
Alex Holmes

SECOND EDITION

M A N N I N G

IN PRACTICE

INCLUDES 104 TECHNIQUES

Praise for the First Edition of
Hadoop in Practice

A new book from Manning, Hadoop in Practice, is definitely the most modern book
on the topic. Important subjects, like what commercial variants such as MapR offer,
and the many different releases and APIs get uniquely good coverage in this book.

—Ted Dunning, Chief Application Architect, MapR Technologies

Comprehensive coverage of advanced Hadoop usage, including high-quality code
samples.

—Chris Nauroth, Senior Staff Software Engineer
The Walt Disney Company

A very pragmatic and broad overview of Hadoop and the Hadoop tools ecosystem,
with a wide set of interesting topics that tickle the creative brain.

—Mark Kemna, Chief Technology Officer, Brilig

A practical introduction to the Hadoop ecosystem.
—Philipp K. Janert, Principal Value, LLC

This book is the horizontal roof that each of the pillars of individual Hadoop
technology books hold. It expertly ties together all the Hadoop ecosystem technologies.

—Ayon Sinha, Big Data Architect, Britely

I would take this book on my path to the future.
—Alexey Gayduk, Senior Software Engineer, Grid Dynamics

A high-quality and well-written book that is packed with useful examples. The breadth
and detail of the material is by far superior to any other Hadoop reference guide. It is
perfect for anyone who likes to learn new tools/technologies while following pragmatic,
real-world examples.

—Amazon reviewer

Hadoop in Practice
Second Edition

ALEX HOLMES

M A N N I N G
Shelter Island

For online information and ordering of this and other Manning books, please visit
www.manning.com. The publisher offers discounts on this book when ordered in quantity.
For more information, please contact

Special Sales Department
Manning Publications Co.
20 Baldwin Road
PO Box 761
Shelter Island, NY 11964
Email: orders@manning.com

©2015 by Manning Publications Co. All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in
any form or by means electronic, mechanical, photocopying, or otherwise, without prior written
permission of the publisher.

Many of the designations used by manufacturers and sellers to distinguish their products are
claimed as trademarks. Where those designations appear in the book, and Manning
Publications was aware of a trademark claim, the designations have been printed in initial caps
or all caps.

Recognizing the importance of preserving what has been written, it is Manning’s policy to have
the books we publish printed on acid-free paper, and we exert our best efforts to that end.
Recognizing also our responsibility to conserve the resources of our planet, Manning books are
printed on paper that is at least 15 percent recycled and processed without the use of elemental
chlorine.

Development editor: Cynthia Kane
Manning Publications Co. Copyeditor: Andy Carroll
20 Baldwin Road Proofreader: Melody Dolab
Shelter Island, NY 11964 Typesetter: Gordan Salinovic

Cover designer: Marija Tudor

ISBN 9781617292224
Printed in the United States of America
1 2 3 4 5 6 7 8 9 10 – EBM – 19 18 17 16 15 14

www.manning.com

v

brief contents
PART 1 BACKGROUND AND FUNDAMENTALS1

1 ■ Hadoop in a heartbeat 3

2 ■ Introduction to YARN 22

PART 2 DATA LOGISTICS ...59

3 ■ Data serialization—working with text and beyond 61

4 ■ Organizing and optimizing data in HDFS 139

5 ■ Moving data into and out of Hadoop 174

PART 3 BIG DATA PATTERNS ..253

6 ■ Applying MapReduce patterns to big data 255

7 ■ Utilizing data structures and algorithms at scale 302

8 ■ Tuning, debugging, and testing 337

PART 4 BEYOND MAPREDUCE ...385

9 ■ SQL on Hadoop 387

10 ■ Writing a YARN application 425

vii

contents
preface xv
acknowledgments xvii
about this book xviii
about the cover illustration xxiii

PART 1 BACKGROUND AND FUNDAMENTALS..........................1

1 Hadoop in a heartbeat 3
1.1 What is Hadoop? 4

Core Hadoop components 5 ■ The Hadoop ecosystem 10
Hardware requirements 11 ■ Hadoop distributions 12 ■ Who’s
using Hadoop? 14 ■ Hadoop limitations 15

1.2 Getting your hands dirty with MapReduce 17

1.3 Summary 21

2 Introduction to YARN 22
2.1 YARN overview 23

Why YARN? 24 ■ YARN concepts and components 26
YARN configuration 29

TECHNIQUE 1 Determining the configuration of your cluster 29
Interacting with YARN 31

CONTENTSviii

TECHNIQUE 2 Running a command on your YARN cluster 31
TECHNIQUE 3 Accessing container logs 32
TECHNIQUE 4 Aggregating container log files 36

YARN challenges 39

2.2 YARN and MapReduce 40
Dissecting a YARN MapReduce application 40 ■ Configuration 42
Backward compatibility 46

TECHNIQUE 5 Writing code that works on Hadoop versions 1
and 2 47

Running a job 48

TECHNIQUE 6 Using the command line to run a job 49
Monitoring running jobs and viewing archived jobs 49
Uber jobs 50

TECHNIQUE 7 Running small MapReduce jobs 50

2.3 YARN applications 52
NoSQL 53 ■ Interactive SQL 54 ■ Graph processing 54
Real-time data processing 55 ■ Bulk synchronous parallel 55
MPI 56 ■ In-memory 56 ■ DAG execution 56

2.4 Summary 57

PART 2 DATA LOGISTICS...59

3 Data serialization—working with text and beyond 61
3.1 Understanding inputs and outputs in MapReduce 62

Data input 63 ■ Data output 66

3.2 Processing common serialization formats 68
XML 69

TECHNIQUE 8 MapReduce and XML 69
JSON 72

TECHNIQUE 9 MapReduce and JSON 73

3.3 Big data serialization formats 76
Comparing SequenceFile, Protocol Buffers, Thrift, and Avro 76
SequenceFile 78

TECHNIQUE 10 Working with SequenceFiles 80
TECHNIQUE 11 Using SequenceFiles to encode Protocol

Buffers 87
Protocol Buffers 91 ■ Thrift 92 ■ Avro 93

TECHNIQUE 12 Avro’s schema and code generation 93

CONTENTS ix

TECHNIQUE 13 Selecting the appropriate way to use Avro in
MapReduce 98

TECHNIQUE 14 Mixing Avro and non-Avro data in MapReduce 99
TECHNIQUE 15 Using Avro records in MapReduce 102
TECHNIQUE 16 Using Avro key/value pairs in MapReduce 104
TECHNIQUE 17 Controlling how sorting works in

MapReduce 108
TECHNIQUE 18 Avro and Hive 108
TECHNIQUE 19 Avro and Pig 111

3.4 Columnar storage 113
Understanding object models and storage formats 115 ■ Parquet and the
Hadoop ecosystem 116 ■ Parquet block and page sizes 117

TECHNIQUE 20 Reading Parquet files via the command
line 117

TECHNIQUE 21 Reading and writing Avro data in Parquet with
Java 119

TECHNIQUE 22 Parquet and MapReduce 120
TECHNIQUE 23 Parquet and Hive/Impala 125
TECHNIQUE 24 Pushdown predicates and projection with

Parquet 126
Parquet limitations 128

3.5 Custom file formats 129
Input and output formats 129

TECHNIQUE 25 Writing input and output formats for CSV 129
The importance of output committing 137

3.6 Chapter summary 138

4 Organizing and optimizing data in HDFS 139
4.1 Data organization 140

Directory and file layout 140 ■ Data tiers 141 ■ Partitioning 142

TECHNIQUE 26 Using MultipleOutputs to partition your
data 142

TECHNIQUE 27 Using a custom MapReduce partitioner 145
Compacting 148

TECHNIQUE 28 Using filecrush to compact data 149
TECHNIQUE 29 Using Avro to store multiple small binary

files 151
Atomic data movement 157

4.2 Efficient storage with compression 158
TECHNIQUE 30 Picking the right compression codec for your

data 159

CONTENTSx

TECHNIQUE 31 Compression with HDFS, MapReduce, Pig,
and Hive 163

TECHNIQUE 32 Splittable LZOP with MapReduce, Hive, and
Pig 168

4.3 Chapter summary 173

5 Moving data into and out of Hadoop 174
5.1 Key elements of data movement 175

5.2 Moving data into Hadoop 177
Roll your own ingest 177

TECHNIQUE 33 Using the CLI to load files 178
TECHNIQUE 34 Using REST to load files 180
TECHNIQUE 35 Accessing HDFS from behind a firewall 183
TECHNIQUE 36 Mounting Hadoop with NFS 186
TECHNIQUE 37 Using DistCp to copy data within and between

clusters 188
TECHNIQUE 38 Using Java to load files 194

Continuous movement of log and binary files into HDFS 196

TECHNIQUE 39 Pushing system log messages into HDFS with
Flume 197

TECHNIQUE 40 An automated mechanism to copy files into
HDFS 204

TECHNIQUE 41 Scheduling regular ingress activities with
Oozie 209

Databases 214

TECHNIQUE 42 Using Sqoop to import data from MySQL 215
HBase 227

TECHNIQUE 43 HBase ingress into HDFS 227
TECHNIQUE 44 MapReduce with HBase as a data source 230

Importing data from Kafka 232

5.3 Moving data into Hadoop 234
TECHNIQUE 45 Using Camus to copy Avro data from Kafka

into HDFS 234

5.4 Moving data out of Hadoop 241
Roll your own egress 241

TECHNIQUE 46 Using the CLI to extract files 241
TECHNIQUE 47 Using REST to extract files 242
TECHNIQUE 48 Reading from HDFS when behind a

firewall 243
TECHNIQUE 49 Mounting Hadoop with NFS 243
TECHNIQUE 50 Using DistCp to copy data out of Hadoop 244

CONTENTS xi

TECHNIQUE 51 Using Java to extract files 245
Automated file egress 246

TECHNIQUE 52 An automated mechanism to export files from
HDFS 246

Databases 247

TECHNIQUE 53 Using Sqoop to export data to MySQL 247
NoSQL 251

5.5 Chapter summary 252

PART 3 BIG DATA PATTERNS..253

6 Applying MapReduce patterns to big data 255
6.1 Joining 256

TECHNIQUE 54 Picking the best join strategy for your data 257
TECHNIQUE 55 Filters, projections, and pushdowns 259

Map-side joins 260

TECHNIQUE 56 Joining data where one dataset can fit into
memory 261

TECHNIQUE 57 Performing a semi-join on large datasets 264
TECHNIQUE 58 Joining on presorted and prepartitioned

data 269
Reduce-side joins 271

TECHNIQUE 59 A basic repartition join 271
TECHNIQUE 60 Optimizing the repartition join 275
TECHNIQUE 61 Using Bloom filters to cut down on shuffled

data 279
Data skew in reduce-side joins 283

TECHNIQUE 62 Joining large datasets with high join-key
cardinality 284

TECHNIQUE 63 Handling skews generated by the hash
partitioner 286

6.2 Sorting 287
Secondary sort 288

TECHNIQUE 64 Implementing a secondary sort 289
Total order sorting 294

TECHNIQUE 65 Sorting keys across multiple reducers 294

6.3 Sampling 297
TECHNIQUE 66 Writing a reservoir-sampling InputFormat 297

6.4 Chapter summary 301

CONTENTSxii

7 Utilizing data structures and algorithms at scale 302
7.1 Modeling data and solving problems with graphs 303

Modeling graphs 304 ■ Shortest-path algorithm 304

TECHNIQUE 67 Find the shortest distance between two
users 305

Friends-of-friends algorithm 313

TECHNIQUE 68 Calculating FoFs 313
Using Giraph to calculate PageRank over a web graph 319

7.2 Modeling data and solving problems with graphs 321
TECHNIQUE 69 Calculate PageRank over a web graph 322

7.3 Bloom filters 326
TECHNIQUE 70 Parallelized Bloom filter creation in

MapReduce 328

7.4 HyperLogLog 333
A brief introduction to HyperLogLog 333

TECHNIQUE 71 Using HyperLogLog to calculate unique
counts 335

7.5 Chapter summary 336

8 Tuning, debugging, and testing 337
8.1 Measure, measure, measure 338

8.2 Tuning MapReduce 339
Common inefficiencies in MapReduce jobs 339

TECHNIQUE 72 Viewing job statistics 340
Map optimizations 343

TECHNIQUE 73 Data locality 343
TECHNIQUE 74 Dealing with a large number of input

splits 344
TECHNIQUE 75 Generating input splits in the cluster with

YARN 346
Shuffle optimizations 347

TECHNIQUE 76 Using the combiner 347
TECHNIQUE 77 Blazingly fast sorting with binary

comparators 349
TECHNIQUE 78 Tuning the shuffle internals 353

Reducer optimizations 356

TECHNIQUE 79 Too few or too many reducers 356
General tuning tips 357

CONTENTS xiii

TECHNIQUE 80 Using stack dumps to discover unoptimized
user code 358

TECHNIQUE 81 Profiling your map and reduce tasks 360

8.3 Debugging 362
Accessing container log output 362

TECHNIQUE 82 Examining task logs 362
Accessing container start scripts 363

TECHNIQUE 83 Figuring out the container startup
command 363

Debugging OutOfMemory errors 365

TECHNIQUE 84 Force container JVMs to generate a heap
dump 365

MapReduce coding guidelines for effective debugging 365

TECHNIQUE 85 Augmenting MapReduce code for better de
bugging 365

8.4 Testing MapReduce jobs 368
Essential ingredients for effective unit testing 368 ■ MRUnit 370

TECHNIQUE 86 Using MRUnit to unit-test MapReduce 371
LocalJobRunner 378

TECHNIQUE 87 Heavyweight job testing with the
LocalJobRunner 378

MiniMRYarnCluster 381

TECHNIQUE 88 Using MiniMRYarnCluster to test your jobs 381
Integration and QA testing 382

8.5 Chapter summary 383

PART 4 BEYOND MAPREDUCE385

9 SQL on Hadoop 387
9.1 Hive 388

Hive basics 388 ■ Reading and writing data 391

TECHNIQUE 89 Working with text files 391
TECHNIQUE 90 Exporting data to local disk 395

User-defined functions in Hive 396

TECHNIQUE 91 Writing UDFs 396
Hive performance 399

TECHNIQUE 92 Partitioning 399
TECHNIQUE 93 Tuning Hive joins 404

CONTENTSxiv

9.2 Impala 409
Impala vs. Hive 410 ■ Impala basics 410

TECHNIQUE 94 Working with text 410
TECHNIQUE 95 Working with Parquet 412
TECHNIQUE 96 Refreshing metadata 413

User-defined functions in Impala 414

TECHNIQUE 97 Executing Hive UDFs in Impala 415

9.3 Spark SQL 416
Spark 101 417 ■ Spark on Hadoop 419 ■ SQL with Spark 419

TECHNIQUE 98 Calculating stock averages with Spark SQL 420
TECHNIQUE 99 Language-integrated queries 422
TECHNIQUE 100 Hive and Spark SQL 423

9.4 Chapter summary 423

10 Writing a YARN application 425
10.1 Fundamentals of building a YARN application 426

Actors 426 ■ The mechanics of a YARN application 427

10.2 Building a YARN application to collect cluster statistics 429
TECHNIQUE 101 A bare-bones YARN client 429
TECHNIQUE 102 A bare-bones ApplicationMaster 434
TECHNIQUE 103 Running the application and accessing logs 438
TECHNIQUE 104 Debugging using an unmanaged application

master 440

10.3 Additional YARN application capabilities 443
RPC between components 443 ■ Service discovery 444
Checkpointing application progress 444 ■ Avoiding split-brain 444
Long-running applications 444 ■ Security 445

10.4 YARN programming abstractions 445
Twill 446 ■ Spring 448 ■ REEF 450 ■ Picking a YARN
API abstraction 450

10.5 Summary 450

appendix Installing Hadoop and friends 451
index 475

bonus chapters available for download from www.manning.com/holmes2

chapter 11 Integrating R and Hadoop for statistics and more
chapter 12 Predictive analytics with Mahout

http://www.manning.com/holmes2/

xv

preface
I first encountered Hadoop in the fall of 2008 when I was working on an internet
crawl-and-analysis project at Verisign. We were making discoveries similar to those that
Doug Cutting and others at Nutch had made several years earlier about how to effi-
ciently store and manage terabytes of crawl-and-analyzed data. At the time, we were
getting by with our homegrown distributed system, but the influx of a new data stream
and requirements to join that stream with our crawl data couldn’t be supported by our
existing system in the required timeline.

 After some research, we came across the Hadoop project, which seemed to be a
perfect fit for our needs—it supported storing large volumes of data and provided a
compute mechanism to combine them. Within a few months, we built and deployed a
MapReduce application encompassing a number of MapReduce jobs, woven together
with our own MapReduce workflow management system, onto a small cluster of 18
nodes. It was a revelation to observe our MapReduce jobs crunching through our data
in minutes. Of course, what we weren’t expecting was the amount of time that we
would spend debugging and performance-tuning our MapReduce jobs. Not to men-
tion the new roles we took on as production administrators—the biggest surprise in
this role was the number of disk failures we encountered during those first few
months supporting production.

 As our experience and comfort level with Hadoop grew, we continued to build
more of our functionality using Hadoop to help with our scaling challenges. We also
started to evangelize the use of Hadoop within our organization and helped kick-start
other projects that were also facing big data challenges.

PREFACExvi

 The greatest challenge we faced when working with Hadoop, and specifically
MapReduce, was relearning how to solve problems with it. MapReduce is its own fla-
vor of parallel programming, and it’s quite different from the in-JVM programming
that we were accustomed to. The first big hurdle was training our brains to think
MapReduce, a topic which the book Hadoop in Action by Chuck Lam (Manning Publi-
cations, 2010) covers well.

 After one is used to thinking in MapReduce, the next challenge is typically related
to the logistics of working with Hadoop, such as how to move data in and out of HDFS
and effective and efficient ways to work with data in Hadoop. These areas of Hadoop
haven’t received much coverage, and that’s what attracted me to the potential of this
book—the chance to go beyond the fundamental word-count Hadoop uses and cover-
ing some of the trickier and dirtier aspects of Hadoop.

 As I’m sure many authors have experienced, I went into this project confidently
believing that writing this book was just a matter of transferring my experiences onto
paper. Boy, did I get a reality check, but not altogether an unpleasant one, because
writing introduced me to new approaches and tools that ultimately helped better my
own Hadoop abilities. I hope that you get as much out of reading this book as I did
writing it.

xvii

acknowledgments
First and foremost, I want to thank Michael Noll, who pushed me to write this book.
He provided invaluable insights into how to structure the content of the book,
reviewed my early chapter drafts, and helped mold the book. I can’t express how
much his support and encouragement has helped me throughout the process.

 I’m also indebted to Cynthia Kane, my development editor at Manning, who
coached me through writing this book and provided invaluable feedback on my work.
Among the many notable “aha!” moments I had when working with Cynthia, the big-
gest one was when she steered me into using visual aids to help explain some of the
complex concepts in this book.

 All of the Manning staff were a pleasure to work with, and a special shout out goes
to Troy Mott, Nick Chase, Tara Walsh, Bob Herbstman, Michael Stephens, Marjan
Bace, Maureen Spencer, and Kevin Sullivan.

 I also want to say a big thank you to all the reviewers of this book: Adam Kawa,
Andrea Tarocchi, Anna Lahoud, Arthur Zubarev, Edward Ribeiro, Fillipe Massuda,
Gerd Koenig, Jeet Marwah, Leon Portman, Mohamed Diouf, Muthuswamy Manigan-
dan, Rodrigo Abreu, and Serega Sheypack. Jonathan Siedman, the primary technical
reviewer, did a great job of reviewing the entire book.

 Many thanks to Josh Wills, the creator of Crunch, who kindly looked over the chap-
ter that covered that topic. And more thanks go to Josh Patterson, who reviewed my
Mahout chapter.

 Finally, a special thanks to my wife, Michal, who had to put up with a cranky husband
working crazy hours. She was a source of encouragement throughout the entire process.

xviii

about this book
Doug Cutting, the creator of Hadoop, likes to call Hadoop the kernel for big data,
and I would tend to agree. With its distributed storage and compute capabilities,
Hadoop is fundamentally an enabling technology for working with huge datasets.
Hadoop provides a bridge between structured (RDBMS) and unstructured (log files,
XML, text) data and allows these datasets to be easily joined together. This has evolved
from traditional use cases, such as combining OLTP and log files, to more sophisti-
cated uses, such as using Hadoop for data warehousing (exemplified by Facebook)
and the field of data science, which studies and makes new discoveries about data.

 This book collects a number of intermediary and advanced Hadoop examples and
presents them in a problem/solution format. Each technique addresses a specific task
you’ll face, like using Flume to move log files into Hadoop or using Mahout for pre-
dictive analysis. Each problem is explored step by step, and as you work through them,
you’ll find yourself growing more comfortable with Hadoop and at home in the world
of big data.

 This hands-on book targets users who have some practical experience with
Hadoop and understand the basic concepts of MapReduce and HDFS. Manning’s
Hadoop in Action by Chuck Lam contains the necessary prerequisites to understand
and apply the techniques covered in this book.

 Many techniques in this book are Java-based, which means readers are expected to
possess an intermediate-level knowledge of Java. An excellent text for all levels of Java
users is Effective Java, Second Edition by Joshua Bloch (Addison-Wesley, 2008).

ABOUT THIS BOOK xix

Roadmap

This book has 10 chapters divided into four parts.
 Part 1 contains two chapters that form the introduction to this book. They review

Hadoop basics and look at how to get Hadoop up and running on a single host. YARN,
which is new in Hadoop version 2, is also examined, and some operational tips are
provided for performing basic functions in YARN.

 Part 2, “Data logistics,” consists of three chapters that cover the techniques and
tools required to deal with data fundamentals, how to work with various data formats,
how to organize and optimize your data, and getting data into and out of Hadoop.
Picking the right format for your data and determining how to organize data in HDFS
are the first items you’ll need to address when working with Hadoop, and they’re cov-
ered in chapters 3 and 4 respectively. Getting data into Hadoop is one of the bigger
hurdles commonly encountered when working with Hadoop, and chapter 5 is dedi-
cated to looking at a variety of tools that work with common enterprise data sources.

 Part 3 is called “Big data patterns,” and it looks at techniques to help you work effec-
tively with large volumes of data. Chapter 6 covers how to represent data such as graphs
for use with MapReduce, and it looks at several algorithms that operate on graph data.
Chapter 7 looks at more advanced data structures and algorithms such as graph pro-
cessing and using HyperLogLog for working with large datasets. Chapter 8 looks at how
to tune, debug, and test MapReduce performance issues, and it also covers a number
of techniques to help make your jobs run faster.

 Part 4 is titled “Beyond MapReduce,” and it examines a number of technologies
that make it easier to work with Hadoop. Chapter 9 covers the most prevalent and
promising SQL technologies for data processing on Hadoop, and Hive, Impala, and
Spark SQL are examined. The final chapter looks at how to write your own YARN appli-
cation, and it provides some insights into some of the more advanced features you can
use in your applications.

 The appendix covers instructions for the source code that accompanies this book,
as well as installation instructions for Hadoop and all the other related technologies
covered in the book.

 Finally, there are two bonus chapters available from the publisher’s website at
www.manning.com/HadoopinPracticeSecondEdition: chapter 11 “Integrating R and
Hadoop for statistics and more” and chapter 12 “Predictive analytics with Mahout.”

What’s new in the second edition?

This second edition covers Hadoop 2, which at the time of writing is the current
production-ready version of Hadoop. The first edition of the book covered Hadoop 0.22
(Hadoop 1 wasn’t yet out), and Hadoop 2 has turned the world upside-down and
opened up the Hadoop platform to processing paradigms beyond MapReduce. YARN,
the new scheduler and application manager in Hadoop 2, is complex and new to the
community, which prompted me to dedicate a new chapter 2 to covering YARN basics
and to discussing how MapReduce now functions as a YARN application.

www.manning.com/HadoopinPracticeSecondEdition

ABOUT THIS BOOKxx

 Parquet has also recently emerged as a new way to store data in HDFS—its columnar
format can yield both space and time efficiencies in your data pipelines, and it’s quickly
becoming the ubiquitous way to store data. Chapter 4 includes extensive coverage of
Parquet, which includes how Parquet supports sophisticated object models such as Avro
and how various Hadoop tools can use Parquet.

 How data is being ingested into Hadoop has also evolved since the first edition,
and Kafka has emerged as the new data pipeline, which serves as the transport tier
between your data producers and data consumers, where a consumer would be a sys-
tem such as Camus that can pull data from Kafka into HDFS. Chapter 5, which covers
moving data into and out of Hadoop, now includes coverage of Kafka and Camus.

 There are many new technologies that YARN now can support side by side in the
same cluster, and some of the more exciting and promising technologies are covered
in the new part 4, titled “Beyond MapReduce,” where I cover some compelling new
SQL technologies such as Impala and Spark SQL. The last chapter, also new for this
edition, looks at how you can write your own YARN application, and it’s packed with
information about important features to support your YARN application.

Getting help

You’ll no doubt have many questions when working with Hadoop. Luckily, between
the wikis and a vibrant user community, your needs should be well covered:

■ The main wiki is located at http://wiki.apache.org/hadoop/, and it contains
useful presentations, setup instructions, and troubleshooting instructions.

■ The Hadoop Common, HDFS, and MapReduce mailing lists can all be found at
http://hadoop.apache.org/mailing_lists.html.

■ “Search Hadoop” is a useful website that indexes all of Hadoop and its ecosys-
tem projects, and it provides full-text search capabilities: http://search-
hadoop.com/.

■ You’ll find many useful blogs you should subscribe to in order to keep on top of
current events in Hadoop. This preface includes a selection of my favorites:

o Cloudera and Hortonworks are both prolific writers of practical applications
on Hadoop—reading their blogs is always educational: http://www.cloudera
.com/blog/ and http://hortonworks.com/blog/.

o Michael Noll is one of the first bloggers to provide detailed setup instructions
for Hadoop, and he continues to write about real-life challenges:
www.michael-noll.com/.

o There’s a plethora of active Hadoop Twitter users that you may want to follow,
including Arun Murthy (@acmurthy), Tom White (@tom_e_white), Eric Sam-
mer (@esammer), Doug Cutting (@cutting), and Todd Lipcon (@tlipcon).
The Hadoop project tweets on @hadoop.

http://search-hadoop.com/
http://search-hadoop.com/
http://www.cloudera.com/blog/
http://www.cloudera.com/blog/
www.michael-noll.com/

ABOUT THIS BOOK xxi

Code conventions and downloads

All source code in listings or in text is presented in a fixed-width font like this to
separate it from ordinary text. Code annotations accompany many of the listings,
highlighting important concepts.

 All of the text and examples in this book work with Hadoop 2.x, and most of the
MapReduce code is written using the newer org.apache.hadoop.mapreduce Map-
Reduce APIs. The few examples that use the older org.apache.hadoop.mapred pack-
age are usually the result of working with a third-party library or a utility that only
works with the old API.

 All of the code used in this book is available on GitHub at https://github.com/
alexholmes/hiped2 and also from the publisher’s website at www.manning.com/
HadoopinPracticeSecondEdition. The first section in the appendix shows you how to
download, install, and get up and running with the code.

Third-party libraries

I use a number of third-party libraries for convenience purposes. They’re included in
the Maven-built JAR, so there’s no extra work required to work with these libraries.

Datasets

Throughout this book, you’ll work with three datasets to provide some variety in the
examples. All the datasets are small to make them easy to work with. Copies of the
exact data used are available in the GitHub repository in the https://github.com/
alexholmes/hiped2/tree/master/test-data directory. I also sometimes use data that’s
specific to a chapter, and it’s available within chapter-specific subdirectories under the
same GitHub location.

NASDAQ financial stocks

I downloaded the NASDAQ daily exchange data from InfoChimps (www.infochimps
.com). I filtered this huge dataset down to just five stocks and their start-of-year values
from 2000 through 2009. The data used for this book is available on GitHub at https://
github.com/alexholmes/hiped2/blob/master/test-data/stocks.txt.

 The data is in CSV form, and the fields are in the following order:

Symbol,Date,Open,High,Low,Close,Volume,Adj Close

Apache log data

I created a sample log file in Apache Common Log Format1 with some fake Class E
IP addresses and some dummy resources and response codes. The file is available
on GitHub at https://github.com/alexholmes/hiped2/blob/master/test-data/
apachelog.txt.

1 See http://httpd.apache.org/docs/1.3/logs.html#common.

https://github.com/alexholmes/hiped2
https://github.com/alexholmes/hiped2
https://github.com/alexholmes/hiped2/blob/master/test-data/apachelog.txt
https://github.com/alexholmes/hiped2/blob/master/test-data/apachelog.txt
https://github.com/alexholmes/hiped2/tree/master/test-data
https://github.com/alexholmes/hiped2/tree/master/test-data
https://github.com/alexholmes/hiped2/blob/master/test-data/stocks.txt
https://github.com/alexholmes/hiped2/blob/master/test-data/stocks.txt
www.manning.com/HadoopinPracticeSecondEdition
www.manning.com/HadoopinPracticeSecondEdition
www.infochimps.com
www.infochimps.com

ABOUT THIS BOOKxxii

Names

Names were retrieved from the U.S. government census at www.census.gov/genealogy/
www/data/1990surnames/dist.all.last, and this data is available at https://
github.com/alexholmes/hiped2/blob/master/test-data/names.txt.

Author Online

Purchase of Hadoop in Practice, Second Edition includes free access to a private web
forum run by Manning Publications where you can make comments about the book,
ask technical questions, and receive help from the authors and from other users. To
access the forum and subscribe to it, point your web browser to www.manning.com/
HadoopinPractice, SecondEdition. This page provides information on how to get on
the forum once you are registered, what kind of help is available, and the rules of con-
duct on the forum. It also provides links to the source code for the examples in the
book, errata, and other downloads.

 Manning’s commitment to our readers is to provide a venue where a meaningful dia-
log between individual readers and between readers and the author can take place. It
is not a commitment to any specific amount of participation on the part of the author,
whose contribution to the Author Online forum remains voluntary (and unpaid). We
suggest you try asking the author challenging questions lest his interest strays!

 The Author Online forum and the archives of previous discussions will be accessi-
ble from the publisher’s website as long as the book is in print.

http://www.manning.com/HadoopinPractice
http://www.manning.com/HadoopinPractice
https://github.com/alexholmes/hiped2/blob/master/test-data/names.txt
https://github.com/alexholmes/hiped2/blob/master/test-data/names.txt
www.census.gov/genealogy/www/data/1990surnames/dist.all.last
www.census.gov/genealogy/www/data/1990surnames/dist.all.last

xxiii

about the cover illustration
The figure on the cover of Hadoop in Practice, Second Edition is captioned “Momak from
Kistanja, Dalmatia.” The illustration is taken from a reproduction of an album of tra-
ditional Croatian costumes from the mid-nineteenth century by Nikola Arsenovic,
published by the Ethnographic Museum in Split, Croatia, in 2003. The illustrations
were obtained from a helpful librarian at the Ethnographic Museum in Split, itself sit-
uated in the Roman core of the medieval center of the town: the ruins of Emperor
Diocletian’s retirement palace from around AD 304. The book includes finely colored
illustrations of figures from different regions of Croatia, accompanied by descriptions
of the costumes and of everyday life.

 Kistanja is a small town located in Bukovica, a geographical region in Croatia. It is
situated in northern Dalmatia, an area rich in Roman and Venetian history. The word
“momak” in Croatian means a bachelor, beau, or suitor—a single young man who is of
courting age—and the young man on the cover, looking dapper in a crisp, white linen
shirt and a colorful, embroidered vest, is clearly dressed in his finest clothes, which
would be worn to church and for festive occasions—or to go calling on a young lady.

 Dress codes and lifestyles have changed over the last 200 years, and the diversity by
region, so rich at the time, has faded away. It is now hard to tell apart the inhabitants
of different continents, let alone of different hamlets or towns separated by only a few
miles. Perhaps we have traded cultural diversity for a more varied personal life—
certainly for a more varied and fast-paced technological life.

ABOUT THE COVER ILLUSTRATIONxxiv

 Manning celebrates the inventiveness and initiative of the computer business with
book covers based on the rich diversity of regional life of two centuries ago, brought
back to life by illustrations from old books and collections like this one.

Part 1

Background
 and fundamentals

Part 1 of this book consists of chapters 1 and 2, which cover the important
Hadoop fundamentals.

 Chapter 1 covers Hadoop’s components and its ecosystem and provides
instructions for installing a pseudo-distributed Hadoop setup on a single host,
along with a system that will enable you to run all of the examples in the book.
Chapter 1 also covers the basics of Hadoop configuration, and walks you
through how to write and run a MapReduce job on your new setup.

 Chapter 2 introduces YARN, which is a new and exciting development in
Hadoop version 2, transitioning Hadoop from being a MapReduce-only system
to one that can support many execution engines. Given that YARN is new to the
community, the goal of this chapter is to look at some basics such as its compo-
nents, how configuration works, and also how MapReduce works as a YARN
application. Chapter 2 also provides an overview of some applications that YARN
has enabled to execute on Hadoop, such as Spark and Storm.

3

Hadoop in a heartbeat

We live in the age of big data, where the data volumes we need to work with on a
day-to-day basis have outgrown the storage and processing capabilities of a single
host. Big data brings with it two fundamental challenges: how to store and work
with voluminous data sizes, and more important, how to understand data and turn
it into a competitive advantage.

 Hadoop fills a gap in the market by effectively storing and providing computa-
tional capabilities for substantial amounts of data. It’s a distributed system made up
of a distributed filesystem, and it offers a way to parallelize and execute programs
on a cluster of machines (see figure 1.1). You’ve most likely come across Hadoop
because it’s been adopted by technology giants like Yahoo!, Facebook, and Twitter
to address their big data needs, and it’s making inroads across all industrial sectors.

 Because you’ve come to this book to get some practical experience with
Hadoop and Java,1 I’ll start with a brief overview and then show you how to install

This chapter covers
■ Examining how the core Hadoop system works
■ Understanding the Hadoop ecosystem
■ Running a MapReduce job

1 To benefit from this book, you should have some practical experience with Hadoop and understand the
basic concepts of MapReduce and HDFS (covered in Manning’s Hadoop in Action by Chuck Lam, 2010).
Further, you should have an intermediate-level knowledge of Java—Effective Java, 2nd Edition by Joshua
Bloch (Addison-Wesley, 2008) is an excellent resource on this topic.

4 CHAPTER 1 Hadoop in a heartbeat

Hadoop and run a MapReduce job. By the end of this chapter, you’ll have had a basic
refresher on the nuts and bolts of Hadoop, which will allow you to move on to the
more challenging aspects of working with it.

 Let’s get started with a detailed overview.

1.1 What is Hadoop?
Hadoop is a platform that provides both distributed storage and computational capa-
bilities. Hadoop was first conceived to fix a scalability issue that existed in Nutch,2 an
open source crawler and search engine. At the time, Google had published papers
that described its novel distributed filesystem, the Google File System (GFS), and
MapReduce, a computational framework for parallel processing. The successful
implementation of these papers’ concepts in Nutch resulted in it being split into two
separate projects, the second of which became Hadoop, a first-class Apache project.

 In this section we’ll look at Hadoop from an architectural perspective, examine
how industry uses it, and consider some of its weaknesses. Once we’ve covered this
background, we’ll look at how to install Hadoop and run a MapReduce job.

 Hadoop proper, as shown in figure 1.2, is a distributed master-slave architecture3

that consists of the following primary components:

2 The Nutch project, and by extension Hadoop, was led by Doug Cutting and Mike Cafarella.
3 A model of communication where one process, called the master, has control over one or more other pro-

cesses, called slaves.

Server cloud

Distributed computation

Distributed storage

Hadoop runs on
commodity hardware.

The computation tier is a
general-purpose scheduler and

a distributed processing
framework called MapReduce.

Storage is provided via
a distributed filesystem

called HDFS.

Figure 1.1 The Hadoop environment is a distributed system that runs on commodity hardware.

5What is Hadoop?

■ Hadoop Distributed File System (HDFS) for data storage.
■ Yet Another Resource Negotiator (YARN), introduced in Hadoop 2, a general-

purpose scheduler and resource manager. Any YARN application can run on a
Hadoop cluster.

■ MapReduce, a batch-based computational engine. In Hadoop 2, MapReduce is
implemented as a YARN application.

Traits intrinsic to Hadoop are data partitioning and parallel computation of large
datasets. Its storage and computational capabilities scale with the addition of hosts to
a Hadoop cluster; clusters with hundreds of hosts can easily reach data volumes in
the petabytes.

 In the first step in this section, we’ll examine the HDFS, YARN, and MapReduce
architectures.

1.1.1 Core Hadoop components

To understand Hadoop’s architecture we’ll start by looking at the basics of HDFS.

HDFS

HDFS is the storage component of Hadoop. It’s a distributed filesystem that’s modeled
after the Google File System (GFS) paper.4 HDFS is optimized for high throughput and
works best when reading and writing large files (gigabytes and larger). To support this
throughput, HDFS uses unusually large (for a filesystem) block sizes and data locality
optimizations to reduce network input/output (I/O).

 Scalability and availability are also key traits of HDFS, achieved in part due to data
replication and fault tolerance. HDFS replicates files for a configured number of times,
is tolerant of both software and hardware failure, and automatically re-replicates data
blocks on nodes that have failed.

4 See “The Google File System‚” http://research.google.com/archive/gfs.html.

The HDFS master is responsible
for partitioning the storage across
the slave nodes and keeping track

of where data is located.

The MapReduce master is
responsible for organizing where
computational work should be
scheduled on the slave nodes.

The YARN master performs
the actual scheduling of work

for YARN applications.

YARN slave MapReduce slave HDFS slave

YARN master MapReduce master HDFS master

YARN slave MapReduce slave HDFS slave

YARN slave MapReduce slave HDFS slave

Figure 1.2 High-level Hadoop 2 master-slave architecture

6 CHAPTER 1 Hadoop in a heartbeat

Figure 1.3 shows a logical representation of the components in HDFS: the NameNode
and the DataNode. It also shows an application that’s using the Hadoop filesystem
library to access HDFS.

 Hadoop 2 introduced two significant new features for HDFS—Federation and
High Availability (HA):

■ Federation allows HDFS metadata to be shared across multiple NameNode
hosts, which aides with HDFS scalability and also provides data isolation, allow-
ing different applications or teams to run their own NameNodes without fear of
impacting other NameNodes on the same cluster.

■ High Availability in HDFS removes the single point of failure that existed in
Hadoop 1, wherein a NameNode disaster would result in a cluster outage. HDFS
HA also offers the ability for failover (the process by which a standby Name-
Node takes over work from a failed primary NameNode) to be automated.

The HDFS NameNode keeps in memory the
metadata about the filesystem such as which
DataNodes manage the blocks for each file.

Files are made up of blocks, and each file
can be replicated multiple times, meaning
there are many identical copies of each

block for the file (by default, 3).

DataNodes communicate
with each other for
pipelining file reads

and writes.

Client
application

Hadoop
filesystem

client

HDFS clients talk to the
NameNode for metadata-related

activities and DataNodes for
reading and writing files.

/tmp/file1.txt Block A

Block B

DataNode 2

DataNode 3

DataNode 1

DataNode 3

NameNode

C

DataNode 1

D

B A

DataNode 2

C

D B

DataNode 3

A

C

Figure 1.3 An HDFS client communicating with the master NameNode and slave DataNodes

7What is Hadoop?

Now that you have a bit of HDFS knowledge, it’s time to look at YARN, Hadoop’s scheduler.

YARN

YARN is Hadoop’s distributed resource scheduler. YARN is new to Hadoop version 2
and was created to address challenges with the Hadoop 1 architecture:

■ Deployments larger than 4,000 nodes encountered scalability issues, and add-
ing additional nodes didn’t yield the expected linear scalability improvements.

■ Only MapReduce workloads were supported, which meant it wasn’t suited to
run execution models such as machine learning algorithms that often require
iterative computations.

For Hadoop 2 these problems were solved by extracting the scheduling function
from MapReduce and reworking it into a generic application scheduler, called YARN.
With this change, Hadoop clusters are no longer limited to running MapReduce
workloads; YARN enables a new set of workloads to be natively supported on Hadoop,
and it allows alternative processing models, such as graph processing and stream pro-
cessing, to coexist with MapReduce. Chapters 2 and 10 cover YARN and how to write
YARN applications.

 YARN’s architecture is simple because its primary role is to schedule and manage
resources in a Hadoop cluster. Figure 1.4 shows a logical representation of the core
components in YARN: the ResourceManager and the NodeManager. Also shown are
the components specific to YARN applications, namely, the YARN application client,
the ApplicationMaster, and the container.

 To fully realize the dream of a generalized distributed platform, Hadoop 2 intro-
duced another change—the ability to allocate containers in various configurations.

A YARN client is
responsible for creating
the YARN application.

Client ResourceManager

ApplicationMaster

NodeManager

Container

The ResourceManager is the
YARN master process and is responsible
for scheduling and managing resources,

called “containers.”

The ApplicationMaster is created by
the ResourceManager and is responsible
for requesting containers to perform

application-specific work.

The NodeManager is the slave
YARN process that runs on each node.

It is responsible for launching and
managing containers.

Containers are YARN
application-specific processes
that perform some function
pertinent to the application.

Figure 1.4 The logical YARN architecture showing typical communication between the core YARN
components and YARN application components

8 CHAPTER 1 Hadoop in a heartbeat

Hadoop 1 had the notion of “slots,” which were a fixed number of map and reduce pro-
cesses that were allowed to run on a single node. This was wasteful in terms of cluster
utilization and resulted in underutilized resources during MapReduce operations, and
it also imposed memory limits for map and reduce tasks. With YARN, each container
requested by an ApplicationMaster can have disparate memory and CPU traits, and this
gives YARN applications full control over the resources they need to fulfill their work.

 You’ll work with YARN in more detail in chapters 2 and 10, where you’ll learn how
YARN works and how to write a YARN application. Next up is an examination of
MapReduce, Hadoop’s computation engine.

MAPREDUCE

MapReduce is a batch-based, distributed computing framework modeled after
Google’s paper on MapReduce.5 It allows you to parallelize work over a large amount
of raw data, such as combining web logs with relational data from an OLTP database to
model how users interact with your website. This type of work, which could take days
or longer using conventional serial programming techniques, can be reduced to min-
utes using MapReduce on a Hadoop cluster.

 The MapReduce model simplifies parallel processing by abstracting away the com-
plexities involved in working with distributed systems, such as computational paral-
lelization, work distribution, and dealing with unreliable hardware and software. With
this abstraction, MapReduce allows the programmer to focus on addressing business
needs rather than getting tangled up in distributed system complications.

 MapReduce decomposes work submitted by a client into small parallelized map
and reduce tasks, as shown in figure 1.5. The map and reduce constructs used in

5 See “MapReduce: Simplified Data Processing on Large Clusters,” http://research.google.com/archive/
mapreduce.html.

Hadoop MapReduce
master

Map

Map

Map

Reduce

Client

Input
data

Output
data

The client submits
a MapReduce job.

MapReduce decomposes the
job into map and reduce tasks
and schedules them for remote

execution on the slave
nodes.

Job

Job parts Job parts

Reduce

Figure 1.5 A client submitting
a job to MapReduce, breaking
the work into small map and
reduce tasks

http://research.google.com/archive/mapreduce.html
http://research.google.com/archive/mapreduce.html

9What is Hadoop?

MapReduce are borrowed from those found in the Lisp functional programming lan-
guage, and they use a shared-nothing model to remove any parallel execution interde-
pendencies that could add unwanted synchronization points or state sharing.6

 The role of the programmer is to define map and reduce functions where the map
function outputs key/value tuples, which are processed by reduce functions to pro-
duce the final output. Figure 1.6 shows a pseudocode definition of a map function
with regard to its input and output.

 The power of MapReduce occurs between the map output and the reduce input in
the shuffle and sort phases, as shown in figure 1.7.

6 A shared-nothing architecture is a distributed computing concept that represents the notion that each node
is independent and self-sufficient.

The map function takes as input a key/value pair, which
represents a logical record from the input data source.

In the case of a file, this could be a line, or if the
input source is a table in a database, it could be a row.

list(key2, value2)map(key1, value1)

The map function produces zero or more output key/value pairs for
one input pair. For example, if the map function is a filtering

map function, it may only produce output if a certain condition is
met. Or it could be performing a demultiplexing operation, where

a single key/value yields multiple key/value output pairs.

Figure 1.6 A
logical view of the
map function that
takes a key/value
pair as input

The shuffle and sort phases are responsible for two primary activities: determining
the reducer that should receive the map output key/value pair (called partitioning);

and ensuring that all the input keys for a given reducer are sorted.

cat,doc1

dog,doc1

hamster,doc1

cat,doc2

dog,doc2

hampster,doc2

chipmunk,doc2

Map output Shuffle + sort

Mapper 1

Mapper 2

cat,list(doc1,doc2)

dog,list(doc1,doc2)

hamster,list(doc1,doc2)

chipmunk,list(doc2)
Reducer 2

Sorted reduce Input

 Map outputs for the same key (such as “hamster”)
go to the same reducer and are then combined to

form a single input record for the reducer.

Each reducer has all of
its input keys sorted.

Reducer 1

Reducer 3

Figure 1.7 MapReduce’s shuffle and sort phases

10 CHAPTER 1 Hadoop in a heartbeat

Figure 1.8 shows a pseudocode definition of a reduce function.
 With the advent of YARN in Hadoop 2, MapReduce has been rewritten as a YARN

application and is now referred to as MapReduce 2 (or MRv2). From a developer’s per-
spective, MapReduce in Hadoop 2 works in much the same way it did in Hadoop 1,
and code written for Hadoop 1 will execute without code changes on version 2.7

There are changes to the physical architecture and internal plumbing in MRv2 that
are examined in more detail in chapter 2.

 With some Hadoop basics under your belt, it’s time to take a look at the Hadoop
ecosystem and the projects that are covered in this book.

1.1.2 The Hadoop ecosystem

The Hadoop ecosystem is diverse and grows by the day. It’s impossible to keep track of
all of the various projects that interact with Hadoop in some form. In this book the
focus is on the tools that are currently receiving the greatest adoption by users, as
shown in figure 1.9.

 MapReduce and YARN are not for the faint of heart, which means the goal for
many of these Hadoop-related projects is to increase the accessibility of Hadoop to
programmers and nonprogrammers. I’ll cover many of the technologies listed in fig-
ure 1.9 in this book and describe them in detail within their respective chapters. In
addition, the appendix includes descriptions and installation instructions for technol-
ogies that are covered in this book.

Coverage of the Hadoop ecosystem in this book The Hadoop ecosystem grows
by the day, and there are often multiple tools with overlapping features and
benefits. The goal of this book is to provide practical techniques that cover
the core Hadoop technologies, as well as select ecosystem technologies that
are ubiquitous and essential to Hadoop.

Let’s look at the hardware requirements for your cluster.

7 Some code may require recompilation against Hadoop 2 binaries to work with MRv2; see chapter 2 for more
details.

The reduce function is
called once per unique

map output key.

All of the map output values that
were emi�ed across all the mappers
for "key2" are provided in a list.

Like the map function, the reduce can output zero-to-many
key/value pairs. Reducer output can write to flat files

in HDFS, insert/update rows in a NoSQL database, or write
to any data sink, depending on the requirements of the job.

list(key3, value3)reduce (key2, list (value2's))

Figure 1.8 A logical view of the
reduce function that produces
output for flat files‚ NoSQL rows‚
or any data sink

11What is Hadoop?

1.1.3 Hardware requirements

The term commodity hardware is often used to describe Hadoop hardware require-
ments. It’s true that Hadoop can run on any old servers you can dig up, but you’ll still
want your cluster to perform well, and you don’t want to swamp your operations
department with diagnosing and fixing hardware issues. Therefore, commodity refers to
mid-level rack servers with dual sockets, as much error-correcting RAM as is affordable,
and SATA drives optimized for RAID storage. Using RAID on the DataNode filesystems
used to store HDFS content is strongly discouraged because HDFS already has replica-
tion and error-checking built in; on the NameNode, RAID is strongly recommended
for additional security.8

 From a network topology perspective with regard to switches and firewalls, all of
the master and slave nodes must be able to open connections to each other. For
small clusters, all the hosts would run 1 GB network cards connected to a single,
good-quality switch. For larger clusters, look at 10 GB top-of-rack switches that have at
least multiple 1 GB uplinks to dual-central switches. Client nodes also need to be able
to talk to all of the master and slave nodes, but if necessary, that access can be from
behind a firewall that permits connection establishment only from the client side.

8 HDFS uses disks to durably store metadata about the filesystem.

High-level
languages

Predictive
analytics

Alternative
processing

Miscellaneous

SQL-on-Hadoop

Weave

Scalding

Cascalog

Crunch

Cascading

Pig

Impala

Hive

RHadoop

Rhipe

R

Summingbird

Spark

Storm

ElephantDB

HDFS YARN + MapReduce

Hadoop

Figure 1.9 Hadoop and related technologies that are covered in this book

12 CHAPTER 1 Hadoop in a heartbeat

 After reviewing Hadoop from a software and hardware perspective, you’ve likely
developed a good idea of who might benefit from using it. Once you start working
with Hadoop, you’ll need to pick a distribution to use, which is the next topic.

1.1.4 Hadoop distributions

Hadoop is an Apache open source project, and regular releases of the software are
available for download directly from the Apache project’s website (http://
hadoop.apache.org/releases.html#Download). You can either download and install
Hadoop from the website or use a quickstart virtual machine from a commercial dis-
tribution, which is usually a great starting point if you’re new to Hadoop and want to
quickly get it up and running.

 After you’ve whet your appetite with Hadoop and have committed to using it in
production, the next question that you’ll need to answer is which distribution to use.
You can continue to use the vanilla Hadoop distribution, but you’ll have to build the
in-house expertise to manage your clusters. This is not a trivial task and is usually only
successful in organizations that are comfortable with having dedicated Hadoop
DevOps engineers running and managing their clusters.

 Alternatively, you can turn to a commercial distribution of Hadoop, which will give
you the added benefits of enterprise administration software, a support team to con-
sult when planning your clusters or to help you out when things go bump in the night,
and the possibility of a rapid fix for software issues that you encounter. Of course,
none of this comes for free (or for cheap!), but if you’re running mission-critical ser-
vices on Hadoop and don’t have a dedicated team to support your infrastructure and
services, then going with a commercial Hadoop distribution is prudent.

Picking the distribution that’s right for you It’s highly recommended that you
engage with the major vendors to gain an understanding of which distribu-
tion suits your needs from a feature, support, and cost perspective. Remem-
ber that each vendor will highlight their advantages and at the same time
expose the disadvantages of their competitors, so talking to two or more ven-
dors will give you a more realistic sense of what the distributions offer. Make
sure you download and test the distributions and validate that they integrate
and work within your existing software and hardware stacks.

There are a number of distributions to choose from, and in this section I’ll briefly
summarize each distribution and highlight some of its advantages.

APACHE

Apache is the organization that maintains the core Hadoop code and distribution, and
because all the code is open source, you can crack open your favorite IDE and browse
the source code to understand how things work under the hood. Historically the chal-
lenge with the Apache distributions has been that support is limited to the goodwill of
the open source community, and there’s no guarantee that your issue will be investi-
gated and fixed. Having said that, the Hadoop community is a very supportive one, and

http://hadoop.apache.org/releases.html#Download
http://hadoop.apache.org/releases.html#Download

13What is Hadoop?

responses to problems are usually rapid, even if the actual fixes will likely take longer
than you may be able to afford.

 The Apache Hadoop distribution has become more compelling now that adminis-
tration has been simplified with the advent of Apache Ambari, which provides a GUI
to help with provisioning and managing your cluster. As useful as Ambari is, though,
it’s worth comparing it against offerings from the commercial vendors, as the com-
mercial tooling is typically more sophisticated.

CLOUDERA

Cloudera is the most tenured Hadoop distribution, and it employs a large number of
Hadoop (and Hadoop ecosystem) committers. Doug Cutting, who along with Mike
Caferella originally created Hadoop, is the chief architect at Cloudera. In aggregate,
this means that bug fixes and feature requests have a better chance of being addressed
in Cloudera compared to Hadoop distributions with fewer committers.

 Beyond maintaining and supporting Hadoop, Cloudera has been innovating in
the Hadoop space by developing projects that address areas where Hadoop has been
weak. A prime example of this is Impala, which offers a SQL-on-Hadoop system, simi-
lar to Hive but focusing on a near-real-time user experience, as opposed to Hive,
which has traditionally been a high-latency system. There are numerous other projects
that Cloudera has been working on: highlights include Flume, a log collection and
distribution system; Sqoop, for moving relational data in and out of Hadoop; and
Cloudera Search, which offers near-real-time search indexing.

HORTONWORKS

Hortonworks is also made up of a large number of Hadoop committers, and it offers
the same advantages as Cloudera in terms of the ability to quickly address problems
and feature requests in core Hadoop and its ecosystem projects.

 From an innovation perspective, Hortonworks has taken a slightly different
approach than Cloudera. An example is Hive: Cloudera’s approach was to develop a
whole new SQL-on-Hadoop system, but Hortonworks has instead looked at innovating
inside of Hive to remove its high-latency shackles and add new capabilities such as sup-
port for ACID. Hortonworks is also the main driver behind the next-generation YARN
platform, which is a key strategic piece keeping Hadoop relevant. Similarly, Horton-
works has used Apache Ambari for its administration tooling rather than developing
an in-house proprietary administration tool, which is the path taken by the other dis-
tributions. Hortonworks’ focus on developing and expanding the Apache ecosystem
tooling has a direct benefit to the community, as it makes its tools available to all users
without the need for support contracts.

MAPR

MapR has fewer Hadoop committers on its team than the other distributions dis-
cussed here, so its ability to fix and shape Hadoop’s future is potentially more
bounded than its peers.

 From an innovation perspective, MapR has taken a decidedly different approach to
Hadoop support compared to its peers. From the start it decided that HDFS wasn’t an

14 CHAPTER 1 Hadoop in a heartbeat

enterprise-ready filesystem, and instead developed its own proprietary filesystem, which
offers compelling features such as POSIX compliance (offering random-write support
and atomic operations), High Availability, NFS mounting, data mirroring, and snapshots.
Some of these features have been introduced into Hadoop 2, but MapR has offered them
from the start, and, as a result, one can expect that these features are robust.

 As part of the evaluation criteria, it should be noted that parts of the MapR stack,
such as its filesystem and its HBase offering, are closed source and proprietary. This
affects the ability of your engineers to browse, fix, and contribute patches back to the
community. In contrast, most of Cloudera’s and Hortonworks’ stacks are open source,
especially Hortonworks’, which is unique in that the entire stack, including the man-
agement platform, is open source.

 MapR’s notable highlights include being made available in Amazon’s cloud as an
alternative to Amazon’s own Elastic MapReduce and being integrated with Google’s
Compute Cloud.

 I’ve just scratched the surface of the advantages that the various Hadoop distribu-
tions offer; your next steps will likely be to contact the vendors and start playing with
the distributions yourself.

 Next, let’s take a look at companies currently using Hadoop, and in what capacity
they’re using it.

1.1.5 Who’s using Hadoop?

Hadoop has a high level of penetration in high-tech companies, and it’s starting to
make inroads in a broad range of sectors, including the enterprise (Booz Allen Hamil-
ton, J.P. Morgan), government (NSA), and health care.

 Facebook uses Hadoop, Hive, and HBase for data warehousing and real-time appli-
cation serving.9 Facebook’s data warehousing clusters are petabytes in size with thou-
sands of nodes, and they use separate HBase-driven, real-time clusters for messaging
and real-time analytics.

 Yahoo! uses Hadoop for data analytics, machine learning, search ranking, email
antispam, ad optimization, ETL,10 and more. Combined, it has over 40,000 servers run-
ning Hadoop with 170 PB of storage. Yahoo! is also running the first large-scale YARN
deployments with clusters of up to 4,000 nodes.11

 Twitter is a major big data innovator, and it has made notable contributions to
Hadoop with projects such as Scalding, a Scala API for Cascading; Summingbird, a

9 See Dhruba Borthakur, “Looking at the code behind our three uses of Apache Hadoop” on Facebook at
http://mng.bz/4cMc. Facebook has also developed its own SQL-on-Hadoop tool called Presto and is migrat-
ing away from Hive (see Martin Traverso, “Presto: Interacting with petabytes of data at Facebook,” http://
mng.bz/p0Xz).

10 Extract, transform, and load (ETL) is the process by which data is extracted from outside sources, trans-
formed to fit the project’s needs, and loaded into the target data sink. ETL is a common process in data ware-
housing.

11 There are more details on YARN and its use at Yahoo! in “Apache Hadoop YARN: Yet Another Resource Nego-
tiator” by Vinod Kumar Vavilapalli et al., www.cs.cmu.edu/~garth/15719/papers/yarn.pdf.

http://mng.bz/p0Xz
http://mng.bz/p0Xz
www.cs.cmu.edu/~garth/15719/papers/yarn.pdf

15What is Hadoop?

component that can be used to implement parts of Nathan Marz’s lambda architec-
ture; and various other gems such as Bijection, Algebird, and Elephant Bird.

 eBay, Samsung, Rackspace, J.P. Morgan, Groupon, LinkedIn, AOL, Spotify, and
StumbleUpon are some other organizations that are also heavily invested in
Hadoop. Microsoft has collaborated with Hortonworks to ensure that Hadoop works
on its platform.

 Google, in its MapReduce paper, indicated that it uses Caffeine,12 its version of
MapReduce, to create its web index from crawl data. Google also highlights applica-
tions of MapReduce to include activities such as a distributed grep, URL access fre-
quency (from log data), and a term-vector algorithm, which determines popular
keywords for a host.

 The number of organizations that use Hadoop grows by the day, and if you work at
a Fortune 500 company you almost certainly use a Hadoop cluster in some capacity. It’s
clear that as Hadoop continues to mature, its adoption will continue to grow.

 As with all technologies, a key part to being able to work effectively with Hadoop is
to understand its shortcomings and design and architect your solutions to mitigate
these as much as possible.

1.1.6 Hadoop limitations

High availability and security often rank among the top concerns cited with Hadoop.
Many of these concerns have been addressed in Hadoop 2; let’s take a closer look at
some of its weaknesses as of release 2.2.0.

 Enterprise organizations using Hadoop 1 and earlier had concerns with the lack of
high availability and security. In Hadoop 1, all of the master processes are single
points of failure, which means that a failure in the master process causes an outage. In
Hadoop 2, HDFS now has high availability support, and the re-architecture of Map-
Reduce with YARN has removed the single point of failure. Security is another area
that has had its wrinkles, and it’s receiving focus.

HIGH AVAILABILITY

High availability is often mandated in enterprise organizations that have high uptime
SLA requirements to ensure that systems are always on, even in the event of a node
going down due to planned or unplanned circumstances. Prior to Hadoop 2, the mas-
ter HDFS process could only run on a single node, resulting in single points of fail-
ure.13 Hadoop 2 brings NameNode High Availability (HA) support, which means that
multiple NameNodes for the same Hadoop cluster can be running. With the current
design, one of the NameNodes is active and the other NameNode is designated as a
standby process. In the event that the active NameNode experiences a planned or

12 In 2010 Google moved to a real-time indexing system called Caffeine; see “Our new search index: Caffeine”
on the Google blog (June 8, 2010), http://googleblog.blogspot.com/2010/06/our-new-search-index-
caffeine.html.

13 In reality, the HDFS single point of failure may not be terribly significant; see “NameNode HA” by Suresh
Srinivas and Aaron T. Myers, http://goo.gl/1iSab.

http://googleblog.blogspot.com/2010/06/our-new-search-index-caffeine.html
http://googleblog.blogspot.com/2010/06/our-new-search-index-caffeine.html

16 CHAPTER 1 Hadoop in a heartbeat

unplanned outage, the standby NameNode will take over as the active NameNode,
which is a process called failover. This failover can be configured to be automatic,
negating the need for human intervention. The fact that a NameNode failover
occurred is transparent to Hadoop clients.

 The MapReduce master process (the JobTracker) doesn’t have HA support in
Hadoop 2, but now that each MapReduce job has its own JobTracker process (a sepa-
rate YARN ApplicationMaster), HA support is arguably less important.

 HA support in the YARN master process (the ResourceManager) is important, how-
ever, and development is currently underway to add this feature to Hadoop.14

MULTIPLE DATACENTERS

Multiple datacenter support is another key feature that’s increasingly expected in
enterprise software, as it offers strong data protection and locality properties due to
data being replicated across multiple datacenters. Apache Hadoop, and most of its
commercial distributions, has never had support for multiple datacenters, which poses
challenges for organizations that have software running in multiple datacenters. WAN-
disco is currently the only solution available for Hadoop multidatacenter support.

SECURITY

Hadoop does offer a security model, but by default it’s disabled. With the security
model disabled, the only security feature that exists in Hadoop is HDFS file- and
directory-level ownership and permissions. But it’s easy for malicious users to sub-
vert and assume other users’ identities. By default, all other Hadoop services are
wide open, allowing any user to perform any kind of operation, such as killing
another user’s MapReduce jobs.

 Hadoop can be configured to run with Kerberos, a network authentication proto-
col, which requires Hadoop daemons to authenticate clients, both users and other
Hadoop components. Kerberos can be integrated with an organization’s existing
Active Directory and therefore offers a single-sign-on experience for users. Care needs
to be taken when enabling Kerberos, as any Hadoop tool that wishes to interact with
your cluster will need to support Kerberos.

 Wire-level encryption can be configured in Hadoop 2 and allows data crossing the
network (both HDFS transport15 and MapReduce shuffle data16) to be encrypted.
Encryption of data at rest (data stored by HDFS on disk) is currently missing in
Hadoop.

 Let’s examine the limitations of some of the individual systems.

14 For additional details on YARN HA support, see the JIRA ticket titled “ResourceManager (RM) High-Availability
(HA),” https://issues.apache.org/jira/browse/YARN-149.

15 See the JIRA ticket titled “Add support for encrypting the DataTransferProtocol” at https://issues.apache.org/
jira/browse/HDFS-3637.

16 See the JIRA ticket titled “Add support for encrypted shuffle” at https://issues.apache.org/jira/browse/
MAPREDUCE-4417.

https://issues.apache.org/jira/browse/HDFS-3637
https://issues.apache.org/jira/browse/HDFS-3637
https://issues.apache.org/jira/browse/MAPREDUCE-4417
https://issues.apache.org/jira/browse/MAPREDUCE-4417

17Getting your hands dirty with MapReduce

HDFS

The weakness of HDFS is mainly its lack of high availability (in Hadoop 1.x and ear-
lier), its inefficient handling of small files,17 and its lack of transparent compression.
HDFS doesn’t support random writes into files (only appends are supported), and
it’s generally designed to support high-throughput sequential reads and writes over
large files.

MAPREDUCE

MapReduce is a batch-based architecture, which means it doesn’t lend itself to use cases
that need real-time data access. Tasks that require global synchronization or sharing of
mutable data aren’t a good fit for MapReduce, because it’s a shared-nothing architec-
ture, which can pose challenges for some algorithms.

VERSION INCOMPATIBILITIES

The Hadoop 2 release brought with it some headaches with regard to MapReduce API
runtime compatibility, especially in the org.hadoop.mapreduce package. These problems
often result in runtime issues with code that’s compiled against Hadoop 1 (and ear-
lier). The solution is usually to recompile against Hadoop 2, or to consider a tech-
nique outlined in chapter 2 that introduces a compatibility library to target both
Hadoop versions without the need to recompile code.

 Other challenges with Hive and Hadoop also exist, where Hive may need to be
recompiled to work with versions of Hadoop other than the one it was built against.
Pig has had compatibility issues, too. For example, the Pig 0.8 release didn’t work with
Hadoop 0.20.203, and manual intervention was required to work around this prob-
lem. This is one of the advantages of using a Hadoop distribution other than Apache,
as these compatibility problems have been fixed. If using the vanilla Apache distribu-
tions is desired, it’s worth taking a look at Bigtop (http://bigtop.apache.org/), an
Apache open source automated build and compliance system. It includes all of the
major Hadoop ecosystem components and runs a number of integration tests to
ensure they all work in conjunction with each other.

 After tackling Hadoop’s architecture and its weaknesses, you’re probably ready to
roll up your sleeves and get hands-on with Hadoop, so let’s look at running the first
example in this book.

1.2 Getting your hands dirty with MapReduce
This section shows you how to run a MapReduce job on your host.

Installing Hadoop and building the examples To run the code example in this
section, you’ll need to follow the instructions in the appendix, which explain
how to install Hadoop and download and run the examples bundled with this
book.

17 Although HDFS Federation in Hadoop 2 has introduced a way for multiple NameNodes to share file meta-
data, the fact remains that metadata is stored in memory.

18 CHAPTER 1 Hadoop in a heartbeat

Let’s say you want to build an inverted index. MapReduce would be a good choice for
this task because it can create indexes in parallel (a common MapReduce use case).
Your input is a number of text files, and your output is a list of tuples, where each
tuple is a word and a list of files that contain the word. Using standard processing
techniques, this would require you to find a mechanism to join all the words together.
A naive approach would be to perform this join in memory, but you might run out of
memory if you have large numbers of unique keys. You could use an intermediary
datastore, such as a database, but that would be inefficient.

 A better approach would be to tokenize each line and produce an intermediary
file containing a word per line. Each of these intermediary files could then be sorted.
The final step would be to open all the sorted intermediary files and call a function
for each unique word. This is what MapReduce does, albeit in a distributed fashion.

 Figure 1.10 walks you through an example of a simple inverted index in MapReduce.
Let’s start by defining your mapper. Your reducers need to be able to generate a line
for each word in your input, so your map output key should be each word in the input
files so that MapReduce can join them all together. The value for each key will be the
containing filename, which is your document ID.

doc1.txt

Mappers
Input filenames
and contents

Intermediate
output

cat, doc1.txt

sat, doc1.txt

mat, doc1.txt

cat, doc2.txt

sat, doc2.txt

dog, doc2.txt

Reducers
Output filenames

and contents

Each map is
called once

per line in the
input file.

The mapper splits
the line into

distinct words
and outputs each
word (the key)
along with the

word’s originating
filename (the

value).

MapReduce
partitions the
mapper output
keys and ensures
that the same
reducer receives

all output records
containing the

same key.

MapReduce sorts all
the map output keys
for a single reducer
and calls a reducer
once for each unique
output key along with
a list of all the output

values across all the
reducers for each
unique output key.

The reducer collects all
the filenames for each

key, and outputs a
single record, with the

key and a comma-
separated list of

filenames.

cat sat mat

part-r-00000

cat: doc1.txt,doc2.txt

doc2.txt

cat sat dog

part-r-00001

sat: doc1.txt,doc2.txt
dog: doc2.txt

part-r-00002

mat: doc1.txt

Figure 1.10 An example of an inverted index being created in MapReduce

19Getting your hands dirty with MapReduce

This is the mapper code:

public static class Map
extends Mapper<LongWritable, Text, Text, Text> {

private Text documentId;
private Text word = new Text();

@Override
protected void setup(Context context) {
String filename =

((FileSplit) context.getInputSplit()).getPath().getName();
documentId = new Text(filename);

}

@Override
protected void map(LongWritable key, Text value,

Context context)
throws IOException, InterruptedException {

for (String token :
StringUtils.split(value.toString())) {

word.set(token);
context.write(word, documentId);

}
}

}

The goal of this reducer is to create an output line for each word and a list of the doc-
ument IDs in which the word appears. The MapReduce framework will take care of
calling the reducer once per unique key outputted by the mappers, along with a list of
document IDs. All you need to do in the reducer is combine all the document IDs
together and output them once in the reducer, as you can see in the following code:

public static class Reduce
extends Reducer<Text, Text, Text, Text> {

private Text docIds = new Text();
public void reduce(Text key, Iterable<Text> values,

Context context)
throws IOException, InterruptedException {

HashSet<Text> uniqueDocIds = new HashSet<Text>();
for (Text docId : values) {
uniqueDocIds.add(docId.toString());

}
docIds.set(new Text(StringUtils.join(uniqueDocIds, ",")));
context.write(key, docIds);

}
}

Extend the MapReduce Mapper class and specify key/value types for
inputs and outputs. Use the MapReduce default InputFormat, which
supplies keys as byte offsets into the input file and values as each

line in the file. The map emits Text key/value pairs.A Text object to store the
document ID (filename)
for the input.

Create a single Text object, which you’ll
reuse to cut down on object creation.MapReduce calls the

setup method prior
to feeding a map (or
reduce) class
records. In this
example you’ll store
the input filename
for this map.

Extract the filename
from the context.

Call this map method once per input line;
map tasks are run in parallel over subsets

of the input files.

The value contains an entire
line from the file. The line is
tokenized using StringUtils
(which is far faster than
using String.split). For each word, the map

outputs the word as the
key and the document

ID as the value.

Much like in the Map class, you need to
specify both the input and output key/

value classes when you define the reducer.

The reduce method is
called once per unique
map output key. The
Iterable allows you to
iterate over all the
values that were emitted
for the given key.

Keep a set of all the
document IDs that

are encountered for
the key.Iterate over all the

document IDs for the key.

Add the document ID to
the set . You create a new
Text object because
MapReduce reuses the Text
object when iterating over
the values, which means you
want to create a new copy.

The reduce outputs the word and
a CSV list of document IDs that

contained the word.

20 CHAPTER 1 Hadoop in a heartbeat

The last step is to write the driver code that will set all the necessary properties to con-
figure the MapReduce job to run. You need to let the framework know what classes
should be used for the map and reduce functions, and also let it know where the input
and output data is located. By default, MapReduce assumes you’re working with text;
if you’re working with more complex text structures, or altogether different data-
storage technologies, you’ll need to tell MapReduce how it should read and write
from these data sources and sinks. The following source shows the full driver code:18

public int run(final String[] args) throws Exception {

Cli cli = Cli.builder().setArgs(args)
.addOptions(IOOptions.values()).build();

cli.runCmd();

Path input = new Path(cli.getArgValueAsString(IOOptions.INPUT));
Path output = new Path(cli.getArgValueAsString(IOOptions.OUTPUT));

Configuration conf = super.getConf();

Job job = new Job(conf);
job.setJarByClass(InvertedIndexJob.class);
job.setMapperClass(Map.class);
job.setReducerClass(Reduce.class);
job.setMapOutputKeyClass(Text.class);
job.setMapOutputValueClass(Text.class);

FileInputFormat.setInputPaths(job, input);
FileOutputFormat.setOutputPath(job, output);

if (job.waitForCompletion(true)) {
System.out.println("Job completed successfully.");

return 0;
}
return 1;

}

Let’s see how this code works. First, you need to create two simple input files in HDFS:

$ hadoop fs -mkdir -p hip1/input
$ echo "cat sat mat" | hadoop fs -put - hip1/input/1.txt
$ echo "dog lay mat" | hadoop fs -put - hip1/input/2.txt

Next, run the MapReduce code. You’ll use a shell script to run it, supplying the two
input files as arguments, along with the job output directory:

$ hip hip.ch1.InvertedIndexJob --input hip1/input --output hip1/output

18 GitHub source: https://github.com/alexholmes/hiped2/blob/master/src/main/java/hip/ch1/
InvertedIndexJob.java.

Extract the input and
output directories from

the arguments.
Get a handle for the
Configuration instance
for the job.

The Job class’s setJarByClass informs
MapReduce that the supplied class should

be used to determine the encapsulating
JAR, which in turn is added to the

classpath of all your map and reduce tasks.

Set the Map class
that should be used
for the job.

Set the Reduce
class that should be
used for the job.

If the map output key/value types differ
from the input types, you must tell

Hadoop what they are. Here, the map will
output each word and file as key/value

pairs, and both are Text objects.
Set the map
output value class.

Set the HDFS input
directory for the job.

Set the HDFS
output directory

for the job.Tell the framework to run
the job and block until the
job has completed.

Create two files in
HDFS to serve as

inputs for the job.

https://github.com/alexholmes/hiped2/blob/master/src/main/java/hip/ch1/InvertedIndexJob.java
https://github.com/alexholmes/hiped2/blob/master/src/main/java/hip/ch1/InvertedIndexJob.java

21Chapter summary

Executing code examples in the book The appendix contains instructions for
downloading and installing the binaries and code that accompany this book.
Most of the examples are launched via the hip script, which is located inside the
bin directory. For convenience, it’s recommended that you add the book’s bin
directory to your path so that you can copy-paste all the example commands as
is. The appendix has instructions on how to set up your environment.

When your job completes, you can examine HDFS for the job output files and view
their contents:

$ hadoop fs -ls output/
Found 3 items
output/_SUCCESS
output/_logs
output/part-r-00000

$ hadoop fs -cat output/part*
cat 1.txt
dog 2.txt
lay 2.txt
mat 2.txt,1.txt
sat 1.txt

This completes your whirlwind tour of how to run Hadoop.

1.3 Chapter summary
Hadoop is a distributed system designed to process, generate, and store large datasets.
Its MapReduce implementation provides you with a fault-tolerant mechanism for large-
scale data analysis of heterogeneous structured and unstructured data sources, and
YARN now supports multi-tenant disparate applications on the same Hadoop cluster.

 In this chapter, we examined Hadoop from both functional and physical architec-
tural standpoints. You also installed Hadoop and ran a MapReduce job.

 The remainder of this book is dedicated to presenting real-world techniques for
solving common problems you’ll encounter when working with Hadoop. You’ll be
introduced to a broad spectrum of subject areas, starting with YARN, HDFS and
MapReduce, and Hive. You’ll also look at data-analysis techniques and explore tech-
nologies such as Mahout and Rhipe.

 In chapter 2, the first stop on your journey, you’ll discover YARN, which heralds a
new era for Hadoop, one that transforms Hadoop into a distributed processing ker-
nel. Without further ado, let’s get started.

22

Introduction to YARN

Imagine buying your first car, which upon delivery has a steering wheel that doesn’t
function and brakes that don’t work. Oh, and it only drives in first gear. No speed-
ing on winding back roads for you! That empty, sad feeling is familiar to those of us
who want to run some cool new tech such as graph or real-time data processing
with Hadoop 1,1 only to be reminded that our powerful Hadoop clusters were good
for one thing, and one thing only: MapReduce.

 Luckily for us the Hadoop committers took these and other constraints to heart
and dreamt up a vision that would metamorphose Hadoop above and beyond
MapReduce. YARN is the realization of this dream, and it’s an exciting new develop-
ment that transitions Hadoop into a distributed computing kernel that can support
any type of workload.2 This opens up the types of applications that can be run on

This chapter covers
■ Understanding how YARN works
■ How MapReduce works as a YARN application
■ A look at other YARN applications

1 While you can do graph processing in Hadoop 1, it’s not a native fit, which means you’re either incurring
the inefficiencies of multiple disk barriers between each iteration on your graph, or hacking around in
MapReduce to avoid such barriers.

23YARN overview

Hadoop to efficiently support computing models for machine learning, graph pro-
cessing, and other generalized computing projects (such as Tez), which are discussed
later in this chapter

 The upshot of all this is that you can now run MapReduce, Storm, and HBase all on
a single Hadoop cluster. This allows for exciting new possibilities, not only in computa-
tional multi-tenancy, but also in the ability to efficiently share data between applications.

 Because YARN is a new technology, we’ll kick off this chapter with a look at how
YARN works, followed by a section that covers how to interact with YARN from the com-
mand line and the UI. Combined, these sections will give you a good grasp of what
YARN is and how to use it.

 Once you have a good handle on how YARN works, you’ll see how MapReduce has
been rewritten to be a YARN application (titled MapReduce 2, or MRv2), and look at
some of the architectural and systems changes that occurred in MapReduce to make
this happen. This will help you better understand how to work with MapReduce in
Hadoop 2 and give you some background into why some aspects of MapReduce
changed in version 2.

YARN development If you’re looking for details on how to write YARN applica-
tions, feel free to skip to chapter 10. But if you’re new to YARN, I recommend
you read this chapter before you move on to chapter 10.

In the final section of this chapter, you’ll examine several YARN applications and their
practical uses.

 Let’s get things started with an overview of YARN.

2.1 YARN overview
With Hadoop 1 and older versions, you were limited to only running MapReduce jobs.
This was great if the type of work you were performing fit well into the MapReduce
processing model, but it was restrictive for those wanting to perform graph process-
ing, iterative computing, or any other type of work.

 In Hadoop 2 the scheduling pieces of MapReduce were externalized and reworked
into a new component called YARN, which is short for Yet Another Resource Negotiator.
YARN is agnostic to the type of work you do on Hadoop—all that it requires is that
applications that wish to operate on Hadoop are implemented as YARN applications.
As a result, MapReduce is now a YARN application. The old and new Hadoop stacks
can be seen in figure 2.1.

 There are multiple benefits to this architectural change, which you’ll examine in
the next section.

2 Prior to YARN, Hadoop only supported MapReduce for computational work.

24 CHAPTER 2 Introduction to YARN

2.1.1 Why YARN?

We’ve touched on how YARN enables work other than MapReduce to be performed
on Hadoop, but let’s expand on that and also look at additional advantages that YARN
brings to the table.

 MapReduce is a powerful distributed framework and programming model that
allows batch-based parallelized work to be performed on a cluster of multiple nodes.
Despite being very efficient at what it does, though, MapReduce has some disadvan-
tages; principally that it’s batch-based, and as a result isn’t suited to real-time or even
near-real-time data processing. Historically this has meant that processing models such
as graph, iterative, and real-time data processing are not a natural fit for MapReduce.3

 The bottom line is that Hadoop version 1 restricts you from running exciting new
processing frameworks.

 YARN changes all of this by taking over the scheduling portions of MapReduce,
and nothing else. At its core, YARN is a distributed scheduler and is responsible for two
activities:

3 HBase is an exception; it uses HDFS for storage but doesn’t use MapReduce for the processing engine.

HDFS
(Distributed storage)

YARN
(Resource management)

HDFS is the common
denominator between versions.

HDFS
(Distributed storage)

MapReduce
(Batch parallel computing)

Hadoop 1 Hadoop 2

MapReduce 2
(Batch parallel

computing)

Spark
(In-memory
processing)

Hoya
(HBase on

YARN)
...

MapReduce is the only
execution engine in version 1.

Hadoop 2 supports any
execution models, including a port

of MapReduce that is now
a YARN application.

All execution engines
on Hadoop 2 are

implemented as YARN
applications.

The YARN framework
provides work scheduling that
is agnostic to the type of
work being performed.

Figure 2.1 Hadoop 1 and 2 architectures, showing YARN as a generalized scheduler and various
YARN applications

25YARN overview

■ Responding to a client’s request to create a container—A container is in essence a pro-
cess, with a contract governing the physical resources that it’s permitted to use.

■ Monitoring containers that are running, and terminating them if needed—Containers
can be terminated if a YARN scheduler wants to free up resources so that con-
tainers from other applications can run, or if a container is using more than its
allocated resources.

Table 2.1 compares MapReduce 1 and YARN (in Hadoop versions 1 and 2) to show
why YARN is such a revolutionary jump.

Table 2.1 Comparison of MapReduce 1 and YARN

Capability MapReduce 1 YARN

Execution
model

Only MapReduce is supported on Hadoop 1,
limiting the types of activities you can perform
to batch-based flows that fit within the con-
fines of the MapReduce processing model.

YARN places no restrictions on the type of
work that can be executed in Hadoop; you
pick which execution engines you need
(whether it’s real-time processing with Spark,
graph processing with Giraph, or MapReduce
batch processing), and they can all be exe-
cuting in parallel on the same cluster.

Concurrent
processes

MapReduce had the notion of “slots,” which
were node-specific static configurations that
determined the maximum number of map
and reduce processes that could run concur-
rently on each node. Based on where in the
lifecycle a MapReduce application was, this
would often lead to underutilized clusters.

YARN allows for more fluid resource alloca-
tion, and the number of processes is limited
only by the configured maximum amount of
memory and CPU for each node.

Memory
limits

Slots in Hadoop 1 also had a maximum
limit, so typically Hadoop 1 clusters were
provisioned such that the number of slots
multiplied by the maximum configured
memory for each slot was less than the
available RAM. This often resulted in smaller
than desired maximum slot memory sizes,
which impeded your ability to run memory-
intensive jobs.a

Another drawback of MRv1 was that it was
more difficult for memory-intensive and IO-
intensive jobs to coexist on the same clus-
ter or machines. Either you had more slots
to boost the I/O jobs, or fewer slots but
more RAM for RAM jobs. Once again, the
static nature of these slots made it a chal-
lenge to tune clusters for mixed workloads.

YARN allows applications to request
resources of varying memory sizes. YARN
has minimum and maximum memory lim-
its, but because the number of slots is no
longer fixed, the maximum values can be
much larger to support memory-intensive
workloads. YARN therefore provides a much
more dynamic scheduling model that
doesn’t limit the number of processes or
the amount of RAM requested by a process.

Scalability There were concurrency issues with the Job-
Tracker, which limited the number of nodes
in a Hadoop cluster to 3,000–4,000 nodes.

By separating out the scheduling parts of
MapReduce into YARN and making it light-
weight by delegating fault tolerance to
YARN applications, YARN can scale to
much larger numbers than prior versions
of Hadoop.b

26 CHAPTER 2 Introduction to YARN

Now that you know about the key benefits of YARN, it’s time to look at the main com-
ponents in YARN and examine their roles.

2.1.2 YARN concepts and components

YARN comprises a framework that’s responsible for resource scheduling and monitoring,
and applications that execute application-specific logic in a cluster. Let’s examine YARN
concepts and components in more detail, starting with the YARN framework components.

YARN FRAMEWORK

The YARN framework performs one primary function, which is to schedule resources
(containers in YARN parlance) in a cluster. Applications in a cluster talk to the YARN
framework, asking for application-specific containers to be allocated, and the
YARN framework evaluates these requests and attempts to fulfill them. An important
part of the YARN scheduling also includes monitoring currently executing contain-
ers. There are two reasons that container monitoring is important: Once a con-
tainer has completed, the scheduler can then use freed-up capacity to schedule
more work. Additionally, each container has a contract that specifies the system
resources that it’s allowed to use, and in cases where containers overstep these
bounds, the scheduler can terminate the container to avoid rogue containers
impacting other applications.

 The YARN framework was intentionally designed to be as simple as possible; as
such, it doesn’t know or care about the type of applications that are running. Nor does
it care about keeping any historical information about what has executed on the clus-
ter. These design decisions are the primary reasons that YARN can scale beyond the
levels of MapReduce.

 There are two primary components that comprise the YARN framework—the
ResourceManager and the NodeManager—which are seen in figure 2.2.

Execution Only a single version of MapReduce could
be supported on a cluster at a time. This
was problematic in large multi-tenant envi-
ronments where product teams that wanted
to upgrade to newer versions of MapReduce
had to convince all the other users. This typ-
ically resulted in huge coordination and inte-
gration efforts and made such upgrades
huge infrastructure projects.

MapReduce is no longer at the core of
Hadoop, and is now a YARN application
running in user space. This means that
you can now run different versions of
MapReduce on the same cluster at the
same time. This is a huge productivity gain
in large multi-tenant environments, and it
allows you to organizationally decouple
product teams and roadmaps.

a This limitation in MapReduce was especially painful for those running machine-learning tasks using
tools such as Mahout, as they often required large amounts of RAM for processing—amounts often
larger than the maximum configured slot size in MapReduce.

b The goal of YARN is to be able to scale to 10,000 nodes; scaling beyond that number could result in
the ResourceManager becoming a bottleneck, as it’s a single process.

Table 2.1 Comparison of MapReduce 1 and YARN (continued)

Capability MapReduce 1 YARN

27YARN overview

■ ResourceManager—A Hadoop cluster has a single ResourceManager (RM) for the
entire cluster. The ResourceManager is the YARN master process, and its sole
function is to arbitrate resources on a Hadoop cluster. It responds to client
requests to create containers, and a scheduler determines when and where a con-
tainer can be created according to scheduler-specific multi-tenancy rules that gov-
ern who can create containers where and when. Just like with Hadoop 1, the
scheduler part of the ResourceManager is pluggable, which means that you can
pick the scheduler that works best for your environment. The actual creation of
containers is delegated to the NodeManager.

■ NodeManager—The NodeManager is the slave process that runs on every node in
a cluster. Its job is to create, monitor, and kill containers. It services requests
from the ResourceManager and ApplicationMaster to create containers, and it
reports on the status of the containers to the ResourceManager. The Resource-
Manager uses the data contained in these status messages to make scheduling
decisions for new container requests.

In non-HA mode, only a single instance of the ResourceManager exists.4

 The YARN framework exists to manage applications, so let’s take a look at what
components a YARN application is composed of.

YARN APPLICATIONS

A YARN application implements a specific function that runs on Hadoop. MapReduce
is an example of a YARN application, as are projects such as Hoya, which allows multi-
ple HBase instances to run on a single cluster, and storm-yarn, which allows Storm to
run inside a Hadoop cluster. You’ll see more details on these projects and other YARN
applications later in this chapter.

4 As of the time of writing, YARN ResourceManager HA is still actively being developed, and its progress can be
followed on a JIRA ticket titled “ResourceManager (RM) High-Availability (HA), ” https://issues.apache.org/
jira/browse/YARN-149.

NodeManagers report their status
to and receive instructions from

the ResourceManager via
a heartbeat message. ResourceManager

Hadoop master

NodeManager

Hadoop slave

NodeManager

Hadoop slave

NodeManager

Hadoop slave

Figure 2.2 YARN framework components and their interactions. Application-specific components,
such as the YARN client, ApplicationMaster, and containers are not shown.

https://issues.apache.org/jira/browse/YARN-149
https://issues.apache.org/jira/browse/YARN-149

28 CHAPTER 2 Introduction to YARN

A YARN application involves three components—the client, the ApplicationMaster
(AM), and the container, which can be seen in figure 2.3.

 Launching a new YARN application starts with a YARN client communicating with
the ResourceManager to create a new YARN ApplicationMaster instance. Part of this
process involves the YARN client informing the ResourceManager of the Application-
Master’s physical resource requirements.

 The ApplicationMaster is the master process of a YARN application. It doesn’t per-
form any application-specific work, as these functions are delegated to the containers.
Instead, it’s responsible for managing the application-specific containers: asking the
ResourceManager of its intent to create containers and then liaising with the Node-
Manager to actually perform the container creation.

 As part of this process, the ApplicationMaster must specify the resources that each
container requires in terms of which host should launch the container and what the
container’s memory and CPU requirements are.5 The ability of the ResourceManager
to schedule work based on exact resource requirements is a key to YARN’s flexibility,
and it enables hosts to run a mix of containers, as highlighted in figure 2.4.

 The ApplicationMaster is also responsible for the specific fault-tolerance behavior
of the application. It receives status messages from the ResourceManager when its
containers fail, and it can decide to take action based on these events (by asking the
ResourceManager to create a new container), or to ignore these events.6

5 Future versions of Hadoop may allow network, disk, and GPU requirements to be specified.
6 Containers can fail for a variety of reasons, including a node going down, a container being killed by YARN

to allow another application’s container to be launched, or YARN killing a container when the container
exceeds its configured physical/virtual memory.

YARN applications
can optionally add

functionality to allow
clients to interact

with them.

YARN applications can optionally
communicate directly with their

containers (and vice versa).

ResourceManagerYARN client

Hadoop master

ApplicationMaster

Container

Hadoop slave

Container Container

NodeManager

Figure 2.3 Typical interactions of a YARN application

29TECHNIQUE 1 Determining the configuration of your cluster

A container is an application-specific process that’s created by a NodeManager on
behalf of an ApplicationMaster. The ApplicationManager itself is also a container, cre-
ated by the ResourceManager. A container created by an ApplicationManager can be
an arbitrary process—for example, a container process could simply be a Linux com-
mand such as awk, a Python application, or any process that can be launched by the
operating system. This is the power of YARN—the ability to launch and manage any
process across any node in a Hadoop cluster.

 By this point, you should have a high-level understanding of the YARN components
and what they do. Next we’ll look at common YARN configurables.

2.1.3 YARN configuration

YARN brings with it a whole slew of configurations for various components, such as the
UI, remote procedure calls (RPCs), the scheduler, and more.7 In this section, you’ll
learn how you can quickly access your running cluster’s configuration.

TECHNIQUE 1 Determining the configuration of your cluster

Figuring out the configuration for a running Hadoop cluster can be a nuisance—it
often requires looking at several configuration files, including the default configuration
files, to determine the value for the property you’re interested in. In this technique,
you’ll see how to sidestep the hoops you normally need to jump through, and instead
focus on how to expediently get at the configuration of a running Hadoop cluster.

7 Details on the default YARN configurations can be seen at http://hadoop.apache.org/docs/r2.2.0/hadoop-
yarn/hadoop-yarn-common/yarn-default.xml.

