
ptg14200592

From the Library of Ida Schander



ptg14200592

Adaptive Code via C#: 
Agile coding with  
design patterns and  
SOLID principles

Gary McLean Hall

From the Library of Ida Schander



ptg14200592

PUBLISHED BY
Microsoft Press
A division of Microsoft Corporation
One Microsoft Way
Redmond, Washington 98052-6399

Copyright © 2014 by Gary McLean Hall. All rights reserved. 

No part of the contents of this book may be reproduced or transmitted in any form or by any means without 
the written permission of the publisher.

Library of Congress Control Number: 2014943458
ISBN: 978-0-7356-8320-4

Printed and bound in the United States of America.

First Printing

Microsoft Press books are available through booksellers and distributors worldwide. If you need support related 
to this book, email Microsoft Press Book Support at mspinput@microsoft.com. Please tell us what you think of 
this book at http://aka.ms/tellpress.

This book is provided “as-is” and expresses the author’s views and opinions. The views, opinions and information 
expressed in this book, including URL and other Internet website references, may change without notice. 

Some examples depicted herein are provided for illustration only and are fictitious. No real association or 
connection is intended or should be inferred.

Microsoft and the trademarks listed at http://www.microsoft.com on the “Trademarks” webpage are trademarks 
of the Microsoft group of companies. All other marks are property of their respective owners.

Acquisitions Editor: Devon Musgrave
Developmental Editor: Devon Musgrave 
Project Editor: Devon Musgrave 
Editorial Production: Online Training Solutions, Inc. (OTSI) 
Technical Reviewer: Jeremy Johnson 
Copyeditor: Kathy Krause (OTSI) 
Indexer: Krista Wall (OTSI) 
Cover: Twist Creative • Seattle and Joel Panchot

From the Library of Ida Schander

http://www.microsoft.com
http://aka.ms/tellpress


ptg14200592

For Amelia Rose
—Gary McLean Hall 

From the Library of Ida Schander



ptg14200592

This page intentionally left blank 

From the Library of Ida Schander



ptg14200592

Contents at a glance

Introduction	 xv

PART I	 AN AGILE FOUNDATION

CHAPTER 1	 Introduction to Scrum	 3

CHAPTER 2	 Dependencies and layering	 43

CHAPTER 3	 Interfaces and design patterns	 93

CHAPTER 4	 Unit testing and refactoring	 125

PART II	 WRITING SOLID CODE

CHAPTER 5	 The single responsibility principle	 169

CHAPTER 6	 The open/closed principle	 207

CHAPTER 7	 The Liskov substitution principle	 217

CHAPTER 8	 Interface segregation	 251

CHAPTER 9	 Dependency injection	 281

PART III	 ADAPTIVE SAMPLE 

CHAPTER 10	 Adaptive sample: Introduction	 325

CHAPTER 11	 Adaptive sample: Sprint 1	 337

CHAPTER 12	 Adaptive sample: Sprint 2	 365

Appendix A: Adaptive tools	 379 
Appendix B: GitHub code samples	 online

Index	 387

About the author	 403

From the Library of Ida Schander



ptg14200592

This page intentionally left blank 

From the Library of Ida Schander



ptg14200592

		  vii

What do you think of this book? We want to hear from you! 
Microsoft is interested in hearing your feedback so we can continually improve our  
books and learning resources for you. To participate in a brief online survey, please visit: 

microsoft.com/learning/booksurvey

Contents

Introduction . .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  xv

PART I	 AN AGILE FOUNDATION

Chapter 1	 Introduction to Scrum	 3
Scrum versus waterfall. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                                               4

Roles and responsibilities. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

Product owner. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                                                7

Scrum master. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                                                 8

Development team. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                                            8

Pigs and chickens. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                                              9

Artifacts. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                                                            9

The Scrum board. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                                              9

Charts and metrics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                                            22

Backlogs. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                                                     27

The sprint. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                                                         28

Release planning. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                                             29

Sprint planning. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                                               30

Daily Scrum. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                                                  31

Sprint demo . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                                                 33

Sprint retrospective. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                                           34

Scrum calendar. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                                               36

Problems with Scrum and Agile. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                                      37

Maladaptive code. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                                            37

Conclusion. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                                                        41

From the Library of Ida Schander



ptg14200592

viii	 Contents

Chapter 2	 Dependencies and layering	 43
The definition of dependency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                                        44

A simple example. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                                              44

Modeling dependencies in a directed graph. . . . . . . . . . . . . . . . . . . . . .                     51

Managing dependencies. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                                            56

Implementations versus interfaces. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                              56

The new code smell. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                                           57

Alternatives to object construction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                             60

The Entourage anti-pattern. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                                    63

The Stairway pattern. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                                          65

Resolving dependencies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                                      67

Dependency management with NuGet. . . . . . . . . . . . . . . . . . . . . . . . . .                         77

Layering. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                                                           81

Common patterns. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                                            82

Cross-cutting concerns. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                                        87

Asymmetric layering. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                                          89

Conclusion. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                                                        91

Chapter 3	 Interfaces and design patterns	 93
What is an interface?. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                                                94

Syntax. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                                                        94

Explicit implementation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                                       97

Polymorphism . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                                               101

Adaptive design patterns . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                                           102

The Null Object pattern. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                                       103

The Adapter pattern. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                                          109

The Strategy pattern. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                                          111

Further versatility . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                                                  113

Duck-typing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                                                 113

Mixins. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                                                       118

Fluent interfaces. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                                              123

Conclusion. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                                                        124

From the Library of Ida Schander



ptg14200592

	 Contents	 ix

Chapter 4	 Unit testing and refactoring	 125
Unit testing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                                                        125

Arrange, Act, Assert. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                                           126

Test-driven development. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                                      130

More complex tests. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                                           135

Refactoring. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                                                        151

Changing existing code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                                      151

A new account type. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160

Conclusion. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                                                        165

PART II	 WRITING SOLID CODE

Chapter 5	 The single responsibility principle	 169
Problem statement. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                                                 169

Refactoring for clarity. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                                        172

Refactoring for abstraction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                                    177

SRP and the Decorator pattern . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                                      184

The Composite pattern. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                                        185

Predicate decorators. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                                          189

Branching decorators. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                                         193

Lazy decorators. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                                              194

Logging decorators. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                                           195

Profiling decorators. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                                           196

Asynchronous decorators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                                     200

Decorating properties and events. . . . . . . . . . . . . . . . . . . . . . . . . . . . .                              203

Using the Strategy pattern instead of switch. . . . . . . . . . . . . . . . . . . . . . . .                        204

Conclusion. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                                                        206

From the Library of Ida Schander



ptg14200592

x	 Contents

Chapter 6	 The open/closed principle	 207
Introduction to the open/closed principle. . . . . . . . . . . . . . . . . . . . . . . . . . . .                             207

The Meyer definition. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                                          207

The Martin definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                                         208

Bug fixes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 208

Client awareness. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 209

Extension points. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                                                   209

Code without extension points. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                                 209

Virtual methods. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                                              210

Abstract methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                                            211

Interface inheritance. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                                          212

“Design for inheritance or prohibit it”. . . . . . . . . . . . . . . . . . . . . . . . . .                           212

Protected variation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                                                 213

Predicted variation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                                           213

A stable interface. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                                             214

Just enough adaptability. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                                      214

Conclusion. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                                                        215

Chapter 7	 The Liskov substitution principle	 217
Introduction to the Liskov substitution principle. . . . . . . . . . . . . . . . . . . . . .                       217

Formal definition. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                                            217

LSP rules. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                                                     218

Contracts. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                                                          219

Preconditions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                                                220

Postconditions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                                               222

Data invariants. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                                               223

Liskov contract rules. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                                          225

Code contracts. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                                               232

Covariance and contravariance. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                                      239

Definitions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                                                   239

Liskov type system rules. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                                       246

Conclusion. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                                                        249

From the Library of Ida Schander



ptg14200592

	 Contents	 xi

Chapter 8	 Interface segregation	 251
A segregation example. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                                             251

A simple CRUD interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                                     251

Caching. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                                                     257

Multiple interface decoration. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                                  261

Client construction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                                                 263

Multiple implementations, multiple instances. . . . . . . . . . . . . . . . . . .                    263

Single implementation, single instance. . . . . . . . . . . . . . . . . . . . . . . . .                          266

The Interface Soup anti-pattern. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                                267

Splitting interfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                                                 268

Client need. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                                                  268

Architectural need. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                                            275

Single-method interfaces. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                                      279

Conclusion. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                                                        280

Chapter 9	 Dependency injection	 281
Humble beginnings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                                                281

The Task List application. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                                       285

Constructing the object graph. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                                 287

Inversion of Control. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                                           291

Beyond simple injection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                                            306

The Service Locator anti-pattern. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                               306

Illegitimate Injection. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                                         310

The composition root. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                                        311

Convention over configuration. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                                317

Conclusion. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                                                        322

From the Library of Ida Schander



ptg14200592

xii	 Contents

PART III	 ADAPTIVE SAMPLE 

Chapter 10	 Adaptive sample: Introduction	 325
Trey Research. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                                                      325

The team. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                                                    325

The product . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                                                 328

Initial backlog. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                                                      328

Finding stories in prose. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 329

Story point estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                                        330

Summary. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                                                    335

Chapter 11	 Adaptive sample: Sprint 1	 337
Planning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                                                          337

“I want to create rooms for categorizing conversations.”. . . . . . . . . . . . . . .                340

The controller. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                                                340

The room repository. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                                          344

“I want to view a list of rooms that represent conversations.”. . . . . . . . . . .            349

“I want to view the messages that have been sent to a room.“ . . . . . . . . .          353

“I want to send plain text messages to other room members.”. . . . . . . . .          356

Sprint demo. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                                                       357

First demonstration of Proseware . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                              358

Sprint retrospective. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 358

What went well?. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                                             359

What went badly?. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                                            360

Things to change?. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                                            361

Things to keep? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                                              362

Surprises?. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                                                    362

Summary. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                                                    363

From the Library of Ida Schander



ptg14200592

	 Contents	 xiii

Chapter 12	 Adaptive sample: Sprint 2	 365
Planning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                                                          365

“I want to send markdown that will be correctly formatted.”. . . . . . . . . . .            367

“I want to filter message content so that it is appropriate.”. . . . . . . . . . . . .              370

“I want to serve hundreds of users concurrently.”. . . . . . . . . . . . . . . . . . . . .                      373

Sprint demo. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                                                       375

Sprint retrospective. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 376

What went well?. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                                             376

What went badly?. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                                            377

Things to change?. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                                            377

Things to keep? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                                              377

Surprises?. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                                                    378

Summary. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                                                    378

Appendix A: Adaptive Tools	 379

Appendix B: GitHub code samples	 online

Index	 387

About the author	 403

What do you think of this book? We want to hear from you! 
Microsoft is interested in hearing your feedback so we can continually improve our  
books and learning resources for you. To participate in a brief online survey, please visit: 

microsoft.com/learning/booksurvey

From the Library of Ida Schander



ptg14200592

This page intentionally left blank 

From the Library of Ida Schander



ptg14200592

		  xv

Introduction

The first words of the title of this book, Adaptive Code, provide a good description 
of the outcome of applying the principles in the book: the ability of code to adapt 

to any new requirement or unforeseen scenario while avoiding significant rework. The 
aim of this book is to aggregate into one volume many of the current best practices in 
the world of C# programming with the Microsoft .NET Framework. Although some of 
the content is covered in other books, those books either focus heavily on theory or are 
not specific to .NET development.

Programming can be a slow process. If your code is adaptive, you will be able to 
make changes to it more quickly, more easily, and with fewer errors than you would 
if you were working with a codebase that impedes changes. Requirements, as every 
developer knows, are subject to change. How change is managed is a key differen
tiating factor between successful software projects and those that atrophy due to scope 
creep. Developers can react in many ways to requirement changes, with two opposing 
viewpoints highlighting the continuum that lies between.

First, developers can choose a rigid viewpoint. In this approach, from the develop-
ment process down to class design, the project is as inflexible as if it were implemented 
50 years ago by using punch cards. Waterfall methodologies are conspicuous culprits 
in ensuring that software cannot change freely. Their determination that the phases of 
analysis, design, implementation, and testing be distinct and one-way make it difficult—
or at least expensive—for customers to change requirements after implementation has 
begun. The code, then, does not need to be built for change: the process all but forbids 
alterations.

The second approach, Agile methodology, is not just an alternative to such rigid 
methodologies, but a reaction to them. The aim of Agile processes is to embrace change 
as a necessary part of the contract between client and developer. If customers want to 
change something in the product that they are paying for, the temporal and financial 
cost should be correlated to the size of the change, not the phase of the process that is 
currently in progress. Unlike physical engineering, software engineering works with a 
malleable tool: source code. The bricks and mortar that form a house are literally fused 
together as construction progresses. The expense involved in changing the design of 
a house is necessarily linked to the completion of the building phase. If the project 
has not been started—if it is still just in blueprints—change is relatively cheap. If the 
windows are in, the electricity wired up, and the plumbing fitted, moving the upstairs 
bathroom down next to the kitchen could be prohibitively expensive. With code, mov-
ing features around and reworking the navigation of a user interface should not be as 

From the Library of Ida Schander



ptg14200592

xvi	 Introduction

significant. Unfortunately, this is not always the case. The temporal cost alone often 
prohibits such changes. This, I find, is largely a result of a lack of adaptability in code.

This book demonstrates the second approach and explains, with real-world exam-
ples, the practicalities of implementing adaptive code.

Who should read this book

This book is intended to bridge a gap between theory and practice. The reader for 
whom this book is written is an experienced programmer who seeks more practical 
examples of design patterns, SOLID principles, unit testing and refactoring, and more. 

Capable intermediate programmers who want to plug the gaps in their knowledge 
or have doubts and questions about how some of the industry’s best practices fit 
together will benefit most from this book, especially because the day-to-day reality 
of programming rarely matches simple examples or theory. Much of SOLID is now 
understood, but the intricacies of the open/closed principle (covered in Chapter 6) 
and Liskov substitution (covered in Chapter 7) are not fully comprehended. Even 
experienced programmers sometimes do not fully realize the benefits provided by 
dependency injection (covered in Chapter 9). Similarly, the flexibility—adaptability—
that interfaces (covered in Chapter 3) lend to code is often overlooked.

This book can also help the more junior developer learn, from the ground up, which 
aspects of common patterns and practices are benevolent and which are, in the long 
term, malevolent. The code samples that I see from prospective employees have a lot 
in common. The general theme is that the candidate is almost there with respect to 
many skills but just needs a slight push in the right direction to become a significantly 
better programmer. Specifically, the Entourage anti-pattern (covered in Chapter 2) and 
the Service Locator anti-pattern (covered in Chapter 9) are very prevalent in sample 
code. Practical alternatives, and their rationales, are provided in this book.

Assumptions
Ideally, you should have some practical experience of programming in a language that 
is syntactically similar to C#, such as Java or C++. You should also have a strong founda-
tion in core procedural programming concepts such as conditional branching, loops, 
and expressions. You should also have some experience of object-oriented program-
ming using classes, and at least a passing familiarity with interfaces. 

From the Library of Ida Schander



ptg14200592

	 Introduction	 xvii

This book might not be for you if…

This book might not be for you if you are just starting out on a journey to learn how to 
program. This book covers advanced topics that assume a thorough understanding of 
fundamental programming concepts.

Organization of this book

This book is made up of three parts, each of which builds on the last. That said, the 
book can also be read out of order. Each chapter covers a self-contained subject in 
detail, with cross references included where appropriate. 

Part I: An Agile foundation
This part lays the foundation for building software in an adaptive way. It covers the 
high-level Agile process known as Scrum, which requires code to be adaptive to change. 
The chapters in this part focus on details around interfaces, design patterns, refactoring, 
and unit testing.

■■ Chapter 1: Introduction to Scrum  This chapter sets the scene for the book 
by introducing Scrum, which is an Agile project management methodology. The 
chapter gives an in-depth overview of the artifacts, roles, metrics, and phases 
of a Scrum project. Finally, it shows how developers should organize themselves 
and their code when operating in an Agile environment. 

■■ Chapter 2: Dependencies and layering  This chapter explores dependencies 
and architectural layering. Code can only be adaptive if the solution’s structure 
allows it to be. The different types of dependencies are described: first-party, 
third-party, and framework. The chapter describes how to manage and organize 
dependencies, from anti-patterns (which should be avoided) to patterns (which 
should be embraced). It also introduces advanced topics such as aspect-oriented 
programming and asymmetric layering, providing further depth.

■■ Chapter 3: Interfaces and design patterns  Interfaces are, by now, ubiquitous 
in modern .NET development. However, they are often misapplied, misunder-
stood, and misappropriated. This chapter shows some of the more common and 
practically useful design patterns, exploring how versatile an interface can be. 
Leading the reader beyond the simple extraction of an interface, the chapter 

From the Library of Ida Schander



ptg14200592

xviii	 Introduction

shows how interfaces can be elaborated in many different ways to solve a 
problem. Mixins, duck-typing, and interface fluency further underscore the 
versatility of this key weapon in the programmer’s arsenal.

■■ Chapter 4: Unit testing and refactoring  Two practices that are becoming 
prerequisite skills are unit testing and refactoring. The two are closely related 
and work in unison to produce adaptive code. Without the safety net of unit 
tests, refactoring is prone to error; without refactoring, code becomes unwieldy, 
rigid, and hard to comprehend. This chapter takes an example of unit testing 
from humble beginnings and expands it to use more advanced—but practical 
—patterns and practices such as fluent assertions, test-driven development, 
and mocking. For refactoring, the chapter provides examples of real-world 
refactors that improve the readability and maintainability of the source code.

Part II: Writing SOLID code
This part builds on the foundation laid in Part I. Each chapter is devoted to examining 
one principle of SOLID. The emphasis in these chapters is on practical examples for 
implementing the principles, rather than solely on the theory of why. By placing each 
example in a real-world context, the chapters in this part of the book clearly demon-
strate the utility of SOLID. 

■■ Chapter 5: The single responsibility principle  This chapter shows how to 
implement the single responsibility principle in practice by using the Decorator 
and Adapter patterns. The outcome of applying the principle is an increase in 
the number of classes and a decrease in the size of those classes. The chapter 
shows that, in contrast with monolithic classes that provide extensive features, 
these smaller classes are more directed and focused on solving only a small part 
of a larger problem. It is in their aggregation that these classes then become 
more than the sum of their parts.

■■ Chapter 6: The open/closed principle  The open/closed principle (OCP) is 
simply stated, but it can have a significant impact on code. It is responsible for 
ensuring that code that follows SOLID principles is only appended to and never 
edited. This chapter also discusses the concept of predicted variation in relation 
to OCP and explores how it can help developers identify extension points for 
further adaptability.

■■ Chapter 7: The Liskov substitution principle  This chapter shows the posi-
tive effects that result from applying the Liskov substitution principle on code, 
particularly the fact that the guidelines help enforce the open/closed principle 
and prevent the unintended consequences of change. Contracts—through 

From the Library of Ida Schander



ptg14200592

	 Introduction	 xix

preconditions, postconditions, and data invariants—are covered by using the 
Code Contracts tooling. The chapter also describes subtyping guidelines such 
as covariance, contravariance, and invariance, along with the negative impact 
of breaking these rules.

■■ Chapter 8: Interface segregation  Not only should classes be smaller than 
they commonly are, this chapter shows that interfaces are, similarly, often too 
big. Interface segregation is a simple practice that is often overlooked; this 
chapter shows the benefits of limiting interfaces to the smallest size possible, 
along with the benefits of working with smaller interfaces. It also explores the 
different reasons that might motivate the segregation of interfaces, such as 
client need and architectural need.

■■ Chapter 9: Dependency injection  This chapter contains the cohesive glue 
that holds together the rest of the features in the book. Without dependency 
injection (DI), there is a lot that would not be possible—it is really that impor-
tant. This chapter contains an introduction to DI and a comparison of the differ-
ent methods of implementing it. The chapter includes discussions on managing 
object lifetimes, working with Inversion of Control containers, avoiding common 
anti-patterns relating to service location, and identifying composition roots and 
resolution roots.

Part III: Adaptive sample
This part uses a sample application as a way of tying together the rest of the book. 
Although there is a lot of code in these chapters, there is ample accompanying explana-
tion. Because this book is about working in an Agile environment, the chapters map to 
Scrum sprints, and all work is the result of backlog items and client change requests. 

■■ Chapter 10: Adaptive sample: Introduction  This first chapter describes 
the application that is to be developed: an online chat application developed 
in ASP.NET MVC 5. A brief design is provided as a guideline for the planned 
architecture, in addition to an explanation of the features on the backlog.

■■ Chapter 11: Adaptive sample: Sprint 1  Using a test-driven development 
(TDD) approach, the first features of the application are developed, including 
viewing and creating chat rooms and messages. 

■■ Chapter 12: Adaptive sample: Sprint 2  The client, inevitably, makes some 
changes to the requirements of the application, and the team accommodates 
those changes through adaptive code. 

From the Library of Ida Schander



ptg14200592

xx	 Introduction

Appendices
Some reference material is available in the appendices, specifically for working with Git 
source control and to explain how the code for this book is organized on GitHub.

■■ Appendix A: Adaptive tools  This is a very brief introduction to Git source 
control that should, at the very least, allow you to download the code from 
GitHub and compile it in Microsoft Visual Studio 2013. It is not intended as a 
thorough guide to Git—there are some excellent sources already out there, 
such as the official Git tutorial:

http://git-scm.com/docs/gittutorial

A quick web search will find other sources.

This appendix also looks at other developer tools, such as continuous integration 
and the development environment.

■■ Appendix B (available online only): GitHub code samples  By putting the 
code for this book on GitHub, I am able to make changes in a centralized loca-
tion. The repository is read-only, but Appendices A and B together show you 
how to find the code for a listing, download it, compile it, run it, and make local 
changes. If you think you have found a defect or want to suggest a change, you 
can issue a pull request to the main AdaptiveCode repository and I will gladly take 
a look. You can find Appendix B via this book’s page at microsoftpressstore.com.

Conventions and features in this book

Throughout this book, there are a number of repeated conventions. These are mainly 
standard to Microsoft Press publications, but it won’t hurt to explain them up front.

Code listings
Code listings are included where appropriate, and a call-out is made to them where 
relevant, as shown in Listing I-1.

From the Library of Ida Schander

http://git-scm.com/docs/gittutorial


ptg14200592

	 Introduction	 xxi

LISTING I-1  This is a code listing. There are plenty of these in the book.

public void MyService : IService 
{ 
 
}

Whenever your attention should be drawn to a certain part of the code—for 
instance, when changes have been made to a previous example—the code will be 
highlighted in bold.

Readeraids and sidebars
Readeraids are used for small asides, such as notes or warnings, whereas sidebars are 
reserved for larger digressions. Here are some examples:

Note  This is a readeraid. It contains small information nuggets that relate to 
the main content but have some kind of added importance.

This is a sidebar
Although this one is necessarily short, sidebars are usually reserved for longer 
discussions on topics that are somewhat tangential to the main topic.

Images
Sometimes, an explanation—no matter how florid—is not enough. In these cases, an 
image is provided. All diagrams were created in Microsoft Visio 2013 with no theming, 
to create a high contrast and to focus solely on exposition. Screenshots were taken with 
a high-contrast theme applied.

From the Library of Ida Schander



ptg14200592

xxii	 Introduction

System requirements

You will need the following hardware and software to use the code samples in this 
book:

■■ Either Windows XP Service Pack 3 (except Starter Edition), Windows Vista 
Service Pack 2 (except Starter Edition), Windows 7, Windows Server 2003  
Service Pack 2, Windows Server 2003 R2, Windows Server 2008 Service Pack 2, 
or Windows Server 2008 R2

■■ Visual Studio 2013, any edition (multiple downloads might be required if you 
are using Express Edition products)

■■ Microsoft SQL Server 2008 Express Edition or higher (2008 or R2 release), with 
SQL Server Management Studio 2008 Express or higher (included with Visual 
Studio; Express Editions require a separate download)

■■ A computer that has a 1.6-gigahertz (GHz) or faster processor (2 GHz 
recommended)

■■ 1 gigabyte (GB) (32 bits) or 2 GB (64 bits) of RAM (add 512 megabytes [MB] 
if running in a virtual machine or using SQL Server Express Editions, more for 
advanced SQL Server editions)

■■ 3.5 GB of available hard disk space

■■ A 5,400-RPM hard disk drive

■■ A DirectX 9–capable video card running at 1024 x 768 or a higher-resolution 
display

■■ A DVD-ROM drive (if installing Visual Studio from DVD)

■■ An Internet connection for downloading software or code samples

Depending on your Windows configuration, you might require Local Administrator 
rights to install or configure Visual Studio 2013 and SQL Server 2008 products.

From the Library of Ida Schander



ptg14200592

	 Introduction	 xxiii

Downloads: Code samples

As far as possible, I ensured that the code listings were part of a larger example that 
could be run either as a stand-alone application or a unit test. I wrote many of the 
simpler unit tests by using MSTest, so that no external test runner was needed, but I 
wrote the more complex unit tests by using NUnit. I used Visual Studio 2013 Ultimate 
to write all of the code. Although I wrote some of it by using the preview version, it has 
all been compiled and tested on the full version. As far as possible, I didn’t use features 
that were unavailable to the Express Editions of Visual Studio 2013, but for some topics, 
this was not possible. Readers wanting to run this code will need to install a paid-for 
version.

The code itself is available from GitHub, at the following address:

http://aka.ms/AdaptiveCode_CodeSamples 

Appendix A contains explanations for using Git, and Appendix B (online only) details 
how the code in the AdaptiveCode repository is organized.

If you want to make a comment where I am likely to see it, my WordPress blog is here:

http://garymcleanhall.wordpress.com

Acknowledgments

The byline for this book is not really accurate. I couldn’t have written any of this without 
the following people, all of whom have helped me in different ways.

Victoria, my wife, for making this book possible. That’s not lip service—it’s simply 
a fact. 

Amelia, my daughter, for being perfect in every way.

Pam, my mother, for proofreading and for her wonderfully hyperbolic words of 
encouragement. 

Les, my father, for all his hard work.

Darryn, my brother, for general, continual guidance.

Kathy Krause at Online Training Solutions, Inc., for her excellent work making this 
book readable.

Devon Musgrave, for his apparently limitless patience.

From the Library of Ida Schander

http://aka.ms/AdaptiveCode_CodeSamples
http://garymcleanhall.wordpress.com


ptg14200592

xxiv	 Introduction

Errata, updates, & book support

We’ve made every effort to ensure the accuracy of this book and its companion con-
tent. You can access updates to this book—in the form of a list of submitted errata and 
their related corrections—at: 

http://aka.ms/Adaptive/errata 

If you discover an error that is not already listed, please submit it to us at the 
same page.

If you need additional support, email Microsoft Press Book Support at  
mspinput@microsoft.com.

Please note that product support for Microsoft software and hardware is not offered 
through the previous addresses. For help with Microsoft software or hardware, go to 
http://support.microsoft.com.

Free ebooks from Microsoft Press

From technical overviews to in-depth information on special topics, the free ebooks 
from Microsoft Press cover a wide range of topics. These ebooks are available in PDF, 
EPUB, and Mobi for Kindle formats, ready for you to download at:

http://aka.ms/mspressfree 

Check back often to see what is new!

We want to hear from you

At Microsoft Press, your satisfaction is our top priority, and your feedback our most 
valuable asset. Please tell us what you think of this book at: 

http://aka.ms/tellpress

We know you’re busy, so we’ve kept it short with just a few questions. Your answers 
go directly to the editors at Microsoft Press. (No personal information will be requested.) 
Thanks in advance for your input!

From the Library of Ida Schander

http://aka.ms/Adaptive/errata
http://support.microsoft.com
http://aka.ms/mspressfree
http://aka.ms/tellpress


ptg14200592

	 Introduction	 xxv

Stay in touch

Let’s keep the conversation going! We’re on Twitter: http://twitter.com/MicrosoftPress.

From the Library of Ida Schander

http://twitter.com/MicrosoftPress


ptg14200592

This page intentionally left blank 

From the Library of Ida Schander



ptg14200592

		  1

PART I

An Agile foundation

CHAPTER 1	 Introduction to Scrum . . . . . . . . . . . . . . . . . . . . . . . . .                          3

CHAPTER 2	 Dependencies and layering . . . . . . . . . . . . . . . . . . . .43

CHAPTER 3	 Interfaces and design patterns . . . . . . . . . . . . . . . . .                 93

CHAPTER 4	 Unit testing and refactoring . . . . . . . . . . . . . . . . . .                  125

This part of the book gives you a grounding in Agile principles 
and practices. 

Writing code is the central pillar of software development. 
However, there are many different ways to achieve the goal of 
working code. Even if you don’t count the selection of platform, 
language, and framework, there are a multitude of choices 
presented to a developer who is tasked with implementing even 
the simplest functionality.

The creation of successful software products has always been 
an obvious focus for the software development industry. But in 
recent years, developers have begun to emphasize the imple-
mentation of patterns and practices that are repeatable and 
have a positive effect on the quality of code. This is because the 
notion of code quality is no longer separate from the notion of 
quality in the software product. Over time, poor-quality code 
will degrade the quality of the product—at the very least, it will 
irretrievably delay the delivery of working software.

From the Library of Ida Schander



ptg14200592

To produce high-quality software, developers must strive to 
ensure that their code is maintainable, readable, and tested. In 
addition to this, a new requirement has emerged that suggests 
that code should also be adaptive to change.

The chapters in this part of the book present modern soft-
ware development processes and practices. These processes 
and practices are generally termed Agile processes and prac-
tices, which reflects their ability to change direction quickly. Agile 
processes suggest ways in which a software development team 
can elicit fast feedback and alter its focus in response, and Agile 
practices suggest ways in which a software development team 
can write code that is similarly able to change direction.

2

From the Library of Ida Schander



ptg14200592

		  3

C H A P T E R  1

Introduction to Scrum

After completing this chapter, you will be able to

■■ Assign roles to the major stakeholders in the project.

■■ Identify the different documents and other artifacts that Scrum requires and generates.

■■ Measure the progress of a Scrum project on its development journey.

■■ Diagnose problems with Scrum projects and propose remedies.

■■ Host Scrum meetings in an effective manner for maximum benefit.

■■ Justify the use of Scrum over other methodologies, both Agile and rigid.

Scrum is a project management methodology. To be more precise, it is an Agile methodology. Scrum 
is based on the idea of adding value to a software product in an iterative manner. The overall 
Scrum process is repeated—iterated—multiple times until the software product is considered com-
plete or the process is otherwise stopped. These iterations are called sprints, and they culminate in 
software that is potentially releasable. All work is prioritized on the product backlog and, at the start 
of each sprint, the development team commits to the work that they will complete during the new 
iteration by placing it on the sprint backlog. The unit of work within Scrum is the story. The product 
backlog is a prioritized queue of pending stories, and each sprint is defined by the stories that will be 
developed during an iteration. Figure 1-1 shows an overview of the Scrum process.

From the Library of Ida Schander



ptg14200592

4	 PART I  An Agile foundation

FIGURE 1-1  Scrum works like a production line for small features of a software product.

Scrum involves a mixture of documentation artifacts, roles played by people inside and outside the 
development team, and ceremonies—meetings that are attended by appropriate parties. Although 
a single chapter is not enough to explore the entirety of what Scrum offers as a project management 
discipline, this chapter offers enough detail to provide both a springboard to further learning and an 
orientation for the day-to-day practices of Scrum.

Scrum is Agile
Agile is a family of lightweight software development methods that embrace the changing re-
quirements of customers even as the project is in progress. Agile is a reaction to the failings of 
more rigidly structured practices. The Agile Manifesto exemplifies the contrast. It can be found 
on the web at www.agilemanifesto.org. 

The Agile Manifesto was signed by 17 software developers. The Agile method has grown in 
influence in the intervening years to the extent that experience in an Agile environment is now 
a common prerequisite for software development roles. Scrum is one of the most common 
implementations of an Agile process.

Scrum versus waterfall

In my experience, the Agile approach works better than the waterfall method of software develop-
ment, and I evangelize only in favor of Agile processes. The problem with the waterfall method is its 
rigidity. Figure 1-2 provides a representation of the process involved in a waterfall project.

From the Library of Ida Schander

http://www.agilemanifesto.org


ptg14200592

	 CHAPTER 1  Introduction to Scrum	 5

FIGURE 1-2  The waterfall development process.

Note that the output from one stage becomes the input to the next. Also note that each phase 
is completed before moving to the next phase. This assumes that no errors, issues, problems, or mis
understandings are discovered after a phase has completed. The arrows only point one way.

The waterfall process also assumes that there will be no changes made after a phase has completed, 
something that seems quite contrary to empirical and statistical evidence. Change is a natural part of 
life, not just of software engineering. The attitude toward change that waterfall approaches espouse 
is that it is expensive, undesirable, and—most damningly—avoidable. Waterfall methods assert that 
change can be circumnavigated by spending more time on requirements and design, so that changes 
simply do not occur during subsequent phases. This is preposterous, because change will always happen. 

Agile responds to this fact by adopting a different approach, which welcomes change and allows 
everyone to adapt to any changes that occur. Although Agile—and therefore Scrum—allows for change 
at a process level, coding for change is one of the hardest, yet most important, tenets of modern soft- 
ware development. This book is dedicated to showing you how to produce code that is Agile and 
adaptive enough to survive change.

Waterfall methodologies are also document-centric, generating a lot of documentation that does 
not directly improve the software product. Agile, on the other hand, considers working software to be 
the most important document of a software product. The behavior of software is, after all, dictated by 
its source code—not by the documents that accompany that code. Furthermore, because documen-
tation is a separate entity from the source code, it can easily fall out of sync with software. 

Scrum prescribes some metrics that provide feedback on the progress of a project and its overall 
health, but this differs from explicative documentation about the product. Agile, in general, favors just 
enough documentation to avoid being irresponsible, but it does not mandate such documentation. 

From the Library of Ida Schander



ptg14200592

6	 PART I  An Agile foundation

Some code can certainly benefit from supporting documentation, providing that it is not written once 
and never read again. For this reason, living documents that are easy to use, such as wikis, are com-
mon tools in Scrum teams.

The rest of this chapter covers the most important aspects of Scrum in more depth, although the 
focus is not purely Scrum, but a common variant thereof. The aim of Scrum as a process is not only 
to iteratively refine the software product, but also to iteratively refine the development process. This 
encourages teams to adopt subtle changes to ensure that the process is working for them, given their 
unique situations and context.

After discussing the constituent elements of Scrum, this chapter examines its flaws. This chapter 
sets the scene for the rest of the book, which details how to implement code in such a way that it 
remains adaptive to the change that is embraced by the Scrum process. There is little point in having 
a process in which you claim to be able to handle change gracefully when the reality is that change is 
incredibly difficult to implement down at a code level.

Different forms of Scrum
Whenever a development team claims that they follow the Scrum methodology, it is common 
for them to mean that they follow some variant of Scrum. Pure Scrum does not include a lot of 
common practices that have been taken from other Agile methods, such as Extreme Program-
ming (XP). There are three different subcategories of Scrum that progressively veer further away 
from the purist implementation.

Scrum and…
Common practices like writing unit tests first and pair-programming are not part of Scrum. 
However, they are useful and worthy additions to the process for many teams, and so they 
are considered complementary practices. When certain practices are added from other Agile 
methods such as XP or Kanban, the process becomes “Scrum and…”—that is: Scrum plus extra 
best practices that enhance, rather than detract from, the default Scrum process. 

Scrum but…
Some development teams claim to be practicing Scrum, but they omit key aspects. Their work is 
ordered on a backlog that is carried into iterative sprints, and they have retrospectives and daily 
stand-up meetings. However, they don’t estimate in story points and instead favor real-time 
estimates. This sort of diluted version of Scrum is termed “Scrum but…”. Although the team is 
aligned with Scrum in a lot of areas, they are misaligned in one or two key areas.

Scrum not…
If a development team moves far enough away from the Scrum method, they end up doing 
“Scrum not…” This causes problems, particularly when team members expect an Agile method
ology and the actual process in place is so different that it barely resembles Scrum at all. I find 
that the daily stand-up meeting is the easiest part of Scrum to adopt, but relative estimation 
and the positive attitude to change are much more difficult. When enough parts of the Scrum 
process are neglected, the process is no longer Scrum.

From the Library of Ida Schander



ptg14200592

	 CHAPTER 1  Introduction to Scrum	 7

Roles and responsibilities

Scrum is just a process, and—I cannot stress this enough—it is only as effective as the people who 
follow the process. These people have roles and responsibilities that guide their actions. 

Product owner
The role of product owner (sometimes called the PO) is vital. The product owner provides the link be-
tween the client or customer and the rest of the development team. Product owners take ownership 
of the final product and, accordingly, their responsibilities include:

■■ Deciding which features are built.

■■ Setting the priority of the features in terms of business value.

■■ Accepting or rejecting “completed” work.

As a key stakeholder to the success of the project, the PO must be available to the team and be 
able to communicate the vision clearly. The long-term goal of the project should be clear to the de-
velopment team, with changes in focus propagated throughout the team in a timely manner. In short-
term sprint planning, the product owner sets out what will be developed and when. Product owners 
determine the features that will be needed along the road to making a release of the software, and 
they set the priorities for the product backlog. 

Although the product owner’s role is key, he or she does not have unlimited influence over the 
process. The product owner cannot influence how much the team commits to for a sprint, because 
this is determined by the team itself based on its velocity. Product owners also do not dictate how 
work is done—the development team has control over the details of how it implements a certain 
story at a technical level. When a sprint is underway, the product owner cannot change the sprint 
goals, alter acceptance criteria, or add or remove stories. After the goals are decided and the stories 
committed to the sprint during sprint planning, the sprint in progress becomes immutable. Any 
changes must wait until the next sprint—unless the change is to cancel the sprint or project in its 
entirety and start again. This allows the development team to retain total focus on achieving the 
sprint goal without moving the goalposts.

Throughout the sprint, as stories progress and are completed, the product owner will be asked to 
verify how a feature works or comment on a task that is in progress. It is important that product own-
ers be able to devote some time during the sprint to liaise with the development team, in case the 
unexpected occurs and confusion arises. In this way, by the end of the sprint, the product owner is not 
presented with ”completed” stories that deviate from their initial vision. Product owners do, however, 
get to decide whether a story meets the acceptance criteria supplied and whether it is considered 
complete and can be demonstrated at the end of the sprint.

From the Library of Ida Schander



ptg14200592

8	 PART I  An Agile foundation

Scrum master
The Scrum master (SM) shields the team from any external distractions during the sprint and tackles 
any of the impediments that the team flags during the daily Scrum meeting. This keeps the team fully 
functional and productive for the duration of the sprint, allowing it to focus wholly on the sprint goals. 

Just as the product owner owns the product—what is to be done—the Scrum master owns the 
process—the framework surrounding how it is to be done. Thus it is the Scrum master’s responsibility 
to ensure that the process is being followed by the team. Although the Scrum master can make some 
suggestions for improving the process (such as switching from a four-week sprint duration to a two-
week duration), the Scrum master’s authority is limited. Scrum masters cannot, for instance, specify 
how the team should implement a story, beyond ensuring that it follows the Scrum process.

As owners of the process, Scrum masters also own the daily Scrum meeting. The Scrum master en-
sures the team’s attendance and takes notes throughout in case any actionable items are uncovered. 
The team is not, however, reporting to the Scrum master during the Scrum meeting; they are inform-
ing everyone present of their progress.

Development team
Ideally, an Agile team consists of generalizing specialists. That is, each member of the team should 
be multidisciplinary—capable of operating effectively on several different technologies, but with an 
aptitude, preference, or specialization in a certain area. For example, a team could consist of four 
developers, each of whom is capable of working very competently on ASP.NET MVC, Windows Work-
flow, and Windows Communication Foundation (WCF). However, two of the developers specialize in 
Windows Forms, and the remaining pair prefer to work with Windows Presentation Foundation (WPF) 
and Microsoft SQL Server.

Having a cross-functional team prevents siloes where one person—the “web person,” the “data-
base person,” or the “WPF person”—has sole knowledge of how that part of the application works. 
Siloes are bad for everyone involved, and there should be heavy emphasis placed on breaking down 
siloes wherever possible. In Scrum, the code is owned by the team collectively. Siloes are bad for the 
business because it makes them depend too heavily on a single resource to provide value in a certain 
area. And the individuals themselves suffer because they become entrenched in roles that “only they 
can do.” 

Software testers are responsible for maintaining the quality of the software while it is being devel-
oped. Before a story is started, the testers might discuss automated test plans for verifying that the 
implementation of a story meets all of the acceptance criteria. They might work with the developers 
to implement those test plans, or they might write such tests themselves. After a story is implemented, 
the developer can submit it for testing, and the test analyst will verify that it is working as required. 

From the Library of Ida Schander



ptg14200592

	 CHAPTER 1  Introduction to Scrum	 9

Pigs and chickens
Each role of the Scrum process can be categorized as a pig or a chicken. These characterizations relate 
to the following story: A chicken approaches his friend, the pig, and says, “Hello pig, I’ve had an idea. I 
think we should open a restaurant!” At first, the pig is enthusiastic and enquires, “What should we call 
it?” The chicken replies, “We could call it Ham ‘n’ Eggs.” The pig ponders this briefly before exclaiming 
in outrage, “No way! I’d be committed, but you’d only contribute!”

This fun allegory merely highlights the level of involvement that certain members need to have in 
a project. Pigs are entirely committed to a project and will be accountable for its outcome, whereas 
chickens merely contribute and are involved in a more peripheral manner. The product owner, the 
Scrum master and the development team are all pigs inasmuch as they are committed to the delivery 
of the product. Most often, customers are merely contributing chickens. Similarly, executive manage-
ment will contribute to the project, so they are also considered chickens rather than pigs.

Artifacts

Throughout the lifetime of any software project, many documents, graphs, diagrams, charts, and 
metrics are created, reviewed, analyzed, and dissected. In this respect, a Scrum project is no different 
from any other. However, Scrum documents are distinct from documents of other types of project 
management in their type and purpose. A key difference between all Agile processes and more rigid 
processes is the relative importance of documentation. Structured Systems Analysis and Design Meth-
odology (SSADM), for example, places a heavy emphasis on writing lots of documentation. This is 
referred to pejoratively as Big Design Up Front (BDUF): the errant belief that all fear, uncertainty, and 
doubt can be eliminated from a project if sufficient attention is paid to documentation. Agile processes 
aim to reduce the amount of documentation produced to only that which is absolutely necessary 
for the project to succeed. Instead, Agile favors the idea that the code—which is highly authorita-
tive documentation—can be deployed, run, and used at any time. It also prefers that all stakeholders 
communicate with each other directly rather than write documents that might never be read by their 
most important audience. Documentation is still important to an Agile project, but its importance 
does not supersede that of working software or communication.

The Scrum board
Central to the daily workings of a Scrum project is the Scrum board. There should be a generous 
amount of wall space reserved for the Scrum board—if the board is too small, the temptation is to 
omit important details. Wall space might well be at a premium in your office, but there are tricks that 
you can use. Perhaps that large, neglected whiteboard could be repurposed as a Scrum board. With 
the aid of magnets, metal filing cabinets can double as the Scrum board. If your office is rented or 
you otherwise cannot deface the walls, “magic” whiteboards—which are simply wipe-clean sheets of 
static paper—are ideal. Try to identify a suitable place that could perform this function in your office. 

From the Library of Ida Schander



ptg14200592

10	 PART I  An Agile foundation

Whatever you choose, however you designate it, if it doesn’t feel right after a couple of iterations, feel 
free to change it. Physical Scrum boards are an absolute must. There is nothing that can replace the 
visceral experience of standing in front of a Scrum board. Though digital Scrum tools have their uses, 
I believe that they are complementary, rather than primary, to the Scrum process. Figure 1-3 shows an 
example of a typical Scrum board.

FIGURE 1-3  A Scrum board is a snapshot of the state of the work currently in development.

A Scrum board is a hive of information. It holds a lot of details, and discerning what is happening 
might be daunting. The rest of this section explains each aspect in detail. 

Cards
The primary items on the Scrum board are the cards. The cards represent different elements of prog-
ress for a software product—from a physical release of the software down to the smallest distinct 
task. Each of these card types is typically represented by a different color, for clarity. Due to space 
constraints, the Scrum board usually shows only the stories, tasks, defects, and technical debt associ-
ated with the current sprint.

From the Library of Ida Schander



ptg14200592

	 CHAPTER 1  Introduction to Scrum	 11

Tip  Colors alone might not be sufficient for the requirements of everyone on the team. For 
example, consider coupling colors with distinct shapes for team members who can’t distin-
guish colors.

Hierarchy of composition  Figure 1-4 shows how the cards on a Scrum board are related. Note 
that it is implied that a product is composed of many tasks. Even the most complex software can be 
distilled into a finite list of discrete tasks that must be performed, each paving the way to completion.

FIGURE 1-4  The cards on the Scrum board represent different parts of an aggregated product.

Product  At the top of the Scrum food chain is the software product that is being built. Examples 
of products are bountiful: integrated development environments, web applications, accounting 
software, social media apps, and many more. This is the software that you are developing and the 
product you intend to deliver.

Teams usually work toward only one product at a time, but sometimes teams are responsible for 
delivering multiple products. 

Release  For every product that you develop, there will be multiple releases. A release is a version 
of the software that end users can purchase or use as a service. Sometimes a release is made only to 
address defects, but a release could also be intended to provide value-add features to key clients or 
to make a beta version of the software available as a sneak preview. 

Web applications are often implicitly versioned with only a single deployment that supersedes 
all prior releases. In fact, the Google Chrome web browser is an interesting example. Although it is 
a desktop application, it is deployed as a stream of micro-releases that are seamlessly deployed to 
desktops without the usual fanfare that accompanies rival browsers. Internet Explorer 8, 9, and 10 

From the Library of Ida Schander



ptg14200592

12	 PART I  An Agile foundation

each had their own advertisements on television, but Chrome does not follow this pattern—Google 
simply advertises the browser itself, irrespective of version. And iterative releases like this are becom-
ing more common. Scrum can direct this release pattern by focusing on the potential to deliver work-
ing software after every sprint.

Minimum viable release
The first release can be aligned to a minimum viable release (MVR)—the basic set of features 
that are deemed sufficient to fulfill the fundamental requirements. For accounting software, for 
example, this feature set could be limited to the ability to create new clients, add transactions 
(both deposits and withdrawals) to their accounts, and present a total. The idea here is to boot-
strap the project so that it becomes self-funding as soon as possible. Although this is unlikely to 
occur as a result of the MVR, the hope is that the MVR will at least bring in some revenue to off-
set the ongoing costs of development. Not only this, but that first deployment, even if it targets 
a restricted client base, is likely to provide vital feedback that can influence the direction of the 
software. This is the nature of Scrum—and Agile in general—constantly evolving the software 
product with the knowledge that all software is subject to change.

Regardless of the intent of the release or how it is deployed (or even how often), ideally a single 
product will survive several releases. 

Feature  Each release is made up of one or more features that were previously not present in the 
software. The most significant difference between version 1.0 and version 2.0 of any piece of software 
is the addition of new features that the team believes will generate sufficient interest to persuade new 
users to make a purchase and existing users to upgrade.

The term minimum marketable feature (MMF) is useful to delineate features and compose a 
release. The following is a list of example features that are generic enough to be applied to many 
different projects, yet specific enough to be real-world features:

■■ Exporting application data to a portable XML-based format

■■ Servicing webpage requests within 0.5 seconds

■■ Archiving historical data for future reference

■■ Copying and pasting text

■■ Sharing files across a network with colleagues

Features are marketable if they have some value for the customer. When distilled down to the 
smallest amount of functionality possible while still retaining its value, the feature is also minimal.

From the Library of Ida Schander



ptg14200592

	 CHAPTER 1  Introduction to Scrum	 13

Epics/features vs. MMFs vs. themes
You might be more used to the term epic rather than feature when talking about Scrum, but I 
have taken the liberty of switching this out for my preferred term. Epics and features are often 
considered “large stories”: that is, stories that are much larger than MMFs and that cannot be 
delivered in a single sprint. 

Features are also similar to Scrum themes in that they serve to group stories that fulfill a 
common goal. 

Features can be broadly grouped into three categories for each release: required, preferred, and 
desired. These are mutually exclusive options that reflect the overall priority assigned to each feature. 
Typically, the development team is instructed to work on all required features before tackling the 
preferred features, with the desired features being addressed only if time allows. As you might have 
guessed, these categories—and, indeed, the features themselves—are always changeable. They can 
be canceled, reprioritized, altered, and superseded at any time, with the team expected to switch 
focus gracefully (with the proviso, however, that deadlines and funding might also change in kind). 
Everything in Scrum is a moveable feast, and this book is aimed to help you deal with that reality.

User story  The user story is probably the Scrum artifact that most people are familiar with, but 
ironically, it is not prescribed by Scrum. User stories are an artifact of Extreme Programming, but they 
have been co-opted by Scrum because they are so commonly used. User stories are specified by using 
the following template:

“As a [user role], I want to [verb-centric behavior], so that [user value added].”

The square brackets denote parameterization that distinguishes one user story from another. 
A concrete example should illuminate further:

“As an unauthenticated but registered user, I want to reset my password, so that I can log on to 
the system if I forget my password.”

There are many things to note about this user story. First of all, there is not nearly enough detail to 
actually implement the behavior required. Note that the user story is written from the perspective of 
a user. Although this would seem to be obvious, this point is missed by many and, too often, stories 
are wrongly written from the perspective of developers. This is why the first part of the template—
As a [user role]—is so important. Similarly, the [user value added] portion is just as important because, 
without this, it is easy to lose sight of the underlying reason that the user story exists. This is usually 
what ties the user story is to its parent feature; the example just given could belong to a feature such 
as “Forgotten user credentials are recoverable.” And the story would probably be grouped with the 
story in which the user has forgotten his or her logon name and the story in which the user has for
gotten both logon name and password.

From the Library of Ida Schander



ptg14200592

14	 PART I  An Agile foundation

Given that this user story is not sufficient to begin development, what is its value? A user story rep-
resents a conversation that is yet to occur between the development team and the customer. When it 
comes time to implement the story, the developers assigned to it will start by taking the story to the 
customer and talking through the customer’s requirements. This analysis phase will produce several 
acceptance criteria that must be adhered to throughout the lifetime of the user story, so that the user 
story can be deemed complete. 

After the requirements have been gathered, the developers convene and lay out some design 
ideas to meet these requirements. This phase might include user interface mockups that use Balsamiq, 
Microsoft Visio, or some other tool. Some technical design concepts will detail how the existing code 
base must be altered to meet these new requirements, often using Unified Modeling Language (UML) 
diagrams. 

After the design is ratified, the team can start to break the user story down into tasks and then 
work toward implementing the story by performing these tasks. When they reach a point when they 
are satisfied that the story is working as required, they can hand it over to be acceptance tested. This 
final phase of quality assurance (QA) double-checks the working software against the acceptance 
criteria and either approves or rejects it. When it is approved, the user story is complete.

Let’s recap for a minute. With a user story for guidance, developers gathered requirements in an 
analysis phase, generated a design, implemented a working solution, and then tested this against the 
acceptance criteria. This sounds a lot like waterfall development methodologies! Indeed, that’s the 
whole point of user stories—to perform the entire software development life cycle, in miniature, for 
each story. This helps to prevent any wasted effort because it is not until the user story is ready to be 
taken from the Scrum board and implemented that the developers can be sure it is still relevant to 
the software product. 

User stories are the main focus of work in Scrum; they hold the incentive that Scrum provides for 
team members: story points. The team assigns each user story its own story point score during sprint 
planning and, after the user story is complete, the story points are considered to be earned and are 
deducted from the sprint total. Story points are explained in further detail later in this chapter.

Task  There is a unit of work smaller than a user story—the task. Stories can be broken down into 
more manageable tasks, which can then be split between the developers assigned to the story. I 
prefer to wait until the story is taken off the board before I split it into tasks, but I have also seen 
this done as part of sprint planning.

Although user stories must incorporate a full vertical slice of functionality, tasks can be split at the 
layer level to take advantage of developer specializations within the team. For example, if a new field 
is required on an existing form, there will probably need to be changes to the user interface, business 
logic, and data access layers. You could divide this into three tasks that target these three layers and 

From the Library of Ida Schander



ptg14200592

	 CHAPTER 1  Introduction to Scrum	 15

assign each to the relevant specialist: the WPF developer, the core C# expert, and the database guru, 
respectively. Of course, if you are lucky enough to have a team of generalizing specialists, anyone 
should really be able to volunteer for any task. This allows everyone to work on various parts of the 
code, which improves their understanding in addition to boosting their job satisfaction.

The vertical slice
When I was growing up, every Christmas my father would make trifle. This is a traditional English 
dessert that is made from various layers. At the bottom there is sliced fruit; then there are layers 
of sponge cake, jelly, and custard; and on top is whipped cream. My brother used to dig his spoon 
all the way through the layers, whereas I would eat each layer in turn. 

Well-designed software is layered just like a trifle. The bottom layer is dedicated to data 
access, with layers in between for object-relational mappers, domain models, services, and 
controllers—with the user interface on top. Much like eating trifle, there are two ways to slice 
any part of a layered application: vertically and horizontally. 

By slicing horizontally, you take each layer and implement what is required of those layers as 
a whole. But there is no guarantee that each slice will align at the same time. The user interface 
might allow the user to interact with certain features that layers below have not yet implemented. 
The net effect is that the client cannot use the application until a significant proportion of each 
layer has been completed. This delays the important feedback loop that Agile methods give you 
and increases the likelihood that you will build more than is needed—or simply the wrong thing.

Slicing vertically is what you should aim for. Each user story should incorporate functionality 
at each layer and should be tethered at the top to the user interface. This way, you can demon-
strate the functionality to the user and receive feedback quickly. This also avoids writing user 
stories that are developer-centric, such as, “I want to be able to query the database for custom-
ers who have not paid this month.” This sounds too much like a task; the story could be about 
generating a report on the outstanding unpaid accounts. 

It is important to note that the user stories are the bearers of story points and that these do not 
transfer down to their constituent tasks. A five-point story that is broken into three distinct tasks is 
not composed of two one-point tasks and a three-point task. This is because there is neither incentive 
nor credit for partially completed work. Unless the story—as a whole—is proven complete by the QA 
process before the end of the sprint, the points that it contains are not claimed, even in part. The story 
remains in progress until the next sprint, when ideally it will be completed early in the iteration. If a 

From the Library of Ida Schander



ptg14200592

16	 PART I  An Agile foundation

story takes too long to complete and remains in progress for a long time—more than a full sprint’s 
length—then it was probably too big in the first place and should have been sliced into smaller, more 
manageable stories.

Technical debt  Technical debt is a very interesting concept, but it is easily misunderstood. Techni-
cal debt is a metaphor for the design and architectural compromises that have been made during a 
story’s journey across the Scrum board. Technical debt has its own section later in this chapter.

Defect  A defect card is created whenever acceptance criteria are not met on a previously complete 
user story. This highlights the need for automated acceptance testing: each batch of tests written for 
a story forms a suite of regression tests to ensure that no future work is able to introduce a breaking 
change.

Defect cards, like technical debt, do not have story points assigned to them, thus removing the 
incentive to create defects and technical debt—something that developers want to avoid even if full 
eradication of defects and technical debt is unattainable.

All software has defects. That is just a fact of software development, and no amount of planning or 
diligence will ever account for the fallibility of humans. Defects can be broadly categorized as A, B, or 
C: apocalyptic defects, behavioral errors, and cosmetic issues.

Apocalyptic defects result in an outright crash of the application or otherwise prevent the continu-
ation of the user’s work. An uncaught exception is the classic example because the program must 
terminate and be restarted or—in a web scenario—the webpage must be reloaded. These defects 
should be assigned the highest priority and should be fixed before a release of the software.

Behavioral errors are often not quite as serious but can infuriate users. These types of errors could 
be even more damaging than simply crashing the application. Imagine erroneous currency conversion 
logic that rounds data badly. Whether the algorithm favors the customer or the business, someone is 
going to lose money. Of course, not all logic errors are quite this serious, but it is easy to understand 
why they should be given medium-priority to high-priority.

Cosmetic issues are typically problems with the user interface—badly aligned images, a window 
that doesn’t expand to full screen gracefully, or an image on the web that never loads. These issues 
do not affect the use of the software, just its appearance. Although these issues are often given a 
lower priority, it is still important to remember that appearances count toward the user’s expectations 
of the software. If the user interface is badly designed with buttons that don’t work and images that 
don’t load, users are less inclined to trust the internal workings of that software. Conversely, a shiny 
user interface with plenty of bells and whistles might convince users that your software is just as well 
designed internally. A common trick for projects that have developed a poor reputation is to redesign 
the user interface—perhaps even rebranding the entire product—to improve perceptions and reset 
expectations.

From the Library of Ida Schander



ptg14200592

	 CHAPTER 1  Introduction to Scrum	 17

Card sharp
A lot of options are available for customizing and personalizing the cards on the Scrum board.

Color scheme
Any color scheme will suffice for the cards, but there are a few that, in my experience, make the 
most sense. Index cards are ideal for features and user stories, whereas sticky notes make excel-
lent task, defect, and technical debt cards because they can be stuck to a relevant story. Here 
are my recommendations:

■■ Features: green index cards

■■ User stories: white index cards

■■ Tasks: yellow sticky notes

■■ Defects: red/pink sticky notes

■■ Technical debt: purple/blue sticky notes

Note that user stories and tasks, being the most common kinds of cards you will create, use 
the most commonly available index cards and sticky notes. The last thing you need is to run out 
of index cards, so try to use the most commonly available colors.

Who creates cards?
The simple answer to the question, “Who can create the cards?” is: anyone. This does, of course, 
come with some conditions. Though anyone can create a card, its validity, priority, criticality, and 
other such states are not something that should be decided by one person alone. All feature and 
story cards should be verified by the product owner, but task, defect, and technical debt cards 
are entirely the domain of the development team.

Avatars
Much like the avatars found online in forums, on blogs, and on Twitter, these are miniature 
representations of the various members of the team. Feel free to allow your team members to 
express themselves through their avatars, because it certainly adds a sense of fun to the Scrum 
process. Of course, steer them away from anything likely to cause offense, but there should be 
a sense of distinct identity for each person’s avatar. 

Over the course of an iteration, these avatars will be moved around a lot and will be handled 
on a daily basis. Because you have index-card stories and sticky-note tasks already on the board, 
these avatars should be no bigger than 2-inch squares. Laminating them will also help to protect 
them from becoming dog-eared or torn, and reusable adhesive or a little piece of tape should 
hold them in place.

From the Library of Ida Schander



ptg14200592

18	 PART I  An Agile foundation

Swimlanes
Scrum boards have vertical lines drawn on them to demarcate the swimlanes. Each swimlane can 
contain multiple user story cards to denote the progress of that story throughout its development life 
cycle. From left to right, the basic swimlanes are Backlog, In Progress, QA, and Done. 

A story in the backlog has been “committed to” for the sprint and should—unless canceled—be 
taken from the board and work on it should begin. This column can be ordered by priority so that 
the top item is always the next one that should be implemented. 

After the story is taken from the backlog and a conversation has taken place with the product 
owner about the scope and requirements, the card is returned—with newly derived tasks—to the 
In Progress swimlane. At this point, the avatars of all team members involved in the story should also 
be attached. The story now counts toward any swimlane limits that might be associated with the in-
progress phase. For example, you might require that only three user stories be in progress at a time, 
thus coercing the team to complete already-started stories in preference to those that have not yet 
been started. Remember: there is no incentive for partially completed work.

After analysis, design, and implementation have been carried out for a story, it is considered 
“developer complete” and can be moved to the Quality Assurance (QA) swimlane. Ideally, the QA 
environment should mirror the production environment as closely as possible, to avoid any environ-
mental errors that can occur from even minor differences in deployment. The test analysts will assess 
the story in conjunction with the acceptance criteria. In essence, they try to break the story and prove 
that the code does not behave in the manner in which it ought. Typically, they attempt to provide 
unusual and erroneous input to certain operations, ensuring that validation works correctly. They 
might even look for security loopholes to ensure that malicious end users cannot gain access above 
their specified privilege level. When it is fully complete, the user story is moved across to the Done 
swimlane. Any story points associated with the story are then claimed, and the sprint burndown 
chart (which shows the progress of the sprint) can be amended. These artifacts are covered in more 
detail later.

Horizontal swimlanes  The Scrum board can be further split by using horizontal swimlanes. These 
swimlanes can be used to group the stories by feature, so that everyone can see at a glance where 
effort is being concentrated, and thus where bottlenecks need to be alleviated.

One special swimlane at the top of the board is the Fast-Track lane, into which any very high prior-
ity tasks can be placed. Team members can be instructed to “swarm” on a fast-track item so that it is 
completed as quickly as possible, often to the detriment of any other outstanding work. Swarming 
ensures that the team stops what they are doing to collaborate on a problem or task that has over
riding priority. It is a useful tool and should be used sparingly, when such a priority occurs. Apocalyptic 
defects found in production are the most common fast-track items.

From the Library of Ida Schander



ptg14200592

	 CHAPTER 1  Introduction to Scrum	 19

Technical debt
The term technical debt deserves further explanation. Throughout the course of implementing a user 
story, it is likely that certain compromises will need to be made between the “ideal code” and code 
that is good enough to meet the deadline. This is not to say that poor design should be willingly tol-
erated (nor actively encouraged) in order to hit a deadline, but that there is value in doing something 
simpler now, with a view to improving it later.

Good and bad technical debt  Debt is likely to accrue gradually over the lifetime of a project. It is 
termed debt because that is a great metaphor for how it should be viewed. There is nothing wrong 
with certain types of financial debt. If, for example, you have the option of spreading the payments 
for a car over 12 months and these payments are interest-free, you are in debt, but this could be a 
good decision if you need the car for commuting and cannot afford the payment in full. The car will 
allow you to generate the revenue necessary to pay for it, because you can now get to work on time.

Of course, some debt is bad. If you take out a credit card and pay for something extravagant 
without first calculating how you will repay the debt, you can end up in a cycle of balance transfers, 
trying to keep interest payments at a minimum. This will, in hindsight, look like a bad financial deci-
sion based around bad debt. The key is to look carefully at the options and decide whether the debt 
is worth taking on or whether you should just pay up front. 

The tradeoff is the same in software. You could implement a suboptimal solution now and meet a 
deadline or spend the extra time now to improve the design, perhaps missing the deadline. There is 
no right answer that fits all situations, just guidelines for detecting good and bad technical debt. 

The technical debt quadrant  Martin Fowler, a prominent Agile evangelist, defined a technical debt 
quadrant for categorizing the concessions and compromises that might be needed to mark a story as 
done. The two axes that divide a plane into quadrants, x and y, correspond to the questions, “Are we 
accruing this technical debt for the correct reasons?” and “Are we aware of alternatives to avoid this 
technical debt?”, respectively.

If you answer “Yes” to the former question, you are adding prudent technical debt: you can point 
to valid reasons for adding it, and your conscience is clear. If you answer “No,” then this debt is reck-
less and you would be better advised to deal with this debt now, rather than allow it to accumulate.

For the latter question, an affirmative answer means that you have considered the alternatives and 
decided to take the debt. A negative answer indicates that you cannot think of other alternatives.

From the Library of Ida Schander



ptg14200592

20	 PART I  An Agile foundation

The results of these questions generate four possible scenarios, as shown in Figure 1-5:

■■ Reckless, deliberate  This type of debt is the most poisonous. It is equivalent to saying 
something like, “We don’t have time for design,” which indicates a very unhealthy working 
environment. A decision such as this should alert everyone that the team is not adaptive, and 
is marching steadily toward inevitable failure.

■■ Reckless, inadvertent  This type of debt is most likely created by a lack of experience. It is 
the result of not knowing best practices in modern software engineering. It is likely that the 
code is a mess, much like in the previous case, but the developer did not know any better and 
therefore could not find any other options. Education is the answer here: as long as developers 
are willing to learn, they can stop introducing this kind of technical debt.

■■ Prudent, inadvertent  This occurs when you follow best practices but it turns out that there 
was a better way of doing something, and “now you know how you should have done it.” This 
is similar to the previous case, but all of the developers were in agreement at the time that 
there was no better way of solving the problem. 

■■ Prudent, deliberate  This is the most acceptable type of debt. All of the choices have been 
considered, and you know exactly what you are doing—and why—by allowing this debt to 
remain. It is most commonly associated with a late decision to “ship now and deal with the 
consequences.”

FIGURE 1-5  The technical debt quadrant, as explained by Martin Fowler, helps developers visualize the four 
different categories of debt.

Repaying debt  Technical debt is not directly associated with any story points, yet the debt must be 
repaid despite the lack of direct incentive. It is best to try to attach a technical debt card to a story 
and refactor the code so that the new design is implemented along with associated new behavior. The 
next time that a story is taken from the board, check whether any of the code that will be edited has a 
technical debt attached, and try to tackle the two together. 

From the Library of Ida Schander



ptg14200592

	 CHAPTER 1  Introduction to Scrum	 21

Digital Scrum boards
A digital Scrum board, unless constantly projected on a wall, hides some of the most important infor-
mation about a project. By being open with this information and displaying it for the whole company 
to see, you invite questions about process that otherwise would not be asked. Being transparent with 
process is a huge benefit, especially when you are implementing Scrum for the first time in a company. 
It encourages buy-in from important stakeholders that you would do well to involve in the process.

It is a cliché, but people really do fear change. Fear is just a natural reaction to the unknown. By 
educating people on what you are doing and what certain charts mean (and why their wall is now 
covered in dozens of index cards), you foster a spirit of collaboration and communication that really 
is priceless. Being required to explain these things to a layman can also be helpful to you, because in 
doing so you might come to understand the process better yourself.

As with all tools, the best ones are high-touch and low-resistance. They will be used very often, 
and there will be no barriers to their use. When a tool becomes even mildly inconvenient to use, it will 
gradually be more and more neglected. What was initially used often and diligently kept up to date 
will no longer be tended, and it will rapidly fall behind reality.

The definition of done
Every project needs a definition of done (DoD). This is the standard that every user story must adhere 
to in order to be considered done. How many times have you heard these lines from a developer?

“It’s done, I just have to test it….”

“It’s done, but I found a defect that I need to fix….”

“It’s done, but I’m not 100-percent happy with the design, so I’m going to change the 
interface….”

I have used these myself in the past. If the story truly was done, there would be no caveats, condi-
tions, or clauses required. These examples are what developers say when they need to buy themselves 
a little more time due to a bad estimate or an unforeseen problem. Everyone must agree on a defini-
tion of ”done” and stick to it. If a user story doesn’t meet the criteria, it can’t possibly be done. Story 
points are never claimed until the story meets the definition of done.

What goes into a definition of done? That is entirely up to you, your team, and how stringent you 
want your quality assurance process to be. However, the following demonstrates a stock DoD as a 
starting point.

In order to claim that a user story is done, you must:

■■ Unit-test all code to cover its success and failure paths, with all tests passing.

■■ Ensure that all code is submitted to the Continuous Integration builds and compiles—without 
errors—with all tests passing.

From the Library of Ida Schander



ptg14200592

22	 PART I  An Agile foundation

■■ Verify behavior against the acceptance criteria with the product owner.

■■ Peer-review code by a developer who did not work on the story.

■■ Document just enough to communicate intent.

■■ Reject reckless technical debt.

Feel free to remove, amend, or append any rules, but be strict with this definition. If one story 
cannot meet all criteria, you either ensure that this story can meet all criteria or drop prohibitive cri-
teria from the definition of done altogether. For example, if you feel that code reviews are arcane or 
pedantic, feel free to omit that criterion from your DoD.

Charts and metrics
There are several charts that can be used to monitor the progress of a Scrum project. Scrum charts 
can indicate the health and historical progress of a Scrum project, in addition to predicting probable 
future achievement. All of these charts should be displayed prominently by the Scrum board in a size 
sufficient to be read from a few feet away. This shows the team that these metrics are not being used 
behind their back, that they are not a way of measuring their progress for the consumption of manage-
ment. Instead, be very up front about how progress is measured, and make it clear that these charts 
are not being made for performance reasons, but to diagnose problems with the project as a whole.

On a related note, try to avoid measuring anything on a personal level—such as story points 
achieved per developer. This conveys a poor message to the team: that they can sacrifice team prog-
ress for personal progress. Developers will readily attach themselves to such measurements and try to 
save face by monopolizing larger stories, trying to achieve points all by themselves. Be careful what 
you incentivize.

Caution  Be wary of what you measure—there is an ”observer effect.” For instance, for 
some metrics, the act of measuring is not possible without first altering that which is mea-
sured. Take, for example, measuring tire pressure on a car. It is very difficult to measure 
the pressure without first letting a little air out of the tire, thus altering the pressure. This 
same principle applies quite aptly to human nature, too. When the team knows that they 
are going to be measured by some criteria, they will do whatever they can to improve their 
statistics to look good. This is not to say that you are managing a group of Machiavellian 
troublemakers, but when the team realizes that story points will be used to measure their 
progress, they might be inclined to assign higher points for the same effort. Use triangula-
tion (which is covered in the “Sprint retrospective” section later in this chapter) to reconcile 
estimated effort with actual effort.

From the Library of Ida Schander



ptg14200592

	 CHAPTER 1  Introduction to Scrum	 23

Story points
Story points are intended to incentivize the team to add business value with every sprint. Story points 
are assigned to user stories by the whole development team during the sprint planning meeting 
(see the ”Sprint planning” section later in this chapter). A story point is a measure of relative effort 
required to implement the behavior that the user story represents. This is the inclusive effort required 
to fulfill the entire software life cycle—requirements analysis, technical design, and code implementa-
tion with unit testing, plus quality assurance against acceptance criteria and deployment to a staging 
environment. Although every story should already be small enough to fit comfortably inside a sprint, 
stories might still vary significantly in size.

At one end of the scale is a “one-point story” which requires minimal effort to implement. An in-
teresting and important fact about story points is that they are absolutely meaningless outside of the 
team that assigned them. A one-point story for one team might be a three-point story for another 
team. What occurs over multiple sprints is a consensus on the approximate effort required for a story. 

One thing that a story point definitely does not represent is effort measured in absolute terms—
days, hours, or any other temporal measurement. Story points do, very roughly, correspond to a 
historical range of times, as shown in Figure 1-6. In this chart, the vertical bars represent estimated 
times, and the horizontal dashes attached to the bars represent actual effort spent on a story of the 
corresponding number of points.

FIGURE 1-6  Min/max/average chart showing correlation between estimated effort and actual effort. 

The main takeaway from this chart is that larger stories have correspondingly larger ranges—the 
larger a story is assumed to be, the harder it is to accurately predict how long it will take to complete.

Velocity
Over multiple sprints, it is possible to calculate a running average of the achieved story points. Let’s 
say that a team has completed three sprints, meeting the definition of done on stories totaling 8, 12, 
and 11 story points. This is a running total of 31 and a running average of 10 points. This can be said 
to be the team’s velocity, and it can be used in two ways. 

From the Library of Ida Schander



ptg14200592

24	 PART I  An Agile foundation

First, a team’s velocity can form a ceiling for how many points a team should commit to for the 
next sprint. If the team is averaging 10 points per sprint, committing to more than that amount for a 
single iteration would be more than just optimistic—it would be setting them up for a morale-sapping 
failure. It is better to set an achievable goal and meet or exceed it than to set an unrealistic goal and 
fall short. If the team took these 10 points and actually implemented 11, it would feed into a new 
velocity of 11: (12 + 11 + 11) / 3. This is the Scrum feedback loop in action.

A second use for the velocity is to analyze problems with delivery. If the velocity of a team drops 
by a significant percentage for one sprint, this probably indicates that something bad happened 
during that sprint that needs to be rectified. Perhaps the stories were too large and their true scale 
was underestimated, thus keeping them in progress for a long time and requiring them to survive 
for more than one sprint. Alternatively, a simpler explanation could be possible—that too many key 
staff members were on vacation (or ill) all at once and progress naturally slowed. On the other hand, 
perhaps too much time was spent refactoring existing, working code, with not enough emphasis on 
introducing new behavior to the system. Whatever the reason, a 25-percent drop in velocity is not 
always disastrous, but it could be indicative of further problems to come that you should address 
as soon as possible. Week-after-week reductions in velocity—protracted deceleration—is a definite 
problem and probably points to code that is not adaptive to change; something that this book will 
help you address.

Sprint burndown chart
At the start of each sprint, a two-dimensional Cartesian graph is created and placed by the Scrum 
board. The total number of story points is charted along the y-axis, and the number of working days 
is plotted along the x-axis. A straight diagonal line (also known as the line of best fit) is then drawn to 
show the ideal progression of the sprint, as shown in Figure 1-7.

FIGURE 1-7  A sprint burndown chart at the beginning of a sprint. The straight line shows the “line of best fit” to 
the sprint goal (23 story points, in this example).

From the Library of Ida Schander



ptg14200592

	 CHAPTER 1  Introduction to Scrum	 25

At each morning’s stand-up Scrum meeting, the points associated with any completed user stories 
are claimed and deducted from the current remaining total. As illustrated in Figure 1-8, this shows the 
actual progress of the sprint against the necessary progress in order to achieve the sprint goal. 

FIGURE 1-8  A sprint burndown chart partway through a sprint. In this instance, the team is sticking closely to the  
“path of perfection,” although no progress was made between Friday and Monday of the first week.

Drawing the actual-progress line and required line in different colors helps differentiate the two. 
If at any time during the sprint the actual line is above the required line, the chart is indicating that 
there is a problem and that the amount of work that will be delivered is less than planned. Conversely, 
if the actual line is below the required line, the project is ahead of schedule. It is likely that during the 
course of a sprint, the actual line will oscillate above and below the line somewhat, without indicating 
any real problems. It is the larger divergences that need to be explained.

Burndown charts are useful when there is a fixed amount of work required in a fixed amount of time. 
Under these conditions, it is not possible to dip below the x-axis. (When y=0, you have completed all 
work assigned.)

Feature burnup chart
Just as the sprint burndown chart tracks progress at story level throughout a sprint, the feature 
burnup chart shows the progress of completed features as they are implemented. At the end of each 
sprint, it is possible that a new feature might have been implemented in its entirety. The best thing 
about this graph is that it is impossible to fake the delivery of completed features without having 
symptoms manifest quite quickly. The idea is to watch this graph increase linearly over time, ideally 
without significant plateaus. Figure 1-9 shows an example of a good feature burnup chart.

From the Library of Ida Schander



ptg14200592

26	 PART I  An Agile foundation

FIGURE 1-9  The feature burnup chart covering an adjusted calendar year for a healthy project making consistent 
progress.

Although the gradient might be shallow, this graph implies that the team has found a good rhythm 
to their development and is consistently delivering features at a fairly predictable rate. Though there are 
slight deviations from a perfectly straight line, these are nothing to worry about.

On the other hand, the burnup chart shown in Figure 1-10 shows that a definite issue has occurred 
during development. The team started very strongly, delivering lots of features extremely quickly, but 
they have since stalled and only delivered two completed features over the past eight months.

FIGURE 1-10  The feature burnup chart covering an adjusted calendar year for a project that has stalled.

From the Library of Ida Schander



ptg14200592

	 CHAPTER 1  Introduction to Scrum	 27

The problem here is quite clear: the code was not adaptive to change. The initial dash from the 
starting line could indicate a lack of unit testing and neglect for layering or other best practices. By 
omitting these details, the team managed to complete features early. However, as the code base 
became bloated and disorganized, progress began to slow down significantly and the amount of 
features delivered ground to a halt. A progression like this is likely to be accompanied by an increase 
in the amount of defects and bad—reckless—technical debt. Eventually, if the project continues to 
follow this path, it would probably be better to start over—the refactoring effort required to get it 
back on track would outweigh the benefits. If the problem was caught early enough, of course, the 
team and project could recover. However, it is probably best to start with Agile development practices 
in place from the outset, rather than trying to crowbar them in to a brownfield project.

Note  Brownfield here means a project that is already in progress. It is the opposite of a 
greenfield project, which is a new project. The terms are taken from the construction industry.

Backlogs
A backlog is a list of pending items that are yet to be addressed. These items are waiting for their 
time to be taken from the backlog and acted on until they are complete. Each item in the list has an 
assigned priority and an estimated required effort, and the list is ordered first by priority and then 
by effort.

Two backlogs are maintained in Scrum, each with its own distinct purpose: the product backlog 
and the sprint backlog.

Product backlog
At any point during a product’s life, the product backlog contains features that are waiting to be 
implemented. These features have not been committed to a sprint, so the development team is 
not actively working on the items on this backlog. However, the development team—or its key 
representatives—will have spent time estimating the effort required on these features. This helps 
to prioritize the items on the product backlog so that it remains in priority order.

The priority of each item is primarily dictated by the value that implementing the feature would 
represent to the business. This business value must be determined by the owner of the product 
backlog: the product owner. This person represents the business to the development team and can 
speak authoritatively for it. The product owner’s knowledge of the business and its working practices 
is vital for correctly assigning the business value intrinsic to any particular feature. If two items on the 
product backlog have the same relative business value, their priority is decided based on the relative 
effort required. Given two features of high business value, if one is estimated to be small and another 
estimated to be large, it makes business sense to implement the small feature first. This is because 
smaller features pose less of a risk; the probable range of time required to implement a small feature 
will not vary as much as that of a larger feature. Also, the return on investment (ROI) is larger for a 
feature that requires less effort than for one of equal value that requires more.

From the Library of Ida Schander



ptg14200592

28	 PART I  An Agile foundation

When the business wants to release a new version of the product, the product backlog can be 
consulted to determine which features are most valuable to the release. This can occur in one of two 
ways: either the business sets an absolute deadline for the release and commits to the amount of 
work likely to be accomplished in that timeframe, given the effort estimates attached; or the business 
selects the features that are required for the release and the likely release date is determined from the 
estimates. 

Aside from features, the product backlog can also contain defects that must be fixed but that have 
not yet found their way into a sprint. Just like features, defects will have some assigned business value. 
The estimate of effort required for a defect is difficult to ascertain, because there is less known about 
the cause of defects and some time might be required to find an estimate.

The product backlog should reflect the open nature of Agile reporting. It should be visible to 
everyone so that anyone can contribute ideas, offer suggestions, or indicate possible surprises along 
the way. It is also important that this list remain authoritative, containing the true state of the prod-
uct backlog at any time. Poor decisions are often made due to poor information, and an out-of-date 
product backlog could be disastrous if key release-planning decisions are ill-informed. 

Sprint backlog
The sprint backlog contains all of the user stories that are to be completed in the coming sprint. At 
the start of the sprint, the team selects enough work to fill a sprint based on their current velocity and 
the relative size of the user stories that are yet to be developed. After the stories are committed to the 
sprint, the team can start to break down each story into tasks that have real-world time estimates in 
hours. Each individual then elects to implement enough tasks to fill his or her time during the sprint.

The sprint backlog and all of the time estimates are owned by the team. No one outside of the de-
velopment team can add items to the sprint backlog, nor can they reliably estimate the relative effort 
or absolute hours required to complete work. The team alone is responsible for the sprint backlog, 
but they must take work from the product backlog in priority order. 

The sprint

The iterations of a Scrum project are called sprints. Sprints should last between one and four weeks, 
with two-week sprints commonly favored. A shorter sprint might leave too little time to accomplish 
the sprint goals, and a longer sprint might cause the team to lose focus.

Sprints are generally referred to by their index number, starting with sprint zero. Sprint zero is 
intended to prepare the development environment for the whole team, and to carry out some pre-
liminary planning meetings before the first actual sprint begins. There will probably not be any points 
associated with sprint zero, but a lot can be achieved in those first weeks to make the transition to 
Scrum easier during subsequent sprints.

The temptation is to align sprints to the working week by starting them on a Monday and ending 
them on a Friday. The trouble with this is that the sprint retrospective (which will be covered shortly) 

From the Library of Ida Schander



ptg14200592

	 CHAPTER 1  Introduction to Scrum	 29

involves quite a lot of time in meetings, and there is nothing more energy-sapping than sitting in 
meetings on a Friday afternoon. Some people also tend to leave early on Fridays, and concentration 
levels are likely to dip before the weekend. Similarly, no one looks forward to starting their week with 
meetings, so it is perhaps best to avoid this and start your sprints around midweek: Tuesday, Wednes-
day, or Thursday.

The following is an explanation of all of the meetings that form part of each sprint, in order, unless 
otherwise stated.

Release planning
At some point before the sprint begins, the release of the software must be planned. This involves the 
customer and the product owner deciding on a release date and prioritizing and sizing the features 
that are to be included.

Feature estimation
Features can involve a lot of effort, even on the smaller end of the scale. Thus, any attempts to accu-
rately predict the amount of effort required will likely be off by a wide margin. For this reason, feature 
effort can be stated in common T-shirt sizes:

■■ Extra-large (XL)

■■ Large (L)

■■ Medium (M)

■■ Small (S)

■■ Extra-small (XS)

Feature priority
It might be difficult to predict how many features can fit into a release, which is why feature priority is 
so important. For a specific release, all features can be given one of three priorities:

■■ Required (R)

■■ Preferred (P)

■■ Desired (D)

Required features form part of the Minimum Viable Release. Preferred features are the features 
that should be tackled if any time is available before the deadline looms. Desired features are the low-
est priority, those features that are not essential—but that the customer would certainly like to have 
implemented—for this release, anyway.

In addition, business stakeholders should number the features so that the development team can 
be sure to implement each feature in priority order.

From the Library of Ida Schander



ptg14200592

30	 PART I  An Agile foundation

Sprint planning
The expected outcome of sprint planning is to estimate user stories. As with all parts of the Scrum 
process, there are variations of the story estimation process. This section discusses planning poker, 
which is one of the more common ways to generate discussion, and affinity estimation, a quicker 
way to estimate the relative size of stories. Affinity estimation is better when there are a large 
number of stories to estimate. For an individual sprint, it is possible to use planning poker if there 
are only a few stories to estimate or to use affinity estimation if there are a larger number of stories  
or if time is short.

Planning poker
The planning poker session involves the whole development team—business analysts, developers, 
and test analysts—including the Scrum master and the product owner. For every user story that is 
currently on the product backlog, a small scope explanation is given, and then everyone is asked to 
vote on its size in story points.

In order to avoid a lot of small-scale differences, it is best to limit the voting options. For example, 
a common choice is a modified Fibonacci scale: 1, 2, 3, 5, 8, 13, 20, 40, and 100. Regardless of the scale 
chosen, the choices should be limited overall and the gaps between the options should increase in 
size as the number of points goes up. At the lower end of the scale, zero can be added to represent 
”no work required,” for a story that requires a negligible amount of work. At the upper end of the 
scale, team members can vote that a story is too big to implement within a sprint and must be 
vertically split further before being taken off the board to develop. 

A few decks of playing cards double well as voting cards, but you can also fashion voting cards 
from spare index cards or even just scribble numbers on pieces of scrap paper. When it comes time 
to vote, everyone should show their cards at the same time, to avoid being influenced by the choices 
of others. It is unlikely that consensus will be achieved all the time, and there could be some large 
divergences between individual estimates. This is perfectly normal—there is sure to be a couple of 
outliers who deviate from the average vote. These voters should be asked to justify their choice in 
light of the general consensus. For example, if someone votes a 1 when the average vote was 8, that 
person would be asked—politely, of course—to explain why they think the story requires that much 
less effort. Similarly, voters who vote above the average should be asked to explain their reasons, too. 
All that is occurring here is that a discussion is generated about how much effort the team believes is 
required to carry a story to its conclusion. 

After the justifications have been aired, a revote might be necessary because other people could 
have been persuaded that their vote was actually too big or too small and that the outlier was in fact 
correct. Eventually, consensus should be achieved, with all parties agreeing on a suitable number of 
story points. Each story should be estimated until the number of points assigned reaches the team’s 
current velocity, which is the maximum amount of work that the team should commit to in each sprint.

From the Library of Ida Schander



ptg14200592

	 CHAPTER 1  Introduction to Scrum	 31

Avoiding Parkinson’s Law
Parkinson’s Law states:

“Work expands so as to fill the time available for its completion.”
—Cyril Northcote Parkinson

When you untether the estimates of stories from real-world time, there is less likelihood of 
succumbing to Parkinson’s Law. The focus should remain on completing the story—that is, on 
meeting the definition of done—as quickly as possible.

Affinity estimation
Affinity estimation is provided as a counterpoint to planning poker, which can take a significant 
amount of time to generate estimates if there are a lot of stories. Rather than entering into a discussion 
for each story, the team picks two stories from the top of the product backlog and then decides which 
is the smaller of the two. The smaller is placed on the left side of a table and the larger on the right.

The team then proceeds to take a single story from the product backlog and places it where they 
believe it should go on the spectrum between the existing smaller and larger stories. It could feasibly 
be placed to the left of the smaller story, indicating that it is smaller still; to the right of the larger, 
indicating that it is larger still; on top of the small or large story, indicating that it is roughly the same; 
or anywhere in between the two stories. This process then continues for each story on the product 
backlog, until there is no more room in the sprint for extra work.

With the stories grouped together by relative size, the team can start at the leftmost group and 
proceed toward the rightmost group, allocating points to the stories according to the modified 
Fibonacci sequence. If there are many stories to estimate, or if time is scarce, this is a good way of 
achieving a ballpark estimate of relative size. 

Daily Scrum
Although there are several meetings that will last a couple of hours, the Scrum process itself is only 
really visible day to day at the daily Scrum, or “stand-up meeting.”

The team should gather around the Scrum board in a horseshoe shape and each person, in turn, 
should address the whole team. The daily Scrum should not last longer than 15 minutes. To focus the 
meeting, everyone should answer these three questions: 

■■ What did you do yesterday?

■■ What will you do today?

■■ What impediments do you face?

From the Library of Ida Schander



ptg14200592

32	 PART I  An Agile foundation

The key issues that the daily stand-up meeting addresses are yesterday’s actual progress and to-
day’s estimated progress. In discussing what you did yesterday, refer to the Scrum board and feel free 
to move cards across from one swimlane to another or move your avatar from one card to another, 
thus keeping the Scrum board current. Outline what you worked on and how the day went. If you do 
not have anything to do at this point, notify the Scrum master and request a new work item. Impedi-
ments include anything that might prevent you from completing your goal for the day. Because you 
will refer back to what you claim you will be doing today in tomorrow’s daily Scrum, it is important 
to enumerate anything that might prevent you from achieving what you plan to do. The impediment 
could be directly work related, as in, “I will not be able to continue if the network keeps going down 
like it did yesterday,” or it might be a personal matter, as in “I have an appointment with the dentist at 
14:00, so I’m unlikely to complete everything.” Regardless, the Scrum master should be taking notes 
so that she knows how everyone is progressing with their stories.

Niko-niko calendar
A “niko-niko calendar”—also sometimes referred to as a “mood board” (in Japanese, “niko-niko” 
has a meaning close to “smiley”)— provides a good barometer of how the team feels about 
their progress during the sprint. A table is drawn by the Scrum board, with the days of the sprint 
across the top and the names of the team members down the side, as shown in Figure 1-11.

FIGURE 1-11  A niko-niko calendar quickly shows who is having a good sprint and who is not.

At the Scrum meeting, each person is asked to place one of three stickers on the board—
green, yellow, or red—in their square for the previous day. Each sticker corresponds to an over-
all summary of how the previous day went: good, okay, or bad, respectively. This will quickly 
show when team members are having consecutive frustrating days and require help, which they 
might not otherwise seek. 

