

Node.js	for	.NET	Developers
David	Gaynes

PUBLISHED	BY
Microsoft	Press
A	division	of	Microsoft	Corporation
One	Microsoft	Way
Redmond,	Washington	98052-6399

Copyright	©	2015	by	David	Gaynes.	All	rights	reserved.

No	part	of	the	contents	of	this	book	may	be	reproduced	or	transmitted	in	any	form	or	by
any	means	without	the	written	permission	of	the	publisher.

Library	of	Congress	Control	Number:	2015930568
ISBN:	978-0-7356-6298-8

Printed	and	bound	in	the	United	States	of	America.

First	Printing

Microsoft	Press	books	are	available	through	booksellers	and	distributors	worldwide.	If
you	need	support	related	to	this	book,	email	Microsoft	Press	Book	Support	at
mspinput@microsoft.com.	Please	tell	us	what	you	think	of	this	book	at
http://aka.ms/tellpress.

This	book	is	provided	“as-is”	and	expresses	the	author’s	views	and	opinions.	The	views,
opinions	and	information	expressed	in	this	book,	including	URL	and	other	Internet
website	references,	may	change	without	notice.

Some	examples	depicted	herein	are	provided	for	illustration	only	and	are	fictitious.	No
real	association	or	connection	is	intended	or	should	be	inferred.

Microsoft	and	the	trademarks	listed	at	http://www.microsoft.com	on	the	“Trademarks”
webpage	are	trademarks	of	the	Microsoft	group	of	companies.	All	other	marks	are
property	of	their	respective	owners.

Acquisitions	and	Developmental	Editor:	Devon	Musgrave
Project	Editor:	Devon	Musgrave
Editorial	Production:	Waypoint	Press	(www.waypointpress.com)
Technical	Reviewer:	Marc	Young
Copyeditor:	Roger	LeBlanc
Indexer:	Cristina	Yeager
Cover:	Twist	Creative	•	Seattle

mailto:mspinput@microsoft.com
http://aka.ms/tellpress
http://www.microsoft.com
http://www.waypointpress.com

Contents	at	a	Glance

CHAPTER	1	Setup

CHAPTER	2	JavaScript	and	asynchronous	code

CHAPTER	3	Coding	Node.js

CHAPTER	4	Rendering	with	Node.js

CHAPTER	5	Working	with	site	data	in	Node.js

CHAPTER	6	Working	with	external	data	in	Node.js

CHAPTER	7	Working	with	file	data	in	Node.js

CHAPTER	8	External	authentication	in	Node.js

CHAPTER	9	Putting	it	all	together	in	Node.js

Table	of	Contents

Introduction

Chapter	1	Setup

Chapter	2	JavaScript	and	asynchronous	code

Working	with	JavaScript

Object-Oriented	JavaScript

Chapter	3	Coding	Node.js

Using	the	MVVM	pattern

Writing	the	code

Chapter	4	Rendering	with	Node.js

Before	you	start

Using	real	data

Adding	images	and	styling

Chapter	5	Working	with	site	data	in	Node.js

Data	from	URLs

Data	from	users

Chapter	6	Working	with	external	data	in	Node.js

Chapter	7	Working	with	file	data	in	Node.js

Chapter	8	External	authentication	in	Node.js

Chapter	9	Putting	it	all	together	in	Node.js

Sockets

Conclusion

Index

What	do	you	think	of	this	book?	We	want	to	hear	from	you!
Microsoft	is	interested	in	hearing	your	feedback	so	we	can	continually	improve	our
books	and	learning	resources	for	you.	To	participate	in	a	brief	online	survey,	please
visit:

microsoft.com/learning/booksurvey

http://microsoft.com/learning/booksurvey

Introduction

Node.js	is	a	JavaScript-based,	highly	scalable,	open-source	collection	of	tools	used	for
sophisticated	web	development.	Using	your	own	chosen	set	of	npm	modules	woven
together	under	the	Node.js	paradigm,	you	can	build	websites	of	every	imaginable	type,
from	e-commerce	to	interactive	games	with	multiple	simultaneous	users.	In	certain	types
of	web	applications,	Node.js	provides	solutions	to	otherwise	challenging	technical	issues.

Node.js	is	at	its	best	in	real-time	web	applications	that	require	high-volume,	low	data-
intensive	processing	of	requests	or	in	applications	that	want	to	employ	push	technology
using	web	sockets	connections.	Today,	the	vast	majority	of	web	applications	rely	on	the
stateless	request-response	paradigm.	In	this	paradigm	only	the	client	can	initiate
communication	or	data	transfer.	But	with	Node.js	skills	you	can	quickly	build	web
applications	with	real-time	two-way	connections	in	which	both	the	client	and	server	can
initiate	communication.

Node.js	websites	are	constructed	using	the	standard	open	web	stack	composed	of
HTML,	CSS	and	JavaScript.	It	allows	for	commonly	used	styling	libraries	to	be	added	to
your	chosen	collection	of	npm	processing	modules.	Find	out	why	Node.js	is	becoming	a
go-to	platform	for	certain	uniquely	demanding	types	of	web	development.

Who	should	read	this	book
This	book	exists	to	help	current	.NET	web	developers	learn	the	essentials	of	Node.js	web
development.

Assumptions
This	book	expects	that	you	have	at	least	a	minimal	understanding	of	.NET	development
and	object-oriented	programming	concepts.	With	a	heavy	focus	on	web	development,	this
book	also	assumes	that	you	have	a	basic	understanding	of	ASP.NET,	including	the	core
concepts	of	web	development	contained	in	ASP.NET,	such	as	clients	and	servers,	HTML,
CSS,	JavaScript,	and	HTTP	post/get.	The	book	also	assumes	that	you	have	an	IDE	in
which	to	work,	specifically	a	fairly	recent	version	of	Visual	Studio.

This	book	might	not	be	for	you	if…
This	book	might	not	be	for	you	if	you	have	no	web	programming	experience	or	if	your
interests	within	web	programming	are	primarily	to	desig	elegant	user	interfaces.

Organization	of	this	book
This	book	is	divided	into	nine	chapters,	which	are	designed	to	walk	you	through	every
required	aspect	of	doing	node.js	development.	The	first	few	chapters	cover	the	setup	and
basics	of	coding	in	node.js.	The	middle	section	of	the	book	focuses	on	specific	techniques
within	JavaScript	that	make	life	much	easier	when	working	with	node.js.	The	last	few
chapters	bring	it	all	together	to	build	a	working	application	from	end	to	end	including	a
few	special	features,	such	as	token-based	authentication.

Conventions	and	features	in	this	book
This	book	presents	information	using	conventions	designed	to	make	the	information
readable	and	easy	to	follow.

	The	book	includes	command	line	and	JavaScript	sample	code,	clearly	separated
from	standard	text

	The	book	includes	references	to	named	open-source	modules	available	on	the	web.
The	first	reference	to	each	is	in	bold	text

System	requirements
You	will	need	the	following	hardware	and	software	to	complete	the	practice	exercises	in
this	book:

	One	of	Windows	XP	with	Service	Pack	3	(except	Starter	Edition),	Windows	Vista
with	Service	Pack	2	(except	Starter	Edition),	Windows	7/8/10,	Windows	Server
2003	with	Service	Pack	2,	Windows	Server	2003	R2,	Windows	Server	2008	with
Service	Pack	2,	or	Windows	Server	2008	R2.

	Visual	Studio	2010	or	later,	any	edition	(web	developer	for	Express	Edition
products).

	SQL	Server	2008	Express	Edition	or	higher	(2008	or	R2	release),	with	SQL	Server
Management.	Studio	2008	Express	or	higher	(included	with	Visual	Studio,	Express
Editions	require	separate	download).

	A	computer	that	has	a	1.6GHz	or	faster	processor	(2GHz	recommended).

	1	GB	(32	Bit)	or	2	GB	(64	Bit)	RAM	(Add	512	MB	if	running	in	a	virtual	machine
or	SQL	Server	Express	Editions,	more	for	advanced	SQL	Server	editions).

	3.5GB	of	available	hard	disk	space.

	5400	RPM	hard	disk	drive.

	DirectX	9	capable	video	card	running	at	1024	x	768	or	higher-resolution	display.

	DVD-ROM	drive	(if	installing	Visual	Studio	from	DVD).

	Internet	connection	to	download	software	or	chapter	examples.

Depending	on	your	Windows	configuration,	you	might	require	Local	Administrator
rights	to	install	or	configure	Visual	Studio	2010	and	SQL	Server	2008	products.

Downloads:	Code	samples
Most	of	the	chapters	in	this	book	include	exercises	that	let	you	interactively	try	out	new
material	learned	in	the	main	text	on	your	way	to	building	a	fully	functional	web
application.	Fully	working	examples	of	the	pages	used	in	the	application	can	be	found
here:

http://aka.ms/node.js/files

Follow	the	instructions	to	download	the	Nodejs_662988_CompanionContent.zip	file.

http://aka.ms/node.js/files

Using	the	code	samples
The	folder	created	by	the	setup.exe	program	contains	two	kinds	of	files:

	JavaScript	files	These	files	contain	the	Node.	js	code	that	runs	your	application
including	navigation,	page	data	content,	etc.

	EJS	files	These	files	are	used	in	place	of	standard	HTML	files	for	rendering	pages.
Although	they	do	contain	all	necessary	HTML,	they	also	contain	special	binding
syntax	that	allows	the	file	to	interact	with	its	associated	node.js	JavaScript	file.

Acknowledgments
I’d	like	to	thank	the	following	people:	Devon	Musgrave	and	Marc	Young	for	helping	me
polish	this	project	and	get	it	to	print,	Devon	again	for	special	efforts	connected	to	the
project,	and	of	course	my	wife	Samantha	for	her	endless	support.

Errata,	updates,&	book	support
We’ve	made	every	effort	to	ensure	the	accuracy	of	this	book	and	its	companion	content.
You	can	access	updates	to	this	book—in	the	form	of	a	list	of	submitted	errata	and	their
related	corrections—at:

http://aka.ms/nodejs/errata

If	you	discover	an	error	that	is	not	already	listed,	pleasesubmitit	to	us	at	the	same	page.

If	you	need	additional	support,	email	Microsoft	Press	Book	Support	at
mspinput@microsoft.com.

Please	note	that	product	support	for	Microsoft	software	and	hardware	is	not	offered
through	the	previous	addresses.For	help	with	Microsoft	software	or	hardware,	go	to
http://support.microsoft.com.

Free	ebooks	from	Microsoft	Press
From	technical	overviews	to	in-depth	information	on	special	topics,	the	free	ebooks	from
Microsoft	Press	cover	a	wide	range	of	topics.	These	ebooks	are	available	in	PDF,	EPUB,
and	Mobi	for	Kindle	formats,	ready	for	you	to	download	at:

http://aka.ms/mspressfree

Check	back	often	to	see	what	is	new!

We	want	to	hear	from	you
At	Microsoft	Press,	your	satisfaction	is	our	top	priority,	and	your	feedback	our	most
valuable	asset.	Please	tell	us	what	you	think	of	this	book	at:

http://aka.ms/tellpress

We	know	you’re	busy,	so	we’ve	kept	it	short	with	just	a	few	questions.	Your	answers	go
directly	to	the	editors	at	Microsoft	Press.	(No	personal	information	will	be	requested.)
Thanks	in	advance	for	your	input!

http://aka.ms/nodejs/errata
mailto:mspinput@microsoft.com
http://support.microsoft.com
http://aka.ms/mspressfree
http://aka.ms/tellpress

Stay	in	touch
Let’s	keep	the	conversation	going!	We’re	on	Twitter:	http://twitter.com/MicrosoftPress

http://twitter.com/MicrosoftPress

Chapter	1.	Setup

To	begin,	head	over	to	NodeJS.org	and	either	just	click	Install	or	navigate	to	the	site
downloads	page	where	you	will	see	the	following:

When	you	run	the	.msi	file	you	choose	to	install,	you	will	see	the	following:

If	it	all	runs	properly,	you	will	see	the	following	in	whatever	directory	you	specified:

Along	with	that,	you	should	be	able	to	find	a	Node.js	command	prompt	in	your	Start
menu.	If	you	click	and	launch	it,	you	should	see	this:

Note	how	this	console	entry	mentions	npm.	That’s	the	critical	package-management
application	you	need	to	have	in	place	that	will	enable	you	to	install	all	the	additional
packages	you	will	need	to	more	quickly	build	your	Node.js	application.

You’ll	be	doing	so	from	the	command	prompt	as	shown,	just	not	this	specific	command
prompt.	That	is	because	you	don’t	want	to	have	to	do	it	twice.	The	npm	application
downloads	the	necessary	packages	to	the	current	directory	of	your	command	prompt	and
nowhere	else.	I	will	assume	that	the	location	just	shown	is	not	where	your	Microsoft
Visual	Studio	projects	usually	live,	and	because	you	are	about	to	wire	Node.js	to	Visual
Studio	you	will	want	npm	to	install	packages	to	the	directory	you	will	actually	be	using.
Connecting	Node.js	to	your	instance	of	Visual	Studio	2010	is	not	difficult	and	only
involves	changing	the	properties	of	the	project.

	Tip

If	you	are	using	Visual	Studio	2012	or	later,	there	is	now	a	plug-in	available	from
Microsoft	to	create	Express	versions	of	Node.js	projects.	It	makes	the	creation	of	a
Node.js	project,	or	any	other	JavaScript	project,	as	simple	as	creating	any	other
kind	of	project	using	the	standard	menu	shown	here.	However,	I	demonstrate	doing
so	in	the	absence	of	the	plug-in.

I	simply	set	mine	up	to	start	with	an	empty	ASP.NET	web	application	as	shown	here:

Then	I	made	some	quick	and	easy	changes	to	the	properties	on	the	Project	tab	on	your
top	navigation	menu.	The	specific	properties	to	change	can	be	found	on	the	Web	tab,
which	is	the	third	one	from	the	top:

The	important	section	is	here:

It	involves	four	quick	steps:

1.	Tell	Visual	Studio	to	run	an	external	application	on	startup	and	not	simply	a	page
within	your	application	as	usual.

2.	Specify	the	application,	including	its	location	and	any	command-line	arguments.

This	is	where	you	refer	to	the	location	of	your	Node.js	install.

3.	Indicate	the	arguments	and	program	call	exactly	as	shown.

4.	Specify	a	working	directory	for	all	npm	package	downloads.	Typically,	this	would
be	the	working	directory	of	your	web	application.

Now	you’re	all	set	to	use	Visual	Studio	for	building	a	Node.js	application.

The	first	step	for	doing	actual	development	is	to	start	downloading	some	support	npm
packages	to	make	your	life	easier.	Again,	you	can	think	of	an	npm	package	as	a	third-party
DLL—in	other	words,	as	a	library	of	ready-made	functionality.	In	.NET,	you	get	a	whole
slew	of	built-in	libraries	out	of	the	box	to	get	you	going	very	quickly.	Of	course,	.NET
does	take	a	bit	longer	to	install	than	does	Node.js—everything	is	a	tradeoff—but	Node.js
out	of	the	box	is	basically	bereft	of	anything	similar	to	.NET	core	libraries,	so	you	have	to

manually	build	each	feature	you	need	on	top	of	an	npm	package	that	you	choose	to	fill	the
need.

You	have	a	lot	of	npm	packages	to	choose	from—it’s	the	Wild	West.	Unless	you	already
double	as	an	open	source	guy,	you	might	not	be	used	to	this,	coming	from	the	neat	land	of
Microsoft	help	and	samples	and	forums.	My	process	of	finding	npm	packages	that	worked
together	with	other	npm	packages—and	that	had	working	code	samples	I	could	integrate,
all	done	very	manually—was	one	of	trial	and	error.

My	efforts	resulted	in	the	following	list	of	npm	packages	that	I	use	both	in	my
applications	and	in	this	book.	Again,	you	can	choose	others	if	in	your	searching	you	find
some	that	appeal	to	you	on	one	level	or	another.	In	everything	from	routing	to	caching	to
authorization,	you	have	your	choice.

I	broke	it	down	this	way	for	needed	site	functionality:

Basic	/	Core

Routing

Request	and	QueryString

Response

Form	data

Statement	management

Database	access

IO	/	File	upload

Rendering

Authentication

Thus,	for	addressing	individual	areas,	I	selected	an	individual	npm	package—or,	in
some	cases,	more	than	one	used	in	combination,	such	as	for	generating	the	UI.	I’ll	briefly
summarize	each	of	these	cases	in	the	following	table	and	then	cover	them	in	detail	later
for	each	case	as	needed:

Here	is	a	summary	of	the	items	in	the	preceding	table:

	Express	The	backbone	support	harness	for	the	Node.js	core.	It	makes	things	like
routing	and	sending	responses	very	easy	to	do.

	Body-parser	A	specific	tool	that	gives	you	quick	and	easy	access	to	values
submitted	using	a	Form	Post.

	Memory-cache	A	specific	tool	for	allowing	page-to-page	(view-to-view)	state
management	as	a	time-manageable	Dictionary	collection.

	Tedious	This	amounts	to	a	driver	from	Node.js	for	Microsoft	SQL	Server.	It	was
chosen	for	this	project	simply	because,	right	now,	if	you	are	working	in	.NET	you
probably	are	more	likely	to	have	to	connect	to	SQL	Server	from	a	Node.js	project
than	to	any	other	database.	However,	a	similar	npm	package	for	MySQL	does	exist,
and	you	can	use	it	if	getting	access	to	a	SQL	Server	instance	is	a	problem	for	you	in
any	way.

	EJS	An	embedded	JavaScript	rendering	engine	that	will	cause	you	to	modify	any
HTML	pages	you	create	to	instead	use	the	file	extension	.ejs	for	page	generation.

	Bootstrap	(and	Bower)	Bootstrap	is	a	styling	engine	for	the	UI.	Bower	is	similar	to
npm	itself	in	that	it	must	be	downloaded	prior	to	downloading	other	packages—in
this	case,	packages	for	assisting	in	UI	generation	as	opposed	to	core	functionality
like	those	of	npm.	Bower	is	downloaded	using	npm,	and	then	Bootstrap	and	any
other	similar	UI-centric	libraries	would	be	downloaded	using	Bower	instead	of	npm.
The	command-line	commands	are	nearly	identical	to	npm.

	Passport	Passport	is	the	package	used	for	authentication,	and	it	supports	the	typical
user	name	and	password	plus	Facebook,	Twitter,	and	more.

We’ll	install	each	of	these	packages	needed	for	the	application	in	this	book.	Installation
is	simple	from	the	command	line.	Open	it	any	way	that	you	prefer.	(Just	remember	that	if
you	use	your	Node.js	command	prompt	from	its	default	location,	you	need	to	change
directories	as	I	mentioned	earlier.)

Make	sure	that	your	actual	command-line	location	matches	the	location	you	entered	for
the	root	directory	of	your	project,	because	npm	will	install	packages	to	that	location.

	Tip

To	get	to	that	location	quickly,	open	the	site	root	location	in	your	file	manager,
right-click	the	file	location	at	the	top,	and	do	a	copy	as	text.	Then	use	another	right-
click	to	paste	that	path	after	a	cd	command	in	your	command	window.

From	that	correct	place	in	your	file	system,	just	type	the	following:
npm	install	express

Or	you	can	even	just	type	the	following	into	the	command	line:
npm	i	express

You	should	see	something	start	to	happen,	like	this:

The	console	should	do	something	visually	interesting	in	a	minor	way.	When	it’s	done,
the	console	will	fill	with	affirmations	of	the	download,	meaning	you	are	all	set	with	the
express	package.

The	process	is	identical	for	every	package—just	change	the	name	of	the	package	you
want	to	download.	As	you	can	see,	it	happens	very	quickly.

Typically,	at	this	point	you	just	start	plugging	things	in	piece	by	piece	as	you	code	them.
However,	as	long	as	you	have	the	advantage	of	having	mapped	out	each	package	you	need
for	your	application,	let’s	go	ahead	and	grab	the	rest	of	the	packages	we’ll	be	using	as	we
go.	So	while	your	command	window	is	still	open,	type	in	each	of	the	following	one	at	a
time	and	let	each	process	run:

npm	i	body-parser

npm	i	memory-cache

npm	i	tedious

npm	i	ejs

npm	i	passport

npm	i	-g	bower

bower	i	bootstrap

You	can	do	these	in	any	order	as	long	as	you	do	the	highlighted	Bower	install	before
you	try	to	do	Bootstrap.	As	you	can	see,	Bower	package	installation	is	nearly	identical	to
the	installation	of	a	package	with	npm.

The	only	line	to	note	is	the	highlighted	line	grabbing	Bower	itself,	where	the	addition	of
the	–g	to	the	command	tells	the	npm	command	to	look	globally	for	resources,	rather	than
just	within	its	own	standard	library	list.

	Note

The	Bower	website	says	the	following:	“Bower	depends	on	Node.js	and	npm.	Also
make	sure	that	git	is	installed	as	some	bower	packages	require	it	to	be	fetched	and
installed.”

If	you	do	not	happen	to	have	GIT	installed	already	on	your	system,	just	go	to	the
following	site:
http://git-scm.com/downloads

From	there,	download	the	appropriate	version	for	your	system	as	suggested.

That	more	or	less	completes	your	setup	process	for	starting	to	build	your	Node.js
application.	It’s	really	a	perfect	introduction	to	the	world	of	Node.js	in	direct	comparison
with	.NET.	With	Visual	Studio,	you	download	it,	turn	it	on,	code	it,	and	you’re	off.	But
with	open	source	tools,	you	typically	do	everything	yourself.

You	have	to	do	extra	work	under	this	coding	model,	but	the	tradeoff	is	that	you	have	all
the	control	this	way.	Also,	as	I	mentioned,	with	the	abundance	of	similar	packages
available,	you	can	craft	your	application	to	your	specific	preference	even	in	the	deepest
parts	of	its	inner	functionality.

With	the	setup	done,	let’s	start	taking	a	look	at	some	code.

http://git-scm.com/downloads

Chapter	2.	JavaScript	and	asynchronous	code

If	you	go	to	the	actual	NodeJS.org	home	page	and	not	just	the	download	page,	you	might
not	need	to	scroll	to	find	a	code	sample	that	looks	pretty	much	like	this:
Click	here	to	view	code	image

var	http	=	require(‘http’);

http.createServer(function	(req,	res)	{

		res.writeHead(200,	{‘Content-Type’:	‘text/plain’});

		res.end(‘Hello	World\n’);

}).listen(1234,	‘127.0.0.1’);

console.log(‘Server	running	at	http://127.0.0.1:1234/’);

This	sample	is	followed	by	a	section	that	says	the	following:
Click	here	to	view	code	image

“To	run	the	server,	put	the	code	into	a	file	example.js	and	execute	it	with

the	node	program

from	the	command	line:”

%	node	example.js

That	produces	output	in	the	console	that	says	this:
Click	here	to	view	code	image

Server	running	at	http://127.0.0.1:1234/

Feel	free	to	try	it	from	the	correct	file-location	command	prompt.	(In	this	case,	it	will
work	both	from	where	you	did	the	original	Node.js	install	and	also	where	you	set	up	your
Microsoft	Visual	Studio	path	to	run	your	Node.js	project.)	From	there,	you	will	probably
get	the	output	promised.

