings	create	a	one-way	association	between	two	properties.	The
following	example	creates	a	property	called	copy	that	will	be	updated	any	time	the	value
of	original	changes:

enyo.kind({

				name:	‘ShadowKind’,

				original:	3,

				copy:	null,

				bindings:	[

								{	from:	‘original’,	to:	‘copy’	}

]

});

We	could	have	accomplished	the	same	thing	using	an	originalChanged()	method	—
however,	it	would	have	taken	more	code	and	we	would	not	be	able	to	monitor	the	value	of
properties	declared	on	components	declared	within	our	kind.	Further,	we	would	have	to
set	up	a	copyChanged()	method	if	we	wanted	to	create	a	two-way	connection.	Using
bindings,	we	can	do	this	with	one	simple	change:

enyo.kind({

				name:	‘ShadowKind’,

				original:	3,

				copy:	null,

				bindings:	[

								{	from:	‘original’,	to:	‘copy’,	oneWay:	false	}

]

});

Bindings	have	even	more	power,	including	the	ability	to	transform	values	when	they	are
triggered.	We’ll	cover	transformations	in	Chapter	5.

Observers,	like	bindings,	monitor	properties	for	changes.	When	an	observer	detects	a
value	change,	it	invokes	the	method	specified	in	the	observer	declaration.	We	can	rewrite
the	earlier	changed	example	as	follows:

enyo.kind({

				name:	‘MyKind’,

				myValue:	3,

				observers:	[

								{	path:	‘myValue’,	method:	‘myValueUpdated’	}

],

				myValueUpdated:	function(oldValue,	newValue)	{

								//	Some	processing

				}

});

Note	that	we	did	not	need	to	override	create()	to	invoke	myValueUpdated()	because
bindings	and	observers	will	be	triggered	during	initialization.

TIP
With	bindings	and	observers,	the	path	to	a	property	is	a	string	and	is	relative	to	this.	Binding	to	a	nested
component’s	property	(see	Chapter	3)	can	be	accomplished	like	so:	$.component.value.

Events
If	properties	provide	a	way	for	parent	kinds	to	communicate	with	their	children,	then
events	provide	a	way	for	kinds	to	communicate	with	their	parents.	Enyo	events	give	kinds
a	way	to	be	notified	when	something	they’re	interested	in	occurs.	Events	can	include	data
relevant	to	the	event.	Events	are	declared	like	this:

enyo.kind({

				name:	‘Eventer’,

				handlers:	{	ontap:	‘myTap’	},

				events:	{	onMyEvent:	”	},

				content:	‘Click	for	the	answer’,

				myTap:	function()	{

								this.doMyEvent({	answer:	42	});

				}

});

Event	names	are	always	prefixed	with	“on”	and	are	always	invoked	by	calling	a	method
whose	name	is	prefixed	with	“do”.	Enyo	creates	the	“do”	helper	method	for	us	and	it	takes
care	of	checking	that	the	event	has	been	subscribed	to.	The	first	parameter	passed	to	the
“do”	method,	if	present,	is	passed	to	the	subscriber.	Any	data	to	be	passed	with	the	event
must	be	wrapped	in	an	object.

Subscribing	is	easy:
enyo.kind({

				name:	‘Subscriber’,

				components:	[{	kind:	‘Eventer’,	onMyEvent:	‘answered’	}],

				answered:	function(sender,	event)	{

								alert(‘The	answer	is:	‘	+	event.answer);

								return(true);

				}

});

TIP
Try	it	out:	jsFiddle.

The	sender	parameter	is	the	kind	that	last	bubbled	the	event	(which	may	be	different	from
the	kind	that	originated	the	event).	The	event	parameter	contains	the	data	that	was	sent
from	the	event.	The	object	will	always	have	at	least	one	member,	originator,	which	is
the	Enyo	component	that	started	the	event.

When	responding	to	an	event,	you	should	return	a	truthy	value	to	indicate	that	the	event
has	been	handled.	Otherwise,	Enyo	will	keep	searching	through	the	sender’s	ancestors	for
other	event	handlers.	If	you	need	to	prevent	the	default	action	for	DOM	events,	use
event.preventDefault().

TIP
Enyo	kinds	cannot	subscribe	to	their	own	events,	including	DOM	events,	using	the	onXxx	syntax.	If	you	need	to

http://jsfiddle.net/gh/gist/enyo/2.5.1/fdb3d75dec84cfbefb6b/

subscribe	to	an	event	that	originates	on	the	kind,	you	can	use	the	handlers	block,	as	we	did	for	the	previous	tap
event.

Advanced	Events
The	standard	events	described	previously	are	bubbling	events,	meaning	that	they	only	go
up	the	app	hierarchy	from	the	object	that	originated	them	through	the	object’s	parent.
Sometimes	it’s	necessary	to	send	events	out	to	other	objects,	regardless	of	where	they	are
located.	While	it	might	be	possible	to	send	an	event	up	to	a	shared	common	parent	and
then	call	back	down	to	the	target,	this	is	far	from	clean.	Enyo	provides	a	method	called
signals	to	handle	this	circumstance.

To	send	a	signal,	call	the	send()	method	on	the	enyo.Signals	object.	To	subscribe	to	a
signal,	include	a	Signals	kind	in	your	components	block	and	subscribe	to	the	signal	you
want	to	listen	to	in	the	kind	declaration.	The	following	example	shows	how	to	use	signals:

enyo.kind({

				name:	‘Signaller’,

				components:	[

								{	kind:	‘Button’,	content:	‘Click’,	ontap:	‘sendit’	}

],

				sendit:	function()	{

								enyo.Signals.send(‘onButtonSignal’);

				}

});

enyo.kind({

				name:	‘Receiver’,

				components:	[

								{	name:	‘display’,	content:	‘Waiting…’	},

								{	kind:	‘Signals’,	onButtonSignal:	‘update’	}

],

				update:	function(sender,	event)	{

								this.set(‘$.display.content’,	‘Got	it!’);

				}

});

TIP
Try	it	out:	jsFiddle.

Like	regular	events,	signals	have	names	prefixed	with	“on”.	Unlike	events,	signals	are
broadcast	to	all	subscribers.	You	cannot	prevent	other	subscribers	from	receiving	signals
by	passing	back	a	truthy	return	from	the	signal	handler.	Multiple	signals	can	be	subscribed
to	using	a	single	Signals	instance.

Signals	should	be	used	sparingly.	If	you	begin	to	rely	on	signals	for	passing	information
back	and	forth	between	objects,	you	run	the	risk	of	breaking	the	encapsulation	Enyo	tries
to	help	you	reinforce.	It	might	be	better	to	use	a	shared	model	to	hold	the	data.	We’ll
discuss	models	in	Chapter	5.

TIP
Enyo	uses	the	signals	mechanism	for	processing	DOM	events	that	do	not	target	a	specific	control,	such	as
onbeforeunload	and	onkeypress.

Final	Thoughts	on	Encapsulation
While	properties	and	events	go	a	long	way	towards	helping	you	create	robust	applications,
they	are	not	always	enough.	Most	kinds	will	have	methods	they	need	to	expose	(an	API,	if
you	will)	and	methods	they	wish	to	keep	private.	While	Enyo	does	not	have	any
mechanisms	to	enforce	that	separation,	code	comments	and	documentation	can	serve	to

http://jsfiddle.net/gh/gist/enyo/2.5.1/427c441f1f3ce57bd739/

help	other	users	of	your	kinds	understand	what	is	and	isn’t	available	to	outside	kinds.

Inheritance
Enyo	provides	an	easy	method	for	deriving	new	kinds	from	existing	kinds.	This	process	is
called	inheritance.	When	you	derive	a	kind	from	an	existing	kind,	it	inherits	the
properties,	events,	and	methods	from	that	existing	kind.	All	kinds	inherit	from	at	least	one
other	kind.	The	ultimate	ancestor	for	nearly	all	Enyo	kinds	is	enyo.Object.	Usually,
however,	kinds	derive	from	enyo.Component	or	enyo.Control.

To	specify	the	parent	kind,	set	the	kind	property	during	creation:
enyo.kind({

				name:	“InheritedKind”,

				kind:	“enyo.Control”

});

As	mentioned,	if	you	don’t	specify	the	kind,	Enyo	will	automatically	determine	the	kind
for	you.	In	most	cases,	this	will	be	Control.	An	example	of	an	instance	where	Enyo	will
pick	a	different	kind	is	when	creating	menu	items	for	an	Onyx	Menu	kind.	By	default,
components	created	within	a	Menu	will	be	of	kind	MenuItem.	If	you	want	to	specify	the
kind	for	child	components	in	your	own	components,	set	the	defaultKind	property.

If	you	override	a	method	on	a	derived	kind	and	wish	to	call	the	same	named	method	on
the	parent,	use	the	inherited()	method.	You	may	recall	that	we	did	this	for	the	create()
method	in	the	Light	kind.	You	must	always	pass	arguments	as	the	parameter	to	the
inherited()	method.

Advanced	Kinds
Enyo	provides	two	additional	features	for	declaring	kinds,	which	are	most	often	used
when	creating	reusable	kinds:	instance	constructors	and	statics.

Instance	Constructors
For	some	kinds,	initialization	must	take	place	when	an	instance	of	that	kind	is	created.
One	particular	use	case	is	defining	array	properties.	If	you	were	to	declare	an	array
member	in	a	kind	definition	then	all	instances	would	be	initialized	with	the	last	value	set
to	the	array.	This	is	unlikely	to	be	the	behavior	you	wanted.	When	declaring	a	constructor,
be	sure	to	call	the	inherited()	method	so	that	any	parent	objects	can	perform	their
initialization	as	well.	The	following	is	a	sample	constructor:

				constructor:	function()	{

								this.instanceArray	=	[];

								this.inherited(arguments);

				}

TIP
It’s	worth	noting	that	constructor()	is	available	for	all	kinds.	The	create()	method	used	in	many	examples	is
only	available	for	descendants	of	enyo.Component.

Statics
Enyo	supports	declaring	methods	that	are	defined	on	the	kind	constructor.	These	methods
are	accessed	by	the	kind	name	rather	than	from	a	particular	instance	of	the	kind.	Statics
are	often	used	for	utility	methods	that	do	not	require	an	instance	and	for	properties	that
should	be	shared	among	all	instances,	such	as	a	count	of	the	number	of	instances	created.
The	following	kind	implements	an	instance	counter	and	shows	off	both	statics	and
constructors:

enyo.kind({

				name:	‘InstanceCounter’,

				constructor:	function()	{

								InstanceCounter.count	+=	1;

								this.inherited(arguments);

				},

				statics:	{

								count:	0,

								currentCount:	function()	{

												return(this.count);

								}

				}

});

TIP
Try	it	out:	jsFiddle.

STRUCTURE	OF	A	KIND
It’s	good	to	be	consistent	when	declaring	kinds.	It	helps	you	and	others	who	may	need	to	read	your	code	later	to
know	where	to	look	for	important	information	about	a	kind.	In	general,	kinds	should	be	declared	in	the	following
order:

	
Name	of	the	kind
Parent	kind
Properties,	events,	and	handlers

http://jsfiddle.net/gh/gist/enyo/2.5.1/c4b0f1f63d7ef133d0e4/

Kind	variables
Classes	and	styles
Components
Bindings	and	observers
Public	methods
Protected	and	private	methods
Static	members

Summary
We	have	now	explored	the	core	features	of	Enyo.	You	should	now	understand	the	object
oriented	features	that	allow	for	creating	robust	and	reliable	apps.	We’ll	build	upon	this
knowledge	in	the	next	chapters	by	exploring	the	additional	libraries	and	features	that	make
up	the	Enyo	framework.

Chapter	3.	Components,	Controls,	and	Other
Objects
In	Chapter	2,	we	covered	kinds	and	inheritance.	It	should	come	as	no	surprise	that	Enyo
makes	good	use	of	those	features	by	providing	a	rich	hierarchy	of	kinds	you	can	use	and
build	upon	in	your	apps.	In	this	chapter,	we’ll	focus	on	two	important	kinds	that	Enyo
provides:	Component	and	Control.	We’ll	also	touch	on	some	of	the	other	kinds	that	you’ll
need	to	flesh	out	your	apps.

Components
Components	introduce	one	of	the	most-used	features	of	Enyo	apps:	the	ability	to	create
kinds	composed	of	other	kinds.	This	ability	to	compose	new	components	from	other
components	is	one	of	the	key	features	that	encapsulation	allows.	Most	kinds	you’ll	use,
including	the	Application	kind,	will	be	based	upon	Component	or	one	of	its	descendants.

Composition
Composition	is	a	powerful	feature	that	lets	you	focus	on	breaking	down	your	app	into
discrete	pieces	and	then	combine	those	pieces	together	into	a	unified	app.	We	used	this
feature	in	Chapter	1	when	we	built	a	traffic	light	out	of	three	individual	lights.	Each
descendant	of	Component	has	a	components	block	that	takes	an	array	of	component
definitions.

For	example,	in	Advanced	Events,	the	Receiver	kind	has	a	Control	named	display:
enyo.kind({

				name:	‘Receiver’,

				components:	[

								{	name:	‘display’,	content:	‘Waiting…’	},

								{	kind:	‘Signals’,	onButtonSignal:	‘update’	}

],

				…

Methods	within	Receiver	can	access	display	through	this.$.display.	For	set()	and
get(),	the	path	would	be	$.display.propertyName.	Enyo	stores	references	to	all	owned
components	in	the	$	object.	Components	without	explicit	names	(such	as	Signals	in	the
previous	example)	are	given	unique	names	and	added	to	$.

TIP
Every	component	declared	within	a	kind	will	be	owned	by	the	kind,	even	if	nested	within	multiple	components
blocks.

Many	of	the	components	that	Enyo	supplies	were	designed	as	containers	for	other
components.	We’ll	cover	many	of	these	kinds	in	Chapter	4.	Some,	such	as	Button,	weren’t
intended	to	contain	other	components.

Component	Methods
Components	introduce	create()	and	destroy()	methods	to	assist	with	the	component’s
lifecycle.	These	methods	can	be	overridden	by	kinds	that	derive	from	Component	to
provide	extra	functionality,	such	as	allocating	and	deallocating	resources.	We	previously
used	the	create()	method	when	we	wanted	to	invoke	the	myValueChanged()	method.	We
can	use	this	feature	to	create	a	simple	heartbeat	object:

enyo.kind({

				name:	‘Heartbeat’,

				events:	{

								onBeat:	”

				},

				create:	function()	{

								this.inherited(arguments);

								this.timer	=	window.setInterval(enyo.bind(this,	‘beat’),	1000);

				},

				destroy:	function()	{

								if(this.timer	!==	undefined)	{

												window.clearInterval(this.timer);

								}

								this.inherited(arguments);

				},

				beat:	function()	{

								this.doBeat({});

				}

});

TIP
Try	it	out:	jsFiddle.