This is just another metric to improve the feedback loop. If all of your team members are 
consistently feeling bad about their work, perhaps morale needs to be boosted. Or if one 
of the team is consistently unhappy but the rest of the team is happy, this could indicate that 
someone is being left behind or doesn’t feel like he/she fits in. Worst of all, if the whole team 
feels happy when sprints are running late, the code is in a mess, and clients are knocking down 
the door for their money back—the team has stopped caring! 

From the Library of Ida Schander



ptg14200592

	 CHAPTER 1  Introduction to Scrum	 33

After everyone has spoken, the meeting is over. One thing to be vigilant against is tangential con-
versations. It is extremely tempting to try to talk through problems during the Scrum. If someone 
mentions an impediment of some weird and wonderful behavior in the code base, all of the develop-
ers will likely want to hypothesize about the possible causes. Be aware of who needs to be present for 
such conversations—do the test analysts really need to listen to a discussion on why Microsoft Visual 
Studio is using the coders’ entire available RAM? No, most likely not. Make a note of the problem and 
ask the appropriate people to take the discussion offline (after the meeting).

Sprint demo
A sprint demo is a key event to put in the sprint calendar. It is a showcase of all of the completed 
stories—those that have met the definition of done during the sprint—in action in a real environment. 
The entire development team should be present, and you could also invite other stakeholders to the 
meeting, such as management or sales team representatives. Anyone who might have an interest 
in the project’s progress should be free to attend. This further fosters an openness that all projects 
should have.

Collect all of the completed user stories from the Scrum board and, for each one, explain its scope 
and what it was intended to achieve as part of the project as a whole. Refer to the feature to which the 
story belongs, and the change in application behavior that has occurred as a result of its implementa-
tion. Proceed to demonstrate this behavior by using a real deployment of the system. Invite questions 
from the audience, but do be careful about off-topic issues or getting sidetracked by irrelevance. Keep 
the conversation focused, and offer to talk to people individually after the demo has completed. Any 
suggestions for improvements should feed back into the product backlog so that they are correctly 
prioritized and scheduled. It sometimes feels that improvements suggested in the demo are suddenly 
the most important things to be done, but this is rarely a reflection of reality. 

The demo should not be feared, but it certainly incentivizes progress. No one wants to cancel a 
demo because nothing has been completed, but resist the temptation to circumvent the definition of 
done just to demonstrate something. By being honest about progress, you will not have to hide any 
problems. Instead, point to the charts and metrics to explain probable causes for the reduced output.

Specifying a time before the demo when code will be locked is also a good idea, to prevent those 
tempting last-minute changes to try to claim more points. Dedicate a realistic amount of time before 
the demo to set up the environment and ensure that everyone is ready, and guard against throwing 
reckless technical debt into the code for a short-term boost. 

Discipline is the ability to consistently choose perpetual benefit over fleeting 
temptation.

Mike Alexander, Fitness Expert

From the Library of Ida Schander



ptg14200592

34	 PART I  An Agile foundation

Sprint retrospective
When the sprint demo is complete, it is time to take stock of the iteration and gauge opinions about 
its overall success. For some team members, the sprint might have been a resounding success, whereas 
for others, it might have been an absolute disaster. The sprint retrospective can help you distill the 
elements that went well into actions that bear repeating and isolate problems so that they can be 
dealt with. The output from the sprint retrospective should not be written once and forever forgotten. 
It should be referred to at the end of the next sprint to ensure that requisite changes were made and 
that mistakes were not repeated.

The following questions should be asked of the team during the retrospective:

■■ What went well?

■■ What went badly?

■■ What do we need to start doing?

■■ What do we need to stop doing?

■■ What do we need to continue doing?

■■ Did we experience any surprises during the sprint?

Starting with the positive, ask each team member to elaborate on what they felt went well about 
the sprint. Perhaps they were very happy with the progress that was made, or with the quality of the 
work that was produced. 

Next, ask them to explain what went badly in the sprint. Perhaps some tasks were more difficult 
and involved than first anticipated, thus causing an otherwise simple story to be delayed. Whatever 
the problem, it is certain that some kind of resolution can be found. There is nothing wrong with 
candidness, as long as it is accompanied by objectivity. No one should be accusatory against other 
team members, and all criticism should be given constructively and received gracefully. The goal is 
an improvement of the process and the product.

It could be that there are certain things that the team does not currently do that should be intro-
duced to the process. Perhaps there are not yet any formal unit tests to accompany the code, and the 
team believes that this should be introduced at this stage. As with all suggestions, the Scrum master 
should be actively taking notes to take action later.

Equally, there could be things that the team is doing that they feel should be stopped. Prime 
examples are to stop unplanned digressions in meetings and to stop moving stories into the In 
Progress lane when there is plenty of work already there. This latter problem is quite common and 
can be solved by putting capacity limits on certain swimlanes. By enforcing that no more than three 
stories can be in progress at a time, team members are encouraged to help finish work that has 
already begun rather than start something afresh.

From the Library of Ida Schander



ptg14200592

	 CHAPTER 1  Introduction to Scrum	 35

Some things that went well will yield actions that bear repeating. If the sprint demo went well and 
it was decided that this was due to good preparation beforehand, make a note to continue to do this. 
It is quite surprising how quickly good habits can be forgotten and bad habits take their place.

Finally, the team should recall any surprises—good or bad—that were revealed during the sprint. 
Any bad surprise should result in an action item to avoid such an occurrence in the future, whereas a 
good surprise could result in behavior that bears repeating.

At least one action item from the retrospective should be prioritized for the next sprint. The out-
comes of this meeting should not be forgotten; they should be acted on.

Story point triangulation
Some of the stories during the sprint might have required more or less effort than was estimated by 
the team during the sprint planning meeting. Taking 5 or 10 minutes at the end of the sprint retro-
spective to triangulate the estimated stories with the actual effort expended can be rewarding. 

After a couple of sprints, there will be statistics available for how long each story actually took in 
comparison to its story point estimate. For example, you might have a table something like Table 1-1.

TABLE 1-1  Statistics for the average, minimum, and maximum actual effort compared to user story estimates 
on a hypothetical project

Story points Average actual effort 
(hours)

Minimum actual effort 
(hours)

Maximum actual effort 
(hours)

1 5.5 1 19

2 9.5 2 23

3 17 7.5 40

5 36 20 76

8 56 40 86

13 88 68 154

If a one-point story for a sprint actually took 60 hours to complete, it was probably closer to an 
eight-point story. As long as there were no mitigating circumstances—such as a lack of developer 
resources because of absence—the estimate can be safely deemed to have been erroneous. If you 
claim the eight story points instead, your velocity will not suffer as a result, and the amount of stories 
that the team can commit to does not decrease. 

Focus on the stories that are significantly out of range. If a one-point story fits into the range for a 
two-point or three-point story, it is unlikely to make a significant difference to take more points. 

From the Library of Ida Schander



ptg14200592

36	 PART I  An Agile foundation

Scrum calendar
For clarity, a calendar showing the typical Scrum meetings over the course of a sprint is shown in 
Table 1-2.

TABLE 1-2  A possible calendar for organizing the Scrum meetings of a sprint for a hypothetical project

Date (April 2013) Time Type of meeting Attendees

Tuesday 2nd 13:00-15:30 Sprint planning Development team;  
product owner

Wednesday 3rd 09:30-09:45 Daily Scrum Development team

Thursday 4th 09:30-09:45 Daily Scrum Development team

Friday 5th 09:30-09:45 Daily Scrum Development team

Monday 8th 09:30-09:45 Daily Scrum Development team

Tuesday 9th 09:30-09:45 Daily Scrum Development team

Wednesday 10th 09:30-09:45 Daily Scrum Development team

Thursday 11th 09:30-09:45 Daily Scrum Development team

Friday 12th 09:30-09:45 Daily Scrum Development team

Monday 15th 09:30-09:45 Daily Scrum Development team

Tuesday 16th 10:00-11:20 
 
11:30-12:00 
 
13:00-15:30

Sprint demonstration 
 
Sprint retrospective 
 
Sprint planning

Anyone 
 
Development team 
 
Development team;  
product owner

Observe that almost a whole day is dedicated to the end of a sprint and the beginning of a new 
sprint. This is called Sprint Handover Day and, to maintain concentration levels, it is sometimes split 
between two consecutive days: an afternoon and the following morning. The sprint demo and retro-
spective would then be held Tuesday afternoon, and the sprint planning meeting would be moved to 
Wednesday morning.

Another interesting point is the timing of the daily Scrum. If it is too early in the day, attendance 
can be a problem because people could be delayed by traffic or otherwise waylaid. Similarly, if it is 
too late, dragging people from their desks when they are already involved in a task is also difficult. 

These meetings can be added to Microsoft Outlook or some other calendar program, with the 
relevant people attached as attendees. 

From the Library of Ida Schander



ptg14200592

	 CHAPTER 1  Introduction to Scrum	 37

Problems with Scrum and Agile

Agile processes are not a miracle solution, destined to turn every failing project to profitability and 
success. The aim of any software development process is to create repeatable success when delivering 
software, but that software still needs to be written. No amount of documentation can remove the 
fact that a software product is the result of working source code.

This book teaches developers how to create software solutions that are adaptive. This means that 
they are resilient to the sort of change to which all software is subjected. It is irrational to assume that 
the first attempt at a solution will meet all of the needs of the customer, so change is inevitable. Agile 
processes—and Scrum is no exception—aim to embrace this change and seek to ensure that custom-
ers are allowed to make alterations to the behavior of the software as it is developed. Otherwise, they 
would be forced to accept a substandard solution that misses the mark.

Maladaptive code
Code that is not adaptive is maladaptive. If code is maladaptive, it does not readily lend itself to 
change. The estimates that the team assigned to various tasks could be significantly different from 
reality because the code takes much longer to change than it really should. Changing the code might 
also result in the introduction of defects that will eventually take further time, effort, and resources to 
be fixed. 

Rigidity
Code can display a few different signs of rigidity, each of which needs to be addressed so that 
changes don’t become increasingly difficult, limiting the number of features that can be delivered. 

Lack of abstractions  An abstraction hides the details of something, showing instead a much 
simpler representation. Abstractions are all around us. The steering wheel in your car abstracts the 
mechanical implementation that eventually turns the wheels in either direction. In fact, there are 
two common types of steering: rack-and-pinion steering and recirculating-ball steering. In either 
implementation, the end result is that both of the wheels turn to match how much you have turned 
the steering wheel, in relative terms. Also, the left and right wheels do not turn the same amount. 
Because the inside wheel traces a circle of smaller radius than the outside wheel, it must turn more 
tightly than the outside wheel. 

Of course, you do not need to know any of this to drive a car. Sure, it might help you diagnose 
problems or explain how it works, but as an everyday driver, all this is extraneous information that is 
not vital to you. The abstraction hides as many details as it can and gives you just enough to get by.

From the Library of Ida Schander



ptg14200592

38	 PART I  An Agile foundation

In software, abstractions are key. The user interface does not need to know what storage medium 
is being used to house the user’s input. In fact, if it does know this, there is a lack of abstraction, and 
the user interface becomes hopelessly obsessed with details that it need not and should not be con-
cerned with.

Code with sufficient abstractions will be better organized, easier to understand and communicate 
to others, and easier to maintain, and it will contain fewer errors. 

Mixed responsibilities  Often, code gradually grows organically from something small, perhaps 
even trivial, to something much bigger and more important. Incremental changes are made, one on 
top of the other, until some critical point is reached when a single change can have many related and 
unpredictable consequences.

This sort of code contains methods, classes, and possibly even whole modules that have no sin-
gle discernable purpose. Instead, each fulfills several different responsibilities that cannot be easily 
separated. In this code, a change that should only take a few hours to complete can easily end up 
taking a day or more of wrestling with the side-effects that one change has on another, ostensibly 
unrelated, area of the code.

To avoid this, ensure that code at every level—methods, classes, and modules—focuses on one 
well-defined responsibility.

Untestability
Unit testing has been an established practice for many years now. It is a reliable method of ensuring 
code correctness that should feel entirely natural to many developers. However, it takes constant 
discipline and diligence to ensure that code remains testable over the long term. 

If code is untestable, it is untested. If code is untested, it will contain defects. There is no quantum 
state indeterminacy at play here: you must simply assume that untested code contains defects. That 
is the level of suspicion with which you should treat such code.

The following concepts, and testability in general, are discussed in further detail in Chapter 4, 
“Unit testing and refactoring.”

Skyhooks vs. cranes  Daniel C. Dennett wrote in his 1995 book, “Darwin’s Dangerous Idea” 
[emphasis mine]:

“A skyhook is … an exception to the principle that all design, and apparent design, 
is ultimately the result of mindless, motiveless mechanicity. A crane, in contrast, is a 
subprocess or special feature of a design process that can be demonstrated to permit 
the local speeding up of the basic, slow process of natural selection, and that can be 
demonstrated to be itself the predictable (or retrospectively explicable) product of 
the basic process.”

Daniel C. Dennett,  
Darwin’s Dangerous Idea: Evolution and the Meaning of Life, 1995 [Simon & Schuster]

From the Library of Ida Schander



ptg14200592

	 CHAPTER 1  Introduction to Scrum	 39

Sidestepping the religiosity of the content, put simply, a skyhook is a way to explain something 
without reference to a prior antecedent. Conversely, cranes have explicable antecedents—perhaps 
until arriving at some primary axiom.

This is a useful analogy in programming, too. Skyhooks are indicative of a deeper problem. All 
skyhooks should be replaced with appropriate cranes.

The presence of a skyhook in code is difficult to replace with a fake implementation, thereby 
reducing testability. Examples of skyhooks are:

■■ Static methods

■■ Static classes (including singletons)

■■ Object construction that uses new

■■ Extension methods

Each of these make testing more difficult1 by hindering your ability to inject mocks into your code; 
they are skyhooks and thus they are undesirable. Each is used ex nihilo—from nothing.

Luckily, each of these can be replaced with a suitable crane, such as the following, that will facilitate 
some kind of external injection (that is, it can be used ex materia—from something).

■■ Interfaces

■■ Dependency injections

■■ Inversion of control

■■ Factories

In subsequent chapters of this book, each of these ”cranes” of programming are explained in more 
detail.

Metrics
Source code has been subject to many different metrics through the years, each attempting to reduce 
the complexity of code down to numbers that indicate the health—or otherwise—of the project as a 
whole.

This might seem rather reductive, but metrics have evolved somewhat since middle-management 
obsessed over source lines of code (SLOC). Although SLOC correlates well to the effort required—it 
takes longer to write more lines of code than it does to write fewer—it does not necessarily correlate to 
the level of functionality of a system. Nor, indeed, is it a reliable measure of a developer’s productivity. 

1	  Difficult, though not impossible. Some mocking frameworks, such as TypeMock (www.typemock.com), are able to 
mock skyhooks. However, this should only be considered if the skyhooks are in third-party, unchangeable code.

From the Library of Ida Schander

http://www.typemock.com


ptg14200592

40	 PART I  An Agile foundation

Cum hoc ergo propter hoc
The Latin phrase cum hoc ergo propter hoc translates to “With this, therefore because of this.” 
This is an example of a logical fallacy: a mistake in reasoning. It is the misapprehension that, 
because an event statistically occurs in conjunction with some other event, one of those 
events occurs because of the other. Sometimes this is quoted as, “Correlation does not imply 
causation.”

It is important to remember that, with all of these metrics, there is merely a statistical corre
lation between a desirable value for the metric and the nebulous goal of “good code.”

Unit test coverage  Unit test coverage is a measurement of the percentage of the code that is 
covered by unit tests. This ranges from 0 percent, indicating that none of the code is covered by any 
tests, to 100 percent, where every line of code is covered by at least one unit test. Typically, coverage 
of 80 percent is considered a minimum acceptable level. 

In addition to the unit tests, unit test coverage tools should be run by the continuous integration 
server, which will compile the code every time it is committed to source control. This will allow you to 
gain fast feedback on any movements in code coverage.

Test coverage is somewhat misleading, because it is a quantitative measure of the unit tests, as op-
posed to a qualitative measure. It is easy to increase code coverage with any tests, as opposed to the 
right tests. 

If test coverage is below 80 percent—or whatever your chosen benchmark is—then it can be incre-
mentally increased over time toward your overall coverage goal. With each increase, the continuous 
integration build should be configured to fail if the coverage percentage slips backward. This means 
that no new production code can be added without accompanying unit tests, otherwise the coverage 
percentage would be diluted and would decline.

Cyclomatic complexity  Cyclomatic complexity is a measure of the number of paths that exist in 
the code. With each additional branch in the code—if statements, loops, or switch statements—the 
cyclomatic complexity increases. As Figure 1-12 shows, a simple if statement and inner loop can be 
modeled as a graph As the figure shows, the total number of paths through the statement and loop is 
equal to the cyclomatic complexity of the code.

The edge labeled 1 is the case when the if statement has a false condition, thus its body is not 
executed. Edge 2 is when the if statement’s body is executed, but the contained loop is not. Edge 3 is 
the case when both the if statement and loop are executed.

From the Library of Ida Schander



ptg14200592

	 CHAPTER 1  Introduction to Scrum	 41

FIGURE 1-12  Each extra path through the code adds further complexity.

As cyclomatic complexity increases, the testing effort required in order to gain unit test code cover-
age on each branch also increases. Therefore, it is best to keep branching, thus cyclomatic complexity, 
low to avoid extra test code.

There is also a statistical correlation between high complexity and defect count. That is, code with 
more branching tends to have more defects.

Conclusion

This chapter has served as an introduction to the Scrum process. If you have never worked on a Scrum 
project, I hope that your interest has now been piqued sufficiently to do so. On the other hand, if you 
do work on a Scrum project, perhaps there were some new ideas in this chapter that you want to use. 

Though there is admittedly a lot of ground still not covered in this chapter with respect to Scrum, 
the rest of the book is dedicated more to the developer’s point of view of an Agile project. However, 
there are plenty of resources available for learning more about Scrum and discovering whether it is a 
good fit for your company and your projects.

Scrum projects, like any software projects, are vulnerable to failure. Spotting when something is 
going wrong is a significant part of the battle, but spotting why it is happening can be even harder. 
The internal machinations of the code might be designed in a way that makes change very difficult—
no matter what process is in place for managing this change. The rest of this book will provide advice 
and guidelines for ensuring that code is adaptive from the bottom up, making change easier and 
allowing you to focus solely on adding business value with every sprint.

From the Library of Ida Schander



ptg14200592

This page intentionally left blank 

From the Library of Ida Schander



ptg14200592

		  43

C H A P T E R  2

Dependencies and layering

After completing this chapter, you will be able to

■■ Manage complex dependencies from method level to assembly level.

■■ Identify areas where dependency complexity is greatest and use tools to reduce complexity.

■■ Decompose your code into smaller, more adaptive pieces of functionality that promote reuse.

■■ Apply layering patterns where they are most useful.

■■ Understand how dependencies are resolved and debug dependency problems.

■■ Hide implementations behind simple interfaces.

All software has dependencies. Each dependency is either a first-party dependency within the same 
code base, a third-party dependency on an external assembly, or the ubiquitous dependency on the 
Microsoft .NET Framework. Most nontrivial projects make use of all three types of dependency. 

A dependency abstracts functionality away from calling code. You don’t need to worry too much 
about what a dependency is doing, much less how it is doing it, but you should ensure that all de-
pendencies are correctly managed. When a dependency chain is poorly managed, developers force 
dependencies that need not exist and tangle the code into knots with spurious assembly references. 
You might have heard the adage that “the most correct code is that which is not written.” Similarly, 
the best-managed dependency is that which does not exist.

To keep your code adaptive to change, you must manage dependencies effectively. This applies 
at all levels of the software—from architectural dependencies between subsystems to implementa-
tion dependencies between individual methods. A poorly architected application can slow down the 
delivery of working software, even halt it entirely in the worst case. 

I cannot emphasize enough how important it is to take a purist approach to dependency man-
agement. If you compromise on such an important issue, you might notice a temporary increase in 
velocity, but the long-term effects are potentially fatal to the project. It is an all-too-familiar story: the 
short-lived productivity boost quickly dissipates as the amount of code and number of modules in-
creases. The code becomes rigid and fragile, and progress slows to a crawl. In terms of Scrum artifacts 
and metrics, the sprint burndown chart flatlines because no story points are claimed and, as long as 
the problem is unaddressed, the feature burnup chart follows suit because no features are completed. 
Even the bug count increases. When the dependency structure is incomprehensible, a change in one 
module can cause a direct side effect in another, seemingly unrelated module.

From the Library of Ida Schander



ptg14200592

44	 PART I  An Agile foundation

With discipline and awareness, you can easily manage dependencies. There are established pat-
terns that help you arrange your application in the short term so that it can adapt to changes in the 
long term. Layering is one of the most common architectural patterns, and this chapter elaborates on 
the different layering options available, in addition to other methods of dependency management.

The definition of dependency

What is a dependency? Generically, a dependency is a relationship between two distinct entities 
whereby one cannot perform some function—or exist—without the other. A good analogy of this is 
that one person can be said to be financially dependent on another. Often, in legal documents, you 
are required to state whether you have any dependents—that is, whether anyone depends on you for 
their living expenses and other basic necessities. This typically refers to a spouse or children. When I 
lived in Bermuda, for example, I had a work permit that stated that my wife and my daughter could 
stay there only as long as my work permit was valid. In this way, they were dependent on me and they 
were my dependents.

Transferring this definition to code, the entities are often assemblies: assembly A uses another as-
sembly, B, and thus you can say that A depends on B. A common way of stating this relationship is that 
A is the client of B, and B is the service of A. Without B, A cannot function. However, it is very impor-
tant to note that B is not dependent on A and, as you will learn, must not and cannot depend on A. 
This client/service relationship is shown in Figure 2-1.

FIGURE 2-1  In any dependency relationship, the dependent is referred to as the client, and the entity that is being 
depended on is the service.

Throughout this book, code is discussed from the point of view of the client and the service. 
Although some services are hosted remotely, such as services that were created by using Windows 
Communication Foundation (WCF), this is not a prerequisite to code being termed a service. All code is 
service code and all code is client code depending on the perspective from which you are approach-
ing the code. Any class, method, or assembly can call other methods, classes, and assemblies; thus the 
code is a client. The same class, method, or assembly can also be called by other methods, classes, 
and assemblies; thus the code is also a service. 

A simple example
Let’s look at how a dependency behaves in a practical situation. This example is a very simple con-
sole application that prints a message to the screen. It’s the universal ”Hello World!” example. This 
example is necessarily trivial, because I want to distill the problems with dependencies down to their 
essence.

From the Library of Ida Schander



ptg14200592

	 CHAPTER 2  Dependencies and layering	 45

You can follow the steps here manually or retrieve the solution from GitHub. See Appendix 
A, “Adaptive tools,” for basic instructions on using Git, and Appendix B, “Git branches,” (online only) 
for a reference of each code listing to a Git branch name.

1.	 Open Microsoft Visual Studio and create a new console application, as shown in Figure 2-2. 
I have called mine SimpleDependency, but the name is not important. 

FIGURE 2-2  The New Project dialog box in Visual Studio allows you to select from many different project 
templates.

2.	 Add a second project to the solution, this time a class library. I have called mine Message­
Printer.

3.	 Right-click the console application’s References node and select Add Reference. 

4.	 In the Add Reference dialog box, navigate to Projects and select the class library project.

You have now created a dependency from one assembly to another, as shown in Figure 2-3. Your 
console application depends on your class library, but the class library does not depend on your con-
sole application The console application is the client, and the class library is the service. Although this 
application does not do much at the moment, build the solution and navigate to the project’s bin 
directory—this is where the executable file is.

From the Library of Ida Schander



ptg14200592

46	 PART I  An Agile foundation

FIGURE 2-3  The referenced assemblies for any project are listed under its References node.

The bin directory contains the SimpleDependency.exe file, but it also contains the Message­
Printer.dll file. This was copied into the bin directory by the Visual Studio build process because 
it was referenced as a dependency by the executable. I want to show you an experiment, but first 
a slight modification to the code is needed. Because this is a console application that does nothing, 
it will initialize and shut down before you have any time to react. Open the console application’s 
Program.cs file.

Listing 2-1 shows the addition (in bold) inside the Main method. This is the entry point to the ap-
plication that currently does nothing and exits quickly. By inserting a call to Console.ReadKey(), 
you ensure that the application waits for the user to press a key before it terminates.

LISTING 2-1  The call to ReadKey prevents the console application from exiting immediately.

namespace SimpleDependency 
{ 
  class Program 
  { 
    static void Main() 
    { 
      Console.ReadKey(); 
    } 
  } 
}

Rebuild the solution and run the application. As expected, it shows the console window, waits for 
you to press a key on the keyboard, and then terminates after you do so. Place a breakpoint on the 
Console.ReadKey() line, and debug the solution from Visual Studio.

From the Library of Ida Schander



ptg14200592

	 CHAPTER 2  Dependencies and layering	 47

When the application pauses at the breakpoint, you can view the assemblies that have been loaded 
into memory for this application. To do this, you can either use the menu bar to select Debug > 
Windows > Modules, or you can use the keyboard shortcut Ctrl+D, M. Figure 2-4 shows the list of 
modules that have been loaded for the application.

FIGURE 2-4  When you are debugging, the Modules window shows all of the currently loaded assemblies.

Did you notice something strange? There is no mention of the class library that was created. For 
this example, shouldn’t MessagePrinter.dll be loaded? Actually, no—this is exactly the expected 
behavior. Here’s why: the application isn’t using anything from inside the MessagePrinter assembly, 
so the .NET runtime does not load it.

Just to prove conclusively that the dependent assembly is not really a prerequisite, navigate again 
to the console application’s bin directory and delete MessagePrinter.dll. Run the application 
again, and it will continue happily without raising an exception.

Let’s repeat this experiment a couple more times to truly find out what is happening. First, add 
a using MessagePrinter directive to the top of the Program.cs file. This imports the Message­
Printer namespace. Do you think this is enough to cause the Common Language Runtime (CLR) to 
load the module? It is not. The dependency is once again ignored, and the assembly is not loaded. 
This is because the using statement for importing a namespace is just syntactic sugar that only 
serves to reduce the amount of code you need to write. Rather than writing out the entire namespace 
whenever you want to use a type from inside it, you can import the namespace and reference the 
types directly. The using statement generates no instructions for the CLR to execute. 

This next test builds on the first test, so you can leave the using statement in place. In Program.cs, 
above the call to Console.ReadLine(), add a call to the constructor for MessagePrinting.Service, 
as shown in Listing 2-2. 

From the Library of Ida Schander



ptg14200592

48	 PART I  An Agile foundation

LISTING 2-2  Introducing a dependency by calling an instance method.

using System; 
using MessagePrinter; 
 
namespace SimpleDependency 
{ 
  class Program 
  { 
    static void Main() 
    { 
      var service = new MessagePrintingService(); 
      service.PrintMessage(); 
      Console.ReadKey(); 
    } 
  } 
}

The Modules window now shows that the MessagePrinter.dll assembly has been loaded, be-
cause there is no way to construct an instance of the MessagePrintingService without pulling the 
contents of the assembly into memory.

You can prove this if you delete the MessagePrinter.dll from the bin directory and run the 
application again. An exception is thrown this time.

Unhandled Exception: System.IO.FileNotFoundException: Could not load file or assembly 
'MessagePrinter, Version=1.0.0.0, Culture=neutral, PublicKeyToken=null' or one of its 
dependencies. The system cannot find the file specified.

Framework dependencies
The dependency shown in the previous section is called a first-party dependency. Both the console 
application and the class library on which it depends belong to the same Visual Studio solution. This 
means that the dependency should always be accessible, because the dependency project can always 
be rebuilt from the source code if necessary. It also means that you can modify the source code of 
first-party dependencies. 

Both projects have other dependencies in the form of .NET Framework assemblies. These are not 
part of the project but are expected to be available. Each .NET Framework assembly is versioned to the 
.NET Framework version for which it was built: 1, 1.1, 2, 3.5, 4, 4.5, and so on. Some .NET Framework 
assemblies are new to a particular version and cannot be referenced by projects that are using an 
earlier version of the .NET Framework. Other assemblies change from version to version of the .NET 
Framework, and a specific version must be used. 

The SimpleDependency project has several references to the .NET Framework, as shown earlier in 
Figure 2-3. Many of these dependencies are defaults that are added to all console application projects. 
The example application doesn’t use them, so they can be safely removed. In fact, for both projects, 
everything except System and System.Core are superfluous, so they can be removed from the ref-
erences list. The application will still run correctly.

From the Library of Ida Schander



ptg14200592

	 CHAPTER 2  Dependencies and layering	 49

By removing unnecessary framework dependencies, you make it easier to visualize the dependen-
cies required by each project.

Framework assemblies always load
It is worth noting that, unlike other dependencies, references to .NET Framework assemblies 
will always cause those assemblies to load. Even if you are not really using an assembly, it will 
still load at application startup. Fortunately, if multiple projects in the solution all reference the 
same assembly, only one instance of this assembly is loaded into memory and is shared among 
all dependents. 

The default reference list  The default references for a project vary depending on the project type. 
Each project type has a project template that lists the references required. This is how a Windows 
Forms application can reference the System.Windows.Forms assembly, whereas a Windows Presenta-
tion Foundation application can reference WindowsBase, PresentationCore, and Presentation­
Framework.

Listing 2-3 shows the references for a console application. All Visual Studio project templates are 
located under the Visual Studio installation directory root /Common7/IDE/ProjectTemplates/ and 
are grouped by language.

LISTING 2-3  Part of a Visual Studio project template for conditionally referencing different assemblies.

<ItemGroup> 
  <Reference Include="System"/> 
  $if$ ($targetframeworkversion$ >= 3.5) 
  <Reference Include="System.Core"/> 
  <Reference Include="System.Xml.Linq"/> 
  <Reference Include="System.Data.DataSetExtensions"/> 
  $endif$ 
  $if$ ($targetframeworkversion$ >= 4.0) 
  <Reference Include="Microsoft.CSharp"/> 
  $endif$ 
  <Reference Include="System.Data"/> 
  <Reference Include="System.Xml"/> 
</ItemGroup>

There is some logic in these files that can alter how the template generates a real project instance. 
Specifically, the references differ depending on the version of the .NET Framework that is being used 
for the resulting project. Here, the Microsoft.CSharp assembly is only referenced if the project is 
targeting .NET Framework 4, 4.5, or 4.5.1. This makes sense, because it is normally only required if you 
use the dynamic keyword that was introduced in the .NET Framework 4.

From the Library of Ida Schander



ptg14200592

50	 PART I  An Agile foundation

Third-party dependencies
The final type of dependency is that of assemblies developed by third-party developers. Typically, if 
something is not provided by the .NET Framework, you can implement a solution yourself by creat-
ing first-party dependencies. This could be a laborious task depending on the size of the solution 
required. Instead, you can elect to make use of prefabricated solutions. As an example, you are un-
likely to want to implement your own Object/Relational Mapper (ORM), because such a large piece of 
infrastructural code could take months to be functional and years to be complete. Instead, you could 
look first to Entity Framework, which is part of the .NET Framework. If that did not meet your needs, 
you could look instead at NHibernate, which is a mature ORM library that has been extensively tested.

The main reason to use a third-party dependency is to exchange the effort required for imple-
menting some features or infrastructure for the effort of integrating something that is already written 
and suitable for the job. Do not forget that this integration effort could still be significant, depending 
on the structure of both your first-party code and the interface of the third-party code. When your 
aim is to deliver increments of business value on an iterative basis—as in Scrum—using third-party 
libraries allows you to maintain this focus. 

Organizing third-party dependencies  The simplest way to organize dependencies that are exter-
nal to your project and the .NET Framework is to create a solution folder called Dependencies under 
the Visual Studio solution of a project and to add the .dll files to that folder. When you want to add 
references to these assemblies to the projects of the solution, you can do so by browsing to the files 
in the Reference Manager dialog box (shown in Figure 2-5).

FIGURE 2-5  Third-party references can be stored in a Dependencies folder in the Visual Studio solution.

The other advantage of this approach is that all of the external dependencies are stored in source 
control. This allows other developers to receive the dependencies just by retrieving the latest version of 
the source from a central repository. This is a much simpler approach than requiring all of the devel-
opers to install or download the files themselves.

From the Library of Ida Schander



ptg14200592

	 CHAPTER 2  Dependencies and layering	 51

A better way to organize third-party dependencies is demonstrated later in this chapter, in the 
“Dependency management with NuGet” section. In brief, the NuGet dependency management tool 
manages a project’s third-party dependencies for you, including downloading a package containing 
all relevant artifacts, referencing assemblies, and upgrading library versions. 

Modeling dependencies in a directed graph
A graph is a mathematical construct that consists of two distinct elements: nodes and edges. An edge 
can only exist between two nodes and serves to connect them in some way. Any node can be con-
nected to any number of the other nodes in a graph. A graph can be one of several types, depending 
on variations in the graph’s properties. For example, the graph in Figure 2-6 shows edges that are 
directionless: the edge between nodes A and C is neither from A to C nor from C to A—the presence 
of the edge is all that matters. This is called an undirected graph.

FIGURE 2-6  A graph consists of nodes that are connected by edges. 

If, as in Figure 2-7, the edges have arrowheads at one end, you can determine the direction of the 
edges. There is an edge from A to C, but not an edge from C to A. This is called a directed graph, or a 
digraph.

There are many areas of software engineering in which graphs are excellent models, but graphs 
are extremely applicable to modeling code dependencies. As you have already learned, dependencies 
consist of two entities with a direction applied from the dependent code to the dependency. You can 
think of the entities as nodes and draw a directed edge from dependent to dependency. When you 
extend this to the rest of the entities, you form a dependency digraph.

From the Library of Ida Schander



ptg14200592

52	 PART I  An Agile foundation

FIGURE 2-7  The edges of this graph are specifically directed, so there is no edge (B,A), yet the edge (A,B) exists.

This structure can be applied at several different granularities, as Figure 2-8 shows. The nodes in 
the graph could represent the classes in a project, different assemblies, or groups of assemblies that 
form a subsystem. In all cases, the arrows between the nodes represent the dependencies between 
components. The source of the arrow is the dependent component and the target of the arrow is the 
dependency.

For each node at a coarse-grained granularity, there is a set of nodes at a more fine-grained 
granularity. Inside subsystems are assemblies; inside assemblies are classes; inside classes are meth-
ods. This exemplifies how a dependency on a single method can pull in a whole subsystem of chained 
dependencies.

However, with all of these examples, you do not know what sort of dependency you are dealing 
with (inheritance, aggregation, composition, or association), just that there is a dependency. This is 
still useful, because managing dependencies only requires knowledge of the binary relationship be-
tween two entities: is there a dependency or not?

From the Library of Ida Schander



ptg14200592

	 CHAPTER 2  Dependencies and layering	 53

FIGURE 2-8  Dependencies at all levels can be modeled as graphs.

Cyclic dependencies
Another part of graph theory is that directed graphs can form cycles: the ability to traverse from one 
node back to itself by following the edges. The graphs shown so far are said to be acyclic digraphs—
containing no cycles. Figure 2-9 shows an example of a cyclic digraph. If you start at node D, you can 
follow the edge to E, then B, and finally, end up back at D again. 

From the Library of Ida Schander



ptg14200592

54	 PART I  An Agile foundation

FIGURE 2-9  This digraph contains cycles.

Imagine that these nodes represent assemblies. D has an implicit dependency on anything that its 
explicit and implicit dependencies also depend on. D depends on E explicitly but B and D implicitly. 
Therefore, D depends on itself. 

For assemblies, this is actually not possible. If you try to set this up in Visual Studio, when you come 
to assigning the reference from E to B, Visual Studio will not allow this to happen, as Figure 2-10 shows.

FIGURE 2-10  It is not possible to create a cyclic dependency in Visual Studio.

So, although modeling dependencies as graphs might seem academic, it has clear benefits when 
you are organizing your dependencies. Cyclic dependencies between assemblies are not a diversion 
from a purist ideal but are completely disallowed, and their avoidance is mandatory.

Loops are specializations of the cycles in digraphs. If a node is connected with an edge to itself, that 
edge becomes a loop. Figure 2-11 shows an example of a graph with a loop.

From the Library of Ida Schander



ptg14200592

	 CHAPTER 2  Dependencies and layering	 55

 
FIGURE 2-11  In this digraph, node B links to itself with a loop.

In practice, assemblies always explicitly self-depend, and such an observation is not particularly 
noteworthy. However, at the method level, a loop is evidence of recursion, as shown in Listing 2-4.

LISTING 2-4  A self-loop in a digraph that represents methods results in recursion.

namespace Graphs 
{ 
  public class RecursionLoop 
  { 
    public void A() 
    {       
      int x = 6; 
      Console.WriteLine("{0}! = {1}", x, B(x));     
    } 
 
    public int B(int number) 
    { 
      if(number == 0) 
      { 
        return 1; 
      } 
      else 
      { 
        return number * B(number - 1); 
      } 
    } 
  } 
}

The class in Listing 2-4 shows the functional equivalent of the dependency graph in Figure 2-11. 
Method A calls method B; therefore, you say that method A is dependent on method B. However, 
more interesting is method B’s dependency on itself—B is an example of a recursive function; that is, 
a function that calls itself.

From the Library of Ida Schander



ptg14200592

56	 PART I  An Agile foundation

Managing dependencies

You have learned so far that dependencies are necessary but also must be carefully managed lest 
they present you with problems later in development. These problems can be quite difficult to back 
out of after they have manifested themselves. Therefore, it is best to manage your dependencies cor-
rectly from the outset and to stay vigilant so that no problems creep in. Poorly managed dependen-
cies can quickly escalate from a small compromise to become an overall architectural problem.

The rest of this chapter is focused on the more practical aspects of continually managing depen-
dencies. This includes avoiding anti-patterns and, more importantly, understanding why these com-
mon patterns are anti-patterns. Conversely, some patterns are benevolent and should be embraced; 
these are offered as direct alternatives to the noted anti-patterns.

Patterns and anti-patterns
As an engineering discipline, object-oriented software development is a relatively new endeavor. 
Over the last few decades, some repeatable collaborations between classes and interfaces have 
been identified and codified as patterns. 

There are many software development patterns, each providing a generic solution that can 
be repurposed to a specific problem domain. Some patterns can be used in conjunction with 
each other to produce elegant solutions to complex problems. Of course, not all patterns are 
applicable all the time, and it takes experience and practice to recognize when and where cer-
tain patterns might apply.

Some patterns are not so benevolent. In fact, they are quite the opposite. They are consid-
ered anti-patterns. These patterns harm the adaptability of your code and should be avoided. 
Some anti-patterns began as patterns before slowly falling out of favor due to perceived nega-
tive side effects. 

Implementations versus interfaces
Developers who are new to the concept of programming to interfaces often have difficulty letting go 
of what is behind the interface. 

At compile time, any client of an interface should have no idea which implementation of the inter-
face it is using. Such knowledge can lead to incorrect assumptions that couple the client to a specific 
implementation of the interface. 

Imagine the common example in which a class needs to save a record in persistent storage. To do 
so, it rightly delegates to an interface, which hides the details of the persistent storage mechanism 
used. However, it would not be right to make any assumptions about which implementation of the 
interface is being used at run time. For example, casting the interface reference to any implementa-
tion is always a bad idea.

From the Library of Ida Schander



ptg14200592

	 CHAPTER 2  Dependencies and layering	 57

The new code smell
Interfaces describe what can be done, whereas classes describe how it is done. Only classes involve 
the implementation details—interfaces are completely unaware of how something is accomplished. 
Because only classes have constructors, it follows that constructors are an implementation detail. An 
interesting corollary to this is that, aside from a few exceptions, you can consider an appearance of 
the new keyword to be a code smell. 

Code smells
Saying that code smells is a way of saying that some code is potentially problematic. The word 
“potentially” is chosen deliberately because two occurrences of a code smell might not be 
equally problematic. Unlike anti-patterns, which are more universally considered bad practice, 
code smells are not necessarily bad practice. Code smells are warnings that something could be 
wrong and that the root cause might need to be corrected. 

Code smells might be indicative of technical debt that will need to be repaid—and the longer 
the debt remains unpaid, the harder it might be to fix. 

There are many different categories of code smell. The use of the new keyword—direct 
object instantiation—is an example of “inappropriate intimacy.” Because constructors are 
implementation details, their use can cause unintended (and undesirable) dependencies to be 
required by client code.

Code smells, like anti-patterns, are fixed by refactoring the code so that it has a better, more 
adaptive design. Although the code might fulfill its requirements, its current design is subop-
timal and might cause issues in the future. This is undoubtedly a development task that yields 
no immediate tangible benefit to the business. As with all refactor work, there appears to be 
no business value associated with fixing the problem. However, just as financial debt can lead 
to crippling interest repayments, technical debt can spiral out of control and ruin good depen-
dency management practices, jeopardizing future enhancements and code fixes.

Listing 2-5 shows a couple of examples where directly instantiating an object instance by using the 
new keyword is a code smell.

LISTING 2-5  An example of how instantiating objects prevents code from being adaptive.

public class AccountController 
{ 
    private readonly SecurityService securityService; 
 
    public AccountController() 
    { 
        this.securityService = new SecurityService(); 
    } 
 

From the Library of Ida Schander



ptg14200592

58	 PART I  An Agile foundation

    [HttpPost] 
    public void ChangePassword(Guid userID, string newPassword) 
    { 
        var userRepository = new UserRepository(); 
        var user = userRepository.GetByID(userID); 
        this.securityService.ChangeUsersPassword(user, newPassword); 
    } 
}

The AccountController class is part of a hypothetical ASP.NET MVC application. Do not worry 
too much about the specifics; concentrate on the inappropriate object construction, highlighted in 
bold. The controller’s responsibility is to allow the user to perform account queries and commands. 
There is only one command shown: ChangePassword.

There are several problems with this code, and they are caused directly by the two occurrences 
of new:

■■ The AccountController is forever dependent on the SecurityService and User­
Repository implementations. 

■■ Whatever dependencies the SecurityService and UserRepository have are now implicit 
dependencies of the AccountController.

■■ The AccountController is now extremely difficult to unit test—the two classes are impos-
sible to mock with conventional methods.

■■ The SecurityService.ChangeUsersPassword method requires clients to load User 
objects.

These problems are addressed in greater detail in the following sections.

Inability to enhance the implementations
If you want to change your implementation of the SecurityService, your two options are to 
change the AccountController directly to refer to this new implementation or add the new func-
tionality to the existing SecurityService. Throughout this book, you will learn why neither option 
is preferred. For now, consider that the aim is to never edit either the AccountController or the 
SecurityService class after they have been created.

Chain of dependency
The SecurityService is also likely to have some dependencies of its own. By having a default 
constructor, it is making the bold claim that it does not have any dependencies. However, what if the 
code shown in Listing 2-6 is the implementation of the SecurityService constructor?

From the Library of Ida Schander



ptg14200592

	 CHAPTER 2  Dependencies and layering	 59

LISTING 2-6  The SecurityService has the same problem as the AccountController.

public SecurityService() 
{ 
    this.Session = SessionFactory.GetSession(); 
}

This service actually depends on NHibernate, the Object/Relational Mapper, which is being used 
to retrieve a session. The session is NHibernate’s analogy for a connection to persistent, relational 
storage, such as Microsoft SQL Server, Oracle, or MySQL. As you saw previously, this means that the 
AccountController also depends—implicitly—on NHibernate. 

Furthermore, what if the signature of the SecurityService constructor changes? That is, what if 
it suddenly requires clients to provide the connection string to the database that the Session needs? 
Any client using the SecurityService, including the AccountController, would have to be up-
dated to provide the connection string. Again, this is a change that you should not have to make. 

Lack of testability
Testability is a very important concern, and it requires code to be designed in a certain fashion. If it is 
not, testing is extremely difficult. Unfortunately, neither the AccountController nor the Security­
Service is easily tested. This is because you cannot replace their dependencies with fake versions 
that do not perform any action. For example, when testing the SecurityService, you do not want 
it to make any connections to the database. That would be needless and slow, and would introduce 
another large failure point in the test: what if the database is unavailable? There are ways to test these 
classes by replacing their dependencies at run time with fakes. Tools such as Microsoft Moles and 
Typemock can hook into constructors and ensure that the objects that they return are fakes. But that 
is an example of treating the symptoms and not the cause.

More 	 inappropriate intimacy
The AccountController.ChangePassword method creates a UserRepository class to retrieve a 
User instance. It only needs to do this because that is what the SecurityService.ChangeUsers­
Password method demands of it. Without a User instance, the method cannot be called. This is 
indicative of a badly designed method interface. Instead of requiring all clients to retrieve a User, the 
SecurityService should, in this case, retrieve the User itself. The two methods would then look like 
Listing 2-7.

From the Library of Ida Schander



ptg14200592

60	 PART I  An Agile foundation

LISTING 2-7  An improvement is made to all clients of SecurityService.

[HttpPost] 
public void ChangePassword(Guid userID, string newPassword) 
{ 
    this.securityService.ChangeUsersPassword(userID, newPassword); 
} 
//... 
public void ChangeUsersPassword(Guid userID, string newPassword) 
{     
    var userRepository = new UserRepository(); 
    var user = userRepository.GetByID(userID); 
    user.ChangePassword(newPassword); 
}

This is definitely an improvement for the AccountController, but the ChangeUsersPassword 
method is still directly instantiating the UserRepository.

Alternatives to object construction
What would improve the AccountController and SecurityService—or any other example 
of inappropriate object construction? How can they be made demonstrably correct so that none 
of the aforementioned problems apply? There are a few options, all complementary, that you can 
choose from.

Coding to an interface
The first and most important change that you should make is to hide the implementation of Security­
Service behind an interface. This allows the AccountController to depend only on the interface, 
and not on the implementation, of SecurityService. The first refactor is to extract an interface out of 
SecurityService, as shown in Listing 2-8.

LISTING 2-8  Extracting an interface from SecurityService.

public interface ISecurityService 
{ 
    void ChangeUsersPassword(Guid userID, string newPassword); 
} 
//... 
public class SecurityService : ISecurityService 
{ 
    public ChangeUsersPassword(Guid userID, string newPassword) 
    { 
        //... 
    } 
}

From the Library of Ida Schander



ptg14200592

	 CHAPTER 2  Dependencies and layering	 61

The next step is to update the client so that it no longer depends on the SecurityService 
class, but rather on the ISecurityService interface. Listing 2-9 shows this refactor applied to the 
AccountController.

LISTING 2-9  The AccountController now uses the ISecurityService interface.

public class AccountController 
{ 
    private readonly ISecurityService securityService; 
 
    public AccountController() 
    { 
        this.securityService = new SecurityService(); 
    } 
 
    [HttpPost] 
    public void ChangePassword(Guid userID, string newPassword) 
    { 
        securityService.ChangeUsersPassword(user, newPassword); 
    } 
}

This example is not yet complete—you are still dependent on the SecurityService implemen-
tation because of its constructor. The concrete class is still being instantiated in the constructor of 
AccountController. To separate the two classes completely, you need to make a further refactor: 
introduce dependency injection (DI). 

Using dependency injection
This is a large topic that cannot be covered in a small amount of space. In fact, Chapter 9, “Depen-
dency injection,” is devoted to the subject, and there are entire books dedicated to it. Luckily, DI 
is not particularly complex or difficult, so the basics can be covered here from the point of view of 
classes that make use of DI. Listing 2-10 shows another refactor that has been applied to the construc-
tor of the AccountController class. The constructor is the only change here, highlighted in bold. It 
is a very minor change as far as this class is concerned, but it makes a huge difference to your ability 
to manage dependencies. Rather than constructing the SecurityService class itself, the Account­
Controller now requires some other class to provide it with an ISecurityService implementa-
tion. Not only that, a precondition has been introduced to the constructor that prevents its clients 
from passing in a null value for the securityService parameter. This ensures that, when you use 
the securityService field in the ChangePassword method, you are guaranteed to have a valid 
instance and do not have to check for null anywhere else.

From the Library of Ida Schander



ptg14200592

62	 PART I  An Agile foundation

LISTING 2-10  Using dependency injection allows you to remove the dependency on the SecurityService class.

public class AccountController 
{ 
    private readonly ISecurityService securityService; 
 
    public AccountController(ISecurityService securityService) 
    { 
        if(securityService == null) throw new ArgumentNullException("securityService"); 
 
        this.securityService = securityService; 
    } 
 
    [HttpPost] 
    public void ChangePassword(Guid userID, string newPassword) 
    { 
       this.securityService.ChangeUsersPassword(user, newPassword); 
    } 
}

The SecurityService also needs to follow suit and apply dependency injection. Listing 2-11 
shows how it looks after refactoring.

LISTING 2-11  Dependency injection is a ubiquitous pattern that can be applied liberally almost everywhere.

public class SecurityService : ISecurityService 
{ 
    private readonly IUserRepository userRepository; 
    
    public SecurityService(IUserRepository userRepository) 
    { 
        if(userRepository == null) throw new ArgumentNullException("userRepository"); 
        this.userRepository = userRepository; 
    } 
 
    public ChangeUsersPassword() 
    { 
        var user = userRepository.GetByID(userID); 
        user.ChangePassword(newPassword); 
    } 
}

From the Library of Ida Schander



ptg14200592

	 CHAPTER 2  Dependencies and layering	 63

Just as the AccountController enforces its dependency on a valid ISecurityService instance, 
so too does the SecurityService enforce its dependency on a valid IUserRepository—by throw-
ing an exception if it is given a null reference on construction. Similarly, the UserRepository class 
dependency has been entirely removed, in favor of an IUserRepository interface. 

The Entourage anti-pattern
The Entourage anti-pattern gets its name from the fact that even though you think you are asking for 
just one simple thing, it brings along all of its friends. This is much like music or film stars who are fol-
lowed by hangers-on and moochers: their entourage. It is a name that I have created to best describe 
undesirable dependency management.

The Entourage anti-pattern is a common mistake that is made when developers explain program-
ming to an interface. Rather than providing a full solution, the demonstration commonly stops short 
of saying, unequivocally, that interfaces and their dependencies should not be in the same assembly. 

The Unified Modeling Language (UML) diagram in Figure 2-12 shows how the AccountController 
example is organized at the package level. The AccountController depends on the ISecurity­
Service interface, which is implemented by the SecurityService class. The diagram also shows the 
packages—in the .NET Framework these are assemblies or Visual Studio projects—where each entity 
is. This is an example of the Entourage anti-pattern: the implementation of an interface in the same as-
sembly as the interface itself.

FIGURE 2-12  The AccountController assembly depends on the Services assembly.

You have already learned that the SecurityService class has some dependencies of its own, and 
how the chain of dependencies results in implicit dependencies from client to client to client. Expand-
ing on the package diagram, Figure 2-13 displays the full extent of the Entourage problem.

From the Library of Ida Schander



ptg14200592

64	 PART I  An Agile foundation

FIGURE 2-13  The AccountController is still at the mercy of too many implementations.

If you build the Controllers project in isolation, you will still find NHibernate in the bin/ direc-
tory, indicating that it is still an implicit dependency. Although you have made excellent steps to sepa-
rate the AccountController class from any unnecessary dependencies, it is still not loosely coupled 
from the implementations in each dependent assembly.

From the Library of Ida Schander



ptg14200592

	 CHAPTER 2  Dependencies and layering	 65

There are two problems caused by this anti-pattern. The first issue is that of programmer disci-
pline. You need the interfaces in each of the packages—Services, Domain, and NHibernate—to 
be marked as public. However, you also need the concrete classes—the implementations—to be 
marked as public to make them available for construction at some point ( just not inside the client 
classes). This means that there is nothing to stop an undisciplined developer from making a direct 
reference to the implementation. There is a temptation to cut corners and just call new on the class 
to get an instance of it.

Second, what happens if you create a new implementation of the SecurityService that, instead 
of depending on a domain model that is persisted by using NHibernate, instead uses a third-party ser-
vice bus, such as NServiceBus, to send a command message to a handler? Adding it into the Services 
assembly creates yet another dependency, leading to a bloated, fragile codebase that will be very dif-
ficult to adapt to new requirements.

It is a general rule that implementations should be split from their interfaces by placing them in 
separate assemblies. For this, you can use the Stairway pattern.

The Stairway pattern
The Stairway pattern is the correct way to organize your classes and interfaces. By putting interfaces 
and their implementations in different assemblies, you can vary the two independently, and clients 
only need to make a single reference—to the interface assembly.

You might be thinking, “But how many assemblies am I going to need to keep track of? If I split 
every interface and class into its own assembly, I would have a solution with 200 projects!” Fear not, 
because applying the Stairway pattern should only increase the number of projects by a few while 
giving you the benefit of a well-organized and easy-to-understand solution. It is possible that the 
number of overall projects will decrease when you apply the Stairway pattern, if the projects were 
particularly badly arranged before.

The running example of the AccountController, refactored to use the Stairway pattern, is shown 
in Figure 2-14. Each implementation—that is, each class—only references the assembly that contains 
the interface on which it is dependent. It does not reference the implementation assembly, not even 
implicitly. Each implementation class also references its interface’s assembly. This really is the best of 
all worlds: interfaces without any dependencies, client code without any implicit dependencies, and 
implementations that continue the pattern by depending only on other interface assemblies.

From the Library of Ida Schander



ptg14200592

66	 PART I  An Agile foundation

FIGURE 2-14  The Stairway pattern is aptly named.

I now want to focus on one of those benefits in greater detail: interfaces should not have any 
external dependencies. As far as possible, this should always be adhered to. Interfaces should not 
have methods or properties that expose any data objects or classes defined in third-party references. 
Although they can, and certainly will, need to depend on classes and data types from other projects 
in the solution and common .NET Framework libraries, a reference to infrastructural entities should 
be avoided. Third-party libraries are commonly used for infrastructure purposes. Even the interfaces 
from libraries such as Log4Net, NHibernate, and MongoDB are infrastructural dependencies that will 
tie your interfaces to a specific implementation. This is because those libraries are packaged by using 
the Entourage anti-pattern, rather than the Stairway pattern. They each provide a single assembly 
that contains both the interface you want to depend on and the implementation that you do not want 
to depend on.

To get around this problem, you can refer instead to your own interfaces for logging, domain 
persistence, and document storage. You can write a simple interface that hides the third-party depen-
dency behind a first-party dependency. Then, if you ever need to replace the third-party dependency, 
you can do so by writing a new adapter to your interface for the new library.

On a pragmatic level, this might not be entirely feasible. In instances where converting a third-
party dependency to a first-party dependency presents an inordinate amount of work, the team must 
acknowledge that they will have to retain the dependency and it will become omnipresent. If the 
library is outgrown, it will be incredibly difficult and time-consuming to replace. This sort of conces-
sion is commonly made for frameworks, which are much larger than simple libraries. 

From the Library of Ida Schander



ptg14200592

	 CHAPTER 2  Dependencies and layering	 67

Resolving dependencies 
Knowing how to arrange your projects and the dependencies that they have will not help when it 
comes to debugging a dependency between assemblies. Sometimes assemblies are not available at 
run time and it becomes necessary to find out why. 

Assemblies
The Common Language Runtime (CLR), which is the virtual machine that the .NET Framework uses to 
execute code instructions, is a software product like any other and has been programmed to behave 
in a predictable and logical way when hosting applications. A good grounding in the theory and 
practice of how assemblies are resolved and how errors in resolution can be fixed is very useful. A 
little knowledge can go a long way when you need to track down a problem with finding assemblies.

Resolution process  The assembly resolution process is an important facet of the CLR. This covers 
the gap between adding a reference to an assembly or project and having the application running 
with this assembly loaded. There are several steps involved, and little more is needed than an over-
view so that, when something goes wrong during the process, you can reason about the probable 
causes of the problem. 

Figure 2-15 shows the assembly resolution process as a flow chart. This flow chart is at a high level 
and does not include every detail, but there is enough to show the headline items in the process. The 
process is as follows:

■■ The CLR uses a just-in-time (JIT) model to resolve assemblies. As was already proven earlier in 
the chapter, the references contained in an application are not resolved as you start up the ap-
plication, but rather when you first make use of a feature of that assembly—literally just in time.

■■ Each assembly has an identity that is a composite of its name, version, culture, and public key 
token. Features such as binding redirects can change this identity, so determining it is not 
quite as simple as it might seem.

■■ When the assembly’s identity has been established, the CLR is able to determine whether it 
has already attempted to resolve this dependency previously during the current execution of 
the application, as shown in the following snippet taken from a Visual Studio project file.

<reference include="MyAssembly, Version=2.1.0.0, Culture=neutral,  
   PublicKeyToken=17fac983cbea459c" />

■■ Asking this question causes the CLR to branch depending on the answer. If you have attempted 
to resolve this assembly, that process has either already succeeded or failed. If it succeeded, 
the CLR can use the assembly that has already been loaded, and it exits early. If not, the CLR 
knows that it need not continue attempting to resolve this assembly because it will fail. 

■■ Alternatively, if this is the first attempt to resolve the assembly, the CLR first checks the global 
assembly cache (GAC). The GAC is a machine-wide assembly repository that allows multiple 
versions of the same assembly to be executed in the same application. If the assembly is found 
in the GAC, the resolution process is successful and the discovered assembly is loaded. So you 

From the Library of Ida Schander



ptg14200592

68	 PART I  An Agile foundation

now know that, because the GAC is searched first, the presence of an applicable assembly in 
the GAC will take precedence over an assembly on the file system.

■■ If the assembly could not be found in the GAC, the CLR starts probing a variety of directo-
ries in search of it. The directories searched depend on the app.config settings. If there is a 
codeBase element in the app.config, that location is checked and—if the assembly is not 
found—no other locations are subsequently checked. However, the default is for the applica-
tion’s root directory to be searched, which is typically the /bin folder that relates to the entry 
point or web application. If the assembly cannot be found there, the resolution process fails and 
an exception is thrown by the CLR. Typically, this results in the termination of the application.

FIGURE 2-15  A brief overview of the assembly resolution process.

The Fusion log  This is a very useful tool for debugging failed attempts by the CLR to bind to an as-
sembly at run time. Rather than trying to step through the application in the Visual Studio debugger, 
it is better to turn Fusion on and read the log file that results.

To enable Fusion you must edit the Windows registry, as shown in the following code.

HKLM\Software\Microsoft\Fusion\ForceLog 1 
HKLM\Software\Microsoft\Fusion\LogPath C:\FusionLogs

From the Library of Ida Schander



ptg14200592

	 CHAPTER 2  Dependencies and layering	 69

The ForceLog value is a DWORD, whereas the LogPath is a string. You can set the LogPath to 
whatever path you choose. An example of a failed binding is shown in Listing 2-12.

LISTING 2-12  Sample output from Fusion for a failed attempt to bind an assembly.

*** Assembly Binder Log Entry  (6/21/2013 @ 1:50:14 PM) *** 
 
The operation failed. 
Bind result: hr = 0x80070002. The system cannot find the file specified. 
 
Assembly manager loaded from:  C:\Windows\Microsoft.NET\Framework64\v4.0.30319\clr.dll 
Running under executable  C:\Program Files\1UPIndustries\Bins\v1.1.0.242\Bins.exe 
--- A detailed error log follows.  
 
=== Pre-bind state information === 
LOG: User = DEV\gmclean 
LOG: DisplayName = TaskbarDockUI.Xtensions.Bins.resources, Version=1.0.0.0, Culture=en-US,  
   PublicKeyToken=null (Fully-specified) 
LOG: Appbase = file:///C:/Program Files/1UPIndustries/Bins/v1.1.0.242/ 
LOG: Initial PrivatePath = NULL 
LOG: Dynamic Base = NULL 
LOG: Cache Base = NULL 
LOG: AppName = Bins.exe 
Calling assembly : TaskbarDockUI.Xtensions.Bins, Version=1.0.0.0, Culture=neutral, 
   PublicKeyToken=null. 
=== 
LOG: This bind starts in default load context. 
LOG: No application configuration file found. 
LOG: Using host configuration file:  
LOG: Using machine configuration file from C:\Windows\Microsoft.NET\Framework64 
   \v4.0.30319\config\machine.config. 
LOG: Policy not being applied to reference at this time (private, custom, partial, or 
   location-based assembly bind). 
LOG: Attempting download of new URL file:///C:/Program Files/1UPIndustries/ 
   Bins/v1.1.0.242/en-US/TaskbarDockUI.Xtensions.Bins.resources.DLL. 
LOG: Attempting download of new URL file:///C:/Program Files/1UPIndustries/ 
   Bins/v1.1.0.242/en-US/TaskbarDockUI.Xtensions.Bins.resources/ 
   TaskbarDockUI.Xtensions.Bins.resources.DLL. 
LOG: Attempting download of new URL file:///C:/Program Files/1UPIndustries/Bins/ 
   v1.1.0.242/en-US/TaskbarDockUI.Xtensions.Bins.resources.EXE. 
LOG: Attempting download of new URL file:///C:/Program Files/1UPIndustries/ 
   Bins/v1.1.0.242/en-US/TaskbarDockUI.Xtensions.Bins.resources/ 
   TaskbarDockUI.Xtensions.Bins.resources.EXE. 
LOG: All probing URLs attempted and failed.

After the registry is edited, all attempts, successful or otherwise, to resolve an assembly by any 
managed application will be written to the logs. This is obviously a lot of log files, which can be good, 
but it can start to become a needle-in-a-haystack sort of problem.

Luckily, Fusion has a UI application, shown in Figure 2-16, which makes it slightly easier to find the 
right file for your application, rather than scouring the file system.

From the Library of Ida Schander



ptg14200592

70	 PART I  An Agile foundation

FIGURE 2-16  Fusion has a user interface for finding the log file for your application.

Not all dependencies require assembly references. One alternative is to deploy the service code 
as a hosted service. This requires inter-process or inter-network communication, but it minimizes the 
assembly references required between client and server, as the next section examines.

Services
In comparison to assemblies, the coupling of a client to a hosted service can be much looser, which 
is beneficial but also comes at a cost. Depending on your application’s requirements, you could have 
the client know a lot or a little about the location of the service. Also, you can vary how the service 
is implemented so that it has very few requirements. With each of these options, there are different 
tradeoffs to be considered.

Known endpoint  When the location of the service is known to clients at compile time, you can 
create a service proxy on the client side. This proxy can be created in at least two ways: by using 
Visual Studio to add a service reference to a project, and by creating the service proxy yourself via 
the ChannelFactory class in the .NET Framework.

Adding a service reference in Visual Studio is very easy: just select Add Service Reference on 
the shortcut menu for the project. All the Add Service Reference dialog box needs is the location 
of the Web Services Definition Language (WSDL) file, which provides a metadata description of the 
service, its data types, and available behavior. Visual Studio then generates a set of proxy classes for 
this service, saving a lot of time. It can even generate asynchronous versions of the service methods 
to mitigate against blocking. However, the tradeoff of using this method is the loss of control over the 
code that is generated. The code that Visual Studio generates is unlikely to match up to your in-house 
coding standards, which might be a problem depending on how strict those standards are. Another 
issue is that the generated service proxy does not lend itself to unit testing: it does not generate any 
interfaces, just implementing classes.

From the Library of Ida Schander



ptg14200592

	 CHAPTER 2  Dependencies and layering	 71

An alternative to adding a service reference is to create a service proxy yourself in code. This method 
is best used when the client has access to the interface of the service and can reuse it directly by refer-
ence. Listing 2-13 shows an example of creating a service proxy by using the ChannelFactory class.

LISTING 2-13  The ChannelFactory class allows you to create a service proxy.

var binding = new BasicHttpBinding(); 
var address = new EndpointAddress("http://localhost/MyService"); 
var channelFactory = new ChannelFactory<IService>(binding, address); 
var service = channelFactory.CreateChannel(); 
service.MyOperation(); 
service.Close(); 
channelFactory.Close();

The ChannelFactory class is generic, and its constructor requires the interface for the service 
proxy that you want it to create. Because this code also requires a Binding and an Endpoint­
Address, you must furnish the ChannelFactory with the full address/binding/contract (ABC). In this 
example, the IService interface is the same interface that the service implements. What you receive 
from ChannelFactory.CreateChannel is a proxy that, for each call made, will call the equivalent 
method on the server-side implementation. Because the same interface is used, client-side classes 
can require this interface as a constructor parameter to be resolved by dependency injection, and 
the client classes instantly become testable. In addition, they don’t have to know that they are calling 
a remote service. 

Service Discovery  Sometimes you might know the binding type of a service or its contract, but not 
the address where it is hosted. In this case, you can use Service Discovery, which was introduced to 
Windows Communication Foundation (WCF) in the .NET Framework 4. 

Service Discovery comes in two flavors: managed and ad hoc. In managed mode, a centralized 
service called a discovery proxy is well known to clients, which directly send it queries for finding 
other services. This is the less interesting mode, because it introduces a single point of failure (SPOF): 
if the discovery proxy is not available, clients cannot access any other services because they are not 
discoverable.

Ad hoc mode obviates the need for a discovery proxy by using multicast network messages. The 
default implementation of this uses the User Datagram Protocol (UDP), with each discoverable service 
listening on a specified IP address1 for queries. Clients effectively ask the network whether there is a 
service that matches its query criteria—a contract or binding type, for example. In this scenario, if one 
of the services is unavailable, only that service cannot be discovered, whereas the rest will respond 
to requests. Listing 2-14 shows how to host a discoverable service programmatically, and Listing 2-15 
shows how to add discoverability to a service via configuration.

1	  The IP address used is 239.255.255.250 (IPv4) or [FF02::C] (IPv6). The port used is 3702. This is set by the WS-Discovery 
standard, so is not configurable.

From the Library of Ida Schander



ptg14200592

72	 PART I  An Agile foundation

LISTING 2-14  Programmatically hosting a discoverable service.

class Program 
{ 
    static void Main(string[] args) 
    { 
        using (ServiceHost serviceHost = new ServiceHost(typeof(CalculatorService))) 
        { 
            serviceHost.Description.Behaviors.Add(new ServiceDiscoveryBehavior()); 
                 
            serviceHost.AddServiceEndpoint(typeof(ICalculator), new BasicHttpBinding(),  
   new Uri("http://localhost:8090/CalculatorService")); 
            serviceHost.AddServiceEndpoint(new UdpDiscoveryEndpoint()); 
 
            serviceHost.Open(); 
            Console.WriteLine("Discoverable Calculator Service is running..."); 
            Console.ReadKey(); 
        } 
    } 
}

LISTING 2-15  Hosting a discoverable service via configuration.

<system.serviceModel> 
    <behaviors> 
      <serviceBehaviors> 
        <behavior> 
          <serviceMetadata httpGetEnabled="true" httpsGetEnabled="true"/> 
          <serviceDebug includeExceptionDetailInFaults="false"/> 
        </behavior> 
        <behavior name="calculatorServiceDiscovery"> 
          <serviceDiscovery /> 
        </behavior> 
      </serviceBehaviors> 
      <endpointBehaviors> 
        <behavior name="calculatorHttpEndpointDiscovery"> 
          <endpointDiscovery enabled="true" /> 
        </behavior> 
      </endpointBehaviors> 
    </behaviors> 
    <protocolMapping> 
        <add binding="basicHttpsBinding" scheme="https" /> 
    </protocolMapping>     
    <serviceHostingEnvironment aspNetCompatibilityEnabled="true"  
   multipleSiteBindingsEnabled="true" /> 
    <services> 
      <service name="ConfigDiscoverableService.CalculatorService"  
   behaviorConfiguration="calculatorServiceDiscovery"> 
        <endpoint address="CalculatorService.svc"  
   behaviorConfiguration="calculatorHttpEndpointDiscovery"  

From the Library of Ida Schander



ptg14200592

	 CHAPTER 2  Dependencies and layering	 73

   contract="ServiceContract.ICalculator" binding="basicHttpBinding" /> 
        <endpoint kind="udpDiscoveryEndpoint" /> 
      </service> 
    </services> 
  </system.serviceModel>

To become discoverable, all a service needs to do is add the ServiceDiscoveryBehavior and 
host a DiscoveryEndpoint. In this example, the UdpDiscoveryEndpoint is used for receiving 
multicast network messages from clients.

Note  Service Discovery in WCF complies with the WS-Discovery standard. This makes it 
interoperable with different platforms and languages, not just the .NET Framework.

Clients make use of the DiscoveryClient class to find a discoverable service, which also needs 
a DiscoveryEndpoint. The Find method is then called with a configured FindCriteria instance, 
which describes the attributes of the service to be found. Find returns a FindResponse instance that 
contains an Endpoints property—a collection of EndpointDiscoveryMetadata instances, one per 
matching service. Listing 2-16 shows these steps to find a discoverable service.

LISTING 2-16  Service Discovery is a good way to decouple code.

class Program 
{ 
    private const int a = 11894; 
    private const int b = 27834; 
 
    static void Main(string[] args) 
    { 
        var foundEndpoints = FindEndpointsByContract<ICalculator>(); 
 
        if (!foundEndpoints.Any()) 
        { 
            Console.WriteLine("No endpoints were found."); 
        } 
        else 
        { 
            var binding = new BasicHttpBinding(); 
            var channelFactory = new ChannelFactory<ICalculator>(binding); 
            foreach (var endpointAddress in foundEndpoints) 
            { 
                var service = channelFactory.CreateChannel(endpointAddress); 
                var additionResult = service.Add(a, b); 
                Console.WriteLine("Service Found: {0}", endpointAddress.Uri); 
                Console.WriteLine("{0} + {1} = {2}", a, b, additionResult); 

From the Library of Ida Schander



ptg14200592

74	 PART I  An Agile foundation

            } 
        } 
 
        Console.ReadKey(); 
    } 
 
    private static IEnumerable<EndpointAddress> FindEndpointsByContract 
    <TServiceContract>() 
    { 
        var discoveryClient = new DiscoveryClient(new UdpDiscoveryEndpoint()); 
        var findResponse = discoveryClient.Find(new  
   FindCriteria(typeof(TServiceContract))); 
        return findResponse.Endpoints.Select(metadata => metadata.Address); 
    } 
}

Bear in mind that with UDP, as opposed to TCP, there is no guarantee of message delivery. It is pos-
sible for datagrams to be lost in transmission, so either the request might not reach a viable service or 
the response might not make it back to the client. In either scenario, it would appear to the client that 
there wasn’t a service available to handle the request.

Tip  When hosting a discoverable service in Internet Information Services (IIS) or Windows 
Process Activation Service (WAS), ensure that you use the Microsoft AppFabric AutoStart 
functionality. Discoverability depends on the availability of the service, meaning that it 
must be running in order to receive queries from clients. AppFabric AutoStart allows the 
service to run when the application is started in IIS. Without AutoStart, the service is not 
started until the first request is made.

RESTful services  The most compelling reason to create RESTful services (REST: REpresentational 
State Transfer) is the very low dependency burden expected of clients. All that is needed is an HTTP 
client, which is commonly provided by the frameworks and libraries of languages. This makes REST-
ful services ideal for developing services that need to have wide-ranging, cross-platform support. For 
example, both Facebook and Twitter have REST APIs for various queries and commands. This ensures 
that clients can be developed for a large number of platforms: Windows Phone 8, iPhone, Android, 
iPad, Windows 8, Linux, and much more. Having a single implementation that can service all of these 
clients would be more difficult without the very low dependency requirements that REST allows.

The ASP.NET Web API is used for creating REST services that use the .NET Framework. Similar 
to the ASP.NET MVC framework, it allows developers to create methods that map directly to web 
requests. The Web API provides a base controller class called ApiController. You inherit from this 

From the Library of Ida Schander



ptg14200592

	 CHAPTER 2  Dependencies and layering	 75

controller and add methods named like the HTTP verbs: GET, POST, PUT, DELETE. HEAD, OPTIONS, 
and PATCH. Whenever an HTTP request arrives using one of these verbs, the corresponding method 
is called. Listing 2-17 shows an example of a service that implements all of these verbs.

LISTING 2-17  Almost all of the HTTP verbs are supported by the ASP.NET Web API.

public class ValuesController : ApiController 
{ 
    public IEnumerable<string> Get() 
    { 
        return new string[] { "value1", "value2" }; 
    } 
 
    public string Get(int id) 
    { 
        return "value"; 
    } 
 
    public void Post([FromBody]string value) 
    { 
    } 
 
    public void Put(int id, [FromBody]string value) 
    { 
    } 
 
    public void Head() 
    { 
    } 
 
    public void Options() 
    { 
    } 
 
    public void Patch() 
    { 
    } 
 
    public void Delete(int id) 
    { 
    } 
}

Listing 2-18 shows the client code for accessing the GET and POST methods of this service, using 
the HttpClient class. Although this is by no means the only way to access REST services in the .NET 
Framework, it relies on only the framework itself.

From the Library of Ida Schander



ptg14200592

76	 PART I  An Agile foundation

LISTING 2-18  Clients can use the HttpClient class to access RESTful services.

class Program 
{ 
    static void Main(string[] args) 
    { 
        string uri = "http://localhost:7617/api/values"; 
 
        MakeGetRequest(uri); 
        MakePostRequest(uri); 
 
        Console.ReadKey(); 
    } 
 
    private static async void MakeGetRequest(string uri) 
    { 
        var restClient = new HttpClient(); 
        var getRequest = await restClient.GetStringAsync(uri); 
 
        Console.WriteLine(getRequest); 
    } 
 
    private static async void MakePostRequest(string uri) 
    { 
        var restClient = new HttpClient(); 
        var postRequest = await restClient.PostAsync(uri,  
                new StringContent("Data to send to the server")); 
 
            var responseContent = await postRequest.Content.ReadAsStringAsync(); 
            Console.WriteLine(responseContent); 
        } 
    }

Just to emphasize the point that multiple clients can be written with equally low dependency 
requirements, Listing 2-19 shows a Windows PowerShell 3 script for accessing the GET and POST 
methods of the service.

LISTING 2-19  Accessing the REST service from Windows PowerShell 3 is extremely trivial.

$request = [System.Net.WebRequest]::Create("http://localhost:7617/api/values") 
$request.Method ="GET" 
$request.ContentLength = 0 
 
$response = $request.GetResponse() 
$reader = new-object System.IO.StreamReader($response.GetResponseStream()) 
$responseContent = $reader.ReadToEnd() 
Write-Host $responseContent

From the Library of Ida Schander



ptg14200592

	 CHAPTER 2  Dependencies and layering	 77

This code uses the WebRequest object from the .NET Framework to call the RESTful service. This 
class is the superclass of the HttpRequest class. The Create method is a factory method that returns 
an HttpRequest instance because an http:// URI was provided.

Dependency management with NuGet
Dependency management can be greatly simplified with the use of dependency management tools. 
Such tools are responsible for following dependency chains to ensure that all dependent artifacts are 
available. They also manage the versioning of dependencies: you can specify that you want to depend 
only on specific versions of dependencies, and the dependency management tools do the rest.

NuGet is a package management utility for the .NET Framework. NuGet refers to a dependency as 
a package, but the tool is not limited to assemblies. NuGet packages can also include configuration, 
scripts, and images—almost anything you need. One of the most compelling reasons to use a pack-
age manager such as NuGet is that it has knowledge of a package’s dependencies and will bring the 
entire dependency chain with it when a project references a package.

As of Visual Studio 2013, NuGet is fully integrated as the default package management utility.

Consuming packages
NuGet adds some new commands to the shortcut menu in the Solution Explorer window of Visual 
Studio. From there, you can open the NuGet package management window and add a reference to 
a dependency.

For this example, I’m going to add a dependency to CorrugatedIron, the .NET Framework client 
driver for the Riak NoSql key/value store. Figure 2-17 shows the NuGet package management window.

FIGURE 2-17  NuGet packages have a lot of useful metadata associated with them.

From the Library of Ida Schander



ptg14200592

78	 PART I  An Agile foundation

Whenever a package is selected in the list, the information pane on the right shows some metadata 
about the package. This includes its unique name in the gallery, the author or authors of the pack-
age, the version of the package, the date it was last published, a description of the package, and any 
dependencies that it has. The dependencies are very interesting, because they show what else is going 
to be installed as a result of referencing this package, in addition to the required or supported versions 
of the dependencies. CorrugatedIron, for example, requires at least version 4.5.10 of Newtonsoft.Json, 
a .NET Framework JSON/class serializer, and at least version 2.0.0.602 of protobuf-net. Both of these 
packages could have dependencies of their own.

When you choose to install this package, NuGet will first try to download all the files and place 
them in a packages/ folder under the solution’s root folder. This allows you to put this entire direc-
tory into source control, exactly as you did earlier with a dependencies/ folder. NuGet then refer-
ences the downloaded assemblies in the project where you want to use this library. Figure 2-18 shows 
the references for the project after Riak is added.

In addition to making the references, NuGet also creates a packages.config file that contains 
information about which packages—and which versions—are referenced by the project. This is useful 
when it comes to upgrading or uninstalling packages, which is also something that NuGet is able to do.

FIGURE 2-18  The target package and all of its dependencies are referenced by the project.

Riak also needs some default configuration before it is ready to be used. So not only has NuGet 
downloaded and referenced a lot of assemblies, it has also edited your app.config to include some 
sensible default values for required settings that Riak needs. Listing 2-20 shows the current state of 
the app.config after Riak is installed.

LISTING 2-20  NuGet has added a new configSection to the app.config specifically for Riak.

<configuration> 
  <configSections> 
    <section name="riakConfig" type="CorrugatedIron.Config.RiakClusterConfiguration,  
   CorrugatedIron" /> 
  </configSections> 
  <riakConfig nodePollTime="5000" defaultRetryWaitTime="200" defaultRetryCount="3"> 
    <nodes> 
      <node name="dev1" hostAddress="riak-test" pbcPort="10017" restScheme="http" 

From the Library of Ida Schander



ptg14200592

	 CHAPTER 2  Dependencies and layering	 79

restPort="10018" poolSize="20" /> 
      <node name="dev2" hostAddress="riak-test" pbcPort="10027" restScheme="http" 
restPort="10028" poolSize="20" /> 
      <node name="dev3" hostAddress="riak-test" pbcPort="10037" restScheme="http" 
restPort="10038" poolSize="20" /> 
      <node name="dev4" hostAddress="riak-test" pbcPort="10047" restScheme="http" 
restPort="10048" poolSize="20" /> 
    </nodes> 
  </riakConfig> 
</configuration>

Clearly, this is a great timesaver because you haven’t had to search the Riak site for a download 
of CorrugatedIron or any of its dependencies. Everything has been put into a state where you can 
concentrate on developing. And when it comes time to upgrade CorrugatedIron to the next version, 
you can also use NuGet to automatically update all of the packages that depend on it in the entire 
solution.

Producing packages
NuGet also allows you to create packages. You might want to create packages for publication on the 
official NuGet package gallery so that other developers can use them, or you might want to host 
your own package feed for first-party dependencies. Figure 2-19 shows the NuGet Package Explorer, 
which can be used to create your own packages. In this package, I have configured CorrugatedIron 
to be a dependency, so it will also depend on Newtonsoft.Json and protobuf-net, implicitly. I have 
added a library artifact that is targeted specifically to the .NET Framework 4.5.1 and a text file that will 
be created in the referenced assembly under My folder/NewFile.txt. There is even a Windows 
PowerShell script that is instructed to run during installation. This could feasibly be used to do almost 
anything—thanks to the flexibility of Windows PowerShell. 

FIGURE 2-19  The NuGet Package Explorer makes it very easy to construct your own packages.

From the Library of Ida Schander



ptg14200592

80	 PART I  An Agile foundation

Each package has an XML file that details the metadata that is shown in the installation window. 
Listing 2-21 shows some of the syntax of this file.

LISTING 2-21  The package XML definition, including metadata.

<package xmlns="http://schemas.microsoft.com/packaging/2010/07/nuspec.xsd"> 
    <metadata> 
        <id>MyTestPackage</id> 
        <version>1.0.0</version> 
        <authors>Gary McLean Hall</authors> 
        <requireLicenseAcceptance>false</requireLicenseAcceptance> 
        <description>My package description.</description> 
        <dependencies> 
            <dependency id="CorrugatedIron" version="1.0.1" /> 
        </dependencies> 
    </metadata> 
</package>

NuGet is such a productivity and organizational bonus that it is painful to return to manually man-
aging third-party dependencies, if a package does not exist for a particular library. In fact, NuGet is 
not only for third-party dependencies. When a solution becomes large enough it is advisable to split 
the solution into multiple parts, sliced by layer. The assemblies for each layer can then be packaged 
by using NuGet and consumed by layers above. This keeps solutions small and easy to work with.

Chocolatey
The best way to describe Chocolatey is that it is a package management tool, just like NuGet, but its 
packages are applications and tools, not assemblies. Developers with some Linux knowledge will find 
that Chocolatey is like apt-get, which is Debian and Ubuntu’s package manager. Again, many of the 
benefits of package management apply: simplified installation, dependency management, and ease 
of use.

The following Windows PowerShell script can be used to download and install Chocolatey.

@powershell -NoProfile -ExecutionPolicy unrestricted -Command "iex ((new-object  
   net.webclient).DownloadString('https://chocolatey.org/install.ps1'))" && SET  
   PATH=%PATH%;%systemdrive%\chocolatey\bin

After Chocolatey is installed, you can use the command line to search for and install various ap-
plications and tools. The installation procedure will have already updated the command-line path 
to include the chocolatey.exe application. Much like Git, Chocolatey has subcommands such as 
list and install, but these also have synonyms that can be used as shortcuts: clist and cinst, 
respectively. Listing 2-22 shows a sample Chocolatey session that finds the package name for Filezilla, 
the FTP client, and then installs it.

From the Library of Ida Schander



ptg14200592

	 CHAPTER 2  Dependencies and layering	 81

LISTING 2-22  First you search the packages for the application that you want, and then you install it.

C:\dev> clist filezilla 
ferventcoder.chocolatey.utilities 1.0.20130622 
filezilla 3.7.1 
filezilla.commandline 3.7.1 
filezilla.server 0.9.41.20120523 
jivkok.tools 1.1.0.2 
kareemsultan.developer.toolkit 1.4 
UAdevelopers.utils 1.9 
C:\dev> cinst filezilla 
Chocolatey (v0.9.8.20) is installing filezilla and dependencies. By installing you accept 
the license for filezilla and each dependency you are installing. 
 . . .  
 This Finished installing 'filezilla' and dependencies - if errors not shown in console, 
none detected. Check log for errors if unsure.

As long as no errors were reported by Chocolatey, the requested package is now installed. 
Be aware that Chocolatey should have altered your system PATH so that any new binaries can be 
executed from the command line, but it does not always do so. There are a lot of packages  
available via Chocolatey, and the convenience that it provides is a compelling reason to use it.

Layering

To this point, this chapter has looked primarily at managing dependencies at the assembly level. This 
is a natural first step to organizing your application, because all classes and interfaces are contained in 
assemblies, and how they reference each other is a common concern. When correctly organized, your 
assemblies will contain classes and interfaces that only pertain to a single group of related function-
ality. Taken in aggregate, however, how can you ensure that groups of assemblies are also correctly 
organized?

Groups of two or more interrelated assemblies form components of the software system that is be-
ing developed. It is equally important—if not more so—that these components interact in a similarly 
well-defined and structured fashion. As Figure 2-20 shows, components are not physical artifacts of 
deployment, like assembly dynamic-link libraries (DLLs), but are logical groupings of assemblies that 
share a similar theme.

FIGURE 2-20  By grouping related assemblies together, you can define logical components.

From the Library of Ida Schander



ptg14200592

82	 PART I  An Agile foundation

There are three assemblies included in the diagram: Views, Controllers, and ViewModels. Each 
assembly contains two classes that serve different purposes and might require different dependen-
cies. Although the classes and assemblies are constructs provided by the .NET Framework, the User 
Interface package that groups everything is logical. The three assemblies might be located in the 
solution in a folder called UserInteraces, but there is nothing preventing you from polluting this layer 
with another project that does not belong. Nothing, that is, except your own diligence.

In dependency management, components are no different from other programming constructs at 
lower levels. As with methods, classes, and assemblies, you can consider layers to be another node in 
the dependency graph shown earlier in this chapter. Thus, the same rules apply: keeping the digraph 
acyclic and ensuring a single responsibility. 

Layering is an architectural pattern that encourages you to think of software components as 
horizontal layers of functionality that build on each other to form a whole application. Components 
are layered, one on top of another, and the dependency direction must always point downward. That 
is, the bottom layer of the application has no dependencies2, and each layer upward depends on the 
layer immediately below it. At the top of the stack is the user interface. If the application is a service 
layer, the top layer will be the API that clients will use to interact with the system.

Common patterns
There are several common layering patterns from which to choose for any project. Each one presented 
here should be used as a guide to be tailored to the specific requirements and restrictions of your 
situation. The differentiating factor between the layering patterns is simply the number of layers used. 
This section starts with a simple architecture made up of only two layers, then inserts a third layer in 
between, and finally, extrapolates to an arbitrary number of layers.

The number of layers required correlates to the complexity of the solution; the complexity of the 
solution correlates to the complexity of the problem. Therefore, the more complex the problem, the 
more inclined you might be to invest in a multilayered architecture. Complexity, in this instance, is 
measured by many factors: the time constraints placed on the project, its required longevity, how 
frequent requirements might change, and the importance that the development team places on pat-
terns and practices, to name only a few. 

Because this book is about adapting to changes in requirements, I advocate doing the simplest 
thing possible first, and refactoring toward something more complex only when required. This has 
positive effects on projects. First, it allows you to deliver something as soon as possible. Feedback 
should be sought early and frequently in software development. Trying to deliver the perfect solution 
is pointless if the customer’s idea of perfection differs from the development team’s idea of perfec-
tion. Developing a multilayer solution takes longer than a simple two-layer solution, delaying that 
all-important feedback loop.

2	  This isn’t strictly true: there are likely to be some dependencies, but because it is the bottom layer with no other first-
party code to depend on, they are likely to be third-party, infrastructural dependencies.

From the Library of Ida Schander



ptg14200592

	 CHAPTER 2  Dependencies and layering	 83

Layers vs. tiers
The difference between layers and tiers is the difference between the logical organization 
and physical deployment of code. Logically, you could separate an application in three or four 
layers, but physically deploy it into one tier. The number of tiers is somewhat related to the 
number of machines that the application is deployed to. If you deploy to a single machine, you 
are deploying an application in one tier. If you deploy the application to two machines, split by 
at least two layers, you are deploying to two tiers. 

With every tier that you deploy to, you accept that you are crossing a network boundary, 
and with that comes a temporal cost: it is expensive to cross a processing boundary within the 
same machine, but it is much more expensive to cross a network boundary. However, deploying 
in tiers has a distinct advantage because it allows you to scale your applications. If you deploy a 
web application that consists of a user interface layer, a logic layer, and a data access layer onto 
a single machine—thus a single tier—that machine now has a lot of work to do, and the number 
of users you can support will necessarily be lower. Were you to split the application’s deploy-
ment into two tiers—putting the database on one tier and the user interface and logic layers on 
another—you could actually scale the user interface layer both horizontally and vertically. 

To scale vertically, you just increase the power of the computer by adding memory or 
processing units. This allows the single machine to achieve more by itself. However, you can 
also scale horizontally by adding completely new machines that perform exactly the same task. 
There would be multiple machines to host the web user interface code and a load balancer that 
would direct clients to the least busy machine at any point in time. Of course, this is not a pana-
cea to supporting more concurrent users on a web application. This requires more care with 
data caching and user authentication, because each request made by a user could be handled 
by a different machine.