If	you	do,	you	can	then	launch	a	browser	to	the	IP	you	specified.	(The	port	you
originally	specify	is	totally	up	to	you	as	long	as	you	use	four	digits.)	You	will	see	your
“Hello	World”	output	on	the	page.	Although	you	aren’t	going	to	be	using	this	code,	you’ll
do	something	very	similar.	Just	these	few	lines	of	code	serve	to	illustrate	a	number	of
things	you	need	to	know	about	JavaScript	and	also	the	way	that	Node.js	expects	you	to	use
it—not	to	mention	it	also	works	if	you	really	did	create	a	server	with	six	lines	of
JavaScript.	This	is	just	a	smidge	easier	than	installing	Internet	Information	Services	(IIS)!
(Of	course,	this	server	isn’t	doing	much	yet,	but	it	still	isn’t	too	bad.)

Working	with	JavaScript
I	won’t	assume	you	have	lots	of	JavaScript	knowledge	here,	but	I	will	assume	you	have	at
least	some	experience	with	it.	I’ll	start	from	the	beginning,	but	I	will	move	quickly.	If	you
need	to	do	some	of	your	own	investigation	to	explore	in	a	deeper	way	ideas	and	concepts	I
will	brush	across,	you’ll	find	many	resources	available,	including	whole	books,	websites,
and	discussion	groups	dedicated	to	nothing	but	the	practice	of	coding	JavaScript.

	Note

In	the	same	way,	if	you	do	know	the	subject,	feel	free	to	skim	over	this	chapter	or
large	sections	of	it.	I	am	not	preaching	about	a	particular	way	to	do	JavaScript.	I	am
simply	showing	how	I	do	it,	which	seems	to	work	to	address	the	real-world	needs	I
have	on	a	daily	basis	as	a	commercial	software	developer.

Let’s	take	a	look	at	the	code	and	see	what	you	can	learn	from	it,	starting	with	line	1:
var	http	=	require(‘http’);

Or	you	can	start	with	the	first	word:
var

This	is	a	variable	type	declaration.	Say	goodbye	to	strong	typing!	Or,	for	that	matter,
say	goodbye	to	identifying	what	something	is	by	looking	at	it.

This	is	the	first	idea	you	have	to	wrap	your	head	around	in	JavaScript.	Nothing	knows
anything	about	types	until	run	time,	and	even	then	it’s	dodgy.	This	means,	for	example,
you	can	have	this:

var	iNumber	=	0;

var	sNumber	=	“20”;

Put	these	together	using	the	plus	(+)	sign	like	this:
Click	here	to	view	code	image

var	iResult	=	iNumber	+	sNumber;

You	will	get	no	type	mismatch	errors,	and	you	will	not	get	addition	even	if	you	hoped
for	it.	You	will	get	concatenation:

020

Now	suppose	you	are	used	to	programming	in	Microsoft	Visual	Basic.NET	and	you
accidentally	concatenate	using	the	ampersand	(&)	symbol	in	one	place,	like	this:
Click	here	to	view	code	image

var	iResult	=	iNumber	+	sNumber	&	myNewNumber;

Now	you	get	this	as	output:
0

What’s	happening?	In	JavaScript,	the	ampersand	is	a	bitwise	operator	that	returns	true
or	false.	In	this	case,	the	output	0	means	false	and	has	exactly	nothing	to	do	with	your
variable	values	in	code.	Additionally,	JavaScript	is	not	strict	with	declarations	and	would
actually	let	you	try	to	run	exactly	the	code	just	shown	as	is,	not	warning	you	that
myNewNumber	didn’t	exist	until	runtime	when	the	code	suddenly	and	unexpectedly	failed.

	Note

The	newest	browsers	will	now	recognize	the	use	strict	statement.	If	you	place	this
globally	in	your	.js	file,	it	will	at	least	prevent	the	last	instance	just	shown.

Admittedly,	this	is	just	sloppy	coder	coding,	but	it	illustrates	how	the	general	idea	of	a
non-typed	language	can	lead	to	a	whole	mess	of	problems	if	you	aren’t	extremely	careful.
I	have	always	been	a	big	advocate	for	a	limited	“Hungarian	notation”	when	coding,
meaning	you	declare	an	int	with	the	name	iValue	and	a	string	with	the	name	sValue	so	that
when	you	have	3,000	lines	of	code,	you	know	what’s	what	when	debugging	without
having	to	dig	back	through	your	code	and	find	the	type	declaration,	wherever	it	might	be.

JavaScript	is	a	keep-it-neat	idea	on	steroids,	so	it	won’t	help	you	with	types	at	all.	If
you	don’t	tell	yourself,	by	variable	name,	what	this	value	or	object	is	that	you	have
running	around	in	your	code,	you	are	making	a	heap	of	trouble	for	yourself.

Keep	in	mind	that	this	problem	soon	cascades	into	your	functions,	as	illustrated	by	this
part	of	line	2	of	the	earlier	code:

function	(req,	res)

This	is	a	function	declaration	in	JavaScript	that	takes	two	passed	in	arguments.	As	you
can	see,	they	have	no	types	at	all.	In	this	case,	JavaScript	has	to	look	at	the	rest	of	the	call
in	which	this	function	is	embedded	(which	I	will	discuss	in	more	detail	shortly)	and	match
it	to	an	expected	signature	in	the	npm	package.	The	npm	package	is	just	a	JavaScript	file
library	that,	no	doubt,	contains	some	JavaScript	object,	the	type	of	which	is	expected	in
this	function	as	argument	one	or	two.	Thus,	if	you	make	a	reference	to	some	property	of
the	object,	such	as	on	line	4	shown	here,	somewhere	up	the	tree	it	fits	together:

res.end(…);

This	isn’t	exactly	intuitive	if	you	come	from	the	land	of	strong	typing!	You	simply	have
to	know	the	right	properties	to	use	and	how	to	use	them.	You’ll	get	a	lot	of	very
unintuitive	errors	about	things	being	“undefined”	when	you	don’t.

I	didn’t	mean	to	jump	around	the	code	shown	earlier,	but	you	can	see	everywhere	how
important	this	idea	of	non-strong-typing	really	is	within	JavaScript.	Danger!	Danger
everywhere,	Will	Robinson!	So	be	advised.

Now	that	I’ve	covered	that,	let’s	get	back	into	the	code	shown	earlier	and	the	line	where
you	left	off:

var	http	=	require(‘http’);

This	is	the	standard	way	of	including	a	Node.js	module	in	your	code.	Think	of	it	as	your
import	or	includes	statement.	If	you	don’t	have	the	module	installed	that	you	try	to
reference	in	this	line,	your	code	will	throw	an	error	telling	you	it	has	no	clue	what	you
mean.

Here	you	didn’t	actually	install	an	“http”	module,	so	the	need	to	do	this	process	right
here	is	just	a	quirk	of	this	particular	Node.js	base	library.	And,	as	I	said,	you	won’t	be
using	it	anyway.	But	the	require	function	call	is	the	same	in	almost	all	cases,	and	it	returns
some	object	that	is	useful	in	some	important	way.	Again,	you	are	the	one	who	needs	to
know	what	the	object	and	its	properties	will	be	when	it	returns	to	you.

In	this	case,	http	has	just	one	important	thing	that	it	can	do,	and	that	is	create	a	web
server	using	the	http.createServer();	function	call.	That	function	call	contains	another
boatload	of	JavaScript	information	and,	equally	as	important,	information	about	how
Node.js	expects	you	to	write	it	for	everything	to	work	properly.	The	line	of	code	without

the	meat	in	the	middle	is	http.createServer(function	(req,	res)	{});.

Yes,	this	really	is	a	function	that	takes	a	function	as	an	argument.	In	JavaScript,	even	a
function	is	an	object.	The	closest	comparison	in	.NET-land	would	be	a	delegate,	which	is
an	object	wrapper	around	a	function.

	Note

I	actually	said	that	backwards.	The	fact	is	every	object	in	JavaScript	is	declared	as	a
function.	I’ll	get	to	this,	too,	very	shortly.	I	do	realize	that	if	all	you	have	done	with
JavaScript	up	until	this	point	is	hide	and	show	some	divs	with	JQuery,	this	is	fairly
mind-expanding	stuff.	I’ll	keep	it	as	simple	as	I	can	and	let	you	run	with	the	rest
when	you’re	ready.

Let’s	get	back	to	our	one	line	of	wondercode:
Click	here	to	view	code	image

http.createServer(function	(req,	res)	{

		res.writeHead(200,	{‘Content-Type’:	‘text/plain’});

		res.end(‘Hello	World\n’);

}).listen(1234,	‘127.0.0.1’);

The	special	thing	about	JavaScript	and	passing	functions	to	functions	(such	as	function
A	as	an	argument	to	function	B)	is	that	function	B	doesn’t	actually	use	that	function	per	se
or	anything	that	it	does.	Instead,	it	wires	that	function	as	a	callback.

A	callback	function	is	basically	the	same	as	a	callback	from	your	local	phone	company.
If	you	call	the	phone	company	(if	it’s	a	modern	phone	company,	that	is)	when	customer
service	is	busy,	you	will	get	an	option	to	leave	your	number	and	have	the	company	return
the	call	or	“call	you	back”	when	they	are	ready	to	service	you.	In	other	words,	they’ll	call
you	when	they	are	done	doing	whatever	else	they	were	doing	before	they	could	get	to	you.
The	callback	function	A	receives	the	result	of	function	B	and	then	can	act	upon	that	result.

This	concept,	using	callback	functions	in	every	action	you	take	in	JavaScript,	is	the
essence	of	Node.js	programming.	It	creates	what	is	known	as	the	asynchronous	model	of
code.

Something	is	synchronous	if	it	always	runs	in	order,	A	and	then	B	and	then	C.	But	if	B
is	a	callback	function,	meaning	it	begins	to	run	only	when	function	A	has	some	final	result
for	it	to	start	working	on,	then	C	could	run	after	A	finishes	but	before	B	is	done	running,
making	the	code	asynchronous:
Click	here	to	view	code	image

obj.myFunctionA(functionB	(x)	{});

obj.myFunctionC();

Just	passing	an	argument	that	JavaScript	thinks	is	an	object	like	any	other	(!)	doesn’t
stop	code	from	running.	So	the	JavaScript	processor	(which	could	be	the	subject	of	a
whole	book	on	its	own	if	it	isn’t	already)	thinks	that	function	A	is	done	when	whatever	is
in	its	brackets	is	done	running.	It	couldn’t	care	less	about	the	fact	that	function	B	hasn’t
yet	finished	doing	what	it	needs	to	do	before	function	C	goes	ahead	and	leaves	the	starting
gate.

Despite	whatever	complications	this	idea	introduces	to	your	code	and	data	logic,	it
contains	a	tremendous	amount	of	power	and	potential.	At	its	most	basic	level,	if	function
A	is	a	web	request	and	function	C	is	also	a	web	request,	then	C	does	not	have	to	wait	for
the	results	of	A	(meaning	B)	to	finish	processing	or	rendering	before	beginning	to	run.	As
long	as	B,	which	is	now	running	in	its	own	little	universe,	is	not	touching	any	resources
common	to	C,	by	following	this	model	cleverly	enough	you	can	conceivably	craft	a	way
to	spin	a	huge	number	of	concurrently	running	universes,	all	processing	their	own	requests
in	their	own	space.	They	are	completely	independent	of	any	other	resource	and	serve	up
webpages	at	the	absolute	optimum	speed	for	each	one.

All	of	this	helps	explain	some	of	the	anecdotal	evidence	I	referred	to	at	the	beginning	of
the	book,	and	it	explains	why	we	have	Node.js	in	the	first	place.	The	widespread	use	of
the	callback	model	creates	asynchronous	processing	of	web	requests,	and	it	can	have	a
huge	positive	impact	on	performance.

That’s	really	all	it	is.	After	that,	you	do	everything	by	hand	to	fit	the	model.	Doing	this,
of	course,	would	be	practically	impossible	on	a	day-to-day	commercial	basis	when
compared	dollar-for-dollar	against	almost	anything	with	prebuilt	toolkits	containing
everything	from	controls	to	styling	to	database	connections	and	more.	Hence,	you	see	an
explosion	in	the	number	of	npm	packages	to	bring	those	development	times	more	in	line
with	other	approaches	and,	thus,	the	current	state	of	Node.js	development.

Once	you	accept	all	the	concepts	I’ve	touched	on	in	the	last	few	pages,	you	can	start	to
dissect	what’s	happening:
Click	here	to	view	code	image

http.createServer(

function	(req,	res)

	{

	res.writeHead(200,	{‘Content-Type’:	‘text/plain’});

	res.end(‘Hello	World\n’);

})

The	function	createServer	is	not	taking	any	arguments	other	than	a	callback	function.
So	somewhere	in	the	Node.js	backbone	lives	this	HTTP	object.	It	does	what	it	does,
expecting	you	to	provide	a	function	with	exactly	this	signature,	which	it	will	then	call
when	it	is	done.	That	callback	function	is	expecting	to	pass	two	arguments	generated	by
the	backbone.	As	the	names	imply,	these	arguments	will	be	objects	you	are	familiar	with
in	the	world	of	HTTP:	a	request	object	and	a	response	object.

	Note

As	I	talked	about	earlier,	in	the	land	of	JavaScript	there	is	no	way	to	know	what
objects	are	without	cluing	yourself	in	by	using	the	name	and	then	referring	to	your
own	code	or	whatever	documentation	you	can	get	your	hands	on.	These	are	some	of
the	reasons	this	book	is	intended	for	people	who	have	had	at	least	some	experience
doing	real-world	web	development.	For	a	novice	programmer,	Node.js	would	be
totally	baffling	without	it.

You	can	see	that	the	response	object	contains	properties	and	functions	you	can

recognize:	a	writeHead	function	and	an	end	function	that	has	at	least	one	overload	version
that	accepts	some	plain	text	to	write	to	the	response	as	it	ends	itself.	In	this	case,	we	are
writing	Hello	World.
One	major	thing	to	note:	as	written,	this	server	will	return	Hello	World	for	every	web

request	it	receives.	That’s	not	very	practical.	How	to	recognize	routes	and	then	do	the
routing	is	covered	later.	You	will	use	the	features	contained	in	the	Express	npm	package	as
the	backbone	for	that	functionality,	not	the	Node.js	core	itself.	But	you	can	dig	down	into
the	HTTP	object	and	this	callback	function,	and	you	can	do	it	here	if	you	choose	to.

Finally,	you	need	to	turn	it	on.	That’s	what	this	line	does:
.listen(1234,	‘127.0.0.1’);

Whatever	object	is	returned	from	the	createServer	function	you	called	must	have	a
listen	function	as	one	of	its	properties	that	activates	the	underlying	server	code.	And	that
function	needs	an	IP	address	and	a	port	on	which	to	listen	for	requests.	The	code	could	be
written	as	follows	for	clarity:
Click	here	to	view	code	image

var	server	=	http.createServer(function	(req,	res)	{

				res.writeHead(200,	{‘Content-Type’:	‘text/plain’});

				res.end(‘Hello	World\n’);});

server.listen(1234,	‘127.0.0.1’);

However,	the	infamous	JavaScript	processor	apparently	prefers	the	“chained”	version
for	reasons	of	its	own.	So	use	it	when	you	can.

	Note

Optimized	JavaScript	can	lead	to	some	of	the	most	unreadable	code	on	the	planet.	It
is	simply	a	tradeoff	you	are	required	to	make	for	the	sake	of	performance	if	that
level	of	performance	really	does	matter	to	you—and	it	might,	depending	on	the
circumstances.

How’s	that	for	one	line	of	code?	Welcome	to	the	heart	and	soul	of	JavaScript	Land—its
capital	city,	Node.js.

The	infrastructure	supporting	the	capital	city,	referred	to	no	less	than	four	times	in	the
one	line	of	code	just	shown,	is	Object-Oriented	JavaScript	(OOJS).	Some	objects	in	the
preceding	code	are	created;	others	are	referenced	by	inference,	and	still	others	are
referenced	directly	using	properties	or	methods.	Anything	as	important	as	the	underlying
foundation	for	a	kingdom	better	be	solidly	designed,	so	without	getting	overly	verbose	on
the	subject	let’s	spend	a	few	minutes	talking	about	some	best	practices	for	OOJS:

Object-Oriented	JavaScript
As	I	mentioned	earlier,	every	object	in	JavaScript	is	declared	as	a	function:

function	Person(){}

In	turn,	as	you	saw	from	the	entire	callback	structure,	every	function	also	acts	as	an
object.	Some	people	in	JavaScript	Land	use	Function	to	refer	to	an	object	(a	collection	of

related	code)	and	function	to	refer	to	a	method	(code	that	performs	a	single	specific
action).	I’ll	stick	with	the	standard	references,	all	similarities	in	syntax	aside.
Let’s	begin	with	an	object	you	will	actually	build	on	and	use	later	as	you	go	along.

You’re	going	to	design	a	simple	Sports	Survey	Web	Application	that	will	generate	a	few
questions	to	a	UI	and	allow	users	to	interact	and	generate	responses	to	those	questions.
There	are	a	couple	of	what	I	refer	to	as	classes	(objects)	that	you	will	need	to	offer—for
example,	a	few	choices	between	players	on	a	question.	Those	objects,	to	start	with,
include	a	Player	object	and	a	Question	object.

A	Player	is	a	Person,	so	let’s	start	with	the	line	of	code	shown	earlier	and	something
common	to	all	people	and	players:

function	Person(){

this.lastName	=	””;

this.firstName	=	””;

}

If	you	are	wondering	when	you	declared	that	property	or	the	fields/properties	called
lastName	and	firstName,	the	answer	is	“You	just	did.”	The	magic	keyword	this	has	created
the	reference	to	those	properties	on	the	fly.	Yes,	this	has	innumerable	potential	hazards.
No,	this	is	not	unique	to	Node.js.	So	let’s	just	plow	on	as	if	we	didn’t	have	any	issues	at
all.	Life	in	JavaScript	Land	is	like	this	every	day.	You	get	used	to	it	by	being	extremely
careful	in	your	code	practices.

So	next	you	narrow	down	the	kind	of	person	you	need,	and	that	is	a	player.	First	and
foremost,	a	player	is	a	person.	When	you	create	the	Player	object,	first	you	tell	it	that	it	is
a	Person	by	using	the	prototype	property	like	this:
Click	here	to	view	code	image

function	Player	()	{

this.prototype	=	Person;

this.sport	=	“Football”;

this.displayName	=	function(){

				return(this.lastName	+	‘,’	+	this.firstName);

}

}

As	you	see,	to	make	a	property	into	a	method,	you	just	declare	it	as	a	function.	Now	any
Player	object	you	declare	will	also	have	all	the	properties	of	a	Person,	and	this	code	will
work	to	pop	up	a	message	box	with	the	concatenated	name	of	the	player:

var	oPlayer	=	new	Player();

oPlayer.firstName	=	“Walter”;

oPlayer.lastName	=	“Payton”;

alert(oPlayer.displayName());

In	this	case,	it	seems	as	if	you	should	actually	call	this	object	FootballPlayer.	As	you
can	see	from	the	code,	the	value	Football	is	hard-coded	into	the	sport	property,	thus
defining	all	Players	who	are	instantiated	using	the	Player	object	function	call
(constructor)	as	FootballPlayers.	Play	with	this	pattern	as	you	like	using	prototypes	to
help	encapsulate	your	code	and	eliminate	redundancy	where	you	can.

You	can	override	a	function	in	the	prototype	from	the	child	class	this	way:
Click	here	to	view	code	image

this.displayName	=	function(){

				this.lastName	+	‘,’	+	this.firstName;

}

}

This	is	just	like	any	other	property.	You	simply	set	the	value	to	something	new—in	this
case,	a	new	function.	So	you	could	have	made	the	code	look	like	this	for	a	BaseballPlayer
object:
Click	here	to	view	code	image

var	oPlayer	=	new	Player();

				oPlayer.firstName	=	“Babe”;

				oPlayer.lastName	=	“Ruth”;

oPlayer.position	=	“Pitcher”;	//	yes	he	started	as	a	pitcher!

this.displayName	=	function(){

this.lastName	+	‘,’	+	this.firstName	+	“:”	+	this.position;

}

				alert(oPlayer.displayName());

It	produces	similar	output	as	before,	only	from	slightly	neater	code.

Again,	you	can	add	new	properties	and	functions	willy-nilly	(either	intentionally	or	by
accident)	to	your	child	class.	You	are	not	required	to	implement	anything	at	any	level	of
the	so-called	object	tree	as	with	genuine	inheritance	for	.NET	objects	and	interfaces.
These	kinds	of	OOJS	practices	are	recommended	only	for	code	consistency,
maintainability,	and	patterning	for	your	benefit.	That	means	if	you	prefer	to	call	your
Player	function	showAllOfMe,	feel	free	to	go	ahead.	JavaScript	will	not	care	at	all.
Click	here	to	view	code	image

var	oPlayer	=	new	Player();

				oPlayer.firstName	=	“Walter”;

				oPlayer.lastName	=	“Payton”;

this.showAllOfMe	=	function(){

this.lastName	+	‘,’	+	this.firstName	+	“:”	+	this.sport;

}

				alert(oPlayer.showAllOfMe());

However,	if	you’re	going	to	override	every	function	of	your	prototype	base	class,	there
is	little	point	in	having	a	child/prototype	set	up	because	all	it	does	is	add	convenience.

Now	you	have	the	Player	object	that	will	help	you	assemble	answers	to	your	sports
survey	questions.	You	will	need	a	list	of	questions,	thus	the	next	object	you	need	is	a
Question	object:
Click	here	to	view	code	image

function	Question(oQuestion,	oAllAnswers,	oCorrectAnswer)	{

				this.questionText	=	oQuestion;

				this.answersList	=	oAllAnswers;

				this.correctAnswer	=	oCorrectAnswer;

}

As	you	can	see,	this	function	is	expecting	a	bit	more	to	make	a	Question	object	than	the
Player	function	did	to	make	a	Player	object.	This	object	clearly	needs	some	outside	data
to	assemble	properly.	Again,	notice	the	weak	typing.	For	example,	the	following	is
obviously	going	to	be	some	kind	of	list	or	array.	That’s	obvious	only	because	its	name

implies	that	it	must	be	such	a	list	to	work	as	you	logically	need	it	to:
this.answers	=	oAllAnswers;

The	following	line	is	equally	obviously	only	a	single	value	holding,	most	likely,	just
text.	(There	is	only	one	possible	bit	of	text	content	for	any	individual	question.)
Click	here	to	view	code	image

this.questionText	=	oQuestion;

And	this	next	line	also	clearly	will	hold	a	single	value	of	whatever	kind	you	choose	that
works	best	for	you.	However,	just	based	on	this,	you	don’t	know	if	it’s	a	numeric	or
GUID-style	ID	that	matches	some	AnswerID	you	have	somewhere	or	if	it’s	a	text	value
that	matches	the	actual	content	of	a	displayed	answer.
Click	here	to	view	code	image

this.correctAnswer	=	oCorrectAnswer;

Try	to	develop	good	habits	when	writing	code	so	that	you	can	tell	what	is	going	on	in
your	code	at	all	times.	It	will	make	your	life	much	easier.	I’ll	get	back	to	fleshing	out	our
“classes”	later	as	you	develop	the	code.