Requiring clients to specify
the CPU and memory requirements
of each container, coupled with no
predetermined process allocations,
means that YARN has much be�er

control over node utilization
compared to the MapReduce

scheduler.

Each container is created
with a certain CPU and
memory footprint in mind

(as specified by
the ApplicationMaster).

The size of these boxes
denotes CPU/memory resources

used by the container.

Hadoop node

1
2

3

4

5 6

NodeManager

Container pool

Figure 2.4 Various container configurations running on a single YARN-managed Hadoop node

http://hadoop.apache.org/docs/r2.2.0/hadoop-yarn/hadoop-yarn-common/yarn-default.xml
http://hadoop.apache.org/docs/r2.2.0/hadoop-yarn/hadoop-yarn-common/yarn-default.xml

30 CHAPTER 2 Introduction to YARN

■ Problem
You want to access the configuration of a running Hadoop cluster.

■ Solution
View the configuration using the ResourceManager UI.

■ Discussion
The ResourceManager UI shows the configuration for your Hadoop cluster; figure 2.5
shows how you can navigate to this information.

 What’s useful about this feature is that the UI shows not only a property value, but
also which file it originated from. If the value wasn’t defined in a <component>-
site.xml file, then it’ll show the default value and the default filename.

 Another useful feature of this UI is that it’ll show you the configuration from mul-
tiple files, including the core, HDFS, YARN, and MapReduce files.

 The configuration for an individual Hadoop slave node can be navigated to in the
same way from the NodeManager UI. This is most helpful when working with Hadoop
clusters that consist of heterogeneous nodes, where you often have varying configura-
tions that cater to differing hardware resources.

 By this point, you should have a high-level understanding of the YARN compo-
nents, what they do, and how to configure them for your cluster. The next step is to
actually see YARN in action by using the command line and the UI.

-<configuration>
-<property>
 <name>mapreduce.job.ubertask.enable</name>
 <value>false</value>
 <source>mapred-default.xml</source>
 </property>
-<property>
 <name>yarn.resourcemanager.max-completed-applications</name>
 <value>10000</value>
 <source>yarn-default.xml</source>
 </property>

Click on this link to
view the Hadoop configs

for the cluster.

This will render all the
property names and values.

Also included is the file where the
configuration originated from.

Figure 2.5 The YARN ResourceManager UI showing the cluster’s configuration

31TECHNIQUE 2 Running a command on your YARN cluster

2.1.4 Interacting with YARN

Out of the box, Hadoop 2 is bundled with two YARN applications—MapReduce 2 and
DistributedShell. You’ll learn more about MapReduce 2 later in this chapter, but for
now, you can get your toes wet by taking a look at a simpler example of a YARN applica-
tion: the DistributedShell. You’ll see how to run your first YARN application and where
to go to examine the logs.

 If you don’t know the configured values for your cluster, you have two options:

■ Examine the contents of yarn-site.xml to view the property values. If an entry
doesn’t exist, the default value will be in effect.8

■ Even better, use the ResourceManager UI, which gives you more detailed infor-
mation on the running configuration, including what the default values are and
if they’re in effect.

Let’s now take a look at how to quickly view the YARN configuration for a running
Hadoop cluster.

TECHNIQUE 2 Running a command on your YARN cluster

Running a command on your cluster is a good first step when you start working with a
new YARN cluster. It’s the “hello world” in YARN, if you will.

■ Problem
You want to run a Linux command on a node in your Hadoop cluster.

■ Solution
Use the DistributedShell example application bundled with Hadoop.

■ Discussion
YARN is bundled with the DistributedShell application, which serves two primary pur-
poses—it’s a reference YARN application that’s also a handy utility for running a com-
mand in parallel across your Hadoop cluster. Start by issuing a Linux find command
in a single container:

$ hadoop org.apache.hadoop.yarn.applications.distributedshell.Client \
-debug \
-shell_command find \
-shell_args '`pwd`' \
-jar ${HADOOP_HOME}/share/hadoop/yarn/*-distributedshell-*.jar \
-container_memory 350 \
-master_memory 350

If all is well with your cluster, then executing the preceding command will result in the
following log message:

INFO distributedshell.Client: Application completed successfully

8 Visit the following URL for YARN default values: http://hadoop.apache.org/docs/r2.2.0/hadoop-yarn/
hadoop-yarn-common/yarn-default.xml.

The command you’re
running—in this case the

Linux find command.Supply additional args for
the command. Here you

want to perform the find
in the current directory of

the container.

The JAR file that contains the
distributed shell example.

The amount of memory
reserved for the

container that will run
the command.

The amount of memory for
the ApplicationMaster.

http://hadoop.apache.org/docs/r2.2.0/hadoop-yarn/hadoop-yarn-common/yarn-default.xml
http://hadoop.apache.org/docs/r2.2.0/hadoop-yarn/hadoop-yarn-common/yarn-default.xml

32 CHAPTER 2 Introduction to YARN

There are various other logging statements that you’ll see in the command’s output
prior to this line, but you’ll notice that none of them contain the actual results of your
find command. This is because the DistributedShell ApplicationMaster launches the
find command in a separate container, and the standard output (and standard error)
of the find command is redirected to the log output directory of the container. To see
the output of your command, you need to get access to that directory. That, as it hap-
pens, is covered in the next technique!

TECHNIQUE 3 Accessing container logs

Turning to the log files is the most common first step one takes when trying to diagnose
an application that behaved in an unexpected way, or to simply understand more about
the application. In this technique, you’ll learn how to access these application log files.

■ Problem
You want to access container log files.

■ Solution
Use YARN’s UI and the command line to access the logs.

■ Discussion
Each container that runs in YARN has its own output directory, where the standard out-
put, standard error, and any other output files are written. Figure 2.6 shows the location
of the output directory on a slave node, including the data retention details for the logs.

 Access to container logs is not as simple as it should be—let’s take a look at how
you can use the CLI and the UIs to access logs.

Local
filesystem

HDFS

Local log files are retained for
yarn.nodemanager.log.retain-seconds

if log aggregation isn't enabled, or for
yarn.nodemanager.delete.debug-delay-sec

if log aggregation is enabled. Local log files can be
found in this directory.

If log aggregation is enabled
(yarn.log-aggregation-enable=true),

then a�er the application has completed, all the container
logs are copied into a Hadoop filesystem (such as HDFS).

The logs on the slave node are then purged unless
yarn.nodemanager.delete.debug-delay-sec is set.

$yarn.nodemanager.log-dirs/
<application-id>/<container-id>

Container outputs, such as
log files, are wri�en to

the local filesystem.

Hadoop slave

Container
stdout

stderr

Figure 2.6 Container log locations and retention

33TECHNIQUE 3 Accessing container logs

Accessing container logs using the YARN command line
YARN comes with a command-line interface (CLI) for accessing YARN application logs.
To use the CLI, you need to know the ID of your application.

How do I find the application ID? Most YARN clients will display the application
ID in their output and logs. For example, the DistributedShell command that
you executed in the previous technique echoed the application ID to stan-
dard output:

$ hadoop o.a.h.y.a.d.Client ...
...
INFO impl.YarnClientImpl:

Submitted application application_1388257115348_0008 to
ResourceManager at /0.0.0.0:8032

...

Alternatively, you can use the CLI (using yarn application -list) or the
ResourceManager UI to browse and find your application ID.

If you attempt to use the CLI when the application is still running, you’ll be presented
with the following error message:

$ yarn logs -applicationId application_1398974791337_0070
Application has not completed. Logs are only available after
an application completes

The message tells it all—the CLI is only useful once an application has completed.
You’ll need to use the UI to access the container logs when the application is running,
which we’ll cover shortly.

 Once the application has completed, you may see the following output if you
attempt to run the command again:

$ yarn logs -applicationId application_1400286711208_0001
Logs not available at /tmp/.../application_1400286711208_0001
Log aggregation has not completed or is not enabled.

Basically, the YARN CLI only works if the application has completed and log aggrega-
tion is enabled. Log aggregation is covered in the next technique. If you enable log
aggregation, the CLI will give you the logs for all the containers in your application, as
you can see in the next example:

$ yarn logs -applicationId application_1400287920505_0002
client.RMProxy: Connecting to ResourceManager at /0.0.0.0:8032

Container: container_1400287920505_0002_01_000002
on localhost.localdomain_57276

===
LogType: stderr
LogLength: 0
Log Contents:

LogType: stdout

34 CHAPTER 2 Introduction to YARN

LogLength: 1355
Log Contents:
/tmp
default_container_executor.sh
/launch_container.sh
/.launch_container.sh.crc
/.default_container_executor.sh.crc
/.container_tokens.crc
/AppMaster.jar
/container_tokens

Container: container_1400287920505_0002_01_000001
on localhost.localdomain_57276

===
LogType: AppMaster.stderr
LogLength: 17170
Log Contents:
distributedshell.ApplicationMaster: Initializing ApplicationMaster
...

LogType: AppMaster.stdout
LogLength: 8458
Log Contents:
System env: key=TERM, val=xterm-256color
...

The preceding output shows the contents of the logs of the DistributedShell example
that you ran in the previous technique. There are two containers in the output—one
for the find command that was executed, and the other for the ApplicationMaster,
which is also executed within a container.

Accessing logs using the YARN UIs
YARN provides access to the ApplicationMaster logs via the ResourceManager UI. On a
pseudo-distributed setup, point your browser at http://localhost:8088/cluster. If
you’re working with a multi-node Hadoop cluster, point your browser at http://
$yarn.resourcemanager.webapp.address/cluster. Click on the application you’re inter-
ested in, and then select the Logs link as shown in figure 2.7.

 Great, but how do you access the logs for containers other than the Application-
Master? Unfortunately, things get a little murky here. The ResourceManager doesn’t
keep track of a YARN application’s containers, so it can’t provide you with a way to list
and navigate to the container logs. Therefore, the onus is on individual YARN applica-
tions to provide their users with a way to access container logs.

Hey, ResourceManager, what are my container IDs? In order to keep the
ResourceManager lightweight, it doesn’t keep track of the container IDs for
an application. As a result, the ResourceManager UI only provides a way to
access the ApplicationMaster logs for an application.

Case in point is the DistributedShell application. It’s a simple application that doesn’t
provide an ApplicationMaster UI or keep track of the containers that it’s launched.

http://$yarn.resourcemanager.webapp.address/cluster
http://$yarn.resourcemanager.webapp.address/cluster

35TECHNIQUE 3 Accessing container logs

Therefore, there’s no easy way to view the container logs other than by using the
approach presented earlier: using the CLI.

 Luckily, the MapReduce YARN application provides an ApplicationMaster UI that
you can use to access the container (the map and reduce task) logs, as well as a Job-
History UI that can be used to access logs after a MapReduce job has completed.
When you run a MapReduce job, the ResourceManager UI gives you a link to the
MapReduce ApplicationMaster UI, as shown in figure 2.8, which you can use to access
the map and reduce logs (much like the JobTracker in MapReduce 1).

Click on this link to view the
ApplicationMaster logs.

Figure 2.7 The YARN ResourceManager UI showing the ApplicationMaster container

Click on this link to view the MapReduce UI
for a running job; this also provides access

to map and reduce logs.

Figure 2.8 Accessing the MapReduce UI for a running job

36 CHAPTER 2 Introduction to YARN

If your YARN application provides some way for you to identify container IDs and the
hosts that they execute on, you can either access the container logs using the Node-
Manager UI or you can use a shell to ssh to the slave node that executed a container.

 The NodeManager URL for accessing a container’s logs is http://<nodemanager-
host>:8042/node/containerlogs/<container-id>/<username>. Alternatively, you can
ssh to the NodeManager host and access the container logs directory at $yarn
.nodemanager.log-dirs/<application-id>/<container-id>.

 Really, the best advice I can give here is that you should enable log aggregation,
which will allow you to use the CLI, HDFS, and UIs, such as the MapReduce
ApplicationMaster and JobHistory, to access application logs. Keep reading for
details on how to do this.

TECHNIQUE 4 Aggregating container log files

Log aggregation is a feature that was missing from Hadoop 1, making it challenging to
archive and access task logs. Luckily Hadoop 2 has this feature baked-in, and you have
a number of ways to access aggregated log files. In this technique you’ll learn how to
configure your cluster to archive log files for long-term storage and access.

■ Problem
You want to aggregate container log files to HDFS and manage their retention policies.

■ Solution
Use YARN’s built-in log aggregation capabilities.

■ Discussion
In Hadoop 1 your logs were stowed locally on each slave node, with the JobTracker
and TaskTracker being the only mechanisms for getting access to these logs. This was
cumbersome and didn’t easily support programmatic access to them. In addition, log
files would often disappear due to aggressive log-retention policies that existed to pre-
vent local disks on slave nodes from filling up.

 Log aggregation in Hadoop 2 is therefore a welcome feature, and if enabled, it
copies container log files into a Hadoop filesystem (such as HDFS) after a YARN appli-
cation has completed. By default, this behavior is disabled, and you need to set
yarn.log-aggregation-enable to true to enable this feature. Figure 2.9 shows the data
flow for container log files.

 Now that you know how log aggregation works, let’s take a look at how you can
access aggregated logs.
Accessing log files using the CLI
With your application ID in hand (see technique 3 for details on how to get it), you
can use the command line to fetch all the logs and write them to the console:

$ yarn logs -applicationId application_1388248867335_0003

Enabling log aggregation If the preceding yarn logs command yields the follow-
ing output, then it’s likely that you don’t have YARN log aggregation enabled:

Log aggregation has not completed or is not enabled.

37TECHNIQUE 4 Aggregating container log files

This will dump out all the logs for all the containers for the YARN application. The
output for each container is delimited with a header indicating the container ID, fol-
lowed by details on each file in the container’s output directory. For example, if you
ran a DistributedShell command that executed ls -l, then the output of the yarn logs
command would yield something like the following:

Container: container_1388248867335_0003_01_000002 on localhost
==
LogType: stderr
LogLength: 0
Log Contents:

LogType: stdoutLogLength: 268
Log Contents:
total 32
-rw-r--r-- 1 aholmes 12:29 container_tokens

AppLogAggregatorImpl

NodeManager

Local
filesystem

Local log files can be
found in this directory.

Files are copied into this HDFS location.

$yarn.nodemanager.log-dirs/
<application-id>/<container-id>

Container
stdout

stderr

If log aggregation is enabled
($yarn.log-aggregation-enable=true),
then a�er the application has completed, all the container
logs are copied into a Hadoop filesystem (such as HDFS).

$yarn.nodemanager.remote-app-log-dir/${user}/
${yarn.nodemanager.remote-app-log-dir-suffix}/

<application-id>

2

As a container is running,
the log files are wri�en to
the container's log directory
on the local filesystem.

1

Once the container logs have been
copied, they are removed unless
configured for retention via
yarn.nodemanager.delete
.debug-delaysec.

3

HDFS

Figure 2.9 Log file aggregation from local filesystem to HDFS

38 CHAPTER 2 Introduction to YARN

-rwx------ 1 aholmes 12:29 default_container_executor.sh
-rwx------ 1 aholmes launch_container.sh
drwx--x--- 2 aholmes tmp

Container: container_1388248867335_0003_01_000001 on localhost
==
LogType: AppMaster.stderr
(the remainder of the ApplicationMaster logs removed for brevity)

The stdout file contains the directory listing of the ls process’s current directory,
which is a container-specific working directory.

Accessing aggregated logs via the UI
Fully featured YARN applications such as MapReduce provide an ApplicationMaster UI
that can be used to access container logs. Similarly, the JobHistory UI can also access
aggregated logs.

UI aggregated log rendering If log aggregation is enabled, you’ll need to
update yarn-site.xml and set yarn.log.server.url to point at the job history
server so that the ResourceManager UI can render the logs.

Accessing log files in HDFS
By default, aggregated log files go into the following directory in HDFS:

/tmp/logs/${user}/logs/application_<appid>

The directory prefix can be configured via the yarn.nodemanager.remote-app-log-dir
property; similarly, the path name after the username (“logs” in the previous example,
which is the default) can be customized via yarn.nodemanager.remote-app-log-dir-suffix.

Differences between log files in local filesystem and HDFS
As you saw earlier, each container results in two log files in the local filesystem: one for
standard output and another for standard error. As part of the aggregation process, all
the files for a given node are concatenated together into a node-specific log. For
example, if you had five containers running across three nodes, you’d end up with
three log files in HDFS.

Compression
Compression of aggregated logs is disabled by default, but you can enable it by setting
the value of yarn.nodemanager.log-aggregation.compression-type to either lzo or gzip
depending on your compression requirements. As of Hadoop 2.2, these are the only
two compression codecs supported.

Log retention
When log aggregation is turned off, the container log files on the local host are
retained for yarn.nodemanager.log.retain-seconds seconds, the default being 10,800 (3
hours).

 When log aggregation is turned on, the yarn.nodemanager.log.retain-seconds con-
figurable is ignored, and instead the local container log files are deleted as soon as
they are copied into HDFS. But all is not lost if you want to retain them on the local

39TECHNIQUE 4 Aggregating container log files

filesystem—simply set yarn.nodemanager.delete.debug-delay-sec to a value that you
want to keep the files around for. Note that this applies not only to the log files but
also to all other metadata associated with the container (such as JAR files).

 The data retention for the files in HDFS is configured via a different setting,
yarn.log-aggregation.retain-seconds.

NameNode considerations
At scale, you may want to consider an aggressive log retention setting so that you don’t
overwhelm the NameNode with all the log file metadata. The NameNode keeps the
metadata in memory, and on a large active cluster, the number of log files can quickly
overwhelm the NameNode.

Real-life example of NameNode impact Take a look at Bobby Evans’ “Our Experi-
ence Running YARN at Scale” (http://www.slideshare.net/Hadoop_Summit/
evans-june27-230pmroom210c) for a real-life example of how Yahoo! utilized
30% of their NameNode with seven days’ worth of aggregated logs.

Alternative solutions
The solution highlighted in this technique is useful for getting your logs into HDFS,
but if you will need to organize any log mining or visualization activities yourself, there
are other options available such as Hunk, which supports aggregating logs from both
Hadoop 1 and 2 and providing first-class query, visualization, and monitoring features,
just like regular Splunk. You could also set up a query and visualization pipeline using
tools such as Logstash, ElasticSearch, and Kibana if you want to own the log manage-
ment process. Other tools such as Loggly are worth investigating.

 For now, this concludes our hands-on look at YARN. That’s not the end of the story,
however. Section 2.2 looks at how MapReduce works as a YARN application, and later
in chapter 10, you’ll learn how to write your own YARN applications.

2.1.5 YARN challenges

There are some gotchas to be aware of with YARN:

■ YARN currently isn’t designed to work well with long-running processes. This has cre-
ated challenges for projects such as Impala and Tez that would benefit from
such a feature. Work is currently underway to bring this feature to YARN, and
it’s being tracked in a JIRA ticket titled “Roll up for long-lived services in YARN,”
https://issues.apache.org/jira/browse/YARN-896.

■ Writing YARN applications is quite complex, as you’re required to implement container
management and fault tolerance. This may require some complex Application-
Master and container-state management so that upon failure the work can con-
tinue from some previous well-known state. There are several frameworks
whose goal is to simplify development—refer to chapter 10 for more details.

■ Gang scheduling, which is the ability to rapidly launch a large number of containers in par-
allel, is currently not supported. This is another feature that projects such as Impala
and Hamster (OpenMPI) would require for native YARN integration. The

http://www.slideshare.net/Hadoop_Summit/evans-june27-230pmroom210c
http://www.slideshare.net/Hadoop_Summit/evans-june27-230pmroom210c

40 CHAPTER 2 Introduction to YARN

Hadoop committers are currently working on adding support for gang schedul-
ing, which is being tracked in the JIRA ticket titled “Support gang scheduling in
the AM RM protocol,” https://issues.apache.org/jira/browse/YARN-624.

So far we’ve focused on the capabilities of the core YARN system. Let’s move on to look
at how MapReduce works as a YARN application.

2.2 YARN and MapReduce
In Hadoop 1, MapReduce was the only way to process your data natively in Hadoop.
YARN was created so that Hadoop clusters could run any type of work, and its only
requirement was that applications adhere to the YARN specification. This meant Map-
Reduce had to become a YARN application and required the Hadoop developers to
rewrite key parts of MapReduce.

 Given that MapReduce had to go through some open-heart surgery to get it work-
ing as a YARN application, the goal of this section is to demystify how MapReduce
works in Hadoop 2. You’ll see how MapReduce 2 executes in a Hadoop cluster, and
you’ll also get to look at configuration changes and backward compatibility with
MapReduce 1. Toward the end of this section, you’ll learn how to run and monitor
jobs, and you’ll see how small jobs can be quickly executed.

 There’s a lot to go over, so let’s take MapReduce into the lab and see what’s going
on under the covers.

2.2.1 Dissecting a YARN MapReduce application

Architectural changes had to be made to MapReduce to port it to YARN. Figure 2.10
shows the processes involved in MRv2 and some of the interactions between them.

 Each MapReduce job is executed as a separate YARN application. When you launch
a new MapReduce job, the client calculates the input splits and writes them along with
other job resources into HDFS (step 1). The client then communicates with the
ResourceManager to create the ApplicationMaster for the MapReduce job (step 2).
The ApplicationMaster is actually a container, so the ResourceManager will allocate
the container when resources become available on the cluster and then communicate
with a NodeManager to create the ApplicationMaster container (steps 3–4).9

 The MapReduce ApplicationMaster (MRAM) is responsible for creating map and
reduce containers and monitoring their status. The MRAM pulls the input splits from
HDFS (step 5) so that when it communicates with the ResourceManager (step 6) it can
request that map containers are launched on nodes local to their input data.

 Container allocation requests to the ResourceManager are piggybacked on regular
heartbeat messages that flow between the ApplicationMaster and the Resource-
Manager. The heartbeat responses may contain details on containers that are allo-
cated for the application. Data locality is maintained as an important part of the
architecture—when it requests map containers, the MapReduce ApplicationManager
will use the input splits’ location details to request that the containers are assigned to

9 If there aren’t any available resources for creating the container, the ResourceManager may choose to kill one
or more existing containers to free up space.

41YARN and MapReduce

one of the nodes that contains the input splits, and the ResourceManager will make a
best attempt at container allocation on these input split nodes.

 Once the MapReduce ApplicationManager is allocated a container, it talks to the
NodeManager to launch the map or reduce task (steps 7–8). At this point, the map/
reduce process acts very similarly to the way it worked in MRv1.

THE SHUFFLE

The shuffle phase in MapReduce, which is responsible for sorting mapper outputs
and distributing them to the reducers, didn’t fundamentally change in MapReduce 2.
The main difference is that the map outputs are fetched via ShuffleHandlers, which
are auxiliary YARN services that run on each slave node.10 Some minor memory

10 The ShuffleHandler must be configured in your yarn-site.xml; the property name is yarn.nodemanager.aux-
services and the value is mapreduce_shuffle.

Hadoop slave

ShuffleHandler

HDFS

If the task is a reducer,
fetch its inputs from the
ShuffleHandler services.

Depending on the nature
of the MapReduce job,
inputs and outputs may

be read/ wri�en
from/to HDFS.

NodeManager

Hadoop slave

Client host

MR AppMasterClient

Launch MapReduce
ApplicationMaster
process.

4

Start
container.

7

JobHistoryServer

Hadoop master

Query
progress.

ResourceManager

Start container.3

Request containers to
run map and reduce tasks.

Job resources are
copied to local disk..

Progress is
reported back
to the AM.

6

Retrieve
input splits.

5

Submit an application
(a new MapReduce job).

2

Copy job configuration
and resources (job
JARs, distributed
cache files).

1

NodeManager

Hadoop slave

Launch map or
reduce process.

8

YarnChild

ShuffleHandler

Figure 2.10 The interactions of a MapReduce 2 YARN application

42 CHAPTER 2 Introduction to YARN

management tweaks were made to the shuffle implementation; for example,
io.sort.record.percent is no longer used.

WHERE’S THE JOBTRACKER?

You’ll note that the JobTracker no longer exists in this architecture. The scheduling
part of the JobTracker was moved as a general-purpose resource scheduler into the
YARN ResourceManager. The remaining part of JobTracker, which is primarily the
metadata about running and completed jobs, was split in two. Each MapReduce
ApplicationMaster hosts a UI that renders details on the current job, and once jobs
are completed, their details are pushed to the JobHistoryServer, which aggregates and
renders details on all completed jobs. Refer to section 2.2.5 for additional details,
including how to access the MapReduce ApplicationMaster UI.

 Hopefully, you now have a better sense of how MapReduce 2 works. MapReduce
configuration didn’t go untouched in the move to YARN, so let’s take a look at what’s
hot and what’s not.

2.2.2 Configuration

The port of MapReduce 2 to YARN brought with it some major changes in the Map-
Reduce properties. In this section, we’ll cover some of the frequently used properties
that have been affected.

NEW PROPERTIES

There are several new properties in MapReduce 2, identified in table 2.2.

Table 2.2 New MapReduce 2 properties

Property name Default value Description

mapreduce.framework
.name

local Determines which framework should be
used to run MapReduce jobs. There are
three possible values:

■ local, which means the LocalJobRunner
is used (the entire MapReduce job is run in
a single JVM).
■ classic, which means that the job will
be launched on a MapReduce 1 cluster. In
this case, the mapreduce.jobtracker
.address property will be used to retrieve
the JobTracker that the job will be submit-
ted to.
■ yarn, which runs the MapReduce job
in YARN. This can either be in a pseudo-
distributed or full-blown YARN cluster.

mapreduce.job.ubertask
.enable

false Uber jobs are small jobs that can be run
inside the MapReduce ApplicationMaster
process to avoid the overhead of spawning
map and reduce containers. Uber jobs are
covered in more detail in section 2.2.6.

43YARN and MapReduce

CONTAINER PROPERTIES

Table 2.3 shows the MapReduce properties that are related to the map and reduce
processes that run the tasks.

mapreduce.shuffle
.max.connections

0 The maximum allowed connections for the
shuffle. Set to 0 (zero) to indicate no limit
on the number of connections.
This is similar to the old (now unused)
MapReduce 1 property tasktracker.http
.threads, which defined the number of
TaskTracker threads that would be used to
service reducer requests for map outputs.

yarn.resourcemanager
.am.max-attempts

2 The maximum number of application
attempts. It’s a global setting for all
ApplicationMasters. Each application mas-
ter can specify its individual maximum num-
ber of application attempts via the API, but
the individual number can’t be more than the
global upper bound. If it is, the Resource-
Manager will override it. The default value is
2, to allow at least one retry for AM.

yarn.resourcemanager
.recovery.enabled

false Enable RM to recover state after starting. If
true, then yarn.resourcemanager
.store.class must be specified.
Hadoop 2.4.0 also brings in a ZooKeeper-
based mechanism to store the RM state
(class org.apache.hadoop.yarn.server
.resourcemanager.recovery.ZKRMState
Store).

yarn.resourcemanager
.store.class

org.apache.hadoop.yarn.
server.resourcemanager
.recovery.FileSystem-
RMStateStore

Writes ResourceManager state into a file-
system for recovery purposes.

Table 2.3 MapReduce 2 properties that impact containers (map/reduce tasks)

Property name
Default
value

Description

mapreduce.map.memory.mb 1024 The amount of memory to be allocated to contain-
ers (processes) that run mappers, in megabytes. The
YARN scheduler uses this information to determine
whether there’s available capacity on nodes in a
cluster.
The old property name, mapred.job.map.memory.mb,
has been deprecated.

Table 2.2 New MapReduce 2 properties (continued)

Property name Default value Description

44 CHAPTER 2 Introduction to YARN

CONFIGURATION NO LONGER IN EFFECT

Common properties in MapReduce 1 that are no longer in effect in MapReduce 2 are
shown in table 2.4, along with explanations as to why they no longer exist.

mapreduce.reduce.memory.mb 1024 The amount of memory to be allocated to containers
(processes) that run reducers, in megabytes. The YARN
scheduler uses this information to determine whether
there’s available capacity on nodes in a cluster.
The old property name, mapreduce.reduce.memory
.mb, has been deprecated.

mapreduce.map.cpu.vcores 1 The number of virtual cores to be allocated to the
map processes.

mapreduce.reduce.cpu.vcores 1 The number of virtual cores to be allocated to the
reduce processes.

mapred.child.java.opts -Xmx200m Java options for the map and reduce processes.
The @taskid@ symbol, if present, will be replaced by
the current TaskID. Any other occurrences of @ will go
unchanged. For example, to enable verbose garbage
collection logging to a file named for the TaskID
in /tmp and to set the heap maximum to be a giga-
byte, pass a value of -Xmx1024m -verbose:gc
-Xloggc:/tmp/@taskid@.gc. Usage of
-Djava.library.path can cause programs to no
longer function if Hadoop-native libraries are used.
These values should instead be set as part of
LD_LIBRARY_PATH in the map/reduce JVM environ-
ment using the mapreduce.map.env and
mapreduce.reduce.env configuration settings.

mapred.map.child.java.opts None Map process–specific JVM arguments.
The old property name, mapred.map.child.java
.opts, has been deprecated.

mapreduce.reduce.java.opts None Reduce process–specific JVM arguments.
The old property name, mapred.reduce.child.java
.opts, has been deprecated.

Table 2.4 Old MapReduce 1 properties that are no longer in use

Property name Description

mapred.job.tracker
mapred.job.tracker.http.address

The JobTracker no longer exists in YARN; it’s been
replaced by the ApplicationMaster UI and the Job-
History UI.

mapred.task.tracker.http.address
mapred.task.tracker.report.address

The TaskTracker also doesn’t exist in YARN—it’s
been replaced by the YARN NodeManager.

Table 2.3 MapReduce 2 properties that impact containers (map/reduce tasks)

Property name
Default
value

Description

45YARN and MapReduce

DEPRECATED PROPERTIES

Most of the MapReduce 1 (and many HDFS) properties have been deprecated in favor
of property names that are better organized.11 Currently Hadoop 2 supports both the
deprecated and new property names, but it would be prudent for you to update your
properties, as there’s no guarantee that Hadoop 3 and later will support deprecated
properties. Luckily, you get a dump of all the deprecated configuration properties on
standard output when you run a MapReduce job, an example of which is shown here:

Configuration.deprecation: mapred.cache.files is deprecated.
Instead, use mapreduce.job.cache.files

mapred.local.dir This used to be the local directory where intermedi-
ary data for MapReduce jobs was stored. This has
been deprecated, and the new property name is
mapreduce.jobtracker.system.dir. Its use has
also been relegated to use only in the LocalJob-
Runner, which comes into play if you’re running a
local job (not on a YARN cluster).

mapred.system.dir Much like mapred.local.dir, this is relegated to
duty when running the LocalJobRunner.

mapred.tasktracker.map.tasks.maximum
mapred.tasktracker.reduce.tasks.maximum

This was used to control the maximum number of
map and reduce task processes that could run on a
node. These were called “slots,” and they were
static in Hadoop 1. In Hadoop 2, YARN doesn’t
impose a static limit on the number of concurrent
containers on a node, so these properties are no
longer needed.

mapred.job.reuse.jvm.num.tasks You used to be able to sequentially run multiple
tasks in the same JVM, which was useful for tasks
that were short-lived (and to diminish the overhead
of creating a separate process per task). This is no
longer supported in YARN.

tasktracker.http.threads This is no longer used in MRv2. Map outputs are
now fetched from a new ShuffleHandler service,
which is NIO-based and is by default configured with
no cap in the number of open connections (config-
ured via mapreduce.shuffle.max.connections).

io.sort.record.percent This shuffle property used to control how much
accounting space was used in the map-side sort
buffer (io.sort.mb). MapReduce 2 is smarter
about how to fill up io.sort.mb.a

a “Map-side sort is hampered by io.sort.record.percent” and details can be seen at https://
issues.apache.org/jira/browse/MAPREDUCE-64.

11 See the web page “Deprecated properties” at http://hadoop.apache.org/docs/stable/hadoop-project-dist/
hadoop-common/DeprecatedProperties.html for the properties that have been deprecated and their new
names.

Table 2.4 Old MapReduce 1 properties that are no longer in use (continued)

Property name Description

http://hadoop.apache.org/docs/stable/hadoop-project-dist/hadoop-common/DeprecatedProperties.html
http://hadoop.apache.org/docs/stable/hadoop-project-dist/hadoop-common/DeprecatedProperties.html
https://issues.apache.org/jira/browse/MAPREDUCE-64
https://issues.apache.org/jira/browse/MAPREDUCE-64

46 CHAPTER 2 Introduction to YARN

It’s clear that there were quite a few changes to MapReduce properties. You may be
curious to know how the rest of MapReduce changed and what parts managed to
retain strong backward compatibility. Did the MapReduce APIs and binaries escape
unscathed with the major version bump in Hadoop?12

2.2.3 Backward compatibility

Backward compatibility is an important consideration for systems with large, estab-
lished user bases, as it ensures that they can rapidly move to a new version of a system
with little or no change. This section covers various parts of the MapReduce system
and help you determine whether you need to change your systems to be able to func-
tion on MapReduce 2.

SCRIPT COMPATIBILITY

The scripts that are bundled with Hadoop remain unchanged. This means that you
can continue to use hadoop jar ... to launch jobs, and all other uses of the main hadoop
script continue to work, as do the other scripts bundled with Hadoop.

CONFIGURATION

With the introduction of YARN, and MapReduce becoming an application, many
MapReduce 1 property names are now deprecated in MapReduce 2, and some are no
longer in effect. Section 2.2.2 covers changes to some of the more commonly used
properties.

API BACKWARD COMPATIBILITY

In porting MapReduce to YARN, the developers did their best to maintain backward
compatibility for existing MapReduce applications. They were able to achieve code
compatibility, but in some cases weren’t able to preserve binary compatibility:

■ Code compatibility means that any MapReduce code that exists today will run fine
on YARN as long as the code is recompiled. This is great, as it means that you
don’t need to modify your code to get it working on YARN.

■ Binary compatibility means that MapReduce bytecode will run unchanged on YARN.
In other words, you don’t have to recompile your code—you can use the same
classes and JARs that worked on Hadoop 1, and they’ll work just fine on YARN.

Code that uses the “old” MapReduce API (org.apache.hadoop.mapreduce package) is
binary compatible, so if your existing MapReduce code only uses the old API, you’re
all set—no recompilation of your code is required.

 This isn’t the case for certain uses of the “new” MapReduce API
(org.apache.hadoop.mapreduce). If you use the new API, it’s possible that you are using
some features of the API that changed; namely, some classes were changed to inter-
faces. A few of these classes are as follows:

12 Semantic versioning (http://semver.org/) permits APIs to change in ways that break backward compatibility
when the major version number is incremented.

47TECHNIQUE 5 Writing code that works on Hadoop versions 1 and 2

■ JobContext
■ TaskAttemptContext
■ Counter

This begs the question of what to do if you’re using the new MapReduce API and have
code that needs to run on both versions of Hadoop.

TECHNIQUE 5 Writing code that works on Hadoop versions 1 and 2

If you’re using the “new” MapReduce API and have your own Input/OutputFormat
classes or use counters (to name a few operations that are not code-compatible across
MapReduce versions), then you have JARs that will likely need to be recompiled to
work with MapReduce 2. This is a nuisance if you have to support both MapReduce 1
and 2. You could create two sets of JARs targeting each version of MapReduce, but you
would likely owe your build team several beers and end up with more complicated
build and deployment systems. Or you can use the tip in this technique and continue
to distribute a single JAR.

■ Problem
You’re using MapReduce code that isn’t binary compatible with MapReduce 2, and
you want to be able to update your code in a way that will be compatible with both
MapReduce versions.

■ Solution
Use a Hadoop compatibility library that works around the API differences.

■ Discussion
The Elephant Bird project includes a HadoopCompat class, which dynamically figures
out which version of Hadoop you’re running on and uses Java reflection to invoke the
appropriate method calls to work with your version of Hadoop. The following code
shows an example of its usage, where inside an InputFormat implementation, the
TaskAttemptContext changed from a class to an interface, and the HadoopCompat class is
being used to extract the Configuration object:

import com.alexholmes.hadooputils.util.HadoopCompat;
import org.apache.hadoop.mapreduce.InputSplit;

import org.apache.hadoop.mapreduce.RecordReader;
import org.apache.hadoop.mapreduce.TaskAttemptContext;

public class MyInputFormat implements InputFormat {
@Override
public RecordReader createRecordReader(InputSplit split,

TaskAttemptContext context)
throws IOException {

final Configuration conf = HadoopCompat.getConfiguration(context);
...

}
}

48 CHAPTER 2 Introduction to YARN

Which classes changed to interfaces in Hadoop 2? Some of the notable ones are
TaskAttemptContext, JobContext, and MapContext. Table 2.5 shows a selection of some of
the methods available in the HadoopCompat class.

Table 2.5 Common classes and methods that are not binary compatible across MapReduce versions

The HadoopCompat class also has a handy method called isVersion2x, which returns a
Boolean if the class has determined that your runtime is running against version 2 of
Hadoop.

 This is just a sample of the methods on this class—for complete details, see
the Elephant Bird project’s HadoopCompat page on GitHub: https://github.com/
kevinweil/elephant-bird/blob/master/hadoop-compat/src/main/java/com/twitter/
elephantbird/util/HadoopCompat.java.

 Maven Central contains a package with this library in it, and you can take a look
at the Maven repository’s page on “Elephant Bird Hadoop Compatibility” at http://
mvnrepository.com/artifact/com.twitter.elephantbird/elephant-bird-hadoop-compat
for an example entry you can add to your Maven file.

 As you saw earlier, the main script in Hadoop 1, hadoop, continues to exist
unchanged in Hadoop 2. In the next section you’ll see how a newer version of the
script should be used to run not only MapReduce jobs but also issue YARN commands.

2.2.4 Running a job

It’s time to run a MapReduce 2 job. Don’t worry, doing so is pretty much identical to
how you did it in MapReduce 1.

Hadoop class and
method

HadoopCompat call Where you’d encounter the interface

JobContext
.getConfiguration

HadoopCompat
.getConfiguration

This is probably the most commonly used class (now
an interface). You’ll likely bump into this interface as
it’s how you get to a map or reduce task’s configuration.

TaskAttemptContext
.setStatus

HadoopCompat
.setStatus

You’ll encounter this interface if you have a custom
InputFormat, OutputFormat, RecordReader, or
RecordWriter.

TaskAttemptContext
.getTaskAttemptID

HadoopCompat
.getTaskAttemptID

You’ll use this interface if you have a custom
InputFormat, OutputFormat, RecordReader, or
RecordWriter.

TaskAttemptContext
.getCounter

HadoopCompat
.getCounter

You’ll bump into this interface if you have a custom
InputFormat, OutputFormat, RecordReader, or
RecordWriter.

Counter
.incrementCounter

HadoopCompat
.incrementCounter

If you use counters in your jobs, you’ll need to use
the HadoopCompat call.

http://mvnrepository.com/artifact/com.twitter.elephantbird/elephant-bird-hadoop-compat
http://mvnrepository.com/artifact/com.twitter.elephantbird/elephant-bird-hadoop-compat
https://github.com/kevinweil/elephant-bird/blob/master/hadoop-compat/src/main/java/com/twitter/elephantbird/util/HadoopCompat.java
https://github.com/kevinweil/elephant-bird/blob/master/hadoop-compat/src/main/java/com/twitter/elephantbird/util/HadoopCompat.java
https://github.com/kevinweil/elephant-bird/blob/master/hadoop-compat/src/main/java/com/twitter/elephantbird/util/HadoopCompat.java

49TECHNIQUE 6 Using the command line to run a job

TECHNIQUE 6 Using the command line to run a job

In this technique you’ll learn how to use the command line to run a MapReduce job.

■ Problem
You want to use the YARN command line to run a MapReduce job.

■ Solution
Use the yarn command.

■ Discussion
In Hadoop 1, the hadoop command was the one used to launch jobs. This command
still works for backward compatibility reasons, but the YARN form of this command is
the yarn script, which works much like the old hadoop script works. As an example, this
is how you’d run the pi job bundled in the Hadoop examples JAR:13

$ yarn jar ${HADOOP_HOME}/share/hadoop/mapreduce/*-examples-*.jar pi 2 10

Estimated value of Pi is 3.1428000

If you’re in the habit of using hadoop to run your jobs, give some thought to replacing
it with the yarn command. It’s unclear whether there are plans to deprecate and remove
the hadoop command, but you can be sure that the yarn equivalent is here to stay.

 The ways you can launch MapReduce jobs have changed in version 2, and so has
the mechanism by which you view the status and details of running and completed
jobs.

2.2.5 Monitoring running jobs and viewing archived jobs

When running MapReduce jobs, it’s important for monitoring and debugging pur-
poses to be able to view the status of a job and its tasks and to gain access to the task
logs. In MapReduce 1 this would have all been carried out using the JobTracker UI,
which could be used to view details on running and completed or archived jobs.

 As highlighted in section 2.2.1, the JobTracker no longer exists in MapReduce 2; it
has been replaced with an ApplicationMaster-specific UI, and the JobHistoryServer for
completed jobs. The ApplicationMaster UI can be seen in figure 2.11. For fetching
map and reduce task logs, the UI redirects to the NodeManager.

Figuring out where your ResourceManager UI is running You can retrieve the
host and port of the ResourceManager by examining the value of
yarn.resourcemanager.webapp.address (or yarn.resourcemanager.webapp.https
.address if HTTPS access is required). In the case of a pseudo-distributed
installation, this will be http://localhost:8088 (or port 8090 for HTTPS).
Copying the host and port into your browser is sufficient to access the UI as a
URL path isn’t required.

13 This example calculates the value of pi using the quasi-Monte Carlo method.

50 CHAPTER 2 Introduction to YARN

The JobHistoryServer can be seen in figure 2.12.
 MapReduce 2 has changed how jobs are executed, configured, and monitored. It

has also introduced new features, such as uber jobs, which are up next.

2.2.6 Uber jobs

When running small MapReduce jobs, the time taken for resource scheduling and
process forking is often a large percentage of the overall runtime. In MapReduce 1
you didn’t have any choice about this overhead, but MapReduce 2 has become
smarter and can now cater to your needs to run lightweight jobs as quickly as possible.

TECHNIQUE 7 Running small MapReduce jobs

This technique looks at how you can run MapReduce jobs within the MapReduce
ApplicationMaster. This is useful when you’re working with a small amount of data, as
you remove the additional time that MapReduce normally spends spinning up and
bringing down map and reduce processes.

This is the YARN ResourceManager UI, which
shows a running MapReduce application.

You can get access to the MapReduce
ApplicationMaster UI, which shows MapReduce-
specific details (see below), by clicking on the

ApplicationMaster link in the ResourceManager.

Figure 2.11 The YARN ResourceManager UI, showing applications that are currently executing

51TECHNIQUE 7 Running small MapReduce jobs

■ Problem
You have a MapReduce job that operates on a small dataset, and you want to avoid the
overhead of scheduling and creating map and reduce processes.

■ Solution
Configure your job to enable uber jobs; this will run the mappers and reducers in the
same process as the ApplicationMaster.

■ Discussion
Uber jobs are jobs that are executed within the MapReduce ApplicationMaster. Rather
than liaise with the ResourceManager to create the map and reduce containers, the

The JobHistory server shows all
completed MapReduce jobs.

Additional job details, including counters and task
logs, can be accessed by clicking on a specific job.

Figure 2.12 The JobHistory UI, showing MapReduce applications that have completed

52 CHAPTER 2 Introduction to YARN

ApplicationMaster runs the map and reduce tasks within its own process and avoids the
overhead of launching and communicating with remote containers.

 To enable uber jobs, you need to set the following property:

mapreduce.job.ubertask.enable=true

Table 2.6 lists some additional properties that control whether a job qualities for
uberization.

When running uber jobs, MapReduce disables speculative execution and also sets the
maximum attempts for tasks to 1.

Reducer restrictions Currently only map-only jobs and jobs with one reducer
are supported for uberization.

Uber jobs are a handy new addition to the MapReduce capabilities, and they only
work on YARN. This concludes our look at MapReduce on YARN. Next you’ll see exam-
ples of other systems running on YARN.

2.3 YARN applications
So far you’ve seen what YARN is, how it works, and how MapReduce 2 works as a YARN
application. But this is only the first step of YARN’s journey; there are already several
projects that work on YARN, and over time, you should expect to see rapid growth in
YARN’s ecosystem.

 At this point, you may be asking yourself why YARN applications are compelling
and why the Hadoop community put so much work into YARN’s architecture and the
port of MapReduce to a YARN application. There are many reasons that we touched
on at the start of the chapter, but the most important reason behind this revolution-
ary change in Hadoop is to open up the platform. Think about how our systems
work today—gone are the days when we worked on monolithic systems; instead, we
live in a world where we run multiple disparate systems in our datacenters, as shown
in figure 2.13.

 That’s a lot of systems! And chances are that you’re already running many of them
in production right now. If you’re an engineer, you’re probably excited about having

Table 2.6 Properties for customizing uber jobs

Property Default value Description

mapreduce.job
.ubertask.maxmaps

9 The number of mappers for a job must be less than or
equal to this value for the job to be uberized.

mapreduce.job
.ubertask.maxreduces

1 The number of reducers for a job must be less than or
equal to this value for the job to be uberized.

mapreduce.job
.ubertask.maxbytes

Default block size The total input size of a job must be less than or equal
to this value for the job to be uberized.

53YARN applications

all these systems in play, but systems administrators and architects get migraines think-
ing about the challenges that supporting all these systems brings:

■ They have to build the in-house knowledge to administer and keep the sys-
tems up and healthy. Systems fail, especially complicated distributed systems,
and being open source, many of these systems don’t have the tooling to facili-
tate easy management.

■ Data exchange between systems is painful, primarily due to the volume of data
and the lack of tooling for the data movement. Large, expensive projects ensue.14

■ Each system has to solve the same distributed problems, such as fault tolerance,
distributed storage, log handling, and resource scheduling.

YARN promises a single cluster that can have its resources managed in a uniform way,
support multi-tenant applications and users, and offer elastic computation over shared
storage. HBase coupled with Hoya gives us a sneak peek at what the future could look
like: strong data locality properties are used for efficient movement of data in and out
of HBase; and Hoya, with its YARN integration, provides elastic, on-demand computing,
with the ability to run multiple HBase clusters on a single YARN cluster.

 In the following sections, you’ll be introduced to several systems across a broad
spectrum of technologies that are built on YARN. We’ll look at one or more examples
of these technologies that have been built with YARN compatibility.

2.3.1 NoSQL

NoSQL covers a wide array of technologies, but, in short, they’re systems that provide
real-time CRUD operations in a way that doesn’t hold ACID properties sacred. These sys-
tems were created to work around the shortcomings of monolithic OLAP systems, which
impeded the ability of system architectures to scale out and provide responsive services.

 There are many NoSQL systems out there, but none have been more integrated
with Hadoop than HBase. Even prior to YARN, the goal of HBase was to use HDFS for

14 LinkedIn addresses this with a “data plane” architecture highlighted in Jay Kreps’ blog post, “The Log: What
every software engineer should know about real-time data’s unifying abstraction”—take a look at the “unified
log” image and the surrounding text for an architectural solution to help reduce these pain points: http://
engineering.linkedin.com/distributed-systems/log-what-every-software-engineer-should-know-about-real-
time-datas-unifying.

OLTP Real-time
data

processing

NoSQL/
NewSQL

Hadoop OLAP/
EDW

Messaging In-memory
processing

Cache

Figure 2.13 Common systems we run today. They are siloed, which complicates data and resource
sharing.

http://engineering.linkedin.com/distributed-systems/log-what-every-software-engineer-should-know-about-real-time-datas-unifying
http://engineering.linkedin.com/distributed-systems/log-what-every-software-engineer-should-know-about-real-time-datas-unifying
http://engineering.linkedin.com/distributed-systems/log-what-every-software-engineer-should-know-about-real-time-datas-unifying

54 CHAPTER 2 Introduction to YARN

its storage, and HBase benefited from close integration with MapReduce, allowing for
batch-processing facilities that often eluded its competitors.

 YARN solves two challenges for HBase. HBase and MapReduce 1 coexisting on a
cluster brought resource management challenges, as there were no easy ways to guar-
antee SLAs to both systems. YARN capitalizes on cgroups in Linux, which provide con-
currently executing processes with guaranteed access to their required resources. The
second opportunity that YARN gave HBase was the ability to run multiple HBase clus-
ters on the same Hadoop cluster. This support is being carried out in a project called
Hoya, short for HBase on Yarn.

2.3.2 Interactive SQL

Up until recently, running SQL on Hadoop has been an exercise in patience—kick up
your Hive shell, enter your query, and wait, often minutes, until you get a result.15

Data scientists and analysts would likely not find this to be the most conducive envi-
ronment for quickly probing and experimenting with data.

 There have been several initiatives to work around this issue. Cloudera’s solution
was to create the Impala project, which bypasses MapReduce altogether and operates
by running its own daemon on each slave node in your cluster (colocated with the
HDFS slave daemon, the DataNode, for data locality). To help with multi-tenancy on
YARN clusters, Cloudera has developed Llama (http://cloudera.github.io/llama/),
which aims to work with YARN in such a way that YARN understands the resources that
the Impala daemons are utilizing on a cluster.

 Hortonworks has taken a different approach—they’ve focused on making improve-
ments to Hive and have made significant steps toward making Hive more interactive.
They’ve combined their improvements under a project called Stinger (http://horton-
works.com/labs/stinger/), and the most significant change involves bypassing Map-
Reduce and using Tez, a YARN DAG processing framework, to execute their work.

 Apache Drill is another SQL-on-Hadoop solution that promises the ability to work over
many persistent stores, such as Cassandra and MongoDB. They have an open ticket to add
YARN support to the project (https://issues.apache.org/jira/browse/DRILL-142).

 Facebook Presto is also in the SQL-on-Hadoop camp, but so far there’s no word on
whether there will be YARN support.

2.3.3 Graph processing

Modern graph-processing systems allow distributed graph algorithms to execute
against large graphs that contain billions of nodes and trillions of edges. Graph opera-
tions using traditional MapReduce typically result in one job per iteration,16 which is

15 The reason Hive queries used to take a long time is that they would be translated to one or more MapReduce
jobs, so job startup times (coupled with writing intermediary outputs to and from disk) resulted in long query
times.

16 Giraph in its MapReduce 1 implementation works around this by using long-running map tasks that exchange
state with ZooKeeper and pass messages to each other.

ttp://hortonworks.com/labs/stinger/
ttp://hortonworks.com/labs/stinger/

55YARN applications

slow and cumbersome, as it requires the entire graph data structure to be serialized to
and from disk on each iteration.

 Apache Giraph, a popular graph-processing project, has worked on Hadoop since
version 1 and earlier, and the committers have also updated Giraph so that it runs as a
native YARN application.

 Apache Hama also has some graph-processing capabilities on YARN.

2.3.4 Real-time data processing

Real-time data processing systems are computational systems that work on unbounded
streams of data. The features of these systems are similar to those of MapReduce, as they
allow operations such as filtering, projection, joins, and aggregations. A typical use of
these systems is to process real-time events occurring in a system, perform some aggre-
gations, and then push the results out to a NoSQL store for retrieval by another system.

 Arguably, the real-time data processing system with most traction at the time of
writing is Apache Storm, originally built by Nathan Marz, which is a key part of his
Lambda Architecture.17 To bring Storm to YARN, Yahoo has created a project called
storm-yarn. This project offers several advantages—not only will this allow multiple
Storm clusters to run on YARN, but it promises elasticity for Storm clusters: the ability
to quickly provision additional resources for Storm. More details on the project can
be seen at https://github.com/yahoo/storm-yarn.

 Spark Streaming is another notable real-time data processing project developed as
an extension to the Spark API, and it supports consuming data sources such as HDFS,
Kafka, Flume, and more. Spark is also supported on YARN. Spark Streaming may
become a strong competitor for Storm, notably because once you master Spark, you
also know how to do Spark Streaming, and vice versa. This means you have a single
programming paradigm for both offline and real-time data analysis.

 Other real-time data processing systems with YARN integration are Apache S4,
Apache Samza (which came out of LinkedIn), and DataTorrent.

2.3.5 Bulk synchronous parallel

Bulk synchronous parallel (BSP) is a distributed processing method whereby multiple
parallel workers independently work on a subset of an overall problem, after which
they exchange data among themselves and then use a global synchronization mecha-
nism to wait for all workers to complete before repeating the process. Google Pregel
published how their graph processing framework is inspired by BSP, and Apache
Giraph uses a similar BSP model for graph iteration.

 Apache Hama is a general-purpose BSP implementation that can work on YARN. It
also has built-in graph-processing capabilities.

17 The Lambda Architecture plays to the strengths of batch and real-time. Read more in Nathan Marz’s book,
Big Data (Manning, 2014).

56 CHAPTER 2 Introduction to YARN

2.3.6 MPI

MPI (Message Passing Interface) is a mechanism that allows messages to be exchanged
on clusters of hosts. Open MPI is an open source MPI implementation. There’s cur-
rently an open ticket to complete work on integrating Open MPI support into Hadoop
(https://issues.apache.org/jira/browse/MAPREDUCE-2911). The work that has been
completed so far for this integration is in mpich2-yarn at https://github.com/
clarkyzl/mpich2-yarn.

2.3.7 In-memory

In-memory computing uses the ever-increasing memory footprint in our systems to
quickly perform computing activities such as iterative processing and interactive data
mining.

 Apache Spark is a popular example that came out of Berkeley. It’s a key part of an
overall set of solutions that also includes Shark for SQL operations and GraphX for
graph processing. Cloudera’s CDH5 distribution includes Spark running on YARN.

 For additional details on how to run Spark on YARN, see Spark’s “Launching Spark
on YARN” page at http://spark.apache.org/docs/0.9.0/running-on-yarn.html.

2.3.8 DAG execution

Directed Acyclic Graph (DAG) execution engines allow you to model data-processing
logic as a DAG and then execute it in parallel over a large dataset.

 Apache Tez is an example of a DAG execution engine; it was born out of the need
to provide a more generalized MapReduce system that would preserve the parallelism
and throughput of MapReduce, and at the same time support additional processing
models and optimizations beyond that which MapReduce provides. Examples of Tez’s
abilities include not imposing a specific data model, so that both the key/value model
of MapReduce, as well as the tuple-based models of Hive and Pig, can be supported.

 Tez provides a number of advantages over MapReduce, which include eliminating
replicated write barriers that exist in MapReduce between multiple jobs—a major per-
formance bottleneck for systems like Hive and Pig. Tez can also support reduce opera-
tions without the sorting overhead that MapReduce requires, resulting in more
efficient pipelines where sorting isn’t necessary for the application. Tez also supports
sophisticated operations such as Map-Map-Reduce, or any arbitrary graph of opera-
tions, freeing up developers to more naturally express their data pipelines. Tez can
also be used to make dynamic data flow choices when executing—for example, based
on the size of intermediary data in your flow, you may decide to store it in memory or
in HDFS or local disk.

 The upshot of all of this is that Tez can shake off the batch-only shackles of Map-
Reduce and support interactive use cases. As an example, the original scope of Tez is a
large step in Hortonworks’ goal of making Hive interactive—moving from Map-
Reduce to Tez is a key part of that work.

https://github.com/clarkyzl/mpich2-yarn
https://github.com/clarkyzl/mpich2-yarn

57Chapter summary

2.4 Chapter summary
Hadoop version 2 turns the old way work has been done in Hadoop upside down. No
longer are you limited to running MapReduce on your clusters. This chapter covered
the essentials that you need to get going with YARN. You looked at why YARN is important
in Hadoop, saw a high-level overview of the architecture, and learned about some of the
salient YARN configuration properties that you’ll need to use.

 The advent of YARN has also introduced significant changes in how MapReduce
works. MapReduce has been ported into a YARN application, and in section 2.2 you
saw how MapReduce executes on Hadoop 2, learned what configuration properties
have changed, and also picked up some new features, such as uber jobs.

 The last section of this chapter covered some exciting examples of up-and-coming
YARN applications to give you a sense of what capabilities you should expect to be able
to unleash on your YARN cluster. For additional YARN coverage, feel free to skip ahead
to chapter 10 and look at how to develop your very own YARN application!

 Now that you understand the lay of the land with YARN, it’s time to move on to
look at data storage in Hadoop. The focus of the next chapter is on working with com-
mon file formats such as XML and JSON, as well as picking file formats better suited for
life in Hadoop, such as Parquet and Avro.

Part 2

Data logistics

If you’ve been thinking about how to work with Hadoop in production set-
tings, you’ll benefit from this part of the book, which covers the first set of hur-
dles you’ll need to jump. These chapters detail the often-overlooked yet crucial
topics that deal with data management in Hadoop.

 Chapter 3 looks at ways to work with data stored in different formats, such as
XML and JSON, paving the way for a broader examination of data formats such
as Avro and Parquet that work best with big data and Hadoop.

 Chapter 4 examines some strategies for laying out your data in HDFS, and
partitioning and compacting your data. This chapter also covers ways of working
with small files, as well as how compression can save you from many storage and
computational headaches.

 Chapter 5 looks at ways to manage moving large quantities of data into and
out of Hadoop. Examples include working with relational data in RDBMSs, struc-
tured files, and HBase.

61

 Data serialization—
working with text

 and beyond

MapReduce offers straightforward, well-documented support for working with sim-
ple data formats such as log files. But MapReduce has evolved beyond log files to
more sophisticated data-serialization formats—such as text, XML, and JSON—to the
point where its documentation and built-in support runs dry. The goal of this chap-
ter is to document how you can work with common data-serialization formats, as
well as to examine more structured serialization formats and compare their fitness
for use with MapReduce.

This chapter covers
■ Working with text, XML, and JSON
■ Understanding SequenceFile, Avro, Protocol

Buffers, and Parquet
■ Working with custom data formats

62 CHAPTER 3 Data serialization—working with text and beyond

 Imagine that you want to work with the ubiquitous XML and JSON data-serialization
formats. These formats work in a straightforward manner in most programming lan-
guages, with several tools being available to help you with marshaling, unmarshaling,
and validating where applicable. Working with XML and JSON in MapReduce, however,
poses two equally important challenges. First, MapReduce requires classes that can sup-
port reading and writing a particular data-serialization format; if you’re working with a
custom file format, there’s a good chance it doesn’t have such classes to support the
serialization format you’re working with. Second, MapReduce’s power lies in its ability
to parallelize reading your input data. If your input files are large (think hundreds of
megabytes or more), it’s crucial that the classes reading your serialization format be
able to split your large files so multiple map tasks can read them in parallel.

 We’ll start this chapter by tackling the problem of how to work with serialization
formats such as XML and JSON. Then we’ll compare and contrast data-serialization
formats that are better suited to working with big data, such as Avro and Parquet. The
final hurdle is when you need to work with a file format that’s proprietary, or a less
common file format for which no read/write bindings exist in MapReduce. I’ll show
you how to write your own classes to read/write your file format.

XML and JSON formats This chapter assumes you’re familiar with the XML
and JSON data formats. Wikipedia provides some good background articles
on XML and JSON, if needed. You should also have some experience writing
MapReduce programs and should understand the basic concepts of HDFS
and MapReduce input and output. Chuck Lam’s book, Hadoop in Action
(Manning, 2010), is a good resource on this topic.

Data serialization support in MapReduce is a property of the input and output classes
that read and write MapReduce data. Let’s start with an overview of how MapReduce
supports data input and output.

3.1 Understanding inputs and outputs in MapReduce
Your data might be XML files sitting behind a number of FTP servers, text log files sit-
ting on a central web server, or Lucene indexes in HDFS.1 How does MapReduce sup-
port reading and writing to these different serialization structures across the various
storage mechanisms?

 Figure 3.1 shows the high-level data flow through MapReduce and identifies the
actors responsible for various parts of the flow. On the input side, you can see that
some work (Create split) is performed outside of the map phase, and other work is per-
formed as part of the map phase (Read split). All of the output work is performed in
the reduce phase (Write output).

1 Apache Lucene is an information retrieval project that stores data in an inverted index data structure opti-
mized for full-text search. More information is available at http://lucene.apache.org/.

63Understanding inputs and outputs in MapReduce

Figure 3.2 shows the same flow with a map-only job. In a map-only job, the Map-
Reduce framework still uses the OutputFormat and RecordWriter classes to write the out-
puts directly to the data sink.

 Let’s walk through the data flow and discuss the responsibilities of the various actors.
As we do this, we’ll also look at the relevant code from the built-in TextInputFormat and
TextOutputFormat classes to better understand the concepts. The TextInputFormat
and TextOutputFormat classes read and write line-oriented text files.

3.1.1 Data input

The two classes that support data input in MapReduce are InputFormat and RecordReader.
The InputFormat class is consulted to determine how the input data should be partitioned
for the map tasks, and the RecordReader performs the reading of data from the inputs.

INPUTFORMAT

Every job in MapReduce must define its inputs according to contracts specified in the
InputFormat abstract class. InputFormat implementers must fulfill three contracts: they
describe type information for map input keys and values, they specify how the input

Map phase

Mapper.map Reducer.reduce

k,v

RecordWriter.writeInputFormat.getSplits RecordReader.nextKeyValue

Create
split

Read
split Map Partition

Partitioner.getPartition

The map and reduce functions are
typically wri�en by the user to

address a specific use case.

The partitioner's job is to logically funnel
map outputs to the reducers.

The RecordWriter writes the
reduce output to the destination
data sink, which contains the final
resting place of this MapReduce

data flow.

The InputFormat and
RecordReader are responsible for
determining what data to feed

into the map function.

k,list(v) Write
outputReduce

Reduce phase

Input Output

Figure 3.1 High-level input and output actors in MapReduce

Input

Map phase

Mapper.map RecordWriter.writeInputFormat.getSplits RecordReader.nextKeyValue

Create
split

Read
split Map

Output

Write
output

Figure 3.2 Input and output actors in MapReduce with no reducers

64 CHAPTER 3 Data serialization—working with text and beyond

data should be partitioned, and they indicate the RecordReader instance that should
read the data from source. Figure 3.3 shows the InputFormat class and how these three
contracts are defined.

 Arguably, the most crucial contract is that of determining how to divide the input
data. In MapReduce nomenclature, these divisions are referred to as input splits. The
input splits directly impact the map parallelism, because each split is processed by a
single map task. Working with an InputFormat that’s unable to create multiple input
splits over a single data source (such as a file) will result in a slow map phase, because
the file will be processed sequentially.

 The TextInputFormat class (view source at http://mng.bz/h728) provides an imple-
mentation of the InputFormat class’s createRecordReader method, but it delegates the
calculation of input splits to its parent class, FileInputFormat. The following code
shows the relevant parts of the TextInputFormat class:

public class TextInputFormat
extends FileInputFormat<LongWritable, Text> {

@Override
public RecordReader<LongWritable, Text>

createRecordReader(InputSplit split,
TaskAttemptContext context) {

String delimiter = context.getConfiguration().get(
"textinputformat.record.delimiter");

byte[] recordDelimiterBytes = null;

if (null != delimiter) {
recordDelimiterBytes = delimiter.getBytes();

}

return new LineRecordReader(recordDelimiterBytes);

}
...

<<abstract>>
InputFormat<K,V>

Type definitions for map
input keys and values.

List<InputSplit> getSplits(JobContext context);

RecordReader<K,V> createRecordReader(InputSplit split,
TaskAttemptContext context);

Partition the input
data into input splits.

Create a RecordReader to
read data from the job inputs.

Figure 3.3 The annotated InputFormat class and its three contracts

The parent class,
FileInputFormat, provides all of

the input split functionality.

The default record delimiter is
newline, but it can be overridden with

textinputformat.record.delimiter.

Construct the
RecordReader to read the

data from the data source.

65Understanding inputs and outputs in MapReduce

The code in FileInputFormat (source at http://mng.bz/CZB8) that determines the
input splits is a little more complicated. A simplified form of the code is shown in the
following example to portray the main elements of the getSplits method:

public List<InputSplit> getSplits(JobContext job
) throws IOException {

List<InputSplit> splits = new ArrayList<InputSplit>();
List<FileStatus>files = listStatus(job);
for (FileStatus file: files) {
Path path = file.getPath();
BlockLocation[] blkLocations =
FileSystem.getFileBlockLocations(file, 0, length);
long splitSize = file.getBlockSize();

while (splitsRemaining()) {
splits.add(new FileSplit(path, ...));

}
}
return splits;

}

The following code shows how you can specify the InputFormat to use for a MapReduce job:

job.setInputFormatClass(TextInputFormat.class);

RECORDREADER

You’ll create and use the RecordReader class in the map tasks to read data from an input
split and to provide each record in the form of a key/value pair for use by mappers. A
task is commonly created for each input split, and each task has a single RecordReader
that’s responsible for reading the data for that input split. Figure 3.4 shows the
abstract methods you must implement.

The listStatus
method determines
all the input files

for the job.Retrieve all of
the file blocks.

The size of the splits is
the same as the block size
for the file. Each file can
have a different block size.

Create a split for
each file block and

add it to the result.

<<abstract>>
RecordReader<KEYIN,VALUEIN>

void initialize(InputSplit split, TaskAttemptContext context)

boolean nextKeyValue()

KEYIN getCurrentKey()

VALUEIN getCurrentValue()

float getProgress()

void close()

Type definitions
for map input keys

and values.

Initialization, which could
involve seeking into a file and

determining the logical starting
point of the next record.

Read the next record from
file and return a flag

indicating if the end of the
split has been reached.

Close any resources associated
with the data source.Return the current

progress of the reader.

Return
the current
record’s key.

Return
the current

record’s value.

Figure 3.4 The annotated RecordReader class and its abstract methods

66 CHAPTER 3 Data serialization—working with text and beyond

As shown previously, the TextInputFormat class creates a LineRecordReader to read records
from the input splits. The LineRecordReader directly extends the RecordReader class and
uses the LineReader class to read lines from the input split. The LineRecordReader uses the
byte offset in the file for the map key, and the contents of the line for the map value.
The following example shows a simplified version of the LineRecordReader (source at
http://mng.bz/mYO7):

public class LineRecordReader
extends RecordReader<LongWritable, Text> {

private LineReader in;
private LongWritable key = new LongWritable();
private Text value = new Text();

public void initialize(InputSplit genericSplit,
TaskAttemptContext context) throws IOException {

FileSplit split = (FileSplit) genericSplit;

// open the file and seek to the start of the split
FileSystem fs = file.getFileSystem(job);
FSDataInputStream fileIn = fs.open(split.getPath());
fileIn.seek(start);
in = new LineReader(fileIn, job);

if (notAtStartOfFile) {
start += in.readLine(...);

}

public boolean nextKeyValue() throws IOException {
key.set(pos);
return in.readLine(value, ...) > 0;

}
}

Because the LineReader class is easy, we’ll skip that code. The next step is to look at how
MapReduce supports data outputs.

3.1.2 Data output

MapReduce uses similar processes for supporting both output and input data. Two
classes must exist: an OutputFormat and a RecordWriter. The OutputFormat performs some
basic validation of the data sink properties, and the RecordWriter writes each reducer
output to the data sink.

OUTPUTFORMAT

Much like the InputFormat class, the OutputFormat class, as shown in figure 3.5, defines
the contracts that implementers must fulfill: checking the information related to the
job output, providing a RecordWriter, and specifying an output committer, which
allows writes to be staged and then made “permanent” upon task or job success. (Out-
put committing is covered in section 3.5.2.)

Open an
InputStream to

the input split file.

Seek to the start
of the input split.

Create a new
LineReader that
can read lines
from a stream. If you aren’t at the start of the file,

figure out where to start reading lines
by reading characters until you hit a

newline. At that point you’re ready to
start supplying lines to the map.After the initialize method

is called, it’s called
repeatedly by the
MapReduce framework until
it returns false, which
signifies the end of the
input split.

Set the byte offset in
the file as the key.

Read the next line into
the value. If you’ve gone
beyond the end of the

input split, return false.

http://svn.apache.org/repos/asf/hadoop/common/tags/release-0.20.2/src/mapred/org/apache/hadoop/mapreduce/lib/input/LineRecordReader.java

67Understanding inputs and outputs in MapReduce

Just like the TextInputFormat, the TextOutputFormat also extends a base class, FileOutput-
Format, which takes care of some complicated logistics such as output committing,
which we’ll cover later in this chapter. For now, let’s take a look at the work that
TextOutputFormat performs (source at http://mng.bz/lnR0):

public class TextOutputFormat<K, V> extends FileOutputFormat<K, V> {
public RecordWriter<K, V>

getRecordWriter(TaskAttemptContext job
) throws IOException, InterruptedException {

boolean isCompressed = getCompressOutput(job);
String keyValueSeparator= conf.get(
"mapred.textoutputformat.separator", "\t");

Path file = getDefaultWorkFile(job, extension);

FileSystem fs = file.getFileSystem(conf);
FSDataOutputStream fileOut = fs.create(file, false);

return new LineRecordWriter<K, V>(
fileOut, keyValueSeparator);

}

The following code shows how you can specify the OutputFormat that should be used
for a MapReduce job:

job.setOutputFormatClass(TextOutputFormat.class);

RECORDWRITER

You’ll use the RecordWriter to write the reducer outputs to the destination data sink.
It’s a simple class, as figure 3.6 illustrates.

<<abstract>>
OutputFormat<K,V>

RecordWriter<K, V> getRecordWriter(TaskAttemptContext context)

void checkOutputSpecs(JobContext context)

OutputCommitter getOutputCommitter(TaskAttemptContext context)

Type definitions for reduce
output keys and values.

Create an instance
to write data to the

destination.

Verify the output
details associated with the

MapReduce job are correct.

Get the associated output commi�er.
Output commi�ers are responsible for
“finalizing” the output a�er successful

task and job completion.

Figure 3.5 The annotated OutputFormat class

The default key/
value separator is
the tab character,
but this can be
changed with the
mapred.textoutput
format.separator
configuration
setting.

Creates a unique
filename for the

reducer in a
temporary directory.

Creates the
output file.

Returns a RecordWriter
used to write to the file.

http://svn.apache.org/repos/asf/hadoop/common/tags/release-0.20.2/src/mapred/org/apache/hadoop/mapreduce/lib/output/TextOutputFormat.java

68 CHAPTER 3 Data serialization—working with text and beyond

The TextOutputFormat returns a LineRecordWriter object, which is an inner class of Text-
OutputFormat, to perform the writing to the file. A simplified version of that class
(source at http://mng.bz/lnR0) is shown in the following example:

protected static class LineRecordWriter<K, V>
extends RecordWriter<K, V> {

protected DataOutputStream out;

public synchronized void write(K key, V value)
throws IOException {

writeObject(key);
out.write(keyValueSeparator);
writeObject(value);
out.write(newline);

}

private void writeObject(Object o) throws IOException {
out.write(o);

}

Whereas on the map side it’s the InputFormat that determines how many map tasks are
executed, on the reducer side the number of tasks is solely based on the value for
mapred.reduce.tasks set by the client (or if it isn’t set, the value is picked up from
mapred-site.xml, or from mapred-default.xml if it doesn’t exist in the site file).

 Now that you know what’s involved in working with input and output data in Map-
Reduce, it’s time to apply that knowledge to solving some common data-serialization
problems. Your first step in this journey is to learn how to work with common file for-
mats such as XML.

3.2 Processing common serialization formats
XML and JSON are industry-standard data interchange formats. Their ubiquity in the
technology industry is evidenced by their heavy adoption in data storage and

<<abstract>>
RecordWriter<K,V>

void write(K key, V value)

void close(TaskAttemptContext context)

Type definitions for reduce
output keys and values.

Write a logical key/value
record to the destination

data sink.

Clean up any resources
related to the destination

data sink.
Figure 3.6 The annotated
RecordWriter class overview

Write out the key,
separator, value,

and newline.

Write out the
Object to the
output stream.

69TECHNIQUE 8 MapReduce and XML

exchange. In this section we’ll look at how you can read and write these data formats
in MapReduce.

3.2.1 XML

XML has existed since 1998 as a mechanism to represent data that’s readable by
machine and human alike. It became a universal language for data exchange between
systems and is employed by many standards today, such as SOAP and RSS, and it’s used
as an open data format for products such as Microsoft Office.

TECHNIQUE 8 MapReduce and XML

MapReduce comes bundled with an InputFormat that works with text, but it doesn’t come
with one that supports XML. Working on a single XML file in parallel in MapReduce is
tricky because XML doesn’t contain a synchronization marker in its data format.2

■ Problem
You want to work with large XML files in MapReduce and be able to split and process
them in parallel.

■ Solution
Mahout’s XMLInputFormat can be used to work with XML files in HDFS with MapReduce.
It reads records that are delimited by specific XML begin and end tags. This technique
also explains how XML can be emitted as output in MapReduce output.

■ Discussion
MapReduce doesn’t contain built-in support for XML, so we’ll turn to another Apache
project—Mahout, a machine learning system—to provide an XML InputFormat. To
showcase the XML InputFormat, you can write a MapReduce job that uses Mahout’s
XML input format to read property names and values from Hadoop’s configuration
files. The first step is to set up the job configuration:

conf.set("xmlinput.start", "<property>");
conf.set("xmlinput.end", "</property>");

job.setInputFormatClass(XmlInputFormat.class);

Mahout’s XML input format is rudimentary; you need to tell it the exact start and end
XML tags that will be searched for in the file, and files are split (and records
extracted) using the following approach:

2 A synchronization marker is typically some binary data used to demarcate record boundaries. It allows a
reader to perform a random seek into a file and determine where the next record starts by reading until a
synchronization marker is found.

Define the string form of the XML start tag. Your
job is taking Hadoop config files as input, where each
configuration entry uses the property tag.Define the string

form of the
XML end tag.

Set the Mahout XML
input format class.

70 CHAPTER 3 Data serialization—working with text and beyond

1 Files are split into discrete sections along HDFS block boundaries for data locality.
2 Each map task operates on a specific input split. The map task seeks to the

start of the input split, and then continues to process the file until it hits the
first xmlinput.start.

3 The content between xmlinput.start and xmlinput.end is repeatedly emitted
until the end of the input split is reached.

Next you need to write a mapper to consume Mahout’s XML input format. The XML
element in Text form has been supplied, so you’ll need to use an XML parser to
extract content from the XML.3

public static class Map extends Mapper<LongWritable, Text,
Text, Text> {

@Override
protected void map(LongWritable key, Text value,

Mapper.Context context)
throws
IOException, InterruptedException {

String document = value.toString();
System.out.println("'" + document + "'");
try {
XMLStreamReader reader =

XMLInputFactory.newInstance().createXMLStreamReader(new
ByteArrayInputStream(document.getBytes()));

String propertyName = ";
String propertyValue = ";
String currentElement = ";
while (reader.hasNext()) {
int code = reader.next();
switch (code) {
case START_ELEMENT:
currentElement = reader.getLocalName();
break;

case CHARACTERS:
if (currentElement.equalsIgnoreCase("name")) {
propertyName += reader.getText();

} else if (currentElement.equalsIgnoreCase("value")) {
propertyValue += reader.getText();

}
break;

}
}
reader.close();
context.write(propertyName.trim(), propertyValue.trim());

} catch (Exception e) {
log.error("Error processing '" + document + "'", e);

}
}

}

Listing 3.1 Extracting content with Java’s STAX parser

3 GitHub source: https://github.com/alexholmes/hiped2/blob/master/src/main/java/hip/ch3/xml/
XMLMapReduceReader.java.

https://github.com/alexholmes/hiped2/blob/master/src/main/java/hip/ch3/xml/XMLMapReduceReader.java
https://github.com/alexholmes/hiped2/blob/master/src/main/java/hip/ch3/xml/XMLMapReduceReader.java

71TECHNIQUE 8 MapReduce and XML

The map is given a Text instance, which contains a String representation of the data
between the start and end tags. In this code, you use Java’s built-in Streaming API for
XML (StAX) parser to extract the key and value for each property and output them.

 If you run the MapReduce job against Cloudera’s core-site.xml and use the HDFS
cat command to show the output, you’ll see the following:

$ hadoop fs -put $HADOOP_HOME/conf/core-site.xml core-site.xml

$ hip hip.ch3.xml.XMLMapReduceReader \
--input core-site.xml \
--output output

$ hadoop fs -cat output/part*
fs.default.name hdfs://localhost:8020
hadoop.tmp.dir /usr/local/hadoop/tmp
...

This output shows that you’ve successfully worked with XML as an input serialization
format with MapReduce. Not only that, you can support huge XML files because the
input format supports splitting XML.

Writing XML
Having successfully read XML, the next question is how to write XML. In your reducer,
you have callbacks that occur before and after your main reduce method is called,
which you can use to emit a start and end tag, as shown in the following example.4

public static class Reduce
extends Reducer<Text, Text, Text, Text> {

@Override
protected void setup(

Context context)
throws IOException, InterruptedException {

context.write(new Text("<configuration>"), null);
}

@Override
protected void cleanup(

Context context)
throws IOException, InterruptedException {

context.write(new Text("</configuration>"), null);
}

private Text outputKey = new Text();
public void reduce(Text key, Iterable<Text> values,

Context context)
throws IOException, InterruptedException {

for (Text value : values) {
outputKey.set(constructPropertyXml(key, value));

Listing 3.2 A reducer to emit start and end tags

4 GitHub source: https://github.com/alexholmes/hiped2/blob/master/src/main/java/hip/ch3/xml/
XmlMapReduceWriter.java.

Use the setup method
to write the root
element start tag.

Use the cleanup method
to write the root
element end tag.

Construct a child XML element
for each key/value combination

provided in the reducer.

https://github.com/alexholmes/hiped2/blob/master/src/main/java/hip/ch3/xml/XmlMapReduceWriter.java
https://github.com/alexholmes/hiped2/blob/master/src/main/java/hip/ch3/xml/XmlMapReduceWriter.java

72 CHAPTER 3 Data serialization—working with text and beyond

context.write(outputKey, null);
}

}

public static String constructPropertyXml(Text name, Text value) {
return String.format(
"<property><name>%s</name><value>%s</value></property>",
name, value);

}
}

This could also be embedded in an OutputFormat, but I’ll leave that as a project for you
to experiment with. Writing an OutputFormat class is covered in section 3.5.1.
Pig
If you want to work with XML in Pig, the Piggy Bank library5 (a user-contributed
library of useful Pig code) contains an XMLLoader. It works much like this technique
and captures all of the content between a start and end tag, supplying it as a single
byte array field in a Pig tuple.
Hive
Currently, no means exist for working with XML in Hive. You’d have to write a custom
SerDe, which we’ll cover in chapter 9. 6

■ Summary
Mahout’s XmlInputFormat certainly helps you work with XML. But it’s sensitive to an
exact string match of both the start and end element names. If the element tag can
contain attributes with variable values, or if the generation of the element can’t be
controlled and could result in XML namespace qualifiers being used, then this
approach may not work for you. Also problematic will be situations where the element
name you specify is used as a descendant child element.

 If you have control over the XML laid out in the input, this exercise can be simpli-
fied by having a single XML element per line. This will let you use the built-in Map-
Reduce text-based input formats (such as TextInputFormat), which treat each line as a
record and split to preserve that demarcation.

 Another option worth considering is that of a preprocessing step, where you could
convert the original XML into a separate line per XML element, or convert it into an
altogether different data format, such as a SequenceFile or Avro, both of which solve
the splitting problem for you.

 Now that you have a handle on how to work with XML, let’s tackle another popular
serialization format, JSON.

3.2.2 JSON

JSON shares the machine- and human-readable traits of XML and has existed since the
early 2000s. It’s less verbose than XML, and it doesn’t have the rich typing and valida-
tion features available in XML.

5 Piggy Bank—user-defined pig functions: https://cwiki.apache.org/confluence/display/PIG/PiggyBank.
6 SerDe is a shortened form of Serializer/Deserializer; it’s the mechanism that allows Hive to read and write

data in HDFS.

Emit the
XML element.

73TECHNIQUE 9 MapReduce and JSON

TECHNIQUE 9 MapReduce and JSON

Imagine you have some code that’s downloading JSON data from a streaming REST
service, and every hour it writes a file into HDFS. The amount of data being down-
loaded is large, so each file produced is multiple gigabytes in size.

 You’ve been asked to write a MapReduce job that can take as input these large
JSON files. What you have here is a problem in two parts: first, MapReduce doesn’t
come with an InputFormat that works with JSON; second, how does one even go about
splitting JSON?

 Figure 3.7 shows the problem with splitting JSON. Imagine that MapReduce cre-
ated a split as shown in the figure. The map task that operates on this input split will
perform a seek to the start of the input split, and then needs to determine the start of
the next record. With file formats such as JSON and XML, it’s challenging to know
when the next record starts due to the lack of a synchronization marker, or any other
indicator that identifies the start of a record.

 JSON is harder to partition into distinct segments than a format such as XML
because JSON doesn’t have a token (like an end tag in XML) to denote the start or end
of a record.

■ Problem
You want to work with JSON inputs in MapReduce, and also to ensure that input JSON
files can be partitioned for concurrent reads.

■ Solution
The Elephant Bird LzoJsonInputFormat input format is used as a basis to create an
input format class to work with JSON elements. This technique also discusses another
approach using my open source project that can work with multiline JSON.

Input split N

Figure 3.7 Example
of issue with JSON and
multiple input splits

74 CHAPTER 3 Data serialization—working with text and beyond

■ Discussion
Elephant Bird (https://github.com/kevinweil/elephant-bird), an open source
project that contains useful utilities for working with LZOP compression, has an
LzoJsonInputFormat that can read JSON, though it requires that the input file be
LZOP-compressed. You can use the Elephant Bird code as a template for your own
JSON InputFormat that doesn’t have the LZOP compression requirement.

 This solution assumes that each JSON record is on a separate line. Your JsonRecord-
Format is simple and does nothing other than construct and return a JsonRecordFormat, so
we’ll skip over that code. The JsonRecordFormat emits LongWritable, MapWritable key/value
pairs to the mapper, where the MapWritable is a map of JSON element names and their values.

 Let’s take a look at how this RecordReader works. It uses the LineRecordReader, which
is a built-in MapReduce reader that emits a record for each line. To convert the line to
a MapWritable, the reader uses the following method:7

public static boolean decodeLineToJson(JSONParser parser, Text line,
MapWritable value) {

try {
JSONObject jsonObj = (JSONObject)parser.parse(line.toString());
for (Object key: jsonObj.keySet()) {
Text mapKey = new Text(key.toString());
Text mapValue = new Text();
if (jsonObj.get(key) != null) {
mapValue.set(jsonObj.get(key).toString());

}

value.put(mapKey, mapValue);
}
return true;

} catch (ParseException e) {
LOG.warn("Could not json-decode string: " + line, e);
return false;

} catch (NumberFormatException e) {
LOG.warn("Could not parse field into number: " + line, e);
return false;

}
}

The reader uses the json-simple parser (http://code.google.com/p/json-simple/) to
parse the line into a JSON object, and then iterates over the keys in the JSON object and
puts them, along with their associated values, into a MapWritable. The mapper is given
the JSON data in LongWritable, MapWritable pairs and can process the data accordingly.

 The following shows an example JSON object:

{
"results" :
[
{
"created_at" : "Thu, 29 Dec 2011 21:46:01 +0000",

7 GitHub source: https://github.com/alexholmes/hiped2/blob/master/src/main/java/hip/ch3/json/
JsonInputFormat.java.

https://github.com/alexholmes/hiped2/blob/master/src/main/java/hip/ch3/json/JsonInputFormat.java
https://github.com/alexholmes/hiped2/blob/master/src/main/java/hip/ch3/json/JsonInputFormat.java

75TECHNIQUE 9 MapReduce and JSON

"from_user" : "grep_alex",
"text" : "RT @kevinweil: After a lot of hard work by ..."

},
{

"created_at" : "Mon, 26 Dec 2011 21:18:37 +0000",
"from_user" : "grep_alex",
"text" : "@miguno pull request has been merged, thanks again!"

}
]

}

This technique assumes one JSON object per line. The following code shows the JSON
file you’ll work with in this example:

{"created_at" : "Thu, 29 Dec 2011 21:46:01 +0000","from_user" : ...
{"created_at" : "Mon, 26 Dec 2011 21:18:37 +0000","from_user" : ...

Now copy the JSON file into HDFS and run your MapReduce code. The MapReduce
code writes each JSON key/value pair to the output:

$ hadoop fs -put test-data/json/tweets.json tweets.json

$ hip hip.ch3.json.JsonMapReduce \
--input tweets.json \
--output output

$ hadoop fs -cat output/part*
text RT @kevinweil: After a lot of hard work by ...
from_user grep_alex
created_at Thu, 29 Dec 2011 21:46:01 +0000
text @miguno pull request has been merged, thanks again!
from_user grep_alex
created_at Mon, 26 Dec 2011 21:18:37 +0000

Writing JSON
An approach similar to what we looked at in section 3.2.1 for writing XML could also
be used to write JSON.

Pig
Elephant Bird contains a JsonLoader and an LzoJsonLoader, which you can use to work
with JSON in Pig. These loaders work with line-based JSON. Each Pig tuple contains a
chararray field for each JSON element in the line.

Hive
Hive contains a DelimitedJSONSerDe class which can serialize JSON, but unfortunately
can’t deserialize it, so you can’t load data into Hive using this SerDe.

■ Summary
This solution assumes that the JSON input is structured with one line per JSON object.
How would you work with JSON objects that were across multiple lines? An experimen-
tal project on GitHub8 works with multiple input splits over a single JSON file. This
approach searches for a specific JSON member and retrieves the containing object.

8 A multiline JSON InputFormat: https://github.com/alexholmes/json-mapreduce.

76 CHAPTER 3 Data serialization—working with text and beyond

 You can also review a Google Code project called hive-json-serde (http://
code.google.com/p/hive-json-serde/), which can support both serialization and
deserialization.

 As you can see, using XML and JSON in MapReduce is kludgy and has rigid require-
ments about how to lay out your data. Support for these two formats in MapReduce is
also complex and error-prone, because neither lends itself naturally to splitting. Clearly,
you need to look at alternative file formats that have built-in support for splittability.

 The next step is to look at more sophisticated file formats that are better suited to
working with MapReduce, such as Avro and SequenceFile.

3.3 Big data serialization formats
Unstructured text works well when you’re working with scalar or tabular data. Semi-
structured text formats such as XML and JSON can model more sophisticated data
structures that include composite fields or hierarchical data. But when you’re working
with big data volumes, you’ll need serialization formats with compact serialized forms
that natively support partitioning and have schema evolution features.

 In this section we’ll compare the serialization formats that work best with big data
in MapReduce and follow up with how you can use them with MapReduce.

3.3.1 Comparing SequenceFile, Protocol Buffers, Thrift, and Avro

In my experience, the following characteristics are important when selecting a data
serialization format:

■ Code generation—Some serialization formats are accompanied by libraries with
code-generation abilities that allow you to generate rich objects, making it eas-
ier for you to interact with your data. The generated code also provides the
added benefit of type-safety to make sure that your consumers and producers
are working with the right data types.

■ Schema evolution—Data models evolve over time, and it’s important that your
data formats support your need to modify your data models. Schema evolution
allows you to add, modify, and in some cases delete attributes, while at the same
time providing backward and forward compatibility for readers and writers.

■ Language support—It’s likely that you’ll need to access your data in more than
one programming language, and it’s important that the mainstream languages
have support for a data format.

■ Transparent compression—Data compression is important given the volumes of
data you’ll work with, and a desirable data format has the ability to internally
compress and decompress data on writes and reads. It’s a much bigger head-
ache for you as a programmer if the data format doesn’t support compression,
because it means that you’ll have to manage compression and decompression
as part of your data pipeline (as is the case when you’re working with text-based
file formats).

http://code.google.com/p/hive-json-serde/
http://code.google.com/p/hive-json-serde/

77Big data serialization formats

■ Splittability—Newer data formats understand the importance of supporting mul-
tiple parallel readers that are reading and processing different chunks of a
large file. It’s crucial that file formats contain synchronization markers (and
thereby support the ability for a reader to perform a random seek and scan to
the start of the next record).

■ Support in MapReduce and the Hadoop ecosystem—A data format that you select
must have support in MapReduce and other critical Hadoop ecosystem proj-
ects, such as Hive. Without this support, you’ll be responsible for writing the
code to make a file format work with these systems.

Table 3.1 compares the more popular data serialization frameworks to see how they
stack up against each other. Additional background on these technologies is provided
in the following discussion.

Let’s look at each of these formats in more detail.

SequenceFile
The SequenceFile format was created to work with MapReduce, Pig, and Hive, and
therefore integrates well with all of those tools. Its shortcomings are mainly its lack of
code generation and versioning support, as well as limited language support.

Protocol Buffers
The Protocol Buffers format has been used heavily by Google for interoperability. Its
strengths are its versioning support and compact binary format. Downsides include its lack
of support in MapReduce (or in any third-party software) for reading files generated
by Protocol Buffers serialization. Not all is lost, however; we’ll look at how Elephant Bird
uses Protocol Buffers serialization within a higher-level container file in section 3.3.3.