Two layers
A two-layered solution is the simplest step forward from having no discernable layering. It is only 
useful in a narrow set of circumstances, but it is extremely quick to implement. The only two layers in-
cluded are the user interface layer and the data access layer. Remember that this does not limit you to 
just two assemblies, but two logical groups of assemblies: one focusing directly on the user interface, 
the other on data access. 

Figure 2-21 shows the two layers as packages in a UML diagram, each layer containing assemblies 
relating to those layers. The only dependency shown is directed from the user interface layer down to 
the data access layer. This is the only way that the dependencies can ever be directed in any layered 
architecture.

From the Library of Ida Schander



ptg14200592

84	 PART I  An Agile foundation

FIGURE 2-21  A two-layered application consists of the UI components and the data access components.

User interface  The user interface layer is responsible for:

■■ Providing a way for the user to interact with the application (for example, desktop windows 
and controls, a webpage, or a console application’s command line or menu).

■■ Presenting data and information to the user.

■■ Receiving requests from the user in the form of queries or commands.

■■ Validating input that the user has entered.

The user interface layer can vary in its implementation. It could be a Windows Presentation 
Foundation (WPF) client packed with fancy graphics and animation, a set of webpages that the user 
navigates through, or a simple console application that uses command-line switches or a simple menu 
for the user to select a command or query to execute.

Note  In some cases, the user interface could be replaced with a set of services that surface 
functionality to clients elsewhere. There isn’t really a user interface, but the two-layer archi-
tecture is still apparent, with the UI layer being replaced by an API layer.

The user interface layer sits on top of the data access layer and can make use of it. However, as 
discussed previously in relation to assembly references, the user interface layer should not make 
direct reference to any of the data access layer’s implementation assemblies. There should be a strict 
separation between the interface and implementation assemblies of the two layers. This makes the 
layering diagram look a little more like Figure 2-22.

FIGURE 2-22  The two layers are separated into implementation assemblies and interface assemblies.

From the Library of Ida Schander



ptg14200592

	 CHAPTER 2  Dependencies and layering	 85

This is solving the Entourage anti-pattern with the Stairway pattern, but this time it is doing so 
at the architectural level. Each layer is the combination of an abstraction of the functionality that a 
higher layer depends on, along with an implementation of this abstraction. If a layer above starts 
referencing part of the implementation of a layer, that layer is called a leaky abstraction. The depen-
dencies of that layer’s implementation will begin to leak into layers further up the stack, resulting in 
avoidable dependencies.

Data access  The responsibilities of the data access layer are:

■■ Servicing queries for data.

■■ Serializing and deserializing object models to and from a relational model.

The implementation of the data access layer can be just as varied as that of the user interface layer. 
This layer typically includes some kind of persistent data store that could include a relational database 
such as SQL Server, Oracle, MySQL, or PostgreSQL or a document database such as MongoDB, RavenDB, 
or Riak. In addition to the data storage mechanism, there is likely to be one or more supporting as-
semblies for executing queries or insert/update/delete commands by calling stored procedures, or for 
mapping data to a relational database via Entity Framework or NHibernate.

Data access layers should be hidden behind interfaces that do not depend on any of these tech-
nology choices. As with all interfaces, there should be no reference to a third-party dependency, thus 
keeping clients separated from the choice of implementation.

A well-designed data access layer is reusable across multiple applications. If two different user 
interfaces require the same data but present it in different forms, the same data access layer can be 
shared between them. Imagine an application that runs across multiple platforms: Windows 8 and 
Windows Phone 8. Both have different user interface requirements, but each could use the same data 
access layer.

As with any architecture, using only two layers has some tradeoffs that must be considered care-
fully before adoption. The two-layer architecture is a good choice when:

■■ There is little or no logic to the application beyond some trivial validation. This can easily be 
encapsulated in either the data access layer or the user interface layer.

■■ The application performs mainly CRUD operations on data. Creating, reading, updating, and 
deleting data becomes more difficult with every additional layer placed between the user 
interface and the data itself.

■■ Time is short. If only a prototype or a bootstrap needs to be developed, limiting the number 
of layers can save a lot of time and the feasibility of a proof of concept can be ascertained. 
When you stick to good practices such as the Stairway pattern, it is easier to insert additional 
layers as necessary later.

From the Library of Ida Schander



ptg14200592

86	 PART I  An Agile foundation

However, the two-layer architecture has some obvious drawbacks and is a bad choice when:

■■ There is significant logic in the application, or logic is subject to change. Any logic placed in the 
user interface layer or data access layer is technically a pollution of that layer and decreases 
its flexibility and maintainability.

■■ The application is certain to outgrow two layers within one or two sprints. Any concessions 
made to obtain quick feedback are not worth the investment if that architecture will only 
last a matter of weeks.

The two-layer architecture is still very much a viable alternative. Too many developers are en-
chanted by the latest architectural trend and overlook simpler designs. This causes an otherwise trivial 
application to receive feedback too late and makes it fragile and hard to maintain. Often, the simplest 
thing possible is the right thing to do.

Three layers
The three-layer architecture adds an extra layer between the user interface and the data access layer. 
This is the logic layer. The addition of the logic layer allows the application to encapsulate more com-
plex processing. The logic layer, like the data access layer, can be reused across multiple applications, 
so it need not be implemented multiple times. Figure 2-23 shows the typical three-layer architecture.

FIGURE 2-23  The third layer contains processing or business logic for the application.

Again, like the data access layer, the logic layer provides interface and implementation assemblies 
to clients, to avoid a leaky abstraction. 

Note  Although the three-layer architecture is very common for web applications, it is typi-
cally deployed in only two tiers. One node handles the database, and another node han-
dles almost everything else: the user interface, the logic, and even part of the data access.

From the Library of Ida Schander



ptg14200592

	 CHAPTER 2  Dependencies and layering	 87

Business logic  The business logic layer’s responsibilities are to:

■■ Handle commands from the user interface layer.

■■ Model the business domain to capture business processes, rules, and workflow.

The logic layer might be a command processor that receives commands from the user via the user 
interface layer and, by collaborating with the data access layer, solves a specific problem or executes 
a particular task. It could also be a fully developed domain model that aims to map a business’s 
processes into software. For the latter, it is common for the data access layer to include an Object/
Relational Mapping component so that the logic layer can be implemented directly into classes, 
possibly by using domain-driven design (DDD). In a domain model, there should be no dependen-
cies, either further down the stack or via some implementation-specific technology. For example, the 
domain model’s assemblies should have no dependencies on an Object/Relational Mapping library. 
Instead, a separate mapping assembly should be created that is implementation specific and instructs 
the ORM how to map to the domain model. This allows the domain model’s core classes to be reused 
without depending on the ORM, and the ORM could be replaced without affecting the domain model 
or its clients. Figure 2-24 shows a possible implementation of a logic layer that uses a domain model.

FIGURE 2-24  How the assemblies of a domain model collaborate to form a logic layer.

The addition of a logic layer is necessary when there is complex logic in the application, such as 
business rules that aim to reflect the real-world workflows of people’s jobs. Even if the logic is not 
particularly complex but changes often, this is a good argument for introducing a separate layer for 
encapsulating this behavior. It simplifies the user interface and data access layers, allowing them to 
concentrate fully on their only purpose.

Cross-cutting concerns
Sometimes a component’s responsibilities are not easily limited to a single layer. Functions such as 
auditing, security, and caching can permeate through the entire application, because they are appli-
cable at every layer. Tracing the code’s actions at each method call and return, for example, is a useful 
debugging tool when the application has been deployed and if the Visual Studio debugger cannot be 

From the Library of Ida Schander



ptg14200592

88	 PART I  An Agile foundation

attached to step through the code. You can manually produce an output of the values of parameters 
as they are passed around, and the return values of various methods, as shown in Listing 2-23. 

LISTING 2-23  Manually applying cross-cutting concerns quickly swamps the real intent of the code.

public void OpenNewAccount(Guid ownerID, string accountName, decimal openingBalance) 
{ 
    log.WriteInfo("Creating new account for owner {0} with name '{1}' and an opening  
   balance of {2}", ownerID, accountName, openingBalance"); 
 
    using(var transaction = session.BeginTransaction()) 
    { 
        var user = userRepository.GetByID(ownerID); 
        user.CreateAccount(accountName); 
        var account = user.FindAccount(accountName); 
        account.SetBalance(openingBalance); 
 
        transaction.Commit(); 
    } 
} 

This is laborious and error-prone, and it instantly pollutes every method with irrelevant boilerplate 
code, increasing the noise-to-signal ratio. Instead, you can factor out such cross-cutting concerns 
into encapsulated functionality and apply them to the code in a much less invasive fashion. The most 
common way of adding functionality non-invasively is through aspect-oriented programming.

Aspects
Aspect-oriented programming (AOP) is the application of cross-cutting concerns—or aspects—to 
multiple layers in the code. The .NET Framework has several AOP libraries to choose from (search 
NuGet for AOP), but the examples given here are for PostSharp, which has a free Express version, 
though with reduced functionality. Listing 2-24 shows tracing code factored out into a PostSharp 
aspect and applied as an attribute to some methods.

LISTING 2-24  Aspects are a great way to implement cross-cutting concerns.

[Logged] 
[Transactional] 
public void OpenNewAccount(Guid ownerID, string accountName, decimal openingBalance) 
{ 
    var user = userRepository.GetByID(ownerID); 
    user.CreateAccount(accountName); 
    var account = user.FindAccount(accountName); 
    account.SetBalance(openingBalance); 
}

From the Library of Ida Schander



ptg14200592

	 CHAPTER 2  Dependencies and layering	 89

The two attributes decorating the OpenNewAccount method provide the same functionality as 
shown in Listing 2-23, but the intent of the method is clearer. The Logged attribute writes information 
about the method call to a log, including parameter values. The Transactional attribute wraps the 
method in a database transaction and commits the transaction on success or rolls back the transac-
tion on failure. The key here is that both of these attributes are generic enough to be applied to any 
method, not specifically this one, so they can be reused many times.

Asymmetric layering
All of the users’ requests to an application occur through the provided user interface. However, the 
path that the requests follow after that is not necessarily always the same. The layering could be 
asymmetrical, depending on the type of request being made. This is motivated by the need to be 
pragmatic and to consider whether the layering in place is overkill for some requests or even insuf-
ficient for some requests.

A pattern of asymmetric layering that has rapidly gained popularity in the last few years is 
Command/Query Responsibility Segregation (CQRS). Before discussing CQRS, which is an archi
tectural pattern, a grounding in its method-level influencer, command/query separation, is required.

Command/query separation
Bertrand Meyer, in his book Object-Oriented Software Construction (Prentice Hall, 1997), used the 
phrase command/query separation (CQS) to explain that all object methods should be one of only two 
things: a command or a query. 

Commands are imperative calls to action, requiring the code to do something. These methods 
are allowed to change the state of a system but should not also return a value. Listing 2-25 shows an 
example of a CQS-compliant command method, followed by one that is noncompliant.

LISTING 2-25  CQS-compliant and non–CQS-compliant command methods.

// Compliant command 
Public void SaveUser(string name) 
{ 
    session.Save(new User(name)); 
} 
// Non-compliant command 
public User SaveUser(string name) 
{ 
    var user = new User(name); 
    session.Save(user); 
    return user; 
}

From the Library of Ida Schander



ptg14200592

90	 PART I  An Agile foundation

Queries are requests for data, requiring the code to get something. These methods return data to 
calling clients but should not also change the state of a system. Listing 2-26 shows an example of a 
CQS-compliant query method, followed by one that is noncompliant.

LISTING 2-26  CQS-compliant and non–CQS-compliant query methods.

// Compliant query 
Public IEnumerable<User> FindUserByID(Guid userID) 
{ 
    return session.Get<User>(userID); 
} 
// Non-compliant query 
public IEnumerable<User> FindUserByID(Guid userID) 
{ 
    var user = session.Get<User>(userID); 
    user.LastAccessed = DateTime.Now; 
    return user; 
}

Commands and queries are thus differentiated by the presence of a return value. If a method 
returns a value (and is CQS-compliant) you can safely assume that it does not change any state of the 
object. The advantage here is that you can reorder query calls knowing that they have no other effect 
on the object. A method having no return value (and that is CQS-compliant) indicates that you can 
assume that it does change the state of the object. For these calls, you would have to be more careful 
in your call order.

Command/Query Responsibility Segregation
The Command/Query Responsibility Segregation pattern is attributed to Greg Young. The pattern is 
the application of CQS at an architectural level and is an example of asymmetric layering. Commands 
and queries follow much the same rules as with CQS, but CQRS goes one step further: it acknowl-
edges that commands and queries might need to follow different paths through the layering in order 
to be best handled. 

An example of where minimal CQRS can be applied is when you are developing a three-layer 
architecture with a domain model. In this instance, the domain model is only ever used by the com-
manding side of the application, with a much simpler two-layer architecture used for the querying 
side. Figure 2-25 exemplifies this design.

From the Library of Ida Schander



ptg14200592

	 CHAPTER 2  Dependencies and layering	 91

FIGURE 2-25  Domain models should only be used for handling commands.

Querying data often needs to be fast and is allowed to provide few guarantees of transactional 
consistency: phantom reads or nonrepeatable reads can be an acceptable tradeoff for increased 
responsiveness. Command processing, though, is often required to have transactional consistency, 
hence the differing layers in place to handle commands and queries. Sometimes, the data access lay-
ers can also differ between commands and queries. A fully ACID-compliant (ACID stands for atomic, 
consistent, isolated, durable) database might be needed for commands, whereas simple document 
storage might suffice for queries. The document storage would be updated asynchronously by events 
published from the command layer, giving eventual consistency to the query reads.

Conclusion

This chapter has shown how the organization of dependencies presents a significant problem when 
creating software applications. The long-term health, adaptability, and possibly the viability of a proj-
ect relies on sound management of dependencies. A mess of spaghetti-like interdependencies will 
occur if developers create classes that reference each other without careful consideration, which can 
seriously affect a team’s ability to deliver business value in a consistent, predictable fashion.

Dependencies must be managed at all levels, from individual classes and methods interacting with 
each other, through assembly references, to the high-level architecture of components. Developers 
must be constantly vigilant that spurious dependencies do not leak outside of their method, class, 
assembly, or layer.

In some ways, this chapter underpins a lot of the content of the rest of this book. The content pro-
vides a solid foundation for maintainable, adaptive code that is reinforced with each chapter. If your 
assemblies are a spaghetti of references, and your layers do not hide their infrastructural dependen-
cies, your code will become harder to test, amend, and understand, no matter what other patterns or 
practices you attempt to follow.

From the Library of Ida Schander



ptg14200592

This page intentionally left blank 

From the Library of Ida Schander



ptg14200592

		  93

C H A P T E R  3

Interfaces and design patterns

After completing this chapter, you will be able to

■■ Define interfaces and identify the primary ways in which they differ from classes. 

■■ Apply design patterns, such as the Adapter and Strategy patterns, to interfaces.

■■ Understand an interface’s versatility through duck-typing, mixins, and fluent interfaces.

■■ Identify the limitations of interfaces and implement workarounds.

■■ Spot common anti-patterns and abuses of interfaces.

The interface is a powerful construct in Microsoft .NET Framework development. Although the 
interface keyword is very simple, what it represents is a very powerful paradigm. When used cor-
rectly, interfaces provide your code with the extension points that make it extremely adaptive. How-
ever, some uses of interfaces are not so good; yet they remain in common use.

This chapter provides a reminder of the differences between classes and interfaces and describes 
how best to use the two together both to protect client code from implementation changes and to 
facilitate polymorphism.

It also covers the versatility of interfaces and how they are a ubiquitous tool in modern software 
solutions. This encompasses some powerful design patterns that, when applied correctly (in conjunc-
tion with other patterns in this book) yield code that is incredibly flexible and able to adapt to the 
changing requirements that Agile projects embrace.

Interfaces alone are, however, no panacea. A judicious sprinkling of interfaces can certainly help a 
project, but the interfaces must be applied in the correct manner. This chapter explores some of the 
common abuses of interfaces. 

From the Library of Ida Schander



ptg14200592

94	 PART I  An Agile foundation

What is an interface?

An interface defines the behavior that a class has, but not how this behavior is implemented. Inter-
faces stand as separate constructs from classes, but they require a class to provide the working code 
to fulfill the interface. 

Interfaces are defined by their syntax—that is, the language-construct side of the interface: the 
interface keyword and everything that this implies and entails. But they are also defined by their 
features: the concepts that they represent and enable. 

Syntax
Interfaces are defined by using the interface keyword. They can contain properties, methods, and 
events, just as classes can. However, no element of an interface can be given an access modifier: the 
implementing class must implement an interface as public. Listing 3-1 shows the declaration of an 
interface, along with a possible implementation.

LISTING 3-1  Declaring and implementing an interface.

public interface ISimpleInterface 
{ 
    void ThisMethodRequiresImplementation(); 
 
    string ThisStringPropertyNeedsImplementingToo 
    { 
        get; 
        set; 
    } 
 
    int ThisIntegerPropertyOnlyNeedsAGetter 
    { 
        get; 
    } 
 
    public event EventHandler<EventArgs> InterfacesCanContainEventsToo; 
}  
// . . .  
public class SimpleInterfaceImplementation : ISimpleInterface 
{ 
 
    public void ThisMethodRequiresImplementation() 
    { 
     
    } 
 
    public string ThisStringPropertyNeedsImplementingToo 
    { 
        get; 
        set; 
    } 
 

From the Library of Ida Schander



ptg14200592

	 CHAPTER 3  Interfaces and design patterns	 95

    public int ThisIntegerPropertyOnlyNeedsAGetter 
    { 
        get 
        { 
             return this.encapsulatedInteger; 
        } 
        set 
        { 
            this.encapsulatedInteger = value; 
        } 
    } 
 
    event EventHandler<EventArgs> InterfacesCanContainEventsToo = delegate { }; 
 
    private int encapsulatedInteger; 
}

The .NET Framework does not support the concept of multiple inheritance of classes, but it does 
support multiple interface implementation for a single class. 

There is no limit imposed on the number of interfaces that a class can implement; the number of 
interfaces that really make sense on one class is more of a practical concern. Listing 3-2 extends the 
prior example to implement a second interface on the implementing class.

LISTING 3-2  Multiple interfaces can be implemented by a single class.

public interface IInterfaceOne 
{ 
    void MethodOne(); 
} 
// . . . 
public interface IInterfaceTwo 
{ 
    void MethodTwo(); 
} 
// . . .  
public class ImplementingMultipleInterfaces : IInterfaceOne, IInterfaceTwo 
{ 
    public void MethodOne() 
    { 
    } 
 
    public void MethodTwo() 
    { 
    } 
}

Though there can be multiple interfaces implemented on a single class, a single interface can 
similarly be implemented multiple times by different classes.

From the Library of Ida Schander



ptg14200592

96	 PART I  An Agile foundation

Multiple inheritance
Some languages support the concept of inheriting from multiple base classes. C++, in particular, 
allows this construct. However, .NET Framework languages do not permit it, and the compiler 
will generate a warning if a class attempts to inherit from two or more classes, as Figure 3-1 
shows.

FIGURE 3-1  Multiple inheritance is prevented by the compiler.

Diamond inheritance problem
One reason that multiple inheritance is disallowed is because of the diamond inheritance prob-
lem. This problem occurs when two or more classes are inherited by the same class. If each of 
those base classes contains identical methods, which one should be used? Figure 3-2 shows a 
Unified Modeling Language (UML) diagram of the problem. 

FIGURE 3-2  A UML diagram showing the diamond inheritance problem.

In this case, which version of RootMethod()should class AttemptedMultipleInheritance 
inherit—the one that BaseClassOne inherited from RootClass, or the one that BaseClass­
Two inherited from RootClass? Because of this ambiguity, the .NET Framework does not allow 
multiple inheritance of classes.

From the Library of Ida Schander



ptg14200592

	 CHAPTER 3  Interfaces and design patterns	 97

Explicit implementation
Interfaces can also be implemented explicitly. Explicit interface implementation differs from implicit 
interface implementation, which is what was shown in the previous examples. Listing 3-3 shows the 
same example class from before, but this time it implements its interface explicitly.

LISTING 3-3  Implementing an interface explicitly.

public class ExplicitInterfaceImplementation : ISimpleInterface 
{ 
    public ExplicitInterfaceImplementation() 
    { 
        this.encapsulatedInteger = 4; 
    } 
 
    void ISimpleInterface.ThisMethodRequiresImplementation() 
    { 
        encapsulatedEvent(this, EventArgs.Empty); 
    } 
 
    string ISimpleInterface.ThisStringPropertyNeedsImplementingToo 
    { 
        get; 
        set; 
    } 
 
    int ISimpleInterface.ThisIntegerPropertyOnlyNeedsAGetter 
    { 
        get 
        { 
            return encapsulatedInteger; 
        } 
    } 
 
    event EventHandler<EventArgs> ISimpleInterface.InterfacesCanContainEventsToo 
    { 
        add { encapsulatedEvent += value; } 
        remove { encapsulatedEvent -= value; } 
    } 
 
    private int encapsulatedInteger; 
    private event EventHandler<EventArgs> encapsulatedEvent; 
} 

To use an explicitly implemented interface, clients must have a reference to an instance of the 
interface—a reference to an implementation of the interface will not suffice. Listing 3-4 explores this 
in further detail.

From the Library of Ida Schander



ptg14200592

98	 PART I  An Agile foundation

LISTING 3-4  When implemented explicitly, the interface methods are not visible on class instances.

public class ExplicitInterfaceClient 
{ 
    public ExplicitInterfaceClient(ExplicitInterfaceImplementation 
        implementationReference, ISimpleInterface interfaceReference) 
    { 
        // Uncommenting this will cause compilation errors. 
        //var instancePropertyValue =  
        //implementationReference.ThisIntegerPropertyOnlyNeedsAGetter; 
        //implementationReference.ThisMethodRequiresImplementation(); 
        //implementationReference.ThisStringPropertyNeedsImplementingToo = "Hello"; 
        //implementationReference.InterfacesCanContainEventsToo += EventHandler; 
 
        var interfacePropertyValue =  
            interfaceReference.ThisIntegerPropertyOnlyNeedsAGetter; 
        interfaceReference.ThisMethodRequiresImplementation(); 
        interfaceReference.ThisStringPropertyNeedsImplementingToo = "Hello"; 
        interfaceReference.InterfacesCanContainEventsToo += EventHandler; 
    } 
 
    void EventHandler(object sender, EventArgs e) 
    { 
             
    } 
}

Explicit implementation is only really useful when you want to avoid a signature clash, when the 
class already possesses a method signature that must be implemented by an interface. 

Every method that can be defined in the .NET Framework has a specific method signature. This 
signature helps to distinguish methods as unique and to differentiate methods that have been over-
ridden. A method’s signature consists of its name and its parameter list. Note that a method’s access 
level, return value, abstract, or sealed status all affect the method signature. Listing 3-5 shows a variety 
of method signatures, some of which clash. Method signatures clash if they are equal in all aforemen-
tioned criteria. No class, interface, or struct can contain methods with clashing signatures.

LISTING 3-5  Some of these methods have the same signature.

public class ClashingMethodSignatures 
{ 
    public void MethodA() 
    { 
 
    } 
 
    // This would cause a clash with the method above: 
    //public void MethodA() 
    //{ 
 

From the Library of Ida Schander



ptg14200592

	 CHAPTER 3  Interfaces and design patterns	 99

    //} 
 
    // As would this: return values are not considered 
    //public int MethodA() 
    //{ 
    //    return 0; 
    //} 
 
    public int MethodB(int x) 
    { 
        return x; 
    } 
 
    // There is no clash here: the parameters differ. 
    // This is an overload of the previous MethodB. 
    public int MethodB(int x, int y) 
    { 
        return x + y; 
    } 
}

Properties, because they don’t have parameter lists, are differentiated solely on their name. Thus, 
two properties’ signatures clash if they possess the same name.

Imagine the class shown in Listing 3-6, which is needed to implement the aforementioned inter-
face, InterfaceOne.

LISTING 3-6  The interface that this class needs to implement will cause method signature collisions.

public class ClassWithMethodSignatureClash 
{ 
    public void MethodOne() 
    { 
    } 
}

First, because the method signatures are the same, you only need to add the interface implemen-
tation notation to the class declaration, as shown in Listing 3-7.

LISTING 3-7  Implicitly implementing the interface will allow reuse of the existing methods.

public class ClassWithMethodSignatureClash : IInterfaceOne 
{ 
    public void MethodOne() 
    { 
    } 
}

From the Library of Ida Schander



ptg14200592

100	 PART I  An Agile foundation

Whenever a client calls the interface methods on this class, the same methods that are already in 
place will be used. An example of where this can be useful is when you are implementing the Model-
View-Presenter (MVP) pattern in Windows Forms and adding an IView interface that requires a 
Close method to be implemented on a Form. Listing 3-8 shows this in practice.

LISTING 3-8  Sometimes the presence of a clashing method can be neatly capitalized on.

public interface IView 
{ 
    void Close(); 
} 
// . . . 
public partial class Form1 : Form, IView 
{ 
    public Form1() 
    { 
        InitializeComponent(); 
    } 
}

However, if the class needs to provide different method bodies for the interface implementation, 
the class should implement the interface explicitly, avoiding the method signature clash. Listing 3-9 
shows a class with clashing methods that provides different implementations of those methods.

LISTING 3-9  Explicitly implementing an interface to avoid clashing method signatures.

public class ClassAvoidingMethodSignatureClash : IInterfaceOne 
{ 
    public void MethodOne() 
    { 
        // original implementation 
    } 
 
    void IInterfaceOne.MethodOne() 
    { 
        // new implementation 
    } 
}

In a similar regard, if a class needs to implement two different interfaces that are unrelated but 
that both contain a method with the same signature, you can implement them both implicitly and 
share the same method implementation. Or, as shown in Listing 3-10, you can implement them both 
explicitly—for clarity—to demarcate which implementation belongs to which interface.

From the Library of Ida Schander



ptg14200592

	 CHAPTER 3  Interfaces and design patterns	 101

LISTING 3-10  When implementing two interfaces with a common method signature, only explicit implementation 
is sufficient.

public class ClassImplementingClashingInterfaces : IInterfaceOne, IAnotherInterfaceOne 
{ 
    void IInterfaceOne.MethodOne() 
    { 
         
    } 
 
    void IAnotherInterfaceOne.MethodOne() 
    { 
             
    } 
}

Polymorphism
The ability to use an object of one type and have it implicitly act as if it were of a different type is 
called polymorphism. Client code can interact with an object as if it is one type when it is actually an-
other. This programmatic sleight of hand is one of the most important tenets of object-oriented pro-
gramming and underpins some of the most elegant, adaptive solutions to programming problems.

Figure 3-3 shows an interface representing the behavior of vehicles, and some possible implement-
ing classes for cars, motorcycles, and speedboats. Note that each of these three vehicle types is quite 
distinct, but they all exhibit the same behavior due to their unifying interface.

FIGURE 3-3  Interfaces pass on their behavior to implementing classes, enabling polymorphism.

From the Library of Ida Schander



ptg14200592

102	 PART I  An Agile foundation

In this example, vehicles are assumed to have an engine that can be started and stopped, some 
provision for steering, and the ability to accelerate. Polymorphism allows client code to hold a refer-
ence to an IVehicle interface and treat all concrete types as if they were the same. The details of 
how a car steers or accelerates compared to a motorcycle, or how a speedboat engine is started and 
stopped compared to a train, is irrelevant to the client. And this is a very good thing. In reality, we 
are all clients to this interface whenever we use a vehicle. Sure, a real interface for a vehicle is more 
nuanced than that which is shown here, but the principle is the same. Do you need to know how the 
engine of your car works in order to start and stop the engine? No, not at all. Those are all implemen-
tation details that can have no bearing on your knowledge of driving. That is good interface design.

The design patterns and interface features that make up the rest of this chapter all facilitate the 
creation of adaptive code. Polymorphism enables each one to be useful for any class that fulfils an 
expected interface, whether it has already been written or is yet to be conceived.

Adaptive design patterns

Design patterns were popularized by the Gang of Four1 book, Design Patterns (Addison-Wesley Pro-
fessional, 1994). Despite the fact that this book is almost 20 years old (which is at least four ice ages 
in software development terms), it is still extremely relevant today. Some of the patterns have crossed 
over to be reclassified as anti-patterns, but others are used constantly and enhance the adaptability 
of code.

Good design patterns are reusable collaborations between interfaces and classes that can be ap-
plied repeatedly in many different scenarios, across projects, platforms, languages, and frameworks. 
As with most notable best practices, design patterns are another theoretical tool that it is better to 
know than not know. They can be overused, and they are not always applicable, sometimes over-
complicating an otherwise simple solution with an explosion of classes, interfaces, indirection, and 
abstraction.

In my experience, design patterns tend to be either underused or overused. In some projects, 
there are not enough design patterns and the code suffers from a lack of discernable structure. Other 
projects apply design patterns too liberally, adding indirection and abstraction where the benefit is 
negligible. The balance is in finding the right places to apply the right patterns. 

1	  So called because of its four authors: Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides.

From the Library of Ida Schander



ptg14200592

	 CHAPTER 3  Interfaces and design patterns	 103

The Null Object pattern
The Null Object pattern is one of the most common design patterns—and it is one of the easiest 
to comprehend and implement. Its purpose is to allow you to avoid accidentally throwing a Null­
ReferenceException and a plethora of null object checking code. The UML class diagram in 
Figure 3-4 shows how the Null Object pattern is applied.

FIGURE 3-4  The Null Object pattern demonstrated as a UML class diagram.

Listing 3-11 shows some typical code that can throw a NullReferenceException.

LISTING 3-11  If you don’t check return values for null, there is a chance of throwing a NullReference­
Exception.

class Program 
{ 
    static IUserRepository userRepository = new UserRepository(); 
 
    static void Main(string[] args) 
    { 
        var user = userRepository.GetByID(Guid.NewGuid()); 
        // Without the Null Object pattern, this line could throw an exception 
        user.IncrementSessionTicket(); 
    } 
}

Every client that calls IUserRepository.Get(Guid uniqueID) is in danger of throwing a null 
reference. In practice, this means that every client must check that the return value is not null, to 
avoid attempting to dereference null, causing a NullReferenceException to be thrown. This 
would make the client shown previously look more like the code in Listing 3-12.

From the Library of Ida Schander



ptg14200592

104	 PART I  An Agile foundation

LISTING 3-12  Is checking against null really the responsibility of all clients?

class Program 
{ 
    static IUserRepository userRepository = new UserRepository(); 
 
    static void Main(string[] args) 
    { 
        var user = userRepository.GetByID(Guid.NewGuid()); 
        if(user != null) 
        { 
            user.IncrementSessionTicket(); 
        } 
    } 
}

The Null Object pattern indicates that you are placing too much unnecessary burden on all of the 
clients of IRepository. The more clients that use this method, the greater the probability of forget-
ting a null reference check. Instead, you should change the source of the problem to perform the 
check for you, as shown in Listing 3-13.

LISTING 3-13  The service code should implement the Null Object pattern.

public class UserRepository : IUserRepository 
{ 
    public UserRepository() 
    { 
        users = new List<User> 
        { 
            new User(Guid.NewGuid()), 
            new User(Guid.NewGuid()), 
            new User(Guid.NewGuid()), 
            new User(Guid.NewGuid()) 
        }; 
    } 
 
    public IUser GetByID(Guid userID) 
    { 
        IUser userFound = users.SingleOrDefault(user => user.ID == userID); 
        if(userFound == null) 
        { 
            userFound = new NullUser(); 
        } 
        return userFound; 
    } 
 
    private ICollection<User> users; 
}

From the Library of Ida Schander



ptg14200592

	 CHAPTER 3  Interfaces and design patterns	 105

First, this code attempts to retrieve the User from the in-memory collection, which is no change 
from the previous implementation. Now, though, you check whether the User instance returned is 
actually a null reference. If it is, you return a special subclass of the IUser type: the NullUser. This 
subclass overrides the IncrementSessionTicket method to do precisely nothing, as shown in List-
ing 3-14. In fact, a proper NullUser implementation overrides all methods to do as close to nothing 
as possible.

LISTING 3-14  The NullUser method implementations all do nothing.

public class NullUser : IUser 
{ 
    public void IncrementSessionTicket() 
    { 
        // do nothing 
    } 
}

Additionally, whenever a method or property of the NullUser object is expected to return a 
reference to another object, it should return a special Null Object implementation of those types, too. 
In other words, all Null Object implementations should return recursive Null Object implementations. 
This obviates the need for any null reference checking in clients.

This also has the added benefit of reducing the number of unit tests that you need to write. Previ-
ously, when each client had to implement the check, there would also be concomitant unit tests to 
confirm that the check was in place. Instead, the repository implementation is unit tested to ensure 
that it returns the NullUser implementation.

The IsNull property anti-pattern
Sometimes the Null Object pattern involves adding a Boolean IsNull property to the interface. All 
real implementations of this interface return the value false for this property. The Null Object imple-
mentation of the interface returns true. Listing 3-15 shows how this might work, given the previous 
example.

LISTING 3-15  The IsNull property is only true for Null Object implementations.

public interface IUser 
{ 
    void IncrementSessionTicket(); 
 
    bool IsNull 
    { 
        get; 
    } 
} 

From the Library of Ida Schander



ptg14200592

106	 PART I  An Agile foundation

// . . . 
public class User : IUser 
{ 
    // . . . 
    public bool IsNull 
    { 
        get 
        { 
            return false; 
        } 
    } 
 
    private DateTime sessionExpiry; 
} 
// . . . 
public class NullUser : IUser 
{ 
    public void IncrementSessionTicket() 
    { 
        // do nothing 
    } 
 
    public bool IsNull 
    { 
        get 
        { 
            return true; 
        } 
    } 
}

The problem with this property is that it causes logic to spill out of the objects whose purpose is to 
encapsulate behavior. For example, if statements will start to creep into client code to differentiate 
between real implementations and the Null Object implementation. This obviates the whole purpose 
of the pattern, which is to avoid proliferating this logic to its various clients. Listing 3-16 is a typical 
example of this problem.

LISTING 3-16  Logic based on the IsNull property makes this an anti-pattern.

static void Main(string[] args) 
{ 
    var user = userRepository.GetByID(Guid.NewGuid()); 
    // Without the Null Object pattern, this line would throw an exception 
    user.IncrementSessionTicket(); 
 
    string userName; 
    if(!user.IsNull) 

From the Library of Ida Schander



ptg14200592

	 CHAPTER 3  Interfaces and design patterns	 107

    { 
        userName = user.Name; 
    } 
    else 
    { 
        userName = "unknown"; 
    } 
 
    Console.WriteLine("The user's name is {0}", userName); 
 
    Console.ReadKey(); 
}

This can easily be fixed by encapsulating the name of a null user inside the NullUser class, as in 
Listing 3-17.

LISTING 3-17  With proper encapsulation, the IsNull property is obsolete.

public class NullUser : IUser 
{ 
    public void IncrementSessionTicket() 
    { 
        // do nothing 
    } 
 
    public string Name 
    { 
        get 
        { 
            return "unknown"; 
        } 
    } 
} 
// . . . 
static void Main(string[] args) 
{ 
    var user = userRepository.GetByID(Guid.NewGuid()); 
    // Without the Null Object pattern, this line would throw an exception 
    user.IncrementSessionTicket(); 
 
    Console.WriteLine("The user's name is {0}", user.Name); 
 
    Console.ReadKey(); 
}

From the Library of Ida Schander



ptg14200592

108	 PART I  An Agile foundation

Cascading Nulls
A requested feature of the C# language is that it mimic Groovy2 and include a “Cascading Nulls” 
operator. Consider the following code snippet.

if(person != null && person.Address != null && person.Address.Country == "England") 
{ 
    // . . . 
}

The theory is that it could be replaced with the following.

if(person?.Address?.Country == "England") 
{ 
    // . . . 
}

The ?. operator thus becomes a way of safely dereferencing any object and, at worst, being 
handed a default(T) of the property type. I am not against any progression in the syntax of 
the language that others might find useful, but I would be reluctant to use this as an alternative 
to a proper Null Object implementation, for three reasons.

First, there are too many instances in which a default value of a type is simply not going 
to suffice. The previous example of using a sensible user name to avoid throwing a Null­
ReferenceException illustrates that the alternative is not a default value but something 
more meaningful to the application.

Second, this would require all clients of this code to be programmed with the possibility of 
null in mind. Part of the reason to use the Null Object pattern is to obviate null checking 
and give you the freedom to dereference with impunity. If you reject the Null Object pattern in 
favor of the Cascading Nulls syntax, you open yourself up to forgetting to dereference again. 

A third, more subjective reason is that such syntax would likely become ubiquitous. The 
occasional int? to represent an int with optional/reference semantics is fair enough, but lit-
tering the code with ?. for every dereference? No, thanks.

Given a proper Null Object implementation, this example could be written succinctly as 
shown here.

if(person.Address.Country == "England") 
{ 
    // . . . 
}

This, surely, offers the most benefit: client code that is less obfuscated but that is safe from 
the perils of a NullReferenceException.

2	  Groovy is a dynamically typed Java variant (http://groovy.codehaus.org).

From the Library of Ida Schander

http://groovy.codehaus.org


ptg14200592

	 CHAPTER 3  Interfaces and design patterns	 109

The Adapter pattern
The Adapter pattern allows you to provide an object instance to a client that has a dependency on an 
interface that your instance does not implement. An Adapter class is created that fulfills the expected 
interface of the client but that implements the methods of the interface by delegating to differ-
ent methods of another object. It is typically used when the target class cannot be altered to fit the 
desired interface. This could be because it is sealed or because it belongs to an assembly for which 
you do not have the source. You can implement the Adapter pattern in two ways: by using the Class 
Adapter pattern or by using the Object Adapter pattern.

The Class Adapter pattern
Figure 3-5 shows the collaborating classes and interfaces used in the Class Adapter pattern.

FIGURE 3-5  The UML class diagram for the Class Adapter pattern.

The Class Adapter pattern makes use of inheritance for the adapter—a subclass of the target class 
is what needs to be adapted to fit the expected interface of clients. Listing 3-18 shows how this works 
in practice.

LISTING 3-18  The Class Adapter pattern uses implementation inheritance.

public class Adaptee 
{ 
    public void MethodB() 
    { 
 
    } 
} 
// . . .  
public class Adapter : Adaptee 
{ 
    public void MethodA() 

From the Library of Ida Schander



ptg14200592

110	 PART I  An Agile foundation

    { 
        MethodB(); 
    } 
} 
// . . . 
class Program 
{ 
    static Adapter dependency = new Adapter(); 
    static void Main(string[] args) 
    { 
        dependency.MethodA(); 
    } 
}

This is the less common of the two types of Adapter pattern, mostly because developers are told 
to favor composition over inheritance. This is because inheritance, which is whitebox reuse, makes the 
subclass dependent on the implementation of a class, rather than merely on its interface. Composi-
tion, which is blackbox reuse, limits the dependency to the interface, so that the implementation can 
vary without adversely affecting clients.

The Object Adapter pattern
The Object Adapter pattern uses composition to delegate from the methods of the interface to that 
of a contained, encapsulated object. Figure 3-6 shows the collaborating classes and interfaces used in 
the Object Adapter pattern.

FIGURE 3-6  The UML class diagram for the Object Adapter pattern.

Listing 3-19 shows how this works in practice.

From the Library of Ida Schander



ptg14200592

	 CHAPTER 3  Interfaces and design patterns	 111

LISTING 3-19  The adaptor accepts the target class as a constructor parameter and delegates to it.

public interface IExpectedInterface 
{ 
    void MethodA(); 
} 
// . . . 
public class Adapter : IExpectedInterface 
{ 
    public Adapter(TargetClass target) 
    { 
        this.target = target; 
    } 
 
    public void MethodA() 
    { 
        target.MethodB(); 
    } 
 
    private TargetClass target; 
} 
// 
public class TargetClass 
{ 
    public void MethodB() 
    { 
 
    } 
} 
// . . . 
class Program 
{ 
    static IExpectedInterface dependency = new Adapter(new TargetClass()); 
    static void Main(string[] args) 
    { 
        dependency.MethodA(); 
    } 
}

The Strategy pattern
The Strategy pattern allows you to change the desired behavior of a class without requiring recom-
pilation, potentially even during run-time execution. Figure 3-7 shows the UML class diagram for the 
Strategy pattern.

From the Library of Ida Schander



ptg14200592

112	 PART I  An Agile foundation

FIGURE 3-7  The UML class diagram of the Strategy pattern.

The Strategy pattern is used whenever a class needs to exhibit variant behavior depending on the 
state of an object. If this behavior can change at run time depending on the current state of the class, 
the Strategy pattern is a perfect fit for encapsulating this variant behavior. Listing 3-20 shows how to 
create the Strategy pattern and use it in a class.

LISTING 3-20  The Strategy pattern in action.

public interface IStrategy 
{ 
    void Execute(); 
} 
// . . . 
public class ConcreteStrategyA : IStrategy 
{ 
    public void Execute() 
    { 
        Console.WriteLine("ConcreteStrategyA.Execute()"); 
    } 
} 
// . . . 
public class ConcreteStrategyB : IStrategy 
{ 
    public void Execute() 
    { 
        Console.WriteLine("ConcreteStrategyB.Execute()"); 
    } 
} 
// . . . 
public class Context 
{ 
    public Context() 
    { 
        currentStrategy = strategyA; 
    } 
 

From the Library of Ida Schander



ptg14200592

	 CHAPTER 3  Interfaces and design patterns	 113

    public void DoSomething() 
    { 
        currentStrategy.Execute(); 
 
        // swap strategy with each call 
        currentStrategy = (currentStrategy == strategyA) ? strategyB : strategyA; 
    } 
 
    private readonly IStrategy strategyA = new ConcreteStrategyA(); 
    private readonly IStrategy strategyB = new ConcreteStrategyB(); 
 
    private IStrategy currentStrategy; 
}

With every call that is made to Context.DoSomething(), the method first delegates to the cur-
rent strategy and then swaps between strategy A and strategy B. The next call delegates to the newly 
selected strategy before again swapping back to the original strategy. 

The way the strategies are selected is an implementation detail—it does not alter the net effect of 
the pattern: that the behavior of the class is hidden behind an interface whose implementations are 
used to perform the real work. 

Further versatility

The utility of interfaces is not limited to design patterns. There are some other, more specialized uses 
of interfaces that are worth investigation. Though these features are not generally applicable, there 
are situations in which they are the right tool for the job. 

Just as with design patterns, their overuse can be detrimental to the readability and maintainability of 
code. It is a difficult balancing act to find the correct number of collaborating patterns and techniques 
to solve a problem elegantly, so exercise some caution when using interfaces in the following ways.

Duck-typing
C# is a statically typed language, whereas duck-typing is more commonly found in dynamically typed 
languages. Duck-typing uses the duck test:

When I see a bird that walks like a duck and swims like a duck and quacks like a 
duck, I call that bird a duck.

—James Whitcomb Riley

From the Library of Ida Schander



ptg14200592

114	 PART I  An Agile foundation

Applied to types in a programming language, the duck test suggests that, as long as an object 
exhibits the behavior of a certain interface, it should be treated as that interface. Unfortunately, this is 
not true by default in C#. Observe the example in Listing 3-21.

LISTING 3-21  Although the object Swan fulfills all of the methods of an IDuck, it is, in fact, not an IDuck.

public interface IDuck 
{ 
    void Walk(); 
 
    void Swim(); 
 
    void Quack(); 
} 
// . . . 
public class Swan 
{ 
    public void Walk() 
    { 
        Console.WriteLine("The swan is walking."); 
    } 
 
    public void Swim() 
    { 
        Console.WriteLine("The swan can swim like a duck."); 
    } 
 
    public void Quack() 
    { 
        Console.WriteLine("The swan is quacking."); 
    } 
} 
// . . . 
class Program 
{ 
    static void Main(string[] args) 
    { 
        var swan = new Swan(); 
 
        var swanAsDuck = swan as IDuck; 
 
        if(swan is IDuck || swanAsDuck != null) 
        { 
            swanAsDuck.Walk(); 
            swanAsDuck.Swim(); 
            swanAsDuck.Quack(); 
        } 
    } 
}

From the Library of Ida Schander



ptg14200592

	 CHAPTER 3  Interfaces and design patterns	 115

The is predicate and the as cast return false and null, respectively. The Common Language 
Runtime (CLR) does not consider a Swan as being an IDuck, even though it actually fulfils that inter-
face. A type must implement the interface via interface inheritance.

There are a couple of tricks that you can employ to enable the Swan class to be usable as an 
instance of the IDuck interface without having to implement it. Either you can take advantage of the 
dynamic typing extensions in newer versions of the CLR, or you can make use of a third-party library 
called Impromptu Interface.

Using the Dynamic Language Runtime
As of version 4, the .NET Framework was no longer strictly statically typed. With the introduction of 
the dynamic keyword, and some supporting types, you can avoid the CLR’s static typing and switch 
to the dynamic typing of the Dynamic Language Runtime (DLR). An example of dynamic typing in C# 
is shown in Listing 3-22.

LISTING 3-22  The DLR can be used for duck typing.

class Program 
{ 
    static void Main(string[] args) 
    { 
        var swan = new Swan(); 
 
        DoDuckLikeThings(swan); 
 
        Console.ReadKey(); 
    } 
 
    static void DoDuckLikeThings(dynamic duckish) 
    { 
        if (duckish != null) 
        { 
            duckish.Walk(); 
            duckish.Swim(); 
            duckish.Quack(); 
        } 
    } 
}

Notice, however, that the method parameter is of type dynamic. Not only do you need to target 
the .NET Framework 4, dynamic typing needs to be designed into clients specifically. On both counts, 
this is sometimes infeasible. You can’t, for example, simply start creating all methods to take dynamic 
parameters everywhere, or else you would be better off using a dynamically typed .NET Framework 
language, such as IronPython3.

3	  http://ironpython.net/

From the Library of Ida Schander

http://ironpython.net/


ptg14200592

116	 PART I  An Agile foundation

Using Impromptu Interface
Impromptu Interface is a .NET Framework library that can be installed via NuGet. After it is installed, 
you can use the ActLike<T>() method to pass in your Swan and receive an IDuck instance that 
delegates to your instance. Listing 3-23 shows how this works.

LISTING 3-23  Impromptu Interface allows duck-typing in C#.

class Program 
{ 
    static void Main(string[] args) 
    { 
        var swan = new Swan(); 
 
        var swanAsDuck = Impromptu.ActLike<IDuck>(swan); 
 
        if(swanAsDuck != null) 
        { 
            swanAsDuck.Walk(); 
            swanAsDuck.Swim(); 
            swanAsDuck.Quack(); 
        } 
 
        Console.ReadKey(); 
    } 
}

What the ActLike method is doing is creating a new type at run time by using Reflection Emit. 
This is a powerful part of the .NET Framework Reflection API that allows the creation of new types at 
run time. This new type fulfills the IDuck interface, but it also contains the Swan instance as an encap-
sulated field. Whenever one of the IDuck interface methods is called, the new type trivially delegates 
to the Swan instance. It is, in effect, a run-time version of the Adapter pattern. Impromptu Interface is 
an automatic way of applying the Object Adapter pattern.

CLR duck-typing support
Interestingly, the CLR already supports duck-typing. Unfortunately, this is only for one uncommon 
case: implementing something that is enumerable. A type that is the target of the foreach loop must 
conform to a certain interface, but that interface is not formalized and can be implemented ad hoc on 
the target class. In the example in Listing 3-24, the Duck class is the target of a foreach loop.

LISTING 3-24  The CLR implicitly supports duck-typing for enumerable types.

class Program 
{ 
    static void Main(string[] args) 
    { 
        var duck = new Duck(); 
 

From the Library of Ida Schander



ptg14200592

	 CHAPTER 3  Interfaces and design patterns	 117

        foreach (var duckling in duck) 
        { 
            Console.WriteLine("Quack {0}", duckling); 
        } 
 
        Console.ReadKey(); 
    } 
}

The Duck does not implement any interface, but the GetEnumerator() method is required by the 
foreach loop, as the compiler instructs, as shown in Figure 3-8.

FIGURE 3-8  Without requiring a specific interface, the compiler complains that a public method is missing from 
the class. 

When you implement this method with a void return type, you receive a new error stating that 
this type does not support some other required methods and properties, as shown in Figure 3-9.

FIGURE 3-9  The return type of the GetEnumerator method must also match an implicit contract.

These properties can then be implemented as shown in Listing 3-25.

LISTING 3-25  Completing the implied interface of the DuckEnumerator class.

public class DuckEnumerator 
{ 
    int i = 0; 
 
    public bool MoveNext() 
    { 
        return i++ < 10; 
    } 
 
    public int Current 
    { 
        get 
        { 
            return i; 
        } 
    } 
}

From the Library of Ida Schander



ptg14200592

118	 PART I  An Agile foundation

At this point, you have successfully implemented the implicit interface that the foreach requires—
duck-typing in action!

Mixins
An extension of duck-typing is the concept of the mixin. A mixin is a class that contains the imple-
mentations from multiple other classes, without using implementation inheritance. As you have 
already learned, multiple implementation inheritance is not supported by C#, so you must look at 
other solutions for implementing mixins.

One trivial but limited way of implementing mixins is to use extension methods. This allows you to 
add methods to a type that has already been defined, which can be very useful. An alternative is to 
use a third-party library such as Re-motion Re-mix, which operates much like Impromptu Interface 
in that it generates a new type at run time that contains all of the interfaces you specify and acts as a 
multifaceted adapter.

Using extension methods
Since the .NET Framework 3.5, extension methods have allowed the addition of new functionality to 
already existing types. Without needing to access the source of a type, nor requiring the type to be a 
partial definition, you can extend a type. Listing 3-26 shows the interface that will be enhanced in 
this section, along with a pair of trivial extension methods.

LISTING 3-26  Extension methods can enhance an existing interface.

public interface ITargetInterface 
{ 
    void DoSomething(); 
} 
// . . . 
public static class MixinExtensions 
{ 
    public static void FirstExtensionMethod(this ITargetInterface target) 
    { 
        Console.WriteLine("The first extension method was called."); 
    } 
 
    public static void SecondExtensionMethod(this ITargetInterface target) 
    { 
        Console.WriteLine("The second extension method was called."); 
    } 
}

Now, whenever a client has access to an ITargetInterface instance, and it also references the 
MixinExtensions class, these two extension methods will be available. Any number of extension 
methods can be created, spread across multiple static classes. Listing 3-27 shows another pair of ex-
tension methods; this time they take extra parameters.

From the Library of Ida Schander



ptg14200592

	 CHAPTER 3  Interfaces and design patterns	 119

LISTING 3-27  Extension methods can take parameters.

public static class MoreMixinExtensions 
{ 
    public static void FurtherExtensionMethodA(this ITargetInterface target, int  
        extraParameter) 
    { 
        Console.WriteLine("Further extension method A was called with argument {0}",  
            extraParameter); 
    } 
 
    public static void FurtherExtensionMethodB(this ITargetInterface target, string  
        stringParameter) 
    { 
        Console.WriteLine("Further extension method B was called with argument {0}",  
            stringParameter); 
    } 
}

These extension methods can be called just like any other by any client, as in Listing 3-28.

LISTING 3-28  Clients have access to extension methods as if they were declared directly on the target interface.

public class MixinClient 
{ 
    public MixinClient(ITargetInterface target) 
    { 
        this.target = target; 
    } 
 
    public void Run() 
    { 
        target.DoSomething(); 
        target.FirstExtensionMethod(); 
        target.SecondExtensionMethod(); 
        target.FurtherExtensionMethodA(30); 
        target.FurtherExtensionMethodB("Hello!"); 
    } 
 
    private readonly ITargetInterface target; 
} 

There are a few notable limitations to this approach to mixins. The first is the testability of the cli-
ent. As Chapter 4, “Unit testing and refactoring,” will show, static classes do not lend themselves to be 
easily mocked. This makes all clients of these extension methods more difficult to properly unit test.

Worse still, also due to extension methods being static classes, they cannot hold any extra per-
instance state related to the object. Sure, there are workarounds, such as storing a static dictionary 
that maps instances to some extra values, but this is not ideal.

From the Library of Ida Schander



ptg14200592

120	 PART I  An Agile foundation

Notice also that the extension methods are all targeting the same interface, and that all instances 
to be enhanced must implement this interface. True mixins, on the other hand, implement multiple 
different interfaces and act as aggregate adapters.

Using Re-motion Re-mix
An alternative way of implementing mixins is by using a third-party library such as Re-motion Re-mix. 
Re-mix allows you to specify, via run-time configuration, which classes to combine when creating a 
new instance of a certain target class. As with Impromptu Interface, it generates a new type on the fly 
that fulfills all of the interfaces present on the mixins requested, with each instance of this type del-
egating to an instance of the mixin whenever an interface method is called. The interfaces, and some 
sample implementations, are shown in Listing 3-29.

LISTING 3-29  The disparate interfaces to be combined as a mixin.

public interface ITargetInterface 
{ 
    void DoSomething(); 
} 
// . . . 
public class TargetImplementation : ITargetInterface 
{ 
    public void DoSomething() 
    { 
        Console.WriteLine("ITargetInterface.DoSomething()"); 
    } 
} 
// . . . 
public interface IMixinInterfaceA 
{ 
    void MethodA(); 
} 
// . . . 
public class MixinImplementationA : IMixinInterfaceA 
{ 
    public void MethodA() 
    { 
        Console.WriteLine("IMixinInterfaceA.MethodA()"); 
    } 
} 
// . . . 
public interface IMixinInterfaceB 
{ 
    void MethodB(int parameter); 
} 

From the Library of Ida Schander



ptg14200592

	 CHAPTER 3  Interfaces and design patterns	 121

// . . . 
public class MixinImplementationB : IMixinInterfaceB 
{ 
    public void MethodB(int parameter) 
    { 
        Console.WriteLine("IMixinInterfaceB.MethodB({0})", parameter); 
    } 
} 
// . . . 
public interface IMixinInterfaceC 
{ 
    void MethodC(string parameter); 
} 
// . . . 
public class MixinImplementationC : IMixinInterfaceC 
{ 
    public void MethodC(string parameter) 
    { 
        Console.WriteLine("IMixinInterfaceC.MethodC(\"{0}\")", parameter); 
    } 
}

Note that there is no single class that implements all of these interfaces. Instead, the next step is to 
configure Re-mix so that, when it is asked for an instance of TargetImplementation, it will return a 
mixin containing all of the interfaces and classes combined. Listing 3-30 shows such a configuration.

LISTING 3-30  Instructing Re-mix how to construct TargetImplementation instances.

var config = MixinConfiguration.BuildFromActive() 
    .ForClass<TargetImplementation>() 
    .AddMixin<MixinImplementationA>() 
    .AddMixin<MixinImplementationB>() 
    .AddMixin<MixinImplementationC>() 
    .BuildConfiguration(); 
             
MixinConfiguration.SetActiveConfiguration(config);

Unfortunately, you cannot simply call new on the TargetImplementation and expect a mixin. 
Instead, you have to ask Re-mix to create a TargetImplementation instance so that it can build a 
new type to your specification and instantiate it. Listing 3-31 shows how it can do that—and luckily, it 
is trivial.

LISTING 3-31  Re-mix is in charge of creating mixins.

ITargetInterface target = ObjectFactory.Create<TargetImplementation>(ParamList.Empty)

From the Library of Ida Schander



ptg14200592

122	 PART I  An Agile foundation

One of the limitations of Re-mix is that you do not—and cannot—know the exact type of the 
instance returned by ObjectFactory.Create. All you know is that it is an instance of a subclass 
TargetImplementation. This is sort of bad news for clients, because the only interface you can 
guarantee that TargetImplementation fulfills at compile time is ITargetInterface. Clients of the 
mixin, therefore, must type-sniff by using is and as to cast the mixin to the desired interface. Listing 
3-32 highlights this problem.

LISTING 3-32  Type-sniffing is bad practice but necessary for using mixins.

public class MixinClient 
{ 
    public MixinClient(ITargetInterface target) 
    { 
        this.target = target; 
    } 
 
    public void Run() 
    { 
        target.DoSomething(); 
 
        var targetAsMixinA = target as IMixinInterfaceA; 
        if(targetAsMixinA != null) 
        { 
            targetAsMixinA.MethodA(); 
        } 
 
        var targetAsMixinB = target as IMixinInterfaceB; 
        if(targetAsMixinB != null) 
        { 
            targetAsMixinB.MethodB(30); 
        } 
 
        var targetAsMixinC = target as IMixinInterfaceC; 
        if(targetAsMixinC != null) 
        { 
            targetAsMixinC.MethodC("Hello!"); 
        } 
    } 
 
    private readonly ITargetInterface target; 
}

Applying mixins to a solution works best when type-sniffing is already present or necessary. This is 
true with some libraries and frameworks. For example, Prism (the Windows Presentation Foundation/
Model-View-Viewmodel library) makes use of type-sniffing, and the functionality required of client 
classes can be segregated into different implementations and recombined via mixins.

From the Library of Ida Schander



ptg14200592

	 CHAPTER 3  Interfaces and design patterns	 123

Fluent interfaces
An interface is said to be fluent if it returns itself from one or more of its methods. This allows clients 
to chain calls together, as shown in Listing 3-33.

LISTING 3-33  Fluent interfaces allow method chaining.

public class FluentClient 
{ 
    public FluentClient(IFluentInterface fluent) 
    { 
        this.fluent = fluent; 
    } 
 
    public void Run() 
    { 
        // without using fluency 
        fluent.DoSomething(); 
        fluent.DoSomethingElse(); 
        fluent.DoSomethingElse(); 
        fluent.DoSomething(); 
        fluent.ThisMethodIsNotFluent(); 
             
        // using fluency  
        fluent.DoSomething() 
            .DoSomethingElse() 
            .DoSomethingElse() 
            .DoSomething() 
            .ThisMethodIsNotFluent(); 
    } 
 
    private readonly IFluentInterface fluent; 
}

This improves readability because it avoids repeated references to the instance of the interface. 
It is an increasingly popular way to implement configuration or finite state machines, as described in 
Chapter 8, “Interface segregation.”

Fluent interfaces are easy to implement, too. All the class has to do is return this from the 
method. Because the class is already an implementation of the interface, by returning this, the class 
returns only the interface portion of itself, thus hiding the rest of the implementation. Listing 3-34 
shows the definition of the IFluentInterface and the implementation used in this example.

LISTING 3-34  Implementing a simple fluent interface is easy.

public interface IFluentInterface 
{ 
    IFluentInterface DoSomething(); 
 
    IFluentInterface DoSomethingElse(); 
 

From the Library of Ida Schander



ptg14200592

124	 PART I  An Agile foundation

    void ThisMethodIsNotFluent(); 
} 
// . . . 
public class FluentImplementation : IFluentInterface 
{ 
    public IFluentInterface DoSomething() 
    { 
        return this; 
    } 
 
    public IFluentInterface DoSomethingElse() 
    { 
        return this; 
    } 
 
    public void ThisMethodIsNotFluent() 
    { 
             
    } 
}

Note that one of the methods of the interface is not fluent—it returns void. If a method returns 
anything but an interface, it is not fluent. Any chaining of methods that a client does will be halted by 
a call to a method that is not fluent.

Conclusion

In this chapter, you have learned what interfaces are and why they are such a key facet of writing 
adaptive code. They are catalysts for polymorphism, which allows you to encapsulate variation in 
families of classes. They are the root around which design patterns grow. And yet they actually do 
nothing. 

Remember, interfaces are useless without accompanying implementations. But without inter-
faces, implementations—and their associated dependencies—would infiltrate and pollute your code, 
making it hard to maintain and extend. A well-placed interface acts as a firewall between the dirty 
implementation details of service code and a clean, well-organized client.

Interfaces also have other, more specialized features, such as duck-typing and mixins. These are 
seldom used, but when applied in the right context, they can simplify otherwise convoluted code and 
add an extra dimension of adaptability.

The groundwork laid in this chapter will be of great importance as you experience the ubiquity of 
the interface throughout the rest of the book.

From the Library of Ida Schander



ptg14200592

		  125

C H A P T E R  4

Unit testing and refactoring

After completing this chapter, you will be able to

■■ Define unit testing and refactoring and explain why both are very useful techniques.

■■ Understand how unit testing and refactoring are intrinsically linked.

■■ Write code in a test-first fashion, focusing on implementing only that which the tests require.

■■ Refactor production code to improve its overall design.

■■ Recognize overspecified unit tests and refactor them. 

This chapter focuses on two different techniques that are current programming best practices: unit 
testing and refactoring. 

Unit testing is the discipline of writing code that tests other code. Unit tests themselves, being 
source code, can be compiled and executed. As each unit test runs, it reports the test’s success or fail-
ure with a simple true or false, often a green or a red visual indicator. If all of the unit tests pass, the 
production code that they test is considered to possibly be working. If even a single unit test fails—
out of possibly thousands—the production code overall is deemed to certainly be broken.

Refactoring is the process of incrementally improving the design of existing code. It is analogous to 
writing various drafts of code, much like I have written various drafts of this book. By acknowledging 
that we developers rarely get things right the first time, refactoring frees us to do the simplest thing 
first and gradually, through incremental improvements, arrive at a better solution later. 

The freedom to refactor with impunity is made possible by unit testing. When you unit test as early 
as possible in the process—that is, before you write any production code—you create a safety net 
to catch any subsequent errors when you refactor code. If a unit test transitions from a passing state 
to a failing state, you know that the last change you made is responsible for breaking the code. The 
process of writing unit tests and then refactoring toward better design is an upward spiral whereby 
the code quality increases while you simultaneously make progress with implementing new features.

Unit testing

To some degree, unit testing should be considered a mandatory part of every programmer’s daily 
discipline. For some developers, the ideal situation is when production code—the code that forms 
the basis of the software product—is entirely the result of the tests that were written to verify the 

From the Library of Ida Schander



ptg14200592

126	 PART I  An Agile foundation

application’s behavior. Later in this chapter, you will learn how this can be achieved through test-driven 
development, but bear in mind that the aim is to be pragmatic rather than purist: it is surely better 
to ship something and accept some prudent technical debt than it is to be late for the sake of writing 
more unit tests. That said, every project is unique in its tolerance for timeliness versus completeness.

There are some recognized unit testing patterns and guidelines that will result in repeatable 
success. These patterns and guidelines are no longer new but expected, tried, and tested. The ar-
rangement and naming of unit tests and, most of all, how to ensure the testability of the code are all 
primary concerns. If these concerns are neglected, unit tests will no longer be synchronized with the 
code that they test, test failures will be tolerated, and the safety net will wither and break. 

Arrange, Act, Assert
Every unit test is composed of three distinct parts:

■■ The arrangement of the preconditions of the test

■■ The performance of the act that is being tested

■■ The assertion that the expected behavior occurred

These three parts form the Arrange, Act, Assert (AAA) pattern. Every test that you write should 
follow this pattern so that other people can read your unit tests.

Note  Some readers might be more familiar with this pattern expressed as Given, When, 
Then. This is directly analogous to Arrange, Act, Assert, but it goes like this: given some 
preconditions, when the target of the test is executed, then some expected behavior 
should have occurred.

Arranging the preconditions
Before you can execute the action that you need to test, you must set up the scenario that you are 
testing. For some tests, this will be as simple as constructing the system under test (SUT). The SUT is 
the class that you are testing. Without a valid instance of the class, you will not be able to test any of 
its methods. 

Listing 4-1 shows a minimal Arrange section of a test for an Account class that represents a cus-
tomer’s balance and transactions. For this example, I am using MSTest. This chapter will continue to 
build on this example for the Act and Assert parts of the test, too. The test method’s name, Adding­
TransactionChangesBalance(), succinctly describes the intent of the test—to ensure that when-
ever a transaction is added to the account, the balance of the account is changed to include this new 
transaction. 

From the Library of Ida Schander



ptg14200592

	 CHAPTER 4  Unit testing and refactoring	 127

LISTING 4-1  Constructing the SUT is a common first step in arranging a unit test.

[TestClass] 
public class AccountTest 
{ 
    [TestMethod] 
    public void AddingTransactionChangesBalance() 
    { 
        // Arrange 
        var account = new Account(); 
    } 
}

The Arrange step taken here is simple enough. The only precondition to this test is a new instance 
of the Account class. You create this directly in your test by calling the new operator. From here, you 
can move on to the next step in the AAA pattern. 

Performing the testable act
Now that you have the system under test in a fit state to be acted on, you can execute the method 
that you are testing. Each test’s Act phase should consist of just one interaction with the system under 
test—one method call or property get or set, for instance. This ensures that the tests are simple to 
both read and write and have clearly delineated execution paths. 

Listing 4-2 shows the addition of the Act part of the test. In keeping with the test method’s name, 
the test calls the account.AddTransaction() method.

LISTING 4-2  Every Act phase should consist of only one interaction with the SUT.

[TestClass] 
public class AccountTest 
{ 
    [TestMethod] 
    public void AddingTransactionChangesBalance() 
    { 
        // Arrange 
        var account = new Account(); 
 
        // Act 
        account.AddTransaction(200m); 
    } 
}

The test has passed a value into the AddTransaction method. This represents the monetary 
amount of the transaction that you are adding to the account. It is a decimal value, meaning that it 
has very high precision, but there is no currency value associated with this amount. For simplicity, the 
assumption is that all accounts and transactions are in US dollars.

With the Arrange and Act phases complete, you can move on to the final part of the test.

From the Library of Ida Schander



ptg14200592

128	 PART I  An Agile foundation

Asserting the expectations
Both of the phases up to this point have really been a preamble to the crux of this and every unit test: 
the assertion. This is the part that will give you the green indicator of success or the red indicator of 
failure of the test as a whole. The test method name is again the reference point for the assertion 
that you are making—that the account balance has changed. In this case, the assertion is going to be 
a comparison of an actual value and an expected value. This is a common kind of assertion in state-
based tests, which are tests whose assertions depend on the state of the SUT. This particular assertion 
is going to require the actual and expected values to be equal.

The Account class’s Balance property will be queried for the actual value, and you will provide 
the expected value as a constant. This means that you must have prior knowledge of the expected 
value, which is a key factor to consider when writing tests. Rather than deriving the expected value in 
code, you should know what the expected value is ahead of time. In this scenario, it is easy. Given a 
new account, whose opening balance is unspecified and thus zero, if you add $200.00 to that account, 
what should the expected balance be? 

$0.00 + $200.00 = $200.00

Thus, you can write your Assert phase and complete your AAA test, as shown in Listing 4-3.

LISTING 4-3  An assertion of expected behavior has been added to the unit test. 

[TestClass] 
public class AccountTest 
{ 
    [TestMethod] 
    public void AddingTransactionChangesBalance() 
    { 
        // Arrange 
        var account = new Account(); 
 
        // Act 
        account.AddTransaction(200m); 
 
        // Assert 
        Assert.AreEqual(200m, account.Balance); 
    } 
}

This test is now ready to run. By running the test, you can verify whether or not the system under 
test behaves as expected.

Running the tests
When the test is complete, you need to run it by using a unit test runner. Unit tests are contained in 
test projects whose output is assemblies, not executables. This means that the test projects cannot be 
run by themselves but must instead be provided as input to a unit test runner. Microsoft Visual Studio 

From the Library of Ida Schander



ptg14200592

	 CHAPTER 4  Unit testing and refactoring	 129

supports MSTest unit tests with its integrated test runner, whereas some other kinds of unit tests 
require plugins to provide integrated support in Visual Studio. 

In Visual Studio, you can run MSTest unit tests by selecting one of the options from the Test > Run 
menu. For now, you can select the All Tests option, which is aliased to the keyboard shortcut Ctrl+R, A. 
The output of running the AAA unit test is shown in Figure 4-1. 

FIGURE 4-1  Running the unit test in the Visual Studio integrated MSTest unit test runner.

The test runner shows a master details view of the unit tests that you have chosen to run. The list 
of tests is enumerated in the left pane, with more details about the selected test shown in the right 
pane. You can tell that the test took 14 milliseconds to execute, which is not much at all. This is pre-
cisely one of the advantages of writing unit tests—it does not take long to run thousands of unit tests, 
compared to the effort required to test manually. 

However, notice that the test assertion has failed because the expected value of 200 did not match 
the actual value provided. The account.Balance property was used for the actual value of the as-
sertion, and it returned 0. 

This is because you have not yet implemented the Account class. Listing 4-4 shows the minimal 
Account class implementation that was required up to this point. 

LISTING 4-4  The system under test does not need to be implemented before the unit test.

public class Account 
{ 
    public void AddTransaction(decimal amount) 
    { 
             
    } 
 
    public decimal Balance 
    { 
        get; 
        private set; 
    } 
}

From the Library of Ida Schander



ptg14200592

130	 PART I  An Agile foundation

As you can tell, this class does nothing with the provided transaction amount in the Add­
Transaction method, and the Balance is just a default auto-property, though with a private 
setter. To make this test pass, you have to implement the Account class so that it meets your 
current expectations. 

Test-driven development
To implement a unit test, you do not have to have a complete implementation of the system under 
test. In test-driven development (TDD), it is preferential not to have a working system under test 
before you write the unit tests. When you use a TDD approach to writing software, you write the unit 
tests and the production code in tandem, with a failing test written for every expected behavior ex-
hibited by every method of every class in the production code. The failing test fails only because the 
production code does not exist yet. The test states—asserts—that the production code should act in 
some way, but because it does not yet, the test fails. After the production code is implemented in the 
simplest way possible to satisfy the test’s requirements, the test will succeed. 

Red, green, refactor!
What has been produced so far with the AAA AddingTransactionChangesBalance() test is the 
first part of a three-phase process called red, green, refactor.

1.	 Write a failing test that targets the expected behavior of the SUT. 

2.	 Implement just enough of the SUT so that the new test passes without breaking existing 
successful tests.

3.	 If any refactoring can be done on the SUT to improve its design or overall quality, now is the 
time to do so.

The first phase generates a failing test, which test runners indicate with a red icon. The second 
phase makes that failing test succeed, turning the icon green. The third phase allows you to incre-
mentally improve the production code piece by piece without fear of breaking its functionality.

To turn the failing test from red to green (from failure to success), you need to look at the second 
phase of the process: implement just enough of the SUT so that the test passes. Because this is cur-
rently the only test, you need not concern yourself with breaking any existing successful tests. 

From the Library of Ida Schander



ptg14200592

	 CHAPTER 4  Unit testing and refactoring	 131

The behavior asserted with the test was that the balance was 200 after a transaction for that 
amount was added to a new account. Listing 4-5 shows the bare minimum needed to make the unit 
test pass.

LISTING 4-5  Always do the bare minimum when transitioning a test from red to green.

public class Account 
{ 
    public Account() 
    { 
        Balance = 200m; 
    } 
 
    public void AddTransaction(decimal amount) 
    { 
             
    } 
 
    public decimal Balance 
    { 
        get; 
        private set; 
    } 
}

The changed code is highlighted in bold. To transition the test from red to green, the code has in-
troduced a default constructor to the Account class that initializes the Balance property to 200m. To 
prove that this works—that the test now passes—Figure 4-2 shows a screenshot of the Visual Studio 
test runner after the failing test was rerun.

FIGURE 4-2  The test does, indeed, now pass—but is it correct?

From the Library of Ida Schander



ptg14200592

132	 PART I  An Agile foundation

Before you pat yourself on the back and move on to the final refactoring phase, you should assess 
whether this is the correct way to implement the expected behavior that the test specified. You can 
prove that it is not the correct implementation by adding another expectation in the form of another 
unit test.

The test to be added defines the expected value for the Balance field given a newly created 
Account object. Recall how the expected value of the Balance field was calculated after a trans-
action of $200 was added to the account; it included the assumption that an unspecified opening 
balance was zero. This is an expected behavior, just like any other, and so you should write a test that 
asserts that your expectations of the code are correctly implemented. Listing 4-6 shows the AAA pat-
tern applied to such a unit test.

LISTING 4-6  The Arrange part of this test is omitted.

[TestMethod] 
public void AccountsHaveAnOpeningBalanceOfZero() 
{ 
    // Arrange 
 
    // Act 
    var account = new Account(); 
 
    // Assert 
    Assert.AreEqual(0m, account.Balance); 
}

First, notice that the name of the test method is again descriptive of the expected behavior that it 
asserts. In this case, though, the Arrange part of the unit test is blank, meaning that this part of the 
AAA syntax is optional. The part of the SUT that is being tested is the behavior of its default construc-
tor, which is the only interaction with the SUT as part of the Act phase. The assertion, finally, codifies 
the previously stated assumption that a new Account will have a balance of 0m.

The fact that this unit test fails, even though the first unit test passes, indicates that the implemen-
tation of the expectations of the first unit test was erroneous. Figure 4-3 shows the output from the 
MSTest runner.

FIGURE 4-3  The second unit test fails because of the implementation of the first unit test’s expectations.

From the Library of Ida Schander



ptg14200592

	 CHAPTER 4  Unit testing and refactoring	 133

From this position, if you revert your previous changes to the Account class, you will transition 
your failing opening balance test from red to green, while correctly causing your adding transaction 
test to fail again. By doing this, you have proven that you have the correct implementation of the 
Account class for the opening balance test, but the wrong implementation for the adding transac-
tion test.

The effect of adding each new test is that further constraints are created on viable implementa-
tions of the SUT. Each test carries with it an expectation of behavior, and each expectation requires 
balancing in the SUT. The alternative simplest possible implementation to ensure that both tests pass 
is shown in Listing 4-7.

LISTING 4-7  Both tests now pass with this implementation, but is it correct?

public class Account 
{ 
    public void AddTransaction(decimal amount) 
    { 
        Balance = 200m; 
    } 
 
    public decimal Balance 
    { 
        get; 
        private set; 
    } 
}

The balance of a new account will now be zero on creation but will change to 200m when a call is 
made to AddTransaction. Of course, despite the fact that both tests now pass, intuition should tell 
you that this is absolutely wrong. The point of writing the simplest thing first—rather than jumping 
directly to the obvious correct solution—is to derive coded assertions from your intuition. Can you 
write another unit test that fails and proves that this implementation is not right? Listing 4-8 shows an 
example.

LISTING 4-8  This test is identical to the prior version but has a different amount value.

[TestMethod] 
public void Adding100TransactionChangesBalance() 
{ 
    // Arrange 
    var account = new Account(); 
 
    // Act 
    account.AddTransaction(100m); 
 
    // Assert 
    Assert.AreEqual(100m, account.Balance); 
}

From the Library of Ida Schander



ptg14200592

134	 PART I  An Agile foundation

This test method does the same job as the first, which tested adding a transaction, but it adds a 
transaction of $100 rather than $200. Although the differentiating factor is small, it is sufficient to 
prove that the Account.AddTransaction method is wrong.

As expected, this new test fails. If you alter the Account class so that the value 100m is hardcoded 
into the AddTransaction method, you will fail the original test and transition this test from red to 
green. Instead, you can now implement the correct solution, as Listing 4-9 shows.

LISTING 4-9  All three tests pass with this implementation, but it is still wrong!

public class Account 
{ 
    public void AddTransaction(decimal amount) 
    { 
        Balance = amount; 
    } 
 
    public decimal Balance 
    { 
        get; 
        private set; 
    } 
}

With this implementation in place and all three of your unit tests passing—all having previously 
failed—the sun is shining and everything is right in the world. Except that it isn’t! Again, the expecta-
tions of the AddTransaction method do not match up to the reality of the implementation. A fourth 
unit test highlights the problem, as Listing 4-10 shows.

LISTING 4-10  This unit test should finally help crack the AddTransaction method.

[TestMethod] 
public void AddingTwoTransactionsCreatesSummationBalance() 
{ 
    // Arrange 
    var account = new Account(); 
    account.AddTransaction(50m); 
 
    // Act 
    account.AddTransaction(75m); 
 
    // Assert 
    Assert.AreEqual(125m, account.Balance); 
}

This test finally allows you to discover the absolutely right functionality of the AddTransaction 
method—at least for the moment. The point is that, with requirements changing and new features 
being added, you need to codify your expectations of your classes so that you can fall back on existing 

From the Library of Ida Schander



ptg14200592

	 CHAPTER 4  Unit testing and refactoring	 135

unit tests, which form a safety net. Without this, you could easily make a change to your code that 
appears to work in the narrow circumstances under which you are manually testing it, but that breaks 
under unusual input or breaks something ostensibly unrelated elsewhere.

The test you have added asserts that an account’s balance is the summation of all of its transac-
tions. Previously, your most correct implementation would set the balance to the value of the last 
transaction that occurred, meaning that this test will fail and your implementation is not yet right. 
Listing 4-11 shows the implementation of the AddTransaction method that allows all four unit tests 
to pass.

LISTING 4-11  This implementation is so far the best for AddTransaction.

public class Account 
{ 
    public void AddTransaction(decimal amount) 
    { 
        Balance += amount; 
    } 
 
    public decimal Balance 
    { 
        get; 
        private set; 
    } 
}

After the transition from red to green for each unit test, you had the opportunity to refactor the 
implementation of the SUT, but this example was very simple. This phase of the process becomes 
more important with each new method added to the SUT. Refactoring in this manner is covered in 
more detail later in this chapter.

More complex tests
The previous example involved unit testing a class that forms part of the domain model of an applica-
tion in a test-first manner. As described in Chapter 2, “Dependencies and layering,“ the domain model 
is an implementation of a business logic layer that sits between the user interface and the data access 
layers. 

Specification
For the next set of tests, which build on this Account class, you will test a different part of the busi-
ness logic layer: a service. The user interface for this hypothetical application could be tethered to any 
framework—ASP.NET MVC, Windows Presentation Foundation (WPF), or Windows Forms—and your 
service should be reusable regardless of the framework. This means that the service will contain no 
dependency specific to any of these frameworks, but it will depend on the Account class, though in-
directly. Figure 4-4 shows the dependencies between the layers and classes that will form this example.

From the Library of Ida Schander



ptg14200592

136	 PART I  An Agile foundation

FIGURE 4-4  The dependencies and implementations that form the subsystem you will now test.

The Unified Modeling Language (UML) diagram shows the three packages that make up the three-
layered architecture that you will create. The user interface will contain Model-View-Controller (MVC) 
controllers, although these could be view models or presenters for Model-View-ViewModel (MVVM) 
or Model-View-Presenter (MVP), respectively. Specifically, the AccountController will have a han-
dler for the user interface action of adding a transaction to an account. This controller has a depen-
dency on the interface of the AccountService that you are preparing to implement.

The AccountService lives in the business logic layer, along with its interface and the domain 
model, represented by the Account class that was previously implemented. Note that the pack-
ages represent the logical layers of the application, as opposed to mapping directly to Visual Studio 
projects and, therefore, to assemblies. This means that you are still preferring the Stairway pattern 
over the Entourage anti-pattern. The AccountService will require some way to retrieve Account 
instances from whichever persistent storage you are using. Because you are using a domain model in 
the business logic layer, the data access layer is implemented by using an Object/Relational Mapper 
(ORM).

A repository interface is used to hide the specific persistence logic from client code. The 
IAccountRepository is responsible for returning Account instances. The service depends 
on this interface because it will need to retrieve an account as part of its implementation.

From the Library of Ida Schander



ptg14200592

	 CHAPTER 4  Unit testing and refactoring	 137

Designing the test
The tests for the AccountService.AddTransactionToAccount method are written by using TDD 
and AAA, exactly as before. First, you need to think of what to expect of the method: that it delegates 
to the correct Account instance’s AddTransaction method, passing in the correct value for the 
transaction amount. Let’s specify the Arrange, Act, and Assert phases:

■■ Arrange  Ensure that there is an available instance of the SUT—the AccountService class.

■■ Act  Call the AddTransactionToAccount method.

■■ Assert  The SUT calls the AddTransaction method on an Account instance, passing in the 
correct amount value.

Listing 4-12 shows a first attempt at writing this test.

LISTING 4-12  The first attempt at this new test is incomplete.

[TestClass] 
public class AccountServiceTests 
{ 
    [TestMethod] 
    public void AddingTransactionToAccountDelegatesToAccountInstance() 
    { 
        // Arrange 
        var sut = new AccountService(); 
 
        // Act 
        sut.AddTransactionToAccount("Trading Account", 200m); 
 
        // Assert 
        Assert.Fail(); 
    } 
}

Everything looks fine until you get to the assertion. The assertion is that a certain method is called 
on an object and a particular value is passed in, but how do you assert that? This is where mocks 
come in.

Testing with fakes
The first requirement before you can write your assertion is an Account instance to assert against. The 
IAccountRepository interface will be used by the AccountService to retrieve the Account that 
it will interact with, so you cannot just give the AccountService such an instance. Instead, you need 
to give the AccountService an IAccountRepository—but you do not have any implementations 
available. Because you depend on interfaces, instead of classes, you can write a fake implementation 
of an interface that will be sufficient only for the test. Listing 4-13 shows such a class, which lives in 
the unit testing assembly.

From the Library of Ida Schander



ptg14200592

138	 PART I  An Agile foundation

LISTING 4-13  A very simple implementation of a repository that is only for testing purposes.

public class FakeAccountRepository : IAccountRepository 
{ 
    public FakeAccountRepository(Account account) 
    { 
        this.account = account; 
    } 
 
    public Account GetByName(string accountName) 
    { 
        return account; 
    } 
 
    private Account account; 
}

You can now edit your account service implementation so that you can provide this fake reposi-
tory. Listing 4-14 shows the new implementation of the AccountService class.

LISTING 4-14  The present state of the account service class.

public class AccountService : IAccountService 
{ 
    public AccountService(IAccountRepository repository) 
    { 
        this.repository = repository; 
    } 
 
    public void AddTransactionToAccount(string uniqueAccountName, decimal 
transactionAmount) 
    { 
         
    } 
 
    private readonly IAccountRepository repository; 
}

The unit test can now be completed, with new Arrange criteria: 

■■ Ensure that there is an Account instance available to assert against.

■■ Ensure that there is a fake IAccountRepository instance available to pass to the service on 
construction.

These criteria, and the correct assertion, form the failing test in Listing 4-15.

From the Library of Ida Schander



ptg14200592

	 CHAPTER 4  Unit testing and refactoring	 139

LISTING 4-15  This test fails for the right reasons: the service method is not yet implemented.

[TestClass] 
public class AccountServiceTests 
{ 
    [TestMethod] 
    public void AddingTransactionToAccountDelegatesToAccountInstance() 
    { 
        // Arrange 
        var account = new Account(); 
        var fakeRepository = new FakeAccountRepository(account); 
        var sut = new AccountService(fakeRepository); 
 
        // Act 
        sut.AddTransactionToAccount("Trading Account", 200m); 
 
        // Assert 
        Assert.AreEqual(200m, account.Balance); 
    } 
}

First you create an account that has an opening balance of zero. You then create an instance of 
your fake account repository, passing into it your account. Because the fake implements the interface 
of an account repository, the fake can easily be passed to the AccountService class, your SUT.

After calling the method that is the target of the test, you then assert that the account has the 
expected balance of 200m. As demonstrated by Figure 4-5, this assertion fails because the target 
method has not yet been implemented.

FIGURE 4-5  Continuing the red-to-green transition, you have your failing test.

Now that you have a unit test that specifies some behavior that is missing from your production 
code, you can do the simplest thing possible to make the unit test pass, as shown in Listing 4-16.

From the Library of Ida Schander



ptg14200592

140	 PART I  An Agile foundation

LISTING 4-16  This implementation of the AccountService makes the test pass.

public class AccountService : IAccountService 
{ 
    public AccountService(IAccountRepository repository) 
    { 
        this.repository = repository; 
    } 
 
    public void AddTransactionToAccount(string uniqueAccountName, decimal  
  transactionAmount) 
    { 
        var account = repository.GetByName(uniqueAccountName); 
        account.AddTransaction(transactionAmount); 
    } 
 
    private readonly IAccountRepository repository; 
}

The unit test has guided you into doing the right thing in this implementation. You had to use the 
repository to retrieve the account, and you had to call the AddTransaction method on that account 
to mutate the read-only Balance property. If anyone subsequently breaks this method so that it no 
longer matches the expectations set out in the unit test, you will know about it very quickly.

Testing with mocks
It requires little power of the imagination to realize that mocking by writing fakes can quickly become 
laborious. Imagine all of the permutations of unit tests that you might write, and all of the different 
interfaces that your SUTs might need. This is a lot of extra code just to support your unit test.

There is another way to mock the IAccountRepository, but it requires the use of an external 
mocking framework. One positive aspect of writing fakes is that you can write them in isolation 
without requiring any third-party dependencies. However, mocking frameworks are commonplace 
nowadays, and there are many to choose from. The following example uses one of the most popular: 
Moq. This is variously pronounced Moh-kyoo and Mok. 

By using NuGet, you can quickly add your reference to Moq by searching for its package on the 
online feed. The magic behind Moq is that it can create dynamic proxies of any interface that you ask 
it to mock. You will edit your existing test to use a Moq mock instead of your manual fake, as shown 
in Listing 4-17.

From the Library of Ida Schander



ptg14200592

	 CHAPTER 4  Unit testing and refactoring	 141

LISTING 4-17  Mocking frameworks such as Moq allow you to create mocks very easily.

[TestMethod] 
public void AddingTransactionToAccountDelegatesToAccountInstance() 
{ 
    // Arrange 
    var account = new Account(); 
    var mockRepository = new Mock<IAccountRepository>(); 
    mockRepository.Setup(r => r.GetByName("Trading Account")).Returns(account); 
    var sut = new AccountService(mockRepository.Object); 
 
    // Act 
    sut.AddTransactionToAccount("Trading Account", 200m); 
 
    // Assert 
    Assert.AreEqual(200m, account.Balance); 
}

The changes to the test are highlighted in bold. Rather than instantiating your own fake reposi-
tory, you now create a new Mock<IAccountRepository>() object. This object is very powerful and 
allows you to set all sorts of expectations and behavior on your mocked interfaces. This class does not 
implement your interface, so, unlike your fake, it is not directly a viable instance of the IAccount­
Repository. This is because the Common Language Runtime (CLR) does not allow classes to inherit 
from generic parameters. Instead, there is a composition relationship between the mock and the 
proxy instance that it creates. The Object property allows you to access the underlying mocked 
interface, which is passed in to the AccountService in this example.

Before you provide your mock to the SUT, you need to specify how it should behave. By default, 
Moq defines loose mocks, which means that all of their return values are default. The default for any 
reference type is null and this applies to the Account class. The alternative to the loose mock is the 
strict mock, which will throw an exception whenever it is faced with a method call or property access 
that you have not already specified. Neither of these options is what you need, so you have to set up 
some expected behavior manually. 

The Setup method of a Mock instance is very clever. It accepts a lambda expression that provides 
an instance of the underlying mocked type as a context parameter. By calling a method on the type, 
you are effectively specifying that you want something to happen when the method is called, with 
the exact arguments provided. What you choose to specify depends on your test situation. Moq lets 
you set the following expectations on a method call:

■■ Call some other lambda expression.

■■ Return a specific value.

■■ Throw a specified type of exception.

■■ Verify that this method was called.

From the Library of Ida Schander



ptg14200592

142	 PART I  An Agile foundation

For this test, you want the second option: return a specified value. The fluent interface of the 
Mock.Setup method call allows you to chain the call to the Returns method. This improves read
ability and reduces what is already becoming a rather large Arrange phase of the test. The Returns 
method is given the Account instance that you have already created, and with this you have com-
pleted setting your expectations of this mock. In brief, you have given the mock the following 
instruction: 

When the GetByName method is called for this IAccountRepository instance, and the 
account name provided is “Trading Account”, return this instance of the Account class.