As	I	said	earlier,	my	intention	here	is	only	to	scratch	the	surface	of	OOJS	to	introduce
you	to	its	best	practices	for	consistency	and	maintainability.	The	details	of	the	various
designs	for	prototyping	and	deriving	objects	of	all	kinds	can	be	explored	in	much	greater
depth	from	a	wide	range	of	resources	if	you	have	the	need	and	interest.	For	your	purposes
at	this	point,	the	basics	of	OOJS	and	how	it	is	used	in	existing	packages	are	enough	to
wrap	your	head	around.	These	basics	also	cover	how	you	should	use	OOJS	to	pass	and
manage	information	and	behavior	in	your	Node.js	project.

You	have	seen	the	Node.js	core	create	a	server	from	a	single,	albeit	slightly	complex,
function	call.	You	poked	around	into	OOJS	to	get	a	feeling	for	good	patterns	and
functionality	within	the	JavaScript	world.	And	you	combined	those	to	analyze	that	single
line	of	JavaScript	code	to	help	you	better	understand	what	that	code	actually	does.	In
addition,	examining	that	code	showed	you	how	best	to	use	Node.js	to	follow	the	most
effective	patterns	when	building	a	site.

I’m	sure	you’re	more	than	ready	to	start	creating	something	that	works—an	actual
website	generated	from	Node.js.	You	have	all	the	background	you	need	to	do	so
effectively.	So	let’s	begin	right	now.

Chapter	3.	Coding	Node.js

Before	you	write	any	real	code,	inside	of	Microsoft	Visual	Studio,	let’s	complete	the	setup
of	the	project.	If	you	take	a	look,	you’ll	see	that	you	have	a	couple	of	new	folders,	called
node_modules	and	bower_components,	which	are	the	results	of	your	command-line
installs.

On	top	of	that,	as	you’ll	see,	you’ll	just	be	adding	a	couple	of	folders.	This	won’t	take
long.	My	project	is	called	NodeJS2;	yours	should	look	pretty	much	the	same.	If	it	doesn’t,
it	soon	will	after	you	complete	the	next	few	steps.

Using	the	MVVM	pattern
If	you	have	any	kind	of	Model-View-Controller	(MVC)	background,	that	will	be	a	big

plus	when	trying	to	understand	how	to	structure	your	file	tree.	If	you’ve	worked	with	the
MVVM	(Model-View-ViewModel)	version	of	MVC,	this	structure	will	be	old	hat	for	you.
If	you	do	not	know,	MVVM	is	MVC	that	insists	you	separate	your	View	(the	HTML	and
its	spaghetti—I	mean	embedded—server	code)	from	the	JavaScript	that	supports	the	View.
The	separate	.js	file	you	create	is	called	the	ViewModel.

This	is	not	to	be	confused	with	the	Model	itself	of	the	MVC	pattern,	which	is	the	data
bag	of	properties	to	which	the	embedded	fields	of	the	View	are	bound.	You	don’t	have	to
worry	about	the	Model	in	Node.js,	because	you	don’t	have	one.	You	might	or	might	not
have	a	data	layer	or	business	layer	of	code	to	connect	to	with	your	JavaScript.

Just	to	clarify,	for	all	the	fevered	clamor	about	its	superiority,	MVC	is	just	a	way	to
generate	a	UI.	It	does	not,	in	any	way	(contrary	to	the	claims	of	its	evangelists),	force	you
to	write	your	code	any	better	than	in	any	other	n-tier	style	of	application.

As	I	mentioned,	a	Model	is	just	a	collection	of	properties	on	which	you	base	a	View—
hence	the	name.	A	Model	should	not,	under	any	circumstances,	make	direct	contact	with	a
data	layer.	If	it	does,	it	becomes	a	data	class	and	it	belongs	not	in	the	UI	layer	of	code	but
in	the	business-layer	DLL.	(It	belongs	here	unless	you	think	it	should	also	do	business
logic	against	the	data	it	carries	and	still	be	able	to	be	called	a	“Model.”	That	is	a	definition
I	would	call	“murky”	at	best.	You	are	clearly	mixing	tiers	in	such	a	case.	So	much	for	the
natural	superiority	of	MVC!)

The	point	is	that	a	well-designed,	well-built,	scalable	application	has	a	database,	a	UI	of
some	kind,	and	then	some	number	(n)	of	tiers	(supporting	DLLs,	npm	packages,

JavaBeans,	or	whatever)	containing	code	to	which	you	bind	your	UI	code.	It’s	ridiculous
to	think	that	because	you	have	an	HTML/JavaScript/Embedded	code	page	as	a	UI	that	it	is
superior	to	a	Web	Forms	page,	a	Windows	Form,	or	an	Android	phone	UI.

You	can	build	crappy	Android	apps	that	try	to	use	data	resources	on	main	threads.	You
can	build	crappy	Web	Forms	apps	that	use	SqlDataSource	and	other	Mort	controls	from
Microsoft	that	professionals	would	never	use	that	bind	directly	to	data.	And	you	can	build
MVC	Models	that	fly	to	the	moon.	But	by	confusing	code	layers,	you	can	totally	debunk
the	idea	that	MVC	has	any	structural	code	superiority	at	all.	Building	a	solid	application
that	follows	good	principles	is	up	to	you.	Like	anything	else	in	life,	it	isn’t	the	tool,	it’s
how	you	use	it.	Try	for	the	best	foundation	you	can,	both	for	your	coding	and	your	code
structure.	I	won’t	assume	you	have	any	prior	knowledge	of	any	of	the	aforementioned
topics	and	just	walk	through	it.

Node.js	follows	an	MVVM	pattern.	That	means	you	will	need	an	HTML	file	to	present
as	a	UI.	That	HTML	file	is	called	a	View.	So	let’s	create	a	Views	folder.	You’ll	be	styling
the	View	with	cascading	style	sheets	(CSS),	so	create	a	folder	called	CSS	for	that.	And,	as
with	any	site,	you’ll	have	images,	so	create	a	folder	called	Images	for	that.	Now	your
project	should	be	identical	to	the	image	on	the	previous	page.

The	supporting	.js	files	you	create	with	each	View	will	live	in	the	root	folder.	So	you’re
finally	ready	to	start	writing	real	code.

Writing	the	code
Create	a	file	called	app,js	and	add	it	to	the	root	directory.	Why	that	specific	name?

Actually,	you	likely	already	specified	that’s	what	it	has	to	be.	Check	the	project
properties	under	the	Web/Command	Line	arguments	that	you	entered	earlier	during	setup,
and	verify	that’s	the	exact	name	of	the	file	you	provided	for	startup.	Whether	it	is	or	it
isn’t,	you	can	call	the	file	whatever	name	you	want	to.	Just	make	sure	the	two	names
match:	the	one	you	give	it	and	the	one	you	call	on	startup.

In	the	file,	build	code	by	starting	with	a	sanity	check:
“use	strict”;

Using	that	as	the	first	line	of	the	file	will	save	you	some	potentially	buggy	headaches
from	accidentally	declaring	variables	(usually	from	typos)	that	don’t	exist.

Next,	write	some	real	code	that	does	something:
Click	here	to	view	code	image

var	express	=	require(‘express’);

It	should	be	clear	what	you’re	doing	here:	adding	the	first	npm	package	reference.	The
Express	package	takes	the	place	of	what	you	would	have	done	with	the	core	of	Node.js,
making	life	much	easier	for	you	for	a	lot	of	what	you	want	to	do.

Next,	add	these	two	lines:
Click	here	to	view	code	image

var	server	=	express();

server.listen(1234,	function	()	{

				console.log(“ready	on	1234”);

});

These	lines	should	also	be	self-explanatory.	You	have	a	server	object	you	got	back	from
your	express	call,	and	you’re	turning	it	on	by	telling	the	server	to	listen	for	requests.	Run
the	app,	and	you’ll	see	the	message	and	see	that	it’s	correct.	Your	server	is	running	on	your
localhost	(127.0.0.1)	port	1234	(or	whatever	four-digit	number	suits	you).	The	address
http://127.0.0.1:1234	will	get	you	there,	although	you	won’t	see	anything	yet.	Note	that
you	will	not	get	a	“404	page	not	found”	error,	so	you’re	in	business.	You’ve	now	built	a
server	two	slightly	different	ways	using	Node.js.

Your	server	will	run	as	long	as	node.exe	is	running	your	server	file.	In	this	case,	it’s
running	because	you	turned	on	Visual	Studio.	And	you	are	popping	up	a	console	that	tells
you	what’s	happening.	But	in	the	real	world,	you	most	likely	would	have	some	sort	of
server	background	service	that	regularly	checks	to	see	that	the	node	is	running	all	the	time.

Note	that	the	following	would	be	the	same	code	if	chained,	and	it	should	produce	the
same	working	server	for	you:
Click	here	to	view	code	image

express().listen(1234,	function	()	{

				console.log(“ready	on	1234”);

});

Just	make	sure	you	have	the	Express	package	referenced	first.	In	this	case,	do	it	the	first
nonchained	way,	for	reasons	you	will	soon	see.

We	got	this	far	before,	albeit	with	different	code.	Now	let’s	take	it	into	the	real	world.

Our	overall	dev	plan	is	to	have	a	Sports	Survey	site	that	offers	some	multiple	choice
questions	containing	player	names	as	the	answers.	It’s	always	good	to	start	with	a	picture
of	what	you	ultimately	want.	In	my	head,	it	would	end	up	looking	something	like	this:

Obviously,	it	will	need	some	styling,	some	images,	and	perhaps	a	login	to	access	the
page.	However,	my	head	doesn’t	care	much	about	all	that	to	start	with,	so	this	is	enough	to
go	on	for	now.

First	you	need	a	View	to	hold	the	HTML	you	plan	to	display	and	then,	as	always,	along
with	that	will	go	an	associated	.js	file	of	the	same	name.	Just	add	the	files	in	the	usual	way
using	Visual	Studio.

Let’s	call	them	Survey.htm	and	Survey.js.	Put	Survey.htm	in	the	Views	folder,	and	leave
Survey.js	in	the	root	directory.

At	this	point,	you	need	to	tell	Node.js	how	to	find	your	files.	Locate	the	following	lines
in	your	app.js	file:
Click	here	to	view	code	image

var	server	=	express();

server.listen(1234,	function	()	{

				console.log(“ready	on	1234”);

});

After	them,	insert	this	line:
Click	here	to	view	code	image

server.set(‘views’,	path.join(__dirname,	‘views’));

There	are	two	key	ideas	here.	One	idea	is	that	Node.js	has	a	configuration	you	can	set	at
will,	and	the	second	idea	is	the	__dirname	value,	a	constant	that	Node.js	uses	to	map	to
your	local	file	system	root	directory.	This	is	not	only	convenient;	on	another	level,	it’s
good	to	know	that	Node.js	appears	to	have	some	file	I/O	capability.	(I’ll	say	more	about
this	later.)	For	now,	while	you’re	here,	do	the	same	for	your	images	folder,	like	this:
Click	here	to	view	code	image

server.set(‘images’,	path.join(__dirname,	‘images’));

Now	you’re	already	prepared	for	when	you	need	them.	(No,	you	can’t	do	the	same	for
CSS.	You	have	to	get	to	those	files	differently	because	they	are	UI	files.)

At	this	point,	you	can	see	why	you	didn’t	chain	your	original	server	setup.	You	want	to
be	able	to	access	the	object	that	is	returned	from	the	express	function,	and	you’re	not	done
doing	so.

Associated	with	setting	the	path	to	your	Views,	you	have	to	specify	for	Node.js	that
each	of	them	exists	as	you	build	them,	one	at	a	time.	In	our	specific	case,	to	inform	the
processor	of	your	first	created	view,	you	need	to	add	this	line	after	you	set	the	Views	path:
Click	here	to	view	code	image

server.use(require(‘./survey’));

Make	sure	you	note	the	use	of	the	relative	web	file	path	in	this	line	rather	than	the
standard	package	reference.	If	the	resource	you	want	to	use	is	not	in	the	Node.js	core,	the
processor	expects	a	standard	relative	website	path.	In	this	case,	you	told	it	to	look	in	the
root	for	survey,	which	it	assumes,	like	everything	in	Node.js,	is	a	JavaScript	file.	Hence,
there’s	no	need	for	the	actual	.js	file	suffix	in	the	require	reference.

Now	you	can	turn	your	attention	back	to	the	newly	created	survey.	To	start	with,	it
makes	sense	to	be	able	to	get	the	page.	So	let’s	set	up	a	route.	A	route	is	a	pattern	by
which	you	identify	an	incoming	web	request	so	that	you	know	which	page	to	render	to	the
browser.

To	create	a	route	to	your	survey	page	will	take	a	few	steps.	First,	add	these	two	lines	to
survey.js:
Click	here	to	view	code	image

var	express	=	require(‘express’);

var	router	=	express.Router();

First	you	get	access	to	the	Express	package	and	then	get	an	object	back	from	a	call	to
the	Router	method.	We’ve	decided	to	call	this	object	router,	and	the	single	most	important
aspect	of	this	object	is	the	get	function	you	use	to	direct	requests	to	the	proper	View.

The	get	function	looks	like	this:
Click	here	to	view	code	image

router.get(‘/classname’,	function	(req,	res)	{});

This	is	very	standard	stuff	in	Node.js	with	an	asynchronous	signature.	The	callback
function	that	takes	a	req	object	and	a	res	object	as	arguments	is	where	you	do	your
rendering	or	whatever	else	you	need	to	do	in	response	to	an	incoming	URL	that	matches
the	pattern.

In	our	specific	case,	the	function	looks	like	this:
Click	here	to	view	code	image

router.get(‘/survey’,	function	(req,	res)	{

				res.send(‘this	is	the	survey	page’);

});

For	the	moment,	you	just	take	advantage	of	the	send	method	of	the	response	object	you
got	back	to	let	you	know	that	you	got	to	the	page.	You’re	almost	all	set.	The	final	step	is	to
add	this	line	to	the	bottom	of	the	file:

module.exports	=	router;

This	line	tells	Node.js	to	make	the	router	globally	available	through	the	exports
property	of	the	module	object	found	in	the	bowels	of	Express.

If	you	now	use	a	browser	to	go	to	http://127.0.0.1:1234/survey,	you	should	see	“this	is
your	survey	page”	output.

And	that’s	all	it	takes	to	perform	the	basics	of	site	navigation	using	Node.js.	In	this	case,
you	sent	only	a	simple	message	to	render	using	the	send	function,	but	to	render	a	complete
and	complex	View,	you	use	the	render	method	of	the	same	response	object.	I’ll	cover
render	in	a	moment.

Before	I	do,	there	are	a	couple	of	things	to	note	here.	First	of	all,	this	code	right	here
get(‘/survey’	…)

and	the	pattern	of	the	string	specified	within	the	GET	is	what	actually	tells	Node.js	how	to
route	the	request.	Unlike	in	ASP.NET,	the	page	ultimately	served	up	has	nothing	at	all	to
do	with	the	file	name	in	which	this	code	lives.	We	chose	to	place	this	code	in	the	survey.js
file.	When	you	call	this	page,	you’ll	need	all	the	other	objects	that	I	talked	about—Players
and	Questions—readily	available	to	build	the	page	elements.	So	you’ll	place	the	code
functions	for	all	that	in	the	same	file.

Generally	speaking,	this	style	is	my	choice	for	so-called	code	encapsulation.	All	the
route	variations	and	all	the	JavaScript	function	objects	that	have	anything	to	do	with	the
survey	page	live	in	the	same	.js	file,	which	is	named	after	the	intended	View.	And	the
same	is	true	of	the	Home	page,	the	About	Us	page,	and	all	the	rest	of	the	pages	that	go
into	the	site	tree.

However,	if	you	had	chosen	to	place	this	code	in	the	app.js	file	(or	any	other	.js	file	that
had	the	necessary	npm	package	references	and	so	on),	it	would	run	the	same	as	it	does
here.

The	other	thing	to	remember	is	that	JavaScript	runs	in	order	and	so	does	the	path-
recognition	tree.	Just	as	in	using	.NET	exceptions,	you	need	to	fall	from	the	specific	to	the
general	and	not	vice	versa.	So	you	write	this	code	as	shown	here:
Click	here	to	view	code	image

var	express	=	require(‘express’);

var	router	=	express.Router();

router.get(‘/’,	function	(req,	res)	{

				res.send(‘matches	all	pages’);

});

router.get(‘/survey’,	function	(req,	res)	{

				res.send(‘this	is	the	survey	page’);

});

module.exports	=	router;

Then	use	this	URL	from	a	browser	as	you	did	earlier:
http://127.0.0.1:1234/survey

The	second	path	will	never	be	reached	and	the	code	within	it	never	executed.	Thus,	the
page	you	intended	to	call	will	never	show	up.

Here’s	one	important	thing	to	remember:	return	something	from	every	single	route	you
create	using	the	response	object.	If	you	don’t	use	one	of	the	following	lines	for	every	path

you	authorize,	you’ll	hang	your	application.	Your	main	choices	of	interest	when	sending	a
response	are	these:

	send()	As	seen	in	the	earlier	code	example,	this	is	used	to	send	a	basic	reply.
Variations	include	the	following:

•	res.send(‘ok’);

•	res.send(‘really	ok’);

•	res.send(new	Buffer(‘buffered	simple	ok’));

•	res.send({	really:	‘ok’	});

•	res.status(404).send(‘Oops,	page	not	found.’);

•	res.status(500).send({	Oops:	‘something	erred’	});

•	sendJson()

Although	you	can	use	the	send	method	to	send	Json	code	per	the	fourth	example	just
shown,	this	specific	method	will	also	marshal	things	together	as	Json	code	that	are
not	valid	Json,	such	as	nulls	and	the	infamous	JavaScript	undefined.

	redirect()	Navigates	to	the	specified	path.

	end()	Better	than	doing	nothing.

	render()	We’ll	be	covering	this	in	detail	in	a	few	moments.

No	matter	how	many	paths	you	create,	make	sure	you	choose	a	response	for	each	path.
As	you	see	from	some	of	the	examples,	the	response	object	has	just	about	everything	you
need	to	respond	to	an	incoming	request.	And	the	preceding	list	is	not	exhaustive;	it
represents	only	a	subset	of	functionality.	I’ll	cover	a	few	more	useful	aspects	of	the
response	object	later—such	as	sendFile	and	cookie—that	do	more	than	just	match	an
answer	to	an	inbound	request.

Now	you’ve	seen	Node.js	work	to	its	capacity.	You	created	a	server,	and	it	handles	real
URLs.	You	rendered	a	reply,	albeit	a	simple	one.	Now	all	the	building	blocks	are	in	place
for	you	to	add	more	paths,	more	objects	to	handle	your	user	state,	and	some	styling	and
external	connections	to	handle	looks	and	data	content.	You	need	some	individual	wiring,
and	then	you’re	off	and	running.

Because	you’re	ready	to	dive	into	those	individual	paths,	let’s	pause	to	take	one	last	top-
level	view	of	your	application	and	its	configuration.

You	already	saw	and	employed	server.listen,	server.use,	and	server.set	from	Express	in
your	code.	The	method	server.set	has	a	matching	method	server.get.	The	name	server,	as
you	might	recall,	is	our	own.	It	lives	in	a	file	called	app.js,	and	that	is	because	it	is	an
Express	Application	object	that	is	returned	from	the	createServer	call.

The	Application	object	is	a	dictionary	of	name/value	pairs.	It	contains	about	a	dozen
preconfigured	meanings,	such	as	the	following	ones:

	Case-sensitive	routing	on/off	Path	‘/Survey’	is	or	is	not	the	same	as	‘/survey’

	Strict	routing	on/off	Path	‘/Survey/’	is	or	is	not	the	same	as	‘/Survey’

	Trust	proxy	The	X-Forwarded-*	headers	may	be	trusted	for	determining	the
connection	and	the	IP	address	of	the	client	(this	has	many	caveats).

	views	You	set	this	value	already	for	the	file	path	to	your	View	files.

	view	engine	You’ll	be	setting	this	as	soon	as	you	move	to	rendering	with	EJS,	one
of	the	npm	packages	you	downloaded	during	project	setup.

In	addition	to	that,	however,	just	like	the	ASP.NET	Application	object,	the	Express
Application	object	can	also	store	your	own	custom	name/value	pairs	and	allow	you	to
retrieve	them:
Click	here	to	view	code	image

server.set(‘appName’,	‘NodeJSDemo’);

alert(server.get(‘appName’));

Doing	so	gives	you	a	global	dictionary	of	configurable	settings.	Keep	in	mind	that	in
JavaScript,	global	means	“only	as	far	as	the	page	or	file	you’re	in	at	the	time.”	These	are
not	truly	global	application	values.	For	that,	you	need	the	Memory-Cache	package	(or
something	similar),	which	I	will	cover	later	when	I	talk	about	state	management.

Anyway,	as	for	the	Application	object,	if	you	need	to	know	the	enabled	status	of
something	within	the	collection	the	following	line	will	tell	you	what	you	need	to	know:
Click	here	to	view	code	image

server.disabled(“trust	proxy”);

(Right	now	such	a	line	in	our	application	will	output	true	if	you	try	it.)

The	number	of	settings	within	the	Application	object	you	have	called	server	in	your
application	are	not	very	numerous,	but	they	are	potentially	useful.	Always	remember	that
JavaScript	runs	in	the	order	of	the	lines	in	the	file.	So,	for	your	code	to	run	the	way	you
want	it	to,	the	requires	statements	and	the	configuration	information	typically	forms	the
first	entries	in	any	.js	file	you	will	use	as	a	“View	Model”	for	your	View.	Then	you	get	to
the	objects,	routing,	and	rendering.

With	all	of	those	basic	tools	in	our	toolkit,	let’s	move	on	to	add	one	or	two	more	on	top
and	render	some	commercial-quality	Views.

Chapter	4.	Rendering	with	Node.js

Now	that	we’ve	covered	routing	and	the	basic	sending	of	a	response	to	a	web	request,	let’s
start	bringing	your	Node.js	application	into	the	real	world.	In	this	chapter,	you’ll	add	some
real	webpages	that	allow	users	to	interact	with	a	data-driven	UI.

Before	you	start
You	have	a	couple	more	npm	packages	to	hook	up	before	you	can	get	going.	I	realize	this
tutorial	is	falling	into	a	pattern	where	I	say,	“Let’s	get	going!”	only	to	have	you	turn	the
page	and	discover	there’s	just	a	wee	bit	more	setup	to	do	before	you	can	actually	get
going.	Sorry	about	that!	Again,	all	I	can	do	is	remind	you	that	this	is	Node.js	Land	where,
unlike	the	Microsoft	“add-a-page-and-then-a-control-and-click-go	model,”	nothing	comes
built-in.	Before	you	can	implement	anything	even	as	simple	as	a	single	webpage	for	a
website,	you	need	to	have	a	plan	in	mind	and	then	set	the	actual	tools	in	place.	Every
project	you	do	for	Node.js	will	be	same—built	from	the	ground	up.	You	can	come	up	with
your	list	of	chosen	tools	and	try	to	be	as	efficient	as	you	can	putting	them	in	place	(such	as
installing	everything	you	think	you	might	need	when	you	first	begin,	as	we	did).	In	the
end,	though,	you	will	still	need	to	assemble	the	parts	in	your	application.