We	used	the	destroy()	method	to	ensure	that	we	cleaned	up	the	timer	we	allocated	in	the
create()	method.	You	may	also	notice	that	we	introduced	a	new	method:	enyo.bind().
In	all	our	previous	event	handlers,	Enyo	made	sure	the	context	of	the	event	handlers	was
set	correctly.	We’ll	need	to	take	care	of	that	ourselves	when	subscribing	directly	to	non-
Enyo	events.	For	more	information	on	binding	and	why	it’s	necessary,	please	see	this
article	on	Binding	Scope	in	JavaScript.

Dynamic	Components
Up	to	this	point	we’ve	always	created	components	when	a	kind	is	being	instantiated.	It	is
also	possible	to	create	and	destroy	components	dynamically.	Components	have	a	number
of	methods	for	interacting	with	their	owned	components.	You	can	use	createComponent()
to	create	an	individual	component	or	create	a	number	of	components	at	once	using
createComponents().	To	remove	a	component	from	its	owner,	call	the	component’s
destroy()	method.	It	is	also	possible	to	destroy	all	owned	components	by	calling
destroyComponents().	The	following	example	shows	how	to	create	a	component
dynamically:

enyo.kind({

				name:	‘DynamicSample’,

				components:	[

								{	kind:	‘Button’,	content:	‘Click’,	ontap:	‘tapped’	}

],

				tapped:	function(sender,	event)	{

								this.createComponent({	content:	‘A	new	component’	});

								this.render();

								return	true;

				}

});

TIP
Try	it	out:	jsFiddle.

New	controls	are	not	rendered	until	requested.	Call	the	render()	method	on	a	control	to
ensure	that	it	and	its	children	are	rendered	to	the	DOM.

http://jsfiddle.net/gh/gist/enyo/2.5.1/3370efc8a45fa912875b/
http://www.robertsosinski.com/2009/04/28/binding-scope-in-javascript/
http://jsfiddle.net/gh/gist/enyo/2.5.1/2fc584b20662437a7b96/

Controls
Control,	a	descendant	of	Component,	is	the	kind	responsible	for	providing	the	user
interface	to	your	apps.	A	large	part	of	what	makes	an	app	an	app	is	the	user	interface.	The
Enyo	core	provides	wrappers	around	the	most	basic	type	of	controls	found	natively	in
browsers.	The	Onyx	and	Moonstone	libraries	expand	upon	those	basic	controls	and
provide	the	more	specialized	elements	expected	in	modern	apps.

Controls	are	important	because	they	map	to	DOM	nodes.	They	introduce	a	number	of
properties	and	methods	that	will	be	important	for	your	apps.	By	default,	controls	render
into	a	div	element.	You	can	override	this	behavior	by	specifying	the	tag	property	when
defining	the	control	(e.g.,	tag:	‘span’).

Core	Controls
The	core	visual	controls	in	Enyo	are	wrappers	around	the	basic	elements	you	can	create
directly	with	HTML.	Of	course,	because	they’re	Enyo	controls,	they’ll	have	properties	and
events	defined	that	make	them	easy	to	use	within	your	apps.	The	core	controls	include:
Button,	Checkbox,	Image,	Input,	RichText,	Select,	and	TextArea.

The	following	code	sample	creates	a	simple	app	with	several	controls:
enyo.kind({

				name:	‘ControlSample’,

				components:	[

								{	kind:	‘Button’,	content:	‘Click’,	ontap:	‘tapped’	},

								{	tag:	‘br’},

								{	kind:	‘Checkbox’,	checked:	true,	onchange:	‘changed’	},

								{	tag:	‘br’},

								{	kind:	‘Input’,	placeholder:	‘Enter	something’,	onchange:	‘changed’	},

								{	tag:	‘br’},

								{	kind:	‘RichText’,	value:	‘<i>Italics</i>’,	onchange:	‘changed’	}

],

				tapped:	function(sender,	event)	{

								//	React	to	taps

				},

				changed:	function(sender,	event)	{

								//	React	to	changes

				}

});

TIP
Try	it	out:	jsFiddle.

You	will	note	that	the	controls	themselves	are	unstyled,	appearing	with	the	browser’s
default	style.	In	Onyx	Controls,	we’ll	see	how	the	Onyx	versions	of	these	controls
compare	to	the	base	versions.	You	may	also	note	that	some	controls	use	the	content
property	to	set	the	content	of	the	control.	The	exceptions	to	this	rule	are	the	text	field
controls:	Input,	TextArea,	and	RichText.	These	controls	use	the	value	property	to	get
and	set	the	text	content.	In	these	samples	we	use	simple	br	tags	to	arrange	the	controls.	In
an	actual	app,	you’ll	want	to	use	CSS	or	the	layout	controls	described	in	the	next	chapter.

TIP

http://jsfiddle.net/gh/gist/enyo/2.5.1/0ae8afcdbfa20d6dba95/

By	default,	most	Enyo	controls	escape	any	HTML	in	their	content	or	value	properties.	This	is	to	prevent	the
inadvertent	injection	of	JavaScript	from	unsafe	sources.	If	you	want	to	use	HTML	in	the	contents,	set	the
allowHtml	property	to	true.	By	default,	RichText	allows	HTML	content.

Onyx	Controls
The	Onyx	library	(an	optional	piece	of	Enyo)	includes	professionally	designed	widgets.
These	controls	expand	upon	the	basic	set	available	in	the	Enyo	core.	The	Onyx	controls
that	correspond	to	the	core	controls	use	the	same	interface	as	those	core	controls:

enyo.kind({

				name:	‘ControlSample’,

				components:	[

								{	kind:	‘onyx.Button’,	content:	‘Click’,	ontap:	‘tapped’	},

								{	tag:	‘br’},

								{	kind:	‘onyx.Checkbox’,	checked:	true,	onchange:	‘changed’	},

								{	tag:	‘br’},

								{	kind:	‘onyx.InputDecorator’,	components:	[

												{	kind:	‘onyx.Input’,	placeholder:	‘Enter	something’,

														onchange:	‘changed’	}

]},

								{	tag:	‘br’},

								{	kind:	‘onyx.InputDecorator’,	components:	[

												{	kind:	‘onyx.RichText’,	value:	‘<i>Italics</i>’,

														onchange:	‘changed’	}

]}

],

				tapped:	function(sender,	event)	{

								//	React	to	taps

				},

				changed:	function(sender,	event)	{

								//	React	to	changes

				}

});

TIP
Try	it	out:	jsFiddle.

As	you	can	see,	the	Onyx	widgets	are	much	more	pleasing	to	look	at.	With	Onyx,	we
wrapped	the	text	input	controls	in	an	InputDecorator.	This	is	a	control	that	allows	for
additional	styling	and	should	be	used	for	all	Onyx	input	controls.

The	Onyx	library	also	provides	a	number	of	new	controls,	including	Groupbox,
ProgressBar,	Toolbar	and	TimePicker,	among	others.	Here’s	a	sample	of	some	of	the
new	Onyx	controls	that	shows	off	their	important	properties	and	events:

enyo.kind({

				name:	‘OnyxSample’,

				components:	[

								{	kind:	‘onyx.Toolbar’,	components:	[

												{	content:	‘Toolbar’	},

												{	kind:	‘onyx.Button’,	content:	‘Toolbar	Button’	}

]},

								{	content:	‘Radio	Group’	},

								{	kind:	‘onyx.RadioGroup’,	onActivate:	‘activated’,	components:	[

												{	content:	‘One’,	active:	true	},

http://jsfiddle.net/gh/gist/enyo/2.5.1/140179170e81ff4ce9bb/

												{	content:	‘Two’	},

												{	content:	‘Three’	}

]},

								{	content:	‘Groupbox’	},

								{	kind:	‘onyx.Groupbox’,	components:	[

												{	kind:	‘onyx.GroupboxHeader’,	content:	‘Groupbox	Header’	},

												{	content:	‘Groupbox	item’	}

]},

								{	content:	‘ProgressBar’	},

								{	kind:	‘onyx.ProgressBar’,	progress:	25	}

],

				activated:	function(sender,	event)	{

								//	React	to	radio	button	activation	change

				}

});

TIP
Try	it	out:	jsFiddle.

Moonstone	Controls
Another	UI	library	available	for	use	with	Enyo	is	the	Moonstone	library.	Moonstone	was
designed	specifically	for	use	on	smart	TVs.	The	use	cases	for	smart	TVs	are	very	different
from	those	for	touch-based	devices.	Moonstone	is	a	lot	more	styled	than	Onyx	and
includes	many	more	components.	Here	are	the	basic	controls	we	showed	previously,
rendered	with	the	Moonstone	styling:

enyo.kind({

				name:	‘View’,

				classes:	‘moon’,

				components:	[

								{	kind:	‘moon.Button’,	content:	‘Hello’,	ontap:	‘tapped’	},

								{	kind:	‘moon.CheckboxItem’,	checked:	true,	content:	‘Check	me’,

												onchange:	‘changed’	},

								{	kind:	‘moon.InputDecorator’,	components:	[

												{	kind:	‘moon.Input’,	placeholder:	‘Enter	something’,

																onchange:	‘changed’	}

]	},

								{	kind:	‘moon.InputDecorator’,	components:	[

												{	kind:	‘moon.RichText’,	value:	‘<i>Italics</i>’,

																onchange:	‘changed’	}

]	}

],

				tapped:	function(sender,	event)	{

								//	React	to	taps

				},

				changed:	function(sender,	event)	{

								//	React	to	changes

				}

});

http://jsfiddle.net/gh/gist/enyo/2.5.1/4c029f7c5f93ddaf1e25/

TIP
Try	it	out:	jsFiddle.

Moonstone	components	are	designed	to	work	with	the	Enyo	Spotlight	library,	which
supports	both	five-way	navigation	(up,	down,	left,	right,	select)	and	cursor	selection.	If
you	mouse	over	the	components,	you	will	see	them	highlight	to	indicate	they	have	focus.
You	can	also	switch	to	using	the	arrow	keys	on	your	keyboard	to	navigate	among	the
components.	Spotlight	is	a	topic	unto	itself	and	we	won’t	cover	it	here.	If	you’re	interested
in	learning	more	about	it,	see	the	Spotlight	documentation.

There	are	too	many	Moonstone	controls	to	get	into	here,	so	here’s	a	screenshot	of	the
Moonstone	Always	Viewing	VideoPlayer	sample:

http://jsfiddle.net/gh/get/enyo/2.5.1/dependencies/dark,spot,iLib/Enyo-UpAndRunning/jsFiddle/tree/master/moonstone-controls
http://enyojs.com/docs/building-apps/spotlight.html
https://github.com/enyojs-samples/always-viewing-videoplayer-sample

For	more	information	on	Moonstone,	see	the	“Building	TV	Applications”	section	of	the
Enyo	docs	site.

Methods	and	Properties
Controls	have	a	number	of	methods	and	properties	that	focus	on	their	special	role	in
interacting	with	the	DOM.	These	methods	include	rendered(),	hasNode(),	and	a	number
of	others	for	manipulating	the	DOM.	The	important	properties	include	classes	and	style,
which	we’ll	cover	in	Chapter	6.

The	first	method,	rendered(),	can	be	overridden	to	perform	processing	that	only	takes
place	when	the	DOM	node	associated	with	the	control	is	available.	By	default,	controls
are	not	rendered	into	the	DOM	until	they	are	required.	In	our	samples,	the	Application
kind	takes	care	of	rendering	its	view	at	startup.	As	always,	be	sure	to	call	the	inherited()
method	within	rendered().

The	second	important	method,	hasNode(),	allows	us	to	test	whether	the	DOM	node	for	the
control	exists	and	to	retrieve	it,	if	available.	hasNode()	will	return	null	if	no	node	is
available.	This	is	most	useful	when	you	are	creating	new	controls	that	will	need	to
manipulate	the	DOM,	or	when	you	want	to	wrap	a	widget	from	another	UI	library.

The	following	example	shows	a	naive	way	to	implement	a	scalable	vector	graphic	(SVG)
container	object.	The	only	purpose	is	to	show	off	the	rendered()	and	hasNode()	methods:

enyo.kind({

				name:	‘Svg’,

				svg:	”,

				rendered:	function()	{

								this.inherited(arguments);

								this.svgChanged();

								//	Can	only	call	when	we	have	a	node

http://enyojs.com/docs/

				},

				svgChanged:	function()	{

								var	node	=	this.hasNode();

								if(node	!==	null)	{

												node.innerHTML	=	‘<embed	src=”’	+	this.svg	+

																’”	type=“image/svg+xml”	/>’;

								}

				}

});

TIP
Try	it	out:	jsFiddle.

There	are	many	additional	methods	and	properties	available	on	Control.	Please	see	the
API	documentation	for	details.

http://jsfiddle.net/gh/gist/enyo/2.5.1/740c53794f8a12964081/
http://enyojs.com/docs/api.html

Other	Important	Objects
Not	all	functionality	in	an	app	is	provided	by	visible	elements.	For	many	apps,	there	is
processing	that	must	be	done	in	the	background.	Enyo	provides	a	number	of	objects	that
handle	such	processing.	These	objects	include	Application,	Router,	Animator,	Ajax,	and
JsonpRequest.	See	Chapter	5	for	more	information	on	other	important	non-visual	objects.

Application
One	important	component	that	we	have	not	discussed	yet	is	the	Application	component.
Application	is	a	type	of	controller	that	takes	care	of	rendering	the	app.	Each	of	the
samples	we’ve	looked	at	uses	Application.	In	general,	an	app	will	derive	a	new	kind
based	on	Application	and	specify	the	startup	view.

The	view	property	can	contain	either	the	name	of	a	Control	to	render	or	a	kind	definition.
When	rendered,	the	view	property	will	contain	the	instance	of	the	view	that	was	created.
By	default,	the	view	is	rendered	as	soon	as	the	Application	object	is	created.	If	you	need
to	do	some	processing	before	the	view	is	rendered,	set	the	renderOnStart	property	to
false	and	then	call	render()	when	ready.

The	Application	component	is	also	a	good	place	to	keep	track	of	data	shared	among
various	controls.	All	controls	will	have	an	app	property	that	contains	the	instance	of
Application.	This	property	can	be	used	to	bind	to	shared	models	and	collections.

Router
Enyo	has	a	Router	component	that	handles	routing.	Routing,	for	our	purposes,	is	the
process	of	setting	application	state	through	the	use	of	the	URL.	Specifically,	Router	uses
the	URL	location	hash	to	store	information	about	the	state	of	the	app.	The	hash	allows
apps	to	maintain	state	between	page	loads	and	respond	to	the	back	button	in	the	browser.
Changing	the	location	hash	does	not	force	a	page	reload.