When you run your test again it will pass, just as before, as proven by Figure 4-6.

FIGURE 4-6  After being mocked with stubs, the test passes again.

Before you rejoice, you need to acknowledge that you have cheated. You have edited a unit test 
and not transitioned it from red to green. The test was already successful and, perhaps despite the 
change, it is still successful. In order to fail this test and then verify that it only passes as a result of 
a correctly implemented SUT, you should remove the code inside the AddTransactionToAccount 
method. When you do so, the test will pass, and reinstating the code causes the test to succeed. This 
is an important part of the unit test editing process that avoids false positives—that is, it prevents you 
from writing a test that succeeds despite not being implemented correctly.

Mocks and test over-specification
Testing with mocks is a common but potentially onerous practice. Tests that rely on mocks can 
easily become over-specified. An over-specified test is fragile, but you can avoid this fragility 
by changing what you assert. The problem arises when the test includes intimate knowledge 
of how the system under test (SUT) works. In other words, a test is over-specified when it has 
knowledge of the SUT’s implementation rather than its expected behavior. 

A unit test that uses mocks might need to know how the SUT is implemented. However, you 
should always remember that a unit test is a specification of expected behavior, so you should 
avoid introducing tests against implementation details. Such details include calls to other inter
faces on which the SUT might depend. If you assert that a method on an interface must be 
called, the test has become wedded not to a certain behavior but to a specific implementation. 

From the Library of Ida Schander



ptg14200592

	 CHAPTER 4  Unit testing and refactoring	 143

Over-specified tests are undesirable because they prevent refactoring of the production 
code that they test. A suite of passing unit tests accompanying a method or class is a signal that 
the implementation of the method or class can be altered with impunity: the only way that the 
tests will fail is if the expected behavior of the code is broken. Over-specified tests do not pro-
vide such a guarantee, because they will fail if the implementation of the method or class has 
changed—even if the expected behavior remains intact.

There are two options for avoiding test over-specification when testing with mocks. The first 
is to test behavior only. State-based tests are the best example of testing expected behavior. If a 
method accepts data as input and returns altered data as output, the method can be treated as 
a black box for testing purposes. If the method accepts inputs A, B, and C and returns outputs 
X, Y, and Z, it is irrelevant to the test how it arrived at such answers. The method can then be 
refactored without breaking the unit tests.

The second option is less attractive but is sometimes the only option. You can treat the unit 
test and the implementation that it tests as one atomic unit: if one changes, so must the other. 
This is akin to accepting that the unit test is over-specified and planning to throw away the unit 
test along with the production implementation if a refactor is ever required. This isn’t quite 
as wasteful as it might seem. As you’ll see in Part II, “Writing SOLID code,” SOLID code yields 
smaller, more directed classes that are never altered anyway.

Further tests
Your first attempt at completing a working AccountService by using a TDD approach has been suc-
cessful. There are potential problems that will require further tests to ensure that this method is much 
more robust. So far, you have tested only the Happy Path: the execution path through the code that 
yields no errors and causes no problems. There are a few gaps that need to be addressed:

■■ What if the account repository is a null reference?

■■ What if the repository cannot find the account?

■■ What if the account method throws an exception?

With each extra test that you write, you either uncover a defect that exists in your implementation (if 
the test fails) or you add extra confidence that your implementation is correct not only for the Happy 
Path, but also for error paths (if the test succeeds).

Under what circumstances might the account repository be a null reference? This will occur only 
if the AccountService is constructed with a null passed in as its constructor parameter. Because a 
valid account repository is a required dependency for the account service, you could say that this is a 
precondition of the constructor. Thus, you can write the test in Listing 4-18.

From the Library of Ida Schander



ptg14200592

144	 PART I  An Agile foundation

LISTING 4-18  No Arrange and no Assert, yet this is a valid test pattern for exceptions.

[TestMethod] 
[ExpectedException(typeof(ArgumentNullException))] 
public void CannotCreateAccountServiceWithNullAccountRepository() 
{ 
    // Arrange     
 
    // Act 
    new AccountService(null); 
 
    // Assert 
}

This test is slightly different from the previous ones; the assertion is not in the usual place. MSTest 
requires you to apply the ExpectedExceptionAttribute to the test method with a parameter 
describing the type of exception that you require. What this test is specifying is that you expect an 
ArgumentNullException to be thrown if you construct an AccountService with a null reference 
for the IAccountRepository instance. This is precisely the precondition that you need, to ensure 
that in any method of the account service, you always have a valid instance of the repository and do 
not need to handle the case where it is null. This test fails for the right reasons, as shown here.

Test method ServiceTests.AccountServiceTests.CannotCreateAccountServiceWithNullAccountRepository  
  did not throw an exception. An exception was expected by attribute  
  Microsoft.VisualStudio.TestTools.UnitTesting.ExpectedExceptionAttribute defined on the test  
  method.

To make this test pass, you need to implement the precondition. The manual approach is shown in 
Listing 4-19.

LISTING 4-19  Passing a null account repository into the constructor will cause an exception.

public AccountService(IAccountRepository repository) 
{ 
    if (repository == null) throw new ArgumentNullException("repository", "A valid account  
  repository must be supplied."); 
 
    this.repository = repository; 
}

The added line is in bold. This is an example of ensuring that you fail fast. Without this precondi-
tion, an exception would eventually have been thrown, but it would have been a NullReference­
Exception and it would have occurred whenever you first tried to access the null repository.

From the Library of Ida Schander



ptg14200592

	 CHAPTER 4  Unit testing and refactoring	 145

With your constructor test passing, you can move on to the next test case: when the repository 
cannot find the account. Assume that your repository does not implement the Null Object pattern, 
which, as described in Chapter 3, “Interfaces and design patterns,” would mean that it never returned 
a null object or threw an exception if the repository could not find the account requested. Instead, 
your repository should return a null reference for the account. Listing 4-20 shows the unit test that 
enforces the expected behavior for this case.

LISTING 4-20  No expected exception attribute and no assertion!

[TestMethod] 
public void DoNotThrowWhenAccountIsNotFound() 
{ 
    // Arrange 
    var mockRepository = new Mock<IAccountRepository>(); 
    var sut = new AccountService(mockRepository.Object); 
 
    // Act 
    sut.AddTransactionToAccount("Trading Account", 100m); 
 
    // Assert 
}

The Assert phase of this test is blank, and there is no ExpectedException attribute, either. This is 
because your expectations are that there should not be an exception thrown during the Act phase of 
the test. If an exception is thrown at that point, the test fails. If an exception is not thrown—and there 
are no other assertions that could potentially fail—the test will pass, by default.

In the Arrange phase of the test, you mock the repository and pass it to the SUT (avoiding the 
precondition by providing a valid instance of the repository) but set up no expectations. This means 
that the call to IAccountRepository.GetByName() will return null. The next thing that you do 
with this return value is attempt to call Account.AddTransaction(). Because the instance is null, 
this causes a NullReferenceException and this test fails. To transition this test to green, you need 
to prevent this exception from being thrown in your method, as Listing 4-21 shows.

LISTING 4-21  The if statement protects this method from a NullReferenceException.

public void AddTransactionToAccount(string uniqueAccountName, decimal transactionAmount) 
{ 
    var account = repository.GetByName(uniqueAccountName); 
    if (account != null) 
    { 
        account.AddTransaction(transactionAmount); 
    } 
}

From the Library of Ida Schander



ptg14200592

146	 PART I  An Agile foundation

By adding a simple if statement that ensures that the account is not null before attempting to 
use it, you prevent the exception from being thrown, and the test passes.

The final extra test case required involves the behavior expected of the account service when the 
call to the account’s AddTransaction method throws an exception. To avoid leaking dependencies 
between layers, it is good practice to wrap an exception thrown at a lower layer in a new exception 
for this layer. Figure 4-7 exemplifies this principle.

FIGURE 4-7  Each layer defines an exception type for wrapping exceptions at lower levels.

The exceptions that the domain model throws will be specific to that layer. If the service layer al-
lows this to propagate up to the controller, the controller will have to have knowledge of the Domain­
Exception type to effectively catch and handle these exceptions. This introduces a dependency 
between the controller and the domain model layer, which you want to avoid. Instead, the service will 
catch the domain model exceptions and wrap them in ServiceException instances before throwing 
them up to the controller. Due to the controller’s dependency on the service layer, it is able to catch 
the exceptions that it defines. It is important to acknowledge that the ServiceException con-
tains the DomainException as an inner exception—without this, you lose valuable context about why 
the original exception was thrown. Listing 4-22 shows the unit test required to enforce this behavior 
between your collaborating classes.

From the Library of Ida Schander



ptg14200592

	 CHAPTER 4  Unit testing and refactoring	 147

LISTING 4-22  The mock account is told to throw an exception when called.

[TestMethod] 
[ExpectedException(typeof(ServiceException))] 
public void AccountExceptionsAreWrappedInThrowServiceException() 
{ 
    // Arrange 
    var account = new Mock<Account>(); 
    account.Setup(a => a.AddTransaction(100m)).Throws<DomainException>(); 
    var mockRepository = new Mock<IAccountRepository>(); 
    mockRepository.Setup(r => r.GetByName("Trading Account")).Returns(account.Object); 
    var sut = new AccountService(mockRepository.Object); 
 
    // Act 
    sut.AddTransactionToAccount("Trading Account", 100m); 
 
    // Assert 
}

The expected exception attribute is used to assert that the SUT throws a ServiceException, 
whereas the account mock is told to throw a DomainException. Therefore, it is up to the SUT to 
convert one to the other. Your method is not currently doing this, so this test correctly fails, as 
shown here.

Test method ServiceTests.AccountServiceTests.AccountExceptionsAreWrappedInThrowServiceException  
  threw exception Domain.DomainException, but exception Services.ServiceException was expected.  
  Exception message: Domain.DomainException: Exception of type 'Domain.DomainException' was  
  thrown.

The expected exception attribute has determined that the exception thrown is not of the correct 
type compared to that which was specified. The code in Listing 4-23 shows the changes required to 
the AddTransactionToAccount method.

LISTING 4-23  The try/catch block is introduced to map one exception with another.

public void AddTransactionToAccount(string uniqueAccountName, decimal transactionAmount) 
{ 
    var account = repository.GetByName(uniqueAccountName); 
    if (account != null) 
    { 
        try 
        { 
            account.AddTransaction(transactionAmount); 
        } 
        catch(DomainException) 
        { 
            throw new ServiceException(); 
        } 
    } 
}

From the Library of Ida Schander



ptg14200592

148	 PART I  An Agile foundation

Although the introduction of the try/catch block transitions your test from red to green, there is an 
expectation missing, which means that this is still incomplete.

Writing tests for defect fixes
Imagine that you receive a defect report relating to the current example code. The report states: 

I received a ServiceException when adding a transaction to my account. 

You proceed to reproduce the problem and discover the exception that is thrown—this is the 
proximate cause. But, because the DomainException has been replaced with the ServiceException, 
it is very difficult to understand the ultimate cause of the error. Your original expectation that the new 
exception should wrap the existing one has not been fulfilled because you missed an assertion in your 
unit tests.

When a defect arises in this manner, the first thing you should do is to write a failing unit test 
that captures two things: the exact reproduction steps required to force the defect to occur, and the 
expected behavior that is not currently enforced. Listing 4-24 shows both of these elements in a unit 
test that fails.

LISTING 4-24  You are now manually asserting against the thrown exception.

[TestMethod] 
public void AccountExceptionsAreWrappedInThrowServiceException() 
{ 
    // Arrange 
    var account = new Mock<Account>(); 
    account.Setup(a => a.AddTransaction(100m)).Throws<DomainException>(); 
    var mockRepository = new Mock<IAccountRepository>(); 
    mockRepository.Setup(r => r.GetByName("Trading Account")).Returns(account.Object); 
    var sut = new AccountService(mockRepository.Object); 
 
    // Act 
    try 
    { 
        sut.AddTransactionToAccount("Trading Account", 100m); 
    } 
    catch(ServiceException serviceException) 
    { 
        // Assert 
        Assert.IsInstanceOfType(serviceException.InnerException, typeof(DomainException)); 
    } 
}

From the Library of Ida Schander



ptg14200592

	 CHAPTER 4  Unit testing and refactoring	 149

For this test, the ExpectedException attribute alone is insufficient. You need to examine the 
InnerException property of the thrown exception and assert that it is a DomainException. This 
proves that you have wrapped the domain exception, preserving the original error that occurred. 
All software defects can be viewed as the result of a missing unit test: an incomplete specification of 
expected behavior. Listing 4-25 shows how to make the test pass by editing the production code.

LISTING 4-25  The original exception is now wrapped properly by the new exception.

public void AddTransactionToAccount(string uniqueAccountName, decimal transactionAmount) 
{ 
    var account = repository.GetByName(uniqueAccountName); 
    if (account != null) 
    { 
        try 
        { 
            account.AddTransaction(transactionAmount); 
        } 
        catch(DomainException domainException) 
        { 
            throw new ServiceException("An exception was thrown by a domain object",  
  domainException); 
        } 
    } 
}

By making this test pass, you can then go back and reproduce the original exception from the 
defect report and, this time, determine the ultimate cause of the problem.

Test setup
Let’s take stock of the tests you have written so far. Each has progressively become more complex, 
with more code required to set up your expectations. It would be nice if you could factor this out 
somewhere in order to clean up the tests and shorten them a little. MSTest, like other unit testing 
frameworks, allows you to write a special initialization method that will be called at the start of every 
test in your test class. This setup method can be called anything you want, but it must be tagged with 
the TestInitialize attribute. 

The code to put into this method is the code common to nearly all of the unit tests: instantiating 
the mock objects. You can store mock objects as private fields in the class so that they are still avail-
able to each test. You can also do the same with the SUT, because that only requires the mock reposi-
tory as a constructor parameter and its construction doesn’t depend on anything specific to each unit 
test. Listing 4-26 shows the changes required to the test class to support the setup method.

From the Library of Ida Schander



ptg14200592

150	 PART I  An Agile foundation

LISTING 4-26  The mock objects and the SUT can be constructed in a setup method.

[TestClass] 
public class AccountServiceTests 
{ 
 
    [TestInitialize] 
    public void Setup() 
    { 
        mockAccount = new Mock<Account>(); 
        mockRepository = new Mock<IAccountRepository>(); 
        sut = new AccountService(mockRepository.Object); 
    } 
 
    private Mock<Account> mockAccount; 
    private Mock<IAccountRepository> mockRepository; 
    private AccountService sut; 
}

With these objects constructed as part of a test initialization method, which is called individually 
for each test method, you can simplify some of the unit test code by removing this object construc-
tion. Listing 4-27 shows the changes made to the most recent unit test, AccountExceptionsAre­
WrappedInThrowServiceException.

LISTING 4-27  This test is a little shorter and a little easier to read.

[TestMethod] 
public void AccountExceptionsAreWrappedInThrowServiceException() 
{ 
    // Arrange 
    mockAccount.Setup(a => a.AddTransaction(100m)).Throws<DomainException>(); 
    mockRepository.Setup(r => r.GetByName("Trading Account")).Returns(mockAccount.Object); 
 
    // Act 
    try 
    { 
        sut.AddTransactionToAccount("Trading Account", 100m); 
    } 
    catch(ServiceException serviceException) 
    { 
        // Assert 
        Assert.IsInstanceOfType(serviceException.InnerException, typeof(DomainException)); 
    } 
}

Three lines might not be a huge amount of code to remove, but the cumulative effect on all of the 
unit tests is more readable code. You know that, by convention, any variable with the prefix mock will 
be a mocked object, whereas the variable sut is your system under test.

From the Library of Ida Schander



ptg14200592

	 CHAPTER 4  Unit testing and refactoring	 151

Refactoring

Your code will be more robust if you follow a TDD process that writes a failing unit test before moving 
on to implement the expected behavior. However, this code might not be as organized or under-
standable as it could be. There are many times during the course of writing code when you should 
stop writing unit tests and code, and instead focus on refactoring.

Refactoring is the process of improving the design of existing code—after it has already been writ-
ten. Each refactor differs in size and scope. A refactor could be a small tweak to a variable name to aid 
clarity, or it could be a more sweeping architectural change such as splitting user interface logic from 
domain logic when the two have become inappropriately intimate.

Changing existing code 
In the rest of this chapter, you are going to make incremental changes to a class that will, at every 
step, improve the code in some meaningful way. The Account class is the target for refactoring, but 
it has gained a new method since its previous use: CalculateRewardPoints. As with many compa-
nies, your clients want to reward customer loyalty through the accumulation of reward points. These 
points are earned by the customer depending on a variety of criteria. Listing 4-28 shows the new 
Account class.

LISTING 4-28  The new class tracks reward points in addition to the account’s balance.

public class Account 
{ 
    public Account(AccountType type) 
    { 
        this.type = type; 
    } 
 
    public decimal Balance 
    { 
        get; 
        private set; 
    } 
 
    public int RewardPoints 
    { 
        get; 
        private set; 
    } 
 
    public void AddTransaction(decimal amount) 
    { 
        RewardPoints += CalculateRewardPoints(amount); 
        Balance += amount; 
    } 
 

From the Library of Ida Schander



ptg14200592

152	 PART I  An Agile foundation

    public int CalculateRewardPoints(decimal amount) 
    { 
        int points; 
        switch(type) 
        { 
            case AccountType.Silver: 
                points = (int)decimal.Floor(amount / 10); 
                break; 
            case AccountType.Gold: 
                points = (int)decimal.Floor((Balance / 10000 * 5) + (amount / 5)); 
                break; 
            case AccountType.Platinum: 
                points = (int)decimal.Ceiling((Balance / 10000 * 10) + (amount / 2)); 
                break; 
            default: 
                points = 0; 
                break; 
        } 
        return Math.Max(points, 0); 
    } 
 
    private readonly AccountType type; 
}

The most important changes to the class are summarized thus:

■■ A new property tracks the number of reward points that the customer has linked to this 
account.

■■ Each account has a type code that indicates the tier of the account: Silver, Gold, or Platinum.

■■ Whenever a transaction is added to the account, the customer earns reward points.

■■ The number of reward points earned is dependent on multiple factors, which complicate the 
calculation method:

•	 The account type—more points are earned at higher tiers.

•	 The amount of the transaction—the more customers spend, the more points they earn.

•	 The current balance of the account—the Gold and Platinum tiers give customers more 
points for keeping their balance high.

Assuming that this code has been written alongside its unit tests, those tests will help greatly by 
ensuring that changes do not affect the specified behavior. This is an important point—refactoring 
changes the arrangement of the code, not the outcome. If you tried to refactor without unit tests, how 
would you know if you inadvertently broke the expected behavior? You would not fail fast but much 
later at run time during testing or, worse, after deployment.

From the Library of Ida Schander



ptg14200592

	 CHAPTER 4  Unit testing and refactoring	 153

Replacing “magic numbers” with constants
The first refactor is a simple but nonetheless important improvement to the readability of the code. 
There are a lot of “magic numbers” littering the CalculateRewardPoints method. Six distinct num-
bers are used without any context as to what they mean or why they are required. To the person who 
wrote the code, their significance might be obvious because that person has prior knowledge of what 
it all means. In reality, that will probably only be true for a week, perhaps two, before the person’s 
memory starts to fade and he loses track of what that 5, or that 2, means. Listing 4-29 shows the 
changes made to the class as a result of this refactor.

LISTING 4-29  This code is more readable to people unfamiliar with it.

public class Account 
{ 
    public int CalculateRewardPoints(decimal amount) 
    { 
        int points; 
        switch(type) 
        { 
            case AccountType.Silver: 
                points = (int)decimal.Floor(amount / SilverTransactionCostPerPoint); 
                break; 
            case AccountType.Gold: 
                points = (int)decimal.Floor((Balance / GoldBalanceCostPerPoint) + (amount  
  / GoldTransactionCostPerPoint)); 
                break; 
            case AccountType.Platinum: 
                points = (int)decimal.Ceiling((Balance / PlatinumBalanceCostPerPoint) +  
  (amount / PlatinumTransactionCostPerPoint)); 
                break; 
            default: 
                points = 0; 
                break; 
        } 
        return Math.Max(points, 0); 
    } 
 
    private const int SilverTransactionCostPerPoint = 10; 
    private const int GoldTransactionCostPerPoint = 5; 
    private const int PlatinumTransactionCostPerPoint = 2; 
 
    private const int GoldBalanceCostPerPoint = 2000; 
    private const int PlatinumBalanceCostPerPoint = 1000; 
}

Each of the “magic numbers” has been replaced with an equivalent variable. There is a set of three 
variables for the cost-per-point denominator of the transaction amount, one per account type. Then 
there are two variables for the cost-per-point denominator of the balance amount, for the Gold and 
Platinum account types, which are the only two account types that offer this incentive.

From the Library of Ida Schander



ptg14200592

154	 PART I  An Agile foundation

The benefit of this refactor is that the code is now understandable to people who are unfamiliar 
with it, because you have explained what the values mean through the variable names. It would not 
be an improvement if you merely replaced the “magic numbers” with variables named A, B, or X. Try 
to choose variable names that explain concisely their purpose. Never be afraid of verbosity, and take 
every opportunity to self-document code through variable, class, and method names.

Replacing a conditional expression with polymorphism
The next refactor is more involved. The switch statement, which alters the CalculateRewards algo-
rithm depending on the account type, is problematic for two reasons. First, it adversely affects read-
ability but, more pressingly, it introduces a maintenance burden. Imagine that you are given a new 
requirement at some time in the future: a new account type. It has been decided that not enough 
people are meeting the criteria for the Silver account, so you need to create a new Bronze account. To 
add the Bronze account, you would need to edit the Account class and add tests to it. Editing exist-
ing code in this way, after it has been verified and deployed, should be avoided. Instead, you should 
look to other ways that you can extend code so that it is adaptable without being editable.

What you are aiming to achieve is to make it easier to add a new account type while improving the 
readability of the code. For this, you will take advantage of polymorphism. You will model the account 
types as different subclasses of the Account class. The Gold account type will be represented by the 
GoldAccount class, and the same is true of the SilverAccount and PlatinumAccount.

The first step is to define these classes, as shown in Listing 4-30.

LISTING 4-30  Each account type is now a distinct class.

public class SilverAccount 
{ 
    public int CalculateRewardPoints(decimal amount) 
    { 
        return Math.Max((int)decimal.Floor(amount / SilverTransactionCostPerPoint), 0); 
    } 
 
    private const int SilverTransactionCostPerPoint = 10; 
} 
// … 
public class GoldAccount 
{ 
 
    public decimal Balance 
    { 
        get; 
        set; 
    } 
 
    public int CalculateRewardPoints(decimal amount) 
    { 
        return Math.Max((int)decimal.Floor((Balance / GoldBalanceCostPerPoint) + (amount /  
  GoldTransactionCostPerPoint)), 0); 
    } 

From the Library of Ida Schander



ptg14200592

	 CHAPTER 4  Unit testing and refactoring	 155

 
    private const int GoldTransactionCostPerPoint = 5; 
    private const int GoldBalanceCostPerPoint = 2000; 
} 
// … 
public class PlatinumAccount 
{ 
 
    public decimal Balance 
    { 
        get; 
        set; 
    } 
 
    public int CalculateRewardPoints(decimal amount) 
    { 
        return Math.Max((int)decimal.Ceiling((Balance / PlatinumBalanceCostPerPoint) + 
(amount / PlatinumTransactionCostPerPoint)), 0); 
    } 
 
    private const int PlatinumTransactionCostPerPoint = 2; 
    private const int PlatinumBalanceCostPerPoint = 1000; 
}

Note that, at this stage, the original Account class has not been changed. These classes have been 
created as stand-alone classes. The unit tests for these classes would mirror the expectations of the 
CalculateRewardPoints class, but with a different SUT for each account type. The algorithms for 
determining the reward points due on the Platinum and Gold classes have a dependency on the cur-
rent balance; that has been included so that these classes compile in isolation. The Balance property 
is also publically settable, which enables unit testing with different values. The UML class diagram in 
Figure 4-8 explains how these classes are related.

FIGURE 4-8  The Account class will become abstract with an abstract CalculateRewardPoints method.

From the Library of Ida Schander



ptg14200592

156	 PART I  An Agile foundation

This is merely an objective on the way to completing the goal of replacing the switch statement, 
of course. It is important not to do too much all at once, so that you can verify that you are on the 
right track with a succession of smaller changes. The next change, in Listing 4-31, is to link all four 
classes into an inheritance hierarchy.

LISTING 4-31  The complexity has been removed from the Account class.

public abstract class AccountBase 
{ 
    public decimal Balance 
    { 
        get; 
        private set; 
    } 
 
    public int RewardPoints 
    { 
        get; 
        private set; 
    } 
 
    public void AddTransaction(decimal amount) 
    { 
        RewardPoints += CalculateRewardPoints(amount); 
        Balance += amount; 
    } 
 
    public abstract int CalculateRewardPoints(decimal amount); 
}

Without the switch statement, there is no reason for this class to be aware of its “type” anymore, 
so the constructor has been removed, too. The class is abstract due to the abstract calculation method, 
but this means that you can no longer instantiate it and, consequently, you can no longer test it.

An object instance is needed for the unit tests to work, so the next step is to link the three account 
types as subclasses of this base. A useful naming convention—along with prefixing interface names 
with a capital I—is to suffix abstract classes with Base. This a quick clue that the class cannot be in-
stantiated and has associated subclasses.

When the three subclasses are created, you can remove the Balance property from the Gold­
Account and PlatinumAccount because they will inherit the Balance and AddTransaction 
members from this base. Listing 4-32 shows all three classes after this step.

From the Library of Ida Schander



ptg14200592

	 CHAPTER 4  Unit testing and refactoring	 157

LISTING 4-32  Completing the refactor by inheriting from the base class.

public class SilverAccount : AccountBase 
{ 
    public override int CalculateRewardPoints(decimal amount) 
    { 
        return Math.Max((int)decimal.Floor(amount / SilverTransactionCostPerPoint), 0); 
    } 
 
    private const int SilverTransactionCostPerPoint = 10; 
} 
// . . . 
public class GoldAccount : AccountBase 
{ 
    public override int CalculateRewardPoints(decimal amount) 
    { 
        return Math.Max((int)decimal.Floor((Balance / GoldBalanceCostPerPoint) + (amount /  
  GoldTransactionCostPerPoint)), 0); 
    } 
 
    private const int GoldTransactionCostPerPoint = 5; 
    private const int GoldBalanceCostPerPoint = 2000; 
} 
// . . .  
public class PlatinumAccount : AccountBase 
{ 
    public override int CalculateRewardPoints(decimal amount) 
    { 
        return Math.Max((int)decimal.Ceiling((Balance / PlatinumBalanceCostPerPoint) + 
(amount / PlatinumTransactionCostPerPoint)), 0); 
    } 
 
    private const int PlatinumTransactionCostPerPoint = 2; 
    private const int PlatinumBalanceCostPerPoint = 1000; 
}

The refactor is now complete. From this point, it is easy to add a new account type by creating a 
subclass of the AccountBase and providing an implementation of the required CalculateReward­
Points method. No existing code would have to be changed; you would just have to write a few unit 
tests to exercise the new algorithm for calculating reward points.

Replacing a constructor with a factory method
During the course of improving the Account class, there has probably been an adverse effect else-
where in the code. Clients of the class were expecting to construct the account objects by using the 
Account constructor, and to pass in the type of account required. What will you now provide them 
by way of creating the correct account subclass for their situation?

The AccountType enumeration can be reused as a parameter to a new factory method on the 
AccountBase. Whereas a constructor, in conjunction with the new operator, returns an instance of the 
type in which it resides, a factory method is able to return many different types of object, all of which 

From the Library of Ida Schander



ptg14200592

158	 PART I  An Agile foundation

belong to the same inheritance hierarchy. Listing 4-33 shows such a factory method implemented on 
the base class.

LISTING 4-33  The switch statement returns, but in simplified form.

public abstract class AccountBase 
{ 
    public static AccountBase CreateAccount(AccountType type) 
    { 
        AccountBase account = null; 
        switch(type) 
        { 
            case AccountType.Silver: 
                account = new SilverAccount(); 
                break; 
            case AccountType.Gold: 
                account = new GoldAccount(); 
                break; 
            case AccountType.Platinum: 
                account = new PlatinumAccount(); 
                break; 
        } 
        return account; 
    } 
}

There are two key features of the factory method that alleviate the burden on clients. First, it is 
static, meaning that clients call it on the type, rather than on an instance of that type. Second, the re-
turn type is the base class, allowing you to hide the subclass accounts from clients. In fact, you can hide 
them to the degree that they are internal and therefore invisible outside of this assembly. This disal-
lows clients from directly constructing the subclasses, eliminating the new operator as a potential code 
smell. Listing 4-34 compares how a client would interact with the account before and after the refactor.

Although a switch statement still remains, it is far simpler in this instance and facilitates the prior 
refactor where it was replaced with polymorphism. 

LISTING 4-34  How the AccountService creates a new account before and after the refactor.

public void CreateAccount(AccountType accountType) 
{ 
    var newAccount = new Account(accountType); 
    accountRepository.NewAccount(newAccount); 
}  
// . . . 
public void CreateAccount(AccountType accountType) 
{ 
    var newAccount = AccountBase.CreateAccount(accountType); 
    accountRepository.NewAccount(newAccount); 
}

From the Library of Ida Schander



ptg14200592

	 CHAPTER 4  Unit testing and refactoring	 159

This code is an example of how a client—in this case, the AccountService—would construct a 
new account before and after the refactor. The difference is negligible, but note that the new operator 
has been removed and replaced with the static call to the factory method. This is a common way to re-
place something very rigid with something much more adaptive. Factory methods open up many more 
possibilities because of what they can return, compared to methods that always return the same type. 

Observant readers will note that the choice of a static factory method is suboptimal—it is a skyhook 
rather than a crane and thus affects the testability and adaptability of the code. A better implementa-
tion would place the CreateAccount method on a suitable interface, as explored in the next section.

Replacing a constructor with a factory class
There is an alternative to the factory method: the factory class. In fact, you do not need to couple 
clients to the implementation of a stand-alone factory, you can just give them the interface, as in 
Listing 4-35.

LISTING 4-35  The account factory hides the implementation details of creating an account instance.

public interface IAccountFactory 
{ 
    AccountBase CreateAccount(AccountType accountType); 
}

The interface of the method is actually identical to that of the factory method, except for the fact 
that it is an instance method. The implementation could be identical to the previous method body, 
meaning that it has perfect knowledge of all of the different types of account. The AccountService, 
and other clients, would then require this interface as a constructor parameter, as shown in Listing 4-36.

LISTING 4-36  The service now receives a factory as a constructor parameter and uses it to create the account.

public class AccountService 
{ 
    public AccountService(IAccountFactory accountFactory, IAccountRepository  
  accountRepository) 
    { 
        this.accountFactory = accountFactory; 
        this.accountRepository = accountRepository; 
    } 
 
    public void CreateAccount(AccountType accountType) 
    { 
        var newAccount = accountFactory.CreateAccount(accountType); 
        accountRepository.NewAccount(newAccount); 
    } 
 
    private readonly IAccountRepository accountRepository; 
    private readonly IAccountFactory accountFactory; 
}

From the Library of Ida Schander



ptg14200592

160	 PART I  An Agile foundation

This service is starting to look as it should: an orchestration of more fine-grained interfaces de-
signed to achieve a larger goal for the user interface layer. It is, for reasons of brevity and clarity, miss-
ing some guard clauses on the constructor, to prevent null dependencies, and some try/catch blocks 
on the CreateAccount method, to marshal domain exceptions to service exceptions.

A new account type
At this point, can you be confident enough that a request for a new account type results in minimal 
changes to existing code? Yes and no. In one case, you can trivially add an account, but in another, 
you will find that your current model makes some wrong assumptions that form technical debt.

A new reward account
Imagine that your client wants to add another kind of account—a Bronze account—that earns half of 
the reward points that the Silver account does. There are only two changes that need to be made to 
support this in the domain layer. First, you need to create a new subclass of the AccountBase class, as 
in Listing 4-37.

LISTING 4-37  The Bronze account is added as a new account type.

internal class BronzeAccount : AccountBase 
{ 
    public override int CalculateRewardPoints(decimal amount) 
    { 
        return Math.Max((int)decimal.Floor(amount / BronzeTransactionCostPerPoint), 0); 
    } 
 
    private const int BronzeTransactionCostPerPoint = 20; 
}

This is a simple change that involves new unit tests to provide your expectations, and a new class 
that provides the algorithm for calculating reward points for this class.

Whether you have a factory class or a factory method, you need to change it to support your new 
account type, along with the enumeration that defines possible account types to be created. Listing 
4-38 shows how a factory class would change to support the new Bronze account.

From the Library of Ida Schander



ptg14200592

	 CHAPTER 4  Unit testing and refactoring	 161

LISTING 4-38  The switch statement has a new case added to it that handles creating Bronze accounts.

public AccountBase CreateAccount(AccountType accountType) 
{ 
    AccountBase account = null; 
    switch (accountType) 
    { 
        case AccountType.Bronze: 
            account = new BronzeAccount(); 
            break; 
        case AccountType.Silver: 
            account = new SilverAccount(); 
            break; 
        case AccountType.Gold: 
            account = new GoldAccount(); 
            break; 
        case AccountType.Platinum: 
            account = new PlatinumAccount(); 
            break; 
    } 
    return account; 
}

Before moving on to the next new account for the client, is there any way you can refactor this 
method so that you do not have to amend it for every account? You cannot use the refactor detailed 
earlier in the “Replacing a conditional expression with polymorphism” section, because this is a 
result of such a refactor. Instead, is there a way to construct an AccountBase from an accountType 
name without directly referencing each value and subclass? Listing 4-39 provides the answer.

LISTING 4-39  If the accounts follow a certain naming convention, this factory will suffice for all account 
subclasses.

public AccountBase CreateAccount(string accountType) 
{ 
    var objectHandle = Activator.CreateInstance(null, string.Format("{0}Account",  
  accountType)); 
    return (AccountBase)objectHandle.Unwrap(); 
}

Note that the enumeration has been dropped in favor of a more flexible string value. This could 
be a problem, because any string value could be provided, rather than only those that match valid 
account types. Of course, this is the point of the exercise.

From the Library of Ida Schander



ptg14200592

162	 PART I  An Agile foundation

This sort of refactor is a little risky because it is in danger of creating a leaky abstraction of the 
factory—it might not work in all required scenarios. Several things have to be true before this sort of 
code is viable:

■■ Each account type must follow a naming convention of [Type]Account, where the [Type] prefix 
is the value of the enumeration.

■■ Each account type must be contained in the same assembly as this factory method. 

■■ Each account type must have a public default constructor—the types cannot be parameter-
ized with any values.

Due to these constraints, this usually means that you have refactored too much, and it causes 
problems later when one of these constraints needs to be circumvented. Proceed with caution. 

Code smell: Refused bequest
Sometime after the launch of the new reward card scheme, the client’s marketing department asks 
how many people are assigned to each account type. Your answer leads them to conclude that they 
have a 100-percent uptake in the reward card scheme: that every single customer has either a Bronze, 
Silver, Gold, or Platinum reward card. But this is not so. There was no provision made for creating an 
account that was not part of the reward card scheme, thus everyone was given a Bronze account by 
default. As a result of this conversation, another new account type is required: the Standard account.

This account serves a different purpose—it does not earn any reward points. There are two ways 
of modeling this. First, you can create a new AccountBase subclass, show in Listing 4-40, which does 
nothing in its CalculateRewardPoints override but return zero, effectively accumulating no points.

LISTING 4-40  A simple account without any reward point calculation.

internal class StandardAccount : AccountBase 
{ 
    public override int CalculateRewardPoints(decimal amount) 
    { 
        return 0; 
    } 
}

The alternative solution is to acknowledge that not all accounts have reward points and, in fact, 
there are two different types in the domain model. In such a circumstance, rather than provide a 
“default implementation” for the CalculateRewardPoints method, the subclass effectively refuses 

From the Library of Ida Schander



ptg14200592

	 CHAPTER 4  Unit testing and refactoring	 163

what the superclass has bequeathed to it—hence the code smell “refused bequest.” In the prior exam-
ple, the StandardAccount has refused to implement the interface rather than to ignore it, whereas 
the next refactor will refuse the interface altogether.

Replacing inheritance with delegation
In practice, this means that you need to split the AccountBase class into two parts. Some of the 
interface will remain on the account, with some of it moving to a new class hierarchy to represent 
reward cards. In this way, the inheritance of accounts is replaced with delegation to reward cards.

The first change is to introduce a new IRewardCard interface to define the properties and behav-
ior of each reward card, as shown in Listing 4-41.

LISTING 4-41  The reward points and their calculation have moved away from the Account class.

public interface IRewardCard 
{ 
    int RewardPoints 
    { 
        get; 
    } 
 
    void CalculateRewardPoints(decimal transactionAmount, decimal accountBalance); 
}

Previously, these two members were part of the AccountBase class, but they have been moved 
out because they are wholly dependent on the presence of reward cards. Note that the interface of 
CalculateRewardPoints has changed in two ways. First, there is no longer a return value on this 
method, because it is expected to mutate the RewardPoints property directly. Second, you must 
pass in the account balance as a parameter to this method because it is no longer available. This is an 
important side effect of splitting the two objects up in this manner: any context not directly encap-
sulated by the reward card object will need to be handed to it. This might cause the interface of this 
method to change in the future.

From the Library of Ida Schander



ptg14200592

164	 PART I  An Agile foundation

Listing 4-42 shows the implementations of this interface for the Bronze and Platinum cards after 
the refactor.

LISTING 4-42  Examples of the reward card implementations.

internal class BronzeRewardCard : IRewardCard 
{ 
    public int RewardPoints 
    { 
        get; 
        private set; 
    } 
 
    public void CalculateRewardPoints(decimal transactionAmount, decimal accountBalance) 
    { 
        RewardPoints += Math.Max((int)decimal.Floor(transactionAmount /  
  BronzeTransactionCostPerPoint), 0); 
    } 
    private const int BronzeTransactionCostPerPoint = 20; 
} 
// . . . 
internal class PlatinumRewardCard : IRewardCard 
{ 
    public int RewardPoints 
    { 
        get; 
        private set; 
    } 
 
    public void CalculateRewardPoints(decimal transactionAmount, decimal accountBalance) 
    { 
        RewardPoints += Math.Max((int)decimal.Ceiling((accountBalance / 
PlatinumBalanceCostPerPoint) + (transactionAmount / PlatinumTransactionCostPerPoint)), 0); 
    } 
 
    private const int PlatinumTransactionCostPerPoint = 2; 
    private const int PlatinumBalanceCostPerPoint = 1000; 
}

These classes are very similar to their previous incarnation, with an extra local RewardPoints 
property.

As shown in Listing 4-43, the Account class is no longer abstract and therefore no longer requires 
the Base suffix. For construction, it accepts an IRewardCard instance and delegates to this when 
adding a transaction. Overall, this account looks more like it used to before the initial requirement for 
capturing reward points.

From the Library of Ida Schander



ptg14200592

	 CHAPTER 4  Unit testing and refactoring	 165

LISTING 4-43  Each account contains a reward card.

public class Account 
{ 
    public Account(IRewardCard rewardCard) 
    { 
        this.rewardCard = rewardCard; 
    } 
 
    public decimal Balance 
    { 
        get; 
        private set; 
    } 
 
    public void AddTransaction(decimal amount) 
    { 
        rewardCard.CalculateRewardPoints(amount, Balance); 
        Balance += amount; 
    } 
 
    private readonly IRewardCard rewardCard; 
}

To model a Standard account—an account without a reward card—you can either pass in null 
for the reward card constructor dependency (and protect against a NullReferenceException 
by testing for null before delegating) or you can model a NullRewardCard. The latter would be 
an implementation of the Null Object pattern that would not accumulate any reward points when 
CalculateRewardPoints was called. 

Conclusion

This chapter has been a hybrid of unit testing and refactoring because the two should be paired 
together and performed in tandem. 

Each unit test you write should represent an expectation of the code that, ideally, should be com-
municable to a layperson. Although as code they are technical artifacts, unit tests enforce real-world 
behavior in objects, just as those objects encapsulate real-world concepts.

When you diligently follow a test-first approach, you write no new production code without first 
constructing a failing unit test. Then you write the simplest production code possible to transition the 
unit test from a red failure state to a green success state. Taken to its logical conclusion, the produc-
tion code becomes a natural side effect of fulfilling the expectations of its unit tests.

From the Library of Ida Schander



ptg14200592

166	 PART I  An Agile foundation

When you unit test code, you give yourself a firm foundation to subsequently alter the production 
code to make it clearly more adaptive to future requirements. The refactoring of code is an incre-
mental process of improving the code’s design. There are many options for refactoring, only some of 
which were explored in this chapter. Each option available might represent a tradeoff in one area for 
a certain improvement in another, and—as with many aspects of programming—the process is quite 
subjective.

With this chapter complete, the Agile foundation part of this book is closed. Next you will look at 
SOLID code and how it will help to further increase the adaptability of your code.

From the Library of Ida Schander



ptg14200592

		  167

PART II

Writing SOLID code

CHAPTER 5	 The single responsibility principle . . . . . . . . . . . . .             169

CHAPTER 6	 The open/closed principle . . . . . . . . . . . . . . . . . . . .                    207

CHAPTER 7	 The Liskov substitution principle . . . . . . . . . . . . . .              217

CHAPTER 8	 Interface segregation . . . . . . . . . . . . . . . . . . . . . . . .                        251

CHAPTER 9	 Dependency injection  . . . . . . . . . . . . . . . . . . . . . . .                       281

SOLID is the acronym for a set of practices that, when imple-
mented together, make code adaptive to change. The SOLID 
practices were introduced by Bob Martin almost 15 years ago. 
Even so, these practices are not as widely known as they could 
be—and perhaps should be.

In this part, a chapter is devoted to each of the SOLID 
principles:

■■ S  The single responsibility principle

■■ O  The open/closed principle

■■ L  The Liskov substitution principle

■■ I  Interface segregation

■■ D  Dependency injection

Even taken in isolation, each of these principles is a worthy prac-
tice that any software developer would do well to learn. When 

From the Library of Ida Schander



ptg14200592

used in collaboration, these patterns give code a completely dif-
ferent structure—one that lends itself to change. 

However, take note that these patterns and practices, just like 
all others, are merely tools for you to use. Deciding when and 
where to apply any pattern or practice is part of the art of soft-
ware development. Overuse leads to code that is adaptive, but 
on too fine-grained a level to be appreciated or useful. Overuse 
also affects another key facet of code quality: readability. It is 
far more common for software to be developed in teams than 
as an individual pursuit. Thus, judiciously selecting when and 
where to apply each pattern, practice, or SOLID principle is 
imperative to ensure that the code remains comprehensible 
in the future.

168

From the Library of Ida Schander



ptg14200592

		  169

C H A P T E R  5

The single responsibility principle

After completing this chapter, you will be able to

■■ Understand the importance of the single responsibility principle.

■■ Identify classes that have too many responsibilities.

■■ Write modules, classes, and methods that have a single responsibility.

■■ Refactor monolithic classes into smaller classes with single responsibilities.

■■ Use design patterns to separate responsibilities.

The single responsibility principle (SRP) instructs developers to write code that has one and only one 
reason to change. If a class has more than one reason to change, it has more than one responsibility. 
Classes with more than a single responsibility should be broken down into smaller classes, each of 
which should have only one responsibility and reason to change.

This chapter explains that process and shows you how to create classes that only have a single 
responsibility but are still useful. Through a process of delegation and abstraction, a class that con-
tains too many reasons to change should delegate one or more responsibilities to other classes.

It is difficult to overstate the importance of delegating to abstractions. It is the lynchpin of adap-
tive code and, without it, developers would struggle to adapt to changing requirements in the way 
that Scrum and other Agile processes demand.

Problem statement

To better explain the problem with having classes that hold too many responsibilities, this section 
explores an example. Listing 5-1 shows a simple batch processor class that reads records from a file 
and updates a database. Despite its small size, you need to continually add features to this batch 
processor so that it meets the needs of your business.

From the Library of Ida Schander



ptg14200592

170	 PART II  Writing SOLID code

LISTING 5-1  An example of a class with too many responsibilities.

public class TradeProcessor 
{     
    public void ProcessTrades(System.IO.Stream stream) 
    { 
        // read rows 
        var lines = new List<string>(); 
        using(var reader = new System.IO.StreamReader(stream)) 
        { 
            string line; 
            while((line = reader.ReadLine()) != null) 
            { 
                lines.Add(line); 
            } 
        } 
 
        var trades = new List<TradeRecord>(); 
 
        var lineCount = 1; 
        foreach(var line in lines) 
        { 
            var fields = line.Split(new char[] { ',' }); 
 
            if(fields.Length != 3) 
            { 
                Console.WriteLine("WARN: Line {0} malformed. Only {1} field(s) found.",  
  lineCount, fields.Length); 
                continue; 
            } 
 
            if(fields[0].Length != 6) 
            { 
                Console.WriteLine("WARN: Trade currencies on line {0} malformed: '{1}'",  
  lineCount, fields[0]); 
                continue; 
            } 
 
            int tradeAmount; 
            if(!int.TryParse(fields[1], out tradeAmount)) 
            { 
                Console.WriteLine("WARN: Trade amount on line {0} not a valid integer: 
  '{1}'", lineCount, fields[1]); 
            } 
 
            decimal tradePrice; 
            if (!decimal.TryParse(fields[2], out tradePrice)) 
            { 
                Console.WriteLine("WARN: Trade price on line {0} not a valid decimal:  
  '{1}'", lineCount, fields[2]); 
            } 
 

From the Library of Ida Schander



ptg14200592

	 CHAPTER 5  The single responsibility principle	 171

            var sourceCurrencyCode = fields[0].Substring(0, 3); 
            var destinationCurrencyCode = fields[0].Substring(3, 3); 
 
            // calculate values 
            var trade = new TradeRecord  
            {  
                SourceCurrency = sourceCurrencyCode, 
                DestinationCurrency = destinationCurrencyCode, 
                Lots = tradeAmount / LotSize, 
                Price = tradePrice 
            }; 
 
            trades.Add(trade); 
 
            lineCount++; 
        } 
 
        using (var connection = new System.Data.SqlClient.SqlConnection("Data  
  Source=(local);Initial Catalog=TradeDatabase;Integrated Security=True")) 
        { 
            connection.Open(); 
            using (var transaction = connection.BeginTransaction()) 
            { 
                foreach(var trade in trades) 
                { 
                    var command = connection.CreateCommand(); 
                    command.Transaction = transaction; 
                    command.CommandType = System.Data.CommandType.StoredProcedure; 
                    command.CommandText = "dbo.insert_trade"; 
                    command.Parameters.AddWithValue("@sourceCurrency", trade. 
  SourceCurrency); 
                    command.Parameters.AddWithValue("@destinationCurrency", trade. 
  DestinationCurrency); 
                    command.Parameters.AddWithValue("@lots", trade.Lots); 
                    command.Parameters.AddWithValue("@price", trade.Price); 
 
                    command.ExecuteNonQuery(); 
                } 
 
                transaction.Commit(); 
            } 
            connection.Close(); 
        } 
 
        Console.WriteLine("INFO: {0} trades processed", trades.Count); 
    } 
 
    private static float LotSize = 100000f;     
}

From the Library of Ida Schander



ptg14200592

172	 PART II  Writing SOLID code

This is more than an example of a class that has too many responsibilities; it is also an example of a 
single method that has too many responsibilities. By reading the code carefully, you can discern what 
this class is trying to achieve:

1.	 It reads every line from a Stream parameter, storing each line in a list of strings.

2.	 It parses out individual fields from each line and stores them in a more structured list of 
Trade‑Record instances.

3.	 The parsing includes some validation and some logging to the console.

4.	 Each TradeRecord is enumerated, and a stored procedure is called to insert the trades into 
a database.

The responsibilities of the TradeProcessor are reading streams, parsing strings, validating fields, 
logging, and database insertion. The single responsibility principle states that this class, like all others, 
should only have a single reason to change. However, the reality of the TradeProcessor is that it will 
change under the following circumstances:

■■ When you decide not to use a Stream for input but instead read the trades from a remote call 
to a web service.

■■ When the format of the input data changes, perhaps with the addition of an extra field indi-
cating the broker for the transaction.

■■ When the validation rules of the input data change.

■■ When the way in which you log warnings, errors, and information changes. If you are using a 
hosted web service, writing to the console would not be a viable option.

■■ When the database changes in some way—perhaps the insert_trade stored procedure re-
quires a new parameter for the broker, too, or you decide not to store the data in a relational 
database and opt for document storage, or the database is moved behind a web service that 
you must call.

For each of these changes, this class would have to be modified. Furthermore, unless you maintain 
a variety of versions, there is no possibility of adapting the TradeProcessor so that it is able to read 
from a different input source, for example. Imagine the maintenance headache when you are asked to 
add the ability to store the trades in a web service, but only if a certain command-line argument was 
supplied.

Refactoring for clarity
The first task on the road to refactoring the TradeProcessor so that it has one reason to change is 
to split the ProcessTrades method into smaller pieces so that each one focuses on a single respon-
sibility. Each of the following listings shows a single method from the refactored TradeProcessor 
class, followed by an explanation of the changes.

From the Library of Ida Schander



ptg14200592

	 CHAPTER 5  The single responsibility principle	 173

First, Listing 5-2 shows the ProcessTrades method, which now does nothing more than delegate 
to other methods.

LISTING 5-2  The ProcessTrades method is very minimal because it delegates work to other methods.

public void ProcessTrades(System.IO.Stream stream) 
{ 
    var lines = ReadTradeData(stream); 
    var trades = ParseTrades(lines); 
    StoreTrades(trades); 
}

The original code was characterized by three distinct parts of a process—reading the trade 
data from a stream, converting the string data in the stream to TradeRecord instances, and writ-
ing the trades to persistent storage. Note that the output from one method feeds into the input to 
the next method. You cannot call StoreTrades until you have the trade records returned from the 
Parse‑Trades method, and you cannot call ParseTrades until you have the lines returned from the 
ReadTradeData method. 

Taking each of these methods in order, let’s look at ReadTradeData, in Listing 5-3.

LISTING 5-3  ReadTradeData encapsulates the original code.

private IEnumerable<string> ReadTradeData(System.IO.Stream stream) 
{ 
    var tradeData = new List<string>(); 
    using (var reader = new System.IO.StreamReader(stream)) 
    { 
        string line; 
        while ((line = reader.ReadLine()) != null) 
        { 
            tradeData.Add(line); 
        } 
    } 
    return tradeData; 
}

This code is preserved from the original implementation of the ProcessTrades method. It has 
simply been encapsulated in a method that returns the resultant string data as a string enumeration. 
Note that this makes the return value read-only, whereas the original implementation unnecessarily 
allowed subsequent parts of the process to add further lines. 

The ParseTrades method, shown in Listing 5-4, is next. It has changed somewhat from the origi-
nal implementation because it, too, delegates some tasks to other methods.

From the Library of Ida Schander



ptg14200592

174	 PART II  Writing SOLID code

LISTING 5-4  ParseTrades delegates to other methods to limit its complexity.

private IEnumerable<TradeRecord> ParseTrades(IEnumerable<string> tradeData) 
{ 
    var trades = new List<TradeRecord>(); 
    var lineCount = 1; 
    foreach (var line in tradeData) 
    { 
        var fields = line.Split(new char[] { ',' }); 
 
        if(!ValidateTradeData(fields, lineCount)) 
        { 
            continue; 
        } 
 
        var trade = MapTradeDataToTradeRecord(fields); 
 
        trades.Add(trade); 
 
        lineCount++; 
    } 
    return trades; 
}

This method delegates validation and mapping responsibilities to other methods. Without this del-
egation, this section of the process would still be too complex and it would retain too many respon-
sibilities. The ValidateTradeData method, shown in Listing 5-5, returns a Boolean value to indicate 
whether any of the fields for a trade line are invalid.

LISTING 5-5  All of the validation code is in a single method.

private bool ValidateTradeData(string[] fields, int currentLine) 
{ 
    if (fields.Length != 3) 
    { 
        LogMessage("WARN: Line {0} malformed. Only {1} field(s) found.", currentLine,  
  fields.Length); 
        return false; 
    } 
 
    if (fields[0].Length != 6) 
    { 
        LogMessage("WARN: Trade currencies on line {0} malformed: '{1}'", currentLine,  
  fields[0]); 
        return false; 
    } 
 
    int tradeAmount; 
    if (!int.TryParse(fields[1], out tradeAmount)) 
    { 
        LogMessage("WARN: Trade amount on line {0} not a valid integer: '{1}'",  
  currentLine, fields[1]); 

From the Library of Ida Schander



ptg14200592

	 CHAPTER 5  The single responsibility principle	 175

        return false; 
    } 
 
    decimal tradePrice; 
    if (!decimal.TryParse(fields[2], out tradePrice)) 
    { 
        LogMessage("WARN: Trade price on line {0} not a valid decimal: '{1}'",  
  currentLine, fields[2]); 
        return false; 
    } 
 
    return true; 
}

The only change made to the original validation code is that it now delegates to yet another 
method for logging messages. Rather than embedding calls to Console.WriteLine where needed, 
the LogMessage method is used, shown in Listing 5-6.

LISTING 5-6  The LogMessage method is currently just a synonym for Console.WriteLine.

private void LogMessage(string message, params object[] args) 
{ 
    Console.WriteLine(message, args); 
}

Returning up the stack to the ParseTrades method, Listing 5-7 shows the other method to which 
it delegates. This method maps an array of strings representing the individual fields from the stream 
to an instance of the TradeRecord class.

LISTING 5-7  Mapping from one type to another is a separate responsibility.

private TradeRecord MapTradeDataToTradeRecord(string[] fields) 
{ 
    var sourceCurrencyCode = fields[0].Substring(0, 3); 
    var destinationCurrencyCode = fields[0].Substring(3, 3); 
    var tradeAmount = int.Parse(fields[1]); 
    var tradePrice = decimal.Parse(fields[2]); 
 
    var tradeRecord = new TradeRecord 
    { 
        SourceCurrency = sourceCurrencyCode, 
        DestinationCurrency = destinationCurrencyCode, 
        Lots = tradeAmount / LotSize, 
        Price = tradePrice 
    }; 
 
    return tradeRecord; 
}

From the Library of Ida Schander



ptg14200592

176	 PART II  Writing SOLID code

The sixth and final new method introduced by this refactor is StoreTrades, shown in Listing 5-8. 
This method wraps the code for interacting with the database. It also delegates the informational log 
message to the aforementioned LogMessage method.

LISTING 5-8  With the StoreTrades method in place, the responsibilities in this class are clearly demarcated.

private void StoreTrades(IEnumerable<TradeRecord> trades) 
{ 
    using (var connection = new System.Data.SqlClient.SqlConnection("Data  
  Source=(local);Initial Catalog=TradeDatabase;Integrated Security=True")) 
    { 
        connection.Open(); 
        using (var transaction = connection.BeginTransaction()) 
        { 
            foreach (var trade in trades) 
            { 
                var command = connection.CreateCommand(); 
                command.Transaction = transaction; 
                command.CommandType = System.Data.CommandType.StoredProcedure; 
                command.CommandText = "dbo.insert_trade"; 
                command.Parameters.AddWithValue("@sourceCurrency", trade.SourceCurrency); 
                command.Parameters.AddWithValue("@destinationCurrency",  
  trade.DestinationCurrency); 
                command.Parameters.AddWithValue("@lots", trade.Lots); 
                command.Parameters.AddWithValue("@price", trade.Price); 
 
                command.ExecuteNonQuery(); 
            } 
 
            transaction.Commit(); 
        } 
        connection.Close(); 
    } 
 
    LogMessage("INFO: {0} trades processed", trades.Count()); 
}

Looking back at this refactor, it is a clear improvement on the original implementation. However, 
what have you really achieved? Although the new ProcessTrades method is indisputably smaller 
than the monolithic original, and the code is definitely more readable, you have gained very little by 
way of adaptability. You can change the implementation of the LogMessage method so that it, for 
example, writes to a file instead of to the console, but that involves a change to the TradeProcessor 
class, which is precisely what you wanted to avoid.

This refactor has been an important stepping stone on the path to truly separating the responsi-
bilities of this class. It has been a refactor for clarity, not for adaptability. The next task is to split each 
responsibility into different classes and place them behind interfaces. What you need is true abstrac-
tion to achieve useful adaptability.

From the Library of Ida Schander



ptg14200592

	 CHAPTER 5  The single responsibility principle	 177

Refactoring for abstraction
Building on the new TradeProcessor implementation, the next refactor introduces several abstrac-
tions that will allow you to handle almost any change request for this class. Although this running ex-
ample might seem very small, perhaps even insignificant, it is a workable contrivance for the purposes 
of this tutorial. Also, it is very common for a small application such as this to grow into something 
much larger. When a few people start to use it, the feature requests begin to increase. 

Often, the terms prototype and proof of concept are applied to such allegedly small applications, and 
the conversion from prototype to production application is relatively seamless. This is why the ability 
to refactor toward abstraction is such a touchstone of adaptive development. Without it, the myriad 
requests devolve into a “big ball of mud”—a class, or a group of classes in an assembly, with little 
delineation of responsibility and no discernible abstractions. The result is an application that has no 
unit tests and that is difficult to maintain and enhance, and yet that could be a critical piece of the line 
of business. 

The first step in refactoring the TradeProcessor for abstraction is to design the interface or 
interfaces that it will use to perform the three high-level tasks of reading, processing, and storing the 
trade data. Figure 5-1 shows the first set of abstractions.

FIGURE 5-1  The TradeProcessor will now depend on three new interfaces.

Because you moved all of the code from ProcessTrades into separate methods in the first refac-
tor, you should have a good idea of where the first abstractions should be applied. As prescribed by 
the single responsibility principle, the three main responsibilities will be handled by different classes. 
As you know from previous chapters, you should not have direct dependencies from one class to an-
other but should instead work via interfaces. Therefore, the three responsibilities are factored out into 
three separate interfaces. Listing 5-9 shows how the TradeProcessor class looks after this change.

From the Library of Ida Schander



ptg14200592

178	 PART II  Writing SOLID code

LISTING 5-9  The TradeProcessor is now the encapsulation of a process, and nothing more.

public class TradeProcessor 
{ 
    public TradeProcessor(ITradeDataProvider tradeDataProvider, ITradeParser tradeParser,  
  ITradeStorage tradeStorage) 
    { 
        this.tradeDataProvider = tradeDataProvider; 
        this.tradeParser = tradeParser; 
        this.tradeStorage = tradeStorage; 
    } 
 
    public void ProcessTrades() 
    { 
        var lines = tradeDataProvider.GetTradeData(); 
        var trades = tradeParser.Parse(lines); 
        tradeStorage.Persist(trades); 
    } 
 
    private readonly ITradeDataProvider tradeDataProvider; 
    private readonly ITradeParser tradeParser; 
    private readonly ITradeStorage tradeStorage; 
}

The class is now significantly different from its previous incarnation. It no longer contains the 
implementation details for the whole process but instead contains the blueprint for the process. 
The class models the process of transferring trade data from one format to another. This is its only 
responsibility, its only concern, and the only reason that this class should change. If the process itself 
changes, this class will change to reflect it. But if you decide you no longer want to retrieve data from 
a Stream, log on to the console, or store the trades in a database, this class remains as is. 

As prescribed by the Stairway pattern (introduced in Chapter 2, “Dependencies and layering”), the 
interfaces that the TradeProcessor now depends on all live in a separate assembly. This ensures that 
neither the client nor the implementation assemblies reference each other. Separated into another 
assembly are the three classes that implement these interfaces, the StreamTradeDataProvider, 
SimpleTradeParser, and AdoNetTradeStorage classes. Note that there is a naming convention 
used for these classes. First, the prefixed I was removed from the interface name and replaced with 
the implementation-specific context that is required of the class. So StreamTradeDataProvider al-
lows you to infer that it is an implementation of the ITradeDataProvider interface that retrieves its 
data from a Stream object. The AdoNetTradeStorage class uses ADO.NET to persist the trade data. 
I have prefixed the ITradeParser implementation with the word Simple to indicate that it has no 
dependency context.

All three of these implementations are able to live in a single assembly due to their shared 
dependencies—core assemblies of the Microsoft .NET Framework. If you were to introduce an imple-
mentation that required a third-party dependency, a first-party dependency of your own, or a depen-
dency from a non-core .NET Framework class, you should put these implementations into their own 

From the Library of Ida Schander



ptg14200592

	 CHAPTER 5  The single responsibility principle	 179

assemblies. For example, if you were to use the Dapper mapping library instead of ADO.NET, you 
would create an assembly called Services.Dapper, inside of which would be an ITradeStorage 
implementation called DapperTradeStorage. 

The ITradeDataProvider interface does not depend on the Stream class. The previous version 
of the method for retrieving trade data required a Stream instance as a parameter, but this artificially 
tied the method to a dependency. When you are creating interfaces and refactoring toward abstrac-
tions, it is important that you do not retain dependencies where doing so would affect the adapt-
ability of the code. The possibility of retrieving the trade data from sources other than a Stream has 
already been discussed, so the refactoring has ensured that this dependency is removed from the 
interface. Instead, the StreamTradeDataProvider requires a Stream as a constructor parameter, in-
stead of a method parameter. By using the constructor, you can depend on almost anything without 
polluting the interface. Listing 5-10 shows the StreamTradeDataProvider implementation.

LISTING 5-10  Context can be passed into classes via constructor parameters, keeping the interface clean.

public class StreamTradeDataProvider : ITradeDataProvider 
{ 
    public StreamTradeDataProvider(Stream stream) 
    { 
        this.stream = stream; 
    } 
 
    public IEnumerable<string> GetTradeData() 
    { 
        var tradeData = new List<string>(); 
        using (var reader = new StreamReader(stream)) 
        { 
            string line; 
            while ((line = reader.ReadLine()) != null) 
            { 
                tradeData.Add(line); 
            } 
        } 
        return tradeData; 
    } 
 
    private Stream stream; 
}

Remember that the TradeProcessor class, which is the client of this code, is aware of nothing 
other than the GetTradeData method’s signature via the ITradeDataProvider. It has no knowl-
edge whatsoever of how the real implementation retrieves the data—nor should it.

There are more abstractions that can be extracted from this example. Remember that the original 
ParseTrades method delegated responsibility for validation and for mapping. You can repeat the 
process of refactoring so that the SimpleTradeParser class does not have more than one responsi-
bility. Figure 5-2 shows in Unified Markup Language (UML) how this can be achieved.

From the Library of Ida Schander



ptg14200592

180	 PART II  Writing SOLID code

FIGURE 5-2  The SimpleTradeParser is also refactored to ensure that each class has a single responsibility.

This process of abstracting responsibilities into interfaces (and their accompanying implementa-
tions) is recursive. As you inspect each class, you must determine the responsibilities that it has and 
factor them out until the class has only one. Listing 5-11 shows the SimpleTradeParser class, which 
delegates to interfaces where appropriate. Its single reason for change is if the overall structure of the 
trade data changes—for instance, if the data no longer uses comma-separated values and changes to 
using tabs, or perhaps XML.

LISTING 5-11  The algorithm for parsing trade data is encapsulated in ITradeParser implementations.

public class SimpleTradeParser : ITradeParser 
{ 
    public SimpleTradeParser(ITradeValidator tradeValidator, ITradeMapper tradeMapper) 
    { 
        this.tradeValidator = tradeValidator; 
        this.tradeMapper = tradeMapper; 
    } 
 
    public IEnumerable<TradeRecord> Parse(IEnumerable<string> tradeData) 
    { 
        var trades = new List<TradeRecord>(); 
        var lineCount = 1; 
        foreach (var line in tradeData) 
        { 
            var fields = line.Split(new char[] { ',' }); 
 
            if (!tradeValidator.Validate(fields)) 
            { 
                continue; 
            } 
 
            var trade = tradeMapper.Map(fields); 
 
            trades.Add(trade); 
 

From the Library of Ida Schander



ptg14200592

	 CHAPTER 5  The single responsibility principle	 181

            lineCount++; 
        } 
        return trades; 
    } 
 
    private readonly ITradeValidator tradeValidator; 
    private readonly ITradeMapper tradeMapper; 
}

The final refactor aims to abstract logging from two classes. Both the ITradeValidator and 
ITradeStorage implementations are still logging directly to the console. This time, instead of imple-
menting your own logging class, you will create an adapter for the popular logging library, Log4Net. 
The UML class diagram in Figure 5-3 shows how this all fits together.

FIGURE 5-3  By implementing an adapter for Log4Net, you need not reference it in every assembly.

The net benefit of creating an adapter class such as Log4NetLoggerAdapter is that you can 
convert a third-party reference into a first-party reference. Notice that both AdoNetTradeStorage 
and SimpleTradeValidator both depend on the first-party ILogger interface. But, at run time, 
both will actually use Log4Net. The only references needed to Log4Net are in the entry point of the 
application (see Chapter 9, “Dependency injection,” for more information) and the newly created 

From the Library of Ida Schander



ptg14200592

182	 PART II  Writing SOLID code

Service.Log4Net assembly. Any code that has a dependency on Log4Net, such as custom append-
ers, should live in the Service.Log4Net assembly. For now, only the adapter resides in this new 
assembly.

The refactored validator class is shown in Listing 5-12. It now has no reference whatsoever to the 
console. Because of Log4Net’s flexibility, you can actually log to almost anywhere now. Total adapt-
ability has been achieved as far as logging is concerned.

LISTING 5-12  The SimpleTradeValidator class after refactoring.

public class SimpleTradeValidator : ITradeValidator 
{ 
    private readonly ILogger logger;    public SimpleTradeValidator(ILogger logger) 
    { 
        this.logger = logger; 
    } 
 
    public bool Validate(string[] tradeData) 
    { 
        if (tradeData.Length != 3) 
        { 
            logger.LogWarning("Line malformed. Only {1} field(s) found.",  
  tradeData.Length); 
            return false; 
        } 
 
        if (tradeData[0].Length != 6) 
        { 
            logger.LogWarning("Trade currencies malformed: '{1}'", tradeData[0]); 
            return false; 
        } 
 
        int tradeAmount; 
        if (!int.TryParse(tradeData[1], out tradeAmount)) 
        { 
            logger.LogWarning("Trade amount not a valid integer: '{1}'", tradeData[1]); 
            return false; 
        } 
 
        decimal tradePrice; 
        if (!decimal.TryParse(tradeData[2], out tradePrice)) 
        { 
            logger.LogWarning("WARN: Trade price not a valid decimal: '{1}'",  
  tradeData[2]); 
            return false; 
        } 
 
        return true; 
    } 
}

From the Library of Ida Schander



ptg14200592

	 CHAPTER 5  The single responsibility principle	 183

At this point, a quick recap is in order. Bear in mind that you have altered nothing as far as the 
functionality of the code is concerned. Functionally, this code does exactly what it used to do. How-
ever, if you wanted to enhance it in any way, you could do so with ease. The added ability to adapt 
this code to a new purpose more than justifies the effort expended to refactor it. 

Referring back to the original list of potential enhancements to this code, this new version allows 
you to implement each one without touching the existing classes.

■■ Request: You decide not to use a Stream for input but instead read the trades from a remote call 
to a web service.

•	 Solution: Create a new ITradeDataProvider implementation that supplies the data from 
the service.

■■ Request: The format of the input data changes, perhaps with the addition of an extra field indi-
cating the broker for the transaction.

•	 Solution: Alter the implementations for the ITradeDataValidator, ITradeDataMapper, 
and ITradeStorage interfaces, which handle the new broker field.

■■ Request: The validation rules of the input data change.

•	 Solution: Edit the ITradeDataValidator implementation to reflect the rule changes.

■■ Request: The way in which you log warnings, errors, and information changes. If you are using a 
hosted web service, writing to the console would not be a viable option.

•	 Solution: As discussed, Log4Net provides you with infinite options for logging, by virtue of 
the adapter.

■■ Request: The database changes in some way—perhaps the insert_trade stored procedure 
requires a new parameter for the broker, too, or you decide not to store the data in a relational 
database and opt for document storage, or the database is moved behind a web service that you 
must call.

•	 Solution: If the stored procedure changes, you would need to edit the AdoNetTrade­
Storage class to include the broker field. For the other two options, you could create a 
MongoTradeStorage class that uses MongoDB to store the trades, and you could create 
a ServiceTradeStorage class to hide the implementation behind a web service.

I hope you are now fully convinced that a combination of abstracting via interfaces, decoupling 
assemblies to follow the Stairway pattern, aggressive refactoring, and adhering to the single responsi-
bility principle are the foundation of adaptive code.

When you arrive at a scenario in which your code is neatly delegating to abstractions, the possibili-
ties are endless. The rest of this chapter concentrates on other ways in which you can focus on a single 
responsibility per class.

From the Library of Ida Schander



ptg14200592

184	 PART II  Writing SOLID code

SRP and the Decorator pattern 

The Decorator pattern is excellent for ensuring that each class has a single responsibility. Classes can 
often do too many things without an obvious way of splitting the responsibilities into other classes. 
The responsibilities seem too closely linked.

The Decorator pattern’s basic premise is that each decorator class fulfills the contract of a type 
and also accepts one or more of those types as constructor parameters. This is beneficial because 
functionality can be added to an existing class that implements a certain interface, and the decorator 
also acts—unbeknownst to clients—as an implementation of the required interface. Figure 5-4 shows 
a UML diagram of the Decorator design pattern.

FIGURE 5-4  A UML diagram showing an implementation of the Decorator pattern.

A simple example of the pattern is shown in Listing 5-13, which does not pertain to a specific use 
of the pattern but provides a canonical example.

LISTING 5-13  A template example of the decorator pattern.

public interface IComponent 
{ 
    void Something(); 
} 
// . . .  
public class ConcreteComponent : IComponent 
{ 
    public void Something() 
    { 
             
    } 
} 

From the Library of Ida Schander



ptg14200592

	 CHAPTER 5  The single responsibility principle	 185

// . . . 
public class DecoratorComponent : IComponent 
{ 
    public DecoratorComponent(IComponent decoratedComponent) 
    { 
        this.decoratedComponent = decoratedComponent; 
    } 
 
    public void Something() 
    { 
        SomethingElse(); 
        decoratedComponent.Something(); 
    } 
 
    private void SomethingElse() 
    { 
 
    } 
 
    private readonly IComponent decoratedComponent; 
} 
// . . . 
class Program 
{ 
    static IComponent component; 
 
    static void Main(string[] args) 
    { 
        component = new DecoratorComponent(new ConcreteComponent()); 
        component.Something(); 
    } 
}

Because a client accepts the interface shown in the listing as a method parameter, you can provide 
either the original, undecorated type to that client or you can provide the decorated version. Note 
that the client will be oblivious: it will not have to change depending on which version it is being 
provided.

The Composite pattern
The Composite pattern is a specialization of the Decorator pattern and is one of the more common 
uses of that pattern. A UML diagram describing the Composite pattern’s collaborators is shown in 
Figure 5-5.

From the Library of Ida Schander



ptg14200592

186	 PART II  Writing SOLID code

FIGURE 5-5  The Composite pattern closely resembles the Decorator pattern.

The Composite pattern’s purpose is to allow you to treat many instances of an interface as if they 
were just one instance. Therefore, clients can accept just one instance of an interface, but they can be 
implicitly provided with many instances, without requiring the client to change. Listing 5-14 shows a 
composite decorator in practice.

LISTING 5-14  The composite implementation of an interface.

public interface IComponent 
{ 
    void Something(); 
} 
// . . . 
public class Leaf : IComponent 
{ 
    public void Something() 
    { 
             
    } 
} 
// . . . 
public class CompositeComponent : IComponent 
{ 
    public CompositeComponent() 
    { 
        children = new List<IComponent>(); 
    } 
 
    public void AddComponent(IComponent component) 
    { 
        children.Add(component); 
    } 
 

From the Library of Ida Schander



ptg14200592

	 CHAPTER 5  The single responsibility principle	 187

    public void RemoveComponent(IComponent component) 
    { 
        children.Remove(component); 
    } 
 
    public void Something() 
    { 
        foreach(var child in children) 
        { 
            child.Something(); 
        } 
    } 
 
    private ICollection<IComponent> children; 
} 
// . . . 
class Program 
{ 
    static void Main(string[] args) 
    { 
        var composite = new CompositeComponent(); 
        composite.AddComponent(new Leaf()); 
        composite.AddComponent(new Leaf()); 
        composite.AddComponent(new Leaf()); 
 
        component = composite; 
        component.Something(); 
    } 
 
    static IComponent component; 
}

In the CompositeComponent class, there are methods for adding and removing other instances 
of the IComponent. These methods do not form part of the interface and are for clients of the 
CompositeComponent class, directly. Whichever factory method or class is tasked with creating 
instances of the CompositeComponent class will also have to create the decorated instances and pass 
them into the Add method; otherwise, the clients of the IComponent would have to change in order 
to cope with compositions. 

Whenever the Something method is called by the IComponent clients, the list of composed in-
stances is enumerated, and their respective Something is called. This is how you reroute the call to a 
single instance of IComponent—of type CompositeComponent—to many other types.

Each instance that you supply to the CompositeComponent class must implement the IComponent 
interface—and this is enforced by the compiler due to C#’s strong typing—but the instances need 
not all be of the same concrete type. Because of the advantages of polymorphism, you can treat all 
implementations of an interface as instances of that interface. In the example shown in Listing 5-15, 
the CompositeComponent instances provided are of different types, further enhancing this pattern’s 
utility.

From the Library of Ida Schander



ptg14200592

188	 PART II  Writing SOLID code

LISTING 5-15  Instances provided to the composite can be of different types.

public class SecondTypeOfLeaf : IComponent 
{ 
    public void Something() 
    { 
             
    } 
} 
// . . . 
public class AThirdLeafType : IComponent 
{ 
    public void Something() 
    { 
             
    } 
} 
// . . . 
public void AlternativeComposite() 
{ 
    var composite = new CompositeComponent(); 
    composite.AddComponent(new Leaf()); 
    composite.AddComponent(new SecondTypeOfLeaf()); 
    composite.AddComponent(new AThirdLeafType()); 
 
    component = composite; 
    composite.Something(); 
}

Taking this pattern to its logical conclusion, you can even pass in one or more instances of the 
CompositeComponent interface to the Add method, forming a chain of composite instances in a 
hierarchical tree structure.

Where should the composite live?
Chapter 2 introduced the Entourage anti-pattern, which states that implementations should 
not live in the same assemblies as their interfaces. However, there is an exception to that rule: 
implementations whose dependencies are a subset of their interface’s dependencies. 

Depending on how the composite is implemented, it is likely that no further dependencies 
will be introduced. If this is true, the assembly in which the interface resides could also include 
the composite implementation.

From the Library of Ida Schander



ptg14200592

	 CHAPTER 5  The single responsibility principle	 189

In Chapter 2, classes were shown to be modeled as object graphs. That theme continues here, to 
further demonstrate how the Composite pattern works. In Figure 5-6, the nodes of the graph repre-
sent object instances, and the edges represent method calls.

FIGURE 5-6  The object graph notation helps to visualize the runtime structure of the program.

Predicate decorators
The predicate decorator is a useful construct for hiding the conditional execution of code from clients. 
Listing 5-16 shows an example.

LISTING 5-16  This client will only execute the Something method on even days of the month.

public class DateTester 
{ 
    public bool TodayIsAnEvenDayOfTheMonth 
    { 
        get 
        { 
            return DateTime.Now.Day % 2 == 0; 
        } 
    } 
} 

From the Library of Ida Schander



ptg14200592

190	 PART II  Writing SOLID code

// . . . 
class PredicatedDecoratorExample 
{ 
    public PredicatedDecoratorExample(IComponent component) 
    { 
        this.component = component; 
    } 
 
    public void Run() 
    { 
        DateTester dateTester = new DateTester(); 
        if (dateTester.TodayIsAnEvenDayOfTheMonth) 
        { 
            component.Something(); 
        } 
    } 
 
    private readonly IComponent component; 
}

The presence of the DateTester class in this example is a dependency that does not belong in 
this class. The initial temptation is to alter the code toward that of Listing 5-17. However, that is only a 
partial solution.

LISTING 5-17  An improvement is to require the dependency to be passed into the class.

class PredicatedDecoratorExample 
{ 
    public PredicatedDecoratorExample(IComponent component) 
    { 
        this.component = component; 
    } 
 
    public void Run(DateTester dateTester) 
    { 
        if (dateTester.TodayIsAnEvenDayOfTheMonth) 
        { 
            component.Something(); 
        } 
    } 
 
    private readonly IComponent component; 
} 

From the Library of Ida Schander



ptg14200592

	 CHAPTER 5  The single responsibility principle	 191

You now require a parameter of the Run method, breaking the client’s public interface and bur-
dening its clients with providing an implementation of the DateTester class. By using the Decora-
tor pattern, you are able to keep the client’s interface the same, yet retain the conditional-execution 
functionality. Listing 5-18 proves that this is not too good to be true.

LISTING 5-18  The predicate decoration contains the dependency, and the client is much cleaner.

public class PredicatedComponent : IComponent 
{ 
    public PredicatedComponent(IComponent decoratedComponent, DateTester dateTester) 
    { 
        this.decoratedComponent = decoratedComponent; 
        this.dateTester = dateTester; 
    } 
         
    public void Something() 
    { 
        if(dateTester.TodayIsAnEvenDayOfTheMonth) 
        { 
            decoratedComponent.Something(); 
        } 
    } 
 
    private readonly IComponent decoratedComponent; 
    private readonly DateTester dateTester; 
} 
// . . . 
class PredicatedDecoratorExample 
{ 
    public PredicatedDecoratorExample(IComponent component) 
    { 
        this.component = component; 
    } 
 
    public void Run() 
    { 
        component.Something(); 
    } 
 
    private readonly IComponent component; 
}

From the Library of Ida Schander



ptg14200592

192	 PART II  Writing SOLID code

Note that this listing has added conditional branching to the code without modifying either the 
client code or the original implementing class. Also, this example has accepted the DateTester class 
as a dependency, but you could take this one step further by defining your own predicate interface 
for handling this scenario generically. After a few changes, the code looks like Listing 5-19.

LISTING 5-19  Defining a dedicated IPredicate interface makes the solution more general.

public interface IPredicate 
{ 
    bool Test(); 
}  
// . . . 
public class PredicatedComponent : IComponent 
{ 
    public PredicatedComponent(IComponent decoratedComponent, IPredicate predicate) 
    { 
        this.decoratedComponent = decoratedComponent; 
        this.predicate = predicate; 
    } 
         
    public void Something() 
    { 
        if (predicate.Test()) 
        { 
            decoratedComponent.Something(); 
        } 
    } 
 
    private readonly IComponent decoratedComponent; 
    private readonly IPredicate predicate; 
} 
// . . . 
public class TodayIsAnEvenDayOfTheMonthPredicate : IPredicate 
{ 
    public TodayIsAnEvenDayOfTheMonthPredicate(DateTester dateTester) 
    { 
        this.dateTester = dateTester; 
    } 
 
    public bool Test() 
    { 
        return dateTester.TodayIsAnEvenDayOfTheMonth; 
    } 
 
    private readonly DateTester dateTester; 
}

The TodayIsAnEvenDayOfTheMonthPredicate class converts the original dependent class, 
DateTester, to that of an IPredicate. This is an example of the Adapter pattern that was discussed 
earlier, in the “Refactoring for abstraction” section. 

From the Library of Ida Schander



ptg14200592

	 CHAPTER 5  The single responsibility principle	 193

Note  The .NET Framework, as of version 2.0, contains a Predicate<T> delegate, which 
models a predicate that accepts a single, generic parameter as context. I did not choose 
the Predicate<T> delegate for this example for two reasons: First, no context needs to be 
provided, because the original conditional test accepted no arguments. However, I could 
have used a Func<bool> delegate to model a context-free predicate, which brings me to 
the second reason: delegates are not as versatile as interfaces. By modeling an IPredicate, 
I will be able to decorate that interface just the same as any other in the future. In other 
words, I have defined another extension point that is infinitely decoratable.

Branching decorators
You can extend the predicate decorator further by accepting a decorated instance of the interface to 
execute something on the false branch of the conditional test, as shown in Listing 5-20.

LISTING 5-20  The branching decorator accepts two components and a predicate.

public class BranchedComponent : IComponent 
{ 
    public BranchedComponent(IComponent trueComponent, IComponent falseComponent,  
IPredicate predicate) 
    { 
        this.trueComponent = trueComponent; 
        this.falseComponent = falseComponent; 
        this.predicate = predicate; 
    } 
         
    public void Something() 
    { 
        if (predicate.Test()) 
        { 
            trueComponent.Something(); 
        } 
        else  
        { 
            falseComponent.Something(); 
        } 
    } 
 
    private readonly IComponent trueComponent; 
    private readonly IComponent falseComponent; 
    private readonly IPredicate predicate; 
}

From the Library of Ida Schander



ptg14200592

194	 PART II  Writing SOLID code

Whenever the predicate is tested, if it returns true, you call the equivalent interface method 
on the trueComponent instance. If it returns false, you instead call the interface method on the 
falseComponent instance.

Lazy decorators
The lazy decorator allows clients to be provided with a reference to an interface that will not be 
instantiated until its first use. Typically, and erroneously, clients are made aware of the presence of 
a lazy instance because a Lazy<T> is passed to them, as in Listing 5-21.

LISTING 5-21  This client has been given a Lazy<T>.

public class ComponentClient 
{ 
    public ComponentClient(Lazy<IComponent> component) 
    { 
        this.component = component; 
    } 
 
    public void Run() 
    { 
        component.Value.Something(); 
    } 
 
    private readonly Lazy<IComponent> component; 
}

This client has no option but to accept that all instances of IComponent that it is provided with 
will be lazy. However, if you return to a more standard use of the interface, you can create a lazy 
decorator that prevents the client from knowing that it is dealing with a Lazy<T>, and allows some 
ComponentClient objects to accept IComponent instances that are not lazy. Listing 5-22 shows this 
decorator.

LISTING 5-22  LazyComponent implements a lazily instantiated IComponent, but ComponentClient is unaware 
of this.

public class LazyComponent : IComponent 
{ 
    public LazyComponent(Lazy<IComponent> lazyComponent) 
    { 
        this.lazyComponent = lazyComponent; 
    } 
 
    public void Something() 
    { 
        lazyComponent.Value.Something(); 
    } 
 

From the Library of Ida Schander



ptg14200592

	 CHAPTER 5  The single responsibility principle	 195

    private readonly Lazy<IComponent> lazyComponent; 
} 
// . . . 
public class ComponentClient 
{ 
 
    public ComponentClient(IComponent component) 
    { 
        this.component = component; 
    } 
 
    public void Run() 
    { 
        component.Something(); 
    } 
 
    private readonly IComponent component; 
}

Logging decorators
Listing 5-23 shows a common pattern that occurs whenever code contains extensive logging. The log-
ging code becomes ubiquitous throughout the application, and the signal-to-noise ratio suffers. 

LISTING 5-23  Logging code clouds the intent of methods.

public class ConcreteCalculator : ICalculator 
{ 
    public int Add(int x, int y) 
    { 
        Console.WriteLine("Add(x={0}, y={1})", x, y); 
 
        var addition = x + y; 
 
        Console.WriteLine("result={0}", addition); 
 
        return addition; 
    } 
}

Instead of proliferating the logging code throughout the application, you can limit it to one 
assembly that implements logging decorators, as shown in Listing 5-24.

From the Library of Ida Schander



ptg14200592

196	 PART II  Writing SOLID code

LISTING 5-24  Logging decorators factor out the logging code, simplifying the main implementation.

public class LoggingCalculator : ICalculator 
{ 
    public LoggingCalculator(ICalculator calculator) 
    { 
        this.calculator = calculator; 
    } 
 
    public int Add(int x, int y) 
    { 
        Console.WriteLine("Add(x={0}, y={1})", x, y); 
 
        var result = calculator.Add(x, y); 
 
        Console.WriteLine("result={0}", result); 
 
        return result; 
    } 
 
    private readonly ICalculator calculator;     
} 
// . . . 
public class ConcreteCalculator : ICalculator 
{ 
    public int Add(int x, int y) 
    { 
        return x + y; 
    } 
}

Clients of the ICalculator interface will pass in various parameters, and some of the methods 
themselves will return values, too. Because the LoggingCalculator is in a position to intercept both 
of these artifacts, it can interrogate them directly. There are limitations to using logging decorators 
that should be considered. First, any private state contained in the decorated class remains unavail-
able to the logging decorator, which cannot access this state and write it to a log. Second, a logging 
decorator would need to be created for every interface in the application—a significant undertaking. 
For something so common, logging is better implemented as a logging aspect. Aspect-oriented pro-
gramming (AOP) was covered in Chapter 2. 

Profiling decorators
One of the major reasons to choose the .NET Framework as the target platform for developing an 
application is that it lends itself well to Rapid Application Development (RAD). A working application 
can be developed in a far shorter time frame than in a lower-level language like, for example, C++. 
This is for several reasons, including the .NET Framework’s automatic memory management, the rich 
and varied list of libraries that can be used, and the .NET Framework itself. C# is often deemed fast at 
development time but slow at run time. C++, on the other hand, is considered to be slow at develop-
ment time and fast at run time. 

From the Library of Ida Schander



ptg14200592

	 CHAPTER 5  The single responsibility principle	 197

Although the .NET Framework can also be fast, bottlenecks do occur. How can you tell which part 
of the code is slow? By profiling the methods of the application, you gather statistics on which parts of 
the code are slower than others. See the code in Listing 5-25.

LISTING 5-25  This code is (intentionally and artificially) slow.

public class SlowComponent : IComponent 
{ 
    public SlowComponent() 
    { 
        random = new Random((int)DateTime.Now.Ticks); 
    } 
 
    public void Something() 
    { 
        for(var i = 0; i<100; ++i) 
        { 
            Thread.Sleep(random.Next(i) * 10); 
        } 
    }; 
 
    private readonly Random random 
}

The component’s Something() method in this example is slow. Slow and fast, of course, mean 
different things to different people at different times. In this case, a slow method is defined as one 
that takes one second or more to execute. How can you tell that a method is slow? You can time the 
method to find out how long it took to execute from start to finish, much like in Listing 5-26.

LISTING 5-26  The System.Diagnostics.Stopwatch class can time how long a method takes to execute.

public class SlowComponent : IComponent 
{ 
    public SlowComponent() 
    { 
        random = new Random((int)DateTime.Now.Ticks); 
        stopwatch = new Stopwatch(); 
    } 
 
    public void Something() 
    { 
        stopwatch.Start(); 
        for(var i = 0; i<100; ++i) 
        { 
            System.Threading.Thread.Sleep(random.Next(i) * 10); 
        } 
        stopwatch.Stop(); 
        Console.WriteLine("The method took {0} seconds to complete",  
  stopwatch.ElapsedMilliseconds / 1000); 

From the Library of Ida Schander



ptg14200592

198	 PART II  Writing SOLID code

    } 
 
    private readonly Random random; 
    private readonly Stopwatch; 
}

Here the Stopwatch class from the System.Diagnostics assembly is used to time each method 
from start to finish. Note that the Something method in the class starts the stopwatch on entry and 
then stops it on exit. 

Of course, this can be factored out into a profiling decorator. The interface as a whole is decorated 
and, before delegating to the decorated instance, you start the stopwatch. When the delegated method 
returns, you stop the stopwatch before returning to the calling client. The stopwatch decorator code is 
shown in Listing 5-27.