One	of	the	npm	packages	you	installed	when	you	first	set	up	your	environment	was
EJS,	or	Embedded	JavaScript.	This	component	will	serve	as	your	rendering	engine.	You
need	to	do	a	few	things	to	enable	your	application	to	use	EJS.

First,	in	your	app.js	file,	add	this	line:
Click	here	to	view	code	image

server.set(‘view	engine’,	‘ejs’);

This	statement	can	go	either	above	or	below	the	line	where	you	set	the	path	to	your	views.

Now	to	associate	the	files	you	want	to	render	with	the	EJS	engine,	you	have	to	change
the	file	extension	of	your	HTML	files	from	.htm	(or	.html)	to	.ejs.

As	long	as	the	file	name	of	your	.ejs	file	is	the	same	as	the	name	of	your	.js
“View_Model”	file	(in	our	case,	both	are	called	survey)	and	you	added	the	page	as	a	static
reference	in	the	file	that	begins	your	Node.js	application	(which	you	did	by	adding	the
path	with	a	combination	of	the	use	function	and	the	require	function	in	your	app.js	file),
you	are	all	set	to	start	rendering	the	page.	Again,	if	you	already	have	Model-View-
Controller	(MVC)	development	experience,	you	can	skim	over	a	lot	of	this	tutorial
because	it	is	similar	to	the	MVC	patterns	you	have	seen	in	the	past.	However,	as	I	already
mentioned,	I	won’t	assume	you	have	such	experience	and	I’ll	walk	you	through	the
process	step	by	step.

Inside	your	get	function,	change	the	send	to	a	render	and	specify	the	intended	view	(in
this	case	survey):
Click	here	to	view	code	image

router.get(‘/survey’,	function	(req,	res)	{

res.render(‘survey’);

});

For	the	moment,	just	put	some	dummy	HTML	content	inside	of	the	body	tag	of	your
survey.ejs	view,	like	this:

<i>Hello	World</i>

Then	browse	to	http://127.0.0.1:1234/survey	as	you	did	earlier.	You	will	see	your	page
content	say	hello	to	you,	displayed	in	italics.

To	see	the	effect,	now	change
res.render(‘survey’);

to
res.render(‘survey2’);

Then	browse	to	the	same	page	as	you	did	earlier.	Node.js	will	throw	an	error.	It	isn’t
exactly	a	“404	Page	Not	Found”	error,	but	it’s	very	close.	In	your	browser	window,	it
should	say

Cannot	get	‘survey’

This	specific	error	message	is	telling	you	one	of	two	things.	You	might	have	a	name
mismatch	in	your	code	(meaning	that	nowhere	in	a	relevant	.js	file	is	there	a	function
called	get	that	takes	the	exact	path	‘/survey’	or	whatever	exact	pattern	came	in	the	URL
request).	Or	the	error	message	is	telling	you	that	your	server	isn’t	running.	(Depending	on
your	version	of	Microsoft	Visual	Studio	or	Node.js,	you	might	get	a	“file	not	found”	or
“failure	to	lookup”	error,	but	it	doesn’t	matter.	The	point	is	that	it	doesn’t	work.)

These	two	files,	the	.ejs	file	and	the	.js	file	of	the	same	name,	work	in	concert	in	the
same	way	that	your	code-behind	page	supports	the	ASPX	file	containing	your	HTML	tags.
The	actual	syntax	of	the	.ejs	files,	however,	will	be	reminiscent	of	old	ASP	or	current
MVC/Razor.	Sadly,	the	beautiful	and	elegant	object-oriented	control	you	have	with	Web
Forms	that	truly	was	a	great	leap	forward	for	web	programming	over	a	dozen	years	ago	is
nowhere	else	to	be	found	except	in	the	land	of	.NET.

By	the	way,	forgive	an	old	.NET	evangelist	for	saying	this,	but	if	you	think	what	I	just
said	is	an	overstatement,	it	isn’t	in	the	least.	To	have	anywhere	close	to	the	same	level	of
command	over	HTML	controls	in	a	stateless	web	page	from	code-behind	that	you	have
over	a	Windows	Form	is	a	mind-blowing	concept	still	to	this	day.	And	still,	in	an	awful	lot
places	all	over	the	planet,	a	screen	flicker	for	a	postback—that	in	most	cases	could	be
AJAX	with	the	same	underlying	OOP	platform—is	a	small	price	to	pay	for	the	speed	and
power	of	that	kind	of	software	development.

At	the	time	.NET	came	into	being	around	the	turn	of	the	century,	new	programming
platforms	were	coming	out	every	six	months.	In	fact,	if	you	want	to	know	what	it	was	like
back	then,	we	have	the	proof	with	us	still	to	this	day.	Microsoft	didn’t	even	realize	what	it
had	when	it	released	ASP.NET.	Why	do	you	think	something	that	codes	like	ASP.NET—
specifically,	an	OOP	pattern	(when	done	properly)	that	has	nothing	to	do	with	how	you
build	webpages	in	ASP—has	a	name	so	misleading	it	leads	you	to	think	it	is	similar?	The
answer	is	that,	at	the	time,	Microsoft	was	worried	that	people	would	be	hesitant	to
embrace	yet	another	new	technology,	so	the	company	smudged	one	name	into	the	other.
Well,	15	years	later,	Web	Forms	is	still	here	and	still	everywhere.

My	point	is	only	that	Node.js	is	just	another	way	of	doing	things.	Some	parts	will	be
better,	and	some	parts	not	so	much.	In	some	ways	and	in	some	cases,	it	might	be	superior
to	ASP.NET,	but	that	fact	doesn’t	make	Web	Forms	anything	but	a	rock-solid	technology
that	has	lasted	for	a	decade.	In	lots	of	ways,	for	lots	of	businesses	and	clients,	the	extra
work	for	building	even	a	simple	user	interface	that	Node.js	demands	will	not	be	cost
effective.	This	whole	skill	set	just	offers	you	and	your	company	new	options	for	building
solutions.

If	you	enjoy	MVC	development,	this	extra	effort	will	all	be	no	problem	for	you	and	you
will	be	quite	used	to	the	demands	and	the	patterns.	But	if	you	are	coming	from	happy-go-
lucky	OOP	Land,	where	you	drag-and-drop	from	a	toolbox	and	magically	have	all	control
properties	at	your	fingertips	to	do	with	as	you	will,	getting	used	to	doing	things	this	way
will	take	some	time.	(And	if	you	used	to	do	ASP	way	back	when	and	joyfully	thought
spaghetti	code	went	away	with	the	Y2K	scare,	well,	the	“new	web”	is	just	rife	with	it	all
over	again.	Node.js	is	as	good	a	place	as	any	to	get	back	into	it!)

This	style	of	coding	is	known	as	using	a	template.	Consider	the	two	following	chucks
of	code	for	a	list	of	products:
Click	here	to	view	code	image

var	html	=	“<h1>”+data.title+”</h1>”

html	+=	“”

for(var	i=0;	i<data.products.length;	i++)	{

				html	+=	“”

				html	+=	data.products[i]	+	“”

}

html	+=	“”

Versus	this:
Click	here	to	view	code	image

<h1><%=	title	%></h1>

<%	for(var	i=0;	i<products.length;	i++)	{	%>

<a	href=‘products/<%=	products[i]	%>’>

<%=	products[i]	%>

<%	}	%>

These	look	similar,	but	they	are	different	in	a	couple	of	key	ways.

The	first	example	is	pure	JavaScript.	The	line	you	need	to	add	to	render	this	list	as
written	simply	assigns	the	resulting	HTML	string	to	a	div,	a	literal,	or	whatever	control
suits	you.	If	beyond	this	you	want	to	style	the	results,	for	example,	you	need	to	incorporate
all	of	that	into	your	JavaScript	code.	So	it	can	quickly	grow	to	be	very	complex,	when	all
you	really	wanted	to	do	was	present	a	recordset	to	a	user.

The	second	example	is	a	template.	The	HTML	tags	are	fixed	and	provide	the
presentation	structure	into	which	the	code	contained	in	the	<%		%>	brackets	will	populate
the	data.	As	I	mentioned,	for	anyone	who	has	done	ASP	or	MVC,	all	of	this	will	look

familiar.	You	will	also	notice	that	the	JavaScript	data	object	does	not	exist	and	has	been
replaced	by	this	<%=		%>	syntax,	which	EJS	recognizes	as	a	property/variable	value	that
it	should	fetch	from	the	matching	.js	file	of	the	same	name.

This	is	where	any	similarity	to	code-behind	ends.	JavaScript	knows	nothing	about
properties,	references,	and	so	on.	If	you	want	your	page	to	process	some	data	when	it
renders,	you	have	to	explicitly	supply	that	data	when	you	tell	the	page	to	display.	So,	for
the	preceding	example,	you	supply	the	products	array	during	the	get	function	when	the
request	comes	in:
Click	here	to	view	code	image

res.render(‘products’,	{

												products:	the	ArrayYouBuild

								});

Then	you	also	supply	the	title	and	any	other	arguments	needed	for	EJS.	Make	sure	they
are	comma	delimited	for	each	argument	provided:
Click	here	to	view	code	image

res.render(‘products’,	{

				products:	the	ArrayYouBuild,

title:	“My	Products”

								});

Title,	for	example,	is	used	here:
<h1><%=	title	%></h1>

Now,	assuming	you	had	some	data	in	the	ArrayYouBuild,	the	page	renders	your
products	along	with	the	title	of	the	list.

Using	real	data
Let’s	begin	using	our	real	data,	even	if	we	won’t	render	it	quite	this	way	in	the	final
version.	To	start	with,	you’ll	show	a	simple	list	of	players	that	will	ultimately	become	one
of	your	sets	of	answers	for	multiple-choice	questions.

First,	prepare	the	.ejs	file.	It	will	be	similar	to	the	template	example	shown	earlier.	Drop
this	code	into	your	survey.ejs	file:
Click	here	to	view	code	image

<%	for(var	i=0;	i<	players.length;	i++)	{	%>

<a	href=	‘details/<%=	players[i].id%>’>

<%=	players[i].name%>

<%	}	%>

As	you	can	see,	it’s	just	a	for	loop	expecting	to	fill	an	unordered	list	with	an	array	of
some	kind.	So	let’s	provide	one.	In	your	survey.js	file,	create	the	following	array:
Click	here	to	view	code	image

var	thePlayers	=	[

				{	id:	0,	name:	‘Walter	Payton’,	sport:		‘Football’},

				{	id:	1,	name:	‘Babe	Ruth’,	sport:		‘Baseball’	},

				{	id:	2,	name:	‘Wayne	Gretzky’,	sport:		‘Hockey’	},

				{	id:	3,	name:	‘Tiger	Woods’,	sport:		‘Golf’	},

				{	id:	4,	name:	‘Bobby	Orr’,	sport:		‘Hockey’	}

];

This	is	the	raw	data	for	the	array.

Change	your	rendering	code	as	follows	in	your	get	function:
res.render(‘survey’,	{

				players:	thePlayers

								});

Now	if	you	browse	to	the	survey	page	as	before,	you	should	see	your	list	of	players
with	the	name	displayed.	If	you	mouse	over	the	name,	you	should	see	a	link	in	your	status
window	with	the	player	ID	appended	in	the	URL.	It	navigates	to	a	page	you	have	not	yet
constructed,	so	if	you	click	the	link,	you	will	receive	a	“Cannot	GET	details”	response.

So	you	successfully	connected	your	.js	and	.ejs	files	to	display	a	page	containing	data
you	built	from	arguments	you	supplied	during	the	routing.	With	this	major	step	behind
you,	go	back	and	clean	up	what	you	did	to	make	it	all	object-oriented	as	I	discussed.

Convert	this	raw	array	data	from	JSON	to	OOJS	format:
Click	here	to	view	code	image

var	thePlayers	=	[

				{	id:	1,	name:	‘Walter	Payton’,	sport:		‘Football’	},

				{	id:	2,	name:	‘Babe	Ruth’,	sport:		‘Baseball’	},

				{	id:	3,	name:	‘Wayne	Gretzky’,	sport:		‘Hockey’	},

				{	id:	4,	name:	‘Tiger	Woods’,	sport:		‘Golf’	},

				{	id:	5,	name:	‘Bobby	Orr’,	sport:		‘Hockey’	}

];

Here	is	that	JSON	in	OOJS	using	properties	of	the	Person	and	Player	objects	created
earlier:
Click	here	to	view	code	image

function	Person(){

this.id		=	0;

this.lastName	=	””;

this.firstName	=	””;

}

function	Player	()	{

this.prototype	=	Person;

this.sport	=	””;

this.displayName	=	function(){

				return	(this.lastName	+	‘,’	+	this.firstName);

}

}

The	preceding	code	sets	up	your	basic	Person	object	and	then	prototypes	your	Player
object	to	it.	Now	you	declare	your	array	and	some	players	to	put	into	the	array:
Click	here	to	view	code	image

var	arrPlayers	=	[];

var	oPlayer	=	new	Player();

oPlayer.firstName	=	“Walter”;

oPlayer.lastName	=	“Payton”;

oPlayer.sport	=	“Football”;

oPlayer.id	=	1;

arrPlayers.push(oPlayer);

var	oPlayer	=	new	Player();

oPlayer.firstName	=	“Bobby”;

oPlayer.lastName	=	“Orr”;

oPlayer.sport	=	“Hockey”;

oPlayer.id	=	5;

arrPlayers.push(oPlayer);

var	oPlayer	=	new	Player();

oPlayer.firstName	=	“Wayne”;

oPlayer.lastName	=	“Gretzky”;

oPlayer.sport	=	“Hockey”;

oPlayer.id	=	3;

arrPlayers.push(oPlayer);

var	oPlayer	=	new	Player();

oPlayer.firstName	=	“Babe”;

oPlayer.lastName	=	“Ruth”;

oPlayer.sport	=	“Baseball”;

oPlayer.id	=	2;

arrPlayers.push(oPlayer);

var	oPlayer	=	new	Player();

oPlayer.firstName	=	“Tiger”;

oPlayer.lastName	=	“Woods”;

oPlayer.sport	=	“Golf”;

oPlayer.id	=	4;

arrPlayers.push(oPlayer);

Now	just	change	your	code	to	pull	the	new	array,	like	this:
res.render(‘survey’,	{

				players:	arrPlayers

								});

When	you	run	your	page	again,	you	should	see	the	same	output	as	you	did	earlier
except	with	the	names	now	shown	as	Last,	First.

You	have	now	rendered	a	page	using	Node.js	and	object-oriented	JavaScript.	Obviously,
there	is	more	to	do	with	the	integration	of	the	survey	question	structure,	but	you	have	the
basic	elements	and	concepts	in	place.	Before	we	dig	into	them	any	more	deeply,	let’s	take
a	quick	look	at	adding	a	few	simple	features	to	the	page,	such	as	images	and	styling.

Adding	images	and	styling
Images	are	simple.	Drop	them	in	your	page	with	a	tag	to	the	correct	path	for	the	image:

Grab	an	image	from	somewhere,	call	it	img1,	and	browse	to	the	page.	You’ll	see	it
appear.

For	styling,	I	preloaded	an	npm	package	called	Bootstrap,	which	I	managed	to	install	by
using	Bower.	We’ll	dig	much	more	into	Bootstrap	later,	but	for	the	moment	let’s	just	hook
it	up	and	let	it	work	some	quick	magic	for	us.

Bootstrap	is	a	massive	collection	of	CSS	classes	that	provide	you	with	insta-styling	by

simply	hooking	the	class	into	whatever	tag	you	have	by	using	the	class	attribute.	Even
something	as	simple	as	our	unordered	list	can	get	a	two-second	facial	upgrade	by	just
referencing	Bootstrap	as	you	would	a	typical	.css	file.

In	this	case,	you	just	have	to	find	it	first.	Look	under
Click	here	to	view	code	image

bower_components\bootstrap\dist\css

and	you’ll	see
bootstrap.css

So	just	add	a	link	to	it	in	the	usual	way	to	the	<head>	section	of	your	.ejs	page:
Click	here	to	view	code	image

<link	href=“bower_components/bootstrap/dist/css/bootstrap.css”

rel=“stylesheet”

				type=“text/css”	/>

Then	just	wrap	your	starting	.ejs	code	in	an	HTML	table	that	has	a	bootstrap	.css	table
class	reference,	like	this:
Click	here	to	view	code	image

<table	class=“table”>

<tr>

<td	valign=“top”	align=“center”>

<%	for(var	i=0;	i<	players.length;	i++)	{	%>

<a	href=	‘details/<%=	players[i].id%>’>

<%=	players[i].displayName()%>

<%	}	%>

</td>

</tr>

</table>

Now	when	you	browse	to	the	survey	page,	you’ll	see	a	much	improved	overall
appearance.	Just	like	that.

Granted	it	isn’t	much	to	start	with,	but	then	again	you	had	to	do	very	little	so	far.	As	I
mentioned,	I’ll	cover	a	few	more	Bootstrap	features	later	on,	but	it’s	definitely	the	kind	of
library	you	want	to	play	with	to	see	the	effects.	Just	as	an	example,	drop	this	attribute
inside	your	image	tag:
Click	here	to	view	code	image

<src=“img1.jpg”	alt=“img1”	class=“img-rounded”	/>

You’ll	begin	to	get	a	feeling	for	what	I	mean	about	Bootstrap.	Play	with	it,	and	you’ll
find	it	can	snazzy-up	a	webpage	in	some	very	professional	ways	with	not	much	effort.
Reference	the	right	.css	class	within	the	library	and	you’re	pretty	much	done.

So	you’ve	coded	your	server	and	constructed	your	first	basic	get	route.	You’ve	had	the
correct	page	rendered	with	data,	images,	and	styling.	And	you’ve	used	object-oriented
JavaScript	in	combination	with	Node.js.	Your	basic	tools	are	in	your	toolkit.	Now	we’ll

bring	the	application	into	the	real	world	of	software	by	connecting	to	external	data
sources,	allowing	for	user	interaction,	and	providing	login	security.

Chapter	5.	Working	with	site	data	in	Node.js

Data	comes	in	many	shapes	and	sizes.	It	can	come	from	within	your	application	as	it
works,	from	users,	or	from	outside	data	stores.	As	with	the	rest	of	Node.js,	there	is	an	npm
package	to	deal	individually	with	each	of	the	myriad	ways	data	might	be	provided	to	your
application.

In	general,	this	data	can	be	broken	into	three	major	categories,	with	each	having	a
couple	of	primary	ways	that	data	would	likely	come	to	you:

	Data	from	URLs

•	Route/Path	pattern

•	QueryString

	Data	from	users

•	Form	posts

•	Field	input

	Data	from	external	sources

•	Databases	(covered	in	Chapter	6,	“Working	with	external	data	in	Node.js”)

•	File	systems	(covered	in	Chapter	7,	“Working	with	file	data	in	Node.js”)

We’ll	walk	through	these	and	incorporate	them	into	your	Node.js	application.

Data	from	URLs
The	first	way	you’ll	have	to	deal	with	data	in	the	application	relates	to	data	that	comes	in
the	URL.	Even	our	simple	example	code	for	rendering	an	array	that	isn’t	connected	to
anything	contains	within	it	the	idea	that	we	will	drill	down	into	some	detail	about	some
item	on	the	list.	And	that	item	is	specified	within	the	URL.

In	this	case,	as	shown,	we	opted	to	build	a	path	that	looks	like	this:
Click	here	to	view	code	image

href=	‘details/<%=	players[i].id%>’>

This	path	yields	the	following	result	or	similar	as	the	URL	path:
‘details/5’

You	could	keep	going	and	add	as	many	path	arguments	as	you	like	after	the	original.
Each	argument	is	given	a	name	when	you	declare	the	path,	like	this:

router.get(‘/details/:id’)

Or	by	adding	to	it,	like	this:
Click	here	to	view	code	image

router.get(‘/details/:id/:name’)

Then,	in	code,	these	arguments	are	accessed	through	the	param	collection	provided	by
Express:

req.param(“id”)

Your	get	will	look	like	this:
Click	here	to	view	code	image

router.get(‘/details/:id’,	function	(req,	res)	{

				res.render(‘details’,	{

								playerId:	req.param(“id”)

				});

});

When	you	create	your	player	and	then	set	up	the	details.js/.ejs	view,	you’ll	have	a
playerId	argument	to	get	your	hands	on	and	display	right	away	to	make	sure	you	have	the
correct	data.

Always	remember,	as	I	mentioned	earlier,	that	you	must	order	your	code	to	go	from
most	specific	in	the	path	to	least	specific	because	the	engine	will	render	the	first	matching
pattern	that	it	finds.	The	warning	here	is	this	URL	coming	in	as	a	web	request:

http://127.0.0.1:1234/details/1/Payton

This	will	match	the	following	route:
router.get(‘/details’)

And	it	will	match	this	route	as	well:
router.get(‘/details/:id’)

And	this	route:
router.get(‘/details/:id/:name’)

The	second	and	third	routes	will	never	be	reached	if	these	are	in	the	wrong	order	in	your
code	file.	To	be	properly	done,	these	route	entries	need	to	be	exactly	reversed	from	what	is
shown	here.

Pulling	arguments	from	structured	route	paths	is	one	way	to	pass	and	pull	data	from	the
URL.	As	an	alternative,	you	could	have	placed	the	data	into	a	QueryString.	In	the	real
world,	this	is	equally	as	likely	to	be	the	pattern	you	choose	to	follow	for	building	URLs
internally	to	pass	data.

You	use	the	QueryString	collection	to	access	the	URL’s	name/value	pairs	either	by
index	or	by	name.	In	general,	it	will	be	just	as	easy	to	code	a	solution	that	parses	its	data
as	with	the	param	collection.	That	being	said,	it	is	your	choice,	and	each	option	works	at
least	equally	well.

To	implement	access	to	the	QueryString,	simply	reference	its	collection	instead	of	the
param	collection:

req.query.ID

In	this	case,	as	you	see,	you	can	actually	use	dot	notation	to	access	the	individually
named	members	of	the	collection	you	specified.	The	processing	engine	recognizes	the
question	mark	(?)	as	the	beginning	of	the	collection	and	the	ampersand	(&)	as	the
argument	separator.	Thus,	the	route	itself	is	still	the	same	as	the	base	route	and	the
previously	mentioned	issues	with	route	order	in	the	file	are	not	relevant.