The	router	works	by	monitoring	and	updating	the	location	hash.	Routers	have	routes,
which	are	patterns	for	the	data	in	the	location	hash	and	specify	methods	to	be	invoked.
The	following	is	an	example	router	definition:

enyo.kind({

				name:	‘Routing’,

				components:	[

								{	name:	‘router’,	kind:	‘Router’,	routes:	[

												{	path:	‘user/:userid’,	handler:	‘routeUser’	},

												{	path:	‘about’,	handler:	‘routeAbout’	},

												{	path:	‘home’,	handler:	‘home’,	default:	true	}

]}

],

				routeUser:	function(userID)	{

								//	Display	user	profile

				},

				routeAbout:	function()	{

								//	Show	about	screen

				},

				home:	function()	{

								//	Default	route	if	no	other	path	matches

				}

});

In	the	route	declarations,	any	portions	of	the	route	that	are	prefixed	with	a	colon	(:)	are
converted	into	arguments	to	the	handler	method.	By	default,	the	router	will	trigger	an

http://en.wikipedia.org/wiki/Fragment_identifier

update	when	it	is	created.	In	our	example,	the	location	hash	will	be	tested	against	the
paths,	and	if	none	match,	home()	will	be	executed	(because	it’s	the	default).	The
trigger()	method	is	used	to	trigger	the	routing	and,	optionally,	update	the	location	hash.
The	following	command	updates	the	location	hash	and	triggers	the	home	action:

this.$.router.trigger({	location:	‘home’,	change:	true	});

Routing	is	a	powerful	way	to	centralize	app	state	changes	and	pairs	very	well	with
Application.	For	example,	route	handlers	can	set	the	active	view,	apply	models	and
collections	(see	Chapter	5),	or	change	the	active	panel	(see	Panels).

Animator
Animator	is	a	component	that	provides	for	simple	animations	by	sending	periodic	events
over	a	specified	duration.	Each	event	sends	a	value	that	iterates	over	a	range	during	the
animation	time.	The	following	example	shows	how	you	could	use	Animator	to	change	the
width	of	a	div:

enyo.kind({

				name:	‘Expando’,

				components:	[

								{	name:	‘expander’,	content:	‘Presto’,

										style:

										‘width:	100px;	background-color:	lightblue;	text-align:	center;’	},

								{	name:	‘animator’,	kind:	‘Animator’,	duration:	1500,	startValue:	100,

										endValue:	300,	onStep:	‘expand’,	onEnd:	‘done’	},

								{	kind:	‘Button’,	content:	‘Start’,	ontap:	‘startAnimator’	},

],

				startAnimator:	function()	{

								this.set(‘$.expander.content’,	‘Presto’);

								this.$.animator.play();

				},

				expand:	function(sender,	event)	{

								this.$.expander.applyStyle(‘width’,	Math.floor(sender.value)	+	‘px’);

				},

				done:	function()	{

								this.set(‘$.expander.content’,	‘Change-o’);

				}

});

TIP
Try	it	out:	jsFiddle.

Enyo	also	has	some	kinds	for	dealing	with	sprite	animation.	Find	out	more	from	this	blog
post.

Ajax	and	JsonpRequest
Ajax	and	JsonpRequest	are	both	objects	that	facilitate	performing	web	requests.	It	is
worth	noting	that	they	are	objects	and	not	components.	Because	they	are	not	components,
they	cannot	be	included	in	the	components	block	of	a	kind	definition.	We	can	write	a
simple	example	to	show	how	to	fetch	some	data	from	a	web	service:

enyo.kind({

				name:	‘AjaxSample’,

				components:	[

								{	kind:	‘Button’,	content:	‘Fetch	Repositories’,	ontap:	‘fetch’	},

								{	name:	‘repos’,	content:	‘Not	loaded…’,	allowHtml:	true	}

],

				fetch:	function()	{

								var	ajax	=	new	enyo.Ajax({

												url:	‘https://api.github.com/users/enyojs/repos’

								});

								ajax.go();

								ajax.response(this,	‘gotResponse’);

http://jsfiddle.net/gh/gist/enyo/2.5.1/0cd8698f23aac9ee0327/
http://blog.enyojs.com/post/93812705854/sprite-tastic

				},

				gotResponse:	function(sender,	inResponse)	{

								var	i,	output	=	”;

								for(i	=	0;	i	<	inResponse.length;	i++)	{

												output	+=	inResponse[i].name	+	‘
’;

								}

								this.set(‘$.repos.content’,	output);

				}

});

TIP
Try	it	out:	jsFiddle.

In	this	sample	we	use	the	GitHub	API	to	fetch	the	list	of	the	Enyo	repositories.	In	the
button’s	tap	handler,	we	create	an	Ajax	object,	populate	it	with	the	appropriate	API	URL,
and	set	the	callback	method	for	a	successful	response.	We	could	have	passed	additional
parameters	for	the	service	when	we	called	the	go()	method.	In	general,	we	would	trap
error	responses	by	calling	ajax.error()	with	a	context	and	error	handling	method.

TIP
The	Ajax	object	performs	its	request	asynchronously,	so	the	call	to	go()	does	not	actually	cause	the	request	to
start.	The	request	is	not	initiated	until	after	the	fetch()	method	returns.

A	general	discussion	of	when	and	how	to	use	Ajax	and	JSON-P	are	outside	the	scope	of
this	book.

WARNING
By	default,	Enyo	adds	a	random	query	string	onto	Ajax	requests	to	prevent	aggressive	browser	caching.	This	can
interfere	with	some	web	services.	To	disable	this	feature,	add	cacheBust:	false	to	the	Ajax	configuration	object.

We’ll	touch	more	on	using	web	data	sources	in	Chapter	5.

http://jsfiddle.net/gh/gist/enyo/2.5.1/ffced5f262d63e0380e6/
http://developer.github.com/v3/

Community	Gallery
The	Enyo	developers	decided	to	keep	the	core	of	Enyo	very	simple.	The	additional
libraries	supplied	with	Enyo	are	also	similarly	focused.	No	framework	can	provide	all	the
possible	components	that	users	will	need.	Fortunately,	all	the	features	of	Enyo	that	we’ve
discussed	up	to	this	point	mean	that	it’s	very	easy	to	create	reusable	components.	The
developers	have	created	a	community	gallery	to	make	it	easy	to	find	and	share	these
reusable	components.	The	gallery	includes	a	variety	of	components	that	can	be	easily
dropped	in	to	your	apps.

Hopefully	you	will	feel	motivated	to	create	new	components	and	share	them	with	the
community.

http://enyojs.com/gallery/

Summary
In	this	chapter,	we	explored	components	and	the	visual	controls	that	Enyo	developers	use
to	make	beautiful	apps.	We	explored	the	various	widgets	that	Onyx	and	Moonstone	have
to	offer	and	learned	a	bit	about	using	them.	We	also	covered	some	non-visual	objects	Enyo
provides.	In	the	next	chapter,	we’ll	take	Enyo	to	the	next	level	by	exploring	how	to
arrange	controls.

Chapter	4.	Layout
In	this	chapter	we’ll	explore	how	to	enhance	the	appearance	of	Enyo	apps	by	using
various	layout	strategies	to	place	controls	where	we	want	them.	By	combining	the
knowledge	gained	in	the	previous	chapters	with	the	layout	tools	in	this	chapter,	you’ll
have	most	of	the	knowledge	you	need	to	create	compelling	apps	using	Enyo.	We’ll
explore	each	of	the	layout	tools	using	examples	you	can	run	in	your	browser.

As	with	visual	controls,	Enyo	provides	both	core	layout	strategies	and	an	optional	library
called	Layout.	The	core	strategies	provide	the	“simpler”	approach	to	layout	while	the
Layout	library	provides	some	more	advanced	features.	The	Onyx	library	also	provides	a
layout	tool	in	the	form	of	the	Drawer	component	and	the	Moonstone	library	has	a	number
of	enhanced	layout	controls.

Responsive	Design
Before	we	begin	talking	about	layout	strategies	we	should	discuss	responsive	design.
Responsive	design	means	that	an	app	or	web	page	changes	its	appearance	(or
functionality)	depending	upon	the	device	or	display	size	it	is	used	on.	It’s	important	to
consider	how	your	app	will	look	on	different	displays	when	designing	a	cross-platform
app.	Responsive	web	design	is	a	topic	that	probably	deserves	a	book	of	its	own.	You	are
encouraged	to	research	the	associated	tools	and	techniques	on	the	Web.	Many	of	those
same	tools	are	used	both	within	Enyo	and	by	Enyo	app	developers.	In	particular,	CSS
media	queries	are	often	used	in	Enyo	apps.	We’ll	discuss	the	tools	that	Enyo	makes
available	for	designing	responsive	apps,	but	you	may	need	to	supplement	these	tools	in
certain	circumstances.

Core	Layout	Features
Enyo	provides	two	useful	mechanisms	for	layout	in	the	core:	scrollers	and	repeaters.	The
Scroller	kind	implements	a	section	of	the	display	that	is	scrollable	by	the	user	while	the
Repeater	kind	is	useful	for	making	repeating	rows	of	items.	There	are	also	data-aware
controls	for	list	and	grid	layout	that	we	will	cover	in	Chapter	5.

Scrollers
One	of	the	bigger	challenges	in	a	mobile	app	is	presenting	a	scrolling	area	of	information
that	would	otherwise	be	too	big	to	fit.	While	many	solutions	exist,	their	cross-platform
performance	varies	greatly.	The	Enyo	team	has	spent	a	considerable	amount	of	time
analyzing	performance	issues	and	bugs	across	various	browsers	to	produce	the	Scroller
component.

Scrollers	require	very	little	configuration	but	do	have	some	settings	you	can	control.	The
vertical	and	horizontal	properties	default	to	automatically	allow	scrolling	if	the	content
of	the	scroller	exceeds	its	size.	Setting	either	to	‘hidden’	disables	scrolling	in	that
direction	while	setting	either	to	‘scroll’	causes	scroll	thumbs	to	appear	(if	enabled)	even
if	content	otherwise	fits.	The	touch	property	controls	whether	desktop	browsers	will	also
use	a	touch-based	scrolling	strategy	(instead	of	thumb	scrollers).

For	more	information	on	scrollers,	visit	the	scroller	documentation	page.

Repeaters
Another	challenge	is	to	display	a	list	of	repeating	rows	of	information.	The	Repeater
component	is	designed	to	allow	for	the	easy	creation	of	small	lists	(up	to	100	or	so	items)
of	consistently	formatted	data.	A	repeater	works	by	sending	an	event	each	time	it	needs
data	for	a	row.	The	method	that	subscribes	to	this	event	fills	in	the	data	required	by	that
row	as	it	is	rendered.	The	following	sample	shows	a	repeater	that	lists	the	numbers	0
through	99:

enyo.kind({

				name:	‘RepeaterSample’,

				kind:	‘Scroller’,

				components:	[{

								kind:	‘Repeater’,

								count:	100,

								components:	[{	name:	‘text’	}],

								onSetupItem:	‘setupItem’,

								ontap:	‘tapped’

				}],

				setupItem:	function(sender,	event)	{

								var	item	=	event.item;

								item.set(‘$.text.content’,	‘This	is	row	‘	+	event.index);

								return(true);

				},

				tapped:	function(sender,	event)	{

								enyo.log(event.index);

				}

});

http://enyojs.com/docs/building-apps/layout/scrollers.html

TIP
Try	it	out:	jsFiddle.

You’ll	notice	that	we	placed	the	Repeater	into	a	Scroller.	As	the	contents	would	(likely)
be	too	large	to	fit	onto	your	screen,	we	needed	the	scroller	to	allow	all	the	content	to	be
viewable.	The	components	block	of	the	Repeater	is	the	template	for	each	row	and	can
hold	practically	any	component,	though	it	is	important	to	note	that	fittables	(see	Fittable)
cannot	be	used	inside	a	repeater.

Also	of	note	is	the	fact	that	each	time	we	respond	to	the	onSetupItem	event,	we	reference
the	component(s)	in	the	components	block	directly	off	the	item	passed	in	through	the
event.	The	repeater	takes	care	of	instantiating	new	versions	of	the	components	for	each
row.	If	you	need	to	update	a	specific	row	in	a	repeater,	you	should	call	the	renderRow()
method	and	pass	in	the	index	of	that	row.

TIP
To	redraw	the	whole	repeater,	such	as	when	the	underlying	data	has	changed,	set	a	new	value	for	the	count
property.	It	is	a	good	idea	to	pass	a	truthy	value	for	the	third	parameter	to	set()	in	the	case	where	only	the	data
but	not	the	number	of	records	has	changed	(e.g.,	this.set(‘$.repeater.count’,	100,	true);).	Alternately,
you	can	call	the	build()	method	to	redraw	the	list.

http://jsfiddle.net/gh/gist/enyo/2.5.1/61994e43b3556b2d0dae/

Layout	Library	Features
The	modular	Layout	library	includes	several	kinds	for	arranging	controls.	Three	of	the
kinds	we’ll	discuss	are	Fittable,	List,	and	Panels.	Visit	the	Enyo	docs	website	to	find
out	more	information	on	the	Layout	library	and	the	kinds	not	covered	here.

Fittable
One	aspect	of	layout	that	Enyo	makes	easier	is	designing	elements	that	fill	the	size	of	a
given	space.	Enyo	provides	two	layout	kinds,	FittableColumnsLayout	and
FittableRowsLayout,	to	accomplish	this.	Fittable	layouts	allow	for	a	set	of	components	to
be	arranged	such	that	one	(and	only	one)	component	expands	to	fill	the	space	available
while	the	others	retain	their	fixed	size.	FittableColumnsLayout	arranges	components
horizontally	while	FittableRowsLayout	arranges	them	vertically.	To	specify	the	child
component	that	will	expand	to	fit	the	space	available,	set	the	fit	property	to	true.

To	apply	the	fittable	style	to	controls,	set	the	layoutKind	property.	To	make	it	easier	to
use,	the	Layout	library	includes	two	controls	with	the	layout	already	applied:
FittableColumns	and	FittableRows.	Fittables	can	be	arranged	within	each	other,	as	the
following	code	sample	shows:

enyo.kind({

				name:	‘Columns’,

				kind:	‘FittableColumns’,

				components:	[

								{	content:	‘Fixed	width’,	classes:	‘dont’	},

								{	content:	‘This	expands’,	fit:	true,	classes:	‘do’	},

								{	content:	‘Another	fixed	width’,	classes:	‘dont’	}

]

});

enyo.kind({

				name:	‘FittableSample’,

				layoutKind:	‘FittableRowsLayout’,

				components:	[

								{	content:	‘Fixed	height’,	classes:	‘dont’	},

								{	kind:	‘Columns’,	fit:	true,	classes:	‘do’	},

								{	content:	‘Another	fixed	height’,	classes:	‘dont’	}

]

});

TIP
Try	it	out:	jsFiddle.