Table 3.1 Feature comparison of data serialization frameworks

Library
Code

generation
Schema
evolution

Language
support

Transparent
compression

Splittable
Native support
in MapReduce

Pig and Hive
support

Sequence-
File

No No Java, Python Yes Yes Yes Yes

Protocol
Buffers

Yes
(optional)

Yes C++, Java,
Python, Perl,
Ruby

No No No No

Thrift Yes
(mandatory)

Yes C, C++, Java,
Python, Ruby,
Perl

Noa

a Thrift does support compression, but not in the Java library.

No No No

Avro Yes
(optional)

Yes C, C++, Java,
Python, Ruby,
C#

Yes Yes Yes Yes

Parquet No Yes Java, Python
(C++ planned
in 2.0)

Yes Yes Yes Yes

78 CHAPTER 3 Data serialization—working with text and beyond

Thrift
Thrift was developed at Facebook as a data-serialization and RPC framework. It doesn’t
have support in MapReduce for its native data-serialization format, but it can support
different wire-level data representations, including JSON and various binary encod-
ings. Thrift also includes an RPC layer with various types of servers, including a non-
blocking implementation. We’ll ignore the RPC capabilities for this chapter and focus
on the data serialization.

Avro
The Avro format is Doug Cutting’s creation to help address the shortcomings of
SequenceFile.

Parquet
Parquet is a columnar file format with rich Hadoop system support, and it works well
with data models such as Avro, Protocol Buffers, and Thrift. Parquet is covered in
depth in section 3.4.

 Based on certain evaluation criteria, Avro seems to be the best fit as a data serializa-
tion framework in Hadoop. SequenceFile is a close second due to its inherent compat-
ibility with Hadoop (it was designed for use with Hadoop).

 You can review a useful jvm-serializers project at https://github.com/eishay/jvm-
serializers/wiki/, which runs various benchmarks to compare file formats based on
items such as serialization and deserialization times. It contains benchmarks for Avro,
Protocol Buffers, and Thrift, along with a number of other frameworks.

 After looking at how the various data-serialization frameworks compare, we’ll dedi-
cate the next few sections to working with them. We’ll start off with a look at
SequenceFile.

3.3.2 SequenceFile

Because SequenceFile was created for use with MapReduce,
this format arguably offers the highest level of integration
support in conjunction with MapReduce, Pig, and Hive.
SequenceFile is a splittable binary file format that stores data
in the form of key/value pairs. All SequenceFiles share the
same header format, as shown in figure 3.8.

 SequenceFiles come in three types, which vary based on
how you apply compression. In addition, each type has its
own corresponding Writer classes.

Uncompressed
Uncompressed SequenceFiles are written using the
SequenceFile.Writer class. No advantage exists for this over
the compressed formats, because compression generally
reduces your storage footprint and is more efficient for
reads and writes. The file format is shown in figure 3.9.

Version

Header

Key class name

Value class name

Is compressed?

Is block compressed?

Compression codec

Metadata

Sync

Figure 3.8 SequenceFile
header format

https://github.com/eishay/jvm-serializers/wiki/
https://github.com/eishay/jvm-serializers/wiki/

79Big data serialization formats

Record-compressed
Record-compressed SequenceFiles are written using the SequenceFile.RecordCompress-
Writer class. When a record is added to the SequenceFile, it’s immediately compressed
and written to the file. The disadvantage of this approach is that your compression
ratio will suffer compared to block compression. This file format, which is essentially
the same as that of uncompressed SequenceFiles, is shown in figure 3.9.

Block-compressed
Block-compressed SequenceFiles are written using the SequenceFile.BlockCompress-
Writer class. By default, the block size is the same as the HDFS block size, although this
can be overridden. The advantage to this compression is that it’s more aggressive; the
whole block is compressed, rather than compressing at the record level. Data isn’t
written until it reaches the block size, at which point the whole block is compressed,
resulting in good overall compression. The file format is shown in figure 3.10.

 You only need one Reader class (SequenceFile.Reader) to read all three types of
SequenceFiles. Even the Writer is abstracted, because you can call SequenceFile.create-
Writer to choose the preferred format, and it returns a base class that can be used for
writing regardless of compression.

Two of the three
SequenceFile formats
(uncompressed and
record-compressed)
utilize the same file

format.

Header Record 1 Record 2 Record 3Sync

Record length Key length Key Value

The only difference between
uncompressed and record-compressed

is compression of the value.

Figure 3.9 File format for record-compressed and uncompressed SequenceFiles

Header Block 1 Block 2 Block 3Sync Sync

Number of records

Length Key lengths

Length Keys

Length Value lengths

Length Values

Each one of these
fields contains N entries, where

N is the number of records.
They are also all compressed.

.....Block-compressed
file format

N
N

Figure 3.10 Block-compressed SequenceFile format

80 CHAPTER 3 Data serialization—working with text and beyond

SequenceFiles have a pluggable serialization framework. Written keys and values must
have a related org.apache.hadoop.io.serializer.Serializer and Deserializer for mar-
shaling and unmarshaling. Hadoop comes with four serializers: Avro, Java, Tether (for
binary data contained within a TetherData class), and Writable (the default serializer).9

Custom SequenceFile serialization If you want your SequenceFile to contain
objects that aren’t Writable or Serializable, you’ll need to implement your
own Serializer and register it. You register it by updating core-site.xml and
appending the class name of the custom serialization implementation to the
io.serializations property.

SequenceFiles are splittable because a synchronization marker is written approxi-
mately every 6 KiB (1 kibibyte = 1024 bytes) in the file for record-based files, and
before every block for block-based files.

 Now let’s look at how to use SequenceFiles in MapReduce.

TECHNIQUE 10 Working with SequenceFiles

Working with text in MapReduce can start to get tricky when you have to support com-
plex types of data, which may include nonscalar data types such as lists or dictionaries.
In addition, large compressed text files require some additional wrangling if Map-
Reduce’s data locality properties are important to you. These challenges can be over-
come by using a file format such as SequenceFile.

■ Problem
You want to work with a structured file format in MapReduce that you can use to
model complex data structures and that also supports compression and splittable
inputs.

■ Solution
This technique looks at how the SequenceFile file format can be used from both
standalone applications and MapReduce.

■ Discussion
The SequenceFile format offers a high level of integration with computational tools
such as MapReduce and can also model complex data structures. We’ll examine how
to read and write SequenceFiles, and also how to use them with MapReduce, Pig,
and Hive.

 We’ll work with the stock data for this technique. The most common serialization
method used with SequenceFiles is Writable, so you’ll need to create a Writable to rep-
resent the stock data. The key elements of writing a complex Writable are extending
the Writable class and defining serialization and deserialization methods, as shown in
the following listing.10

9 Writable is an interface in Hadoop used to support general-purpose data serialization, and it’s used for
sending data across the wire between Hadoop components. Yahoo has a good introduction to Writables at
http://developer.yahoo.com/hadoop/tutorial/module5.html#writable.

10 GitHub source: https://github.com/alexholmes/hiped2/blob/master/src/main/java/hip/ch3/
StockPriceWritable.java.

https://github.com/alexholmes/hiped2/blob/master/src/main/java/hip/ch3/StockPriceWritable.java
https://github.com/alexholmes/hiped2/blob/master/src/main/java/hip/ch3/StockPriceWritable.java

81TECHNIQUE 10 Working with SequenceFiles

public class StockPriceWritable
implements WritableComparable<StockPriceWritable>, Cloneable {

String symbol;
String date;
double open;
double high;
double low;
double close;
int volume;
double adjClose;

@Override
public void write(DataOutput out) throws IOException {
WritableUtils.writeString(out, symbol);
WritableUtils.writeString(out, date);
out.writeDouble(open);
out.writeDouble(high);
out.writeDouble(low);
out.writeDouble(close);
out.writeInt(volume);
out.writeDouble(adjClose);

}

@Override
public void readFields(DataInput in) throws IOException {
symbol = WritableUtils.readString(in);
date = WritableUtils.readString(in);
open = in.readDouble();
high = in.readDouble();
low = in.readDouble();
close = in.readDouble();
volume = in.readInt();
adjClose = in.readDouble();

}

public static StockPriceWritable fromLine(String line)
throws IOException {

CSVParser parser = new CSVParser();
String[] parts = parser.parseLine(line);

StockPriceWritable stock = new StockPriceWritable(
parts[0], parts[1], Double.valueOf(parts[2]),
Double.valueOf(parts[3]),
Double.valueOf(parts[4]),
Double.valueOf(parts[5]),
Integer.valueOf(parts[6]),
Double.valueOf(parts[7])

);
return stock;

}
}

Listing 3.3 A Writable implementation to represent a stock price

Write out the fields of this
Writable in byte form to

the output stream.

Read the stock fields in binary
form into the Writable fields.
Note that this method reads

fields in the same order as they
were written in the write method.

This helper method engineers
a StockPriceWritable from a

CSV line. It uses the open
source OpenCSV project to

parse the CSV.

82 CHAPTER 3 Data serialization—working with text and beyond

Now that you have your Writable, you’ll need to write some code that will create a
SequenceFile. You’ll read the stocks file from the local disk, create the StockWritable,
and write it to your SequenceFile, using the stock symbol as your key:11

SequenceFile.Writer writer =
SequenceFile.createWriter(conf,

SequenceFile.Writer.file(outputPath),
SequenceFile.Writer.keyClass(Text.class),
SequenceFile.Writer.valueClass(StockPriceWritable.class),
SequenceFile.Writer.compression(

SequenceFile.CompressionType.BLOCK,
new DefaultCodec())

);
try {
Text key = new Text();

for (String line : FileUtils.readLines(inputFile)) {
StockPriceWritable stock = StockPriceWritable.fromLine(line);

System.out.println("Stock = " + stock);

key.set(stock.getSymbol());

writer.append(key, stock);
}

} finally {
writer.close();

}

Great! Now how do you go about reading the files created with your writer?12

SequenceFile.Reader reader =
new SequenceFile.Reader(conf,

SequenceFile.Reader.file(inputFile));

try {
System.out.println("Is block compressed = " +

reader.isBlockCompressed());

Text key = new Text();
StockPriceWritable value = new StockPriceWritable();

while (reader.next(key, value)) {
System.out.println(key + "," + value);

}
} finally {
reader.close();

}

11 GitHub source: https://github.com/alexholmes/hiped2/blob/master/src/main/java/hip/ch3/seqfile/
writable/SequenceFileStockWriter.java.

12 GitHub source: https://github.com/alexholmes/hiped2/blob/master/src/main/java/hip/ch3/seqfile/
writable/SequenceFileStockReader.java.

Create a new SequenceFile
writer, specifying that you
want block-level compression.
Also set the types for the
keys and values you’ll be
writing (in this case Text
and IntWritable). Any
Hadoop compression codec
can be used with
SequenceFiles; see chapter 4
for more details on
compression.

Read all the lines in the
input file and then

split them into key/
value pairs.

Create the StockPriceWritable
instance, using the fromLine

helper method in the
StockPriceWritable class.

Append a record to
the SequenceFile.

Create a reader that can read
records from the SequenceFile. Note
that you don’t need to specify that

you used block-level compression in
the file or what key/value types are

contained in the file.

The next method on the reader
returns true until it hits the end
of the file. It also sets the key

and value settings.

https://github.com/alexholmes/hiped2/blob/master/src/main/java/hip/ch3/seqfile/writable/SequenceFileStockWriter.java
https://github.com/alexholmes/hiped2/blob/master/src/main/java/hip/ch3/seqfile/writable/SequenceFileStockWriter.java
https://github.com/alexholmes/hiped2/blob/master/src/main/java/hip/ch3/seqfile/writable/SequenceFileStockReader.java
https://github.com/alexholmes/hiped2/blob/master/src/main/java/hip/ch3/seqfile/writable/SequenceFileStockReader.java

83TECHNIQUE 10 Working with SequenceFiles

Now you need to prove that it works by writing and reading a file:

$ cat test-data/stocks.txt
AAPL,2009-01-02,85.88,91.04,85.16,90.75,26643400,90.75
AAPL,2008-01-02,199.27,200.26,192.55,194.84,38542100,194.84
AAPL,2007-01-03,86.29,86.58,81.90,83.80,44225700,83.80
...
$ hip hip.ch3.seqfile.writable.SequenceFileStockWriter \

--input test-data/stocks.txt \
--output stocks.seqfile

$ hip hip.ch3.seqfile.writable.SequenceFileStockReader \
--input stocks.seqfile

AAPL,StockPriceWritable[symbol=AAPL,date=2009-01-02,open=85.88,...]
AAPL,StockPriceWritable[symbol=AAPL,date=2008-01-02,open=199.27,...]
AAPL,StockPriceWritable[symbol=AAPL,date=2007-01-03,open=86.29,...]
...

How would you process this SequenceFile in MapReduce? Luckily, both SequenceFile-
InputFormat and SequenceFileOutputFormat integrate nicely with MapReduce. Remem-
ber earlier in this chapter when we talked about how the default SequenceFile
serialization supports Writable classes for serialization? Because Writable is the native
data format in MapReduce, using SequenceFiles with MapReduce is totally transpar-
ent. See if you agree. The following code shows a MapReduce job with an identity
mapper and reducer:13, 14

Configuration conf = new Configuration();
Job job = new Job(conf);
job.setJarByClass(SequenceFileStockMapReduce.class);
job.setOutputKeyClass(Text.class);
job.setOutputValueClass(IntWritable.class);
job.setInputFormatClass(SequenceFileInputFormat.class);
job.setOutputFormatClass(SequenceFileOutputFormat.class);
SequenceFileOutputFormat.setCompressOutput(job, true);
SequenceFileOutputFormat.setOutputCompressionType(job,

SequenceFile.CompressionType.BLOCK);
SequenceFileOutputFormat.setOutputCompressorClass(job,

DefaultCodec.class);

FileInputFormat.setInputPaths(job, new Path(input));
Path outPath = new Path(output);
FileOutputFormat.setOutputPath(job, outPath);
outPath.getFileSystem(conf).delete(outPath, true);

job.waitForCompletion(true);

13 GitHub source: https://github.com/alexholmes/hiped2/blob/master/src/main/java/hip/ch3/seqfile/
writable/SequenceFileStockMapReduce.java.

14 An identity function is a mathematical term to denote a function that returns the same value that was used as
its argument. In MapReduce this means the same thing—the map identity function emits all the key/value
pairs that it is supplied, as does the reducer, without any transformation or filtering. A job that doesn’t explic-
itly set a map or reduce class results in Hadoop using a built-in identity function.

The SequenceFileInputFormat
determines the type of Writable keys

and values and emits these types as
key/value pairs to the mapper.

Specifies an output
format for
SequenceFiles.

Specifies block-level
compression (you can also set
this to RECORD or NONE).

Sets the compression
codec that should be

used; in this case you’re
using the default codec,
which is the DEFLATE

compression algorithm
used by zip and gzip

file formats.

https://github.com/alexholmes/hiped2/blob/master/src/main/java/hip/ch3/seqfile/writable/SequenceFileStockMapReduce.java
https://github.com/alexholmes/hiped2/blob/master/src/main/java/hip/ch3/seqfile/writable/SequenceFileStockMapReduce.java

84 CHAPTER 3 Data serialization—working with text and beyond

Now you can run the identity MapReduce job against the stocks SequenceFile that you
created earlier in this technique:

$ hip hip.ch3.seqfile.writable.SequenceFileStockMapReduce \
--input stocks.seqfile \
--output output

Because all it’s doing is echoing the input to the output, you should see identical con-
tent in both files. You can make sure that’s the case by reading in the job output file.

 First of all, how do you verify that the output is a SequenceFile? Easy, just cat it—
the first three bytes of a SequenceFile are SEQ, followed by a fourth byte containing
the SequenceFile version, which is then followed by the key and value classes:

$ hadoop fs -cat output/part*
SEQorg.apache.hadoop.io.Text&hip.ch3.StockPriceWritable...
$ reset

Looks good. Now try using the SequenceFile reader code you wrote earlier to dump it
to standard output:

$ hip hip.ch3.seqfile.writable.SequenceFileStockReader \
--input output/part-r-00000

AAPL,StockPriceWritable[symbol=AAPL,date=2008-01-02,open=199.27,...]
AAPL,StockPriceWritable[symbol=AAPL,date=2007-01-03,open=86.29,...]
AAPL,StockPriceWritable[symbol=AAPL,date=2009-01-02,open=85.88,...]
...

That was easy. Because SequenceFiles are key/value-based, and the default serializa-
tion data format for SequenceFiles is Writable, the use of SequenceFiles is completely
transparent to your map and reduce classes. We demonstrated this by using Map-
Reduce’s built-in identity map and reduce classes with the SequenceFile as input. The
only work you had to do was to tell MapReduce to use the SequenceFile-specific input
and output format classes, which are built into MapReduce.

Reading SequenceFiles in Pig
By writing your own Writable you created more work for yourself with non-MapReduce
tools such as Pig. Pig works well with Hadoop’s built-in scalar Writables such as Text and
IntWritable, but it doesn’t have support for custom Writables. You’ll need to write your
own LoadFunc to support the StockPriceWritable. This will work well with MapReduce, but
Pig’s SequenceFileLoader won’t work with your custom Writable, which means that you’ll
need to write your own Pig loader to process your files. The appendix contains details
on installing Pig.

 The LoadFunc for Pig is straightforward, as can be seen in the following listing.15

15 GitHub source: https://github.com/alexholmes/hiped2/blob/master/src/main/java/hip/ch3/seqfile/
writable/SequenceFileStockLoader.java.

Linux command to reset your
terminal; useful after sending

binary data to your screen

https://github.com/alexholmes/hiped2/blob/master/src/main/java/hip/ch3/seqfile/writable/SequenceFileStockLoader.java
https://github.com/alexholmes/hiped2/blob/master/src/main/java/hip/ch3/seqfile/writable/SequenceFileStockLoader.java

85TECHNIQUE 10 Working with SequenceFiles

public class SequenceFileStockLoader extends FileInputLoadFunc {

private SequenceFileRecordReader<Text, StockPriceWritable> reader;

@Override
public Tuple getNext() throws IOException {
boolean next;
try {
next = reader.nextKeyValue();

} catch (InterruptedException e) {
throw new IOException(e);

}

if (!next) return null;

Object value = reader.getCurrentValue();

if (value == null) {
return null;

}
if (!(value instanceof StockPriceWritable)) {

return null;
}
StockPriceWritable w = (StockPriceWritable) value;

return TupleFactory.getInstance().newTuple(Arrays.asList(
w.getSymbol(), w.getDate(), w.getOpen(),
w.getHigh(), w.getLow(), w.getClose(),
w.getVolume(), w.getAdjClose()

));
}

@SuppressWarnings("unchecked")
@Override
public InputFormat getInputFormat() throws IOException {
return new SequenceFileInputFormat<Text, StockPriceWritable>();

}

@SuppressWarnings("unchecked")
@Override
public void prepareToRead(RecordReader reader, PigSplit split)

throws IOException {
this.reader = (SequenceFileRecordReader) reader;

}

@Override
public void setLocation(String location, Job job)

throws IOException {
FileInputFormat.setInputPaths(job, location);

}
}

Now you can try to load and dump the stock SequenceFile in Pig:

Listing 3.4 A Pig loader function that converts a StockPriceWritable into a Pig tuple

86 CHAPTER 3 Data serialization—working with text and beyond

$ pig
grunt> REGISTER $HIP_HOME/*.jar;
grunt> REGISTER $HIP_HOME/lib/*.jar;
grunt> DEFINE SequenceFileStockLoader

hip.ch3.seqfile.writable.SequenceFileStockLoader();
grunt> stocks = LOAD 'stocks.seqfile' USING SequenceFileStockLoader;
grunt> dump stocks;
(AAPL,2009-01-02,85.88,91.04,85.16,90.75,26643400,90.75)
(AAPL,2008-01-02,199.27,200.26,192.55,194.84,38542100,194.84)
(AAPL,2007-01-03,86.29,86.58,81.9,83.8,44225700,83.8)
(AAPL,2006-01-03,72.38,74.75,72.25,74.75,28829800,74.75)
(AAPL,2005-01-03,64.78,65.11,62.6,63.29,24714000,31.65)
...

Hive
Hive contains built-in support for SequenceFiles, but it has two restrictions. First, it
ignores the key portion of each record. Second, out of the box it only works with
SequenceFile values that are Writable, and it supports them by performing a
toString() to convert the value into a Text form.

 In our example, you have a custom Writable, so you had to write a Hive SerDe,
which deserialized your Writable into a form Hive could understand. The resulting
data definition language (DDL) statement is as follows:16

$ export HADOOP_CLASSPATH=$HIP_HOME/hip-<version>.jar

$ hive

hive> CREATE TABLE stocks (
symbol string,
dates string,
open double,
high double,
low double,
close double,
volume int,
adjClose double

)
ROW FORMAT SERDE 'hip.ch3.StockWritableSerDe'
STORED AS SEQUENCEFILE;

hive> LOAD DATA INPATH 'stocks.seqfile' INTO TABLE stocks;

hive> select * from stocks;

AAPL 2009-01-02 85.88 91.04 85.16 90.75 26643400 90.75
AAPL 2008-01-02 199.27 200.26 192.55 194.84 38542100 194.84
AAPL 2007-01-03 86.29 86.58 81.9 83.8 44225700 83.8
AAPL 2006-01-03 72.38 74.75 72.25 74.75 28829800 74.75
AAPL 2005-01-03 64.78 65.11 62.6 63.29 24714000 31.65
...

16 The code for StockWritableSerDe is on GitHub at https://github.com/alexholmes/hiped2/blob/master/
src/main/java/hip/ch3/StockWritableSerDe.java.

https://github.com/alexholmes/hiped2/blob/master/src/main/java/hip/ch3/StockWritableSerDe.java
https://github.com/alexholmes/hiped2/blob/master/src/main/java/hip/ch3/StockWritableSerDe.java

87TECHNIQUE 11 Using SequenceFiles to encode Protocol Buffers

We’ll cover custom Hive SerDe examples in more detail in chapter 9.

■ Summary
SequenceFiles are useful in that they solve two problems that make using MapReduce
challenging: they’re natively splittable, and they also have built-in support for com-
pression, which makes it transparent to the user. They’re also useful as containers for
other file formats that don’t integrate as well into MapReduce. The thorn in the side
of SequenceFiles is that they lack multilanguage support, which limits the range of
tools that can interoperate with your data. But if your data mostly stays in HDFS and is
processed with MapReduce (or Hive/Pig), SequenceFiles may be just what you’re
looking for.

 Another challenge for SequenceFiles is their lack of schema evolution when work-
ing with Writables—making a change to your Writable won’t be backward or forward
compatible unless you build that into your implementation. This can be solved by
using Protocol Buffers as your key/value type.

 This technique looked at how to use SequenceFiles with Writables, which
SequenceFile knows how to encode and decode within its file format. How about mak-
ing SequenceFiles work with data other than Writables?

TECHNIQUE 11 Using SequenceFiles to encode Protocol Buffers

Writables are first-class citizens in SequenceFiles, and the APIs have specific methods
to read and write Writable instances, which you saw in the previous technique. This
doesn’t mean that SequenceFiles are limited to working with Writables—in fact, they
can work with any data type as long as there’s a serialization implementation for your
data type that plugs into Hadoop’s serialization framework.

 Protocol Buffers is a sophisticated data format that Google open-sourced; it pro-
vides schema evolution and efficient data-encoding capabilities. (More details on Pro-
tocol Buffers are presented in section 3.3.3). In this technique, you’ll implement a
Protocol Buffers serialization and see how it allows you to work with native Protocol
Buffers objects in MapReduce.

■ Problem
You want to work with Protocol Buffers data in MapReduce.

■ Solution
Write a Protocol Buffers serializer, which enables you to encode Protocol Buffers seri-
alized data within SequenceFiles.

■ Discussion
Hadoop uses its own serialization framework to serialize and deserialize data for per-
formance reasons. An example use of this framework is when map outputs are written
to disk as part of the shuffle phase. All map outputs must have a corresponding
Hadoop serialization class that knows how to read and write data to a stream. Writ-
ables, which are the most commonly used data types in MapReduce, have a Writable-
Serialization class that uses the readFields and writeFields methods on the Writable
interface to perform the serialization.

88 CHAPTER 3 Data serialization—working with text and beyond

 SequenceFiles use the same serialization framework to serialize and deserialize
data within their key/value records, which is why SequenceFiles support Writables out
of the box. Therefore, encoding a data type into a SequenceFile is just a matter of
writing your own Hadoop serialization instance.

 Your first step in getting Protocol Buffers to work with SequenceFiles is to write
your own serialization class. Each serialization class must support serialization and
deserialization, so let’s start with the serializer, whose job is to write records to an out-
put stream.

 The following code uses the MessageLite class as the type; it’s a superclass of all gen-
erated Protocol Buffers classes. The MessageLite interface provides methods to write
Protocol Buffers to an output stream and read them from an input stream, as you’ll
see in the following code:17

static class ProtobufSerializer extends Configured implements
Serializer<MessageLite> {

private OutputStream out;

@Override
public void open(OutputStream out) {
this.out = out;

}

@Override
public void serialize(MessageLite w) throws IOException {
w.writeDelimitedTo(out);

}

@Override
public void close() throws IOException {

IOUtils.closeStream(out);
}

}

Next up is the deserializer, whose job is to populate a Protocol Buffers object from an
input stream. Things are a little trickier here compared to the serializer, as Protocol
Buffers objects can only be engineered via their builder classes: 18

static class ProtobufDeserializer extends Configured
implements Deserializer<MessageLite> {

private Class<? extends MessageLite> protobufClass;
private InputStream in;

public ProtobufDeserializer(Configuration conf,
Class<? extends MessageLite> c) {

17 GitHub source: https://github.com/alexholmes/hiped2/blob/master/src/main/java/hip/ch3/seqfile/
protobuf/ProtobufSerialization.java.

18 GitHub source: https://github.com/alexholmes/hiped2/blob/master/src/main/java/hip/ch3/seqfile/
protobuf/ProtobufSerialization.java.

Use a Protocol Buffers
method to serialize the

object to the output stream.

The constructor is supplied the class of
object being deserialized, which is a

MessageLite protobuf class.

https://github.com/alexholmes/hiped2/blob/master/src/main/java/hip/ch3/seqfile/protobuf/ProtobufSerialization.java
https://github.com/alexholmes/hiped2/blob/master/src/main/java/hip/ch3/seqfile/protobuf/ProtobufSerialization.java
https://github.com/alexholmes/hiped2/blob/master/src/main/java/hip/ch3/seqfile/protobuf/ProtobufSerialization.java
https://github.com/alexholmes/hiped2/blob/master/src/main/java/hip/ch3/seqfile/protobuf/ProtobufSerialization.java

89TECHNIQUE 11 Using SequenceFiles to encode Protocol Buffers

setConf(conf);
this.protobufClass = c;

}

@Override
public void open(InputStream in) {

this.in = in;
}

@Override
public MessageLite deserialize(MessageLite w) throws IOException {

MessageLite.Builder builder;

if (w == null) {
builder = newBuilder();

} else {
builder = w.newBuilderForType();

}

if (builder.mergeDelimitedFrom(in)) {
return builder.build();

}
return null;

}

public MessageLite.Builder newBuilder() {
return (MessageLite.Builder)

MethodUtils.invokeExactStaticMethod(
protobufClass, "newBuilder");

}

@Override
public void close() throws IOException {
IOUtils.closeStream(in);

}
}

Now you need to configure Hadoop’s serialization framework to use your new
serializer. This is accomplished by appending your new serializer to the
io.serializations property. It’s usually good to write a helper method to make this
easy for clients. The following example shows the standard serializers bundled with
Hadoop 2 being appended with the serialization class you just created. The source for
ProtobufSerialization isn’t shown here, but all it does is return instances of
ProtobufSerializer and ProtobufDeserializer:19

public static void register(Configuration conf) {
String[] serializations = conf.getStrings("io.serializations");

if (ArrayUtils.isEmpty(serializations)) {

19 GitHub source: https://github.com/alexholmes/hiped2/blob/master/src/main/java/hip/ch3/seqfile/
protobuf/ProtobufSerialization.java.

Generate a new Protocol Buffers
builder instance if an existing
MessageLite wasn’t supplied.

Generate a new builder using an
existing MessageLite instance.

Populate the builder from the input
stream. The method returns a Boolean

indicating whether the end of the
stream has been reached.

A helper method to engineer a
builder object. All Protocol Buffers

classes have a static newBuilder
method to create builders.

https://github.com/alexholmes/hiped2/blob/master/src/main/java/hip/ch3/seqfile/protobuf/ProtobufSerialization.java
https://github.com/alexholmes/hiped2/blob/master/src/main/java/hip/ch3/seqfile/protobuf/ProtobufSerialization.java

90 CHAPTER 3 Data serialization—working with text and beyond

serializations = new String[] {
WritableSerialization.class.getName(),
AvroSpecificSerialization.class.getName(),
AvroReflectSerialization.class.getName()

};
}

serializations = (String[]) ArrayUtils.add(
serializations,
ProtobufSerialization.class.getName()

);

conf.setStrings("io.serializations", serializations);
}

Next you need to generate a new Protocol Buffers–encoded SequenceFile. The key
item here is that you’re calling the register method (shown in the preceding code)
prior to using the SequenceFile writer:20

Configuration conf = super.getConf();

ProtobufSerialization.register(conf);

SequenceFile.Writer writer =
SequenceFile.createWriter(conf,

SequenceFile.Writer.file(outputPath),
SequenceFile.Writer.keyClass(Text.class),
SequenceFile.Writer.valueClass(Stock.class),
SequenceFile.Writer.compression(

SequenceFile.CompressionType.BLOCK,
new DefaultCodec())

);

Text key = new Text();

for (Stock stock : StockUtils.fromCsvFile(inputFile)) {
key.set(stock.getSymbol());
writer.append(key, stock);

}

On to the MapReduce code. What’s great about your new serializer is that the map
and reduce classes can work with the Protocol Buffers objects directly. Again, the key
thing here is that you’re configuring the job to make available the Protocol Buffers
serializer. In the following example you use an identity function to demonstrate how
Protocol Buffers objects can be used as first-class citizens in MapReduce when
encoded in SequenceFiles:21

// job driver
Job job = new Job(conf);

20 GitHub source: https://github.com/alexholmes/hiped2/blob/master/src/main/java/hip/ch3/seqfile/
protobuf/SequenceFileProtobufWriter.java.

21 GitHub source: https://github.com/alexholmes/hiped2/blob/master/src/main/java/hip/ch3/seqfile/
protobuf/SequenceFileProtobufMapReduce.java.

https://github.com/alexholmes/hiped2/blob/master/src/main/java/hip/ch3/seqfile/protobuf/SequenceFileProtobufWriter.java
https://github.com/alexholmes/hiped2/blob/master/src/main/java/hip/ch3/seqfile/protobuf/SequenceFileProtobufWriter.java
https://github.com/alexholmes/hiped2/blob/master/src/main/java/hip/ch3/seqfile/protobuf/SequenceFileProtobufMapReduce.java
https://github.com/alexholmes/hiped2/blob/master/src/main/java/hip/ch3/seqfile/protobuf/SequenceFileProtobufMapReduce.java

91TECHNIQUE 11 Using SequenceFiles to encode Protocol Buffers

job.setOutputKeyClass(Text.class);
job.setOutputValueClass(Stock.class);
job.setInputFormatClass(SequenceFileInputFormat.class);
job.setOutputFormatClass(SequenceFileOutputFormat.class);
ProtobufSerialization.register(job.getConfiguration());
...

public static class PbMapper extends Mapper<Text, Stock, Text, Stock> {
@Override
protected void map(Text key, Stock value, Context context)

throws IOException, InterruptedException {
context.write(key, value);

}
}

public static class PbReducer
extends Reducer<Text, Stock, Text, Stock> {

@Override
protected void reduce(Text symbol, Iterable<Stock> values,

Context context) throws IOException, InterruptedException {
for (Stock stock : values) {
context.write(symbol, stock);

}
}

}

Now you can write a SequenceFile with Protocol Buffers values, run the identity
MapReduce job over that data, and then dump the contents of the job output:

$ hip hip.ch3.seqfile.protobuf.SequenceFileProtobufWriter \
--input test-data/stocks.txt \
--output stocks.pb

$ hip hip.ch3.seqfile.protobuf.SequenceFileProtobufMapReduce \
--input stocks.pb \
--output output

$ hip hip.ch3.seqfile.protobuf.SequenceFileProtobufReader \
--input output/part-r-00000

AAPL,symbol: "AAPL"
date: "2008-01-02"
open: 199.27
...

Next up, we’ll examine additional ways that you can integrate Protocol Buffers into
MapReduce.

3.3.3 Protocol Buffers

Google developers invented Protocol Buffers to help them exchange data between
services written in multiple languages in a compact and efficient manner. Protocol
Buffers is now Google’s de facto format for data—there are over 48,000 different mes-
sage types defined in Google across more than 12,000 .proto files.22

22 Protocol Buffers usage statistics taken from Google’s Protocol Buffers Developer Guide: http://
code.google.com/apis/protocolbuffers/docs/overview.html.

Specify the
Protocol Buffers
class as the output
value.

Register the Protocol
Buffers serialization class.

The map (and reduce)
methods are supplied
Protocol Buffers
instances.

Similarly, the map
and reduce outputs
can emit Protocol
Buffers instances.

http://code.google.com/apis/protocolbuffers/docs/overview.html
http://code.google.com/apis/protocolbuffers/docs/overview.html

92 CHAPTER 3 Data serialization—working with text and beyond

 There’s been a ticket open since 2008 with the goal of adding native support for
Protocol Buffers in MapReduce.23 As a result, you’ll need to turn to alternative meth-
ods of working with Protocol Buffers in Hadoop. The previous technique covered one
approach that can be used, which is to encode Protocol Buffers within SequenceFiles.
Other options exist, such as using either Elephant Bird24 or Avro, which support Pro-
tocol Buffers by wrapping them within their own file formats. Ultimately, these are all
stop-gap measures until we get full support for Protocol Buffers in Hadoop.

 There are a number of ways that you can work with Protocol Buffers in Hadoop:

■ You can serialize Protocol Buffers objects in binary form within SequenceFiles,
as was shown in the previous technique.

■ Elephant Bird (https://github.com/kevinweil/elephant-bird), an open source
project out of Twitter, supports Protocol Buffers within their own binary file
format.

■ Parquet, a columnar file format that is covered in section 3.4, has support for
the Protocol Buffers object model and allows you to effectively write and read
Protocol Buffers into a columnar form.

Of these options, Parquet is the recommended way of working with Protocol Buf-
fers—not only does it allow you to work natively with Protocol Buffers, but it also
opens up the number of tools that can work with your data (due to Parquet’s extensive
Hadoop tooling support). This chapter’s coverage of Parquet includes a look at how
Avro can be used with Parquet, and Parquet can be used in a similar way to support
Protocol Buffers.

 Thrift is another data format, which, like Protocol Buffers, doesn’t have out-of-the-
box support with MapReduce. Again, you must rely on other tools to work with Thrift
data in Hadoop, as you’ll discover in the next section.

3.3.4 Thrift

Facebook created Thrift to help with efficient data representation and transport.
Facebook uses Thrift for a number of applications, including search, logging, and its
ads platform.

 The same three options for working with Protocol Buffers also apply to Thrift, and
once again, the recommendation is to use Parquet as the file format. Head on over to
the section on Parquet (section 3.4) to learn more about how Parquet integrates with
these different data models.

 Let’s look at what’s likely the most capable data serialization format of all our
options, Avro.

23 See https://issues.apache.org/jira/browse/MAPREDUCE-377.
24 Using Elephant Bird means you have to use LZOP; ostensibly, it would be possible to derive a version of their

classes and remove the LZOP dependency, but it’s probably worth looking elsewhere if you’re not already
using LZOP.

https://issues.apache.org/jira/browse/MAPREDUCE-377
https://github.com/kevinweil/elephant-bird

93TECHNIQUE 12 Avro’s schema and code generation

3.3.5 Avro

Doug Cutting created Avro, a data serialization and RPC library, to help improve data
interchange, interoperability, and versioning in MapReduce. Avro utilizes a compact
binary data format—which you have the option to compress—that results in fast serial-
ization times. Although it has the concept of a schema, similar to Protocol Buffers,
Avro improves on Protocol Buffers because its code generation is optional, and it
embeds the schema in the container file format, allowing for dynamic discovery and
data interactions. Avro has a mechanism to work with schema data that uses generic
data types (an example of which can be seen in chapter 4).

 The Avro file format is shown in figure 3.11. The schema is serialized as part of the
header, which makes deserialization simple and loosens restrictions around users hav-
ing to maintain and access the schema outside of the Avro data files being interacted
with. Each data block contains a number of Avro records, and by default is 16 KB in size.

The holy grail of data serialization supports code generation, versioning, and com-
pression, and has a high level of integration with MapReduce. Equally important is
schema evolution, and that’s the reason why Hadoop SequenceFiles aren’t appeal-
ing—they don’t support the notion of a schema or any form of data evolution.

 In this section you’ll get an overview of Avro’s schema and code-generation capabil-
ities, how to read and write Avro container files, and the various ways Avro can be inte-
grated with MapReduce. At the end we’ll also look at Avro support in Hive and Pig.

 Let’s get rolling with a look at Avro’s schema and code generation.

TECHNIQUE 12 Avro’s schema and code generation

Avro has the notion of generic data and specific data:

■ Generic data allows you to work with data at a low level without having to under-
stand schema specifics.

■ Specific data allows you to work with Avro using code-generated Avro primitives,
which supports a simple and type-safe method of working with your Avro data.

This technique looks at how to work with specific data in Avro.

Magic Metadata Sync Block Block Block ...

Three bytes, “Obj”,
that identify the
file as being Avro.

Each block contains a count
of the serialized objects, the
sizes of the objects, and a
sync marker to delimit the

end of the block.

A randomly generated
sync marker used to
delimit blocks in the

data section.
Includes the schema

and compression codec.

Header Data

Figure 3.11 Avro container file format

94 CHAPTER 3 Data serialization—working with text and beyond

■ Problem
You want to define an Avro schema and generate code so you can work with your Avro
records in Java.

■ Solution
Author your schema in JSON form, and then use Avro tools to generate rich APIs to
interact with your data.

■ Discussion
You can use Avro in one of two ways: either with code-generated classes or with its
generic classes. In this technique we’ll work with the code-generated classes, but you
can see an example of how Avro’s generic records are used in technique 29 in chapter 4.

Getting Avro The appendix contains instructions on how to get your hands
on Avro.

In the code-generated approach, everything starts with a schema. The first step is to
create an Avro schema to represent an entry in the stock data:25

{
"name": "Stock",
"type": "record",
"namespace": "hip.ch3.avro.gen",
"fields": [

{"name": "symbol", "type": "string"},
{"name": "date", "type": "string"},
{"name": "open", "type": "double"},
{"name": "high", "type": "double"},
{"name": "low", "type": "double"},
{"name": "close", "type": "double"},
{"name": "volume", "type": "int"},
{"name": "adjClose", "type": "double"}

]
}

Avro supports code generation for schema data as well as RPC messages (which aren’t
covered in this book). To generate Java code for a schema, use the Avro tools JAR as
follows:

$ cd $HIP_HOME && mkdir src && cd src
$ jar -xvf ../hip-2.0.0-sources.jar
$ cd ..
$ java -jar $HIP_HOME/lib/avro-tools-1.7.4.jar \

compile schema \
$HIP_HOME/src/hip/ch3/avro/stock.avsc \
$HIP_HOME/src/hip/ch3/avro/stockavg.avsc \
$HIP_HOME/src/

25 GitHub source: https://github.com/alexholmes/hiped2/blob/master/src/main/java/hip/ch3/avro/stock
.avsc.

Create a directory
for the sources. Expand the source JAR

into the directory.
Tell the Avro tool that you
want to generate classes
for an Avro schema.

The input
schema file.

The tool supports
multiple input
schema files.

The output
directory where

generated code is
written.

https://github.com/alexholmes/hiped2/blob/master/src/main/java/hip/ch3/avro/stock.avsc
https://github.com/alexholmes/hiped2/blob/master/src/main/java/hip/ch3/avro/stock.avsc

95TECHNIQUE 12 Avro’s schema and code generation

Generated code will be put into the hip.ch3.avro.gen package. Now that you have gen-
erated code, how do you use it to read and write Avro container files?26

DataFileWriter<Stock> writer =
new DataFileWriter<Stock>(

new SpecificDatumWriter<Stock>());

writer.setCodec(CodecFactory.snappyCodec());
writer.create(Stock.SCHEMA$, outputStream);

for(Stock stock: StockUtils.fromCsvFile(inputFile)) {
writer.append(stock);

}

IOUtils.closeStream(writer);
IOUtils.closeStream(outputStream);

As you see, you can specify the compression codec that should be used to compress
the data. In this example you’re using Snappy, which, as shown in chapter 4, is the fast-
est codec for reads and writes.

 The following code example shows how you can marshal a Stock object from a line
in the input file. As you can see, the generated Stock class is a POJO with a bunch of
setters (and matching getters):

public static Stock fromCsv(String line) throws IOException {

String parts[] = parser.parseLine(line);
Stock stock = new Stock();

stock.setSymbol(parts[0]);
stock.setDate(parts[1]);
stock.setOpen(Double.valueOf(parts[2]));
stock.setHigh(Double.valueOf(parts[3]));
stock.setLow(Double.valueOf(parts[4]));
stock.setClose(Double.valueOf(parts[5]));
stock.setVolume(Integer.valueOf(parts[6]));
stock.setAdjClose(Double.valueOf(parts[7]));

return stock;
}

Now, how about reading the file you just wrote?27

DataFileStream<Stock> reader =
new DataFileStream<Stock>(

is,

Listing 3.5 Writing Avro files from outside of MapReduce

26 GitHub source: https://github.com/alexholmes/hiped2/blob/master/src/main/java/hip/ch3/avro/
AvroStockFileWrite.java.

27 GitHub source: https://github.com/alexholmes/hiped2/blob/master/src/main/java/hip/ch3/avro/
AvroStockFileRead.java.

Create a writer that
can write Avro’s data
file format.

Specify that Snappy should be
used to compress the data.

Indicate the schema
that will be used.

Write each stock
to the Avro file.

Use Avro’s file container
deserialization class to read

from an input stream.

https://github.com/alexholmes/hiped2/blob/master/src/main/java/hip/ch3/avro/AvroStockFileWrite.java
https://github.com/alexholmes/hiped2/blob/master/src/main/java/hip/ch3/avro/AvroStockFileWrite.java
https://github.com/alexholmes/hiped2/blob/master/src/main/java/hip/ch3/avro/AvroStockFileRead.java
https://github.com/alexholmes/hiped2/blob/master/src/main/java/hip/ch3/avro/AvroStockFileRead.java

96 CHAPTER 3 Data serialization—working with text and beyond

new SpecificDatumReader<Stock>(Stock.class));

for (Stock a : reader) {
System.out.println(ToStringBuilder.reflectionToString(a,

ToStringStyle.SIMPLE_STYLE
));

}

IOUtils.closeStream(is);
IOUtils.closeStream(reader);

Go ahead and execute this writer and reader pair:

$ hip hip.ch3.avro.AvroStockFileWrite \
--input test-data/stocks.txt \
--output stocks.avro

$ hip hip.ch3.avro.AvroStockFileRead \
--input stocks.avro

AAPL,2009-01-02,85.88,91.04,85.16,90.75,26643400,90.75
AAPL,2008-01-02,199.27,200.26,192.55,194.84,38542100,194.84
AAPL,2007-01-03,86.29,86.58,81.9,83.8,44225700,83.8
AAPL,2006-01-03,72.38,74.75,72.25,74.75,28829800,74.75
AAPL,2005-01-03,64.78,65.11,62.6,63.29,24714000,31.65
...

Avro comes bundled with some tools to make it easy to examine the contents of Avro
files. To view the contents of an Avro file as JSON, simply run this command:

$ java -jar $HIP_HOME/lib/avro-tools-1.7.4.jar tojson stocks.avro
{"symbol":"AAPL","date":"2009-01-02","open":85.88,"high":91.04,...
{"symbol":"AAPL","date":"2008-01-02","open":199.27,"high":200.26,...
{"symbol":"AAPL","date":"2007-01-03","open":86.29,"high":86.58,...
...

This assumes that the file exists on the local filesystem. Similarly, you can get a JSON
representation of your Avro file with the following command:

$ java -jar $HIP_HOME/lib/avro-tools-1.7.4.jar getschema stocks.avro
{
"type" : "record",
"name" : "Stock",
"namespace" : "hip.ch3.avro.gen",
"fields" : [{
"name" : "symbol",
"type" : "string"

}, {
"name" : "date",
"type" : "string"

}, {
"name" : "open",

Loop through the Stock objects and
use the Apache Commons

ToStringBuilder to help dump all the
members to the console.

Reads the stock.txt file
from the local filesystem and

writes the Avro output file
stocks.avro to HDFS

Reads the Avro file
stocks.avro from HDFS
and dumps the records

to the terminal

97TECHNIQUE 12 Avro’s schema and code generation

"type" : "double"
}, {
"name" : "high",
"type" : "double"

}, {
"name" : "low",
"type" : "double"

}, {
"name" : "close",
"type" : "double"

}, {
"name" : "volume",
"type" : "int"

}, {
"name" : "adjClose",
"type" : "double"

}]
}

You can run the Avro tools without any options to view all the tools you can use:

$ java -jar $HIP_HOME/lib/avro-tools-1.7.4.jar
compile Generates Java code for the given schema.
concat Concatenates avro files without re-compressing.

fragtojson Renders a binary-encoded Avro datum as JSON.
fromjson Reads JSON records and writes an Avro data file.
fromtext Imports a text file into an avro data file.
getmeta Prints out the metadata of an Avro data file.

getschema Prints out schema of an Avro data file.
idl Generates a JSON schema from an Avro IDL file

induce Induce schema/protocol from Java class/interface
via reflection.

jsontofrag Renders a JSON-encoded Avro datum as binary.
recodec Alters the codec of a data file.

rpcprotocol Output the protocol of a RPC service
rpcreceive Opens an RPC Server and listens for one message.

rpcsend Sends a single RPC message.
tether Run a tethered mapreduce job.
tojson Dumps an Avro data file as JSON, one record per line.
totext Converts an Avro data file to a text file.

trevni_meta Dumps a Trevni file's metadata as JSON.
trevni_random Create a Trevni file filled with random instances

of a schema.
trevni_tojson Dumps a Trevni file as JSON.

One shortcoming of the tojson tool is that it doesn’t support reading data in HDFS.
I’ve therefore bundled a utility with the book’s code called AvroDump that can dump
a text representation of Avro data in HDFS, which we’ll use shortly to examine the out-
put of Avro MapReduce jobs:

$ hip hip.util.AvroDump --file stocks.avro

98 CHAPTER 3 Data serialization—working with text and beyond

This utility supports multiple files (they need to be CSV-delimited) and globbing,
so you can use wildcards. The following example shows how you would dump out
the contents of a MapReduce job that produced Avro output into a directory called
mr-output-dir:

$ hip hip.util.AvroDump --file mr-output-dir/part*

Let’s see how Avro integrates with MapReduce.

TECHNIQUE 13 Selecting the appropriate way to use Avro in MapReduce

Avro supports more than one way to work with your Avro data in MapReduce. This
technique enumerates the different ways you can work with your data and provides
guidance on which situations call for which approach.

■ Problem
You want to use Avro in your MapReduce job, but it’s unclear which of the available
integration options you should choose.

■ Solution
Learn more about each integration option, and pick the one best suited for your use
case.

■ Discussion
There are three ways that you can use Avro in MapReduce, and the specific details on
how to use each are discussed in techniques that follow this one. These are the three
approaches:

■ Mixed-mode—Appropriate when you want to mix Avro data with non-Avro data
in your job

■ Record-based—Useful when data is supplied in a non-key/value way
■ Key/value-based—For when your data must fit a specific model

Let’s cover each method in more detail.

Mixed-mode
This use case is for instances where any one of these conditions holds true:

■ Your mapper input data isn’t in Avro form.
■ You don’t want to emit intermediate data between your mappers and reducers

using Avro.
■ Your job output data isn’t in Avro form.

In any of these cases, the Avro mapper and reducer classes won’t help you, as they are
designed with the assumption that Avro data is flowing end-to-end in your MapReduce
job. In this case, you’ll want to use the regular MapReduce mapper and reducer
classes and construct your job in a way that allows you to still work with Avro data.

99TECHNIQUE 14 Mixing Avro and non-Avro data in MapReduce

Record-based
Avro data is record-based, which results in a impedance mismatch when compared
with MapReduce, which is key/value-based. To support Avro’s record-based roots,
Avro comes bundled with a mapper class that isn’t key/value-based, and instead only
supplies derived classes with a single record.

Key/value-based
If your Avro data internally follows a key/value structure, you can use some Avro-
supplied mapper classes that will transform your Avro records and supply them in a
key/value form to your mapper. With this method, you’re restricted to schemas that
literally have “key” and “value” elements.

■ Summary
Selecting the right level of integration with Avro is a function of your inputs and out-
puts, and how you want to work with data inside of Avro. This technique examined
three ways of integrating with Avro so that you can pick the right method for your use
case. In the following techniques, we’ll look at how to use each of these integration
methods in your MapReduce jobs.

TECHNIQUE 14 Mixing Avro and non-Avro data in MapReduce

This level of Avro integration in MapReduce is suitable in cases where you have non-
Avro input and generate Avro outputs, or vice versa, in which case the Avro mapper
and reducer classes aren’t suitable. In this technique, we’ll look at how to work in a
mixed-mode fashion with Avro.

■ Problem
You want to use Avro in a mixed mode in your MapReduce job, which isn’t supported
by the Avro-bundled mapper and reducer classes.

■ Solution
Use low-level methods to set up your job and drive Avro data through your Map-
Reduce job using the regular Hadoop mapper and reducer classes.

■ Discussion
Avro comes with some mapper and reducer classes that you can subclass to work with
Avro. They’re useful in situations where you want your mappers and reducers to
exchange Avro objects. But if you don’t have a requirement to pass Avro objects
between your map and reduce tasks, you’re better off using the Avro input and output
format classes directly, as you’ll see in the following code, which produces an average
of all of the opening stock values.

 We’ll start with a look at the job configuration. Your job is to consume stock data
and produce stock averages, both in Avro formats.28 To do this, you need to set the job

28 Even though this technique is about mixing Avro and non-Avro data together in your jobs, I show Avro
being used throughout the job so that you can pick which aspect you wish to integrate into your job. For
example, if you have text inputs and Avro outputs, you’d use a regular TextInputFormat, and set the Avro
output format.

100 CHAPTER 3 Data serialization—working with text and beyond

configuration with the schema information for both schemas. You also need to specify
Avro’s input and output format classes:29

job.set(AvroJob.INPUT_SCHEMA, Stock.SCHEMA$.toString());
job.set(AvroJob.OUTPUT_SCHEMA, StockAvg.SCHEMA$.toString());
job.set(AvroJob.OUTPUT_CODEC, SnappyCodec.class.getName());

job.setInputFormat(AvroInputFormat.class);
job.setOutputFormat(AvroOutputFormat.class);

Next up is the Map class. The entire Avro record is supplied as the input key to your
map function, because Avro supports records, not key/value pairs (although, as you’ll
see later, Avro does have a way to provide data to your map function using key/value
pairs if your Avro schema has fields called key and value). From an implementation
perspective, your map function extracts the necessary fields from the stock record and
emits them to the reducer, with the stock symbol and the opening stock price as the
key/value pairs:30

public static class Map extends MapReduceBase
implements
Mapper<AvroWrapper<Stock>, NullWritable, Text, DoubleWritable> {

@Override
public void map(
AvroWrapper<Stock> key, NullWritable value,
OutputCollector<Text, DoubleWritable> output,
Reporter reporter) throws IOException {

output.collect(
new Text(key.datum().symbol.toString()),
new DoubleWritable(key.datum().open));

}
}

Why is the “old” MapReduce API being used? You may have noticed that the
example in this technique uses the older org.apache.hadoop.mapred API. This is
because the AvroInputFormat and AvroOutputFormat classes used in this tech-
nique only support the old API.

29 GitHub source: https://github.com/alexholmes/hiped2/blob/master/src/main/java/hip/ch3/avro/
AvroMixedMapReduce.java.

30 GitHub source: https://github.com/alexholmes/hiped2/blob/master/src/main/java/hip/ch3/avro/
AvroMixedMapReduce.java.

Set the Avro schema
for the input files that
are to be processed.Set the Avro schema for

the job output files.

Set the compression
codec for this job.

Indicate that
the input

data is Avro.

The output data
is also Avro.

The Avro InputFormat
supplies the Avro objects

wrapped in an AvroWrapper
object. No value is supplied

to the mapper.

Convert the Avro data
into regular Writable
representations for
intermediary data.

https://github.com/alexholmes/hiped2/blob/master/src/main/java/hip/ch3/avro/AvroMixedMapReduce.java
https://github.com/alexholmes/hiped2/blob/master/src/main/java/hip/ch3/avro/AvroMixedMapReduce.java
https://github.com/alexholmes/hiped2/blob/master/src/main/java/hip/ch3/avro/AvroMixedMapReduce.java
https://github.com/alexholmes/hiped2/blob/master/src/main/java/hip/ch3/avro/AvroMixedMapReduce.java

101TECHNIQUE 14 Mixing Avro and non-Avro data in MapReduce

Finally, the reduce function sums together all of the stock prices for each stock and
outputs an average price:31

public static class Reduce extends MapReduceBase
implements Reducer<Text, DoubleWritable, AvroWrapper<StockAvg>,
NullWritable> {

@Override
public void reduce(
Text key,
Iterator<DoubleWritable> values,
OutputCollector<AvroWrapper<StockAvg>, NullWritable> output,
Reporter reporter) throws IOException {

Mean mean = new Mean();
while (values.hasNext()) {
mean.increment(values.next().get());

}
StockAvg avg = new StockAvg();
avg.setSymbol(key.toString());
avg.setAvg(mean.getResult());
output.collect(new AvroWrapper<StockAvg>(avg),
NullWritable.get());

}
}

You can run the MapReduce code as follows:

$ hip hip.ch3.avro.AvroMixedMapReduce \
--input stocks.avro \
--output output

Your MapReduce job is outputting a different Avro object (StockAvg) from the job
input. You can verify that the job produced the output you expected by writing some
code (not listed) to dump your Avro objects:

$ hip hip.util.AvroDump --file output/part*
{"symbol": "AAPL", "avg": 68.631}
{"symbol": "CSCO", "avg": 31.147999999999996}
{"symbol": "GOOG", "avg": 417.47799999999995}
{"symbol": "MSFT", "avg": 44.63100000000001}
{"symbol": "YHOO", "avg": 69.333}

■ Summary
This technique is useful in cases where you don’t want intermediary map outputs in
Avro form, or if you have non-Avro inputs or outputs. Next we’ll look at the Avro-
native way of working with data in MapReduce.

31 GitHub source: https://github.com/alexholmes/hiped2/blob/master/src/main/java/hip/ch3/avro/
AvroMixedMapReduce.java.

The Avro
OutputFormat expects
AvroWrapper output.

Output the
AvroWrapper containing
your StockAvg instance.

https://github.com/alexholmes/hiped2/blob/master/src/main/java/hip/ch3/avro/AvroMixedMapReduce.java
https://github.com/alexholmes/hiped2/blob/master/src/main/java/hip/ch3/avro/AvroMixedMapReduce.java

102 CHAPTER 3 Data serialization—working with text and beyond

TECHNIQUE 15 Using Avro records in MapReduce

Avro isn’t a native key/value serialization format, unlike SequenceFile, so it can
require a little shoehorning to get it to work with MapReduce. In this technique you’ll
examine the Avro-specific mapper and reducer classes that expose a record-based
interface you can use to input and output data.

■ Problem
You want to use Avro end-to-end in your MapReduce job, and you also wish to interact
with your input and output data in record-oriented form.

■ Solution
Extend the AvroMapper and AvroReducer classes to implement your MapReduce job.

■ Discussion
Avro comes with two classes that abstract away the key/value nature of MapReduce
and instead expose a record-based API. In this technique you’ll implement the same
MapReduce job as in the prior technique (calculating the average open prices for
each stock symbol), and use Avro throughout the job.

 First, let’s look at the Mapper class, which will extend AvroMapper: 32

public static class Mapper
extends AvroMapper<Stock, Pair<Utf8, Stock>> {

@Override
public void map(Stock stock,

AvroCollector<Pair<Utf8, Stock>> collector,
Reporter reporter) throws IOException {

Pair <Utf8, Stock> out =
new Pair<Utf8, Stock>(new Utf8(stock.getSymbol().toString(),

stock);

collector.collect(out);
}

}

The first thing to notice is that there are two types defined in the class definition, not
four as is the norm in MapReduce. The AvroMapper abstracts away the key/value traits
of the mapper inputs and outputs, replacing each with a single type.

 If you had a map-only job, the types that you’d define would be the input and out-
put types. But if you’re running a full-blown MapReduce job, you’ll need to use the
Pair class so that you can define the map output key/value pairs. The Pair class
requires that an Avro schema exists for the key and value parts, which is why the Utf8
class is used instead of a straight Java string.

32 GitHub source: https://github.com/alexholmes/hiped2/blob/master/src/main/java/hip/ch3/avro/
AvroRecordMapReduce.java.

Define the input Avro
type and the intermediate

output key/value types.

Generate the output
record, which is a pair

containing the stock
symbol and the stock

Avro object.

Output the AvroWrapper
containing your StockAvg

instance.

https://github.com/alexholmes/hiped2/blob/master/src/main/java/hip/ch3/avro/AvroRecordMapReduce.java
https://github.com/alexholmes/hiped2/blob/master/src/main/java/hip/ch3/avro/AvroRecordMapReduce.java

103TECHNIQUE 15 Using Avro records in MapReduce

 Let’s now take a peek at the AvroReducer implementation. This time there are
three types you need to define—the map output key and value types, and the reducer
output type:33

public static class Reducer extends AvroReducer<Utf8, Stock, StockAvg> {
@Override
public void reduce(Utf8 symbol, Iterable<Stock> stocks,

AvroCollector<StockAvg> collector,
Reporter reporter) throws IOException {

double total = 0.0;
double count = 0;
for (Stock stock: stocks) {
total += stock.getOpen();
count++;

}
StockAvg avg = new StockAvg();
avg.setSymbol(symbol.toString());
avg.setAvg(total / count);

collector.collect(avg);
}

}

Now you can plumb it all together in the driver. Here you’ll define the input and out-
put types and the desired output compression, if any:34

AvroJob.setInputSchema(job, Stock.SCHEMA$);
AvroJob.setMapOutputSchema(job,
Pair.getPairSchema(Schema.create(Schema.Type.STRING), Stock.SCHEMA$));

AvroJob.setOutputSchema(job, StockAvg.SCHEMA$);

AvroJob.setMapperClass(job, Mapper.class);
AvroJob.setReducerClass(job, Reducer.class);

FileOutputFormat.setCompressOutput(job, true);
AvroJob.setOutputCodec(job, SNAPPY_CODEC);

Done! Give it a whirl, and check the outputs after the job completes:

$ hip hip.ch3.avro.AvroRecordMapReduce \
--input stocks.avro \
--output output

...

$ hip hip.util.AvroDump --file output/part*
{"symbol": "AAPL", "avg": 68.631}
{"symbol": "CSCO", "avg": 31.147999999999996}

33 GitHub source: https://github.com/alexholmes/hiped2/blob/master/src/main/java/hip/ch3/avro/
AvroRecordMapReduce.java.

34 GitHub source: https://github.com/alexholmes/hiped2/blob/master/src/main/java/hip/ch3/avro/
AvroRecordMapReduce.java.

Iterate over the Avro
Stock objects.

Output the
StockAvg object.

https://github.com/alexholmes/hiped2/blob/master/src/main/java/hip/ch3/avro/AvroRecordMapReduce.java
https://github.com/alexholmes/hiped2/blob/master/src/main/java/hip/ch3/avro/AvroRecordMapReduce.java
https://github.com/alexholmes/hiped2/blob/master/src/main/java/hip/ch3/avro/AvroRecordMapReduce.java

104 CHAPTER 3 Data serialization—working with text and beyond

{"symbol": "GOOG", "avg": 417.47799999999995}
{"symbol": "MSFT", "avg": 44.63100000000001}
{"symbol": "YHOO", "avg": 69.333}

■ Summary
This technique is handy in situations where you want to keep your data in Avro form
throughout the MapReduce job, and you don’t have a requirement that your input or
output data be key/value-based.

 But what if you do need your data be key/value-based, and you still want to use
Avro goodies such as compact serialization size and built-in compression?

TECHNIQUE 16 Using Avro key/value pairs in MapReduce

MapReduce’s native data model is key/value pairs, and as I’ve mentioned earlier,
Avro’s is record-based. Avro doesn’t have native support for key/value data, but some
helper classes exist in Avro to help model key/value data and to use this natively in
MapReduce.

■ Problem
You want to use Avro as a data format and container, but you want to model your data
using key/value pairs in Avro and use them as native key/value pairs in MapReduce.

■ Solution
Use the AvroKeyValue, AvroKey, and AvroValue classes to work with Avro key/value data.

■ Discussion
Avro has an AvroKeyValue class that encapsulates a generic Avro record containing two
records named key and value. AvroKeyValue serves as a helper class so that you can eas-
ily read and write key/value data. The types of these records are defined by you.

 In this technique you’ll repeat the average stock MapReduce job, but this time
using Avro’s key/value framework. You’ll first need to generate the input data for
your job. In this case, we’ll put the stock symbol in the key and the Stock object in
the value:35

public static void writeToAvro(File inputFile,
OutputStream outputStream)

throws IOException {

Schema schema = AvroKeyValue.getSchema(
Schema.create(Schema.Type.STRING), Stock.SCHEMA$);

DataFileWriter<GenericRecord> writer =
new DataFileWriter<GenericRecord>(

new GenericDatumWriter<GenericRecord>());

writer.setCodec(CodecFactory.snappyCodec());
writer.create(schema, outputStream);

for (Stock stock : StockUtils.fromCsvFile(inputFile)) {

35 GitHub source: https://github.com/alexholmes/hiped2/blob/master/src/main/java/hip/ch3/avro/
AvroKeyValueFileWrite.java.

Use the helper class to
generate the schema.

Create a generic writer.

Set the
compression codec.

Configure the writer
with the output

stream and schema.

https://github.com/alexholmes/hiped2/blob/master/src/main/java/hip/ch3/avro/AvroKeyValueFileWrite.java
https://github.com/alexholmes/hiped2/blob/master/src/main/java/hip/ch3/avro/AvroKeyValueFileWrite.java

105TECHNIQUE 16 Using Avro key/value pairs in MapReduce

AvroKeyValue<CharSequence, Stock> record
= new AvroKeyValue<CharSequence, Stock>(

new GenericData.Record(schema));
record.setKey(stock.getSymbol());
record.setValue(stock);

writer.append(record.get());
}

IOUtils.closeStream(writer);
IOUtils.closeStream(outputStream);

}

Go ahead and generate a file in HDFS containing the stock data in key/value format:

$ hip hip.ch3.avro.AvroKeyValueFileWrite \
--input test-data/stocks.txt \
--output stocks.kv.avro

If you’re curious to know the Avro schema definition of the file you just generated,
use the tip highlighted in technique 12 to extract the schema from the file. In addi-
tion, you can use the AvroDump utility to show the contents of the file:

the "getschema" tool only works with data in the local filesystem,
so first copy the stocks file from HDFS to local disk
$ hadoop fs -get stocks.kv.avro .
$ java -jar $HIP_HOME/lib/avro-tools-1.7.4.jar getschema stocks.kv.avro
{
"type" : "record",
"name" : "KeyValuePair",
"namespace" : "org.apache.avro.mapreduce",
"doc" : "A key/value pair",
"fields" : [{
"name" : "key",
"type" : "string",
"doc" : "The key"

}, {
"name" : "value",
"type" : {
"type" : "record",
"name" : "Stock",
"namespace" : "hip.ch3.avro.gen",
"fields" : [{
"name" : "symbol",
"type" : "string"

}, {
"name" : "date",
"type" : "string"

}, {
"name" : "open",
"type" : "double"

}, {
"name" : "high",
"type" : "double"

}, {

Create a wrapper
object and set the

key and value.

Write the encapsulated
generic object to the

output stream.

106 CHAPTER 3 Data serialization—working with text and beyond

"name" : "low",
"type" : "double"

}, {
"name" : "close",
"type" : "double"

}, {
"name" : "volume",
"type" : "int"

}, {
"name" : "adjClose",
"type" : "double"

}]
},
"doc" : "The value"

}]
}

$ hip hip.util.AvroDump --file stocks.kv.avro

{"key": "AAPL", "value": {"symbol": "AAPL", "date": "2009-01-02", ...
{"key": "AAPL", "value": {"symbol": "AAPL", "date": "2008-01-02", ...
{"key": "AAPL", "value": {"symbol": "AAPL", "date": "2007-01-03", ...

Now for some MapReduce code—you’ll define your mapper, reducer, and driver in
one shot:36

public int run(final String[] args) throws Exception {

....

job.setInputFormatClass(AvroKeyValueInputFormat.class);
AvroJob.setInputKeySchema(job, Schema.create(Schema.Type.STRING));
AvroJob.setInputValueSchema(job, Stock.SCHEMA$);

job.setMapOutputKeyClass(Text.class);
job.setMapOutputValueClass(DoubleWritable.class);

job.setOutputKeyClass(Text.class);
job.setOutputValueClass(AvroValue.class);
job.setOutputFormatClass(AvroKeyValueOutputFormat.class);
AvroJob.setOutputValueSchema(job, StockAvg.SCHEMA$);

...
}

public static class Map extends
Mapper<AvroKey<CharSequence>, AvroValue<Stock>,

Text, DoubleWritable> {

@Override
public void map(AvroKey<CharSequence> key,

AvroValue<Stock> value,
Context context) {

36 GitHub source: https://github.com/alexholmes/hiped2/blob/master/src/main/java/hip/ch3/avro/
AvroKeyValueMapReduce.java.

https://github.com/alexholmes/hiped2/blob/master/src/main/java/hip/ch3/avro/AvroKeyValueMapReduce.java
https://github.com/alexholmes/hiped2/blob/master/src/main/java/hip/ch3/avro/AvroKeyValueMapReduce.java

107TECHNIQUE 16 Using Avro key/value pairs in MapReduce

context.write(new Text(key.toString()),
new DoubleWritable(value.datum().getOpen()));

}
}

public static class Reduce extends
Reducer<Text, DoubleWritable, Text, AvroValue<StockAvg>> {

@Override
protected void reduce(Text key,

Iterable<DoubleWritable> values,
Context context) {

double total = 0.0;
double count = 0;
for (DoubleWritable val: values) {

total += val.get();
count++;

}
StockAvg avg = new StockAvg();
avg.setSymbol(key.toString());
avg.setAvg(total / count);
context.write(key, new AvroValue<StockAvg>(avg));

}
}

As you can see, the AvroKey and AvroValue wrappers are used to supply input data in
the mapper, as well as output data in the reducer. The neat thing here is that Avro is
smart enough to support Hadoop Writable objects and automatically convert them
into their Avro counterparts, which is why you don’t need to tell Avro the schema type
of the output key.

 You can run the MapReduce job with the following command:

$ hip hip.ch3.avro.AvroKeyValueMapReduce \
--input stocks.kv.avro \
--output output

And again, you can view the output with the AvroDump tool:

$ hip hip.util.AvroDump --file output/part*
{"key": "AAPL", "value": {"symbol": "AAPL", "avg": 68.631}}
{"key": "CSCO", "value": {"symbol": "CSCO", "avg": 31.148}}
{"key": "GOOG", "value": {"symbol": "GOOG", "avg": 417.478}}
{"key": "MSFT", "value": {"symbol": "MSFT", "avg": 44.631}}
{"key": "YHOO", "value": {"symbol": "YHOO", "avg": 69.333}}

■ Summary
This concludes our coverage of the three Avro approaches for working with your data
in MapReduce. Each of the methods is suited to a particular task, and you can select
whichever one works best for your needs.

 Let’s wrap up our Avro and MapReduce coverage by looking at how you can cus-
tomize ordering characteristics of Avro data in MapReduce.

108 CHAPTER 3 Data serialization—working with text and beyond

TECHNIQUE 17 Controlling how sorting worksin MapReduce

If you decide to use Avro data as intermediary map outputs, you may be wondering
what control you have over how partitioning, sorting, and grouping work.

■ Problem
You want control over how MapReduce sorts your reducer inputs.

■ Solution
Modify the Avro schema to alter ordering behavior.

■ Discussion
If an Avro object is used as the key output in a mapper, the following happens by
default:

■ All the fields in the Avro object are used for partitioning, sorting, and grouping.
■ The fields are ordered using their ordinal position in the schema. This means

that if you have a schema with two elements, the first element in the schema is
used for sorting first, followed by the second element.

■ Within an element, sorting occurs using comparisons that are specific to the
type. So if strings are being compared, the sorting will be lexicographical, and if
numbers are being compared, numerical comparison is used.

Some of this behavior can be changed. The following is a modified version of the
Stock schema:

{
"name": "Stock",
"type": "record",
"namespace": "hip.ch3.avro.gen",
"fields": [

{"name": "symbol", "type": "string"},
{"name": "date", "type": "string"},
{"name": "open", "type": "double", "order": "descending"},
{"name": "high", "type": "double", "order": "ignore"}

]
}

You can modify the sorting behavior for a field by decorating it with an order attribute
and specifying that descending order should be used. Alternatively, you can exclude a
field from partitioning, sorting, and grouping by setting the order to ignore.

 Note that these are schema-wide settings, and there’s no easy way to specify custom
partition/sort/group settings on a per-job basis. You can go ahead and write your own
partition, sort, and group functions (just like you would for a Writable), but it would
be useful if Avro had helper functions to simplify this process.

TECHNIQUE 18 Avro and Hive

It wasn’t until recently that the Hive project had built-in support for Avro. This tech-
nique looks at how you can work with Avro data in Hive.

109TECHNIQUE 18 Avro and Hive

■ Problem
You want to work with Avro data in Hive.

■ Solution
Use Hive’s Avro Serializer/Deserializer.

■ Discussion
Hive version 0.9.1 and newer come bundled with an Avro SerDe, short for Serializer/
Deserializer, which allows Hive to read data in from a table and write it back out to a
table. The appendix has instructions on how to install Hive.

 You need to copy the Avro schemas bundled with this book into HDFS, and also
create a directory containing some example Avro stock records:

$ hadoop fs -put $HIP_HOME/schema schema

$ hadoop fs -mkdir stock_hive

$ hip hip.ch3.avro.AvroStockFileWrite \
--input test-data/stocks.txt \
--output stock_hive/stocks.avro

Next, fire up the Hive console and create an external Hive table for the directory you
just created. You also need to specify the location of the Avro schema in HDFS.
Replace YOUR-HDFS-USERNAME with your HDFS username:

hive> CREATE EXTERNAL TABLE stocks
➥COMMENT "An Avro stocks table"
➥ROW FORMAT SERDE 'org.apache.hadoop.hive.serde2.avro.AvroSerDe'
➥STORED AS
➥INPUTFORMAT
➥ 'org.apache.hadoop.hive.ql.io.avro.AvroContainerInputFormat'
➥OUTPUTFORMAT
➥ 'org.apache.hadoop.hive.ql.io.avro.AvroContainerOutputFormat'
➥LOCATION '/user/YOUR-HDFS-USERNAME/stock_hive/'
➥TBLPROPERTIES (
➥ 'avro.schema.url'='hdfs:///user/YOUR-HDFS-USERNAME/schema/stock.avsc'
);

AvroSerDe actually supports three ways to define a schema for an Avro table—for this
technique, I picked the method that you’ll most likely want to use in production, but
for more details on the other ways to specify a schema, refer to the AvroSerDe site:
https://cwiki.apache.org/confluence/display/Hive/AvroSerDe.

 Just like with any Hive table, you can query Hive to describe the schema for a table:

hive> describe stocks;

symbol string
date string
open double
high double

https://cwiki.apache.org/confluence/display/Hive/AvroSerDe

110 CHAPTER 3 Data serialization—working with text and beyond

low double
close double
volume int
adjclose double

Run a query to verify that everything’s working. The following Hive Query Language
(HiveQL) will count the number of stock records for each stock symbol:

hive> SELECT symbol, count(*) FROM stocks GROUP BY symbol;

AAPL 10
CSCO 10
GOOG 5
MSFT 10
YHOO 10

What if you wanted to write data to an Avro-backed Hive table? The following example
shows how you would copy a subset of the records in the stocks table and insert them
into a new table. This example also highlights how you’d use the Snappy compression
codec for any writes into the new table:

hive> SET hive.exec.compress.output=true;
hive> SET avro.output.codec=snappy;

hive> CREATE TABLE google_stocks
➥ COMMENT "An Avro stocks table containing just Google stocks"
➥ ROW FORMAT SERDE 'org.apache.hadoop.hive.serde2.avro.AvroSerDe'
➥ STORED AS
➥ INPUTFORMAT
➥ 'org.apache.hadoop.hive.ql.io.avro.AvroContainerInputFormat'
➥ OUTPUTFORMAT
➥ 'org.apache.hadoop.hive.ql.io.avro.AvroContainerOutputFormat'
➥ TBLPROPERTIES (
➥ 'avro.schema.url'='hdfs:///user/YOUR-USERNAME/schema/stock.avsc'

);
OK

hive> INSERT OVERWRITE TABLE google_stocks
➥ SELECT * FROM stocks WHERE symbol = 'GOOG';
OK

hive> select * from google_stocks limit 5;
OK
GOOG 2009-01-02 308.6 321.82 305.5 321.32 3610500 321.32
GOOG 2008-01-02 692.87 697.37 677.73 685.19 4306900 685.19
GOOG 2007-01-03 466.0 476.66 461.11 467.59 7706500 467.59
GOOG 2006-01-03 422.52 435.67 418.22 435.23 13121200 435.23
GOOG 2005-01-03 197.4 203.64 195.46 202.71 15844200 202.71

For more details on Hive, please refer to chapter 9. Next we’ll look at how you’d per-
form the same sequence of actions in Pig.

111TECHNIQUE 19 Avro and Pig

TECHNIQUE 19 Avro and Pig

Much like Hive, Pig also has built-in support for Avro, which is covered in this technique.

■ Problem
You want to read and write Avro data using Pig.

■ Solution
Use the AvroStorage class in Pig’s Piggy Bank library.

■ Discussion
Piggy Bank is a library that contains a useful collection of Pig utilities, one of which is
the AvroStorage class you can use to read and write Avro data in HDFS. In this tech-
nique you’ll mirror the steps you took in the previous Hive technique—you’ll read in
some stock data, perform some simple aggregations, and store some filtered data back
into HDFS.

 Before you get started, load some Avro stock data into a directory in HDFS:

$ hadoop fs -put $HIP_HOME/schema schema

$ hadoop fs -mkdir stock_pig

$ hip hip.ch3.avro.AvroStockFileWrite \
--input test-data/stocks.txt \
--output stock_pig/stocks.avro

In Pig-land, your first step is to register the JARs required for AvroStorage to work. You
may have to hunt down the specific location of the JARs bundled with the Hadoop dis-
tribution that you’re using. The locations in the following code assume that Apache
Hadoop and Pig were installed under /usr/local:

$ pig
REGISTER /usr/local/pig/contrib/piggybank/java/piggybank.jar;
REGISTER /usr/local/hadoop/share/hadoop/common/lib/avro-*.jar;
REGISTER /usr/local/hadoop/share/hadoop/common/lib/jackson-*.jar;
REGISTER /usr/local/hadoop/share/hadoop/common/lib/snappy-*.jar;
REGISTER /usr/local/hadoop/share/hadoop/httpfs/tomcat/webapps/
➥ webhdfs/WEB-INF/lib/json-*.jar;

Next, load the stocks into a Pig relation and then display the schema details using the
LOAD and DESCRIBE operators:

grunt> stocks = LOAD 'stock_pig/' USING
➥org.apache.pig.piggybank.storage.avro.AvroStorage();

grunt> DESCRIBE stocks;
records: {symbol: chararray,date: chararray,open: double,

high: double,low: double,close: double,volume: int,
adjClose: double}

Notice that you didn’t have to supply details about the Avro schema. That’s because
the Avro container format you used had the schema embedded in the header. If your

112 CHAPTER 3 Data serialization—working with text and beyond

files don’t have the schema embedded, AvroStorage can still support your data, but
you’ll need to upload the Avro schema to HDFS (like you did in Hive) and use the
“schema_file” option—check out the Pig documentation for more details.37

 To validate that Avro and Pig are working together, you can perform a simple
aggregation and count the number of stock records for each stock symbol:

grunt> by_symbol = GROUP stocks BY symbol;
grunt> symbol_count = foreach by_symbol generate group, COUNT($1);
grunt> dump symbol_count;

(AAPL,10)
(CSCO,10)
(GOOG,5)
(MSFT,10)
(YHOO,10)

The following example shows how you can write out Avro data in Pig. The example fil-
ters the Google stocks from the input data and writes them into a new output direc-
tory in HDFS. This also shows how you can compress job outputs using Snappy:

grunt> SET mapred.compress.map.output true;
grunt> SET mapred.output.compress true;
grunt> SET mapred.output.compression.codec
➥ org.apache.hadoop.io.compress.SnappyCodec
grunt> SET avro.output.codec snappy;

grunt> google_stocks = FILTER stocks BY symbol == 'GOOG';

grunt> STORE google_stocks INTO 'stock_pig_output/'
➥ USING org.apache.pig.piggybank.storage.avro.AvroStorage(
➥ 'no_schema_check',
➥ 'data', 'stock_pig/');

When writing Avro data to HDFS, you’ll need to specify the Avro schema of the data
you’re persisting. The preceding example uses the data option to tell AvroStorage to
use the Avro schema embedded in files under your input directory.

 As with loading files, there are various other methods for telling AvroStorage your
schema details, and these are documented on Pig’s wiki.38

■ Summary
The last few techniques have demonstrated how easy and straightforward it is to use
Avro with MapReduce, Hive, and Pig. Using Avro to store your data gives you a num-
ber of useful free features, such as versioning support, compression, splittability, and
code generation. Avro’s strong integration with MapReduce, Hive, Pig, and numerous
other tools, such as Impala and Flume, means that it’s worth consideration as your
data format of choice.

37 More Avro and Pig integration details are available on the AvroStorage page: https://cwiki.apache.org/
confluence/display/PIG/AvroStorage.

38 Additional resources on AvroStorage are at https://cwiki.apache.org/confluence/display/PIG/AvroStorage.

https://cwiki.apache.org/confluence/display/PIG/AvroStorage
https://cwiki.apache.org/confluence/display/PIG/AvroStorage
https://cwiki.apache.org/confluence/display/PIG/AvroStorage

113Columnar storage

 Until now we’ve focused on row-based file formats, which aren’t always the best way
to lay out data. In the next section you’ll learn about the advantages of columnar stor-
age and see examples of Parquet, a columnar storage, in action.

3.4 Columnar storage
When data is written to an I/O device (say a flat file, or a table in a relational database),
the most common way to lay out that data is row-based, meaning that all the fields for
the first row are written first, followed by all the fields for the second row, and so on.
This is how most relational databases write out tables by default, and the same goes for
most data serialization formats such as XML, JSON, and Avro container files.

 Columnar storage works differently—it lays out data by column first, and then by
row. All the values of the first field across all the records are written first, followed by
the second field, and so on. Figure 3.12 highlights the differences between the two
storage schemes in how the data is laid out.

 There are two main benefits to storing data in columnar form:

■ Systems that read columnar data can efficiently extract a subset of the columns,
reducing I/O. Row-based systems typically need to read the entire row even if
just one or two columns are needed.

■ Optimizations can be made when writing columnar data, such as run-length
encoding and bit packing, to efficiently compress the size of the data being writ-
ten. General compression schemes also work well for compressing columnar
data because compression works best on data that has a lot of repeating data,
which is the case when columnar data is physically colocated.

These records would be laid out differently
for row- and column-based storage.

39.54MSFT 05-10-2014
526.6205-10-2014GOOGL
PriceDateSymbol

Row storage

Sample records

05-10-2014

05-10-2014

MSFT
526.62

39.54

GOOGL
Row 1

Row 2

Column storage

526.62

MSFT

05-10-2014
05-10-2014

39.54

GOOGL
Column 1 (Symbol)

Column 3 (Price)

Column 2 (Date)

Figure 3.12 How row and column storage systems lay out their data

114 CHAPTER 3 Data serialization—working with text and beyond

As a result, columnar file formats work best when working with large datasets where
you wish to filter or project data, which is exactly the type of work that’s commonly
performed in OLAP-type use cases, as well as MapReduce.

 The majority of data formats used in Hadoop, such as JSON and Avro, are row-
ordered, which means that you can’t apply the previously mentioned optimizations
when reading and writing these files. Imagine that the data in figure 3.12 was in a Hive
table and you were to execute the following query:

SELECT AVG(price) FROM stocks;

If the data was laid out in a row-based format, each row would have to be read, even
though the only column being operated on is price. In a column-oriented store, only
the price column would be read, which could result in drastically reduced processing
times when you’re working with large datasets.

 There are a number of columnar storage options that can be used in Hadoop:

■ RCFile was the first columnar format available in Hadoop; it came out of a col-
laboration between Facebook and academia in 2009.39 RCFile is a basic colum-
nar store that supports separate column storage and column compression. It
can support projection during reads, but misses out on the more advanced
techniques such as run-length encoding. As a result, Facebook has been moving
away from RCFile to ORC file.40

■ ORC file was created by Facebook and Hortonworks to address RCFile’s short-
comings, and its serialization optimizations have yielded smaller data sizes com-
pared to RCFile.41 It also uses indexes to enable predicate pushdowns to
optimize queries so that a column that doesn’t match a filter predicate can be
skipped. ORC file is also fully integrated with Hive’s type system and can support
nested structures.

■ Parquet is a collaboration between Twitter and Cloudera and employs many of
the tricks that ORC file uses to generate compressed files.42 Parquet is a
language-independent format with a formal specification.

RCFile and ORC file were designed to support Hive as their primary usage, whereas
Parquet is independent of any other Hadoop tool and tries to maximize compatibility
with the Hadoop ecosystem. Table 3.2 shows how these columnar formats integrate
with various tools and languages.

39 Yongqiang He, et al., “RCFile: A Fast and Space-efficient Data Placement Structure in MapReduce-based
Warehouse Systems,” ICDE Conference 2011: www.cse.ohio-state.edu/hpcs/WWW/HTML/publications/
papers/TR-11-4.pdf.

40 Facebook Engineering Blog, “Scaling the Facebook data warehouse to 300 PB,” https://code.facebook.com/
posts/229861827208629/scaling-the-facebook-data-warehouse-to-300-pb/.

41 Owen O’Malley, “ORC File Introduction,” www.slideshare.net/oom65/orc-fileintro.
42 Features such as column stats and indexes are planned for the Parquet 2 release.

www.cse.ohio-state.edu/hpcs/WWW/HTML/publications/papers/TR-11-4.pdf
www.cse.ohio-state.edu/hpcs/WWW/HTML/publications/papers/TR-11-4.pdf
https://code.facebook.com/posts/229861827208629/scaling-the-facebook-data-warehouse-to-300-pb/
https://code.facebook.com/posts/229861827208629/scaling-the-facebook-data-warehouse-to-300-pb/
www.slideshare.net/oom65/orc-fileintro

115Columnar storage

For this section, I’ll focus on Parquet due to its compatibility with object models such
as Avro.

3.4.1 Understanding object models and storage formats

Before we get started with the techniques, we’ll cover a few Parquet concepts that are
important in understanding the interplay between Parquet and Avro (and Thrift and
Protocol Buffers):

■ Object models are in-memory representations of data. Parquet exposes a simple
object model that’s supplied more as an example than anything else. Avro,
Thrift, and Protocol Buffers are full-featured object models. An example is the
Avro Stock class, which was generated by Avro to richly model the schema using
Java POJOs.

■ Storage formats are serialized representations of a data model. Parquet is a stor-
age format that serializes data in columnar form. Avro, Thrift, and Protocol
Buffers also have their own storage formats that serialize data in row-oriented
formats.43 Storage formats can be thought of as the at-rest representation
of data.

■ Parquet object model converters are responsible for converting an object model to
Parquet’s data types, and vice versa. Parquet is bundled with a number of con-
verters to maximize the interoperability and adoption of Parquet.

Figure 3.13 shows how these concepts work in the context of Parquet.
 What’s unique about Parquet is that it has converters that allow it to support com-

mon object models such as Avro. Behind the scenes, the data is stored in Parquet
binary form, but when you’re working with your data, you’re using your preferred
object model, such as Avro objects. This gives you the best of both worlds: you can
continue to use a rich object model such as Avro to interact with your data, and that
data will be efficiently laid out on disk using Parquet.

Table 3.2 Columnar storage formats supported in Hadoop

Format Hadoop support
Supported object

models
Supported programming

languages
Advanced compression

support

RCFile MapReduce, Pig,
Hive (0.4+), Impala

Thrift, Protocol
Buffersa

Java No

ORC file MapReduce, Pig,
Hive (0.11+)

None Java Yes

Parquet MapReduce, Pig,
Hive, Impala

Avro, Protocol
Buffers, Thrift

Java, C++, Python Yes

a Elephant Bird provides the ability to use Thrift and Protocol Buffers with RCFile.

43 Avro does have a columnar storage format called Trevni: http://avro.apache.org/docs/1.7.6/trevni/
spec.html.

http://avro.apache.org/docs/1.7.6/trevni/spec.html
http://avro.apache.org/docs/1.7.6/trevni/spec.html

116 CHAPTER 3 Data serialization—working with text and beyond

Storage format interoperability Storage formats generally aren’t interoperable.
When you’re combining Avro and Parquet, you’re combining Avro’s object
model and Parquet’s storage format. Therefore, if you have existing Avro data
sitting in HDFS that was serialized using Avro’s storage format, you can’t read
that data using Parquet’s storage format, as they are two very different ways of
encoding data. The reverse is also true—Parquet can’t be read using the nor-
mal Avro methods (such as the AvroInputFormat in MapReduce); you must use
Parquet implementations of input formats and Hive SerDes to work with Par-
quet data.

To summarize, choose Parquet if you want your data to be serialized in a columnar
form. Once you’ve selected Parquet, you’ll need to decide which object model you’ll
be working with. I recommend you pick the object model that has the most traction in
your organization. Otherwise I recommend going with Avro (section 3.3.5 explains
why Avro can be a good choice).

The Parquet file format The Parquet file format is beyond the scope of this
book; for more details, take a look at the Parquet project page at https://
github.com/Parquet/parquet-format.

3.4.2 Parquet and the Hadoop ecosystem

The goal of Parquet is to maximize support throughout the Hadoop ecosystem. It cur-
rently supports MapReduce, Hive, Pig, Impala, and Spark, and hopefully we’ll see it
being supported by other systems such as Sqoop.

 Because Parquet is a standard file format, a Parquet file that’s written by any one of
these technologies can also be read by the others. Maximizing support across the
Hadoop ecosystem is critical to the success of a file format, and Parquet is poised to
become the ubiquitous file format in big data.

Parquet

Parquet contains both a storage format
and converters that map object models to and

from Parquet's file format types.

Object
models

Storage
format

Binary Parquet file format

ExampleHivePigprotobufThriftAvro

Object
model

converters ExampleHivePigprotobufThriftAvro

Figure 3.13 Parquet storage format and object model converters

https://github.com/Parquet/parquet-format
https://github.com/Parquet/parquet-format

117TECHNIQUE 20 Reading Parquet files via the command line

 It’s also reassuring that Parquet isn’t focused on a particular subset of technolo-
gies—in the words of the Parquet home page, “We are not interested in playing favor-
ites” when it comes to ecosystem support (http://parquet.io). This implies that a
primary goal of the project is to maximize its support for the tools that you’re likely to
use, which is important as new tools continue to pop up on our radars.

3.4.3 Parquet block and page sizes

Figure 3.14 shows a high-level representation of the Parquet file format and highlights
the key concepts.

A more detailed overview of the file format can be seen at the project’s home page:
https://github.com/Parquet/parquet-format.

TECHNIQUE 20 Reading Parquet files via the command line

Parquet is a binary storage format, so using the standard hadoop fs -cat command will
yield garbage on the command line. In this technique we’ll explore how you can use
the command line to not only view the contents of a Parquet file, but also to examine
the schema and additional metadata contained in Parquet files.

■ Problem
You want to use the command line to examine the contents of a Parquet file.