So	to	process	this	URL:

http://127.0.0.1:1234/details?ID=1&Name=Payton

the	route	get	function	to	render	this	data	in	all	cases	would	simply	be
Click	here	to	view	code	image

router.get(‘/details’,	function	(req,	res)	{

				res.render(‘details’,	{

playerId:	req.query.ID,

name:	req.query.Name

				});

});

As	you	can	see,	you	simply	take	apart	the	arguments	by	name	one	at	a	time	to	get	to	the
values	contained	in	them.	Passing	an	entire	object	this	way	would	be	done	by	manually
taking	apart	the	object	properties	to	provide	the	necessary	arguments	in	your	assembled
link	to	the	details	page:
Click	here	to	view	code	image

href=	‘details?ID=<%=	players[i].id%>&Name=<%=	players[i].lastName%>’>

Continue	on	like	this	in	as	much	depth	as	required.	In	real-world	practice,	this	approach
is	rarely	needed	for	sending	information	to	your	own	.ejs	files.	This	is	because,	as	you
have	seen,	you	can	pass	entire	objects	or	even	collections	of	objects	in	this	way:

res.render(‘survey’,	{

				players:	arrPlayers

								});

For	connecting	to	external	resources	and	assembling	a	QueryString	or	a	route,	or	for
taking	in	connections	to	your	resources	from	others	and	thus	parsing	an	inbound
QueryString	or	route,	working	with	data	directly	inside	the	URL	is	often	your	only	option
for	moving	that	data	from	place	to	place.

Data	from	users
Another	technique	that	should	be	familiar	to	you	if	your	background	is	classic	ASP	or
MVC	is	form	posting.	With	this	approach,	it	is	assumed	that	there	is	a	screen	into	which	a
user	is	entering	one	or	more	fields	and	that	the	entire	collection	of	those	values	needs	to	be
quickly	and	easily	transported	to	a	URL.	To	implement	form	posting,	instead	of	using	a
get	function	inside	of	your	.js	file,	you	need	to	use	a	post:
Click	here	to	view	code	image

router.post(‘/survey’,	function	(req,	res)	{	});

As	you	can	see,	post	is	almost	identical	in	signature	to	get.	Before	we	get	more	deeply
into	it,	just	touching	on	the	subject	of	post	as	an	alternative	to	get	leads	us	back	into	taking
a	brief	look	at	the	four	basic	actions	universally	available	over	an	HTTP	web	connection:

	Get	A	typical	web	request

	Post	Usually	used	for	sending	a	collection	of	data	to	be	processed

	Put	Usually	used	for	updating	a	single	record

	Delete	As	you	might	have	expected,	usually	used	for	deleting	a	single	record

A	file	that	contains	routing	information	will	typically	contain	at	least	one	of	each	of	the

four	methods	just	defined,	like	this:
Click	here	to	view	code	image

router.get(‘/survey’,	function	(req,	res)	{	});

router.post(‘/survey’,	function	(req,	res)	{	});

router.put(‘/survey’,	function	(req,	res)	{	});

router.delete(‘/survey’,	function	(req,	res)	{	});

As	you	have	seen,	often	more	than	one	get	function	exists	within	this	collection.	Within
the	post	will	be	the	code	to	get	the	name/value	pairs	from	the	inbound	form	collection.
Once	again,	the	key	to	this	is	having	the	proper	npm	package	installed.	In	this	case,	it	is
body-parser.	So,	in	your	app.js	file,	make	sure	you	have	this	line:
Click	here	to	view	code	image

var	bodyParser	=	require(‘body-parser’);

You	need	the	variable	because	you	also	need	to	place	this	line	in	the	same	file	after	the
bodyParser	declaration	just	shown	to	properly	format	the	inbound	input:
Click	here	to	view	code	image

server.use(bodyParser.urlencoded({	extended:	true	}));

With	those	pieces	in	place,	from	inside	your	post	function,	you’ll	be	able	to	access	the
body	property	of	an	inbound	request	by	doing	this	to	get	your	hands	on	the	value	you
seek:
Click	here	to	view	code	image

var	sInput	=	req.body.txtInbound;

In	this	case,	you	are	looking	for	a	control	called	txtInbound.

To	see	this	is	action,	you	need	to	add	a	few	things	to	your	HTML/EJS	file	to	activate	a
form	post.	Let’s	start	with	a	button	and	a	textbox.	Just	to	do	this	demonstration,	go	ahead
and	drop	a	couple	of	input	controls	in	a	separate	row	below	the	list	control	you	have	in	the
page:
Click	here	to	view	code	image

<table	class=“table”>

<tr>

<td	valign=“top”	align=“center”>

…

</td>

</tr>

<tr>

				<td>

<form	action=”/survey”	method=“post”>

<input	id=“txtInbound”	name=“txtInbound”	type=“text”	/>

<input	type=“submit”	/>

</form>

				</td>

</tr>

</table>

Notice	how	you	have	wrapped	your	input	controls	in	a	form	and	then	specified	two

important	attributes—method=’post’	and	action=’/survey’—to	tell	the	form	how	you
want	it	to	behave.	When	you	submit	it,	you	want	the	form	to	post	its	information	to	the
path	indicated	in	the	action—in	this	case,	to	your	survey	page.
With	all	of	this	wiring	in	place,	let’s	turn	our	attention	back	to	the	actual	post	function

inside	your	survey.js	file	to	have	it	respond	to	your	successful	form	post.	Again,	we’ll	do
something	more	useful	with	this	later.	Just	to	see	it	work,	let’s	have	it	write	any	input
value	to	the	console:
Click	here	to	view	code	image

router.post(‘/survey’,	function	(req,	res)	{

	var	sInput	=	req.body.txtInbound;

console.log(sInput);

res.send(‘posted’);

});

At	this	point,	you	can	pop	the	page	open	in	a	browser.	You	should	see	your	button
control	and	your	text	box.	Enter	any	value,	and	click	Submit.	You	should	see	the	value
you	typed	appear	in	the	console	window.	Don’t	forget	to	respond	with	something;
otherwise,	your	application	will	stop	responding	even	if	the	code	works	as	expected.

Typically,	this	is	where	you	have	your	CRUD	(Create,	Update,	Delete)	interactions	with
an	external	source	such	as	a	database.	When	you	return	to	this	code	in	the	next	chapter,
you’ll	be	taking	that	value	and	inserting	it	into	a	Microsoft	SQL	Server	database.

Now	you’ve	seen	the	Node.js	versions	of	standard	get	and	post	operations.

However,	aside	from	these	basic,	good	old-fashioned	web	techniques	for	moving	bits	of
data	from	here	to	there,	inside	your	Node.js	application	you	do	have	other	options.	One	of
the	best	of	these	is	the	cache.

To	use	a	cache	in	Node.js,	all	you	need	is	the	proper	npm	package.	You	already	installed
memory-cache	when	you	set	up	our	application	so	now	you	just	have	to	do	the	usual	to
enable	its	use:
Click	here	to	view	code	image

var	cache	=	require(‘memory-cache’);

This	component	works	just	as	you	would	hope	that	it	would,	similar	to	the	.NET	cache
but	without	some	of	the	features.	To	put	a	value	into	the	cache,	you	simply	do	this:
Click	here	to	view	code	image

cache.put(‘players’,	arrPlayers);

And	to	retrieve	that	value,	this	is	all	it	takes:
cache.get(‘players’);

This	caching	component	also	has	an	expiration	argument,	expressed	in	milliseconds:
Click	here	to	view	code	image

cache.put(‘players’,	arrPlayers,	5000);

After	the	time	elapses,	in	this	case	five	seconds,	the	item	will	be	removed	from	the	cache
if	it	is	not	renewed.

One	of	the	most	important	things	to	notice	here	is	that	my	example	for	storing

something	in	the	cache	uses	not	just	an	object	but	an	array	of	objects.	The	cache	will	hold
anything	you	can	concoct	in	JavaScript,	and	this	idea	opens	the	door	to	the	true	power	of
Object-Oriented	JavaScript	(OOJS)	and	sophisticated	state	management	that’s	required	in
commercial	applications.	It’s	a	pattern	used	in	.NET	to	take	advantage	of	the	full	power	of
the	programming	model.

The	Node.js	cache	does	for	JavaScript	objects	what	the	.NET	cache	does	for	business-
layer	objects—it	makes	them	universally	accessible.	There	are	two	kinds	of	objects
typically	stored	in	the	cache:	lookup	objects	and	user	objects.

A	lookup	object	is	typically	a	collection	of	values	that	rarely,	if	ever,	changes—
something	like	US	state	names	or	US	president	names.	A	list	of	states	stored	in	the
database	has	to	be	fetched	only	one	time,	and	then	it	can	be	held	in	memory	after	that	to
allow	for	quicker	access	from	the	application.	This	works	quickly	and	easily	because	there
is	no	concern	that	data	will	get	out	of	sync—in	other	words,	there	are	no	worries	that	new
data	will	be	entered	into	the	database	and	the	cached	version	of	the	data	will	be	out	of
date.	With	data	that	never	changes,	such	as	US	states,	that	problem	is	not	a	problem.	A
routine	that	re-created	that	data	once	every	four	or	eight	years	is	also	not	a	big	issue.

Of	course,	this	design	also	works	for	lookup	data	that	changes	more	regularly.	You
simply	have	to	account	for	those	changes	in	memory	as	well	as	in	the	database—for
example,	by	updating	the	collection	in	memory	on	the	same	button	click	that	allows	for	a
database	update.	This	is	one	way	to	greatly	improve	the	performance	of	your	application.

In	general,	interaction	with	the	database	should	be	avoided	except	in	cases	where	it
simply	can’t	be,	such	as	for	CRUD	operations.	Most	other	functions	that	people	typically
perform	in	the	database,	such	as	filtering	and	joining,	can	be	done	much	more	quickly	by
using	server	memory.

Picture	a	software	application	as	the	city	of	San	Francisco,	and	imagine	the	only	four
bridges	over	the	bay	represent	the	database.	No	matter	how	many	creative	ways	you
navigate	to	one	of	those	bridges,	you’ll	be	slammed	with	all	the	rest	of	the	city	traffic
doing	the	same.	Those	are	the	only	routes.	So	everyone	has	to	use	them.	If	you	keep	your
database	interactive	operations	to	the	bare	minimum	required,	traffic	will	flow	better	all
over	your	“city.”	That’s	the	whole	idea	behind	using	as	much	cached	data	as	you	possibly
can.

A	user	object	holds	all	the	information	specific	to	a	site	user.	That	can	be	data	from	the
system	itself,	such	as	profile	information	containing	permissions,	and	it	can	be	state	data
that	is	tracking	current	user	behavior.	Both	kinds	of	information	will	typically	be	required
all	throughout	the	application,	and	the	cache	is	the	perfect	tool	to	use	for	allowing	it.

Only	one	difference	is	required	in	the	way	you	manage	the	cache.	For	a	lookup	object,
this	will	work:
Click	here	to	view	code	image

cache.put(‘leagues’,	arrLeagues);

However,	for	a	user-specific	object,	you	need	an	identifier	that	ties	that	specific	object	to
that	and	only	that	specific	user.	The	standard	technique	for	doing	so	is	to	create	a	globally
unique	identifier	(GUID)	that	you	associate	with	that	user,	most	often	on	login.	Then	you

simply	prepend	the	GUID	to	your	cache	entry	like	this:
Click	here	to	view	code	image

cache.put(GUID	+	‘User’,	myUserObj);

You	should	have	that	GUID	for	that	user	included	in	the	QueryString	on	every	request,
like	this:
Click	here	to	view	code	image

http://127.0.0.1:1234/details?GUID=1QW3456tr4RTYUXXYiujjii45UY89898TRFReded

That	way,	you	can	then	pull	it	out	to	get	access	to	your	user	object	in	the	cache,	like	this:
Click	here	to	view	code	image

var	sGUID	=	req.query.GUID;

var	myObj	=	cache.get(sGUID	+	‘User’);

You	have	a	rock-solid,	state	management	strategy	in	place	that	works	for	every	page	of
your	application,	with	code	consistency,	in	exactly	the	same	way.

As	I	mentioned,	this	caching	technique	is	the	only	truly	viable	solution	for	all	web
scenarios,	even	in	the	world	of	.NET.	If	you	don’t	believe	it,	try	to	pass	a	Session	variable
across	a	protocol	change—that	is,	take	one	of	your	Session	values	and	pass	it	from	HTTP
to	HTTPS.	Good	luck!	There’s	no	way	that	coding	technique	will	ever	work.	Sessions	do
not	cross	protocol	boundaries.	You	can,	and	want	to,	create	Session	equivalents	using	the
login	GUIDs,	caching,	and	OOP,	but	that’s	not	nearly	the	same	thing	as	using	the	Session
object.

You	can	even	take	the	idea	one	step	further	for	web-farm	scenarios	by	serializing	the
data	in	your	objects	to	external	data	stores.	Serialization	turns	the	state	of	an	object	into
text.	So	you	serialize	to	store	the	data	and	deserialize	to	retrieve	it.	When	a	request	comes
in,	you	check	the	cache	in	that	specific	server	for	the	GUID-related	user	object.	If	it	isn’t
there,	you	pull	the	user	state	from	the	external	store	according	to	the	GUID	in	the
QueryString	and	reassemble	it	into	objects	right	there.	And	then	you	are	back	to	normal
code	operations.	One	technique,	all	scenarios,	infinitely	scalable.

Now	you	use	a	tech	interview	question	to	separate	the	wheat	from	the	chaff—no	.NET
developer	worth	his	salt	will	ever	go	near	Session.	Like	form	posting,	it’s	technology	from
the	1990s,	and	.NET	gave	you	much	better	ways	to	do	the	same	things	starting	in	this
century,	and	it	still	does.	By	being	well-versed	in	those	best	practices,	you’re	fully
prepared	to	implement	the	same	architecture	in	Node.js.

At	this	point,	you’re	effectively	moving	your	data	from	page	to	page.	Next	let’s	connect
to	some	external	data	and	see	what	you	can	do	with	that.

Chapter	6.	Working	with	external	data	in	Node.js

Rendering	static	or	dummy	data	is	one	thing,	but	connecting	your	UI	to	live	data	is
something	else	again.	If	you	want	your	application	to	handle	the	real	world,	you	need	it	to
track	and	assimilate	data	provided	by	back-end	data	stores,	whatever	they	may	be.

In	our	case,	we’ll	start	with	databases—specifically,	with	Microsoft	SQL	Server.	Why
SQL	Server?	There	are	two	reasons.

First,	there	is	a	good	chance	you	are	exploring	Node.js	as	some	sort	of	complement	to
or	replacement	of	a	.NET	web	application.	In	the	vast	majority	of	cases,	the	back-end
database	for	.NET	is	SQL	Server.	Second,	SQL	Server	has	within	it	stored	procedures
(chunks	of	prebuilt	SQL	code	that	are	held	in	the	database	that	you	can	call	by	name	from
your	code).	Because	these	are	widely	used	but	not	available	in	other	databases	such	as
MySQL,	I	want	to	cover	the	feature	and	show	how	to	employ	them	from	Node.js.

That	being	said,	if	you	are	trying	to	get	things	going	by	doing	your	first	development
with	Node.js	and	are	using	SQL	Express	as	your	database,	well,	the	fact	is	I	couldn’t	get
either	of	the	primary	npm	packages	for	SQL	Server,	including	our	choice	tedious,	to	work
on	my	machine	with	SQL	Express.	Many	hours	of	diligent	effort	to	connect	to	my
localhost	left	me	with	only	ECONNREFUSED	and	ENOTFOUND	errors	as	I	played	with
the	settings	in	my	connection.

This	is	obviously	frustrating	at	certain	levels,	if	only	because	the	process	of	connecting
smoothly	to	a	fresh	install	of	MySQL	is	quite	simple	and	happens	instantly	with	no
aggravation	at	all.	That	tells	you	that	the	problem	clearly	has	to	do	with	permissions.	That
can	be	a	challenging	area	in	the	land	of	Microsoft	products	and	is	not	covered	in	this	tome.
So	just	in	case	you	are	trying	to	work	locally,	for	the	moment	you	will	also	install	MySQL
because	I	know	you	can	easily	get	to	it	on	your	machine.

MySQL	is	a	relational	database	system	that	is	almost	the	same	as	working	with	SQL
Server	but	for	the	absence	of	stored	procedures.	As	we	pass	through	our	various	CRUD
(Create,	Update,	Delete)	operations,	I’ll	include	a	few	lines	about	how	to	work	with	it	so
as	not	to	leave	anything	out.	We’ll	also	go	ahead	and	grab	the	MySQL	npm	package	so
that	you	can	work	with	both	databases	if	you	want	to.	(You	already	installed	the	SQL
Server	npm	package	when	we	started.)	Entering	the	following	in	the	correct	location	of
your	command	prompt	is	usually	all	it	takes	to	get	set	up	for	MySQL:

npm	install	mysql

Installing	MySQL	isn’t	directly	a	topic	of	this	book	but	if	you	want	to	retrieve	it,	head
over	to	this	site:

http://dev.mysql.com/downloads/windows/

You’ll	find	that	the	install	process	is	very	fast	and	easy.	By	default,	you	won’t	have	any
user	interface	in	the	same	way	that	you	need	to	use	SQL	Server	Management	Studio	as	a
visual	tool	to	get	into	your	SQL	Server.	However,	you	won’t	need	one	because	you’ll	be
doing	directly	from	code	whatever	you	need	to	do.

For	interacting	with	your	chosen	SQL	Server,	you’ll	need	to	add	a	couple	of	statements

http://dev.mysql.com/downloads/windows/

to	the	top	of	your	file	with	some	objects	returned	that	you	need	in	order	to	do	that
interaction:
Click	here	to	view	code	image

var	Connection	=	require(‘tedious’).Connection;

var	Request	=	require(‘tedious’).Request;

Now	you	can	get	back	to	your	post	operation:
Click	here	to	view	code	image

router.post(‘/survey’,	function	(req,	res)	{

var	config	=	{

								userName:	‘fromCache’,

								password:	‘	fromCache	‘,

								server:	‘123.45.67.89’,

								options:

								{

												database:	“Test”

								}

				};

	var	sInput	=	req.body.txtInbound;

console.log(sInput);

});

Notice	that	you	have	now	inserted	your	connection	configuration	information.	To	keep	it
simple	for	the	moment,	you	can	simply	insert	your	hard-coded	credentials	into	the	code.
You	can	already	see	from	the	example	some	of	the	potential	power	and	ease	of	using	the
cache	to	hold	application-wide	data.

At	this	point,	after	the	configuration	you	just	try	to	turn	it	on	and	also	provide	some
error	handling	if	you	don’t	succeed:
Click	here	to	view	code	image

var	connection	=	new	Connection(config);

	connection.on(‘connect’,	function	(err)	{

								//	If	no	error,	then	good	to	go…

								//	Do	some	SQL	here;

		});

	connection.on(‘debug’,	function	(text)	{

								console.log(text);

	}

Assuming	you	have	no	errors	(and	this	is	where	you	will	get	them	if	you	do),	you	are
good	to	go	with	the	database.

As	you	see	here,	the	code	to	connect	to	a	local	version	of	MySQL	is	nearly	identical
assuming	you	have	already	made	a	similar	npm	reference	to	it:
Click	here	to	view	code	image

var	connection	=	mysql.createConnection(

				{

								host:	‘localhost’,

								user:	‘fromCache’,

								password:	‘fromCache’,

								database:	‘test’

				});

				connection.connect();

The	database	test	indicated	in	the	code	already	exists	in	MySQL,	and	it	has	a	couple	of
tables	with	a	small	number	of	fields	you	can	use	to	begin	development	work.

Next	you	need	code	to	execute	some	SQL.	Even	in	a	post	insert	or	a	put	edit,	there	are
times	when	you	might	want	to	pull	back	the	data	you	just	inserted,	especially	if	default
values	were	provided	to	the	record	during	the	insert.	Typically,	fetching	data	is	done
during	a	get	operation,	but	we’ll	include	both	aspects	here.	So	you	need	both	a	way	to
execute	your	insert	and	also	a	way	to	receive	a	collection	and	loop	through	it	row	by	row.

Obviously,	you	can’t	post	any	data	to,	or	pull	any	data	from,	a	table	that	doesn’t	exist.
So,	either	in	your	SQL	Server	database	or	in	your	MySQL	database,	create	a	table	that	will
hold	the	player	information	you	used	before	with	these	fields:

	id,	firstName,	lastName,	sport

Then	populate	it	with	the	following	values:
1,	Payton,	Walter,	Football

2,	Ruth,	Babe,	Baseball

3,	Gretzky,	Wayne,	Hockey

4,	Woods,	Tiger,	Golf

I’ll	assume	for	the	example	that	this	table	is	called	tblPlayers.

Let’s	start	with	the	insert.	I	won’t	even	talk	about	SQL	to	SQL	Server	without
parameters.	If	you’re	still	doing	SQL	that	way,	basically	whatever	gets	hacked	in	your
database	gets	hacked.	You’ve	only	had	a	decade	of	warning	not	to	use	SQL	without
parameters	and,	I	apologize,	but	I	just	can’t	generate	any	sympathy.	The	data	you	need	to
add	is	this:

				5,	Orr,	Bobby,	Hockey

For	your	insert	code,	you	need	the	SQL	and	the	parameters	along	with	your	input	fields
from	your	form	post	and	some	tedious	specifics	such	as	the	first	line,	which	is	self-
explanatory:
Click	here	to	view	code	image

var	TYPES	=	require(‘tedious’).TYPES;

	var	sql	=	‘insert	into	tblPlayers	(id,	firstName,	lastName,	sport)’;

sql	+=		‘values	(@id,	@first,	@last,	@sport)’;

	var	request	=	new	Request(sql,	function(err)	{

				….

		});

var	sFirst	=	req.body.txtFirst;

var	sLast	=	req.body.txtLast;

var	sSport	=	req.body.txtSport;

var	iID	=	req.body.txtID;

		request.addParameter(‘id’,	TYPES.Int,	iID);

		request.addParameter(‘first’,	TYPES.VarChar,	sFirst);

		request.addParameter(‘last’,	TYPES.VarChar,	sLast);

		request.addParameter(‘sport’,	TYPES.VarChar,	sSport);

		connection.execSql(request);

Then	send	a	response	that	indicates	something	good	happened.	In	many	cases,	this

would	be	the	ID	just	created,	although	for	our	example	we	are	supplying	the	value.	The
whole	function	looks	like	this:
Click	here	to	view	code	image

router.post(‘/survey’,	function	(req,	res)	{

var	config	=	{

								userName:	‘fromCache’,

								password:	‘	fromCache	‘,

								server:	‘123.45.67.89’,

								options:

								{

												database:	“Test”

								}

				};

var	connection	=	new	Connection(config);

	connection.on(‘connect’,	function	(err)	{

	var	TYPES	=	require(‘tedious’).TYPES;

	var	sql	=	‘insert	into	tblPlayers	(id,	firstName,	lastName,	sport)’;

sql	+=		‘values	(@id,	@first,	@last,	@sport)’;

	var	request	=	new	Request(sql,	function(err)	{

				….

		});

var	sFirst	=	req.body.txtFirst;

var	sLast	=	req.body.txtLast;

var	sSport	=	req.body.txtSport;

var	iID	=	req.body.txtID;

	request.addParameter(‘id’,	TYPES.Int,	iID);

	request.addParameter(‘first’,	TYPES.VarChar,	sFirst);

	request.addParameter(‘last’,	TYPES.VarChar,	sLast);

	request.addParameter(‘sport’,	TYPES.VarChar,	sSport);

	connection.execSql(request);

res.send(iID.toString()	+	‘	entered	ok’);

		});

	connection.on(‘debug’,	function	(text)	{

								console.log(text);

	}

});	//	closes	the	post	function	and	callback

With	this	post	action	receiver	in	place,	you	just	need	to	take	care	of	adding	a	couple	of
fields	to	your	user	interface.	To	keep	it	all	clean,	just	go	ahead	and	add	a	new	view	to	your
project	quickly	that	you	can	use	for	your	player	data	insert.	Create	playerAdmin.js	and
playerAdmin.ejs,	and	add	them	to	your	project	as	usual.