In	the	previous	sample,	we	used	both	styles	of	applying	a	fittable	layout,	using	a
layoutKind	for	the	row	layout	and	using	the	FittableColumns	for	the	column	layout.	We
applied	a	simple	CSS	style	that	added	colored	borders	to	the	expanding	regions.	If	you
resize	the	browser	window,	you’ll	see	that	the	area	in	the	middle	will	expand	while	the
areas	above	and	to	the	sides	have	fixed	heights	and	widths,	respectively.

http://enyojs.com/docs
http://jsfiddle.net/gh/gist/enyo/2.5.1/08e05637be815e50fcb9/

TIP
Fittables	only	relayout	their	child	controls	in	response	to	a	resize	event.	If	you	need	to	relayout	the	controls
because	of	changes	in	the	sizes	of	components,	call	the	resize()	method	on	the	fittable	component.

While	fittables	provide	an	easy	way	to	create	specific	layouts,	they	should	not	be
overused.	Reflows	are	performed	in	JavaScript	and	too	many	nested	fittables	can	affect
app	performance.

Lists
Earlier	we	covered	repeaters,	which	display	a	small	number	of	repeating	items.	The	List
component	serves	a	similar	purpose	but	allows	for	a	practically	unlimited	number	of
items.	Lists	include	a	built-in	scroller	and	support	the	concept	of	selected	items	(including
multiple	selected	items).	Lists	use	a	flyweight	pattern	to	reduce	the	number	of	DOM
elements	that	get	created	and,	therefore,	speed	up	performance	on	mobile	browsers.

All	this	performance	doesn’t	come	without	downsides,	though.	Because	list	items	are
rendered	on	the	fly	it	is	difficult	to	have	interactive	components	within	them.	It	is
recommended	that	only	simple	controls	and	images	be	used	within	lists:

enyo.kind({

				name:	‘ListSample’,

				kind:	‘List’,

				count:	10000,

				handlers:	{

								onSetupItem:	‘setupItem’,

								ontap:	‘tapped’

				},

				components:	[{	name:	‘text’	}],

				setupItem:	function(sender,	event)	{

								this.set(‘$.text.content’,	‘This	is	row	‘	+	event.index);

								return(true);

				},

				tapped:	function(sender,	event)	{

								enyo.log(event.index);

				}

});

TIP
Try	it	out:	jsFiddle.

In	both	this	example	and	the	Repeater	example,	we	knew	the	number	of	items	to	display
and	set	the	count	property	when	creating	them.	Often,	you	won’t	know	how	many	items
to	display	while	writing	your	app.	In	that	case,	leave	the	count	property	undefined	and

http://jsfiddle.net/gh/gist/enyo/2.5.1/4ef31f02ed94b01b76d4/

set()	it	once	you	have	received	the	data.	Once	set,	the	List	will	render	itself.	If	the
underlying	data	changes,	call	refresh()	to	redraw	at	the	current	position	or	reset()	to
redraw	from	the	start.

In	order	to	make	a	List	row	interactive,	you	must	first	use	the	prepareRow()	method.
Then,	a	call	to	performOnRow()	can	be	used	to	act	on	the	row.	Finally,	lockRow()	should
be	called	to	return	the	row	to	its	non-interactive	state.	Let’s	modify	the	tap	handler	from
the	last	example	to	show	how	to	add	an	interactive	element	to	a	row:

enyo.kind({

				name:	‘ListSample’,

				kind:	‘List’,

				count:	1000,

				items:	[],

				handlers:	{

								onSetupItem:	‘setupItem’

				},

				components:	[

								{	name:	‘text’,	kind:	‘Input’,	ontap:	‘tapped’,

											onchange:	‘changed’,	onblur:	‘blur’	}

],

				create:	function()	{

								this.inherited(arguments);

								for(var	i	=	0;	i	<	this.count;	i++)	{

												this.items[i]	=	‘This	is	row	‘	+	i;

								}

				},

				setupItem:	function(sender,	event)	{

								this.$.text.setValue(this.items[event.index]);

								return(true);

				},

				tapped:	function(sender,	event)	{

								this.prepareRow(event.index);

								this.set(‘$.text.value’,	this.items[event.index]);

								this.$.text.focus();

								return(true);

				},

				changed:	function(sender,	event)	{

								this.items[event.index]	=	sender.getValue();

				},

				blur:	function(sender,	event)	{

								this.lockRow();

				}

});

TIP
Try	it	out:	jsFiddle.

http://jsfiddle.net/gh/gist/enyo/2.5.1/09445bc43095f97a9a6c/

In	this	version,	we	detect	a	user	tapping	into	a	row	and	then	lock	that	row	so	that	we	can
make	the	Input	editable.	If	we	did	not	prepare	the	row,	then	the	input	control	would	not	be
properly	associated	with	the	row	being	edited	and	our	changes	would	not	be	preserved.
We	look	for	the	onblur	event	so	we	can	call	lockRow()	to	put	the	list	back	into	non-
interactive	mode.

TIP
This	sample	isn’t	complete,	as	there	are	ways	to	move	out	of	fields	without	triggering	the	blur	event	correctly.	A
better	way	to	handle	this	kind	of	situation	would	be	to	use	Popup	to	open	a	dialog	on	top	of	the	list	in	response	to	a
click	on	the	row.

List	and	Repeater	have	data-aware	versions	that	are	easier	to	work	with.	We’ll	cover
data-aware	components	in	Chapter	5.

Panels
Panels	are	one	the	most	flexible	layout	tools	Enyo	has	to	offer.	Panels	give	you	the	ability
to	have	multiple	sections	of	content	that	can	appear	or	disappear	as	needed.	You	can	even
control	how	the	panels	arrange	themselves	on	the	screen	by	using	the	arrangerKind
property.	The	various	arrangers	allow	for	panels	that	collapse	or	fade	as	moved,	or	that	are
arranged	into	a	carousel	or	even	a	grid.

Panels	have	an	index	property	that	indicates	the	active	panel.	Although	the	various
arrangers	can	present	more	than	one	panel	on	the	screen	at	a	time	and	all	such	visible
panels	can	be	interactive,	the	active	panel	is	important.	You	can	easily	transition	the	active
panel	by	using	the	previous()	and	next()	methods,	or	detect	when	a	user	has	moved	to	a
new	panel	(e.g.,	by	swiping)	by	listening	for	the	onTransitionFinish	event.

A	quick	example	of	how	to	use	Panels	will	help	explain.	In	this	example,	we’ll	set	up	a
layout	that	can	have	up	to	three	panels,	depending	on	the	available	width.	As	the	available
width	shrinks,	the	number	of	panels	visible	will	also	shrink,	until	only	one	remains:

enyo.kind({

				name:	‘PanelsSample’,

				kind:	‘Panels’,

				arrangerKind:	‘CollapsingArranger’,

				classes:	‘panels-sample’,

				narrowFit:	false,

				handlers:	{

								onTransitionFinish:	‘transitioned’

				},

				components:	[

								{	name:	‘panel1’,	style:	‘background-color:	blue’	},

								{	name:	‘panel2’,	style:	‘background-color:	grey’	},

								{	name:	‘panel3’,	style:	‘background-color:	green’	}

],

				transitioned:	function()	{

								this.log(this.index);

				}

});

In	order	to	achieve	the	sizing,	we’ll	use	a	little	CSS	and	some	media	queries	to	size	the
panels	appropriately:

.panels-sample	>	*	{

				width:	200px;

}

@media	all	and	(max-width:	500px)	{

				.panels-sample	>	*	{

								min-width:	200px;

								max-width:	100%;

								width:	50%;

				}

}

@media	all	and	(max-width:	300px)	{

				.panels-sample	>	*	{

								min-width:	100%;

								max-width:	100%;

				}

}

TIP
Try	it	out:	jsFiddle.

For	this	sample,	we	set	the	narrowFit	property	to	false.	By	default,	the	individual	panels
in	a	CollapsingArranger	panel	will	fill	the	available	space	when	the	screen	size	is	below
800px.	We	overrode	the	default	in	order	to	use	200px	as	the	minimum	width	of	a	panel.
The	CSS	we	used	detects	when	the	screen	gets	below	500px	and	we	limit	each	panel	to
half	the	space.	Then,	when	the	screen	gets	below	300px,	we	cause	the	panels	to	take	up	all
the	space.	The	user	can	still	swipe	left	and	right	to	reveal	panels	that	aren’t	currently

http://jsfiddle.net/gh/gist/enyo/2.5.1/337d1a76bf5d4e888433/

visible.

We	have	only	touched	on	the	power	of	the	Panels	component.	You	should	check	out	the
Panels	documentation	for	more	ideas	on	how	to	use	them.

http://enyojs.com/docs/building-apps/layout/panels.html

Summary
You	are	now	well	on	your	way	to	producing	beautiful	apps	that	perform	well	on	mobile
and	desktop	platforms.	We	looked	at	some	techniques	for	designing	responsive	apps	that
make	the	best	use	of	a	user’s	display	size.	In	the	next	chapter	we’ll	learn	how	to	create
data-driven	applications	using	Enyo.

Chapter	5.	Writing	Data-Driven	Applications
Enyo	provides	first-class	support	for	creating	rich,	data-driven	applications.	Along	with
the	data	binding	and	observer	features	we	touched	on	briefly	in	Chapter	2,	there	are
models,	collections,	data-driven	controls,	and	ways	to	synchronize	data	with	remote	data
sources.	In	this	chapter	we’ll	explore	these	concepts	and	components.

Models
The	bindings	in	Enyo	work	with	any	Object,	which	makes	it	easy	to	associate	the	data
from	one	component	to	another.	Sometimes,	however,	the	data	that	needs	binding	doesn’t
live	neatly	within	any	one	component	in	the	app.	To	handle	such	situations,	Enyo	has
Model.	Model,	which	is	not	actually	an	Object	but	does	support	get()	and	set(),	is
designed	to	wrap	plain-old	JavaScript	objects	and	make	the	data	available	for	binding.	The
following	illustrates	the	creation	of	a	simple	model:

var	restaurant	=	new	enyo.Model({

				name:	‘Orenchi’,

				cuisine:	‘Japanese’,

				specialty:	‘ramen’

});

You	can	derive	from	Model	to	create	new	model	types	and	specify	default	attributes	and
values:

enyo.kind({

				name:	‘RestaurantModel’,

				kind:	‘enyo.Model’,

				attributes:	{

								name:	‘unknown’,

								cuisine:	‘unknown’,

								specialty:	‘unknown’,

								rating:	0

				}

});

Whenever	a	RestaurantModel	is	instantiated,	the	defaults	will	be	applied	to	any	properties
whose	values	are	not	explicitly	defined:

var	mcd	=	new	RestaurantModel({	name:	‘McDonalds’	});

mcd.get(‘specialty’);

//	returns	‘unknown’

TIP
Try	it	out:	jsFiddle.

TIP
In	this	sample	and	some	that	follow,	there	is	an	interactive	console	that	allows	you	to	experiment	with	the	code.
You	can	type	JavaScript	statements	into	the	gray	box	and	run	them	to	see	what	happens.	Try	creating	new	models
or	changing	some	of	the	values	around	and	see	what	happens.	The	console	is	based	on	a	lightly	modified	version
of	JS	Console	by	Remy	Sharp.

In	addition	to	defaults,	you	can	add	methods,	computed	properties	(discussed	later	in	this
chapter),	observers,	and	bindings	to	models.	For	example,	to	track	how	often	the	name	of
a	restaurant	has	changed,	you	can	add	a	nameChanged()	method:

enyo.kind({

				name:	‘RestaurantModel’,

				kind:	‘enyo.Model’,

				attributes:	{

								name:	‘unknown’,

								cuisine:	‘unknown’,

								specialty:	‘unknown’,

								rating:	0

				},

				nameChanged:	function(was,	is)	{

								if(is)	{

												this.changeCount	=	this.changeCount	?

																this.changeCount++	:	1;

								}

http://jsfiddle.net/gh/gist/enyo/2.5.1/4f55c778aee7c7bf4ddc/
https://github.com/remy/jsconsole

				}

});

TIP
Try	it	out:	jsFiddle.

The	previous	code	checks	to	ensure	that	the	name	is	being	set	to	a	new	value	and,	if	so,
increments	the	count	(unless	it	was	undefined,	in	which	case	it	is	assigned	a	value	of	1).

TIP
The	nameChanged	method	is	not	invoked	during	model	creation,	as	the	example	shows.	Also,	note	that	the
changeCount	property	is	not	fetchable	using	get()	because	it	was	not	declared	in	the	attributes	block.	When
calling	get()	or	set()	on	a	model,	you	are	interacting	with	properties	on	the	attributes	member,	not	the	model
itself.	Always	use	get()	and	set()	when	working	with	model	properties.

It	is	very	easy	to	design	components	that	work	with	models.	Let’s	create	a	component	to
view	our	restaurant	model:

enyo.kind({

				name:	‘RestaurantView’,

				components:	[

								{	name:	‘name’	},

								{	name:	‘cuisine’	},

								{	name:	‘specialty’	},

								{	name:	‘rating’	}

],

				bindings:	[

								{	from:	‘model.name’,	to:	‘$.name.content’	},

								{	from:	‘model.cuisine’,	to:	‘$.cuisine.content’	},

								{	from:	‘model.specialty’,	to:	‘$.specialty.content’	},

								{	from:	‘model.rating’,	to:	‘$.rating.content’	}

]

});

TIP
Try	it	out:	jsFiddle.

The	RestaurantView	component	uses	bindings	to	map	the	fields	from	its	model	property
to	the	appropriate	controls.	Whenever	a	new	model	is	assigned	or	one	of	the	properties	in
the	assigned	model	changes,	the	contents	of	the	control	will	be	updated.	To	assign	the
model	to	the	view,	set	the	model	property	during	creation,	use	set(),	or	bind	the	model
property	to	a	model	stored	elsewhere.

http://jsfiddle.net/gh/gist/enyo/2.5.1/806bfb70741a304822b6/
http://jsfiddle.net/gh/gist/enyo/2.5.1/73e14b8ff016eeef87f5/

Collections
While	Model	wraps	a	single	object,	Collection	is	a	Component	that	wraps	arrays	of
objects.	A	collection	can	be	initialized	with	an	array,	in	which	case	each	object	in	the	array
is	upgraded	to	a	model	as	it’s	added:

var	fruits	=	new	enyo.Collection([

				{	name:	‘apple’	},

				{	name:	‘cherry’	},

				{	name:	‘banana’	}

]);

Individual	models	can	be	retrieved	with	the	at()	method.	Models	can	be	added	by	calling
the	add()	method	and	passing	in	an	object,	a	model,	or	an	array	of	either:

fruits.at(0).get(‘name’);

//	returns	“apple”

fruits.add({	name:	‘rambutan’	});

fruits.at(fruits.length-1).get(‘name’);

//	returns	“rambutan”

TIP
Try	it	out:	jsFiddle.