LISTING 5-27  The profiling decorator code.

public class ProfilingComponent : IComponent 
{ 
    public ProfilingComponent(IComponent decoratedComponent) 
    { 
        this.decoratedComponent = decoratedComponent; 
        stopwatch = new Stopwatch(); 
    } 
 
    public void Something() 
    { 
        stopwatch.Start(); 
        decoratedComponent.Something(); 
        stopwatch.Stop(); 
        Console.WriteLine("The method took {0} seconds to complete",  
  stopwatch.ElapsedMilliseconds / 1000); 
    } 
 
    private readonly IComponent decoratedComponent; 
    private readonly Stopwatch stopwatch; 
}

There is one further change that you could make to the ProfilingComponent class: make it 
transparently log the profiling. First, you need to factor out the stopwatch code behind an interface, so 
that you can provide multiple implementations, including decorators. This is a common first step when 
refactoring toward a better separation of responsibilities. Listing 5-28 shows this intermediate step.

From the Library of Ida Schander



ptg14200592

	 CHAPTER 5  The single responsibility principle	 199

LISTING 5-28  Before you can implement a decorator, you must replace concrete implementations with interfaces.

public class ProfilingComponent : IComponent 
{ 
    public ProfilingComponent(IComponent decoratedComponent, IStopwatch stopwatch) 
    { 
        this.decoratedComponent = decoratedComponent; 
        this.stopwatch = stopwatch; 
    } 
 
    public void Something() 
    { 
        stopwatch.Start(); 
        decoratedComponent.Something(); 
        var elapsedMilliseconds = stopwatch.Stop(); 
        Console.WriteLine("The method took {0} seconds to complete", elapsedMilliseconds /  
  1000); 
    } 
 
    private readonly IComponent decoratedComponent; 
    private readonly IStopwatch stopwatch; 
}

Now that the ProfilingComponent class does not depend directly on the System.Diagnostics.
Stopwatch class, you can vary the implementation of the IStopwatch class. A LoggingStopwatch 
decorator is created, as shown in Listing 5-29, to enhance any further IStopwatch implementations 
with logging facilities.

LISTING 5-29  The LoggingStopwatch decorator is an IStopwatch implementation that logs and delegates.

public class LoggingStopwatch : IStopwatch 
{ 
    public LoggingStopwatch(IStopwatch decoratedStopwatch) 
    { 
        this.decoratedStopwatch = decoratedStopwatch; 
    } 
 
    public void Start() 
    { 
        decoratedStopwatch.Start(); 
        Console.WriteLine("Stopwatch started..."); 
    } 
 
    public long Stop() 
    { 
        var elapsedMilliseconds = decoratedStopwatch.Stop(); 

From the Library of Ida Schander



ptg14200592

200	 PART II  Writing SOLID code

        Console.WriteLine("Stopwatch stopped after {0} seconds",  
  TimeSpan.FromMilliseconds(elapsedMilliseconds).TotalSeconds); 
        return elapsedMilliseconds; 
    } 
 
    private readonly IStopwatch decoratedStopwatch; 
}

Of course, you need a non-decorator implementation of the IStopwatch interface—one that acts 
as a real stopwatch. This is just a case of delegating to the .NET Framework’s System.Diagnostics.
Stopwatch class, as Listing 5-30 shows.

LISTING 5-30  The primary IStopwatch implementation uses the Stopwatch class. 

public class StopwatchAdapter : IStopwatch 
{ 
    public StopwatchAdapter(Stopwatch stopwatch) 
    { 
        this.stopwatch = stopwatch; 
    } 
 
    public void Start() 
    { 
        stopwatch.Start(); 
    } 
 
    public long Stop() 
    { 
        stopwatch.Stop(); 
        var elapsedMilliseconds = stopwatch.ElapsedMilliseconds; 
        stopwatch.Reset(); 
        return elapsedMilliseconds; 
    } 
 
    private readonly Stopwatch stopwatch;     
}

Note that you could have chosen to implement IStopwatch as a subclass of the System.
Diagnostics.Stopwatch class and used the existing Start and Stop methods. However, the 
Start method acts to resume functionality when a stopwatch is stopped, but what you need to 
do is to call Reset after you call Stop, and retrieve the ElapsedMilliseconds property value 
in between. This is another example of the Adapter pattern.

Asynchronous decorators
Asynchronous methods are those that run on a different thread than the client. This is useful when 
a method takes a long time to execute because, during synchronous execution, the client is blocked 
while waiting for a called method to return. In a desktop application using Windows Presentation 

From the Library of Ida Schander



ptg14200592

	 CHAPTER 5  The single responsibility principle	 201

Foundation (WPF) and the Model-View-ViewModel (MVVM) pattern, for example, the ViewModels 
are bound to the View, and any commands that are executed are handled synchronously by those 
ViewModels on the user interface thread. In practice, this means that a long-running command will 
block the user interface from executing for as long as the command takes to finish its work. Listing 
5-31 shows a snippet of this behavior.

LISTING 5-31  Commands handled on the UI thread will block it, making the UI unresponsive.

public class MainWindowViewModel : INotifyPropertyChanged 
{  
    public MainWindowViewModel(IComponent component) 
    { 
        this.component = component; 
        calculateCommand = new RelayCommand(Calculate); 
    } 
 
    public string Result 
    { 
        get 
        { 
            return result; 
        } 
        private set 
        { 
            if (result != value) 
            { 
                result = value; 
                PropertyChanged(this, new PropertyChangedEventArgs("Result")); 
            } 
        } 
    } 
 
    public ICommand CalculateCommand 
    { 
        get  
        { 
            return calculateCommand; 
        } 
    } 
 
    public event PropertyChangedEventHandler PropertyChanged = delegate { }; 
 
    private void Calculate(object parameter) 
    { 
        Result = "Processing..."; 
        component.Process(); 
        Result = "Finished!"; 
    } 
 
    private string result; 
    private IComponent component; 
    private RelayCommand calculateCommand; 
}

From the Library of Ida Schander



ptg14200592

202	 PART II  Writing SOLID code

By creating an asynchronous decorator, you can instruct the called method to execute on a separate 
thread. This can be accomplished by delegating the work to a Task class, which becomes a depen-
dency of your decorator, as Listing 5-32 shows.

LISTING 5-32  An asynchronous decorator for WPF that uses the Dispatcher class.

public class AsyncComponent : IComponent 
{ 
    public AsyncComponent(IComponent decoratedComponent) 
    { 
        this.decoratedComponent = decoratedComponent; 
    } 
 
    public void Process() 
    { 
        Task.Run((Action)decoratedComponent.Process); 
    } 
 
    private readonly IComponent decoratedComponent; 
}

There is a problem with the AsyncComponent class: its dependency on the Task class is implicit, 
meaning that it is hard to test this class. Unit testing code with static dependencies is difficult, so you 
would be better off replacing this skyhook with a crane.

The limitations of asynchronous decorators
Not all conceivable methods can make use of the Decorator pattern to create asynchronous versions 
that clients do not know about. In fact, the only asynchronous methods to which this approach is ap-
plicable are fire-and-forget methods. 

A fire-and-forget method has no return value, and clients do not need to know when such a 
method returns. When it is implemented as an asynchronous decorator, clients cannot know when 
a method call truly was completed because the call returns immediately—while the real work being 
performed is probably still in progress. 

Request-response methods are common data-retrieval methods that are often very usefully imple-
mented asynchronously, because they tend to take a while and block the UI thread. Clients need to 
know that the method is asynchronous, so that they can be coded explicitly to accept a callback when 
the asynchronous method is complete. Therefore, request-response methods cannot be implemented 
by using asynchronous decorators.

From the Library of Ida Schander



ptg14200592

	 CHAPTER 5  The single responsibility principle	 203

Decorating properties and events
So far, you have learned how to decorate the methods of an interface, but what about proper-
ties and events? Both of those syntactic elements can also be decorated, as long as you do not 
use auto-properties or auto-events: you need to explicitly define both in order to decorate them 
properly.

Listing 5-33 shows the manual creation of a property, but rather than having a backing field, for 
both the getter and the setter this code delegates to the decorated instance of the interface.

LISTING 5-33  Properties can also use the Decorator pattern, just like methods.

public class ComponentDecorator : IComponent 
{ 
    public ComponentDecorator(IComponent decoratedComponent) 
    { 
        this.decoratedComponent = decoratedComponent; 
    } 
 
    public string Property 
    { 
        get 
        { 
            // We can do some mutation here after retrieving the value 
            return decoratedComponent.Property; 
        } 
        set 
        { 
            // And/or here, before we set the value 
            decoratedComponent.Property = value; 
        } 
    } 
 
    private readonly IComponent decoratedComponent; 
}

Listing 5-34 shows the manual creation of an event, but rather than having a backing field, for 
both the adder and remover this code delegates to the decorated instance of the interface.

LISTING 5-34  Events can also use the Decorator pattern, just like methods.

public class ComponentDecorator : IComponent 
{ 
    public ComponentDecorator(IComponent decoratedComponent) 
    { 
        this.decoratedComponent = decoratedComponent; 
    } 
 

From the Library of Ida Schander



ptg14200592

204	 PART II  Writing SOLID code

    public event EventHandler Event 
    { 
        add 
        { 
            // We can do something here, when the event handler is registered  
            decoratedComponent.Event += value; 
        } 
        remove  
        { 
            // And/or here, when the event handler is deregistered 
            decoratedComponent.Event -= value; 
        } 
    } 
 
    private readonly IComponent decoratedComponent; 
}

Using the Strategy pattern instead of switch

To understand when the Strategy pattern is best applied, you can look at instances of conditional 
branching. Whenever you use switch statements, you can use the Strategy pattern to simplify the 
client so that it delegates complexity to dependent interfaces. Listing 5-35 shows an example of a 
switch statement that could be replaced with the Strategy pattern.

LISTING 5-35  This method uses a switch statement, but the Strategy pattern would be more adaptive.

public class OnlineCart 
{ 
    public void CheckOut(PaymentType paymentType) 
    { 
        switch(paymentType) 
        { 
            case PaymentType.CreditCard: 
                ProcessCreditCardPayment(); 
                break; 
            case PaymentType.Paypal: 
                ProcessPaypalPayment(); 
                break; 
            case PaymentType.GoogleCheckout: 
                ProcessGooglePayment(); 
                break; 
            case PaymentType.AmazonPayments: 
                ProcessAmazonPayment(); 
                break; 
        } 
    } 
 

From the Library of Ida Schander



ptg14200592

	 CHAPTER 5  The single responsibility principle	 205

    private void ProcessCreditCardPayment() 
    { 
        Console.WriteLine("Credit card payment chosen"); 
    } 
 
    private void ProcessPaypalPayment() 
    { 
        Console.WriteLine("Paypal payment chosen"); 
    } 
 
    private void ProcessGooglePayment() 
    { 
        Console.WriteLine("Google payment chosen"); 
    } 
 
    private void ProcessAmazonPayment() 
    { 
        Console.WriteLine("Amazon payment chosen"); 
    } 
}

In the example, for each case of the switch statement, the behavior of the class changes. This 
presents a code maintenance problem because the addition of a new case option requires a change 
to this class. If, instead, you replace each case statement with a new implementation of an interface, 
further implementations can be created to encapsulate new functionality—and the client would not 
need to change. This is shown in Listing 5-36.

LISTING 5-36  After the switch statement is replaced, the client looks far more adaptive to change.

public class OnlineCart 
{ 
    public OnlineCart() 
    { 
        paymentStrategies = new Dictionary<PaymentType, IPaymentStrategy>(); 
        paymentStrategies.Add(PaymentType.CreditCard, new PaypalPaymentStrategy()); 
        paymentStrategies.Add(PaymentType.GoogleCheckout, new  
  GoogleCheckoutPaymentStrategy()); 
        paymentStrategies.Add(PaymentType.AmazonPayments, new  
  AmazonPaymentsPaymentStrategy()); 
        paymentStrategies.Add(PaymentType.Paypal, new PaypalPaymentStrategy()); 
    } 
 
    public void CheckOut(PaymentType paymentType) 
    { 
        paymentStrategies[paymentType].ProcessPayment(); 
    } 
 
    private IDictionary<PaymentType, IPaymentStrategy> paymentStrategies; 
}

From the Library of Ida Schander



ptg14200592

206	 PART II  Writing SOLID code

In the tradition of object-oriented programming, this code has objectified the different pay-
ment types into various classes, each of which implements the IPaymentStrategy interface. In this 
example, the OnlineCart class has a private dictionary that maps each value of the PaymentType 
enumeration onto an instance of the strategy interface. This simplifies the CheckOut method signifi-
cantly. The switch statement has been removed and, along with it, the knowledge of how to process 
each different type of payment. The OnlineCart class did not need to know how to process the pay-
ments, which could vary greatly and introduce many unnecessary dependencies on this class. Now its 
job is to select the right payment strategy and delegate the processing to it.

There is still a maintenance burden here for adding new payment strategy implementations. If you 
want to add support for WePay, for example, the constructor will need to be updated to map the new 
WePayPaymentStrategy class to the associated WePay enumeration value.

Conclusion

The single responsibility principle has a hugely positive impact on the adaptability of code. Compared 
to equivalent code that does not adhere to the principle, SRP-compliant code leads to a greater num-
ber of classes that are smaller and more directed in scope. Where there would otherwise have been 
a single class or suite of classes with interdependencies and a confusion of responsibility, the SRP 
introduces order and clarity.

The SRP is primarily achieved through abstracting code behind interfaces and delegating responsi
bility for unrelated functionality to whichever implementation happens to be behind the interface at 
run time. Some design patterns are excellent at supporting efforts to strictly regiment the SRP—
in particular, the Adapter pattern and the Decorator pattern. The former enables much of your code 
to maintain first-party references to interfaces under your direct control, although in reality utilizing 
a third-party library. The latter can be applied whenever some of a class’s functionality needs to be 
removed but it is too tightly coupled with the intent of the class to stand alone. 

What this chapter did not cover is how all of these classes are orchestrated at run time. Passing 
interfaces into constructors was taken for granted in this chapter, but Chapter 9 describes a variety 
of ways in which this can be accomplished.

From the Library of Ida Schander



ptg14200592

		  207

C H A P T E R  6

The open/closed principle

After completing this chapter, you will be able to

■■ Understand different interpretations of the open/closed principle.

■■ Treat SOLID code as append-only.

■■ Compare and contrast different class extension-point mechanisms.

■■ Use protected variation as a guideline for extension points.

The oxymoronic nature of the open/closed principle causes some confusion. Its pithy name suggests 
code that is permissive but at the same time restrictive. The several variations of the definition serve 
only to cloud matters further. 

Picking one definition over another and using it alone would be remiss of me. Rather, this chapter 
compares each definition and its consequences to try to distill the principle down to its essence. The 
goal is a very useful guideline that will enable you to create code that is more adaptive to future 
changes.

Introduction to the open/closed principle

There are two definitions of the open/closed principle that must be examined, the original coining 
from the 1980s and a more contemporary definition. The latter seeks to elaborate on the former by 
giving it more context and clarifying the principle’s scope.

The Meyer definition
Bertrand Mayer, in his 1988 book, Object-Oriented Software Construction (Prentice Hall), defined the 
open/closed principle (OCP) as follows:

Software entities should be open for extension, but closed for modification.
—Bertrand Meyer

The Meyer definition is the most commonly cited definition of the principle, but there is a second: 
the Martin definition.

From the Library of Ida Schander



ptg14200592

208	 PART II  Writing SOLID code

The Martin definition
Robert C. Martin has defined the OCP in many different writings over the years. A more verbose 
version has been chosen here to contrast with the brief original:

”Open for extension.” This means that the behavior of the module can be extended. 
As the requirements of the application change, we are able to extend the module 
with new behaviors that satisfy those changes. In other words, we are able to 
change what the module does.

“Closed for modification.” Extending the behavior of a module does not result 
in changes to the source or binary code of the module. The binary executable 
version of the module, whether in a linkable library, a DLL, or a Java .jar, remains 
untouched.

—Robert C. Martin, Agile Software Development: Principles, Patterns, and Practices  
(Prentice Hall, 2003)

For both sides of the open/closed principle, Martin explains in further detail what is meant by 
the key terms from the Meyer definition. To be open for extension, Martin explains, developers must 
be able to respond to changing requirements and support new features. This must be achieved 
despite modules being closed to modification. Developers must support new functionality without 
editing the source code—or compiled assembly—of the existing modules.

Before this chapter begins to describe how this is possible, there are exceptions to the restric-
tive “closed for modification” clause of the OCP that are sometimes cited: changes for fixing bugs 
or defects and changes that can be made without any client awareness.

Bug fixes
Bugs are a common problem in software, and they are impossible to prevent entirely. When they do 
occur, though, you need to respond by fixing the problem code. Of course, this involves a modifica-
tion to an existing class—that is, unless you are willing to duplicate the class and implement the bug 
fix on the new version. This sounds needlessly convoluted and runs counter to the guiding principle of 
erring on the side of pragmatism rather than purity.

The two-step process for fixing a bug is outlined as follows:

1.	 Write a failing unit test and/or integration test that specifically targets the bug. This requires 
reliable and repeatable reproduction steps to create the conditions under which the code fails. 
Referring back to the AAA syntax of a unit test, you need to be able to Arrange the system un-
der test so that it is in a state that might exhibit the defect, perform the specific Act in which 
the defect resides, and finally Assert the expected behavior. When you write such a test, the 
test will initially fail. This demonstrates the fact that all bugs are the result of missing tests. If 
a test is present that captures the defect, the test fails and, by extension, so does the build on 
the build server, when continuous integration is used. 

From the Library of Ida Schander



ptg14200592

	 CHAPTER 6  The open/closed principle	 209

2.	 The source code is modified so that the unit test passes. The bug fix exception to the OCP 
becomes necessary at this juncture because, without it, you would not be able to modify any 
existing code. Editing the system under test allows you to transition the failing test from red 
to green—from failure to success. When you ensure that no other tests are failing as a side 
effect, the bug is fixed.

Client awareness
A more permissive exception to the “closed for modification” rule is that any change is allowed to 
existing code as long as it does not also require a change to any client of that code. This places an 
emphasis on how coupled the software modules are, at all levels of granularity: between classes and 
classes, assemblies and assemblies, and subsystems and subsystems.

If a change in one class forces a change in another, the two are said to be tightly coupled. Con-
versely, if a class can change in isolation without forcing other classes to change, the participating 
classes are loosely coupled. At all times and at all levels, loose coupling is preferable. Maintaining 
loose coupling limits the impact that the OCP has if you allow modifications to existing code that 
does not force further changes to clients. 

Extension points

Now that the “closed for modification” rule of the OCP is clarified, the “open for extension” rule can 
be considered. Classes that honor the OCP should be open to extension by containing defined exten-
sion points where future functionality can hook into the existing code and provide new behaviors.

Some options for different kinds of extension points are detailed in this section, with their pros and 
cons explored. These examples continue the TradeProcessor example of the previous chapter, this 
time focusing on the client’s interaction with the class. 

Code without extension points
First, what does code look like when it has no extension points? Figure 6-1 shows what happens when 
a class that has no extension points needs new functionality.

FIGURE 6-1  When there are no extension points, clients are forced to change.

From the Library of Ida Schander



ptg14200592

210	 PART II  Writing SOLID code

The TradeProcessorClient depends directly on the TradeProcessor class. A new requirement is 
handed to you, resulting in necessary changes to the TradeProcessor class. Without modifying the 
original class, you create a new version (TradeProcessorVersion2) that contains the new functional-
ity as specified in your new requirement. Because the client directly depends on the TradeProcessor 
class, and because of the lack of extension points in the TradeProcessor class, you need to place the 
new functionality inside a new class. The side effect of this change is that the TradeProcessorClient 
must be edited so that it depends on the new version of the class.

If you allow changes to existing code as long as they have no client impact, you might not have 
to create an entirely new version of the TradeProcessor. If the ProcessTrades method were to 
change, this would not simply be an implementation change for the class, it would also be an inter-
face change. All interface changes force client changes because clients are always tightly coupled to 
the interfaces of their services.

Virtual methods
An alternative implementation for the TradeProcessor class contains an extension point: the 
ProcessTrades method is virtual. Figure 6-2 shows how the three classes are now arranged.

FIGURE 6-2  The client depends on the TradeProcessor class, which can be extended via inheritance.

Any class that marks one of its members as virtual is open to extension. This type of extension is 
via implementation inheritance. When your requirement for a new feature in the TradeProcessor 
class arrives, you can subclass the existing TradeProcessor and—without modifying its source 
code—alter the ProcessTrades method.

The TradeProcessorClient does not need to change in this case, because you can use polymor-
phism to supply the client with the new version of the TradeProcessor and have it call the subclass’s 
implementation of the ProcessTrades method.

You are somewhat limited in the scope of your reimplementation, however. You have access to the 
base class—so you can call TradeProcessor.ProcessTrades()—but you cannot alter individual 
lines of the original method. You either call the original method in its entirety, perhaps implementing 

From the Library of Ida Schander



ptg14200592

	 CHAPTER 6  The open/closed principle	 211

the new feature before or after the call, or you reimplement it completely. There is no middle ground 
with a virtual method. Remember, subclasses can only access members from their base class that are 
marked as protected. If the TradeProcessor was created with many private members, you would 
not have access to them, and altering the original class is, of course, prohibited by the OCP.

Abstract methods
A more flexible extension point that uses implementation inheritance is an abstract method. In this 
case, the TradeProcessor is an abstract class that defines a public ProcessTrades method, which 
delegates the work of the processing algorithm to three protected abstract methods. The client has 
no knowledge of these protected methods and, because they are abstract, no implementation is 
provided. Figure 6-3 shows the relationships between the classes involved.

FIGURE 6-3  Abstract methods provide extension points for future subclasses.

Two versions of the trade processor are provided. Both inherit the ProcessTrades method directly 
from the abstract base class, and both provide their own implementations for the abstract methods. 
The client depends on the abstract base class, so either concrete subclass—or a new subclass for new 
requirements—could be provided and the OCP would be preserved.

This is an example of the Template Method pattern, in which an algorithm is modeled but its 
general steps are customizable because of delegation to abstract methods. In effect, the base class 
delegates the individual steps of the process to subclasses. 

From the Library of Ida Schander



ptg14200592

212	 PART II  Writing SOLID code

Interface inheritance
The final type of extension point discussed in this chapter is the alternative to implementation inheri-
tance: interface inheritance. Here, the client’s dependency on a class is replaced with the now-familiar 
delegation to an interface. Figure 6-4 shows the client’s dependency on the interface and the two 
implementations of the interface.

FIGURE 6-4  The client depends on an interface rather than a class.

Interface inheritance is preferable to implementation inheritance. With implementation inheri-
tance, all subclasses—present and future—are clients. This prevents modification because, with 
implementation inheritance, subclasses depend on the implementation, too. All implementation 
changes are thus potentially client-aware changes. This echoes the advice to prefer composition over 
inheritance and to keep inheritance hierarchies shallow, with few layers of subclassing. If a change is 
made to add a member at the top of the inheritance graph, that change affects all members of the 
hierarchy.

Interfaces are also better extension points because they can be decorated with rich object graphs 
of functionality that calls upon many different contexts. They are more flexible than classes. I don’t 
mean that the virtual and abstract methods that form the extension points of class inheritance are not 
useful, but that they do not provide quite the same level of adaptability that interfaces do.

“Design for inheritance or prohibit it”
In his book Effective Java (Addison-Wesley, 2008), Joshua Bloch has this to say about inheritance:

Design and document for inheritance or else prohibit it.
—Joshua Bloch

From the Library of Ida Schander



ptg14200592

	 CHAPTER 6  The open/closed principle	 213

If you choose to use implementation inheritance as an extension point, you must design and 
document the class properly so as to protect and inform future programmers who extend the class. 
Inheritance of classes can be tricky—new subclasses can break existing code in unpredictable ways.

It is very important to note that any class that is not marked with the sealed keyword claims to 
support inheritance. A class does not need to be abstract or to contain virtual methods in order to be 
subclassed. The new keyword can be used to hide inherited members, but this blocks polymorphism, 
possibly defying expectations. 

Prohibiting inheritance by sealing a class communicates a clear message to other programmers 
who might use the class: inheritance is not just unsupported in this class, it is prevented. This removes 
the temptation to try to extend the class, so programmers will redirect their efforts to finding an 
alternative. 

Protected variation

You are now armed with several tools with which to implement the OCP. You know under which cir-
cumstances you can edit existing classes, and you know that you need to implement extension points 
in your code in order to support future changes in requirements. You also know that you can use 
interfaces as extension points to make your code truly adaptable and, perhaps, future-proof.

The missing ingredient is the knowledge of when and where to apply this principle. Taken to its 
logical extreme, should you add extension points everywhere, all the time? Would this make your 
code infinitely flexible, or is there a law of diminishing returns that applies? 

This is where another principle related to the OCP is of vital importance: protected variation. Alistair 
Cockburn coined the term:

Identify points of predicted variation and create a stable interface around them.
—Alistair Cockburn, Pattern Languages of Program Design, vol. 2 (Addison-Wesley, 1996)

Somewhat confusingly, the definition references predicted variation, yet the principle itself is called 
protected variation. However, “predicted variation” is, to my mind, a more accurate term. The two 
major facets of this definition bear a closer examination.

Predicted variation
The requirements of an individual class should be linked directly to a business client’s requirement. 
If this link is ignored, there is a risk that the class will not serve any purpose that the business client 
requested. Over the course of a sprint, user stories are taken from the sprint backlog, and develop-
ers and the product owner converse. At this point, questions should be asked as to the potential for 
future, related requirements. This informs the predicted variation that can be translated into extension 
points.

From the Library of Ida Schander



ptg14200592

214	 PART II  Writing SOLID code

A stable interface
Even if you delegate only to interfaces, clients are still dependent on those interfaces. If the interface 
changes, the client must also change. A key advantage of depending on interfaces is that they are 
much less likely to change than implementations. If you place the interface in a separate assembly 
from its implementation, as the Stairway pattern suggests, the two can vary without affecting each 
other, and the implementation can change without affecting clients.

Clearly, it is very important that all interfaces chosen to represent an extension point should be 
stable. The likelihood and frequency of interface changes should be low, otherwise you will need to 
amend all clients to use the new version.

Just enough adaptability
There is a “Goldilocks Zone” where code contains just the right amount of extension points—in the 
right places—to enable change in areas where it is needed without increasing complexity or over-
engineering the solution. For any individual problem, there can be too little, too much, or just enough 
adaptability.

Programmers who are beginning their careers tend to write code that is quite procedural, even in 
object-oriented languages such as C#. They tend to use classes as storage mechanisms for methods, 
regardless of whether those methods truly belong together. There is no discernible architecture to 
the code, and there are few extension points (and those that exist are misplaced). Any changes to re-
quirements necessitate direct changes to the existing class or classes. This is how the original Trade­
Processor was organized in Chapter 5, “The single responsibility principle.” It was a “god object” that 
had perfect knowledge of everything to do with the program. 

However, sometimes, this is the correct solution. If you assess the predicted variation for a small 
tool such as the TradeProcessor and conclude that it is very unlikely to change in any way, the orig-
inal version of the code would suffice. Or perhaps the version that was refactored for clarity would be 
sufficient. The extra time spent refactoring for abstraction is wasted effort if you never make use of 
the extension points provided. Not only that, but the code is less readable, spread over different files 
and assemblies, with implementations hidden behind interfaces. 

At the opposite end of the spectrum is the programmer who has started abstracting code behind 
interfaces. This programmer has discovered a new hammer, and now everything looks like a nail. The 
code produced by this programmer is a mass of extension points, most of which will never be used. A 
significant effort is required to piece together the code, which constantly delegates responsibilities to 
interfaces, and a significant effort is required to write this code in the first place. 

If these two archetypal programmers—and their code—were combined, the result might be a har-
monious middle ground where there are sufficient extension points, but where code can be adapted 
only in areas where requirements are unclear, changeable, or difficult to implement. This comes with 
experience, however, and it is difficult to arrive at this Zen-like state of protected variation without 
first being a naïve beginner and then transitioning to a know-it-all super-abstractor.

From the Library of Ida Schander



ptg14200592

	 CHAPTER 6  The open/closed principle	 215

Conclusion

The open/closed principle is a guideline for the overall design of classes and interfaces and how 
developers can build code that allows change over time. With each passing sprint, new requirements 
are inevitable and should be embraced. Acknowledging that change is a good thing is only part of 
the answer, however. If the code you have produced up until this point is not built to enable change, 
change will be difficult, time consuming, error prone, and costly. 

By ensuring that your code is open to extension but closed to modification, you effectively dis
allow future changes to existing classes and assemblies, which forces programmers to create new 
classes that can plug into the extension points. There are two main types of extension point available: 
implementation inheritance and interface inheritance. Virtual and abstract methods allow you to cre-
ate subclasses that customize methods in a base class. If classes delegate to interfaces, this provides 
you with more flexibility in your extension points by virtue of a variety of patterns.

Knowing that you can integrate extension points into code is not sufficient, however. You also 
need to know when this is applicable. The concept of protected variation suggests that you identify 
parts of the requirements that are likely to change or that are particularly troublesome to implement, 
and factor these out behind extension points. Code can be quite rigidly defined, with little scope for 
extension or elaboration, or it can be very fluid, with myriad extension points ready to handle new 
requirements. Either of these options can be correct, depending on the specific scenario and context.

From the Library of Ida Schander



ptg14200592

This page intentionally left blank 

From the Library of Ida Schander



ptg14200592

		  217

C H A P T E R  7

The Liskov substitution principle

After completing this chapter, you will be able to

■■ Understand the importance of the Liskov substitution principle.

■■ Avoid breaking the rules of the Liskov substitution principle.

■■ Further solidify your single responsibility principle and open/closed principle habits.

■■ Create derived classes that honor the contracts of their base classes.

■■ Use code contracts to implement preconditions, postconditions, and data invariants.

■■ Write correct exception-throwing code.

■■ Understand covariance, contravariance, and invariance and where each applies.

Introduction to the Liskov substitution principle

The Liskov substitution principle (LSP) is a collection of guidelines for creating inheritance hierarchies 
in which a client can reliably use any class or subclass without compromising the expected behavior.

If the rules of the LSP are not followed, an extension to a class hierarchy—that is, a new subclass—
might necessitate changes to any client of the base class or interface. If the LSP is followed, clients can 
remain unaware of changes to the class hierarchy. As long as there are no changes to the interface, 
there should be no reason to change any existing code. The LSP, therefore, helps to enforce both the 
open/closed principle and the single responsibility principle.

Formal definition
The definition of the LSP by prominent computer scientist Barbara Liskov is a bit dry, so it requires 
further explanation. Here is the official definition:

If S is a subtype of T, then objects of type T may be replaced with objects of type S, 
without breaking the program.

—Barbara Liskov

From the Library of Ida Schander



ptg14200592

218	 PART II  Writing SOLID code

There are three code ingredients relating to the LSP: 

■■ Base type  The type (T) that clients have reference to. Clients call various methods, any of 
which can be overridden—or partially specialized—by the subtype.

■■ Subtype  Any one of a possible family of classes (S) that inherit from the base type (T). 
Clients should not know which specific subtype they are calling, nor should they need to. 
The client should behave the same regardless of the subtype instance that it is given.

■■ Context  The way in which the client interacts with the subtype. If the client doesn’t interact 
with a subtype, the LSP can neither be honored nor contravened.

LSP rules
There are several “rules” that must be followed for LSP compliance. These rules can be split into two 
categories: contract rules (relating to the expectations of classes) and variance rules (relating to the 
types that can be substituted in code). 

Contract rules
These rules relate to the contract of the supertype and the restrictions placed on the contracts that 
can be added to the subtype. 

■■ Preconditions cannot be strengthened in a subtype.

■■ Postconditions cannot be weakened in a subtype.

■■ Invariants—conditions that must remain true—of the supertype must be preserved in a 
subtype.

To understand the contract rules, you should first understand the concept of contracts and then 
explore what you can do to ensure that you follow these rules when creating subtypes. The “Contracts” 
section later in this chapter covers both in depth.

Variance rules
These rules relate to the variance of arguments and return types. 

■■ There must be contravariance of the method arguments in the subtype.

■■ There must be covariance of the return types in the subtype.

■■ No new exceptions can be thrown by the subtype unless they are part of the existing excep-
tion hierarchy.

The concept of type variance in the languages of the Common Language Runtime (CLR) of the 
Microsoft .NET Framework is limited to generic types and delegates. However, variance in these 
scenarios is well worth exploring and will equip you with the requisite knowledge to write code that 
is LSP compliant for variance. This will be explored in depth in the “Covariance and contravariance” 
section later in this chapter.

From the Library of Ida Schander



ptg14200592

	 CHAPTER 7  The Liskov substitution principle	 219

Contracts

It is often said that developers should program to interfaces, and a related idiom is to program to a 
contract. However, beyond the apparent method signatures, interfaces convey a very loose notion 
of a contract. A method signature reveals little about the actual requirements and guarantees of the 
method’s implementation, as Figure 7-1 shows. In a strongly typed language like C#, there is at least 
a notion of passing the correct type for an argument, but this is largely where the interface ends and 
the concept of the contract must begin.

FIGURE 7-1  Method signatures reveal little about the expectations of the implementation.

All methods have at least an optional return type, a name, and an optional list of formal parameters. 
Each parameter consists of a type specifier and a name. When calling the method shown in Figure 7-1, 
you know—from only looking at the signature—that you need to pass in three parameters, one of 
type float, one of type Size<float>, and another of type RegionInfo. You also know that you 
can save the return value, of type decimal, in a variable or otherwise operate on this value after the 
call has been made. 

Note  It is not advisable to use the decimal type to represent currency values, as is done 
in Figure 7-1. Instead, a Money1 value type should be used. Although effort has been taken 
to ensure that the examples in this book are, as much as possible, relevant to a real-world 
context and are not just contrivances, some concessions have been made in the interest of 
brevity.

As a method writer, you can control the names given to parameters and methods. Take extra care to 
ensure that the method name truly represents the method’s purpose and that the parameter names 
are as descriptive as possible. The CalculateShippingCost function’s name uses a verb-noun form. 
Here the verb—the action performed by the method—is Calculate, and the noun—the object of 
the verb—is ShippingCost. This noun is, in a sense, the name of the return value. Descriptive names 
have also been chosen for the parameters: packageDimensionsInInches and packageWeightIn­
Kilograms are self-explanatory parameter names, especially in the context of the method. They form 
a starting point for documenting the method. 

1	  http://moneytype.codeplex.com/

From the Library of Ida Schander

http://moneytype.codeplex.com/


ptg14200592

220	 PART II  Writing SOLID code

Tip  For further information on good variable and method naming and other best practices, 
Steve McConnell’s Code Complete2 is essential reading.

What is missing, though, is the contract of the method. For example, the packageWeightIn­
Kilograms parameter is of type float. What clients of this method might infer is that any float 
value is valid, including a negative value. Because the parameter represents a weight, a negative value 
should not be valid. The contract of this method should enforce a weight of greater than zero. For 
this, the method must implement a precondition.

Tip  Although contracts as outlined in this chapter add run-time protection against many 
invalid calls to methods, the importance of good method and parameter naming is hard 
to exaggerate. If the formal parameters of the CalculateShippingCost method did not 
specify that they are in inches or kilograms, clients could, for example, call the method with 
values representing centimeters and pounds, respectively.

Preconditions
Preconditions are defined as all of the conditions necessary for a method to run reliably and without 
fault. Every method requires some preconditions to be true before it should be called. By default, in-
terfaces force no guarantees on any of the implementers of their methods. Listing 7-1 shows how you 
can implement a precondition by using a guard clause at the start of a method.

LISTING 7-1  Throwing an exception is an effective way of enforcing precondition contracts.

public decimal CalculateShippingCost( 
    float packageWeightInKilograms,  
    Size<float> packageDimensionsInInches,  
    RegionInfo destination) 
{ 
    if (packageWeightInKilograms <= 0f) throw new Exception(); 
 
    return decimal.MinusOne; 
}

The if statement at the very start of the method is one way to enforce a precondition, such as the 
requirement for a positive weight. If the condition packageWeightInKilograms <= 0f is met, an 
exception is thrown and the method stops executing immediately. This certainly prevents a method 

2	 http://www.stevemcconnell.com/cc.htm

From the Library of Ida Schander

http://www.stevemcconnell.com/cc.htm


ptg14200592

	 CHAPTER 7  The Liskov substitution principle	 221

from being executed unless all parameters have valid values. By using a more descriptive exception, 
you can provide more context to the caller, as shown in Listing 7-2.

LISTING 7-2  It is important to provide as much context as possible about why the precondition caused a failure.

public decimal CalculateShippingCost( 
    float packageWeightInKilograms,  
    Size<float> packageDimensionsInInches,  
    RegionInfo destination) 
{ 
    if (packageWeightInKilograms <= 0f)  
        throw new ArgumentOutOfRangeException("packageWeightInKilograms", "Package weight  
  must be positive and non-zero"); 
 
    return decimal.MinusOne; 
}

This is an improvement on the first exception that was thrown. In addition to using an exception 
specifically for the purpose of out-of-range arguments, the client is also informed which parameter is 
errant and a description of the problem is provided. 

By chaining more guard clauses like this together, you can add more conditions that must be ful-
filled in order to call the method without generating an exception. The changes shown in Listing 7-3 
include exceptions that are thrown when the package dimensions are out of range, too.

LISTING 7-3  As many preconditions as necessary can be added to prevent the method from being called with 
invalid parameters.

public decimal CalculateShippingCost( 
    float packageWeightInKilograms,  
    Size<float> packageDimensionsInInches,  
    RegionInfo destination) 
{ 
    if (packageWeightInKilograms <= 0f)  
        throw new ArgumentOutOfRangeException("packageWeightInKilograms", "Package weight  
  must be positive and non-zero"); 
 
    if (packageDimensionsInInches.X <= 0f || packageDimensionsInInches.Y <= 0f) 
        throw new ArgumentOutOfRangeException("packageDimensionsInInches", "Package  
  dimensions must be positive and non-zero"); 
 
    return decimal.MinusOne; 
}

From the Library of Ida Schander



ptg14200592

222	 PART II  Writing SOLID code

With these preconditions in place, clients must ensure that the parameters that they provide are 
within valid ranges before calling. One corollary from this is that all of the state that is checked in a 
precondition must be publically accessible by clients. If the client is unable to verify that the method 
they are about to call will throw an error due to an invalid precondition, the client won’t be able to 
ensure that the call will succeed. Therefore, private state should not be the target of a precondition; 
only method parameters and the class’s public properties should have preconditions.

Postconditions
Postconditions check whether an object is being left in a valid state as a method is exited. Whenever 
state is mutated in a method, it is possible for the state to be invalid due to logic errors. 

Postconditions are implemented in the same manner as preconditions, through guard clauses. How-
ever, rather than placing the clauses at the start of the method, postcondition guard clauses must be 
placed at the end of the method after all edits to state have been made, as Listing 7-4 shows.

LISTING 7-4  The guard clause at the end of the method is a postcondition that ensures that the return value is in 
range.

public virtual decimal CalculateShippingCost(float packageWeightInKilograms, Size<float>  
  packageDimensionsInInches, RegionInfo destination) 
{ 
    if (packageWeightInKilograms <= 0f)  
        throw new ArgumentOutOfRangeException("packageWeightInKilograms", "Package weight  
  must be positive and non-zero"); 
 
    if (packageDimensionsInInches.X <= 0f || packageDimensionsInInches.Y <= 0f) 
        throw new ArgumentOutOfRangeException("packageDimensionsInInches", "Package  
  dimensions must be positive and non-zero"); 
 
    // shipping cost calculation 
 
    var shippingCost = decimal.One; 
 
    if(shippingCost <= decimal.Zero) 
        throw new ArgumentOutOfRangeException("return", "The return value is out of  
  range"); 
             
    return shippingCost; 
}

By testing state against a predetermined valid range—and throwing an exception if the value 
falls outside of that range—you can enforce a postcondition on the method. The postcondition here 
relates not to the state of the object but to the return value. Much like method argument values are 
tested against preconditions for validity, so are method return values tested against postconditions 

From the Library of Ida Schander



ptg14200592

	 CHAPTER 7  The Liskov substitution principle	 223

for validity. If, at any point during the method, the return value is set to zero or a negative value, 
the postcondition will detect this and halt execution at the end of the method. This way, clients of this 
method will never inadvertently receive an invalid value and they can continue to assume that it will 
always be valid. Note that the interface of the method does not communicate that the return value 
will always be non-zero and positive—that is a feature of the interface’s contract with clients.

Data invariants
A third type of contract is the data invariant. A data invariant is a predicate that remains true for the 
lifetime of an object; it is true after construction and must remain true until the object is out of scope. 
Data invariants relate to the expected internal state of the object. An example of a data invariant for 
the ShippingStrategy call is that the flat rate provided is positive and non-zero. If, as shown in 
Listing 7-5, the flat rate is set on construction, a simple guard clause in the constructor will prevent an 
invalid value from being set.

LISTING 7-5  Adding a precondition to a constructor can help protect a data invariant.

public class ShippingStrategy 
{ 
    public ShippingStrategy(decimal flatRate) 
    { 
        if (flatRate <= decimal.Zero) 
            throw new ArgumentOutOfRangeException("flatRate", "Flat rate must be positive  
  and non-zero"); 
 
        this.flatRate = flatRate; 
    } 
     
    protected decimal flatRate; 
}

Because the flatRate value is a protected member variable, the only opportunity that clients have 
for setting the value is through the constructor. If flatRate is set to a valid value at this point, it is 
guaranteed to be valid for the rest of the lifetime of the object because clients have no way of chang-
ing this value. 

However, if the flatRate variable is instead a publically settable property, the guard clause would 
have to be moved to the setter block in order to protect the data invariant. Listing 7-6 shows the flat 
rate refactored as a public property, with an accompanying guard clause.

From the Library of Ida Schander



ptg14200592

224	 PART II  Writing SOLID code

LISTING 7-6  When a data invariant is a public property, the guard clause moves to the setter.

public class ShippingStrategy 
{ 
    public ShippingStrategy(decimal flatRate) 
    { 
        FlatRate = flatRate; 
    } 
 
    public decimal FlatRate 
    { 
        get 
        { 
            return flatRate; 
        } 
        set 
        { 
            if (value <= decimal.Zero) 
                throw new ArgumentOutOfRangeException("value", "Flat rate must be positive  
  and non-zero"); 
 
            flatRate = value; 
        } 
    } 
}

Now clients might be able to change the value of the FlatRate property but, because of the if 
statement and exception, the invariant cannot be broken. 

Encapsulation vs. contracts
The contracts implemented in this example make sense, but they are caused by a poor choice 
of types for each value. The precondition contract for ensuring that the package weight argu-
ment is non-zero and positive is intrinsically linked with the type of the variable: weight should 
never be zero or negative. This makes weight a candidate for encapsulation into its own type. If, 
as is likely, another class or method requires a weight, you would need to carry this precondi-
tion across to the new code. This is inefficient, hard to maintain, and error-prone. It makes more 
sense to create a new type and define the precondition with it so that all uses of the Weight 
type must have a non-zero and positive value. It is, in fact, an invariant of the type rather than a 
precondition of the CalculateShippingCost method.

Similarly, the flat rate is modeled poorly by the decimal type. Instead, this should be pro-
moted to its own value type, and the invariant requiring it to also be non-zero and positive should 
be applied to this type.

From the Library of Ida Schander



ptg14200592

	 CHAPTER 7  The Liskov substitution principle	 225

Liskov contract rules
All of this method contract discussion is merely preamble to some of the tenets of the Liskov substitu-
tion principle. The LSP sets rules by which types must inherit contracts. A reminder of the definition of 
the LSP is shown here:

If S is a subtype of T, then objects of type T may be replaced with objects of type S, without 
breaking the program.

Where contracts are concerned, this leads to the guidelines that were stated earlier:

■■ Preconditions cannot be strengthened in a subtype.

■■ Postconditions cannot be weakened in a subtype.

■■ Invariants of the supertype must be preserved in a subtype.

If you follow all of these rules when creating subclasses of existing classes, substitutability will be 
retained when you are dealing with contracts.

Whenever a subclass is created, it brings with it all of the methods, properties, and fields that make 
up the parent class. This also includes the contracts inside the methods and property setters. Precon-
ditions, postconditions, and data invariants are all expected to be maintained in the same way that 
they were in the parent class. Subclasses are, where applicable, allowed to override method imple-
mentations, which includes the possibility for changing the contracts. Liskov substitution stipulates 
that some changes are not allowed, because they could break existing clients that must be able to 
use the new subclass as if it were an instance of the superclass.

Preconditions cannot be strengthened 
Whenever a subclass overrides an existing method that contains preconditions, it must never strengthen 
the existing preconditions. Doing so would potentially break any client code that already assumes 
that the subclass defines the strongest possible precondition contracts for any method.

Listing 7-7 shows the addition of a new WorldWideShippingStrategy. Due to the large number 
of similarities in how the classes behave, this new class is implemented as a subclass of the Shipping­
Strategy class. The CalculateShippingCost method is overridden to provide a new value that 
takes into account the destination of the package being sent via the RegionInfo parameter. Although 
the ShippingStrategy class did not make any guarantees that the destination of the package would 
be provided, WorldWideShippingStrategy now requires this parameter to be provided, otherwise 
it cannot correctly calculate how much it would cost to send the package to that location. 

From the Library of Ida Schander



ptg14200592

226	 PART II  Writing SOLID code

LISTING 7-7  This subclass adds a new guard clause, thus strengthening the preconditions.

public class WorldWideShippingStrategy : ShippingStrategy 
{ 
    public override decimal CalculateShippingCost( 
        float packageWeightInKilograms,  
        Size<float> packageDimensionsInInches,  
        RegionInfo destination) 
    { 
        if (packageWeightInKilograms <= 0f) 
            throw new ArgumentOutOfRangeException("packageWeightInKilograms", "Package  
  weight must be positive and non-zero"); 
 
        if (packageDimensionsInInches.X <= 0f || packageDimensionsInInches.Y <= 0f) 
            throw new ArgumentOutOfRangeException("packageDimensionsInInches", "Package  
  dimensions must be positive and non-zero"); 
 
        if (destination == null) 
            throw new ArgumentNullException("destination", "Destination must be  
  provided"); 
 
        return decimal.One; 
    } 
}

The temptation is to strengthen the preconditions so that you can guarantee that the destination 
parameter is provided. This creates a conflict that calling code is unable to solve. If a class calls the 
CalculateShippingCost method of the ShippingStrategy class, it is free to pass in a null value 
for the destination parameter without experiencing a side effect. But if it is calling the Calculate­
ShippingCost method of the WorldWideShippingStrategy class, it must not pass in a null value 
for the destination parameter. Doing so would violate a precondition and cause an exception to be 
thrown. As earlier chapters have demonstrated, client code must never make assumptions about what 
type it is acting on. Doing so only leads to strong coupling between classes and an inability to adapt 
to changes in requirements. 

To demonstrate the problem, examine the unit test shown in Listing 7-8. 

LISTING 7-8  When the precondition is strengthened, clients cannot reliably use a WorldWideShippingStrategy 
where a ShippingStrategy is required.

[Test] 
public void ShippingRegionMustBeProvided() 
{ 
    strategy.Invoking(s => s.CalculateShippingCost(1f, ValidDimensions, null)) 
        .ShouldThrow<ArgumentNullException>("Destination must be provided") 
        .And.ParamName.Should().Be("destination"); 
}

From the Library of Ida Schander



ptg14200592

	 CHAPTER 7  The Liskov substitution principle	 227

If the strategy used by this test is of type WorldWideShippingStrategy, the test will pass; no 
destination is provided but one is required, thus an exception meeting the specification is thrown. If 
a ShippingStrategy is used instead, this test will fail because no precondition exists to prevent the 
null value for the destination and no exception will be thrown.

Listing 7-9 shows a refactored set of unit tests that do not attempt to test the same preconditions 
on both strategy types. A test asserting that the shipping region must be provided is only valid for the 
WorldWideShippingStrategy. However, regardless of shipping strategy, the precondition that the 
shipping weight must be positive is always valid, so this is included in a base class of tests that will be 
run for each shipping strategy class.

LISTING 7-9  These refactored unit tests separately target the two shipping strategy classes.

[TestFixture] 
public class WorldWideShippingStrategyTests : ShippingStrategyTestsBase 
{ 
    [Test] 
    public void ShippingRegionMustBeProvided() 
    { 
        strategy.Invoking(s => s.CalculateShippingCost(1f, ValidSize, null)) 
            .ShouldThrow<ArgumentNullException>("Destination must be provided") 
            .And.ParamName.Should().Be("destination"); 
    } 
 
    protected override ShippingStrategy CreateShippingStrategy() 
    { 
        return new WorldWideShippingStrategy(decimal.One); 
    } 
} 
// . . . 
public abstract class ShippingStrategyTestsBase 
{         
    [Test] 
    public void ShippingWeightMustBePositive() 
    { 
        strategy.Invoking(s => s.CalculateShippingCost(-1f, ValidSize, null)) 
            .ShouldThrow<ArgumentOutOfRangeException>("Package weight must be positive and  
  non-zero") 
            .And.ParamName.Should().Be("packageWeightInKilograms"); 
    } 
}

Postconditions cannot be weakened
When applying postconditions to subclasses, the opposite rule applies. Instead of not being able to 
strengthen postconditions, you cannot weaken them. As for all of the Liskov substitution rules relat-
ing to contracts, the reason that you cannot weaken postconditions is because existing clients might 
break when presented with the new subclass. Theoretically, if you comply with the LSP, any subclass 
you create should be usable by all existing clients without causing them to fail in unexpected ways.

From the Library of Ida Schander



ptg14200592

228	 PART II  Writing SOLID code

One such example of causing an unexpected failure in an existing client is explored in Listing 7-10. 
The unit test and implementation relate to the WorldWideShippingStrategy, the Shipping­
Strategy subclass for international packages. 

LISTING 7-10  The new implementation requires a weakening of the postcondition.

[Test] 
public void ShippingDomesticallyIsFree() 
{ 
   strategy.CalculateShippingCost(1f, ValidDimensions, RegionInfo.CurrentRegion) 
        .Should().Be(decimal.Zero); 
} 
// . . . 
public override decimal CalculateShippingCost(float packageWeightInKilograms, Size<float>  
  packageDimensionsInInches, RegionInfo destination) 
{ 
    if (destination == null) 
        throw new ArgumentNullException("destination", "Destination must be provided"); 
 
    if (packageWeightInKilograms <= 0f) 
        throw new ArgumentOutOfRangeException("packageWeightInKilograms", "Package weight  
  must be positive and non-zero"); 
 
    if (packageDimensionsInInches.X <= 0f || packageDimensionsInInches.Y <= 0f) 
        throw new ArgumentOutOfRangeException("packageDimensionsInInches", "Package  
  dimensions must be positive and non-zero"); 
 
    var shippingCost = decimal.One; 
 
    if(destination == RegionInfo.CurrentRegion) 
    { 
        shippingCost = decimal.Zero; 
    } 
 
    return shippingCost; 
}

The unit test asserts that, when the current region is used for the destination—that is, the shipping 
is domestic—the WorldWideShippingStrategy does not charge for shipping at all. This is reflected 
in the accompanying implementation. This assertion is, again, in conflict with an existing unit test for 
the base class that asserts the original postcondition: that the result is always positive and non-zero, 
as shown in Listing 7-11.

From the Library of Ida Schander



ptg14200592

	 CHAPTER 7  The Liskov substitution principle	 229

LISTING 7-11  This unit test shows the original unit test, which fails when the strategy is a WorldWideShipping­
Strategy.

[Test] 
public void ShippingCostMustBePositiveAndNonZero() 
{ 
    strategy.CalculateShippingCost(1f, ValidDimensions, RegionInfo.CurrentRegion) 
        .Should().BeGreaterThan(0m); 
}

A client could easily be broken by this change in behavior due to its assumption of the value of 
the shipping cost. For example, the client assumes that the shipping cost is always positive and non-
zero, as indicated by the postcondition contract of the ShippingStrategy. This client then uses the 
shipping cost as the denominator in a subsequent calculation. When a switch is made to use the new 
WorldWideShippingStrategy, the client unexpectedly starts throwing DivideByZeroException 
errors for all domestic orders. 

Had the LSP been honored and the postcondition never weakened, this defect would never have 
been introduced.

Invariants must be maintained
Whenever a new subclass is created, it must continue to honor all of the data invariants that were 
part of the base class. This is an easy problem to introduce because subclasses have a lot of freedom 
to introduce new ways of changing previously private data.

Listing 7-12 returns to the previous data invariant example from earlier in the chapter. However, 
in this instance, the ShippingStrategy accepts the flat rate value as a constructor parameter and 
maintains this value as a read-only data invariant. The new WorldWideShippingStrategy is intro-
duced, and the means to change the flat rate value is made public through a property. 

LISTING 7-12  The subclass breaks the data invariant of the superclass, violating the LSP.

[Test] 
public void ShippingFlatRateCanBeChanged() 
{ 
    strategy.FlatRate = decimal.MinusOne; 
 
    strategy.FlatRate.Should().Be(decimal.MinusOne); 
} 
// . . . 
public class WorldWideShippingStrategy : ShippingStrategy 
{ 
    public WorldWideShippingStrategy(decimal flatRate) 
        : base(flatRate) 
    { 
             
    } 
 

From the Library of Ida Schander



ptg14200592

230	 PART II  Writing SOLID code

    public decimal FlatRate 
    { 
        get 
        { 
            return flatRate; 
        } 
        set 
        { 
            flatRate = value; 
        } 
    } 
}

Although the subclass reuses the base class’s constructor and guard clause, it does not maintain 
the data invariant and therefore breaks the Liskov substitution principle. The unit test proves that 
clients are able to set the value to a negative number, which should be disallowed by the class if it is 
to correctly protect its data invariants.

Listing 7-13 shows that when the base class is reworked to disallow direct write access to the flat 
rate field, the invariant is properly honored by the subclass. This is a very common pattern whereby 
fields are private but have protected or public properties that contain guard clauses to protect the 
invariants.

LISTING 7-13  The base class allows the subclass write access to the field only through the guarded property 
setter.

public class WorldWideShippingStrategy : ShippingStrategy 
{ 
    public WorldWideShippingStrategy(decimal flatRate) 
        : base(flatRate) 
    { 
             
    } 
 
    public new decimal FlatRate 
    { 
        get 
        { 
            return base.FlatRate; 
        } 
        set 
        { 
            base.FlatRate = value; 
        } 
    } 
} 
// . . . 
public class ShippingStrategy 
{ 

From the Library of Ida Schander



ptg14200592

	 CHAPTER 7  The Liskov substitution principle	 231

    public ShippingStrategy(decimal flatRate) 
    { 
        if (flatRate <= decimal.Zero) 
            throw new ArgumentOutOfRangeException("flatRate", "Flat rate must be positive  
  and non-zero"); 
 
        this.flatRate = flatRate; 
    } 
 
    protected decimal FlatRate 
    { 
        get 
        { 
            return flatRate; 
        } 
        set 
        { 
            if (value <= decimal.Zero) 
                throw new ArgumentOutOfRangeException("value", "Flat rate must be positive  
  and non-zero"); 
 
            flatRate = value; 
        } 
    } 
}

Tightening the visibility of the field and instead providing access only through the property setter 
protects the invariant with a guard clause. Doing this at subclass level is also preferable because it 
means that all future subclasses are absolved of this responsibility and simply cannot directly write 
to the field at all. 

A new unit test can be created that asserts this new behavior, as shown in Listing 7-14.

LISTING 7-14  With the invariant maintained, this unit test passes. 

[Test] 
public void ShippingFlatRateCannotBeSetToNegativeNumber() 
{ 
    strategy.Invoking(s => s.FlatRate = decimal.MinusOne) 
        .ShouldThrow<ArgumentOutOfRangeException>("Flat rate must be positive and non- 
  zero") 
        .And.ParamName.Should().Be("value"); 
}

If a client tries to set the FlatRate property to a negative value, or even to zero, the guard clause 
prevents the assignment and an ArgumentOutOfRangeException is thrown. 

From the Library of Ida Schander



ptg14200592

232	 PART II  Writing SOLID code

Code contracts
Throughout the previous section, the guard clauses that formed the basis of the contracts were all 
written in long form, using if statements and exceptions. It is worth exploring an alternative to these 
manual guard clauses: code contracts.

Previously a separate library, code contracts were integrated into the .NET Framework 4.0 main 
libraries. In addition to being easier to read, write, and comprehend than manual guard clauses, code 
contracts bring with them the possibility of using static verification and automatic generation of 
reference documentation.

With static contract verification, code contracts are able to check for contract violations without 
executing the application. This helps expose implicit contracts such as null dereferences and problems 
with array bounds, in addition to the explicitly coded contracts shown throughout this section.

Generating reference documentation relating to the contract of a method or class is important 
because client code has no other way of knowing the exp   ectations. When more detail is included in 
the XML comments that form the documentation to methods and classes, clients can view the expec-
tations via IntelliSense. This makes working with classes that use contracts a bit easier.

Preconditions
Preconditions can be written succinctly by using code contracts. You will need to include the System.
Diagnostics.Contracts namespace, which is part of the mscorlib.dll and so should not need 
an additional assembly reference. The static Contract class provides the majority of the functionality 
that is required to implement contracts. 

Note  If you make the decision to use code contracts, the static Contract class will permeate 
throughout almost all of your code base. This is less of a problem than it is with most static 
references because code contracts are ubiquitous infrastructure that, it is assumed, will not 
be removed or replaced. Thus, it is a significant undertaking to undo the decision to use 
code contracts, and it is best to use them from the outset of a project, or not at all.

Listing 7-15 shows the declarative nature of a code contract precondition.

From the Library of Ida Schander



ptg14200592

	 CHAPTER 7  The Liskov substitution principle	 233

LISTING 7-15  The System.Diagnostics.Contracts namespace can provide guard clauses to methods.

using System.Diagnostics.Contracts; 
 
public class ShippingStrategy 
{ 
    public decimal CalculateShippingCost(float packageWeightInKilograms, Size<float>  
  packageDimensionsInInches, RegionInfo destination) 
    { 
        Contract.Requires(packageWeightInKilograms > 0f); 
        Contract.Requires(packageDimensionsInInches.X > 0f && packageDimensionsInInches.Y  
  > 0f); 
 
        return decimal.MinusOne; 
    } 
}

The Contract.Requires method accepts a Boolean predicate value. This represents the state 
that the method requires in order to proceed. Note that this is the exact opposite of the predi-
cate used in an if statement in manual guard clauses. In that case, the clauses were checking for 
state that was invalid before throwing an exception. With code contracts, the predicate is closer to 
an assertion: that the Boolean value must return true, otherwise the contract fails. This example 
requires that the packageWeightInKilograms parameter is non-zero and positive and that the 
packageDimensionsInInches parameter is non-zero and positive for both its X and Y properties.

This version of the Contract.Requires method throws an exception when the contract predicate 
is not met, but the type of exception is a ContractException, which does not match the expected 
exception in the existing unit tests. Therefore, they fail.

Expected System.ArgumentOutOfRangeException because Package dimension must be positive and non- 
  zero, but found System.Diagnostics.Contracts.__ContractsRuntime+ContractException with message  
  "Precondition failed: packageDimensionsInInches.X > 0f && packageDimensionsInInches.Y > 0f"

Furthermore, if you run this example while passing in an invalid value for one of the parameters, 
you will get the message shown in Figure 7-2. This informs you that you have not properly configured 
code contracts for use.

FIGURE 7-2  Code contracts must be configured before use.

From the Library of Ida Schander



ptg14200592

234	 PART II  Writing SOLID code

The property pages of each project include a Code Contracts tab on which you can configure code 
contracts. A minimal working setup is shown in Figure 7-3.

FIGURE 7-3  The property pages for code contracts contain a lot of settings.

When they are configured correctly, the contract preconditions can be rewritten to use an alterna-
tive version of the Contract.Requires method. Listing 7-16 shows this version.

LISTING 7-16  This version of the Requires method accepts the type of the exception to be thrown.

public class ShippingStrategy 
{ 
    public decimal CalculateShippingCost(float packageWeightInKilograms, Size<float>  
  packageDimensionsInInches, RegionInfo destination) 
    { 
        Contract.Requires<ArgumentOutOfRangeException>(packageWeightInKilograms > 0f,  
  "Package weight must be positive and non-zero"); 
        Contract.Requires<ArgumentOutOfRangeException>(packageDimensionsInInches.X > 0f &&  
  packageDimensionsInInches.Y > 0f, "Package dimensions must be positive and non-zero"); 
 
        return decimal.MinusOne; 
    } 
}

This generic version of the Requires method accepts the type of exception that you would like 
the contract to throw when the predicate fails. This, along with the exception message included in a 
subsequent method parameter, will cause the existing unit tests to pass.

From the Library of Ida Schander



ptg14200592

	 CHAPTER 7  The Liskov substitution principle	 235

Postconditions
Code contracts can similarly provide a shortcut to defining postconditions. The Contract static class 
contains an Ensures method that is the postcondition complement to the precondition’s Requires 
method. This method also accepts a Boolean predicate that must be true in order to progress through 
to the return statement. It is worth noting that the return statement must be the only line that follows 
a call to Contract.Ensures. This makes intuitive sense because, otherwise, it would be possible to 
further modify state in a way that might break the postcondition.

Listing 7-17 reiterates the ShippingCostMustBePositive unit test and includes a rewritten 
CalculateShippingCost implementation that uses the Contract.Ensures method as a 
postcondition.

LISTING 7-17  The Ensures method creates a postcondition that should be true on exiting the method.

[Test] 
public void ShippingCostMustBePositive() 
{ 
    strategy.CalculateShippingCost(1, ValidSize, null) 
        .Should().BeGreaterThan(decimal.MinusOne); 
} 
// . . . 
public class ShippingStrategy 
{ 
    public decimal CalculateShippingCost(float packageWeightInKilograms, Size<float>  
  packageDimensionsInInches, RegionInfo destination) 
    { 
        Contract.Requires<ArgumentOutOfRangeException>(packageWeightInKilograms > 0f,  
  "Package weight must be positive and non-zero"); 
        Contract.Requires<ArgumentOutOfRangeException>(packageDimensionsInInches.X > 0f &&  
  packageDimensionsInInches.Y > 0f, "Package dimensions must be positive and non-zero"); 
 
        Contract.Ensures(Contract.Result<decimal>() > 0m); 
 
        return decimal.MinusOne; 
    } 
}

The predicate in this example is a bit different from the ones in prior examples and demonstrates a 
common use of the postcondition: testing that a return value is valid. Checking that the shipping cost 
is positive (and, in fact, non-negative) requires knowledge of the return value. The return value is often, 
but not always, a local variable that is declared and defined within the method. You could trivially 
assert that the value you are returning is greater than zero, but this is not really foolproof. To access 
the value that is actually returned from the method, you can use the Contract.Result method to 
retrieve it. This generic method accepts the return type of the method and returns whichever result is 
eventually returned by the method. This is how you can ensure that no subsequent lines can replace a 
valid value with an invalid value without the postcondition failing and an exception being thrown.

From the Library of Ida Schander



ptg14200592

236	 PART II  Writing SOLID code

Data invariants
It is common for each method in a class to contain its own preconditions and postconditions, but data 
invariants relate to the class as a whole. Code contracts allow you to create a private method on the 
class that contains declarative definitions of the class’s invariants. 

Each invariant is defined by another method of the Contract static class, as Listing 7-18 shows.

LISTING 7-18  Data invariants can be protected by a method dedicated to the purpose.

public class ShippingStrategy 
{ 
    public ShippingStrategy(decimal flatRate) 
    { 
        this.flatRate = flatRate; 
    } 
 
    [ContractInvariantMethod] 
    private void ClassInvariant() 
    { 
        Contract.Invariant(this.flatRate > 0m, "Flat rate must be positive and non-zero"); 
    } 
 
    protected decimal flatRate; 
}

The Contract.Invariant method follows the same pattern as the Requires and Ensures 
methods in that it accepts a Boolean predicate that must be true in order to satisfy the contract. 
In this example, there is also a second string parameter provided that describes the fault if this con-
tract fails to be met and the invariant is unprotected. The client is allowed to make as many calls to 
the Invariant method as necessary, so it is best to break the invariants down to their most granular, 
rather than logically AND them all together with the && operator. This gives you the maximum benefit 
of knowing exactly which data invariant has been broken.

If this were a normal private method, you would be obliged to call the method at the start and 
end of every method, to ensure that the invariants were correctly protected. Luckily, you can have 
code contracts do this on your behalf by marking the method with the ContractInvariantMethod­
Attribute. Remember that attributes do not require the Attribute suffix, so this has been shortened 
in the example to ContractInvariantMethod. This flags the method as one that code contracts must 
call when entering and leaving a method, to confirm that the class’s data invariants are not being 
violated. The prerequisites for marking a method as a ContractInvariantMethod are that it must 
return void and accept no arguments. However, it can be public or private, and you can choose any 
name to describe the method. Classes can have more than one ContractInvariantMethod, so logi-
cally grouping them is also possible. The body of the method must only make calls to the Contract.
Invariant method.

From the Library of Ida Schander



ptg14200592

	 CHAPTER 7  The Liskov substitution principle	 237

Interface contracts
The final feature of code contracts to be covered here is that of interface contracts. So far, you have 
embedded all of your calls to Contract.Requires, Contract.Ensures, and Contract.Invariant 
in the class implementation itself. As has been mentioned, the static nature of the Contract class 
makes this code ubiquitous and difficult to remove or change in favor of an alternative library in the 
future. This is somewhat contrary to the adaptive codebase that is the ideal, but some infrastructural 
concessions are justifiable for pragmatic reasons. 

A more immediate concern is the drop in readability that occurs when code contracts are liberally 
applied to classes. In fact, this is not really a fault of code contracts but a result of diligently applying 
contracts in general. Preconditions, postconditions, and data invariants are naturally implemented in 
code, but this code tends to increase the noise-to-signal ratio.

An interface contract, such as that shown in Listing 7-19 for the ongoing ShippingStrategy 
example, can alleviate this problem in addition to providing another helpful feature.

LISTING 7-19  A dedicated class can define preconditions, postconditions, and invariants for every implementation 
of an interface.

[ContractClass(typeof(ShippingStrategyContract))] 
interface IShippingStrategy 
{ 
    decimal CalculateShippingCost( 
        float packageWeightInKilograms,  
        Size<float> packageDimensionsInInches,  
        RegionInfo destination); 
} 
//. . . 
[ContractClassFor(typeof(IShippingStrategy))] 
public abstract class ShippingStrategyContract : IShippingStrategy 
{ 
    public decimal CalculateShippingCost(float packageWeightInKilograms, Size<float>  
  packageDimensionsInInches, RegionInfo destination) 
    { 
        Contract.Requires<ArgumentOutOfRangeException>(packageWeightInKilograms > 0f,  
  "Package weight must be positive and non-zero"); 
        Contract.Requires<ArgumentOutOfRangeException>(packageDimensionsInInches.X > 0f && 
  packageDimensionsInInches.Y > 0f, "Package dimensions must be positive and non-zero"); 
 
        Contract.Ensures(Contract.Result<decimal>() > 0m); 
 
        return decimal.One; 
    } 
 
    [ContractInvariantMethod] 
    private void ClassInvariant() 
    { 
        Contract.Invariant(flatRate > 0m, "Flat rate must be positive and non-zero"); 
    } 
}

From the Library of Ida Schander



ptg14200592

238	 PART II  Writing SOLID code

For interface contracts, you of course need an interface to work with. In this example, the 
CalculateShippingCost method has been extracted into its own IShippingStrategy interface.  
It is this interface, rather than a single implementation, that is going to have the contracts applied. 
This is an important departure from the previous examples because it means that all implementations 
of this interface will acquire the applied contracts. This is how you can enhance a simple interface that 
provides few instructions for implementation and use, to give it more powerful requirements and 
assurances.

When writing an interface contract, you also need a class that is going to implement the methods 
of the interface but only fill them with uses of the Contract.Requires and Contract.Ensures 
methods. The abstract ShippingStrategyContract provides this functionality and looks like the 
prior examples, but what the prior examples lacked was the real functionality of the method. Even in 
production code, this is the limit of the code contained in a contract class. There is also a Contract­
InvariantMethod to house any calls to Contract.Invariant, just as if this class were the real 
implementation.

To link the interface to the contract class implementation, you unfortunately need a two-way 
reference via an attribute. This is somewhat unfortunate because it adds noise to the interface, which 
it would be nice to avoid. Nevertheless, by marking the interface with the ContractClass attribute 
and the contract class with the ContractClassFor attribute, you can write your preconditions, 
postconditions, and data invariant protection code once and have it apply to all subsequent 
implementations of the interface. Both the ContractClass and ContractClassFor attributes 
accept a Type argument. The ContractClass is applied to the interface and has the contract class 
type passed in, whereas the ContractClassFor is applied to the contract class and has the 
interface type passed in.

This concludes the introduction to code contracts and the foray into the Liskov substitution prin-
ciple’s rules relating to contracts. One final important point needs to be emphasized. Whether they 
are implemented manually or by using code contracts, if a precondition, postcondition, or invariant 
fails, clients should not catch the exception. Catching an exception is an action that indicates that the 
client can recover from this situation, which is seldom likely or perhaps even possible when a contract 
is broken. The ideal is that all contract violations will happen during functional testing and that the 
offending code will be fixed before shipping. This is why it is so important to unit test contracts. If a 
contract violation is not fixed before shipping and an end user is unfortunate enough to trigger an 
exception, it is most likely the best course of action to force the application to close. It is advisable to 
allow the application to fail because it is now in a potentially invalid state. For a web application, this 
will mean that the global error page is displayed. For a desktop application, the user can be shown a 
friendly message and be given a chance to report the problem. In any and all cases, a log should be 
made of the exception, with full stack trace and as much context as possible.

The next section covers the rest of the LSP’s rules—those that apply to covariance and contra-
variance.

From the Library of Ida Schander



ptg14200592

	 CHAPTER 7  The Liskov substitution principle	 239

Covariance and contravariance

The remaining rules of the Liskov substitution principle all relate to covariance and contravariance. 
Generally, variance is a term applied to the expected behavior of subtypes in a class hierarchy con-
taining complex types. 

Definitions
As previously demonstrated, it is important to cover the basics of this topic before diving in to the 
specifics of the LSP’s requirements for variance.

Covariance
Figure 7-4 shows a very small class hierarchy of just two types: the generically named Supertype 
and Subtype, which are conveniently named after their respective roles in the inheritance structure. 
Supertype defines some fields and methods that are inherited by Subtype. Subtype enhances the 
Supertype by defining its own fields and methods.

FIGURE 7-4  Supertype and Subtype have a parent/child relationship in this class hierarchy.

Polymorphism is the ability of a subtype to be treated as if it were an instance of the supertype. 
Thanks to this feature of object-oriented programming, which C# supports, any method that accepts 
an instance of Supertype will also be able to accept an instance of Subtype without any casting 
required by either the client or service code, and also without any type sniffing by the service. To the 
service, it has been handed an instance of Supertype, and this is the only fact it is concerned with. It 
doesn’t care what specific subtype has been handed to it.

Variance enters the discussion when you introduce another type that might use Supertype and/or 
Subtype through a generic parameter.

From the Library of Ida Schander



ptg14200592

240	 PART II  Writing SOLID code

Figure 7-5 is a visual explanation of the concept of covariance. First, you define a new interface 
called ICovariant. This interface is a generic of type T and contains a single method that returns this 
type, T. Because the out keyword is used before the generic type argument T, this interface is well 
named because it exhibits covariant behavior.

The second half of the class diagram details a new inheritance hierarchy that has been created 
thanks to the covariance of the ICovariant interface. By plugging in the values for the Supertype 
and Subtype classes that were defined previously, ICovariant<Supertype> becomes a supertype 
for the ICovariant<Subtype> interface. 

FIGURE 7-5  Due to covariance of the generic parameter, the base-class/subclass relationship is preserved.

Polymorphism applies here, just as it did previously, and this is where it gets interesting. Thanks to 
covariance, whenever a method requires an instance of ICovariant<Supertype>, you are perfectly 
at liberty to provide it with an instance of ICovariant<Subtype>, instead. This will work seamlessly 
thanks to the simultaneous interoperating of both covariance and polymorphism.

So far, this is of limited general use. To firm up this explanation, I’ll move away from class diagrams 
and instructive type names to a more real-world scenario. Listing 7-20 shows a class hierarchy between 
a general Entity base class and a specific User subclass. All Entity types inherit a GUID unique 
identifier and a string name, and each User has an EmailAddress and a DateOfBirth.

LISTING 7-20  In this small domain, a User is a specialization of the Entity type.

public class Entity 
{ 
    public Guid ID { get; private set; } 
 
    public string Name { get; private set; } 
} 
// . . . 
public class User : Entity 
{ 
    public string EmailAddress { get; private set; } 
 
    public DateTime DateOfBirth { get; private set; } 
}

From the Library of Ida Schander



ptg14200592

	 CHAPTER 7  The Liskov substitution principle	 241

This is directly analogous to the Supertype/Subtype example, but with a more directed purpose. 
This small domain is going to have the Repository pattern applied to it. The Repository pattern pro-
vides you with an interface for retrieving objects as if they were in memory but that could realistically 
be loaded from a very different storage medium. Listing 7-21 shows an EntityRepository class and 
its UserRepository subclass.

LISTING 7-21  Without involving generics, all inheritance in C# is invariant.

public class EntityRepository 
{ 
    public virtual Entity GetByID(Guid id) 
    { 
        return new Entity(); 
    } 
} 
// . . . 
public class UserRepository : EntityRepository 
{ 
    public override User GetByID(Guid id) 
    { 
        return new User(); 
    } 
}

This example is not the same as that previously described because of one key difference: in the 
absence of generic types, C# is not covariant for method return types. In fact, a compilation error is 
generated due to an attempt to change the return type of the GetByID method in the subclass to 
match the User class.

error CS0508: 'SubtypeCovariance.UserRepository.GetByID(System.Guid)': return type must be  
  'SubtypeCovariance.Entity' to match overridden member  
  'SubtypeCovariance.EntityRepository.GetByID(System.Guid)'

Perhaps experience tells you that this will not work, but the reason is a lack of covariance in this 
scenario. If C# supported covariance for general classes, you would be able to enforce the change of 
return type in the UserRepository. Because it does not, you have only two options. You can amend 
the UserRepository.GetByID method’s return type to be Entity and use polymorphism to allow 
you to return a User in its place. This is dissatisfying because clients of the UserRepository would 
have to downcast the return type from an Entity type to a User type, or they would have to sniff for 
the User type and execute specific code if the expected type was returned.

Instead, you should redefine EntityRepository as a generic class that requires the Entity type 
it intends to operate on via a generic type argument. This generic parameter can be marked out, thus 
covariant, and the UserRepository subclass can specialize its parent base class for the User type. 
Listing 7-22 exemplifies this.

From the Library of Ida Schander



ptg14200592

242	 PART II  Writing SOLID code

LISTING 7-22  Make base classes generic to take advantage of covariance and allow subclasses to override the 
return type.

public interface IEntityRepository<TEntity> 
    where TEntity : Entity 
{ 
    TEntity GetByID(Guid id); 
} 
// . . . 
public class UserRepository : IEntityRepository<User> 
{ 
    public User GetByID(Guid id) 
    { 
        return new User(); 
    } 
}

Rather than maintaining EntityRepository as a concrete class that can be instantiated, this 
code has converted it into an interface that removes the default implementation of GetByID. This is 
not entirely necessary, but the benefits of clients depending on interfaces rather than implementa-
tions have been demonstrated consistently, so it is a sensible reinforcement of that policy.

Note also that there is a where clause applied to the generic type parameter of the Entity­
Repository class. This clause prevents subclasses from supplying a type that is not part of the Entity 
class hierarchy, which would have made this new version more permissive than the original imple-
mentation. 

This version prevents the need for UserRepository clients to mess around with downcasting 
because they are guaranteed to receive a User object, rather than an Entity object, and yet the 
inheritance of EntityRepository and UserRepository is preserved.

Contravariance
Contravariance is a similar concept to covariance. Whereas covariance relates to the treatment of 
types that are used as return values, contravariance relates to the treatment of types that are used 
as method parameters.

Using the same Supertype and Subtype class hierarchy as previously discussed, Figure 7-6 ex-
plores the relationship between types that are marked as contravariant via generic type parameters.

From the Library of Ida Schander



ptg14200592

	 CHAPTER 7  The Liskov substitution principle	 243

FIGURE 7-6  Due to contravariance of the generic parameter, the base-class/subclass relationship is inverted.

The IContravariant interface defines a method that accepts a single parameter of the type dic-
tated by the generic parameter. Here, the generic parameter is marked with the in keyword, meaning 
that it is contravariant.

The subsequent class hierarchy can be inferred, indicating that the inheritance hierarchy has been 
inverted: IContravariant<Subtype> becomes the superclass, and IContravariant<Supertype> 
becomes the subclass. This seems strange and counterintuitive, but it will soon become apparent why 
contravariance exhibits this behavior—and why it is useful.

In Listing 7-23, the .NET Framework IEqualityComparer interface is provided for reference 
and an application-specific implementation is created. The EntityEqualityComparer accepts the 
previous Entity class as a parameter to the Equals method. The details of the comparison are not 
relevant, but a simple identity comparison is used.

LISTING 7-23  The IEqualityComparer interface allows the definition of function objects like 
EntityEqualityComparer.

public interface IEqualityComparer<in TEntity> 
    where TEntity : Entity 
{ 
    bool Equals(TEntity left, TEntity right); 
} 
// . . . 
public class EntityEqualityComparer : IEqualityComparer<Entity> 
{ 
    public bool Equals(Entity left, Entity right) 
    { 
        return left.ID == right.ID; 
    } 
}

From the Library of Ida Schander



ptg14200592

244	 PART II  Writing SOLID code

The unit test in Listing 7-24 explores the affect that contravariance has on the EntityEquality­
Comparer.

LISTING 7-24  Contravariance inverts class hierarchies, allowing a more general comparer to be used wherever a 
more specific comparer is requested.

[Test] 
public void UserCanBeComparedWithEntityComparer() 
{ 
    SubtypeCovariance.IEqualityComparer<User> entityComparer = new  
  EntityEqualityComparer(); 
    var user1 = new User(); 
    var user2 = new User(); 
    entityComparer.Equals(user1, user2) 
        .Should().BeFalse(); 
}

Without contravariance—the innocent-looking in keyword applied to generic type parameters—
the following error would be shown at compile time.

error CS0266: Cannot implicitly convert type 'SubtypeCovariance.EntityEqualityComparer' to  
  'SubtypeCovariance.IEqualityComparer<SubtypeCovariance.User>'. An explicit conversion exists  
  (are you missing a cast?)

There would be no type conversion from EntityEqualityComparer to IEqualityComparer­
<User>, which is intuitive because Entity is the supertype and User is the subtype. However, because 
the IEqualityComparer supports contravariance, the existing inheritance hierarchy is inverted 
and you are able to assign what was originally a less specific type to a more specific type via the 
IEqualityComparer interface.

Invariance
Beyond covariant or contravariant behavior, types are said to be invariant. This is not to be confused 
with the term data invariant used earlier in this chapter as it relates to code contracts. Instead, invari-
ant in this context is used to mean “not variant.” If a type is not variant at all, no arrangement of types 
will yield a class hierarchy. Listing 7-25 uses the IDictionary generic type to demonstrate this fact.

From the Library of Ida Schander



ptg14200592

	 CHAPTER 7  The Liskov substitution principle	 245

LISTING 7-25  Some generic types are neither covariant or contravariant. This makes them invariant.

[TestFixture] 
public class DictionaryTests 
{ 
    [Test] 
    public void DictionaryIsInvariant() 
    { 
        // Attempt covariance... 
        IDictionary<Supertype, Supertype> supertypeDictionary = new Dictionary<Subtype,  
  Subtype>(); 
             
        // Attempt contravariance... 
        IDictionary<Subtype, Subtype> subtypeDictionary = new Dictionary<Supertype,  
  Supertype>(); 
    } 
}

The first line of the DictionaryIsInvariant test method attempts to assign a dictionary whose 
key and value parameters are of type Subtype to a dictionary whose key and value parameters are 
of type Supertype. This will not work because the IDictionary type is not covariant, which would 
preserve the class hierarchy of Subtype and Supertype.

The second line is also invalid, because it attempts the inverse: to assign a dictionary of Supertype 
to a dictionary of Subtype. This fails because the IDictionary type is not contravariant, which 
would invert the class hierarchy of Subtype and Supertype.

The fact that the IDictionary type is neither covariant nor contravariant leads to the conclusion 
that it must be invariant. Indeed, Listing 7-26 shows how the IDictionary type is declared, and you 
can tell that there is no reference to the out or in keywords that would specify covariance and 
contravariance, respectively.

LISTING 7-26  None of the generic parameters of the IDictionary interface are marked with in or out.

public interface IDictionary<TKey, TValue> : ICollection<KeyValuePair<TKey, TValue>>,  
  IEnumerable<KeyValuePair<TKey, TValue>>, IEnumerable

As previously proven for the general case—that is, without generic types—C# is invariant for both 
method parameter types and return types. Only when generics are involved is variance customizable 
on a per-type basis.

From the Library of Ida Schander



ptg14200592

246	 PART II  Writing SOLID code

Liskov type system rules
Now that you have a grounding in variance, this section can circle back and relate all of this to the 
Liskov substitution principle. The LSP defines the following rules, two of which relate directly to variance:

■■ There must be contravariance of the method arguments in the subtype.

■■ There must be covariance of the return types in the subtype.

■■ No new exceptions are allowed.

Without contravariance of method arguments and covariance of return types, you cannot write 
code that is LSP-compliant. 

The third rule stands alone as not relating to variance and bears its own discussion.

No new exceptions are allowed
This rule is more intuitive than the other LSP rules that relate to the type system of a language. First, 
you should consider: what is the purpose of exceptions?

Exceptions aim to separate the reporting of an error from the handling of an error. It is common 
for the reporter and the handler to be very different classes with different purposes and context. The 
exception object represents the error that occurred through its type and the data that it carries with 
it. Any code can construct and throw an exception, just as any code can catch and respond to an ex-
ception. However, it is recommended that an exception only be caught if something meaningful can 
be done at that point in the code. This could be as simple as rolling back a database transaction or as 
complex as showing users a fancy user interface for them to view the error details and to report the 
error to the developers.

It is also often inadvisable to catch an exception and silently do nothing, or catch the general 
Exception base type. Both of these two scenarios together are even more discouraged. With the 
latter scenario, you end up attempting to catch and respond to everything, including exceptions that 
you realistically have no meaningful way of recovering from, like OutOfMemoryException, Stack­
OverflowException, or ThreadAbortException. You could improve this situation by ensuring 
that you always inherit your exceptions from ApplicationException, because many unrecoverable 
exceptions inherit from SystemException. However, this is not a common practice and relies on 
third-party libraries to also follow this practice. 

From the Library of Ida Schander



ptg14200592

	 CHAPTER 7  The Liskov substitution principle	 247

Listing 7-27 shows two exceptions that have a sibling relationship in the class hierarchy. It is im-
portant to note that this precludes the ability to create a catch block specifically targeting one of the 
exception types and to intercept both types of exception.

LISTING 7-27  Both of these exceptions are of type Exception, but neither inherits from the other.

public class EntityNotFoundException : Exception 
{ 
    public EntityNotFoundException() 
        : base() 
    { 
 
    } 
 
    public EntityNotFoundException(string message) 
        : base(message) 
    { 
 
    } 
} 
//. . . 
public class UserNotFoundException : Exception 
{ 
    public UserNotFoundException() 
        : base() 
    { 
 
    } 
 
    public UserNotFoundException(string message) 
        : base(message) 
    { 
 
    } 
}

Instead, in order to catch both an EntityNotFoundException and a UserNotFoundException 
with a single catch block, you would have to resort to catching the general Exception, which is not 
recommended. 

From the Library of Ida Schander



ptg14200592

248	 PART II  Writing SOLID code

This problem is exacerbated in the potential code taken from the EntityRepository and 
UserRepository classes, as shown in Listing 7-28.

LISTING 7-28  Two different implementations of an interface might throw different types of exception.

public Entity GetByID(Guid id) 
{    
    Contract.Requires<EntityNotFoundException>(id != Guid.Empty); 
 
    return new Entity(); 
} 
//. . . 
public User GetByID(Guid id) 
{ 
    Contract.Requires<UserNotFoundException>(id != Guid.Empty); 
 
    return new User(); 
}

Both of these classes use code contracts to assert a precondition: that the provided id parameter 
must not be equal to Guid.Empty. Each uses its own exception type if the contract is violated. Think 
for a second about the impact that this would have on a client using the repository. The client would 
need to catch both kinds of exception and could not use a single catch block to target both excep-
tions without resorting to catching the Exception type. Listing 7-29 shows a unit test that is a client 
to these two repositories. 

LISTING 7-29  This unit test will fail because a UserNotFoundException is not assignable to an 
EntityNotFoundException.

[TestFixture(typeof(EntityRepository), typeof(Entity))] 
[TestFixture(typeof(UserRepository), typeof(User))] 
public class ExceptionRuleTests<TRepository, TEntity> 
    where TRepository : IEntityRepository<TEntity>, new() 
{ 
    [Test] 
    public void GetByIDThrowsEntityNotFoundException() 
    { 
        var repo = new TRepository(); 
        Action getByID = () => repo.GetByID(Guid.Empty); 
 
        getByID.ShouldThrow<EntityNotFoundException>(); 
    } 
}

From the Library of Ida Schander



ptg14200592

	 CHAPTER 7  The Liskov substitution principle	 249

This unit test fails because the UserRepository does not, as required, throw an EntityNotFound­
Exception. If the UserNotFoundException was a subclass of the type EntityNotFoundException, 
this test would pass and a single catch block could guarantee catching both kinds of exception.

This becomes a problem of client maintenance. If the client is using an interface as a dependency 
and calling methods on that interface, it should not know anything about the classes behind that 
interface. This is a return to the argument concerning the Entourage anti-pattern versus the Stairway 
pattern. If new exceptions that are not part of an expected exception class hierarchy are introduced, 
clients must start referencing these exceptions directly. And—even worse—clients will have to be 
updated whenever a new exception type is introduced.

Instead, it is important that every interface have a unifying base class exception that conveys the 
necessary information about an error from the exception reporter to the exception handler.

Conclusion

On the surface, the Liskov substitution principle is one of the more complex facets of the SOLID prin-
ciples. It requires a foundational knowledge of both contracts and variance to build rules that guide 
you toward more adaptive code.

By default, interfaces do not convey rules for preconditions or postconditions to clients. Creating 
guard clauses that halt the application at run time serves to further narrow the allowed range of valid 
values for parameters. The LSP provides guidelines such that each subclass in a class hierarchy cannot 
strengthen preconditions or weaken postconditions. 

Similarly, the LSP suggests rules for variance in subtypes. There should be contravariance of method 
arguments in subtypes and covariance of return values in subtypes. Additionally, any new exception 
that is introduced, perhaps with the creation of a new interface implementation, should inherit from 
an existing base exception. To do otherwise would be to potentially cause an existing client to miss 
the catch—effectively to fumble the exception and allow it to cause an application crash.