We’ll	start	with	playerAdmin.ejs.	Add	four	input	fields	and	a	button	wrapped	in	a	form
like	this:
Click	here	to	view	code	image

<form	action=”/playerAdmin”	method=“post”>

<h3>

																								Enter	new	values	for	db</h3>

																				ID:	<input	id=“txtID”	name=“txtID”	type=“text”	/>

																				First	Name:	<input	id=“txtFirst”	name=“txtFirst”

type=“text”	/>

																			Last	Name:		<input	id=“txtLast”	name=“txtLast”	type=“text”

/>

																			Sport:	<input	id=“txtSport”	name=“txtSport”	type=“text”	/>

<input	type=“submit”	/>

</form>

Notice	the	specific	action	we	intend	to	implement	to	a	route	in	your	new
playerAdmin.js	file.	So	let’s	turn	our	attention	to	the	route.	First,	make	sure	you	add	the
references	you	need:
Click	here	to	view	code	image

var	express	=	require(‘express’);

var	router	=	express.Router();

var	Connection	=	require(‘tedious’).Connection;

var	Request	=	require(‘tedious’).Request;

Next,	create	a	post	handler	that	does	exactly	the	same	as	the	one	you	created	earlier.
Copy	and	paste	is	fine	if	you	correct	the	path	as	shown.	Also,	notice	that	you	render	your
results	inside	the	callback	of	the	top-level	Request	function	because	this	is	the	only	time
you	can	be	assured	that	all	of	your	internal	Request	functions	have	run	completely	and
populated	the	object	collection	you	need	to	render	your	view.
Click	here	to	view	code	image

router.post(‘/playerAdmin’,	function	(req,	res)	{

var	config	=	{

								userName:	‘fromCache’,

								password:	‘	fromCache	‘,

								server:	‘123.45.67.89’,

								options:

								{

												database:	“Test”

								}

				};

var	connection	=	new	Connection(config);

	connection.on(‘connect’,	function	(err)	{

var	TYPES	=	require(‘tedious’).TYPES;

var	sql	=	‘insert	into	tblPlayers	(id,	firstName,	lastName,	sport)’;

sql	+=		‘values	(@id,	@first,	@last,	@sport)’;

var	request	=	new	Request(“select	*	from	tblPlayers”,	function	(err,

rowCount)

	{

																if	(err)	{

																				console.log(err);

																}	else	{

																				res.redirect(‘/survey’);

																				res.render(‘survey’,	{

																								players:	cache.get(“PlayerList”)

																				});

																}

});

	connection.close();

var	sFirst	=	req.body.txtFirst;

var	sLast	=	req.body.txtLast;

var	sSport	=	req.body.txtSport;

var	iID	=	req.body.txtID;

	request.addParameter(‘id’,	TYPES.Int,	iID);

	request.addParameter(‘first’,	TYPES.VarChar,	sFirst);

	request.addParameter(‘last’,	TYPES.VarChar,	sLast);

	request.addParameter(‘sport’,	TYPES.VarChar,	sSport);

	connection.execSql(request);

		});

	connection.on(‘debug’,	function	(text)	{

								console.log(text);

	});

});

Although	you	could	post	to	it	right	now,	if	you	tried	to	browse	to	the	page	as	is,	you’d
get	the	following	error:

Cannot	GET	playerAdmin

That’s	because	the	default	action	of	an	HTTP	web	request	is	a	GET	and	you	actually
haven’t	created	a	function	for	that.	So	you’ll	need	a	simple	get	as	well	as	the	post	to	render
your	view	in	the	first	place:
Click	here	to	view	code	image

router.get(‘/playerAdmin’,	function	(req,	res)	{

				res.render(‘playerAdmin’);

});

module.exports	=	router;

It	does	not	matter	where	in	your	file	this	function	is	placed	relative	to	the	post	function.
Don’t	forget	to	globalize	the	router	and	route	with	the	last	line.

Now	you	just	need	to	add	the	static	reference	to	your	app.js	file	along	with	the	rest,	like
this:
Click	here	to	view	code	image

server.use(require(‘./playerAdmin’));

You	should	be	all	set	to	browse	to	the	page.	When	it	opens,	you	should	see	your	input
boxes.	Enter	the	following	values:

5,	Orr,	Bobby,	Hockey

Click	the	Submit	button,	and	you	should	see	an	indication	of	success.	Now	let’s	verify
that’s	true	by	fetching	all	the	rows	and	displaying	that	simple	list	of	players	using	our
Object-Oriented	JavaScript	(OOJS)	connected	to	more	SQL	functions.

To	select	and	iterate	rows,	you	need	several	lines.	To	keep	everything	neat,	let’s	create	a
function	called	fetchPlayers	and	put	this	code	in	it:
Click	here	to	view	code	image

function	fetchPlayers(){

	var	config	=	{

								userName:	‘fromCache’,

								password:	‘fromCache’,

								server:	‘123.45.67.89’,

								options:

								{

												database:	“Test”

								}

				};

				var	connection	=	new	Connection(config);

				connection.on(‘connect’,	function	(err)	{

								request	=	new	Request(“select	*	from	tblPlayers”,	function	(err,

rowCount)	{

												if	(err)	{

																console.log(err);

												}	else	{

																console.log(rowCount	+	‘	rows’);

												}

												connection.close();

								});

								request.on(‘row’,	function	(columns)	{

												columns.forEach(function	(column)	{

																if	(column.value	===	null)	{

																				console.log(‘NULL’);

																}	else	{

																				console.log(column.value);

																}

												});

								});

								request.on(‘done’,	function	(rowCount,	more)	{

												console.log(rowCount	+	‘	rows	returned’);

								});

								connection.execSql(request);

				}

								});

Now	you	can	call	this	function	after	your	insert	to	easily	confirm	your	data	interaction
was	completely	successful:

…

connection.execSql(request);

fetchPlayers();

As	you	see	from	the	code,	you	simply	wrote	the	results	to	the	console	for	the	moment,
but	you	can	clearly	see	where	within	the	code	you	need	to	populate	your	collection	of
Player	objects	to	display	in	the	view.	You	need	to	take	apart	your	resultset	into	individual
columns	and	set	the	properties	of	each	Player	object	to	the	associated	values	in	the
forEach	loop	of	the	request.on	function:
Click	here	to	view	code	image

request.on(‘row’,	function	(columns)

												{

																var	oPlayer	=	new	Player();

																columns.forEach(function	(column)

																{

																				if	(column.value	===	null)	{

																								console.log(‘NULL’);

																				}	else	{

																								//	console.log(column.metadata.colName);

																								switch	(column.metadata.colName)	{

																												case	“firstName”:

																																oPlayer.firstName	=	column.value;

																																break;

																												case	“lastName”:

																																oPlayer.lastName	=	column.value;

																																break;

																												case	“sport”:

																																oPlayer.sport	=	column.value;

																																break;

																												case	“id”:

																																oPlayer.id	=	column.value;

																																break;

																								}

																				}

																});	//	columns	for	each

																arrPlayers.push(oPlayer);

																cache.put(“PlayerList”,	arrPlayers);

												});	//	rows	for	each

cache.put(“PlayerList”,	arrPlayers);

});

Then	you	just	add	each	object	to	an	array	and	stick	that	array	in	the	cache.	Again,	for	all
of	this	to	work	properly,	don’t	forget	to	add	your	Person	and	Player	class-functions	to	the
top	of	the	file	as	well	as	your	cache	reference.

Now	that	you	have	the	list	of	Player	objects	in	cache,	you	can	get	to	them	easily	to
provide	the	arguments	you	need	to	render	your	list.	Because	the	survey	page	is	all	set	up	to
read	those	values,	you	used	that	page	for	your	display	by	supplying	the	redirect	like	this	as
I	indicated	in	the	top-level	Request	function:

res.redirect(‘/survey’);

Now	when	you	do	your	data	insert	on	one	page,	you’ll	get	sent	to	another	page	to	show
the	result.	If	you	run	this	code	and	submit	values	to	add	to	your	list	of	players,	you	should
see	your	ever-growing	list	on	the	survey	page	as	you	do	so.

Using	MySQL	to	do	the	same	is	similar:
Click	here	to	view	code	image

var	query	=	connection.query(‘SELECT	*	FROM	tblPlayers’);

query.on(‘error’,	function(err)	{

				throw	err;

});

query.on(‘fields’,	function(fields)	{

				console.log(fields);

});

query.on(‘result’,	function(row)	{

				//	do	all	of	the	row	by	row	work	here

			//	to	populate	the	properties	of	the	objects

			//	for	your	array	to	cache

});

connection.end();

As	you	see,	it	also	allows	row-by-row	access	to	values.	Simply	assign	the	database
values	column-by-column	as	was	done	with	the	values	returned	from	SQL	Server.
Otherwise,	the	surrounding	Node.js	code	is	the	same.

By	this	point,	you’re	in	pretty	good	shape.	You’ve	connected	to	a	relational	database
management	system	(RDBMS)	for	CRUD	operations,	you’ve	used	your	OOJS	to	easily
manage	values,	and	you’ve	routed	your	results	as	desired	using	the	cache.

But	data	can	also	be	stored	in	the	file	system,	so	next	let’s	look	at	accessing	and
processing	files.

Chapter	7.	Working	with	file	data	in	Node.js

Data	can	be	stored	in	several	kinds	of	repositories.	We’ve	looked	at	databases,	and	we’ve
designed	receivers	that	could	take	in	and	parse	data	coming	from	anywhere—be	it	our
own	application	or	others	that	are	posting	or	otherwise	sending	information	according	to
specific	route	formats	that	we	can	take	apart.	Now	let’s	look	at	sending,	receiving,
accessing,	and	storing	files	and	the	data	contained	within	them.

This	functionality	is	all	supportive	in	nature.	As	a	part	of	our	website	project,	we	have
no	immediate	need	to	read	and	write	specific	files,	but	you	can	use	these	principles	to
explore	options.	For	uploading	files,	I’ll	just	assume	you	might	want	to	upload	images	of
the	players	to	go	along	with	the	information	to	be	displayed	in	their	details	view,	but	I’ll
leave	it	to	you	to	fetch	the	actual	images	from	the	web	as	you	like.	Of	course,	you	can	use
any	files	to	prove	the	functionality	to	yourself.

Fortunately,	a	lot	of	this	is	simple	to	do	using	Node.js.	To	write	info	to	a	file	and	save	it,
you	need	to	include	this	line	to	get	access	to	the	fs	object	inside	of	Express:

var	fs	=	require(‘fs’);

There’s	no	need	for	another	npm	package.	After	you	do	that,	one	line	of	code	with	the
writeFile	method	is	all	you	need,	along	with	a	couple	of	variables	passed	to	it	containing
the	filename	and	the	content	you	want	to	write	into	the	file:
Click	here	to	view	code	image

var	sFileName	=	‘helloworldcool.txt’

var	sMsg	=	‘Yo	this	is	cool’

fs.writeFile(sFileName,	sMsg,	function	(err)	{

				if	(err)	return	console.log(err);

//	do	something	if	successful

});

Now	you	have	a	new	file	saved	where	you	specified,	and	it	contains	your	entry.

To	read	info	back	out	from	the	file	and	display	it,	you	just	use	a	different	method	of	the
same	base	fs	object.	Obviously,	you	typically	do	more	than	this	with	that	data,	but	for	the
moment	you’ll	just	write	the	contents	of	the	file	to	the	console:
Click	here	to	view	code	image

var	sFileName	=	‘helloworldcool.txt’	//	same	filename	as	last	example

	fs.readFile(sFileName,	function	(err,	fileData)	{

								if	(err)

												throw	err;

								if	(fileData)

												console.log(fileData.toString(‘utf8’));

	});

These	functions	are	simple	to	test—just	drop	the	code	anywhere.	You	might	have
noticed	already	that	any	code	in	any	.js	file	that	is	not	contained	inside	a	function	runs
immediately	when	the	application	loads	and	the	Node.js	server	starts.

I’ll	let	you	explore	both	the	positive	and	negative	implications	of	that	idea.	One	way	or
the	other,	it’s	something	that	is	good	to	be	aware	of	if	you	weren’t	already.

To	see	what’s	needed	to	transfer	a	file	using	a	typical	browse	button,	the	first	thing	you
need	to	do	is	create	the	button	in	a	view	somewhere:
Click	here	to	view	code	image

Please	specify	a	file	or	a	set	of	files:

<form	method=‘post’	action=‘upload’	enctype=“multipart/form-data”>

<input	type=‘file’	name=‘fileUpload’>

<input	type=‘submit’>

</form>

To	make	it	as	easy	as	possible,	you	use	basic	HTML	tools	and	then	do	it	in	a	particular
way.	Specifically,	you	put	your	upload	button	inside	of	a	form	and	then	specify	a	post
action	and	a	route	called	upload:
Click	here	to	view	code	image

<input	type=‘file’	name=‘fileUpload’>

Because	this	kind	of	functionality	might	be	needed	from	several	places,	and	putting	it	in
a	page-specific	file	might	make	it	difficult	to	track	down,	on	this	occasion	you’ll	add	a
route	at	the	app.js	level	to	handle	all	uploads:
Click	here	to	view	code	image

server.route(‘/upload’)

				.post(function	(req,	res,	next)	{

								req.pipe(req.busboy);

								req.busboy.on(‘file’,	function	(fieldName,	oFile,	fileName)	{

												console.log(“Uploading:	”	+	filename);

												//Path	where	image	will	be	uploaded

												var	fStream	=	fs.createWriteStream(__dirname	+	‘/images/’	+

fileName);

												oFile.pipe(fStream);

												fStream.on(‘close’,	function	()	{

																console.log(“Upload	Finished	of	”	+	fileName);

																res.redirect(‘back’);											//where	to	go	next

												});

								});

				});

Yes,	it	is	possible	to	route	an	entire	application	using	this	technique.	If	you	think	about
it	for	a	moment,	you’ll	see	why	it	can	quickly	lead	to	.js	files	for	files	like	your	app.js	that
are	absurdly	long.	Separating	each	page	and	its	functionality	is	one	of	the	keys	to	keeping
your	code	manageable—both	for	you	and	for	the	next	person.

Notice	in	the	preceding	code	sample	that	you	are	using	the	busboy	npm	package	as	well
as	including	the	fs	feature	of	Express.

There	are	a	couple	of	lines	to	focus	on.	First	take	a	look	at	this	line:
Click	here	to	view	code	image

var	fStream	=	fs.createWriteStream(__dirname	+	‘/images/’	+	fileName);

Here	you	simply	call	createWriteStream	from	the	fs	object	to	create	the	necessary
parameters	for	sending	your	file.

You	can	easily	perform	a	test	to	see	if	this	works,	and	if	you	like,	you	can	fetch	from	the
Web	any	noncopyrighted	image	of	one	of	the	players	in	the	list	of	data	you	have.	Then
name	it	appropriately	for	the	player	and	upload	it	into	the	images	folder	for	later	retrieval.

When	the	player	is	selected,	you	can	view	his	or	her	details.

The	following	lines,	however,	isolate	for	you	a	specific	and	useful	feature	of	Node.js—
namely,	the	pipe	function:

req.pipe(req.busboy);

oFile.pipe(fStream);

In	this	case,	you	are	using	it	only	to	send	your	file	info.	But	the	function	has	much
greater	value	as	well.

You	will	find	that	a	common	scenario	when	dealing	with	streaming	files	is	that	you	will
stream	files	both	to	and	from	remote	resources.	And	often	at	the	same	time.	You	will	thus
be	engaged	in	doing	two	separate	but	connected	processes—both	reading	inbound	data
and	then	sending	it	out	to	a	client.

No	doubt,	there	will	be	times	during	these	processes	that	the	end	client	is	consuming	the
data	more	slowly	than	you	are	sending	it.	If	this	likely	behavior	isn’t	accounted	for,	you
will	end	up	with	some	serious	lagging	performance	issues.	The	solution	requires	that	you
include	the	ability	to	pause,	monitor,	and	resume	data	transfers.

The	stream.pipe	function	resolves	this	issue	under	the	covers	for	you	without	you
having	to	resort	to	a	bunch	of	myStreamingFile.on	functions	to	do	all	that	synching	work.
The	pipe	call	takes	a	readable	stream	(file)	and	pipes	it	to	a	writeable	one	(file)	so	that
they	are	synchronized.	It’s	an	elegant	solution	to	a	nagging	issue,	and	it’s	just	that	simple.

Streams	can	also	be	used	to	exercise	more	control	over	the	file	read	process.	For
example,	when	you	are	reading	from	an	existing	file,	you	don’t	have	to	do	this	as	you	did
earlier:
Click	here	to	view	code	image

fs.readFile(sFileName,	function	(err,	fileData)	{

Instead,	you	can	do	the	following,	which	is	a	useful	technique	in	cases	where	the	file	is
large	and	you	might	have	remote-transfer	issues:
Click	here	to	view	code	image

var	oStream	=	fs.createReadStream(‘existingFile’);

var	dataLength	=	0;

oStream

		.on(‘data’,	function	(chunk)	{

						dataLength	+=	chunk.length;

		})

		.on(‘end’,	function	()	{		//	done

						console.log(‘The	length	was:’,	dataLength);

		});

Here	you	are	using	createReadStream	from	the	fs	object	and	its	returned	object,	which
you	are	calling	oStream.	The	oStream	you	get	back	has	some	characteristics	of	the	on
functionality.	This	includes	the	data	version,	which	is	an	event	triggered	when	a	chunk	of
data	of	whatever	size	streams	in.	This	type	of	information	gives	you	highly	granular
visibility	into	and	control	over	the	file-transfer	process.

The	preceding	code	should	work	in	most	cases	as	it	is	shown.	The	data	type	for	the
chunk	that	is	returned	by	streams	that	are	created	by	Node.js	core	modules	will	usually	be

a	buffer	or	a	string.	Both	buffer	and	string	implement	the	length	method.

In	fact,	combining	the	two	similar	stream	functions,	createReadStream	and
createWriteStream,	as	follows	is	the	preferred	way	of	doing	a	file	copy	in	the	land	of
Node.js:
Click	here	to	view	code	image

fs.createReadStream(“input/”	+	fileName)

				//	Write	File

				.pipe(fs.createWriteStream(“output/”	+	fileName));

No	other	utility	exists	for	doing	this.

In	the	end	function,	you	just	record	what	the	total	size	of	the	file	was	so	that,	assuming
you	knew	the	file	size	to	start	with,	you	can	make	sure	you	got	all	of	it.	To	get	the	size	of
the	file,	you	need	to	return	to	the	fs	object	this	way:
Click	here	to	view	code	image

var	stats	=	fs.statSync(“myfile.txt”)

var	fileSizeInBytes	=	stats[“size”]

Here	you	are	using	the	statSync	function	to	return	an	array	of	file	metadata.	One	of	the
items	in	that	array	can	be	specified	using	the	key	size,	which	will	give	you	the	size	of	the
array	in	bytes.	That	is	the	same	measurement	you	will	get	from	the	length	function	of	a
buffer	or	string.

For	processing	internal	text	data,	JavaScript	contains	a	number	of	useful	functions.	For
example,	it	contains	split,	which	takes	a	character	delimiter	by	which	to	divide	a	string	and
returns	an	array	of	the	individual	values	in	the	string:
Click	here	to	view	code	image

var	sName	=	“Michael	Jeffery	Jordan!”;

var	arrName	=	sName.split(”	“);

console.log(arrName);	//	produces	{	Michael,	Jeffery,	Jordan!	}

There	is	also	the	substring	function,	which	is	used	to	get	a	piece	of	a	string.	You	simply
pass	it	the	index	start	and	end	values:
Click	here	to	view	code	image

var	sSub	=	sName.substring(1,	6);

console.log(sSub);	//	produces	“ichae”

Note	that	the	character	at	the	start	index	is	included	in	the	returned	string	but	the
character	at	the	end	index	is	not.

For	more	sophisticated	searching,	there	is	the	match	function,	which	returns	a	string	or
an	array	of	strings	that	matches	a	Regular	Expression	pattern:
Click	here	to	view	code	image

var	sName	=	“Jeff	Jeffery	Jefferson”;

var	res1	=	sName.match(/Jeff/);	//	produces	{	Jeff	}

var	resAll	=	sName.match(/Jeff/g);	//	produces	{	Jeff,	Jeff,	Jeff	}

The	difference	in	the	code	just	shown	is	that	the	global	argument	/g	is	specified	in	the
second	match	line.	Without	this	change,	the	function	will	return	only	the	first	instance	of
the	matching	RegEx	pattern	provided.

Unless	you	are	intentionally	meaning	to	be	case-sensitive,	such	as	with	a	password
during	login,	typically	the	best	way	to	clean	strings	for	processing	is	by	using	the	function
toUpperCase,	for	which	there	is	also	a	matching	toLowerCase.	Use	of	one	of	these	on
both	sides	of	your	equation	will	assure	that	any	minor	capitalization	variations	in
otherwise	identical	data	will	be	ignored,	thus	producing	more	(typically	correct)	matches.
There	is	also	a	trim	function	that	removes	all	leading	and	trailing	spaces.

Each	of	these	functions	is	similar	to	what	you	will	find	in	the	.NET	library	and	will	be
potentially	useful	to	you	as	you	process	information	using	Node.js	and	JavaScript.

Chapter	8.	External	authentication	in	Node.js

Login	security	is	a	vital	aspect	of	most	websites.	In	addition	to	having	standard	security
access	through	whatever	provider	you	choose,	users	now	expect	to	be	able	to	use	a	single
sign-on	to	log	in	to	Facebook,	Gmail,	and	so	on	to	integrate	customized	content.
Fortunately,	through	the	use	of	the	Passport	npm	package,	Node.js	provides	a	solution	for
a	vast	array	of	authentication	requirements.

To	work	with	Passport,	you	just	provide	the	request	to	authenticate.	Passport,	in	return,
provides	standardized	methods	for	you	to	then	manage	what	happens	if	that	authentication
attempt	succeeds	or	fails.	To	do	this,	it	employs	an	extensible	set	of	plug-ins	known	as
strategies.	Strategies	can	range	from	just	verifying	the	username	and	password	credentials,
using	delegated	authentication,	using	OAuth	(for	example,	via	Facebook	or	Twitter),	or
using	federated	authentication	using	OpenID.	I’ll	provide	working	examples	of	several
kinds	of	connections,	but	you	will	see	a	similar	pattern	repeated	for	each.