In	many	ways,	collections	behave	like	arrays.	They	have	a	length	property	that	reflects
the	number	of	items	in	the	collection.	They	also	support	various	Array	methods	like
find()	and	forEach().	For	a	comprehensive	list	of	methods	supported	by	Collection,
see	the	full	API	documentation.

Like	Model,	Collection	can	be	subclassed	to	specify	additional	configuration	and
methods.	For	example,	you	can	specify	a	default	model	to	be	used	when	objects	are	added
to	the	array:

enyo.kind({

				name:	‘RestaurantCollection’,

				kind:	‘enyo.Collection’,

				model:	‘RestaurantModel’

});

Collections	are	very	powerful	when	they	are	teamed	up	with	data-aware	components.
We’ll	explore	those	later	in	this	chapter.

http://jsfiddle.net/gh/gist/enyo/2.5.1/54af9d65929abdef5f9f/
http://enyojs.com/docs/latest/api.html#enyo.Collection

Computed	Properties
Applications	often	need	to	alter	or	combine	data	before	it	can	be	used.	For	example,	it	is
convenient	to	combine	a	person’s	first	and	last	names	into	a	full	name.	Enyo	provides
computed	properties	to	centralize	this	work	instead	of	requiring	you	to	write	repetitive
code.	Computed	properties	can	be	used	on	any	Object	or	Model	and	work	just	like	other
properties.

Let’s	adjust	the	RestaurantModel	to	have	a	property	that	contains	the	rating	expressed	in
number	of	stars:

enyo.kind({

				name:	‘RestaurantModel’,

				kind:	‘enyo.Model’,

				attributes:	{

								name:	‘unknown’,

								cuisine:	‘unknown’,

								specialty:	‘unknown’,

								rating:	0

				},

				computed:	[

								{	method:	‘starRating’,	path:	‘rating’	}

],

				starRating:	function()	{

								var	rating	=	this.get(‘rating’);

								return	rating	+	‘	star’	+	((rating	==	1)	?	”	:	‘s’);

				}

});

var	rest	=	new	RestaurantModel({

				name:	‘The	French	Laundry’,

				rating:	5

});

rest.get(‘starRating’);

//	returns	“5	stars”

TIP
Try	it	out:	jsFiddle.

A	computed	property	requires	a	method	with	the	same	name	to	compute	the	value.	The
path	in	the	declaration	refers	to	the	property	(or	properties)	it	is	dependent	upon,	much
like	observers.	The	path	can	be	either	a	string	(if	there	is	only	one	property)	or	an	array	of
strings.	If	one	of	its	path	properties	changes,	a	computed	property	is	recalculated	the	next
time	it	is	needed.

http://jsfiddle.net/gh/gist/enyo/2.5.1/42159bfab3b72bb2e9d4/

Data-Aware	Components
Using	bindings,	any	component	can	be	linked	with	data	from	another	component	or	with	a
model.	When	dealing	with	collections,	you	need	controls	that	know	how	to	render	the
contents.	Unsurprisingly,	these	components	deal	with	displaying	data	in	lists	or	tables.	The
core	data-aware	components	include	DataList,	DataRepeater,	and	DataGridList.	The
Moonstone	library	includes	some	additional	data-aware	components.

Each	of	these	components	looks	for	a	collection	property	that	will	contain	the	data	to	be
rendered.	Let’s	implement	a	DataRepeater	that	can	display	the	collection	of	restaurants
we	created	earlier:

enyo.kind({

				name:	‘RestaurantRepeater’,

				kind:	‘enyo.DataRepeater’,

				components:	[{

								components:	[

												{	name:	‘name’	},

												{	name:	‘cuisine’	},

												{	name:	‘specialty’	},

												{	name:	‘rating’	}

],

								bindings:	[

												{	from:	‘model.name’,	to:	‘$.name.content’	},

												{	from:	‘model.cuisine’,	to:	‘$.cuisine.content’	},

												{	from:	‘model.specialty’,	to:	‘$.specialty.content’	},

												{	from:	‘model.rating’,	to:	‘$.rating.content’	}

]

				}]

});

TIP
Try	it	out:	jsFiddle.

As	with	Repeater,	the	components	block	is	the	template	for	each	row.	The	bindings
section	in	the	preceding	code	references	a	model	property,	which	is	automatically	set	from
the	collection	for	each	row	that	needs	to	be	rendered.	This	allows	for	a	simple	mapping
from	the	properties	of	the	model	to	the	components	in	the	DataRepeater.

We	can	simplify	the	previous	code	by	reusing	our	RestaurantView	component:
enyo.kind({

				name:	‘RestaurantRepeater’,

				kind:	‘enyo.DataRepeater’,

				components:	[{	kind:	‘RestaurantView’	}]

});

TIP
Try	it	out:	jsFiddle.

Some	of	the	benefits	of	using	data-aware	components	over	their	non-data-aware	versions
include	automatic	updates	when	any	of	the	underlying	models	change,	built-in	support	for
selection,	and	simpler	binding	of	data	to	the	components.	You	can	find	out	more	about	the
data-aware	components	in	the	API	viewer.

http://jsfiddle.net/gh/gist/enyo/2.5.1/500a5aaafeb37924c745/
http://jsfiddle.net/gh/gist/enyo/2.5.1/1c1254f2a7879e25e834/
http://enyojs.com/docs/api.html

Fetching	Remote	Data
It’s	a	rare	app	these	days	that	doesn’t	interact	with	data	stored	somewhere	in	the	cloud	or
locally	in	the	browser.	Enyo	uses	the	concept	of	data	sources	to	work	with	persistent	data.
There	are	three	data	sources	included	with	Enyo:	AjaxSource,	JsonpSource,	and
LocalStorageSource.	Apps	can	use	or	extend	these	to	fetch	and	commit	data.

TIP
The	Ajax	and	JSONP	sources	are	intended	to	be	extended	by	app	developers.	They	will	work	as-is	in	cases	where
the	server	interaction	is	very	simple.

Let’s	revisit	the	sample	from	Chapter	3	where	we	fetched	the	list	of	repos	from	GitHub.
We’ll	update	that	sample	to	use	a	collection,	a	source,	and	a	DataRepeater:

enyo.ready(function()	{

				enyo.AjaxSource.create({	name:	‘ajax’	});

				var	collection	=	new	enyo.Collection({

								source:	‘ajax’,

								url:	‘https://api.github.com/users/enyojs/repos’

				});

				enyo.kind({

								name:	‘RepoView’,

								kind:	‘DataRepeater’,

								collection:	collection,

								components:	[{

												components:	[{	name:	‘repoName’	}],

												bindings:	[

																{	from:	‘model.name’,	to:	‘$.repoName.content’	}

]

								}]

				});

				new	enyo.Application({	name:	‘app’,	view:	‘RepoView’	});

				collection.fetch();

});

TIP
Try	it	out:	jsFiddle.

In	the	preceding	code,	we	created	a	new	instance	of	AjaxSource	(the	Ajax	source
component)	and	assigned	it	to	a	new	collection.	We	then	assigned	the	collection	to	the
collection	attribute	of	the	DataRepeater.	Finally,	we	called	the	fetch()	method	on	the
collection	to	get	the	list	of	repositories	from	GitHub.

In	addition	to	the	fetch()	method,	models	and	collections	support	commit()	and
destroy().	All	three	methods	can	take	an	optional	parameter	hash	that	affects	the	way	the
source	treats	the	data.	If	not	supplied,	the	options	will	be	taken	from	the	model	or
collection’s	options	property.	In	this	way,	you	can	override	the	default	options	for	a
specific	method	call.

WARNING
fetch(),	commit(),	and	destroy()	require	that	the	model	or	collection	not	be	in	an	error	state.	You	must	call	the
clearError()	method	on	a	model	after	an	error	occurs.	You	should	define	an	error	handler	either	in	the	options
hash	for	the	collection	or	when	passing	the	options	to	those	methods.

TIP
Enyo	has	a	feature	that	will	attempt	to	consolidate	models	to	reduce	memory	usage	and	avoid	out-of-sync	data.
For	example,	if	two	collections	use	the	same	model,	they	will	share	any	instances	of	models	that	have	the	same

http://jsfiddle.net/gh/gist/enyo/2.5.1/fc80269608520e7d0b0a/

primaryKey	(by	default	‘id’).

Putting	It	All	Together
To	get	a	feel	for	what	a	full	Enyo	application	is	like,	take	a	look	at	a	restaurant	list	app
online.	This	app	implements	several	of	the	features	we’ve	covered	in	previous	chapters,
including	the	Onyx	UI	library,	Router,	Collections,	and	a	collection-aware	list.	The	app
also	uses	local	storage	to	persist	the	restaurants	between	loads.	You	can	view	the	source	on
GitHub.

http://enyo-upandrunning.github.io/restaurant-app/
https://github.com/Enyo-UpAndRunning/restaurant-app

Summary
In	this	chapter,	we	touched	on	just	a	few	of	the	features	Enyo	provides	for	creating	data-
driven	applications.	We	covered	models,	the	basic	building	blocks	of	data-driven
applications,	and	collections.	We	discussed	computed	properties	and	how	to	use	them.
Lastly,	we	covered	how	to	fetch	data	from	remote	sources.	There	are	even	more	features
that	we	didn’t	get	to	explain,	including	collection	filters	and	relational	data.	With	all	these
rich	features,	it	is	easy	to	create	data-driven	applications	with	Enyo.

Chapter	6.	Fit	and	Finish
In	the	preceding	chapters	we	laid	down	the	foundations	you	need	to	create	Enyo	apps.	In
this	chapter,	we’ll	explore	some	of	the	pieces	necessary	to	make	those	apps	more
memorable.	We’ll	cover	how	to	style	your	apps,	how	to	tune	them	to	perform	well	on	less
powerful	platforms,	how	to	prepare	them	for	translation	to	other	languages,	and	how	to
troubleshoot	bugs	that	inevitably	arise.	As	always,	we’ll	explore	these	concepts	through
interactive	samples.

Styling
Enyo	provides	some	very	nice	looking	controls	with	the	Onyx	and	Moonstone	libraries.
However,	an	app	can	set	itself	apart	from	others	by	having	a	unique	user	interface.
Fortunately,	it’s	very	easy	to	change	the	look	of	controls.	We’ll	explore	several	ways	to
accomplish	that.

Styles	and	Classes
All	Enyo	controls	have	two	properties	to	aid	in	styling:	style	and	classes.	These	two
properties	correspond	to	an	HTML	element’s	style	and	class	attributes.	The	style
property	can	be	used	to	apply	a	specific	style	to	a	single	control.	To	work	with	the
classes	property,	you	must	add	CSS	classes	to	a	style	sheet.	In	general,	it	is	better	to	use
classes	in	an	app	for	two	reasons:	first,	components	are	more	reusable	if	styling	is	not
embedded	within	them;	second,	using	CSS	classes	allows	you	to	keep	the	styling	in	a
single,	centralized	location.

Enyo	provides	applyStyle()	to	update	an	individual	style	and	addStyles()	to	add	styles
onto	the	existing	styles	of	a	control.	We	used	the	applyStyle()	function	in	the	traffic	light
sample	at	the	start	of	the	book.	Passing	a	null	as	the	second	parameter	to	applyStyle()
removes	the	style.	For	updating	classes,	Enyo	provides	addClass(),	removeClass(),	and
addRemoveClass().

WARNING
It	might	seem	like	calling	set()	with	the	style	and	classes	properties	would	be	a	good	way	to	update	a	control.
However,	doing	so	completely	replaces	the	styles	and	classes	of	the	control.	Use	set()	carefully	with	these
properties.

Overriding	Onyx	Styles
Each	Onyx	control	includes	one	or	more	classes.	It	is	possible	to	override	some	(or	all)	of
the	default	styling	by	overriding	those	styles	in	your	CSS	file.	One	simple	way	to	discover
the	class	names	to	override	is	to	use	your	browser’s	inspector	to	see	what	classes	are
applied	to	a	particular	control.	You	can	then	use	those	classes	to	override	the	way	that
control	looks	everywhere	in	your	app.	The	following	image	shows	the	Chrome	inspector
output	of	the	Onyx	sample	from	Chapter	3:

The	Onyx	button	has,	among	its	classes,	onyx-button.	If	we	want	to	override	the	styling
on	all	the	buttons	in	our	app	without	having	to	manually	add	a	class	to	each	one,	we	could
write	our	own	CSS	rule	for	onyx-button:

.onyx-button	{

				background-color:	cyan;

}

TIP
Try	it	out:	jsFiddle.

In	general,	you	will	need	to	use	a	CSS	selector	that	is	more	specific	than	the	styles	in	the
Enyo	CSS.	One	method	is	to	add	a	base	class	to	your	view	component	and	then	use	that	in
combination	with	your	CSS	selector.	In	the	Onyx	sample,	we	cannot	override	the
background	color	of	the	actual	input	control	without	a	more	specific	selector:

.myapp	.onyx-input	{

				background-color:	tomato;

}

TIP
Try	it	out:	jsFiddle.

In	general,	it’s	better	to	style	the	input	decorator	rather	than	the	input	itself.

Less	Is	More
You	could,	of	course,	simply	go	into	the	Onyx	library	directory	and	directly	edit	the	CSS
file.	Knowing	that	app	developers	would	want	to	do	this,	the	Enyo	developers	provide
Less	files	for	generating	the	CSS	used	by	Onyx	(and	Moonstone	as	well).	Less	provides	a
programmatic	approach	to	creating	CSS	while	keeping	most	of	the	flavor	of	CSS.	In	order
to	compile	Less	you	will	need	to	have	Node.js	installed,	and	it	helps	to	be	working	on	a
Bootplate	project	(see	Appendix	A).

TIP
Less	can	be	used	“live”	in	a	browser.	The	debug	build	of	Bootplate	projects	loads	a	JavaScript	library	that
processes	Less	files	in	the	browser.	Because	of	the	additional	processing	needed,	it	isn’t	recommended	to	use	that
method	with	deployed	code.	You	can	disable	Less	by	commenting	out	the	line	in	debug.html	that	loads	less.js.

Less	files	can	be	found	in	the	css	directory	of	the	Onyx	library,	along	with	a	previously
compiled	CSS	file.	Of	particular	interest	is	the	onyx-variables.less	file,	which	contains
some	common	settings	used	throughout	the	library.	Here’s	a	sample	from	that	file:

/*	Background	Colors	*/

/*	–––––––––––––*/

@onyx-background:	#EAEAEA;

@onyx-light-background:	#CACACA;

@onyx-dark-background:	#555656;

@onyx-selected-background:	#C4E3FE;

http://jsfiddle.net/gh/gist/enyo/2.5.1/53aa1a2e6f5548fe3415/
http://jsfiddle.net/gh/gist/enyo/2.5.1/40f357b8dd37fd5d825b/

@onyx-button-background:	#E1E1E1;

By	overriding	a	particular	variable,	we	can	affect	a	wide	range	of	Onyx	styles.	If	you	want
to	create	your	own	overrides,	you	can	modify	your	app	as	follows:

	
In	source/package.js,	change	$lib/onyx	to	$lib/onyx/source.
In	source/style/package.js,	uncomment	the	reference	to	Theme.less.
Edit	source/style/Theme.less	and	place	your	overrides	into	the	places	indicated.