Parquet file

Row group 1

Column
chunk 2

Page

Page

Page

Column
chunk 3

Page

Page

Page

Column
chunk 1

Page

Page

Page

Row group 2

A magic number identifies the type of file.

 A row group is a grouping of rows organized in a
columnar format. Parquet keeps the entire row

group in memory when writing for encoding
(configurable via parquet.block.size).

 A column chunk contains all the values for
an individual column in the row group.

 A page contains a number of columns
that have been compressed together.

 The footer contains schema details,
object model metadata, and metadata

about the row groups and columns.

Header

Row group ...

Footer

Figure 3.14 Parquet’s file format

https://github.com/Parquet/parquet-format

118 CHAPTER 3 Data serialization—working with text and beyond

■ Solution
Use the utilities bundled with the Parquet tools.

■ Discussion
Parquet is bundled with a tools JAR containing some useful utilities that can dump
information in Parquet files to standard output.

 Before you get started, you’ll need to create a Parquet file so that you can test out
the tools. The following example creates a Parquet file by writing Avro records:

$ hip hip.ch3.parquet.ParquetAvroStockWriter \
--input test-data/stocks.txt \
--output stocks.parquet

The first Parquet tool you’ll use is cat, which performs a simple dump of the data in
the Parquet file to standard output:

$ hip --nolib parquet.tools.Main cat stocks.parquet
symbol = AAPL
date = 2009-01-02
open = 85.88
...

You can use the Parquet head command instead of cat in the preceding example to emit
only the first five records. There’s also a dump command that allows you to specify a subset
of the columns that should be dumped, although the output isn’t as human-readable.

 Parquet has its own internal data types and schema that are mapped to external
object models by converters. The internal Parquet schema can be viewed using the
schema option:

$ hip --nolib parquet.tools.Main schema stocks.parquet
message hip.ch3.avro.gen.Stock {
required binary symbol (UTF8);
required binary date (UTF8);
required double open;
required double high;
required double low;
required double close;
required int32 volume;
required double adjClose;

}

Parquet also allows object models to use the metadata to store information needed for
deserialization. Avro, for example, uses the metadata to store the Avro schema, as can
be seen in the output of the command that follows:

$ hip --nolib parquet.tools.Main meta stocks.parquet
creator: parquet-mr (build 3f25ad97f20...)
extra: avro.schema = {"type":"record","name":"Stock","namespace" ...

file schema: hip.ch3.avro.gen.Stock

symbol: REQUIRED BINARY O:UTF8 R:0 D:0

119TECHNIQUE 21 Reading and writing Avro data in Parquet with Java

date: REQUIRED BINARY O:UTF8 R:0 D:0
open: REQUIRED DOUBLE R:0 D:0
high: REQUIRED DOUBLE R:0 D:0
low: REQUIRED DOUBLE R:0 D:0
close: REQUIRED DOUBLE R:0 D:0
volume: REQUIRED INT32 R:0 D:0
adjClose: REQUIRED DOUBLE R:0 D:0

row group 1: RC:45 TS:2376

symbol: BINARY SNAPPY DO:0 FPO:4 SZ:85/84/0.99 VC:45 ENC:PD ...
date: BINARY SNAPPY DO:0 FPO:89 SZ:127/198/1.56 VC:45 ENC ...
open: DOUBLE SNAPPY DO:0 FPO:216 SZ:301/379/1.26 VC:45 EN ...
high: DOUBLE SNAPPY DO:0 FPO:517 SZ:297/379/1.28 VC:45 EN ...
low: DOUBLE SNAPPY DO:0 FPO:814 SZ:292/379/1.30 VC:45 EN ...
close: DOUBLE SNAPPY DO:0 FPO:1106 SZ:299/379/1.27 VC:45 E ...
volume: INT32 SNAPPY DO:0 FPO:1405 SZ:203/199/0.98 VC:45 EN ...
adjClose: DOUBLE SNAPPY DO:0 FPO:1608 SZ:298/379/1.27 VC:45 E ...

Next let’s look at how you can write and read Parquet files.

TECHNIQUE 21 Reading and writing Avro data in Parquet with Java

One of the first things you’ll want to do when working with a new file format is to
understand how a standalone Java application can read and write data. This technique
shows how you can write Avro data into a Parquet file and read it back out.

■ Problem
You want to read and write Parquet data directly from your Java code outside of
Hadoop using an Avro object model.

■ Solution
Use the AvroParquetWriter and AvroParquetReader classes.

■ Discussion
Parquet, a columnar storage format for Hadoop, has support for Avro, which allows
you to work with your data using Avro classes, and to efficiently encode the data using
Parquet’s file format so that you can take advantage of the columnar layout of your
data. It sounds odd to mix data formats like this, so let’s investigate why you’d want to
do this and how it works.

 Parquet is a storage format, and it has a formal programming language–agnostic
specification. You could use Parquet directly without any other supporting data format
such as Avro, but Parquet is at heart a simple data format and doesn’t support complex
types such as maps or unions. This is where Avro comes into play, as it supports these
richer types as well as features such as code generation and schema evolution. As a
result, marrying Parquet and a rich data format such as Avro creates a perfect match of
sophisticated schema capabilities coupled with efficient data encoding.

 For this technique, we’ll continue to use the Avro Stock schema. First, let’s look at
how you can write a Parquet file using these Stock objects.44

44 GitHub source: https://github.com/alexholmes/hiped2/blob/master/src/main/java/hip/ch3/parquet/
ParquetAvroStockWriter.java.

https://github.com/alexholmes/hiped2/blob/master/src/main/java/hip/ch3/parquet/ParquetAvroStockWriter.java
https://github.com/alexholmes/hiped2/blob/master/src/main/java/hip/ch3/parquet/ParquetAvroStockWriter.java

120 CHAPTER 3 Data serialization—working with text and beyond

AvroParquetWriter<Stock> writer =
new AvroParquetWriter<Stock>(

outputPath,
Stock.SCHEMA$,
CompressionCodecName.SNAPPY,
ParquetWriter.DEFAULT_BLOCK_SIZE,
ParquetWriter.DEFAULT_PAGE_SIZE,
true

);

for (Stock stock : AvroStockUtils.fromCsvFile(inputFile)) {
writer.write(stock);

}

writer.close();

The following command generates a Parquet file by executing the preceding code:

$ hip hip.ch3.parquet.ParquetAvroStockWriter \
--input test-data/stocks.txt \
--output stocks.parquet

The previous technique showed you how to use the Parquet tools to dump the file to
standard output. But what if you wanted to read the file in Java?45

ParquetReader<Stock> reader = new AvroParquetReader<Stock>(inputFile);

Stock stock;
while((stock = reader.read()) != null) {
System.out.println(stock);

}

reader.close()

The following command shows the output of the preceding code:

$ hip hip.ch3.parquet.ParquetAvroStockReader \
--input stocks.parquet

AAPL,2009-01-02,85.88,91.04,85.16,90.75,26643400,90.75
AAPL,2008-01-02,199.27,200.26,192.55,194.84,38542100,194.84
AAPL,2007-01-03,86.29,86.58,81.9,83.8,44225700,83.8
...

TECHNIQUE 22 Parquet and MapReduce

This technique examines how you can work with Parquet files in MapReduce. Using
Parquet as a data source as well as a data sink in MapReduce will be covered.

45 GitHub source: https://github.com/alexholmes/hiped2/blob/master/src/main/java/hip/ch3/parquet/
ParquetAvroStockReader.java.

Create a writer to write
out Avro records.

The output file.

The Avro schema.
Use Snappy to
compress columns;
only Snappy, gzip,
and LZO are
supported.

The amount of memory
used to buffer writes—
the default is 128 MB.

The page size—the
default is 1 MB. Enable dictionary

encoding.

Write out Stock
instances.

https://github.com/alexholmes/hiped2/blob/master/src/main/java/hip/ch3/parquet/ParquetAvroStockReader.java
https://github.com/alexholmes/hiped2/blob/master/src/main/java/hip/ch3/parquet/ParquetAvroStockReader.java

121TECHNIQUE 22 Parquet and MapReduce

■ Problem
You want to work with Avro data serialized as Parquet in MapReduce.

■ Solution
Use the AvroParquetInputFormat and AvroParquetOutputFormat classes.

■ Discussion
The Avro subproject in Parquet comes with MapReduce input and output formats to
let you read and write your Avro data using Parquet as the storage format. The follow-
ing example calculates the average stock price for each symbol:46

public int run(final String[] args) throws Exception {

Path inputPath = new Path(args[0]);
Path outputPath = new Path(args[1]);

Configuration conf = super.getConf();

Job job = new Job(conf);
job.setJarByClass(AvroParquetMapReduce.class);

job.setInputFormatClass(AvroParquetInputFormat.class);
AvroParquetInputFormat.setInputPaths(job, inputPath);

job.setMapperClass(Map.class);
job.setReducerClass(Reduce.class);

job.setMapOutputKeyClass(Text.class);
job.setMapOutputValueClass(DoubleWritable.class);

job.setOutputFormatClass(AvroParquetOutputFormat.class);
FileOutputFormat.setOutputPath(job, outputPath);
AvroParquetOutputFormat.setSchema(job, StockAvg.SCHEMA$);

return job.waitForCompletion(true) ? 0 : 1;
}

public static class Map
extends Mapper<Void, Stock, Text, DoubleWritable> {

@Override
public void map(Void key, Stock value, Context context) {
context.write(new Text(value.getSymbol().toString()),

new DoubleWritable(value.getOpen()));
}

}

public static class Reduce
extends Reducer<Text, DoubleWritable, Void, StockAvg> {

@Override
protected void reduce(Text key, Iterable<DoubleWritable> values,

Context context) {

46 GitHub source: https://github.com/alexholmes/hiped2/blob/master/src/main/java/hip/ch3/parquet/
AvroParquetMapReduce.java.

Set the Avro Parquet
input format.

Set the Avro Parquet
output format.

Specify the Avro schema
for the job outputs.

Parquet doesn’t supply an
input key, just the value

as an Avro object.

Similarly, the output format
ignores the key and only uses

the Avro value.

https://github.com/alexholmes/hiped2/blob/master/src/main/java/hip/ch3/parquet/AvroParquetMapReduce.java
https://github.com/alexholmes/hiped2/blob/master/src/main/java/hip/ch3/parquet/AvroParquetMapReduce.java

122 CHAPTER 3 Data serialization—working with text and beyond

Mean mean = new Mean();
for (DoubleWritable val : values) {
mean.increment(val.get());

}
StockAvg avg = new StockAvg();
avg.setSymbol(key.toString());
avg.setAvg(mean.getResult());
context.write(null, avg);

}
}

Working with Avro in Parquet is very simple, and arguably easier than working with
Avro-serialized data.47 You can run the example:

$ hip hip.ch3.parquet.AvroParquetMapReduce \
--input stocks.parquet \
--output output

Parquet comes with some tools to help you work with Parquet files, and one of them
allows you to dump the contents to standard output:

$ hdfs -ls output
output/_SUCCESS
output/_metadata
output/part-r-00000.parquet

$ hip --nolib parquet.tools.Main cat output/part-r-00000.parquet
symbol = AAPL
avg = 68.631

symbol = CSCO
avg = 31.148000000000003

symbol = GOOG
avg = 417.47799999999995

symbol = MSFT
avg = 44.63100000000001

symbol = YHOO
avg = 69.333

You may have noticed that there’s an additional file in the output directory called
_metadata. When the Parquet OutputComitter runs upon job completion, it reads the
footer of all the output files (which contains the file metadata) and generates this
summarized metadata file. This file is used by subsequent MapReduce (or Pig/Hive)
jobs to reduce job startup times.48

47 The input and output formats supplied with Avro to support Avro’s storage format wrap the Avro objects,
requiring a level of indirection.

48 Calculating the input splits can take a long time when there are a large number of input files that need to
have their footers read, so having the ability to read a single summary file is a useful optimization.

123TECHNIQUE 22 Parquet and MapReduce

■ Summary
In this technique, you saw how to use code-generated Avro object files with Parquet. If
you don’t want to work with Avro object files, you have a few options that allow you to
work with Avro data generically using Avro’s GenericData class:

■ If you wrote the Avro data using GenericData objects, then that’s the format in
which Avro will supply them to your mappers.

■ Excluding the JAR containing your Avro-generated code will also result in
GenericData objects being fed to your mappers.

■ You can trick Avro by mutating the input schema so that Avro can’t load the spe-
cific class, forcing it to supply the GenericData instance instead.

The following code shows how you would perform the third option—you’re essentially
taking the original schema and duplicating it, but in the process you’re supplying a dif-
ferent classname, which Avro won’t be able to load (see "foobar" in the first line):49

Schema schema = Schema.createRecord("foobar",
Stock.SCHEMA$.getDoc(), Stock.SCHEMA$.getNamespace(), false);

List<Schema.Field> fields = Lists.newArrayList();
for (Schema.Field field : Stock.SCHEMA$.getFields()) {
fields.add(new Schema.Field(field.name(), field.schema(),
field.doc(), field.defaultValue(), field.order()));

}
schema.setFields(fields);

AvroParquetInputFormat.setAvroReadSchema(job, schema);

What if you want to work with the Parquet data natively? Parquet comes with an exam-
ple object model that allows you to work with any Parquet data, irrespective of the
object model that was used to write the data. It uses a Group class to represent records,
and provides some basic getters and setters to retrieve fields.

 The following code once again shows how to calculate the stock averages. The
input is the Avro/Parquet data, and the output is a brand new Parquet schema:50

private final static String writeSchema = "message stockavg {\n" +
"required binary symbol;\n" +
"required double avg;\n" +
"}";

public void run(Path inputPath, Path outputPath) {
Configuration conf = super.getConf();

Job job = new Job(conf);
job.setJarByClass(ExampleParquetMapReduce.class);

job.setInputFormatClass(ExampleInputFormat.class);
FileInputFormat.setInputPaths(job, inputPath);

49 GitHub source https://github.com/alexholmes/hiped2/blob/master/src/main/java/hip/ch3/parquet/
AvroGenericParquetMapReduce.java.

50 GitHub source: https://github.com/alexholmes/hiped2/blob/master/src/main/java/hip/ch3/parquet/
ExampleParquetMapReduce.java.

https://github.com/alexholmes/hiped2/blob/master/src/main/java/hip/ch3/parquet/AvroGenericParquetMapReduce.java
https://github.com/alexholmes/hiped2/blob/master/src/main/java/hip/ch3/parquet/AvroGenericParquetMapReduce.java
https://github.com/alexholmes/hiped2/blob/master/src/main/java/hip/ch3/parquet/ExampleParquetMapReduce.java
https://github.com/alexholmes/hiped2/blob/master/src/main/java/hip/ch3/parquet/ExampleParquetMapReduce.java

124 CHAPTER 3 Data serialization—working with text and beyond

job.setMapperClass(Map.class);
job.setReducerClass(Reduce.class);

job.setMapOutputKeyClass(Text.class);
job.setMapOutputValueClass(DoubleWritable.class);

job.setOutputFormatClass(ExampleOutputFormat.class);
FileOutputFormat.setOutputPath(job, outputPath);
ExampleOutputFormat.setSchema(

job,
MessageTypeParser.parseMessageType(writeSchema));

}

public static class Map extends Mapper<Void, Group,
Text, DoubleWritable> {

@Override
public void map(Void key, Group value, Context context) {

context.write(new Text(value.getString("symbol", 0)),
new DoubleWritable(Double.valueOf(

value.getValueToString(2, 0))));
}

}

public static class Reduce extends Reducer<Text, DoubleWritable,
Void, Group> {

private SimpleGroupFactory factory;

@Override
protected void setup(Context context) {
factory = new SimpleGroupFactory(
GroupWriteSupport.getSchema(
ContextUtil.getConfiguration(context)));

}

@Override
protected void reduce(Text key, Iterable<DoubleWritable> values,

Context context) {
Mean mean = new Mean();
for (DoubleWritable val : values) {
mean.increment(val.get());

}
Group group = factory.newGroup()

.append("symbol", key.toString())

.append("avg", mean.getResult());
context.write(null, group);

}
}

The example object model is pretty basic and is currently missing some functional-
ity—for example, there are no getters for double types, which is why the preceding
code accesses the stock value using the getValueToString method. But there’s work
afoot to provide better object models, including a POJO adapter.51

51 See the GitHub ticket number 325 titled “Pojo Support for Parquet” at https://github.com/Parquet/
parquet-mr/pull/325.

https://github.com/Parquet/parquet-mr/pull/325
https://github.com/Parquet/parquet-mr/pull/325

125TECHNIQUE 23 Parquet and Hive/Impala

TECHNIQUE 23 Parquet and Hive/Impala

Parquet comes into its own when utilized in Hive and Impala. Columnar storage is a
natural fit for these systems by virtue of its ability to use pushdowns to optimize the
read path.52 This technique shows how Parquet can be used in these systems.

■ Problem
You want to be able to work with your Parquet data in Hive and Impala.

■ Solution
Use Hive’s and Impala’s built-in support for Parquet.

■ Discussion
Hive requires that data exists in a directory, so you first need to create a directory and
copy the stocks Parquet file into it:

$ hadoop fs -mkdir parquet_avro_stocks
$ hadoop fs -cp stocks.parquet parquet_avro_stocks

Next, you’ll create an external Hive table and define the schema. If you’re unsure
about the structure of your schema, use one of the earlier techniques to view the
schema information in the Parquet files that you’re working with (use the schema com-
mand in the Parquet tools):

hive> CREATE EXTERNAL TABLE parquet_stocks(
➥ symbol string,
➥ date string,
➥ open double,
➥ high double,
➥ low double,
➥ close double,
➥ volume int,
➥ adjClose double
➥) STORED AS PARQUET
➥LOCATION '/user/YOUR_USERNAME/parquet_avro_stocks';

Hive 0.13 Support for Parquet as a native Hive store was only added in Hive 0.13
(see https://issues.apache.org/jira/browse/HIVE-5783). If you’re using an older
version of Hive, you’ll need to manually load all the Parquet JARs using the ADD
JAR command and use the Parquet input and output formats. Cloudera has an
example on its blog; see “How-to: Use Parquet with Impala, Hive, Pig, and Map-
Reduce,” http://blog.cloudera.com/blog/2014/03/how-to-use-parquet-with-
impala-hive-pig-mapreduce/.

You can run a simple query to extract the unique stock symbols from the data:

hive> select distinct(symbol) from parquet_stocks;
AAPL
CSCO
GOOG
MSFT
YHOO

52 Pushdowns are covered in more detail in the next technique.

ttp://blog.cloudera.com/blog/2014/03/how-to-use-parquet-with-impala-hive-pig-mapreduce/
ttp://blog.cloudera.com/blog/2014/03/how-to-use-parquet-with-impala-hive-pig-mapreduce/
https://issues.apache.org/jira/browse/HIVE-5783

126 CHAPTER 3 Data serialization—working with text and beyond

You can use the same syntax to create the table in Impala.

TECHNIQUE 24 Pushdown predicates and projection with Parquet

Projection and predicate pushdowns involve an execution engine pushing the projec-
tion and predicates down to the storage format to optimize the operations at the lowest
level possible. This yields space and time advantages, as columns that aren’t required for
the query don’t need to be fetched and supplied to the execution engine.

 This is especially useful for columnar stores, as pushdowns allow the storage for-
mat to skip over entire column groups that aren’t required for the query, and colum-
nar formats can perform this operation very efficiently.

 In this technique you’ll look at the steps required to use these pushdowns in your
Hadoop pipelines.

■ Problem
You want to use pushdowns in Hadoop to optimize your jobs.

■ Solution
Using Hive and Pig in conjunction with Parquet provides out-of-the-box projection
pushdowns. With MapReduce there are some manual steps that you need to take in
the driver code to enable pushdowns.

■ Discussion
Once again our focus with this technique is Avro. The AvroParquetInputFormat has two
methods that you can use for predicate and projection pushdowns. In the following
example, only two fields of the Stock object are projected, and a predicate is added so
that only Google stocks are selected:53

public static class GoogleStockFilter
implements UnboundRecordFilter {

private final UnboundRecordFilter filter;

public GoogleStockFilter() {
filter = ColumnRecordFilter.column("symbol",

ColumnPredicates.equalTo("GOOG"));
}

@Override
public RecordFilter bind(Iterable<ColumnReader> readers) {
return filter.bind(readers);

}
}

public void run(Path inputPath, Path outputPath) {
Configuration conf = super.getConf();

Job job = new Job(conf);
job.setJarByClass(AvroProjectionParquetMapReduce.class);

53 GitHub source: https://github.com/alexholmes/hiped2/blob/master/src/main/java/hip/ch3/parquet/
AvroProjectionParquetMapReduce.java.

Create a class that
implements the predicate.

Define the predicate as a
filter on Google stocks.

https://github.com/alexholmes/hiped2/blob/master/src/main/java/hip/ch3/parquet/AvroProjectionParquetMapReduce.java
https://github.com/alexholmes/hiped2/blob/master/src/main/java/hip/ch3/parquet/AvroProjectionParquetMapReduce.java

127TECHNIQUE 24 Pushdown predicates and projection with Parquet

job.setInputFormatClass(AvroParquetInputFormat.class);
AvroParquetInputFormat.setInputPaths(job, inputPath);

// predicate pushdown
AvroParquetInputFormat.setUnboundRecordFilter(
job, GoogleStockFilter.class);

// projection pushdown
Schema projection = Schema.createRecord(Stock.SCHEMA$.getName(),

Stock.SCHEMA$.getDoc(), Stock.SCHEMA$.getNamespace(), false);
List<Schema.Field> fields = Lists.newArrayList();
for (Schema.Field field : Stock.SCHEMA$.getFields()) {

if ("symbol".equals(field.name()) ||
"open".equals(field.name())) {

fields.add(new Schema.Field(field.name(), field.schema(),
field.doc(), field.defaultValue(), field.order()));

}
}
projection.setFields(fields);
AvroParquetInputFormat.setRequestedProjection(job, projection);

job.setMapperClass(Map.class);
job.setReducerClass(Reduce.class);

job.setMapOutputKeyClass(Text.class);
job.setMapOutputValueClass(DoubleWritable.class);

job.setOutputFormatClass(AvroParquetOutputFormat.class);
FileOutputFormat.setOutputPath(job, outputPath);
AvroParquetOutputFormat.setSchema(job, StockAvg.SCHEMA$);

return job.waitForCompletion(true) ? 0 : 1;

}

public static class Map extends
Mapper<Void, Stock, Text, DoubleWritable> {

@Override
public void map(Void key, Stock value, Context context) {

if (value != null) {
context.write(new Text(value.getSymbol().toString()),

new DoubleWritable(value.getOpen()));
}

}
}

public static class Reduce extends Reducer<Text, DoubleWritable,
Void, StockAvg> {

@Override
protected void reduce(Text key, Iterable<DoubleWritable> values,

Context context) {
Mean mean = new Mean();
for (DoubleWritable val : values) {

Set the predicate
pushdown for the job.

Define a new schema for the
projection, based on the

original Stock schema.

Project just the stock
symbol and opening price.

Set the projection
for the job.

The original Stock
object is still supplied

to the mapper.

Check for null in the case
that a record is filtered
out due to the predicate.

Only use the stock and
open fields—all other

fields are null due to the
projection.

128 CHAPTER 3 Data serialization—working with text and beyond

mean.increment(val.get());
}
StockAvg avg = new StockAvg();
avg.setSymbol(key.toString());
avg.setAvg(mean.getResult());
context.write(null, avg);

}
}

Predicate filter null values When the predicate that you supply filters out a
record, a null value is supplied to your mapper. That’s why you have to check
for null before working with the mapper input.

If you run the job and examine the output, you’ll only find the average for the Google
stock, demonstrating that the predicate worked:

$ hip hip.ch3.parquet.AvroProjectionParquetMapReduce \
--input stocks.parquet \
--output output

$ hip --nolib parquet.tools.Main cat output/part-r-00000.parquet
symbol = GOOG
avg = 417.47799999999995

■ Summary
This technique doesn’t include any Hive or Pig pushdown details, as both tools auto-
matically perform these pushdowns as part of their execution. Pushdowns are an
important part of your job-optimization work, and if you’re using a third-party library
or tool that doesn’t expose pushdowns when working with Parquet, you can help the
community by opening a feature request.

3.4.4 Parquet limitations

There are a number of points that you should be aware of when working with Parquet:

■ Parquet requires a lot of memory when writing files because it buffers writes in
memory to optimize the encoding and compressing of the data. Either increase
the heap size (2 GB is recommended), or decrease the parquet.block.size con-
figurable if you encounter memory issues when writing Parquet files.

■ Using a heavily nested data structure with Parquet will likely limit some of the
optimizations that Parquet makes for pushdowns. If possible, try to flatten your
schema.

■ Hive doesn’t yet support decimal and timestamp data types when working with Par-
quet because Parquet doesn’t support them as native types. Work is being tracked
in a JIRA ticket titled “Implement all Hive data types in Parquet” (https://
issues.apache.org/jira/browse/HIVE-6384).

■ Impala doesn’t support nested data in Parquet or complex data types such as
maps, structs, or arrays. This should be fixed in the Impala 2.x release.

https://issues.apache.org/jira/browse/HIVE-6384
https://issues.apache.org/jira/browse/HIVE-6384

129TECHNIQUE 25 Writing input and output formats for CSV

■ Tools such as Impala work best when a Parquet file contains a single row group
and when the entire file fits inside an HDFS block. In reality, it’s hard to achieve
this goal when you’re writing Parquet files in systems such as MapReduce, but
it’s good to keep this in mind as you’re producing Parquet files.

We’ve covered working with common file formats and working with various data seri-
alization tools for tighter compatibility with MapReduce. It’s time to look at how you
can support file formats that may be proprietary to your organization, or even public
file formats for which no input or output formats exist for MapReduce.

3.5 Custom file formats
In any organization you’ll typically find a plethora of custom or uncommon file for-
mats that litter its datacenters. There may be back-end servers dumping out audit files
in a proprietary format, or old code or systems that write files using formats that aren’t
in common use any longer. If you want to work with such data in MapReduce, you’ll
need to write your own input and output format classes to work with your data. This
section will walk you through that process.

3.5.1 Input and output formats

At the start of this chapter, we took a high-level look at the functions of input and out-
put format classes in MapReduce. Input and output classes are required to feed data
to map functions and to write the outputs of reduce functions.

TECHNIQUE 25 Writing input and output formats for CSV

Imagine you have a bunch of data sitting around in CSV files and you’re writing multi-
ple MapReduce jobs that read and write data in CSV form. Because CSV is text, you
could use the built-in TextInputFormat and TextOutputFormat, and handle parsing the
CSV in your MapReduce code. This can quickly get tiring, however, and result in the
same parsing code being copied and pasted across all of your jobs.

 If you thought MapReduce had any built-in CSV input and output formats that
could take care of this parsing, you’d be out of luck—there are none.

■ Problem
You want to work with CSV in MapReduce and have CSV records presented to you in a
richer format than you’d get if you were using a TextInputFormat that would supply a
string representing a line.

■ Solution
Write an input and output format that works with CSV.

■ Discussion
We’ll cover all of the steps required to write your own format classes to work with CSV
input and output. CSV is one of the simpler file formats to work with, which will make
it easier to focus on MapReduce format specifics without having to think too much
about the file format.

130 CHAPTER 3 Data serialization—working with text and beyond

 Your custom InputFormat and RecordReader classes will parse CSV files and supply
the data to the mapper in a user-friendly format. You’ll also support a custom field
separator for non-comma delimiters. Because you don’t want to reinvent the wheel,
you’ll use the CSV parser in the open source OpenCSV project (http://
opencsv.sourceforge.net/), which will take care of quoted fields and ignore separa-
tor characters in quoted fields.

Overview of InputFormat and OutputFormat I provided a detailed overview of
InputFormat and OutputFormat and their related classes at the start of this chap-
ter. It may be worth looking back at that discussion prior to looking at the
code in this technique.

The InputFormat
Your first step is to define the InputFormat. The function of InputFormat is to validate
the set of inputs supplied to the job, identify input splits, and create a RecordReader
class to read input from the sources. The following code reads the separator (if sup-
plied) from the job configuration and constructs a CSVRecordReader:54

public class CSVInputFormat extends
FileInputFormat<LongWritable, TextArrayWritable> {

public static String CSV_TOKEN_SEPARATOR_CONFIG =
"csvinputformat.token.delimiter";

@Override
public RecordReader<LongWritable, TextArrayWritable>
createRecordReader(InputSplit split,

TaskAttemptContext context) {
String csvDelimiter = context.getConfiguration().get(

CSV_TOKEN_SEPARATOR_CONFIG);

Character separator = null;
if(csvDelimiter != null && csvDelimiter.length() == 1) {
separator = csvDelimiter.charAt(0);

}

return new CSVRecordReader(separator);
}

@Override
protected boolean isSplitable(JobContext context, Path file) {
CompressionCodec codec =

new CompressionCodecFactory(context.getConfiguration())
.getCodec(file);

return codec == null;
}

54 GitHub source: https://github.com/alexholmes/hiped2/blob/master/src/main/java/hip/ch3/csv/
CSVInputFormat.java.

Reads (optional) custom
separator for the CSV.

Creates a RecordReader
and returns it.

If the file is compressed, it’s
not splittable; otherwise it is.

The FileInputFormat parent
class takes care of

determining splits (by using
the HDFS block size).

http://opencsv.sourceforge.net/
http://opencsv.sourceforge.net/
https://github.com/alexholmes/hiped2/blob/master/src/main/java/hip/ch3/csv/CSVInputFormat.java
https://github.com/alexholmes/hiped2/blob/master/src/main/java/hip/ch3/csv/CSVInputFormat.java

131TECHNIQUE 25 Writing input and output formats for CSV

InputFormat and compressed files In the preceding code, you saw that when
the was compressed, a flag was returned to indicate that it couldn’t be split.
The reason for doing this is that compression codecs aren’t splittable, apart
from LZOP. But splittable LZOP can’t work with regular InputFormat classes—
it needs special-case LZOP InputFormat classes. These details are covered
in chapter 4.

Your InputFormat class is complete. You extended the FileInputFormat class, which con-
tains code that calculates input splits along HDFS block boundaries, keeping you from
having to handle calculating the input splits yourself. The FileInputFormat manages all
of the input files and splits for you. Now let’s move on to the RecordReader, which will
require a little more effort.

 RecordReader performs two main functions. It must first open the input source
based on the input split supplied, and it optionally seeks into a specific offset in that
input split. The second function of the RecordReader is to read individual records from
the input source.

 In this example, a logical record equates to a line in the CSV file, so you’ll use the
existing LineRecordReader class in MapReduce to handle working with the file. When
the RecordReader is initialized with the InputSplit, it will open the input file, seek to the
start of the input split, and keep reading characters until it reaches the start of the
next record, which in the case of a line means a newline. The following code shows a
simplified version of the LineRecordReader.initialize method:

public void initialize(InputSplit genericSplit,
TaskAttemptContext context) throws IOException {

start = split.getStart();
end = start + split.getLength();
final Path file = split.getPath();

FileSystem fs = file.getFileSystem(job);
FSDataInputStream fileIn = fs.open(split.getPath());
boolean skipFirstLine = false;
if (start != 0) {
skipFirstLine = true;
--start;
fileIn.seek(start);

}
in = new LineReader(fileIn, job);
if (skipFirstLine) {
start += in.readLine(new Text(), 0,

(int)Math.min((long)Integer.MAX_VALUE, end - start));
}

The LineRecordReader returns key/value pairs for each line in LongWritable/Text form.
Because you’ll want to provide some functionality in the Record Reader, you need to

Extract the byte offset
for the start of the input
split.

Calculate the byte
offset for the end
of the input split.

Open an InputStream
for the input file.

If the input split
doesn’t start at
byte 0, seek to
the starting byte.

Create a LineReader, which the LineRecordReader
uses to read each line. The InputStream that was

created and on which a seek was performed is
passed in to the constructor of the LineReader.

Keep reading until a
newline is found, which
marks the start of the
next record.

132 CHAPTER 3 Data serialization—working with text and beyond

encapsulate the LineRecordReader within your class. The RecordReader needs to supply a
key/value pair representation of the record to the mapper, and in this case the key is
the byte offset in the file, and the value is an array containing the tokenized parts of
the CSV line:55

public static class CSVRecordReader
extends RecordReader<LongWritable, TextArrayWritable> {

private LineRecordReader reader;
private TextArrayWritable value;
private final CSVParser parser;

public CSVRecordReader(Character csvDelimiter) {
this.reader = new LineRecordReader();
if (csvDelimiter == null) {
parser = new CSVParser();

} else {
parser = new CSVParser(csvDelimiter);

}
}

@Override
public void initialize(InputSplit split,

TaskAttemptContext context)
throws IOException, InterruptedException {

reader.initialize(split, context);
}

Next you need to provide methods to read the next record and to get at the key and
value for that record:56

@Override
public boolean nextKeyValue()

throws IOException, InterruptedException {
if (reader.nextKeyValue()) {
loadCSV();
return true;

} else {
value = null;
return false;

}
}

private void loadCSV() {
String line = reader.getCurrentValue().toString();
String[] tokens = parser.parseLine(line);
if (transformer != null) {
for (int i = 0; i < tokens.length; i++) {
tokens[i] = transformer.transform(line, i, tokens[i]);

}

55 GitHub source: https://github.com/alexholmes/hiped2/blob/master/src/main/java/hip/ch3/csv/
CSVInputFormat.java.

56 GitHub source: https://github.com/alexholmes/hiped2/blob/master/src/main/java/hip/ch3/csv/
CSVInputFormat.java.

The RecordReader class is
responsible for reading records

from the input file. It emits keys
in the form of the file offset in

the file, and the values are an
array of tokens in the CSV line.

Create the CSV parser
(courtesy of the

OpenCSV project).

Use LineRecordReader to perform the
heavy lifting. It will open the file

specified in the InputSplit and seek to
the start of the split.

Use LineRecordReader to read
the next record.

LineRecordReader.nextKeyValue
will return a NULL once the end

of the split has been reached.

If the LineRecordReader
supplied a new record,
process the line.

Tokenize the line and store
the tokens in an array.

Use OpenCSV’s parse
method to tokenize
the line and return
an array of fields.

https://github.com/alexholmes/hiped2/blob/master/src/main/java/hip/ch3/csv/CSVInputFormat.java
https://github.com/alexholmes/hiped2/blob/master/src/main/java/hip/ch3/csv/CSVInputFormat.java
https://github.com/alexholmes/hiped2/blob/master/src/main/java/hip/ch3/csv/CSVInputFormat.java
https://github.com/alexholmes/hiped2/blob/master/src/main/java/hip/ch3/csv/CSVInputFormat.java

133TECHNIQUE 25 Writing input and output formats for CSV

}
value = new TextArrayWritable(convert(tokens));

}

private Text[] convert(String[] s) {
Text t[] = new Text[s.length];
for(int i=0; i < t.length; i++) {
t[i] = new Text(s[i]);

}
return t;

}

@Override
public LongWritable getCurrentKey()

throws IOException, InterruptedException {
return reader.getCurrentKey();

}

@Override
public TextArrayWritable getCurrentValue()

throws IOException, InterruptedException {
return value;

}

At this point, you’ve created an InputFormat and a RecordReader that both can work with
CSV files. Now that you’ve completed the InputFormat, it’s time to move on to the
OutputFormat.

OutputFormat
OutputFormat classes follow a pattern similar to InputFormat classes; the OutputFormat
class handles the logistics around creating the output stream and then delegates the
stream writes to the RecordWriter.

 The CSVOutputFormat indirectly extends the FileOutputFormat class (via TextOutput-
Format), which handles all of the logistics related to creating the output filename, cre-
ating an instance of a compression codec (if compression was enabled), and output
committing, which we’ll discuss shortly.

 That leaves the OutputFormat class with the tasks of supporting a custom field delim-
iter for your CSV output file, and of creating a compressed OutputStream if required. It
must also return your CSVRecordWriter, which will write CSV lines to the output
stream:57

public class CSVOutputFormat extends
TextOutputFormat<TextArrayWritable, NullWritable> {

public static String CSV_TOKEN_SEPARATOR_CONFIG =
"csvoutputformat.token.delimiter";

@Override
public RecordWriter getRecordWriter(TaskAttemptContext job)

57 GitHub source: https://github.com/alexholmes/hiped2/blob/master/src/main/java/hip/ch3/csv/
CSVOutputFormat.java.

Proxy the request for the key
to the LineRecordReader, which
returns the byte offset of the

line in the file.

Return the version of
the value, which is
the array of tokens.

The OutputFormat expects
keys as TextArrayWritable

and NullWritable values.

Define a configuration
constant so that users

can specify a custom CSV
separator character.

https://github.com/alexholmes/hiped2/blob/master/src/main/java/hip/ch3/csv/CSVOutputFormat.java
https://github.com/alexholmes/hiped2/blob/master/src/main/java/hip/ch3/csv/CSVOutputFormat.java

134 CHAPTER 3 Data serialization—working with text and beyond

throws IOException, InterruptedException {
Configuration conf = job.getConfiguration();
boolean isCompressed = getCompressOutput(job);
String

keyValueSeparator =
conf.get(CSV_TOKEN_SEPARATOR_CONFIG, ",");

if (!isCompressed) {
FSDataOutputStream fileOut = fs.create(file, false);
return new CSVRecordWriter(fileOut,

keyValueSeparator);
} else {
FSDataOutputStream fileOut = fs.create(file, false);
return new CSVRecordWriter(

new DataOutputStream(codec.createOutputStream(fileOut)),
keyValueSeparator);

}
}

In the following code, your RecordWriter writes each record emitted by the reducer
to the output destination. You require that the reducer output key be in array form
representing each token in the CSV line, and you specify that the reducer output
value must be a NullWritable, which means that you don’t care about the value part
of the output.

 Let’s take a look at the CSVRecordWriter class. The constructor, which only sets the
field separator and the output stream, is excluded, as shown in the following listing.58

protected static class CSVRecordWriter
extends RecordWriter<TextArrayWritable, NullWritable> {

private static final String utf8 = "UTF-8";
private static final byte[] newline;

protected DataOutputStream out;
private final String csvSeparator;

@Override
public void write(TextArrayWritable key, NullWritable value)

throws IOException, InterruptedException {
if (key == null) {
return;

}
boolean first = true;
for (Writable field : key.get()) {
writeObject(first, field);
first = false;

}
out.write(newline);

}

/**

Listing 3.6 A RecordWriter that produces MapReduce output in CSV form

58 GitHub source: https://github.com/alexholmes/hiped2/blob/master/src/main/java/hip/ch3/csv/
CSVOutputFormat.java.

Read a custom separator from
configuration, and if none exists,

use the default of a comma.

Create an uncompressed output
stream for the reducer and

construct a CSVRecordReader
to write the reducer output.

Create a compressed output stream using the configured
compression codec for the job and construct a
CSVRecordReader to write the reducer output.

The write method is called
for each record emitted by

the reducer. Iterate through
all of the fields in the

array, and call the
writeObject to handle

writing the field to the
output stream. When this is
complete, write the newline

string to the stream.

https://github.com/alexholmes/hiped2/blob/master/src/main/java/hip/ch3/csv/CSVOutputFormat.java
https://github.com/alexholmes/hiped2/blob/master/src/main/java/hip/ch3/csv/CSVOutputFormat.java

135TECHNIQUE 25 Writing input and output formats for CSV

* Write the object to the byte stream, handling Text as a special
* case.
*
* @param o the object to print
* @throws IOException if the write throws, we pass it on
*/

private void writeObject(boolean first, Writable o)
throws IOException {

if(!first) {
out.write(csvSeparator.getBytes(utf8));

}

boolean encloseQuotes = false;
if (o.toString().contains(csvSeparator)) {

encloseQuotes = true;
}

if(encloseQuotes) {
out.write("\".getBytes(utf8));

}
if (o instanceof Text) {
Text to = (Text) o;
out.write(to.getBytes(), 0, to.getLength());

} else {
out.write(o.toString().getBytes(utf8));

}
if(encloseQuotes) {
out.write("\".getBytes(utf8));

}
}

Now you need to apply the new input and output format classes in a MapReduce job.

MapReduce
Your MapReduce job will take CSV as input, and it’ll produce CSV that’s separated by
colons, not commas. The job will perform identity map and reduce functions, which
means that you won’t be changing the data as it passes through MapReduce. Your
input file will be delimited with the tab character, and your output file will be comma-
separated. Your input and output format classes will support the notion of custom
delimiters via Hadoop configuration properties.

 The MapReduce code is as follows:59

conf.set(CSVInputFormat.CSV_TOKEN_SEPARATOR_CONFIG, ",");
conf.set(CSVOutputFormat.CSV_TOKEN_SEPARATOR_CONFIG, ":");

Job job = new Job(conf);
job.setJarByClass(CSVMapReduce.class);
job.setMapperClass(Map.class);
job.setReducerClass(Reduce.class);

59 GitHub source: https://github.com/alexholmes/hiped2/blob/master/src/main/java/hip/ch3/csv/
CSVMapReduce.java.

Write the CSV separator.

Write quotes if the field contains
the separator character.

Write the field.

Indicate the separator character
for the CSV input file.

Indicate the separator
character for the CSV

output file, which in
this case is a colon.

https://github.com/alexholmes/hiped2/blob/master/src/main/java/hip/ch3/csv/CSVMapReduce.java
https://github.com/alexholmes/hiped2/blob/master/src/main/java/hip/ch3/csv/CSVMapReduce.java

136 CHAPTER 3 Data serialization—working with text and beyond

job.setInputFormatClass(CSVInputFormat.class);
job.setOutputFormatClass(CSVOutputFormat.class);

job.setMapOutputKeyClass(LongWritable.class);
job.setMapOutputValueClass(TextArrayWritable.class);

job.setOutputKeyClass(TextArrayWritable.class);
job.setOutputValueClass(NullWritable.class);

The map and reduce functions don’t do much other than echo their inputs to output,
but include them so you can see how to work with the CSV in your MapReduce code:60

public static class Map
extends Mapper<LongWritable, TextArrayWritable,
LongWritable, TextArrayWritable> {

@Override
protected void map(LongWritable key, TextArrayWritable value,

Context context)
throws
IOException, InterruptedException {

context.write(key, value);
}

}

public static class Reduce
extends Reducer<LongWritable, TextArrayWritable,
TextArrayWritable, NullWritable> {

public void reduce(LongWritable key,
Iterable<TextArrayWritable> values,
Context context)

throws IOException, InterruptedException {
for (TextArrayWritable val : values) {
context.write(val, NullWritable.get());

}
}

}

If you run this example MapReduce job against a tab-delimited file, you can examine
the mapper output and see if the results are as expected:

$ hadoop fs -put test-data/stocks.txt stocks.txt
$ hip hip.ch3.csv.CSVMapReduce \

--input stocks.txt \
--output output

$ hadoop fs -cat output/part*
AAPL:2009-01-02:85.88:91.04:85.16:90.75:26643400:90.75
AAPL:2008-01-02:199.27:200.26:192.55:194.84:38542100:194.84
AAPL:2007-01-03:86.29:86.58:81.90:83.80:44225700:83.80
...

60 GitHub source: https://github.com/alexholmes/hiped2/blob/master/src/main/java/hip/ch3/csv/
CSVMapReduce.java.

Set the InputFormat class.

Set the
OutputFormat class.

You can see the
TextArrayWritable being

supplied as input to the mapper.

The TextArrayWritable
is also used as output.

https://github.com/alexholmes/hiped2/blob/master/src/main/java/hip/ch3/csv/CSVMapReduce.java
https://github.com/alexholmes/hiped2/blob/master/src/main/java/hip/ch3/csv/CSVMapReduce.java

137TECHNIQUE 25 Writing input and output formats for CSV

You now have a functional InputFormat and OutputFormat that can consume and pro-
duce CSV in MapReduce.

Pig
Pig’s piggybank library contains a CSVLoader that can be used to load CSV files into
tuples. It supports double-quoted fields in the CSV records and provides each item as a
byte array.

 There’s a GitHub project called csv-serde (https://github.com/ogrodnek/csv-
serde), which has a Hive SerDe that can both serialize and deserialize CSV. Like the
previous InputFormat example, it also uses the OpenCSV project for reading and writ-
ing CSV.

■ Summary
This technique demonstrated how you can write your own MapReduce format classes
to work with text-based data. Work is currently underway in MapReduce to add a CSV
input format (see https://issues.apache.org/jira/browse/MAPREDUCE-2208).

 Arguably, it would have been simpler to use the TextInputFormat and split the line
in the mapper. But if you need to do this multiple times, you’re likely suffering from
the copy-paste antipattern, because the same code to tokenize the CSV likely exists in
multiple locations. If the code is written with code reuse in mind, you’ll be covered.

 We’ve looked at how you can write your own I/O format classes to work with a cus-
tom file format in MapReduce. Now we need to look at a crucial aspect of working
with output formats—output committing.

3.5.2 The importance of output committing

In the CSV OutputFormat example in the previous technique, you extended FileOutput-
Format, which takes care of committing output after the task has succeeded. Why do
you need commits in MapReduce, and why should you care?

 As a job and its tasks are executing, they will start writing job output at some point.
Tasks and jobs can fail, they can be restarted, and they can also be speculatively exe-
cuted.61 To allow OutputFormats to correctly handle these scenarios, MapReduce has
the notion of an OutputCommitter, which is a mechanism by which MapReduce invokes
a callback when an individual task as well as the overall job have completed.

 Most OutputFormats in MapReduce use FileOutputFormat, which uses FileOutput-
Committer for its output committing. When the FileOutputFormat is initially consulted
about the location of the output files, it delegates the decision of where the output
should be located to the FileOutputCommitter, which in turn specifies that the output
should go to a temporary directory under the job output directory (<job-output>/
_temporary/<task-attempt-id>). Only after the overall task has completed will the
FileOutputCommitter be notified, at which point the temporary output is moved to the

61 Speculative executing is when MapReduce executes multiple tasks for the same input data to guard against
slow or misbehaving nodes slowing down the overall job. By default, both map-side and reduce-side speculative
execution is enabled. The mapred.map.tasks.speculative.execution and mapred.reduce.tasks.speculative
.execution control this behavior.

https://github.com/ogrodnek/csv-serde
https://github.com/ogrodnek/csv-serde
https://issues.apache.org/jira/browse/MAPREDUCE-2208

138 CHAPTER 3 Data serialization—working with text and beyond

job output directory. When the overall job has successfully completed, the FileOutput-
Committer is again notified, and this time it touches a _SUCCESS file in the job output
directory to help downstream processors know the job succeeded.

 This is great if your data sink is HDFS, where you can use FileOutputFormat and its
committing mechanism. Things start to get trickier when you’re working with data
sources other than files, such as a database. If, in such cases, idempotent writes
(where the same operation can be applied multiple times without changing the
result) are necessary, you’ll need to factor that into the design of your destination
data store or OutputFormat.

 This topic is examined in more detail in chapter 5, which covers exporting data
from Hadoop to databases.

3.6 Chapter summary
The goal for this chapter was to show you how to work with common file formats such
as XML and JSON in MapReduce. We also looked at more sophisticated file formats
such as SequenceFile, Avro, and Parquet, which provide useful features for working
with big data, such as versioning, compression, and complex data structures. We also
walked through the process of working with custom file formats to ensure they’ll work
in MapReduce.

 At this point, you’re equipped to work with any file format in MapReduce. Now it’s
time to look at some storage patterns so you can effectively work with your data and
optimize storage and disk/network I/O.

139

Organizing and
 optimizing data in HDFS

In the previous chapter, we looked at how to work with different file formats in
MapReduce and which ones were ideally suited for storing your data. Once you’ve
honed in on the data format that you’ll be using, it’s time to start thinking about
how you’ll organize your data in HDFS. It’s important that you give yourself enough
time early on in the design of your Hadoop system to understand how your data
will be accessed so that you can optimize for the more important use cases that
you’ll be supporting.

 There are numerous factors that will impact your data organization decisions,
such as whether you’ll need to provide SQL access to your data (likely, you will),
which fields will be used to look up the data, and what access-time SLAs you’ll need
to support. At the same time, you need to make sure that you don’t apply unneces-

This chapter covers
■ Tips for laying out and organizing your data
■ Data access patterns to optimize reading and

writing your data
■ The importance of compression, and choosing

the best codec for your needs

140 CHAPTER 4 Organizing and optimizing data in HDFS

sary heap pressure on the HDFS NameNode with a large number of small files, and
you also need to learn how to work with huge input datasets.

 This chapter is dedicated to looking at ways to efficiently store and access big data
in HDFS. I’ll first cover ways you can lay out data in HDFS and present some methods
for partitioning and combining data to relieve NameNode heap pressure. Then I’ll
discuss some data access patterns to help you work with disparate data as well as huge
data sets. And finally, we’ll look at compression as a big data pattern to maximize your
storage and processing capabilities.

Chapter prerequisites This chapter assumes you have a basic understanding
of HDFS concepts and that you have experience working directly with HDFS. If
you need to become familiar with the topic, Hadoop in Action by Chuck Lam
(Manning, 2010) offers the background information you’ll need on HDFS.

We’ll start things off with a look at how you can organize and manage your data.

4.1 Data organization
Data organization is one of the most challenging aspects of working with Hadoop. You
have pressure from different groups in your organization, such as data scientists and
your cluster administrators, each coming to you with competing requirements. What’s
more, these requirements often come after your data applications are in production
and you’ve already amassed large amounts of data.

 There are multiple dimensions to data organization in Hadoop. You first need to
decide how to organize your data in HDFS, after which you’ll be faced with opera-
tional issues such as how to partition and compact your data. You’ll need to decide
whether to enable Kerberos to secure your cluster and how to manage and communi-
cate data changes. These are all complex issues, and the goal of this chapter is to focus
on some of the more challenging aspects of data organization, including data parti-
tioning and compaction, starting off with how you can structure your data in HDFS.

4.1.1 Directory and file layout

Having a cluster-wide standard that defines how data is organized is a worthwhile pur-
suit, as it makes it easier to discover where data is located, and it also helps apply struc-
ture and manage common areas that you want to address with data storage in general.
Because we’re working within the confines of what a filesystem can express, a com-
mon approach to arranging data is to create a hierarchy of tiers that aligns with your
organizational or functional structure. For example, if you work on the analytics team
and you’re bringing a new dataset to the cluster, then one way to organize your direc-
tory would be as shown in figure 4.1.

Data revolution
Hopefully you’ve settled on a data format such as Avro, which offers you the ability to
evolve your schema over time. That’s great, but how do you support a move to the
Next Big Data Format, which will no doubt arrive as soon as everyone has migrated to

141Data organization

Avro? Well, you can look to other software fields where semantic versioning concepts
permeate interfaces such as URLs and adopt a similar strategy in your directory struc-
ture. By sticking a version number in your structure, you can give yourself the flexibil-
ity to move to the data format of tomorrow and communicate the differing file
formats using the directory path.

 Once you’ve embraced putting a version number in your directory, the only chal-
lenge left is communicating future changes to the consumers of your data. If this
becomes a challenge, you may want to look at HCatalog as a way to abstract away data
formats from your clients.

Partitioning by date and other fields
You may need your directory structure to model your organizational and data evolu-
tion needs, but why would you need further partitioning by date? This is a technique
that Hive used early on to help speed up queries. If you put all of your data into a sin-
gle directory, you’re essentially doing the Hadoop equivalent of a full table scan every
time you need to access the data. Instead, it’s smarter to partition your data based on
how you expect your data to be accessed.

 It can be hard to know ahead of time exactly how data is going to be accessed, but
a reasonable first attempt at partitioning is to segment data by the date when it was
generated. If your data doesn’t have a date, then talk to the data producers about add-
ing one, as the time at which an event or record was created is a critical data point that
should always be captured.

4.1.2 Data tiers

In his 2012 Strata talk, Eric Sammer presented the idea of storing different tiers of
data.1 This is a powerful concept, and it also ties in nicely with one of the primary
tenets of Nathan Marz’s Lambda Architecture—that of never deleting or modifying
your raw data.

 At first glance, this may not seem to make any sense—surely once you extract the
important parts of a data source, you can discard the rest! While it may seem wasteful
to keep around raw data, especially if there are parts that aren’t being actively used,

1 Eric Sammer, “Large scale ETL with Hadoop,” www.slideshare.net/OReillyStrata/large-scale-etl-with-hadoop.

/analytics/tweets/raw/v1/2014/07/14/

Your group
name

The date (and possibly
time) that the data

was produced

The data tier
(raw, derived, or

aggregated)

Name of the
data source

The version
of the data

Figure 4.1 An example
HDFS directory layout

www.slideshare.net/OReillyStrata/large-scale-etl-with-hadoop

142 CHAPTER 4 Organizing and optimizing data in HDFS

ask yourself this question—could some organizational value be extracted from the
data in the future? It’s hard to answer this with a resounding “no.”

 There are also occasionally bugs in our software. Imagine that you’re streaming data
from the Twitter fire hose, producing some aggregations and discarding the source
data. What happens if you discover a bug in your aggregation logic? You have no way to
go back and regenerate the aggregated data.

 Therefore, it’s recommended that you think of your data in terms of the following
tiers:

■ Raw data is the first tier. It’s the unaltered data you capture from the source.
Data at this tier should never be modified because there’s a chance that your
logic that produces derivatives or aggregations has bugs, and if you discard the
raw data, you’ll remove your ability to regenerate your derived data upon dis-
covering your bugs.

■ Derived data is created from the raw data. Here you can perform deduplication,
sanitation, and any other cleansing.

■ Aggregated data is calculated from the derived data and will likely be fed into sys-
tems such as HBase or your NoSQL system of choice for real-time access to your
data, both in production and for analytical purposes.

Data tiers should also be expressed in your directory layout so that users can easily dif-
ferentiate between the tiers.

 Once you’ve decided on a directory layout for partitioning your data, the next step
is figuring out how you’re going to get your data into these partitions. That’s covered
next.

4.1.3 Partitioning

Partitioning is the process by which you take a dataset and split it into distinct parts.
These parts are the partitions, and they represent a meaningful division of your data.
An example of a common partition in data is time, as it allows those querying the data
to narrow in on a specific window of time. The previous section included time as a key
element in deciding how to lay out your data in HDFS.

 Great! You have a large dataset in HDFS and you need to partition it. How do you
go about doing that? In this section I’ll present two methods you can employ to parti-
tion your data.

TECHNIQUE 26 Using MultipleOutputs to partition your data

Imagine a situation where you have stock prices being streamed into HDFS, and you
want to write a MapReduce job to partition your stock data based on the day of the
stock quote. To do this, you’ll need to write to multiple output files in a single task.
Let’s look at how you can make that happen.

■ Problem
You need to partition your data, but most output formats only create a single output
file per task.

143TECHNIQUE 26 Using MultipleOutputs to partition your data

■ Solution
Use the MultipleOutputs class bundled with MapReduce.

■ Discussion
The MultipleOutputs class in Hadoop bypasses the normal channel by which outputs
are produced in Hadoop. It provides a separate API to write partitioned outputs, and
it writes output directly to the task attempt directory in HDFS. This is powerful, as you
can continue to collect output using the standard write method on the Context object
supplied to your job, and also use MultipleOutputs to write partitioned output. Of
course, you can also choose to only use the MultipleOutputs class and ignore the stan-
dard Context-based output.

 In this technique, you’ll use MultipleOutputs to partition stocks by their quote date.
The first step is to set up MultipleOutputs for use in your job. In your driver, you’ll indi-
cate the output format and the key and value types:

MultipleOutputs.addNamedOutput(job,
"partition",
TextOutputFormat.class,
Text.class, Text.class);

Why do you need to name the output in the driver? You may be wondering why
MultipleOutputs requires you to specify a output name (partition in the pre-
ceding example). This is because MultipleOutputs supports two modes of
operation—static partitions and dynamic partitions.

Static partitions work well if you know ahead of time the partition names; this
gives you the additional flexibility of specifying a different output format for
each partition (you’d just have multiple calls to MultipleOutputs.addNamedOutput
with different named outputs). With static partitions, the output name you
specify when calling addNamedOutput is the same name that you use when emit-
ting output in your mapper or reducer.

This technique focuses on dynamic partitions, which you’re likely to find more
useful, because in most cases you won’t know the partitions ahead of time. In
this case, you still need to supply a output name, but for all intents and pur-
poses, it’s ignored, as you can dynamically specify the partition name in your
mapper or reducer.

As you can see in the following code, your map (or reduce) class, will get a handle to a
MultipleOutputs instance and then use its write method to write partitioned outputs.
Notice that the third argument is the partition name, which is the stock date:2

2 GitHub source: https://github.com/alexholmes/hiped2/blob/master/src/main/java/hip/ch4/
MultipleOutputsJob.java.

Specify a name for the
named output.

The output format used
to write records to the
partition.

The partition output
key and value types.

https://github.com/alexholmes/hiped2/blob/master/src/main/java/hip/ch4/MultipleOutputsJob.java
https://github.com/alexholmes/hiped2/blob/master/src/main/java/hip/ch4/MultipleOutputsJob.java

144 CHAPTER 4 Organizing and optimizing data in HDFS

public static class Map extends Mapper<LongWritable, Text, Text, Text> {

private MultipleOutputs output;

@Override
protected void setup(Context context) {
output = new MultipleOutputs(context);

}

@Override
protected void map(LongWritable key, Text value, Context context)

throws IOException, InterruptedException {

StockPriceWritable stock =
StockPriceWritable.fromLine(value.toString());

output.write(value, null, stock.getDate());
}

@Override
protected void cleanup(Context context) throws IOException, InterruptedException {
output.close();

}
}

Don’t forget the close method! It’s important that you call the close method
on MultipleOutputs in the cleanup method of your task. Otherwise it’s possible
that you’ll have data missing from your output or even a corrupt file.

Let’s take a peek at this class in action. As you can see in the following output, running
the previous example produces a number of partitioned files for the single mapper.
You can also see the original map output file, which is empty because you haven’t
emitted any records using the Context object:

$ hip hip.ch4.MultipleOutputsJob --input stocks.txt --output out1

$ hadoop fs -ls -R out1
out1/2000-01-03-m-00000
out1/2001-01-02-m-00000
out1/2002-01-02-m-00000
out1/2003-01-02-m-00000
out1/2004-01-02-m-00000
out1/2005-01-03-m-00000
out1/2006-01-03-m-00000
out1/2007-01-03-m-00000
out1/2008-01-02-m-00000
out1/2009-01-02-m-00000
out1/_SUCCESS
out1/part-m-00000

In this example you used a map-only job, but in production you’ll probably want to
limit the number of tasks that create partitions. There are two ways you can do this:

■ Use the CombineFileInputFormat or a custom input format to limit the number of
mappers in your job.

■ Use a reducer where you can explicitly specify a reasonable number of reducers.

Get a handle to the
MultipleOutputs instance.

Use a helper class
to extract the
stock date from
the input record.

Write out the partitioned
record, indicating that the

stock date should be used as
the partition.

Flush and close
all HDFS file
handles.

145TECHNIQUE 27 Using a custom MapReduce partitioner

■ Summary
There are plenty of things to like about MultipleOutputs: its support for both “old” and
“new” MapReduce APIs and its support for multiple output format classes. But using
MultipleOutputs does carry with it some constraints that you should be aware of:

■ Be cautious when using MultipleOutputs in a mapper—remember that you’ll
end up with NumberOfMappers * NumberOfPartition output files, which in my
experience can bring down clusters with large numbers of both values!

■ Each partition incurs the overhead of an HDFS file handle for the duration of
the task.

■ You can often end up with a large number of small files that accumulate across
multiple uses of your partitioner. You’ll probably want to make sure that you have
a compaction strategy in place to mitigate this problem (see section 4.1.4 for
more details).

■ Although Avro comes with the AvroMultipleOutputs class, it’s quite slow due to
some inefficiencies in the code.

In addition to the MultipleOutputs approach, Hadoop also comes with a MultipleOut-
putFormat class that has features similar to MultipleOutputs. Its primary pitfalls are that
it only supports the old MapReduce API and only one output format can be used for
all the partitions.

 Another partitioning strategy that you can employ is to use the MapReduce parti-
tioner, which can help mitigate the large number of files that may be produced using
MultipleOutputs.

TECHNIQUE 27 Using a custom MapReduce partitioner

Another partitioning approach is to use the partitioning facilities built into Map-
Reduce. By default, MapReduce uses a hash partitioner that calculates the hash of
each map output key and performs a modulo over the number of reducers to deter-
mine which reducer the record should be sent to. You can control how partitioning
occurs by writing your own custom partitioner and then route records according to
your partitioning scheme.

 This technique has an added benefit over the previous technique in that you’ll
generally end up with fewer output files because each reducer will only create a single
output file, as opposed to MultipleOutputs, where each map or reduce task will gener-
ate N output files—one for each partition.

■ Problem
You want to partition your input data.

■ Solution
Write a custom partitioner that partitions records to the appropriate reducer.

■ Discussion
Let’s look at the custom partitioner first. It exposes a helper method to the MapReduce
driver that allows you to define a mapping from a date to a partition, and it writes this
mapping to the job configuration. Then, when MapReduce loads the partitioner,

146 CHAPTER 4 Organizing and optimizing data in HDFS

MapReduce calls the setConf method; in this partitioner you’ll read the mappings into
a map, which is subsequently used when partitioning.3

public static class DatePartitioner extends Partitioner<Text, Text>
implements Configurable {

public static final String CONF_PARTITIONS = "partition.map";
public static final String PARTITION_DELIM = ":";
private Configuration conf;
private java.util.Map<Text, Integer> datePartitions =

Maps.newHashMap();

public static void addPartitionToConfig(
Configuration conf, String date, int partition) {

String addition = String.format("%s%s%d",
date, PARTITION_DELIM, partition);

String existing = conf.get(CONF_PARTITIONS);
conf.set(CONF_PARTITIONS, existing == null

? addition : existing + "," + addition);
}

@Override
public void setConf(Configuration conf) {

this.conf = conf;
for (String partition : conf.getStrings(CONF_PARTITIONS)) {
String[] parts = partition.split(PARTITION_DELIM);
datePartitions.put(new Text(parts[0]),

Integer.valueOf(parts[1]));
}

}

@Override
public int getPartition(Text date, Text stock, int numPartitions) {
return datePartitions.get(date);

}

@Override
public Configuration getConf() {
return conf;

}
}

Your driver code needs to set up the custom partitioner configuration. The parti-
tions in this example are dates, and you want to make sure that each reducer will
correspond to a unique date. The stocks example data has 10 unique dates, so you
configure your job with 10 reducers. You also call the partition helper function that
was defined previously to set up the configuration that maps each unique date to a
unique reducer.4

3 GitHub source: https://github.com/alexholmes/hiped2/blob/master/src/main/java/hip/ch4/
CustomPartitionerJob.java.

4 GitHub source: https://github.com/alexholmes/hiped2/blob/master/src/main/java/hip/ch4/
CustomPartitionerJob.java.

A helper function for the
driver to add date-to-

reducer partitions.

Load the date-to-reducer details
from configuration into a map.

For each map output, pull the
reducer (partition) that the

record should be sent to.

https://github.com/alexholmes/hiped2/blob/master/src/main/java/hip/ch4/CustomPartitionerJob.java
https://github.com/alexholmes/hiped2/blob/master/src/main/java/hip/ch4/CustomPartitionerJob.java
https://github.com/alexholmes/hiped2/blob/master/src/main/java/hip/ch4/CustomPartitionerJob.java
https://github.com/alexholmes/hiped2/blob/master/src/main/java/hip/ch4/CustomPartitionerJob.java

147TECHNIQUE 27 Using a custom MapReduce partitioner

Configuration conf = super.getConf();
List<String> dates = Lists.newArrayList("2000-01-03",

"2001-01-02", "2002-01-02", "2003-01-02", "2004-01-02",
"2005-01-03", "2006-01-03", "2007-01-03", "2008-01-02",
"2009-01-02");

for (int partition=0; partition < dates.size(); partition++) {
DatePartitioner.addPartitionToConfig(conf,

dates.get(partition), partition);
}

Job job = new Job(conf);

job.setPartitionerClass(DatePartitioner.class);

...

The mapper does little other than extract the stock date from the input data and emit
it as the output key:5

public static class Map extends Mapper<LongWritable, Text, Text, Text> {

private Text date = new Text();

@Override
protected void map(LongWritable key, Text value, Context context)

throws IOException, InterruptedException {
StockPriceWritable stock =

StockPriceWritable.fromLine(value.toString());

date.set(stock.getDate());
context.write(date, value);

}
}

The command to run the preceding example is as follows:

$ hip hip.ch4.CustomPartitionerJob --input stocks.txt --output output

This job will generate 10 output files, each containing the stocks for that day.

■ Summary
Using the MapReduce framework to naturally partition your data gives you a couple
of advantages:

■ Data in your partitions will be sorted because the shuffle will ensure that all data
streamed to a reducer will be sorted. This allows you to use optimized join strat-
egies on your data.

■ You can deduplicate data in the reducer, again as a benefit of the shuffle phase.

5 GitHub source: https://github.com/alexholmes/hiped2/blob/master/src/main/java/hip/ch4/
CustomPartitionerJob.java.

Define the 10 dates
that correspond to

the input data.

For each date, indicate the
reducer (partition) that

the date is associated with.

Specify the custom
reducer that will be

used for the job.

Emit the date as the
output key and the stock

as the output value.

https://github.com/alexholmes/hiped2/blob/master/src/main/java/hip/ch4/CustomPartitionerJob.java
https://github.com/alexholmes/hiped2/blob/master/src/main/java/hip/ch4/CustomPartitionerJob.java

148 CHAPTER 4 Organizing and optimizing data in HDFS

The main problem to look out for with this technique is data skew. You want to make
sure that you can spread the load across reducers as much as possible, which may be a
challenge if there’s a natural skew in your data. For example, if your partitions are
days, then it’s possible that the majority of your records will be for a single day, and
you may have only a few records for either a previous or following day. In this case,
you’ll ideally want to partition records in a way that allocates the majority of the reduc-
ers to a single day, and then maybe one or two for the previous or following days. You
can also sample your inputs and dynamically determine the optimal number of reduc-
ers based on your sample data.

 Once you’ve produced your partitioned output, the next challenge is how to deal
with the potentially large number of small files that have resulted from the partitioning.

4.1.4 Compacting

Sometimes having small files in HDFS can’t be avoided—maybe you’re using a parti-
tioning technique similar to those described previously, or maybe your data organi-
cally lands in HDFS in small file sizes. Either way, you’ll be exposing some weaknesses
in HDFS and MapReduce, including the following:

■ Hadoop’s NameNode keeps all the HDFS metadata in memory for fast metadata
operations. Yahoo! estimated that each file, on average, occupies 600 bytes of
space in memory,6 which translates to a metadata overhead of one billion files
amounting to 60 GB, all of which needs to be stored in the NameNode’s mem-
ory. That’s a lot of memory for a single process, even with today’s mid-tier server
RAM capacities.

■ If your input to a MapReduce job is a large number of files, the number of map-
pers that will run (assuming your files are text or splittable) would be equiva-
lent to the number of blocks that these files occupy. If you run a MapReduce
job whose input is thousands or millions of files, your job will spend more time
at the kernel layer dealing with creating and destroying your map task processes
than it will on its work.

■ Finally, if you’re running in a controlled environment where there’s a sched-
uler, you may have a cap on the number of tasks your MapReduce job can use.
Because each file (by default) results in at least one map task, this could cause
your job to be rejected by the scheduler.

If you’re thinking you won’t have this problem, think again. What percentage of your files
are smaller than the HDFS block size?7 And how much smaller are they—50%, 70%, 90%?
What if your big data project takes off and suddenly you need to be able to scale to handle

6 According to Yahoo! statistics, each block or file inode uses less than 200 bytes of memory, and on average
each file occupies 1.5 blocks with a 3x replication factor. See Yahoo!’s page titled “Scalability of the Hadoop
Distributed File System,” http://developer.yahoo.com/blogs/hadoop/posts/2010/05/scalability_of_the
_hadoop_dist/ and a JIRA ticket titled “Name-node memory size estimates and optimization proposal,”
https://issues.apache.org/jira/browse/HADOOP-1687.

7 The default block size is 1,238 MB. Check the value of dfs.block.size to see what it’s set to in your cluster.

http://developer.yahoo.com/blogs/hadoop/posts/2010/05/scalability_of_the_hadoop_dist/
http://developer.yahoo.com/blogs/hadoop/posts/2010/05/scalability_of_the_hadoop_dist/

149TECHNIQUE 28 Using filecrush to compact data

datasets that are several orders of magnitude greater in size? Isn’t that why you use
Hadoop in the first place? To scale, you want to be able to add more nodes and then get
back to your morning coffee. You don’t want to have to go back and redesign your use
of Hadoop and deal with migrating your files. Thinking and preparing for this eventu-
ality is best done early in your design phase.

 This section examines some techniques that you can use to combine your data in
HDFS. I’ll start off by discussing a utility called filecrush, which can compact small files
together to create a smaller number of larger files. I’ll also show you how Avro can be used
as a container format to store files that can’t be easily compacted, such as binary files.

TECHNIQUE 28 Using filecrush to compact data

Compacting is the act of combining small files together to produce larger files—this
helps alleviate heap pressure on the NameNode. In this technique, you’ll learn about
an open source utility you can use to compact data and help keep your cluster admin-
istrator happy.

Compatibility with Hadoop versions Currently the filecrush utility only works
with Hadoop version 1. I’m writing a simple file compacter that’s compatible
with Hadoop 2 at https://github.com/alexholmes/hdfscompact.

■ Problem
You want to combine small files to reduce the metadata that the NameNode needs to
keep in memory.

■ Solution
Use the filecrush utility.

■ Discussion
The filecrush utility8 combines or compacts multiple small files to form larger files.
The utility is quite sophisticated and gives you the ability to

■ Determine the size threshold below which files will be compacted (and by asso-
ciation, leave files that are large enough alone)

■ Specify the maximum size of the compacted files
■ Work with different input and output formats and different input and output

compression codecs (useful for moving to a different file format or compres-
sion codec)

■ Swap smaller files with newer compacted files in place

We’ll use filecrush on a straightforward example—we’ll crush a single directory of
small text files and replace them with gzipped SequenceFiles.

 First, artificially create 10 input files in a directory in HDFS:

$ hadoop fs -mkdir crusher-dir
$ for i in `seq 1 10`; do

hadoop fs -put test-data/stocks.txt crusher-dir/stocks$i.txt
done

8 The filecrush GitHub project page is located at https://github.com/edwardcapriolo/filecrush.

https://github.com/alexholmes/hdfscompact
https://github.com/edwardcapriolo/filecrush

150 CHAPTER 4 Organizing and optimizing data in HDFS

Now run filecrush. In this example, you’ll replace the small files with the new large
file, and also convert from a text file to a compressed SequenceFile:

$ hadoop jar ./filecrush-2.2.2-SNAPSHOT.jar \
com.m6d.filecrush.crush.Crush \
-Ddfs.block.size=128000000 \
--clone \
--compress gzip \
--input-format text \
--output-format sequence \
crusher-dir crusher-out \
`date +%Y%m%d%H%M%S`

After running filecrush, you’ll observe that the files in the input directory have been
replaced by a single SequenceFile:

$ hadoop fs -ls -R crusher-dir
crusher-dir/crushed_file-20140713162739-0-0

You can also run the text Hadoop command to view the text representation of the
SequenceFile:

$ hadoop fs -text crusher-dir/crushed_file-20140713162739-0-0

You’ll also notice that the original small files have all been moved to the output direc-
tory that you specified in your command:

$ hadoop fs -ls -R crusher-out
crusher-out/user/aholmes/crusher-dir/stocks1.txt
crusher-out/user/aholmes/crusher-dir/stocks10.txt
crusher-out/user/aholmes/crusher-dir/stocks2.txt
...

If you had run filecrush without the --clone option, the input files would have
remained intact, and the crushed file would have been written to the output directory.

Input and output file size thresholds
How does filecrush determine whether files need to be crushed? It looks at each file in
the input directory and compares it to the block size (or in Hadoop 2, the size that
you specified in -Ddfs.block.size in the command). If the file is less than 75% of the
block size, it will be crushed. This threshold can be customized by supplying the
--threshold argument—for example, if you wanted to raise the value to 85%, you’d
specify --threshold 0.85.

This is a hack required to get the utility
to work with Hadoop 2. Replace the value

with your HDFS block size.

Write the output file into
the input directory and
move the input files out
of the way.

The compression
codec for the
output files.

The input file format.

The output file format.
The input and
output directories. A 14-digit timestamp

that’s used to generate
unique output filenames.

151TECHNIQUE 29 Using Avro to store multiple small binary files

 Similarly, filecrush uses the block size to determine the output file sizes. By default,
it won’t create output files that occupy more than eight blocks, but this can be custom-
ized with the --max-file-blocks argument.

■ Summary
Filecrush is a simple and quick way to combine small files together. It supports any
type of input or output files as long as there are associated input format and output
format classes. Unfortunately, it doesn’t work with Hadoop 2, and there hasn’t been
much activity in the project over the last few years, so these points may rule out this
utility for your environment.

 The example presented in this technique works well in situations where the direc-
tory being crushed is an external Hive table, or if you’re running it against a directory
in a standard location where other users in a cluster expect your data to exist.

 Currently, the filecrush project doesn’t work with Hadoop 2. If you’re looking for a
solution for Hadoop 2, take a look at another HDFS compactor that I’m currently
working on at https://github.com/alexholmes/hdfscompact.

 Because filecrush requires input and output formats, one use case where it falls
short is if you’re working with binary data and you need a way to combine small binary
files together.

TECHNIQUE 29 Using Avro to store multiple small binary files

Let’s say that you’re working on a project akin to Google Images, where you crawl the
web and download image files from websites. Your project is internet-scale, so you’re
downloading millions of files and storing them individually in HDFS. You already know
that HDFS doesn’t work well with a large number of small files, but you’re dealing with
binary data, so the previous technique doesn’t fit your needs.

 This technique shows how you can use Avro as a container file format for binary
data in HDFS.

■ Problem
You want to store a large number of binary files in HDFS, and to do so without hitting
the NameNode memory limits.

■ Solution
The easiest way to work with small binary files in HDFS is to package them into a larger
containing file. For this technique, you’ll read all of the files in a directory stored on
local disk and save them in a single Avro file in HDFS. You’ll also see how to use the
Avro file in MapReduce to process the contents of the original files.

■ Discussion
Figure 4.2 shows the first part of this technique, where you create the Avro file in
HDFS. In doing so, you create fewer files in HDFS, which means less data to be stored
in NameNode memory, which also means you can store more stuff.

 Avro is a data serialization and RPC library invented by Doug Cutting, the creator
of Hadoop. Avro has strong schema-evolution capabilities that give it an advantage

https://github.com/alexholmes/hdfscompact

152 CHAPTER 4 Organizing and optimizing data in HDFS

over competitors such as SequenceFile. Avro and its competitors were covered exten-
sively in chapter 3.

 Take a look at the Java code in the following listing, which will create the Avro file.9

public class SmallFilesWrite {

public static final String FIELD_FILENAME = "filename";
public static final String FIELD_CONTENTS = "contents";
private static final String SCHEMA_JSON =

"{\"type\": \"record\", \"name\": \"SmallFilesTest\", "
+ "\"fields\": ["
+ "{\"name\":\" + FIELD_FILENAME
+ "\", \"type\":\"string\"},"
+ "{\"name\":\" + FIELD_CONTENTS
+ "\", \"type\":\"bytes\"}]}";

public static final Schema SCHEMA = Schema.parse(SCHEMA_JSON);

public static void writeToAvro(File srcPath,
OutputStream outputStream)
throws IOException {

DataFileWriter<Object> writer =
new DataFileWriter<Object>(

new GenericDatumWriter<Object>())
.setSyncInterval(100);

Listing 4.1 Read a directory containing small files and produce a single Avro file in HDFS

9 GitHub source: https://github.com/alexholmes/hiped2/blob/master/src/main/java/hip/ch4/
SmallFilesWrite.java.

Individual
files.

Read small
files.

Write into a
single Avro

file.

Avro files consist of
a number of Avro
records. In this

example, each Avro
record represents a

single file.

The multiplexer
is responsible for reading the small files
from the local filesystem and packaging

them in an Avro file in HDFS.

Local
filesystem

Multiplexer

filename:string contents:byte[]

b

a

c

Avro
file

Avro
record

HDFS

b

a

c
Each Avro record

consists of the original
filename and also
the file contents.

Figure 4.2 Storing small files in Avro allows you to store more.

Avro uses JSON to
define the data
structure schema,
which in this example
is defined in the
SCHEMA_JSON
variable. You define
two items per record:
the filename you’re
storing, and the raw
contents of the file.

Create an
Avro writer.

https://github.com/alexholmes/hiped2/blob/master/src/main/java/hip/ch4/SmallFilesWrite.java
https://github.com/alexholmes/hiped2/blob/master/src/main/java/hip/ch4/SmallFilesWrite.java

153TECHNIQUE 29 Using Avro to store multiple small binary files

writer.setCodec(CodecFactory.snappyCodec());
writer.create(SCHEMA, outputStream);
for (Object obj :

FileUtils.listFiles(srcPath, null, false)) {
File file = (File) obj;
String filename = file.getAbsolutePath();
byte content[] = FileUtils.readFileToByteArray(file);
GenericRecord record = new GenericData.Record(SCHEMA);

record.put(FIELD_FILENAME, filename);
record.put(FIELD_CONTENTS, ByteBuffer.wrap(content));
writer.append(record);
System.out.println(

file.getAbsolutePath()
+ ": "
+ DigestUtils.md5Hex(content));

}

IOUtils.cleanup(null, writer);
IOUtils.cleanup(null, outputStream);

}

public static void main(String... args) throws Exception {
Configuration config = new Configuration();
FileSystem hdfs = FileSystem.get(config);

File sourceDir = new File(args[0]);
Path destFile = new Path(args[1]);

OutputStream os = hdfs.create(destFile);
writeToAvro(sourceDir, os);

}
}

Compression dependency To run the code in this chapter, you’ll need to have
both the Snappy and LZOP compression codecs installed on your host. Please
refer to the appendix for details on how to install and configure them.

Let’s see what happens when you run this script against Hadoop’s config directory
(replace $HADOOP_CONF_DIR with the directory containing your Hadoop configuration
files):

$ hip hip.ch4.SmallFilesWrite $HADOOP_CONF_DIR test.avro
/etc/hadoop/conf/ssl-server.xml.example: cb6f1b218...
/etc/hadoop/conf/log4j.properties: 6920ca49b9790cb...
/etc/hadoop/conf/fair-scheduler.xml: b3e5f2bbb1d6c...
...

Looks promising—let’s make sure that the output file is in HDFS:

$ hadoop fs -ls test.avro
2011-08-20 12:38 /user/aholmes/test.avro

Compress Avro
content using the
Snappy codec.

Associate the schema
and output stream
with the writer.

For each file in the input
directory, create a new
Avro record specifying

your schema. Then write
the filename and

contents to the record
using the names you

defined in the schema.

GenericRecord is
Avro’s generic
wrapper around a
single record.

Set the
filename field

for the record.

Set the raw file
bytes in the record.

Write the record to the writer
(and its associated stream, which in

this case will write into HDFS).

As you’re writing the file contents,
you’ll also produce an MD5 hash so that
later you can visually compare that your

writing and reading are correct.

154 CHAPTER 4 Organizing and optimizing data in HDFS

To be sure everything’s working as expected, you can also write some code that will
read the Avro file from HDFS and output the MD5 hash for each file’s content:10

public class SmallFilesRead {

private static final String FIELD_FILENAME = "filename";
private static final String FIELD_CONTENTS = "contents";

public static void readFromAvro(InputStream is) throws IOException {
DataFileStream<Object> reader =

new DataFileStream<Object>(
is, new GenericDatumReader<Object>());

for (Object o : reader) {
GenericRecord r = (GenericRecord) o;
System.out.println(

r.get(FIELD_FILENAME) +
": " +
DigestUtils.md5Hex(

((ByteBuffer) r.get(FIELD_CONTENTS)).array()));
}
IOUtils.cleanup(null, is);
IOUtils.cleanup(null, reader);

}

public static void main(String... args) throws Exception {
Configuration config = new Configuration();
FileSystem hdfs = FileSystem.get(config);

Path destFile = new Path(args[0]);

InputStream is = hdfs.open(destFile);
readFromAvro(is);

}
}

This code is simpler than the write. Because Avro writes the schema into every Avro
file, you don’t need to give Avro any information about the schema as part of deserial-
ization. Give the code a spin:

$ hip hip.ch4.SmallFilesRead test.avro
/etc/hadoop/conf/ssl-server.xml.example: cb6f1b21...
/etc/hadoop/conf/fair-scheduler.xml: b3e5f2bbb1d6...
...

At this point you have Avro files in HDFS. Even though this chapter is about HDFS, the
next thing you’ll likely want to do is process the files that you wrote in MapReduce.
Let’s look at how to do that, writing a map-only MapReduce job that can read the Avro
records as input and write out a text file containing the filenames and MD5 hashes of
the file contents, as shown in figure 4.3.

10 GitHub source: https://github.com/alexholmes/hiped2/blob/master/src/main/java/hip/ch4/
SmallFilesRead.java.

Create an Avro reader object by supplying the InputStream of
the file in HDFS. Note that you don’t need to supply schema

information because Avro encodes that in the Avro file.

Loop through
every record in
the Avro file.

Cast each record to
a GenericRecord

instance.
Retrieve the
filename and
content from
the record.

The hashes are the same as those
you generated with the write, so

things are looking good.

https://github.com/alexholmes/hiped2/blob/master/src/main/java/hip/ch4/SmallFilesRead.java
https://github.com/alexholmes/hiped2/blob/master/src/main/java/hip/ch4/SmallFilesRead.java

155TECHNIQUE 29 Using Avro to store multiple small binary files

The next listing shows the code for this MapReduce job.11

public class SmallFilesMapReduce {

public static void main(String... args) throws Exception {
JobConf job = new JobConf();
job.setJarByClass(SmallFilesMapReduce.class);
Path input = new Path(args[0]);
Path output = new Path(args[1]);

output.getFileSystem(job).delete(output, true);

AvroJob.setInputSchema(job, SmallFilesWrite.SCHEMA);
job.setInputFormat(AvroInputFormat.class);

job.setOutputFormat(TextOutputFormat.class);

job.setMapperClass(Map.class);

FileInputFormat.setInputPaths(job, input);
FileOutputFormat.setOutputPath(job, output);

job.setNumReduceTasks(0);

JobClient.runJob(job);
}

public static class Mapper implements
Mapper<AvroWrapper<GenericRecord>, NullWritable,

Listing 4.2 A MapReduce job that takes as input Avro files containing the small files

11 GitHub source: https://github.com/alexholmes/hiped2/blob/master/src/main/java/hip/ch4/
SmallFilesMapReduce.java.

This map-only job reads
each Avro record

from HDFS…

… and produces output that contains
the original filename and a MD5 hash

of the contents of the file.

Filename. MD5 hash.

Mapper 1Avro
records.

Avro
file in
HDFS

a 8e9591a43c…
b c00f7cd895…
c 93987fleb3…

Mapper 2
… ………
… ………

Input split 1

Text file in HDFS

Input split 2

b

a

c

e

d

f

… Figure 4.3 Map job to read Avro files and write out a text file

Avro has a convenience
method to help set the

appropriate job configuration
settings for Avro input files.

Set the Avro-specific
input format for your job.

The Avro file uses the basic
building-block GenericRecord

objects, so you define this type as
your input type for the mapper.

https://github.com/alexholmes/hiped2/blob/master/src/main/java/hip/ch4/SmallFilesMapReduce.java
https://github.com/alexholmes/hiped2/blob/master/src/main/java/hip/ch4/SmallFilesMapReduce.java

156 CHAPTER 4 Organizing and optimizing data in HDFS

Text, Text> {
@Override
public void map(AvroWrapper<GenericRecord> key,

NullWritable value,
OutputCollector<Text, Text> output,
Reporter reporter) throws IOException {

outKey.set(
key.datum().get(
SmallFilesWrite.FIELD_FILENAME).toString());

outValue.set(DigestUtils.md5Hex(
((ByteBuffer) key.datum().get(SmallFilesWrite.FIELD_CONTENTS))
.array()));

output.collect(outKey, outValue);
}

}
}

If you run this MapReduce job over the Avro file you created earlier, the job log files
will contain your filenames and hashes:

$ hip hip.ch4.SmallFilesMapReduce \
--input test.avro \
--output output

$ hadoop fs -cat output/part*

/etc/hadoop/conf/capacity-scheduler.xml: 0601a2...
/etc/hadoop/conf/taskcontroller.cfg: 5c2c191420...
/etc/hadoop/conf/configuration.xsl: e4e5e17b4a8...
...

In this technique, it was assumed that you were working with a file format (such as
image files) that couldn’t have separate files concatenated together. If your files can
be concatenated, you should consider that option. If you go this route, try your best to
make sure that the file size is at least as large as the HDFS block size to minimize the
data stored in NameNode.

■ Summary
You could have used Hadoop’s SequenceFile as a mechanism to hold your small files.
SequenceFile is a more mature technology, having been around longer than Avro
files. But SequenceFiles are Java-specific, and they don’t provide the rich interopera-
bility and versioning semantics you get with Avro.

 Google’s Protocol Buffers, as well as Apache Thrift (which originated from Face-
book), can also be used to store small files. But neither has a input format that works
with native Thrift or Protocol Buffers files.

 Another approach you could use is to write the files into a zip file. The downsides
to this approach are first that you’d have to write a custom input format12 to process
the zip file, and second that zip files aren’t splittable (as opposed to Avro files and

12 There has been a ticket open since 2008 asking for a zip input format implementation; see https://
issues.apache.org/jira/browse/MAPREDUCE-210.

Extract your data from
the GenericRecord using
the simple get methods.

Compare the hashes here with the
output of the SmallFilesRead

utility executed earlier in this
technique, and you’ll see they are
the same, which verifies that the

files are identical.

https://issues.apache.org/jira/browse/MAPREDUCE-210
https://issues.apache.org/jira/browse/MAPREDUCE-210

157TECHNIQUE 29 Using Avro to store multiple small binary files

SequenceFiles). This could be mitigated by generating multiple zip files and attempt-
ing to make them close to the HDFS block size.

 Hadoop also has a CombineFileInputFormat that can feed multiple input splits
(across multiple files) into a single map task, which greatly decreases the number of
map tasks needed to run.

 You also could have created a tarball file containing all the files, and then pro-
duced a separate text file that contained the locations of the tarball file in HDFS. This
text file would be supplied as the input to the MapReduce job, and the mapper would
open the tarball directly. But that approach would circumvent the locality in Map-
Reduce, because the mappers would be scheduled to execute on the node that con-
tained the text file, and would therefore likely need to read the tarball blocks from
remote HDFS nodes, incurring unnecessary network I/O.

 Hadoop Archive files (HARs) are Hadoop files specifically created to solve the
problem of small files. They are a virtual filesystem that sits on top of HDFS. The disad-
vantages of HAR files are that they can’t be optimized for local disk access in Map-
Reduce, and they can’t be compressed.

 Hadoop version 2 supports HDFS Federation, where HDFS is partitioned into multi-
ple distinct namespaces, with each independently managed by a separate NameNode.
This, in effect, means that the overall impact of keeping block information in memory
can be spread across multiple NameNodes, thereby supporting a much larger number
of small files. Hortonworks has a good blog post that contains more details about
HDFS Federation (“An Introduction to HDFS Federation” [August 23, 2011], http://
hortonworks.com/an-introduction-to-hdfs-federation/).

 Finally, MapR, which provides a Hadoop distribution, has its own distributed file-
system that supports large numbers of small files. Using MapR for your distributed
storage is a big change to your system, so it’s unlikely you’ll move to MapR to mitigate
this problem with HDFS.

 You may encounter times when you’ll want to work with small files in Hadoop, and
using them directly would result in bloated NameNode memory use and MapReduce
jobs that run slowly. This technique helps you mitigate these issues by packaging small
files into larger container files. I picked Avro for this technique because of its support
for splittable files and compression and its expressive schema language, which will
help with versioning.

 What if you have the opposite problem, where your files are big and you want to be
more efficient about how you store your data? Our coverage of compression in
Hadoop (section 4.2) will come to your rescue in these situations. But before we get to
that section, let’s continue with our look at data organization and discover some tips
on how to move data atomically in HDFS.

4.1.5 Atomic data movement

Activities such as partitioning and compacting tend to follow a similar pattern—they
produce output files in a staging directory, and then need to atomically move them to

http://hortonworks.com/an-introduction-to-hdfs-federation/
http://hortonworks.com/an-introduction-to-hdfs-federation/

158 CHAPTER 4 Organizing and optimizing data in HDFS

their final destination once all the output files have been successfully staged. This may
bring up some questions:

■ What trigger do you use to determine that you’re ready to perform the atomic
move?

■ How do you move data atomically in HDFS?
■ What impact does your data movement have on any readers of the final data?