If the LSP is violated with respect to these rules, it becomes harder for clients to treat all types in a 
class hierarchy the same. Ideally, clients would be able to hold a reference to a base type or interface 
and not alter its own behavior depending on the concrete subclass that it is actually using at run time. 
Such mixed concerns create dependencies between sections of the code that are better kept separate. 
Any violation of the LSP should be considered technical debt and, as demonstrated in prior chapters, 
this debt should be paid off sooner rather than later.

From the Library of Ida Schander



ptg14200592

This page intentionally left blank 

From the Library of Ida Schander



ptg14200592

		  251

C H A P T E R  8

Interface segregation

After completing this chapter, you will be able to

■■ Understand the importance of interface segregation.

■■ Write interfaces with the client code’s requirements as a primary concern.

■■ Create smaller interfaces with more directed purposes.

■■ Identify scenarios where interface segregation can be used.

■■ Split interfaces by their implementations’ dependencies.

The interface, as earlier chapters have established, is a key tool in the modern object-oriented program-
mer’s toolkit. Interfaces represent the boundaries between what client code requires and how that 
requirement is implemented. The interface segregation principle states that interfaces should be small.

Each member of an interface needs to be implemented in its entirety: properties, events, and meth-
ods. Unless every client of an interface requires every member, it does not make sense to require ev-
ery implementation to fulfill such a large contract. Bearing in mind the single responsibility principle 
and how developers can make liberal use of the Decorator pattern, for every member present in an 
interface, there needs to be a valid analogy for the decoration being implemented.

At their simplest, interfaces contain single methods that serve a single purpose. At this level of 
granularity, they are akin to delegates, but with many added benefits. 

A segregation example

This chapter works through a complete example that progresses from a single monolithic interface to 
multiple smaller interfaces. Along the way, a variety of decorators will be created to elaborate on one 
of the key benefits of liberally applying interface segregation.

A simple CRUD interface
The interface itself is quite simple, with only five methods. It is used to allow clients to interact with 
persistent storage for an entity through the traditional CRUD operations. CRUD stands for create, 
read, update, and delete. These are the common operations that clients need to maintain persistent 

From the Library of Ida Schander



ptg14200592

252	 PART II  Writing SOLID code

storage for an entity. Figure 8-1 shows a UML class diagram explaining the operations available to the 
ICreateReadUpdateDelete interface.

FIGURE 8-1  The initial interface before segregation.

The read operations are split into two methods, one for retrieving a single record from storage and 
another for reading all of the records. In code, this interface is as shown in Listing 8-1.

LISTING 8-1  A simple interface for CRUD operations on an entity.

public interface ICreateReadUpdateDelete<TEntity> 
{ 
    void Create(TEntity entity); 
 
    TEntity ReadOne(Guid identity); 
 
    IEnumerable<TEntity> ReadAll(); 
 
    void Update(TEntity entity); 
 
    void Delete(TEntity entity); 
}

The ICreateReadUpdateDelete interface is generic, allowing reuse across different entity types. 
However, by making the interface generic, rather than making each individual method generic, you 
force clients to declare up front which TEntity you are dealing with, which clarifies its dependencies. 
If a client wants to perform CRUD operations on more than one entity, it will have to request multiple 
ICreateReadUpdateDelete<TEntity> instances, one for each entity type.

Note  Though clients will require an instance of ICreateReadUpdateDelete<TEntity> 
per entity, there could still only be one implementation of ICreateReadUpdateDelete 
<TEntity> that would suffice for all concrete TEntity types. This implementation would 
also be generic.

Every operation of CRUD is performed by each implementation of the ICreateReadUpdate­
Delete interface—including any decorator. This would be acceptable for decorators such as 
logging or transaction handling, as Listing 8-2 shows.

From the Library of Ida Schander



ptg14200592

	 CHAPTER 8  Interface segregation	 253

LISTING 8-2  Some decorators apply to all methods.

public class CrudLogging<TEntity> : ICreateReadUpdateDelete<TEntity> 
{ 
    private readonly ICreateReadUpdateDelete<TEntity> decoratedCrud; 
    private readonly ILog log; 
    public CrudLogging(ICreateReadUpdateDelete<TEntity> decoratedCrud, ILog log) 
    { 
        this.decoratedCrud = decoratedCrud; 
        this.log = log; 
    } 
 
    public void Create(TEntity entity) 
    { 
        log.InfoFormat("Creating entity of type {0}", typeof(TEntity).Name); 
        decoratedCrud.Create(entity); 
    } 
 
    public TEntity ReadOne(Guid identity) 
    { 
        log.InfoFormat("Reading entity of type {0} with identity {1}",  
  typeof(TEntity).Name, identity); 
        return decoratedCrud.ReadOne(identity); 
    } 
 
    public IEnumerable<TEntity> ReadAll() 
    { 
        log.InfoFormat("Reading all entities of type {0}", typeof(TEntity).Name); 
        return decoratedCrud.ReadAll(); 
    } 
 
    public void Update(TEntity entity) 
    { 
        log.InfoFormat("Updating entity of type {0}", typeof(TEntity).Name); 
        decoratedCrud.Update(entity); 
    } 
 
    public void Delete(TEntity entity) 
    { 
        log.InfoFormat("Deleting entity of type {0}", typeof(TEntity).Name); 
        decoratedCrud.Delete(entity); 
    } 
 
} 
// . . . 
public class CrudTransactional<TEntity> : ICreateReadUpdateDelete<TEntity> 
{ 
    private readonly ICreateReadUpdateDelete<TEntity> decoratedCrud; 
    public CrudTransactional(ICreateReadUpdateDelete<TEntity> decoratedCrud) 
    { 
        this.decoratedCrud = decoratedCrud; 
    } 
     

From the Library of Ida Schander



ptg14200592

254	 PART II  Writing SOLID code

    public void Create(TEntity entity) 
    { 
        using (var transaction = new TransactionScope()) 
        { 
            decoratedCrud.Create(entity); 
 
            transaction.Complete(); 
        } 
    } 
 
    public TEntity ReadOne(Guid identity) 
    { 
        TEntity entity; 
        using (var transaction = new TransactionScope()) 
        { 
            entity = decoratedCrud.ReadOne(identity); 
 
            transaction.Complete(); 
        } 
        return entity; 
    } 
 
    public IEnumerable<TEntity> ReadAll() 
    { 
        IEnumerable<TEntity> allEntities; 
        using (var transaction = new TransactionScope()) 
        { 
            allEntities = decoratedCrud.ReadAll(); 
 
            transaction.Complete(); 
        } 
        return allEntities; 
    } 
 
    public void Update(TEntity entity) 
    { 
        using (var transaction = new TransactionScope()) 
        { 
            decoratedCrud.Update(entity); 
 
            transaction.Complete(); 
        } 
    } 
 
    public void Delete(TEntity entity) 
    { 
        using (var transaction = new TransactionScope()) 
        { 
            decoratedCrud.Delete(entity); 
 
            transaction.Complete(); 
        } 
    } 
 
}

From the Library of Ida Schander



ptg14200592

	 CHAPTER 8  Interface segregation	 255

The decorators for logging and transaction management are cross-cutting concerns. Irrespective 
of the method on the interface and, in many cases, irrespective of the interface itself, logging and 
transaction management could be applied. Thus, to avoid repetitive implementations for multiple 
interfaces, you can decorate all implementations by using aspect-oriented programming.

Some other decorators apply only to a subset of the methods of a single interface, rather than to 
all of them. For example, you might want to prompt the user before you permanently delete an entity 
from persistent storage—a common requirement. Remember that you do not want to edit an existing 
class, which would violate the open/closed principle. Instead, you should create a new implementa-
tion of an existing interface that clients are already using to perform the delete action. This is the 
Delete method of the ICreateReadUpdateDelete<TEntity> interface. Such an implementation 
would look like Listing 8-3.

LISTING 8-3  If a decorator targets part of an interface, segregation is an option.

public class DeleteConfirmation<TEntity> : ICrud<TEntity> 
{ 
    private readonly ICreateReadUpdateDelete<TEntity> decoratedCrud; 
    public DeleteConfirmation(ICreateReadUpdateDelete<TEntity> decoratedCrud) 
    { 
        this.decoratedCrud = decoratedCrud; 
    } 
 
    public void Create(TEntity entity) 
    { 
        decoratedCrud.Create(entity); 
    } 
 
    public TEntity ReadOne(Guid identity) 
    { 
        return decoratedCrud.ReadOne(identity); 
    } 
 
    public IEnumerable<TEntity> ReadAll() 
    { 
        return decoratedCrud.ReadAll(); 
    } 
 
    public void Update(TEntity entity) 
    { 
        decoratedCrud.Update(entity); 
    } 
 
    public void Delete(TEntity entity) 
    { 
        Console.WriteLine("Are you sure you want to delete the entity? [y/N]"); 
        var keyInfo = Console.ReadKey(); 
        if (keyInfo.Key == ConsoleKey.Y) 
        { 
            decoratedCrud.Delete(entity); 
        } 
    } 
}

From the Library of Ida Schander



ptg14200592

256	 PART II  Writing SOLID code

The DeleteConfirmation<TEntity> class decorates only the Delete method, as its name sug-
gests. The other methods are implemented with pass-through delegation to the wrapped interface. 
Pass-through means that there is no decoration for that method: the call is merely passed through the 
decorator to the underlying implementation, almost as if it had been called directly. Despite the fact 
that these pass-through methods apparently do nothing special, in order to maintain unit test cover-
age and ensure that they are delegating properly, test methods should still be written to verify that 
their behavior is correct. This is laborious when compared to the alternative: interface segregation.

By separating the Delete method from the rest of the ICreateReadUpdateDelete<TEntity> 
interface, you have two interfaces, as shown in Listing 8-4.

LISTING 8-4  The ICreateReadUpdateDelete interface is split in two.

public interface ICreateReadUpdate<TEntity> 
{ 
    void Create(TEntity entity); 
 
    TEntity ReadOne(Guid identity); 
 
    IEnumerable<TEntity> ReadAll(); 
 
    void Update(TEntity entity); 
} 
// . . . 
public interface IDelete<TEntity> 
{ 
    void Delete(TEntity entity); 
}

This allows the confirmation decorator to be replaced with an implementation only for the 
IDelete<TEntity> interface, as shown in Listing 8-5.

LISTING 8-5  The confirmation decorator is applied only to the interface to which it pertains.

public class DeleteConfirmation<TEntity> : IDelete<TEntity> 
{ 
    private readonly IDelete<TEntity> decoratedDelete; 
 
    public DeleteConfirmation(IDelete<TEntity> decoratedDelete) 
    { 
        this.decoratedDelete = decoratedDelete; 
    } 
 
    public void Delete(TEntity entity) 
    { 
        Console.WriteLine("Are you sure you want to delete the entity? [y/N]"); 
        var keyInfo = Console.ReadKey(); 
        if (keyInfo.Key == ConsoleKey.Y) 

From the Library of Ida Schander



ptg14200592

	 CHAPTER 8  Interface segregation	 257

        { 
            decoratedDelete.Delete(entity); 
        } 
    } 
}

This is an improvement, because there is less code overall, without the pass-through decoration 
methods, so the intent is much clearer. Also, less code means less testing. 

Before moving on to the next decorator, consider the following refactor that is available for the 
DeleteConfirmation decorator. You should encapsulate the user interrogation into a simple inter-
face. This way, you could write multiple different implementations of this new interface—one for each 
user interface type (for example, console, Windows Forms, and Windows Presentation Foundation)—
and the decorator would not need to change. You should do this because the DeleteConfirmation 
class does not currently adhere to the single responsibility principle. As it is now, it contains two 
reasons to change: the interface that it delegates to has changed, and you want to elicit confirmation 
from the user in a different manner. Asking users whether they want to delete an entity requires a 
very simple predicate-like interface, as shown in Listing 8-6.

LISTING 8-6  A very simple interface for asking the user to confirm something.

public interface IUserInteraction 
{ 
    bool Confirm(string message); 
}

Caching
The next decorator that you could implement is for the read methods: ReadOne and ReadAll. For 
both of these methods, you want to cache the returned value from the decorated implementation 
and return the contents of the cache in all subsequent requests. Again, with no equivalent analogy 
for caching the Create or Update methods, the first decorator contains needless methods, as in 
Listing 8-7.

LISTING 8-7  The caching decorator includes redundant, pass-through methods.

public class CrudCaching<TEntity> : ICreateReadUpdate<TEntity> 
{ 
    private TEntity cachedEntity; 
    private IEnumerable<TEntity> allCachedEntities;  
    private readonly ICreateReadUpdate<TEntity> decorated; 
 

From the Library of Ida Schander



ptg14200592

258	 PART II  Writing SOLID code

    public CrudCaching(ICreateReadUpdate<TEntity> decorated) 
    { 
        this.decorated = decorated; 
    } 
 
    public void Create(TEntity entity) 
    { 
        decorated.Create(entity); 
    } 
 
    public TEntity ReadOne(Guid identity) 
    { 
        if(cachedEntity == null) 
        { 
            cachedEntity = decorated.ReadOne(identity); 
        } 
        return cachedEntity; 
    } 
 
    public IEnumerable<TEntity> ReadAll() 
    { 
        if (allCachedEntities == null) 
        { 
            allCachedEntities = decorated.ReadAll(); 
        } 
        return allCachedEntities; 
    } 
 
    public void Update(TEntity entity) 
    { 
        decorated.Update(entity); 
    } 
 
}

By applying interface segregation a second time, you can factor out the two methods used for 
reading data into their own interface, and they can now be decorated separately. The new IRead 
interface, and its accompanying caching decorator, is shown in Listing 8-8. 

LISTING 8-8  The IRead interface is targeted specifically by the ReadCaching decorator.

public interface IRead<TEntity> 
{ 
    TEntity ReadOne(Guid identity); 
 
    IEnumerable<TEntity> ReadAll(); 
} 
// . . . 
public class ReadCaching<TEntity> : IRead<TEntity> 
{ 

From the Library of Ida Schander



ptg14200592

	 CHAPTER 8  Interface segregation	 259

    private TEntity cachedEntity; 
    private IEnumerable<TEntity> allCachedEntities; 
 
    private readonly IRead<TEntity> decorated; 
    public ReadCaching(IRead<TEntity> decorated) 
    { 
        this.decorated = decorated; 
    } 
 
    public TEntity ReadOne(Guid identity) 
    { 
        if(cachedEntity == null) 
        { 
            cachedEntity = decorated.ReadOne(identity); 
        } 
        return cachedEntity; 
    } 
 
    public IEnumerable<TEntity> ReadAll() 
    { 
        if (allCachedEntities == null) 
        { 
            allCachedEntities = decorated.ReadAll(); 
        } 
        return allCachedEntities; 
    } 
 
}

Before you implement the final decorator, the remaining interface contains only two methods, as 
Listing 8-9 shows.

LISTING 8-9  The remaining methods can probably be unified.

public interface ICreateUpdate<TEntity> 
{ 
    void Create(TEntity entity); 
 
    void Update(TEntity entity); 
}

The Create and Update methods have identical signatures. Not only that, they serve very similar 
purposes: the former saves a new entity, and the latter saves an existing entity. You could unify these 
methods into one Save method, which acknowledges that the distinction between creating and up-
dating is an implementation detail that clients don’t need to know about. After all, a client is likely to 
want to both save and update an entity, so requiring two interfaces that are so similar seems needless 
when there is a viable alternative. All that clients of the interface want to do is persist an entity. The 
refactored interface looks like the one in Listing 8-10.

From the Library of Ida Schander



ptg14200592

260	 PART II  Writing SOLID code

LISTING 8-10  ISave implementations will either create or update an entity, as appropriate.

public interface ISave<TEntity> 
{ 
    void Save(TEntity entity); 
}

After this refactor, you can add a new decorator that is specific to this interface—audit tracking. 
Every time a user saves an entity, you want to add some metadata to persistent storage. Specifically, 
you want to know which user enacted the save and at what time. Listing 8-11 shows the SaveAuditing 
decorator.

LISTING 8-11  Two ISave interfaces are used by the audit decorator.

public class SaveAuditing<TEntity> : ISave<TEntity> 
{ 
    private readonly ISave<TEntity> decorated; 
    private readonly ISave<AuditInfo> auditSave; 
    public SaveAuditing(ISave<TEntity> decorated, ISave<AuditInfo> auditSave) 
    { 
        this.decorated = decorated; 
        this.auditSave = auditSave; 
    } 
 
    public void Save(TEntity entity) 
    { 
        decorated.Save(entity); 
        var auditInfo = new AuditInfo 
        { 
            UserName = Thread.CurrentPrincipal.Identity.Name, 
            TimeStamp = DateTime.Now 
        }; 
        auditSave.Save(auditInfo); 
    } 
 
}

The SaveAuditing decorator implements the ISave interface, but it also needs to be constructed 
with two further ISave implementations. The first must match the TEntity generic type parameter 
of the decorator and is used to do the real work of saving (or, of course, to provide further decora-
tion on the way to doing the real work of saving). The second is an ISave implementation that is 
specifically for saving AuditInfo types. This class is not shown, but it can be inferred to contain 
string UserName and DateTime TimeStamp properties. When clients call the Save method, a new 
AuditInfo instance is created and its properties are set. The real implementation responsible for 
saving this instance will then persist this new record to storage. 

Again, it is worth reiterating that client code has no idea that this is happening; it is entirely unaware 
that auditing is occurring and does not need to change as a result of its implementation. Similarly, 
the leaf implementation of the ISave<TEntity> interface—that is, the nondecorator version that 

From the Library of Ida Schander



ptg14200592

	 CHAPTER 8  Interface segregation	 261

is responsible for the actual work of saving—is also unaware of the decorator and does not need to 
change to accommodate any specific decoration.

You now have three different interfaces where before you had one, and each has a decorator that 
provides some different, meaningful, real-world function. Figure 8-2 shows a UML class diagram of 
the new interfaces and their decorators after segregation.

FIGURE 8-2  Interface segregation allows you to target methods for decoration without redundancy.

Multiple interface decoration
Each decorator so far has maintained a one-to-one relationship with the interface that it enhances. 
This is true because each decorator implements the interface that it is decorating. But you can use 
the Adapter pattern in conjunction with the Decorator pattern to produce multiple decorators while 
minimizing the code you must write.

The next decorator you will create is intended to publish an event whenever a record is saved or 
deleted. This notification will allow disparate subscribers to act upon any change to persistent storage. 
Note that there is no analogous event for reading any records, so the IRead interface will not be 
targeted in this instance.

For this, you first need a mechanism for publishing and subscribing events. Continuing the theme 
of interface segregation, this is split into the two interfaces shown in Listing 8-12.

LISTING 8-12  Two interfaces for publishing and subscribing to events.

public interface IEventPublisher 
{ 
    void Publish<TEvent>(TEvent @event) 
        where TEvent : IEvent; 
} 
// . . . 
public interface IEventSubscriber 
{ 
    void Subscribe<TEvent>(TEvent @event) 
        where TEvent : IEvent; 
}

From the Library of Ida Schander



ptg14200592

262	 PART II  Writing SOLID code

The IEvent interface is extremely simple, containing just a string Name property. By using these 
two interfaces, a decorator can be created, as in Listing 8-13, that publishes a specific event when an 
entity is deleted.

LISTING 8-13  This decorator publishes an event when an entity is deleted.

public class DeleteEventPublishing<TEntity> : IDelete<TEntity> 
{ 
    private readonly IDelete<TEntity> decorated; 
    private readonly IEventPublisher eventPublisher; 
 
    public DeleteEventPublishing(IDelete<TEntity> decorated, IEventPublisher  
  eventPublisher) 
    { 
        this.decorated = decorated; 
        this.eventPublisher = eventPublisher; 
    } 
 
    public void Delete(TEntity entity) 
    { 
        decorated.Delete(entity); 
        var entityDeleted = new EntityDeletedEvent<TEntity>(entity); 
        eventPublisher.Publish(entityDeleted); 
    } 
 
}

From here, you have two choices: implementing the equivalent ISave decorator for publishing 
events on the same class or implementing the ISave decorator in a new class. Listing 8-14 shows the 
former option, which involves renaming the existing class and adding a new Save method.

LISTING 8-14  Two decorators can be implemented in one class.

public class ModificationEventPublishing<TEntity> : IDelete<TEntity>, ISave<TEntity> 
{ 
    private readonly IDelete<TEntity> decoratedDelete; 
    private readonly ISave<TEntity> decoratedSave; 
    private readonly IEventPublisher eventPublisher; 
 
    public ModificationEventPublishing(IDelete<TEntity> decoratedDelete, ISave<TEntity>  
  decoratedSave, IEventPublisher eventPublisher) 
    { 
        this.decoratedDelete = decoratedDelete; 
        this.decoratedSave = decoratedSave; 
        this.eventPublisher = eventPublisher; 
    } 
 

From the Library of Ida Schander



ptg14200592

	 CHAPTER 8  Interface segregation	 263

    public void Delete(TEntity entity) 
    { 
        decoratedDelete.Delete(entity); 
        var entityDeleted = new EntityDeletedEvent<TEntity>(entity); 
        eventPublisher.Publish(entityDeleted); 
    } 
 
    public void Save(TEntity entity) 
    { 
        decoratedSave.Save(entity); 
        var entitySaved = new EntitySavedEvent<TEntity>(entity); 
        eventPublisher.Publish(entitySaved); 
    } 
 
}

A single class can be the implementation for multiple decorators—but only when the context of 
the decorator is shared, as in this example. The ModificationEventPublishing decorator is imple-
menting the same functionality—event publication—for both of the interfaces that it implements. It 
would be unwise, however, to combine decorators for event publishing with those for auditing, for 
example. This is due to the relative dependencies involved. One decorator depends on the IEvent­
Publisher interface, whereas the other depends on the AuditInfo class. It would be better instead 
to separate those implementations into their own assemblies with their own dependency chains.

Client construction

The design of interfaces—segregated or otherwise—affects the classes that implement the interfaces 
and also the clients that use the interfaces. If clients are to use interfaces, they must in some way be 
supplied them. This chapter will continue, for the most part, to manually construct the implementa-
tions and provide them to clients via constructor parameters. For an alternative option, see the next 
chapter, which covers dependency injection.

The manner in which you supply the implementations to clients is partly dictated by the number 
of implementations of the segregated interfaces. If each interface is given its own implementation, 
each of those implementations needs to be constructed and supplied to the client. Alternatively, if all 
of the interfaces are implemented in a single class, a single instance is sufficient for all of the related 
dependencies on the client.

Multiple implementations, multiple instances
Continuing the CRUD example, assume that the IRead, ISave, and IDelete interfaces have all been 
implemented by different, distinct classes. A client needing to use these interfaces will, because of 
segregation, require three interfaces whereas it previously only required one. Such a client is shown in 
Listing 8-15.

From the Library of Ida Schander



ptg14200592

264	 PART II  Writing SOLID code

LISTING 8-15  The order-specific controller requires each facet of CRUD as a separate dependency.

public class OrderController 
{ 
    private readonly IRead<Order> reader; 
    private readonly ISave<Order> saver; 
    private readonly IDelete<Order> deleter; 
 
    public OrderController(IRead<Order> orderReader, ISave<Order> orderSaver,  
  IDelete<Order> orderDeleter) 
    { 
        reader = orderReader; 
        saver = orderSaver; 
        deleter = orderDeleter; 
    } 
 
    public void CreateOrder(Order order) 
    { 
        saver.Save(order); 
    } 
 
    public Order GetSingleOrder(Guid identity) 
    { 
        return reader.ReadOne(identity); 
    } 
 
    public void UpdateOrder(Order order) 
    { 
        saver.Save(order); 
    } 
 
    public void DeleteOrder(Order order) 
    { 
        deleter.Delete(order); 
    } 
}

This controller works specifically with order entities. This means that each of the interfaces supplied 
contains the Order class as the generic parameter. If you were to alter any of those declarations to use 
a different type, the operations provided by that interface would then require that type. For example, 
if you decided to change the delete interface parameter to IDelete<Customer>, the DeleteOrder 
method of the OrderController would complain that you were trying to delete an Order with a 
method that only accepts Customers. This is simply strong typing and generics in action.

Each method of this controller class requires a different interface to perform its function. For clar-
ity, each method maps one to one with the operations on the respective interfaces. It is quite likely 
that this will not always be the case, of course. 

As its name suggests, the OrderController deals only with Order classes. You can make use 
of the fact that the service interfaces are each generic by implementing a controller that is similarly 
generic. This is shown in Listing 8-16.

From the Library of Ida Schander



ptg14200592

	 CHAPTER 8  Interface segregation	 265

LISTING 8-16  An entity-generic version of the controller class requires an entity-generic version of each CRUD 
interface.

public class GenericController<TEntity> 
{ 
    private readonly IRead<TEntity> reader; 
    private readonly ISave<TEntity> saver; 
    private readonly IDelete<TEntity> deleter; 
 
    public GenericController(IRead<TEntity> entityReader, ISave<TEntity> entitySaver,  
  IDelete<TEntity> entityDeleter) 
    { 
        reader = entityReader; 
        saver = entitySaver; 
        deleter = entityDeleter; 
    } 
 
    public void CreateEntity(TEntity entity) 
    { 
        saver.Save(entity); 
    } 
 
    public TEntity GetSingleEntity(Guid identity) 
    { 
        return reader.ReadOne(identity); 
    } 
 
    public void UpdateEntity(TEntity entity) 
    { 
        saver.Save(entity); 
    } 
 
    public void DeleteEntity(TEntity entity) 
    { 
        deleter.Delete(entity); 
    } 
}

There is little difference between this version of the controller and the prior one, but the im-
pact on the amount of code that you might have to write could be significant. This controller can 
be instantiated to operate on any entity, and the service interfaces that are required are all forced 
to agree on the same operation. No longer can you supply different types for each one—such as 
ISave<Customer>, IRead<Order>, IDelete<LineItem>.

Either version of the controller can be created in much the same way. Listing 8-17 shows how you 
must instantiate an instance of each class that implements the required interfaces before passing 
them in to the controller’s constructor. 

From the Library of Ida Schander



ptg14200592

266	 PART II  Writing SOLID code

LISTING 8-17  Creating the OrderController with separate instances of the dependencies.

static OrderController CreateSeparateServices() 
{ 
    var reader = new Reader<Order>(); 
    var saver = new Saver<Order>(); 
    var deleter = new Deleter<Order>(); 
 
    return new OrderController(reader, saver, deleter); 
}

By creating classes for each individual segregated interface, the segregation has, in effect, permeated 
the implementations. The key point to note is that the three parameters to the OrderController 
class—reader, saver, and delete—are not just distinct instances, they are also distinct types.

Single implementation, single instance
A second approach to implementing segregated interfaces is to inherit all of them into one single 
class. This might at first appear somewhat counterintuitive (after all, what is the point of segregating 
interfaces just to unify them all again in the implementation?), but be patient. Listing 8-18 shows all 
three interfaces on a single class.

LISTING 8-18  All interfaces can be implemented in a single class.

public class CreateReadUpdateDelete<TEntity> :  
      IRead<TEntity>, ISave<TEntity>, IDelete<TEntity> 
{ 
    public TEntity ReadOne(Guid identity) 
    { 
        return default(TEntity);    
    } 
 
    public IEnumerable<TEntity> ReadAll() 
    { 
        return new List<TEntity>(); 
    } 
 
    public void Save(TEntity entity) 
    { 
             
    } 
 
    public void Delete(TEntity entity) 
    { 
             
    } 
}

From the Library of Ida Schander



ptg14200592

	 CHAPTER 8  Interface segregation	 267

Remember, clients are not aware of the existence of this class. At compile time, they are only aware 
of the individual interfaces, which it requires one by one. To the client, each interface will still only 
have the members declared on that interface, regardless of the fact that the underlying implementa-
tion has other operations available. This is how interfaces are used for encapsulation and information 
hiding—they are analogous to a small window onto the implementing class, masking out what it does 
not allow the client to see.

Even with this change, the controller from the multiple implementation example is still sufficient: it 
correctly asks for each interface as a separate constructor parameter. What needs to change is how you 
construct the controller and supply it with those parameters. This is shown in Listing 8-19.

LISTING 8-19  Although it might look unusual, this is an expected side effect of interface segregation.

public OrderController CreateSingleService() 
{ 
    var crud = new CreateReadUpdateDelete<Order>(); 
 
    return new OrderController(crud, crud, crud); 
}

First, you only need a single instance of the CreateReadUpdateDelete class. It implements all 
three interfaces, so it suffices for all three constructor parameters.

As unusual as that might look—passing in the same instance three times—it makes sense because 
each parameter requires a different facet of the class. This is a common side effect of the interface 
segregation principle.

Of the two variations explored, this single implementation for a suite of related—but segregated—
interfaces is not as versatile as having multiple implementations. It is most commonly used for the leaf 
implementation of the interfaces—that is, the implementation that is neither decorator nor adapter. 
It is the one that does the actual work. The reason for this is that the context is the same across all 
implementations. Whether you are using NHibernate, ADO.NET, Entity Framework, or some other 
persistence framework, the leaf implementation is the one that directly uses these libraries. In each 
case —reading, saving, or deleting—that library will be used to do the main work.

Some decorators and adapters also apply to the full suite of segregated interfaces, but it is more 
common for these to be implemented individually only on the appropriate interface.

The Interface Soup anti-pattern
A common mistake is to take the segregated interfaces and reunify them in an aggregate for some 
reason, as Listing 8-20 demonstrates. This is usually done to avoid the odd-looking multiple injection 
that you saw previously.

From the Library of Ida Schander



ptg14200592

268	 PART II  Writing SOLID code

LISTING 8-20  Interface segregation is wrongly circumvented when all interfaces are thrown together to form 
a soup.

interface IInterfaceSoupAntiPattern<TEntity> : IRead<TEntity>, ISave<TEntity>,  
  IDelete<TEntity> 
{ 
}

This creates an ”interface soup” that is made from constituent interfaces but undermines the ben-
efits of interface segregation. Implementers will again be required to provide implementations of all 
operations and so there is no scope for targeted decoration. 

Splitting interfaces 

The ability—or requirement—to decorate interfaces is only one reason that you might want to split 
a large interface into smaller constituents. However, I view this as a good enough reason for the 
practice.

Two more utilitarian reasons for interface segregation are based on client need and architectural 
design.

Client need
Different developers work on different parts of code. Therefore, it is likely that two or more develop-
ers will converge at some point, with one using the interface of another. Having detailed, step-by-step 
instructions for an interface is not only unlikely, but also impractical. Writing any code—especially 
code that is sufficiently unit tested—takes time. Writing extensive documentation, even for the end 
user, is tedious and time consuming. Instead, it is better to program as defensively as is possible, to 
prevent other developers—or even yourself in the future—from inadvertently doing something they 
shouldn’t with your interface.

It helps to remember that clients need only what they need. Monolithic interfaces tend to hand 
too much control to clients. Interfaces with a large number of members allow clients to do more than 
they perhaps should, clouding the intent and misdirecting the focus. All classes should always have a 
single responsibility.

Listing 8-21 shows an interface that allows clients to interact with a user’s settings—specifically, the 
user interface theme that the clients have set for the application. This example is surprising—it is an 
interface with a single property that, in this particular scenario, is still exposing too much to its client. 
How can you possibly segregate this further?

From the Library of Ida Schander



ptg14200592

	 CHAPTER 8  Interface segregation	 269

LISTING 8-21  The user settings interface allows access to the application’s current theme.

public interface IUserSettings 
{ 
    string Theme 
    { 
        get; 
        set; 
    } 
}

First, see the implementation in Listing 8-22, which uses the ConfigurationManager class to read 
and write to the AppSettings section of the configuration files.

LISTING 8-22  An implementation that loads settings from the configuration file.

public class UserSettingsConfig : IUserSettings 
{ 
    private const string ThemeSetting = "Theme"; 
 
    private readonly Configuration config; 
 
    public UserSettingsConfig() 
    { 
        config = ConfigurationManager.OpenExeConfiguration(ConfigurationUserLevel.None); 
    } 
 
    public string Theme 
    { 
        get 
        { 
            return config.AppSettings.Settings[ThemeSetting].Value; 
        } 
        set 
        { 
            config.AppSettings.Settings[ThemeSetting].Value = value; 
            config.Save(); 
            ConfigurationManager.RefreshSection("appSettings"); 
        } 
    } 
}

So far, so what? Well, there are two clients to this interface. One is focused only on reading the 
data and the other is focused on writing the data. Herein lies the problem, as shown in Listing 8-23.

From the Library of Ida Schander



ptg14200592

270	 PART II  Writing SOLID code

LISTING 8-23  The clients of the interface use the property for different purposes.

public class ReadingController 
{ 
    private readonly IUserSettings settings; 
 
    public ReadingController(IUserSettings settings) 
    { 
        this.settings = settings; 
    } 
 
    public string GetTheme() 
    { 
        return settings.Theme; 
    } 
} 
// . . .  
public class WritingController 
{ 
    private readonly IUserSettings settings; 
 
    public WritingController(IUserSettings settings) 
    { 
        this.settings = settings; 
    } 
 
    public void SetTheme(string theme) 
    { 
        settings.Theme = theme; 
    } 
}

As is to be expected, the ReadingController only uses the getter of the Theme property, whereas 
the WritingController only uses the setter of the Theme property. However, due to a lack of seg-
regation, there is nothing to stop the writer from retrieving the theme nor, which is more problematic, 
the reader from modifying the theme. 

In order to be truly defensive and eliminate the possibility of interface misuse, you can segregate 
the read and write portions of the interface, as shown in Listing 8-24.

LISTING 8-24  The interface is split into two parts: one for reading the theme, and one for writing it.

public interface IUserSettingsReader 
{ 
    string Theme 
    { 
        get; 
    } 
} 

From the Library of Ida Schander



ptg14200592

	 CHAPTER 8  Interface segregation	 271

// . . . 
public interface IUserSettingsWriter 
{ 
    string Theme 
    { 
        set; 
    } 
}

Although this might look a little odd, it is absolutely valid C#. It is perhaps not unusual that an 
interface can dictate that implementers only supply a getter for a property, but it is slightly more 
unusual that it require only a setter.

Each controller is now able to depend only on the interface that it truly requires. As Listing 8-25 
shows, the ReadingController is paired with the IUserSettingsReader, and the Writing­
Controller is paired with the IUserSettingsWriter.

LISTING 8-25  Each of the two controllers now depends only on the interface that it requires.

public class ReadingController 
{ 
    private readonly IUserSettingsReader settings; 
 
    public ReadingController(IUserSettingsReader settings) 
    { 
        this.settings = settings; 
    } 
 
    public string GetTheme() 
    { 
        return settings.Theme; 
    } 
} 
// . . . 
public class WritingController 
{ 
    private readonly IUserSettingsWriter settings; 
 
    public WritingController(IUserSettingsWriter settings) 
    { 
        this.settings = settings; 
    } 
 
    public void SetTheme(string theme) 
    { 
        settings.Theme = theme; 
    } 
}

From the Library of Ida Schander



ptg14200592

272	 PART II  Writing SOLID code

Via interface segregation, you have prevented the reader from being able to write the user set-
tings, and you have prevented the writer from being able to read the user settings. Developers are 
thus not able to accidently dilute the purpose of the controller by mistakenly performing an opera-
tion that they should not.

The implementing class, which uses the ConfigurationManager, changes only very subtly, as 
shown in Listing 8-26.

LISTING 8-26  The UsersSettingsConfig class now implements both interfaces, but clients are unaware.

public class UserSettingsConfig : IUserSettingsReader, IUserSettingsWriter 
{ 
    private const string ThemeSetting = "Theme"; 
 
    private readonly Configuration config; 
 
    public UserSettingsConfig() 
    {  
        config = ConfigurationManager.OpenExeConfiguration(ConfigurationUserLevel.None); 
    } 
 
    public string Theme 
    { 
        get 
        { 
            return config.AppSettings.Settings[ThemeSetting].Value; 
        } 
        set 
        { 
            config.AppSettings.Settings[ThemeSetting].Value = value; 
            config.Save(); 
            ConfigurationManager.RefreshSection("appSettings"); 
        } 
    } 
}

Other than in the fact that it inherits from both reader and writer interfaces, this class is identi-
cal to the previous version. Remember that this same implementation can easily be passed to both 
the ReadingController and the WritingController, yet the window provided by the interface 
means that the set and get operations, respectively, will not be available.

The requirement that some clients should be able to read without writing is particularly likely. The 
other scenario, where writers are not allowed to read, is less likely. In this case, instead of total segre-
gation, you can segregate and inherit the interfaces, as shown in Listing 8-27.

From the Library of Ida Schander



ptg14200592

	 CHAPTER 8  Interface segregation	 273

LISTING 8-27  Now using methods, the writer inherits from the reader.

public interface IUserSettingsReader 
{ 
    string GetTheme(); 
} 
// . . . 
public interface IUserSettingsWriter : IUserSettingsReader 
{ 
    void SetTheme(string theme); 
}

In order to do this, the Theme property had to be converted to GetTheme and SetTheme methods. 
This is because the language doesn’t quite support property inheritance cleanly. The Theme property 
is present on both interfaces. Although classes are able to cleanly implement the get and set parts 
of an interface from two different interfaces, this is unfortunately not the case with interface inheri-
tance. When property names clash through interface inheritance, the compiler warns that the base 
class property is hidden by the subclass property. This would not achieve the result that you want, 
and the compiler’s suggestion that you replace the base class property with the new keyword is not 
a solution, either—the getter would still not be inherited.

Instead, you can change from properties to methods with the same semantic function. The 
GetTheme method is the same as Theme.get, and the SetTheme method is the same as Theme.set. 
Now the inheritance works as expected—implementers and clients of the reader interface will only have 
access to the GetTheme method, and implementers and clients of the writer interface will have access to 
both the GetTheme and SetTheme methods. Additionally, any implementation of the IUserSettings­
Writer interface is automatically an implementation of the IUserSettingsReader interface.

Listing 8-28 shows a change to the writing controller: it first checks whether the theme has been 
changed before it tries to set a new theme. This is now acceptable because the user settings writer 
service is also the user settings reader service. In this case, the two interfaces do not need to be sup-
plied separately in order to be used.

LISTING 8-28  The writing controller has access to both the getter and setter through one interface.

public class WritingController 
{ 
    private readonly IUserSettingsWriter settings; 
 
    public WritingController(IUserSettingsWriter settings) 
    { 
        this.settings = settings; 
    } 
 

From the Library of Ida Schander



ptg14200592

274	 PART II  Writing SOLID code

    public void SetTheme(string theme) 
    { 
        if (settings.GetTheme() != theme) 
        { 
            settings.SetTheme(theme); 
        } 
    } 
}

Authorization
Another example of segregation by client need is when a certain set of operations is only available 
when the application is in a specific state. For example, the operations that a user can perform are 
typically different depending on whether that user is logged in or not.

The unauthorized interface shown in Listing 8-29 contains operations that can be done by an 
anonymous, unauthenticated user.

LISTING 8-29  This interface only contains operations that anonymous users can perform.

public interface IUnauthorized 
{ 
    IAuthorized Login(string username, string password); 
 
    void RequestPasswordReminder(string emailAddress); 
}

Note that the Login method returns an interface. It is only returned when the credentials are 
correct, and it allows clients to perform authorized actions, as shown in Listing 8-30.

LISTING 8-30  After logging in, the user will have access to privileged operations.

public interface IAuthorized 
{ 
    void ChangePassword(string oldPassword, string newPassword); 
 
    void AddToBasket(Guid itemID); 
 
    void Checkout(); 
 
    void Logout(); 
}

The operations on this interface are only available to a user who has entered his credentials and is 
logged in as authenticated.

From the Library of Ida Schander



ptg14200592

	 CHAPTER 8  Interface segregation	 275

Segregating interfaces by client need prevents programmers from doing something they should 
not. In this case, it prevents them from executing a privileged action with an anonymous user. Of 
course, there are ways around this, but it is hoped that developers will realize that they are making a 
very fundamental change to the application in order to do something that they should not.

Architectural need
A second driver of the interface segregation principle is architectural design. High-level decisions can 
have a large impact on the low-level organization of the code. 

In this example, the decision has been made to have an asymmetric architecture. Similar to the 
read/write split shown earlier, the IPersistence interface shown in Listing 8-31 contains a combina-
tion of queries and commands.

LISTING 8-31  This persistence-layer interface contains both commands and queries.

public interface IPersistence 
{ 
    IEnumerable<Item> GetAll(); 
 
    Item GetByID(Guid identity); 
 
    IEnumerable<Item> FindByCriteria(string criteria); 
 
    void Save(Item item); 
 
    void Delete(Item item); 
}

The asymmetric architecture that this interface is part of is specifically CQRS: Command/Query 
Responsibility Segregation. The recurrence of the word segregation is no accident here, because this 
architectural pattern is about to cause you to perform some interface segregation.

A first implementation of the IPersistence interface is shown in Listing 8-32.

LISTING 8-32  When commands and queries are handled asymmetrically, the implementation is muddled.

public class Persistence : IPersistence 
{ 
    private readonly ISession session; 
    private readonly MongoDatabase mongo; 
 
    public Persistence(ISession session, MongoDatabase mongo) 
    { 
        this.session = session; 
        this.mongo = mongo; 
    } 
 

From the Library of Ida Schander



ptg14200592

276	 PART II  Writing SOLID code

    public IEnumerable<Item> GetAll() 
    { 
        return mongo.GetCollection<Item>("items").FindAll(); 
    } 
 
    public Item GetByID(Guid identity) 
    { 
        return mongo.GetCollection<Item>("items").FindOneById(identity.ToBson()); 
    } 
 
    public IEnumerable<Item> FindByCriteria(string criteria) 
    { 
        var query = BsonSerializer.Deserialize<QueryDocument>(criteria); 
        return mongo.GetCollection<Item>("Items").Find(query); 
    } 
 
    public void Save(Item item) 
    { 
        using(var transaction = session.BeginTransaction()) 
        { 
            session.Save(item); 
 
            transaction.Commit(); 
        } 
    } 
 
    public void Delete(Item item) 
    { 
        using(var transaction = session.BeginTransaction()) 
        { 
            session.Delete(item); 
 
            transaction.Commit(); 
        } 
    } 
}

There are two very different dependencies here: NHibernate is used for commands, and MongoDB is 
used for queries. The former is an Object/Relational Mapper for use with a domain model. The latter 
is a document storage library for fast querying. This class has two disparate dependencies and there-
fore two reasons to change. With such differing dependencies, it is very likely that their respective 
decorators will similarly be different. Rather than split the entire interface into very small operations, 
as was done with the previous CRUD interface, this interface will only be split into two parts: com-
mands and queries. Figure 8-3 shows a UML class diagram of how this will be orchestrated.

With the commands and queries split between two interfaces, the implementations can then de-
pend on totally different packages. The commands implementation will depend only on NHibernate, 
and the queries implementation will depend only on MongoDB.

From the Library of Ida Schander



ptg14200592

	 CHAPTER 8  Interface segregation	 277

FIGURE 8-3  Splitting interfaces by architectural need allows implementations to have very different dependencies.

Ideally, these two implementations will not only be different classes, but those classes will reside in 
different packages—assemblies—too. If not, the problem is only partially alleviated because it will be 
impossible to reuse one implementation without depending on the other, plus the chain of depen-
dencies that comes with it.

Listing 8-33 shows the interfaces after they have been split. The two can now be implemented 
separately.

LISTING 8-33  The interface has been split into query and command methods.

public interface IPersistenceQueries 
{ 
    IEnumerable<Item> GetAll(); 
 
    Item GetByID(Guid identity); 
 
    IEnumerable<Item> FindByCriteria(string criteria); 
} 
// . . . 
public interface IPersistenceCommands 
{ 
    void Save(Item item); 
 
    void Delete(Item item); 
}

From the Library of Ida Schander



ptg14200592

278	 PART II  Writing SOLID code

As shown in Listing 8-34, the queries class is the same implementation as before, except for the 
commands—and the dependency on NHibernate—being completely excised.

LISTING 8-34  The query implementation depends only on MongoDB.

public class PersistenceQueries : IPersistenceQueries 
{ 
    private readonly MongoDatabase mongo; 
 
    public Persistence(MongoDatabase mongo) 
    { 
        this.mongo = mongo; 
    } 
 
    public IEnumerable<Item> GetAll() 
    { 
        return mongo.GetCollection<Item>("items").FindAll(); 
    } 
 
    public Item GetByID(Guid identity) 
    { 
        return mongo.GetCollection<Item>("items").FindOneById(identity.ToBson()); 
    } 
 
    public IEnumerable<Item> FindByCriteria(string criteria) 
    { 
        var query = BsonSerializer.Deserialize<QueryDocument>(criteria); 
        return mongo.GetCollection<Item>("Items").Find(query); 
    } 
}

In exactly the same manner, the commands class contains no queries, nor any reference to 
MongoDB, as shown in Listing 8-35.

LISTING 8-35  The command implementation depends only on NHibernate.

public class PersistenceCommands : IPersistenceCommands 
{ 
    private readonly ISession session; 
    public PersistenceCommands(ISession session) 
    { 
        this.session = session; 
    } 
 
    public void Save(Item item) 
    { 
        using(var transaction = session.BeginTransaction()) 
        { 

From the Library of Ida Schander



ptg14200592

	 CHAPTER 8  Interface segregation	 279

            session.Save(item); 
 
            transaction.Commit(); 
        } 
    } 
 
    public void Delete(Item item) 
    { 
        using(var transaction = session.BeginTransaction()) 
        { 
            session.Delete(item); 
 
            transaction.Commit(); 
        } 
    } 
}

Single-method interfaces
Interface segregation taken to its logical conclusion results in very small interfaces. The smaller the 
interface, the more versatile it becomes. Such interfaces have analogies in the framework: Action, 
Func, and Predicate. However, delegates are not as versatile as interfaces. Though delegates 
certainly have their uses, the fact that interfaces can be decorated, adapted, and composed in all 
kinds of different ways sets them apart. Because interfaces must be implemented, there can also be 
extra context provided through other interfaces implemented on the same class, or via constructor 
parameters.

The simplest interface available has a single method. The simplest method available accepts no 
parameters and returns no value, as shown in Listing 8-36.

LISTING 8-36  ITask is the simplest interface possible.

public interface ITask 
{ 
    void Do();    
}

This interface is extremely decoratable. Because it returns no value, it can even have an asynchro-
nous fire-and-forget decorator. It can be used whenever a client needs to send a message but does 
not have any context to provide it, nor does it require any response to be returned.

A step up from this is the action interface, which is analogous to the Action delegate in the frame-
work. It takes a generic parameter that dictates the type of its context. The IAction interface is 
shown in Listing 8-37.

From the Library of Ida Schander



ptg14200592

280	 PART II  Writing SOLID code

LISTING 8-37  The IAction interface adds a context parameter.

public interface IAction<TContext> 
{ 
    void Do(TContext context); 
}

This is only slightly more complex than the task. If you introduce a return value, instead of a 
parameter, you create a function, as shown in Listing 8-38.

LISTING 8-38  IFunction interfaces have return values.

public interface IFunction<TReturn> 
{ 
    TReturn Do();    
}

A further specialization of this interface is to require that the function return a Boolean value. This 
creates a predicate, as shown in Listing 8-39.

LISTING 8-39  IPredicate is a function that returns a Boolean value.

public interface IPredicate 
{ 
    bool Test(); 
}

The predicate can be used to encapsulate a branching test, such as an if statement or the clause 
of a loop. 

Although these interfaces look unassuming, a lot can be achieved by decorating, adapting, and 
composing a number of different instances of these interfaces.

Conclusion

This chapter has been dedicated to the art of good interface design. Too often, interfaces are large 
facades behind which huge subsystems are hidden. At a certain critical mass, interfaces lose the 
adaptability that makes them so fundamental to developing solid code. 

There are plenty of reasons why interfaces should be segregated—to aid decoration, to correctly 
hide functionality from clients, as self-documentation for other developers, or as a side effect of ar-
chitectural design. Whatever the reason, it is a technique that should be kept at the forefront of your 
mind whenever you are creating an interface. As with most programming tools, it is easier to start out 
on the right path than to go back and heavily refactor.

From the Library of Ida Schander



ptg14200592

		  281

C H A P T E R  9

Dependency injection

After completing this chapter, you will be able to

■■ Understand the importance of dependency injection.

■■ Use dependency injection as the glue that holds SOLID code together.

■■ Choose between Poor Man’s Dependency Injection, an Inversion of Control container,  
or convention over configuration.

■■ Avoid dependency injection anti-patterns.

■■ Organize your solutions around composition roots and resolution roots.

■■ Know how the Factory pattern collaborates with dependency injection to manage object 
lifetimes correctly.

Dependency injection (DI) is a very simple concept with a similarly simple implementation. However, 
this simplicity belies the importance of the pattern. DI is the glue without which the techniques of the 
previous SOLID chapters—and much of the Agile foundation chapters—would not be possible. 

When something is so simple, yet so important, people tend to overcomplicate it. DI is no excep-
tion, but there are a number of pitfalls that you should be aware of. These include anti-patterns and 
general bad practices that subvert the intent of this pattern.

Implemented correctly, dependency injection is invisible to the majority of a project’s code. It is 
limited to a very small amount of the code, often in a single assembly. The trick is to plan for depen-
dency injection from the outset, because integrating it into an established project is difficult and 
time consuming.

Humble beginnings

The following example highlights the underlying problem that dependency injection solves. Imagine 
that you are developing a task management application that allows the user to manage a to-do list. In 
this hypothetical scenario, you are still in the early stages of development, using Windows Presentation 
Foundation (WPF) for the user interface. So far, you have a main window for the application that 
does little other than show the current state of your to-do list, which is read from persistent stor-
age. Figure 9-1 shows this window.

From the Library of Ida Schander



ptg14200592

282	 PART II  Writing SOLID code

FIGURE 9-1  The task list has some state beyond the task description: priority, due date, and the task’s 
completion state.

Because this is a WPF application, you are using the Model-View-ViewModel (MVVM) pattern to 
ensure a separation of concerns between the layers. The application strives to use best practices—
although dependency injection is still to come. One of the view models is the backing controller for 
the main window. TaskListController delegates to a TaskService to retrieve all of the tasks. An 
example of how this is currently accomplished without dependency injection is shown in Listing 9-1.

LISTING 9-1  This controller does not use dependency injection.

{ 
    public event PropertyChangedEventHandler PropertyChanged = delegate { }; 
 
    private readonly ITaskService taskService; 
    private readonly IObjectMapper mapper; 
    private ObservableCollection<TaskViewModel> allTasks; 
 
    public TaskListController() 
    { 
        this.taskService = new TaskServiceAdo(); 
        this.mapper = new MapperAutoMapper(); 
             
        var taskDtos = taskService.GetAllTasks(); 
        AllTasks = new  
  ObservableCollection<TaskViewModel>(mapper.Map<IEnumerable<TaskViewModel>>(taskDtos)); 
    } 
 
    public ObservableCollection<TaskViewModel> AllTasks 
    { 
        get 
        { 
            return allTasks; 
        } 
        set 
        { 

From the Library of Ida Schander



ptg14200592

	 CHAPTER 9  Dependency injection	 283

            allTasks = value; 
            PropertyChanged(this, new PropertyChangedEventArgs("AllTasks")); 
        } 
    } 
 
}

The problems with this approach include:

■■ Difficulty in unit testing the controller due to a dependency on an implementation.

■■ Lack of clarity as to what this view model requires—depends on—unless its source is checked.

■■ Implied dependency from this class to the dependencies of the service.

■■ Lack of flexibility in providing alternative service implementations.

The rest of this section investigates these problems in greater depth by comparing the original 
class with a refactored version that uses dependency injection, as shown in Listing 9-2. (The changes 
have been highlighted in bold.)

LISTING 9-2  After refactoring, this controller uses dependency injection.

public class TaskListController : INotifyPropertyChanged 
{ 
    public event PropertyChangedEventHandler PropertyChanged = delegate { }; 
 
    private readonly ITaskService taskService; 
    private readonly IObjectMapper mapper; 
    private ObservableCollection<TaskViewModel> allTasks; 
 
    public TaskListController(ITaskService taskService, IObjectMapper mapper) 
    { 

        this.taskService = taskService; 

        this.mapper = mapper; 

    } 

 
    public void OnLoad() 
    { 
        var taskDtos = taskService.GetAllTasks(); 
        AllTasks = new  
  ObservableCollection<TaskViewModel>(mapper.Map<IEnumerable<TaskViewModel>>(taskDtos)); 
    } 
 
    public ObservableCollection<TaskViewModel> AllTasks 
    { 
        get 
        { 
            return allTasks; 
        } 
        set 
        { 

From the Library of Ida Schander



ptg14200592

284	 PART II  Writing SOLID code

            allTasks = value; 
            PropertyChanged(this, new PropertyChangedEventArgs("AllTasks")); 
        } 
    } 
 
}

To unit test the first class in isolation, as you should, the TaskService would need to be mocked. 
However, it is unlikely that the TaskService can be mocked by conventional means. It is not likely 
to be a proxiable class, nor should you be forced to make it so. The second class accepts an ITask­
Service, which is an interface, rather than a class. This is more testable because interfaces are always 
proxiable.

Note  A class is said to be proxiable if an alternative implementation—known as a proxy—
can be provided to the client. Classes are only proxiable if they declare all of their methods 
as virtual. Interfaces, on the other hand, are always proxiable.

If a class arbitrarily constructs classes inside its methods, you cannot know externally what it requires 
in order to function correctly. The first example, without DI, is a black box of dependencies. You can 
only discover what it needs by opening the class file and reading through it studiously. It declares 
none of its dependencies as part of its interface or method signatures. The second example, with DI, 
clearly states that it needs an implementation of the task service in order to function. This is discover-
able from client code by using IntelliSense, which is included with Microsoft Visual Studio.

When a dependency exists between class A and class B, if class B has a dependency on class C, it 
follows that class A is implicitly dependent on class C. This is how the Entourage anti-pattern manifests 
and leads to an interconnected web of dependencies that are very difficult to rectify. If you ensure 
that your interfaces generalize—that is, that they correctly abstract their behavior—a class that depends 
on an interface does not depend on anything further. This holds true even though implementations of 
the interface might depend on something heavy and external, such as a database. This is the Stairway 
pattern correctly applied.

When objects are instantiated directly, you also lose a possible extension point that an interface 
would otherwise provide. You cannot inherit from the TaskService and enhance its methods—
assuming that they are declared virtual—because you would have to amend the controller to directly 
construct a new instance of this subclass. Interfaces lend themselves to all sorts of interesting patterns 
that can be used to provide alternative implementations or enhance the existing implementation. 
Additionally, as you have learned, this can be done after the initial version of the class has been writ-
ten, before new requirements have been discovered. This is the key to code adaptability.

From the Library of Ida Schander



ptg14200592

	 CHAPTER 9  Dependency injection	 285

The Task List application
Figure 9-2 shows the package-level and class-level organization that you are aiming for with the Task 
List application. 

FIGURE 9-2  UML class diagram of the three-layered Task List application, with packages.

The user interface consists of WPF and controller/view model–specific code. The service layer 
is abstracted from the controllers via an interface, which has an implementation that uses a simple 
ADO.NET call to retrieve the tasks from persistent storage.

The TaskDto class is returned by the service as an in-memory representation of a task row from 
storage. This is a Plain Old CLR Object (POCO) and, as such, it is not as feature rich as a WPF view model 
really should be. Thus, when TaskController retrieves the TaskDto objects from the ITaskService, 
it asks an IObjectMapper to convert them to TaskViewModel objects, which implement INotify­
PropertyChanged and can be embellished with other view-specific features.

From the Library of Ida Schander



ptg14200592

286	 PART II  Writing SOLID code

The ADO.NET implementation of the ITaskService interface is shown in Listing 9-3. The con-
structor is your main concern, but later this chapter will discuss a lingering code smell in this class.

LISTING 9-3  The TaskService is responsible for retrieving the task list data.

public class TaskServiceAdo : ITaskService 
{ 
    public TaskServiceAdo(ISettings settings) 
    { 

        this.settings = settings; 

    } 
 
    public IEnumerable<TaskDto> GetAllTasks() 
    { 
        var allTasks = new List<TaskDto>(); 
 
         
    private readonly ISettings settings; 
 
    private const int IDIndex = 0; 
    private const int DescriptionIndex = 1; 
    private const int PriorityIndex = 2; 
    private const int DueDateIndex = 3; 
    private const int CompletedIndex = 4; 
        using(var connection = new  
  SqlConnection(settings.GetSetting("TaskDatabaseConnectionString"))) 
        { 
            connection.Open(); 
 
            using(var transaction = connection.BeginTransaction()) 
            { 
                var command = connection.CreateCommand(); 
                command.Transaction = transaction; 
                command.CommandType = CommandType.StoredProcedure; 
                command.CommandText = "[dbo].[get_all_tasks]"; 
 
                using(var reader = command.ExecuteReader(CommandBehavior.CloseConnection)) 
                { 
                    if (reader.HasRows) 
                    { 
                        while (reader.Read()) 
                        { 
                            allTasks.Add( 
                                new TaskDto 

From the Library of Ida Schander



ptg14200592

	 CHAPTER 9  Dependency injection	 287

                                { 
                                    ID = reader.GetInt32(IDIndex), 
                                    Description = reader.GetString(DescriptionIndex), 
                                    Priority = reader.GetString(PriorityIndex), 
                                    DueDate = reader.GetDateTime(DueDateIndex), 
                                    Completed = reader.GetBoolean(CompletedIndex) 
                                } 
                            ); 
                        } 
                    } 
                } 
            } 
        } 
 
        return allTasks; 
    } 
 
}

The ISettings interface abstracts away from this class the details of retrieving the connection 
string. An implementation that is an adapter for the Microsoft .NET Framework’s Configuration­
Manager class is provided. It is not hard to imagine that the settings could end up being stored 
elsewhere at some point, which justifies the use of an interface. Another problem is that the 
ConfigurationManager class is static and, thus, hard to mock. Using it directly would not only 
limit your options for retrieving application settings such as connection strings, it would also make 
the TaskServiceAdo class less testable.

Constructing the object graph
Often in this book, it has been an accepted fact that interfaces are injected into constructors. Eventu-
ally, of course, interfaces prove to be insufficient, and you must commit to an implementation. There 
are two main options for accomplishing this: Poor Man’s Dependency Injection and using an Inversion 
of Control container. In order to exemplify how dependency injection works, this section will first look 
at Poor Man’s DI.

Poor Man’s Dependency Injection
This pattern is so named because it does not require any external dependencies in order to function. 
It involves constructing the necessary object graph for the controller ahead of time. Listing 9-4 shows 
how to construct the refactored TaskListController and provide it to the TaskListView, which is 
the application’s main window.

From the Library of Ida Schander



ptg14200592

288	 PART II  Writing SOLID code

LISTING 9-4  Poor Man’s DI is verbose but flexible.

public partial class App : Application 
{ 
    private void OnApplicationStartup(object sender, StartupEventArgs e) 
    {     
        CreateMappings(); 
 
        var settings = new ApplicationSettings(); 
        var taskService = new TaskServiceAdo(settings); 
        var objectMapper = new MapperAutoMapper(); 
        controller = new TaskListController(taskService, objectMapper); 
        MainWindow = new TaskListView(controller); 
        MainWindow.Show(); 
 
        controller.OnLoad(); 
    } 
 
    private void CreateMappings() 
    { 
        AutoMapper.Mapper.CreateMap<TaskDto, TaskViewModel>(); 
    } 
 
    private TaskListController controller; 
}

This code is the entry point to your application. The OnApplicationStartup method is an event 
handler that is called by internal WPF code to inform you that you can initialize things. In different 
types of applications, the entry point varies in style but is always a good place to put your depen-
dency injection code.

The process of bootstrapping the application is very simple. The target is to construct a Task­
ListView, because that is the view class that acts as the resolution root of the application. Resolu-
tion roots are covered later in this chapter. In order to construct that class, you need a TaskList­
Controller instance. But that class requires both an ITaskService and an IObjectMapper, 
so you instantiate classes for both—this is where you are committing to the implementations. 
The TaskServiceAdo, in turn, requires an ISettings implementation, so you commit to the 
ApplicationSettings, which is an adapter for the ConfigurationManager .NET Framework 
class. Figure 9-3 clarifies this with a class diagram.

From the Library of Ida Schander



ptg14200592

	 CHAPTER 9  Dependency injection	 289

FIGURE 9-3  The interfaces, their implementations, and their dependencies, all of which make up the Task List 
application.

Each class requires one or more dependencies as sockets that are implemented by other classes 
that might also require dependencies. It is common for an implementation to be an adapter, such as 
the MapperAutoMapper and the ApplicationSettings classes. These simply fulfil the interface 
required of the dependency but delegate the actual work to another class. Even if the class is not an 
adapter, it is likely to have some dependencies of its own to which it delegates some of the work, like 
the TaskServiceAdo, which uses ADO .NET for the real retrieval of data. Other implementations 
of the ITaskService could get the task list from anywhere—a TaskServiceNHibernate class 
would be an alternative implementation that delegated much of the work to NHibernate. A Task­
ServiceOutlook class could depend on the Microsoft Outlook Add-In framework and read the tasks 
directly from the built-in task list of Outlook. It is imperative to note that, because the interface does 
not tie itself to any of these technologies, anything could be the source of tasks, assuming that it can 
fulfil the interface.

Poor Man’s DI is verbose. When this application is extended to support adding new tasks, editing 
tasks, or perhaps notifying of an imminent due date, it is clear that these few lines of construction 
code will grow significantly, to the point where they are no longer easily understood. However, Poor 
Man’s DI is flexible. Whatever complex object graph you want to construct, the way to construct it is 

From the Library of Ida Schander



ptg14200592

290	 PART II  Writing SOLID code

obvious because there is only one way: manually creating instances of everything and passing them 
to classes that aggregate their functionality, repeating until you reach the resolution root. You can 
implement any number of decorators for the interfaces that each class depends on; Poor Man’s DI 
allows you to meticulously construct the resulting graph.

Method injection
The constructor isn’t the only option for providing dependencies to classes. Methods and properties 
can also be used, and they both have different use cases when compared to constructors.

Listing 9-5 shows part of the TaskListController that has been rewritten to furnish the ITask­
Service with its ISettings dependency as a parameter on the GetAllTasks method. This requires 
the interface for the method to be altered.

LISTING 9-5  The task service now accepts the settings as a method parameter instead of a constructor parameter.

public class TaskListController : INotifyPropertyChanged 
{ 
    public TaskListController(ITaskService taskService, IObjectMapper mapper, ISettings  
  settings) 
    { 
        this.taskService = taskService; 
        this.mapper = mapper; 
        this.settings = settings; 
    } 
 
    public void OnLoad() 
    { 
        var taskDtos = taskService.GetAllTasks(settings); 
        AllTasks = new  
  ObservableCollection<TaskViewModel>(mapper.Map<IEnumerable<TaskViewModel>>(taskDtos)); 
    } 
}

This is useful when the method being called is the only one that requires the dependency. Construc-
tor dependencies indicate that sufficient behavior in the class requires delegation to the dependency, 
but if only a small percentage of methods truly use the dependency, it might make more sense to 
pass it in to those methods specifically. The downside of method injection is that it requires the clients 
who call the method to ”acquire” an instance of the dependency. They can do so either through a 
constructor parameter or through a method parameter that causes clients to pass the parameter 
down the call stack until it is used by the target class.

From the Library of Ida Schander



ptg14200592

	 CHAPTER 9  Dependency injection	 291

Property injection
Similar to method injection, property injection can be used to inject dependencies. Listing 9-6 refac-
tors the prior example to show how the ITaskService could have its ISettings dependencies set 
by a property. Bear in mind that, again, the interface needs to be changed to support the property, 
not just the implementation.

LISTING 9-6  Dependency injection can also be accomplished via property injection.

public class TaskListController : INotifyPropertyChanged 
{ 
    public TaskListController(ITaskService taskService, IObjectMapper mapper, ISettings  
  settings) 
    { 
        this.taskService = taskService; 
        this.mapper = mapper; 
        this.settings = settings; 
    } 
 
    public void OnLoad() 
    { 
        taskService.Settings = settings; 
        var taskDtos = taskService.GetAllTasks(); 

        AllTasks = new  
  ObservableCollection<TaskViewModel>(mapper.Map<IEnumerable<TaskViewModel>>(taskDtos)); 
    } 
}

The benefit to this approach is that the instance property can be changed at run time. Whereas a 
constructor dependency is injected and that instance is used for the lifetime of the class, a property 
value can be replaced midway through the class’s lifetime. 

Inversion of Control
Throughout this book, the examples have focused on developing classes that delegate to abstractions. 
These abstractions are then implemented by other classes, which delegate some work to more abstrac-
tions. Eventually, a class is so small and directed that it need not delegate any further, and the chain 
of dependency is ended. In order to construct the dependent classes, first their dependencies are 
constructed and then injected in as dependencies. You have learned how this dependency injection 
can be implemented by manually constructing classes and passing instances into the constructors. 
Though this elevates you from a situation in which dependent implementations cannot be swapped 
or decorated to one in which they can, the object graph is still constructed statically: which part goes 
where is known at compile time. Inversion of Control (IoC) allows you to defer this construction to 
run time.

IoC is most well known in the context of IoC containers. These systems allows you to link the inter-
faces of your application to their implementations and retrieve an instance of a class by resolving all of 
the dependencies. 

From the Library of Ida Schander



ptg14200592

292	 PART II  Writing SOLID code

The code in Listing 9-7 shows the application entry point rewritten to use the Unity IoC container. 
The first step is to instantiate a new UnityContainer instance. Note that when you are bootstrapping 
the IoC container like this, there is no alternative but to directly create instances of infrastructural 
components. 

LISTING 9-7  With an IoC container, instead of manually constructing implementations, types are mapped to 
interfaces.

public partial class App : Application 
{ 
    private IUnityContainer container; 
    private void OnApplicationStartup(object sender, StartupEventArgs e) 
    { 
        CreateMappings(); 
 
        container = new UnityContainer(); 
        container.RegisterType<ISettings, ApplicationSettings>(); 
        container.RegisterType<IObjectMapper, MapperAutoMapper>(); 
        container.RegisterType<ITaskService, TaskServiceAdo>(); 
        container.RegisterType<TaskListController>(); 
        container.RegisterType<TaskListView>(); 
 
        MainWindow = container.Resolve<TaskListView>(); 
        MainWindow.Show(); 
 
        ((TaskListController)MainWindow.DataContext).OnLoad(); 
    } 
 
    private void CreateMappings() 
    { 
        AutoMapper.Mapper.CreateMap<TaskDto, TaskViewModel>(); 
    } 
 
}

After the Unity container is created, you need to make it aware of each interface that will need to 
be resolved at some point during the application’s lifetime and map a concrete implementation to 
each interface. Whenever Unity encounters an interface, it will know which implementation it needs 
to resolve. If you fail to indicate which class to use for an interface, Unity will loudly remind you that 
it cannot instantiate interfaces.

After all registration is complete, you need to get an instance of your resolution root: the TaskList­
View. The Resolve method of the container will examine the constructor of this class and try to 
instantiate any dependencies by examining their constructors and trying to instantiate their depen-
dencies, and so on down the chain. Eventually, when there are no more classes to instantiate, the 
Resolve method is able to call the constructors that it found by passing in the instances it has cre-
ated so far. This is exactly the same process that you follow when using Poor Man’s DI, but with that 
approach you examine the constructors manually and instantiate the classes directly.

From the Library of Ida Schander



ptg14200592

	 CHAPTER 9  Dependency injection	 293

The Register, Resolve, Release pattern
All Inversion of Control containers reduce to a simple interface with only three methods, as shown in 
Listing 9-8. Unity is no exception to this and follows a similar pattern.

LISTING 9-8  Although each implementation will embellish it, this is the general interface for all IoC containers.

public interface IContainer : IDisposable 
{ 
    void Register<TInterface, TImplementation>() 
        where TImplementation : TInterface; 
 
    TImplementation Resolve<TInterface>(); 
 
    void Release(); 
}

The purpose of each of the three methods is explained in the following list:

■■ Register  This method is called first, at application initialization. It will be called many times 
to register many different interfaces to their implementations. The where clause enforces the 
constraint that the TImplementation type must implement—that is, inherit the interface of—
the TInterface type. Other permutations of this method allow you to register an already-
constructed instance of a class and a type without a specific interface. (Such a type will be 
registered against all the interfaces it implements.)

■■ Resolve  This method is called during the running of the application. It is common for a par-
ticular family of classes to be resolved as the top-level object of the graph. For example, this 
would be the controllers in an ASP.NET Model-View-Controller (MVC) application, the view-
models in a ViewModel-first WPF application, and the views in a Windows Forms Model-View-
Presenter (MVP) application. The call to this method should be an infrastructural concern. That 
is, you should not call Resolve inside your application’s classes for controllers, views, present-
ers, services, domain, business logic, or data access.

■■ Release  At some point, the classes will no longer be needed and their resources can be 
released. This might happen at the end of the application, but it also could happen at a more 
opportune moment during the application’s lifetime. In a web scenario, for example, it is com-
mon for resources to live only per-request. Thus, Release could be called at the end of each 
request. This sort of object lifetime concern is discussed in more detail later.

■■ Dispose  Most IoC containers will implement the IDisposable interface, so it has been 
included in this reference interface, too. The Dispose method will be called once when the 
application is shut down. It is distinct from Release in that the Dispose call will clear out 
the internal dictionaries of the container so that it has no registrations and is unable to resolve 
anything.

From the Library of Ida Schander



ptg14200592

294	 PART II  Writing SOLID code

The first IoC example (shown in Listing 9-7) can be rewritten so that all interaction with the container 
is encapsulated in a class. This moves the verbose registration code away from the code-behind in the 
WPF application. This is shown in Listing 9-9.

LISTING 9-9  The startup event handler delegates much of its work to a configuration class.

public partial class App : Application 
{ 
    private IocConfiguration ioc; 
 
    private void OnApplicationStartup(object sender, StartupEventArgs e) 
    { 
        CreateMappings(); 
 
        ioc = new IocConfiguration(); 
        ioc.Register(); 
 
        MainWindow = ioc.Resolve(); 
        MainWindow.Show(); 
 
        ((TaskListController)MainWindow.DataContext).OnLoad(); 
    } 
 
    private void OnApplicationExit(object sender, ExitEventArgs e) 
    { 
        ioc.Release(); 
    } 
 
    private void CreateMappings() 
    { 
        AutoMapper.Mapper.CreateMap<TaskDto, TaskViewModel>(); 
    } 
}

The entry point is now simpler than it was before, and the IoC registration has been moved to a 
dedicated class. Listing 9-10 shows this class for the Task List application. When the application exits, 
it calls the Release method, which you can hook into by registering a handler to the appropriate 
Application event. 

From the Library of Ida Schander



ptg14200592

	 CHAPTER 9  Dependency injection	 295

LISTING 9-10  The configuration class has methods for all three phases of the Register, Resolve, Release pattern.

public class IocConfiguration 
{ 
 
    private readonly IUnityContainer container; 
    public IocConfiguration() 
    { 
        container = new UnityContainer(); 
    } 
 
    public void Register() 
    { 
        container.RegisterType<ISettings, ApplicationSettings>(); 
        container.RegisterType<IObjectMapper, MapperAutoMapper>(); 
        container.RegisterType<ITaskService, TaskServiceAdo>(); 
        container.RegisterType<TaskListController>(); 
        container.RegisterType<TaskListView>(); 
    } 
 
    public Window Resolve() 
    { 
        return container.Resolve<TaskListView>(); 
    } 
 
    public void Release() 
    { 
        container.Dispose(); 
    } 
}

The Register method contains exactly the same code as before. As this method grows, however, 
it can be refactored into multiple methods and generally kept neater than it otherwise might be if it 
was contained in the application entry point. 

The Resolve method returns a generic Window, which is a common resolution root for a WPF appli-
cation. Specifically, the TaskListView is returned because it is the main window for your application. In 
other application types, such as ASP.NET MVC, there are often multiple resolution roots—one for each 
controller. The organization of the composition root for MVC and other applications is discussed later 
in this chapter.

Imperative vs. declarative registration
The registration code to this point has been written imperatively with procedural calls to methods on 
a container object. This gives you some advantages: it is easy to read, it is relatively succinct, and it 
provides a minimum of compile-time checking, such as protection against typographical errors. One 
disadvantage is that you are tying yourself to an implementation at compile time. If you want to swap 
out one of your implementations for an alternative, this requires a recompile of the code. 

From the Library of Ida Schander



ptg14200592

296	 PART II  Writing SOLID code

If, instead, you use declarative registration via XML, you can obviate the need for a recompile by 
moving the decision to configuration time. Listing 9-11 shows Unity’s support for XML registration.

LISTING 9-11  A section in the application configuration file can describe how interfaces should map to 
implementations.

<configuration> 
  <configSections> 
    <section name="unity" 
             type="Microsoft.Practices.Unity.Configuration.UnityConfigurationSection,  
  Microsoft.Practices.Unity.Configuration" /> 
  </configSections> 
  <appSettings> 
    <add key="TaskDatabaseConnectionString" value="Data Source=(local);Initial  
  Catalog=TaskDatabase;Integrated Security=True;Application Name=Task List Editor" /> 
  </appSettings> 
  <unity xmlns="http://schemas.microsoft.com/practices/2010/unity"> 
    <typeAliases> 
      <typeAlias alias="ISettings" type="ServiceInterfaces.ISettings, ServiceInterfaces"  
  /> 
      <typeAlias alias="ApplicationSettings" type="UI.ApplicationSettings, UI" /> 
      <typeAlias alias="IObjectMapper" type="ServiceInterfaces.IObjectMapper,  
  ServiceInterfaces" /> 
      <typeAlias alias="MapperAutoMapper" type="UI.MapperAutoMapper, UI" /> 
      <typeAlias alias="ITaskService" type="ServiceInterfaces.ITaskService,  
  ServiceInterfaces" /> 
      <typeAlias alias="TaskServiceAdo" type="ServiceImplementations.TaskServiceAdo,  
  ServiceImplementations" /> 
      <typeAlias alias="TaskListController" type="Controllers.TaskListController,  
  Controllers" /> 
      <typeAlias alias="TaskListView" type="UI.TaskListView, UI" /> 
    </typeAliases> 
    <container> 
      <register type="ISettings" mapTo="ApplicationSettings" /> 
      <register type="IObjectMapper" mapTo="MapperAutoMapper" /> 
      <register type="ITaskService" mapTo="TaskServiceAdo" /> 
    </container> 
  </unity> 
  <startup>  
    <supportedRuntime version="v4.0" sku=".NETFramework,Version=v4.5" /> 
  </startup> 
</configuration>

This XML is the content of the application configuration file for the WPF Task List. Adding a con-
figuration section for Unity enables the typeAlias and container elements. The former is used to 
alias shorter names for longer types, which need to be specified by their assembly-qualified names 
so that Unity can find them at run time. After the types have been aliased, the latter section performs 
the same job as the Register method: mapping an interface to an implementation.

From the Library of Ida Schander



ptg14200592

	 CHAPTER 9  Dependency injection	 297

Some changes need to be made to the application entry point for Unity to read this XML configu-
ration. Listing 9-12 shows that these changes are minimal.

LISTING 9-12  Now the registration phase involves passing the configuration section to the container.

public partial class App : Application 
{ 
    private IUnityContainer container; 
 
    private void OnApplicationStartup(object sender, StartupEventArgs e) 
    { 
        CreateMappings(); 
 
        var section = (UnityConfigurationSection)ConfigurationManager.GetSection("unity"); 
        container = new UnityContainer().LoadConfiguration(section); 

             
        MainWindow = container.Resolve<TaskListView>(); 
        MainWindow.Show(); 
 
        ((TaskListController)MainWindow.DataContext).OnLoad(); 
    } 
 
    private void CreateMappings() 
    { 
        AutoMapper.Mapper.CreateMap<TaskDto, TaskViewModel>(); 
    } 
}

Just two lines are required. First, you load the unity section from the configuration file by using 
the ConfigurationManager class. This is cast to the UnityConfigurationSection type so that it 
can be passed to the LoadConfiguration method of a newly instantiated UnityContainer. After 
this, the container can be used, as before, to resolve the main window of the application. 

Although declarative registration brings the benefit of configuration-time type mapping, it has 
significant drawbacks that make it impractical in many situations. The biggest problem is its verbosity. 
This small example is already a lot more typing than before, but this example is small. In some cases, 
the registration code could be a few times larger than this, or more. As XML, it would be even larger 
still. If a typographical error was made in any of the alias or registration sections, it would not be 
caught until run time, whereas such errors are caught by the compiler in procedural code. 

The most compelling reason that declarative registration is suboptimal is that most IoC contain-
ers allow for a lot of variation in registration. This can include lambda factories, whereby a lambda 
method is provided to the registration method, to be called whenever the interface is resolved. Such 
procedural code is not possible in declarative XML. 

From the Library of Ida Schander



ptg14200592

298	 PART II  Writing SOLID code

Object lifetime
It is important to acknowledge that not every object in the application has an equal lifetime. That is, 
some objects might need to live longer than others. Of course, in the managed languages of .NET, 
there is no deterministic way to destroy an object, but you can ask it to relinquish its resources by 
calling the IDispose.Dispose() method, if it implements that interface.

For example, the TaskService from Listing 9-3 had a remaining code smell of manually creating 
a SqlConnection instance. This was left there because the lifetime of that connection could not be 
matched to that of the TaskService, which is created on application startup and exists for the duration 
of the application. If the SqlConnection was injected into the TaskService, as shown in Listing 9-13, 
it would live for the lifetime of the application. This does not mean, however, that the connection would 
be open for the duration, because opening the connection is a separate operation from its construction.

LISTING 9-13  Some resources have a lifetime that must be carefully managed. 

private void OnApplicationStartup(object sender, StartupEventArgs e) 
{ 
    CreateMappings(); 
 
    container = new UnityContainer(); 
    container.RegisterType<ISettings, ApplicationSettings>(); 
    container.RegisterType<IObjectMapper, MapperAutoMapper>(); 
    container.RegisterType<ITaskService, TaskServiceAdo>(new InjectionFactory(c => new  
  TaskServiceAdo(new  
  SqlConnection(c.Resolve<ISettings>().GetSetting("TaskDatabaseConnectionString"))))); 
    container.RegisterType<TaskListController>(); 
    container.RegisterType<TaskListView>(); 
 
    MainWindow = container.Resolve<TaskListView>(); 
    MainWindow.Show(); 
 
    ((TaskListController)MainWindow.DataContext).OnLoad(); 
} 
// . . . 
public class TaskServiceAdo : ITaskService 
{ 
 
    private readonly IDbConnection connection; 
    public TaskServiceAdo(IDbConnection connection) 
    { 
        this.connection = connection; 
    } 
 
    public IEnumerable<TaskDto> GetAllTasks() 
    { 
        var allTasks = new List<TaskDto>(); 
 
        using (connection) 
        { 

From the Library of Ida Schander



ptg14200592

	 CHAPTER 9  Dependency injection	 299

            connection.Open(); 
 
            using (var transaction = connection.BeginTransaction()) 
            { 
                var command = connection.CreateCommand(); 
                command.Transaction = transaction; 
                command.CommandType = CommandType.StoredProcedure; 
                command.CommandText = "[dbo].[get_all_tasks]"; 
 
                using (var reader =  
  command.ExecuteReader(CommandBehavior.CloseConnection)) 
                { 
                    while (reader.Read()) 
                    { 
                        allTasks.Add( 
                            new TaskDto 
                            { 
                                ID = reader.GetInt32(IDIndex), 
                                Description = reader.GetString(DescriptionIndex), 
                                Priority = reader.GetString(PriorityIndex), 
                                DueDate = reader.GetDateTime(DueDateIndex), 
                                Completed = reader.GetBoolean(CompletedIndex) 
                            } 
                        ); 
                    } 
                } 
            } 
        }             
 
        return allTasks; 
    } 
 
}

The first change is made to the entry point, where an injection factory is used for construct-
ing the service. This is a lambda expression that has access to the container for resolving param-
eters and returns a new instance of the service. The call to the ISettings service’s GetSettings 
method has been moved to this injection factory to retrieve the connection string. This is passed 
to the SqlConnection constructor which, in turn, is passed to the service.

In the GetAllTasks() method, the presence of the using(connection) is problematic. This 
ensures that SqlConnection.Dispose() is called at the end of the using scope. After this call, the 
connection can no longer be used, yet you could feasibly call this method again. 

Instead, what if the TaskServiceAdo implemented IDisposable and delegated its Dispose 
method to that of the connection? This is explored in Listing 9-14.

From the Library of Ida Schander



ptg14200592

300	 PART II  Writing SOLID code

LISTING 9-14  The service implements IDisposable so that it can dispose of the connection.

public class TaskServiceAdo : ITaskService, IDisposable 
{ 
    public TaskServiceAdo(IDbConnection connection) 
    { 
        this.connection = connection; 
    } 
 
    public IEnumerable<TaskDto> GetAllTasks() 
    { 
        var allTasks = new List<TaskDto>(); 
 
        connection.Open(); 
 
        try 
        { 
            using (var transaction = connection.BeginTransaction()) 
            { 
                var command = connection.CreateCommand(); 
                command.Transaction = transaction; 
                command.CommandType = CommandType.StoredProcedure; 
                command.CommandText = "[dbo].[get_all_tasks]"; 
 
                using (var reader =  
  command.ExecuteReader(CommandBehavior.CloseConnection)) 
                { 
                    while (reader.Read()) 
                    { 
                        allTasks.Add( 
                            new TaskDto 
                            { 
                                ID = reader.GetInt32(IDIndex), 
                                Description = reader.GetString(DescriptionIndex), 
                                Priority = reader.GetString(PriorityIndex), 
                                DueDate = reader.GetDateTime(DueDateIndex), 
                                Completed = reader.GetBoolean(CompletedIndex) 
                            } 
                        ); 
                    } 
                } 
            } 
        } 
        finally  
        { 
            connection.Close(); 
        } 
 
        return allTasks; 
    } 
 
    public void Dispose() 
    { 
        connection.Dispose(); 
    } 
}

From the Library of Ida Schander



ptg14200592

	 CHAPTER 9  Dependency injection	 301

Instead of disposing the connection in the method, the connection is disposed of only when the 
service is disposed. This raises the important question of when the task service should be disposed. 
Should all of the task’s clients, which will receive ITaskService as a constructor parameter, also 
implement IDisposable? Who will dispose of these objects? Eventually, you would need to call 
Dispose() on something. 

It is important to note that if a class is handed a dependency via its constructor, it should not 
manually dispose of the dependency itself. The class cannot guarantee that it has been given the one 
and only instance of the dependency; it might share it with others and therefore cannot dispose of it 
without potentially having a negative impact on other classes.

The answer to the question of how to manage the lifetime of objects when using dependency 
injection is much closer to how the service was originally implemented.

The connection factory  Recall that the Factory pattern is a way of replacing manual object instan-
tiation with delegation to a class whose purpose is to create objects. 

A connection factory could look something like the interface shown in Listing 9-15. This interface 
has been made slightly more general by returning the IDbConnection interface, rather than com-
mitting all of its clients to the SqlConnection class. 

LISTING 9-15  The connection factory interface is very simple.

public interface IConnectionFactory 
{ 
    IDbConnection CreateConnection(); 
}

This interface will be injected into the task service so that you have a way of retrieving a connec-
tion without manually constructing it, keeping the service testable through mocking. Listing 9-16 
shows the refactored service.

LISTING 9-16  Dependency injection can work in tandem with the Factory pattern.

public class TaskServiceAdo : ITaskService 
{ 
    private readonly IConnectionFactory connectionFactory; 
 
    public TaskServiceAdo(IConnectionFactory connectionFactory) 
    { 
        this.connectionFactory = connectionFactory; 
    } 
 
    public IEnumerable<TaskDto> GetAllTasks() 
    { 
        var allTasks = new List<TaskDto>(); 
 

From the Library of Ida Schander



ptg14200592

302	 PART II  Writing SOLID code

        using(var connection = connectionFactory.CreateConnection()) 
        { 
            connection.Open(); 
 
            using (var transaction = connection.BeginTransaction()) 
            { 
                var command = connection.CreateCommand(); 
                command.Transaction = transaction; 
                command.CommandType = CommandType.StoredProcedure; 
                command.CommandText = "[dbo].[get_all_tasks]"; 
 
                using (var reader =  
  command.ExecuteReader(CommandBehavior.CloseConnection)) 
                { 
                    while (reader.Read()) 
                    { 
                        allTasks.Add( 
                            new TaskDto 
                            { 
                                ID = reader.GetInt32(IDIndex), 
                                Description = reader.GetString(DescriptionIndex), 
                                Priority = reader.GetString(PriorityIndex), 
                                DueDate = reader.GetDateTime(DueDateIndex), 
                                Completed = reader.GetBoolean(CompletedIndex) 
                            } 
                        ); 
                    } 
                } 
            } 
        } 
 
        return allTasks; 
    } 
}

Note that the return value from the CreateConnection method is being disposed by the using 
block. This is viable in this instance, because the product from the factory implements IDisposable. 
Through interface inheritance, it is possible to enforce multiple interfaces on implementors.

However, the question must be asked whether every implementation will definitely need every inter- 
face. Sometimes they do, but given the wide variety of implementations that an interface can have—
long after it was originally written—it is a big assumption to make. When it comes to IDisposable, 
I’m not sure it always applies. 

The Responsible Owner pattern  Instead of artificially forcing the IDisposable interface onto 
every implementation, you can use it only on those that truly need it. This does cause a problem, 
though. If the product of the factory—your interface—does not implement IDisposable, you can 
no longer use a using block to neatly dispose of the product after it falls out of scope. In this case, 
you must use the Responsible Owner pattern.

From the Library of Ida Schander



ptg14200592

	 CHAPTER 9  Dependency injection	 303

Listing 9-17 shows that the using block can be replaced with a try/finally block, and that you 
can check at run time to find out whether the product implements the IDisposable interface.

LISTING 9-17  The Responsible Owner pattern ensures that resources are disposed of appropriately.

public IEnumerable<TaskDto> GetAllTasks() 
{ 
    var allTasks = new List<TaskDto>(); 
 
    var connection = connectionFactory.CreateConnection(); 
    try 
    { 
        connection.Open(); 
 
        using (var transaction = connection.BeginTransaction()) 
        { 
            var command = connection.CreateCommand(); 
            command.Transaction = transaction; 
            command.CommandType = CommandType.StoredProcedure; 
            command.CommandText = "[dbo].[get_all_tasks]"; 
 
            using (var reader = command.ExecuteReader(CommandBehavior.CloseConnection)) 
            { 
                while (reader.Read()) 
                { 
                    allTasks.Add( 
                        new TaskDto 
                        { 
                            ID = reader.GetInt32(IDIndex), 
                            Description = reader.GetString(DescriptionIndex), 
                            Priority = reader.GetString(PriorityIndex), 
                            DueDate = reader.GetDateTime(DueDateIndex), 
                            Completed = reader.GetBoolean(CompletedIndex) 
                        } 
                    ); 
                } 
            } 
        } 
    } 
    finally 
    { 
        if(connection is IDisposable) 
        { 
            var disposableConnection = connection as IDisposable; 
            disposableConnection.Dispose(); 
        } 
    } 
 
    return allTasks; 
}

From the Library of Ida Schander



ptg14200592

304	 PART II  Writing SOLID code

Only if the connection is of type IDisposable do you then attempt to call the Dispose method on 
it. This will work regardless of whether the product returned by the factory implements IDisposable 
or not, but if it does, it will correctly dispose of it, correctly cleaning up its resources.