To	change	all	Onyx	buttons	to	lime	green,	you	could	place	the	following	where	variable
overrides	go:

@onyx-button-background:	lime;

For	more	information	on	Less,	see	the	Less	website.	For	more	information	on	theming
Enyo,	visit	the	Enyo	UI	Theming	page.

Moonstone	provides	Less	files	as	well	and	the	override	process	is	very	similar.

http://lesscss.org/
https://github.com/enyojs/enyo/wiki/UI-Theming

Performance	Tuning
With	all	of	the	styling	options	available	to	you	it	can	be	very	tempting	to	pull	out	all	the
stops	and	add	drop	shadows,	rounded	corners,	and	all	sorts	of	bells	and	whistles	to	your
app.	You	need	to	be	careful,	though.	While	Enyo	enables	you	to	make	native	quality	apps
with	HTML5	and	CSS,	you	need	to	test	the	performance	on	mobile	devices	and	older
browsers	(such	as	Internet	Explorer	8),	if	you	target	them.

In	desktop	environments	you	can	expect	very	good	performance	regardless	of	the	CSS
tricks	you	use.	In	the	mobile	world,	where	there’s	less	processing	power	and	less	memory,
things	can	get	bogged	down	very	quickly.	Particular	performance	hogs	include	the	afore-
mentioned	drop	shadows	and	rounded	corners.	Other	offenders	include	computed
gradients,	overlarge	images,	and	long-running	JavaScript.	It’s	very	important	that	you	test
how	your	app	performs	on	the	least	capable	system	you’re	targeting.	You	may	need	to
disable	some	features	by	using	enyo.platform	to	detect	the	platform	you	are	running	on.

One	of	the	most	important	factors	in	how	an	app	is	perceived	is	its	responsiveness.	It	is
very	important	that	when	a	user	taps	on	buttons,	there	is	visual	feedback	that	something
happened.	If	you	attempt	to	perform	a	long	running	calculation	in	a	tap	handler,	the	user
will	not	see	the	button	respond	properly	to	the	tap.	Attempt	to	return	as	quickly	as	possible
from	event	handlers	and	perform	the	calculations	in	response	to	a	timer	or	animation
frame	request.	Enyo	includes	an	Async	object	for	performing	asynchronous	actions.

TIP
With	mobile	devices,	the	simpler	the	HTML	and	CSS,	the	faster	the	performance.	It	can	be	tempting	to	create
every	single	object	that	your	app	might	use.	However,	placing	all	those	components	into	the	DOM,	even	if	they’re
hidden,	affects	performance.	Create	only	the	objects	you	need	and	get	rid	of	those	you	don’t	need	anymore.

Lastly,	with	installable	apps	you	should	be	careful	about	loading	remote	resources.	Mobile
users	may	not	always	have	an	Internet	connection	and,	when	they	do,	it	may	be	slow.	If
your	app	depends	on	particular	images,	package	them	with	your	app.	If	your	resources
change	over	time,	use	caching	techniques.

A	full	discussion	of	performance	tuning	is	outside	the	scope	of	this	book.	For	more
information	on	some	of	the	pitfalls,	you	can	read	HTML5	Techniques	for	Optimizing
Mobile	Performance	and	other	sites.

http://www.html5rocks.com/en/mobile/optimization-and-performance/

Debugging
So	far	we’ve	painted	a	rosy	picture	of	life	with	Enyo.	Of	course,	sometimes	things	don’t
go	so	well.	Fortunately,	you	have	a	number	of	tools	at	your	disposal	to	figure	out	what
went	wrong.	First	and	foremost,	because	Enyo	is	truly	cross-platform,	many	problems	can
be	detected	and	fixed	by	running	your	apps	in	a	desktop	browser.	All	the	modern	browsers
have	JavaScript	debuggers	available	that	make	it	very	easy	to	see	errors	and	even	inspect
the	state	of	the	DOM.	In	general,	problems	come	in	two	varieties:	code	issues	and	layout
issues.

TIP
One	of	the	most	common	errors	in	Enyo	apps	is	forgetting	to	call	this.inherited(arguments)	when	overriding
methods	on	a	parent	object.	This	occurs	most	often	with	the	create()	and	render()	methods	but	can	also	happen
with	others.	Leaving	out	this	call	can	cause	components	to	render	incorrectly	or	not	appear	at	all.	Another
common	error	is	failing	to	return	a	truthy	value	from	event	handlers	and	having	the	event	handled	by	more	than
one	component.	This	can	be	especially	bad	in	the	case	of	nested	List	components.

Layout	Issues
We	covered	some	of	the	great	layout	features	that	Enyo	offers	in	Chapter	4.	However,
even	with	these	features	at	your	disposal,	things	can	go	wrong.	One	common	problem	app
developers	experience	occurs	when	they	fail	to	provide	a	height	to	List	or	Scroller
components.	Without	a	height,	these	elements	will	end	up	invisible.	Providing	a	height	or
placing	the	component	in	a	fittable	layout	can	solve	that	issue.	Fittables	themselves	can
also	cause	problems.	Forgetting	to	assign	fit:	true	to	one	and	only	one	of	the
components	of	a	fittable	component	can	lead	to	rendering	issues.

Sometimes	things	just	end	up	in	the	wrong	place	or	have	the	wrong	style.	A	quick	way	to
see	what	has	happened	is	to	use	the	DOM	inspector	in	your	browser	to	see	what	styles
have	been	applied	to	the	elements	in	question.	Sometimes,	CSS	precedence	can	be	the
source	of	problems.	Use	the	DOM	inspector	to	check	whether	a	component	rendered	at	all
or	if	it’s	merely	hidden.	Other	times,	it	can	help	to	add	!important	to	a	style.

Layout	is	a	complex	topic.	Some	links	that	might	help	include:	“Four	simple	techniques	to
quickly	debug	and	fix	your	CSS	code	in	almost	any	browser”	and	“Diagnose	and	fix
layout	problems”	(IE-specific,	but	the	same	concepts	exist	in	other	browsers).	Also	check
out	“CSS	In	Your	Pocket	-	Mobile	CSS	Tips	From	The	Trenches”	by	Angelina	Fabbro	for
a	great	introduction	to	CSS	debugging	tools	and	techniques.

Code	Issues
Bugs	are	unavoidable.	Fortunately,	there	are	lots	of	ways	to	squash	them.	One	of	the	best
ways	to	detect	code	errors	is	to	keep	the	JavaScript	console	open	while	testing	Enyo	apps.
If	there’s	an	error	or	typo	in	your	code,	it	can	cause	strange	problems.	Seeing	errors	as
they	occur	really	helps	in	trapping	the	problem.

Enyo	apps	can	also	write	to	the	JavaScript	console	with	the	info(),	warn(),	and	error()
methods	on	the	enyo	object.	In	addition,	every	Enyo	kind	can	call	this.log()	to	send
output	that	includes	the	kind’s	name	and	the	name	of	the	method	that	generated	the	log
message.

Sometimes	a	passive	approach	to	debugging	a	problem	isn’t	enough.	In	these	cases	you

http://bigemployee.com/4-simple-techniques-to-quickly-debug-and-fix-your-css-code-in-almost-any-browser/
http://msdn.microsoft.com/en-us/library/ie/dn255008(v=vs.85).aspx
https://www.youtube.com/watch?v=vBHt61yDO9U

can	set	breakpoints	in	your	code	and	step	through	methods	that	are	misbehaving.	A	handy
trick	that	is	supported	by	the	major	browsers	is	putting	the	debugger	command	into	code
you	want	to	inspect.	When	the	browser	reaches	that	code,	it	will	stop	and	allow	you	to
inspect	the	state	of	the	app.	Just	remember	to	remove	that	command	before	publishing
your	app!

Once	you’ve	identified	a	place	in	the	code	that	you	want	to	inspect,	it’s	easy	to	see	all	the
components	belonging	to	a	component.	this.$	will	contain	a	hash	of	all	the	owned
components.	Also,	enyo.$	contains	a	hash	of	all	named	components	in	your	app.	You	can
easily	walk	through	these	by	inspecting	deeper	and	deeper	into	a	kind.

TIP
When	inspecting	an	element	in	the	DOM	you	can	use	its	id	(e.g.,	“panelsSample_panel1”)	to	find	the	reference
within	the	enyo.$	hash.	To	make	things	even	simpler,	Firefox,	Chrome,	and	Safari	all	set	$0	to	the	last	element
inspected	in	the	DOM.	To	find	the	associated	Enyo	control	simply	use	enyo.$[$0.id].

JSFIDDLE	DEBUGGING
There’s	no	doubt	that	jsFiddle	is	a	great	environment	for	quickly	testing	ideas.	It	does	have	some	drawbacks,
though.	Among	them	is	that	debugging	can	be	a	little	more	difficult	and	there	aren’t	a	lot	of	options	for	working
with	complex	apps.	jsFiddle	runs	your	code	in	an	iframe.	Because	the	code	you	are	executing	gets	reloaded	into
the	iframe	each	time	you	click	Run,	it	can	be	a	little	tricky	keeping	breakpoints	in	line.
Using	the	debugger	command	mentioned	previously	can	be	helpful,	as	can	using	the	Inspector	window	that	shows
you	active	source	files.	The	source	for	your	app	will	be	launched	from	fiddle.jshell.net	and	will	be	in-line	with	the
HTML	source	for	the	page.	If	your	app	does	not	appear	to	be	working	at	all,	make	sure	you	have	selected	the
correct	framework:

If	you	have	the	wrong	settings,	you	may	see	the	following	error	message:
Uncaught	TypeError:	Cannot	read	property	‘className’	of	undefined

If	you	run	into	an	issue	with	a	specific	version	of	Enyo,	you	can	try	using	the	nightly	build,	which	contains	the
most	recent	code	submissions	to	Enyo.	Conversely,	if	you	run	into	a	problem	using	the	nightly	build,	try	using	the
last	released	version.	Released	versions	are	tested	more	thoroughly,	while	nightly	builds	have	the	most	recent
fixes	and	features.
When	using	the	JavaScript	console,	unless	you	use	a	breakpoint,	you	will	be	in	the	wrong	context	to	execute
commands	to	inspect	the	state	of	Enyo.	Both	Chrome	and	Safari	support	selecting	the	context	through	a	drop-
down	list.

Going	Global
Now	that	you’ve	produced	a	beautiful	(and	bug-free)	app,	you’ll	want	to	share	it	with	the
world.	Enyo	provides	a	wrapper	for	the	open	source	internationalization	library	iLib.	This
library	provides	facilities	for	substituting	translated	strings	as	well	as	formatting	names,
dates,	and	other	data	based	upon	a	user’s	locale.	The	name	of	the	enyo	wrapper	is	enyo-
ilib.

The	library	will	attempt	to	figure	out	the	locale	based	on	cues	from	the	browser.	The
current	locale	can	be	retrieved	by	calling	ilib.getLocale().	In	cases	where	the	locale
can’t	be	determined,	you	can	explicitly	create	a	locale	by	calling	new	ilib.LocaleInfo()
with	the	desired	locale.

WARNING
The	enyo-ilib	library	is	not	included	if	you	are	using	a	standard	(non-Moonstone)	Bootplate-based	setup	(see
Appendix	A).	To	enable	the	library	in	a	Bootplate	setup,	execute	the	command:	git	submodule	add
https://github.com/enyojs/enyo-ilib.git	lib/enyo-ilib	and	then	add	the	library	to	your	package.js	with
the	line	‘$lib/enyo-ilib’.

Globalization	Basics
In	its	most	basic	form,	iLib	handles	string	substitutions.	Substitutions	are	performed	using
the	$L()	global	function.	At	run	time,	the	$L()	function	searches	for	an	appropriate
translation	file	for	the	user’s	locale	(or	the	locale	you	set	manually)	and	then	attempts	to
locate	the	string	that	was	passed	in	as	the	first	argument.	If	a	match	is	found,	the	translated
string	is	used.	If	not,	the	original	string	is	used.

Translation	files	should	be	placed	in	the	resources	directory	of	your	app.	Each	locale
translation	should	be	in	its	own	JSON	file.	Translation	files	are	named	strings.json	and	are
stored	in	directories	named	after	the	language	and	optional	subdirectories	for	the	country
code	and	variant.	For	example,	a	Canadian	English	translation	file	would	be	found	in
resources/en/CA/strings.json.	Such	a	file	might	look	like	this:

{

				“Click”:	“Click,	eh?”

}

Names,	Dates,	and	Measures
App	developers	can	add	some	extra	polish	to	their	apps	by	correctly	formatting
information	for	the	user’s	region.	The	iLib	library	includes	the	ability	to	format	names,
phone	numbers,	dates,	times,	and	more.	For	more	information	on	the	options	supported	by
these	formatters,	please	refer	to	the	localization	documentation	page.	The	following
example	shows	some	of	the	basic	routines	for	formatting	these	items:

enyo.kind({

				name:	‘ILibSample’,

				components:	[

								{	name:	‘date’	},

								{	name:	‘number’	}

],

				create:	function()	{

								this.inherited(arguments);

								var	dateFmt	=	new	ilib.DateFmt({	length:	‘short’	});

								this.$.date.set(‘content’,	dateFmt.format(new	Date()));

								var	numFmt	=	new	ilib.NumFmt({maxFractionDigits:	1});

								this.$.number.set(‘content’,	numFmt.format(‘86753.09’));

				}

http://sourceforge.net/projects/i18nlib/
http://enyojs.com/docs/building-apps/localization.html

});

TIP
Try	it	out:	jsFiddle.

Two	Onyx	components	are	locale-aware:	DatePicker	and	TimePicker.	If	enyo-ilib	is
loaded,	they	will	use	the	current	locale	to	format	their	contents.	If	the	library	isn’t	loaded,
then	they	will	default	to	the	US	format.	All	of	the	number	and	date	components	in
Moonstone	are	locale-aware.

There	is	a	lot	more	power	in	iLib.	You	can	find	out	more	at	the	Enyo	localization
documentation	page	and	the	iLib	documentation	page.

http://jsfiddle.net/gh/get/enyo/2.5.1/dependencies/iLib/Enyo-UpAndRunning/jsFiddle/tree/master/iLib
http://enyojs.com/docs/building-apps/localization.html
http://docs.jedlsoft.com/ilib/jsdoc/

Summary
You’ve	now	picked	up	some	more	tools	for	creating	beautiful	and	functional	Enyo	apps
and	you	know	what	to	do	when	things	go	wrong.	If	you	get	stuck,	there	are	many	good
resources	available	to	you,	including	the	Enyo	forums	and	the	Enyo	IRC	channel.