Let’s	get	you	set	up	first	by	creating	your	login	view	and	its	supporting	view	model.	By
the	way,	I	continue	to	put	this	in	italics	because	I	think	the	code	file	associated	with	the
view	should	have	a	title,	it	just	doesn’t	in	Node.js.	The	term	middleware	is	thrown	around
everywhere	in	Node.js	and	seems	to	mean	whatever	people	want	it	to	mean	at	the	time	(so
beware!).	One	of	those	meanings	seems	to	be	such	a	file.	However,	the	same	term	found
in	documentation	for	a	whole	slew	of	npm	packages	also	refers	just	to	a	function	of	any
kind	that	hooks	into	the	package.	Also,	as	you	will	see	in	the	brief	appendix	to	this	book,
on	common	errors	that	you	might	encounter	as	you	go,	in	the	land	of	Node.js	core	errors,
middleware	is	anything	that	has	a	global	reference.	It	isn’t	middleware	without	it.	So	I
have	intentionally	avoided	the	term,	although	you	will	be	unable	to	as	you	work	in
Node.js.

Anyway,	moving	on,	the	login	view	looks	more	or	less	like	this:
Click	here	to	view	code	image

<form	action=”/login”	method=“post”>

<h3>

								Enter	login	and	password</h3>

					Username:

<input	id=“txtUsername”	name=“txtUsername”	type=“text”	/>

				Password:

<input	id=“txtPassword”	name=“txtPassword”	type=“text”	/>

<input	type=“submit”	/>

</form>

You	can	see	what	we	are	expecting	the	application	to	do,	which	is	post	that	submitted
info	to	/login.	So	let’s	take	care	of	that:
Click	here	to	view	code	image

var	express	=	require(‘express’);

var	router	=	express.Router();

var	Connection	=	require(‘tedious’).Connection;

var	Request	=	require(‘tedious’).Request;

//	routes

router.get(‘/login’,	function	(req,	res)	{

				res.render(‘login’);

});

router.post(‘/login’,	function	(req,	res)	{

				var	sLogin	=	req.body.txtLogin;

				var	sPassword	=	req.body.txtPassword;

});

module.exports	=	router;

You’ve	made	sure	you	can	get	to	the	page	in	the	first	place	by	rendering	the	view	you
just	created,	and	you	provide	the	basics	of	the	post	operation.	The	references	at	the	top
expect	you	to	use	the	database	at	some	point,	but	I’ll	let	you	add	that	code	on	your	own.

Then	make	sure	you	can	browse	to	the	page	by	adding	this	to	the	app.js	file:
Click	here	to	view	code	image

server.use(require(‘./login’));

Now	you’re	ready	to	hook	into	Passport	from	your	site	code.

First,	as	usual,	you	need	to	add	a	reference	to	the	proper	npm	package	in	your	same
app.js	file:
Click	here	to	view	code	image

var	passport	=	require(‘passport’);

Now	head	back	into	your	login	post	function.	Its	exact	signature	will	depend	on	the
authentication	mechanism	you	chose	to	employ.	Because	the	typical	login	and	password
validation	is	the	obvious	place	to	start,	the	first	example	shown	will	be	the	Local	strategy
that	accepts	those	arguments.

Before	you	begin,	you	need	to	install	the	passport-local	npm	package:
npm	install	passport-local

And	inside	of	your	login.js	file,	you	need	to	add	the	following	reference:
Click	here	to	view	code	image

var	LocalStrategy	=	require(‘passport-local’).Strategy;

Now	you	have	access	to	configuring	the	strategy.	Authenticating	requests	is	as	simple
as	calling	passport.authenticate	and	specifying	which	strategy	to	employ.	You’ll	add	a
local	route	to	your	login	that	specifies	that	mechanism	to	use:
Click	here	to	view	code	image

router.post(‘/login/local’,	passport.authenticate(‘local’,		function	(req,

res)	{

								passport.use(new	LocalStrategy(({

										usernameField:	‘username’,

										passwordField:	‘password’

						},

								function	(sLogin,	sPassword,	done)	{

												findByUsername(sLogin);

								})

));

						res.redirect(‘/survey’);

		}));

There	are	a	few	things	to	note	here.	You	did	not	go	into	the	body	for	the	form	post
values.	In	this	case,	the	strategy	itself	can	be	configured	to	pick	up	those	input	values	by

field	name.

Also,	all	strategies	in	Passport	require	a	validation	function	that	accepts	credentials	(in
this	case,	a	username	and	password)	and	invokes	a	callback	with	a	user	object.	Typically,
of	course,	this	function	queries	a	database,	or	perhaps	some	internal	access	control	list
(ACL),	but	in	this	example	you’ll	go	ahead	and	use	a	simple	array	of	users	and	a
findByUsername	function	to	loop	the	array	for	a	match.
Click	here	to	view	code	image

var	arrUsers	=	[

				{	id:	1,	username:	‘walter’,	password:	‘thirtyfour’,	email:

‘emailaddress‘	}

		,	{	id:	2,	username:	‘babe’,	password:	‘homerun’,	email:	‘emailaddress‘	}

];

findByUsername(username,	function(err,	user)	{

var	user;

//	match	the	username	/	password	in	whatever	way	from	the	array	and	…

if	(err)	{	return	done(err);	}

if	(!user)	{	return	done(null,	false,	{	message:	‘Unknown	user	‘	+	username

});	}

if	(user.password	!=	password)	{	return	done(null,	false,	{	message:	‘Invalid

password’	});	}

	return	done(null,	user);

				});

So	this	unfinished	function	you	create	yourself	to	match	your	own	specifications	for
your	own	system	expects	you	to	“find”	a	user	in	your	set	of	users	that	matches	the
username	you	passed	into	it.	If	you	find	one,	you	then	look	inside	of	that	user	object	for
the	password	for	a	match	to	that	as	well.	Note	how	the	code	illustrates	the	granular	control
you	have	over	what	is	passed	to	the	done	function	to	return	whatever	you	need	to	return	to
provide	information,	system	access,	or	both	to	the	user.	Always	be	sure	to	call	done	for
every	login	path	within	every	login	route.

Now	that	you	have	a	recipe	for	using	Local	authentication,	let’s	look	at	a	few	strategies
for	remote	authentication	such	as	Google	and	Facebook.	Google	has	its	own	flavor	of
Passport	you	will	want	to	install:

npm	install	passport-google

And	then	at	the	top	of	your	login.js	file,	you	will	need	to	create	the	proper	references	as
usual:
Click	here	to	view	code	image

var	GoogleStrategy	=	require(‘passport-google’).Strategy;

The	validation	function	in	this	case	accepts	an	OpenID	identifier	and	profile,	and	it
invokes	a	callback	with	a	user	object.	Before	you	can	use	it,	you	have	to	configure	the
strategy	in	the	following	way,	with	a	URL	specified	for	successfully	logged-in	Google
users	to	come	back	into	your	app	automatically:
Click	here	to	view	code	image

passport.use(new	GoogleStrategy({1234/auth/google/return’,

				realm:	‘http://localhost:1234/’

		},

		function(identifier,	profile,	done)	{

						profile.identifier	=	identifier;

						return	done(null,	profile);

		}

));

Included	in	the	preceding	code	you	would	create	to	find	your	own	definition	of	a	User
is	the	validation	callback	for	Google	authentication,	which	accepts	identifier,	profile,	and
done	arguments.	If	the	login	is	successful,	a	profile	is	returned	containing	user	profile
information	provided	by	Google.	Passport	marshals	this	information	together	for	you	into
some	easy-to-access	properties	of	the	profile	object,	including	the	ones	listed	in	the
following	table:

As	you	can	see,	the	profile	information	can	be	extensive	and	includes	child	arrays	of
multiple	items	where	needed.	If	you	need	to	aggregate	custom	content,	this	is	where	you
get	it.	The	array	of	email	addresses	might	give	you	something	to	match	on	in	your	own
database	and	the	rest	of	your	site	user	information,	thus	allowing	for	single	sign-on,	which
actually	happens	at	the	Google	login.

Single	sign-on	happens	there	because,	with	all	the	setup	done,	the	first	step	in	Google
authentication	involves	redirecting	the	user	to	google.com.	Again,	as	before,	to	accomplish
this	functionality	you	just	use	passport.authenticate	and	set	up	the	specific
GoogleStrategy.	After	authenticating	the	user,	Google	will	redirect	that	user	back	to	your
Node.js	application	using	the	return	URL	of	login/google/return.
Click	here	to	view	code	image

router.get(‘/login/google’,	passport.authenticate(‘google’,	{

failureRedirect:	‘/login’	}),

		function	(req,	res)	{

								//	never	called

		});

router.get(‘/login/google/callback	‘,

		passport.authenticate(‘google’,	{	failureRedirect:	‘/login’	}),

		function	(req,	res)	{

						res.redirect(‘/survey’);

		});

Notice	that	in	the	first	get	function	the	callback	is	empty	because	it	will	never	be	called,
as	a	result	of	the	redirection	to	Google.com.	If	authentication	fails	when	using	the
preceding	approach,	the	user	will	be	redirected	back	to	the	login	page.	Otherwise,	the
route	specified	will	be	called,	here	redirecting	your	user	to	the	survey	page.

For	Facebook,	most	of	the	approach	is	identical.	However,	before	you	begin	in	your
Node.js	application,	to	use	Facebook	authentication,	you	must	first	create	an	app	at
Facebook	Developers.

When	created,	your	individual	app	is	assigned	an	App	ID	and	App	Secret.	These	are
your	connection	credentials,	as	you	will	see	shortly.	As	with	Google	authentication,	your
Node.js	application	must	also	implement	a	redirect	URL	to	which	the	logged-in	Facebook
user	will	be	sent	upon	success.

Within	your	application,	as	usual,	first	you	have	to	make	sure	you	have	the	correct	npm
package:

npm	install	passport-facebook

Then	you	need	to	have	your	strategy	with	its	essential	credentials	to	pass	into	the
authenticate	method:
Click	here	to	view	code	image

var	FacebookStrategy	=	require(‘passport-facebook’).Strategy;

var	FACEBOOK_APP_ID	=	“FaCEbO0kAp1DG0eZhere”

var	FACEBOOK_APP_SECRET	=	“F@c3B00kS3cretKe7g0ezh3re”

And	then	you	need	to	configure	that	strategy	properly	using	the	preceding	values	this
way:
Click	here	to	view	code	image

passport.use(new	FacebookStrategy({

				clientID:	FACEBOOK_APP_ID,

				clientSecret:	FACEBOOK_APP_SECRET,

				callbackURL:	“http://localhost:1234/login/facebook/callback”

		},

		function(accessToken,	refreshToken,	profile,	done)	{

						return	done(null,	profile);

		}

));

As	you	see,	in	this	case	the	validation	function	of	FacebookStrategy	accepts	its
credentials	in	the	form	of	an	accessToken,	a	refreshToken,	and	a	Facebook	profile.	Also,	it
invokes	the	usual	callback	with	a	user	object.

Here,	again,	you	decided	to	return	the	user’s	Facebook	profile	to	represent	the	logged-in
user.	In	a	typical	application,	you	will	want	to	associate	the	Facebook	account	with	a	user
record	in	your	database	or	ACL	and	return	that	user	information,	as	well	as	whatever
Facebook	profile	information	you	choose	to	incorporate	into	your	application.	The
Facebook	profile	information,	once	again,	is	available	using	the	same	profile	information
properties	as	were	available	from	Google	upon	successful	login.

As	with	Google,	the	first	step	in	Facebook	authentication	involves	redirecting	the	user
to	facebook.com.	After	authorization,	Facebook	redirects	the	user	back	to	this	application
at	/login/facebook/callback,	or	whatever	argument	you	specified	in	the	callbackURL
property	of	the	strategy	during	its	configuration.
Click	here	to	view	code	image

router.get(‘/login/facebook’,

		passport.authenticate(‘facebook’),

		function(req,	res){

		});

router.get(‘/login/facebook/callback’,

		passport.authenticate(‘facebook’,	{	failureRedirect:	‘/login’	}),

		function(req,	res)	{

				res.redirect(‘/’);

		});

Again,	you	see	that	in	the	first	get	function	the	callback	is	empty	because	it	will	never
be	called,	as	a	result	of	the	redirection	to	facebook.com.	If	authentication	fails	in	the
process	just	shown,	the	user	will	be	redirected	back	to	the	login	page.	Otherwise,	the	route
specified	will	be	called	here,	once	again,	redirecting	your	user	to	the	survey	page.

For	our	final	example,	we’ll	look	at	using	the	OAuth	2.0	specification	that	has	recently
replaced	OAuth.	Dropbox,	Reddit,	PayPal,	and	many	cloud-based	resources	that	use	this
form	of	authentication	each	have	its	own	specific	npm	package	implementation.	Here	I’ll
just	cover	the	generic	version.	This	form	of	authentication	emphasizes	tokens.	For	the	vast
majority	of	sites,	this	means	specific	bearer	tokens,	so	those	will	be	our	focus.

Again,	begin	with	the	installation	of	the	proper	npm	package:
Click	here	to	view	code	image

npm	install	passport-http-bearer

Then	reference	the	necessary	module	dependencies	in	login:
Click	here	to	view	code	image

var	BearerStrategy	=	require(‘passport-http-bearer’).Strategy;

Next,	just	as	with	all	the	rest,	you	have	to	configure	the	OAuth	2.0	strategy:
Click	here	to	view	code	image

passport.use(new	BearerStrategy({},

		function(token,	done)	{

				User.findMeByToken({	token:	token	},	function	(err,	user)	{

						if	(err)	{	return	done(err);	}

						if	(!user)	{	return	done(null,	false);	}

						return	done(null,	user,	{	scope:	‘read’	});

				});

		}

));

As	you	can	see,	the	OAuth	2.0	strategy	validation	callback	accepts	the	token	as	an
argument.	As	usual,	when	you	finish	your	internal	“user	matching”	process	(called
User.findMeByToken	in	the	preceding	code	sample),	it	should	then	call	the	done	method
while	supplying	a	user.	If	no	user	is	found,	say	so	through	the	done	call.

Optional	info	can	be	passed	to	done	to	convey	the	scope	of	the	token	for	making	your
internal	access-control	checks.	Here	you	pass	scope:	‘read’	as	a	JSON	array.	This
information	is	held	by	Passport	in	the	req.authInfo	property.

Now,	to	employ	the	strategy,	just	make	sure	you	have	the	OAuth2	npm	as	well	as	http-
bearer	and	then	hook	it	into	your	page	get	as	usual:
Click	here	to	view	code	image

router.get(‘/login/oauth’,

passport.authenticate(‘oauth2’));

router.get(‘/login/oauth/callback’,

		passport.authenticate(‘oauth2’,	{	failureRedirect:	‘/login’	}),

		function(req,	res)	{

				//	Successful	authentication,	redirect

				res.redirect(‘/survey’);

		});

Using	one	or	more	of	the	preceding	authentication	strategies	should	enable	you	to
address	the	vast	majority	of	sign-on	situations	you	encounter	inside	your	Node.js
application.

At	this	point,	we’ve	covered	all	the	essential	aspects	of	constructing	a	commercial
Node.js	application.	So	let’s	head	for	the	finish	line	by	putting	all	the	pieces	together	into
a	working	site	that	uses	all	the	tools	in	your	new	toolkit.

Chapter	9.	Putting	it	all	together	in	Node.js

You	now	have	everything	you	need	to	create	your	Sports	Survey	site.	Users	can	log	in	to
access	the	survey,	which	will	be	populated	by	Question	objects	and	contain	Player	objects
as	the	answers.	That	structure	will	be	displayed	on	a	view,	and	the	answers	will	be	tracked
in	memory	so	that	you	can	display	results.

Many	of	these	pieces	are	already	in	place.	You	have	your	login	view	redirecting	to	the
survey	view	if	the	user	successfully	logs	in.	You	have	code	to	fetch	a	collection	of	Player
objects.	You	just	need	to	cache	and	not	display	the	collection	for	the	moment.	You	will
wind	up	displaying	only	a	small	section	of	it	as	the	possible	answers	to	choose	from	for
each	survey	question	you	ask.

You	already	have	your	objects	ready:
Click	here	to	view	code	image

function	Question(sQuestion,	oAllAnswers,	oCorrectAnswer)	{

				this.questionText	=	sQuestion;

				this.answersList	=	oAllAnswers;

				this.correctAnswer	=	oCorrectAnswer;

}

function	Player	()	{

this.protoype	=	Person;

this.sport	=	“Football”;

this.displayName	=	function(){

				return(this.lastName	+	‘,’	+	this.firstName);

}

}

Now	let’s	start	putting	them	together.	From	looking	at	the	properties	of	the	Question
object,	it	appears	as	if	the	answersList	would	be	an	array,	so	let’s	pop	some	players	into	it
and	see	what	happens.	Your	first	question	is,	“Which	of	these	players	was	on	a	baseball
team?”

Make	sure	that	one,	and	exactly	one,	player	from	your	list	is	a	baseball	player.	You
don’t	need	to	specify	the	player	or	the	other	questions	in	this	case,	because	the	question	is
very	generic.	To	get	this	logic	going,	put	some	code	in	a	function	in	your	app.js	that	will
load	the	list	of	players	into	cache	memory	when	the	application	first	starts	running:
Click	here	to	view	code	image

function	fetchPlayers()	{

				try	{

								var	arrPlayers	=	[];

								var	config	=	{

												userName:	‘fromCache’,

												password:	‘	fromCache	‘,

												server:	‘123.45.67.89’,

												options:

								{

												database:	“Dev”

								}

								};

								var	connection	=	new	Connection(config);

								connection.on(‘connect’,	function	(err)	{

												var	request	=	new	Request(“select	*	from	tblPlayers”,	function

(err,	rowCount)	{

																if	(err)	{

																				console.log(err);

																}	else	{

																				console.log(arrPlayers.length);

																}

																connection.close();

												});

												request.on(‘row’,	function	(columns)	{

																var	oPlayer	=	new	Player();

																columns.forEach(function	(column)	{

																				if	(column.value	===	null)	{

																								console.log(‘NULL’);

																				}	else	{

																								//	console.log(column.metadata.colName);

																								switch	(column.metadata.colName)	{

																												case	“firstName”:

																																oPlayer.firstName	=	column.value;

																																break;

																												case	“lastName”:

																																oPlayer.lastName	=	column.value;

																																break;

																												case	“sport”:

																																oPlayer.sport	=	column.value;

																																break;

																												case	“id”:

																																oPlayer.id	=	column.value;

																																break;

																								}

																				}

																});	//	columns	for	each

																arrPlayers.push(oPlayer);

												});	//	rows	for	each

												cache.put(“PlayerList”,	arrPlayers);

												request.on(‘done’,	function	(rowCount,	more)	{

												});

												connection.execSql(request);

								});	//	connection	on

				}

				catch	(Error)	{

								console.log(Error);

				}

}

Don’t	forget	to	add	references	to	tedious	to	allow	SQL	database	access.	Also,	don’t
forget	to	include	your	Player	class	at	the	top	of	the	file.

Now	you	just	need	to	run	your	fetch	when	the	app	starts:
Click	here	to	view	code	image

server.listen(1234,	function	()	{

				fetchPlayers();

				console.log(“ready	on	1234”);

})

You	are	displaying	the	number	of	players	to	the	console	when	the	function	is	finished.
Note	how	your	console	will	log	that	it	is	ready	before	you	get	your	results	back	from	the

database.	That	is	asynchronous	programming	as	it	was	intended	to	run—that	the	users	do
not	wait	to	be	able	to	do	A,	which	in	this	case	would	be	logging	in,	while	background	task
B	(getting	data	ready	for	the	next	page)	is	completing.
Now	that	you	have	your	list	in	memory,	you	can	use	its	members	to	populate	the

answers	to	your	survey	questions.	In	the	case	of	the	first	question,	you	want	one	and
exactly	one	answer	to	be	a	baseball	player.	Because	each	player	has	been	given	a	sport
property	value,	you	can	use	that	value	to	insert	the	exact	items	you	want	into	your	answer
set:
Click	here	to	view	code	image

var	arrAnswers	=	[];

	var	arrBaseball	=	[];

	var	arrNonBaseball	=	[];

	for	(var	i	=	0;	i	<	cache.get(‘PlayerList’).length;	i++)	{

								var	oPlayer	=	cache.get(‘PlayerList’)[i];

								if	(oPlayer.sport.toString().toUpperCase()	==	“BASEBALL”)	{

												if	(arrBaseball.length	==	0)

																arrBaseball.push(oPlayer);

								}

								else	{

												if	(arrNonBaseball.length	<	4)

																arrNonBaseball.push(oPlayer);

								}

				}

				for	(var	i	=	0;	i	<	arrBaseball.length;	i++)	{

								arrAnswers.push(arrBaseball[i]);

				}

				for	(var	i	=	0;	i	<	arrNonBaseball.length;	i++)	{

								arrAnswers.push(arrNonBaseball[i]);

				}

And	there	you	have	it,	an	array	of	answers	to	your	question.	You	inserted	exactly	one
correct	answer	among	the	five	choices.	But	you	don’t	know	or	care	exactly	which	players
met	your	criteria	either	way.	In	this	way,	not	everyone	who	takes	the	survey	will	see	the
exact	same	questions	in	every	single	case.	Originally,	you	created	only	five	players	in	your
data,	but	if	your	testing	led	you	to	do	more	than	that,	you	will	see	a	variety	of	players
come	up	in	the	list	as	you	regenerate	it.

The	preceding	code	would	probably	best	go	in	your	survey	page.	You’ll	see	what	I
mean	if	you	include	it	inside	of	your	get	function	for	the	page	and	then	render	the	page	as
before	using:

res.render(‘survey’,	{

players:	arrAnswers

});

Granted,	in	this	case,	the	correct	answer	for	this	question	is	always	first	in	the	list,	but
you	can	randomize	this	with	some	simple	logic	as	you	choose.	Of	course,	there	are	lots	of
ways	to	manipulate	your	array	as	you	like.	The	arr.pop();	function	will	remove	the	last
items,	whereas	arr.shift(oPlayer);	will	dump	the	top	item.

You	already	saw	how	push	adds	an	item	to	the	bottom	of	the	array.	To	insert	a	value	at
the	top,	you	need

arr.unshift(oPlayer);

To	search	the	array	for	a	value,	use	indexOf	or	lastIndexOf,	depending	on	whether	you
want	to	start	the	search	from	the	front	end	of	the	array	or	the	back	end.	Keep	in	mind
when	you	do	so	that	the	comparison	uses	the	strictest	operator	(===),	so	it	produces	the
following	“not	found”	example	for	searching	the	array	using	numbers	versus	strings:
Click	here	to	view	code	image

var	arr	=	[“1”,	“2”,	“3”];

//	Search	the	array	of	keys

console.log(arr.indexOf(2));	//	returns	-1

More	likely,	in	our	specific	case,	you	will	want	to	use	the	convenient	filter	function
found	in	the	JavaScript	array	type,	say,	to	identify	all	players	who	are	in	the	sport
“Football,”	like	this:
Click	here	to	view	code	image

arrPlayers	=	arrPlayers.filter(function(player){

		return	(player.sport.toString().toUpperCase()	==	“FOOTBALL”);

});

Of	course,	the	same	can	be	done	to	filter	down	to	the	correct	answer	(for	example,	by
name)	so	that	you	can	both	insert	that	specific	player	into	the	array	and	record	that	same
player	as	the	correctAnswer.	For	anyone	who	has	done	LINQ	filtering	on	object
collections	in	.NET	using	delegates,	the	preceding	code	looks	very	familiar	indeed.	In	fact,
if	you	replace	filter	with	FindAll	and	the	word	function	with	the	word	delegate,	you	have
C#/.NET	syntax	exactly	for	filtering	a	List<T>.