The Responsible Owner pattern deterministically disposes of objects if they implement 
IDisposable. The pattern effectively ignores the objects if they do not implement IDisposable. 
However, SOLID code often results in multiple decorators that wrap around each other to add extra 
functionality. In this case, only if the top-layer object implements IDisposable will the Responsible 
Owner pattern function correctly. When the outer decorator does not implement IDisposable, but 
subsequent layers do, the Responsible Owner pattern will not correctly dispose of these instances. 
Instead, you must use the Factory Isolation pattern.

The Factory Isolation pattern  This pattern is able to deterministically dispose of the complex object 
graphs that often form as a result of SOLID code. It is named after the glove box isolators that are 
commonly found in laboratories. These are glass or metal boxes with integrated gloves to allow safe, 
protected access to the contents. In a similar fashion, the Factory Isolation pattern allows safe, pro-
tected access to an instance of an object that will be correctly disposed of after use.

The Factory Isolation pattern is only required when the target interface does not implement 
IDisposable. Extending the IDisposable interface burdens all implementations with the re-
quirement that they implement a Dispose method, even in circumstances where this is unnecessary. 
Instead, IDisposable should be treated as an implementation detail and assigned to classes on an 
individual basis. This then leads naturally to the application of the Responsible Owner pattern and 
the Factory Isolation pattern. 

The examples so far have all targeted the lifetime of the IDbConnection interface. Unfortunately, 
this interface extends the IDisposable interface. If, instead, the assumption is made that the target 
interface does not extend IDisposable, the client-side view of the Factory Isolation pattern would 
look like the code in Listing 9-18.

LISTING 9-18  An example of a client using the Factory Isolation pattern.

public IEnumerable<TaskDto> GetAllTasks() 
{ 
    var allTasks = new List<TaskDto>(); 
    connectionFactory.With(connection => 
    { 
        connection.Open(); 
        using (var transaction = connection.BeginTransaction()) 
        { 
            var command = connection.CreateCommand(); 
            command.Transaction = transaction; 
            command.CommandType = CommandType.StoredProcedure; 
            command.CommandText = "[dbo].[get_all_tasks]"; 
            using (var reader = command.ExecuteReader(CommandBehavior.CloseConnection)) 
            { 
                while (reader.Read()) 
                { 

From the Library of Ida Schander



ptg14200592

	 CHAPTER 9  Dependency injection	 305

                    allTasks.Add( 
                        new TaskDto 
                        { 
                            ID = reader.GetInt32(IDIndex), 
                            Description = reader.GetString(DescriptionIndex), 
                            Priority = reader.GetString(PriorityIndex), 
                            DueDate = reader.GetDateTime(DueDateIndex), 
                            Completed = reader.GetBoolean(CompletedIndex) 
                        } 
                    ); 
                } 
            } 
        } 
    }); 
     
    return allTasks; 
}

The Factory Isolation pattern replaces the common Create method, which returns an instance of 
a factory product, instead providing a With method, which accepts a lambda method that has the 
factory product as a parameter.

The advantage here is that the lifetime of the factory product is explicitly linked to the lambda 
method’s scope. This succinctly communicates to the client that it is not in control of the product’s 
lifetime. The factory implementation itself is very simple, as shown in Listing 9-19.

LISTING 9-19  Creating an isolating factory is simple.

public class IsolationConnectionFactory : IConnectionIsolationFactory 
{ 
    public void With(Action<IDbConnection> do) 
    { 
        using(var connection = CreateConnection()) 
        { 
            do(connection); 
        } 
    } 
}

The With method is able to construct a florid object graph of decorators, adapters, and compos-
ites—just as SOLID suggests—and manage their lifetimes without the calling client concerning itself 
with anything but using the final product.

Note that it is possible to circumvent the Factory Isolation pattern by assigning the lambda-scoped 
product instance to a variable that has wider scope, so client code is discouraged from doing this.

From the Library of Ida Schander



ptg14200592

306	 PART II  Writing SOLID code

Beyond simple injection

Dependency injection can be implemented in many different ways, by using a variety of different 
frameworks. Some patterns out there are benevolent, supporting and enhancing DI while reinforcing 
what it aims to accomplish. Other patterns do the opposite: they detract from the underlying purpose 
of DI, actively undermining it and detracting from the whole point. 

Two such patterns are particularly insidious. The Service Locator anti-pattern is, unfortunately, all 
too common. It is used in many frameworks and libraries—sometimes, it is the only way to create a 
hook to use dependency injection. Worse than the Service Locator is an anti-pattern with an unfortu-
nate moniker that I shall eschew in favor of something a bit more sanitized: Illegitimate Injection. This 
is a middle ground where dependency injection is used “sometimes,” allowing the construction of 
services, controllers, and similar entities without properly providing their dependencies.

When you are using DI, each type of application requires a different kind of setup. With each, you 
need to identify the composition root in order to correctly integrate your registration code. The loca-
tion of the composition root in a WPF application differs from that of a Windows Forms application. 
Both will differ from that of an ASP.NET MVC application.

In advanced scenarios, the manual composition of classes through Poor Man’s DI and the individual 
registration of classes through an Inversion of Control container are both too laborious and verbose. 
By deferring registration to one or more conventions, you can eliminate a lot of boilerplate code but 
also provide some manual registration, to handle the edge cases when conventions do not suffice.

The Service Locator anti-pattern
Service locators look very similar to Inversion of Control containers, which is precisely why they are not 
always thought of as detrimental to the code. Listing 9-20 shows an example of the service locator 
provided by the Patterns and Practices team at Microsoft.

LISTING 9-20  The IServiceLocator interface appears to be just another IoC container.

    public interface IServiceLocator : IServiceProvider 
    { 
        object GetInstance(Type serviceType); 
 
        object GetInstance(Type serviceType, string key); 
 
        IEnumerable<object> GetAllInstances(Type serviceType); 
     
        TService GetInstance<TService>(); 
 
        TService GetInstance<TService>(string key); 
 
        IEnumerable<TService> GetAllInstances<TService>(); 
    }

From the Library of Ida Schander



ptg14200592

	 CHAPTER 9  Dependency injection	 307

Note that methods such as TService GetInstance<TService>() could have been taken directly 
from the IUnityContainer interface—just by swapping the name for Resolve. The problem arises 
from how a service locator is used, thanks to the static ServiceLocator class, as shown in Listing 9-21.

LISTING 9-21  This static class is the cause of the anti-pattern.

    /// <summary> 
    /// This class provides the ambient container for this application. If your 
    /// framework defines such an ambient container, use ServiceLocator.Current 
    /// to get it. 
    /// </summary> 
    public static class ServiceLocator 
    { 
        private static ServiceLocatorProvider currentProvider; 
 
        public static IServiceLocator Current 
        { 
            get { return currentProvider(); } 
        } 
 
        public static void SetLocatorProvider(ServiceLocatorProvider newProvider) 
        { 
            currentProvider = newProvider; 
        } 
    }

The class summary comment, which I have left in, hints toward the problem. The concept of an 
ambient container implies a leak of knowledge that a container exists. Although there is a laudable 
decoupling of the specific implementation of the service locator behind an interface, the problem is 
the acknowledgement—inside any class other than the composition root—of the service locator or 
container. Listing 9-22 shows how the TaskListController would look if it was rewritten to use 
the ServiceLocator.

LISTING 9-22  A service locator allows classes to retrieve anything at all, whether appropriate or not.

public class TaskListController : INotifyPropertyChanged 
{ 
    public void OnLoad() 
    { 
        var taskService = ServiceLocator.Current.GetInstance<ITaskService>(); 
        var taskDtos = taskService.GetAllTasks(); 
        var mapper = ServiceLocator.Current.GetInstance<IObjectMapper>(); 
        AllTasks = new  
  ObservableCollection<TaskViewModel>(mapper.Map<IEnumerable<TaskViewModel>>(taskDtos)); 
    } 
 

From the Library of Ida Schander



ptg14200592

308	 PART II  Writing SOLID code

    public ObservableCollection<TaskViewModel> AllTasks 
    { 
        get 
        { 
            return allTasks; 
        } 
        set 
        { 
            allTasks = value; 
            PropertyChanged(this, new PropertyChangedEventArgs("AllTasks")); 
        } 
    } 
 
    public event PropertyChangedEventHandler PropertyChanged = delegate { }; 
 
    private ObservableCollection<TaskViewModel> allTasks; 
}

Now there is no constructor, nor is there constructor injection. Instead, when required, the class 
makes a call to the static ServiceLocator class and returns the service requested. Recall that static 
classes like this are skyhooks—a code smell. 

Worse still, the class is able to retrieve anything and everything from the service locator. You are no 
longer following the “Hollywood Principle” of dependency injection: Don’t call us, we’ll call you. Instead, 
you are directly asking for the things you need, rather than having them handed to you. How can 
you tell what dependencies this class needs? With the service locator, you have to examine the code, 
searching for capricious calls that retrieve a required service. Constructor injection allowed you to view 
dependencies—all of them—with a glance at the constructor, or at a distance, via IntelliSense.

The problem is not necessarily one of unit testing. The service locator allows you to set an 
IServiceLocator implementation before use, which means that it can be mocked and the classes 
can be unit tested. At least it does not prevent that. It just seems absurd to register classes and map 
them to their interfaces—a not-insignificant task—only to pollute controllers, services, and other 
classes with infrastructural code such as this. It is doubly absurd when there is no problem to be 
solved—constructor injection did not need to be circumvented in this way.

An adapter for the service locator is provided for Unity. Listing 9-23 shows how this is registered 
after the mappings have been set up.

From the Library of Ida Schander



ptg14200592

	 CHAPTER 9  Dependency injection	 309

LISTING 9-23  The service locator will delegate directly to the UnityContainer instance to resolve instances.

private void OnApplicationStartup(object sender, StartupEventArgs e) 
{ 
    CreateMappings(); 
 
    container = new UnityContainer(); 
    container.RegisterType<ISettings, ApplicationSettings>(); 
    container.RegisterType<IObjectMapper, MapperAutoMapper>(); 
    container.RegisterType<ITaskService, TaskServiceAdo>(); 
    container.RegisterType<TaskListController>(); 
    container.RegisterType<TaskListView>(); 
 
    ServiceLocator.SetLocatorProvider(() => new UnityServiceLocator(container)); 
 
    MainWindow = container.Resolve<TaskListView>(); 
    MainWindow.Show(); 
 
    ((TaskListController)MainWindow.DataContext).OnLoad(); 
}

This looks remarkably similar to the prior versions except for setting the locator provider. The call 
to Resolve, though, does not truly ”resolve” the object graph; there are no longer any dependencies 
to inject into the TaskListView. They are all fetched individually as and when needed within the 
methods of the class.

The Service Locator anti-pattern is a good example of literal irony applied to a programming 
context, in that what is claimed is contrary to the reality. It is claimed that classes do not have depen-
dencies, due to their default constructor, but that is simply not the case: they do have dependencies, 
otherwise you wouldn’t be trying to fetch them from a service locator!

Unfortunately, the service locator is sometimes an unavoidable anti-pattern. In some application 
types—particularly Windows Workflow Foundation—the infrastructure does not lend itself to construc-
tor injection. In these cases, the only alternative is to use a service locator. This is better than not 
injecting dependencies at all. For all my vitriol against the (anti-)pattern, it is infinitely better than 
manually constructing dependencies. After all, it still enables those all-important extension points 
provided by interfaces that allow decorators, adapters, and similar benefits.

Injecting the container
Closely related to the service locator is the concept of injecting the container directly into a class. This, 
similarly, hands the class the keys to the safe, in that it is then free to retrieve anything that it wants 
from the container. Imagine such a class that, scattered throughout its many methods, retrieves a 

From the Library of Ida Schander



ptg14200592

310	 PART II  Writing SOLID code

dozen services. Now compare it with a class that has a constructor that requires those dozen services 
and enforces their presence with up-front preconditions that throw exceptions if null references are 
passed in. Both of these classes are clearly doing too much—as indicated by the dependencies they 
require—and should be refactored into smaller classes or their dependencies grouped into meaning-
ful decorators. However, only the latter makes it explicitly obvious at a glance that this smell exists.

Added to this, the class that requires the container as a constructor parameter must also reference 
the container’s assembly. This will proliferate infrastructural code throughout the entire codebase, 
because each class accepts the container in order to access the services it truly needs.

Illegitimate Injection
Illegitimate Injection looks much like normal, correctly implemented, dependency injection. There is 
a constructor that accepts dependencies, and these are provided either by Poor Man’s DI or an Inver-
sion of Control container. 

However, the pattern is polluted—indeed, fatally poisoned—by the presence of a second, default 
constructor. As Listing 9-24 shows, this second constructor proceeds to construct some implementa-
tions for the dependencies directly, circumventing DI.

LISTING 9-24  Having a constructor that directly references implementation negates some of the benefits of 
dependency injection.

public class TaskListController : INotifyPropertyChanged 
{ 
    public event PropertyChangedEventHandler PropertyChanged = delegate { }; 
 
    private readonly ITaskService taskService; 
    private readonly IObjectMapper mapper; 
    private ObservableCollection<TaskViewModel> allTasks; 
 
    public TaskListController(ITaskService taskService, IObjectMapper mapper) 
    { 
        this.taskService = taskService; 
        this.mapper = mapper; 
    } 
 
    public TaskListController() 
    { 

        this.taskService = new TaskServiceAdo(new ApplicationSettings()); 

        this.mapper = new MapperAutoMapper(); 

    } 

 
    public void OnLoad() 
    { 
        var taskDtos = taskService.GetAllTasks(); 
        AllTasks = new  
  ObservableCollection<TaskViewModel>(mapper.Map<IEnumerable<TaskViewModel>>(taskDtos)); 
    } 
 

From the Library of Ida Schander



ptg14200592

	 CHAPTER 9  Dependency injection	 311

    public ObservableCollection<TaskViewModel> AllTasks 
    { 
        get 
        { 
            return allTasks; 
        } 
        set 
        { 
            allTasks = value; 
            PropertyChanged(this, new PropertyChangedEventArgs("AllTasks")); 
        } 
    } 
 
}

This means that this class must reference whichever assemblies the implementations are in and, 
concomitantly, all subsequent dependencies. This is the Entourage anti-pattern all over again. Although 
the first constructor, which accepts only interfaces, sets the scene for the Stairway pattern and well-
mannered DI, the second, default constructor undermines this.

What happens when this “default” implementation is not what you want anymore? This class will 
be edited to construct the preferred class instead. What about when one default constructor is not 
enough and, in some scenarios, you want implementation A whereas in others, you want implementa-
tion B? That’s enough to make a person nauseous.

Sometimes this anti-pattern is used to support unit testing, with the defaults being mock imple-
mentations that do not have dependencies and that might reside local to this class. Classes should 
never contain anything that exists only to support unit testing. A common example of this sort of prac
tice is converting private methods to internal and using the InternalsVisibleToAttribute to 
allow test assemblies to access these methods—rather than testing classes solely through their public 
interface. True, this might appear to be an arbitrarily fine line—after all, DI is much vaunted for its 
enabling of unit testing. But that is precisely the point: you have already enabled unit testing through 
the use of interfaces and their injection via the constructor. Mocks can, and should, be provided 
through that constructor.

It is worth noting that the classification of Illegitimate Injection as an anti-pattern does not hinge 
on the visibility of the constructor. Whether the constructor is public, protected, private, or internal, 
the outcome is the same: you are referencing implementations where you should not be.

The composition root
Only one location in an application should have any knowledge of dependency injection: the compo-
sition root. This is where classes are constructed when you are using Poor Man’s DI, or where inter-
faces and class mappings are registered when you are using an Inversion of Control container. 

From the Library of Ida Schander



ptg14200592

312	 PART II  Writing SOLID code

The ideal is for the composition root to be as close to the entry point of the application as possible. 
This allows you to bootstrap DI as soon as possible, gives you a recognized location to find the DI 
configuration, and helps you avoid leaking dependencies on the container throughout the applica-
tion. It also means that for each application type there is a different composition root. 

The resolution root
Closely related to the composition root is the resolution root. This is the object type that forms the 
root of the object graph to be resolved. As in the prior WPF examples, it could be that the resolution 
root is even a single instance, but it is more commonly a family of types unified by a common base. 

In some cases, you will manually resolve the resolution root yourself, but some application types 
that facilitate dependency injection—like MVC—require you to register the mappings while the ap-
plication resolves the roots itself. 

ASP.NET MVC
MVC projects lend themselves very well to dependency injection via an IoC container. They have 
clearly defined resolution roots and composition roots, and they are extensible enough to support 
any library that you might need to integrate into the framework for IoC.

The resolution root of an MVC application is the controller. All requests from the browser are made 
to routes that map directly to methods—called actions—on a controller. As the request comes in, the 
MVC framework maps the URL to a controller name, finds the type to which this name corresponds, 
instantiates it, and then invokes the action on the instance. Figure 9-4 depicts this interaction in a 
UML sequence diagram.

FIGURE 9-4  A UML sequence diagram showing how MVC constructs controllers via a factory.

From the Library of Ida Schander



ptg14200592

	 CHAPTER 9  Dependency injection	 313

When you are using IoC for dependency injection, the instantiation of the controller is, more ac-
curately, the resolution of the controller. This means that you can easily follow the Register, Resolve, 
Release pattern, keeping the Resolve call down to the ideal minimum, which is in one place.

Listing 9-25 shows the composition root of an ASP.NET MVC user interface for the Task List 
application.

LISTING 9-25  The Application_Start method of the HttpApplication is a common composition root in web 
applications.

public class MvcApplication : HttpApplication 
{ 
    public static UnityContainer Container; 
 
    protected void Application_Start() 
    { 
        AreaRegistration.RegisterAllAreas(); 
 
        FilterConfig.RegisterGlobalFilters(GlobalFilters.Filters); 
        RouteConfig.RegisterRoutes(RouteTable.Routes); 
        BundleConfig.RegisterBundles(BundleTable.Bundles); 
 
        AutoMapper.Mapper.CreateMap<TaskDto, TaskViewModel>(); 
 
        Container = new UnityContainer(); 
        Container.RegisterType<ISettings, ApplicationSettings>(); 
        Container.RegisterType<IObjectMapper, MapperAutoMapper>(); 
        Container.RegisterType<ITaskService, TaskServiceAdo>(); 
        Container.RegisterType<TaskViewModel>(); 
        Container.RegisterType<TaskController>(); 
 
        ControllerBuilder.Current.SetControllerFactory(new  

  UnityControllerFactory(Container)); 
    } 
}

Some of this code is boilerplate that is created by default when a new MVC application is created. 
This includes all of the MVC-specific initialization code, such as that for registering areas, filtering, 
routes, and bundles. This is all performed at the first opportunity—in the Application_Start 
method. This method is called when the first request is made after the application has been started 
in IIS. It is located in the code-behind file of the Global.asax and contains the application-specific 
subclass of the HttpApplication class.

Other than for the MVC-specific TaskController class, the rest of the service interfaces and 
implementations have been reused. The previous TaskController was centered around WPF, so it 
could not be reused outside of that context. Instead, the new TaskController does much the same 
job—retrieving tasks and converting them to a more view-friendly format via the IObjectMapper—
but inherits from an MVC base class for controllers. This cements it as a resolution root for the applica-
tion, because it inherits from the System.Web.Mvc.Controller class. Listing 9-26 shows this new 
controller.

From the Library of Ida Schander



ptg14200592

314	 PART II  Writing SOLID code

LISTING 9-26  This TaskController is a resolution root and has a constructor requiring dependencies.

public class TaskController : Controller 
{ 
    private readonly ITaskService taskService; 
    private readonly IObjectMapper mapper; 
 
    public TaskController(ITaskService taskService, IObjectMapper mapper) 
    { 
        this.taskService = taskService; 
        this.mapper = mapper; 
    } 
 
    public ActionResult List() 
    { 
        var taskDtos = taskService.GetAllTasks(); 
        var taskViewModels = mapper.Map<IEnumerable<TaskViewModel>>(taskDtos); 
        return View(taskViewModels); 
    } 
}

The List method is the action method that is called by the same view that renders all of the tasks. 
Just as in the WPF application, the controller first delegates to the ITaskService to retrieve the 
tasks, and then delegates to the IObjectMapper to convert the returned data transfer objects into 
viewmodels for use by the view.

Note  The same ViewModel that was used for WPF is used here, too. This is okay because 
the INotifyPropertyChanged interfaces is not strictly WPF-centric (it is located in the 
System.ComponentModel namespace). However, MVC does not care about that interface 
and will not respond to any events that are fired on the ViewModel. Furthermore, MVC 
allows you to decorate ViewModels with validation hints and other such attributes that are 
part of the MVC assemblies, so it is best to create MVC-specific ViewModels.

By default, MVC controllers are required to have public default constructors so that the framework 
can construct instances of them before calling an action method. But when you are using dependency 
injection, you need to have constructors that accept the interfaces of your required services. Luckily, 
MVC uses the Factory pattern for creating the controller and provides an extension point for you to 
provide your own implementation, as Listing 9-27 shows.

From the Library of Ida Schander



ptg14200592

	 CHAPTER 9  Dependency injection	 315

LISTING 9-27  MVC provides many extension points. Providing a custom controller factory facilitates DI.

public class UnityControllerFactory : DefaultControllerFactory 
{ 
    private readonly IUnityContainer container; 
 
    public UnityControllerFactory(IUnityContainer container) 
    { 
        this.container = container; 
    } 
 
    protected override IController GetControllerInstance(RequestContext requestContext,  
  Type controllerType) 
    { 
        if (controllerType != null) 
        { 
            var controller = container.Resolve(controllerType) as IController; 
            if (controller == null) 
            { 
                controller = base.GetControllerInstance(requestContext, controllerType); 
            } 
            if (controller != null) 
                return controller; 
        } 
        requestContext.HttpContext.Response.StatusCode = 404; 
        return null; 
    } 
}

When you constructed the UnityControllerFactory in the Application_Start method, 
you passed in the container as a parameter. Here, as emphasized in bold, you can tell that the Get­
ControllerInstance override uses the container’s Resolve method to create an instance of the 
requested controller by type. This is where the controller—the resolution root—is resolved, along 
with the rest of the object graph that might be required.

It is necessary to bear in mind the different lifetimes involved in this example. The IoC container is 
created, and mappings are registered, at application startup. The controllers, however, are resolved 
per request. As the request comes in, the controller is resolved, and as the request ends, the controller 
falls out of scope and is no longer used.

Windows Forms
In a Windows Forms application, bootstrapping dependency injection is more like that of a WPF ap-
plication than an ASP.NET MVC application. The resolution root of both is the view, with the presenter 
or controller being passed in as a constructor parameter and the object graph proceeding from there.

From the Library of Ida Schander



ptg14200592

316	 PART II  Writing SOLID code

Listing 9-28 shows the composition root of the Windows Forms front end for the Task List appli-
cation. It is located in the Program class—in the Main method—which is the entry point of the 
application. As usual, it is important to try to keep the registration code as close to the entry point 
as possible.

LISTING 9-28  The Program class’s Main method is the entry point to the application and makes a good 
composition root.

static class Program 
{ 
    public static UnityContainer Container; 
 
    [STAThread] 
    static void Main() 
    { 
        AutoMapper.Mapper.CreateMap<TaskDto, TaskViewModel>(); 
 
        Application.EnableVisualStyles(); 
        Application.SetCompatibleTextRenderingDefault(false); 
             
        Container = new UnityContainer(); 
        Container.RegisterType<ISettings, ApplicationSettings>(); 
        Container.RegisterType<IObjectMapper, MapperAutoMapper>(); 
        Container.RegisterType<ITaskService, TaskServiceAdo>(); 
        Container.RegisterType<TaskListController>(); 
        Container.RegisterType<TaskListView>(); 
 
        var mainForm = Container.Resolve<TaskListView>(); 
        Application.Run(mainForm); 
    } 
}

Note that, in this case, you are able to reuse not only the service implementations, but also the 
TaskListViewController because it doesn’t (yet) depend on anything wholly specific to WPF. Of 
course, in the future, it probably will, so it might be necessary to create a controller or presenter spe-
cifically to support the Windows Forms application.

The view in this application is very simple, in that the code-behind merely accepts the controller as 
a constructor parameter and initializes the data binding, as shown in Listing 9-29. When you are using 
the Model-View-Presenter pattern, the view implements an interface to which the presenter can man-
ually delegate calls for setting data.

From the Library of Ida Schander



ptg14200592

	 CHAPTER 9  Dependency injection	 317

LISTING 9-29  This view uses data binding to set the retrieved task list to a data grid control.

public partial class TaskListView : Form 
{ 
    public TaskListView(TaskListController controller) 
    { 
        InitializeComponent(); 
 
        controller.OnLoad(); 
        this.taskListControllerBindingSource.DataSource = controller; 
    } 
}

Without a framework to resolve your view for you, you must do it yourself before passing the 
form into the Application.Run method, which starts the Windows Forms application. This is 
only applicable if there is only one main view for the application, which is often the case in desk-
top applications. Dialog boxes and other child windows would be created via service calls from the 
controllers or presenters that are implemented by the view.

Convention over configuration
Registering by configuration involves painstakingly mapping interfaces to implementations. Aside 
from being time consuming, it is also verbose. Instead, you can use conventions to cut down on the 
amount of code written.

Conventions are instructions to the container that tell it how to automatically map interfaces to 
implementations. These instructions form the inputs to the container, in place of the registrations. 
Ideally, the container takes this input and processes it, with the output being exactly the same regis-
trations that you would otherwise have done manually.

Note  The “over” here can be read as “instead of.” Thus, this topic is about convention 
instead of configuration.

Listing 9-30 shows how the continuing example could use convention over configuration for 
registering.

From the Library of Ida Schander



ptg14200592

318	 PART II  Writing SOLID code

LISTING 9-30  The registration phase can be greatly simplified by using conventions.

private void OnApplicationStartup(object sender, StartupEventArgs e) 
{ 
    CreateMappings(); 
 
    container = new UnityContainer(); 
    container.RegisterTypes( 
        AllClasses.FromAssembliesInBasePath(), 
        WithMappings.FromMatchingInterface, 
        WithName.Default 
    ); 
             
    MainWindow = container.Resolve<TaskListView>(); 
    MainWindow.Show(); 
 
    ((TaskListController)MainWindow.DataContext).OnLoad(); 
}

The registrations have been replaced by a call to RegisterTypes, which is the method used to 
provide the container with instructions on how to find classes and map them to interfaces. The in-
structions provided in this example tell the container to:

■■ Register all classes from the assemblies in the bin folder (which is the base path).

■■ Map those classes to the interface that matches the name of the class. The convention here is 
that the Service implementation class would be registered against the IService interface.

■■ Use the default to name the mapping when registering each mapping. This default is null, 
meaning that the mapping is unnamed.

As a result, the container will iterate through each public class in each assembly that is in the bin 
folder, find its implemented interfaces, and map it to the one that matches the class’s name (prefixed 
with an I, for Interface), without providing a name for the mapping. It is not hard to imagine that 
the resulting registration will be quite greedy, potentially registering more classes to interfaces than 
you usually would if you were registering manually. However, a more important concern is whether it 
correctly registers the classes you want to the correct interfaces. This is the new problem introduced 
by conventions.

The registration is undeniably simpler than its previous incarnation, but only insofar as it is shorter: 
less code. With registration by configuration, it was easy to comprehend which implementation was 
being used for each interface—and that they were definitely registered correctly. 

The first parameter to RegisterTypes is a collection of the types to register. The AllClasses 
static class provides some helper methods for retrieving such a collection by using various common 
strategies. The second parameter requires a function that accepts a Type passed in from the collection 
in the first parameter—the implementation type—and returns a collection of Type instances to which 
it will be mapped—the interface types. The WithMappings static helper provides some methods that 
match this signature and use various strategies for finding appropriate interfaces to map to each type. 

From the Library of Ida Schander



ptg14200592

	 CHAPTER 9  Dependency injection	 319

The third parameter is another function, this time requiring that you return a name for the mapping 
for each type. The WithName static helper class provides two alternatives: Default, which always 
returns null (thus the mapping is unnamed), and TypeName, whereby the type’s name is used for the 
mapping name. This allows you to call Resolve<IService>("MyServiceImplementation") to 
retrieve the mapped type by its name. 

Of course, with the parameters of this method being so general, you are at liberty to provide what-
ever methods match the signature so that you can tailor the convention to your needs. As Listing 9-31 
shows, the crux of registering by convention is in the conventions that are used to find types, map 
them, and name them.

LISTING 9-31  Conventions can be tailored to your specifications.

public partial class App : Application 
{ 
    private void OnApplicationStartup(object sender, StartupEventArgs e) 
    { 
        CreateMappings(); 
 
        container = new UnityContainer(); 
        container.RegisterTypes( 
            AllClasses.FromAssembliesInBasePath().Where(type =>  
  type.Assembly.FullName.StartsWith(MatchingAssemblyPrefix)), 
            UserDefinedInterfaces,  
            WithName.Default 
        ); 
 
        MainWindow = container.Resolve<TaskListView>(); 
        MainWindow.Show(); 
 
        ((TaskListController)MainWindow.DataContext).OnLoad(); 
    } 
 
    private IEnumerable<Type> UserDefinedInterfaces(Type implementingType) 
    { 
        return WithMappings.FromAllInterfaces(implementingType) 
            .Where(iface => iface.Assembly.FullName.StartsWith(MatchingAssemblyPrefix)); 
    } 
}

You start by retrieving all of the types from the assemblies in the bin folder again. But this time, 
you limit the acceptable assemblies by returning only those whose full name starts with a specific pre-
fix string. It is common practice to use a dot notation for naming assemblies so that they match the 
top-level namespace that they contain. So Microsoft.Practices.Unity is the name of the DLL 
in which that namespace resides. If that assembly exists in your bin folder—and it is certain to if you 
are using Unity—you might want to omit it from the scan for types to map. A simple way to do this is 
to retrieve only those types that match the prefix of your own application. Instead of Microsoft, you 
would use something like MyBusiness or OurProject.

From the Library of Ida Schander



ptg14200592

320	 PART II  Writing SOLID code

The second parameter has been replaced with a reference to your own local method, which matches 
the required signature. Given a Type, which is the implementation type, you need to return a collec-
tion of other types that represent the interfaces to map to. Rather than write anything particularly 
complex, you specialize WithMappings.FromAllInterfaces, which returns all of the interfaces 
that the type implements. This list could feasibly include interfaces that you really do not want to map 
to—INotifyPropertyChanged or IDataErrorInfo, for example. So again, you only return the 
interfaces that reside in assemblies that match your assembly prefix. This ensures that you map only 
your own types to your own interfaces.

Pros and cons
Much like Poor Man’s Dependency Injection and vanilla registration with an Inversion of Control 
container, using conventions involves a tradeoff. You have less code to write, but that code is more 
algorithmic than the declarative alternatives.

Conventions are initially harder to set up. If you are writing truly SOLID code, not everything will 
lend itself to a perfect one-to-one mapping of class to interface. In fact, if an interface only has one 
implementation, that is itself a code smell—and mocks for unit tests do not count toward that total. 
Whether they are adapters, decorators, or different strategies, it should be common to have more 
than one implementation per interface, making registration by convention that much more difficult. 
As it becomes more commonplace to have florid object graphs injected into classes, it becomes 
harder to devise a general rule by which classes and interfaces can be mapped to each other. Under 
such circumstances, the conventions cover only a small portion of the required registration code, 
rather than being the general case.

Mark Seemann, author of the excellent Dependency Injection in .NET (Manning Publications, 2011), 
has explored the three options available for DI and has arrived at the conclusion summarized by 
Figure 9-5. In brief, the tradeoffs are between two criteria: value and complexity. Value is a utilitarian 
measure of the worth of the option, ranging from pointless to valuable. Complexity measures the rel-
ative difficulty of the options, ranging from simple to sophisticated. As shown in the figure, all three 
options exist at different points of the bell curve. Poor Man’s DI is simple and valuable, whereas 
convention over configuration is sophisticated and valuable. The main difference between them, 
then, is that using conventions is more complex than manually constructing the classes and forming 
an object graph from those classes. 

From the Library of Ida Schander



ptg14200592

	 CHAPTER 9  Dependency injection	 321

FIGURE 9-5  The tradeoffs between the three options for dependency injection mapped on two axes.

Interestingly, Seemann considers manual registration to sit somewhere between simple and so-
phisticated on the complexity scale but claims that it is pointless on the utilitarian scale. Why is this? 
The main reason is because registering types manually with a container is weakly typed. If you try 
to construct a class and pass in an instance for one of its parameters that does not match the type 
required, the compiler will complain when you try to build. However, no such compile-time error is 
generated by an IoC container. Instead, you defer the error to run time, which causes you to enter an 
inefficient loop of write > compile > run > test. Not only that, but you have spent time and energy 
learning how to register mappings with the container, for little gain and some extra pain.

The choice seems simple: either Poor Man’s DI or conventions. If the project is simple and a limited 
amount of mappings will be required, Poor Man’s DI is as simple as can be: just construct the objects 
manually. If the project is likely to be more complex, requiring many interfaces and classes to be 
mapped together, target the majority of the registrations with conventions, with the rest of the more 
specialized mappings being manually registered.

I also highly recommend Mark Seemann’s blog, where he explores many topics and is always 
methodical in his approach1.

1	  blog.ploeh.dk

From the Library of Ida Schander



ptg14200592

322	 PART II  Writing SOLID code

Conclusion

Dependency injection is the glue that holds together every other facet of this book. Without DI, it 
would not be possible to focus so keenly on factoring dependencies out of classes and hiding their 
implementation behind general interfaces. Such extension points are key to the development of 
adaptive code and key to the steady progress of an application as it gains in size and complexity.

There are different options for the implementation of DI, each of which has its own place. Whether 
you use Poor Man’s DI or conventions (with some minimal manual mapping), having DI at all is more 
important than how it is accomplished. 

Some common uses of DI are actually abuses that fit better into the category of code smell or anti-
pattern. Service Locator and Illegitimate Injection are two abuses that negate some of the positive 
effects of properly implemented DI.

Each application type has a composition root and a resolution root, the identification of which 
help you understand how the classes should be organized to facilitate DI. The composition root is 
always very close to the entry point of the application, assuming that registration is an initialization 
concern. The resolution root is the only type of object that should be resolved. In some applications, 
there is only one instance of the resolution root, whereas in others, a family of different subclasses 
will be resolved.

For all its far-reaching effects, dependency injection is actually a deceptively simple pattern that is 
nonetheless powerful and misunderstood.

From the Library of Ida Schander



ptg14200592

		  323

PART III

Adaptive sample 

CHAPTER 10	 Adaptive sample: Introduction . . . . . . . . . . . . . . . .                325

CHAPTER 11	 Adaptive sample: Sprint 1 . . . . . . . . . . . . . . . . . . . .                    337

CHAPTER 12	 Adaptive sample: Sprint 2 . . . . . . . . . . . . . . . . . . . .                    365

This part of the book takes you through the initial phases of 
developing a software product. Using a fictitious team and proj-
ect, the following chapters describe the conversations the team 
members have and the decisions they must make along the way.

The code examples reflect a selection of some of the patterns 
and practices that were covered in Parts I and II. Not everything is 
covered, but some of the more common implementation ques-
tions are answered.

As in the rest of this book, working code samples are avail-
able on GitHub. See Appendix A, “Adaptive tools,” for a brief 
introduction to using Git for source control, and Appendix B, 
“GitHub code samples,” which you can download from this 
book’s catalog page in the Microsoft Press Store, for a refer-
ence of code listings for each chapter to branch names in the 
Adaptive Code repository on GitHub.

From the Library of Ida Schander



ptg14200592

This page intentionally left blank 

From the Library of Ida Schander



ptg14200592

		  325

C H A P T E R  1 0

Adaptive sample: Introduction

In this chapter, you will

■■ Learn about the team that will develop the adaptive sample application.

■■ Understand the features of the product for the adaptive sample application.

■■ Create an initial product backlog for the application in sprint zero.

The chapters in this part of the book incrementally build a working application by using Scrum and 
by adhering to the adaptive design principles detailed in this book. It is the culmination of all of the 
content thus far, presented to form a coherent whole picture. As with the rest of the chapters, I rec-
ommend that you study the accompanying code1 while reading these chapters. Without the content of 
these chapters, the code alone lacks context. Similarly, without the full Microsoft Visual Studio solution, 
the listings provided in the following chapters will only give you a small window onto the full picture.

The format of this chapter is intended to mirror a real-world scenario, but there are some conces-
sions made for brevity and clarity. The rest of this chapter is an introduction to a fictitious Scrum team 
and an outline of the product that is to be developed.

Trey Research

The sample application will be developed by an imaginary company, Trey Research. The company 
prides itself on writing adaptive code that is resilient to change. 

The team
The sample application will be developed by using the Scrum process, so the team needs members 
who will fulfill the roles of Scrum. For a refresher of these roles and the Scrum process, refer to 
Chapter 1, “Introduction to Scrum.”

The team includes all of the roles that are required to advance the application from its inception 
to its delivery. The product owner has knowledge of how she wants the application to function, which 
features are of the highest priority, and which features will generate the greatest amount of revenue 

1	 See Appendix A, “Adaptive tools,” for instructions on how to access the code for the sample application and the rest of 
the code in this book.

From the Library of Ida Schander



ptg14200592

326	 PART III  Adaptive sample

for the business. The Scrum master is focused on the process that is being used by the team. His con-
cern is that the process works for the team, that the team has no impediments to its work, and that 
the product owner is informed of any issues that arise during the development of user stories. Trey 
Research’s development team consists of developers who will implement stories and a test analyst 
who will design test cases and verify that stories meet a certain standard of delivery. 

Product owner
The product owner is Petra. She is a veteran business analyst who has recently joined the company. 
Her specialization is in finding exactly what the customer wants—an invaluable skill for a product 
owner. She readily admits that Agile processes are alien to her, but she is eager to learn more about 
her new role. 

Throughout the development process, Petra liaises with the client company to find out exactly 
what it is that they want and why they want it. Also, she will calculate the value of various features 
to the client so that she can better prioritize work for the development team.

Scrum master 
Steve holds two roles in the company. He is simultaneously a Scrum master and the technical team 
lead. This is a common scenario that the company is keen to remedy in the near future, freeing Steve 
up to concentrate on his preferred role as Scrum master. To facilitate this, the company is looking to 
hire an experienced developer into a dedicated technical team lead role.

In his capacity as Scrum master, Steve ensures that the team follows the Scrum process and that 
the team members are happy with the current incarnation of the process. He prides himself on work-
ing honestly and transparently with any assigned product owner or customer—never altering metrics 
or over-promising on delivery. 

Although Steve rarely has time to write code, he still attends design meetings and tries to steer the 
development team in the right direction whenever he can.

Developers
David and Dianne are the company’s two dedicated developers. David is considered a junior devel-
oper because he was brought into the company after graduating from college, whereas Dianne is at 
more of an intermediate level. 

One of the reasons that Steve hired David is his continued self-education on programming prac-
tices and techniques. David tries to stay current on the latest trends and is always hungry to learn. 
However, he does tend to view each new technique or technology as a cure-all and liberally applies 
it whenever he can. This is excellent practice for David, but often his code is a morass of needless 
indirection.

Dianne is more advanced than David, but she has a tendency to sound jaded by the tidal wave of 
new technologies that have emerged over the last few years. She has been burnt by the same issues 

From the Library of Ida Schander



ptg14200592

	 CHAPTER 10  Adaptive sample: Introduction	 327

that David is currently working through. Dianne is vying for the technical team lead role and is deter-
mined to prove her credentials to be promoted from within. To this end, she is keen to work closely 
with David to help him to improve.

The Hype Cycle
The Hype Cycle was developed by Gartner, an IT research and advisory firm. It is a useful tool 
for assessing the progress of new techniques and technologies. It is shown in Figure 10-1.

FIGURE 10-1  The Hype Cycle can help explain attitudes toward new techniques and technologies.

The x-axis of the graph represents advancing time, and the y-axis represents expectations. 
Initially there is a trigger, which could be a new technological discovery or a helpful new tech-
nique or procedure. Soon thereafter, expectations rise rapidly until they hit the “peak of inflated 
expectations.” At this point, the technology or technique begins to be viewed as less all-powerful 
than was initially believed. This causes expectations to plummet rapidly to the “trough of dis-
illusionment.” All is not lost, however, because the “slope of enlightenment” gradually leads to a 
“plateau of productivity.” At this point, the technology or technique is established and has more 
realistic expectations attached to it. 

The expectations of developers are often located somewhere on this graph with respect to 
one or more programming technologies or techniques. For example, at Trey Research, David is 
nearing the peak of inflated expectations with respect to design patterns, the SOLID principles, 
unit testing, and refactoring. Dianne is just crawling out of the trough of disillusionment. In the 
sprint meetings detailed throughout this chapter, pay close attention to their questions and 
responses and consider how they are shaped by their relative positions on the Hype Cycle. 

For completeness, it is worth noting that Steve’s experience has moved him along the graph 
sufficient for him to be on the plateau of productivity. Not only that, but Steve is no longer as 
susceptible to the Hype Cycle as he once was. He is cautious when approaching new techniques 
and technologies that are purported to increase productivity, quality, efficiency—or any other 
metric. As a result, his expectations do not oscillate as wildly when he is presented with a new 
technique or technology.

From the Library of Ida Schander



ptg14200592

328	 PART III  Adaptive sample

Test analyst
Tom is the team’s test analyst. His focus is on test automation. He has always had an ability to find 
a software product’s weaknesses and improve the overall user experience through an increased 
robustness. He likes to treat features as black boxes and is less concerned with how something is 
implemented than in whether it works to specification—and beyond.

Tom feels like he is overworked in the team because he is constantly rejecting work that has been 
implemented. This means that he has to test and retest a story at least twice before it works to his 
exacting standards. It is a point of pride for Tom that defects are rarely deployed to a client’s machine 
and are instead caught early by his automated tests.

The product
Trey Research has been hired by a client to develop a new online chat application called Proseware. 
This is a web-based application that will allow people to chat from around the world. During first dis-
cussions with the client, Petra was able to determine that the client has a lot of ideas for the project but 
would like to put something small together so that they are better able to decide the direction of the 
application. Trey Research is well suited to this product because of its incremental development style 
and its ability to balance this against potentially rapid changes in requirements.

Petra spoke to the client before the project started so that she could prepare the team with some 
information about what they will develop. The client wants Proseware to be hosted by Trey Research, 
thus the team is free to choose whichever platforms and tools the team members think are best for 
the project. Petra was sure to ask the client what their requirements were with regard to Proseware’s 
capacity for users. She agreed with the client that the application needs to only support 20 concur-
rent users at a time, and this has become a key nonfunctional requirement of Proseware.

Before the team sets to work on writing any code, Petra calls a team meeting so that the team 
members can discuss the project and try to create an initial backlog of user stories. With these stories 
in place, the team can set to work on creating something demonstrable within a single sprint.

Initial backlog

The client provided Petra and the team with a list of features for Proseware. This was provided as a 
prose description, and the team’s goal for the meeting is to turn this into one or more user stories. 

We view Proseware as the primary site for people to chat. However, we realize that Rome was 
not built in a day, so we have limited our mission statement somewhat so that something can be 
delivered in the fastest possible timeframe.

Although we do want to allow users to be able to send each other images or files, the key 
functionality will be centered around textual communication. Anyone who is in a room should 
receive all the messages that are sent from anyone else.

From the Library of Ida Schander



ptg14200592

	 CHAPTER 10  Adaptive sample: Introduction	 329

Because the textual side of chat is so important, we need the members of a room to be able to 
send each other formatted text—something like HTML. Of course, they shouldn’t be able to spam 
the chat with lots of meaningless images or videos!

Some of the conversations in Proseware should be not be editable by some users, and some 
users should only be allowed to read, but not contribute.

Petra brings this short description to the meeting, and the team sets to work trying to find the 
user stories.

Finding stories in prose
Sometimes clients write prose descriptions of their expectations, as in the previous section. From this, 
the team must extract and negotiate the user stories to be implemented. The Trey Research team ar-
ranges a meeting to find the user stories in the description of Proseware that was supplied by the client.

PETRA:	 Okay, has everyone read the description? [Everyone nods, displaying a range of 
enthusiasm.]

STEVE:	 There’s a lot here!

DAVID:	 Not really—we could probably get through this in a single sprint. [Steve smiles broadly.]

PETRA:	 Can someone please show me how this is going to give us a list of user stories?

DIANNE:	 First thing we can do is pick out the verbs and nouns: send, receive, format, spam…room, 
conversation, users, members, chat...

STEVE:	 True, that’s a lot right there.

PETRA:	 As a user, I want to… So that… 

DIANNE:	 Are they just users?

STEVE:	 Sounds like there’s more than one role here.

DAVID:	 They call them users, and then they call them members.

TOM:	 Aren’t you a participant in a conversation, though?

STEVE:	 Perhaps, but we should use their ubiquitous language. There are some roles around 
conversations being read-only or not, surely?

DIANNE:	 Yeah, that sounds like it’s hinting toward some kind of permissions system.

PETRA:	 Can someone pick out a story, please?

DAVID:	 As a member, I want to send formatted text so that others can… view… stuff?

STEVE:	 Shall we focus on the roles and the behavior for now? Petra, you can add the business 
value bit, can’t you?

From the Library of Ida Schander



ptg14200592

330	 PART III  Adaptive sample

PETRA:	 Sure.

DIANNE:	 Yeah, but even that seems a little bit too big. It feels like an epic, not a user story.

PETRA:	 Sorry, what’s an epic again?

DAVID:	 It’s just a big story, really. Dianne thinks this story is too big to fit into a single sprint, but 
I don’t know how it could be smaller.

DIANNE:	 Well, what’s simpler than formatted text? Ignore the HTML part—that’s just the client 
imposing implementation! Think about any formatted text: what’s simpler?

DAVID:	 Err… Unformatted text?

STEVE:	 Also known as plain text. [David smiles sheepishly.]

DIANNE:	 As a room member, I want to send plain text messages to other room members. [Petra 
looks for dissenters but finds tacit consensus.]

TOM:	 Excellent! Ladies and gentlemen, we have our first user story! [Everyone but Petra bursts 
into a spontaneous round of applause.]

PETRA:	 But they asked for formatted text?

STEVE:	 Don’t worry, that’s another story—it just comes later, after plain text has been delivered.

PETRA:	 Okay. As a room member, I want to send formatted text messages to other room 
members.

STEVE:	 That’s two. Any more?

DAVID:	 I want to create rooms?

DIANNE:	 Yes. I think this will surely make that person a room owner, won’t it? As a room owner, I 
want to create rooms for categorizing conversations?

STEVE:	 Good.

TOM:	 They said they wanted to send images and files, too.

PETRA:	 Yes, that’s another story.

STEVE:	 One more: I want to create read-only conversations.

DIANNE:	 That’s the last sentence covered. I think we’re done.

Story point estimation
By now, the team members agree that they have found the user stories from the client’s require-
ments. They create user story cards from each of the following bullet points:

■■ I want to send plain text messages to other room members.

■■ I want to create rooms for categorizing conversations.

From the Library of Ida Schander



ptg14200592

	 CHAPTER 10  Adaptive sample: Introduction	 331

■■ I want to send formatted text to other room members.

■■ I want to send images and/or files.

■■ I want to create read-only conversations.

The team arranges the cards on the table ready for assigning story points. There are only five stories, 
so the team decides to use planning poker to estimate the effort required.

PETRA:	 Sending plain text messages can’t be too difficult, surely?

DAVID:	 It would only take me an hour! [Steve and Dianne raise their eyebrows. Tom rolls his 
eyes.]

STEVE:	 Well, you can’t really do this one first. Without rooms, you have no participants.

DIANNE:	 True, there’s a dependency there, but it doesn’t alter the size. [Steve nods in agreement.]

PETRA:	 Is everyone ready? 

After some final card shuffling, the team members show their cards:

PETRA TOM STEVE DIANNE DAVID

3 3 5 5 1

PETRA:	 Hmm, that’s a bit of a mix. David, why one?

DAVID:	 There’s almost nothing to do here: it’s just taking some input and writing it to the screen.

DIANNE:	 Not exactly, David. There’s more to it than that. We need to save the text somewhere and 
be able to read it back. Other room members need to read it, too.

STEVE:	 Indeed, Dianne’s right. We need to think about the architecture here.

DAVID:	 Oh, yeah. I thought it was just about writing it out to the browser window. But, of course, 
that’s only going to be viewed by the person who wrote it—not shared. Wow, that’s 
much harder!

PETRA:	 Okay, shall we re-estimate?

The team members count down from three and show their cards again:

PETRA TOM STEVE DIANNE DAVID

5 5 5 5 5

STEVE:	 Can we split this story up into “reading” and “writing”?

DIANNE:	 Sorry—I’m not sure what you mean.

TOM:	 I think he means that we could have a story for viewing the messages that have been 
sent to a room and another story for sending messages to that room. Right, Steve?

From the Library of Ida Schander



ptg14200592

332	 PART III  Adaptive sample

STEVE:	 Yes. I just think it would help for us to start really small. I know an estimate of five is not 
all that large, but it is significant at such an early stage of development.

DIANNE:	 Okay, I’m happy with that. Shall we re-estimate sending messages?

PETRA TOM STEVE DIANNE DAVID

3 3 3 3 3

DIANNE:	 And now let’s estimate just viewing the messages already sent to a room.

PETRA TOM STEVE DIANNE DAVID

2 3 2 2 1

STEVE:	 Tom, David—will you accept a two? 

TOM:	 Yes, two is fine.

DAVID:	 I agree. Two makes sense.

STEVE:	 Excellent. Two it is. [Steve marks a two on the user story and reads out the next.] I want 
to create rooms for categorizing conversations.

DIANNE:	 How do we demonstrate this?

TOM:	 Petra and I spoke about this, and one of the acceptance criteria is that we should be able 
to view the list of the rooms that have been created.

DIANNE:	 Another candidate for splitting into “read” and “write” stories?

STEVE:	 I think so, yes.

DIANNE:	 Let’s estimate the read part first: I want to view a list of rooms that represent conversations.

The team members show their cards:

PETRA TOM STEVE DIANNE DAVID

2 2 2 2 2

DIANNE:	 Wow! Unanimous. And now the story for creating new rooms?

The team members show their cards:

PETRA TOM STEVE DIANNE DAVID

2 2 2 2 1

STEVE:	 David, are you okay to take a two?

DAVID:	 Yeah, that’s fine.

STEVE:	 Next: I want to send formatted text to other room members.

PETRA:	 So this is just adding in formatted text?

From the Library of Ida Schander



ptg14200592

	 CHAPTER 10  Adaptive sample: Introduction	 333

STEVE:	 Yes—assume that the plain text story has been completed and is a prerequisite to this 
story.

TOM:	 What sort of formatting do they want? Embedded images or something?

DAVID:	 Images is a separate story. I think of this more as bold, italic, underline—things like that.

PETRA:	 Yes, that’s what the client said that they wanted. HTML was the only format they could 
think of, but I don’t think we’d want to go there. Just simple text formatting, nothing too 
strenuous.

STEVE:	 Okay, ready?

The team members show their cards:

PETRA TOM STEVE DIANNE DAVID

1 1 1 1 1

STEVE:	 Hurray! We’re all agreed on that, then. Next: I want to send images and/or files.

DIANNE:	 I don’t like the “and/or” bit in this story. Can we be less ambiguous?

TOM:	 Well, what’s the difference between sending an image and sending a file?

PETRA:	 From my conversation with the client, they wanted images to be shown in the browser, 
whereas files would be downloaded to other users’ machines.

DAVID:	 Then this is surely two different stories, isn’t it? One for downloading files and one for 
showing images.

DIANNE:	 Exactly, this is too big at the moment. We should tackle them separately. It feels like files 
would be the simpler of the two, so we could put that first, with images using it as a 
prerequisite.

STEVE:	 I agree. So let’s change this to two stories. I want to send files to other room members. I 
want to show images to the room. Let’s estimate them separately.

The team members show their cards for the first story:

PETRA TOM STEVE DIANNE DAVID

5 5 3 3 3

STEVE:	 Hmm, why fives?

TOM:	 Testing this is going to be difficult. There are a lot of unusual test cases that we will need 
to consider. For instance, what if the file is very large? What if the file is malicious? Will 
we keep hold of the file on our servers? For how long?

STEVE:	 I take your point. I was considering only the development effort here, sorry. I can tell 
now that you will be spending a lot of time trying to break this.

DAVID:	 Shall we re-estimate, or just take five?

From the Library of Ida Schander



ptg14200592

334	 PART III  Adaptive sample

STEVE:	 I’m happy with five.

DIANNE:	 Me too.

STEVE:	 And what about images?

PETRA:	 This is just about showing the image to the users on the page?

STEVE:	 Yes, the upload part should have been completed by now, so this is just about showing 
the image on the page.

The team members show their cards:

PETRA TOM STEVE DIANNE DAVID

3 3 3 3 5

STEVE:	 David, a five?

DAVID:	 Yes—I think this is a bit harder than it looks. What if the image is inappropriate? What 
if there are a lot of users and the image takes a long time to download? That will put a 
load on our servers.

DIANNE:	 I agree, those are all concerns, but I think they are out of scope for now. Petra, make a 
note to ask the client what they think of a content filter—not just for images, but for text, 
too. But, at the moment, we only need to support 20 users. That should not represent a 
significant load.

PETRA:	 Good idea about the content filter, David.

STEVE:	 Happy to take a three, David?

DAVID:	 Actually, now I think it’s a two! But, yes—a three is fine.

STEVE:	 Good stuff. Final story: I want to create read-only conversations.

The team members show their cards:

PETRA TOM STEVE DIANNE DAVID

8 1 5 8 3

STEVE:	 Oh dear. That’s all a bit random! Tom, one?

TOM:	 Sorry, forgot about analysis and development effort. This just seems really, really easy to 
test in comparison to the other stories.

STEVE:	 Okay. Petra, Dianne, eight?

DIANNE:	 At this point, we won’t have roles or permissions, which we’ll need. I think there’s a lot of 
work here.

DAVID:	 Oh, I didn’t think we needed roles or permissions at this point. I thought we’d just flag a 
conversation as read-only.

From the Library of Ida Schander



ptg14200592

	 CHAPTER 10  Adaptive sample: Introduction	 335

STEVE:	 It needs to be read-only on a per-user basis. Still, I don’t think we need any heavy in-
frastructure for permissions or roles as yet. I think it should be implemented with a very 
simple solution first, and we can elaborate on it later.

DIANNE:	 That sounds fine to me.

PETRA:	 Yeah, I trust you guys.

STEVE:	 The average here was exactly five. Shall we take that? [Everybody agrees.]

STEVE:	 David, still think this is a single sprint of work?

DAVID:	 Hmm… No!

The meeting ends. 

Summary
Over the course of the meeting, the team has taken a short description from the client and broken it 
down into user stories. The team then estimated the stories and created a prioritized backlog. They 
can now begin development.

Notice how the conversation allowed all sides of the development process to give input: analysis, 
implementation, and testing. For each story, the team reached a consensus for the effort required to 
complete the story.

From the Library of Ida Schander



ptg14200592

This page intentionally left blank 

From the Library of Ida Schander



ptg14200592

		  337

C H A P T E R  1 1

Adaptive sample: Sprint 1

In this chapter, you will

■■ Observe the team’s first sprint planning session.

■■ Follow the implementation and evolution of the first user stories.

■■ Observe the team’s sprint demo and retrospective.

In this chapter, the Trey Research team implements its first four user stories. These are the only stories 
that the team has assigned to Sprint 1 of the project. The team has set the following sprint goal:

To demonstrate a dynamic list of rooms, to be able to create a new room, to view the messages 
written in a room, and for at least two users to be able to share messages in the room

By defining a sprint goal, the team set something challenging but achievable to be completed 
within the sprint. All work should be aligned to the sprint goal so that the team knows that it is on 
track and working on only what the client has asked for. 

Planning

The team arranges a planning meeting for the sprint and takes to it the stories that relate to the sprint 
goal. For this sprint, the stories that the team will implement are:

■■ I want to create rooms for categorizing conversations.

■■ I want to view a list of rooms that represent conversations.

■■ I want to view the messages that have been sent to a room.

■■ I want to send plain text messages to other room members.

The team begins its discussion.

PETRA:	 Okay, four stories to talk about, but these are the first to be implemented, so I expect 
there are some key decisions to be made here.

STEVE:	 Perhaps, yes. Certainly we need to consider a few technologies before we begin. Does 
anyone have any suggestions?

From the Library of Ida Schander



ptg14200592

338	 PART III  Adaptive sample

DIANNE:	 This is a web application, so we should probably go with something that we are all com-
fortable and familiar with. ASP.NET MVC seems the obvious choice. Does everyone agree?

STEVE:	 I’m happy with that.

DAVID:	 Hmm. I think this is a perfect Node.js application, to be honest.

TOM:	 I have no experience with Node, unfortunately. Does anyone else?

STEVE:	 Not really, no. I think Dianne is right to say that we should stick to what we know.

DIANNE:	 With MVC, we already have much of the code structure set out for us. Look at this 
sequence diagram.

Dianne shows the team the UML sequence diagram in Figure 11-1.

FIGURE 11-1  Dianne’s sequence diagram generalizes the structure of the application.

STEVE:	 Okay, I understand what you’ve done here. That looks okay to me, for now.

DAVID:	 It doesn’t look like there’s anything to do with rooms or messages.

DIANNE:	 Yes, I’ll explain. It’s quite generic. Rather than create a sequence diagram for every user 
story, I decided to generalize the solution so that we can tell what classes we will need—
in the short term, at least.

DAVID:	 Oh, I see. So Get data is a placeholder for Get room and Get messages, right?

From the Library of Ida Schander



ptg14200592

	 CHAPTER 11  Adaptive sample: Sprint 1	 339

DIANNE:	 Yes, you’ve got it.

STEVE:	 So, what’s the service part? Will it be event-driven messaging or some kind of database 
that we poll?

DIANE:	 HTTP is a disconnected, stateless protocol. We will have to poll the server for messages.

DAVID:	 But only the messages since the last check. We don’t want to return all messages all the 
time.

STEVE:	 Yes, that wouldn’t scale well.

DIANNE:	 Speaking of which, is this really a scalable solution?

PETRA:	 Good point. Although the client wants to support only 20 users in the short term, you 
can tell that this is going to expand quite quickly. There’s no way to know what the upper 
limit might be. We shouldn’t limit the application’s scalability.

STEVE:	 Perhaps not, no. But, as long as we build adaptability into the code from the outset, we 
should be able to discover the most appropriate architecture as we progress.

TOM:	 What about the user interface? If we’re going to demonstrate this next week, it should at 
least look respectable.

PETRA:	 Tom’s right—a lot of confidence from clients is lost by functionally great but aesthetically 
poor demonstrations.

DAVID:	 Well, MVC uses bootstrap, so we could implement a couple of bootstrap templates. We’ll 
need a page for the room list and a page for the room’s messages. At least then it will 
look a bit modern, if a little minimalist.

PETRA:	 Don’t worry about minimalism. I think they will probably want this application to be 
themed by the user, anyway. Any effort we spend on perfecting the user interface would 
probably be wasted at such an early stage.

STEVE:	 Tom, what about testing? Is there anything here you’re worried about?

TOM:	 No, I made sure that the sprint goal was limited to just two users so that I can defer the 
automated load testing until later. At this point we can just focus on manually testing 
things until I get some automation set up. I’ll probably want you three to unit test, 
though, so let me know if you need help with any of that.

STEVE:	 Brilliant—I think we’re done for now. We can discuss things in further detail as and when 
we need to.

The meeting ends, and the team is ready to implement its first story.

From the Library of Ida Schander



ptg14200592

340	 PART III  Adaptive sample

“I want to create rooms for categorizing conversations.”

A couple of days later, David indicates that he is ready for a code review of the room creation story. 
Dianne comes over to David’s desk, and the two discuss the code. The goal of this discussion is to 
identify both positive and negative aspects of the chosen implementation. Peer reviews such as this 
offer developers a chance to identify whether something is not up to the required standard or lacks 
adaptability, so that final changes can be made before the code is committed to source control.

The controller
When David starts implementing the controller, he calls Dianne over to ask for her input.

DAVID:	 So, I’ve used the MVC pattern as you suggested. The controller itself doesn’t do much 
yet—it is merely delegating down to an IRoomRepository interface to interact with 
whatever persistent storage we put in place.

DIANNE:	 Let’s look at the controller code now.

David shows Dianne the controller code in Listing 11-1.

LISTING 11-1  The RoomController is the entry point of the Create requests.

public class RoomController : Controller 
{ 
    private readonly IRoomRepository roomRepository; 
    public RoomController(IRoomRepository roomRepository) 
    { 
        Contract.Requires<ArgumentNullException>(roomRepository != null); 
 
        this.roomRepository = roomRepository; 
    } 
         
    [HttpGet] 
    public ActionResult List() 
    { 
        return View(); 
    } 
 
    [HttpGet] 
    public ActionResult Create() 
    { 
        return View(new CreateRoomViewModel()); 
    } 
 
    [HttpPost] 
    public ActionResult Create(CreateRoomViewModel model) 
    { 
        ActionResult result; 
 

From the Library of Ida Schander



ptg14200592

	 CHAPTER 11  Adaptive sample: Sprint 1	 341

        if(ModelState.IsValid) 
        { 
            roomRepository.CreateRoom(model.NewRoomName); 
 
            result = RedirectToAction("List"); 
        } 
        else 
        { 
            result = View("Create", model); 
        } 
 
        return result; 
    } 
} 

DIANNE:	 Okay, this looks good. We’ve got dependency injection for the IRoomRepository, so 
that gives us some flexibility. And it is enforced with code contracts, which is great.

DAVID:	 Yes—I also ensure that the preconditions are in place with unit tests. I’ll show them to 
you if you want.

DIANNE:	 That would be great, but could you just explain the Create method for the POST request 
handler, please? Specifically, why does it redirect after delegating to the CreateRoom 
method on the repository?

DAVID:	 That’s the Post-Redirect-Get pattern. Basically, if we just return to the List view directly 
at this point, any attempts to refresh the page by the user will result in a second POST 
request. This would mean that we try to create another room with the same name, and 
it just doesn’t feel right from a user experience perspective.

DIANNE:	 Excellent! This looks really good for now.

DAVID:	 One thing I’m not so sure of is directly instantiating a new CreateRoomViewModel. 
Shouldn’t I use a factory for this?

DIANNE:	 Good question. I would say no—not in this case. The reason is that there is unlikely to be 
any variation in the returned type. Viewmodels like this are tailored to a specific use, and 
it would be needless indirection to delegate to a factory here.

Controller unit tests
David opens the file containing the unit tests, as shown in Listing 11-2, and asks Dianne to peer review 
his work.

DAVID:	 Here are the unit tests for the RoomController constructor.

From the Library of Ida Schander



ptg14200592

342	 PART III  Adaptive sample

LISTING 11-2  Validating the RoomController constructor through unit tests.

[Test] 
public void ConstructingWithoutRepositoryThrowsArgumentNullException() 
{ 
    Assert.Throws<ArgumentNullException>(() => new RoomController(null)); 
} 
 
[Test] 
public void ConstructingWithValidParametersDoesNotThrowException() 
{ 
    Assert.DoesNotThrow(() => CreateController()); 
}

DAVID:	 The first one ensures that we always have a valid reference for the IRoomRepository 
field in the RoomController.

DIANNE:	 Yes, it is part of the implied contract of the RoomController that it always has a valid, 
not-null repository field.

DAVID:	 These next two tests are asserting the behavior of the Create method used to service 
GET requests. 

David scrolls down through the tests file and finds the code shown in Listing 11-3.

LISTING 11-3  Unit tests for the GET request of the Create action.

[Test] 
public void GetCreateRendersView() 
{ 
    var controller = CreateController(); 
 
    var result = controller.Create(); 
 
    Assert.That(result, Is.InstanceOf<ViewResult>()); 
} 
 
[Test] 
public void GetCreateSetsViewModel() 
{ 
    var controller = CreateController(); 
 
    var viewResult = controller.Create() as ViewResult; 
 
    Assert.That(viewResult.Model, Is.InstanceOf<CreateRoomViewModel>()); 
}

From the Library of Ida Schander



ptg14200592

	 CHAPTER 11  Adaptive sample: Sprint 1	 343

DAVID:	 We need to know two things: that the request gives a ViewResult instance, and that 
the Model property is of the expected type, CreateRoomViewModel.

DIANNE:	 Could you unify these into one unit test with two assertions?

DAVID:	 I suppose I could, but then it wouldn’t be immediately clear from the name of the unit 
test which assertion had failed. I prefer to write quite fine-grained tests with as few asser-
tions as make sense. When a unit test fails, it is then easy to identify the errant behavior.

DIANNE:	 That’s fine. What about the POST request side of the Create action, the one that del-
egates to the service?

DAVID:	 Here it is.

David scrolls down further and shows Dianne the unit tests of Listing 11-4.

LISTING 11-4  Unit tests for the POST request of the Create action.

[Test] 
[TestCase(null)] 
[TestCase("")] 
[TestCase("    ")] 
public void PostCreateNewRoomWithInvalidRoomNameCausesValidationError(string roomName) 
{ 
    var controller = CreateController(); 
 
    var viewModel = new CreateRoomViewModel { NewRoomName = roomName }; 
 
    var context = new ValidationContext(viewModel, serviceProvider: null, items: null); 
    var results = new List<ValidationResult>(); 
 
    var isValid = Validator.TryValidateObject(viewModel, context, results); 
 
    Assert.That(isValid, Is.False); 
} 
 
[Test] 
[TestCase(null)] 
[TestCase("")] 
[TestCase("    ")] 
public void PostCreateNewRoomWithInvalidRoomNameShowsCreateView(string roomName) 
{ 
    var controller = CreateController(); 
 
    var viewModel = new CreateRoomViewModel { NewRoomName = roomName }; 
    controller.ViewData.ModelState.AddModelError("Room Name", "Room name is required"); 
    var result = controller.Create(viewModel); 
 
    Assert.That(result, Is.InstanceOf<ViewResult>()); 
 

From the Library of Ida Schander



ptg14200592

344	 PART III  Adaptive sample

    var viewResult = result as ViewResult; 
    Assert.That(viewResult.View, Is.Null); 
    Assert.That(viewResult.Model, Is.EqualTo(viewModel)); 
} 
 
[Test] 
public void PostCreateNewRoomRedirectsToViewResult() 
{ 
    var controller = CreateController(); 
 
    var viewModel = new CreateRoomViewModel { NewRoomName = "Test Room" }; 
    var result = controller.Create(viewModel); 
 
    Assert.That(result, Is.InstanceOf<RedirectToRouteResult>()); 
             
    var redirectResult = result as RedirectToRouteResult; 
    Assert.That(redirectResult.RouteValues["Action"], Is.EqualTo("List")); 
} 
 
[Test] 
public void PostCreateNewRoomDelegatesToRoomRepository() 
{ 
    var controller = CreateController(); 
 
    var viewModel = new CreateRoomViewModel { NewRoomName = "Test Room" }; 
    controller.Create(viewModel); 
 
    mockRoomRepository.Verify(repository => repository.CreateRoom("Test Room")); 
}

DAVID:	 The first two tests assert that the room name is a required field—it cannot be omitted—
and that a validation error drops the user back at the room creation form.

DIANNE:	 I like your use of the TestCase attribute to provide the unit test with some erroneous 
room names.

DAVID:	 Thanks. I thought it would allow me to write fewer tests.

DIANNE:	 So far, so good. What’s next?

The room repository
David is unsure of his implementation for the room repository. He opens the file shown in Listing 11-5 
so that Dianne can offer her opinion.

DAVID:	 I’ve created an implementation of the IRoomRepository interface for ADO.NET. Here it is.

From the Library of Ida Schander



ptg14200592

	 CHAPTER 11  Adaptive sample: Sprint 1	 345

LISTING 11-5  The AdoNetRoomRepository allows Room data to be stored in any ADO.NET–compatible database.

public class AdoNetRoomRepository : IRoomRepository 
{ 
    public AdoNetRoomRepository(IConnectionIsolationFactory factory) 
    { 
        this.factory = factory; 
    } 
 
    public void CreateRoom(string name) 
    { 
        factory.With(connection => 
        { 
            using(var transaction = connection.BeginTransaction()) 
            { 
                var command = connection.CreateCommand(); 
                command.CommandText = "dbo.create_room"; 
                command.CommandType = CommandType.StoredProcedure; 
                command.Transaction = transaction; 
                var parameter = command.CreateParameter(); 
                parameter.DbType = DbType.String; 
                parameter.ParameterName = "name"; 
                parameter.Value = name; 
                command.Parameters.Add(parameter); 
 
                command.ExecuteNonQuery(); 
            } 
        }); 
    } 
 
    private readonly IConnectionIsolationFactory factory; 
}

DAVID:	 I’ve used the Factory Isolation pattern here, and I’m delegating down to a factory inter-
face to control the lifetime of the database connection object. The body of the Create­
Room method is pretty standard ADO.NET code aside from there.

DIANNE:	 Hmm, I’m not so sure that the Factory Isolation pattern is warranted here. Let me just ask 
Steve.

Factory Isolation pattern misapplied
Dianne beckons Steve over to get a second opinion on David’s use of the Factory Isolation pattern.

STEVE:	 How can I help?

DIANNE:	 Well, look at this class. David’s used the Factory Isolation pattern here, but I’m just not 
sure it’s appropriate.

STEVE:	 Hmm, indeed. I think I understand the problem here. You’re using ADO.NET here, right? 
Let’s have a look at the implementation of the factory.

From the Library of Ida Schander



ptg14200592

346	 PART III  Adaptive sample

David opens the file and shows Dianne and Steve the code in Listing 11-6.

LISTING 11-6  The isolation factory aims to manage the lifetime of a database connection.

public class AdoNetConnectionIsolationFactory : IConnectionIsolationFactory 
{ 
    private readonly IApplicationSettings applicationSettings; 
    private readonly DbProviderFactory dbProviderFactory; 
    public AdoNetConnectionIsolationFactory(IApplicationSettings applicationSettings) 
    { 
        this.applicationSettings = applicationSettings; 
        this.dbProviderFactory = DbProviderFactories 
                .GetFactory(applicationSettings.GetValue("DatabaseProviderName")); 
    } 
 
    public void With(Action<IDbConnection> action) 
    { 
        using(var connection = dbProviderFactory.CreateConnection()) 
        { 
            connection.ConnectionString = applicationSettings 
                    .GetValue("ProsewareConnectionString"); 
            connection.Open(); 
 
            action(connection); 
        } 
    } 
 
}

STEVE:	 The DbProviderFactory.CreateConnection method returns an IDbConnection.

DAVID:	 Yes, that’s right.

DIANNE:	 I understand the problem now. The Factory Isolation pattern is only applicable when the 
product of the factory may or may not implement IDisposable. The IDbConnection 
interface inherits from IDisposable, so it effectively forces all implementations to pro-
vide a public Dispose method.

STEVE:	 Exactly. So you don’t need to use factory isolation because…

DAVID:	 Because I can just add in a using block, instead.

DIANNE:	 That’s right.

DAVID:	 Okay, so should this just be a normal factory, instead?

DIANNE:	 I would say no. If you look at what’s happening in this class, it’s effectively hiding the 
DbProviderFactory from clients. I think the factory is needless indirection in this case.

STEVE:	 I agree.

From the Library of Ida Schander



ptg14200592

	 CHAPTER 11  Adaptive sample: Sprint 1	 347

DAVID:	 But that means I’ll have to call DbProviderFactory directly from the room repository 
implementation. Isn’t that inflexible, especially because DbProviderFactory is a static 
class?

STEVE:	 That’s true—it would be nice if DbProviderFactory wasn’t a static class. But the room 
repository implementation depends on ADO.NET, so it isn’t really pollution. The intro-
duction of the factory has made public something that is a concern only internally to 
the repository’s implementation.

DAVID:	 Okay, that makes sense. And we can ignore this static class call because it is generic 
enough as it is, right?

DIANNE:	 Yes. Consider what meaningful decoration or adaptation you might make to a 
DbProviderFactory if it was an interface. Any alternative behavior is more likely  
to be injected at a higher level—around the IRoomRepository interface.

DAVID:	 I’ve got it. Let me make these changes, and I’ll get back to you.

Refactoring
David sets to work on refactoring the room repository, resulting in the code shown in Listing 11-7. He 
calls Dianne and Steve over to assess the changes.

LISTING 11-7  The refactored room repository uses the DbProviderFactory directly.

public class AdoNetRoomRepository : IRoomRepository 
{ 
    private readonly IApplicationSettings applicationSettings; 
    private readonly DbProviderFactory databaseFactory; 
    public AdoNetRoomRepository(IApplicationSettings applicationSettings,  
  DbProviderFactory databaseFactory) 
    { 
        Contract.Requires<ArgumentNullException>(applicationSettings != null); 
        Contract.Requires<ArgumentNullException>(databaseFactory != null); 
 
        this.applicationSettings = applicationSettings; 
        this.databaseFactory = databaseFactory;  
    } 
 
    public void CreateRoom(string name) 
    { 
        using(var connection = databaseFactory.CreateConnection()) 
        { 
            connection.ConnectionString =  
  applicationSettings.GetValue("ProsewareConnectionString"); 
            connection.Open(); 
 
            using(var transaction = connection.BeginTransaction()) 
            { 

From the Library of Ida Schander



ptg14200592

348	 PART III  Adaptive sample

                var command = connection.CreateCommand(); 
                command.CommandText = "dbo.create_room"; 
                command.CommandType = CommandType.StoredProcedure; 
                command.Transaction = transaction; 
                var parameter = command.CreateParameter(); 
                parameter.DbType = DbType.String; 
                parameter.ParameterName = "name"; 
                parameter.Value = name; 
                command.Parameters.Add(parameter); 
 
                command.ExecuteNonQuery(); 
            } 
        } 
    } 
 
}

DAVID:	 I made a few changes. I’ve integrated the code from the connection factory into the 
repository class. I wasn’t happy with the arbitrary use of the DbProviderFactories 
static class. The DbProviderFactory class is at least an abstract class, which gives us 
some extension points that we can work with. This way, we’re using normal dependency 
injection, but instead of an interface, the injection is an abstract class.

DIANNE:	 That’s great. I think you’ve made good changes there.

STEVE:	 Could you show me the Inversion of Control container’s registration configuration for the 
DbProviderFactory? I’m interested in how you’re registering this.

David shows Steve and Dianne the Unity registration code shown in Listing 11-8.

LISTING 11-8  The Unity Inversion of Control (IoC) registration for the DbProviderFactory.

container.RegisterType<DbProviderFactory>(new InjectionFactory(c =>  
  DbProviderFactories.GetFactory( 
  c.Resolve<IApplicationSettings>().GetValue("DatabaseProviderName"))));

STEVE:	 That’s fine. I expected it would be a little unusual and contrived due to the static nature 
of the class involved, but I think you’ve done well to abstract it away from the repository 
implementation.

DIANNE:	 I think this is good to be integrated now, don’t you, Steve?

STEVE:	 Yes, I think that’s our first story completed.

David commits the code, and the team moves on to the next story.

From the Library of Ida Schander



ptg14200592

	 CHAPTER 11  Adaptive sample: Sprint 1	 349

“I want to view a list of rooms that represent conversations.”

The next day, David completes the second story—viewing the list of all created rooms. Before com-
mitting the code to source control, he asks Dianne to review his work.

DAVID:	 I’ve made some changes to the RoomController so that it supports reading the rooms 
and displaying them on a page.

DIANNE:	 Okay, let’s start there. Open up the RoomController and show me what’s new.

David shows Dianne the code in Listing 11-9. To keep this snippet small and focused, the room 
creation actions have been omitted.

LISTING 11-9  The RoomController has a new action for listing the rooms.

public class RoomController : Controller 
{ 
    private readonly IRoomRepository roomRepository; 
    private readonly IRoomViewModelMapper viewModelMapper; 
    public RoomController(IRoomRepository roomRepository, IRoomViewModelMapper mapper) 
    { 
        Contract.Requires<ArgumentNullException>(roomRepository != null); 
        Contract.Requires<ArgumentNullException>(mapper != null); 
 
        this.roomRepository = roomRepository; 
        this.viewModelMapper = mapper; 
    } 
         
    [HttpGet] 
    public ActionResult List() 
    { 
        var roomListViewModel = new RoomListViewModel(); 
             
        var allRoomRecords = roomRepository.GetAllRooms(); 
 
        foreach(var roomRecord in allRoomRecords) 
        { 
            roomListViewModel.Rooms 
                    .Add(viewModelMapper.MapRoomRecordToRoomViewModel(roomRecord)); 
        } 
 
        return View(roomListViewModel); 
    } 
 
}

DAVID:	 There’s a new constructor argument here—a mapper—the presence of which is enforced 
with code contracts. I added a new unit test for that, too.

DIANNE:	 Okay, that’s good. There’s one change I would make here, though. Talk me through the 
List method, and I’ll let you know what I think we can do to simplify this class.

From the Library of Ida Schander



ptg14200592

350	 PART III  Adaptive sample

DAVID:	 It has two parts, really. First, the room repository is queried to retrieve all room records. 
However, those room records are models, not viewmodels, so I’ve introduced some map-
ping from one data type to another. This is delegated down to the mapper interface. 
After the data is converted to RoomViewModel objects, we can pass that to the view so 
that it can render the list of rooms.

DIANNE:	 I think there’s a leak in one of the abstractions here. The RoomRecord class, which is what 
the IRoomRepository returns, belongs down at the data persistence layer. I’m not sure 
whether it should have propagated all the way up to this controller. This is the underlying 
reason that the mapper is necessary.

DAVID:	 But what other option do I have? I can only retrieve RoomRecord instances, but I also 
need to return RoomViewModel objects.

DIANNE:	 Absolutely. But there is no need for this controller to know about RoomRecords and the 
fact that they need to be mapped. Instead, how about making the controller depend on 
neither the IRoomRepository nor the IRoomViewModelMapper but on a new interface 
instead? We could call it an IRoomViewModelService. This would allow the control-
ler to be ignorant of the RoomRecord. One implementation of this new service would 
use the room repository and the mapper that you have here to return RoomViewModel 
instances, which is the only data that the controller needs to know about here.

DAVID:	 I understand. However, what about the existing CreateRoom call that exists on the 
IRoomRepository interface? Without a repository, this controller will not be able to 
call that method.

DIANNE:	Good point. I would suggest that you use interface segregation here. Instead of the 
IRoomViewModelService, you could have an IRoomViewModelReader and an IRoom­
ViewModelWriter. That gives us the option in the future of varying the implementation 
of the read and write sides of the requests.

DAVID:	 Okay, I think my unit tests are going to change quite a lot due to this. Instead of showing 
them to you now, I will perform these refactors and get back to you.

DIANNE:	 How will this affect our delivery of the sprint goals? Will this compromise our meeting 
the deadline? 

DAVID:	 No, the refactors are quite small. I should be able to complete this in an hour or two.

DIANNE:	 Sounds good.

David sets to work fixing the issues that Dianne had pointed out.

Refactoring
David spends a few hours refactoring his code to make Dianne’s suggested changes. He then calls 
Dianne over to inspect the results.

DAVID:	 This is the controller after the refactors. What do you think?

From the Library of Ida Schander



ptg14200592

	 CHAPTER 11  Adaptive sample: Sprint 1	 351

Listing 11-10 shows the new controller after refactoring.

LISTING 11-10 The controller has been refactored to depend on reader and writer interfaces.

public class RoomController : Controller 
{ 
    private readonly IRoomViewModelReader reader; 
    private readonly IRoomViewModelWriter writer; 
    public RoomController(IRoomViewModelReader reader, IRoomViewModelWriter writer) 
    { 
        Contract.Requires<ArgumentNullException>(reader != null); 
        Contract.Requires<ArgumentNullException>(writer != null); 
 
        this.reader = reader; 
        this.writer = writer; 
    } 
         
    [HttpGet] 
    public ActionResult List() 
    { 
        var roomListViewModel = new RoomListViewModel(reader.GetAllRooms()); 
             
        return View(roomListViewModel); 
    } 
 
    [HttpGet] 
    public ActionResult Create() 
    { 
        return View(new RoomViewModel()); 
    } 
 
    [HttpPost] 
    public ActionResult Create(RoomViewModel model) 
    { 
        ActionResult result; 
  
        if(ModelState.IsValid) 
        { 
            writer.CreateRoom(model.Name); 
 
            result = RedirectToAction("List"); 
        } 
        else 
        { 
            result = View("Create", model); 
        } 
 
        return result; 
    } 
 
}

From the Library of Ida Schander



ptg14200592

352	 PART III  Adaptive sample

DIANNE:	 This has removed the dependency on the mapper quite nicely. The injection of a reader 
and a writer means that we have the option of varying the implementation in the future, 
in case we move toward a CQRS architecture.

DAVID:	 Could you remind me what CQRS is, please?

DIANNE:	 Command/Query Responsibility Segregation. It’s where the commands and the queries 
of your application do not align: they are asymmetrical. In our case, we might write to 
transactional storage, but we might read from nontransactional document storage. I 
think Steve has been tinkering with a possible architecture if this does not scale well, as 
we suspect.

DAVID:	 I remember now—that sounds interesting. Shall we take a look at the IRoomViewModel­
Reader and IRoomViewModelWriter implementation?

Dianne nods, and David opens the file containing that class, as shown in Listing 11-11.

LISTING 11-11  A service that more closely resembles the original controller code.

public class RepositoryRoomViewModelService : IRoomViewModelReader, IRoomViewModelWriter 
{ 
    private readonly IRoomRepository repository; 
    private readonly IRoomViewModelMapper mapper; 
    public RepositoryRoomViewModelService(IRoomRepository repository,  
  IRoomViewModelMapper mapper) 
    { 
        Contract.Requires<ArgumentNullException>(repository != null); 
        Contract.Requires<ArgumentNullException>(mapper != null); 
 
        this.repository = repository; 
        this.mapper = mapper; 
    } 
 
    public IEnumerable<RoomViewModel> GetAllRooms() 
    { 
        var allRooms = new List<RoomViewModel>(); 
        var allRoomRecords = repository.GetAllRooms(); 
        foreach(var roomRecord in allRoomRecords) 
        { 
            allRooms.Add(mapper.MapRoomRecordToRoomViewModel(roomRecord)); 
        } 
        return allRooms; 
    } 
 
    public void CreateRoom(string roomName) 
    { 
        repository.CreateRoom(roomName); 
    } 
 
}

From the Library of Ida Schander



ptg14200592

	 CHAPTER 11  Adaptive sample: Sprint 1	 353

DAVID:	 I decided to implement both interfaces in one class, because they both shared a depen-
dency on the IRoomRepository. However, I think this resembles the original controller 
class—what have we gained with this refactor?

DIANNE:	 The main benefit is that the controller is now more focused on its main responsibilities. 
Instead of being responsible for orchestrating the mapping from records to viewmodels, 
it can now focus on responding to validation. The fact that the controller no longer has 
knowledge of the RoomRecord class is compelling enough.

DAVID:	 Yes, I suppose it was starting to do too much, wasn’t it?

DIANNE:	 It didn’t really obey the single responsibility principle. If we weren’t using a repository, we 
wouldn’t need a mapper. This would be a change lower down in the architectural layers. 
Controllers should not be concerned with such changes.

David and Dianne agree that this story is now ready to be committed. 

“I want to view the messages that have been sent to a room.“

Dianne works on the next story in tandem with David, by using pair programming. While Dianne 
writes the code, David looks on and offers suggestions.

Note  Pair programming is a common practice in Agile software development that origi-
nated with the Extreme Programming (XP) methodology: two programmers work together 
on a particular functionality. While one of the pair types, the other is able to consider the 
best way of implementing a method, class, or unit test.

DIANNE:	 Shall we start with the controller?

DAVID:	 Yes, that seems like a good place to begin.

DIANNE:	 We’re going to need a new HttpGet handler for viewing room messages. What shall we 
call this?

DAVID:	 Something like GetMessages?

DIANNE:	 That would be good, but ASP.NET MVC uses the controller name and method name to 
form the URL for the request.

DAVID:	 Of course, I forgot. How about just calling it Messages? It is part of the RoomController, 
so the URL will be /Room/Messages.

DIANNE:	 Okay, that makes sense. We’ll also need a parameter for identifying which room’s mes-
sages we want to see.

From the Library of Ida Schander



ptg14200592

354	 PART III  Adaptive sample

DAVID:	 We’ve got the room ID, which uniquely identifies a room. Could we use that?

DIANNE:	 Is it an integer or a long?

DAVID:	 I thought an integer would suffice.

DIANNE:	 We’ll also need a new viewmodel for this view. Following the naming convention you’ve 
used so far, this should be MessageListViewModel, right?

DAVID:	 Yes. We can just pass an instance of it to the View method on the controller and return 
the resulting ViewResult.

DIANNE:	 The IRoomViewModelReader will need a new method for querying the messages in 
a room.

DAVID:	 I suppose that should be called GetRoomMessages, and it should also accept the room 
ID as a parameter.

DIANNE:	 I’ll define it on the interface and create a stub on any implementing classes so that we 
can determine how the controller changes might work.

Dianne creates the method shown in Listing 11-12.

LISTING 11-12  The Messages method retrieves all messages associated with a room, by ID.

[HttpGet] 
public ActionResult Messages(int roomID) 
{ 
    var messageListViewModel = new MessageListViewModel(reader.GetRoomMessages(roomID)); 
 
    return View(messageListViewModel); 
}

DIANNE:	 This looks good. Let’s fill in the implementation of the IRoomViewModelReader.Get­
RoomMessages method.

DAVID:	 Okay, the only implementation so far makes use of an IRoomRepository interface. I think 
we’ll need a new IMessageRepository interface so that we can retrieve messages.

DIANNE:	 Agreed. We should inject it in just like the other dependencies.

DAVID:	 When we have that repository available in the class, we need to request from it the mes-
sages for a given room ID and pass them to the mapper.

DIANNE:	 So the mapper is responsible for converting records from the repository to viewmodels 
that the controller can use, right? It looks like there’s only an IRoomViewModelMapper 
available. It feels a little too much to create a new IMessageViewModelMapper. Can we 
rename this interface to something more generic?

From the Library of Ida Schander



ptg14200592

	 CHAPTER 11  Adaptive sample: Sprint 1	 355

DAVID:	 How about IViewModelMapper? That way it becomes useful for mapping all records to 
viewmodels.

DIANNE:	 How does this look?

Dianne shows David the code in Listing 11-13.

LISTING 11-13  The class that maps records to viewmodels now contains a method for retrieving room messages.

public class RepositoryRoomViewModelService : IRoomViewModelReader, IRoomViewModelWriter 
{ 
    private readonly IRoomRepository roomRepository; 
    private readonly IMessageRepository messageRepository; 
    private readonly IViewModelMapper mapper; 
    public RepositoryRoomViewModelService(IRoomRepository roomRepository,  
  IMessageRepository messageRepository, IViewModelMapper mapper) 
    { 
        Contract.Requires<ArgumentNullException>(roomRepository != null); 
        Contract.Requires<ArgumentNullException>(messageRepository != null); 
        Contract.Requires<ArgumentNullException>(mapper != null); 
 
        this.roomRepository = roomRepository; 
        this.messageRepository = messageRepository; 
        this.mapper = mapper; 
    } 
 
    public IEnumerable<MessageViewModel> GetRoomMessages(int roomID) 
    { 
        var roomMessages = new List<MessageViewModel>(); 
        var roomMessageRecords = messageRepository.GetMessagesForRoomID(roomID); 
        foreach(var messageRecord in roomMessageRecords) 
        { 
            roomMessages.Add(mapper.MapMessageRecordToMessageViewModel(messageRecord)); 
        } 
        return roomMessages; 
    } 
 
}

DAVID:	 That looks good to me.