It may be tempting to perform the atomic move as a postprocessing step within your
MapReduce driver, but what will happen if the client process dies before the Map-
Reduce application completes? This is where using the OutputCommitter in Hadoop
is useful, because you can perform any atomic file movement as part of your job,
as opposed to using the driver. An example of the OutputCommitter is shown in sec-
tion 3.5.2.

 The next question is how you can move data atomically in HDFS. For the longest
time, it was thought that the rename method on the DistributedFileSystem class (which
is the concrete implementation supporting HDFS) was atomic. But it turns out that
there are situations where this isn’t an atomic operation. This was remedied in
HADOOP-6240, but for backward compatibility reasons, the rename method wasn’t
updated. As a result, the rename method is still not truly atomic; instead, you need to
use a new API. As you can see, the code is cumbersome and it only works with newer
versions of Hadoop:

DistributedFileSystem fs = (DistributedFileSystem) FileSystem.get(new Configuration());

fs.rename(src, dest, Options.Rename.NONE);

One thing that’s missing from HDFS is the ability to atomically swap directories. This
would be useful in situations such as compacting, where you need to replace the
entire contents of a directory that is being used by other processes such as Hive.
There’s an open JIRA ticket titled “Atomic Directory Swapping Operation” (https://
issues.apache.org/jira/browse/HDFS-5902) that will hopefully provide this ability in
the future.

 It’s important that you factor the points discussed here into the design of your sys-
tem. And if you’re using a third-party utility or library, try to determine whether it’s
atomically moving data.

 This concludes our look at data organization techniques. Let’s switch to another
important data management topic in Hadoop, that of data compression.

4.2 Efficient storage with compression
Data compression is a mechanism that reduces data to a more compact form to save on
storage space and to make it more efficient to transfer the data. Compression is an
important aspect of dealing with files, and it becomes all the more important when deal-
ing with the data sizes that Hadoop supports. Your goal with Hadoop is to be as efficient

https://issues.apache.org/jira/browse/HDFS-5902
https://issues.apache.org/jira/browse/HDFS-5902

159TECHNIQUE 30 Picking the right compression codec for your data

as possible when working with your data, and picking a suitable compression codec will
result in your jobs running faster and allow you to store more data in your cluster.13

TECHNIQUE 30 Picking the right compression codec for your data

Using compression with HDFS isn’t as transparent as it is on filesystems such as ZFS,14

especially when dealing with compressed files that can be split (more on that later in this
chapter). One of the advantages of working with file formats such as Avro and Sequence-
File is their built-in compression support, making compression almost completely trans-
parent to users. But you lose that luxury when working with file formats such as text.

■ Problem
You want to evaluate and determine the optimal compression codec for use with your
data.

■ Solution
Snappy, a compression codec from Google, offers the best combination of com-
pressed size and read/write execution times. But LZOP is the best codec when work-
ing with large compressed files that must support splittability.

■ Discussion
Let’s kick things off with a quick look at the compression codecs available for use in
Hadoop, shown in table 4.1.

13 A compression codec is a programming implementation capable of reading and writing a given compression
format.

14 ZFS, short for Z File System, is a filesystem developed by Sun Microsystems that provides innovative features
to enhance data integrity.

Table 4.1 Compression codecs

Codec Background

Deflate Deflate is similar to zlib, which is the same compression algorithm that gzip uses but with-
out the gzip headers.

gzip The gzip file format consists of a header and a body, which contains a Deflate-compressed
payload.

bzip2 bzip2 is a space-efficient compression codec.

LZO LZO is a block-based compression algorithm that allows the compressed data to be split.

LZOP LZOP is LZO with additional headers. At one time, LZO/LZOP came bundled with Hadoop,
but they have since been removed due to GPL licensing restrictions.

LZ4 LZ4 is a speedy derivative of the same compression algorithm on which LZO is based.

Snappy Snappy (http://code.google.com/p/hadoop-snappy/) is a recent addition to the codec
options in Hadoop. It’s Google’s open source compression algorithm. Google uses it for com-
pressing data in both MapReduce and BigTable.a Snappy’s main drawback is that it’s not split-
table. If you’re working with file formats that support splitting, such as Avro or Parquet, or your
file sizes are smaller than or equal to your HDFS block size, you can ignore this drawback.

a BigTable is Google’s proprietary database system; see Fay Chang et al., “Bigtable: A Distributed Stor-
age System for Structured Data,” http://research.google.com/archive/bigtable.html.

160 CHAPTER 4 Organizing and optimizing data in HDFS

To properly evaluate the codecs, you first need to specify your evaluation criteria,
which should be based on functional and performance traits. For compression, your
criteria are likely to include the following:

■ Space/time trade-off—Generally, the more computationally expensive compres-
sion codecs yield better compression ratios, resulting in smaller compressed
outputs.

■ Splittability—Can a compressed file be split for use by multiple mappers? If a
compressed file can’t be split, only a single mapper will be able to work on it. If
that file spans multiple blocks, you’ll lose out on data locality because the map
will likely have to read blocks from remote DataNodes, incurring the overhead
of network I/O.

■ Native compression support—Is there a native library that performs compression
and decompression? This will usually outperform a compression codec written
in Java with no underlying native library support.

Table 4.2 compares the compression codecs currently available (we’ll cover the space/
time comparison in the next section).

Native vs. Java bzip2 Native support for bzip2 was recently added to Hadoop
(starting from versions 2.0 and 1.1.0). Native bzip2 support is the default, but
it doesn’t support splittability. If you need splittability with bzip2, you’ll need
to enable the Java bzip2, which can be specified by setting io.compression
.codec.bzip2.library to java-builtin.

Table 4.2 Comparison of compression codecs

Codec Extension Licensing Splittable
Java-only compression

support
Native compression

support

Deflate .deflate zlib No Yes Yes

gzip .gz GNU GPL No Yes Yes

bzip2 .gz BSD Yes a

a The Java version of bzip2 is splittable in Hadoop 2 and 1.1.0 onward (see https://issues.apache.org/
jira/browse/HADOOP-4012). The native version isn’t currently splittable.

Yes Yesb

b Native bzip2 support was added in Hadoop 2.1 (see https://issues.apache.org/jira/browse/
HADOOP-8462).

LZO .lzo_deflate GNU GPL No No Yes

LZOP .lzo GNU GPL Yes c

c LZOP files aren’t natively splittable. You need to preprocess them to create an index file, which is
then used by their respective CompressionCodec implementations to determine the file splits. We’ll
cover how you can achieve this in technique 32.

No Yes

LZ4 .lz4 New BSD No No Yes

Snappy .gz New BSD No No Yes

https://issues.apache.org/jira/browse/HADOOP-4012
https://issues.apache.org/jira/browse/HADOOP-4012
https://issues.apache.org/jira/browse/HADOOP-8462
https://issues.apache.org/jira/browse/HADOOP-8462

161TECHNIQUE 30 Picking the right compression codec for your data

Now that you understand the codecs, how do they square up when looking at their
space/time trade-offs? I used a 100 MB (10^8) Wikipedia XML file (enwik8.zip from
http://mattmahoney.net/dc/textdata.html), to compare the codec run times and
their compression sizes. The results of these tests can be seen in table 4.3.

Running your own tests When you’re performing your own evaluation, I rec-
ommend you perform your tests using your own data, and preferably on hosts
similar to your production nodes. This way you’ll have a good sense of the
expected compression and run times for the codecs.

Also make sure your cluster has native codecs enabled. You can check this by
running the following command:

 $ hadoop checknative -a

Figure 4.4 shows the compressed sizes in bar graph form.
 Figure 4.5 shows the compressed times in bar graph form. These times will vary sig-

nificantly based on hardware, and they’re only supplied here to give a sense of how
they relate to each other.

 What do the space and time results tell you? If squeezing as much data into your
cluster as possible is your top priority and you can live with long compression times,
then bzip2 may be the right codec for you. If you want to compress your data but
introduce the least amount of CPU overhead when it comes to reading and writing
compressed files, you should look at LZ4. Anyone looking for a balance between com-
pression and execution times would have to eliminate the Java version of bzip2 from
the picture.

 Being able to split your compressed files is important, and here you have to choose
between bzip2 and LZOP. The native bzip2 codec doesn’t support splitting, and the
Java bzip2 times will likely give most people pause. The only advantage of bzip2 over
LZOP is that its Hadoop integration is much easier to work with than LZOP’s.

Table 4.3 Performance comparison of compression codecs on a 100 MB text file

Codec
Compression time

(secs)
Decompression time

(secs)
Compressed file size

Compressed
percentage

Deflate 9.21 1.02 36,548,921 36.55%

gzip 9.09 0.90 36,548,933 36.55%

bzip2 (Java) 47.33 6.45 29,007,274 29.01%

bzip2
(native)

11.59 4.66 29,008,758 29.01%

LZO 2.10 0.46 53,926,001 53.93%

LZOP 2.09 0.45 53,926,043 53.93%

LZ4 1.72 0.28 57,337,587 57.34%

Snappy 1.75 0.29 58,493,673 58.49%

162 CHAPTER 4 Organizing and optimizing data in HDFS

Deflate and gzip:
these are runners-up, doing
well in compressed file sizes.

LZO(P), LZ4, and Snappy:
Snappy/LZ4 compression sizes

are marginally larger than
LZO/LZOP.

Si
ze

 in
 M

B

70

DEFLATE
0

10

20

30

40

50

60

GZIP BZIP2_JAVA BZIP2_NATIVE LZO LZOP LZ4 SNAPPY

bzip2: bzip yielded the highest compression
ratio, but you'll find out soon that all is not

rosy in bzip2-land.

Figure 4.4 Compressed file sizes for a single 100 MB text file (smaller values are better)

bzip2 (native): much be�er compression time
compared to the Java version, but decompression

is still slow, and it's not spli�able.

S
ec

on
ds

35

DEFLATE
0

5

10

15

20

25

30

40

Compression

Decompression

45

50

GZIP BZIP2_JAVA BZIP2_NATIVE LZO LZOP LZ4 SNAPPY

bzip2: the Java compression is over 5
times slower than the other codecs.

LZO(P), LZ4, and Snappy: decompression times
are a wash, but look at how much faster they
are compared to Deflate/gzip at compression.

Figure 4.5 Compression and decompression times for a single 100 MB text file (smaller values are better)

163TECHNIQUE 31 Compression with HDFS, MapReduce, Pig, and Hive

Although LZOP is the natural winner here, it requires some effort to work with, as
you’ll see in technique 32.

■ Summary
The best codec for you will depend on your criteria. LZ4 is the most promising codec
if you don’t care about splitting your files, and LZOP is what you should be looking at
if you want splittable files.

 Another factor to consider is the long-term storage retention required for the
data. If you’re keeping data for a long time, you’ll probably want to maximize the
compression of your files, for which I would recommend a zlib-based codec (such as
gzip). Because gzip isn’t splittable, though, it would be prudent to use it in combina-
tion with a block-based file format such as Avro or Parquet so that your data can still
be split. Or you could size your outputs so they occupy a single block in HDFS so that
splittability isn’t a concern.

 Bear in mind that compressed sizes will vary based on whether your file is text or
binary and depending on its contents. To get accurate numbers, you should run simi-
lar tests against your own data.

 Compressing data in HDFS has many benefits, including reduced file sizes and
faster MapReduce job runtimes. A number of compression codecs are available for
use in Hadoop, and I evaluated them based on features and performance. Now you’re
ready to start using compression. Let’s look at how you can compress files and use
them with tools such as MapReduce, Pig, and Hive.

TECHNIQUE 31 Compression with HDFS, MapReduce, Pig, and Hive

Because HDFS doesn’t provide built-in support for compression, it can be a challenge
to work with compression in Hadoop. The onus falls on you to figure out how to work
with compressed files. Also, splittable compression isn’t for the faint of heart, because
it doesn’t come out of the box with Hadoop.15 If you’re dealing with medium-size files
that compress down to near-HDFS block size, this technique will be the quickest and
simplest way to reap the benefits of compression in Hadoop.

■ Problem
You want to read and write compressed files in HDFS and also use them with Map-
Reduce, Pig, and Hive.

■ Solution
Working with compressed files in MapReduce involves updating the MapReduce con-
figuration file mapred-site.xml and registering the compression codec you’re using.
After you do this, working with compressed input files in MapReduce requires no addi-
tional steps, and producing compressed MapReduce output is a matter of setting the
mapred.output.compress and mapred.output.compression.codec MapReduce properties.

15 Technically, you can get out-of-the-box splittable compression with bzip2, but its performance traits, as shown
earlier in this section, rule it out as a serious compression codec.

164 CHAPTER 4 Organizing and optimizing data in HDFS

■ Discussion
The first step is to figure out how to read and write files using any of the codecs evalu-
ated earlier in this chapter. All of the codecs detailed in this chapter are bundled with
Hadoop except for LZO/LZOP and Snappy, so if you want to work with those three,
you’ll need to download and build them yourself (I’ll walk you through how to work
with LZO/LZOP later in this section).

 To use the compression codecs, you need to know their class names, which are
listed in table 4.4.

Using compression in HDFS
How would you compress an existing file in HDFS using any one of the codecs men-
tioned in the previous table? The following code supports doing that:16

Configuration config = new Configuration();
FileSystem hdfs = FileSystem.get(config);

Class<?> codecClass = Class.forName(args[2]);
CompressionCodec codec = (CompressionCodec)

ReflectionUtils.newInstance(codecClass, config);

InputStream is = hdfs.open(new Path(args[0]));
OutputStream os = hdfs.create(

new Path(args[0] + codec.getDefaultExtension()));

OutputStream cos = codec.createOutputStream(os);

IOUtils.copyBytes(is, cos, config, true);

IOUtils.closeStream(os);
IOUtils.closeStream(is);

Table 4.4 Codec classes

Codec Class Default extension

Deflate org.apache.hadoop.io.compress.DeflateCodec deflate

gzip org.apache.hadoop.io.compress.GzipCodec gz

bzip2 org.apache.hadoop.io.compress.BZip2Codec bz2

LZO com.hadoop.compression.lzo.LzoCodec lzo_deflate

LZOP com.hadoop.compression.lzo.LzopCodec lzo

LZ4 org.apache.hadoop.io.compress.Lz4Codec lz4

Snappy org.apache.hadoop.io.compress.SnappyCodec snappy

16 GitHub source: https://github.com/alexholmes/hiped2/blob/master/src/main/java/hip/ch4/
CompressedFileWrite.java.

Read the compression codec
from your input arguments.Construct an instance

of the codec with
the help of Hadoop’s

ReflectionUtils. Each codec has a default
extension (listed in table

4.4), and it’s a best
practice to use that

extension when writing a
compressed file.

Use the codec
to create a
compressed

output stream.

Use any standard Java OutputStream
writing mechanism to write to the

compressed stream; here you’re using a
utility provided by Hadoop. The last

argument indicates whether the input
and output streams should be closed

after the copy has completed.

https://github.com/alexholmes/hiped2/blob/master/src/main/java/hip/ch4/CompressedFileWrite.java
https://github.com/alexholmes/hiped2/blob/master/src/main/java/hip/ch4/CompressedFileWrite.java

165TECHNIQUE 31 Compression with HDFS, MapReduce, Pig, and Hive

Codec caching One of the overheads to using compression codecs is that
they can be expensive to create. When you use the Hadoop ReflectionUtils
class, some of the reflection overhead associated with creating the instance
will be cached in ReflectionUtils, which should speed up subsequent creation
of the codec. A better option would be to use the CompressionCodecFactory,
which provides caching of the codecs themselves.

Reading this compressed file is as simple as writing it:17

InputStream is = hdfs.open(new Path(args[0]));

Class<?> codecClass = Class.forName(args[1]);
CompressionCodec codec = (CompressionCodec)

ReflectionUtils.newInstance(codecClass, config);

InputStream cis = codec.createInputStream(is);

IOUtils.copyBytes(cis, System.out, config, true);

IOUtils.closeStream(is);

Super simple. Now that you can create compressed files, let’s look at how you can
work with them in MapReduce.

Using compression in MapReduce
To work with compressed files in MapReduce, you need to set some configuration
options for your job. For the sake of brevity, let’s assume identity mappers and reduc-
ers18 in this example:19

Class<?> codecClass = Class.forName(args[2]);

conf.setBoolean("mapred.output.compress", true);

conf.setBoolean("mapred.compress.map.output", true);

conf.setClass("mapred.output.compression.codec",
codecClass,
CompressionCodec.class);

The only differences between a MapReduce job that works with uncompressed versus
compressed I/O are the three annotated lines in the previous example.

 Not only can a job’s input and output be compressed, but so can the intermediate
map output, because it’s spilled first to disk, and then eventually over the network to
the reducer. The effectiveness of compressing the map output will ultimately depend
on the type of data being emitted, but as a general rule, you should see some job
speed-up by making this change.

17 GitHub source: https://github.com/alexholmes/hiped2/blob/master/src/main/java/hip/ch4/
CompressedFileRead.java.

18 An identity task is one that emits all of the input it receives as output, without any transformation or filtering.
19 GitHub source: https://github.com/alexholmes/hiped2/blob/master/src/main/java/hip/ch4/

CompressedMapReduce.java.

Use the codec’s
createInputStream to

return an InputStream
for reading.

Compress the
reducer output.

Compress the
mapper output.

The compression codec
for compressing
mapper output.

https://github.com/alexholmes/hiped2/blob/master/src/main/java/hip/ch4/CompressedFileRead.java
https://github.com/alexholmes/hiped2/blob/master/src/main/java/hip/ch4/CompressedFileRead.java
https://github.com/alexholmes/hiped2/blob/master/src/main/java/hip/ch4/CompressedMapReduce.java
https://github.com/alexholmes/hiped2/blob/master/src/main/java/hip/ch4/CompressedMapReduce.java

166 CHAPTER 4 Organizing and optimizing data in HDFS

 Why didn’t you have to specify the compression codec for the input file in the pre-
ceding code? By default the FileInputFormat class uses the CompressionCodecFactory to
determine if the input file extension matches any of the registered codecs. If it finds a
codec that’s associated with that file extension, it automatically uses that codec to
decompress the input files.

 How does MapReduce know which codecs to use? You need to specify the codecs
in mapred-site.xml. The following code shows how to register all of the codecs we’ve
evaluated. Remember that other than gzip, Deflate, and bzip2, all compression
codecs need to be built and made available on your cluster before you can regis-
ter them:

<property>
<name>io.compression.codecs</name>
<value>
org.apache.hadoop.io.compress.GzipCodec,
org.apache.hadoop.io.compress.DefaultCodec,
org.apache.hadoop.io.compress.BZip2Codec,
com.hadoop.compression.lzo.LzoCodec,
com.hadoop.compression.lzo.LzopCodec,
org.apache.hadoop.io.compress.SnappyCodec

</value>
</property>
<property>
<name>
io.compression.codec.lzo.class
</name>

<value>
com.hadoop.compression.lzo.LzoCodec

</value>
</property>

Now that you’ve mastered compression with MapReduce, it’s time to look higher up
the Hadoop stack. Because compression can also be used in conjunction with Pig and
Hive, let’s see how you can mirror your MapReduce compression accomplishment
using Pig and Hive. (As I’ll show in chapter 9, Hive is a higher-level language that
abstracts away some of the complex details of MapReduce.)

Using compression in Pig
If you’re working with Pig, there’s no extra effort required to use compressed input
files. All you need to do is ensure your filename extension maps to the appropriate
compression codec (see table 4.4). The following example gzips a local password file,
loads it into Pig, and dumps out the usernames:

$ gzip -c /etc/passwd > passwd.gz
$ hadoop fs -put passwd.gz passwd.gz

$ pig
grunt> A = load 'passwd.gz' using PigStorage(':');

grunt> B = foreach A generate $0 as id;
grunt> DUMP B;

Ending your filename with the .gz
extension results in the underlying

MapReduce output format recognizing
the file as being gzipped and using the

appropriate compression codec to
decompress the contents.

167TECHNIQUE 31 Compression with HDFS, MapReduce, Pig, and Hive

(root)
(bin)
(daemon)
...

Writing out a gzipped file is the same—make sure you specify the extension for a com-
pression codec. The following example stores the results of Pig relation B in a file in
HDFS, and then copies them to the local filesystem to examine the contents:

grunt> STORE B INTO 'passwd-users.gz';

Ctrl+C to break out of Pig shell

$ hadoop fs -get passwd-users.gz/part-m-00000.gz .

$ gunzip -c part-m-00000.gz
root
bin
daemon
...

That was straightforward—let’s hope things are equally smooth with Hive.

Using compression in Hive
As with Pig, all you need to do is specify the codec extension when defining the filename:

hive> CREATE TABLE apachelog (...);

hive> LOAD DATA INPATH /user/aholmes/apachelog.txt.gz
OVERWRITE INTO TABLE apachelog;

The previous example loaded a gzipped file into Hive. In this situation, Hive moves
the file being loaded into Hive’s warehouse directory and continues to use the raw file
as its storage for the table.

 What if you want to create another table and also specify that it should be com-
pressed? The following example achieves this by setting some Hive configs to enable
MapReduce compression (because a MapReduce job will be executed to load the new
table in the last statement):

hive> SET hive.exec.compress.output=true;
hive> SET hive.exec.compress.intermediate = true;
hive> SET mapred.output.compression.codec =
org.apache.hadoop.io.compress.GzipCodec;

hive> CREATE TABLE apachelog_backup (...);

hive> INSERT OVERWRITE TABLE apachelog_backup SELECT * FROM apachelog;

You can verify that Hive is indeed compressing the storage for the new
apachelog_backup table by looking at it in HDFS:

$ hadoop fs -ls /user/hive/warehouse/apachelog_backup
/user/hive/warehouse/apachelog_backup/000000_0.gz

As with the Pig example, the
.gz filename extension triggers

the appropriate compression
codec for decompression.

168 CHAPTER 4 Organizing and optimizing data in HDFS

It should be noted that Hive recommends using SequenceFile as the output format
for tables because SequenceFile blocks can be individually compressed.

■ Summary
This technique provides a quick and easy way to get compression running in Hadoop.
It works well for files that aren’t too large because it offers a fairly transparent way of
working with compression.

 If your compressed file sizes are much larger than the HDFS block size, read on for
compression techniques that can split your files.

TECHNIQUE 32 Splittable LZOP with MapReduce, Hive, and Pig

Imagine that you’re working with large text files that, even when compressed, are
many times larger than the HDFS block size. To avoid having one map task process an
entire large compressed file, you’ll need to pick a compression codec that can support
splitting that file.

 LZOP fits the bill, but working with it is more complex than the examples detailed
in the previous technique because LZOP is not in and of itself splittable. “Wait,” you
may be thinking, “didn’t you state earlier that LZOP is splittable?” LZOP is block-based,
but you can’t perform a random seek into an LZOP file and determine the next
block’s starting point. This is the challenge we’ll tackle in this technique.

■ Problem
You want to use a compression codec that will allow MapReduce to work in parallel on
a single compressed file.

■ Solution
In MapReduce, splitting large LZOP-compressed input files requires the use of LZOP-
specific input format classes, such as LzoInputFormat. The same principle applies when
working with LZOP-compressed input files in both Pig and Hive.

■ Discussion
The LZOP compression codec is one of only two codecs that allow for compressed
files to be split, and therefore to be worked on in parallel by multiple reducers. The
other codec, bzip2, suffers from compression times that are so slow they arguably
render the codec unusable. LZOP also offers a good compromise between compres-
sion and speed.

What’s the difference between LZO and LZOP? Both LZO and LZOP codecs
are supplied for use with Hadoop. LZO is a stream-based compression store
that doesn’t have the notion of blocks or headers. LZOP has the notion of
blocks (that are checksummed), and therefore is the codec you want to use,
especially if you want your compressed output to be splittable. Confusingly,
the Hadoop codecs by default treat files ending with the .lzo extension to
be LZOP-encoded, and files ending with the .lzo_deflate extension to be
LZO-encoded. Also, much of the documentation seems to use LZO and
LZOP interchangeably.

169TECHNIQUE 32 Splittable LZOP with MapReduce, Hive, and Pig

Preparing your cluster for LZOP
Unfortunately, Hadoop doesn’t bundle LZOP for licensing reasons.20

 Getting all the prerequisites compiled and installed on your cluster is laborious,
but rest assured that there are detailed instructions in the appendix. To compile and
run the code in this section, you’ll need to follow the instructions in the appendix.

Reading and writing LZOP files in HDFS
We covered how to read and write compressed files in section 4.2. To perform the
same activity with LZOP requires you to specify the LZOP codec in your code. This
code is shown in the following listing.21

public static Path compress(Path src,
Configuration config)

throws IOException {
Path destFile =

new Path(
src.toString() +

new LzopCodec().getDefaultExtension());

LzopCodec codec = new LzopCodec();
codec.setConf(config);

FileSystem hdfs = FileSystem.get(config);
InputStream is = null;
OutputStream os = null;
try {
is = hdfs.open(src);
os = codec.createOutputStream(hdfs.create(destFile));

IOUtils.copyBytes(is, os, config);
} finally {
IOUtils.closeStream(os);
IOUtils.closeStream(is);

}
return destFile;

}

public static void decompress(Path src, Path dest,
Configuration config)

throws IOException {
LzopCodec codec = new LzopCodec();
codec.setConf(config);

FileSystem hdfs = FileSystem.get(config);
InputStream is = null;
OutputStream os = null;
try {

20 LZOP used to be included with Hadoop, but with the work performed in JIRA ticket https://
issues.apache.org/jira/browse/HADOOP-4874, it was removed from Hadoop version 0.20 and newer releases
due to LZOP’s GPL licensing limiting its redistribution.

Listing 4.3 Methods to read and write LZOP files in HDFS

21 GitHub source: https://github.com/alexholmes/hiped2/blob/master/src/main/java/hip/ch4/
LzopFileReadWrite.java.

https://issues.apache.org/jira/browse/HADOOP-4874
https://github.com/alexholmes/hiped2/blob/master/src/main/java/hip/ch4/LzopFileReadWrite.java
https://github.com/alexholmes/hiped2/blob/master/src/main/java/hip/ch4/LzopFileReadWrite.java

170 CHAPTER 4 Organizing and optimizing data in HDFS

is = codec.createInputStream(hdfs.open(src));
os = hdfs.create(dest);

IOUtils.copyBytes(is, os, config);
} finally {
IOUtils.closeStream(os);
IOUtils.closeStream(is);

}
}

Let’s write and read an LZOP file, and then make sure that LZOP utilities can work
with the generated file (replace $HADOOP_CONF_HOME with the location of your Hadoop
config directory):

$ hadoop fs -put $HADOOP_CONF_DIR/core-site.xml core-site.xml
$ hip hip.ch4.LzopFileReadWrite core-site.xml

The preceding code will generate a core-site.xml.lzo file in HDFS.
 Now make sure you can use this LZOP file with the lzop binary. Install an lzop

binary on your host.22 Copy the LZOP file from HDFS to local disk, uncompress it with
the native lzop binary, and compare it with the original file:

$ hadoop fs -get core-site.xml.lzo /tmp/core-site.xml.lzo
$ lzop -l /tmp/core-site.xml.lzo
method compressed uncompr. ratio uncompressed_name
LZO1X-1 454 954 47.6% core-site.xml
cd /tmp
$ lzop -d core-site.xml.lzo
$ ls -ltr
-rw-r--r-- 1 aholmes aholmes 954 May 5 09:05 core-site.xml
-rw-r--r-- 1 aholmes aholmes 504 May 5 09:05 core-site.xml.lzo
$ diff core-site.xml $HADOOP_CONF_DIR/conf/core-site.xml
$

The diff verified that the file compressed with the LZOP codec could be decom-
pressed with the lzop binary.

 Now that you have your LZOP file, you need to index it so that it can be split.

Creating indexes for your LZOP files
Earlier I made the paradoxical statement that LZOP files can be split, but that they’re
not natively splittable. Let me clarify what that means—the lack of block-delimiting
synchronization markers means you can’t do a random seek into an LZOP file and
start reading blocks. But because internally it does use blocks, all you need is a prepro-
cessing step that can generate an index file containing the block offsets.

 The LZOP file is read in its entirety, and block offsets are written to the index file as
the read is occurring. The index file format, shown in figure 4.6, is a binary file con-
taining a consecutive series of 64-bit numbers that indicate the byte offset for each
block in the LZOP file.

22 For RedHat and Centos, you can install the rpm from http://pkgs.repoforge.org/lzop/lzop-1.03-1.el5.rf
.x86_64.rpm.

http://pkgs.repoforge.org/lzop/lzop-1.03-1.el5.rf.x86_64.rpm
http://pkgs.repoforge.org/lzop/lzop-1.03-1.el5.rf.x86_64.rpm

171TECHNIQUE 32 Splittable LZOP with MapReduce, Hive, and Pig

You can create index files in one of two ways, as shown in the following two code snip-
pets. If you want to create an index file for a single LZOP file, here is a simple library
call that will do this for you:

shell$ hadoop com.hadoop.compression.lzo.LzoIndexer core-site.xml.lzo

The following option works well if you have a large number of LZOP files and you want
a more efficient way to generate the index files. The indexer runs a MapReduce job to
create the index files. Both files and directories (which are scanned recursively for
LZOP files) are supported:

shell$ hadoop \
com.hadoop.compression.lzo.DistributedLzoIndexer \
core-site.xml.lzo

Both approaches depicted in figure 4.6 will generate an index file in the same directory
as the LZOP file. The index filename is the original LZOP filename suffixed with .index.
Running the previous commands would yield the filename core-site.xml.lzo.index.

 Now let’s look at how you can use the LzoIndexer in your Java code. The following
code (from the main method of LzoIndexer) will result in the index file being created
synchronously:

LzoIndexer lzoIndexer = new LzoIndexer(new Configuration());
for (String arg: args) {
try {
lzoIndexer.index(new Path(arg));

} catch (IOException e) {
LOG.error("Error indexing " + arg, e);

}

With the DistributedLzoIndexer, the MapReduce job will launch and run with N map-
pers, one for each .lzo file. No reducers are run, so the (identity) mapper, via the
custom LzoSplitInputFormat and LzoIndexOutputFormat, writes the index files directly.

Block 1 offset0

Byte

Block 2 offset

…

…

8

Block 3 offset16

0 64
Bit

LZOP index file

Block 1

LZOP file

Block 2

Block 3
Figure 4.6 An LZOP
index file is a binary
containing a
consecutive series of
64-bit numbers.

172 CHAPTER 4 Organizing and optimizing data in HDFS

If you want to run the MapReduce job from your own Java code, you can use the
DistributedLzoIndexer code as an example.

 You need the LZOP index files so that you can split LZOP files in your MapReduce,
Pig, and Hive jobs. Now that you have the aforementioned LZOP index files, let’s look
at how you can use them with MapReduce.
MapReduce and LZOP
After you’ve created index files for your LZOP files, it’s time to start using your LZOP
files with MapReduce. Unfortunately, this brings us to the next challenge: none of the
existing, built-in Hadoop-file-based input formats will work with splittable LZOP
because they need specialized logic to handle input splits using the LZOP index file.
You need specific input format classes to work with splittable LZOP.

 The LZOP library provides an LzoTextInputFormat implementation for line-oriented
LZOP-compressed text files with accompanying index files.23

 The following code shows the steps required to configure the MapReduce job to
work with LZOP. You would perform these steps for a MapReduce job that had text
LZOP inputs and outputs:24

job.setInputFormatClass(LzoTextInputFormat.class);
job.setOutputFormatClass(TextOutputFormat.class);

job.getConfiguration().setBoolean("mapred.output.compress", true);
job.getConfiguration().setClass("mapred.output.compression.codec",

LzopCodec.class, CompressionCodec.class);

Compressing intermediary map output will also speed up the overall execution time
of your MapReduce jobs:

conf.setBoolean("mapred.compress.map.output", true);
conf.setClass("mapred.map.output.compression.codec",

LzopCodec.class,
CompressionCodec.class);

You can easily configure your cluster to always compress your map output by editing
hdfs-site.xml:

<property>
<name>mapred.compress.map.output</name>
<value>true</value>

</property>
<property>
<name>mapred.map.output.compression.codec</name>
<value>com.hadoop.compression.lzo.LzopCodec</value>

</property>

The number of splits per LZOP file is a function of the number of LZOP blocks that
the file occupies, not the number of HDFS blocks that the file occupies.

23 The LZOP input formats also work well with LZOP files that don’t have index files.
24 GitHub source: https://github.com/alexholmes/hiped2/blob/master/src/main/java/hip/ch4/

LzopMapReduce.java.

https://github.com/alexholmes/hiped2/blob/master/src/main/java/hip/ch4/LzopMapReduce.java
https://github.com/alexholmes/hiped2/blob/master/src/main/java/hip/ch4/LzopMapReduce.java

173Chapter summary

 Now that we’ve covered MapReduce, let’s look at how Pig and Hive can work with
splittable LZOP.

Pig and Hive
Elephant Bird,25 a Twitter project containing utilities to work with LZOP, provides a
number of useful MapReduce and Pig classes. Elephant Bird has an LzoPigStorage
class that works with text-based, LZOP-compressed data in Pig.

 Hive can work with LZOP-compressed text files by using the com.hadoop.mapred
.DeprecatedLzoTextInputFormat input format class found in the LZO library.

■ Summary
Working with splittable compression in Hadoop is tricky. If you’re fortunate enough
to be able to store your data in Avro or Parquet, they offer the simplest way to work
with files that can be easily compressed and split. If you want to compress other file
formats and need them to be split, LZOP is the only real candidate.

 As I mentioned earlier, the Elephant Bird project provides some useful LZOP input
formats that will work with LZOP-compressed file formats such as XML and plain text.
If you need to work with an LZOP-compressed file format that isn’t supported by
either Todd Lipcon’s LZO project or Elephant Bird, you’ll have to write your own
input format. This is a big hurdle for developers. I hope at some point Hadoop will be
able to support compressed files with custom splitting logic so that end users don’t
have to write their own input formats for compression.

 Compression is likely to be a hard-and-fast requirement for any production envi-
ronment where resources are always scarce. Compression also allows faster execution
times for your computational jobs, so it’s a compelling aspect of storage. In the previ-
ous section I showed you how to evaluate and pick the codec best suited for your data.
We also covered how to use compression with HDFS, MapReduce, Pig, and Hive.
Finally, we tackled the tricky subject of splittable LZOP compression.

4.3 Chapter summary
Big data in the form of large numbers of small files brings to light a limitation in
HDFS, and in this chapter we worked around it by looking at how you can package
small files into larger Avro containers.

 Compression is a key part of any large cluster, and we evaluated and compared the
different compression codecs. I recommended codecs based on various criteria and
also showed you how to compress and work with these compressed files in Map-
Reduce, Pig, and Hive. We also looked at how to work with LZOP to achieve compres-
sion as well as blazing-fast computation with multiple input splits.

 This and the previous chapter were dedicated to looking at techniques for picking
the right file format and working effectively with big data in MapReduce and HDFS.
It’s now time to apply this knowledge and look at how to move data in and out of
Hadoop. That’s covered in the next chapter.

25 See the appendix for more details on Elephant Bird.

174

Moving data into
 and out of Hadoop

Data movement is one of those things that you aren’t likely to think too much
about until you’re fully committed to using Hadoop on a project, at which point it
becomes this big scary unknown that has to be tackled. How do you get your log
data sitting across thousands of hosts into Hadoop? What’s the most efficient way to
get your data out of your relational and No/NewSQL systems and into Hadoop?
How do you get Lucene indexes generated in Hadoop out to your servers? And
how can these processes be automated?

 Welcome to chapter 5, where the goal is to answer these questions and set you
on your path to worry-free data movement. In this chapter you’ll first see how data

This chapter covers
■ Understanding key design considerations for

data ingress and egress tools
■ Low-level methods for moving data into and out

of Hadoop
■ Techniques for moving log files and relational

and NoSQL data, as well as data in Kafka, in
and out of HDFS

175Key elements of data movement

across a broad spectrum of locations and formats can be moved into Hadoop, and
then you’ll see how data can be moved out of Hadoop.

 This chapter starts by highlighting key data-movement properties, so that as you go
through the rest of this chapter you can evaluate the fit of the various tools. It goes on
to look at low-level and high-level tools that can be used to move your data. We’ll start
with some simple techniques, such as using the command line and Java for ingress,1

but we’ll quickly move on to more advanced techniques like using NFS and DistCp.
 Once the low-level tooling is out of the way, we’ll survey higher-level tools that

have simplified the process of ferrying data into Hadoop. We’ll look at how you can
automate the movement of log files with Flume, and how Sqoop can be used to move
relational data. So as not to ignore some of the emerging data systems, you’ll also be
introduced to methods that can be employed to move data from HBase and Kafka
into Hadoop.

 We’ll cover a lot of ground in this chapter, and it’s likely that you’ll have specific
types of data you need to work with. If this is the case, feel free to jump directly to the
section that provides the details you need.

 Let’s start things off with a look at key ingress and egress system considerations.

5.1 Key elements of data movement
Moving large quantities of data in and out of Hadoop offers logistical challenges that
include consistency guarantees and resource impacts on data sources and destina-
tions. Before we dive into the techniques, however, we need to discuss the design ele-
ments you should be aware of when working with data movement.

Idempotence
An idempotent operation produces the same result no matter how many times
it’s executed. In a relational database, the inserts typically aren’t idempotent,
because executing them multiple times doesn’t produce the same resulting database
state. Alternatively, updates often are idempotent, because they’ll produce the same
end result.

 Any time data is being written, idempotence should be a consideration, and data
ingress and egress in Hadoop are no different. How well do distributed log collection
frameworks deal with data retransmissions? How do you ensure idempotent behavior
in a MapReduce job where multiple tasks are inserting into a database in parallel?
We’ll examine and answer these questions in this chapter.

Aggregation
The data aggregation process combines multiple data elements. In the context of data
ingress, this can be useful because moving large quantities of small files into HDFS
potentially translates into NameNode memory woes, as well as slow MapReduce exe-
cution times. Having the ability to aggregate files or data together mitigates this prob-
lem and is a feature to consider.

1 Ingress and egress refer to data movement into and out of a system, respectively.

176 CHAPTER 5 Moving data into and out of Hadoop

Data format transformation
The data format transformation process converts one data format into another. Often
your source data isn’t in a format that’s ideal for processing in tools such as Map-
Reduce. If your source data is in multiline XML or JSON form, for example, you may
want to consider a preprocessing step. This would convert the data into a form that
can be split, such as one JSON or XML element per line, or convert it into a format
such as Avro. Chapter 3 contains more details on these data formats.

Compression
Compression not only helps by reducing the footprint of data at rest, but also has
I/O advantages when reading and writing data.

Availability and recoverability
Recoverability allows an ingress or egress tool to retry in the event of a failed operation.
Because it’s unlikely that any data source, sink, or Hadoop itself can be 100% available,
it’s important that an ingress or egress action be retried in the event of failure.

Reliable data transfer and data validation
In the context of data transportation, checking for correctness is how you verify that
no data corruption occurred as the data was in transit. When you work with heteroge-
neous systems such as Hadoop data ingress and egress, the fact that data is being
transported across different hosts, networks, and protocols only increases the poten-
tial for problems during data transfer. A common method for checking the correct-
ness of raw data, such as storage devices, is Cyclic Redundancy Checks (CRCs), which
are what HDFS uses internally to maintain block-level integrity.

 In addition, it’s possible that there are problems in the source data itself due to
bugs in the software generating the data. Performing these checks at ingress time
allows you to do a one-time check, instead of dealing with all the downstream consum-
ers of the data that would have to be updated to handle errors in the data.

Resource consumption and performance
Resource consumption and performance are measures of system resource utilization
and system efficiency, respectively. Ingress and egress tools don’t typically impose sig-
nificant load (resource consumption) on a system, unless you have appreciable data
volumes. For performance, the questions to ask include whether the tool performs
ingress and egress activities in parallel, and if so, what mechanisms it provides to tune
the amount of parallelism. For example, if your data source is a production database
and you’re using MapReduce to ingest that data, don’t use a large number of concur-
rent map tasks to import data.

Monitoring
Monitoring ensures that functions are performing as expected in automated systems.
For data ingress and egress, monitoring breaks down into two elements: ensuring that
the processes involved in ingress and egress are alive, and validating that source and
destination data are being produced as expected. Monitoring should also include ver-
ifying that the data volumes being moved are at expected levels; unexpected drops or
highs in your data will alert you to potential system issues or bugs in your software.

177Moving data into Hadoop

Speculative execution
MapReduce has a feature called speculative execution that launches duplicate tasks near
the end of a job for tasks that are still executing. This helps prevent slow hardware
from impacting job execution times. But if you’re using a map task to perform inserts
into a relational database, for example, you should be aware that you could have two
parallel processes inserting the same data.2

 On to the techniques. Let’s start with how you can leverage Hadoop’s built-in
ingress mechanisms.

5.2 Moving data into Hadoop
The first step in working with data in Hadoop is to make it available to Hadoop. There
are two primary methods that can be used to move data into Hadoop: writing external
data at the HDFS level (a data push), or reading external data at the MapReduce level
(more like a pull). Reading data in MapReduce has advantages in the ease with which
the operation can be parallelized and made fault tolerant. Not all data is accessible
from MapReduce, however, such as in the case of log files, which is where other sys-
tems need to be relied on for transportation, including HDFS for the final data hop.

 In this section we’ll look at methods for moving source data into Hadoop. I’ll use
the design considerations in the previous section as the criteria for examining and
understanding the different tools.

 We’ll get things started with a look at some low-level methods you can use to move
data into Hadoop.

5.2.1 Roll your own ingest

Hadoop comes bundled with a number of methods to get your data into HDFS. This
section will examine various ways that these built-in tools can be used for your data
movement needs. The first and potentially easiest tool you can use is the HDFS com-
mand line.

Picking the right ingest tool for the job The low-level tools in this section
work well for one-off file movement activities, or when working with legacy
data sources and destinations that are file-based. But moving data in this way
is quickly becoming obsolete by the availability of tools such as Flume and
Kafka (covered later in this chapter), which offer automated data move-
ment pipelines.

Kafka is a much better platform for getting data from A to B (and B can be
a Hadoop cluster) than the old-school “let’s copy files around!” With Kafka,
you only need to pump your data into Kafka, and you have the ability to
consume the data in real time (such as via Storm) or in offline/batch jobs
(such as via Camus).

2 Map- and reduce-side speculative execution can be disabled via the mapreduce.map.speculative and
mapreduce.reduce.speculative configurables in Hadoop 2.

178 CHAPTER 5 Moving data into and out of Hadoop

File-based ingestion flows are, to me at least, a relic of the past (because every-
body knows how scp works :-P), and they primarily exist for legacy reasons—
the upstream data sources may have existing tools to create file snapshots
(such as dump tools for the database), and there’s no infrastructure to
migrate or move the data into a real-time messaging system such as Kafka.

TECHNIQUE 33 Using the CLI to load files

If you have a manual activity that you need to perform, such as moving the examples
bundled with this book into HDFS, then the HDFS command-line interface (CLI) is the
tool for you. It’ll allow you to perform most of the operations that you’re used to per-
forming on a regular Linux filesystem. In this section we’ll focus on copying data from
a local filesystem into HDFS.

■ Problem
You want to copy files into HDFS using the shell.

■ Solution
The HDFS command-line interface can be used for one-off moves, or it can be incor-
porated into scripts for a series of moves.

■ Discussion
Copying a file from local disk to HDFS is done with the hadoop command:

$ hadoop fs -put local-file.txt hdfs-file.txt

The behavior of the Hadoop -put command differs from the Linux cp command—in
Linux if the destination already exists, it is overwritten; in Hadoop the copy fails with
an error:

put: `hdfs-file.txt': File exists

The -f option must be added to force the file to be overwritten:

$ hadoop fs -put -f local-file.txt hdfs-file.txt

Much like with the Linux cp command, multiple files can be copied using the same
command. In this case, the final argument must be the directory in HDFS into which
the local files are copied:

$ hadoop fs -put local-file1.txt local-file2.txt /hdfs/dest/

You can also use Linux pipes to pipe the output of a command into an HDFS file—use
the same -put command and add a separate hyphen after it, which tells Hadoop to
read the input from standard input:

$ echo "the cat sat on the mat" | hadoop fs -put - hdfs-file.txt

179TECHNIQUE 33 Using the CLI to load files

To test for the existence of a file or directory, use the -test command with either the
-e or -d option to test for file or directory existence, respectively. The exit code of the
command is 0 if the file or directory exists, and 1 if it doesn’t:

$ hadoop fs -test -e hdfs-file.txt
$ echo $?
1
$ hadoop fs -touchz hdfs-file.txt
$ hadoop fs -test -e hdfs-file.txt
$ echo $?
0
$ hadoop fs -test -d hdfs-file.txt
$ echo $?
1

If all you want to do is “touch” a file in HDFS (create a new empty file), the touchz
option is what you’re looking for:

$ hadoop fs -touchz hdfs-file.txt

There are many more operations supported by the fs command—to see the full list,
run the command without any options:

$ hadoop fs
Usage: hadoop fs [generic options]

[-appendToFile <localsrc> ... <dst>]
[-cat [-ignoreCrc] <src> ...]
[-checksum <src> ...]
[-chgrp [-R] GROUP PATH...]
[-chmod [-R] <MODE[,MODE]... | OCTALMODE> PATH...]
[-chown [-R] [OWNER][:[GROUP]] PATH...]
[-copyFromLocal [-f] [-p] <localsrc> ... <dst>]
[-copyToLocal [-p] [-ignoreCrc] [-crc] <src> ... <localdst>]
[-count [-q] <path> ...]
[-cp [-f] [-p] <src> ... <dst>]
[-createSnapshot <snapshotDir> [<snapshotName>]]
[-deleteSnapshot <snapshotDir> <snapshotName>]
[-df [-h] [<path> ...]]
[-du [-s] [-h] <path> ...]
[-expunge]
[-get [-p] [-ignoreCrc] [-crc] <src> ... <localdst>]
[-getmerge [-nl] <src> <localdst>]
[-help [cmd ...]]
[-ls [-d] [-h] [-R] [<path> ...]]
[-mkdir [-p] <path> ...]
[-moveFromLocal <localsrc> ... <dst>]
[-moveToLocal <src> <localdst>]
[-mv <src> ... <dst>]
[-put [-f] [-p] <localsrc> ... <dst>]
[-renameSnapshot <snapshotDir> <oldName> <newName>]
[-rm [-f] [-r|-R] [-skipTrash] <src> ...]
[-rmdir [--ignore-fail-on-non-empty] <dir> ...]
[-setrep [-R] [-w] <rep> <path> ...]
[-stat [format] <path> ...]
[-tail [-f] <file>]

180 CHAPTER 5 Moving data into and out of Hadoop

[-test -[defsz] <path>]
[-text [-ignoreCrc] <src> ...]
[-touchz <path> ...]
[-usage [cmd ...]]

The CLI is designed for interactive HDFS activities, and it can also be incorporated
into scripts for some tasks you wish to automate. The disadvantage of the CLI is that
it’s low-level and doesn’t have any automation mechanisms built in, so you’ll need to
look elsewhere if that’s your goal. It also requires a fork for each command, which
may be fine if you’re using it in a bash script, but it likely isn’t what you want to use if
you’re trying to integrate HDFS functionality into a Python or Java application. In that
case, the overhead of launching an external process for each command, in addition to
the brittle nature of launching and interacting with an external process, is likely some-
thing you’ll want to avoid.

 The next technique is more suited to working with HDFS in programming lan-
guages such as Python.

TECHNIQUE 34 Using REST to load files

The CLI is handy for quickly running commands and for scripting. However, it incurs
the overhead of forking a separate process for each command, which is overhead that
you’ll probably want to avoid, especially if you’re interfacing with HDFS in a program-
ming language. This technique covers working with HDFS in languages other than
Java (which is covered in a subsequent section).

■ Problem
You want to be able to interact with HDFS from a programming language that doesn’t
have a native interface to HDFS.

■ Solution
Use Hadoop’s WebHDFS interface, which offers a full-featured REST API for HDFS
operations.

■ Discussion
Before you get started, you’ll need to make sure WebHDFS is enabled on your cluster
(by default it’s not). This is governed by the dfs.webhdfs.enabled property. If it’s not
enabled, you’ll need to update hdfs-site.xml and add the following:

<property>
<name>dfs.webhdfs.enabled</name>
<value>true</value>

</property>

In this technique, we’ll cover running WebHDFS on an unsecured Hadoop cluster.3 If
you’re working on a secure Hadoop cluster, you won’t supply the user.name argument;

3 In an unsecured Hadoop cluster (which is the default setup), any user can masquerade as another user in the
cluster. This is especially problematic with WebHDFS, which exposes the username directly in the URL, mak-
ing it trivial to enter some other user’s name. Hadoop security in the form of Kerberos will prevent this from
happening because it requires that users be authenticated via LDAP or Active Directory prior to interacting
with Hadoop.

181TECHNIQUE 34 Using REST to load files

instead you’ll authenticate with Kerberos using kinit prior to interacting with Web-
HDFS, and then supply --negotiate -u:youruser in the curl command line.

Warning: Running WebHDFS on an unsecured cluster If WebHDFS is enabled for a
cluster where security is turned off, then it can easily be used to run commands
as arbitrary users in your cluster (simply change the username in the URL to be
any user in the cluster). It’s recommended that you only run WebHDFS with
security turned on.

Because you’re using HTTP to communicate with the NameNode in this technique,
you’ll need to know the host and port that the NameNode RPC service is running on.
This is configured with the dfs.namenode.http-address property. In a pseudo-distributed
setup, this is most likely set to 0.0.0.0:50070. We’ll assume a pseudo-distributed setup
for the rest of this technique—substitute the appropriate host and port for your setup.

 You can start by creating a file in HDFS using the CLI:

$ echo "the cat sat on the mat" | hadoop fs -put - /tmp/hdfs-file.txt

You can use WebHDFS to get at all sorts of interesting metadata about the file (replace
aholmes in the following URL with your username):

$ curl -L "http://0.0.0.0:50070/webhdfs/v1/tmp/hdfs-file.txt?
➥ op=GETFILESTATUS&user.name=aholmes"

{"FileStatus":{
"accessTime":1389106989995,
"blockSize":134217728,
"childrenNum":0,
"fileId":21620,
"group":"supergroup",
"length":23,
"modificationTime":1389106990223,
"owner":"aholmes",
"pathSuffix":"",
"permission":"644",
"replication":1,
"type":"FILE"

}}

The syntax for commands is composed of two parts: first the path, followed by the
operation being performed. You also need to supply the username that you wish to
execute the operation as; otherwise HDFS will assume you’re an anonymous user with
restricted access. Figure 5.1 highlights these parts of the URL path.

The path being
operated on.

The operation being
performed on the

path.

The user that you wish
to execute the command

as. Only required if
Kerberos isn’t configured

for your cluster.

/tmp/hdfs-file.txt ? op=GETFILESTATUS & user.name=aholmes

Figure 5.1
Dissecting the
WebHDFS URL path

182 CHAPTER 5 Moving data into and out of Hadoop

Reading the file from HDFS is just a matter of specifying OPEN as the operation:

$ curl -L "http://0.0.0.0:50070/webhdfs/v1/tmp/hdfs-file.txt?
➥ op=OPEN&user.name=aholmes"

the cat sat on the mat

Writing a file using WebHDFS is a two-step process. The first step informs the Name-
Node of your intent to create a new file. You do that with an HTTP PUT command:

$ echo "the cat sat on the mat" > local.txt
$ curl -i -X PUT "http://0.0.0.0:50070/webhdfs/v1/tmp/new-file.txt?

➥ op=CREATE&user.name=aholmes"

HTTP/1.1 307 TEMPORARY_REDIRECT
...
Location: http://localhost.localdomain:50075/webhdfs/v1/tmp/
new-file.txt?op=CREATE&user.name=aholmes&
namenoderpcaddress=localhost:8020&overwrite=false
...

At this point, the file hasn’t been written yet—you just gave the NameNode the oppor-
tunity to determine which DataNode you’ll be writing to, which was specified in the
“Location” header in the response. You’ll need to grab that URL and then issue a sec-
ond HTTP PUT to perform the actual write:

$ curl -i -X PUT -T local.txt \
"http://localhost.localdomain:50075/webhdfs/v1/tmp/new-file.txt?

➥ op=CREATE&user.name=aholmes&namenoderpcaddress=localhost:8020
➥ &overwrite=false"

You can verify that the write was successful with a read of the file:

$ hadoop fs -cat /tmp/new-file.txt
the cat sat on the mat

WebHDFS supports all the HDFS operations that you can perform using the regular
command line,4 and it’s more useful because it gives you access to metadata in a struc-
tured JSON form, which makes it easier to parse the data.

 It’s worth mentioning some additional features provided by WebHDFS. First, data
locality is present for the first block of the file. The NameNode redirects the client to
the DataNode that hosts the first block, giving you strong data locality. For subsequent
blocks in the file, the DataNode acts as a proxy and streams data to and from the node
that holds the block’s data.

 WebHDFS is also integrated with Hadoop’s secure authentication, meaning that you
can enable Kerberos and use the delegation tokens in your HTTP requests. Additionally,
the API will maintain wire-level compatibility across Hadoop releases, meaning that

4 See the WebHDFS REST API page (http://hadoop.apache.org/docs/stable/hadoop-project-dist/hadoop-
hdfs/WebHDFS.html) for the full set of operations you can perform.

http://hadoop.apache.org/docs/stable/hadoop-project-dist/hadoop-hdfs/WebHDFS.html
http://hadoop.apache.org/docs/stable/hadoop-project-dist/hadoop-hdfs/WebHDFS.html

183TECHNIQUE 35 Accessing HDFS from behind a firewall

the commands you issue today will work with future versions of Hadoop (and vice
versa). This is a useful tool for accessing multiple clusters running different versions
of Hadoop.

 There are several projects that provide WebHDFS libraries in various languages
(listed in table 5.1) to make it easier for you to get up and running with it.5

WebHDFS is useful when the client has access to all the NameNodes and DataNodes.
In locked-down environments, this may not be the case, and you may need to look at
HttpFS.

TECHNIQUE 35 Accessing HDFS from behind a firewall

Production Hadoop environments are often locked down to protect the data in these
clusters. Part of the security procedures could include putting your cluster behind a
firewall, which is a nuisance if you’re trying to read from or write to HDFS from out-
side of the firewall. This technique looks at the HttpFS gateway, which can provide
HDFS access using HTTP (which is often opened up on firewalls).

■ Problem
You want to write to HDFS, but there’s a firewall restricting access to the NameNode
and/or the DataNodes.

■ Solution
Use the HttpFS gateway, which is a standalone server that provides access to HDFS over
HTTP. Because it’s a separate service and it’s HTTP, it can be configured to run on any
host that has access to the Hadoop nodes, and you can open a firewall rule to allow
traffic to the service.

■ Discussion
HttpFS is useful because not only does it allow you use REST to access HDFS, but it has
a complete Hadoop filesystem implementation, which means you can use the CLI and
native HDFS Java clients to talk to HDFS, as shown in figure 5.2.

Table 5.1 WebHDFS libraries

Language Link

C libwebhdfs (bundled with Hadoop)

Python https://github.com/drelu/webhdfs-py

Ruby https://github.com/kzk/webhdfs
https://rubygems.org/gems/webhdfs

Perl http://search.cpan.org/~afaris/Apache-Hadoop-WebHDFS-0.04/lib/Apache/Hadoop/
WebHDFS.pm

5 In fact, a new C client was written in Hadoop 2 called libwebhdfs to leverage WebHDFS. See https://
issues.apache.org/jira/browse/HDFS-2656.

http://search.cpan.org/~afaris/Apache-Hadoop-WebHDFS-0.04/lib/Apache/Hadoop/WebHDFS.pm
http://search.cpan.org/~afaris/Apache-Hadoop-WebHDFS-0.04/lib/Apache/Hadoop/WebHDFS.pm
https://issues.apache.org/jira/browse/HDFS-2656

184 CHAPTER 5 Moving data into and out of Hadoop

To get HttpFS up and running, you’re going to have to designate a proxy user. This is
the user that will run the HttpFS process, and this user will also be configured in
Hadoop as the proxy user.

 Suppose you have a user called foxyproxy that you’re going to designate as your
proxy user. You’d update your core-site.xml with this:

<property>
<name>hadoop.proxyuser.foxyproxy.hosts</name>
<value>localhost</value>

</property>
<property>
<name>hadoop.proxyuser.foxyproxy.groups</name>
<value>*</value>

</property>

Basically, what you’ve done here is indicate that Hadoop should only accept proxy
requests from host localhost, and that foxyproxy can impersonate any user (you can
lock down the set of users that can be impersonated by supplying a comma-separated
list of group names). Change the username, host, and group values so that they make
sense in your environment.

 Once you’ve made your changes to core-site.xml, you’ll have to bounce Hadoop.
Next you’ll need to start the HttpFS process:

$ sbin/httpfs.sh start

Now you can issue the same curl commands that you used in the previous technique
with WebHDFS. This is one of the nice things about the HttpFS gateway—the syntax is

HDFS CLI

REST client

Java HDFS client

Firewall

HttpFS gateway

Gateway

DataNode

Hadoop slave

NameNode

Hadoop master

DataNode

Hadoop slave

Figure 5.2 The HttpFS gateway architecture

The hosts that the
proxy user is allowed

to connect from

The groups that the
proxy user is allowed

to impersonate

185TECHNIQUE 35 Accessing HDFS from behind a firewall

exactly the same. To perform a directory listing on the root directory, you’d do the
following:

$ curl -i "http://localhost:14000/webhdfs/v1/?user.name=poe&
➥ op=LISTSTATUS"

HTTP/1.1 200 OK
Server: Apache-Coyote/1.1
Set-Cookie: hadoop.auth="u=poe&p=poe&t=simple&e=13...
Content-Type: application/json
Transfer-Encoding: chunked
Date: Fri, 10 Jan 2014 00:09:00 GMT

{"FileStatuses":{"FileStatus":[
{"pathSuffix":"input",
"type":"DIRECTORY","length":0,"owner":"aholmes",
"group":"supergroup","permission":"755","accessTime":0,
"modificationTime":1388197364463,"blockSize":0,"replication":0},

{"pathSuffix":"tmp","type":"DIRECTORY","length":0,"owner":"aholmes",
"group":"supergroup","permission":"755","accessTime":0,
"modificationTime":1389108717540,"blockSize":0,"replication":0},

{"pathSuffix":"user","type":"DIRECTORY","length":0,"owner":"aholmes",
"group":"supergroup","permission":"755","accessTime":0,
"modificationTime":1388199399483,"blockSize":0,"replication":0}]}}

The only difference between this curl command and the ones you used in the previ-
ous technique is the port number. HttpFS by default runs on port 14000, but this can
be changed by editing httpfs-env.sh. Some of the more interesting properties that can
be changed in the file are shown in table 5.2.

There are additional Kerberos and user- and group-level settings that can be config-
ured in httpfs-site.xml.6

Table 5.2 HttpFS properties

Property Default value Description

HTTPFS_HTTP_PORT 14000 The HTTP port that HttpFS listens on.

HTTPFS_ADMIN_PORT 14001 The admin port for HttpFS.

HTTPFS_LOG ${HTTPFS_HOME}/logs The logs directory for HttpFS.

HTTPFS_HTTP_HOSTNAME `hostname -f` The command used to determine which host
HttpFS is running on. This information is passed
to the NameNode so it can compare this to the
value of hadoop.proxyuser.${user}.hosts
that you configured earlier in core-site.xml.

6 Consult the “HttpFS configuration properties” web page at http://hadoop.apache.org/docs/stable/hadoop-
hdfs-httpfs/httpfs-default.html.

http://hadoop.apache.org/docs/stable/hadoop-hdfs-httpfs/httpfs-default.html
http://hadoop.apache.org/docs/stable/hadoop-hdfs-httpfs/httpfs-default.html

186 CHAPTER 5 Moving data into and out of Hadoop

Differences between WebHDFS and HttpFS
The primary difference between WebHDFS and HttpFS is the accessibility of the client
to all the data nodes. If your client has access to all the data nodes, then WebHDFS will
work for you, as reading and writing files involves the client talking directly to the data
nodes for data transfer. On the other hand, if you’re behind a firewall, your client
probably doesn’t have access to all the data nodes, in which case the HttpFS option
will work best for you. With HttpFS, the server will talk to the data nodes, and your cli-
ent just needs to talk to the single HttpFS server.

 If you have a choice, pick WebHDFS because there’s an inherent advantage in cli-
ents talking directly to the data nodes—it allows you to easily scale the number of con-
current clients across multiple hosts without hitting the network bottleneck of all the
data being streamed via the HttpFS server. This is especially true if your clients are
running on the data nodes themselves, as you’ll be using the data locality benefits of
WebHDFS by directly streaming any locally hosted HDFS data blocks from the local file-
system instead of over the network.

TECHNIQUE 36 Mounting Hadoop with NFS

Often it’s a lot easier to work with Hadoop data if it’s accessible as a regular mount to
your filesystem. This allows you to use existing scripts, tools, and programming lan-
guages and to interact with your data in HDFS. This section looks at how you can easily
copy data in and out of HDFS using an NFS mount.

■ Problem
You want to treat HDFS as a regular Linux filesystem and use standard Linux tools to
interact with HDFS.

■ Solution
Use Hadoop’s NFS implementation to access data in HDFS.

■ Discussion
Prior to Hadoop 2.1, the only way to NFS-mount HDFS was with FUSE. It wasn’t recom-
mended for general use due to various performance and reliability issues. It also intro-
duced an additional burden of requiring the driver to be installed on any client
machine (in other words, it didn’t provide an NFS gateway).

 The new NFS implementation in Hadoop addresses all of the shortcomings with
the old FUSE-based system. It’s a proper NFSv3 implementation, and it allows you to
run one or more NFS gateways for increased availability and throughput.

 Figure 5.3 shows the various Hadoop NFS components in action.
 To get the NFS services up and running, you’ll first need to stop the NFS services

running on your host. On Linux systems this can be achieved with the following
commands:

$ service portmap stop
$ service nfs stop
$ service rpcbind stop

187TECHNIQUE 36 Mounting Hadoop with NFS

Next you need to start the Hadoop NFS services. The first service you’ll launch is port-
map, which provides a registry service for protocols and their associated transports
and ports. It runs on a restricted port, so it needs to be launched as a root user:

$ sudo hadoop-daemon.sh start portmap

Next you need to start the actual NFS service. It’s important that the user running this
service be the same user that you use to run HDFS:

$ hadoop-daemon.sh start nfs3

Verify that the services are running by running rpcinfo and showmount—you should see
output similar to the following:

$ /usr/sbin/rpcinfo -p localhost
program vers proto port
100005 1 tcp 4242 mountd
100000 2 udp 111 portmapper
100005 3 tcp 4242 mountd
100005 2 udp 4242 mountd
100003 3 tcp 2049 nfs
100000 2 tcp 111 portmapper
100005 3 udp 4242 mountd
100005 1 udp 4242 mountd
100005 2 tcp 4242 mountd

$ /usr/sbin/showmount -e localhost
Export list for localhost:
/ *

mountd

nfs3

NFS gateway

DataNode

Hadoop slave

NameNode

Hadoop master

DataNode

Hadoop slave

NFSv3 client portmap

Client

NFSv3 client

Client

The NFS server communicates
directly with the HDFS master

and slave processes.Clients take NFSv3
to the gateway.

Figure 5.3 Hadoop NFS

188 CHAPTER 5 Moving data into and out of Hadoop

Now you need to mount HDFS on a directory on your host. In the following example
I’ve picked /hdfs as the mount directory. The second mount command verifies that
the mount has been created:

$ sudo mkdir /hdfs
$ sudo mount -t nfs -o vers=3,proto=tcp,nolock localhost:/ /hdfs

$ mount | grep hdfs
localhost:/ on /hdfs type nfs (rw,nfsvers=3,proto=tcp,nolock,
addr=127.0.0.1)

You’re all set! Now you can manipulate HDFS directly using the mounted filesystem.
 There are a few things to consider when using the NFS gateway:

■ HDFS is an append-only filesystem. You can append to files, but you can’t per-
form random writes. If you have a hard-and-fast requirement that you need to
work with Hadoop using a filesystem that supports random writes, you should
take a look at MapR’s distribution of Hadoop.

■ Hadoop version 2.2 doesn’t support secure Hadoop (Kerberos), and there’s an
open ticket to add that support.7

■ Support for proxy users isn’t available until Hadoop 2.4 (or 3). This essentially
means that previous versions of Hadoop will execute all commands as super-
user, because there’s a requirement that the NFS gateway run as the same user
as HDFS itself.

Due the these restrictions, it’s advised that the NFS gateway be reserved for
experimental use, or for use in a single-tenant cluster where user-level security isn’t a
concern.

TECHNIQUE 37 Using DistCp to copy data within and between clusters

Imagine that you have a large amount of data you want to move into or out of
Hadoop. With most of the techniques in this section, you have a bottleneck because
you’re funneling the data through a single host, which is the host on which you’re
running the process. To optimize data movement as much as possible, you want to
leverage MapReduce to copy data in parallel. This is where DistCp comes into play,
and this technique examines several ways that you can use DistCp to efficiently copy
data between Hadoop clusters, as well as into and out of an NFS mount.

■ Problem
You want to efficiently copy large amounts of data between Hadoop clusters and have
the ability for incremental copies.

■ Solution
Use DistCp, a parallel file-copy tool built into Hadoop.

7 Kerberos support in the NFS gateway is being tracked in https://issues.apache.org/jira/browse/HDFS-5539.

https://issues.apache.org/jira/browse/HDFS-5539

189TECHNIQUE 37 Using DistCp to copy data within and between clusters

■ Discussion
In this section, we’ll start by covering the important configuration aspects of DistCp.
After that, we’ll go on to look at specific scenarios where you’ll want to use DistCp, and
the best way to configure and run it.

DistCp version 2 This technique covers the newer version of DistCp available
in Hadoop 2, called DistCp 2. This code was backported into Hadoop 1.2.0
and is available by using distcp2 as the command—on Hadoop 2 it replaces
the existing DistCp so the normal distcp command can be used.

DistCp 2 supports the same set of command-line arguments as the legacy ver-
sion of DistCp, but brings with it a number of useful advantages:

■ Reduced setup and execution time when working with a large number of files,
as the driver no longer needs to preprocess all the inputs (this is now deferred
to the mappers).

■ It now has a full-featured Java interface and removes the need for Java clients to
serialize arguments into strings.

■ Atomic commits allow all-or-none copying semantics.
■ Using option -update to skip files that already exist in the destination will result

in file attributes being changed if they differ from the source files.
■ Empty directories are no longer skipped as part of the copy.

DistCp utilizes a map-only MapReduce job to perform a copy. A very simple example
follows, where it’s used within a single Hadoop cluster to copy the source directory,
/hello, into a destination directory, /world:

$ hadoop distcp /hello /world

This command will create the /world directory if it doesn’t already exist, and then
copy the contents of /hello (all its files and directories recursively) into /world. You
may be wondering how DistCp deals with files that already exist in the destination—
keep on reading for details.

Dealing with destination files that already exist
Files and directories that already exist in the destination are left untouched (even if
the files are different). You can change this behavior by adding the arguments shown
in table 5.3.

Table 5.3 DistCp arguments that impact where files are copied, and the behavior should destination files
 preexist

Argument Description

None (neither -update
nor -overwrite)

Source files are never recopied if the destination already exists.

190 CHAPTER 5 Moving data into and out of Hadoop

You can see the number of files that are skipped by looking at the SKIP counter that’s
dumped to standard output when the job completes:

org.apache.hadoop.tools.mapred.CopyMapper$Counter
BYTESSKIPPED=24
SKIP=2

Another factor to understand about the -update and -overwrite arguments is that they
subtly change the behavior of what is copied. Without these options, if the source is a
directory, that directory is created under the destination directory. With either the
-update or -overwrite arguments, only the files and subdirectories are copied, and not
the source directory. This is best demonstrated with an example:

create a source directory and file
$ hadoop fs -mkdir /src
$ hadoop fs -touchz /src/file1.txt

create a destination directory
$ hadoop fs -mkdir /dest

run a distcp without any options
$ hadoop distcp /src /dest
$ hadoop fs -ls -R /dest
/dest/src
/dest/src/file1.txt

now run the same command again with
the -update argument
$ hadoop distcp -update /src /dest
$ hadoop fs -ls -R /dest
/dest/file1.txt
/dest/src
/dest/src/file1.txt

Ignoring errors
When you’re using DistCp to copy over a large number of files, it’s wise to execute the
command with the -i flag to ignore errors. This way a single error won’t cause your
entire copy process to fail, and you can reattempt to copy any failed files by reissuing
the same DistCp command with the -update option.

-update Source files are recopied if any of the following are true:

■ Source and destination file sizes are different.

■ Source and destination file CRCs don’t match.a

■ Source and destination file block sizes don’t match.

-overwrite Source files are always recopied if the destination file already exists.

a File CRC checks can be turned off with the -skipcrccheck argument.

Table 5.3 DistCp arguments that impact where files are copied, and the behavior should destination files
 preexist (continued)

Argument Description

191TECHNIQUE 37 Using DistCp to copy data within and between clusters

Dynamic copy strategy
The default behavior for DistCp is to preallocate work for each mapper by evenly
spreading all the files in such a way that all the mappers are copying approximately
the same number of bytes. In theory, this sounds like a great way to fairly allocate
work, but in reality, factors such as differing hardware, hardware errors, and poor con-
figuration often results in long-tail job execution, where a handful of straggler map-
pers take much longer than the others.

 With DistCp 2 you can use an alternative strategy, where the mappers pick up work
directly as opposed to having it preallocated. This is called the dynamic copy strategy,
and it’s activated with the -strategy dynamic argument. The net effect of adding this
argument is improved copy times, as the faster mappers can pick up the slack of the
slower mappers.

Atomic commits
Another useful feature in DistCp 2 is the notion of atomic commits. The default
behavior of DistCp is for each file to be written to a temporary file and then moved to
the final destination. This means that there would be no way to undo any files that
were copied prior to an error encountered in the job.

 Atomic commits therefore allow you to defer the actual “commit” until the end of
the job when all files have been copied so that you don’t see any partial writes if an
error is encountered. This feature can be enabled using the -atomic argument.

Parallelism and number of mappers
Currently the most granular unit of work for DistCp is at the file level. Therefore, only
one mapper will be used to copy each file, regardless of how large the files are.
Bumping up the number of mappers for a job won’t have any effect on speeding up
the copy.

 By default, DistCp runs with 20 mappers, and which files each mapper copies are
determined by the copy strategy you have selected. The Hadoop developers put some
thought into the default setting for the number of mappers—choosing the right value
is a function of how much network bandwidth you want to utilize (discussed next),
and how many tasks you want to occupy during the copy.

 You can change the number of mappers by specifying -m followed by your desired
value.

Bandwidth
A final consideration worth mentioning is the network bandwidth used during a copy.
Large copies can saturate and overwhelm the network between clusters. One way to
keep on the good side of the network operations folks in your organization is to use the
-bandwidth argument to specify a cap on the amount of bandwidth each map task con-
sumes during a copy. The value for this argument is in megabytes per second (MBps).

Additional options
So far we’ve looked at some of the more interesting options in DistCp. To see the full
list of options, you can run the distcp command without any options, or head on over
to the online Hadoop docs at http://hadoop.apache.org/docs/r1.2.1/distcp2.html.

192 CHAPTER 5 Moving data into and out of Hadoop

Copying data from an NFS mount into HDFS
DistCp may be a good fit if you have files sitting on a filer or a NAS that you want to
copy into HDFS. This will only work if all the DataNodes have the data mounted,
because the DistCp mappers running on the DataNodes require access to both the
source and destination. The following example shows how you would perform the
copy. Note the file scheme used to tell Hadoop that the local filesystem should be
used as the source:

$ hadoop distcp file://my_filer/source /dest

Copying data within the same cluster
In what situations would you use DistCp in place of a regular hadoop fs -cp command?
The regular cp command is a single-threaded approach to copying data—it goes file
by file, and streams the data from the server to the client and back out to the server.
Compare that to DistCp, which launches a MapReduce job that uses multiple mappers
to perform the copy. As a rule of thumb, you should use the regular copy process
when dealing with tens of GBs and consider DistCp when working with hundreds of
GBs or more.

 When the same cluster is both the source and the destination, nothing special is
required to qualify the source or destination:

$ hadoop distcp /source /dest

Copying between two clusters running the same version of Hadoop
Now let’s look at copying data between two clusters running the same version of
Hadoop. This approach optimizes for the fact that they’re both running the same ver-
sion of Hadoop by using Hadoop-native filesystem reads and writes, which emphasize
data locality. Unfortunately the Hadoop RPC is sensitive to the fact that the client and
server versions are identical, so this won’t work if the versions differ. In that situation
you’ll need to skip to the next subsection.

 Imagine that you have two HDFS setups, one running on nn1 and the other on
nn2, and both NameNodes are running on the default RPC port.8 Copying files from
the /source to the /dest directories between the clusters would be achieved with the
following command:

$ hadoop distcp hdfs://nn1:8020/source hdfs://nn2:8020/dest

With two clusters in play, you may be wondering which cluster you should use to run
DistCp. If you have a firewall sitting between the clusters and ports can only be
opened in one direction, then you’ll have to run the job on the cluster that has read
or write access to the other cluster.

 Next let’s look at how to run DistCp between clusters on different Hadoop versions.

8 To figure out the actual host and port for each NameNode, examine the value of fs.default.name or
fs.defaultFS in core-site.xml.

193TECHNIQUE 37 Using DistCp to copy data within and between clusters

Copying between clusters running different versions of Hadoop
The previous approach won’t work when your clusters are running different versions
of Hadoop. Hadoop’s RPC doesn’t have backward or forward compatibility built into
it, so a newer version of the Hadoop client can’t talk to an older version of a Hadoop
cluster, and vice versa.

 With recent versions of Hadoop, you have two options for the copy: the older HFTP
and the newer WebHDFS. Let’s first look at the legacy method, HFTP.

 HFTP is a version-independent interface on HDFS that uses HTTP as the transport
mechanism. It offers a read-only view into HDFS, so by definition this means that you’ll
have to always use it as the source in your DistCp. It’s enabled via the hftp scheme in
the NameNode URI, as seen in the following example:

$ hadoop distcp hftp://nn1:50070/source hdfs://nn2:8020/dest

Look at hdfs-site.xml (and hdfs-default.xml if you don’t see it in hdfs-site.xml) to fig-
ure out the host and port to use for HFTP (specifically dfs.http.port, or dfs.namenode
.http-address if it’s not set). If securing the data in transit is important to you, look at
using the HFTPS scheme, which uses HTTPS for transport (configure or examine
dfs.hftp.https.port, which if not set will default to dfs.https.port for the port).

 With HFTP(S), you’ll have to run the DistCp command on the destination cluster
so that HDFS writes using the same Hadoop client version as the destination. But what
if this is too constrained for your environment—what if you have a firewall that
doesn’t allow you to run DistCp on the destination? That’s where WebHDFS comes
into play.

 WebHDFS has the advantage over HFTP of providing both a read and write inter-
face. You can use it for either the source or destination in your DistCp, as shown here:

$ hadoop distcp hdfs://nn1:50070/source webhdfs://nn2:50070/dest

WebHDFS has an additional benefit in the form of data locality—it uses
HTTP redirection when reading and writing data so that reads and writes are
performed with the actual DataNode that stores the data. It’s highly recommended
that you use WebHDFS rather than HFTP for both its writing abilities and the
performance improvements.

 Examine the value of dfs.namenode.http-address to determine the host and port
that you should use with WebHDFS.

Other destinations
DistCp works with any implementation of the Hadoop filesystem interface; table 5.4
shows the most popular implementations that are bundled with Hadoop.

194 CHAPTER 5 Moving data into and out of Hadoop

■ Summary
DistCp is a powerful tool for moving data into and between Hadoop filesystems. Fea-
tures such as incremental copies enable it to be used in a near-continuous fashion to
synchronize directories on two systems. And its ability to copy data between Hadoop
versions means that it’s a very popular way of synchronizing data across multiple
Hadoop clusters.

Executing DistCp When you’re running a DistCp command, it’s recom-
mended that you execute it within a screen session,9 or at least use nohup to
redirect the output to a local file.

One limitation of DistCp is that it supports multiple source directories but only a sin-
gle destination directory. This means you can’t use a single DistCp job to perform a
one-directional synchronization between clusters (unless you only need to sync a sin-
gle directory). In this situation, you could run multiple DistCp jobs, or you could run
a single job and sync to a staging directory, and then follow up the copy with a fs -mv
to move the staged files into the ultimate destinations.

TECHNIQUE 38 Using Java to load files

Let’s say you’ve generated a number of Lucene indexes in HDFS and you want to pull
them out to an external host. Maybe, as part of pulling the data out, you want to
manipulate the files in some way using Java. This technique shows how the Java HDFS
API can be used to read and write data in HDFS.

Table 5.4 URI schemes and their related Hadoop filesystem implementations

Scheme Details

hdfs Provides native access to Hadoop’s own HDFS. The only downside is that backward
and forward compatibility aren’t supported.

file Used to read and write from the local filesystem.

hftp and hsftp A legacy, read-only view on top of HDFS that emphasized API compatibility to support
any version of Hadoop. It was the old-school way of copying data between clusters
running different versions of Hadoop. hsftp provides an implementation that uses
HTTPS for transport for added security.

webhdfs Can be used with both WebHDFS (see technique 34) if your client has access to the
Hadoop cluster, and the HttpFS gateway (see technique 35) for accessing HDFS from
behind a firewall. This is the replacement for the read-only hftp implementation. It
supports a read and write interface to HDFS. In addition, this filesystem can be used
to read and write between different versions of Hadoop.

ftp Uses FTP as the storage implementation.

s3 and s3n Provides access to Amazon’s S3 filesystem. s3n provides native access to S3,
whereas the s3 scheme stores data in a block-based manner to work around S3’s
maximum file-size constraints.

9 Screen is a Linux utility that manages virtual shells and allows them to persist even when the parent shell has
terminated. Matt Cutts has an excellent overview on his site called “A quick tutorial on screen,”
www.mattcutts.com/blog/a-quick-tutorial-on-screen/.

www.mattcutts.com/blog/a-quick-tutorial-on-screen/

195TECHNIQUE 38 Using Java to load files

■ Problem
You want to incorporate writing to HDFS into your Java application.

■ Solution
Use the Hadoop Java API to access data in HDFS.

■ Discussion
The HDFS Java API is nicely integrated with Java’s I/O model, which means you can
work with regular InputStreams and OutputStreams for I/O. To perform filesystem-level
operations such as creating, opening, and removing files, Hadoop has an abstract
class called FileSystem, which is extended and implemented for specific filesystems
that can be leveraged in Hadoop.

 Earlier, in technique 33, you saw an example of how you can use the CLI to stream
data from standard input to a file in HDFS:

$ echo "hello world" | hadoop fs -put - hdfs-file.txt

Let’s explore how to do that in Java. There are two main parts to writing the code that
does this: getting a handle to the FileSystem and creating the file, and then copying
the data from standard input to the OutputStream:

Path output = new Path("output.txt");

Configuration conf = new Configuration();

FileSystem fs = FileSystem.get(conf);

FSDataOutputStream out = fs.create(output, false);

try {
IOUtils.copyBytes(System.in, out, getConf(), false);

} finally {
out.close();

}

You can see how this code works in practice by running the following command:

$ echo "the cat" | hip hip.ch5.CopyStreamToHdfs --output test.txt

$ hadoop fs -cat test.txt
the cat

Let’s circle back into the code to understand how it worked. The following code snip-
pet was used to get a handle to the FileSystem. But how did Hadoop know which con-
crete filesystem to return?

FileSystem fs = FileSystem.get(conf);

Create a Path instance that represents the file you’ll be
writing to. The Path class is the HDFS representation

of a file or directory in a Hadoop filesystem.
You need a handle to a
Configuration object before you
can get a handle to a Hadoop
filesystem. Creating a
Configuration object using the
constructor as shown here
results in the classpath being
searched to load the core-
site.xml and hdfs-site.xml files.

Get a handle to a concrete FileSystem.
Note that you don’t specify which
filesystem implementation is used.

Instead, this is determined at runtime
by loading the configuration properties.

Create a new file, which
returns an OutputStream
that you can write to.

Use the Apache commons I/O library
to copy data from standard input

to the destination stream.

196 CHAPTER 5 Moving data into and out of Hadoop

The key is in the conf object that’s passed into the get method. What’s happening is
that the FileSystem class examines the value of the fs.defaultFS property,10 which con-
tains a URI identifying the filesystem that should be used. By default, this is configured
to be the local filesystem (file:///), which is why if you try running Hadoop out of the
box without any configuration, you’ll be using your local filesystem and not HDFS.

 In a pseudo-distributed setup like the one in the appendix, one of the first things
you would do is configure core-site.xml with an HDFS filesystem:

<property>
<name>fs.default.name</name>
<value>hdfs://localhost:8020</value>

</property>

Hadoop takes the scheme from the URL (hdfs in the preceding example) and per-
forms a lookup to discover the concrete filesystem. There are two ways that a filesys-
tem can be discovered:

■ Built-in filesystems are automatically discovered, and their getScheme methods
are called to determine their schemes. In the example of HDFS, the implemen-
tation class is org.apache.hadoop.hdfs.DistributedFileSystem and the getScheme
method returns hdfs.

■ Filesystems that aren’t built into Hadoop can be identified by updating coresite
.xml with fs.$scheme.impl, where $scheme would be replaced with the scheme
identified in the URI.

The FileSystem class has a number of methods for manipulating a filesystem—some of
the more commonly used methods are listed here:

static FileSystem get(Configuration conf)
static LocalFileSystem getLocal(Configuration conf)
static FSDataOutputStream create(FileSystem fs, Path file)
FSDataInputStream open(Path f, int bufferSize)
boolean delete(Path f, boolean recursive)
boolean mkdirs(Path f)
void copyFromLocalFile(Path src, Path dst)
void copyToLocalFile(Path src, Path dst)
FileStatus getFileStatus(Path f)
void close()

5.2.2 Continuous movement of log and binary files into HDFS

Log data has long been prevalent across all applications, but with Hadoop came the abil-
ity to process the large volumes of log data produced by production systems. Various sys-
tems produce log data, from network devices and operating systems to web servers and
applications. These log files all offer the potential for valuable insights into how systems
and applications operate, as well as how they’re used. What unifies log files is that they
tend to be in text form and line-oriented, making them easy to process.

10 fs.default.name is the deprecated property used in Hadoop 1.

197TECHNIQUE 39 Pushing system log messages into HDFS with Flume

 In the previous section we covered low-level methods that you can use to copy
data into Hadoop. Rather than build your own data-movement tools using these
methods, this section introduces some higher-level tools that simplify moving your
log and binary data into Hadoop. Tools like Flume, Sqoop, and Oozie provide mech-
anisms to periodically (or continuously) move data from various data sources such as
files, relational databases, and messaging systems into Hadoop, and they’ve already
solved many of the hard problems of dealing with multiple data sources spread across
different hosts.

 Let’s get started by looking at how Flume can be used to ingest log files into HDFS.

Preferred data-movement methods The techniques in this section work well if
you’re working in a constrained legacy environment where you have files that
you need to automatically move into HDFS.

An alternative architecture would be to use Kafka as a mechanism to trans-
port your data, which would allow you to decouple the producers from the
consumers and at the same time enable multiple consumers to operate on
the data in different ways. In this situation, you’d use Kafka to both land
data on Hadoop and provide a feed into a real-time data-streaming system
such as Storm or Spark Streaming, which you could then use to perform
near-real-time computations. One scenario that this enables is a Lambda
Architecture, which allows you to calculate aggregated data in real time in
small increments, and to use the batch tier to perform functions such as
error correction and adding new data points, thus playing to the strengths
of both real-time and batch systems.

TECHNIQUE 39 Pushing system log messages into HDFS with Flume

A bunch of log files are being produced by multiple applications and systems across
multiple servers. There’s no doubt there’s valuable information to be mined from
these logs, but your first challenge is a logistical one of moving these logs into your
Hadoop cluster so that you can perform some analysis.

Versioning caveat emptor This section on Flume covers release 1.4. As with all
software, there are no guarantees that the techniques, code, and configura-
tion covered here will work out of the box with different versions of Flume.
Further, Flume 1.4 requires some updates to get it to work with Hadoop 2—
see the Flume section in the appendix for more details.

■ Problem
You want to push all of your production server’s system log files into HDFS.

■ Solution
For this technique you’ll use Flume, a data collection system, to push a Linux log file
into HDFS.

198 CHAPTER 5 Moving data into and out of Hadoop

■ Discussion
Flume, at its heart, is a log file collection and distribution system, and collecting sys-
tem logs and transporting them to HDFS is its bread and butter. Your first step in this
technique will involve capturing all data appended to /var/log/messages and trans-
porting it to HDFS. You’ll run a single Flume agent (more details on what that means
later), which will do all this work for you.

 A Flume agent needs a configuration file to tell it what to do, so let’s go ahead and
define one for this use case:

define source, channel and sink
agent1.sources = tail_source1
agent1.channels = ch1
agent1.sinks = hdfs_sink1

define tail source
agent1.sources.tail_source1.type = exec
agent1.sources.tail_source1.channels = ch1
agent1.sources.tail_source1.shell = /bin/bash -c
agent1.sources.tail_source1.command = tail -F /var/log/messages
agent1.sources.tail_source1.interceptors = ts
agent1.sources.tail_source1.interceptors.ts.type = timestamp

define in-memory channel
agent1.channels.ch1.type = memory
agent1.channels.ch1.capacity = 100000
agent1.channels.ch1.transactionCapacity = 1000

define HDFS sink properties
agent1.sinks.hdfs_sink1.type = hdfs
agent1.sinks.hdfs_sink1.hdfs.path = /flume/%y%m%d/%H%M%S
agent1.sinks.hdfs_sink1.hdfs.fileType = DataStream
agent1.sinks.hdfs_sink1.channel = ch1

We’ll examine the contents of this file shortly, but before we do that, let’s see Flume in
action.

System prerequisites For the following example to work, you’ll need to
make sure that you’re working on a host that has access to a Hadoop cluster
(see the appendix if you need to get up one up and running), and that your
HADOOP_HOME is configured appropriately. You’ll also need to have Flume
downloaded and installed and have FLUME_HOME set to point to the installa-
tion directory.

Copy the preceding file into your Flume conf directory using the filename tail-hdfs-
part1.conf. Once you do that, you’re ready to start an instance of a Flume agent:

$ ${FLUME_HOME}/bin/flume-ng agent \
--conf ${FLUME_HOME}/conf/ \
-f ${FLUME_HOME}/conf/tail-hdfs-part1.conf \
-Dflume.root.logger=DEBUG,console \
-n agent1

199TECHNIQUE 39 Pushing system log messages into HDFS with Flume

This should generate a lot of output, but ultimately you should see output similar to
the following, indicating that everything came up OK:

Component type: CHANNEL, name: ch1 started
Exec source starting with command:tail -F /var/log/messages
Component type: SINK, name: hdfs_sink1 started

At this point, you should start to see some data appearing in HDFS:

$ hadoop fs -lsr /flume
/flume/140120/195155/FlumeData.1390265516304.tmp

The .tmp suffix means that Flume has the file open and will continue to write to it.
Once it’s done, it’ll rename the file and remove the suffix:

/flume/140120/195155/FlumeData.1390265516304

You can cat this file to examine its contents—the contents should line up with tail
/var/log/messages.

 If you got this far, you’ve completed your first data move with Flume!

Dissecting a Flume agent
Let’s take a few steps back and examine what you did. There were two main parts to
your work: defining the Flume configuration file, and running the Flume agent. The
Flume configuration file contains details on your sources, channels, and sinks. These are
all Flume concepts that impact different parts of Flume’s data flow. Figure 5.4 shows
these concepts in action in a Flume agent.

 Let’s step through these Flume concepts and look at their purpose and how they
work.

Sources
Flume sources are responsible for reading data from external clients or from other Flume
sinks. A unit of data in Flume is defined as an event, which is essentially a payload and

Flume agent (single JVM)

Host

Source Sink
Collects and

forwards events
to channels

Extracts and
forwards
events

Channel
Stores and

buffers events

Figure 5.4 Flume components illustrated within the context of an agent

200 CHAPTER 5 Moving data into and out of Hadoop

optional set of metadata. A Flume source sends these events to one or more Flume chan-
nels, which deal with storage and buffering.