Chapter	7.	Deploying
So	now	you’re	a	budding	Enyo	developer	looking	to	deploy	your	app	to	all	the	supported
platforms.	The	only	question	you	have	is:	how?	In	this	chapter	we’ll	explore	the	tools	and
techniques	you’ll	need	to	structure	your	apps	and	deploy	them	to	various	targets.	At	this
point,	we’ll	need	to	set	up	a	“real”	development	environment,	since	we	can’t	deploy	apps
by	directing	users	to	a	page	on	jsFiddle.

For	this	chapter	you	should	follow	the	Bootplate	environment	setup	guide	in	Appendix	A.
Bootplate	is	a	ready-to-use	template	that	includes	tools	for	easy	deployment.	Even	if	you
ultimately	choose	a	different	structure	for	your	app,	you	may	still	be	able	to	apply	some	of
these	tools.

Bootplate	App	Structure
It’s	worth	taking	a	few	moments	to	discuss	how	an	Enyo	Bootplate	app	is	structured.	Until
now,	all	of	our	samples	have	been	run	on	jsFiddle	and	have	consisted	of,	at	most,	three
files.	We	haven’t	had	to	concern	ourselves	with	where	the	Enyo	framework	files	are
coming	from	or	how	to	add	assets.	Here’s	the	Bootplate	directory	structure:

debug.html

index.html

assets/

build/

deploy/

enyo/

lib/

source/

tools/

There	are	some	additional	files	included	but	these	are	the	most	important.	debug.html	is
the	file	to	load	during	debugging.	It	includes	non-minified	versions	of	Enyo	and	the
libraries.	index.html	will	load	a	deployed	version	of	the	app	that	has	been	minified
(compressed).	If	a	non-minified	build	of	the	application	is	not	available,	index.html	will
redirect	to	debug.html.	The	assets	directory	is	a	place	to	store	images,	fonts	and	other
assets	your	app	requires.	The	build	directory	contains	the	minified	source	of	your	app,
including	Enyo	and	the	libraries.	These	files	are	loaded	by	index.html.	The	deploy
directory	contains	a	ready-to-deploy	version	of	your	application.	These	directories	(deploy
and	build)	are	generated	by	the	deployment	scripts	located	in	the	tools	directory.	The	enyo
directory	contains	the	framework	source	for	Enyo,	while	the	lib	directory	contains	the
various	Enyo	libraries	needed	for	the	app

The	most	interesting	directory	is	the	source	directory.	Within	it	will	live	the	files	you
create	to	breathe	life	into	your	app.	The	source	directory	structure	looks	like	this:

app.js

package.js

data/

				data.js

				package.js

style/

				main.less

				package.js

				Theme.less

views/

				package.js

				views.js

app.js	contains	the	source	for	the	Application	object	that	forms	the	base	of	the	app.	This
file	can	be	used	to	set	the	initial	view	and	instantiate	any	global	models.	package.js	is	part
of	a	system	that	tells	Enyo	what	source	and	stylesheets	to	load.	Inside	package.js	is	a	call
to	enyo.depends().	Each	line	in	the	call	adds	either	a	file	or	directory	to	the	app.	Each
directory	specified	should	have	its	own	package.js.	This	system	makes	it	so	that	reusable
components	can	be	easily	added	to	a	project	simply	by	adding	the	directory	and	including
it	in	package.js.

The	data	directory	is	useful	for	defining	models	and	collections	needed	by	the	app.	The
style	directory	contains	main.less,	which	is	where	the	app’s	CSS	is	specified.	The
Theme.less	file	allows	for	overriding	the	UI	library’s	styles	and	is	discussed	in	Chapter	6.

views	contains	source	for	the	UI	of	your	application.	This	is	where	you	will	define	the

controls	and	components	that	make	up	your	application.	A	simple	app	may	only	need	to
modify	views.js,	while	a	more	complex	app	will	have	many	files	or	directories.

Don’t	be	too	constrained	by	the	directories	Enyo	provides.	Feel	free	to	add	more;	just	be
sure	to	modify	package.js	to	include	all	of	your	files	and	directories.

Web	Targets
One	of	the	simplest	ways	to	deploy	Enyo	is	to	host	it	on	a	server	and	serve	the	apps
embedded	into	a	web	page.	Although	all	our	examples	have	shown	rendering	Enyo	objects
into	the	document	body,	it	is	possible	to	render	them	into	any	element	on	the	page	(by
setting	the	renderTarget	property	of	the	Application	kind	to	the	id	of	the	element).	For
web	deployment,	simply	copy	the	Enyo	library	and	app	source	code	up	to	a	directory	on
your	server	and	include	them	in	your	HTML	source.

Bootplate	makes	this	process	easy	by	including	a	Grunt	deploy	task.	For	more	on	using
Grunt	with	Bootplate	see	Using	Grunt.	If	you	are	not	using	Grunt,	Bootplate	includes	a
deploy	script	that	packages	all	the	files	and	minimizes	the	source.	For	Windows,	this	script
is	called	deploy.bat;	for	Mac	and	Linux,	it’s	called	deploy.sh.

Deploying	speeds	up	loading	and	combines	everything	into	the	deploy	directory.	Once
deployed,	simply	transfer	the	files	from	the	deploy	directory	to	your	destination	(e.g.,	a
web	host).	Keep	in	mind,	though,	that	deployed,	minified	code	is	much	tougher	to	debug
than	unminified	code.

http://gruntjs.com

Desktop	Targets
JavaScript	apps	might	not	seem	like	the	best	choice	when	targeting	the	desktop;	however,
many	of	the	features	that	make	it	great	for	creating	Web	apps	also	make	it	good	for
creating	desktop	apps.	Particularly	with	Node.js	for	communicating	with	the	system,	a
browser	engine	for	displaying	a	user	interface,	and,	of	course,	Enyo	to	simplify	writing	the
app,	you	can	quickly	bring	up	a	cross-platform	desktop	app	without	having	to	learn	the
nuances	of	each	platform.

Two	projects	have	brought	together	the	Chromium	browser	with	Node.js:	Atom	Shell	and
node-webkit.	To	demonstrate	how	a	desktop	JavaScript	app	looks,	we’ll	use	Atom	Shell
along	with	the	default	Bootplate	app.	First,	download	the	appropriate	version	of	Atom
Shell	for	your	system	from	the	releases	page	and	unzip	it	to	a	directory	on	your	computer.

Create	a	new	directory	to	house	the	Atom	Shell	project.	Copy	the	sample	package.json
and	main.js	files	from	the	Atom	Shell	quick-start	guide	into	the	directory.	You	can	modify
either	file	to	your	liking.

Next,	execute	the	deploy	script	of	a	Bootplate	project	to	create	the	minified	project	files.
Copy	the	files	from	the	deploy	directory	into	your	Atom	Shell	project	directory.	You	can
now	test	the	app	by	executing	the	Atom	Shell	binary	(follow	the	directions	in	the	quick-
start	guide).	To	create	a	distributable	app,	follow	the	directions	in	the	application
distribution	guide.

https://github.com/atom/atom-shell
https://github.com/rogerwang/node-webkit
https://github.com/atom/atom-shell/releases
https://github.com/atom/atom-shell/blob/master/docs/tutorial/quick-start.md
https://github.com/atom/atom-shell/blob/master/docs/tutorial/application-distribution.md

A	completed	project	directory	is	available	on	GitHub.

https://github.com/Enyo-UpAndRunning/atom-shell-sample

Smart	Devices
One	of	the	most	interesting	places	for	apps	these	days	is	on	smartphones,	tablets,	smart
TVs	and	other	such	devices.	Enyo	is	perfectly	suited	to	this	environment.	Enyo	itself
doesn’t	provide	any	kinds	that	give	direct	access	to	the	hardware	components	of	these
devices,	and	not	all	device	features	have	an	HTML-standard	method	for	access.	However,
Cordova,	an	Apache	open	source	project,	handles	direct	access	to	these	features	on	many
devices	and	provides	a	method	for	creating	natively	installable	apps.

Enyo	supports	Cordova	events	natively	and	has	a	library	called	enyo-cordova	available	on
GitHub.	For	more	information	on	Cordova	support	with	Enyo,	please	see	Making	Use	of
Cordova’s	Native	Functions.

There	are	two	ways	to	create	apps	using	Cordova:	by	using	the	online	PhoneGap	Build
tool	or	by	downloading	the	Cordova	library.	We’ll	look	briefly	at	both	options.

PhoneGap	Build
One	of	the	simplest	ways	to	get	started	with	deploying	mobile	apps	is	to	use	Adobe
PhoneGap	Build.	PhoneGap	Build	is	a	web-based	tool	for	packaging	cross-platform
JavaScript	apps.	Among	other	things,	it	allows	you	to	create	installable	apps	for	multiple
targets	quickly	and	easily.

PhoneGap	requires	that	its	JavaScript	library	be	loaded	in	index.html.	To	do	this,	add	the
PhoneGap	script	tag	just	before	the	line	that	loads	the	Enyo	source,	as	follows:

…

								<!—	js	—>

								<script	src=“phonegap.js”></script>

								<script	src=“build/enyo.js”	charset=“utf-8”></script>

…

After	registering	for	a	PhoneGap	build	account,	you	can	pull	projects	directly	from
GitHub	or,	for	private	(as	opposed	to	public,	open	source)	projects,	upload	a	.zip	file.	It	is
very	easy	to	zip	the	contents	of	the	deploy	directory	and	upload	it	to	PhoneGap	Build.	For
some	platforms,	you	will	need	to	supply	developer	credentials	before	you	have	an
installable	app.	Additionally,	you’ll	want	to	set	up	app	icons	and	other	metadata	needed	by
the	various	mobile	stores.

If	you	want	to	test	PhoneGap	build,	use	the	following	repository	link	to	create	a	test
package:	https://github.com/Enyo-UpAndRunning/phonegap-build-sample.git.

If	you	use	Bootplate	and	a	GitHub-based	PhoneGap	build,	you	will	either	need	to	have	a
separate	repository	for	the	deployed	files	(as	in	the	preceding	sample)	or	you	will	need	to
commit	your	deployed	source	along	with	your	app	and	use	a	.pgbomit	file	to	omit	all	the
unminified	source	from	being	included	in	your	final	application.

Local	Cordova	Builds
PhoneGap	Build	is	easy	to	use	but	it	doesn’t	give	you	a	lot	of	flexibility.	Installing
Cordova	locally	gives	you	much	finer-grained	control,	as	well	as	access	to	the	build	tools
available	on	your	platform	of	choice.	In	general,	you	will	want	to	start	with	a	shell	app
appropriate	for	the	platform	you	wish	to	deploy	on	and	then	copy	the	deploy	files	to	the
www	directory.	Be	careful	to	ensure	that	you	load	cordova.js,	or	your	app	may	not	work

https://github.com/enyojs/enyo-cordova
http://enyojs.com/docs/latest/deploying-apps/cordova-native-functions.html
https://build.phonegap.com/
https://github.com/Enyo-UpAndRunning/phonegap-build-sample.git

correctly.

The	Enyo	Yeoman	generator	includes	an	option	to	create	a	full	Cordova	project,	including
the	Cordova	command-line	tools.	To	create	a	new	Cordova	project,	use	the	following
command:

yo	enyo	—cordova	myProject

For	more	information	on	getting	started	with	Cordova,	visit	the	Cordova	site.

http://cordova.apache.org/

webOS	Smart	TVs
LG	has	made	it	easy	to	deploy	Enyo	applications	to	webOS	Smart	TVs.	Included	in	the
SDK	(see	Appendix	A)	are	command-line	tools	for	creating,	packaging,	testing,	and
deploying	apps.	The	ares-package	command	uses	the	Bootplate	deploy	script	to	minify
an	app	and	then	it	creates	a	deployable	package.	The	following	command	packages	the
app	in	the	current	directory:

ares-package	.

To	install	the	app	to	the	emulator	or	a	TV,	use	the	ares-install	tool.	To	deploy	a	sample
app	created	by	the	ares-generate	tool	to	the	emulator,	issue	the	following	command:

ares-install	—device	emulator	com.example.sample_0.0.1_all.ipk

For	more	information	about	developing	for	webOS	TVs,	visit	the	webOS	TV	for
developers	site.

http://developer.lge.com/webOSTV/

Summary
You	should	now	be	familiar	with	some	of	the	ways	to	package	and	deploy	Enyo	apps.
Using	this	knowledge,	you	can	deploy	your	apps	on	various	platforms	and	know	that	your
apps	will	work.

Chapter	8.	Conclusion
By	now	you	should	be	up	and	running	with	Enyo.	You’ve	seen	the	major	features	and
dabbled	with	many	of	the	minor	ones.	Enyo,	while	remaining	small,	fast,	and	focused,	has
a	lot	of	power	and	there	is	still	more	to	learn.	I	encourage	you	to	go	out	and	interact	with
the	Enyo	community	through	the	Enyo	forums	and	the	#enyojs	freenode.net	IRC	channel
(irc://chat.freenode.net/enyojs).	You’ll	find	me	there	under	the	handle	Roy__.

Enyo	is	an	active	project	and	there	are	always	new	features	and	updates	being	worked	on.
Follow	Enyo	on	Twitter	and	read	the	official	Enyo	blog	for	the	latest	news	and	events.

Finally,	I	encourage	you	to	share	your	thoughts	on	this	book	with	me.	I	intend	for	this
book	to	also	be	an	active	project	that	attempts	to	keep	pace	with	the	changes	to	Enyo.
Keep	up	with	the	latest	updates,	errata,	and	more	at	this	book’s	O’Reilly	page.

Now,	get	out	there	and	start	using	Enyo.	Who	knows?	Your	boss	may	come	to	your	desk
and	ask	you	to	produce	a	fantastic	cross-platform	app…

http://forums.enyojs.com/
http://twitter.com/EnyoJS
http://blog.enyojs.com/
http://oreil.ly/enyo-upandrunning

Appendix	A.	Setting	Up	a	Development
Environment
At	some	point,	you’ll	need	to	set	up	a	copy	of	Enyo	on	your	local	computer	or	a	server,	if
only	to	package	up	the	applications	you’ve	developed.	We’ll	cover	a	few	methods	of
setting	up	Enyo	and	discuss	the	prerequisites	for	each.

Prerequisites
Two	basic	tools	are	used	by	Enyo,	which	you	may	need	to	install:	Node.js	and	Git.	Let’s
look	at	why	they	are	needed	and	where	to	get	them.

Node.js
Node.js	is	a	platform	for	running	JavaScript	outside	of	a	browser.	It	allows	JavaScript	to
be	used	as	a	general	purpose	scripting	language.	Node	is	available	for	Windows,	Linux,
and	Mac	OS	X.	Visit	the	Node.js	download	page	to	download	the	appropriate	version	of
Node	for	your	system.