You	also	have	the	forEach	syntax,	which	is	useful	for	walking	through	the	properties	of
objects	as	you	might	want	to	for	Player	objects:
Click	here	to	view	code	image

var	arrKeys	=	Object.keys(arrPlayers);

arrKeys.forEach(function(Player)	{

var	arr	=	Object.keys(arrPlayers[Player]);

	arr.forEach(function(prop)	{

	var	value	=	arrPlayers	[Player][prop];

	console.log(Player	+’:	‘+	prop	+’	=	‘+	value);

		});

});

The	preceding	code	is	not	unique	to	Node.js	and	represents	only	a	quick	overview	of
arrays	in	JavaScript.	Arrays	are	very	useful	and,	when	combined	with	object-oriented
programming	and	caching,	they	form	the	backbone	of	many	applications.	In	Node.js,	they
are	indispensable.

You’ll	also	notice,	both	here	and	in	the	production	code	examples,	the	use	of
toUpperCase	for	string	comparisons,	where	it	is	clearly	intended	that	you	want	the	values
to	match.	For	example,	“FoOTball”	should	be	a	match	even	if	it	has	minor	issues.
Obviously,	there	are	places	where	this	practice	should	be	avoided—such	as	for	logins	and
passwords,	where	values	are	intended	to	really	not	match	unless	they	really	do	match	in
every	conceivable	way.	However,	the	approach	shown	tends	to	be	the	rule	rather	than	the
exception,	and	years	of	hair-pulling	from	chasing	data	that	“matched	but	didn’t	match”
leads	me	to	use	some	discipline	in	these	areas.

So	you	have	your	answers	filtered	to	your	question	content.	Let’s	put	them	all	together
this	way	using	our	question	“constructor”	function	as	shown	next.	This	function	expects	a
text	question,	an	array	of	answers,	and	the	correct	answer	(which	in	this	case	we	supplied
as	the	first	answer	in	the	collection):
Click	here	to	view	code	image

var	sText	=	“Which	of	these	players	was	on	a	baseball	team?”;

var	oQuestion	=	new	Question(sText,	arrAnswers,	arrAnswers[0]);

Now	you	simply	have	to	render	the	page	using	the	Question	object’s	data.	That	requires
some	minor	changes	to	your	render	and	also	to	the	view	itself.	Let’s	start	with	this:

res.render(‘survey’,	{

								Question:	oQuestion

				});

Then	the	page	itself	will	need	to	match	the	parent/child	structure	of	the	Question	object
to	display	its	data	properly.	Because	you	expect	to	have	to	track	answers	provided	by
users,	you’ll	supply	a	form	to	submit	and	a	post	action	that	uses	the	same	page:
Click	here	to	view	code	image

<form	action=”/survey”	method=“post”>

<%=Question.questionText	%>

<%	for(var	i=0;	i<	Question.answersList.length;	i++)	{	%>

<a	href=‘details/<%=	Question.answersList[i].id%>/

								<%=	Question.answersList[i].lastName%>’>

<%=	Question.answersList[i].displayName()	%>

<%	}	%>

				<input	type=“submit”	/>

</form>

Now	browse	to	your	survey	page	and	you	will	see	the	fruits	of	your	labors.	Add	some
Bootstrap	styling,	and	you	are	well	on	your	way	to	a	commercial	Node.js	application.

At	this	point,	you	have	several	options	for	recording	user	input.	The	most	obvious	way
to	accomplish	this	is	to	pull	the	selected	answer	from	a	form	post	operation,	which	is	what
you	set	up.	Identify	everything	properly	in	the	view,	and	then	use	your	body-parser	to	pull
the	user	selection	from	the	list	of	answers.

Assuming	you	put	the	Question	object	in	the	cache,	by	using	whatever	management	and
tracking	process	you	decide	to	use	in	memory,	with	this	or	that	combination	of	custom
objects	as	you	like,	you	have	a	quick	and	easy	comparison	of	the	user	answer	and	the
correctAnswer	contained	in	the	cached	Question.

Of	course,	this	is	all	just	a	demonstration	app,	and	you	can	take	it	as	far	as	you	like.
What	matters	is	that	you	now	possess	all	the	tools	needed	to	make	any	Node.js	application
into	whatever	you	desire.

Sockets
There	is	one	final	feature	of	Node.js	that	can	be	very	useful	in	developing	web
applications.	It	isn’t	directly	connected	to	all	the	work	you	did	earlier,	but	I	wanted	to
make	sure	I	covered	the	topic	so	that	you	truly	have	all	Node.js	capabilities	at	hand.	That
feature	is	sockets.

Sockets	allow	for	real-time,	two	way	communication	between	client	and	server.	This
feature	is	essential	for	applications	such	as	chatrooms,	gaming	with	multiple	users,	and	so
on.	The	fastest	and	easiest	way	to	enable	sockets	in	your	Node.js	web	application	is	by
employing	the	Socket.io	npm	package	in	the	standard	way	after	download:
Click	here	to	view	code	image

var	socketio	=	require(‘socket.io’);

At	this	point,	your	path	will	diverge	from	using	Express.	Sockets	require	a	completely
different	server	backbone.	Note	that	the	npm	packages	you	have	connected	to	your
Express	app,	such	as	EJS	or	MySQL,	will	not	be	connected	to	your	Socket.io	app	until
you	connect	them	again	manually.

To	enable	your	socket	server,	add	this	code	to	your	existing	app.js	file:
Click	here	to	view	code	image

var	server2	=	http.createServer(function	(req,	res)	{

				res.writeHead(200,	{	‘Content-type’:	‘text/html’	});

				res.end(fs.readFileSync(__dirname	+	‘/views/chat.htm’));

}).listen(1235,	function	()	{

				console.log(‘Listening	at:	http://localhost:1235’);

});

socketio.listen(server2).on(‘connection’,	function	(socket)	{

				socket.on(‘message’,	function	(msg)	{

								console.log(‘Message	Received:	‘,	msg);

								socket.broadcast.emit(‘message’,	msg);

				});

});

There	are	several	things	to	notice	here.	You	are	using	the	http	module	to	create	your
server	instead	of	the	Express	module.	Within	the	function	that	creates	the	server	is	a
reference	to	chat.htm,	the	page	you	want	to	render	when	a	socket	message	comes	in.	And
you	are	also	listening	on	port	1235	instead	of	on	your	Express	port	at	1234.	In	effect,	you
have	created	an	entirely	new	Node.js	application.

Seeing	this	in	action	is	as	simple	as	constructing	your	own	chat.htm	page.	Capture	the
incoming	message	in	the	socket.on	function	into	an	array	of	messages,	and	the	just	render
that	array	to	the	page	using	any	technique	you	choose.	You	can	do	it	via	EJS	as	you	did
before	or	by	using	any	of	the	other	data-rendering	engines	available	to	you,	such	as
Angular.js.	Again,	because	the	sockets	application,	in	effect,	is	living	in	its	own	world,
you	have	many	choices	for	precisely	how	you	choose	to	implement	any	aspect	of	the
application	without	regard	for	how	you	did	so	earlier	or	on	another	port.

Conclusion
You	have	seen	the	Node.js	callback	asynchronous	structure,	how	to	use	Node.js
techniques	for	routing,	how	to	render	content,	and	how	to	combine	all	that	with	Object-
Oriented	JavaScript	to	optimize	code	management	and	performance.	You’ve	captured	user
input;	pulled	data	from	form	posts,	query	strings,	and	cache;	connected	successfully	to
external	databases;	and	accessed	information	using	files	and	streams.	And	on	top	of	all	of
it,	you’ve	learned	how	to	add	images,	styling,	and	even	authentication	to	a	range	of
services.

As	you	can	see,	the	world	of	Node.js	appears	at	first	to	be	a	very	different	one	for	doing
web	development	than	the	world	of	.NET.	You	definitely	need	a	combination	of	web	skills
and	experience	in	the	realm	of	web	development	to	master	it.	However,	Node.js	has
enough	common	elements	that,	once	you	get	past	the	new	style,	you	will	find	that	many	of
your	standard	.NET	best	practices	still	apply.

So	take	your	tools	with	you	with	confidence,	and	enjoy	your	brave	new	world!

Appendix.	Common	errors	in	Node.js

You’ll	find	you	hit	a	few	typical	errors	once	in	a	while	in	Node.js.	Here	is	a	brief	list	of	a
few	common	ones	you	might	encounter	and	the	solutions	to	them.

Index

?	(question	mark),	41

&	(ampersand),	13,	41

A
ampersand	(&),	13,	41

app.js	files,	23

body-parser,	attaching,	42

cache	references,	54

class	functions,	54

class	references,	73

enabling	Embedded	JavaScript	package,	31

file	locations,	25

loading	objects	into	cache	memory,	72–73

login	page,	referencing,	64

Passport	package,	referencing,	64

socket	servers,	enabling,	77

static	references	to,	52

upload	routes,	58–59

Application	object,	29

applications

code	layers,	22

components	of,	22

login,	63–69

arrays

creating,	35

declaring,	36–37

displaying,	73–74

filtering,	74–75

manipulating,	74–75

arr.pop	function,	74

arr.shift	function,	74

arr.unshift	function,	74

ASP.NET,	32–33

asynchronous	model	of	code,	15,	73

authentication,	63

configuring,	64–65

Facebook	authentication,	67–68

Google	authentication,	66–67

OAuth	2.0,	68–69

B
back-end	databases,	47

body-parser	package,	6,	42

Bootstrap	(and	Bower)	package,	7–9

linking	to	pages,	37

location,	37

table	class	reference,	38

bower_components	folder,	21

busboy	package,	58–59

buttons,	creating,	58

C
cache,	43–44

application-wide	data,	48

expiration	argument,	44

GUIDs,	45

loading	objects	into,	72–73

lookup	objects,	44

management,	45

referencing,	54

universal	access	to	objects,	44

user	objects,	44–45

values,	inputting	and	retrieving,	44

callback	functions,	14–16

Cannot	Get	errors,	52

cascading	style	sheets	(CSS),	22

chat.htm	pages,	77

child	classes,	adding	functions	and	properties,	19

child/prototype	setup,	18–19

class	functions,	54

class	references,	73

code

asynchronous	model,	15,	73

documentation,	16

layers,	22

MVVM	pattern,	21–22

order	of,	40

using	a	template,	33–34

code	encapsulation,	27

code	structure,	22

collections

looping	through,	49

populating	for	display,	54

receiving,	49,	51

updating,	44

concatenation,	12–13

core	errors,	63

createReadStream	method,	60

createServer	function,	16

createWriteStream	method,	59–60

credentials,	checking,	65.	See	also	login

CRUD	(Create,	Update,	Delete)	interactions,	43,	45

D
data

from	external	sources,	39.	See	also	databases

fetching,	49

file	data,	57–61

serializing,	46

site	data,	39–46

from	URLs,	39–41

from	users,	39,	42–46

databases,	39,	47–55

back-end,	47

row-by-row	access,	55

tables,	creating,	49

updating,	44–45

data	transfers,	pausing,	monitoring,	resuming,	59

data	version,	60

declarations,	13

delete	function,	42

__dirname	value,	25

displaying	file	data,	58

done	function,	65

E
EJS	engine,	associating	files	with,	31

.ejs	files,	31

connecting	to	.js	files,	35

form	posting,	activating,	43

input	fields,	adding,	51

and	.js	files	of	same	name,	31–32

rendering	list	data,	35

EJS	package,	7

Embedded	JavaScript	package,	31

encapsulation,	27

end	function,	16,	28,	60

error	handling,	48

errors

Cannot	Get	errors,	52

core	errors,	63

name	mismatches,	32

server	malfunctions,	32

exports	property,	27

Express	Node.js	projects,	3

Express	package,	6

as	backbone,	16

fs	object,	57,	59–61

external	authentication,	63–69

external	data,	47–55

external	data	stores.	See	also	databases

getting	data	from,	39

serializing	data	to,	46

F
Facebook	authentication,	67–68

Facebook	Developers,	67

fetching

data,	49,	73

rows,	53

field	input,	39

file	copy	operations,	60

file	data,	57–61

displaying,	58

metadata,	60–61

reading,	58

strings,	cleaning,	61

total	size,	60–61

transferring,	58

writing	to	file,	57

file	systems,	39

file	transfers,	managing,	59–60

file	uploads,	57

filtering	arrays,	74–75

findByUsername	function,	65

forEach	function,	75

form	posting,	39,	76

activating,	43

implementing,	42

fs	object

createReadStream	method,	60

createWriteStream	method,	59

readFile	method,	57

statSync	function,	61

writeFile	method,	57

function	declarations,	13

functions,	14,	17

adding,	19

callbacks,	14–16

overriding,	18

Functions,	17

G
/g	argument,	61

get	function,	26,	42

creating,	52

fetching	data,	49

with	path	arguments,	40–41

rendering	code,	35

render	method,	32

GIT,	9

globally	unique	identifiers	(GUIDs),	45

Google

authentication,	66–67

Passport	package,	66

H
HTML,	creating	buttons,	58

HTML	files

form	posting,	activating,	43

Views,	22

HTML	tags	in	templates,	34

http.createServer();	function	call,	14

HTTP	web	connection	actions,	42

Hungarian	notation,	13

I
images

adding	to	page,	37

path,	setting,	25–26

styling,	38

indexOf	function,	74

inheritance,	19

input	controls,	wrapping	in	forms,	43

insert	operations,	49–51

J
JavaScript,	12–17.	See	also	Object-Oriented	JavaScript

arrays,	manipulating,	74–75

bitwise	operators,	13

classes	(objects),	17

concatenation,	12–13

declarations,	13

function	declarations,	13

functions,	14

Functions	and	functions,	17

module	references,	14

non-strong-typing,	13–14

object-oriented,	17–20

object	referencing,	17

optimized,	17

rendering,	34.	See	also	rendering

require	function	call,	14

this	keyword,	18

types,	13

.js	files

code	running	from,	58

connecting	to	.ejs	files,	35

and	.ejs	files	of	same	name,	31–32

passport-local,	referencing,	64

post	function,	43

routes	and	function	objects	in,	27

JSON	code,	converting	to	OOJS	format,	36–37

L
lastIndexOf	function,	74

length	method,	60

listen	function,	16

local	file	system,	mapping,	25

Local	login	strategy,	64–65

login

credentials	checking,	65.	See	also	authentication

done	function,	65

Local	strategy,	64–65

security,	63

view	and	view	model,	63–64

lookup	objects,	44

M
match	function,	61

memory-cache	package,	6,	29

enabling,	44

Microsoft	SQL	Server,	47.	See	also	SQL	Server

middleware,	63

Models,	21–22

Model-View-Controller	(MVC)	pattern,	21–22

Model-View-ViewModel	(MVVM)	pattern,	21–22

module	objects,	26

MySQL,	47

connection	configuration,	49

data	inserts	and	results,	55

installing,	48

MySQL	package,	47–48

N
name	mismatches,	32

name/value	pairs

accessing	through	QueryString	collection,	41

Application	object,	29

custom,	29

.NET	built-in	libraries,	5

node.exe,	23

Node.js

coding,	21–29

command	prompt,	3

configuration,	25

connecting	to	Visual	Studio	2010,	3–5

core,	16

downloading,	1

file	I/O,	25

installing,	2

MVVM	pattern,	22

setup,	1–9

NodeJS.org

download	page,	1

home	page,	11

node_modules	folder,	21

non-strong-typing,	13–14

npm	command,	7–8

npm	package-management	application,	3

npm	packages

authentication,	6

basic/core,	6

database	access,	6

download	location,	5,	7

installing,	7–8

IO/file	upload,	6

rendering,	6

statement/management,	6

support	packages,	5

O
OAuth,	63

OAuth	2.0,	68–69

Object-Oriented	JavaScript	(OOJS),	17–20.	See	also	JavaScript

best	practices,	20

converting	JSON	code	to,	36–37

Node.js	cache,	44

SQL	functions,	connecting,	53

objects,	71

function	declarations,	14,	17

outside	data	for,	19

properties,	13

properties,	setting	to	forEach	loop	values,	54

OpenID,	63,	66

optimized	JavaScript,	17

overrides,	18

P
pages

arguments,	supplying,	34

data,	supplying,	34

images,	adding,	37

routing	to,	26

separating	functionality,	59

styling,	37–38

param	collection,	40

passport.authenticate	function,	65,	67

passport-http-bearer	package,	68

passport-local	package,	64

Passport	package,	7,	63

Google	flavor,	66

req.authInfo	property,	69

strategies,	63,	65

path	arguments,	39–40

path-recognition	tree,	27

paths,	responses	for,	28

performance

asynchronous	processing	and,	15

optimized	JavaScript	and,	17

pipe	function,	59

postbacks,	33

post	function,	42–43

body	properties,	accessing,	42

connection	configuration,	48

hard-coded	credentials,	48

of	logins,	64

receiving,	51

post	handlers,	51

projects

Express	versions,	3

npm	package	references,	adding,	23

server,	building,	23

setup,	31

use	strict	declaration,	23

properties

adding,	19

declaring,	18

as	methods,	18

of	objects,	13

property/variable	values,	34

protocol	boundaries,	crossing,	45

prototype

base	class,	18–19

child/prototype	setup,	18–19

push	function,	adding	to	arrays,	74

put	function,	42

Q
QueryString	collection,	39

arguments	from,	40–41

GUIDs	in,	45

question	mark	(?),	41

R
readFile	method,	57

reading	data,	58–60

redirect	method,	28

redirects,	28,	55

Regular	Expression	pattern,	61

relational	database	systems,	47

relative	web	file	paths,	26

rendering,	31–38

arguments,	34

data,	34

with	Object-Oriented	JavaScript,	36–37

pages,	75–76

titles,	34

views,	26–27,	64

render	method,	27–28

req.authInfo	property,	69

req	objects,	26

Request	function

redirects,	55

rendering	results	in,	51

request	objects,	16

require	function	call,	14

require	references,	26

res	objects,	26

response	objects,	16,	27–28

resultsets,	separating	into	columns,	54

route	entries	order,	40

Route/Path	pattern,	39

Router	method,	26

routing,	16

action	methods	available,	42

globalizing	router	and	routes,	52

to	login,	65

post	handler,	51

references,	adding,	51

return	objects,	28

upload	routes,	58–59

rows,	selecting	and	iterating,	53

S
searching	with	match	function,	61

sending	data,	59

send	method,	27–28

serialization	and	deserialization,	46

server.get	method,	29

server.listen	method,	23,	25,	29

server	malfunctions,	32

server	memory,	updating	data	in,	44–45

servers,	building	(chained	and	unchained),	23–24

server.set	method,	25,	29

server.use	method,	26,	29

single	sign-on,	63,	66–67

site	data,	39–46

site	login,	63.	See	also	login

site	navigation,	25–27

site	users,	45

Socket.io	npm	package,	76

socket.on	function,	77

sockets,	76–77

split	function,	61

SQL	Express,	47

SQL	Server,	47

interacting	with,	48

parameters,	49

rows,	selecting	and	iterating,	53

Start	menu,	Node.js	command	prompt,	3

state	management,	45

statSync	function,	61

stored	procedures,	47

strategies,	63

Facebook	authentication,	67–68

Local	Authentication,	64–65

OAuth	2.0,	69

validation	functions,	65

streaming	files,	59–60

stream.pipe	function,	59

strings,	cleaning,	61

structured	route	paths,	arguments	from,	40–41

styling

images,	38

pages,	37

substring	function,	61

synchronizing	data	transfers,	59

T
tables,	creating,	49

tedious	package,	7

enabling,	47–48

referencing,	73

requiring,	50

templates,	33–34

for	rendering	list	data,	35

syntax,	34

this	keyword,	18

toLowerCase	function,	61

toUpperCase	function,	61,	75

transferring	file	data,	58

trim	function,	61

types,	13

U
upload	buttons,	creating,	58

upload	routes,	58–59

URLs,	data	from,	39–41

user	data,	39,	42–46

user	input,	recording,	76

user	interface,	adding	fields,	51

user	objects,	44–45

user	profiles,	66

use	strict	statement,	13,	23

using	a	template,	33–34

V
var	declaration,	12

“View_Model”	file,	31

Views,	21–22

path,	setting,	25–26

rendering,	26–27,	64

require	reference,	26

Visual	Studio

CSS	folder,	22

Express	version	plugin,	3

Images	folder,	22

.js	files,	creating,	25

project	setup,	21

View,	creating,	25

View	folder,	22

Visual	Studio	2010,	3–5

Visual	Studio	2012,	3

W
weak	typing,	19

web	applications	working	directory,	5

Web	Forms,	32–33

web	requests,	asynchronous	processing,	15

writeFile	method,	57

writeHead	function,	16

writing	to	files,	57

About	the	author

David	Gaynes	has	nearly	20	years	of	experience	as	a	developer,	architect,	and	consultant
working	across	the	full	software	development	life	cycle.	He	has	spent	more	than	a	dozen
years	working	with	Microsoft	and	.NET	technologies	for	clients	of	all	sizes.	His	clients
have	ranged	from	the	Chicago	Public	Schools	and	the	Children’s	Hospital	in	Seattle	to
diverse	organizations	in	healthcare,	insurance,	finance,	and	gambling.

Code	Snippets

Many	titles	include	programming	code	or	configuration	examples.	To	optimize	the
presentation	of	these	elements,	view	the	eBook	in	single-column,	landscape	mode	and
adjust	the	font	size	to	the	smallest	setting.	In	addition	to	presenting	code	and
configurations	in	the	reflowable	text	format,	we	have	included	images	of	the	code	that
mimic	the	presentation	found	in	the	print	book;	therefore,	where	the	reflowable	format
may	compromise	the	presentation	of	the	code	listing,	you	will	see	a	“Click	here	to	view
code	image”	link.	Click	the	link	to	view	the	print-fidelity	code	image.	To	return	to	the
previous	page	viewed,	click	the	Back	button	on	your	device	or	app.

	Title Page
	Copyright Page
	Contents at a Glance
	Table of Contents
	Introduction
	Who should read this book
	This book might not be for you if...
	Organization of this book
	Conventions and features in this book
	System requirements
	Downloads: Code samples
	Acknowledgments
	Errata, updates,& book support
	Free ebooks from Microsoft Press
	We want to hear from you
	Stay in touch

	Chapter 1. Setup
	Chapter 2. JavaScript and asynchronous code
	Working with JavaScript
	Object-Oriented JavaScript

	Chapter 3. Coding Node.js
	Using the MVVM pattern
	Writing the code

	Chapter 4. Rendering with Node.js
	Before you start
	Using real data
	Adding images and styling

	Chapter 5. Working with site data in Node.js
	Data from URLs
	Data from users

	Chapter 6. Working with external data in Node.js
	Chapter 7. Working with file data in Node.js
	Chapter 8. External authentication in Node.js
	Chapter 9. Putting it all together in Node.js
	Sockets
	Conclusion

	Appendix. Common errors in Node.js
	Index
	Code Snippets