 Flume has an extensive set of built-in sources, including HTTP, JMS, and RPC, and
you encountered one of them just a few moments ago.11 Let’s take a look at the
source-specific configuration properties that you set:

agent1.sources = tail_source1

define tail source
agent1.sources.tail_source1.type = exec
agent1.sources.tail_source1.channels = ch1
agent1.sources.tail_source1.shell = /bin/bash -c
agent1.sources.tail_source1.command = tail -F /var/log/messages
agent1.sources.tail_source1.interceptors = ts
agent1.sources.tail_source1.interceptors.ts.type = timestamp

The exec source allows you to execute a Unix command, and each line emitted in
standard output is captured as an event (standard error is ignored by default). In the
preceding example, the tail -F command is used to capture system messages as they
are produced.12 If you have more control over your files (if, for example, you can
move them into a directory after all writes have completed), consider using Flume’s
spooling directory source (called spooldir), as it offers reliability semantics that you
don’t get with the exec source.

Only use tail for testing Using tail for anything other than testing is
discouraged.

Another feature highlighted in this configuration is interceptors, which allow you to
add metadata to events. Recall that the data in HDFS was organized according to a
timestamp—the first part was the date, and the second part was the time:

/flume/140120/195155/FlumeData.1390265516304

You were able to do this because you modified each event with a timestamp intercep-
tor, which inserted into the event header the time in milliseconds when the source
processed the event. This timestamp was then used by the Flume HDFS sink to deter-
mine where an event was written.

 To conclude our brief dive into Flume sources, let’s summarize some of the inter-
esting abilities that they provide:

11 The full set of Flume sources can be seen at http://flume.apache.org/FlumeUserGuide.html#flume-sources.
12 Use of the capital F in tail means that tail will continue to retry opening the file, which is useful in situations

where the file is rotated.

201TECHNIQUE 39 Pushing system log messages into HDFS with Flume

■ Transactional semantics, which allow data to be reliably moved with at-least-once
semantics. Not all data sources support this.13

■ Interceptors, which provide the ability to modify or drop events. They are useful
for annotating events with host, time, and unique identifiers, which are useful
for deduplication.

■ Selectors, which allow events to be fanned out or multiplexed in various ways. You
can fan out events by replicating them to multiple channels, or you can route
them to different channels based on event headers.

Channels
Flume channels provide data storage facilities inside an agent. Sources add events to a
channel, and sinks remove events from a channel. Channels provide durability prop-
erties inside Flume, and you pick a channel based on which level of durability and
throughput you need for your application.

 There are three channels bundled with Flume:

■ Memory channels store events in an in-memory queue. This is very useful for
high-throughput data flows, but they have no durability guarantees, meaning
that if an agent goes down, you’ll lose data.

■ File channels persist events to disk. The implementation uses an efficient write-
ahead log and has strong durability properties.

■ JDBC channels store events in a database. This provides the strongest durability
and recoverability properties, but at a cost to performance.

In the previous example, you used an in-memory channel and capped the number of
events that it would store at 100,000. Once the maximum number of events is reached
in a memory channel, it will start refusing additional requests from sources to add
more events. Depending on the type of source, this means that the source will either
retry or drop the event (the exec source will drop the event):

agent1.channels = ch1

define in-memory channel
agent1.channels.ch1.type = memory
agent1.channels.ch1.capacity = 100000
agent1.channels.ch1.transactionCapacity = 1000

Additional details on Flume channels can be seen at http://flume.apache.org/
FlumeUserGuide.html#flume-channels.

Sinks
A Flume sink drains events out of one or more Flume channels and will either forward
these events to another Flume source (in a multihop flow), or handle the events in a
sink-specific manner. There are a number of sinks built into Flume, including HDFS,
HBase, Solr, and Elasticsearch.

13 The exec source used in this technique is an example of a source that doesn’t provide any data-reliability guar-
antees.

http://flume.apache.org/FlumeUserGuide.html#flume-channels
http://flume.apache.org/FlumeUserGuide.html#flume-channels

202 CHAPTER 5 Moving data into and out of Hadoop

 In the previous example, you configured the flow to use an HDFS sink:

agent1.sinks = hdfs_sink1

define HDFS sink properties
agent1.sinks.hdfs_sink1.type = hdfs
agent1.sinks.hdfs_sink1.hdfs.path = /flume/%y%m%d/%H%M%S
agent1.sinks.hdfs_sink1.hdfs.fileType = DataStream
agent1.sinks.hdfs_sink1.channel = ch1

You configured the sink to write files based on a timestamp (note the %y and other
timestamp aliases). You could do this because you decorated the events with a time-
stamp interceptor in the exec source. In fact, you can use any header value to deter-
mine the output location for events (for example, you can add a host interceptor and
then write files according to which host produced the event).

 The HDFS sink can be configured in various ways to determine how files are rolled.
When a sink reads the first event, it will open a new file (if one isn’t already open) and
write to it. By default, the sink will continue to keep the file open and write events into
it for 30 seconds, after which it will close it out. The rolling behavior can be changed
with the properties in table 5.5.

Default settings for the HDFS sink The default HDFS sink settings shouldn’t be
used in production, as they’ll result in a large number of potentially small
files. It’s recommended that you either bump up the values or use a down-
stream compaction job to coalesce these small files.

The HDFS sink allows you to specify how events are serialized when writing files. By
default, they’re serialized in text format, without any headers added by interceptors.
If, for example, you want to write data in Avro, which also includes event headers, you

Table 5.5 Rollover properties for Flume’s HDFS sink

Property Default value Description

hdfs.rollInterval 30 Number of seconds to wait before
rolling current file (0 = never roll
based on time interval)

hdfs.rollSize 1024 File size to trigger roll, in bytes (0
= never roll based on file size)

hdfs.rollCount 10 Number of events written to file
before it rolls (0 = never roll
based on number of events)

hdfs.idleTimeout 0 Timeout after which inactive files
get closed (0 = disable automatic
closing of idle files)

hdfs.batchSize 100 Number of events written to file
before it’s flushed to HDFS

203TECHNIQUE 39 Pushing system log messages into HDFS with Flume

can use the serializer configuration to do this. In doing so, you can also specify a
Hadoop compression codec that Avro uses internally to compress data:

agent1.sinks.hdfs_sink1.serializer = avro_event
agent1.sinks.hdfs_sink1.serializer.compressionCodec = snappy

■ Summary
Reliability in Flume is determined by the type of channel you use, whether your data
sources have the ability to retransmit events, and whether you multiplex events to
multiple sources to mitigate against unrecoverable node failure. In this technique,
the memory channel and exec source were used, but neither provides reliability
in the face of failure. One way to add that reliability would be to replace the
exec source with a spooling directory source and replace the memory channel with a
disk channel.

 You’ve used Flume on a single machine running a single agent with a single
source, channel, and sink. But Flume can support a fully distributed setup where you
have agents running on multiple hosts with multiple agent hops between the source
and final destinations. Figure 5.5 shows one example of how Flume can function in a
distributed environment.

 The goal of this technique is to move data into HDFS. Flume, however, can support
various data sinks, including HBase, a file roll, Elasticsearch, and Solr. Using Flume to
write to Elasticsearch or Solr enables a powerful near-real-time indexing strategy.

 Flume, then, is a very powerful data movement project, which can easily support mov-
ing your data into HDFS as well as many other locations. It moves data continuously and

Flume agent

Host

Flume servers

Flume servers

Application servers

ChannelAvro source Avro sink

Flume agent

Host

ChannelAvro source HDFS sinks

Host

Application log4j
appender

Flume agent

Host

ChannelAvro source Avro sink

Flume agent

Host

ChannelAvro source HDFS sinks

Host

Application log4j
appender

Flume agent

Host

ChannelAvro source Avro sink

Host

Application log4j
appender

HDFS

Events can also be load-balanced
between Flume sinks and sources.

Events can also be load-balanced across sources
to spread load and handle source failure.

Figure 5.5 A Flume setup that uses load balancing and fan-in to move log4j logs into HDFS

204 CHAPTER 5 Moving data into and out of Hadoop

supports various levels of resiliency to work around failures in your systems. And it’s a
simple system to configure and run.

 One area that Flume isn’t really optimized for is working with binary data. It can
support moving binary data, but it loads the entire binary event into memory, so mov-
ing files that are gigabytes in size or larger won’t work. The next technique looks at
how such data can be moved into HDFS.

TECHNIQUE 40 An automated mechanism to copy files into HDFS

You’ve learned how to use log-collecting tools like Flume to automate moving data
into HDFS. But these tools don’t support working with semistructured or binary
data out of the box. In this technique, we’ll look how to automate moving such files
into HDFS.

 Production networks typically have network silos where your Hadoop clusters are
segmented away from other production applications. In such cases, it’s possible that
your Hadoop cluster won’t be able to pull data from other data sources, leaving you
with no option but to push data into Hadoop.

 You need a mechanism to automate the process of copying files of any format into
HDFS, similar to the Linux tool rsync. The mechanism should be able to compress
files written in HDFS and offer a way to dynamically determine the HDFS destination
for data-partitioning purposes.

 Existing file transportation mechanisms such as Flume, Scribe, and Chukwa are
geared toward supporting log files. What if you have different formats for your files,
such as semistructured or binary? If the files were siloed in a way that the Hadoop
slave nodes couldn’t directly access, then you couldn’t use Oozie to help with file
ingress either.

■ Problem
You need to automate the process by which files on remote servers are copied into HDFS.

■ Solution
The open source HDFS File Slurper project can copy files of any format into and out of
HDFS. This technique covers how it can be configured and used to copy data into HDFS.

■ Discussion
You can use the HDFS File Slurper project (which I wrote) to assist with your automation
(https://github.com/alexholmes/hdfs-file-slurper). The HDFS File Slurper is a simple
utility that supports copying files from a local directory into HDFS and vice versa.

 Figure 5.6 provides a high-level overview of the Slurper (my nickname for the
project), with an example of how you can use it to copy files. The Slurper reads any
files that exist in a source directory and optionally consults with a script to deter-
mine the file placement in the destination directory. It then writes the file to the des-
tination, after which there’s an optional verification step. Finally, the Slurper moves
the source file to a completed folder upon successful completion of all of the previ-
ous steps.

https://github.com/alexholmes/hdfs-file-slurper

205TECHNIQUE 40 An automated mechanism to copy files into HDFS

With this technique, there are a few challenges you need to make sure to address:

■ How do you effectively partition your writes to HDFS so that you don’t lump
everything into a single directory?

■ How do you determine that your data in HDFS is ready for processing (to avoid
reading files that are mid-copy)?

■ How do you automate regular execution of your utility?

Your first step is to download the latest HDFS File Slurper tarball from https://
github.com/alexholmes/hdfs-file-slurper/releases and install it on a host that has
access to both a Hadoop cluster and a local install of Hadoop:

$ sudo tar -xzf target/hdfs-slurper-<version>-package.tar.gz \
-C /usr/local/

$ sudo ln -s /usr/local/hdfs-slurper-<version> \
/usr/local/hdfs-slurper

Configuration
Before you can run the code, you’ll need to edit /usr/local/hdfs-slurper/conf/
slurper-env.sh and set the location of the hadoop script. The following code is an exam-
ple of what slurper-eng.sh file looks like if you followed the Hadoop installation
instructions in the appendix:

$ cat /usr/local/hdfs-slurper/conf/slurper-env.sh
export HADOOP_BIN=/usr/local/hadoop/bin/hadoop

HDFS slurper
(single JVM)

#/bin/bash
echo"cat sat"

foo base

Host

The slurper monitors
a directory for files.

1

An external process is
optionally launched to
determine the destination
file location in HDFS.

2

The file is copied into HDFS. A�er
the copy completes, the source file is
either removed or moved into a
“completed” directory.

3

HDFS

Figure 5.6 HDFS File Slurper data flow for copying files

https://github.com/alexholmes/hdfs-file-slurper/releases
https://github.com/alexholmes/hdfs-file-slurper/releases

206 CHAPTER 5 Moving data into and out of Hadoop

The Slurper comes bundled with a /usr/local/hdfs-slurper/conf/slurper.conf file,
which contains details on the source and destination directories, along with other
options. The file contains the following default settings, which you can change:

DATASOURCE_NAME = test
SRC_DIR = file:/tmp/slurper/in
WORK_DIR = file:/tmp/slurper/work
COMPLETE_DIR = file:/tmp/slurper/complete
ERROR_DIR = file:/tmp/slurper/error
DEST_DIR = hdfs:/tmp/slurper/dest
DEST_STAGING_DIR = hdfs:/tmp/slurper/stage

Let’s take a closer look at these settings:

■ DATASOURCE_NAME—This specifies the name for the data being transferred. It’s
used for the log filename when launched via the Linux init daemon manage-
ment system, which we’ll cover shortly.

■ SRC_DIR—This specifies the source directory. Any files moved into here are auto-
matically copied to the destination directory (with an intermediary hop to the
staging directory).

■ WORK_DIR—This is the work directory. Files from the source directory are moved
here before the copy to the destination starts.

■ COMPLETE_DIR—This specifies the complete directory. After the copy has com-
pleted, the file is moved from the work directory into this directory. Alterna-
tively, the --remove-after-copy option can be used to delete the source file, in
which case the --complete-dir option shouldn’t be supplied.

■ ERROR_DIR—This is the error directory. Any errors encountered during the copy
result in the source file being moved into this directory.

■ DEST_DIR—This sets the final destination directory for source files.
■ DEST_STAGING_DIR—This specifies the staging directory. A file is first copied into

this directory, and once the copy succeeds, the Slurper moves the copy into the
destination to avoid the possibility of the destination directory containing par-
tially written files (in the event of failure).

You’ll notice that all of the directory names are HDFS URIs. HDFS distinguishes
between different filesystems in this way. The file:/ URI denotes a path on the local
filesystem, and the hdfs:/ URI denotes a path in HDFS. In fact, the Slurper supports
any Hadoop filesystem, as long as you configure Hadoop to use it.

Running
Let’s create a local directory called /tmp/slurper/in, write an empty file into it, and
run the Slurper:

A name for the data
being transferred

The source
directory The work

directory

The complete directory
The error
directory

The final destination
directory for source
files

The staging directory

207TECHNIQUE 40 An automated mechanism to copy files into HDFS

$ mkdir -p /tmp/slurper/in
$ touch /tmp/slurper/in/test-file.txt

$ cd /usr/local/hdfs-slurper/
$ bin/slurper.sh --config-file conf/slurper.conf

Copying source file 'file:/tmp/slurper/work/test-file.txt'
to staging destination 'hdfs:/tmp/slurper/stage/1354823335'

Moving staging file 'hdfs:/tmp/slurper/stage/1354823335'
to destination 'hdfs:/tmp/slurper/dest/test-file.txt'

File copy successful, moving source
file:/tmp/slurper/work/test-file.txt to completed file
file:/tmp/slurper/complete/test-file.txt

$ hadoop fs -ls /tmp/slurper/dest
/tmp/slurper/dest/test-file.txt

A key feature in the Slurper’s design is that it doesn’t work with partially written files.
Files must be atomically moved into the source directory (file moves in both the Linux
and HDFS filesystems are atomic).14 Alternatively, you can write to a filename that
starts with a period (.), which is ignored by the Slurper, and after the file write com-
pletes, you can rename the file to a name without the period prefix.

 Be aware that copying multiple files with the same filename will result in the desti-
nation being overwritten—the onus is on the user to make sure that files are unique
to prevent this from happening.

Dynamic destination paths
The previous approach works well if you’re moving a small number of files into HDFS
on a daily basis. But if you’re dealing with a large volume of files, you’ll want to think
about partitioning them into separate directories. This has the benefit of giving you
more fine-grained control over the input data for your MapReduce jobs, as well as
helping with the overall organization of your data in the filesystem (you wouldn’t want
all the files on your computer to reside in a single flat directory).

 How can you have more dynamic control over the destination directory and the
filename that the Slurper uses? The Slurper configuration file has a SCRIPT option
(which is mutually exclusive of the DEST_DIR option), where you can specify a script
that provides dynamic mapping of the source files to destination files.

 Let’s assume that the files you’re working with contain a date in the filename, and
you’ve decided that you want to organize your data in HDFS by date. You can write a
script to perform this mapping activity. The following example is a Python script that
does this:

14 Moving files is atomic only if both the source and destination are on the same partition. In other words, mov-
ing a file from an NFS mount to a local disk results in a copy, which isn’t atomic.

208 CHAPTER 5 Moving data into and out of Hadoop

#!/usr/bin/python

import sys, os, re

read the local file from standard input
input_file=sys.stdin.readline()

extract the filename from the file
filename = os.path.basename(input_file)

extract the date from the filename
match=re.search(r'([0-9]{4})([0-9]{2})([0-9]{2})', filename)

year=match.group(1)
mon=match.group(2)
day=match.group(3)

construct our destination HDFS file
hdfs_dest="hdfs:/data/%s/%s/%s/%s" % (year, mon, day, filename)

write it to standard output
print hdfs_dest,

Now you can update /usr/local/hdfs-slurper/conf/slurper.conf, set SCRIPT, and com-
ment out DEST_DIR, which results in the following entry in the file:

DEST_DIR = hdfs:/tmp/slurper/dest

SCRIPT = /usr/local/hdfs-slurper/bin/sample-python.py

If you run the Slurper again, you’ll notice that the destination path is now partitioned
by date by the Python script:

$ touch /tmp/slurper/in/apache-20110202.log

$ bin/slurper.sh --config-file conf/slurper.conf

Launching script '/usr/local/hdfs-slurper/bin/sample-python.py' and
piping the following to stdin 'file:/tmp/slurper/work/apache-20110202.log'
...
Moving staging file 'hdfs:/tmp/slurper/stage/675861557' to destination
'hdfs:/data/2011/02/02/apache-20110202.log'

Compression and verification
What if you want to compress the output file in HDFS and also verify that the copy is
correct? You’ll need to use the COMPRESSION_CODEC option, whose value is a class that
implements the CompressionCodec interface. If your compression codec is LZO or LZOP,
you can also add a CREATE_LZO_INDEX option so that LZOP indexes are created. If you
don’t know what this means, take a look at the LZO coverage in chapter 4.

 Also available is a verification feature, which rereads the destination file after the
copy has completed and ensures that the checksum of the destination file matches the
source file. This results in longer processing times, but it adds an additional level of
assurance that the copy was successful.

209TECHNIQUE 41 Scheduling regular ingress activities with Oozie

 The following configuration fragment shows the LZOP codec, LZO indexing, and
file verification enabled:

COMPRESSION_CODEC = com.hadoop.compression.lzo.LzopCodec
CREATE_LZO_INDEX = true
VERIFY = true

Let’s run the Slurper again:

$ touch /tmp/slurper/in/apache-20110202.log

$ bin/slurper.sh --config-file conf/slurper.conf

Verifying files
CRC's match (0)
Moving staging file 'hdfs:/tmp/slurper/stage/535232571'
to destination 'hdfs:/data/2011/02/02/apache-20110202.log.snappy'

Continuous operation
Now that you have the basic mechanics in place, your final step is to run the tool as a
daemon so that it continuously looks for files to transfer. To do this, you can use a script
called bin/slurper-inittab.sh, which is designed to work with the inittab respawn.15

 This script won’t create a PID file or perform a nohup—neither makes sense in the
context of respawn, because inittab is managing the process. It uses the
DATASOURCE_NAME configuration value to create the log filename. This means that multi-
ple Slurper instances can all be launched with different config files logging to sepa-
rate log files.

■ Summary
The Slurper is a handy tool for data ingress from a local filesystem to HDFS. It also sup-
ports data egress by copying from HDFS to the local filesystem. It can be useful in situ-
ations where MapReduce doesn’t have access to the filesystem and the files being
transferred are in a form that doesn’t work with tools such as Flume.

 Now let’s look at automated pulls for situations where MapReduce or HDFS has
access to your data sources.

TECHNIQUE 41 Scheduling regular ingress activities with Oozie

If your data is sitting on a filesystem, web server, or any other system accessible from
your Hadoop cluster, you’ll need a way to periodically pull that data into Hadoop.
Tools exist to help with pushing log files and pulling from databases (which we’ll
cover in this chapter), but if you need to interface with some other system, it’s likely
you’ll need to handle the data ingress process yourself.

Oozie versions This technique covers using Oozie version 4.0.0.

15 Inittab is a Linux process-management tool that you can configure to supervise and restart a process if it goes
down. See INITTAB(5) in the Linux System Administrator’s Manual: http://unixhelp.ed.ac.uk/CGI/man-
cgi?inittab+5 .

http://unixhelp.ed.ac.uk/CGI/man-cgi?inittab+5
http://unixhelp.ed.ac.uk/CGI/man-cgi?inittab+5

210 CHAPTER 5 Moving data into and out of Hadoop

There are two parts to this data ingress process: how you import data from another sys-
tem into Hadoop, and how you regularly schedule the data transfer.

■ Problem
You want to automate a daily task to download content from an HTTP server into
HDFS.

■ Solution
Oozie can be used to move data into HDFS, and it can also be used to execute post-
ingress activities such as launching a MapReduce job to process the ingested data.
Now an Apache project, Oozie started life inside Yahoo1!. It’s a Hadoop workflow
engine that manages data processing activities. Oozie also has a coordinator engine
that can start workflows based on data and time triggers.

■ Discussion
In this technique, you’ll perform a download from a number of URLs every 24 hours,
using Oozie to manage the workflow and scheduling. The flow for this technique is
shown in figure 5.7. You’ll use Oozie’s triggering capabilities to kick off a MapReduce
job every 24 hours. The appendix contains Oozie installation instructions.

 The first step is to look at the coordinator XML configuration file. This file is used
by Oozie’s coordination engine to determine when it should kick off a workflow.
Oozie uses a template engine and expression language to perform parameterization,
as you’ll see in the following code. Create a file called coordinator.xml with the follow-
ing content:16

16 GitHub source: https://github.com/alexholmes/hiped2/blob/master/src/main/oozie/http-download/
coordinator.xml.

Oozie

Launch MapReduce job
to download files from
HTTP server.

1

Download
files.

2

Write files.3

Daily coordinator
job

HDFS

Web
server

MapReduce

Figure 5.7 Data flow for
this Oozie technique

https://github.com/alexholmes/hiped2/blob/master/src/main/oozie/http-download/coordinator.xml
https://github.com/alexholmes/hiped2/blob/master/src/main/oozie/http-download/coordinator.xml

211TECHNIQUE 41 Scheduling regular ingress activities with Oozie

<coordinator-app name="http-download"
frequency="${coord:days(1)}"
start="${start}"
end="${end}"
timezone="UTC"
xmlns="uri:oozie:coordinator:0.2">

<controls>
<concurrency>1</concurrency>

</controls>

<action>
<workflow>
<app-path>${workingDirectory}</app-path>
<configuration>
<property>
<name>inputData</name>
<value>

${nameNode}/user/${coord:user()}/http-download/input-urls.txt
</value>

</property>
<property>
<name>outputData</name>
<value>

${nameNode}/user/${coord:user()}/http-download/output/
➥ ${coord:formatTime(coord:nominalTime(), "yyyy/MM/dd")}

</value>
</property>

</configuration>
</workflow>

</action>
</coordinator-app>

What can be confusing about Oozie’s coordinator is that the start and end times
don’t relate to the actual times when the jobs will be executed. Rather, they refer to
the dates that will be created (“materialized”) for each workflow execution. This is
useful in situations where you have data being generated at periodic intervals and
you want to be able to go back in time to a certain point and perform some work on
that data. In this example, you don’t want to go back in time, but instead want to
schedule a job every 24 hours going forward. But you won’t want to wait until the
next day, so you can set the start date to be yesterday, and the end date to be some
far-off date in the future.

 Next you need to define the actual workflow, which will be executed for every
interval in the past, and, going forward, when the wall clock reaches an interval. To do
this, create a file called workflow.xml with the content shown in the next listing.17

Listing 5.1 Using a template engine to perform parameterization with Oozie

17 GitHub source: https://github.com/alexholmes/hiped2/blob/master/src/main/oozie/http-download/
workflow.xml.

Specifies how often the coordinator is
scheduled to run, expressed in minutes.
The coord qualifier provides access to
some Oozie-defined functions, such as

days, which provides the number of
minutes in a day.

The materialized
starting date for
the job.

The end date
for job.

Specifies how many
workflows can execute
concurrently.

Input filename for
the MapReduce job.

Output directory for
the MapReduce job.

https://github.com/alexholmes/hiped2/blob/master/src/main/oozie/http-download/workflow.xml
https://github.com/alexholmes/hiped2/blob/master/src/main/oozie/http-download/workflow.xml

212 CHAPTER 5 Moving data into and out of Hadoop

<workflow-app xmlns="uri:oozie:workflow:0.1" name="download-http">
<start to="download-http"/>
<action name="download-http">
<map-reduce>
<name-node>${nameNode}</name-node>
<prepare>
<delete path="${outputData}"/>

</prepare>
<configuration>
<property>
<name>mapred.mapper.class</name>
<value>hip.ch5.http.HttpDownloadMap</value>

</property>
<property>
<name>mapred.input.dir</name>
<value>${inputData}</value>

</property>
<property>
<name>mapred.output.dir</name>
<value>${outputData}</value>

</property>
</configuration>

</map-reduce>
<ok to="end"/>
<error to="fail"/>

</action>
<kill name="fail">
<message>Map/Reduce failed, error
message[${wf:errorMessage(wf:lastErrorNode())}]

</message>
</kill>
<end name="end"/>

</workflow-app>

Working with the new MapReduce APIs in Oozie By default, Oozie expects that
your map and reduce classes use the “old” MapReduce APIs. If you want to
use the “new” APIs, you need to specify additional properties:

<property>
<name>mapred.mapper.new-api</name>
<value>true</value>

</property>

<property>
<name>mapred.reducer.new-api</name>
<value>true</value>

</property>
<property>
<name>mapreduce.map.class</name>
<value>YOUR-NEW-API-MAP-CLASSNAME</value>

</property>
<property>
<name>mapreduce.reduce.class</name>
<value>YOUR-NEW-API-REDUCE-CLASSNAME</value>

</property>

Listing 5.2 Defining the past workflow using Oozie’s coordinator

Delete output directory before
running MapReduce job

Map class

Input directory for job

Output directory for job

Action needed if job fails;
logs error message

213TECHNIQUE 41 Scheduling regular ingress activities with Oozie

The last step is to define your properties file, which specifies how to get to HDFS,
MapReduce, and the location of the two XML files previously identified in HDFS. Cre-
ate a file called job.properties, as shown in the following code:

nameNode=hdfs://localhost:8020
jobTracker=0.0.0.0:8032
queueName=default

start=2014-01-23T00:00Z
end=2026-11-29T00:00Z

workingDirectory=${nameNode}/user/${user.name}/http-download

oozie.coord.application.path=${nameNode}/user/${user.name}
➥ /http-download

JobTracker property for different Hadoop versions If you’re targeting Hadoop 1,
you should use the JobTracker RPC port in the jobTracker property (the
default is 8021). Otherwise use the YARN ResourceManager RPC port (the
default is 8032).

In the previous snippet, the location in HDFS indicates where the coordinator.xml and
workflow.xml files that you wrote earlier in this chapter are. Now you need to copy the
XML files, your input file, and the JAR file containing your MapReduce code into HDFS:

$ hadoop fs -put oozie/http-download http-download
$ hadoop fs -put test-data/ch5/http-download/input/* http-download/
$ hadoop fs -mkdir http-download/lib
$ hadoop fs -put hip-2.0.0.jar http-download/lib/

Finally, run your job in Oozie:

$ oozie job -config src/main/oozie/http-download/job.properties \
-run

job: 0000006-140124164013396-oozie-ahol-C

You can use the job ID to get some information about the job:

$ oozie job -info 0000006-140124164013396-oozie-ahol-C
Job ID : 0000006-140124164013396-oozie-ahol-C

Job Name : http-download
App Path : hdfs://localhost:8020/user/aholmes/http-download
Status : RUNNING
Start Time : 2014-01-23 00:00 GMT
End Time : 2026-11-29 00:00 GMT
Pause Time : -
Concurrency : 1

ID Status Created Nominal Time
0000006-1401241... SUCCEEDED 2014-02-16 20:50 GMT 2014-01-23 00:00 GMT

HDFS location of
two XML files

214 CHAPTER 5 Moving data into and out of Hadoop

This output tells you that the job resulted in one run, and you can see the nominal
time for the run. The overall state is RUNNING, which means that the job is waiting for
the next interval to occur. When the overall job has completed (after the end date has
been reached), the status will transition to SUCCEEDED.

 You can confirm that there is an output directory in HDFS corresponding to the
materialized date:

$ hadoop fs -lsr http-download/output

http-download/output/2014/01/23

As long as the job is running, it’ll continue to execute until the end date, which in this
example has been set as the year 2026. If you wish to stop the job, use the -suspend option:

$ oozie job -suspend 0000006-140124164013396-oozie-ahol-C

Oozie also has the ability to resume suspended jobs, as well as to kill a workflow, using
the -resume and -kill options, respectively.

■ Summary
I showed you one example of the use of the Oozie coordinator, which offers cron-like
capabilities to launch periodic Oozie workflows. The Oozie coordinator can also be
used to trigger a workflow based on data availability (if no data is available, the work-
flow isn’t triggered). For example, if you had an external process, or even MapReduce
generating data on a regular basis, you could use Oozie’s data-driven coordinator to
trigger a workflow, which could aggregate or process that data.

 In this section, we covered three automated mechanisms that can be used for data
ingress purposes. The first technique covered Flume, a powerful tool for shipping
your log data into Hadoop, and the second technique looked at the HDFS File Slurper,
which automates the process of pushing data into HDFS. The final technique looked
at how Oozie could be used to periodically launch a MapReduce job to pull data into
HDFS or MapReduce.

 At this point in our exploration of data ingress, we’ve looked at pushing log files,
pushing files from regular filesystems, and pulling files from web servers. Another
data source that will be of interest to most organizations is relational data sitting in
OLTP databases. Next up is a look at how you can access that data.

5.2.3 Databases

Most organizations’ crucial data exists across a number of OLTP databases. The data
stored in these databases contains information about users, products, and a host of
other useful items. If you wanted to analyze this data, the traditional way to do so
would be to periodically copy that data into an OLAP data warehouse.

 Hadoop has emerged to play two roles in this space: as a replacement to
data warehouses, and as a bridge between structured and unstructured data and data
warehouses. Figure 5.8 shows the first role, where Hadoop is used as a large-scale

215TECHNIQUE 42 Using Sqoop to import data from MySQL

joining and aggregation mechanism prior to exporting the data to an OLAP system
(a commonly used platform for business intelligence applications).

 Facebook is an example of an organization that has successfully utilized Hadoop
and Hive as an OLAP platform for working with petabytes of data. Figure 5.9 shows an
architecture similar to that of Facebook’s. This architecture also includes a feedback
loop into the OLTP system, which can be used to push discoveries made in Hadoop,
such as recommendations for users.

 In either usage model, you need a way to bring relational data into Hadoop, and
you also need to export it into relational databases. In this section, you’ll use Sqoop to
streamline moving your relational data into Hadoop.

TECHNIQUE 42 Using Sqoop to import data from MySQL

Sqoop is a project that you can use to move relational data into and out of Hadoop.
It’s a great high-level tool as it encapsulates the logic related to the movement of the
relational data into Hadoop—all you need to do is supply Sqoop the SQL queries that

OLTP OLAP

Log data

Hadoop

Join, filter, analyze
Figure 5.8 Using Hadoop for data
ingress, joining, and egress to OLAP

OLTP
OLAP

Log data

Hadoop

Learnings

Hive

Figure 5.9 Using Hadoop for OLAP
and feedback to OLTP systems

216 CHAPTER 5 Moving data into and out of Hadoop

will be used to determine which data is exported. This technique provides the details
on how you can use Sqoop to move some stock data in MySQL to HDFS.

Versioning This section uses version 1.4.4 of Sqoop. The code and scripts
used in this technique may not work with other versions of Sqoop, especially
Sqoop 2, which is implemented as a web application.

■ Problem
You want to load relational data into your cluster and ensure your writes are efficient
and also idempotent.

■ Solution
In this technique, we’ll look at how you can use Sqoop as a simple mechanism to bring
relational data into Hadoop clusters. We’ll walk through the process of importing data
from MySQL into Sqoop. We’ll also cover bulk imports using the fast connector (con-
nectors are database-specific components that provide database read and write access).

■ Discussion
Sqoop is a relational database import and export system. It was created by Cloudera
and is currently an Apache project in incubation status.

 When you perform an import, Sqoop can write to HDFS, Hive, and HBase, and for
exports it can do the reverse. Importing is divided into two activities: connecting to
the data source to gather some statistics, and then firing off a MapReduce job that
performs the actual import. Figure 5.10 shows these steps.

RDBMS Sqoop

Client

MySQL

PostgreSQL

MapReduceMap(Sqoop) Map(Sqoop)Map(Sqoop)

Data sink

HiveHDFS HBase

Data sinkData sink

SQL server

Data sources

DB2

Oracle

Pull metadata2
Pull data from
database

4

Write to
data sink

5

Run import1

Launch
MapReduce job

3

Data sinks

Figure 5.10 Sqoop import overview: connecting to the data source and using MapReduce

217TECHNIQUE 42 Using Sqoop to import data from MySQL

Sqoop has the notion of connectors, which
contain the specialized logic needed to
read and write to external systems. Sqoop
comes with two classes of connectors: com-
mon connectors for regular reads and writes,
and fast connectors that use database-
proprietary batch mechanisms for effi-
cient imports. Figure 5.11 shows these two
classes of connectors and the databases
that they support.

 Before you can continue, you’ll need access to a MySQL database and the MySQL
JDBC JAR will need to be available.18 The following script will create the necessary
MySQL user and schema and load the data for this technique. The script creates a
hip_sqoop_user MySQL user, and creates a sqoop_test database with three tables: stocks,
stocks_export, and stocks_staging. It then loads the stocks sample data into the stocks
table. All of these steps are performed by running the following command:

$ bin/prep-sqoop-mysql

Here’s a quick peek at what the script does:

$ mysql -u hip_sqoop_user -p
<enter "password" for the password>
mysql> use sqoop_test;
mysql> show tables;
+----------------------+
| Tables_in_sqoop_test |
+----------------------+
| stocks |
| stocks_export |
| stocks_staging |
+----------------------+
3 rows in set (0.00 sec)

mysql> select * from stocks;
+----+--------+------------+------------+------------+-----------+---
| id | symbol | quote_date | open_price | high_price | low_price |...
+----+--------+------------+------------+------------+-----------+---
| 1 | AAPL | 2009-01-02 | 85.88 | 91.04 | 85.16 |...
| 2 | AAPL | 2008-01-02 | 199.27 | 200.26 | 192.55 |...
| 3 | AAPL | 2007-01-03 | 86.29 | 86.58 | 81.9 |...
...

Follow the instructions in the appendix to install Sqoop. Those instructions also con-
tain important steps for installing Sqoop dependencies, such as MySQL JDBC drivers.

18 MySQL installation instructions can be found in the appendix, if you don’t already have it installed. That sec-
tion also includes a link to get the JDBC JAR.

Common connector
- MySQL
- PostgreSQL
- Oracle
- SQL Server
- DB2
- Generic JDBC

Fast connector
- MySQL
- PostgreSQL

Figure 5.11 Sqoop connectors used to read and
write to external systems

218 CHAPTER 5 Moving data into and out of Hadoop

 Your first Sqoop command will be a basic import, where you’ll specify connection
information for your MySQL database and the table you want to export:

$ sqoop import \
--username hip_sqoop_user \
--password password \
--connect jdbc:mysql://localhost/sqoop_test \
--table stocks

MySQL table names MySQL table names in Linux are case-sensitive. Make
sure that the table name you supply in the Sqoop commands uses the correct
case.

By default, Sqoop uses the table name as the destination in HDFS for the MapReduce
job that it launches to perform the import. If you run the same command again, the
MapReduce job will fail because the directory already exists.

 Let’s take a look at the stocks directory in HDFS:

$ hadoop fs -ls stocks
624 2011-11-24 11:07 /user/aholmes/stocks/part-m-00000
644 2011-11-24 11:07 /user/aholmes/stocks/part-m-00001
642 2011-11-24 11:07 /user/aholmes/stocks/part-m-00002
686 2011-11-24 11:07 /user/aholmes/stocks/part-m-00003

$ hadoop fs -cat stocks/part-m-00000
1,AAPL,2009-01-02,85.88,91.04,85.16,90.75,26643400,90.75
2,AAPL,2008-01-02,199.27,200.26,192.55,194.84,38542100,194.84
3,AAPL,2007-01-03,86.29,86.58,81.9,83.8,44225700,83.8
...

Import data formats
Sqoop has imported the data as comma-separated text files. It supports a number of
other file formats, which can be activated with the arguments listed in table 5.6.

If you’re importing large amounts of data, you may want to use a file format such as
Avro, which is a compact data format, and use it in conjunction with compression.
The following example uses the Snappy compression codec in conjunction with Avro
files. It also writes the output to a different directory from the table name by using the
--target-dir option and specifies that a subset of rows should be imported by using
the --where option. Specific columns to be extracted can be specified with --columns:

Table 5.6 Sqoop arguments that control the file formats of import commands

Argument Description

--as-avrodatafile Data is imported as Avro files.

--as-sequencefile Data is imported as SequenceFiles.

--as-textfile The default file format; data is imported as CSV text files.

219TECHNIQUE 42 Using Sqoop to import data from MySQL

$ sqoop import \
--username hip_sqoop_user \
--password password \
--as-avrodatafile \
--compress \
--compression-codec org.apache.hadoop.io.compress.SnappyCodec \
--connect jdbc:mysql://localhost/sqoop_test \
--table stocks \
--where "symbol = 'AAPL'" \
--columns "symbol,quote_date,close_price" \
--target-dir mystocks

Note that the compression that’s supplied on the command line must be defined in
the config file, core-site.xml, under the io.compression.codecs property. The Snappy
compression codec requires you to have the Hadoop native libraries installed. See
chapter 4 for more details on compression setup and configuration.

 You can introspect the structure of the Avro file to see how Sqoop has laid out the
records by using the AvroDump tool introduced in technique 12. Sqoop uses Avro’s
GenericRecord for record-level storage (more details on that in chapter 3). If you run
AvroDump against the Sqoop-generated files in HDFS, you’ll see the following:

$ hip hip.util.AvroDump --file mystocks/part-m-00000.avro
{"symbol": "AAPL", "quote_date": "2009-01-02", "close_price": 90.75}
{"symbol": "AAPL", "quote_date": "2008-01-02", "close_price": 194.84}
{"symbol": "AAPL", "quote_date": "2007-01-03", "close_price": 83.8}

Using Sqoop in conjunction with SequenceFiles One of the things that makes
SequenceFiles hard to work with is that there isn’t a generic way to access data
in a SequenceFile. You must have access to the Writable class that was used to
write the data. In Sqoop’s case, it code-generates this file, which introduces a
major problem: if you move to a newer version of Sqoop, and that version
modifies the code generator, there’s a chance your older code-generated
class won’t work with SequenceFiles generated with the newer version of
Sqoop. You’ll either need to migrate all of your old SequenceFiles to the new
version, or have code that can work with different versions of these Sequence-
Files. Due to this restriction, I don’t recommend using SequenceFiles with
Sqoop. If you’re looking for more information on how SequenceFiles work,
run the Sqoop import tool and look at the stocks.java file that’s generated
within your working directory.

You can take things a step further and specify the entire query with the --query option
as follows:

$ GLOBIGNORE=*
$ read -d '' query << "EOF"
select * from stocks
where symbol in ("AAPL", "GOOG")

Bash by default performs globbing, meaning that it’ll
expand wildcards like *. Use GLOBIGNORE to turn this
off so that the next line generates the SQL correctly.

Store your query in the query variable. The $CONDITIONS
is a Sqoop macro that must be present in the WHERE clause

of the query. Sqoop replaces $CONDITIONS with relevant
LIMIT and OFFSET options when issuing MySQL queries.

220 CHAPTER 5 Moving data into and out of Hadoop

and quote_date between "2007-01-01" AND "2007-12-31"
AND $CONDITIONS

EOF

$ sqoop import \
--username hip_sqoop_user \
--password password \
--query "$query" \
--split-by id \
--connect jdbc:mysql://localhost/sqoop_test \
--target-dir cstocks

Securing passwords
Up until now you’ve been using passwords in the clear on the command line. This is a
security hole, because other users on the host can easily list the running processes and
see your password. Luckily Sqoop has a few mechanisms that you can use to avoid leak-
ing your password.

 The first approach is to use the -P option, which will result in Sqoop prompting
you for the password. This is the most secure approach, as it doesn’t require you to
store your password, but it means you can’t automate your Sqoop commands.

 The second approach is to use the --password-file option, where you specify a file
that contains your password. Note that this file must exist in the configured filesystem
(mostly likely HDFS), not on a disk local to the Sqoop client. You’ll probably want to
lock the file down so that only you have read access to this file. This still isn’t the most
secure option, as root users on the filesystem would still be able to pry into the file,
and unless you’re running secure Hadoop, it’s fairly easy even for non-root users to
gain access.

 The last option is to use an options file. Create a file called ~/.sqoop-import-opts:

import
--username
hip_sqoop_user
--password
password

Don’t forget to lock down the file to avoid prying eyes:

$ chmod 600 ~/.sqoop-import

Then you can supply this filename to your Sqoop job via the --options-file option,
and Sqoop will read the options specified in the file, which means you don’t need to
supply them on the command line:

$ sqoop \
--options-file ~/.sqoop-import-opts \
--connect jdbc:mysql://localhost/sqoop_test \
--table stocks

This argument must be supplied so
that Sqoop can determine which
table column to use for splitting.

221TECHNIQUE 42 Using Sqoop to import data from MySQL

Data splitting
How is Sqoop able to parallelize imports across multiple mappers?19 In figure 5.10 I
showed how Sqoop’s first step is to pull metadata from the database. It inspects the
table being imported to determine the primary key, and runs a query to determine
the lower and upper bounds of the data in the table (see figure 5.12). A somewhat
even distribution of data within the minimum and maximum keys is assumed by
Sqoop as it divides the delta (the range between the minimum and maximum keys) by
the number of mappers. Each mapper is then fed a unique query containing a range
of the primary key.

You can configure Sqoop to use a nonprimary key with the --split-by argument. This
can be useful in situations where the primary key doesn’t have an even distribution of
values between the minimum and maximum values. For large tables, however, you
need to be careful that the column specified in --split-by is indexed to ensure opti-
mal import times.

 You can use the --boundary-query argument to construct an alternative query to
determine the minimum and maximum values.

Incremental imports
You can also perform incremental imports. Sqoop supports two types: append works
for numerical data that’s incrementing over time, such as auto-increment keys; last-
modified works on timestamped data. In both cases you need to specify the column
using --check-column, the mode via the --incremental argument (the value must be
either append or lastmodified), and the actual value to use to determine the incre-
mental changes via --last-value.

 For example, if you want to import stock data that’s newer than January 1, 2005,
you’d do the following:

$ sqoop import \
--username hip_sqoop_user \
--password password \
--check-column "quote_date" \
--incremental "lastmodified" \

19 By default Sqoop runs with four mappers. The number of mappers can be controlled with the --num-mappers
argument.

RDBMSSqoop

Determine primary key1

SELECT MIN(id), MAX(id) FROM stocks;2
Figure 5.12 Sqoop preprocessing
steps to determine query splits

222 CHAPTER 5 Moving data into and out of Hadoop

--last-value "2005-01-01" \
--connect jdbc:mysql://localhost/sqoop_test \
--table stocks

...
tool.ImportTool: --incremental lastmodified
tool.ImportTool: --check-column quote_date
tool.ImportTool: --last-value 2014-02-17 07:58:39.0
tool.ImportTool: (Consider saving this with 'sqoop job --create')
...

Assuming that there’s another system that’s continuing to write into the stocks table,
you’d use the --last-value output of this job as the input to the subsequent Sqoop job
so that only rows newer than that date will be imported.

Sqoop jobs and the metastore
You can see in the command output the last value that was encountered for the increment
column. How can you best automate a process that can reuse that value? Sqoop has the
notion of a job, which can save this information and reuse it in subsequent executions:

$ sqoop job --create stock_increment -- import \
--append \
--check-column "quote_date" \
--incremental "lastmodified" \
--last-value "2005-01-01" \
--connect jdbc:mysql://localhost/sqoop_test \
--username hip_sqoop_user \
--table stocks

Executing the preceding command creates a named job in the Sqoop metastore, which
keeps track of all jobs. By default, the metastore is contained in your home directory
under .sqoop and is only used for your own jobs. If you want to share jobs between users
and teams, you’ll need to install a JDBC-compliant database for Sqoop’s metastore and
use the --meta-connect argument to specify its location when issuing job commands.

 The job create command executed in the previous example didn’t do anything
other than add the job to the metastore. To run the job, you need to explicitly execute
it as shown here:

$ sqoop job --list
Available jobs:
stock_increment

$ sqoop job --exec stock_increment

$ sqoop job --show stock_increment
incremental.last.value = 2014-02-17 15:18:54.0

...

The metadata displayed by the --show argument includes the last value of your incre-
mental column. This is actually the time when the command was executed, and not
the last value in the table. If you’re using this feature, make sure that the database

Create a new saved job with id
“stock_increment.” Arguments

that appear after the double-
hyphen are treated as regular

Sqoop arguments.

Lists all jobs in
the metastore

Executes your job

Shows metadata
information about

your job

223TECHNIQUE 42 Using Sqoop to import data from MySQL

server and any clients interacting with the server (including the Sqoop client) have
their clocks synced with the Network Time Protocol (NTP).

 Sqoop will prompt for a password when running the job. To make this work in an
automated script, you’ll need to use Expect, a Linux automation tool, to supply the pass-
word from a local file when it detects Sqoop prompting for a password. An Expect script
that works with Sqoop can be found on GitHub at https://github.com/alexholmes/
hadoop-book/blob/master/bin/sqoop-job.exp.

 Sqoop jobs can also be deleted as shown here:

$ sqoop job --delete stock_increment

Fast MySQL imports
What if you want to bypass JDBC altogether and use the fast MySQL Sqoop connector
for a high-throughput load into HDFS? This approach uses the mysqldump utility
shipped with MySQL to perform the load. You must make sure that mysqldump is in the
path of the user running the MapReduce job. To enable use of the fast connector you
must specify the --direct argument:

$ sqoop --options-file ~/.sqoop-import-opts \
--direct \
--connect jdbc:mysql://localhost/sqoop_test \
--table stocks

What are the disadvantages of fast connectors? Fast connectors only work with text
output files—specifying Avro or SequenceFile as the output format of the import
won’t work.

Importing to Hive
The final step in this technique is to use Sqoop to import your data into a Hive table.
The only difference between an HDFS import and a Hive import is that the Hive
import has a postprocessing step where the Hive table is created and loaded, as shown
in figure 5.13.

RDBMS

Sqoop Hive

MapReduce MapReduce

Run Sqoop
Hive import.

1

Launch MapReduce job.2 Move Sqoop target
directory into Hive
warehouse table
directory.

5

Hive>CREATE TABLE…
Hive>LOAD DATA…

4

Import data from
database to HDFS.

3

Client

Figure 5.13 The Sqoop Hive import sequence of events

https://github.com/alexholmes/hadoop-book/blob/master/bin/sqoop-job.exp
https://github.com/alexholmes/hadoop-book/blob/master/bin/sqoop-job.exp

224 CHAPTER 5 Moving data into and out of Hadoop

When data is loaded into Hive from an HDFS file or directory, as in the case of Sqoop
Hive imports (step 4 in the figure), Hive moves the directory into its warehouse rather
than copying the data (step 5) for the sake of efficiency. The HDFS directory that the
Sqoop MapReduce job writes to won’t exist after the import.

 Hive imports are triggered via the --hive-import argument. Just like with the fast
connector, this option isn’t compatible with the --as-avrodatafile20 and --as
-sequencefile options:

$ sqoop --options-file ~/.sqoop-import-opts \
--hive-import \
--connect jdbc:mysql://localhost/sqoop_test \
--table stocks

$ hive
hive> select * from stocks;
OK
1 AAPL 2009-01-02 85.88 91.04 85.16 90.75 26643400 90.75
2 AAPL 2008-01-02 199.27 200.26 192.55 194.84 38542100 194.84
3 AAPL 2007-01-03 86.29 86.58 81.9 83.8 44225700 83.8
4 AAPL 2006-01-03 72.38 74.75 72.25 74.75 28829800 74.75
...

Importing strings containing Hive delimiters You’ll likely have downstream pro-
cessing issues if you’re importing columns that can contain any of Hive’s
delimiters (the \n, \r, and \01 characters). You have two options in such cases:
either specify --hive-drop-import-delims, which will remove conflicting char-
acters as part of the import, or specify --hive-delims-replacement, which will
replace them with a different character.

If the Hive table already exists, the data will be appended to the existing table. If this
isn’t the desired behavior, you can use the --hive-overwrite argument to indicate that
the existing table should be replaced with the imported data.

 You can also tell Sqoop to compress data being written to Hive tables. Sqoop cur-
rently only supports text outputs for Hive, so the LZOP compression codec is the best
option here as it can be split in Hadoop (see chapter 4 for details).21 The following
example shows how to use --hive-overwrite in conjunction with LZOP compression.
For this to work, you’ll need to have LZOP built and installed on your cluster, because
it isn’t bundled with Hadoop (or CDH) by default. Refer to chapter 4 for more details:

$ hive
hive> drop table stocks;

$ hadoop fs -rmr stocks

$ sqoop --options-file ~/.sqoop-import-opts \

20 See https://issues.apache.org/jira/browse/SQOOP-324 for a potential future fix.
21 bzip2 is also a splittable compression codec that can be used in Hadoop, but its write performance is so poor

that in practice it’s rarely used.

https://issues.apache.org/jira/browse/SQOOP-324

225TECHNIQUE 42 Using Sqoop to import data from MySQL

--hive-import \
--hive-overwrite \
--compress \
--compression-codec com.hadoop.compression.lzo.LzopCodec \
--connect jdbc:mysql://localhost/sqoop_test \
--table stocks

Finally, you can use the --hive-partition-key and --hive-partition-value arguments to
create different Hive partitions based on the value of a column being imported. For
example, if you want to partition your input by stock name, you do the following:

$ hive
hive> drop table stocks;

$ hadoop fs -rmr stocks

$ read -d '' query << "EOF"
SELECT id, quote_date, open_price
FROM stocks
WHERE symbol = "AAPL" AND $CONDITIONS
EOF

$ sqoop --options-file ~/.sqoop_import_options.txt \
--query "$query" \
--split-by id \
--hive-import \
--hive-table stocks \
--hive-overwrite \
--hive-partition-key symbol \
--hive-partition-value "AAPL" \
--connect jdbc:mysql://localhost/sqoop_test \
--target-dir stocks

$ hadoop fs -lsr /user/hive/warehouse
/user/hive/warehouse/stocks/symbol=AAPL/part-m-00000
/user/hive/warehouse/stocks/symbol=AAPL/part-m-00001
...

Now, the previous example isn’t optimal by any means. Ideally, a single import would
be able to create multiple Hive partitions. Because you’re limited to specifying a single
key and value, you’d need to run the import once per unique partition value, which is
laborious. You’d be better off importing into a nonpartitioned Hive table, and then
retroactively creating partitions on the table after it had been loaded.

 Also, the SQL query that you supply to Sqoop must also take care of filtering out
the results, so that only those that match the partition are included. In other words, it
would have been useful if Sqoop had updated the WHERE clause with symbol = "AAPL"
rather than you having to do this yourself.

Continuous Sqoop execution
If you need to regularly schedule imports into HDFS, Oozie has Sqoop integration that
will allow you to periodically perform imports and exports. A sample Oozie work-
flow.xml example follows:

226 CHAPTER 5 Moving data into and out of Hadoop

<workflow-app xmlns="uri:oozie:workflow:0.2" name="sqoop-wf">
<start to="sqoop-node"/>

<action name="sqoop-node">
<sqoop xmlns="uri:oozie:sqoop-action:0.2">
<job-tracker>${jobTracker}</job-tracker>
<name-node>${nameNode}</name-node>
<prepare>
<delete path="${nameNode}/output-data/sqoop"/>
<mkdir path="${nameNode}/output-data/sqoop"/>

</prepare>
<command>import
--username hip_sqoop_user
--password password
--connect jdbc:mysql://localhost/sqoop_test
--table stocks --target-dir ${nameNode}/output-data/sqoop
-m 1
</command>

</sqoop>
<ok to="end"/>
<error to="fail"/>

</action>

<kill name="fail">
<message>Sqoop failed, error message
[${wf:errorMessage(wf:lastErrorNode())}]</message>

</kill>
<end name="end"/>

</workflow-app>

Single and double quotes aren’t supported within the <command> element, so if you
need to specify arguments that contain spaces, you’ll need to use the <arg> element
instead:

<arg>import</arg>
<arg>--username</arg>
<arg>hip_sqoop_user</arg>
<arg>--password</arg>
...

One other consideration when using Sqoop from Oozie is that you’ll need to make
the JDBC driver JAR available to Oozie. You can either copy the JAR into the workflow’s
lib/ directory or update your Hadoop installation’s lib directory with the JAR.

■ Summary
Obviously, for Sqoop to work, your Hadoop cluster nodes need to have access to the
MySQL database. Common sources of error are either misconfiguration or lack of
connectivity from the Hadoop nodes. It’s probably wise to log on to one of the
Hadoop nodes and attempt to connect to the MySQL server using the MySQL client,
or attempt access with the mysqldump utility (if you’re using a fast connector).

 Another important point when using a fast connector is that it’s assumed that
mysqldump is installed on each Hadoop node and is in the path of the user running
the map tasks.

227TECHNIQUE 43 HBase ingress into HDFS

 This wraps up our review of using Sqoop to import data from relational databases
into Hadoop. We’ll now transition from relational stores to a NoSQL store, HBase, which
excels at data interoperability with Hadoop because it uses HDFS to store its data.

5.2.4 HBase

Our final foray into moving data into Hadoop involves taking a look at HBase. HBase is
a real-time, distributed, data storage system that’s often either colocated on the same
hardware that serves as your Hadoop cluster or is in close proximity to a Hadoop clus-
ter. Being able to work with HBase data directly in MapReduce, or to push it into
HDFS, is one of the huge advantages when picking HBase as a solution.

 In the first technique, I’ll show you how to use a tool that HBase is bundled with to
save an HBase table into HDFS.

TECHNIQUE 43 HBase ingress into HDFS

What if you had customer data sitting in HBase that you wanted to use in MapReduce
in conjunction with data in HDFS? You could write a MapReduce job that takes as
input the HDFS dataset and pulls data directly from HBase in your map or reduce
code. But in some cases it may be more useful to take a dump of the data in HBase
directly into HDFS, especially if you plan to utilize that data in multiple MapReduce
jobs and the HBase data is immutable or changes infrequently.

■ Problem
You want to get HBase data into HDFS.

■ Solution
HBase includes an Export class that can be used to import HBase data into HDFS in
SequenceFile format. This technique also walks through code that can be used to read
the imported HBase data.

■ Discussion
Before we get started with this technique, you need to get HBase up and running.22

 To be able to export data from HBase you first need to load some data into HBase.
The loader creates an HBase table called stocks_example with a single column family,
details. You’ll store the HBase data as Avro binary-serialized data. I won’t show the
code here, but it’s available on GitHub.23

 Run the loader and use it to load the sample stock data into HBase:

$ hip hip.ch5.hbase.HBaseWriter \
--input test-data/stocks.txt

You can use the HBase shell to look at the results of the load. The list command,
without any arguments, will show you all of the tables in HBase, and the scan com-
mand, with a single argument, will dump all of the contents of a table:

22 The appendix contains installation instructions and additional resources for working with HBase.
23 GitHub source: https://github.com/alexholmes/hiped2/blob/master/src/main/java/hip/ch5/hbase/

HBaseWriter.java.

https://github.com/alexholmes/hiped2/blob/master/src/main/java/hip/ch5/hbase/HBaseWriter.java
https://github.com/alexholmes/hiped2/blob/master/src/main/java/hip/ch5/hbase/HBaseWriter.java

228 CHAPTER 5 Moving data into and out of Hadoop

$ hbase shell

hbase(main):012:0> list
TABLE
stocks_example
1 row(s) in 0.0100 seconds

hbase(main):007:0> scan 'stocks_example'
ROW COLUMN+CELL
AAPL2000-01-03 column=details:stockAvro, timestamp=1322315975123,...
AAPL2001-01-02 column=details:stockAvro, timestamp=1322315975123,...
...

With your data in place, you’re ready to export it to HDFS. HBase comes with an
org.apache.hadoop.hbase.mapreduce.Export class that will dump an HBase table. An
example of using the Export class is shown in the following snippet. With this com-
mand, you can export the whole HBase table:

$ hip org.apache.hadoop.hbase.mapreduce.Export \
stocks_example \
output

The Export class also supports exporting only a single column family, and it can also
compress the output:

$ hip org.apache.hadoop.hbase.mapreduce.Export \
-D hbase.mapreduce.scan.column.family=details \
-D mapred.output.compress=true \
-D mapred.output.compression.codec=\

org.apache.hadoop.io.compress.SnappyCodec \
stocks_example output

The Export class writes the HBase output in the SequenceFile format, where the HBase
row key is stored in the SequenceFile record key using org.apache.hadoop.hbase.io
.ImmutableBytesWritable, and the HBase value is stored in the SequenceFile record
value using org.apache.hadoop.hbase.client.Result.

 What if you want to process that exported data in HDFS? The following listing
shows an example of how you’d read the HBase SequenceFile and extract the Avro
stock records.24

24 GitHub source: https://github.com/alexholmes/hiped2/blob/master/src/main/java/hip/ch5/hbase/
ExportedReader.java.

HBase table
to export

HDFS directory where
exported table is written

Specify column
family to be

exported.Specify the
output should
be compressed. Set the compression codec, in this

case Snappy. Snappy’s a good fit
here because the SequenceFile

internally applies the compression,
and the compressed content

doesn’t need to be split.

https://github.com/alexholmes/hiped2/blob/master/src/main/java/hip/ch5/hbase/ExportedReader.java
https://github.com/alexholmes/hiped2/blob/master/src/main/java/hip/ch5/hbase/ExportedReader.java

229TECHNIQUE 43 HBase ingress into HDFS

...
import static com.manning.hip.ch5.HBaseWriteAvroStock.*;

public class HBaseExportedStockReader {
public static void main(String... args) throws IOException {
read(new Path(args[0]));

}

public static void read(Path inputPath) throws IOException {
Configuration conf = new Configuration();
FileSystem fs = FileSystem.get(conf);

SequenceFile.Reader reader =
new SequenceFile.Reader(fs, inputPath, conf);

HBaseScanAvroStock.AvroStockReader stockReader =
new HBaseScanAvroStock.AvroStockReader();

try {
ImmutableBytesWritable key = new ImmutableBytesWritable();
Result value = new Result();

while (reader.next(key, value)) {
Stock stock = stockReader.decode(value.getValue(

STOCK_DETAILS_COLUMN_FAMILY_AS_BYTES,
STOCK_COLUMN_QUALIFIER_AS_BYTES));

System.out.println(new String(key.get()) + ": " +
ToStringBuilder

.reflectionToString(stock, ToStringStyle.SIMPLE_STYLE));
}

} finally {
reader.close();

}
}

}

You can run the code against the HDFS directory that you used for the export and view
the results:

$ hip hip.ch5.hbase.ExportedReader \
--input output/part-m-00000

AAPL2000-01-03: AAPL,2000-01-03,104.87,...
AAPL2001-01-02: AAPL,2001-01-02,14.88,...
AAPL2002-01-02: AAPL,2002-01-02,22.05,...
...

The HBaseExportedStockReader class is able to read and dump out the contents of the
SequenceFile used by HBase’s Export class.

 Exporting data from HBase into HDFS is made easier with the built-in HBase Export
class. But what if you don’t want to write HBase data into HDFS, but instead want to

Listing 5.3 Reading the HBase SequenceFile to extract Avro stock records

Prepare the SequenceFile reader.

Prepare the Avro reader.

Iterate through
all SequenceFile
records.

Decode the byte array contents of
the HBase column family/qualifier

value into your Avro Stock bean. The
constants used here are defined in the

HBaseWriteAvroStock class.

Write out row key and Stock
object to standard out.

230 CHAPTER 5 Moving data into and out of Hadoop

process it directly in a MapReduce job? Let’s look at how you can use HBase as a data
source for a MapReduce job.

TECHNIQUE 44 MapReduce with HBase as a data source

The built-in HBase exporter writes out HBase data using SequenceFile, which isn’t sup-
ported by programming languages other than Java and doesn’t support schema evolu-
tion. It also only supports a Hadoop filesystem as the data sink. If you want to have
more control over HBase data extracts, you may have to look beyond the built-in
HBase facilities.

■ Problem
You want to operate on HBase directly within your MapReduce jobs without the inter-
mediary step of copying the data into HDFS.

■ Solution
HBase has a TableInputFormat class that can be used in your MapReduce job to pull
data directly from HBase.

■ Discussion
HBase provides an InputFormat class called TableInputFormat, which can use HBase as a
data source in MapReduce. The following listing shows a MapReduce job that uses
this input format (via the TableMapReduceUtil.initTableMapperJob call) to read data
from HBase.25

public class HBaseSourceMapReduce extends
TableMapper<Text, DoubleWritable> {

private HBaseScanAvroStock.AvroStockReader stockReader;
private Text outputKey = new Text();
private DoubleWritable outputValue = new DoubleWritable();

@Override
protected void setup(

Context context)
throws IOException, InterruptedException {

stockReader = new HBaseScanAvroStock.AvroStockReader();
}

@Override
public void map(ImmutableBytesWritable row, Result columns,

Context context)
throws IOException, InterruptedException {
for (KeyValue kv : columns.list()) {
byte[] value = kv.getValue();

Stock stock = stockReader.decode(value);

outputKey.set(stock.symbol.toString());

Listing 5.4 Importing HBase data into HDFS using MapReduce

25 GitHub source: https://github.com/alexholmes/hiped2/blob/master/src/main/java/hip/ch5/hbase/
ImportMapReduce.java.

Iterate through all
values for row key
and scan criteria
(defined in the
main method).

Extract
the value.Extract the Avro object

from the column value.

https://github.com/alexholmes/hiped2/blob/master/src/main/java/hip/ch5/hbase/ImportMapReduce.java
https://github.com/alexholmes/hiped2/blob/master/src/main/java/hip/ch5/hbase/ImportMapReduce.java

231TECHNIQUE 44 MapReduce with HBase as a data source

outputValue.set(stock.close);
context.write(outputKey, outputValue);

}
}

public static void main(String[] args) throws Exception {
Configuration conf = new Configuration();

Scan scan = new Scan();
scan.addColumn(STOCK_DETAILS_COLUMN_FAMILY_AS_BYTES,

STOCK_COLUMN_QUALIFIER_AS_BYTES);
Job job = new Job(conf);

job.setJarByClass(HBaseSourceMapReduce.class);

TableMapReduceUtil.initTableMapperJob(
STOCKS_TABLE_NAME,
scan,
HBaseSourceMapReduce.class,
ImmutableBytesWritable.class,
Put.class,
job);

job.setNumReduceTasks(0);
...

You can run this MapReduce job as follows:

$ hip hip.ch5.hbase.ImportMapReduce --output output

A quick peek in HDFS should tell you whether or not your MapReduce job worked as
expected:

$ hadoop fs -cat output/part*
AAPL 111.94
AAPL 14.88
AAPL 23.3

This output confirms that the MapReduce job works as expected.

■ Summary
The TableInputFormat class examines HBase and creates an input split for each HBase
table region. If there are 10 HBase regions, 10 map tasks will execute. The input for-
mat also includes the server that hosts the region in the input split, which means that
the map tasks will be scheduled to execute on the same nodes as the HRegionServer
hosting the data. This gives you locality at the HBase level, but also at the HDFS level.
Data being read from the region will likely be coming from local disk, because after
some time, all of a region’s data will be local to it. This all assumes that the HRegion-
Servers are running on the same hosts as the DataNodes.

 Our focus over the last couple of sections has been on persistent stores, covering rela-
tional databases and HBase, a NoSQL store. We’re now going to change directions and
look at how a publish-subscribe system can be leveraged to move data into Hadoop.

Output the stock symbol
and closing price.

Create an HBase Scan object,
which HBase will use to filter
the table contents based on
the supplied criteria. In this

case, you’re specifying the
column family and qualifier

that you want to scan.

Use HBase’s helper
method to set up the
map configuration
parameters for the job. The HBase table

name that’s the data
source for the job.

The Scan object
that you defined
earlier.

The class name
of the mapper.

The class of the
map output key.

232 CHAPTER 5 Moving data into and out of Hadoop

5.2.5 Importing data from Kafka

Kafka, a distributed publish-subscribe system, is quickly becoming a key part of our
data pipelines thanks to its strong distributed and performance properties. It can be
used for many functions, such as messaging, metrics collection, stream processing,
and log aggregation. Another effective use of Kafka is as a vehicle to move data into
Hadoop. This is useful in situations where you have data being produced in real time
that you want to land in Hadoop.

 A key reason to use Kafka is that it decouples data producers and consumers. It
notably allows you to have multiple independent producers (possibly written by differ-
ent development teams), and, likewise, multiple independent consumers (again possi-
bly written by different teams). Also, consumption can be real-time/synchronous or
batch/offline/asynchronous. The latter property is a big differentiator when you’re
looking at other pub-sub tools like RabbitMQ.

 Kafka has a handful of concepts that you’ll need to understand:

■ Topics—A topic is a feed of related messages.
■ Partitions—Each topic is made up of one or more partitions, which are ordered

sequences of messages backed by log files.26

■ Producers and consumers—Producers and consumers write messages to and read
them from partitions.

■ Brokers—Brokers are the Kafka processes that manage topics and partitions and
serve producer and consumer requests.

Kafka does not guarantee “total” ordering for a topic—instead, it only guarantees that
the individual partitions that make up a topic are ordered. It’s up to the consumer
application to enforce, if needed, a “global” per-topic ordering.

 Figure 5.14 shows a conceptual model of how Kafka works and figure 5.15 shows
an example of how partitions could be distributed in an actual Kafka deployment.

 To support fault tolerance, topics can be replicated, which means that each parti-
tion can have a configurable number of replicas on different hosts. This provides
increased fault tolerance and means that a single server dying isn’t catastrophic for
your data or for the availability of your producers and consumers.

Versioning Technique 45 employs Kafka version 0.8 and the 0.8 branch of
Camus.

This wraps up our quick dive into how Kafka works. For more details, please refer to
Kafka’s online documentation.

26 I’m not talking about logging files here; Kafka employs log files to store data flowing through Kafka.

233TECHNIQUE 44 MapReduce with HBase as a data source

topic “foo”, partition 0

topic “foo”, partition 1

topic “foo”, partition 2

Writes for a topic are partitioned,
either in a round-robin scheme or
according to some user-defined

partition function.

Consumers can choose to read
messages sequentially or jump
back to a previous position in
a partition to replay data.Partitions in a Kafka topic store messages

in order and allow multiple consumers
to read data from a single topic.

ZooKeeper is used to
track the current position

for each consumer
in a partition.

Topic

ZooKeeper

Producer Consumer

Figure 5.14 Conceptual Kafka model showing producers, topics, partitions, and consumers

topic “foo”, partition 0

topic “bar”, partition 0

Partitions within a topic
can be distributed across

brokers and hosts.

Kafka broker (single JVM)

topic “foo”, partition 1

Kafka broker (single JVM)

ZooKeeper

Host

topic “foo”, partition 2

Kafka broker (single JVM)

Host

Figure 5.15 A physical
Kafka model showing how
partitions can be distributed
across brokers

234 CHAPTER 5 Moving data into and out of Hadoop

Moving data into Hadoop

TECHNIQUE 45 Using Camus to copy Avro data from Kafka into HDFS

This technique is useful in situations where you already have data flowing in Kafka for
other purposes and you want to land that data in HDFS.

■ Problem
You want to use Kafka as a data-delivery mechanism to get your data into HDFS.

■ Solution
Use Camus, a LinkedIn-developed solution for copying data in Kafka into HDFS.

■ Discussion
Camus is an open-source project developed by LinkedIn. Kafka is heavily deployed at
LinkedIn, and where Camus is used as a tool to copy data from Kafka into HDFS.

 Out of the box, Camus supports two data formats in Kafka: JSON and Avro. In this
technique we’re going to get Camus working with Avro data. Camus’s built-in support
of Avro requires that Kafka publishers write the Avro data in a proprietary way, so for
this technique we’re going to assume that you want to work with vanilla Avro-serialized
data in Kafka.

 There are three parts to getting this technique to work: you’ll first write some Avro
data into Kafka, then you’ll write a simple class to help Camus deserialize your Avro
data, and finally you’ll run a Camus job to perform the data import.

Writing data into Kafka
To get going, you’ll write some Avro records into Kafka. In the following code, you set
up a Kafka producer by configuring some required Kafka properties, load some Avro
records from file, and write them out to Kafka:27

Properties props = new Properties();
props.put("metadata.broker.list", "localhost:9092");
props.put("serializer.class",
kafka.serializer.DefaultEncoder.class.getName());

ProducerConfig config = new ProducerConfig(props);

Producer<Integer, byte[]> producer =
new Producer<Integer, byte[]>(config);

for (String line : FileUtils.readLines(inputFile)) {
Stock stock = AvroStockFileWrite.createStock(line);
KeyedMessage<Integer, byte[]> msg =
new KeyedMessage<Integer, byte[]>(kTopic, toBytes(stock));

producer.send(msg);
}
producer.close();

27 The complete set of Kafka properties you can set can be viewed in the Kafka documentation: https://
kafka.apache.org/documentation.html.

Specify the CSV-
delimited list of
Kafka brokers.

Set the serializer class
for messages. In this
example you use the
default encoder, which
accepts and writes bytes.

Create a new
Kafka producer

to write messages.

Convert the Avro object
to a byte array and wrap
it in a Kafka message.

Write the message
to Kafka.

https://kafka.apache.org/documentation.html
https://kafka.apache.org/documentation.html

235TECHNIQUE 45 Using Camus to copy Avro data from Kafka into HDFS

You can load the sample stock data into a Kafka topic called test with the following
command:

$ hip hip.ch5.kafka.KafkaAvroWriter \
--stocksfile test-data/stocks.txt \
--broker-list localhost:9092 \
--topic test

The Kafka console consumer can be used to verify that the data has been written to
Kafka. This will dump the binary Avro data to your console:

$ kafka-console-consumer.sh \
--zookeeper localhost:2181 \
--topic test \
--from-beginning

Once that’s done, you’re ready for the next part—writing some Camus code so that
you can read these Avro records in Camus.

Writing a Camus decoder and schema registry
There are three Camus concepts that you need to understand:

■ Decoders—The decoder’s job is to convert raw data pulled from Kafka into a
Camus format.

■ Encoders—Encoders serialize decoded data into the format that will be stored in
HDFS.

■ Schema registry—The schema registry provides schema information about Avro
data being encoded.

As mentioned earlier, Camus supports Avro data, but it does so in a way that requires
Kafka producers to write data using the Camus KafkaAvroMessageEncoder class, which
prefixes the Avro-serialized binary data with some proprietary data, presumably so
that the decoder in Camus can verify that it was written by that class.

 In this example you’re serializing using the straight Avro serialization, so you need
to write your own decoder. Luckily this is simple to do:

import com.linkedin.camus.coders.CamusWrapper;
import com.linkedin.camus.coders.MessageDecoder;
import hip.ch5.avro.gen.Stock;
import org.apache.avro.generic.GenericData;
import org.apache.avro.generic.GenericDatumReader;
import org.apache.avro.io.DatumReader;
import org.apache.avro.io.DecoderFactory;

import java.io.IOException;

/**
*/
public class StockMessageDecoder
extends MessageDecoder<byte[], GenericData.Record> {

Decoders must implement
this interface and specify

the input and output types.

236 CHAPTER 5 Moving data into and out of Hadoop

DecoderFactory factory = DecoderFactory.get();

@Override
public CamusWrapper<GenericData.Record> decode(byte[] bytes) {

DatumReader<GenericData.Record> reader =
new GenericDatumReader<GenericData.Record>(Stock.SCHEMA$);

GenericData.Record record =
reader.read(null, factory.binaryDecoder(bytes, null));

return new CamusWrapper<GenericData.Record>(record);
}

}

Versioning You may have noticed that we wrote a specific Avro record into
Kafka, but in Camus we’re reading the record as a generic Avro record, not a
specific Avro record. This is due to the fact that the CamusWrapper class only
supports generic Avro records. Otherwise, specific Avro records would have
been simpler to work with, as you can work with generated code and have all
the type-safety goodness that comes along with that.

The CamusWrapper object is an envelope for the data being extracted from Kafka. The
reason this class exists is that it allows you to stick metadata into the envelope, such as
a timestamp, a server name, and the service details. It’s highly recommended that any
data you work with have some meaningful timestamp associated with each record (typ-
ically this would be the time at which the record was created or generated). You can
then use a CamusWrapper constructor that accepts the timestamp as an argument:

public CamusWrapper(R record, long timestamp) { ... }

If the timestamp isn’t set, then Camus will create a new timestamp at the time the
wrapper is created. This timestamp and other metadata is used in Camus when deter-
mining the HDFS location of output records. You’ll see an example of this shortly.

 Next you need to write a schema registry so that the Camus Avro encoder knows the
schema details for the Avro records being written to HDFS. When registering the schema,
you also specify the name of the Kafka topic from which the Avro record was pulled:

import com.linkedin.camus.schemaregistry.AvroMemorySchemaRegistry;
import hip.ch5.avro.gen.Stock;

public class StockSchemaRegistry extends AvroMemorySchemaRegistry {
public StockSchemaRegistry() {
super();
// register the schema for the topic
super.register("test", Stock.SCHEMA$);

}
}

That’s it for the coding side of things! Let’s move on and see Camus in action.

The Avro decoder
factory.

Create an
Avro reader.

Deserialize the binary data
into an Avro record.

Wrap the record in a
Camus wrapper class.

237TECHNIQUE 45 Using Camus to copy Avro data from Kafka into HDFS

Running Camus
Camus runs as a MapReduce job on the Hadoop cluster where you want to import the
Kafka data. You need to feed a bunch of properties to Camus, and you can do so using
the command line, or alternatively using a properties file. We’ll use the properties file
for this technique:

comma-separated brokers in "host:port" format
kafka.brokers=localhost:9092

Name of the client as seen by kafka
kafka.client.name=hip

Top-level data output directory in HDFS
etl.destination.path=/tmp/camus/dest

HDFS location where you want to keep execution files,
i.e. offsets, error logs, and count files
etl.execution.base.path=/tmp/camus/work

Where completed Camus job output directories are kept,
usually a sub-dir in the base.path
etl.execution.history.path=/tmp/camus/history

The decoder class
camus.message.decoder.class=hip.ch5.kafka.camus.StockMessageDecoder

The HDFS serializer
etl.record.writer.provider.class=\

➥ com.linkedin.camus.etl.kafka.common.AvroRecordWriterProvider

The schema registry
kafka.message.coder.schema.registry.class=
hip.ch5.kafka.camus.StockSchemaRegistry

Max hadoop tasks to use, each task can pull multiple topic partitions
mapred.map.tasks=2

As you can see from the properties, you don’t need to explicitly tell Camus which top-
ics you want to import. Camus automatically communicates with Kafka to discover the
topics (and partitions), and the current start and end offsets.

 If you want control over exactly which topics are imported, you can whitelist (to limit
the topics) or blacklist (to exclude topics) using kafka.whitelist.topics and
kafka.blacklist.topics, respectively. Multiple topics can be specified using a comma as
the delimiter. Regular expressions are also supported, as shown in the following exam-
ple, which matches on topic “topic1” or any topics that start with “abc” followed by one
or more digits. Blacklists can be specified using the exact same syntax for the value:

kafka.whitelist.topics=topic1,abc[0-9]+

Once your properties are all set, you’re ready to run the Camus job:

$ CAMUS_HOME=<your Camus directory>
$ HIP_HOME=<your Hadoop in Practice directory>

$ LIBJARS="$CAMUS_HOME/camus-example/target/

238 CHAPTER 5 Moving data into and out of Hadoop

camus-example-0.1.0-SNAPSHOT-shaded.jar"
$ LIBJARS=$LIBJARS=",$HIP_HOME/target/hip-2.0.0.jar"
$ export HADOOP_CLASSPATH=`echo ${LIBJARS} | sed s/,/:/g`

hadoop com.linkedin.camus.etl.kafka.CamusJob \
-libjars ${LIBJARS} \
-P $HIP_HOME/conf/camus-avro.conf

This will result in the Avro data landing in HDFS. Let’s take a look at what’s in HDFS:

$ hadoop fs -lsr /tmp/camus

/tmp/camus/dest/test/hourly/2014/03/03/01/test.0.0.45.100.avro

/tmp/camus/history/2014-03-03-09-36-02/errors-m-00000
/tmp/camus/history/2014-03-03-09-36-02/offsets-m-00000
/tmp/camus/history/2014-03-03-09-36-02/offsets-previous
/tmp/camus/history/2014-03-03-09-36-02/requests.previous

The first file is the file that you’re interested in, as it contains the data that’s been
imported. The other files are there for Camus’s housekeeping.

 The data files in HDFS can be viewed using the AvroDump utility:

$ hip hip.util.AvroDump \
--file /tmp/camus/dest/test/hourly/2014/03/03/01/test.0.0.45.100.avro

So what actually happened when the Camus job was running? The Camus import pro-
cess is executed as a MapReduce job, as seen in figure 5.16.

Run import..1

Discover topics
and partitions.

2

Pull data from
partitions.

5

Write data
to HDFS.

6

Pull the offsets from
the last Camus job
run from HDFS.

3

Launch
MapReduce job.

4

MapReduce

Client

BrokerBrokerBroker

MapMapMap

Kafka

Camus

HDFS

HDFS Figure 5.16 A look at how
a Camus job executes

239TECHNIQUE 45 Using Camus to copy Avro data from Kafka into HDFS

As Camus tasks in MapReduce succeed, the Camus OutputCommitter (a MapReduce
construct that allows for custom work to be performed upon task completion) atomi-
cally moves the tasks’ data files to the destination directory. The OutputCommitter addi-
tionally creates the offset files for all the partitions that the tasks were working on. It’s
possible that other tasks in the same job may fail, but this doesn’t impact the state of tasks
that succeed—the data and offset outputs of successful tasks will still exist, so that sub-
sequent Camus executions will resume processing from the last-known successful state.

 Next, let’s take a look at where Camus writes the imported data and how you can
control the behavior.

Data partitioning
Earlier you saw the location where Camus imported the Avro data sitting in Kafka.
Let’s take a closer look at the HDFS path structure, shown in figure 5.17, and see what
you can do to determine the location.

The date/time part of the path is determined by the timestamp extracted from the
CamusWrapper. You’ll recall from our earlier discussion that you can extract timestamps
from your records in Kafka in your MessageDecoder and supply them to the CamusWrapper,
which will allow your data to be partitioned by dates that are meaningful to you, as
opposed to the default, which is simply the time at which the Kafka record is read in
MapReduce.

 Camus supports a pluggable partitioner, which allows you to control the part of the
path shown in figure 5.18.

/tmp/camus/dest/ test/ hourly/ 2014/03/03/01/ test. 0. 0. 45. 100. avro

The se�ing of
etl.destination.path in
your Camus properties.

The Kafka
topic name.

The value of
etl.destination.path.topic.sub.dir
which is “hourly” by default.

The date and hour extracted
from the CamusWrapper

timestamp.

The Kafka partition.

The Kafka partition leader ID
(the partition’s primary broker).

Directory Filename

The Kafka
topic name.

The count of records in the file.

The final offset
in the partition

that the data was
pulled up to.

The extension
of the record

writer (value of
etl.record.writer.
provider.class).

Figure 5.17 Dissecting the Camus output path for exported data in HDFS

/tmp/camus/dest/ test/hourly/2014/03/03/01/ test.0.0.45.100.avro

This part of the output path can be
controlled with a custom partitioner. Figure 5.18 The Camus partitioner path

240 CHAPTER 5 Moving data into and out of Hadoop

The Camus Partitioner interface provides two methods that you must implement:

public interface Partitioner {
/**
* Encode partition values into a string, to be embedded
* into the working filename.
* Encoded values cannot use '/' or ':'.
*/

String encodePartition(JobContext context, IEtlKey etlKey);

/**
* Return a string representing the partitioned directory
* structure where the .avro files will be moved.
*
* For example, if you were using Hive style partitioning,
* a timestamp based partitioning scheme would return
* topic-name/year=2012/month=02/day=04/hour=12
*
*/

String generatePartitionedPath(JobContext context, String topic,
int brokerId, int partitionId, String encodedPartition);

}

As an example, a custom partitioner could create a path that could be leveraged for
Hive partitions.

■ Summary
Camus provides a complete solution to landing data from Kafka in HDFS, and it takes
care of maintaining state and error handling when things go wrong. It can be easily
automated by integrating it with Azkaban or Oozie, and it performs some simple data-
management facilities by organizing HDFS data based on the time that messages are
ingested. It’s worth mentioning that when it comes to ETL, it’s bare-boned in its fea-
tures compared to Flume.

 Kafka comes bundled with a mechanism that pulls data into HDFS. It has a
KafkaETLInputFormat input format class that can be used to pull data from Kafka in a
MapReduce job. It requires you to write the MapReduce job to perform the import,
but the advantage is that you can use the data directly in your MapReduce flow, as
opposed to using HDFS as intermediary storage for your data.

 The Flume project is also in the process of adding a Kafka source and sink,
although at the time of writing that work is still in progress.28 Once this is ready for
production, you’ll be able to leverage all the other goodies that Flume offers, such as
Morphlines and Solr indexing as part of moving Kafka data into Hadoop.

 That concludes our examination of how to move data into Hadoop. We covered a
broad range of data types, tools, and technologies. Next we’re going to flip things
around and look at how to get data that resides in Hadoop out to other systems, such
as filesystems and other stores.

28 For more details on Flume and Kafka see https://issues.apache.org/jira/browse/FLUME-2242.

https://issues.apache.org/jira/browse/FLUME-2242

241TECHNIQUE 46 Using the CLI to extract files

5.3 Moving data out of Hadoop
Once you’ve used Hadoop to perform some critical function, be it data mining or
data aggregations, the next step is typically to externalize that data into other systems
in your environment. For example, it’s common to rely on Hadoop to perform offline
aggregations on data that’s pulled from your real-time systems, and then to feed the
derived data back into your real-time systems. A more concrete example would be
building recommendations based on user-behavior patterns.

 This section examines some of the more common scenarios where you want to get
data out of Hadoop, and the tools that will help you with that work. We’ll start with a
look at the lower-level tools that exist, most of which are built into Hadoop, and then
go on to look at how to push data to relational databases and HBase.

 To start off, we’ll look at how to copy files out of Hadoop using the command line.

5.3.1 Roll your own egress

This section covers some built-in mechanisms in Hadoop for copying data out of
HDFS. These techniques can either be manually executed, or you’ll need to automate
them using a scheduling system such as Azkaban, Oozie, or even cron.

TECHNIQUE 46 Using the CLI to extract files

Imagine that you’ve run some jobs in Hadoop to aggregate some data, and now you
want to get it out. One method you can use is the HDFS command-line interface (CLI)
to pull out directories and files into your local filesystem. This technique covers some
basic CLI commands that can help you out.

■ Problem
You want to copy files from HDFS to a local filesystem using the shell.

■ Solution
The HDFS CLI can be used for one-off moves, or the same commands can be incorpo-
rated into scripts for more regularly utilized moves.

■ Discussion
Copying a file from HDFS to local disk is achieved via the hadoop command:

$ hadoop fs -get hdfs-file.txt local-file.txt

The behavior of the Hadoop put command differs from the Linux cp command—in
Linux if the destination already exists, it’s overwritten; in Hadoop the copy fails with
an error:

put: `hdfs-file.txt': File exists

The -f option must be added to force the file to be overwritten:

$ hadoop fs -get -f hdfs-file.txt local-file.txt

242 CHAPTER 5 Moving data into and out of Hadoop

Much like with the Linux cp command, multiple files can be copied using the same
command. In this case, the final argument must be the directory in the local filesys-
tem into which the HDFS files are copied:

$ hadoop fs -get hdfs-file1.txt hdfs-file2.txt /local/dest/

Often, one is copying a large number of files from HDFS to local disk—an example
is a MapReduce job output directory that contains a file for each task. If you’re using
a file format that can be concatenated, you can use the -getmerge command
to combine multiple files. By default, a newline is added at the end of each file
during concatenation:

$ hdfs fs -getmerge hdfs-dir/part* /local/output.txt

There are many more operations supported by the fs command—to see the full list,
run the command without any options.

 The challenge with using the CLI is that it’s very low-level, and it won’t be able to
assist you with your automation needs. Sure, you could use the CLI within shell scripts,
but once you graduate to more sophisticated programming languages, forking a pro-
cess for every HDFS command isn’t ideal. In this situation you may want to look at
using the REST, Java, or C HDFS APIs. The next technique looks at the REST API.

TECHNIQUE 47 Using REST to extract files

Using the CLI is handy for quickly running commands and for scripting, but it
incurs the overhead of forking a separate process for each command, which is over-
head that you’ll probably want to avoid, especially if you’re interfacing with HDFS in
a programming language. This technique covers working with HDFS in languages
other than Java.

■ Problem
You want to be able to interact with HDFS from a programming language that doesn’t
have a native interface to HDFS.

■ Solution
Use Hadoop’s WebHDFS interface, which offers a full-featured REST API for HDFS
operations.

■ Discussion
Before you get started, you’ll need to enable WebHDFS on your cluster—see tech-
nique 34 for details on how to do that.

 Let’s start by creating a file in HDFS using the CLI:

$ echo "the cat sat on the mat" | hadoop fs -put - /tmp/hdfs-file.txt

Reading the file from HDFS is a matter of specifying OPEN as the operation:

243TECHNIQUE 49 Mounting Hadoop with NFS

$ curl -L "http://0.0.0.0:50070/webhdfs/v1/tmp/hdfs-file.txt?the cat sat on the mat
➥ op=OPEN&user.name=aholmes"

Consult technique 34 for additional information on using WebHDFS, including how it
can be leveraged in different programming languages.

TECHNIQUE 48 Reading from HDFS when behind a firewall

Production Hadoop environments are often locked down to protect the data residing
in these clusters. Part of the security procedures could include putting your cluster
behind a firewall, and this can be a nuisance if the destination for your Hadoop clus-
ter is outside of the firewall. This technique looks at using the HttpFS gateway to pro-
vide HDFS access over port 80, which is often opened up on firewalls.

■ Problem
You want to pull data out of HDFS, but you’re sitting behind a firewall that’s restricting
access to HDFS.

■ Solution
Use the HttpFS gateway, which is a standalone server that provides access to HDFS over
HTTP. Because it’s a separate service and it’s HTTP, it can be configured to run on any
host that has access to the Hadoop nodes, and you can open a firewall rule to allow
traffic to the service.

■ Discussion
HttpFS is useful because not only can you use REST to access HDFS, but it has a com-
plete Hadoop filesystem implementation, which means you can use the CLI and native
HDFS Java clients to talk to HDFS. Consult technique 35 for instructions on how to get
HttpFS up and running.

 Once it’s running, you can issue the same curl commands that you used in the pre-
vious technique with WebHDFS (the only difference is URL host and port, which need
to point to where your HttpFS is deployed). This is one of the nice things about the
HttpFS gateway—the syntax is exactly the same.

 To dump the contents of the file /tmp/hdfs-file.txt, you’d do the following:

$ curl -L "http://0.0.0.0:140000/webhdfs/v1/tmp/hdfs-file.txt?the cat sat on the mat
➥ op=OPEN&user.name=aholmes"

Swing on over to technique 35 for additional details on how HttpFS works.

TECHNIQUE 49 Mounting Hadoop with NFS

Often it’s a lot easier to work with Hadoop data if it’s accessible as a regular mount to
your filesystem. This allows you to use existing scripts, tools, and programming lan-
guages and easily interact with your data in HDFS. This section looks at how you can
easily copy data out of HDFS using an NFS mount.

■ Problem
You want to treat HDFS as a regular Linux filesystem and use standard Linux tools to
interact with HDFS.

244 CHAPTER 5 Moving data into and out of Hadoop

■ Solution
Use Hadoop’s NFS implementation to access data in HDFS.

■ Discussion
Technique 36 has setup instructions for NFS access to HDFS. Once that’s set up, you can
perform normal filesystem operations such as copying files from HDFS to a local filesys-
tem. The following example shows this, assuming that HDFS is mounted under /hdfs:

$ cp /hdfs/tmp/foo.txt ~/

For more details on how NFS works in Hadoop, head on over to technique 36.

TECHNIQUE 50 Using DistCp to copy data out of Hadoop

Imagine that you have a large amount of data you want to move out of Hadoop. With
most of the techniques in this section, you have a bottleneck because you’re funneling
the data through a single host, which is the host on which you’re running the process.
To optimize data movement as much as possible, you want to leverage MapReduce to
copy data in parallel. This is where DistCp comes into play, and this technique exam-
ines one way you can pull out data to an NFS mount.