TO	NODE	OR	NOT	TO	NODE
There	are	several	features	of	Enyo	that	rely	upon	Node.js.	In	Enyo,	Node	is	used	for	minimizing	Enyo	source,
packaging	apps	derived	from	Bootplate,	and	compiling	Less	files	into	CSS.	It	is	also	a	requirement	for	the	Enyo
Yeoman	generator.	If	you	plan	to	release	an	Enyo	app,	you	will	need	to	install	Node.	If	you	just	want	to	play
around	with	Enyo	and	you	don’t	mind	running	the	non-minimized,	debug	version	of	Enyo,	you	don’t	need	Node.

Git
Git	is	a	distributed	source-code	management	tool.	It	allows	software	developers	to	keep
versioned	copies	of	their	source	code.	It	is	also	the	tool	the	Enyo	team	uses	for	Enyo
development	and	the	tool	required	to	work	with	GitHub,	an	online	source	code	repository
that	hosts	the	Enyo	source.

Git	is	not	required	to	use	the	basic	parts	of	Enyo.	You’ll	want	to	install	Git	if	any	of	the
following	is	true:

	
1.	 You	want	to	keep	up	with	the	latest	developments	with	Enyo.
2.	 You	want	to	contribute	to	Enyo.
3.	 You	want	to	use	a	system	that	makes	it	easy	to	keep	past	versions	of	your	source

code.

GitHub	has	instructions	for	setting	up	Git.	The	basic	installation	installs	a	command-line
client.	There	are	also	GUI	clients	available	for	all	the	major	platforms.

http://nodejs.org/
http://nodejs.org/download/
http://git-scm.com/
https://github.com/
https://help.github.com/articles/set-up-git

Installing	Enyo
There	are	two	general	methods	for	installing	Enyo,	and	one	method	specific	to	developing
webOS	Smart	TV	apps.	The	easiest	way	to	make	Enyo	apps	is	to	start	with	Bootplate.
Bootplate	includes	all	the	scaffolding	you’ll	need	to	debug	and	deploy	an	app.	We’ll	cover
Bootplate	and	the	other	methods	for	installing	Enyo.

Bootplate
Bootplate	is	a	scaffold	upon	which	to	build	an	Enyo	app.	It	includes	tools	that	allow	you
to	easily	debug	your	app	in	a	browser	and	then	deploy	a	minified	version	of	Enyo	with
your	app.	It	also	provides	an	easy-to-use	structure	for	your	app.	There	are	two	versions	of
Bootplate	available:	Onyx	Bootplate	(for	mobile	and	desktop	apps)	and	Moonstone
Bootplate	(for	smart	TV	apps).

There	are	three	ways	to	install	Bootplate:	use	the	Yeoman	generator,	download	a	zipped
archive	from	the	Enyo	site,	or	clone	the	archive	from	GitHub.

The	simplest	method	is	to	download	the	zip	archive	from	the	Get	Enyo	page.	As	of	this
writing,	the	latest	version	is	2.5.1.	After	downloading,	simply	unzip	the	archive.

The	next	easiest	method	is	to	use	the	Enyo	Yeoman	generator.	After	installing	Node	on
your	computer,	install	the	generator	using	the	following	command:

npm	install	-g	generator-enyo

Once	installed,	a	new	bootplate	can	be	generated	by	executing	the	following	command:
yo	enyo	MyProject

In	this	command,	MyProject	is	a	directory	name.	This	method	will	create	an	Onyx
Bootplate.	To	create	a	Moonstone	Bootplate,	use	the	following:

yo	enyo	-m=moonstone

For	more	information	on	the	generator	and	its	options,	see	the	Bootplate	guide.

The	last	method	is	cloning	Bootplate	from	GitHub.	Use	the	following	command	to
download	the	Onyx	Bootplate:

git	clone	—recursive	https://github.com/enyojs/bootplate.git

To	clone	Moonstone	Bootplate	from	GitHub:
git	clone	—recursive	https://github.com/enyojs/bootplate-moonstone.git

Full	Source
You	can	also	download	the	full	source-code	tree	for	Enyo	from	GitHub.	To	set	up	Enyo,
you	will	need	to	clone	the	Enyo	repository	and	then	create	a	lib	directory	within	the
directory	that	contains	the	cloned	repo.	Inside	the	lib	directory,	clone	the	Enyo	libraries
you	need	for	your	application.	The	following	diagram	shows	the	directory	structure	and
the	Git	repos:

enyo/										git@github.com:enyojs/enyo.git

lib/											(mkdir	the	lib	folder)

			onyx/							git@github.com:enyojs/onyx.git

			layout/					git@github.com:enyojs/layout.git

			…

http://enyojs.com/get-enyo/
http://yeoman.io
http://enyojs.com/docs/latest/developer-guide/getting-started/bootplate.html

Using	the	webOS	Developer	Tools
Enyo	is	the	primary	method	for	developing	smart	TV	applications	for	LG	webOS	Smart
TVs.	To	make	it	easier	for	developers	to	get	started,	LG	has	prepared	a	Software
Development	Toolkit	(SDK).	This	SDK	includes	a	TV	Emulator	and	command-line	tools.
One	of	the	command-line	tools,	ares-generate,	can	be	used	to	generate	app	templates
based	on	the	Moonstone	version	of	Bootplate.	To	create	a	new	application	template	in	the
directory	sampleProj,	issue	the	following	command:

ares-generate	sampleProj

To	see	the	list	of	available	templates,	use:
ares-generate	-l

Other	command-line	tools	are	discussed	in	webOS	Smart	TVs.
TIP

The	version	of	Enyo	that	is	included	with	the	SDK	may	not	be	the	latest.	You	can	use	more	recent	versions	of
Enyo	with	the	TV	and	the	SDK.	Use	one	of	the	other	methods	to	install	Enyo	and	add	any	needed	files	to	the
project.

http://developer.lge.com/webOSTV/sdk/web-sdk/

Using	Bootplate
Bootplate	gives	you	a	head	start	in	creating	your	app	by	providing	a	ready-to-use	structure
for	your	app.	Among	other	things,	it	provides	a	source	directory	that	contains	your	app’s
controller	(app.js),	a	views	directory	that	contains	your	views,	and	a	style	directory	to
house	CSS.	You	can	modify	the	included	package.js	to	add	additional	source	files	and
directories.

Bootplate	provides	scripts	to	create	a	ready-to-deploy	version	of	your	app,	including	a
minified	version	of	Enyo.	For	general	testing,	you	will	load	debug.html	into	your	browser.
When	you	have	created	a	production	version,	you	can	load	it	by	opening	index.html.	To
produce	a	deployable	production	version	of	your	app,	issue	the	following	command:

tools/deploy.sh	(tools\deploy.bat	on	Windows)

When	all	the	source	has	been	combined	and	minified,	it	will	be	placed	into	the	deploy
directory.	The	contents	of	that	directory	can	be	copied	up	to	a	web	server	or	packaged	with
one	of	the	various	packaging	tools.	For	more	about	the	layout	of	Bootplate,	see	Bootplate
App	Structure.

WARNING
When	testing	Enyo	apps	by	loading	a	file	directly	into	the	browser	(as	opposed	to	serving	it	from	a	web	server),
you	can	run	into	security	restrictions	in	the	browser,	particularly	when	attempting	to	perform	requests	to	load
resources.	Some	browsers	allow	you	to	override	those	security	restrictions.	For	best	results,	test	your	app	by
serving	it	with	a	web	browser	(such	as	Apache)	or	using	the	node-based	server	included	with	Bootplate	(see	Using
Grunt).

Using	Grunt
Bootplate	includes	an	easy-to-use	script	for	deploying	Enyo	apps.	This	script	uses	Grunt
(a	node	package)	to	execute	tasks.	If	you	have	installed	Enyo	using	the	Yeoman	generator,
Grunt	is	set	up	and	ready	to	use.	If	not,	you	will	need	to	initialize	the	dependencies	and
install	the	Grunt	command-line	tool.	Execute	the	following	commands	from	the	Bootplate
directory	to	initialize	Grunt:

npm	install	-g	grunt-cli

npm	install

Once	initialized,	a	minified	version	of	the	app	can	be	created	by	issuing	the	command:
grunt

The	script	(Gruntfile.js)	also	includes	tasks	to	start	a	simple	HTTP	server,	check	the	app
source	for	warnings	using	JSHint,	and	remove	deployed	files.	The	commands,	in	order,
are:

grunt	serve

grunt	jshint

grunt	clean

http://gruntjs.com/
http://jshint.com/

About	the	Author
Roy	Sutton	is	a	member	of	the	HP	webOS	Developer	Relations	team	and	a	contributor	to
the	Enyo	project.	He	has	been	a	mobile	developer	for	longer	than	the	term	has	existed.

Colophon
The	animal	on	the	cover	of	Enyo:	Up	and	Running	is	the	rustic	sphinx	moth	(Manduca
rustica).

The	cover	image	is	from	Dover	Pictorial	Archive.	The	cover	font	is	Adobe	ITC
Garamond.	The	text	font	is	Adobe	Minion	Pro;	the	heading	font	is	Adobe	Myriad
Condensed;	and	the	code	font	is	Dalton	Maag’s	Ubuntu	Mono.

Enyo:	Up	and	Running

Roy	Sutton
Editor

Meg	Foley

	Revision	History	
	2015-01-08	 	First	release	

Copyright	©	2015
O’Reilly	books	may	be	purchased	for	educational,	business,	or	sales	promotional	use.	Online	editions	are	also	available
for	most	titles	(http://safaribooksonline.com).	For	more	information,	contact	our	corporate/institutional	sales	department:
800-998-9938	or	corporate@oreilly.com.

Nutshell	Handbook,	the	Nutshell	Handbook	logo,	and	the	O’Reilly	logo	are	registered	trademarks	of	O’Reilly	Media,
Inc.	Enyo:	Up	and	Running,	the	image	of	the	rustic	sphinx	moth,	and	related	trade	dress	are	trademarks	of	O’Reilly
Media,	Inc.

Many	of	the	designations	used	by	manufacturers	and	sellers	to	distinguish	their	products	are	claimed	as	trademarks.
Where	those	designations	appear	in	this	book,	and	O’Reilly	Media,	Inc.,	was	aware	of	a	trademark	claim,	the
designations	have	been	printed	in	caps	or	initial	caps.

While	every	precaution	has	been	taken	in	the	preparation	of	this	book,	the	publisher	and	author	assume	no	responsibility
for	errors	or	omissions,	or	for	damages	resulting	from	the	use	of	the	information	contained	herein.

O’Reilly	Media

1005	Gravenstein	Highway	North

Sebastopol,	CA	95472

2015-01-08T07:42:42-08:00

http://safaribooksonline.com
mailto:corporate@oreilly.com

Enyo:	Up	and	Running
Table	of	Contents

Preface
Where	Did	Enyo	Come	From?
Core	Beliefs
What’s	Enyo	Good	For?
Who	Is	This	Book	For?
Minimum	Requirements
Typographic	Conventions
Using	Code	Examples
Safari®	Books	Online
How	to	Contact	Us
Acknowledgments
Content	Updates
January	8,	2015
1.	Light	It	Up
A	New	Project
Improvements
Curveball
QA	on	the	Line
The	E-mail
Summary
2.	Core	Concepts
Introduction
Kinds
Be	Kind
Encapsulation
Properties
Basic	Properties
Bindings	and	Observers
Events
Advanced	Events
Final	Thoughts	on	Encapsulation
Inheritance
Advanced	Kinds
Instance	Constructors
Statics
Summary
3.	Components,	Controls,	and	Other	Objects
Components

Composition
Component	Methods
Dynamic	Components
Controls
Core	Controls
Onyx	Controls
Moonstone	Controls
Methods	and	Properties
Other	Important	Objects
Application
Router
Animator
Ajax	and	JsonpRequest
Community	Gallery
Summary
4.	Layout
Responsive	Design
Core	Layout	Features
Scrollers
Repeaters
Layout	Library	Features
Fittable
Lists
Panels
Summary
5.	Writing	Data-Driven	Applications
Models
Collections
Computed	Properties
Data-Aware	Components
Fetching	Remote	Data
Putting	It	All	Together
Summary
6.	Fit	and	Finish
Styling
Styles	and	Classes
Overriding	Onyx	Styles
Less	Is	More
Performance	Tuning
Debugging
Layout	Issues

Code	Issues
Going	Global
Globalization	Basics
Names,	Dates,	and	Measures
Summary
7.	Deploying
Bootplate	App	Structure
Web	Targets
Desktop	Targets
Smart	Devices
PhoneGap	Build
Local	Cordova	Builds
webOS	Smart	TVs
Summary
8.	Conclusion
A.	Setting	Up	a	Development	Environment
Prerequisites
Node.js
Git
Installing	Enyo
Bootplate
Full	Source
Using	the	webOS	Developer	Tools
Using	Bootplate
Using	Grunt
About	the	Author
Colophon
Copyright

	Preface
	Where Did Enyo Come From?
	Core Beliefs
	What’s Enyo Good For?
	Who Is This Book For?
	Minimum Requirements
	Typographic Conventions
	Using Code Examples
	Safari® Books Online
	How to Contact Us
	Acknowledgments
	Content Updates
	January 8, 2015
	1. Light It Up
	A New Project
	Improvements
	Curveball
	QA on the Line
	The E-mail
	Summary
	2. Core Concepts
	Introduction
	Kinds
	Be Kind
	Encapsulation
	Properties
	Basic Properties
	Bindings and Observers
	Events
	Advanced Events
	Final Thoughts on Encapsulation
	Inheritance
	Advanced Kinds
	Instance Constructors
	Statics
	Summary
	3. Components, Controls, and Other Objects
	Components
	Composition
	Component Methods
	Dynamic Components
	Controls
	Core Controls
	Onyx Controls
	Moonstone Controls
	Methods and Properties
	Other Important Objects
	Application
	Router
	Animator
	Ajax and JsonpRequest
	Community Gallery
	Summary
	4. Layout
	Responsive Design
	Core Layout Features
	Scrollers
	Repeaters
	Layout Library Features
	Fittable
	Lists
	Panels
	Summary
	5. Writing Data-Driven Applications
	Models
	Collections
	Computed Properties
	Data-Aware Components
	Fetching Remote Data
	Putting It All Together
	Summary
	6. Fit and Finish
	Styling
	Styles and Classes
	Overriding Onyx Styles
	Less Is More
	Performance Tuning
	Debugging
	Layout Issues
	Code Issues
	Going Global
	Globalization Basics
	Names, Dates, and Measures
	Summary
	7. Deploying
	Bootplate App Structure
	Web Targets
	Desktop Targets
	Smart Devices
	PhoneGap Build
	Local Cordova Builds
	webOS Smart TVs
	Summary
	8. Conclusion
	A. Setting Up a Development Environment
	Prerequisites
	Node.js
	Git
	Installing Enyo
	Bootplate
	Full Source
	Using the webOS Developer Tools
	Using Bootplate
	Using Grunt
	About the Author
	Colophon
	Copyright