David and Dianne continue to implement the repository method IMessageRepository.Get­
MessageForRoomID(), which loads the message from the Microsoft SQL Server database. After this 
method is implemented, they move on to the next user story.

From the Library of Ida Schander



ptg14200592

356	 PART III  Adaptive sample

“I want to send plain text messages to other room members.”

David swaps places with Dianne to implement the final story of the sprint.

DAVID:	 This should be really easy now that we have a pattern in place for reading and writing data.

DIANNE:	 Sort of, yes. But remember, one of the requirements of this story is that the request will 
be made asynchronously.

DAVID:	 Oh. So it won’t be a full-page postback?

DIANNE:	 No, the user interface will send the data via an AJAX request.

Note  Some definitions: AJAX stands for Asynchronous JavaScript and XML. XML stands for 
Extensible Markup Language. AJAJ stands for Asynchronous JavaScript and JSON. JSON 
stands for JavaScript Object Notation.

DAVID:	 Hold on. You mean AJAJ, don’t you?

DIANNE:	 I suppose I do!

DAVID:	 What makes this controller action different, then?

DIANNE:	 Two things, really. When the ModelState.IsValid property is true, we should use the 
IRoomViewModelWriter to save the message. But we should then return the viewmodel 
as a JsonResult.

DAVID:	 And what do we do when the model state is not valid?

DIANNE:	 In that case, return an HttpStatusCodeResult with an HTTP 400 error.

DAVID:	 That’s a client error response code, isn’t it?

DIANNE:	 Yes. Specifically, it’s a Bad Request response.

David shows Dianne the code in Listing 11-14.

LISTING 11-14  The AddMessage method on the RoomController class.

[HttpPost] 
public ActionResult AddMessage(MessageViewModel messageViewModel) 
{ 
    ActionResult result; 
 
    if(ModelState.IsValid) 
    { 
        writer.AddMessage(messageViewModel); 
 
        result = Json(messageViewModel); 
    } 

From the Library of Ida Schander



ptg14200592

	 CHAPTER 11  Adaptive sample: Sprint 1	 357

    else 
    { 
        result = new HttpStatusCodeResult(400); 
    } 
 
    return result; 
}

DAVID:	 What about the AddMessage method on the IRoomViewModelWriter?

DIANNE:	 I think we can use the same pattern as before. This part of the code does not care 
whether it is called synchronously or asynchronously, so it will not change the pattern 
that we’ve established so far.

David proceeds to follow the same pattern that the IRoomViewModelWriter.CreateRoom 
method uses, which results in the AddMessage method shown in Listing 11-15.

LISTING 11-15  The AddMessage method on the RoomViewModelWriter class.

public void AddMessage(MessageViewModel messageViewModel) 
{ 
    var messageRecord = mapper.MapMessageViewModelToMessageRecord(messageViewModel); 
    messageRepository.AddMessageToRoom(messageRecord.RoomID, messageRecord.AuthorName,  
  messageRecord.Text); 
}

With this change, and the creation of a further repository method to retain the message record in 
Microsoft SQL Server via ADO.NET, the story is complete. 

David and Dianne have now finished the stories that were assigned to the sprint, just in time for 
the sprint demo.

Sprint demo

At the end of the week, the team arranges to meet the client and demonstrate its progress thus far. 
The stories to be completed are assembled, and the functionality of each one is shown. The client is 
invited to provide feedback and alter the direction in which to take the product from here.

The sprint demo has many benefits. First, it allows the team to ensure that it is always aligned with 
the client’s current wants and needs. The demonstration also motivates the team members to always 
produce their best work because they must be confident that they can show the current state of 
the product to the client. Clients also benefit because they are able to view tangible progress on the 
product at an early stage and regularly throughout development. If a client wants to change anything 
about how the software works, the product demonstration is a great time to do so. The backlog of 

From the Library of Ida Schander



ptg14200592

358	 PART III  Adaptive sample

user stories can be altered and reprioritized as a result, and the software will immediately change 
direction to meet the needs of the client.

First demonstration of Proseware
On demonstration day, the team assembles in a meeting room with a representative from the client 
company. The team briefly discusses how the sprint has progressed and prepares to show the current 
state of the software.

Unfortunately at such a key time, it is discovered that the projector in the meeting room is not 
working correctly. This delays the presentation for a few minutes while a technician who can correct 
the problem is found. After the projector is up and running, the team discovers that the resolution 
of the screen is far lower than that of the development machines. This degrades the appearance of 
the user interface, making it harder for the client to understand which parts are where on the page.

The team apologizes and the client seems understanding, though a little disheartened that the appli-
cation doesn’t look as his company had hoped. After some tweaking of display settings, the applica-
tion starts to look a little better, though it still does not appear exactly as it did in the development 
environment. 

The team runs through the four stories that have been implemented during the sprint and then 
asks whether the client has any questions or comments. The response is generally favorable: although 
the application does not yet do much, it is clear that some core functionality is in place at a very early 
stage. 

Petra suggests that their next tasks will include formatting the messages sent to a room. She also 
mentions David’s idea of a content filter. The client appears very receptive to this idea and requests 
that the team make this a high priority for the coming sprint. 

At the end of the meeting, the client leaves and the team stays back to hold their sprint retrospective.

Sprint retrospective

At the end of the sprint, the team convenes to discuss progress over the week. All team members are 
present and answer the following questions:

■■ What went well?

■■ What went badly?

■■ Are there any parts of the process that we need to change?

■■ Were any new things done in the sprint that we need to keep?

■■ Were there any surprises discovered over the course of the sprint?

From the Library of Ida Schander



ptg14200592

	 CHAPTER 11  Adaptive sample: Sprint 1	 359

The aim is to generate a list of actionable items to prioritize and take forward. As usual, the out-
come of this meeting is not to generate a lot of discussion without tangible action. 

What went well?
The team members are assembled in a suitable meeting space and work through the list of questions, 
one at a time. They start with what went well during the sprint.

STEVE:	 So, what did everyone think went well in this first sprint?

PETRA:	 The demo was good, I think. It might not have been exactly what the customer was ex-
pecting, but I think it was positive.

TOM:	 Absolutely, I agree. I think that they were realistic enough to know that this isn’t a fin-
ished product, or even a first release, but that there was tangible value in what we had 
produced in just a short space of time.

DIANNE:	 They turned up, provided constructive feedback and—even at such an early stage—
changed our direction.

PETRA:	 Yes, I think that’s worthy of a separate entry here. David, your idea for a content filter was 
very well received, and they have increased its priority so that we will be working on that 
in the next sprint.

DAVID:	 I’m glad that they were so clearly enthused by what we were doing. We just need to 
manage their expectations a little: I wouldn’t want them to oversell our work so far.

STEVE:	 What else went well?

DIANNE:	 I think that the code is in good shape. Even though there is only a small amount of code, 
what is there will certainly provide a good foundation for future work.

DAVID:	 Thanks—I think collaboration between Dianne, Steve, and myself really helped with that. 
If not for their guidance throughout the process, the code would already contain some 
significant technical debt.

STEVE:	 Okay, I’ll mark both of those down. Anything else?

The room falls silent, so Steve marks the following points on the whiteboard and moves on to the 
next question.

■■ Demonstration was good, even if there was little to show at this stage.

■■ Client was present at demo and gave good-quality feedback.

■■ Code seems to be in good shape.

From the Library of Ida Schander



ptg14200592

360	 PART III  Adaptive sample

What went badly?
The next question for the team to answer is what went badly during the sprint.

STEVE:	 Be honest but realistic here: what went badly during the sprint?

TOM:	 I think I was underutilized this sprint. I realize there’s not a huge amount that I could be 
doing to contribute at this early stage, but there was very little to test, and what there 
was came in waves.

PETRA:	 Okay—that’s very valuable. What’s the root cause here?

STEVE:	 I think it’s because David was the only developer actively working on stories, while 
Dianne and I prepared some architectural designs for another project.

PETRA:	 Will this be an ongoing problem, or can we remedy this?

DIANNE:	 This is to be noted more in the “things to change” section, but Steve and I are going to 
become less like chickens and more like pigs from here on with the Proseware project.

TOM:	 Remind me what that means again, please.

STEVE:	 Basically, we’ve been contributing to Proseware but not fully committed resources as yet. 
We were needed elsewhere as another project reached maintenance mode.

DIANNE:	 Indeed. We’ll be able to write stories in subsequent sprints, which will give you a steady 
stream of new functionality to test, rather than the one or two flurries of activity.

TOM:	 Sounds good to me.

STEVE:	 Anything else go badly?

PETRA:	 Obviously, the problem with the projector at the start of the demonstration was not 
good.

DAVID:	 Yes, I’m really not sure what happened there! It was embarrassing, but I think we 
recovered well.

DIANNE:	 Absolutely, we recovered well. But we need to be able to prevent this from happening 
again.

STEVE:	 I think the problem was simply a lack of ample preparation time. Just as in all other en-
vironments, we need to integrate early and often! In the future, we should take half an 
hour before the demonstration to run through what we will be presenting in the meeting 
room, using the projector. The client will forgive that sort of error once, but any repeat 
will look amateurish.

From the Library of Ida Schander



ptg14200592

	 CHAPTER 11  Adaptive sample: Sprint 1	 361

Steve marks down the following items on the whiteboard:

■■ QA was underutilized throughout the sprint.

■■ Demonstration was almost disastrous because of environmental issues.

STEVE:	 Anything else?

All team members shake their heads to indicate no, and Steve proceeds.

Things to change?
Agile processes are very malleable, and teams should take the opportunity to reflect on whether the 
process is working for them—or against them. Making actionable items out of the things to change 
about the process, work environment, or other practices is an excellent way to improve the way a 
team works.

STEVE:	 Right, we’ve already driven out some changes with things that went badly. First, Dianne 
and myself will have to be more available to the project in this sprint. Second, we need to 
take an extra half-hour to prepare for the demo in the meeting room. Anything else?

The room is quiet.

STEVE:	 Okay—is the daily stand-up meeting working?

TOM:	 Actually, it isn’t—I wasn’t there twice during this sprint because I hit traffic on the way in 
and couldn’t make it, remember?

DIANNE:	 Of course—I completely forgot about that.

STEVE:	 Would it be better at 9:30 A.M.?

TOM:	 I think so. It’s just too difficult for me to guarantee that I can be here at 9:00 A.M..

PETRA:	 I’ll inform management that we should look into flexible working hours, Tom.

TOM:	 Thanks—that would be great.

DAVID:	 I think we need to do the demo less often. The client expressed surprise that they had to 
be here every week and also that we were showing them a small amount of functional-
ity. Why not tackle both issues at the same time by demonstrating once every fortnight, 
instead?

STEVE:	 That’s a good idea—definitely worth looking in to. However, I think the demo is a great 
motivator for delivery. I would like to retain the weekly demonstration, but what do you 
think about limiting the demos for the client to every other week, with internal demos in 
between? We don’t need to involve management, just this team.

PETRA:	 I think that would work. It would allow us to perfect the demo process and show off 
more functionality to the client at the same time.

From the Library of Ida Schander



ptg14200592

362	 PART III  Adaptive sample

David looks happy, and Steve marks the following on the whiteboard:

■■ Dianne and Steve to commit to the Proseware project and focus on story delivery.

■■ Demonstrate once a fortnight to the client.

■■ Demonstrate in between just to the team.

■■ Take an extra half-hour before the demo to run through the agenda and check that every-
thing is working.

Things to keep?
Sometimes, the best course of action is inaction—in other words, making a note of something posi-
tive that a team does but that is not yet habitual. This is the topic of the “things to keep” question.

STEVE:	 What about things to keep? Is there anything that we took initiative on that we should 
keep doing?

Everyone remains quiet.

STEVE:	 Okay, if anyone thinks of anything after this meeting, let me know and we’ll create an 
action item.

Surprises?
Almost every sprint will have revealed some surprises. The team could have discovered an antiquated 
process that needs updating, a requirement that wasn’t properly captured, or a piece of software that 
suddenly stopped working. The “surprises” section of the sprint retrospective aims to capture all of 
these items so that they cannot be classed as surprises in the future.

STEVE:	 How about surprises?

DAVID:	 I was quite surprised that they liked my content filter idea!

DIANNE:	 I think it makes great sense, to be honest. They’re targeting Proseware at a certain 
demographic, and it is likely to represent a lot of value to them.

PETRA:	 I agree, it was a great idea. Perhaps that’s something that we should keep doing: keep 
thinking of ideas.

Steve writes it down in the appropriate column on the whiteboard.

TOM:	 It surprised me that Steve and Dianne weren’t working on this project full time.

PETRA:	 Okay, anyone else?

DIANNE:	 It surprised me, too. I was under the impression that I was to be a full-time part of 
Proseware, but Steve and I needed to put out a fire on another project.

From the Library of Ida Schander



ptg14200592

	 CHAPTER 11  Adaptive sample: Sprint 1	 363

STEVE:	 We should get some kind of agreement from management that someone else will pick 
that up next sprint, rather than us.

DIANNE:	 Good plan.

Steve notes this down on the whiteboard.

STEVE:	 Okay, thanks guys. A good sprint overall and great start to this project. Let’s keep it up.

PETRA:	 I agree. Let’s make the changes agreed in this retrospective and ensure that we continue 
on this same path next week.

The meeting ends and the team departs. 

Summary
The first sprint has been a qualified success for the team. Although not everything has gone accord-
ing to plan, the team has gathered some valuable feedback in a short amount of time. This is a key 
part of any Agile process: the constructive criticism required to take corrective action is always nearby. 

In the next chapter, the team continues working on sprint two and carries forward the stories that 
have not yet been implemented.

From the Library of Ida Schander



ptg14200592

This page intentionally left blank 

From the Library of Ida Schander



ptg14200592

		  365

C H A P T E R  1 2

Adaptive sample: Sprint 2

In this chapter, you will

■■ Observe the team’s second sprint planning session.

■■ Follow the implementation and evolution of the next user stories.

■■ Observe the team’s second sprint demo and retrospective.

In this chapter, the Trey Research team continues to implement user stories for the Proseware project. 
The direction has changed slightly due to the feedback received from the client at the sprint demon-
stration during sprint 1. The team has set the following sprint goal:

To add optional markdown-formatted text to conversations, to filter message content so that it 
is appropriate, and to ensure that 300 users can be served concurrently

This sprint goal incorporates all of the stories that the team has committed to completing during 
the sprint. As usual, the team will conclude the sprint with a demonstration to the client—to elicit 
feedback and to inform the client of progress—and a sprint retrospective in which the team will ad-
dress any problems that the sprint presented and to acknowledge the good work that the team did 
during the sprint.

First, though, the team begins the sprint with a planning session.

Planning

The second planning meeting for the project allows the members of the team to discuss the user 
stories that they have committed to in their sprint goal. The second sprint includes the following 
user stories:

■■ I want to send markdown that will be correctly formatted.

■■ I want to filter message content so that it is appropriate.

■■ I want to serve hundreds of users concurrently.

With the whole team assembled in a meeting room, the discussion begins:

PETRA:	 We’ve got a new story on the backlog as a result of the feedback from the sprint demo in 
the last sprint.

From the Library of Ida Schander



ptg14200592

366	 PART III  Adaptive sample

STEVE:	 Instead of implementing read-only conversations, the client wants us to prioritize the 
content filter.

DIANNE:	 So we should estimate this story now.

STEVE:	 Yes, if we get an estimate for this story we can understand how much capacity we have 
for this sprint.

DIANNE:	 Okay, so on the count of three, let’s show our estimates.

Everyone shuffles their cards before showing them.

PETRA TOM STEVE DIANNE DAVID

3 3 8 5 8

STEVE:	 Wow, we have a bit of variety here. Tom, could you explain your three?

TOM:	 I chose three mainly because I can automate the testing for this fairly easily. Providing a 
text message with a disallowed word in it and asserting that you could not post the mes-
sage is simple enough. If there’s more technical complexity to the implementation, I’d be 
happy to increase the estimate.

STEVE:	 David, would you like to explain your eight? Then I’ll explain mine.

DAVID:	 Yes, I think this is difficult because we need to add another table to data storage for the 
disallowed words. This is going to take some time to implement.

STEVE:	 Yes, I thought that, too. I also considered that we don’t want to limit disallowed words 
to the messages users write in conversations—we should also include the names of the 
rooms. In fact, any time we take input from the user we should submit it to the content 
filter.

DIANNE:	 How about instead of implementing a data-driven content filter right away, we just sim-
plify it and hardcode the blocked list of words?

STEVE:	 Okay, I think that’s a good idea. Later we can add stories to target administration of the 
content filter.

PETRA:	 Great—shall we re-estimate or take the five?

TOM:	 I’m happy with a five.

STEVE:	 Yes, a five seems fair.

DAVID:	 I agree, five it is.

PETRA:	 Excellent, thanks everyone. Let’s make sure we hit all our goals this sprint so we can show 
the client a great demo this week.

Everyone files out of the meeting room ready to get to work.

From the Library of Ida Schander



ptg14200592

	 CHAPTER 12  Adaptive sample: Sprint 2	 367

“I want to send markdown that will be correctly formatted.”

Before he starts this story, David asks Steve about parsing markdown.

DAVID:	 I assume I should be using a third-party library for parsing markdown and transforming 
it into HTML, but I’m not sure which library to use.

STEVE:	 Okay, hold on. I think Dianne has some experience in this area—we’ll ask her.

Steve beckons Dianne over to quiz her about markdown libraries.

STEVE:	 Dianne, you’ve used some markdown libraries before, right? Which one did you prefer?

DIANNE:	 I evaluated a few previously. Try MarkdownDeep—it seemed simple enough to use. 
There’s a NuGet package for it, too.

STEVE:	 Thanks, Dianne. David, try MarkdownDeep. Also, make sure you create a new class library 
project for any classes that depend on this library.

DAVID:	 Okay—thanks.

David sets to work on implementing the markdown transform for the application. After a few 
hours, he is ready to show Steve and Dianne his work. He asks them to peer review what he has done.

DAVID:	 I wondered where the best place to put the implementation of the markdown transform 
was. I knew I wanted to intercept the room message text by implementing a decorator 
for an existing interface. I thought that if I implemented it on the AddMessageToRoom 
method on the IMessageRepository interface we could save on processing reads. If 
we just transform the markdown to HTML as the message is saved, we don’t need to 
worry about it again.

DIANNE:	 That would save us from transforming markdown to HTML on every read, but it wouldn’t 
really work.

DAVID:	 Yes, I realized that we wouldn’t be able to edit messages if we did that. I know that we 
don’t have that feature yet, but I thought we might in the future and didn’t want to artifi-
cially prevent users from editing.

STEVE:	 Good—we will almost certainly want that feature in the future, so it’s probably correct to 
perform the transform when reading, not writing.

DAVID:	 The other question I had was about client-side or server-side transforms. I’ve kept it 
server-side at the moment, but I wondered whether we might prefer doing it client-side 
in the browser.

DIANNE:	 Perhaps we could use that in the future for a side-by-side preview of the markdown and 
HTML as the user is typing a message.

STEVE:	 Great idea, Dianne—I’ll make a note of that for the demo and find out what the client 
thinks.

From the Library of Ida Schander



ptg14200592

368	 PART III  Adaptive sample

DAVID:	 In the end, I implemented the transform as a decorator on the IRoomViewModelReader 
interface. This is because markdown and HTML are user interface concerns and the 
IRoomViewModelReader is a UI contract. The other option was decorating the IRoom­
Repository and IMessageRepository—but these are data contracts. Still, despite 
this, I’m not entirely happy with it at the moment, but here it is.

David shows Steve and Dianne the code for this markdown decorator, as shown in Listing 12-1.

LISTING 12-1  The markdown decorator transforms user-entered markdown to HTML.

public class RoomViewModelReaderMarkdownDecorator : IRoomViewModelReader 
{ 
    public RoomViewModelReaderMarkdownDecorator( 
        IRoomViewModelReader @delegate,  
        Markdown markdown) 
    { 
        this.@delegate = @delegate; 
        this.markdown = markdown; 
    } 
 
    public IEnumerable<RoomViewModel> GetAllRooms() 
    { 
        return @delegate.GetAllRooms(); 
    } 
 
    public IEnumerable<MessageViewModel> GetRoomMessages(int roomID) 
    { 
        var roomMessages = @delegate.GetRoomMessages(roomID); 
 
        foreach(var viewModel in roomMessages) 
        { 
            viewModel.Text = markdown.Transform(viewModel.Text); 
        } 
 
        return roomMessages; 
    } 
 
    private readonly IRoomViewModelReader @delegate; 
    private readonly Markdown markdown; 
}

STEVE:	 I like it—it looks good to me. What weren’t you sure about?

DAVID:	 Two things, really. The first is that we’re dependent directly on the Markdown class from 
MarkdownDeep. Should this not be placed behind its own interface?

DIANNE:	 I think injecting that class as a dependency of this decorator is sufficient. The class is 
small enough to be replaced if we need to use a different library.

DAVID:	 Okay, that’s good. It also allowed me to write a simple unit test with a test case for each 
expected transform. Here’s what I have so far.

From the Library of Ida Schander



ptg14200592

	 CHAPTER 12  Adaptive sample: Sprint 2	 369

David opens the file containing his markdown unit tests, as shown in Listing 12-2.

LISTING 12-2  The unit tests for the markdown transform decorator.

[TestFixture] 
public class MarkdownTests 
{ 
    [Test] 
    [TestCase( 
        "This message has only paragraph markdown...",                 
        "<p>This message has only paragraph markdown...</p>\n")] 
    [TestCase( 
        "This message has *some emphasized* markdown...",              
        "<p>This message has <em>some emphasized</em> markdown...</p>\n")] 
    [TestCase( 
        "This message has **some strongly emphasized** markdown...",   
        "<p>This message has <strong>some strongly emphasized</strong>  
  markdown...</p>\n")] 
    public void MessageTextIsAsExpectedAfterMarkdownTransform(string markdownText,  
  string expectedText) 
    { 
        message1.Text = markdownText; 
        var markdownDecorator = new  
  RoomViewModelReaderMarkdownDecorator(mockRoomViewModelReader.Object, markdown); 
 
        var roomMessages = markdownDecorator.GetRoomMessages(12345); 
 
        var actualMessage = roomMessages.FirstOrDefault(); 
 
        Assert.That(actualMessage, Is.Not.Null); 
 
        Assert.That(actualMessage.Text, Is.EqualTo(expectedText)); 
    } 
 
    [SetUp] 
    public void SetUp() 
    { 
        markdown = new Markdown(); 
        message1 = new MessageViewModel 
        { 
            AuthorName = "Dianne", 
            ID = 1, 
            RoomID = 12345, 
            Text = "Test!" 
        };          
        mockRoomViewModelReader = new Mock<IRoomViewModelReader>(); 
        var roomMessages = new MessageViewModel[]  
        { 
            message1 
        }; 
        mockRoomViewModelReader.Setup(reader =>  
                reader.GetRoomMessages(It.IsAny<int>())).Returns(roomMessages); 
    } 
 
    private MessageViewModel message1; 
    private Mock<IRoomViewModelReader> mockRoomViewModelReader; 
    private Markdown markdown; 
}

From the Library of Ida Schander



ptg14200592

370	 PART III  Adaptive sample

STEVE:	 Again, that’s great. Didn’t you say you had a second query?

DAVID:	 Yeah—notice that the markdown class decorates the IRoomViewModelReader, but that 
class also has a GetAllRooms method. Is this a good candidate for interface segregation? 
At the moment, the GetAllRooms method isn’t transformed, so I just delegate straight 
down to the wrapped instance.

DIANNE:	 Should we allow the user to use markdown in the room names, too? That way, the 
GetAllRooms method would be decorated, too.

STEVE:	 I think we should leave it as it is for now. Let’s not split the interface or allow markdown 
in the room names. Depending on the client’s feedback during the demo, we can make 
a decision either way.

“I want to filter message content so that it is appropriate.”

Dianne and David have both been assigned to the message content filtering story. Together they will 
implement the functionality required by using pair programming. 

DIANNE:	 As mentioned in the planning session, we don’t have time to implement a fully data-driven 
message content filter during this sprint. Instead, we need to make some progress toward 
that goal.

DAVID:	 So will we just implement the data access part for this sprint and come back to it next 
week?

DIANNE:	 No, we can’t do that. We need to deliver a vertical slice of functionality: something that 
is demonstrable to the client, but not necessarily complete. Just implementing the data 
access would not add any value.

DAVID:	 I don’t understand how we can deliver some value yet not implement the whole content 
filter.

DIANNE:	 What we will do is compromise somewhere so that we can be finished in a short amount 
of time yet provide some value to the client. For this story, the compromise is simple: we 
should hardcode the list of values that are considered inappropriate, instead of retrieving 
them from persistent storage like a database.

DAVID:	 I guess that makes sense. But I’ve always been told that hardcoding things is bad. Isn’t 
this poor design?

DIANNE:	 Sort of, yes. It’s technical debt. We are making a prudent decision to compromise on 
some desirable functionality in order to deliver something sooner rather than later. 
Perhaps the client knows exactly the list of words that they want to limit and they will 
never change. If so, we could complete this story just by hardcoding that list.

DAVID:	 I suppose it’s quite clever, really. Rather than take a lot of time to implement something, 
we aim for a simpler solution as an objective on the way to the goal.

From the Library of Ida Schander



ptg14200592

	 CHAPTER 12  Adaptive sample: Sprint 2	 371

DIANNE:	 Exactly! And, as each objective is met, it is possible that the next objective could be 
totally different—or that the goal itself changes dramatically.

DAVID:	 Another thing I’m unsure of: how are we going to implement this story? Should we cre-
ate a decorator for the message writer that throws an exception when an inappropriate 
word is included in the message?

DIANNE:	 The trouble with that solution is that it uses exceptions for control flow. Exceptions are 
better reserved for situations that are truly “exceptional.” This is more of a validation 
scenario.

DAVID:	 Oh, I see! So we could hook into the MVC validation and just fail validation if the mes-
sage contains something from the blocked words list?

DIANNE:	 I think that’s a better idea. How about this…?

Dianne starts typing and, a few minutes later, arrives at the class in Listing 12-3.

LISTING 12-3  A custom validation attribute is perfect for the content filter.

public class ContentFilteredAttribute : ValidationAttribute 
{ 
    private readonly string[] blockedWords = new string[]  
    { 
        "heffalump", 
        "woozle", 
        "jabberwocky", 
        "frabjous", 
        "bandersnatch" 
    }; 
 
    protected override ValidationResult IsValid(object value,  
  ValidationContext validationContext) 
    { 
        var validationResult = ValidationResult.Success; 
 
        if (value != null && value is string) 
        { 
            var valueString = (string)value; 
            if(blockedWords.Any(inappropriateWord =>  
                    valueString.ToLowerInvariant() 
                    .Contains(inappropriateWord.ToLowerInvariant()))) 
            { 
                var errorMessage = FormatErrorMessage(validationContext.DisplayName); 
                validationResult = new ValidationResult(errorMessage); 
            } 
        } 
 
        return validationResult; 
    } 
}

From the Library of Ida Schander



ptg14200592

372	 PART III  Adaptive sample

DIANNE:	 I’ve obviously used words that wouldn’t be included in a proper content filter blocked 
words list, but I wouldn’t want the demonstration to the client to include anything truly 
inappropriate!

DAVID:	 No, of course! I think this will demonstrate the functionality they want well enough. How 
about some tests?

DIANNE:	 Oh, of course. Here they are.

The two unit tests from the RoomControllerTests class are shown in Listing 12-4.

LISTING 12-4  Unit tests are added to enforce the validation rule on the room name and message text.

[Test] 
[TestCase("Callooh! Callay! O frabjous day!")] 
[TestCase("The frumious Bandersnatch!")] 
[TestCase("A heffalump or woozle is very confusel...")] 
public void PostCreateNewRoomWithBlockedWordsCausesValidationError(string roomName) 
{ 
    var controller = CreateController(); 
 
    var viewModel = new RoomViewModel { Name = roomName }; 
    var context = new ValidationContext(viewModel, serviceProvider: null, items: null); 
    var results = new List<ValidationResult>(); 
 
    var isValid = Validator.TryValidateObject(viewModel, context, results, true); 
 
    Assert.That(isValid, Is.False); 
} 
// . . . 
[Test] 
[TestCase("Callooh! Callay! O frabjous day!")] 
[TestCase("The frumious Bandersnatch!")] 
[TestCase("A heffalump or woozle is very confusel...")] 
public void PostAddMessageWithBlockedWordsCausesValidationError(string text) 
{ 
    var controller = CreateController(); 
 
    var viewModel = new MessageViewModel { AuthorName = "David", Text = text}; 
    var context = new ValidationContext(viewModel, serviceProvider: null, items: null); 
    var results = new List<ValidationResult>(); 
 
    var isValid = Validator.TryValidateObject(viewModel, context, results, true); 
 
    Assert.That(isValid, Is.False); 
}

DAVID:	 With the two properties on the view models marked with the ContentFiltered attri-
bute, these tests will pass quite nicely.

DIANNE:	 Absolutely. Still, there are a few things that I’m not happy about with this design at the 
moment.

From the Library of Ida Schander



ptg14200592

	 CHAPTER 12  Adaptive sample: Sprint 2	 373

DAVID:	 What?

DIANNE:	 Obviously, the hardcoding of the blocked word list. I would consider this to be prudent 
technical debt, but I would still like to request the blocked word list from a provider 
interface. This way, I could create an implementing class that returns a static, hardcoded 
list and provide a more data-driven implementation in future.

DAVID:	 Yes, that would nicely split the data for the blocked word list from the algorithm of vali-
dating the property. Could you use dependency injection?

DIANNE:	 Unfortunately not. These custom attributes are not very flexible and will not be con-
structed through the controller or any other extension point exposed by MVC.

DAVID:	 That’s a shame. How about the service locator pattern?

DIANNE:	 I usually refer to service locator as an anti-pattern, but in this case it might be the best 
choice available to us.

DAVID:	 Shall we leave this as is for now and accept that there is some more technical debt as-
sociated with this attribute? That way, we get to make progress and revisit this code if 
necessary.

DIANNE:	 I agree. I think that this is likely to change quite drastically in the future, so there is no 
point in guessing which direction it will take at this point.

“I want to serve hundreds of users concurrently.”

The final story of the sprint involves Dianne and Steve increasing the scalability of the application. The 
client has requested that the application support scaling horizontally, rather than vertically. Horizon-
tal scaling means that the application should be able to support more concurrent users through the 
addition of extra machines. In comparison, vertical scaling is the ability to support more concurrent 
users through the addition of extra resources to a single machine.

Dianne and Steve understand that the limiting factor to horizontal scaling is the presence in the 
architecture of a relational database management system (RDBMS), such as Microsoft SQL Server. In 
comparison to solutions with purpose-built distributed storage that is intended to scale horizontally, 
it is difficult to add a new instance of SQL Server to a cluster of machines.

Because of this, Dianne investigates the team’s options for replacing the SQL Server database with 
document storage. She presents MongoDB to the team as a solid and popular alternative that will al-
low the team to scale the application by adding new machines to a cluster. The only problem standing 
in the way is current reliance of the application on SQL Server to store and retrieve room and mes-
sage data.

Luckily, the team has already prepared for this eventuality by programming to interfaces.

DIANNE:	 All we need to do is create new implementations for the repository interfaces:  
IRoomRepository and IMessageRepository.

From the Library of Ida Schander



ptg14200592

374	 PART III  Adaptive sample

STEVE:	 We certainly could do that, but I think we could cut out the mapping from record data to 
view model data and, instead, just serialize and deserialize our view models directly.

DIANNE:	 That sounds interesting! That way we would just need to create new implementations 
of the IRoomViewModelReader and IRoomViewModelWriter interfaces that delegate 
down to MongoDB.

STEVE:	 Exactly.

The pair sets to work implementing the MongoRoomViewModelStorage class, as shown in 
Listing 12-5.

LISTING 12-5  The implementation of the data persistence layer for MongoDB.

public class MongoRoomViewModelStorage : IRoomViewModelReader, IRoomViewModelWriter 
{ 
    public MongoRoomViewModelStorage(IApplicationSettings applicationSettings) 
    { 
        this.applicationSettings = applicationSettings; 
    } 
 
    public IEnumerable<RoomViewModel> GetAllRooms() 
    { 
        var roomsCollection = GetRoomsCollection(); 
        return roomsCollection.FindAll(); 
    } 
 
    public void CreateRoom(RoomViewModel roomViewModel) 
    { 
        var roomsCollection = GetRoomsCollection(); 
        roomsCollection.Save(roomViewModel); 
    } 
 
    public IEnumerable<MessageViewModel> GetRoomMessages(int roomID) 
    { 
        var messageQuery = Query<MessageViewModel> 
                .EQ(viewModel => viewModel.RoomID, roomID); 
        var messagesCollection = GetMessagesCollection(); 
        return messagesCollection.Find(messageQuery); 
    } 
 
    public void AddMessage(MessageViewModel messageViewModel) 
    { 
        var messagesCollection = GetMessagesCollection(); 
        messagesCollection.Save(messageViewModel); 
    } 
 
    private MongoCollection<MessageViewModel> GetMessagesCollection() 
    { 
        var database = GetDatabase(); 
        var messagesCollection = database. 
                GetCollection<MessageViewModel>(MessagesCollection); 
        return messagesCollection; 

From the Library of Ida Schander



ptg14200592

	 CHAPTER 12  Adaptive sample: Sprint 2	 375

    } 
 
    private MongoCollection<RoomViewModel> GetRoomsCollection() 
    { 
        var database = GetDatabase(); 
        var roomsCollection = database.GetCollection<RoomViewModel>(RoomsCollection); 
        return roomsCollection; 
    } 
 
    private MongoDatabase GetDatabase() 
    { 
        var connectionString = applicationSettings.GetValue(MongoConnectionString); 
        var client = new MongoClient(connectionString); 
        var server = client.GetServer(); 
        return server.GetDatabase(ProsewareDatabase); 
    } 
 
    private readonly IApplicationSettings applicationSettings; 
    private static string MongoConnectionString = "MongoConnectionString"; 
    private static string ProsewareDatabase = "Proseware"; 
    private static string MessagesCollection = "messages"; 
    private static string RoomsCollection = "rooms"; 
}

With this implementation in place, the team is able to unleash the potential of horizontal scalabil-
ity for the Proseware application and the client.

Sprint demo

At the end of the second sprint, the team prepares to give another demonstration to the client. All 
of the stories completed in this sprint are collated and their functionality is shown. One of the key 
actions taken from the sprint retrospective meeting for sprint 1 was to improve the preparation of 
the demonstration. The team follows up on this diligently, meeting ahead of schedule to run through 
each story’s functionality without the client present. This helps to mitigate any problems due to dif-
ferences in the development and demonstration environments. The rehearsal proceeds without a 
problem, so the team is ready to demonstrate its progress to the client.

During the demonstration of the markdown story, the team asks the client representative whether 
the client would like the room names to be subject to the same formatting as the messages in a room. 
The client seems receptive to the idea and asks that the team schedule this into the backlog, but 
indicates that it should only receive a low priority because there are more important features that 
the client would like to have sooner. The client is also pleased that the team has used markdown, 
rather than the requested HTML formatting, because the client understands that it is becoming a 
more popular and informal style of text formatting.

From the Library of Ida Schander



ptg14200592

376	 PART III  Adaptive sample

The next story is the message content filtering. The client is happy that the team has already ap-
plied the content filter to the room name and message text inputs and concurs that every future input 
received from users should similarly be subject to the same filtering. However, the client requests that 
this feature have the ability to be turned on or off via configuration in the future.

The final story of the sprint involves Tom simulating 300 users at a time, with the data storage 
spanning two separate machines. The client again requests that the data source to be used be con-
trolled by configuration settings.

After all of the stories have been demonstrated, the client representative impresses upon the team 
how pleased he is with the incremental but tangible progress that the team has made in just two 
short sprints.

Sprint retrospective

At the end of the second sprint, just as at the end of the first sprint, the team convenes to discuss 
progress over the week. All team members are present and answer the following questions:

■■ What went well?

■■ What went badly?

■■ Are there any parts of the process that we need to change?

■■ Were any new things done in the sprint that we need to keep?

■■ Were there any surprises discovered over the course of the sprint?

The aim is to generate a list of actionable items to prioritize and take forward. As usual, the out-
come of this meeting is not to generate a lot of discussion without tangible action. 

Assembled in a suitable meeting space, the team works through the list, one question at a time.

What went well?
The team starts with what went well during the sprint.

STEVE:	 What does everyone think went well in this sprint?

PETRA:	 Personally, I think this sprint was a great success: we met our sprint goal in a timely fash-
ion, we prepared excellently for the demonstration, and we ensured, through prepara-
tion, that nothing went wrong. The client was very impressed, and we can be satisfied 
with our efforts.

DIANNE:	 I agree. It was a template for how future sprints should progress. Let’s not lose focus, 
though: we must aim to sustain this same level over time.

STEVE:	 Absolutely—there should be no room for complacency.

From the Library of Ida Schander



ptg14200592

	 CHAPTER 12  Adaptive sample: Sprint 2	 377

What went badly?
The next question for the team to answer is what went badly during the sprint.

STEVE:	 How about what went badly? Surely something didn’t go according to plan.

DAVID:	 I think there were a few questions that went unanswered during the sprint. These ques-
tions would have had a minor impact on implementation overall, but I think it would 
have been good to get these questions answered as soon as possible, rather than at the 
end of the sprint.

PETRA:	 What sort of questions, David? Do you have an example?

DAVID:	 In the markdown story, Dianne asked whether we should be transforming the room 
names in addition to the messages. We elected not to but, really, we didn’t know the 
definitive answer.

Things to change?
The team members move on to discussing anything that they feel needs to change about their 
process or working practices.

DIANNE:	 Yes, I agree. I think it’s something that we need to change: if we have a question about 
implementation, we should ask Petra. If she doesn’t know the answer, she can schedule 
a call with the client and ask them directly.

PETRA:	 Absolutely, I’m here to ensure that you have all of the knowledge you need about the 
client’s requirements. If you don’t ask me something and I haven’t been specific enough 
with the acceptance criteria in the story, something crucial might be missed.

STEVE:	 In this case, waiting to ask the question during the demonstration didn’t hurt us much, 
but with other more important questions it will be imperative that we seek the correct 
answer as soon as possible.

PETRA:	 Anything else that needs to change? No? Let’s move on, then.

Things to keep?
The team members start talking about the positive actions that they need to form into habits.

STEVE:	 I’ll pitch in with something to keep. We changed the preparation for the sprint and it 
worked well. We should make a note to keep that going until it becomes habitual.

PETRA:	 Great point. This next sprint will determine whether the quality of this sprint’s work is 
sustainable or is an anomaly, so noting how we achieved such a good sprint and bearing 
it in mind in the future is a good idea.

STEVE:	 What else should we keep?

DIANNE:	 I can’t think of anything else out of the ordinary that we especially need to keep doing.

From the Library of Ida Schander



ptg14200592

378	 PART III  Adaptive sample

Surprises?
The “surprises” section of the sprint retrospective aims to capture anything that has surprised the 
team during the sprint so that these things cannot be classed as surprises in the future.

STEVE:	 Final question, everyone: were there any surprises in this sprint that we need to investi-
gate or prevent in the future?

DAVID:	 I’m a bit surprised at how well this sprint went!

The team concludes the meeting and the members file out of the room, buoyant with their recent 
success.

Summary
The second sprint has been a success and is an improvement for the team. By developing adaptabil-
ity into the chosen solution’s code, the team has shown that it is able to gracefully handle the sort of 
change that is expected in Agile software development projects. Had the team not introduced any 
extension points in the code, it would have been very difficult for the team members to enhance the 
software by adding functionality without significantly rewriting, refactoring, or contorting the code to 
the breaking point.

From the Library of Ida Schander



ptg14200592

		  379

A P P E N D I X  A

Adaptive tools

This appendix gives you an introduction to source control with Git, which is required to use the code 
samples for this book. If you have used Git before, you're already aware of its deserved reputation as 
the foremost source control software. If you have not encountered Git before, this appendix will bring 
you up to a level at which you can interact with local and remote repositories of code. These skills will 
translate to working with any codebase that is stored in Git; the content herein is not limited to the 
code samples for this book. Many popular open-source projects use Git, and it is being adopted by 
companies to manage their proprietary code, too. 

In all contexts, the concept of continuous integration (CI) is an important part of keeping code 
synchronized between various contributors, so a section of this appendix briefly discusses the concept 
of CI and a common workflow for its implementation.

Source control with Git

Source control evolved slowly for a long time before being revolutionized with the advent of distrib-
uted source control systems such as Mercurial and Git. I would argue that any source control is better 
than no source control, but my preference is certainly for Git.

The purpose of source control in general is to track changes in code over time, making it easy to 
travel forward and backward in time through the code. It also provides a ready-made backup of the 
source. 

With Git, every developer has his own repository that contains the full source code (see Figure A-1). 
To make edits to the source, developers should create local branches to which they can commit suc-
cessive changes. Each branch should have a clearly delineated purpose—to fix a defect, implement 
a new feature, or make some experimental changes. Whatever their purpose, these changes remain 
local to the developer’s repository until the developer elects to push the branch elsewhere.

From the Library of Ida Schander



ptg14200592

380	 APPENDIX A  Adaptive tools

FIGURE A-1  A possible branching strategy for using Git. 

Although it is not necessary to have a central repository, it is common to consider one of the 
repositories the authoritative location for the source. Take a look at Figure A-2. By pushing branches 
to this repository, developers can subsequently request that their changes be pulled into the main 
branch of the code. This is called a pull request and is often the catalyst for a code review by a devel-
oper’s peers, which helps to maintain the quality of the code. Each peer who reviews the code can 
approve or reject the pull request, as appropriate. Each peer can also functionally test the code by 
pulling the branch to her local repository, compiling it, and testing it locally. If the code is rejected, 
the original developer can continue to make edits and push the changes back to the central reposi-
tory until it is accepted. The accepted pull request is then merged into a main development branch, 
and the other developers will receive those changes when they next update their local repositories 
with the main branches. They will also need to merge any changes with those of their own in-progress 
branches.

From the Library of Ida Schander



ptg14200592

	 APPENDIX A  Adaptive tools	 381

FIGURE A-2  Distributed source control is a peer-to-peer system, but it often uses a central repository.

Git lessons
Git for Windows can be downloaded from http://git-scm.com/download/win.

All of the code listings in this book are available on GitHub, which is a community centered on 
Git repositories. Appendix B, “GitHub code samples” (available online), provides a reference for each 
chapter's code listings and the Git branch to which they belong.

For those who are new to Git, the following subsections provide a short orientation for navigating 
code stored in a Git repository. This is far from an extensive introduction to Git, but it should provide 
you with enough knowledge to follow the code examples and compile them. For more information, 
the Git Reference1 is an excellent introduction. 

If you don’t like working with the command line, there are several good GUIs available for Git. They 
are available from http://git-scm.com/downloads/guis. Atlassian's SourceTree is the best-in-class at the 
time of this writing.

1	  http://gitref.org/

From the Library of Ida Schander

http://git-scm.com/download/win
http://git-scm.com/downloads/guis
http://gitref.org/


ptg14200592

382	 APPENDIX A  Adaptive tools

Cloning a repository
The first step is to clone a repository. All Git commands are provided as parameters to the git 
command-line application. The clone command requires the address of a repository to clone. The 
following command clones the repository for this book into a local repository. Remember that Git is 
distributed source control, so many repositories can exist. You will have full read access to the remote 
repository but will only be able to write to your own local clone.

git clone https://github.com/garymcleanhall/AdaptiveCode.git

This command creates a new directory called AdaptiveCode under the current working directory. 
By default, the master branch is selected. Each of the samples in this book are, however, located on 
different branches, so you need to be able to switch branches.

Switching to a different branch
After cloning a new repository, change the directory to your local clone by using the change directory 
command.

cd AdaptiveCode

The currently selected branch is the default, which for this repository is master. There is not much 
on the master branch for this repository. Instead, the code is located on other branches. Initially, 
only the master branch is replicated locally. The rest of the branches are still remote. To view which 
branches are available locally, supply git with the branch command.

git branch

This lists only the master branch. To list all of the branches that are available remotely, add the 
remote switch to the branch command.

git branch --remote

This lists all of the branches that are available in this repository. Note that all of the branches start 
with the prefix origin/, which specifies the remote location on which these branches reside. Each 
repository can have multiple remotes, with origin being the name designated for the remote from 
which this local repository was cloned. 

As a personal preference, I have prefixed every branch with a chX- short code (although branch 
names can be pretty much anything). This indicates the chapter number to which the branch relates. 
The rest of the branch name is a more free-form description of its content. Appendix B provides a refer-
ence of code listings as they correspond to branch names. Now, by using the checkout command, you 
can create a local version of the remote branch and move onto it.

git checkout ch9-problem-statement

From the Library of Ida Schander



ptg14200592

	 APPENDIX A  Adaptive tools	 383

This creates a local version of the remote branch origin/ch9-problem-statement and alters 
the current working directory so that the changes present on that branch are brought in. If you list 
the contents of the current directory, as shown in the following listing, there is now a new directory 
called DependencyInjectionMvc, which, in turn, contains a Microsoft Visual Studio solution file and 
some more directories for its constituent projects.

C:\dev\AdaptiveCode [ch9-problem-statement]> ls 
 
 
    Directory: C:\dev\AdaptiveCode 
 
 
Mode                LastWriteTime     Length Name 
----                -------------     ------ ---- 
d----         3/16/2014  12:47 PM            DependencyInjectionMvc 
-a---         3/16/2014  12:47 PM       1522 .gitignore 
-a---         3/16/2014  12:30 PM         84 README.md

If you move back to the master branch, this folder will no longer be relevant and will be deleted. 

Updating local branches
If the remote version of the branch changes at some point, you will want to retrieve the latest changes. 
The fetch command downloads any changes to remote branches.

git fetch

If you don’t supply a branch name, the command downloads changes to all branches, including 
newly created branches. You can also specify the name of the branch you want to fetch.

git fetch origin master

Note that the name of the remote is also specified, because the master branch might exist on 
more than one remote.

After you have downloaded the changes by using the fetch command, you can switch to the 
target branch by using the checkout command.

git checkout ch9-problem-statement

From here, the local branch is out of sync with the remote branch because the changes have not 
been replicated locally. The merge command is able to apply any changes made to a remote branch 
onto the local branch.

git merge origin/ch9-problem-statement

When the merge command is finished, the local branch is identical to the remote and all updates 
have been applied.

From the Library of Ida Schander



ptg14200592

384	 APPENDIX A  Adaptive tools

Continuous integration 

Whenever a developer’s code is pushed to a central repository, it is common for that code to be com
piled on the server. This continuous integration of developers’ changes provides invaluable feed-
back about the state of the code base. If the source fails to compile, it has failed to meet the first 
prerequisite to the pull request being accepted: without a working build, the request will be sum-
marily denied. 

However, compiling the code is often insufficient to confirm that the developer has not broken 
anything as he was fixing a defect or implementing a new feature. Thus, after compiling the code, 
the CI server runs all unit tests, and then checks that enough of the code is covered by unit tests. After 
that, it might even attempt to generate deployment packages from the output of the build.

All of these steps are carried out serially, with the success of each step being a requirement for con-
tinuing with the build process. There is no value in running unit tests if the code won’t compile; simi-
larly, it makes no sense to check unit test coverage if the unit tests failed, or to generate deployment 
packages if the unit test coverage was insufficient. A CI server set up to build each pushed branch in 
this way relieves developers of a great burden. Instead of taking the significant additional time that 
such checks add to their tasks, they can just compile the code and run the unit tests that they have 
written, leaving the rest up to the CI. Figure A-3 shows a flowchart for such a continuous integration 
build process.

From the Library of Ida Schander



ptg14200592

	 APPENDIX A  Adaptive tools	 385

FIGURE A-3  A simplified workflow diagram for a continuous integration service.

From the Library of Ida Schander



ptg14200592

This page intentionally left blank 

From the Library of Ida Schander



ptg14200592

Index

	 387

A
AAA (Arrange, Act, Assert) pattern

bug fixes and, 208
described, 126–130
unit tests and, 132

abstract classes, 155, 156
abstract methods, 211
abstraction, refactoring for, 177–183
abstractions

leaky, 85
maladaptive code and, 37, 38

acceptance criteria
product owner responsibility for, 7
user stories and, 14

Act phase of unit tests, 127
actions, MVC applications and, 312
ActLike<T>() method, 116
acyclic digraphs, 53
adapter classes, 181
Adapter pattern, 109–113, 192, 200, 261
adapters, 289
adaptive code

described, xv, xvi, 37
single responsibility principle and, 169, 206

affinity estimation, 31
Agile Manifesto, 4
Agile processes and practices

described, 1, 2
Scrum and, 4
vs. waterfall, xv

aliasing shorter names for longer types, 296
ambient containers, 307
anti-patterns. See also patterns

described, 56
Entourage, 63–65, 284, 311
Illegitimate Injection, 310–312
Interface Soup, 267, 268

IsNull property, 105–107
Service Locator, 306–310
solving with Stairway pattern, 85

AOP (aspect-oriented programming), 88, 89, 255
API layer, 84
ApiController class, 74
apocalyptic defects

described, 16
swarming on, 18

AppFabric AutoStart, 74
application configuration files

assembly resolution process and, 68
mapping interfaces to implementations, 296

applications, installing with Chocolatey, 80
ArgumentNullException, 144
arguments, variance and, 218
Arrange, Act, Assert (AAA) pattern

bug fixes and, 208
described, 126–130
unit tests and, 132

artifacts
backlogs, 27–29
charts and metrics, 22–27
daily Scrum, 31–33
release planning, 29–31
Scrum board, 9
Scrum calendar, 36
sprint demo, 33
sprint retrospective, 34, 35

aspect-oriented programming (AOP), 88, 89, 255
ASP.NET MVC. See MVC (Model-View-Controller)
ASP.NET Web API, 74
assemblies

cyclic dependencies and, 54
dependencies between, defined, 44
Entourage anti-pattern and, 63

From the Library of Ida Schander



ptg14200592

388

assemblies (continued)
exceptions when loading, 48
layering and, 81–84
process for loading, 47
refactoring for abstraction and, 178
resolution process, 67, 68
sample application showing dependencies, 44–51

asserting expected behavior in unit tests, 128
assigning tasks, 14
asymmetric layering, 89–91
asynchronous decorators, 200–202
asynchronous methods, 200
audit tracking, decorators for, 260
authorization, interface segregation and, 274
avatars for Scrum boards, 17

B
backlogs

described, 27
product, 3, 27, 28
sprint, 3, 28
swimlane for, on Scrum board, 18
user stories and, 328–335

base type, Liskov substitution principle and, 218
BDUF (Big Design Up Front), 9
behavior, expected

asserting in unit tests, 128
Liskov substitution principle, 217
naming test methods and, 132
refactoring code and, 152
test-driven development and, 130
variance and, 239

behavioral errors, 16
Big Design Up Front (BDUF), 9
binding to assemblies, 68, 69
blackbox reuse, 110
Bloch, Joshua, 212
branching

correlation with defect count, 41
decorators, 193, 194
source control and, 379–383

brownfield projects, 27
bug fixes. See also refactoring code

open/closed principle and, 208, 209
writing tests for, 148, 149

build process, 384, 385
burndown charts, 24, 25
business logic layer, 86, 87

C
C#, duck-typing and, 113–118
caching decorators, 257–261
calendars

niko-niko, 32
of meetings, for full sprint, 36

cards
color schemes, 17
features, 12, 13
hierarchy of, on Scrum board, 11
purpose of, on Scrum board, 10
types, 10–17
who creates, 17

Cascading Nulls, 108
catching exceptions, 238, 247–250
ceremonies, 4
chaining

composite instances, 188
dependencies, 52, 58, 291
methods, 123, 124

ChannelFactory class, 70, 71
charts

feature burnup, 25–27
Scrum and, 22
sprint burndown, 24, 25
story points, 23
velocity, 23, 24

chickens and pigs, 9
Chocolatey package management tool, 80, 81
CI (continuous integration)

build process, 384
server, unit test coverage and, 40

clarity, refactoring code for, 172–176
Class Adapter pattern, 109, 110
classes

abstract, 155, 156
Adapter, 109
as adapters, 289
changing behavior of without recompilation, 

111–113
ChannelFactory, 70, 71

asserting expected behavior in unit tests

From the Library of Ida Schander



ptg14200592

	 389

ConfigurationManager, 287, 297
constructors and, 57
Contract, 232, 235, 236, 237
defined, 57
DiscoveryClient, 73
disposing of dependencies, 301
explicit interface implementation, 97–101
hierarchies, 217
implementation inheritance and, 210–213
implicit interface implementation, 99, 100
interfaces and, 94, 284
loosely coupled, 209
mixin, 118–122
multiple inheritance, 96
multiple interface implementation, 95
naming conventions, 178
NullUser, 105, 107
Order, 264
organizing with Stairway pattern, 65
polymorphism and, 101, 102
proxiable, 284
segregating interfaces and, 263–266, 267
single responsibility principle and, 169
Stopwatch, 198
as systems under test (SUTs), 126
tightly coupled, 209

client awareness, 209
clients

providing implementations to, 263–269
sample application showing dependencies, 44–51
software dependencies and, 44

cloning a repository, 382
closed for modification rule

exceptions to, 209
open/closed principle definition, 208

CLR (Common Language Runtime)
duck-typing and, 115–118
resolving assemblies and, 67

Cockburn, Alistair, 213
code. See also refactoring code; unit tests

backing up, 379
as client or service, 44
compiling, 384
contracts, 232–238
maladaptive, 37–41
production, 125, 130

code reviews. See peer reviews

code samples in this book, xxii, xxiii, 381
code smells

described, 57
inappropriate intimacy and, 59
refused bequest, 162

coding for change, 5
coding to an interface, 60
color schemes, Scrum boards and, 17
Command/Query Responsibility Segregation (CQRS), 

90, 91, 275
command/query separation, 89, 90
comments for contracts of methods and classes, 232
Common Language Runtime (CLR)

duck-typing and, 115–118
resolving assemblies and, 67

compiling code, 384
components, 81
Composite pattern, 185–189
composition

as blackbox reuse, 110
root, dependency injection and, 306, 311

compromises. See technical debt
concessions. See technical debt
conditional expressions, replacing with 

polymorphism, 154–157
configuration files

assembly resolution process and, 68
mapping interfaces to implementations, 296

ConfigurationManager class, 287, 297
connection factories, 301, 302
Console.ReadKey(), 46
constants, replacing magic numbers with, 153, 154
constructing

dependent classes, 291
implementations, for clients, 263–268
object graphs, 287–293

constructors
classes and, 57
dependency injection and, 287–291
Illegitimate Injection and, 310–312
refactoring for abstraction and, 179
replacing with factory classes, 159
replacing with factory methods, 157–159

containers
ambient, 307
conventions and, 317–321

	 containers

From the Library of Ida Schander



ptg14200592

390

containers (continued) 
injecting, 309
Inversion of Control (IoC), 291–295
Unity, 292, 293, 296, 297, 308

continuous integration (CI)
build process, 384, 385
server, unit test coverage and, 40

Contract class, 232, 235, 236, 237
Contract.Ensures method, 235
Contract.Invariant method, 236, 238
Contract.Requires method, 233, 234
contracts

code, 232–238
data invariants, 223, 224
vs. encapsulation, 224
postconditions and, 222, 223
preconditions and, 220–222
rules, 218, 225–231

contravariance, 242–244, 246
control, inversion of. See Inversion of Control (IoC)
controllers, dependency injection and, 312–317
conventions, dependency injection and, 317–321
correlation vs. causation, metrics and, 40
cosmetic issues, 16
cost of changes, xv
covariance, 239–243, 246
CQRS (Command/Query Responsibility Segregation), 

90, 91, 275
cranes vs. skyhooks, 38, 39
create, read, update, and delete (CRUD) operations

interface segregation and, 251–260
two-layer architecture and, 85

cross-cutting concerns, 87, 88, 89, 255
CRUD (create, read, update, and delete) operations

interface segregation and, 251–260
two-layer architecture and, 85

cyclic dependencies, 53
cyclic digraphs, 53
cyclomatic complexity, unit testing and, 40, 41

D
daily Scrum meetings, 8, 31, 32, 33
data access layer, two-layer solutions and, 83–86
data invariants

code contracts and, 236
described, 223, 224
Liskov contract rules and, 229–231

debugging
assemblies, viewing loaded, 47
dependencies between assemblies, 67
Fusion log, 68–70

declarative vs. imperative registration, 295–297
declaring interfaces, 94–96
Decorator pattern

described, 184, 185
interfaces and, 251

decorators
asynchronous, 200–202
branching, 193, 194
caching, 257–261
composite, 185–188
CRUD interfaces and, 252–261
events, 203
lazy, 194, 195
logging, 195, 196
for multiple interfaces, 261–263
predicate, 189–193
profiling, 196–200
properties, 203

decoupling code by using Service Discovery, 73
default references, 49
defect cards, 16
defect fixes

open/closed principle and, 208, 209
writing tests for, 148, 149

defensive programming. See splitting interfaces
deferring construction to run time, 291
definition of done (DoD), 21, 22
delegates vs. interfaces, 193, 279
delegating

to abstractions, importance of, 169
to abstractions, refactoring for, 177–183
interface methods to methods of another  

object, 109
to interfaces, 212, 214
replacing inheritance with, 163–166
tasks to other methods, 173–176

delegation, pass-through, 256
demos, sprint, 33, 357, 358, 375, 376

continuous integration

From the Library of Ida Schander



ptg14200592

	 391

dependencies
chain of, 52, 58, 291
combining decorators and, 263
cyclic, 53–55
defined, 44
first party, 44–48
framework, 48, 49
interface inheritance and, 212, 214
layering and, 83
modeling, 51–55
NuGet and, 77–81
predicate decorators and, 190–192
purpose of, 43
refactoring for abstraction and, 178, 179
resolving, 67–76
sample application, 44–51
services and, 70–77
testability and, 59
third party, 50, 51
types of, 43

dependency digraphs, 51
dependency injection (DI). See also Inversion of 

Control (IoC)
ASP.NET MVC and, 312–317
classes that make use of, 61, 62
composition root and, 311
constructors and, 287–291
controllers and, 312–317
conventions and, 317–321
described, 281
method injection, 290
object lifetime, 298–304
Poor Man’s Dependency Injection, 287–290
property injection, 291
Service Locator anti-pattern, 306–310
task list application introduced, 281–289
Windows Forms and, 315, 316

deployment packages, continuous integration 
and, 384

dereferencing null, 103, 108
design patterns. See patterns
developer role, Scrum process and, 326, 327
diamond inheritance problem, 96
DI (dependency injection)

ASP.NET MVC and, 312–317
classes that make use of, 61, 62

composition root and, 311
constructors and, 287–291
controllers and, 312–317
conventions and, 317–321
described, 281
method injection, 290
object lifetime, 298–304
Poor Man’s Dependency Injection, 287–290
property injection, 291
Service Locator anti-pattern, 306–310
task list application introduced, 281–289
Windows Forms and, 315, 316

digital Scrum boards, 21
digraphs

cyclic vs. acyclic, 53
defined, 51

directed graphs, 51–55
discoverable services, 71–74
DiscoveryClient class, 73
DiscoveryEndpoint, 73
Dispose method, 293, 298–300, 304
distributed source control, 379–383
DLR (Dynamic Language Runtime), 115
domain model

Command/Query Responsibility Segregation 
(CQRS), 90, 91, 275

logic layer and, 87
DomainException, 146, 147
done

definition of, 21, 22
swimlane for, 18

duck-typing, 113–118
dynamic keyword, 115
Dynamic Language Runtime (DLR), 115
dynamic proxies, testing with, 140

E
edges, 51
effort, estimated vs. actual, 23, 35
encapsulating

branching tests, 280
null users, 107
variant behavior with Strategy pattern, 112

encapsulation vs. contracts, 224
Ensures method, 235

	 Ensures method

From the Library of Ida Schander



ptg14200592

392

Entourage anti-pattern
dependency injection and, 284
described, 63–65
Illegitimate Injection and, 311
solving with Stairway pattern, 85

epics vs. features, 13
estimating

features, 29
stories, 30, 31, 35
story points, 330–335

events
decorating, 203
publishing and subscribing to, 261–263

exceptions
catching, 238, 246–249
enforcing preconditions with, 220, 221
purpose of, 246, 371
wrapping, 146, 149

expected behavior
asserting in unit tests, 128
Liskov substitution principle, 217
naming test methods and, 132
refactoring code and, 152
test-driven development and, 130
variance and, 239

ExpectedExceptionAttribute, 144, 145, 147
explicit interface implementation, 97–101
extension

methods, 118–120
open/closed principle and, 208
points, 209–214
points, adaptive code and, 322

external dependencies. See third-party software 
dependencies

external mocking frameworks, 140, 141
Extreme Programming (XP), user stories and, 13

F
factories

connection, 301, 302
injection, 299
isolating, 304

factory classes, replacing constructors with, 159
Factory Isolation pattern, 304, 305

factory methods, replacing with constructors, 
157–159

Factory pattern, 301, 302, 314, 345–347
failing unit tests

bug fixes and, 208
described, 130, 139
writing for bug fixes, 148

fakes, testing with, 137–140
fast-track items, 18
features

burnup charts, 25–27
estimating, 29
prioritizing, 29
Scrum board cards and, 12, 13

fire-and-forget methods, 202
first-party software dependencies, 43, 44–48
fluent interfaces, 123, 124
foreach loops, CLR duck-typing support and,  

116–118
framework dependencies, 48, 49, 66
Fusion log, 68–70

G
GAC (global assembly cache), 67, 68
generalizing specialists, 8
generic

controllers, 265
interfaces, 252, 265
type parameters, 242–245

Git, 379–383
GitHub, 381
Given, When, Then pattern, 126
global assembly cache (GAC), 67, 68
goals, defining for sprints, 337
Goldilocks Zone, extension points and, 214
graphs

modeling dependencies in, 51–55
object, 287–291, 312, 320

green icon, as indicator of successful unit test, 130
greenfield projects, 27
guard clauses

vs. code contracts, 232
data invariants and, 223, 230, 231
postconditions and, 222
preconditions and, 220, 221, 226

Entourage anti-pattern

From the Library of Ida Schander



ptg14200592

	 393

H
Happy Path, need for further tests after finding, 143
hierarchies

contravariance and, 242–244
covariance and, 239–242
inheritance, 217, 218

Hollywood Principle, 308
horizontal scaling

tiers and, 83
vs. vertical scaling, 373

horizontal swimlanes, 18
hosted services

dependencies and, 70–77
discovery of, 71–74

HTTP verbs, 75
Hype Cycle, 327

I
IAccountRepository interface, 137
IAction interface, 280
IComponent interface, 187, 194
IContravariant interface, 243
ICovariant interface, 240
IDisposable interface, 293, 299–302, 304
IFluentInterface, 123, 124
IFunction interfaces, 280
Illegitimate Injection, 310–312
imperative vs. declarative registration, 295–297
implementation inheritance

designing for, 212, 213
extension points and, 210, 211
vs. interface inheritance, 212

implementations
blackbox vs. whitebox reuse, 110
explicit, 97–101
implicit, 99, 100
inability to enhance, 58
vs. interfaces, 56, 124
leaf, 267
Register, Resolve, Release pattern and, 293–295
separating from interfaces, 63–65, 84

implicit implementation, 99, 100
Impromptu Interface, 116
in keyword, 243, 244, 245

inappropriate intimacy, code smells and, 57, 59
inheritance

Class Adapter pattern and, 109
contravariance and, 242–244
covariance and, 239–243
exceptions, 246–249
hierarchies, 217, 218
implementation, 210–213
interface, 212
multiple, 96
replacing with delegation, 163–166
segregation and, 272–274
as whitebox reuse, 110

initial backlog, 328–335
initialization method, 149, 150
injection

constructor, 308
of containers, 309
factories, 299
illegitimate, 310–312

injection, dependency
ASP.NET MVC and, 312–317
classes that make use of, 61, 62
composition root and, 311
constructors and, 287–291
controllers and, 312–317
conventions and, 317–321
described, 281
method injection, 290
object lifetime, 298–304
Poor Man’s Dependency Injection, 287–290
via property injection, 291
Service Locator anti-pattern and, 306
task list application introduced, 281–289
Windows Forms and, 315, 316

In-Progress swimlanes, 18
instantiating objects, code smells and, 57
IntelliSense, contracts and, 232
interface contracts, 237, 238
interface inheritance, extension points and, 212
interface keyword, 94
interface segregation

authorization, 274
caching decorator and, 257–261
client construction, 263–268
defined, 251

	 interface segregation

From the Library of Ida Schander



ptg14200592

394

interface segregation (continued)
example, 251–257
splitting for architectural need, 275–279
splitting for client need, 268–275

Interface Soup anti-pattern, 267, 268
interfaces. See also user interface

assemblies and, 63, 84
classes and, 94, 284
code adaptability and, 284
coding to, 60
combining as mixins with Re-Motion Re-mix, 

120–122
Composite pattern and, 186
contracts and, 219
decorating multiple, 261–263
defined, 57
vs. delegates, 193, 251, 279
described, 93
explicit implementation, 97–101
external dependencies and, 66
fluent, 123, 124
generic, 252
IAccountRepository, 137
IAction, 280
IComponent, 187, 194
IContravariant, 243
ICovariant, 240
IDisposable, 293
IFunction, 280
vs. implementations, 56, 124
implementing in a single class, 266, 267
IPaymentStrategy, 206
IPredicate, 192, 280
IServiceLocator, 306, 308
ITargetInterface, 118, 122
ITask, 279
members and, 251
mocking, 140–142
organizing with Stairway pattern, 65, 284
overuse of, 113
providing to clients, 263–269
refactoring toward abstraction and, 177–180
Register, Resolve, Release pattern and, 293–295
repository, 136
splitting for architectural need, 275–279
splitting for client need, 268–275

syntax, 94–96
Invariant method, 236
invariants, 223, 224, 229–231, 236, 244, 245

guard clauses and, 223
Inversion of Control (IoC)

composition root and, 311
containers and, 291–295
described, 291, 292
vs. Poor Man’s Dependency Injection, 292

inverting class hierarchies with contravariance, 
242–244

IoC (Inversion of Control). See Inversion of Control 
(IoC)

IPaymentStrategy interface, 206
IPredicate interface, 192, 280
IronPython, as dynamically typed language, 115
IServiceLocator interface, 306, 308
IsNull property anti-pattern, 105–107
isolating factories, 304, 305
ITargetInterface, 118, 122
ITask interface, 279
iterations. See sprints

J
JIT ( just-in-time) model, 67

K
keywords, dynamic, 115
known endpoints, service references and, 70

L
lambda expressions

Factory Isolation pattern and, 305
mocking and, 141
object lifetime and, 299

lambda factories, declarative registration and, 297
layering

API layer, 84
described, 81
patterns, 82–87
vs. tiers, 83
wrapping exceptions and, 146

Interface Soup anti-pattern

From the Library of Ida Schander



ptg14200592

	 395

lazy decorators, 194, 195
Lazy<T>, 194
leaf implementations, 267
leaky abstractions, 85
libraries

code contracts, 232
Impromptu Interface, 116
Log4Net, 181, 182
Prism, 122
Re-motion Re-mix, 118, 120–122

lifetime of objects, 298–304
line of best fit, 24
Liskov substitution principle (LSP)

contravariance, 242–245
covariance, 239–243
described, 217, 218
exceptions, 246–249
invariance, 244, 245
rules, 218, 225–231

log files, 68–70
Log4Net, 181, 182
logging decorators, 195, 196
logic layer, 86, 87
loops, 54, 55
loose mocks, 141
loosely coupled classes, 209
LSP (Liskov substitution principle)

contravariance, 242–245
covariance, 239–243
described, 217, 218
exceptions, 246–249
invariance, 244, 245
rules, 218, 225–231

M
magic numbers, replacing with constants, 153, 154
maladaptive code, 37–41
mapping

composition root and, 311
conventions and, 318
dependency injection and, 321
interfaces to implementations, 296

markdown transforms, 367–370
marketable features, 12

Martin, Robert C., 208
meetings

for full sprint, 36
planning, for sprint, 337–339
retrospective, for sprint, 358–362

Mercurial vs. Git, 379
method injection, 290
methods. See also decorators

abstract, 211
asymmetric layering and, 89–91
asynchronous, 200
chaining, 123, 124
Contract.Ensures, 235
Contract.Invariant, 236, 238
Contract.Requires, 233, 234
Dispose, 293, 298–300, 304
Ensures, 235
extension, 118–120
factory, 157–159
fire-and-forget, 202
IDispose.Dispose(), 298–304
Liskov contract rules and, 225–231
naming, 219
postconditions and, 222, 223
preconditions and, 220–222
private, 236
Register, 293–295
RegisterTypes, 318
Release, 293–295
request-response, 202
Requires, 233, 234
Resolve, 293–295
signatures, 98–101, 219
static, 158
synchronous, 200
tracking execution time, 197
virtual, 210, 211, 284

metrics
correlation vs. causation, 40
maladaptive code and, 39
monitoring project progress with, 22–27
story points, 23

Meyer, Bertrand, 207
Microsoft AppFabric AutoStart, 74
Microsoft Moles, 59

	 Microsoft Moles

From the Library of Ida Schander



ptg14200592

396

Microsoft .NET Framework
advantages of, 196
Impromptu Interface library, 116
software dependencies and, 43, 48, 49

Microsoft .NET Framework Reflection API, 116
minimum marketable feature (MMF)

defined, 12
vs. epics and themes, 13

minimum viable release (MVR), 12
mixins, 118–122
MMF (minimum marketable feature)

defined, 12
vs. epics and themes, 13

mocking frameworks, 39, 140, 141
mocks

Illegitimate Injection anti-pattern and, 311
setting up, 149
testing with, 140–143

modeling dependencies, 51–55
Model-View-Controller (MVC), dependency injection 

and, 312–317
Model-View-ViewModel (MVVM) pattern, 282
MongoDB, 276
monitoring progress with charts and metrics, 22–27
Moq, 140, 141
MSTest, 129, 149
multicast network messages, 71
multilayer solutions. See layering
multiple inheritance, 96, 118
multiple interface implementation, 95
MVC (Model-View-Controller), dependency injection 

and, 312–317
MVR (minimum viable release), 12
MVVM (Model-View-ViewModel) pattern, 282

N
.NET Framework. See Microsoft .NET Framework
network boundaries, tiers and, 83
NHibernate, 276
niko-niko calendar, 32
nodes, 51
noise-to-signal ratio, contracts and, 237
NuGet

dependencies and, 77–81
testing with Moq and, 140

Null Object pattern, 103–105, 108
NullReferenceException, 103, 108, 144, 145
NullUser class, 105, 107

O
Object Adapter pattern, 110, 111
object graphs

constructing, 287–291
conventions and, 320
resolution root and, 312

object lifetime
IDispose.Dispose() method and, 298–304
release method and, 293

Object property, 141
object-oriented programming (OOP), polymorphism 

and, 101
Object/Relational Mapper (ORM), 50
observer effect, 22
OCP (open/closed principle). See open/closed 

principle (OCP)
OOP (object-oriented programming), polymorphism 

and, 101
open for extension rule, 208
open/closed principle (OCP)

bug fixes and, 208, 209
client awareness and, 209
extension points, 209–214
Martin definition, 208
Meyer definition, 207

Order class, 264
ORM (Object/Relational Mapper), 50
out keyword, 240, 241, 245
over-specification, 142, 143

P
package weight, 224
packages. See also dependencies

Chocolatey, 80, 81
NuGet, 78–80

pair programming, 353, 370–373
parameters, naming, 219
pass-through delegation, vs. interface  

segregation, 256
patterns. See also anti-patterns; interfaces

Adapter, 109–111, 261

Microsoft .NET Framework

From the Library of Ida Schander



ptg14200592

	 397

Agile processes and, 1
Arrange, Act, Assert (AAA), 126–130
Class Adapter, 109, 110
Command/Query Responsibility Segregation 

(CQRS), 90
Composite, 185–189
Decorator, 184, 185, 251
described, 56
Factory, 301, 302, 314, 345–347
Factory isolation, 304, 305
history of, 102
layering, 82–84
Model-View-ViewModel (MVVM), 282
Null Object, 103–105, 108
Object Adapter, 110, 111
overuse vs. underuse, 102
Poor Man’s Dependency Injection, 287
Register, Resolve, Release, 293–295
Repository, 241
Responsible Owner, 302–304
Stairway, 65, 66, 284
Strategy, 111–113, 204–206
Template Method, 211

peak of inflated expectations, 327
peer reviews, 340–357, 380
performing unit tests. See unit tests
persistent storage, CRUD operations and, 251, 252
pigs and chickens, 9
Plain Old CLR Object (POCO), 285
planning poker, story point estimation and, 331–335
plateau of productivity, 327
PO (product owner) role, 7, 325, 326
POCO (Plain Old CLR Object), 285
poker, planning, story point estimation and, 331–335
polymorphism

covariance and, 239, 240
described, 101, 102
replacing conditional expressions with, 154–157

Poor Man’s Dependency Injection (Poor Man’s DI)
composition root and, 311
described, 287–290

post mortems. See sprint retrospectives
postconditions

code contracts and, 235
described, 222, 223
Liskov Substitution Principle and, 227–229

PostSharp, 88

preconditions
arranging for unit tests, 126, 127
code contracts and, 232–234
of constructors, 143
contracts and, 224
described, 220–222
enforcing with exceptions, 221
enforcing with preconditions, 220
Liskov Substitution Principle and, 225–227

predicate decorators, 189–193
predicted variation, 213
prioritizing features, 29
Prism (Windows Presentation Foundation/Model-

View-ViewModel library), 122
private methods, 236
product backlogs

described, 27
responsibility for setting priorities, 7, 27
Scrum process and, 4

product owner (PO) role, 7, 325, 326
production code

defined, 125
test-driven development and, 130

profiling decorators, 196–200
proof of concept, refactoring toward abstraction 

and, 177
properties

decorating, 203
signatures, 99

property injection, 291
property setters, 230, 231
protected variation, 213, 214
prototypes, refactoring toward abstraction and, 177
proxiable classes, 284
proxies

classes, 70
discovery, 71
services, 70, 71

prudent technical debt, 20
publishing events, 261–263
pull requests, 380

Q
Quality Assurance (QA), swimlanes for, 18
queries, separating from commands, 89–91

	 queries, separating from commands

From the Library of Ida Schander



ptg14200592

398

R
Rapid Application Development (RAD), 196
readability, refactoring code for, 153, 154
reading data, segregating from writing data,  

269–274
reckless technical debt, 20
recursion, 55
red, green, refactor, 130–135
red icon, as indicator of failed unit test, 130
refactoring code. See also dependency injection (DI); 

interface segregation
for abstraction, 177–183
for clarity, 172–176
defined, 125
process described, 151
for readability, 153, 154
replacing conditional expressions with 

polymorphism, 154–157
replacing constructors with factory methods, 

157–159
replacing inheritance with delegation, 163–166
replacing magic numbers with constants,  

153, 154
samples, 347, 348, 350–353
technical debt and, 57
test-driven development and, 130–135

references
converting third-party to first-party, 181
defaults by project type, 49
NuGet and, 77–81
resolution process, 67
services, 70, 71
third-party, 50

Reflection Emit, 116
refused bequests, 162
Register method, 293–295
Register, Resolve, Release pattern, 293–295
registering interfaces to their implementations, 

293–295
RegisterTypes method, 318
registration

conventions and, 317–321
imperative vs. declarative, 295–297

release
defined, 11
minimum viable, 12

planning, 29
scrum process and, 4

Release method, 293–295
Re-motion Re-mix library, 118, 120–122
repaying technical debt, 20
repositories, 379–382
repository interfaces, 136
Repository pattern, 241
request-response methods, 202
Requires method, 233, 234
resolution root, 312
Resolve method

Inversion of Control and, 292
Register, Resolve, Release pattern and, 293–295

resolving dependencies, 67–76, 291
responsibilities. See single responsibility  

principle (SRP)
Responsible Owner pattern, 302–304
RESTful services, 74–77
retrospectives, for sprints, 34, 35, 358–363, 376–378
return types, variance rules for, 218
return values, postconditions and, 222, 223
reuse, blackbox vs. whitebox, 110
rigidity, 37, 38
roles and responsibilities, Scrum process and, 7–9, 

325–328
rules, Liskov substitution principle, 218, 225–231

S
scaling applications by using tiers, 83
Scrum

Agile method and, 4
calendar, 36
defined, 3
documentation and, 5, 9
monitoring project progress, 22–27
problems with, 37–41
process overview, 4
roles and responsibilities, 7–9, 325–328
software dependencies and, 43
user stories and, 13, 328–335
variants of, 6
vs. waterfall, 4–6

Scrum boards
avatars, 17
cards, 10–17

Rapid Application Development

From the Library of Ida Schander



ptg14200592

	 399

color schemes, 17
example of, 10
importance of, 10
location, 9
swimlanes, 18

Scrum master (SM) role, 8, 326
Seemann, Mark, 320, 321
segregation. See interface segregation
Service Discovery, 71–74
Service Locator anti-pattern, 306–310
service proxies, 70, 71
service references, 70, 71
ServiceDiscoveryBehavior, 73
ServiceException, 146, 147
services

dependencies and, 70–77
sample application showing dependencies, 44–51
software dependencies and, 44
unit testing examples for, 135–144

setup method, 149, 150
signature clash, explicit implementation and, 98
signatures, methods for, 98–101, 219
single responsibility principle (SRP)

abstraction, refactoring for, 177–183
clarity, refactoring for, 172–176
Decorator pattern and, 184
delegating tasks to other methods, 173
described, 169
problem example, 169–172

skyhooks vs. cranes, 38, 39
slicing user stories vertically, 15
SLOC (Source Lines of Code), 39
slope of enlightenment, 327
SM (Scrum master) role, 8, 326
software dependencies. See dependencies
software development, user stories and life cycle, 14
software testers, Scrum process and, 8.  

See also testing; unit tests
source control, 379–383
Source Lines of Code (SLOC), 39
SourceTree, 381
splitting interfaces. See also interface segregation

architectural need, 275–279
client need, 268–275

sprint demos, 33, 357, 358, 375, 376
Sprint Handover Day, 36

sprint retrospectives, 34, 35, 358–363, 376–378
sprint zero adaptive sample, 325–335
sprints

burndown charts, 24, 25
described, 28
goals, 337
meetings, 29–31
planning, 30, 31, 337–339, 365, 366
product owner responsibilities during, 7
Scrum master responsibilities during, 8
Scrum process and, 4
software dependencies, effect on, 43
velocity and, 23, 24

SSADM (Structured Systems Analysis and Design 
Methodology), 9

stable interfaces, 214
Stairway pattern, 65, 66, 85, 178, 284
static classes, 308
static contract verification, 232
static methods, 158
static typing, 115
Stopwatch class, 197–200
storage, persistent, 251, 252
stories. See user stories
story points

as progress metric, 23
claiming, 18
estimating, 330–335
triangulating, 35
user stories and, 14, 15
velocity and, 23

Strategy pattern, 111–113, 204–206
strict mocks, 141
Structured Systems Analysis and Design 

Methodology (SSADM), 9
subclasses

abstract methods and, 211
Liskov contract rules and, 225–231

subscribing to events, 261–263
substitution. See Liskov substitution principle (LSP)
subtypes

Liskov substitution principle and, 218
polymorphism and, 239

supertypes
contracts, 218
polymorphism and, 239

	 supertypes

From the Library of Ida Schander



ptg14200592

400

SUT (system under test), 126–130. See also testing; 
unit tests

swarming fast track items, 18
swimlanes, on Scrum board, 18
switch statements, 204–206
synchronous methods, 201
system requirements for code samples in this  

book, xxii
System.Diagnostics.Contracts namespace, 232
System.Diagnostics.Stopwatch class, 197
System.Diagnostics.Contracts namespace, 233
system under test (SUT), 126–130. See also testing; 

unit tests

T
task management application example, 281–287
tasks

assigning, 14
user stories and, 14

TCP vs. UDP, 74
TDD (test-driven development), 130–135
technical debt

decision to take on, 370, 373
defined, 16
good vs. bad, 19
quadrant, 19–20
refactoring code and, 57

Template Method pattern, 211
TEntity types, 252, 260
test analyst role, Scrum process and, 328
testability

dependencies and, 59
mixins and, 119
unit tests and, 126

test runners, 128, 129
test-driven development (TDD), 130–135
testing. See also unit tests

coverage, 40
with fakes, 137–140
maladaptive code and, 38, 39
with mocks, 140–143
Scrum process and, 8

TestInitialize attribute, 149
themes vs. features, 13
third-party libraries

Log4Net, 181, 182
Re-motion Re-mix, 118, 120–122

third-party software dependencies, 43, 50, 51, 66
three-layer architecture, 86, 87, 90
throwing exceptions, enforcing precondition 

contracts by, 220, 221
tiers vs. layers, 83
tightly coupled classes, 209
tools for adaptive programming, 379–385
transactional consistency, 91
Trey Research sample application, 325–328
trifle, compared to well-designed software, 15
trough of disillusionment, 327
try/catch block, 147, 148
try/finally block, 303
two-layer solutions, 83–86, 90
Typemock, 59
types

Composite pattern and, 187, 188
extending, 118–120
generating new at run time by using Impromptu 

Interface, 116
generating new on the fly with Re-Motion  

Re-mix, 120–122
mapping to interfaces, 292
variance, 218

type-sniffing, mixins and, 122
typing

duck, 113–118
dynamic vs. static, 115
weak, 321

U
UDP vs. TCP, 74
unauthorized interfaces, 274
undirected graphs, 51
unit tests

Arrange, Act, Assert (AAA) pattern, 126
arranging the preconditions, 126, 127
asserting expected behavior in, 128
continuous integration and, 384
coverage, 40
defined, 125
failing, 139
with fakes, 137–140

SUT (system under test)

From the Library of Ida Schander



ptg14200592

	 401

Illegitimate Injection and, 311
maladaptive code and, 38
with mocks, 140–143
parts, 126
performing the testable acts, 127
runners, 128, 129
running, 128–130
samples, 341–344

Unity containers, 292, 293, 296, 297, 308
untestability, maladaptive code and, 38
user interface

defects in, 16
layer, 83, 84

user stories
defined, 3
initial backlog of, creating, 328–335
sample, creating rooms for categorizing 

conversations, 340–348
sample, list of rooms, 349–353
sample, sending messages, 356, 357
sample, viewing messages, 353–355
Scrum board cards and, 13
slicing vertically, 15
tasks and, 14

using block, 299, 302, 303

V
variables

naming, 154
replacing magic numbers with, 153

variance
contravariance, 242–244
covariance, 239–242
defined, 239
invariance, 244, 245
rules, 218

velocity, measuring, 23, 24
vertical scaling

tiers and, 83
vs. horizontal scaling, 373

vertical slices, 15, 370
viewing assemblies that have been loaded into 

memory, 47
view models. See Model-View-ViewModel (MVVM) 

pattern
virtual methods, 210, 211, 284

W
waterfall method, xv, 4–6
Web Services Definition Language (WSDL) file, 70
weight, encapsulation and, 224
whitebox reuse, 110
wikis, Scrum and, 6
Windows Forms, dependency injection and, 315, 316
wrapping exceptions, 146, 149
writing data, segregating from reading data,  

269–274
WSDL (Web Services Definition Language) file, 70

X
XML, declarative registration and, 296, 297

	 XML, declarative registration and

From the Library of Ida Schander



ptg14200592

This page intentionally left blank 

From the Library of Ida Schander



ptg14200592

About the author

GARY MCLEAN HALL lives in Manchester, England, with his wife, 
daughter, and dog. He is an experienced Microsoft .NET Framework 
developer specializing in patterns and practices. In his many years 
of contracting, he has worked on numerous Agile teams that 
have maintained a strict focus on creating code that is adaptive to 
change. He has worked for companies such as Eidos, Xerox, Nephila 
Capital Ltd., and The LateRooms Group. He has also run a software 
consultancy company for several years and lived and worked in 

Bermuda for three years. In each role, he excelled at balancing the delivery of a software 
product and the quality of its source code. 

From the Library of Ida Schander



ptg14200592

This page intentionally left blank 

From the Library of Ida Schander



ptg14200592

 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

Microsoft Press 

 
 

 

Free ebooks 

From technical overviews to drilldowns on special topics, get 
free ebooks from Microsoft Press at: 
 
www.microsoftvirtualacademy.com/ebooks  
  
Download your free ebooks in PDF, EPUB, and/or Mobi for 
Kindle formats.  
  
Look for other great resources at Microsoft Virtual Academy, 
where you can learn new skills and help advance your career 
with free Microsoft training delivered by experts.  

  
 

From the Library of Ida Schander

http://www.microsoftvirtualacademy.com/ebooks


ptg14200592

 Now that 
you’ve  
read the  
book...

Was it useful?
Did it teach you what you wanted to learn?
Was there room for improvement?

Let us know at http://aka.ms/tellpress

Your feedback goes directly to the staff at Microsoft Press,  
and we read every one of your responses. Thanks in advance!

Tell us what you think!

From the Library of Ida Schander

http://aka.ms/tellpress

	Contents
	Introduction
	PART I: AN AGILE FOUNDATION
	Chapter 1 Introduction to Scrum
	Scrum versus waterfall
	Roles and responsibilities
	Artifacts
	The sprint
	Problems with Scrum and Agile
	Conclusion

	Chapter 2 Dependencies and layering
	The definition of dependency
	Managing dependencies
	Layering
	Conclusion

	Chapter 3 Interfaces and design patterns
	What is an interface?
	Adaptive design patterns
	Further versatility
	Conclusion

	Chapter 4 Unit testing and refactoring
	Unit testing
	Refactoring
	Conclusion


	PART II: WRITING SOLID CODE
	Chapter 5 The single responsibility principle
	Problem statement
	SRP and the Decorator pattern
	Using the Strategy pattern instead of switch
	Conclusion

	Chapter 6 The open/closed principle
	Introduction to the open/closed principle
	Extension points
	Protected variation
	Conclusion

	Chapter 7 The Liskov substitution principle
	Introduction to the Liskov substitution principle
	Contracts
	Covariance and contravariance
	Conclusion

	Chapter 8 Interface segregation
	A segregation example
	Client construction
	Splitting interfaces
	Conclusion

	Chapter 9 Dependency injection
	Humble beginnings
	Beyond simple injection
	Conclusion


	PART III: ADAPTIVE SAMPLE
	Chapter 10 Adaptive sample: Introduction
	Trey Research
	Initial backlog

	Chapter 11 Adaptive sample: Sprint 1
	Planning
	“I want to create rooms for categorizing conversations.”
	“I want to view a list of rooms that represent conversations.”
	“I want to view the messages that have been sent to a room.“
	“I want to send plain text messages to other room members.”
	Sprint demo
	Sprint retrospective

	Chapter 12 Adaptive sample: Sprint 2
	Planning
	“I want to send markdown that will be correctly formatted.”
	“I want to filter message content so that it is appropriate.”
	“I want to serve hundreds of users concurrently.”
	Sprint demo
	Sprint retrospective


	Appendix A: Adaptive Tools
	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X

	About the author
	Free ebooks
	Tell us what you think!