■ Problem
You want to efficiently pull data out of Hadoop and parallelize the copy.

■ Solution
Use DistCp.

■ Discussion
Technique 37 covers DistCp in detail and includes details on how to copy data
between different Hadoop clusters. But DistCp can’t be used to copy data from
Hadoop to a local filesystem (or vice versa), because DistCp runs as a MapReduce job,
and your cluster won’t have access to your local filesystem. Depending on your situa-
tion you have a couple of options:

■ Use the HDFS File Slurper to copy the local files.
■ Copy your files to an NFS that’s also available to all the DataNodes in your cluster.

If you go with the second option, you can use DistCp and write to a locally mounted
NFS mount on each DataNode, an example of which follows:

$ hadoop distcp \
hdfs://src \
file://mount1/dest

Note that your NFS system may not handle a large number of parallel reads or writes, so
you’ll likely want to run this with a smaller number of mappers than the default of 20—
the following example runs with 5 mappers:

$ hadoop distcp \
-m 5 \
hdfs://src \
file://mount1/dest

245TECHNIQUE 51 Using Java to extract files

TECHNIQUE 51 Using Java to extract files

Let’s say you’ve generated a number of Lucene indexes in HDFS, and you want to pull
them out to an external host. Maybe you want to manipulate the files in some way
using Java. This technique shows how the Java HDFS API can be used to read data
in HDFS.

■ Problem
You want to copy files in HDFS to the local filesystem.

■ Solution
Use Hadoop’s filesystem API to copy data out of HDFS.

■ Discussion
The HDFS Java API is nicely integrated with Java’s I/O model, which means you can
work with regular input streams and output streams for I/O.

 To start off, you need to create a file in HDFS using the command line:

$ echo "hello world" | hadoop fs -put - hdfs-file.txt

Now copy that file to the local filesystem using the command line:

$ hadoop fs -get hdfs-file.txt local-file.txt

Let’s explore how you can replicate this copy in Java. There are two main parts to writing
the code to do this—the first part is getting a handle to the FileSystem and creating the
file, and the second part is copying the data from standard input to the OutputStream:

FileSystem fs = FileSystem.get(conf);
InputStream is = fs.open(inputFile);
OutputStream os = FileUtils.openOutputStream(outputFile);

IOUtils.copyBytes(is, os, getConf(), true);

You can see how this code works in practice by running the following command:

$ echo "the cat" | hadoop fs -put - hdfs-file.txt

$ hip hip.ch5.CopyHdfsFileToLocal \
--input hdfs-file.txt \
--output local-file.txt

$ cat local-file.txt
the cat

Get a handle to a Hadoop filesystem. You don’t specify which
filesystem implementation is used; this is determined at

runtime by loading the configuration properties.
Open a file in HDFS
and get a handle to it.

Create a local file
and open a stream.

Use a helper class in Hadoop to copy the bytes
between the streams. It’ll automatically close the
streams once the copy has completed, as specified
by the last argument.

246 CHAPTER 5 Moving data into and out of Hadoop

So far we’ve covered the low-level tools that are bundled with Hadoop to help you pull
out data. Next we’ll look at a method for near-continuous movement of data from
HDFS to a local filesystem.

5.3.2 Automated file egress

Up until now you’ve seen different options for copying data out of HDFS. Most of
these mechanisms don’t have automation or scheduling capabilities; they’re ulti-
mately low-level methods for accessing data. If you’re looking to automate your data
copy, you can wrap one of these low-level techniques inside of a scheduling engine
such as cron or Quartz. However, if you’re looking for out-of-the-box automation,
then this section is for you.

 Earlier in this chapter we looked at two mechanisms that can move semistructured
and binary data into HDFS: the open source HDFS File Slurper project, and Oozie,
which triggers a data ingress workflow. The challenge in using a local filesystem for
egress (and ingress for that matter) is that map and reduce tasks running on clusters
won’t have access to the filesystem on a specific server. You have three broad options
for moving data from HDFS to a filesystem:

■ You can host a proxy tier on a server, such as a web server, which you would then
write to using MapReduce.

■ You can write to the local filesystem in MapReduce and then, as a postprocess-
ing step, trigger a script on the remote server to move that data.

■ You can run a process on the remote server to pull data from HDFS directly.

The third option is the preferred approach because it’s the simplest and most effi-
cient, and as such it’s the focus of this section. We’ll look at how you can use the HDFS
File Slurper to automatically move files from HDFS out to a local filesystem.

TECHNIQUE 52 An automated mechanism to export files from HDFS

Let’s say you have files being written in HDFS by MapReduce, and you want to auto-
mate their extraction to a local filesystem. This kind of feature isn’t supported by any
Hadoop tools, so you have to look elsewhere.

■ Problem
You want to automate moving files from HDFS to a local filesystem.

■ Solution
The HDFS File Slurper can be used to copy files from HDFS to a local filesystem.

■ Discussion
The goal here is to use the HDFS File Slurper project (https://github.com/alexholmes/
hdfs-file-slurper) to assist with the automation. We covered the HDFS File Slurper in
detail in technique 40—please read that section before continuing with this technique.

 In addition to the way you used it in technique 40, the HDFS Slurper also supports
moving data from HDFS out to a local directory. All you need to do is flip around the

https://github.com/alexholmes/hdfs-file-slurper
https://github.com/alexholmes/hdfs-file-slurper

247TECHNIQUE 53 Using Sqoop to export data to MySQL

source and destination directories, as you can see from the following subsection of the
Slurper’s configuration file:

SRC_DIR = hdfs:/tmp/slurper/in
WORK_DIR = hdfs:/tmp/slurper/work
COMPLETE_DIR = hdfs:/tmp/slurper/complete
ERROR_DIR = hdfs:/tmp/slurper/error
DEST_STAGING_DIR = file:/tmp/slurper/stage
DEST_DIR = file:/tmp/slurper/dest

You’ll notice that not only is the source directory in HDFS, but also the work, com-
plete, and error directories are there. This is because you need to be able to atomi-
cally move files between directories without incurring the expensive overhead of
copying the files across filesystems.

■ Summary
At this point you may wonder how you can trigger the Slurper to copy a directory that
was just written with a MapReduce job. When a MapReduce job completes success-
fully, it creates a file called _SUCCESS in the job output directory. This would seem like
the perfect trigger to kick off an egress process to copy that content to a local file-
system. As it turns out, Oozie has a mechanism that can trigger a workflow when it
detects these Hadoop “success” files, but again the challenge here is that any work per-
formed by Oozie is performed in MapReduce, so it can’t be used to perform the trans-
fer directly.

 You could write your own script that polls HDFS for completed directories and
then triggers a file copy process. That file copy process could be the Slurper or a sim-
ple hadoop fs -get command if the source files need to be kept intact.

 In the next topic we’ll look at writing data from Hadoop out to relational databases.

5.3.3 Databases

Databases are usually the target of Hadoop data egress in one of two circumstances:
either when you move data back into production databases to be used by production
systems, or when you move data into OLAP databases to perform business intelligence
and analytics functions.

 In this section we’ll use Apache Sqoop to export data from Hadoop to a MySQL
database. Sqoop is a tool that simplifies database imports and exports. Sqoop is cov-
ered in detail in technique 42.

 We’ll walk through the process of exporting data from HDFS to Sqoop. We’ll also
cover methods for using the regular connector, as well as how to perform bulk
imports using the fast connector.

TECHNIQUE 53 Using Sqoop to export data to MySQL

Hadoop excels at performing operations at scales that defeat most relational data-
bases, so it’s common to extract OLTP data into HDFS, perform some analysis, and
then export it back out to a database.

248 CHAPTER 5 Moving data into and out of Hadoop

■ Problem
You want to write data to relational databases, and at the same time ensure that writes
are idempotent.

■ Solution
This technique covers how Sqoop can be used to export text files to a relational data-
base and also looks at how Sqoop can be configured to work with files with custom
field and record delimiters. We’ll also cover idempotent exports to make sure that
failed exports don’t leave your database in an inconsistent state.

■ Discussion
This technique assumes you’ve already followed the instructions in technique 42 to
install MySQL and create the schema.

 Sqoop exports require that the database table you’re exporting into already exists.
Sqoop can support both inserts and updates of rows in the table.

 Exporting data to a database shares many of the arguments that we examined in
the import section. The differences are that exports require the --export-dir argu-
ment to determine the HDFS directory to export. You’ll also create another options
file for exports to keep from insecurely supplying the password on the command line:

$ cat > ~/.sqoop_export_options.txt << EOF
export
--username
hip_sqoop_user
--password
password
--connect
jdbc:mysql://localhost/sqoop_test
EOF
$ chmod 700 ~/.sqoop_export_options.txt

Your first step will be to export data from MySQL to HDFS to ensure you have a good
starting point, as shown in the following commands:

$ hadoop fs -rmr stocks
$ sqoop --options-file ~/.sqoop_import_options.txt \
--connect jdbc:mysql://localhost/sqoop_test --table stocks

The result of the Sqoop import is a number of CSV files in HDFS, as you can see in the
following code:

$ hadoop fs -cat stocks/part-m-00000 | head
1,AAPL,2009-01-02,85.88,91.04,85.16,90.75,26643400,90.75
2,AAPL,2008-01-02,199.27,200.26,192.55,194.84,38542100,194.84
...

For the Sqoop export from HDFS to MySQL, you’ll specify that the target table should
be stocks_export and that it should export data from the HDFS stocks directory:

$ sqoop --options-file ~/.sqoop_export_options.txt \
--export-dir stocks \
--table stocks_export

249TECHNIQUE 53 Using Sqoop to export data to MySQL

By default, Sqoop exports will perform an INSERT into the target database table. It can
support updates with the --update-mode argument. A value of updateonly means that if
there’s no matching key, the updates will fail. A value of allowinsert results in an insert
if a matching key doesn’t exist. The table column name that’s used to perform the
update is supplied in the --update-key argument.

 The following example indicates that only an update should be attempted, using
the primary key for the update:

$ sqoop --options-file ~/.sqoop_export_options.txt \
--update-mode updateonly \
--update-key id \
--export-dir stocks \
--table stocks_export

Input data formatting
You can use several options to override the default Sqoop settings for parsing the
input data. Table 5.7 lists these options.

Idempotent exports
The Sqoop map tasks that perform the exports use multiple transactions for their
database writes. If a Sqoop export MapReduce job fails, your table could contain par-
tial writes. For idempotent database writes, Sqoop can be instructed to perform the
MapReduce writes to the staging table. After successful job completion, the staging
table is moved to the target table in a single transaction, which is idempotent. You can
see the sequence of events in figure 5.19.

Table 5.7 Formatting options for input data

Argument Default Description

--input-enclosed-by (None) The field enclosing character. Every field must be enclosed with
this character. (If the field enclosing character can occur inside a
field, the --input-optionally-enclosed-by option should be
used to enclose that field.)

--input-escaped-by (None) Escape character, where the next character is extracted literally
and isn’t parsed.

--input-fields-
➥ terminated-by

, The field separator.

--input-lines-
➥ terminated-by

\n The line terminator.

--input-optionally-
➥ enclosed-by

(None) The field enclosing character. This argument is the same as --
input-enclosed-by, except that it’s applied only to fields that
contain the field separator character. For example, in CSV it’s
common for fields to be enclosed by double quotes only when
they contain commas.

250 CHAPTER 5 Moving data into and out of Hadoop

In the following example, the staging table is stocks_staging, and you’re also telling
Sqoop to clear it out before the MapReduce job starts with the --clear-staging-table
argument:

$ sqoop --options-file ~/.sqoop_export_options.txt \
--export-dir stocks \
--table stocks_export \
--staging-table stocks_staging \
--clear-staging-table

Direct exports
You used the fast connector in the import technique, which was an optimization that
used the mysqldump utility. Sqoop exports also support using the fast connector,
which uses the mysqlimport tool. As with mysqldump, all of the nodes in your cluster
need to have mysqlimport installed and available in the path of the user that’s used to
run MapReduce tasks. And as with the import, the --direct argument enables utiliza-
tion of the fast connectors:

$ sqoop --options-file ~/.sqoop_export_options.txt \
--direct \
--export-dir stocks \
--table stocks_export

Idempotent exports with mysqlimport
Sqoop doesn’t support using fast connectors in conjunction with a staging table,
which is how you achieve idempotent writes with regular connectors. But it’s still possi-
ble to achieve idempotent writes with fast connectors with a little extra work at your
end. You need to use the fast connector to write to a staging table, and then trigger
the INSERT statement, which atomically copies the data into the target table. The steps
would look like the following:

Sqoop

MapReduce

Run Sqoop
export

1

Launch MapReduce job2

sql>INSERT INTO target
(SELECT * FROM staging)

4

Write to staging table3

Client

Database

Target table

Staging table

Figure 5.19 Sqoop
staging sequence of
events, which helps
ensure idempotent writes

251TECHNIQUE 53 Using Sqoop to export data to MySQL

$ sqoop --options-file ~/.sqoop_export_options.txt \
--direct \
--export-dir stocks \
--table stocks_staging

$ mysql --host=localhost \
--user=hip_sqoop_user \
--password=password \
-e "INSERT INTO stocks_export (SELECT * FROM stocks_staging)"\
sqoop_test

This breaks the earlier rule about exposing credentials on the command line, but it’s
easy to write a wrapper script that can read these settings from a configuration file.

■ Summary
Sqoop provides a simplified usage model compared to using the DBInputFormat format
classes that are provided in MapReduce. But using the DBInputFormat classes will give
you the added flexibility to transform or preprocess your data in the same MapReduce
job that performs the database export. The advantage of Sqoop is that it doesn’t
require you to write any code, and it has some useful notions, such as staging, to help
you achieve your idempotent goals.

 The final step in this section, and in the chapter, is to look at exporting data to
HBase.

5.3.4 NoSQL

MapReduce is a powerful and efficient way to bulk-load data into external systems. So
far we’ve covered how Sqoop can be used to load relational data, and now we’ll look at
NoSQL systems, and specifically HBase.

 Apache HBase is a distributed key/value, column-oriented data store. Earlier in
this chapter we looked at how to import data from HBase into HDFS, as well as how to
use HBase as a data source for a MapReduce job.

 The most efficient way to load data into HBase is via its built-in bulk-loading mech-
anism, which is described in detail on the HBase wiki page titled “Bulk Loading” at
https://hbase.apache.org/book/arch.bulk.load.html. But this approach bypasses the
write-ahead log (WAL), which means that the data being loaded isn’t replicated to
slave HBase nodes.

 HBase also comes with an org.apache.hadoop.hbase.mapreduce.Export class, which
will load HBase tables from HDFS, similar to how the equivalent import worked earlier
in this chapter. But you must have your data in SequenceFile form, which has disad-
vantages, including no support for versioning.

 You can also use the TableOutputFormat class in your own MapReduce job to export
data to HBase, but this approach is slower than the bulk-loading tool.

 We’ve now concluded our examination of Hadoop egress tools. We covered how
you can use the HDFS File Slurper to move data out to a filesystem and how to use
Sqoop for idempotent writes to relational databases, and we wrapped up with a look at
ways to move Hadoop data into HBase.

https://hbase.apache.org/book/arch.bulk.load.html

252 CHAPTER 5 Moving data into and out of Hadoop

5.4 Chapter summary
Moving data in and out of Hadoop is a critical part of the Hadoop architecture. In this
chapter we covered a broad spectrum of techniques that you can use to perform data
ingress and egress activities and that work with a variety of data sources. Of note, we cov-
ered Flume, a data collection and distribution solution, Sqoop, a tool for moving rela-
tional data in and out of Hadoop, and Camus, a tool for ingesting Kafka data into HDFS.

 Now that your data is tucked away in HDFS, it’s time to look at some interesting
processing patterns that you can apply to that data.

Part 3

Big data patterns

Now that you’ve gotten to know Hadoop and know how to best organize,
move, and store your data in Hadoop, you’re ready to explore part 3 of this
book, which examines the techniques you need to know to streamline your big
data computations.

 In chapter 6 we’ll examine techniques for optimizing MapReduce opera-
tions, such as joining and sorting on large datasets. These techniques make jobs
run faster and allow for more efficient use of computational resources.

 Chapter 7 examines how graphs can be represented and utilized in Map-
Reduce to solve algorithms such as friends-of-friends and PageRank. It also covers
how data structures such as Bloom filters and HyperLogLog can be used when
regular data structures can’t scale to the data sizes that you’re working with.

 Chapter 8 looks at how to measure, collect, and profile your MapReduce jobs
and identify areas in your code and hardware that could be causing jobs to run
longer than they should. It also tames MapReduce code by presenting different
approaches to unit testing. Finally, it looks at how you can debug any Map-
Reduce job, and offers some anti-patterns you’d best avoid.

255

Applying MapReduce
 patterns to big data

With your data safely in HDFS, it’s time to learn how to work with that data in
MapReduce. Previous chapters showed you some MapReduce snippets in action
when working with data serialization. In this chapter we’ll look at how to work
effectively with big data in MapReduce to solve common problems.

MapReduce basics If you want to understand the mechanics of Map-
Reduce and how to write basic MapReduce programs, it’s worth your time
to read Hadoop in Action by Chuck Lam (Manning, 2010).

MapReduce contains many powerful features, and in this chapter we’ll focus on join-
ing, sorting, and sampling. These three patterns are important because they’re

This chapter covers
■ Learning how to join data with map-side and

reduce-side joins
■ Understanding how a secondary sort works
■ Discovering how partitioning works and how to

globally sort data

256 CHAPTER 6 Applying MapReduce patterns to big data

natural operations you’ll want to perform on your big data, and the goal of your clusters
should be to squeeze as much performance as possible out of your MapReduce jobs.

 The ability to join disparate and sparse data is a powerful MapReduce feature, but
an awkward one in practice, so we’ll also look at advanced techniques for optimizing
join operations with large datasets. Examples of joins include combining log files with
reference data from a database and inbound link calculations on web graphs.

 Sorting in MapReduce is also a black art, and we’ll dive into the depths of Map-
Reduce to understand how it works by examining two techniques that everyone will
encounter at some point: secondary sorting and total order sorting. We’ll wrap things
up with a look at sampling in MapReduce, which provides the opportunity to quickly
iterate over a large dataset by working with a small subset of that data.

6.1 Joining
Joins are relational constructs used to combine relations together (you’re probably
familiar with them in the context of databases). In MapReduce, joins are applicable
in situations where you have two or more datasets you want to combine. An example
would be when you want to combine your users (which you extracted from your
OLTP database) with your log files (which contain user activity details). Various
scenarios exist where it would be useful to combine these datasets together, such
as these:

■ You want to aggregate data based on user demographics (such as differences in
user habits, comparing teenagers and users in their 30s).

■ You want to send an email to users who haven’t used the website for a pre-
scribed number of days.

■ You want to create a feedback loop that examines a user’s browsing habits,
allowing your system to recommend previously unexplored site features to the
user.

All of these scenarios require you to join
datasets together, and the two most com-
mon types of joins are inner joins and outer
joins. Inner joins compare all tuples in rela-
tions L and R, and produce a result if a join
predicate is satisfied. In contrast, outer joins
don’t require both tuples to match based
on a join predicate, and instead can retain
a record from L or R even if no match
exists. Figure 6.1 illustrates the different
types of joins.

 In this section we’ll look at three join-
ing strategies in MapReduce that support
the two most common types of joins (inner
and outer). These three strategies perform

Left outer join

Right outer join

Inner join

Full outer join

Figure 6.1 Different types of joins combining
relations, shown as Venn diagrams. The shaded
areas show data that is retained in the join.

257TECHNIQUE 54 Picking the best join strategy for your data

the join either in the map phase or in the reduce phase by taking advantage of the
MapReduce sort-merge architecture:

■ Repartition join—A reduce-side join for situations where you’re joining two or
more large datasets together

■ Replication join—A map-side join that works in situations where one of the data-
sets is small enough to cache

■ Semi-join—Another map-side join where one dataset is initially too large to fit
into memory, but after some filtering can be reduced down to a size that can fit
in memory

After we cover these joining strategies, we’ll look at a decision tree so you can deter-
mine the best join strategy for your situation.

Join data
The techniques will all utilize two datasets to perform the join—users and logs. The
user data contains user names, ages, and states. The complete dataset follows:

anne 22 NY
joe 39 CO
alison 35 NY
mike 69 VA
marie 27 OR
jim 21 OR
bob 71 CA
mary 53 NY
dave 36 VA
dude 50 CA

The logs dataset shows some user-based activity that could be extracted from applica-
tion or webserver logs. The data includes the username, an action, and the source IP
address. Here’s the complete dataset:

jim logout 93.24.237.12
mike new_tweet 87.124.79.252
bob new_tweet 58.133.120.100
mike logout 55.237.104.36
jim new_tweet 93.24.237.12
marie view_user 122.158.130.90
jim login 198.184.237.49
marie login 58.133.120.100

Let’s get started by looking at which join method you should pick given your data.

TECHNIQUE 54 Picking the best join strategy for your data

Each of the join strategies covered in this section has different strengths and weak-
nesses, and it can be challenging to determine which one is best suited for the data
you’re working with. This technique takes a look at different traits in the data and uses
that information to pick the optimal approach to join your data.

258 CHAPTER 6 Applying MapReduce patterns to big data

■ Problem
You want to select the optimal method to join your data.

■ Solution
Use a data-driven decision tree to pick the best join strategy.

■ Discussion
Figure 6.2 shows a decision tree you can use.1

1 This decision tree is modeled after the one presented by Spyros Blanas et al., in “A Comparison of Join Algo-
rithms for Log Processing in MapReduce,” http://pages.cs.wisc.edu/~jignesh/publ/hadoopjoin.pdf.

Reduce-side joins

Map-side joins

Can
one dataset

be loaded into
memory?

Joining data
where one

dataset can fit
into memory

Yes

Techniques

Could one
dataset be

trimmed to fit in
memory?

Performing a
semi-join on

large datasets

Yes

Are all the
datasets ordered
by join key, and

bucketed?

Joining on
presorted and
prepartitioned

data

Yes

No A basic
repartition join

Filters,
projections,

and
pushdowns

The first step in any
type of work,

including joining data,
is to aggressively
filter and project

your data.

O�en one dataset
can be reduced by

only including join keys
that exist in both

datasets.

Figure 6.2 Decision tree for selecting a join strategy

259TECHNIQUE 55 Filters, projections, and pushdowns

The decision tree can be summarized in the following three points:

■ If one of your datasets is small enough to fit into a mapper’s memory, the map-
only replicated join is efficient.

■ If both datasets are large and one dataset can be substantially reduced by prefil-
tering elements that don’t match the other, the semi-join works well.

■ If you can’t preprocess your data and your data sizes are too large to cache—
which means you have to perform the join in the reducer—repartition joins
need to be used.

Regardless of which strategy you pick, one of the most fundamental activities you
should be performing in your joins is using filters and projections.

TECHNIQUE 55 Filters, projections, and pushdowns

In this technique, we’ll examine how you can effectively use filters and projections in
your mappers to cut down on the amount of data that you’re working with, and spill-
ing, in MapReduce. This technique also examines a more advanced optimization
called pushdowns, which can further improve your data pipeline.

■ Problem
You’re working with large data volumes and you want to efficiently manage your input
data to optimize your jobs.

■ Solution
Filter and project your data to only include the data points you’ll be using in your work.

■ Discussion
Filtering and projecting data is the biggest optimization you can make when joining
data, and when working with data in general. This is a technique that applies to any
OLAP activity, and it’s equally effective in Hadoop.

 Why are filtering and projection so important? They cut down on the amount of
data that a processing pipeline needs to handle. Having less data to work with is impor-
tant, especially when you’re pushing that data across network and disk boundaries. The
shuffle step in MapReduce is expensive because data is being written to local disk and
across the network, so having fewer bytes to push around means that your jobs and the
MapReduce framework have less work to do, and this translates to faster jobs and less
pressure on the CPU, disk, and your networking gear.

 Figure 6.3 shows a simple example of how filtering and projection works.

The shaded fields are
the ones that you want

to use in your job.

Only the rows and fields
needed for your job are retained
a�er filtering and projection.

Field 1 Field 2 Field 3 Field 4
Record 1
Record 2

Record N

Input data Filter + project Compacted data

Figure 6.3 Using filters
and projections to reduce
data sizes

260 CHAPTER 6 Applying MapReduce patterns to big data

Filters and projections should be performed as close to the data source as possible; in
MapReduce this work is best performed in the mappers. The following code shows an
example of a filter that excludes users under 30 and only projects their names and states:

@Override
protected void map(LongWritable offset, Text value, Context context) {

User user = User.fromText(value);
if (user.getAge() >= 30) {
context.write(new Text(user.getName()),

new Text(user.getState()));
}

}

The challenge with using filters in joins is that it’s possible that not all of the datasets
you’re joining will contain the fields you want to filter on. If this is the case, take a look
at technique 61, which discusses using a Bloom filter to help solve this challenge.

Pushdowns
Projection and predicate pushdowns take filtering further by pushing the projections
and predicates down to the storage format. This is even more efficient, especially
when working with storage formats that can skip over records or entire blocks based
on the pushdowns.

 Table 6.1 lists the various storage formats and whether they support pushdowns.

Further reading on pushdowns Chapter 3 contains additional details on how
Parquet pushdowns can be used in your jobs.

It’s pretty clear that a big advantage of Parquet is its ability to support both types of
pushdowns. If you’re working with huge datasets and regularly work on only a subset
of the records and fields, then you should consider Parquet as your storage format.

 It’s time to move on to the actual joining techniques.

6.1.1 Map-side joins

Our coverage of joining techniques will start with a look at performing joins in the
mapper. The reason we’ll cover these techniques first is that they’re the optimal join

Table 6.1 Storage formats and their pushdown support

Format Projection pushdown supported? Predicate pushdown supported?

Text (CSV, JSON, etc.) No No

Protocol Buffers No No

Thrift No No

Avroa

a Avro has both row-major and column-major storage formats.

No No

Parquet Yes Yes

Filter out users that
are younger than 30.

Project just the
name and state.

261TECHNIQUE 56 Joining data where one dataset can fit into memory

strategies if your data can support map-side joins. Reduce-size joins are expensive by
comparison due to the overhead of shuffling data between the mappers and reducers.
As a general policy, map-side joins are preferred.

 In this section we’ll look at three different flavors of map-side joins. Technique 56
works well in situations where one of the datasets is already small enough to cache in
memory. Technique 57 is more involved, and it also requires that one dataset can fit in
memory after filtering out records where the join key exists in both datasets. Tech-
nique 58 works in situations where your data is sorted and distributed across your files
in a certain way.

TECHNIQUE 56 Joining data where one dataset can fit into memory

A replicated join is a map-side join, and it gets its name from its function—the small-
est of the datasets is replicated to all the map hosts. The replicated join depends on
the fact that one of the datasets being joined is small enough to be cached in memory.

■ Problem
You want to perform a join on data where one dataset can fit into your mapper’s memory.

■ Solution
Use the distributed cache to cache the smaller dataset and perform the join as the
larger dataset is streamed to the mappers.

■ Discussion
You’ll use the distributed cache to copy the small dataset to the nodes running the
map tasks2 and use the initialization method of each map task to load it into a
hashtable. Use the key from each record fed to the map function from the large data-
set to look up the small dataset hashtable, and perform a join between the large data-
set record and all of the records from the small dataset that match the join value.
Figure 6.4 shows how the replicated join works in MapReduce.

2 Hadoop’s distributed cache copies files located on the MapReduce client host or files in HDFS to the slave
nodes before any map or reduce tasks are executed on the nodes. Tasks can read these files from their local
disk to use as part of their work.

Small dataset

Large dataset

Map:
User data from

distributed cache is
loaded into hashtable
and joined with user
logs being streamed

to mapper

Distributed cache

users

Join resultsuser logs

Figure 6.4 Map-only
replicated join

262 CHAPTER 6 Applying MapReduce patterns to big data

The following code performs this join:3

public void run(Path usersPath, Path userLogsPath, Path outputPath) {

Configuration conf = super.getConf();

Job job = new Job(conf);

job.setJarByClass(ReplicatedJoin.class);
job.setMapperClass(JoinMap.class);

job.addCacheFile(usersPath.toUri());
job.getConfiguration().set(
JoinMap.DISTCACHE_FILENAME, usersPath.getName());

job.setNumReduceTasks(0);

FileInputFormat.setInputPaths(job, userLogsPath);
FileOutputFormat.setOutputPath(job, outputPath);

job.waitForCompletion(true);
}

public static class JoinMap
extends Mapper<LongWritable, Text, Text, Text> {

public static final String DISTCACHE_FILENAME = "distcachefile";
private Map<String, User> users = new HashMap<String, User>();

@Override
protected void setup(Context context)

throws IOException, InterruptedException {

URI[] files = context.getCacheFiles();

final String distributedCacheFilename =
context.getConfiguration().get(DISTCACHE_FILENAME_CONFIG);

for (URI uri: files) {
File path = new File(uri.getPath());

if (path.getName().equals(distributedCacheFilename)) {
loadCache(path);
break;

}
}

}

private void loadCache(File file) throws IOException {
for(String line: FileUtils.readLines(file)) {
User user = User.fromString(line);
users.put(user.getName(), user);

}
}

3 GitHub source: https://github.com/alexholmes/hiped2/blob/master/src/main/java/hip/ch6/joins/
replicated/simple/ReplicatedJoin.java.

Add the users file to
the distributed cache.

Save the users filename
to the job config.

The larger user log file
is the job input.

Extract the user
filename from

the job config.

Loop through all the files
in the distributed cache
searching for your file.

When your file is
found, load the

users into memory.

https://github.com/alexholmes/hiped2/blob/master/src/main/java/hip/ch6/joins/replicated/simple/ReplicatedJoin.java
https://github.com/alexholmes/hiped2/blob/master/src/main/java/hip/ch6/joins/replicated/simple/ReplicatedJoin.java

263TECHNIQUE 56 Joining data where one dataset can fit into memory

@Override
protected void map(LongWritable offset, Text value, Context context)

throws IOException, InterruptedException {

UserLog userLog = UserLog.fromText(value);
User user = users.get(userLog.getName());
if (user != null) {
context.write(

new Text(user.toString()),
new Text(userLog.toString()));

}
}

}

To perform this join, you first need to copy the two files you’re going to join to your
home directory in HDFS:

$ hadoop fs -put test-data/ch6/users.txt .
$ hadoop fs -put test-data/ch6/user-logs.txt .

Next, run the job and examine its output once it has completed:

$ hip hip.ch6.joins.replicated.simple.ReplicatedJoin \
--users users.txt \
--user-logs user-logs.txt \
--output output

$ hadoop fs -cat output/part*
jim 21 OR jim logout 93.24.237.12
mike 69 VA mike new_tweet 87.124.79.252
bob 71 CA bob new_tweet 58.133.120.100
mike 69 VA mike logout 55.237.104.36
jim 21 OR jim new_tweet 93.24.237.12
marie 27 OR marie view_user 122.158.130.90
jim 21 OR jim login 198.184.237.49
marie 27 OR marie login 58.133.120.100

Hive
Hive joins can be converted to map-side joins by configuring the job prior to execu-
tion. It’s important that the largest table be the last table in the query, as that’s the
table that Hive will stream in the mapper (the other tables will be cached):

set hive.auto.convert.join=true;

SELECT /*+ MAPJOIN(l) */ u.*, l.*
FROM users u
JOIN user_logs l ON u.name = l.name;

De-emphasizing map-join hint Hive 0.11 implemented some changes that
ostensibly removed the need to supply map-join hints as part of the SELECT
statement, but it’s unclear in which situations the hint is no longer needed
(see https://issues.apache.org/jira/browse/HIVE-3784).

If the user exists in
both datasets, emit

the combined records.

https://issues.apache.org/jira/browse/HIVE-3784

264 CHAPTER 6 Applying MapReduce patterns to big data

Map-side joins are not supported for full or right outer joins; they’ll execute as repar-
tition joins (reduce-side joins).

■ Summary
Both inner and outer joins can be supported with replicated joins. This technique
implemented an inner join, because only records that had the same key in both data-
sets were emitted. To convert this into an outer join, you could emit values being
streamed to the mapper that don’t have a corresponding entry in the hashtable, and
you could similarly keep track of hashtable entries that were matched with streamed
map records and use the cleanup method at the end of the map task to emit records
from the hashtable that didn’t match any of the map inputs.

 Is there a way to further optimize map-side joins in cases where the dataset is small
enough to cache in memory? It’s time to look at semi-joins.

TECHNIQUE 57 Performing a semi-join on large datasets

Imagine a situation where you’re working with two large datasets that you want to join,
such as user logs and user data from an OLTP database. Neither of these datasets is
small enough to cache in a map task’s memory, so it would seem you’ll have to resign
yourself to performing a reduce-side join. But not necessarily—ask yourself this ques-
tion: would one of the datasets fit into memory if you were to remove all records that
didn’t match a record from the other dataset?

 In our example there’s a good chance that the users that appear in your logs are a
small percentage of the overall set of users in your OLTP database, so by removing all
the OLTP users that don’t appear in your logs, you could get the dataset down to a size
that fits into memory. If this is the case, a semi-join is the solution. Figure 6.5 shows
the three MapReduce jobs you need to execute to perform a semi-join.

 Let’s look at what’s involved in writing a semi-join.

■ Problem
You want to join large datasets together and at the same time avoid the overhead of
the shuffle and sort phases.

■ Solution
In this technique you’ll use three MapReduce jobs to join two datasets together to avoid
the overhead of a reducer-side join. This technique is useful in situations where you’re
working with large datasets, but where a job can be reduced down to a size that can fit
into the memory of a task by filtering out records that don’t match the other dataset.

■ Discussion
In this technique you’ll break down the three jobs illustrated in figure 6.5.

Job 1
The function of the first MapReduce job is to produce a set of unique user names that
exist in the log files. You do this by having the map function perform a projection of
the user name, and in turn use the reducers to emit the user name. To cut down on
the amount of data transferred between the map and reduce phases, you’ll have the

265TECHNIQUE 57 Performing a semi-join on large datasets

users user logs

user logs Unique user
names in log file

Users that
exist in logs

Datasets to be joined

Job 1:
The first job operates on the large dataset—in our case, the user logs—and

produces a unique set of user names that exist in the logs.

Map:
Emit unique
user names

Reduce:
Produces unique
set of user names

Job 2:
The second job performs a replicated join between the unique log users and the

users dataset, which will exclude users that didn’t exist in the logs.

Map:
Replicated join to retain users

that have entries in log file

Distributed cache

user

Unique user
names in log file

Job 3:
The final join is also a replicated join, where you need to cache the filtered-out users.

Map:
Replicated join to join original

user logs with filtered-out users

Distributed cache

user logs Join results

Users that
exist in logs

Figure 6.5 The three MapReduce jobs that comprise a semi-join

266 CHAPTER 6 Applying MapReduce patterns to big data

map task cache all of the user names in a HashSet and emit the values of the HashSet in
the cleanup method. Figure 6.6 shows the flow of this job.

 The following code shows the MapReduce job:4

public static class Map extends Mapper<Text, Text, Text, NullWritable> {
private Set<String> keys = new HashSet<String>();

@Override
protected void map(Text key, Text value, Context context)

throws IOException, InterruptedException {
keys.add(key.toString());

}

@Override
protected void cleanup(

Context context)
throws IOException, InterruptedException {

Text outputKey = new Text();
for(String key: keys) {
outputKey.set(key);
context.write(outputKey, NullWritable.get());

}
}

}

public static class Reduce
extends Reducer<Text, NullWritable, Text, NullWritable> {
@Override
protected void reduce(Text key, Iterable<NullWritable> values,

Context context)
throws IOException, InterruptedException {

context.write(key, NullWritable.get());
}

}

The result of the first job is a unique set of users that appear in the log files.

Job 2
The second step is an elaborate filtering MapReduce job, where the goal is to remove
users from the user dataset that don’t exist in the log data. This is a map-only job that
uses a replicated join to cache the user names that appear in the log files and join

4 GitHub source: https://github.com/alexholmes/hiped2/blob/master/src/main/java/hip/ch6/joins/
semijoin/UniqueHashedKeyJob.java.

user logs Unique user
names in log file

Job 1:
Extract unique users from user logs

Map:
Emit unique
user names

Reduce:
Produces unique
set of user names

Figure 6.6 The first job in the semi-join produces a unique set of user names that exist in the log files.

Create the HashSet to
cache the user names.

Add the user name
to the cache.

Emit the cached user
names from the mapper.

Emit each user name
once from the reducer.

https://github.com/alexholmes/hiped2/blob/master/src/main/java/hip/ch6/joins/semijoin/UniqueHashedKeyJob.java
https://github.com/alexholmes/hiped2/blob/master/src/main/java/hip/ch6/joins/semijoin/UniqueHashedKeyJob.java

267TECHNIQUE 57 Performing a semi-join on large datasets

them with the user dataset. The unique user output from job 1 will be substantially
smaller than the entire user dataset, which makes it the natural selection for caching.
Figure 6.7 shows the flow of this job.

 This is a replicated join, just like the one you saw in the previous technique. For
that reason I won’t include the code here, but you can easily access it on GitHub.5

Job 3
In this final step you’ll combine the filtered users produced from job 2 with the original
user logs. The filtered users should now be few enough to stick into memory, allowing
you to put them in the distributed cache. Figure 6.8 shows the flow of this job.

5 GitHub source: https://github.com/alexholmes/hiped2/blob/master/src/main/java/hip/ch6/joins/
semijoin/ReplicatedFilterJob.java.

Users that
exist in logs

Job 2:
The second job performs a replicated join between the unique log users and the

users dataset, which will exclude users that didn’t exist in the logs.

Map:
Replicated join to retain users

that have entries in log file

Distributed cache

user

Unique user
names in log file

Figure 6.7 The second job in the semi-join removes users from the user dataset missing from the log data.

Job 3:
The final join is also a replicated join, where you need to cache the filtered-out users.

Map:
Replicated join to join original

user logs with filtered-out users

Distributed cache

user logs Join results

Users that
exist in logs

Figure 6.8 The third job in the semi-join combines the users produced from job 2 with the original user logs.

https://github.com/alexholmes/hiped2/blob/master/src/main/java/hip/ch6/joins/semijoin/ReplicatedFilterJob.java
https://github.com/alexholmes/hiped2/blob/master/src/main/java/hip/ch6/joins/semijoin/ReplicatedFilterJob.java

268 CHAPTER 6 Applying MapReduce patterns to big data

Again you’re using the replicated join to perform this join, so I won’t show the code
for that here—please refer to the previous technique for more details on replicated
joins, or go straight to GitHub for the source of this job.6

 Run the code and look at the output produced by each of the previous steps:

$ hip hip.ch6.joins.semijoin.Main \
--users users.txt \
--user-logs user-logs.txt \
--output output

$ hadoop fs -ls output
/user/aholmes/output/filtered
/user/aholmes/output/result
/user/aholmes/output/unique

$ hadoop fs -cat output/unique/part*
bob
jim
marie
mike

$ hadoop fs -cat output/filtered/part*
mike 69 VA
marie 27 OR
jim 21 OR
bob 71 CA

$ hadoop fs -cat output/result/part*
jim logout 93.24.237.12 21 OR
mike new_tweet 87.124.79.252 69 VA
bob new_tweet 58.133.120.100 71 CA
mike logout 55.237.104.36 69 VA
jim new_tweet 93.24.237.12 21 OR
marie view_user 122.158.130.90 27 OR
jim login 198.184.237.49 21 OR
marie login 58.133.120.100 27 OR

The output shows the logical progression of the jobs in the semi-join and the final join
output.

■ Summary
In this technique we looked at how to use a semi-join to combine two datasets
together. The semi-join construct involves more steps than the other joins, but it’s a
powerful way to use a map-side join even when working with large datasets (with the
caveat that one of the datasets must be reduced to a size that fits in memory).

 With these three join strategies in hand, you may be wondering which one you
should use in what circumstances.

6 GitHub source: https://github.com/alexholmes/hiped2/blob/master/src/main/java/hip/ch6/joins/
semijoin/FinalJoinJob.java.

The output directory shows three
subdirectories corresponding to

the three jobs you ran.

The output of the first
job is the unique user
names in the log file.

The second job’s output shows
the users file filtered by users

that were in the log file.

The final output has the results
of the join between the user
logs and the filtered users.

https://github.com/alexholmes/hiped2/blob/master/src/main/java/hip/ch6/joins/semijoin/FinalJoinJob.java
https://github.com/alexholmes/hiped2/blob/master/src/main/java/hip/ch6/joins/semijoin/FinalJoinJob.java

269TECHNIQUE 58 Joining on presorted and prepartitioned data

TECHNIQUE 58 Joining on presorted and prepartitioned data

Map-side joins are the most efficient techniques, and the previous two map-side strate-
gies both required that one of the datasets could be loaded into memory. What if
you’re working with large datasets that can’t be reduced down to a smaller size as
required by the previous technique? In this case, a composite map-side join may be
viable, but only if all of the following requirements are met:

■ None of the datasets can be loaded in memory in its entirety.
■ The datasets are all sorted by the join key.
■ Each dataset has the same number of files.
■ File N in each dataset contains the same join key K.
■ Each file is less than the size of an HDFS block, so that partitions aren’t split. Or

alternatively, the input split for the data doesn’t split files.

Figure 6.9 shows an example of sorted and partitioned files that lend themselves to
composite joins. This technique will look at how you can use the composite join in
your jobs.

■ Problem
You want to perform a map-side join on sorted, partitioned data.

Join key

Alice
Alice
Bob

..

..

..

Other fields

Each join key can only exist in one file, and it must be the
same file in both datasets. For example, “Alice” cannot

exist in file 1 in dataset 1, and file 2 in dataset 2.

File 1

Dataset 1

Join key

Alice
Amy

..

..

Other fields

File 1

Dataset 2

Join key

..

..

..

Other fields

Join keys must be
sorted in each file.

File 2

Join key

Frank
Fred

..

..

Other fields

File 2

Dillon
Fred

George

Figure 6.9 An example of sorted files used as input for the composite join

270 CHAPTER 6 Applying MapReduce patterns to big data

■ Solution
Use the CompositeInputFormat bundled with MapReduce.

■ Discussion
The CompositeInputFormat is quite powerful and supports both inner and outer joins.
The following example shows how an inner join would be performed on your data:7

public void run(Path usersPath, Path userLogsPath, Path outputPath) {

Configuration conf = super.getConf();

Job job = new Job(conf);

job.setJarByClass(CompositeJoin.class);
job.setMapperClass(JoinMap.class);

job.setInputFormatClass(CompositeInputFormat.class);
job.getConfiguration().set(CompositeInputFormat.JOIN_EXPR,

CompositeInputFormat.compose("inner",
KeyValueTextInputFormat.class, usersPath, userLogsPath)

);

job.setNumReduceTasks(0);

FileOutputFormat.setOutputPath(job, outputPath);

job.waitForCompletion(true);
}

public static class JoinMap extends Mapper<Text, TupleWritable,
Text, Text> {

@Override
protected void map(Text key, TupleWritable value, Context context) {

context.write(key,
new Text(StringUtils.join(value.get(0), value.get(1))));

}
}

The composite join requires the input files to be sorted by key (which is the user
name in our example), so before you run the example you’ll need to sort the two files
and upload them to HDFS:

$ sort -k1,1 test-data/ch6/users.txt > users-sorted.txt
$ sort -k1,1 test-data/ch6/user-logs.txt > user-logs-sorted.txt
$ hadoop fs -put users-sorted.txt .
$ hadoop fs -put user-logs-sorted.txt .

Next, run the job and examine its output once it has completed:

$ hip hip.ch6.joins.composite.CompositeJoin \
--users users-sorted.txt \
--user-logs user-logs-sorted.txt \

7 GitHub source: https://github.com/alexholmes/hiped2/blob/master/src/main/java/hip/ch6/joins/
composite/CompositeJoin.java.

Specify the
input format.

Configure the
CompositeInputFormat.

Specify that an inner
join should be performed
(outer joins are also
supported).

Specify the input format and
input locations for the datasets
being joined. The key emitted by
the input format is used as the

join key, so use of the
KeyValueInputFormat results in

the join key being the first
token of each input line.Extract and emit the

join value from both
datasets.

https://github.com/alexholmes/hiped2/blob/master/src/main/java/hip/ch6/joins/composite/CompositeJoin.java
https://github.com/alexholmes/hiped2/blob/master/src/main/java/hip/ch6/joins/composite/CompositeJoin.java

271TECHNIQUE 59 A basic repartition join

--output output

$ hadoop fs -cat output/part*
bob 71 CA new_tweet 58.133.120.100
jim 21 OR login 198.184.237.49
jim 21 OR logout 93.24.237.12
jim 21 OR new_tweet 93.24.237.12
marie 27 OR login 58.133.120.100
marie 27 OR view_user 122.158.130.90
mike 69 VA logout 55.237.104.36
mike 69 VA new_tweet 87.124.79.252

Hive
Hive supports a map-side join called a sort-merge join, which operates in much the same
way as this technique. It also requires all the keys to be sorted in both tables, and the
tables must be bucketized into the same number of buckets. You need to specify a
number of configurables and also use the MAPJOIN hint to enable this behavior:

set hive.input.format=
org.apache.hadoop.hive.ql.io.BucketizedHiveInputFormat;
set hive.optimize.bucketmapjoin = true;
set hive.optimize.bucketmapjoin.sortedmerge = true;

SELECT /*+ MAPJOIN(l) */ u.*, l.*
FROM users u
JOIN user_logs l ON u.name = l.name;

■ Summary
The composite join actually supports N-way joins, so more than two datasets can be
joined. But all datasets must conform to the same set of restrictions that were dis-
cussed at the start of this technique.

 Because each mapper works with two or more data inputs, data locality can only
exist with one of the datasets, so the remaining ones must be streamed from other
data nodes.

 This join is certainly restrictive in terms of how your data must exist prior to run-
ning the join, but if your data is already laid out that way, then this is a good way to
join data and avoid the overhead of the shuffle in reducer-based joins.

6.1.2 Reduce-side joins

If none of the map-side techniques work for your data, you’ll need to use the shuffle
in MapReduce to sort and join your data together. The following techniques present a
number of tips and tricks for your reduce-side joins.

TECHNIQUE 59 A basic repartition join

The first technique is a basic reduce-side join, which allows you to perform inner and
outer joins.

■ Problem
You want to join together large datasets.

272 CHAPTER 6 Applying MapReduce patterns to big data

■ Solution
Use a reduce-side repartition join.

■ Discussion
A repartition join is a reduce-side join that takes advantage of MapReduce’s sort-
merge to group together records. It’s implemented as a single MapReduce job, and it
can support an N-way join, where N is the number of datasets being joined.

 The map phase is responsible for reading the data from the various datasets, deter-
mining the join value for each record, and emitting that join value as the output key.
The output value contains data that you’ll want to include when you combine datasets
together in the reducer to produce the job output.

 A single reducer invocation receives all of the values for a join key emitted by the
map function, and it partitions the data into N partitions, where N is the number of
datasets being joined. After the reducer has read all of the input records for the join
value and partitioned them in memory, it performs a Cartesian product across all par-
titions and emits the results of each join. Figure 6.10 shows the repartition join at a
high level.

Reduce

Reduce

Distinct
datasets

A B

A B

Map task

Map function Filter + project

Emit key/value where
key is the join field

Reduce task
Reducer values
partitioned by
data source

Reduce function
Partition

values based
on source

Perform
a Cartesian

product

A

B

Map

Map

Map

1

1 2
2

Figure 6.10 A basic MapReduce implementation of a repartition join

273TECHNIQUE 59 A basic repartition join

There are a number of things that your MapReduce code will need to be able to sup-
port for this technique:

■ It needs to support multiple map classes, each handling a different input data-
set. This is accomplished by using the MultipleInputs class.

■ It needs a way to mark records being emitted by the mappers so that they can be
correlated with the dataset of their origin. Here you’ll use the htuple project to
easily work with composite data in MapReduce.8

The code for the repartition join follows:9

enum ValueFields {
DATASET,
DATA

}

public static final int USERS = 0;
public static final int USER_LOGS = 1;

public void run(Path usersPath, Path userLogsPath, Path outputPath) {

Configuration conf = super.getConf();

Job job = new Job(conf);
job.setJarByClass(SimpleRepartitionMapReduce.class);

MultipleInputs.addInputPath(job, usersPath,
TextInputFormat.class, UserMap.class);

MultipleInputs.addInputPath(job, userLogsPath,
TextInputFormat.class, UserLogMap.class);

job.setReducerClass(Reduce.class);

job.setMapOutputKeyClass(Text.class);
job.setMapOutputValueClass(Tuple.class);

FileOutputFormat.setOutputPath(job, outputPath);

job.waitForCompletion(true);
}

public static class UserMap extends Mapper
<LongWritable, Text, Text, Tuple> {

@Override
public void map(LongWritable key, Text value, Context context) {
User user = User.fromText(value);

8 htuple (http://htuple.org) is an open source project that was designed to make it easier to work with tuples
in MapReduce. It was created to simplify secondary sorting, which is onerous in MapReduce.

9 GitHub source: https://github.com/alexholmes/hiped2/blob/master/src/main/java/hip/ch6/joins/
repartition/SimpleRepartitionJoin.java.

Create an enum to easily
reference fields in the

map output tuple.

Create constants to
represent each dataset.

Specify the mapper
for each dataset.

https://github.com/alexholmes/hiped2/blob/master/src/main/java/hip/ch6/joins/repartition/SimpleRepartitionJoin.java
https://github.com/alexholmes/hiped2/blob/master/src/main/java/hip/ch6/joins/repartition/SimpleRepartitionJoin.java

274 CHAPTER 6 Applying MapReduce patterns to big data

Tuple outputValue = new Tuple();
outputValue.setInt(ValueFields.DATASET, USERS);
outputValue.setString(ValueFields.DATA, value.toString());

context.write(new Text(user.getName()), outputValue);
}

}

public static class UserLogMap extends Mapper
<LongWritable, Text, Text, Tuple> {

@Override
public void map(LongWritable key, Text value, Context context) {
UserLog userLog = UserLog.fromText(value);

Tuple outputValue = new Tuple();
outputValue.setInt(ValueFields.DATASET, USER_LOGS);
outputValue.setString(ValueFields.DATA, value.toString());

context.write(new Text(userLog.getName()), outputValue);
}

}

public static class Reduce extends Reducer<Text, Tuple, Text, Text> {

List<String> users;
List<String> userLogs;

@Override
protected void reduce(Text key, Iterable<Tuple> values,

Context context) {
users = Lists.newArrayList();
userLogs = Lists.newArrayList();

for (Tuple tuple: values) {
switch (tuple.getInt(ValueFields.DATASET)) {

case USERS: {
users.add(tuple.getString(ValueFields.DATA));
break;

}
case USER_LOGS: {
userLogs.add(tuple.getString(ValueFields.DATA));
break;

}
}

}

for (String user: users) {
for (String userLog: userLogs) {
context.write(new Text(user), new Text(userLog));

}
}

}
}

Identify “users” as the
originating dataset in

the output tuple.

Identify “user logs” as the
originating dataset in the

output tuple.

Partition the inputs into
the appropriate list.

Perform a Cartesian
product for the inner join.

275TECHNIQUE 60 Optimizing the repartition join

You can use the following commands to run the job and view the job outputs:

$ hip hip.ch6.joins.repartition.SimpleRepartitionJoin \
--users users.txt \
--user-logs user-logs.txt \
--output output

$ hadoop fs -cat output/part*
jim 21 OR jim login 198.184.237.49
jim 21 OR jim new_tweet 93.24.237.12
jim 21 OR jim logout 93.24.237.12
mike 69 VA mike logout 55.237.104.36
mike 69 VA mike new_tweet 87.124.79.252
bob 71 CA bob new_tweet 58.133.120.100
marie 27 OR marie login 58.133.120.100
marie 27 OR marie view_user 122.158.130.90

■ Summary
Hadoop comes bundled with a hadoop-datajoin module, which is a framework for
repartition joins. It includes the main plumbing for handling multiple input datasets
and performing the join.

 The example shown in this technique as well as the hadoop-datajoin code are the
most basic form of repartition joins. Both require that all the data for a join key be
loaded into memory before the Cartesian product can be performed. This may work
well for your data, but if you have join keys with cardinalities that are larger than your
available memory, then you’re out of luck. The next technique looks at a way you can
possibly work around this problem.

TECHNIQUE 60 Optimizing the repartition join

The previous implementation of the repartition join is not space-efficient; it requires
all of the output values for a given join value to be loaded into memory before it
can perform the multiway join. It’s more efficient to load the smaller of the datasets
into memory and then iterate over the larger datasets, performing the join along
the way.

■ Problem
You want to perform a repartition join in MapReduce, but you want to do so without
the overhead of caching all the records in the reducer.

■ Solution
This technique uses an optimized repartition join framework that caches just one of
the datasets being joined to reduce the amount of data cached in the reducers.

■ Discussion
This optimized join only caches records from the smaller of the two datasets to cut
down on the memory overhead of caching all the records. Figure 6.11 shows the
improved repartition join in action.

276 CHAPTER 6 Applying MapReduce patterns to big data

There are a few differences between this technique and the simpler repartition join
shown in the previous technique. In this technique you’re using a secondary sort to
ensure that all the records from the small dataset arrive at the reducer before all the
records from the larger dataset. To accomplish this, you’ll emit tuple output keys from
the mapper containing the user name being joined on and a field identifying the orig-
inating dataset.

 The following code shows a new enum containing the fields that the tuple will con-
tain for the map output keys. It also shows how the user mapper populates the tuple
fields:10

enum KeyFields {
USER,
DATASET

}

10 GitHub source: https://github.com/alexholmes/hiped2/blob/master/src/main/java/hip/ch6/joins/
repartition/StreamingRepartitionJoin.java.

Reduce

Reduce

Distinct
datasets

Smaller
dataset

Map task

Map function Filter + project

Emit key/value where
key is a composite
key containing the
join field and the
dataset identifier

Reduce task

Reduce
function

Cache values
from the small

dataset B

Iterate over
values from A
and join with

cached B

A

B

Map

Map

Map

1

1 2

2

Partitioned
by join key

Reducer
values

ordered by
dataset

B1

B2

B3

B1

B2A1

B3

B1

B2A2

…

B3

Figure 6.11 An optimized MapReduce implementation of a repartition join

https://github.com/alexholmes/hiped2/blob/master/src/main/java/hip/ch6/joins/repartition/StreamingRepartitionJoin.java
https://github.com/alexholmes/hiped2/blob/master/src/main/java/hip/ch6/joins/repartition/StreamingRepartitionJoin.java

277TECHNIQUE 60 Optimizing the repartition join

Tuple outputKey = new Tuple();
outputKey.setString(KeyFields.USER, user.getName());
outputKey.setInt(KeyFields.DATASET, USERS);

The MapReduce driver code will need to be updated to indicate which fields in the
tuple should be used for sorting, partitioning, and grouping:11

■ The partitioner should only partition based on the user name, so that all the
records for a user arrive at the same reducer.

■ Sorting should use both the user name and dataset indicator, so that the smaller
dataset is ordered first (by virtue of the fact that the USERS constant is a smaller
number than the USER_LOGS constant, resulting in the user records being sorted
before the user logs).

■ The grouping should group on users so that both datasets are streamed to the
same reducer invocation:

ShuffleUtils.configBuilder()
.setPartitionerIndices(KeyFields.USER)
.setSortIndices(KeyFields.USER, KeyFields.DATASET)
.setGroupIndices(KeyFields.USER)
.configure(job.getConfiguration());

Finally, you’ll modify the reducer to cache the incoming user records, and then join
them with the user logs:12

@Override
protected void reduce(Tuple key, Iterable<Tuple> values,

Context context){
users = Lists.newArrayList();

for (Tuple tuple : values) {
switch (tuple.getInt(ValueFields.DATASET)) {
case USERS: {
users.add(tuple.getString(ValueFields.DATA));
break;

}
case USER_LOGS: {
String userLog = tuple.getString(ValueFields.DATA);
for (String user : users) {
context.write(new Text(user), new Text(userLog));

}
break;

}
}

}
}

11 Secondary sort is covered in more detail in section 6.2.1.
12 GitHub source: https://github.com/alexholmes/hiped2/blob/master/src/main/java/hip/ch6/joins/

repartition/StreamingRepartitionJoin.java.

https://github.com/alexholmes/hiped2/blob/master/src/main/java/hip/ch6/joins/repartition/StreamingRepartitionJoin.java
https://github.com/alexholmes/hiped2/blob/master/src/main/java/hip/ch6/joins/repartition/StreamingRepartitionJoin.java

278 CHAPTER 6 Applying MapReduce patterns to big data

You can use the following commands to run the job and view the job’s output:

$ hip hip.ch6.joins.repartition.StreamingRepartitionJoin \
--users users.txt \
--user-logs user-logs.txt \
--output output

$ hadoop fs -cat output/part*
bob 71 CA bob new_tweet 58.133.120.100
jim 21 OR jim logout 93.24.237.12
jim 21 OR jim new_tweet 93.24.237.12
jim 21 OR jim login 198.184.237.49
marie 27 OR marie view_user 122.158.130.90
marie 27 OR marie login 58.133.120.1
mike 69 VA mike new_tweet 87.124.79.252
mike 69 VA mike logout 55.237.104.36

Hive
Hive can support a similar optimization when performing repartition joins. Hive can
cache all the datasets for a join key and then stream the large dataset so that it doesn’t
need to be stored in memory.

 Hive assumes that the largest dataset is specified last in your query. Imagine you
had two tables called users and user_logs, and user_logs was much larger. To join
these tables, you’d make sure that the user_logs table was referenced as the last table
in the query:

SELECT u.*, l.*
FROM users u
JOIN user_logs l ON u.name = l.name;

If you don’t want to rearrange your query, you can alternatively use the STREAMTABLE
hint to tell Hive which table is larger:

SELECT /*+ STREAMTABLE(l) */ u.*, l.*
FROM user_logs l
JOIN users u ON u.name = l.name;

■ Summary
This join implementation improves on the earlier technique by buffering only the val-
ues of the smaller dataset. But it still suffers from the problem of all the data being
transmitted between the map and reduce phases, which is an expensive network cost
to incur.

 Further, the previous technique can support N-way joins, but this implementation
only supports two-way joins.

 A simple mechanism to reduce further the memory footprint of the reduce-side
join is to be aggressive about projections and filters in the map function, as discussed
in technique 55.

279TECHNIQUE 61 Using Bloom filters to cut down on shuffled data

TECHNIQUE 61 Using Bloom filters to cut down on shuffled data

Imagine that you wanted to perform a join over a subset of your data according to
some predicate, such as “only users that live in California.” With the repartition job
techniques covered so far, you’d have to perform that filter in the reducer, because
only one dataset (the users) has details about the state—the user logs don’t have
that information.

 In this technique we’ll look at how a Bloom filter can be used on the map side,
which can have a big impact on your job execution time.

■ Problem
You want to filter data in a repartition join, but to push that filter to the mappers.

■ Solution
Use a preprocessing job to create a Bloom filter, and then load the Bloom filter in the
repartition job to filter out records in the mappers.

■ Discussion
A Bloom filter is a useful probabilistic data structure that provides membership quali-
ties much like a set—the difference is that membership lookups only provide a defini-
tive “no” answer, as it’s possible to get false positives. Nevertheless, they require a lot
less memory compared to a HashSet in Java, so they’re well-suited to work with very
large datasets.

More about Bloom filters Chapter 7 provides details on how Bloom filters work
and how to use MapReduce to create a Bloom filter in parallel.

Your goal in this technique is to perform a join only on users that live in California.
There are two steps to this solution—you’ll first run a job to generate the Bloom filter,
which will operate on the user data and be populated with users that live in California.
This Bloom filter will then be used in the repartition join to discard users that don’t
exist in the Bloom filter. The reason you need this Bloom filter is that the mapper for
the user logs doesn’t have details on the users’ states.

 Figure 6.12 shows the steps in this technique.

280 CHAPTER 6 Applying MapReduce patterns to big data

Step 1: Creating the Bloom filter
The first job creates the Bloom filter containing names of users that are in California.
The mappers generate intermediary Bloom filters, and the reducer combines them

Job 1:
Create a Bloom filter containing a filtered set of users.

Job 2:
Repartition join, using the Bloom filter to filter records in both datasets in the mappers.

Reduce

Bitwise OR
operation on

all Bloom filters

The built-in Hadoop BloomFilter class is
Writable making it easy to transport

between map and reduce tasks.

Serialized in Avro
file format.

Map task

Map function

Consult filter to
determine user

membership

Read Bloom
filter from the

distributed
cache

Reducers

Distributed
cache

HDFS

Mappers perform a filter on users to only
include those that match a predicate.

Bloom
filter

Reduce

Reduce

Bloom filter

Bloom filter Bloom filter

Filtered users

Bloom filter

Bloom filter

user logs

users Map

Map

Map

Map

Map

Map

Figure 6.12 The two-step process to using a Bloom filter in a repartition join

281TECHNIQUE 61 Using Bloom filters to cut down on shuffled data

together into a single Bloom filter. The job output is an Avro file containing the serial-
ized Bloom filter:13

public static class Map extends Mapper<LongWritable, Text,
NullWritable, BloomFilter> {

private BloomFilter filter =
new BloomFilter(1000, 5, Hash.MURMUR_HASH);

@Override
protected void map(LongWritable key, Text value, Context context) {
User user = User.fromText(value);
if ("CA".equals(user.getState())) {
filter.add(new Key(user.getName().getBytes()));

}
}

@Override
protected void cleanup(Context context) {

context.write(NullWritable.get(), filter);
}

}

public static class Reduce
extends Reducer<NullWritable, BloomFilter,

AvroKey<GenericRecord>, NullWritable> {

private BloomFilter filter =
new BloomFilter(1000, 5, Hash.MURMUR_HASH);

@Override
protected void reduce(NullWritable key,

Iterable<BloomFilter> values, Context context) {
for(BloomFilter bf: values) {
filter.or(bf);

}
}

@Override
protected void cleanup(Context context) {

context.write(
new AvroKey<GenericRecord>(

AvroBytesRecord.toGenericRecord(filter)),
NullWritable.get());

}
}

Step 2: The repartition join
The repartition join is identical to the repartition join presented in technique 59—the
only difference is that the mappers now load the Bloom filter generated in the first step,
and when processing the map records, they perform a membership query against the
Bloom filter to determine whether the record should be sent to the reducer.

13 GitHub source: https://github.com/alexholmes/hiped2/blob/master/src/main/java/hip/ch6/joins/
bloom/BloomFilterCreator.java.

Only add users that live
in California to the

Bloom filter.

Once the mapper is
complete, emit the

Bloom filter.

Combine all the Bloom
filters together in

the reducer.

Emit the consolidated
Bloom filter.

https://github.com/alexholmes/hiped2/blob/master/src/main/java/hip/ch6/joins/bloom/BloomFilterCreator.java
https://github.com/alexholmes/hiped2/blob/master/src/main/java/hip/ch6/joins/bloom/BloomFilterCreator.java

282 CHAPTER 6 Applying MapReduce patterns to big data

 The reducer is unchanged from the original repartition join, so the following code
shows two things: the abstract mapper that generalizes the loading of the Bloom filter
and the filtering and emission, and the two subclasses that support the two datasets
being joined:14

public static abstract class AbstractFilterMap
extends Mapper<LongWritable, Text, Text, Tuple> {

public static final String DISTCACHE_FILENAME = "bloomjoin...";
private BloomFilter filter;

abstract String getUsername(Text value);
abstract int getDataset();

@Override
protected void setup(Context context)

throws IOException, InterruptedException {
final String bloomfile =

context.getConfiguration().get(DISTCACHE_FILENAME);
filter = BloomFilterCreator.fromFile(new File(bloomfile));

}

@Override
protected void map(LongWritable offset, Text value, Context context)

throws IOException, InterruptedException {
String user = getUsername(value);
if (filter.membershipTest(new Key(user.getBytes()))) {

Tuple outputValue = new Tuple();
outputValue.setInt(ValueFields.DATASET, getDataset());
outputValue.setString(ValueFields.DATA, value.toString());

context.write(new Text(user), outputValue);
}

}
}

public static class UserMap extends AbstractFilterMap {
@Override
String getUsername(Text value) {
return User.fromText(value).getName();

}

@Override
int getDataset() {
return USERS;

}
}

public static class UserLogMap extends AbstractFilterMap {
@Override
String getUsername(Text value) {
return UserLog.fromText(value).getName();

}

14 GitHub source: https://github.com/alexholmes/hiped2/blob/master/src/main/java/hip/ch6/joins/
bloom/BloomJoin.java.

Load the Bloom filter from
the distributed cache.

Extract the
user name from
a concrete
subclass.

Only emit a value if
the user name exists in
the Bloom filter.

The dataset value of the
tuple is fetched from
the concrete subclass.

The user mapper extracts the user
name and also identifies the data

source for the records.

The user logs mapper similarly
extracts the user name and

tags the data source.

https://github.com/alexholmes/hiped2/blob/master/src/main/java/hip/ch6/joins/bloom/BloomJoin.java
https://github.com/alexholmes/hiped2/blob/master/src/main/java/hip/ch6/joins/bloom/BloomJoin.java

283TECHNIQUE 61 Using Bloom filters to cut down on shuffled data

@Override
int getDataset() {
return USER_LOGS;

}
}

The following commands run the two jobs and dump the output of the join:

$ hip hip.ch6.joins.bloom.BloomFilterCreator \
--users users.txt \
--output bloom-output

$ hip hip.ch6.joins.bloom.BloomJoin \
--users users.txt \
--user-logs user-logs.txt \
--bloom-file bloom-output/part-r-00000.avro \
--output output

$ hadoop fs -cat output/part*
bob 71 CA bob new_tweet 58.133.120.100

■ Summary
This technique presented an effective method of performing a map-side filter on both
datasets to minimize the network I/O between mappers and reducers. It also reduces
the amount of data that needs to be spilled to and from disk in both the mappers and
reducers as part of the shuffle. Filters are often the simplest and most optimal method
of speeding up and optimizing your jobs, and they work just as well for repartition
joins as they do for other MapReduce jobs.

 Why not use a hashtable rather than a Bloom filter to represent the users? To con-
struct a Bloom filter with a false positive rate of 1%, you need just 9.8 bits for each ele-
ment in the data structure. Compare this with the best-case use of a HashSet containing
integers, which requires 8 bytes. Or if you were to have a HashSet that only reflected
the presence of an element that ignores collision, you’d end up with a Bloom filter
with a single hash, yielding higher false positives.

 Version 0.10 of Pig will include support for Bloom filters in a mechanism similar to
that presented here. Details can be viewed in the JIRA ticket at https://
issues.apache.org/jira/browse/PIG-2328.

 In this section you learned that Bloom filters offer good space-constrained set
membership capabilities. We looked at how you could create Bloom filters in Map-
Reduce, and you also applied that code to a subsequent technique, which helped you
optimize a MapReduce semi-join.

6.1.3 Data skew in reduce-side joins

This section covers a common issue that’s encountered when joining together large
datasets—that of data skew. There are two types of data skew that could be present in
your data:

First run the job to create the
Bloom filter, retaining only
users that live in California.

Perform the repartition join, using
the Bloom filter in the mappers to

filter data sent to the reducers.

The user data only had two users in
California, and only Bob had a log
entry, so only one record is in the

final inner-join output.

https://issues.apache.org/jira/browse/PIG-2328
https://issues.apache.org/jira/browse/PIG-2328

284 CHAPTER 6 Applying MapReduce patterns to big data

■ High join-key cardinality, where you have some join keys that have a large num-
ber of records in one or both of the datasets. I call this join-product skew.

■ Poor hash partitioning, where a minority of reducers receive a large percentage
of the overall number of records. I refer to this as hash-partitioning skew.

In severe cases, join-product skews can result in heap exhaustion issues due to the
amount of data that needs to be cached. Hash-partitioning skew manifests itself as a
join that takes a long time to complete, where a small percentage of the reducers take
significantly longer to complete compared to the majority of the reducers.

 The techniques in this section examine these two situations and present recom-
mendations for combating them.

TECHNIQUE 62 Joining large datasets with high join-key cardinality

This technique tackles the problem of join-product skew, and the next technique
examines hash-partitioning skew.

■ Problem
Some of your join keys are high-cardinality, which results in some of your reducers
running out of memory when trying to cache these keys.

■ Solution
Filter out these keys and join them separately or spill them out in the reducer and
schedule a follow-up job to join them.

■ Discussion
If you know ahead of time which keys are high-cardinality, you can separate them out
into a separate join job, as shown in figure 6.13.

 If you don’t know the high-cardinality keys, you may have to build some intelli-
gence into your reducers to detect these keys and write them out to a side-effect file,
which is joined by a subsequent job, as illustrated in figure 6.14.

Hive 0.13 The skewed key implementation was flawed in Hive versions
before 0.13 (https://issues.apache.org/jira/browse/HIVE-6041).

Combine

Map-side join:
High-cardinality

keys only

Reduce-side join:
All other keys

(not high-cardinality)

Run two separate jobs
to perform the join.

An optional job can coalesce
the join results together.

Join results

Join results

Figure 6.13 Dealing with skew when you know the high-cardinality key ahead of time

https://issues.apache.org/jira/browse/HIVE-6041

285TECHNIQUE 62 Joining large datasets with high join-key cardinality

Hive
Hive supports a skew-mitigation strategy similar to the second approach presented in
this technique. It can be enabled by specifying the following configurables prior to
running the job:

SET hive.optimize.skewjoin = true;
SET hive.skewjoin.key = 100000;

You can optionally set some additional configurables to control the map-side join that
operates on the high-cardinality keys:

SET hive.skewjoin.mapjoin.map.tasks = 10000;
SET hive.skewjoin.mapjoin.min.split = 33554432;

Finally, if you’re using a GROUP BY in your SQL, you may also want to consider enabling
the following configuration to handle skews in the grouped data:

SET hive.groupby.skewindata = true;

■ Summary
The options presented in this technique assume that for a given join key, only one data-
set has high-cardinality occurrences; hence the use of a map-side join that caches the
smaller of the datasets. If both datasets are high-cardinality, then you’re facing an
expensive Cartesian product operation that will be slow to execute, as it doesn’t lend
itself to the MapReduce way of doing work (meaning it’s not inherently splittable and
parallelizable). In this case, you are essentially out of options in terms of optimizing the
actual join. You should reexamine whether any back-to-basics techniques, such as filter-
ing or projecting your data, can help alleviate the time required to execute the join.

 The next technique looks at a different type of skew that can be introduced into
your application as a result of using the default hash partitioner.

Combine

Map-side join:
High-cardinality

keys only

Reduce-side join:
All other keys

(not high-cardinality)

Regular, non-high−cardinality keys are
joined and emi�ed as normal.

High-cardinality
keys are spilled to
side-effect files.

An optional job can coalesce
the join results together.

Join results
High-

cardinality keys

Join results

Figure 6.14 Dealing with skew when you don’t know high-cardinality keys ahead of time

Enable skew join-
optimization.

If Hive sees more than the specified
number of rows with the same key in the
join operator, the key is considered skewed.

Determine the number of
map tasks used in the

follow-up map join job for
a skew join.

Determine the minimum split size
for the follow-up map join.

286 CHAPTER 6 Applying MapReduce patterns to big data

TECHNIQUE 63 Handling skews generated by the hash partitioner

The default partitioner in MapReduce is a hash partitioner, which takes a hash of each
map output key and performs a modulo against the number of reducers to determine
the reducer the key is sent to. The hash partitioner works well as a general partitioner,
but it’s possible that some datasets will cause the hash partitioner to overload some
reducers due to a disproportionate number of keys being hashed to the same reducer.

 This is manifested by a small number of straggling reducers taking much longer to
complete compared to the majority of reducers. In addition, when you examine the
straggler reducer counters, you’ll notice that the number of groups sent to the strag-
glers is much higher than the others that have completed.

Differentiating between skew caused by high-cardinality keys versus a hash
partitioner You can use the MapReduce reducer counters to identify the type
of data skew in your job. Skews introduced by a poorly performing hash parti-
tioner will have a much higher number of groups (unique keys) sent to these
reducers, whereas the symptoms of high-cardinality keys causing skew is evi-
denced by the roughly equal number of groups across all reducers but a
much higher number of records for skewed reducers.

■ Problem
Your reduce-side joins are taking a long time to complete, with several straggler reduc-
ers taking significantly longer to complete than the majority.

■ Solution
Use a range partitioner or write a custom partitioner that siphons skewed keys to a
reserved set of reducers.

■ Discussion
The goal of this solution is to dispense with the default hash partitioner and replace it
with something that works better with your skewed data. There are two options you
can explore here:

■ You can use the sampler and TotalOrderPartitioner that comes bundled with
Hadoop, which replaces the hash partitioner with a range partitioner.

■ You can write a custom partitioner that routes keys with data skew to a set of
reducers reserved for skewed keys.

Let’s explore both options and look at how you’d use them.

Range partitioning
A range partitioner will distribute map outputs based on a predefined range of values,
where each range maps to a reducer that will receive all outputs within that range.
This is exactly how the TotalOrderPartitioner works. In fact, the TotalOrderPartitioner
is used by TeraSort to evenly distribute words across all the reducers to minimize strag-
gling reducers.15

15 TeraSort is a Hadoop benchmarking tool that sorts a terabyte of data.

287Sorting

 For range partitioners such as the TotalOrderPartitioner to do their work, they need
to know the output key ranges for a given job. The TotalOrderPartitioner is accompa-
nied by a sampler that samples the input data and writes these ranges to HDFS, which
is then used by the TotalOrderPartitioner when partitioning. More details on how to use
the TotalOrderPartitioner and the sampler are covered in section 6.2.

Custom partitioner
If you already have a handle on which keys exhibit data skew, and that set of keys is
static, you can write a custom partitioner to push these high-cardinality join keys to a
reserved set of reducers. Imagine that you’re running a job with ten reducers—you
could decide to use two of them for keys that are skewed, and then hash partition all
other keys across the remainder of the reducers.

■ Summary
Of the two approaches presented here, range partitioning is quite possibly the best
solution, as it’s likely that you won’t know which keys are skewed, and it’s also possible
that the keys that exhibit skew will change over time.

 It’s possible to have reduce-side joins in MapReduce because they sort and corre-
late the map output keys together. In the next section, we’ll look at common sorting
techniques in MapReduce.

6.2 Sorting
The magic of MapReduce occurs between the mappers and reducers, where the
framework groups together all the map output records that were emitted with the
same key. This MapReduce feature allows you to aggregate and join your data and
implement powerful data pipelines. To execute this feature, MapReduce internally
partitions, sorts, and merges data (which is part of the shuffle phase), and the result is
that each reducer is streamed an ordered set of keys and accompanying values.

 In this section we’ll explore two particular areas where you’ll want to tweak the
behavior of MapReduce sorting.

 First we’ll look at the secondary sort, which allows you to sort values for a reducer key.
Secondary sorts are useful when you want some data to arrive at your reducer ahead of
other data, as in the case of the optimized repartition join in technique 60. Secondary
sorts are also useful if you want your job output to be sorted by a secondary key. An exam-
ple of this is if you want to perform a primary sort of stock data by stock symbol, and then
perform a secondary sort on the time of each stock quote during a day.

 The second scenario we’ll cover in this section is sorting data across all the reducer
outputs. This is useful in situations where you want to extract the top or bottom N ele-
ments from a dataset.

 These are important areas that allow you to perform some of the joins that we
looked at earlier in this chapter. But the applicability of sorting isn’t limited to joins;
sorting also allows you to provide a secondary sort over your data. Secondary sorts are
used in many of the techniques in this book, ranging from optimizing the repartition
join to graph algorithms such as friends-of-friends.

288 CHAPTER 6 Applying MapReduce patterns to big data

6.2.1 Secondary sort

As you saw in the discussion of joining in section 6.1, you need secondary sorts to
allow some records to arrive at a reducer ahead of other records. Secondary sorts
require an understanding of both data arrangement and data flows in MapReduce.
Figure 6.15 shows the three elements that affect data arrangement and flow (parti-
tioning, sorting, and grouping) and how they’re integrated into MapReduce.

 The partitioner is invoked as part of the map output collection process, and it’s used
to determine which reducer should receive the map output. The sorting RawComparator

MapReduce space (map)

MapReduce space (reduce)

User space

User space

Determines what reducer will receive the record

Determines how records are sorted

Determines how sorted records are logically grouped
together for a single reducer function call

The three aspects that affect sorting and grouping:

Map function Collector

MapOutputServlet

Reduce function

Spill

Partitioner

Partitioner

RawComparator (group)

RawComparator (sort)

Local disk
RawComparator

(sort)

Sort

Copy

Reduce

Local disk
RawComparator

(sort)

RawComparator
(group)

Figure 6.15 An overview of where sorting, partitioning, and grouping occur in MapReduce

289TECHNIQUE 64 Implementing a secondary sort

is used to sort the map outputs within their respective partitions, and it’s used in both
the map and reduce sides. Finally, the grouping RawComparator is responsible for deter-
mining the group boundaries across the sorted records.

 The default behavior in MapReduce is for all three functions to operate on the
entire output key emitted by map functions.

TECHNIQUE 64 Implementing a secondary sort

Secondary sorts are useful when you want some of the values for a unique map key to
arrive at a reducer ahead of other values. You can see the value of secondary sorting in
other techniques in this book, such as the optimized repartition join (technique 60),
and the friends-of-friends algorithm discussed in chapter 7 (technique 68).

■ Problem
You want to order values sent to a single reducer invocation for each key.

■ Solution
This technique covers writing your partitioner, sort comparator, and grouping com-
parator classes, which are required for secondary sorting to work.

■ Discussion
In this technique we’ll look at how to use secondary sorts to order people’s names.
You’ll use the primary sort to order people’s last names, and the secondary sort to
order their first names.

 To support secondary sort, you need to create a composite output key, which will
be emitted by your map functions. The composite key will contain two parts:

■ The natural key, which is the key to use for joining purposes
■ The secondary key, which is the key to use to order all of the values sent to the

reducer for the natural key

Figure 6.16 shows the composite key for the names. It also shows a composite value
that provides reducer-side access to the secondary key.

 Let’s go through the partitioning, sorting, and grouping phases and implement
them to sort the names. But before that, you need to write your composite key class.

Composite value

Sorting

First nameNatural value

Provides reduce-side
access to secondary key

Composite key

First nameLast name

Secondary key
only used during

sorting

Natural key
used for partitioning

and grouping

Figure 6.16 The user composite key and value

290 CHAPTER 6 Applying MapReduce patterns to big data

Composite key
The composite key contains both the first and last name. It extends WritableComparable,
which is recommended for Writable classes that are emitted as keys from map
functions:16

public class Person implements WritableComparable<Person> {

private String firstName;
private String lastName;

@Override
public void readFields(DataInput in) throws IOException {
this.firstName = in.readUTF();
this.lastName = in.readUTF();

}

@Override
public void write(DataOutput out) throws IOException {
out.writeUTF(firstName);
out.writeUTF(lastName);

}
...

Figure 6.17 shows the configuration names and methods that you’ll call in your code
to set the partitioning, sorting, and grouping classes. The figure also shows what part
of the composite key each class uses.

 Let’s look at the implementation code for each of these classes.

Partitioner
The partitioner is used to determine which reducer should receive a map output
record. The default MapReduce partitioner (HashPartitioner) calls the hashCode

16 GitHub source: https://github.com/alexholmes/hiped2/blob/master/src/main/java/hip/ch6/sort/
secondary/Person.java.

Composite key

Natural
key

Secondary
key

Composite key

Natural
key

Secondary
key

Composite key

Natural
key

Secondary
key

Partition

Only use the natural key
for partitioning, so that

the records all go to
the same reducer.

The output key
comparator sorts
using the entire
composite key.

The output value grouping
compares the natural key,
ignoring the secondary

sort key.

Partitioner
"mapred.partitioner.class"

a.k.a.
JobConf.setPartitionerClass

Sort

RawComparator
"mapred.output.key.comparator.class"

a.k.a.
JobConf.setOutputKeyComparatorClass

Group

RawComparator
"mapred.output.value.groupfn.class"

a.k.a.
JobConf.setOutputValueGroupingComparator

Figure 6.17 Partitioning, sorting, and grouping settings and key utilization

https://github.com/alexholmes/hiped2/blob/master/src/main/java/hip/ch6/sort/secondary/Person.java
https://github.com/alexholmes/hiped2/blob/master/src/main/java/hip/ch6/sort/secondary/Person.java

291TECHNIQUE 64 Implementing a secondary sort

method of the output key and performs a modulo with the number of reducers to
determine which reducer should receive the output. The default partitioner uses the
entire key, which won’t work for your composite key, because it will likely send keys
with the same natural key value to different reducers. Instead, you need to write your
own Partitioner that partitions on the natural key.

 The following code shows the Partitioner interface you must implement. The get-
Partition method is passed the key, value, and number of partitions (also known as
reducers):

public interface Partitioner<K2, V2> extends JobConfigurable {
int getPartition(K2 key, V2 value, int numPartitions);

}

Your partitioner will calculate a hash based on the last name in the Person class and
perform a modulo of that with the number of partitions (which is the number of
reducers):17

public class PersonNamePartitioner extends
Partitioner<Person, Text> {

@Override
public int getPartition(Person key, Text value, int numPartitions) {

return Math.abs(key.getLastName().hashCode() * 127) %
numPartitions;

}
}

Sorting
Both the map and reduce sides participate in sorting. The map-side sorting is an opti-
mization to help make the reducer sorting more efficient. You want MapReduce to
use your entire key for sorting purposes, which will order keys according to both the
last name and the first name.

 In the following example, you can see the implementation of the WritableComparator,
which compares users based on their last name and their first name:18

public class PersonComparator extends WritableComparator {
protected PersonComparator() {
super(Person.class, true);

}

@Override
public int compare(WritableComparable w1, WritableComparable w2) {

Person p1 = (Person) w1;
Person p2 = (Person) w2;

17 GitHub source: https://github.com/alexholmes/hiped2/blob/master/src/main/java/hip/ch6/sort/
secondary/PersonNamePartitioner.java.

18 GitHub source: https://github.com/alexholmes/hiped2/blob/master/src/main/java/hip/ch6/sort/
secondary/PersonComparator.java.

https://github.com/alexholmes/hiped2/blob/master/src/main/java/hip/ch6/sort/secondary/PersonNamePartitioner.java
https://github.com/alexholmes/hiped2/blob/master/src/main/java/hip/ch6/sort/secondary/PersonNamePartitioner.java
https://github.com/alexholmes/hiped2/blob/master/src/main/java/hip/ch6/sort/secondary/PersonComparator.java
https://github.com/alexholmes/hiped2/blob/master/src/main/java/hip/ch6/sort/secondary/PersonComparator.java

292 CHAPTER 6 Applying MapReduce patterns to big data

int cmp = p1.getLastName().compareTo(p2.getLastName());
if (cmp != 0) {
return cmp;

}

return p1.getFirstName().compareTo(p2.getFirstName());
}

}

Grouping
Grouping occurs when the reduce phase is streaming map output records from local
disk. Grouping is the process by which you can specify how records are combined to
form one logical sequence of records for a reducer invocation.

 When you’re at the grouping stage, all of the records are already in secondary-sort
order, and the grouping comparator needs to bundle together records with the same
last name:19

public class PersonNameComparator extends WritableComparator {

protected PersonNameComparator() {
super(Person.class, true);

}

@Override
public int compare(WritableComparable o1, WritableComparable o2) {

Person p1 = (Person) o1;
Person p2 = (Person) o2;

return p1.getLastName().compareTo(p2.getLastName());

}
}

MapReduce
The final steps involve telling MapReduce to use the partitioner, sort comparator, and
group comparator classes:20

job.setPartitionerClass(PersonNamePartitioner.class);
job.setSortComparatorClass(PersonComparator.class);
job.setGroupingComparatorClass(PersonNameComparator.class);

To complete this technique, you need to write the map and reduce code. The mapper
creates the composite key and emits that in conjunction with the first name as the out-
put value. The reducer produces output identical to the input:21

19 GitHub source: https://github.com/alexholmes/hiped2/blob/master/src/main/java/hip/ch6/sort/
secondary/PersonNameComparator.java.

20 GitHub source: https://github.com/alexholmes/hiped2/blob/master/src/main/java/hip/ch6/sort/
secondary/SortMapReduce.java.

21 GitHub source: https://github.com/alexholmes/hiped2/blob/master/src/main/java/hip/ch6/sort/
secondary/SortMapReduce.java.

https://github.com/alexholmes/hiped2/blob/master/src/main/java/hip/ch6/sort/secondary/PersonNameComparator.java
https://github.com/alexholmes/hiped2/blob/master/src/main/java/hip/ch6/sort/secondary/PersonNameComparator.java
https://github.com/alexholmes/hiped2/blob/master/src/main/java/hip/ch6/sort/secondary/SortMapReduce.java
https://github.com/alexholmes/hiped2/blob/master/src/main/java/hip/ch6/sort/secondary/SortMapReduce.java
https://github.com/alexholmes/hiped2/blob/master/src/main/java/hip/ch6/sort/secondary/SortMapReduce.java
https://github.com/alexholmes/hiped2/blob/master/src/main/java/hip/ch6/sort/secondary/SortMapReduce.java

293TECHNIQUE 64 Implementing a secondary sort

public static class Map extends Mapper<Text, Text, Person, Text> {

private Person outputKey = new Person();

@Override
protected void map(Text lastName, Text firstName, Context context)

throws IOException, InterruptedException {
outputKey.set(lastName.toString(), firstName.toString());
context.write(outputKey, firstName);

}
}

public static class Reduce extends Reducer<Person, Text, Text, Text> {

Text lastName = new Text();
@Override
public void reduce(Person key, Iterable<Text> values,

Context context)
throws IOException, InterruptedException {

lastName.set(key.getLastName());
for (Text firstName : values) {
context.write(lastName, firstName);

}
}

}

To see this sort in action, you can upload a small file with unordered names and test
whether the secondary sort code produces output sorted by first name:

$ hadoop fs -put test-data/ch6/usernames.txt .

$ hadoop fs -cat usernames.txt
Smith John
Smith Anne
Smith Ken

$ hip hip.ch6.sort.secondary.SortMapReduce \
--input usernames.txt --output output

$ hadoop fs -cat output/part*
Smith Anne
Smith John
Smith Ken

The output is sorted as expected.

■ Summary
As you can see in this technique, it’s nontrivial to use secondary sort. It requires you to
write a custom partitioner, sorter, and grouper. If you’re working with simple data
types, consider using htuple (http://htuple.org/), an open source project I devel-
oped, which simplifies secondary sort in your jobs.

 htuple exposes a Tuple class, which allows you to store one or more Java types and
provides helper methods to make it easy for you to define which fields are used for

294 CHAPTER 6 Applying MapReduce patterns to big data

partitioning, sorting, and grouping. The following code shows how htuple can be
used to secondary sort on the first name, just like in the technique:

enum TupleFields {
LAST_NAME,
FIRST_NAME

}

ShuffleUtils.configBuilder()
.useNewApi()
.setPartitionerIndices(TupleFields.LAST_NAME)
.setSortIndices(TupleFields.values())
.setGroupIndices(TupleFields.LAST_NAME)
.configure(conf);

...

public static class Map extends Mapper<LongWritable, Text,
Tuple, Text> {

@Override
protected void map(LongWritable key, Text value, Context context)
throws IOException, InterruptedException {

String nameParts[] = line.split("\t");

Tuple tuple = new Tuple();
tuple.set(TupleFields.LAST_NAME, nameParts[0]);
tuple.set(TupleFields.FIRST_NAME, nameParts[1]);

// emit the tuple and the original contents of the line
context.write(outputKey, value);

}
}

Next we’ll look at how to sort outputs across multiple reducers.

6.2.2 Total order sorting

You’ll find a number of situations where you’ll want to have your job output in total
sort order.22 For example, if you want to extract the most popular URLs from a web
graph, you’ll have to order your graph by some measure of popularity, such as Page-
Rank. Or if you want to display a table in your portal of the most active users on your
site, you’ll need the ability to sort them based on some criteria, such as the number of
articles they wrote.

TECHNIQUE 65 Sorting keys across multiple reducers

You know that the MapReduce framework sorts map output keys prior to feeding them
to reducers. But this sorting is only guaranteed within each reducer, and unless you spec-
ify a partitioner for your job, you’ll be using the default MapReduce partitioner, Hash-
Partitioner, which partitions using a hash of the map output keys. This ensures that all

22 Total sort order is when the reducer records are sorted across all the reducers, not just within each reducer.

It’s useful to create an
enum for the fields being

stored in the tuple.
Specify which tuple fields are
used for partitioning, sorting,
and grouping in the job driver.

Create a new Tuple
object and set the

last and first names.

295TECHNIQUE 65 Sorting keys across multiple reducers

records with the same map output key go to the same reducer, but the HashPartitioner
doesn’t perform total sorting of the map output keys across all the reducers. Knowing
this, you may be wondering how you could use MapReduce to sort keys across multiple
reducers so that you can easily extract the top and bottom N records from your data.

■ Problem
You want a total ordering of keys in your job output, but without the overhead of hav-
ing to run a single reducer.

■ Solution
This technique covers use of the TotalOrderPartitioner class, a partitioner that is bun-
dled with Hadoop, to assist in sorting output across all reducers. The partitioner
ensures that output sent to the reducers is totally ordered.

■ Discussion
Hadoop has a built-in partitioner called the TotalOrderPartitioner, which distributes
keys to specific reducers based on a partition file. The partition file is a precomputed
SequenceFile that contains N – 1 keys, where N is the number of reducers. The keys in
the partition file are ordered by the map output key comparator, and as such, each
key represents a logical range of keys. To determine which reducer should receive an
output record, the TotalOrderPartitioner examines the output key, determines which
range it falls into, and maps that range into a specific reducer.

 Figure 6.18 shows the two parts of this technique. You need to create the partition
file and then run your MapReduce job using the TotalOrderPartitioner.

Part 2:
Execute MapReduce job with the TotalOrderPartitioner,

specifying the partition file

Part 1:
Create partition file

TotalOrderPartitioner

TotalOrderPartitioner:
Load SequenceFile
partition file from
distributed cache,
and partition map

output keys to
reducer based on
partition’s ranges

Distributed cache

names

names

Partition
SequenceFile

containing keys
Partition file creator:

Sort output of
sampler and
extract num-

reducers – 1 keys

Sampler:
Parse input files

and extract
meaningful subset

of the data

Partition
SequenceFile

containing keys

ReduceMap

Figure 6.18 Using sampling and the TotalOrderPartitioner to sort output across all reducers.

296 CHAPTER 6 Applying MapReduce patterns to big data

First you’ll use the InputSampler class, which samples the input files and creates the par-
tition file. You can use one of two samplers: the RandomSampler class, which as the name
suggests picks random records from the input, or the IntervalSampler class, which for
every record includes the record in the sample. Once the samples have been extracted,
they’re sorted, and then N – 1 keys are written to the partition file, where N is the num-
ber of reducers. The InputSampler isn’t a MapReduce job; it reads records from the
InputFormat and produces the partition within the process calling the code.

 The following code shows the steps you need to execute prior to calling the Input-
Sampler function:23

int numReducers = 2;
Path input = new Path(args[0]);
Path partitionFile = new Path(args[1]);

InputSampler.Sampler<Text, Text> sampler =
new InputSampler.RandomSampler<Text,Text>

(0.1,
10000,
10);

JobConf job = new JobConf();

job.setNumReduceTasks(numReducers);
job.setInputFormat(KeyValueTextInputFormat.class);
job.setMapOutputKeyClass(Text.class);
job.setMapOutputValueClass(Text.class);

TotalOrderPartitioner.setPartitionFile(job, partitionFile);
FileInputFormat.setInputPaths(job, input);

InputSampler.writePartitionFile(job, sampler);

Next up, you need to specify that you want to use the TotalOrderPartitioner as the par-
titioner for your job:

job.setPartitionerClass(TotalOrderPartitioner.class);

You don’t want to do any processing in your MapReduce job, so you won’t specify the
map or reduce classes. This means the identity MapReduce classes will be used, so
you’re ready to run the code:

$ hadoop fs -put test-data/names.txt names.txt

$ hip hip.ch6.sort.total.TotalSortMapReduce \
--input names.txt \

23 GitHub source: https://github.com/alexholmes/hiped2/blob/master/src/main/java/hip/ch6/sort/
total/TotalSortMapReduce.java.

The probability that
a key will be picked

from the input.

The number of
samples to extract
from the input.

The maximum number
of input splits that
will be read to
extract the samples.

Set the number of reducers (which is
used by the InputSampler when

creating the partition file).

Set the InputFormat
for the job, which the
InputSampler uses to
retrieve records from
the input.

Specify the map output
key and value classes, even if the

InputFormat explicitly types them.

Specify the
location of the
partition file.

Set the job
input files.

Run the InputSampler code to sample and create the
partition file. This code uses all the items set in the
JobConf object to perform this task.

The input file
containing the names

to be sorted.

https://github.com/alexholmes/hiped2/blob/master/src/main/java/hip/ch6/sort/total/TotalSortMapReduce.java
https://github.com/alexholmes/hiped2/blob/master/src/main/java/hip/ch6/sort/total/TotalSortMapReduce.java

297TECHNIQUE 66 Writing a reservoir-sampling InputFormat

--partition large-names-sampled.txt \
--output output

$ hadoop fs -ls output
/user/aholmes/output/part-00000
/user/aholmes/output/part-00001

$ hadoop fs -cat output/part-r-00000 | head
AABERG
AABY
AADLAND
$ hadoop fs -cat output/part-r-00000 | tail
LANCZ
LAND
LANDA
$ hadoop fs -cat output/part-r-00001 | head
LANDACRE
LANDAKER
LANDAN
$ hadoop fs -cat output/part-r-00001 | tail
ZYSK
ZYSKOWSKI
ZYWIEC

You can see from the results of the MapReduce job that the map output keys are
indeed sorted across all the output files.

■ Summary
This technique used the InputSampler to create the partition file, which is subsequently
used by the TotalOrderPartitioner to partition map output keys.

 You could also use MapReduce to generate the partition file. An efficient way of
doing this would be to write a custom InputFormat class that performs the sampling
and then output the keys to a single reducer, which in turn can create the partition
file. This brings us to sampling, the last section of this chapter.

6.3 Sampling
Imagine you’re working with a terabyte-scale dataset, and you have a MapReduce
application you want to test with that dataset. Running your MapReduce application
against the dataset may take hours, and constantly making code refinements and
rerunning against the large dataset isn’t an optimal workflow.

 To solve this problem, you look to sampling, which is a statistical methodology for
extracting a relevant subset of a population. In the context of MapReduce, sampling
provides an opportunity to work with large datasets without the overhead of having to
wait for the entire dataset to be read and processed. This greatly enhances your ability
to quickly iterate when developing and debugging MapReduce code.

TECHNIQUE 66 Writing a reservoir-sampling InputFormat

You’re developing a MapReduce job iteratively with a large dataset, and you need to
do testing. Testing with the entire dataset takes a long time and impedes your ability to
rapidly work with your code.

The partition file that the
InputSampler will create.

The job output
directory.

You ran with two reducers, so
you have two-part files in

the output directory.

You expect to see names
starting with A at the top

of the first output file.

The bottom of the first
output file contains names
starting with L, which is
roughly halfway through

the alphabet.

The top of the second
output file continues
with names that are
alphabetically after
the last name in the
first file.

At the bottom of the
second file are names

starting with Z.

298 CHAPTER 6 Applying MapReduce patterns to big data

■ Problem
You want to work with a small subset of a large dataset during the development of a
MapReduce job.

■ Solution
Write an input format that can wrap the actual input format used to read data. The
input format that you’ll write can be configured with the number of samples that
should be extracted from the wrapped input format.

■ Discussion
In this technique you’ll use reservoir sampling to choose samples. Reservoir sampling
is a strategy that allows a single pass through a stream to randomly produce a sam-
ple.24 As such, it’s a perfect fit for MapReduce because input records are streamed
from an input source. Figure 6.19 shows the algorithm for reservoir sampling.

The input split determination and record reading will be delegated to wrapped Input-
Format and RecordReader classes. You’ll write classes that provide the sampling function-
ality and then wrap the delegated InputFormat and RecordReader classes.25 Figure 6.20
shows how the ReservoirSamplerRecordReader works.

24 For more information on reservoir sampling, see the Wikipedia article at http://en.wikipedia.org/wiki/
Reservoir_sampling.

25 If you need a refresher on these classes, please review chapter 3 for more details.

Step 1:
Fill the reservoir until it is full.

Step 2:
Randomly replace a sample in

the reservoir.

Figure 6.19 The reservoir-sampling algorithm allows one pass through a stream to randomly produce a
sample.

A
MapReduce
framework

ReservoirSamplerRecordReader

Wrapped
RecordReader

At initialization time, read records using
the RecordReader and cache samples according

to reservoir sampling algorithm.

Input split

Samples
cache

Records are read directly
from sampling cache.

Initialize.1

Sample.2 Read.3

Read
record.

4

Figure 6.20 The ReservoirSamplerRecordReader in action

http://en.wikipedia.org/wiki/Reservoir_sampling
http://en.wikipedia.org/wiki/Reservoir_sampling

299TECHNIQUE 66 Writing a reservoir-sampling InputFormat

The following code shows the ReservoirSamplerRecordReader:26

public static class ReservoirSamplerRecordReader
<K extends Writable, V extends Writable> extends RecordReader {

private final RecordReader<K, V> rr;
private final int numSamples;
private final int maxRecords;

private final ArrayList<K> keys;
private final ArrayList<V> values;

@Override
public void initialize(InputSplit split,

TaskAttemptContext context)
throws IOException, InterruptedException {

rr.initialize(split, context);

Random rand = new Random();
for (int i = 0; i < maxRecords; i++) {
if (!rr.nextKeyValue()) {
break;

}
K key = rr.getCurrentKey();
V val = rr.getCurrentValue();

if (keys.size() < numSamples) {
keys.add(WritableUtils.clone(key, conf));
values.add(WritableUtils.clone(val, conf));

} else {
int r = rand.nextInt(i);
if (r < numSamples) {
keys.set(r, WritableUtils.clone(key, conf));
values.set(r, WritableUtils.clone(val, conf));

}
}

}
}

...

To use the ReservoirSamplerInputFormat class in your code, you’ll use convenience
methods to help set up the input format and other parameters, as shown in the follow-
ing code:27

ReservoirSamplerInputFormat.setInputFormat(job,
TextInputFormat.class);

26 GitHub source: https://github.com/alexholmes/hiped2/blob/master/src/main/java/hip/ch6/sampler/
ReservoirSamplerInputFormat.java.

27 GitHub source: https://github.com/alexholmes/hiped2/blob/master/src/main/java/hip/ch6/sampler/
SamplerJob.java

The RecordReader that
you use to read records
from the data source.

The number of record
samples to extract
from the data source.

An upper bound on the number of
records read from the data

source; this is to avoid having to
read the entire data source.

Create the samples
at initialization
time.

If you haven’t collected the target
number of samples, add the current

record to your samples.
When you’ve collected the
minimum number of
samples, use the reservoir
algorithm to determine
if you should update
existing samples with the
current record.

This is the only method that
needs to be called; it sets the

input format to read the
records from the data source.

https://github.com/alexholmes/hiped2/blob/master/src/main/java/hip/ch6/sampler/ReservoirSamplerInputFormat.java
https://github.com/alexholmes/hiped2/blob/master/src/main/java/hip/ch6/sampler/ReservoirSamplerInputFormat.java
https://github.com/alexholmes/hiped2/blob/master/src/main/java/hip/ch6/sampler/SamplerJob.java
https://github.com/alexholmes/hiped2/blob/master/src/main/java/hip/ch6/sampler/SamplerJob.java

300 CHAPTER 6 Applying MapReduce patterns to big data

ReservoirSamplerInputFormat.setNumSamples(job, 10);
ReservoirSamplerInputFormat.setMaxRecordsToRead(job, 10000);
ReservoirSamplerInputFormat.

setUseSamplesNumberPerInputSplit(job, true);

You can see the sampling input format in action by running an identity job against a
large file containing names:

$ wc -l test-data/names.txt
88799 test-data/names.txt
$ hadoop fs -put test-data/names.txt names.txt

$ hip hip.ch6.sampler.SamplerJob \
--input names.txt --output output

$ hadoop fs -cat output/part* | wc -l
10

You configured the ReservoirSamplerInputFormat to extract ten samples, and the output
file contained that number of lines.

■ Summary
Sampling support in MapReduce code can be a useful development and testing fea-
ture when engineers are running code against production-scale datasets. That begs
the question: what’s the best approach for integrating sampling support into an exist-
ing codebase? One approach would be to add a configurable option that would toggle
the use of the sampling input format, similar to the following code:

if(appConfig.isSampling()) {

ReservoirSamplerInputFormat.setInputFormat(job,
TextInputFormat.class);

...
} else {
job.setInputFormatClass(TextInputFormat.class);

}

You can apply this sampling technique to any of the preceding sections as a way to
work efficiently with large datasets.

Set the number of samples to be extracted. This number is either
across all input splits or for each input split. The behavior is driven

by the setUseSamplesNumberPerInputSplit method.

Set the maximum number of
records that will be read
from each input split to
create the samples.

Determine whether the number of samples should be
extracted per input split or across all input splits. If
set to false (the default), the number of samples is

divided by the number of input splits.

The input file
has 88,799 lines.

The sampling input format
sampled ten lines, as per your

job configuration.

301Chapter summary

6.4 Chapter summary
Joining and sorting are cumbersome tasks in MapReduce, and we spent this chapter
discussing methods to optimize and facilitate their use. We looked at three different
join strategies, two of which were on the map side, and one on the reduce side. The
goal was to simplify joins in MapReduce, and I presented two frameworks that reduce
the amount of user code required for joins.

 We also covered sorting in MapReduce by examining how secondary sorts work
and how you can sort all of the output across all the reducers. And we wrapped things
up with a look at how you can sample data so that you can quickly iterate over smaller
samples of your data.

 We’ll cover a number of performance patterns and tuning steps in chapter 8,
which will result in faster join and sorting times. But before we get there, we’ll look at
some more advanced data structures and algorithms, such as graph processing and
working with Bloom filters.

302

Utilizing data structures
 and algorithms at scale

In this chapter we’ll look at how you can implement algorithms in MapReduce to
work with internet-scale data. We’ll focus on nontrivial data, which is commonly
represented using graphs.

 We’ll also look at how you can use graphs to model connections between enti-
ties, such as relationships in a social network. We’ll run through a number of use-
ful algorithms that can be performed over graphs, such as shortest path and
friends-of-friends (FoF), to help expand the interconnectedness of a network, and
PageRank, which looks at how to determine the popularity of web pages.

 You’ll learn how to use Bloom filters, whose unique space-saving properties
make them handy for solving distributed system problems in P2P (peer-to-peer)

This chapter covers
■ Representing and using data structures such as

graphs, HyperLogLog, and Bloom filters in MapReduce
■ Applying algorithms such as PageRank and semi-joins

to large amounts of data
■ Learning how social network companies recommend

making connections with people outside your network

303Modeling data and solving problems with graphs

and distributed databases. We’ll also create Bloom filters in MapReduce and then look
at their usefulness for filtering.

 You’ll also learn about another approximate data structure called HyperLogLog, that
provides approximate unique counts, which are invaluable in aggregation pipelines.

 A chapter on scalable algorithms wouldn’t be complete without mention of sorting
and joining algorithms, which are covered in chapter 6.

 Let’s kick things off with a look at how you can model graphs in MapReduce.

7.1 Modeling data and solving problems with graphs
Graphs are mathematical constructs that represent an interconnected set of objects.
They’re used to represent data such as the hyperlink structure of the internet, social
networks (where they represent relationships between users), and internet routing to
determine optimal paths for forwarding packets.

 A graph consists of a number of nodes (formally
called vertices) and links (informally called edges) that
connect nodes together. Figure 7.1 shows a graph with
nodes and edges.

 The edges can be directed (implying a one-way rela-
tionship) or undirected. For example, you would use a
directed graph to model relationships between users in a
social network, because relationships are not always bidi-
rectional. Figure 7.2 shows examples of directed and
undirected graphs.

Directed graphs, where the edges have a direction, can be cyclic or acyclic. In cyclic
graphs, it’s possible for a vertex to reach itself by traversing a sequence of edges. In an
acyclic graph, it’s not possible for a vertex to traverse a path to reach itself. Figure 7.3
shows examples of cyclic and acyclic graphs.

Directed
edges

B

Directed graph

A

D

C

Undirected graph

B

A

D

C

Figure 7.2 Directed and
undirected graphs

Cycle

B

Cyclic directed graph

A

D

C

Acyclic directed graph

B

A

D

C

Figure 7.3 Cyclic
and acyclic graphs

Edge

B

Node (vertex)

A

D

C

Figure 7.1 A small graph
with highlighted nodes and
edges

304 CHAPTER 7 Utilizing data structures and algorithms at scale

To start working with graphs, you’ll need to be able to represent them in your code.
So what are the common methods used to represent these graph structures?

7.1.1 Modeling graphs

Two common ways of representing graphs are with adjacency matrices and adjacency lists.

Adjacency matrix
With an adjacency matrix, you represent a graph as an N x N square matrix M, where
N is the number of nodes and Mij represents an edge between nodes i and j.

 Figure 7.4 shows a directed graph representing connections in a social graph. The
arrows indicate one-way relationships between two people. The adjacency matrix
shows how this graph would be represented.

The disadvantage of adjacency matrices are that they model both the existence and lack
of a relationship, which makes them dense data structures requiring more space than
adjacency lists.

Adjacency list
Adjacency lists are similar to adjacency matrices, except that they don’t model the lack
of relationships. Figure 7.5 shows how you’d represent a graph using an adjacency list.

The advantage of the adjacency list is that it offers a sparse representation of the data, which
is good because it requires less space. It also fits well when representing graphs in Map-
Reduce because the key can represent a vertex, and
the values are a list of vertices that denote a directed
or undirected relationship node.

 Next up we’ll cover three graph algorithms,
starting off with the shortest-path algorithm.

7.1.2 Shortest-path algorithm

The shortest-path algorithm is a common prob-
lem in graph theory, where the goal is to find the
shortest route between two nodes. Figure 7.6

000
1
1

0 1
1 0

0 1 0

0
1
0
0

jim
ali

bob
dee

jim ali bob dee bob

jim ali

dee

Figure 7.4 An adjacency matrix
representation of a graph

000
1
1

0 1
1 0

0 1 0

0
1
0
0

jim →
ali → jim, bob, dee
bob → jim, ali
dee → ali

jim
ali

bob
dee

jim ali bob dee

Figure 7.5 An adjacency list
representation of a graph

BA E

DC

Shortest path

Figure 7.6 Example of shortest
path between nodes A and E

305TECHNIQUE 67 Find the shortest distance between two users

shows an example of this algorithm on a graph where the edges don’t have a weight,
in which case the shortest path is the path with the smallest number of hops or inter-
mediary nodes between the source and destination.

 Applications of this algorithm include determining the shortest route between two
addresses in traffic mapping software, routers computing the shortest path tree for
each route, and social networks determining connections between users.

TECHNIQUE 67 Find the shortest distance between two users

Dijkstra’s algorithm is a shortest-path algorithm commonly taught in undergraduate
computer science courses. A basic implementation uses a sequential iterative process
to traverse the entire graph from the starting node, as seen in the algorithm presented
in figure 7.7.

 The basic algorithm doesn’t scale to graphs that exceed your memory sizes, and it’s
also sequential and not optimized for parallel processing.

■ Problem
You need to use MapReduce to find the shortest path between two people in a social
graph.

■ Solution
Use an adjacency matrix to model a graph, and for each node, store the distance from
the original node, as well as a backpointer to the original node. Use the mappers to

All nodes other than the starting node
start with a distance of infinity, denoting
the fact that they haven't been visited.

The start node's
distance is set to zero.

Iterative process where all the unvisited nodes are
iterated, and the distance from the start node is
propagated through the graph by adding weights

encountered when edges are traversed.

Figure 7.7 Pseudocode for Dijkstra’s algorithm

306 CHAPTER 7 Utilizing data structures and algorithms at scale

propagate the distance to the original node, and the reducers to restore the state of
the graph. Iterate until the target node has been reached.

■ Discussion
Figure 7.8 shows a small social network that
you’ll use for this technique. Your goal is to
find the shortest path between Dee and Joe.
There are four paths that you can take from
Dee to Joe, but only one of them results in
the fewest hops.

 You’ll implement a parallel breadth-first
search algorithm to find the shortest path
between two users. Because you’re operating
on a social network, you don’t need to care
about weights on your edges. The pseudocode
for the algorithm can be seen in figure 7.9.

 Figure 7.10 shows the algorithm iterations in play with your social graph. Just like
Dijkstra’s algorithm, you’ll start with all the node distances set to infinite and set the
distance for the starting node, Dee, at zero. With each MapReduce pass, you’ll deter-
mine nodes that don’t have an infinite distance and propagate their distance values to
their adjacent nodes. You’ll continue this until you reach the end node.

 You first need to create the starting point. This is done by reading in the social net-
work (which is stored as an adjacency list) from the file and setting the initial distance
values. Figure 7.11 shows the two file formats, the second being the format that’s used
iteratively in your MapReduce code.

Figure 7.9 Pseudocode for
breadth-first parallel search
on graph using MapReduce

AliDee Joe

BobKia

Start End

Figure 7.8 Social network used in this
technique

307TECHNIQUE 67 Find the shortest distance between two users

AliDee Joe

BobKia

Starting point

All nodes other than the starting
node start with a distance of infinity
(), denoting the fact that they

haven’t been visited. The start
node’s distance is set to zero.

AliDee Joe

BobKia

1

1

1

1

2

2

Iteration 1

First iteration where all the
unvisited nodes are iterated, and

the distance from the start node is
propagated to the nodes adjacent

to nodes that have a distance that’s
not set to .

AliDee Joe

BobKia

Iteration 2

The second iteration propagates
the distances one hop further

through the graph. As it happens,
you have now reached your target

node, Joe, so your algorithm
is complete.

Figure 7.10 Shortest path iterations through the network

Original
friends file

MapReduce
format

Node name \t Adjacent node name Adjacent node name\t \t ...

...Node name \t Distance Adjacent node name\t \tBackpointers\t

MapReduce
format example

(after one iteration)

\t \t \tkia 1 dee ali dee\t

Figure 7.11 Original social network file format and MapReduce form optimized for algorithm

308 CHAPTER 7 Utilizing data structures and algorithms at scale

Your first step is to create the MapReduce form from the original file. The following
listing shows the original input file and the MapReduce-ready form of the input file
generated by the transformation code:

$ cat test-data/ch7/friends-short-path.txt
dee kia ali
ali dee bob joe
joe bob ali
kia bob dee
bob kia ali joe

$ hadoop fs -cat output/input.txt
dee 0 kia ali
ali 2147483647 dee kia bob joe
joe 2147483647 bob ali
kia 2147483647 ali dee
bob 2147483647 ali joe

The code that generates the previous output is shown here:1

OutputStream os = fs.create(targetFile);
LineIterator iter = org.apache.commons.io.IOUtils

.lineIterator(fs.open(file), "UTF8");
while (iter.hasNext()) {
String line = iter.nextLine();

String[] parts = StringUtils.split(line);
int distance = Map.INFINITE;
if (startNode.equals(parts[0])) {
distance = 0;

}
IOUtils.write(parts[0] + '\t' +
String.valueOf(distance) + "\t\t", os);

IOUtils.write(StringUtils.join(parts, '\t',
1, parts.length), os);

IOUtils.write("\n", os);
}

The structure of the MapReduce data isn’t changed across iterations of the algorithm;
each job produces the same structure, which makes it easy to iterate, because the
input format is the same as the output format.

 Your map function will perform two major tasks. First, it outputs all the node data
to preserve the original structure of the graph. If you didn’t do this, you couldn’t
make this an interactive process, because the reducer wouldn’t be able to reproduce
the original graph structure for the next map phase. The second task of the map is to
output that adjacent node with its distance and a backpointer if the node has a non-
infinite distance number. The backpointer carries information about the nodes visited

1 GitHub source: https://github.com/alexholmes/hiped2/blob/master/src/main/java/hip/ch7/
shortestpath/Main.java.

The input data.

The MapReduce-ready form of the input data,
with the addition of a number that indicates the

number of hops from the source node. The
starting node is Dee, so she has a hop of 0. All

other nodes use Integer.MAX_VALUE to indicate
that they haven’t been visited.

Read each line from
the original social

network file.

Set the default
distance to the node to
be infinite (which you
represent with
Integer.MAX_VALUE).

If the current node is the
starting node, set its

distance to zero.

Write out the
distance and an
empty backpointer. Write out the adjacent

nodes (the friends).

https://github.com/alexholmes/hiped2/blob/master/src/main/java/hip/ch7/shortestpath/Main.java
https://github.com/alexholmes/hiped2/blob/master/src/main/java/hip/ch7/shortestpath/Main.java

309TECHNIQUE 67 Find the shortest distance between two users

from the starting node, so when you reach the end node, you know the exact path
that was taken to get there. Here’s the code for the map function:2

@Override
protected void map(Text key, Text value, Context context)

throws IOException, InterruptedException {

Node node = Node.fromMR(value.toString());

context.write(key, value);

if (node.isDistanceSet()) {
int neighborDistance = node.getDistance() + 1;

String backpointer = node.
constructBackpointer(key.toString());

String[] adjNodes = node.getAdjacentNodeNames();
for (int i = 0; i < adjNodes.length; i++) {

String neighbor = adjNodes[i];

outKey.set(neighbor);

Node adjacentNode = new Node()
.setDistance(neighborDistance)
.setBackpointer(backpointer);

outValue.set(adjacentNode.toString());
context.write(outKey, outValue);

}
}

}

When outputting the original input node, as well as the adjacent nodes and the dis-
tances to them, the format (not contents) of the map output value is identical to make
it easier for your reducer to read the data. To do this, you use a Node class to model the
notion of a node, its adjacent nodes, and the distance from the starting node. Its
toString method generates a String form of this data, which is used as the map output
key, as shown in the following listing.3

public class Node {
private int distance = INFINITE;
private String backpointer;
private String[] adjacentNodeNames;

public static int INFINITE = Integer.MAX_VALUE;
public static final char fieldSeparator = '\t';

2 GitHub source: https://github.com/alexholmes/hiped2/blob/master/src/main/java/hip/ch7/
shortestpath/Map.java.

Listing 7.1 The Node class helps with serialization in MapReduce code

3 GitHub source: https://github.com/alexholmes/hiped2/blob/master/src/main/java/hip/ch7/
shortestpath/Node.java.

Create a Node object
from the inputs. The
fromMR method
splits the string and
extracts the
distance, backpointer,
and adjacent nodes.

Preserve the
graph structure.

Only output the
neighbor details if
you have a distance
value set.

Calculate the
distance for the
adjacent nodes.

If the node has
a backpointer,
preserve it.

Calculate the
backpointer, which is the

existing node’s
backpointer with the

node’s name concatenated
to the end.

Loop through all
the adjacent nodes.

Output the
adjacent node

details.

https://github.com/alexholmes/hiped2/blob/master/src/main/java/hip/ch7/shortestpath/Map.java
https://github.com/alexholmes/hiped2/blob/master/src/main/java/hip/ch7/shortestpath/Map.java
https://github.com/alexholmes/hiped2/blob/master/src/main/java/hip/ch7/shortestpath/Node.java
https://github.com/alexholmes/hiped2/blob/master/src/main/java/hip/ch7/shortestpath/Node.java

310 CHAPTER 7 Utilizing data structures and algorithms at scale

...

public String constructBackpointer(String name) {
StringBuilder backpointer = new StringBuilder();
if (StringUtils.trimToNull(getBackpointer()) != null) {
backpointers.append(getBackpointer()).append(":");

}
backpointer.append(name);
return backpointer.toString();

}

@Override
public String toString() {
StringBuilder sb = new StringBuilder();
sb.append(distance)

.append(fieldSeparator)

.append(backpointer);

if (getAdjacentNodeNames() != null) {
sb.append(fieldSeparator)

.append(StringUtils
.join(getAdjacentNodeNames(), fieldSeparator));

}
return sb.toString();

}

public static Node fromMR(String value) throws IOException {
String[] parts = StringUtils.splitPreserveAllTokens(

value, fieldSeparator);
if (parts.length < 2) {
throw new IOException(

"Expected 2 or more parts but received " + parts.length);
}
Node node = new Node()

.setDistance(Integer.valueOf(parts[0]))

.setBackpointer(StringUtils.trimToNull(parts[1]));
if (parts.length > 2) {
node.setAdjacentNodeNames(Arrays.copyOfRange(parts, 2,

parts.length));
}
return node;

}

The reducer is invoked for each node and is supplied a list of all the adjacent nodes
and their shortest paths. It iterates through all the adjacent nodes and determines the
current node’s shortest path by selecting the adjacent node with the smallest, shortest
path. The reducer then outputs the minimum distance, the backpointer, and the orig-
inal adjacent nodes. The following listing shows this code.4

public static enum PathCounter {
TARGET_NODE_DISTANCE_COMPUTED,
PATH

Listing 7.2 The reducer code for the shortest-path algorithm

4 GitHub source: https://github.com/alexholmes/hiped2/blob/master/src/main/java/hip/ch7/shortest-
path/Reduce.java.

The counter enum you’ll use to set
the number of hops when you’ve

reached the target node.

https://github.com/alexholmes/hiped2/blob/master/src/main/java/hip/ch7/shortestpath/Reduce.java
https://github.com/alexholmes/hiped2/blob/master/src/main/java/hip/ch7/shortestpath/Reduce.java

311TECHNIQUE 67 Find the shortest distance between two users

}

private Text outValue = new Text();
private String targetNode;

protected void setup(Context context
) throws IOException, InterruptedException {
targetNode = context.getConfiguration().get(

Main.TARGET_NODE);
}

public void reduce(Text key, Iterable<Text> values,
Context context)

throws IOException, InterruptedException {

int minDistance = Node.INFINITE;

Node shortestAdjacentNode = null;
Node originalNode = null;

for (Text textValue : values) {

Node node = Node.fromMR(textValue.toString());

if(node.containsAdjacentNodes()) {
// the original data
//
originalNode = node;

}

if(node.getDistance() < minDistance) {
minDistance = node.getDistance();
shortestAdjacentNode = node;

}
}

if(shortestAdjacentNode != null) {
originalNode.setDistance(minDistance);
originalNode.setBackpointer(
shortestAdjacentNode.getBackpointer());

}

outValue.set(originalNode.toString());

context.write(key, outValue);

if (minDistance != Node.INFINITE &&
targetNode.equals(key.toString())) {

Counter counter = context.getCounter(
PathCounter.TARGET_NODE_DISTANCE_COMPUTED);

counter.increment(minDistance);
context.getCounter(PathCounter.PATH.toString(),

shortestAdjacentNode.getBackpointer()).increment(1);
}

}

Read the target
node name from

the configuration.

The initial minimum
distance is infinite.

Convert the input
value into a Node.

If the node represents the
original node (with adjacent

nodes), preserve it.

If the distance to this node from
an adjacent node is less than the

minimum distance, preserve it.

Store the minimum
distance and backpointer
from the adjacent node.

Write out
the node.

If the current node is the target
node and you have a valid distance
value, you’re done, and you indicate

this by setting the distance and
backpointer in MapReduce counters.

312 CHAPTER 7 Utilizing data structures and algorithms at scale

You’re ready to run your code. You need to copy the input file into HDFS, and then
kick off your MapReduce job, specifying the start node name (dee) and target node
name (joe):

$ hadoop fs -put \
test-data/ch7/friends-short-path.txt \
friends-short-path.txt

$ hip hip.ch7.shortestpath.Main \
--start dee \
--end joe \
--input friends-short-path.txt \
--output output

==
= Shortest path found, details as follows.
=
= Start node: dee
= End node: joe
= Hops: 2
= Path: dee:ali
==

$ hadoop fs -cat output/2/part*
ali 1 dee dee bob joe
bob 2 dee:kia kia ali joe
dee 0 kia ali
joe 2 dee:ali bob ali
kia 1 dee bob dee

The output of your job shows that the minimum number of hops between Dee and
Joe is 2, and that Ali was the connecting node.

■ Summary
This exercise showed how a shortest-path algorithm could be used to determine the
minimum number of hops between two people in a social network. An algorithm
related to the shortest-path algorithm, called graph diameter estimation, attempts to deter-
mine the average number of hops between nodes.5 This has been used to support the
notion of six degrees of separation in large social network graphs with millions of nodes.6

Inefficiencies of using MapReduce for iterative graph processing Using Map-
Reduce for graph processing is inefficient from an I/O perspective—each
graph iteration is executed within a single MapReduce job. As a result, the
entire graph structure must be written to HDFS (in triplicate, or whatever
your HDFS replication setting is) in between jobs and then be read by the sub-
sequent job. Graph algorithms that may require a large number of iterations
(such as this shortest-path example) are best executed using Giraph, which is
covered in section 7.1.4.

5 See U. Kang et al., “HADI: Fast Diameter Estimation and Mining in Massive Graphs with Hadoop” (December
2008), http://reports-archive.adm.cs.cmu.edu/anon/ml2008/CMU-ML-08-117.pdf.

6 See Lars Backstrom et al., “Four Degrees of Separation,” http://arxiv.org/abs/1111.4570.

313TECHNIQUE 68 Calculating FoFs

The shortest-path algorithm has multiple applications, but an arguably more useful
and utilized algorithm in social networks is friends-of-friends (FoF).

7.1.3 Friends-of-friends algorithm

Social network sites such as LinkedIn and Facebook use the friends-of-friends (FoF)
algorithm to help users broaden their networks.

TECHNIQUE 68 Calculating FoFs

The friends-of-friends algorithm suggests friends that a user may know but who aren’t
part of their immediate network. For this technique‚ we’ll consider a FoF to be in the
second degree of separation, as shown in figure 7.12.

 The key ingredient to success with this approach is to order the FoFs by the num-
ber of common friends, which increases the chances that the user knows the FoF.

■ Problem
You want to implement the FoF algorithm in MapReduce.

■ Solution
Two MapReduce jobs are required to calculate the FoFs for each user in a social net-
work. The first job calculates the common friends for each user, and the second job
sorts the common friends by the number of connections to your friends. You can then
recommend new friends by selecting the top FoFs based on this sorted list.

■ Discussion
You should first look at an example graph and understand what results you’re looking
for. Figure 7.13 shows a network of people with Jim, one of the users, highlighted. In
this graph, Jim’s FoFs are in bold circles, and the number of friends that the FoF and
Jim have in common is also identified.

1st degree
of separation

2nd degree
of separation

3rd degree
of separation

Jim

Ali

Kia

Joe

Jon

Ben

Bill Figure 7.12 An example of FoF
where Joe and Jon are considered
FoFs to Jim

314 CHAPTER 7 Utilizing data structures and algorithms at scale

Your goal is to determine all the FoFs and order them by the number of friends in
common. In this case, your expected results would have Joe as the first FoF recom-
mendation, followed by Dee, and then Jon.

 The text file that represents the social graph for this technique is shown here:

$ cat test-data/ch7/friends.txt
joe jon kia bob ali
kia joe jim dee
dee kia ali
ali dee jim bob joe jon
jon joe ali
bob joe ali jim
jim kia bob ali

This algorithm requires you to write two MapReduce jobs. The first job, the pseudo-
code for which is shown in figure 7.14, calculates the FoFs and, for each FoF, counts
the number of friends in common. The result of the job is a line for each FoF relation-
ship, excluding people who are already friends.

BobJim

Ali

Kia

Dee

Joe

Jon
Dee is a FoF to Jim with

2 common friends
(Ali and Kia).

Jon is a FoF to Jim with
1 common friend

(Ali).

Jon is a FoF to Jim with
3 common friends
(Kia, Bob, and Ali).

Figure 7.13 A graph representing Jim’s FoFs

Figure 7.14 The first MapReduce job, which calculates the FoFs

315TECHNIQUE 68 Calculating FoFs

The output when you execute this job against the graph in figure 7.13 is shown here:

ali kia 3
bob dee 1
bob jon 2
bob kia 2
dee jim 2
dee joe 2
dee jon 1
jim joe 3
jim jon 1
jon kia 1

The second job needs to produce output that lists FoFs in order of the number of
common friends. Figure 7.15 shows the algorithm. You’re using a secondary sort to
order a user’s FoFs in order of the number of common friends.

 The output of executing this job against the output of the previous job can be seen
here:

ali kia:3
bob kia:2,jon:2,dee:1
dee jim:2,joe:2,jon:1,bob:1
jim joe:3,dee:2,jon:1
joe jim:3,dee:2
jon bob:2,kia:1,dee:1,jim:1
kia ali:3,bob:2,jon:1

Let’s dive into the code. The following listing shows the first MapReduce job, which
calculates the FoFs for each user.7

7 GitHub source: https://github.com/alexholmes/hiped2/blob/master/src/main/java/hip/ch7/friendsofa-
friend/CalcMapReduce.java.

Figure 7.15 The second MapReduce job, which sorts the FoFs by the number of friends in common

https://github.com/alexholmes/hiped2/blob/master/src/main/java/hip/ch7/friendsofafriend/CalcMapReduce.java
https://github.com/alexholmes/hiped2/blob/master/src/main/java/hip/ch7/friendsofafriend/CalcMapReduce.java

316 CHAPTER 7 Utilizing data structures and algorithms at scale

public static class Map
extends Mapper<Text, Text, TextPair, IntWritable> {

private TextPair pair = new TextPair();
private IntWritable one = new IntWritable(1);
private IntWritable two = new IntWritable(2);

@Override
protected void map(Text key, Text value, Context context)

throws IOException, InterruptedException {
String[] friends = StringUtils.split(value.toString());
for (int i = 0; i < friends.length; i++) {

pair.set(key.toString(), friends[i]);
context.write(pair, one);

for (int j = i + 1; j < friends.length; j++) {
pair.set(friends[i], friends[j]);
context.write(pair, two);

}
}

}
}

public static class Reduce
extends Reducer<TextPair, IntWritable, TextPair, IntWritable> {

private IntWritable friendsInCommon = new IntWritable();

public void reduce(TextPair key, Iterable<IntWritable> values,
Context context)

throws IOException, InterruptedException {

int commonFriends = 0;
boolean alreadyFriends = false;
for (IntWritable hops : values) {
if (hops.get() == 1) {
alreadyFriends = true;
break;

}

commonFriends++;
}
if (!alreadyFriends) {
friendsInCommon.set(commonFriends);
context.write(key, friendsInCommon);

}
}

}

The job of the second MapReduce job in the following listing is to sort the FoFs so
that you see FoFs with a higher number of mutual friends ahead of those that have a
smaller number of mutual friends.8

Listing 7.3 Mapper and reducer implementations for FoF calculation

8 GitHub source: https://github.com/alexholmes/hiped2/blob/master/src/main/java/hip/ch7/friendsofa-
friend/SortMapReduce.java.

Go through all the adjacent nodes
in the graph (the user’s friends).

For each friend, emit the fact that
they’re friends so that this relationship

can be discarded in the reduce phase. The
TextPair class alphabetically orders the
two names so that for a given pair of
users there’ll be a single reducer key.

For each friend, go through the
remaining friends and emit the

fact that they’re an FoF.

Ignore this
relationship if the
users are already

friends.

Output the fact that they’re FoFs,
including a count of common friends.
This also uses the TextPair class to
alphabetically order the user names.

https://github.com/alexholmes/hiped2/blob/master/src/main/java/hip/ch7/friendsofafriend/SortMapReduce.java
https://github.com/alexholmes/hiped2/blob/master/src/main/java/hip/ch7/friendsofafriend/SortMapReduce.java

317TECHNIQUE 68 Calculating FoFs

public static class Map
extends Mapper<Text, Text, Person, Person> {

private Person outputKey = new Person();
private Person outputValue = new Person();

@Override
protected void map(Text key, Text value, Context context)

throws IOException, InterruptedException {
String[] parts = StringUtils.split(value.toString());
String name = parts[0];
int commonFriends = Integer.valueOf(parts[1]);

outputKey.set(name, commonFriends);
outputValue.set(key.toString(), commonFriends);
context.write(outputKey, outputValue);

outputValue.set(name, commonFriends);
outputKey.set(key.toString(), commonFriends);
context.write(outputKey, outputValue);

}
}

public static class Reduce
extends Reducer<Person, Person, Text, Text> {

private Text name = new Text();
private Text potentialFriends = new Text();

@Override
public void reduce(Person key, Iterable<Person> values,

Context context)
throws IOException, InterruptedException {

StringBuilder sb = new StringBuilder();

int count = 0;
for (Person potentialFriend : values) {

if(sb.length() > 0) {
sb.append(",");

}
sb.append(potentialFriend.getName())

.append(":")

.append(potentialFriend.getCommonFriends());

if (++count == 10) {
break;

}
}

name.set(key.getName());
potentialFriends.set(sb.toString());
context.write(name, potentialFriends);

}
}

Listing 7.4 Mapper and reducer implementations that sort FoFs

Emit one half of
the relationship.

Emit the other half
of the relationship.

All the people in your list
are sorted in order of

number of common friends.

Only keep the top 10.

Emit the FoFs for the user.

318 CHAPTER 7 Utilizing data structures and algorithms at scale

I won’t show the whole driver code, but to enable the secondary sort, I had to write a
few extra classes as well as inform the job to use the classes for partitioning and sorting
purposes: 9

job.setPartitionerClass(PersonNamePartitioner.class);
job.setSortComparatorClass(PersonComparator.class);
job.setGroupingComparatorClass(PersonNameComparator.class);

For more details on how secondary sort works, look at chapter 6.
 Copy the input file containing the friend relationships into HDFS, and then run

the driver code to run your two MapReduce jobs. The last two arguments are the out-
put directories for the two MapReduce jobs:

$ hadoop fs -put test-data/ch7/friends.txt .
$ hip hip.ch7.friendsofafriend.Main \

--input friends.txt \
--calc-output outputcalc \
--sort-output outputsort

After running your code, you can look at the output in HDFS:

$ hadoop fs -cat outputsort/part*
ali kia:3
bob kia:2,jon:2,dee:1
dee jim:2,joe:2,jon:1,bob:1
jim joe:3,dee:2,jon:1
joe jim:3,dee:2
jon bob:2,kia:1,dee:1,jim:1
kia ali:3,bob:2,jon:1

This output verifies what you saw with your own eyes in figure 7.13. Jim has three FoFs,
and they’re ordered by the number of common friends.

■ Summary
This approach can be used not only as a recommendation engine to help users grow
their networks, but also for informational purposes when the user is browsing the
social network’s website. For example, when you view people in LinkedIn, you’ll be
shown the degrees of separation between you and the person being viewed. This
approach can be used to precompute that information for two hops. To reproduce
this for three hops (for example, to show friends-of-friends-of-friends) you’d need to
introduce a third MapReduce job to compute the third hop from the output of the
first job.

 To simplify this approach, we used an undirected graph, which implies that user
relationships are bidirectional. Most social networks don’t have such a notion, and the
algorithm would need some minor tweaks to model directed graphs.

9 GitHub source: https://github.com/alexholmes/hiped2/blob/master/src/main/java/hip/ch7/friendsofa-
friend/Main.java.

https://github.com/alexholmes/hiped2/blob/master/src/main/java/hip/ch7/friendsofafriend/Main.java
https://github.com/alexholmes/hiped2/blob/master/src/main/java/hip/ch7/friendsofafriend/Main.java

319TECHNIQUE 68 Calculating FoFs

 This example required two MapReduce jobs to complete the algorithm, which
means that the entire graph was written to HDFS between jobs. This isn’t particularly
inefficient given the number of jobs, but once the number of iterations over your
graph data goes beyond two, it’s probably time to start looking at more efficient ways
of working with your graph data. You’ll see this in the next technique, where Giraph
will be used to calculate the popularity of web pages.

7.1.4 Using Giraph to calculate PageRank over a web graph

Using MapReduce for iterative graph processing introduces a number of inefficien-
cies, which are highlighted in figure 7.16.

 This isn’t something that should be of concern if your graph algorithm only
requires one or two iterations, but beyond that the successive HDFS barriers between
jobs will start to add up, especially with large graphs. At that point it’s time to look at
alternative methods for graph processing, such as Giraph.

 This section presents an overview of Giraph and then applies it to calculate
PageRank over a web graph. PageRank is a good fit for Giraph as it’s an example of
an iterative graph algorithm that can require many iterations before the graph
converges.

AN INTRODUCTION TO GIRAPH

Giraph is an Apache project modeled after Google’s Pregel, which describes a system
for large-scale graph processing. Pregel was designed to reduce the inefficiencies of
using MapReduce for graph processing and to provide a programming model that is
vertex-centric.

 To combat the disk and network barriers that exist in MapReduce, Giraph loads all
the vertices into memory across a number of worker processes and keeps them in mem-
ory during the whole process. Each graph iteration is composed of the workers supply-
ing inputs to the vertices that they manage, the vertices performing their processing,

Graph iteration 1

Map MapMap

Map MapMap

Shuffle

Reduce Reduce

HDFS

The shuffle phase
requires the whole graph
to be wri�en to disk and
over the network between

mappers and reducers.

HDFS is a disk barrier
(where data is wri�en in
triplicate) between graph

iterations.Graph iteration 2

Figure 7.16 An iterative graph algorithm implemented using MapReduce

320 CHAPTER 7 Utilizing data structures and algorithms at scale

and the vertices then emitting messages that the framework routes to the appropriate
adjacent vertices in the graph (as seen in figure 7.17).

 Giraph uses bulk synchronous communication (BSP) to support workers’ commu-
nication. BSP is essentially an iterative message-passing algorithm that uses a global syn-
chronization barrier between successive iterations. Figure 7.18 shows Giraph workers
each containing a number of vertices, and worker intercommunication and synchroni-
zation via the barrier.

Kia

Mel

Ann
Each iteration is an

opportunity to send a
message to a adjacent

vertex.

Figure 7.17 Giraph message passing

Kia

Ann

Mel

Bob

Dee

Joe

Worker

Vertices communicate with each other
by sending messages to other workers

that store adjacent vertices.

Vertices are stored in workers
(Giraph processes).

Graph iteration 1

A synchronization barrier—all messages for
a single iteration need to be sent before

the next iteration can start.

Bob JoeDee

Worker

Kia MelAnn

Worker

Bob JoeDee

Worker

Kia MelAnn

Graph iteration 2

Figure 7.18 Giraph workers, message passing, and synchronization

321Modeling data and solving problems with graphs

Technique 69 will go further into the details, but before we dive in, let’s take a quick
look at how PageRank works.

Modeling data and solving problems with graphs

A BRIEF OVERVIEW OF PAGERANK

PageRank is a formula introduced by the founders of Google during their Stanford
years in 1998.10 Their paper discusses an overall approach to crawling and indexing the
web, and it includes, as part of that, a calculation that they titled PageRank, which gives
a score to each web page indicating the page’s importance. This wasn’t the first paper
to introduce a scoring mechanism for web pages,11 but it was the first to weigh scores
propagated to each outbound link based on the total number of outbound links.

 Fundamentally, PageRank gives pages that have a large number of inbound links a
higher score than pages that have a smaller number of inbound links. When evaluating
the score for a page, PageRank uses the scores for all the inbound links to calculate a
page’s PageRank. But it penalizes individual inbound links that have a high number of
outbound links by dividing that outbound link PageRank by the number of outbound
links. Figure 7.19 presents a simple exam-
ple of a web graph with three pages and
their respective PageRank values.

 Figure 7.20 shows the PageRank for-
mula. In the formula, |webGraph| is a
count of all the pages in the graph, and d,
set to 0.85, is a constant damping factor
used in two parts. First, it denotes the
probability of a random surfer reaching
the page after clicking on many links (this
is a constant equal to 0.15 divided by the
total number of pages), and second, it
dampens the effect of the inbound link
PageRanks by 85%.

10 See Sergey Brin and Lawrence Page, “The Anatomy of a Large-Scale Hypertextual Web Search Engine,”
http://infolab.stanford.edu/pub/papers/google.pdf.

11 Before PageRank, the HITS link-analysis method was popular; see the “Hubs and Authorities” page of Chris-
topher D. Manning, Prabhakar Raghavan, and Hinrich Schütze, Introduction to Information Retrieval, http://
nlp.stanford.edu/IR-book/html/htmledition/hubs-and-authorities-1.html.

Figure 7.20 The PageRank formula

A
PR = 0.46

B
PR = 0.27

C
PR = 0.27

Figure 7.19 PageRank values for a simple web
graph

http://nlp.stanford.edu/IR-book/html/htmledition/hubs-and-authorities-1.html
http://nlp.stanford.edu/IR-book/html/htmledition/hubs-and-authorities-1.html

322 CHAPTER 7 Utilizing data structures and algorithms at scale

TECHNIQUE 69 Calculate PageRank over a web graph

PageRank is a graph algorithm that typically requires multiple iterations, and as such
doesn’t lend itself to being implemented in MapReduce due to the disk barrier over-
head discussed in this section’s introduction. This technique looks at how you can use
Giraph, which is well-suited to algorithms that require multiple iterations over large
graphs, to implement PageRank.

■ Problem
You want to implement an iterative PageRank graph algorithm using Giraph.

■ Solution
PageRank can be implemented by iterating a MapReduce job until the graph has con-
verged. The mappers are responsible for propagating node PageRank values to their
adjacent nodes, and the reducers are responsible for calculating new PageRank values
for each node, and for re-creating the original graph with the updated PageRank values.

■ Discussion
One of the advantages of PageRank is that it can be computed iteratively and applied
locally. Every vertex starts with a seed value, which is 1 divided by the number of
nodes, and with each iteration, each node propagates its value to all pages it links to.
Each vertex in turn sums up all the inbound vertex values to compute a new seed
value. This iterative process is repeated until such a time as convergence is reached.

 Convergence is a measure of how much the seed values have changed since the last
iteration. If the convergence value is below a certain threshold, it means that there’s
been minimal change and you can stop the iteration. It’s also common to limit the
number of iterations for large graphs where convergence takes too many iterations.

 Figure 7.21 shows two iterations of PageRank against the simple graph you saw ear-
lier in this chapter.

A
0.33

B
0.33

C
0.33

Iteration 1

Starting point with intermediary
inbound PageRank numbers. Result

0.33

0.33

0.16

0.16

All nodes push their
PageRank values
(PR / # outbound

nodes) to the
outbound nodes.

All nodes start
with a PageRank

value of
(1.0 / # nodes) = 0.33.

A
0.61

B
0.19

C
0.19

A
0.61

B
0.19

C
0.19

Iteration 2

0.19

0.19

0.3

0.3

A
0.37

B
0.31

C
0.31

Figure 7.21 An example of PageRank iterations

323TECHNIQUE 69 Calculate PageRank over a web graph

Figure 7.22 shows the PageRank algorithm expressed as map and reduce phases. The
map phase is responsible for preserving the graph as well as emitting the PageRank
value to all the outbound nodes. The
reducer is responsible for recalculating
the new PageRank value for each node
and including it in the output of the
original graph.

 In this technique, you’ll operate on
the graph shown in figure 7.23. In this
graph, all the nodes have both inbound
and outbound edges.

 Giraph supports various input and
output data formats. For this technique
we’ll use JsonLongDoubleFloatDouble-
VertexInputFormat as the input format; it
requires vertices to be expressed numer-
ically along with an associated weight
that we won’t use for this technique. We’ll map vertex A to integer 0, B to 1, and so on,
and for each vertex we’ll identify the adjacent vertices. Each line in the data file repre-
sents a vertex and the directed edges to adjacent vertices:

[<vertex id>,<vertex value>,[[<dest vertex id>,<vertex weight>][...]]]

The following input file represents the graph in figure 7.23:

[0,0,[[1,0],[3,0]]]
[1,0,[[2,0]]]
[2,0,[[0,0],[1,0]]]
[3,0,[[1,0],[2,0]]]

Figure 7.22 PageRank decomposed into
map and reduce phases

A

C

B

D

Figure 7.23 Sample web graph for this technique

324 CHAPTER 7 Utilizing data structures and algorithms at scale

Copy this data into a file called webgraph.txt and upload it to HDFS:

$ hadoop fs -put webgraph.txt .

Your next step is to write the Giraph vertex class. The nice thing about Giraph’s model
is that it’s simple—it provides a vertex-based API where you need to implement the graph-
processing logic for a single iteration on that vertex. The vertex class is responsible for
processing incoming messages from adjacent vertices, using them to calculate the node’s
new PageRank value, and propagating the updated PageRank value (divided by the num-
ber of outbound edges) to the adjacent vertices, as shown in the following listing.12

public class PageRankVertex extends Vertex<LongWritable, DoubleWritable,
FloatWritable, DoubleWritable> {

public static final String SUPERSTEP_COUNT =
"pageRank.superstepCount";

@Override
public void compute(Iterable<DoubleWritable> messages) {
if (getSuperstep() >= 1) {
double sum = 0;
for (DoubleWritable message : messages) {

sum += message.get();
}
getValue().set((0.15f / getTotalNumVertices()) + 0.85f * sum);

}

if (getSuperstep() < getConf().getInt(SUPERSTEP_COUNT, 0)) {
double propagated = getValue().get() / getNumEdges();
sendMessageToAllEdges(new DoubleWritable(propagated));

} else {
voteToHalt();

}
}

}

Installing Giraph Giraph is a Java library and is bundled with the code distri-
bution for this book. Therefore, it doesn’t need to be installed for the exam-
ples in this technique to work. The Giraph website at http://
giraph.apache.org/ contains download installation for releases if you wish to
play with Giraph further.

If you push the web graph into HDFS and run your job, it will run for five iterations
until the graph converges:

Listing 7.5 The PageRank vertex

12 GitHub source: https://github.com/alexholmes/hiped2/blob/master/src/main/java/hip/ch7/pagerank/
giraph/PageRankVertex.java.

A configurable that determines
the number of graph iterations.

The compute method
is supplied a sequence
of PageRank values
propagated from
adjacent vertices.

Only calculate the
PageRank value after

the first iteration.

Calculate the PageRank value
and set it for the vertex.

Propagate the
PageRank value to
adjacent vertices if
this iteration is less
than the number of
configured iterations.

Once you’ve reached the maximum
number of iterations, indicate

that this vertex no longer
requires iterations.

http://giraph.apache.org/
http://giraph.apache.org/
https://github.com/alexholmes/hiped2/blob/master/src/main/java/hip/ch7/pagerank/giraph/PageRankVertex.java
https://github.com/alexholmes/hiped2/blob/master/src/main/java/hip/ch7/pagerank/giraph/PageRankVertex.java

325TECHNIQUE 69 Calculate PageRank over a web graph

$ hadoop org.apache.giraph.GiraphRunner \
-Dgiraph.zkList=127.0.0.1:2181 \
-libjars $HIP_HOME/hip-2.0.0.jar \
hip.ch7.pagerank.giraph.PageRankVertex \
-vif org.apache.giraph.io.formats.\

JsonLongDoubleFloatDoubleVertexInputFormat \
-of org.apache.giraph.io.formats.IdWithValueTextOutputFormat \
-vip webgraph.txt \
-op output \
-ca pageRank.superstepCount=10 \
-w 1

After the process has completed, you can look at the output in HDFS to see the Page-
Rank values for each vertex:

$ hadoop fs -cat output/art*
0 0.15472094578266
2 0.28902904137380575
1 0.25893832306149106
3 0.10043738978626424

According to the output, node C (vertex 2) has the highest PageRank, followed by
node B (vertex 1). Initially, this observation may be surprising, given that B has three
inbound links and C has just two. But if you look at who’s linking to C, you can see
that node B, which also has a high PageRank value, only has one outbound link to C,
so node C gets B’s entire PageRank score in addition to its other inbound PageRank
score from node D. Therefore, node C’s PageRank will always be higher than B’s.

■ Summary
When you compare the code you had to write for the MapReduce compared to the
code for Giraph, it’s clear that Giraph provides a simple and abstracted model that
richly expresses graph concepts. Giraph’s efficiency over that of MapReduce results in
Giraph being a compelling solution for your graph-processing needs.

 Giraph’s ability to scale to large graphs is highlighted by a Facebook article discuss-
ing how Facebook used Giraph to process a graph with a trillion edges.13 There are
other graph technologies that you can evaluate for your needs:

■ Faunus is a Hadoop-based open source project that supports HDFS and other
data sources (http://thinkaurelius.github.io/faunus/).

■ GraphX is an in-memory Spark-based project. GraphX is currently not sup-
ported by any of the commercial Hadoop vendors, although it will soon be
included in Cloudera CDH 5.1 (https://amplab.cs.berkeley.edu/publication/
graphx-grades/).

■ GraphLab is a C++-based, distributed, graph-processing framework out of Carn-
egie Mellon University (http://graphlab.com/).

13 Avery Ching, “Scaling Apache Giraph to a trillion edges,” https://www.facebook.com/notes/
facebook-engineering/scaling-apache-giraph-to-a-trillion-edges/10151617006153920.

The ZooKeeper portThe JAR that
contains the PageRank
vertex class

The input format

The output format

The input file that
models the graph

The output
directory

The number of
graph iterations

The number
of workers

https://www.facebook.com/notes/facebook-engineering/scaling-apache-giraph-to-a-trillion-edges/10151617006153920
https://www.facebook.com/notes/facebook-engineering/scaling-apache-giraph-to-a-trillion-edges/10151617006153920
https://amplab.cs.berkeley.edu/publication/graphx-grades/
https://amplab.cs.berkeley.edu/publication/graphx-grades/

326 CHAPTER 7 Utilizing data structures and algorithms at scale

Although you implemented the PageRank formula, it was made simple by the fact that
your graph was well connected and that every node had outbound links. Pages with no
outbound links are called dangling pages, and they pose a problem for the PageRank
algorithm because they become PageRank sinks—their PageRank values can’t be fur-
ther propagated through the graph. This, in turn, causes convergence problems
because graphs that aren’t strongly connected aren’t guaranteed to converge.

 There are various approaches to solving this problem. You could remove the dan-
gling nodes before your PageRank iterations and then add them back for a final Page-
Rank iteration after the graph has converged. Or you could sum together the PageRank
totals for all dangling pages and redistribute them across all the nodes in the graph. For
a detailed examination of dealing with dangling pages as well as advanced PageRank
practices, see Google’s PageRank and Beyond by Amy N. Langville and Carl Dean Meyer
(Princeton University Press, 2012).

 This concludes the section on graphs. As you learned, graphs are useful mecha-
nisms for representing people in a social network and pages in a web. You used these
models to discover some useful information about your data, such as finding the
shortest path between two points and what web pages are more popular than others.

 This brings us to the subject of the next section, Bloom filters. Bloom filters are a
different kind of data structure from graphs. Whereas graphs are used to represent
entities and their relationships, Bloom filters are a mechanism for modeling sets and
performing membership queries on their data, as you’ll discover next.

7.2 Bloom filters
A Bloom filter is a data structure that offers a membership query mechanism where the
answer to a lookup is one of two values: a definitive no, meaning that the item being
looked up doesn’t exist in the Bloom filter, or a maybe, meaning that there’s a probabil-
ity that the item exists. Bloom filters are popular due to their space efficiencies—rep-
resenting the existence of N elements requires much less space than N positions in the
data structure, which is why the membership query can yield false positive results. The
amount of false positives in a Bloom filter can be tuned, which we’ll discuss shortly.

 Bloom filters are used in BigTable and HBase to remove the need to read blocks from
disk to determine if they contain a key. They’re also used in distributed network applica-
tions such as Squid to share cache details between multiple instances without having to
replicate the whole cache or incur a network I/O hit in the case of cache misses.

 The implementation of Bloom filters is simple. They use a bit array of size m bits,
where initially each bit is set to 0. They also contain k hash functions, which are used
to map elements to k locations in the bit array.

 To add an element to a Bloom filter, it’s hashed k times, and a modulo of the
hashed value and the size of the bit array is used to map the hashed value to a specific
bit array location. That bit in the bit array is then toggled to 1. Figure 7.24 shows three
elements being added to a Bloom filter and their locations in the bit array.

 To check the membership of an element in the Bloom filter, just like with the add
operation, the element is hashed k times, and each hash key is used to index into the

327Bloom filters

bit array. A true response to the membership query is only returned in cases where all
k bit array locations are set to 1. Otherwise, the response to the query is false.

 Figure 7.25 shows an example of a membership query where the item was previ-
ously added to the Bloom filter, and therefore all the bit array locations contained a 1.
This is an example of a true positive membership result.

Figure 7.26 shows how you can get a false positive result for a membership query. The
element being queried is d, which hadn’t been added to the Bloom filter. As it hap-
pens, all k hashes for d are mapped to locations that are set to 1 by other elements.
This is an example of collision in the Bloom filter, where the result is a false positive.

Array

0

Hash functions

.

.

.

Elements

f1
f1(a)

fk(a)

f1(b)

fk(b)

f1(c)

fk(c)fk

a

b

c

1 a1

1

0

1

0

1

1

ak

b1, ck

bk

c1
Figure 7.24 Adding
elements to a Bloom filter

Array

0

Hash functions

.

.

.

Elements

f1
f1(a)

fk(a)
fk

a

1 a1

1

0

1

0

1

1

ak

No collisions, no
false positives

Figure 7.25 An example of a
Bloom filter membership query
that yields a true positive result

Array

0

Hash functions

.

.

.

Elements

f1
f1(d)

fk(d)
fk

d

1

1

0

1

0

1

1

Because all the bits
for element d clash
with other element
hashes, this results
in a false positive
membership query.

Hash f1 for
element d

collides with
hash for

element a

Hash fk for
element d

collides with
hash for

element c

a1

ak

b1, ck

bk

c1

Figure 7.26 An example of a Bloom filter membership query that yields a false positive result

328 CHAPTER 7 Utilizing data structures and algorithms at scale

The probability of false positives can be tuned based on two factors: m, the number of
bits in the bit array, and k, the number of hash functions. Or expressed another way, if
you have a desired false positive rate in mind and you know how many elements will
be added to the Bloom filter, you can calculate the number of bits needed in the bit
array with the equation in figure 7.27.

 The equation shown in figure 7.28 assumes an optimal
number of k hashes and that the hashes being produced are
random over the range {1..m}.

 Put another way, if you want to add 1 million elements into
a Bloom filter with a 1% false positive rate for your member-
ship queries, you’ll need 9,585,058 bits or 1.2 megabytes with
seven hash functions. This is around 9.6 bits for each element.

 Table 7.1 shows the calculated number of bits per element for various false positive
rates.

With all that theory in your head, you now need to turn your attention to the subject
of how Bloom filters can be utilized in MapReduce.

TECHNIQUE 70 Parallelized Bloom filter creation in MapReduce

MapReduce is good for processing large amounts of data in parallel, so it’s a good fit if
you want to create a Bloom filter based on a large set of input data. For example, let’s
say you’re a large, internet, social-media organization with hundreds of millions of
users, and you want to create a Bloom filter for a subset of users that are within a cer-
tain age demographic. How would you do this in MapReduce?

■ Problem
You want to create a Bloom filter in MapReduce.

Table 7.1 Number of bits required per element for different false positive rates

False positives Bits required per element

2% 8.14

1% 9.58

0.1% 14.38

Figure 7.27 Equation to
calculate the desired number
of bits for a Bloom filter

Figure 7.28 Equation
to calculate the optimal
number of hashes

329TECHNIQUE 70 Parallelized Bloom filter creation in MapReduce

■ Solution
Write a MapReduce job to create and output a Bloom filter using Hadoop’s built-in
BloomFilter class. The mappers are responsible for creating intermediary Bloom filters,
and the single reducer combines them together to output a combined Bloom filter.

■ Discussion
Figure 7.29 shows what this technique will do. You’ll write a mapper, which will pro-
cess user data and create a Bloom filter containing users in a certain age bracket. The
mappers will emit their Bloom filters, and a single reducer will combine them
together. The final result is a single Bloom filter stored in HDFS in Avro form.

Hadoop comes bundled with an implementation of a Bloom filter in the form of the
org.apache.hadoop.util.bloom.BloomFilter class, illustrated in figure 7.30. Luckily, it’s a

Reduce

Bitwise OR
operation on

all Bloom filters

The built-in Hadoop BloomFilter class
is Writable, making it easy to transport

between map and reduce tasks.

Serialized in Avro
file format.

HDFS

Bloom filter

Bloom filter Bloom filter

Bloom filter

Map

Map

Map

Figure 7.29 A MapReduce job to create a Bloom filter

BitSet bits

BloomFilter(int vectorSize, int nbHash, int hashType)

add(Key key)

boolean membershipTest(Key key)

or(Key key)

«concrete»
BloomFilter

The internal data structure
used to store the bits.

Create the Bloom filter with a certain
size, number of hashes, and hash type.

Used to perform a union between two
Bloom filters. Both structures must
have identical sizes, number of bases,

and hash types.

Add an element.. It will be
hashed nbHash times

and its respective bit array
bits will be flipped “on.”

Checks to see if a Bloom filter may
contain an element.. The input key is
hashed nbHash times and only if each

corresponding bit is “on” in the bit array
is the result “true.”

Figure 7.30 The
BloomFilter class
in MapReduce

330 CHAPTER 7 Utilizing data structures and algorithms at scale

Writable, which makes it easy to ship around in MapReduce. The Key class is used to
represent an element, and it is also a Writable container for a byte array.

 The constructor requires that you tell it what hashing function to use. There are
two implementations you can choose from: Jenkins and Murmur. They’re both faster
than cryptographic hashers such as SHA-1 and they produce good distributions.
Benchmarks indicate that Murmur has faster hashing times than Jenkins, so that’s
what we’ll use here.

 Let’s press on with the code. Your map function will operate on your user informa-
tion, which is a simple key/value pair, where the key is the user name, and the value is
the user’s age:14

public static class Map implements
Mapper<Text, Text, NullWritable, BloomFilter> {

private BloomFilter filter =
new BloomFilter(1000, 5, Hash.MURMUR_HASH);

OutputCollector<NullWritable, BloomFilter> collector;

@Override
public void configure(JobConf job) {
}

@Override
public void map(Text key, Text value,

OutputCollector<NullWritable, BloomFilter> output,
Reporter reporter) throws IOException {

int age = Integer.valueOf(value.toString());
if (age > 30) {
filter.add(new Key(key.toString().getBytes()));

}
collector = output;

}

@Override
public void close() throws IOException {

collector.collect(NullWritable.get(), filter);
}

}

Why do you output the Bloom filter in the close method, and not output it for every
record you process in the map method? You do this to cut down on the amount of
traffic between the map and reduce phases; there’s no reason to output a lot of data if
you can pseudo-combine them yourself on the map side and emit a single BloomFilter
per map.

 Your reducer’s job is to combine all the Bloom filters outputted by the mappers
into a single Bloom filter. The unions are performed with the bitwise OR method

14 GitHub source: https://github.com/alexholmes/hiped2/blob/master/src/main/java/hip/ch7/bloom/
BloomFilterCreator.java.

Create the BloomFilter with
1,000 bits and 5 hash functions

using the Murmur hash.

If the user’s age is over 30, add
the user name to the BloomFilter.

When the map function has executed
over all the input data, output the

BloomFilter to the reducer.

https://github.com/alexholmes/hiped2/blob/master/src/main/java/hip/ch7/bloom/BloomFilterCreator.java
https://github.com/alexholmes/hiped2/blob/master/src/main/java/hip/ch7/bloom/BloomFilterCreator.java

331TECHNIQUE 70 Parallelized Bloom filter creation in MapReduce

exposed by the BloomFilter class. When performing a union, all the BloomFilter attri-
butes, such as bit array size and number of hashes, must be identical:15

public static class Reduce implements
Reducer<NullWritable, BloomFilter,

AvroWrapper<GenericRecord>, NullWritable> {
private BloomFilter filter =
new BloomFilter(1000, 5, Hash.MURMUR_HASH);

OutputCollector<AvroWrapper<GenericRecord>, NullWritable>
collector;

@Override
public void reduce(NullWritable key, Iterator<BloomFilter> values,

OutputCollector<AvroWrapper<GenericRecord>,
NullWritable> output,

Reporter reporter) throws IOException {
while (values.hasNext()) {
BloomFilter bf = values.next();
filter.or(bf);

}
collector = output;

}

@Override
public void close() throws IOException {

collector.collect(
new AvroWrapper<GenericRecord>(

AvroBytesRecord.toGenericRecord(filter)),
NullWritable.get());

}
}

To try this out, upload your sample user file and kick off your job. When the job is
complete, dump the contents of the Avro file to view the contents of your BloomFilter:

$ hadoop fs -put test-data/ch7/user-ages.txt .
$ hadoop fs -cat user-ages.txt
anne 23
joe 45
alison 32
mike 18
marie 54

$ hip hip.ch7.bloom.BloomFilterCreator \
--input user-ages.txt \
--output output

$ hip hip.ch7.bloom.BloomFilterDumper output/part-00000.avro
{96, 285, 292, 305, 315, 323, 399, 446, 666, 667, 670,
703, 734, 749, 810}

15 GitHub source: https://github.com/alexholmes/hiped2/blob/master/src/main/java/hip/ch7/bloom/
BloomFilterCreator.java.

Create an empty BloomFilter. It’s
important that all the constructor
fields be identical to the ones you

created in the mappers.

Extract the BloomFilter
from the input.Perform a union of

the Bloom filters.

Write the Bloom
filter in Avro form.

https://github.com/alexholmes/hiped2/blob/master/src/main/java/hip/ch7/bloom/BloomFilterCreator.java
https://github.com/alexholmes/hiped2/blob/master/src/main/java/hip/ch7/bloom/BloomFilterCreator.java

332 CHAPTER 7 Utilizing data structures and algorithms at scale

The BloomFilterDumper code unmarshals the BloomFilter from the Avro file and calls
the toString() method, which in turn calls the BitSet.toString() method, which out-
puts the offset for each bit that is “on.”

■ Summary
You used Avro as a serialization format for the Bloom filter. You could have just as eas-
ily emitted the BloomFilter object in your reducer, because it’s a Writable.

 You used a single reducer in this technique, which will scale well to jobs that use
thousands of map tasks and BloomFilters whose bit array sizes are in the millions. If the
time taken to execute the single reducer becomes too long, you can run with multiple
reducers to parallelize the Bloom filter unions, and have a postprocessing step to com-
bine them further into a single Bloom filter.

 Another distributed method for creating a Bloom filter would be to view the set of
reducers as the overall bit array, and perform the hashing and output the hashes in the
map phase. The partitioner would then partition the output to the relevant reducer that
manages that section of the bit array. Figure 7.31 illustrates this approach.

 For code comprehensibility, you hardcoded the BloomFilter parameters in this
technique; in reality, you’ll want to either calculate them dynamically or move them
into a configuration file.

Distributed
bit array

0

.

.

.

.

.

.

.

.

.

f1

fk

fk

f1
f2

f2

1

1

0

1

0

1

0

1

1

1

0

1

1

0

Map Partitioner

Reducer1

Reducer2

Reducerk

PartitionerMap

Figure 7.31 An alternate architecture for creating Bloom filters

333HyperLogLog

This technique resulted in the creation of a BloomFilter. This BloomFilter could be
pulled out of HDFS and used in another system, or it could be used directly in
Hadoop, as shown in technique 61, where a Bloom filter was used as a way to filter
data emitted from reducers in joins.

7.3 HyperLogLog
Imagine that you’re building a web analytics system where one of the data points
you’re calculating is the number of unique users that have visited a URL. Your prob-
lem domain is web-scale, so you have hundreds of millions of users. A naive Map-
Reduce implementation of aggregation would involve using a hashtable to store and
calculate the unique users, but this could exhaust your JVM heap when dealing with a
large number of users. A more sophisticated solution would use a secondary sort so
that user IDs are sorted, and the grouping occurs at the URL level so that you can
count unique users without any storage overhead.

 These solutions work well when you have the ability to process the entire dataset at
once. But if you have a more complex aggregation system where you create aggrega-
tions in time buckets and you need to combine buckets together, then you’d need to
store the entire set of unique users for each URL in each time bucket, which would
explode your data storage needs.

 To combat this, you could use a probabilistic algorithm such as HyperLogLog,
which has a significantly smaller memory footprint than a hashtable. The trade-off
with these probabilistic data structures is accuracy, which you can tune. In some
ways, HyperLogLog is similar to a Bloom filter, but the key difference is that
HyperLogLog will estimate a count, whereas a Bloom filter only provides
membership capabilities.

 In this section you’ll learn how HyperLogLog works and see how it can be used in
MapReduce to efficiently calculate unique counts.

7.3.1 A brief introduction to HyperLogLog

HyperLogLog was first introduced in a 2007 paper to “estimate the number of distinct
elements of very large data ensembles.”16 Potential applications include link-based
spam detection on the web and data mining over large datasets.

 HyperLogLog is a probabilistic cardinality estimator—it relaxes the constraint of
exactly calculating the number of elements in a set and instead estimates the number
of elements. Data structures that support exact set-cardinality calculations require
storage that is proportional to the number of elements, which may not be optimal
when working with large datasets. Probabilistic cardinality structures occupy less mem-
ory than their exact cardinality counterparts, and they’re applicable in situations
where the cardinality can be off by a few percentage points.

16 Philippe Flajolet et al., “HyperLogLog: the analysis of a near-optimal cardinality estimation algorithm,” http://
algo.inria.fr/flajolet/Publications/FlFuGaMe07.pdf.

http://algo.inria.fr/flajolet/Publications/FlFuGaMe07.pdf
http://algo.inria.fr/flajolet/Publications/FlFuGaMe07.pdf

334 CHAPTER 7 Utilizing data structures and algorithms at scale

 HyperLogLog can perform cardinality estimation for counts beyond 109 using 1.5
KB of memory with an error rate of 2%. HyperLogLog works by counting the maxi-
mum number of consecutive zeros in a hash and using probabilities to predict the car-
dinality of all the unique items. Figure 7.32 shows how a hashed value is represented
in HyperLogLog. For additional details, refer to the HyperLogLog paper.

 There are two parameters you’ll need to tune when working with HyperLogLog:

■ The number of buckets, usually expressed by a number, b, which is then used to
determine the number of buckets by calculating 2b. Therefore, each increment
in b doubles the number of buckets. The lower bound on b is 4, and the upper
bound varies by implementation.

■ The number of bits used to represent the maximum number of consecutive
zeros in a bucket.

As a result, the size of the HyperLogLog is calculated by 2b * bits-per-bucket. In typi-
cal usage, b is 11 and the number of bits per bucket is 5, which results in 10,240 bits,
or 1.25 KB.

1 0 0 0 1 1 1 0

Bucket
index.

01hash(data) =

Number of
consecutive zeros: 3.

Bucket: 6.

If another hashed value is in the same bucket and it
has a larger number of consecutive zeros than the existing

bucket value, then it will replace the bucket value.

Bits used to calculate
the maximum number
of consecutive zeros.

0 0 0 0 3 000

2 3 4 5 6 710

HyperLogLog
data structure

Max zeros

Bucket

The value 3 is put
into bucket 6.

0 0 0 0 5 000

2 3 4 5 6 710

Max zeros

Bucket Figure 7.32 How HyperLogLog works

335TECHNIQUE 71 Using HyperLogLog to calculate unique counts

TECHNIQUE 71 Using HyperLogLog to calculate unique counts

In this technique you’ll see a simple example of HyperLogLog in action. The sum-
mary will present some details on how HyperLogLog can be incorporated into your
MapReduce flows.

■ Problem
You’re working with a large dataset and you want to calculate distinct counts. You are
willing to accept a small percentage of error.

■ Solution
Use HyperLogLog.

■ Discussion
For this technique you’ll use a HyperLogLog Java implementation from a GitHub
project called java-hll (https://github.com/aggregateknowledge/java-hll). This code
provides the basic HyperLogLog functions, in addition to useful functions that allow
you to perform a union and intersect multiple logs together.

 The following example shows a simple case where your data consists of an array of
numbers, and Google’s Guava library is used to create a hash for each number and
add it to the HyperLogLog:17

HashFunction hasher = Hashing.murmur3_128();

final Integer[] data = new Integer[]{1, 1, 2, 2, 3, 3, 4, 4, 5, 5};

final HLL hll = new HLL(
13,
5

);

for (int item : data) {
final long hashedValue = hasher.newHasher()

.putInt(item)

.hash()

.asLong();

hll.addRaw(hashedValue);
}

System.out.println("Distinct count = " + hll.cardinality());

Running this example yields the expected number of distinct items:

$ hip hip.ch7.hyperloglog.Example
Distinct count = 5

This code can be easily adapted into a Hadoop job to perform distinct counts over
large datasets. For example, imagine that you’re writing a MapReduce job to calculate

17 GitHub source: https://github.com/alexholmes/hiped2/blob/master/src/main/java/hip/ch7/
hyperloglog/Example.java.

Use Guava’s 128-
bit Murmur hash
algorithm.

The data over which you want
to calculate a distinct count.

Number of buckets—must be
at least 4 and at most 30.Number of bits per

bucket—at least 1
and at most 8.

Calculate the hash
of an item.

Add the hashed
value to the
HyperLogLog.

Calculate the estimated
distinct count.

https://github.com/aggregateknowledge/java-hll
https://github.com/alexholmes/hiped2/blob/master/src/main/java/hip/ch7/hyperloglog/Example.java
https://github.com/alexholmes/hiped2/blob/master/src/main/java/hip/ch7/hyperloglog/Example.java

336 CHAPTER 7 Utilizing data structures and algorithms at scale

the distinct number of users that visit each page on your website. In MapReduce, your
mappers would output a URL and user ID as the key and value respectively, and your
reducers would need to calculate the unique set of users for each web page. In this sit-
uation, you can use a HyperLogLog structure to efficiently calculate an approximate
distinct count of users without the overhead that would be incurred by using a hash set.

■ Summary
The hll HyperLogLog implementation used in this example has a toBytes method
that you can use to serialize the HyperLogLog, and it also has a fromBytes method for
deserialization. This makes it relatively straightforward to use within a MapReduce
flow and for persistence. Avro, for example, has a bytes field that you can use to write
the hll byte form into your records. You could also write your own Writable if you’re
working with SequenceFiles.

 If you’re using Scalding or Summingbird, then Algebird has a HyperLogLog imple-
mentation that you can use—take a look at https://github.com/twitter/algebird for
more details.

7.4 Chapter summary
Most of the algorithms laid out in this chapter are straightforward. What makes things
interesting is how they’re applied in MapReduce in ways that enable you to work effi-
ciently with large datasets.

 The two main data structures presented were graphs—good for modeling relation-
ships—and Bloom filters, which excel at compact set membership. In the case of
graphs, we looked at how you would use them to model social networks and web
graphs, and we went through some algorithms such as FoF and PageRank to mine
some interesting facts about your data.

 In the case of Bloom filters, we looked at how to use MapReduce to create a Bloom
filter in parallel, and then apply that Bloom filter to optimize a semi-join operation in
MapReduce.

 We’ve only scratched the surface in this chapter regarding how data can be mod-
eled and processed. Algorithms related to sorting and joins are covered in other chap-
ters. The next chapter covers techniques to diagnose and tune Hadoop to squeeze as
much performance as you can out of your clusters.

https://github.com/twitter/

337

Tuning,
 debugging, and testing

Imagine you’ve written a new piece of MapReduce code, and you’re executing it on
your shiny new cluster. You’re surprised to learn that despite having a good-sized
cluster, your job is running significantly longer than you expected. You’ve obviously
hit a performance issue with your job, but how do you figure out where the prob-
lem lies?

 This chapter starts out by reviewing common performance problems in Map-
Reduce, such as the lack of data locality and running with too many mappers. This
tuning section also examines some enhancements that you can make to your jobs
to increase their efficiency by using binary comparators in the shuffle phase and
using a compact data format to minimize parsing and data transfer times.

This chapter covers
■ Measuring and tuning MapReduce execution

times
■ Debugging your applications
■ Testing tips to improve the quality of your code

338 CHAPTER 8 Tuning, debugging, and testing

 The second part of this chapter covers some tips that will help you debug your
applications, including instructions on how to access YARN container startup scripts,
and some suggestions on how to design your MapReduce jobs to aid future debug-
ging efforts.

 The final section looks at how to provide adequate unit testing for MapReduce
code and examines some defensive coding techniques you can use to minimize badly
behaving code. All the preparation and testing in the world can’t guarantee that you
won’t encounter any problems, and in case you do, we’ll look at how you can debug
your job to figure out what went wrong.

Hadoop 2 The techniques in this chapter work with Hadoop 2. Due to incom-
patibilities across major Hadoop versions, some of these techniques won’t
work with earlier versions.

8.1 Measure, measure, measure
Before you can start performance tuning, you need to have the tools and processes in
place to capture system metrics. These tools will help you gather and examine empiri-
cal data related to your application and determine whether or not you’re suffering
from a performance problem.

 In this section we’ll look at the tools and metrics that Hadoop provides, and we’ll
also touch on monitoring as an additional tool in your performance-tuning toolkit.

 It’s important to capture the CPU, memory, disk, and network utilization of your
cluster. If possible, you should also capture MapReduce (or any other YARN applica-
tion) statistics. Having historical and current metrics for your cluster will allow you to
view anomalies in both hardware and software, and to correlate them against any
other observations that may point to your work not proceeding at expected rates.

 Ultimately, the goal is to ensure that you aren’t over-utilizing or under-utilizing
your hardware. If you’re over-utilizing your hardware, your systems are likely spending
a considerable amount of time competing for resources, be it CPU context-switching
or memory page-swapping. Under-utilization of your cluster means you’re not getting
all that you can from your hardware.

 Luckily there are a number of tools available to help you monitor your cluster, ranging
from sar, the built-in Linux utility that collects and reports on system activity,1 to more
sophisticated tools such as Nagios and Ganglia. Nagios (http://www.nagios.org/) and
Ganglia (http://ganglia.sourceforge.net/) are both open source projects designed to
monitor your infrastructure, and Ganglia in particular provides a rich user interface with
useful graphs, some of which can be seen in figure 8.1. Ganglia has the added advantage
of being able to pull statistics from Hadoop.2

1 This IBM article discusses using sar and gnuplot to generate system-activity graphs: David Tansley, “Using gnu-
plot to display data in your Web pages,” http://www.ibm.com/developerworks/aix/library/au-gnuplot/
index.html.

2 The Hadoop wiki has basic instructions on Ganglia and Hadoop integration: GangliaMetrics, http://
wiki.apache.org/hadoop/GangliaMetrics.

http://www.ibm.com/developerworks/aix/library/au-gnuplot/index.html
http://www.ibm.com/developerworks/aix/library/au-gnuplot/index.html
http://wiki.apache.org/hadoop/GangliaMetrics
http://wiki.apache.org/hadoop/GangliaMetrics

339Tuning MapReduce

If you’re using a commercial Hadoop distribution, it was likely bundled with manage-
ment user interfaces that include monitoring. If you’re using the Apache Hadoop dis-
tribution, you should be using Apache Ambari, which simplifies provisioning,
management, and monitoring of your cluster. Ambari uses Ganglia and Nagios
behind the scenes.

 With your monitoring tools in place, it’s time to take a look at how to tune and
optimize your MapReduce jobs.

8.2 Tuning MapReduce
In this section we’ll cover common issues that impact the performance of MapReduce
jobs and look at how you can address these issues. Along the way, I’ll also point out
some best practices to help you optimize your jobs.

 We’ll start by looking at some of the more common issues that hamper Map-
Reduce job performance.

8.2.1 Common inefficiencies in MapReduce jobs

 Before we delve into the techniques, let’s take a high-level look at a MapReduce job and
identify the various areas that can impact its performance. Take a look at figure 8.2.

 The rest of this section on performance tuning covers the issues identified in fig-
ure 8.2. But before we start tuning, we need to look at how you can easily get access to
job statistics, which will help you identify areas in need of tuning.

Figure 8.1 Ganglia screenshots showing CPU utilization for multiple hosts

340 CHAPTER 8 Tuning, debugging, and testing

TECHNIQUE 72 Viewing job statistics

The first port of call when evaluating the performance of a MapReduce job is the met-
rics that Hadoop measures for your job. In this technique you’ll learn how to access
these metrics.

■ Problem
You want to access the metrics for a MapReduce job.

■ Solution
Use the JobHistory UI, the Hadoop CLI, or a custom utility.

■ Discussion
MapReduce collects various system and job counters for each job and persists them in
HDFS. You can extract these statistics in two different ways:

■ Use the JobHistory UI.
■ Use the Hadoop command-line interface (CLI) to view job and task counters

and other metrics from the job history.

Job-history retention The job history is kept around for one week by default.
This can be altered by updating mapreduce.jobhistory.max-age-ms.

Let’s examine both of these tools, starting with the JobHistory UI.

JobHistory
In Hadoop 2, JobHistory is a MapReduce-specific service that gathers metrics from com-
pleted MapReduce jobs and provides a user interface for viewing them.3 Figure 8.3
shows how you can access the job statistics in the JobHistory UI.

 This screen shows you the aggregated metrics for map tasks, reduce tasks, and
across all the tasks. In addition, each metric allows you to drill down into all the tasks

3 Chapter 2 contains details on how to access the JobHistory user interface.

Mapper
Input

Output

Output

Input

Mapper

Reducer

Reducer
Input

Input

Shuffle

- Too many input splits
- Lack of data locality
- Data skew
- Generating splits in the client
- Uncompressed inputs

- Not using a combiner
- Shuffle se�ings
- Lack of binary comparators
- Uncompressed outputs

- Emi�ing too
 much data

- Data skew
- Uncompressed
 outputs

Figure 8.2 Inefficiencies that can occur in various parts of a MapReduce job

341TECHNIQUE 72 Viewing job statistics

that reported that metric. Within each metric-specific screen, you can sort by the met-
ric values to quickly identify tasks that exhibit unusually high or low metric values.

Metrics improvements in Hadoop 2 Hadoop 2 improved the job metrics by
adding CPU, memory, and garbage collection statistics, so you can get a good
sense of the system utilization of each process.

All is not lost if you can’t access the JobHistory UI, as you can also access the data via
the Hadoop CLI.

Accessing the job history with the CLI
The job history output is stored in the directory specified by the configurable mapreduce
.jobhistory.done-dir, the default location being /tmp/hadoop-yarn/staging/history/
done/ for Apache Hadoop.4 Within this directory, jobs are partitioned by the job sub-
mission date. If you know your job ID, you can search for your directory:

$ hadoop fs -lsr /tmp/hadoop-yarn/staging/history/done/ \
| grep job_1398974791337_0037

4 Non-Apache Hadoop distributions may have a customized value for mapreduce.jobhistory.done-dir—for
example, in CDH this directory is /user/history/done.

A�er you click on a specific job in the main
JobHistory UI, click on the Counters

submenu to access the metrics.

Figure 8.3 Accessing job counters in the JobHistory UI

342 CHAPTER 8 Tuning, debugging, and testing

One of the files returned from this command should be a file with a .jhist suffix, which
is the job history file. Use the fully qualified path of this file with the Hadoop history
command to view your job history details:

$ hadoop job -history <history file>

Hadoop job: job_1398974791337_0037
=====================================
User: aholmes
JobName: hip-2.0.0.jar
JobConf: hdfs://localhost:8020/tmp/hadoop-yarn/...
Submitted At: 11-May-2014 13:06:48
Launched At: 11-May-2014 13:07:07 (19sec)
Finished At: 11-May-2014 13:07:17 (10sec)
Status: SUCCEEDED
Counters:

|Group Name |Counter name |Map Value |Reduce |Total |

|File System |FILE: Number of bytes read |0 |288 |288
|File System |FILE: Number of bytes written |242,236 |121,304 |363,540
|File System |FILE: Number of read operations |0 |0 |0
|File System |FILE: Number of write operations|0 |0 |0

...

Task Summary
============================
Kind Total Successful Failed Killed StartTime FinishTime

Setup 0 0 0 0
Map 2 2 0 0 11-May-2014 13:07:09 11-May-2014 13:07:13
Reduce 1 1 0 0 11-May-2014 13:07:15 11-May-2014 13:07:17
============================

Analysis
=========

Time taken by best performing map task task_1398974791337_0037_m_000001:
3sec

Average time taken by map tasks: 3sec
Worse performing map tasks:
TaskId Timetaken
task_1398974791337_0037_m_000000 3sec
task_1398974791337_0037_m_000001 3sec
The last map task task_1398974791337_0037_m_000000 finished at
(relative to the Job launch time): 11-May-2014 13:07:13 (5sec)

Time taken by best performing shuffle task
task_1398974791337_0037_r_000000: 1sec
Average time taken by shuffle tasks: 1sec
Worse performing shuffle tasks:
TaskId Timetaken
task_1398974791337_0037_r_000000 1sec
The last shuffle task task_1398974791337_0037_r_000000 finished at

343TECHNIQUE 73 Data locality

(relative to the Job launch time): 11-May-2014 13:07:17 (9sec)

Time taken by best performing reduce task
task_1398974791337_0037_r_000000: 0sec
Average time taken by reduce tasks: 0sec
Worse performing reduce tasks:
TaskId Timetaken
task_1398974791337_0037_r_000000 0sec
The last reduce task task_1398974791337_0037_r_000000 finished at
(relative to the Job launch time): 11-May-2014 13:07:17 (10sec)
=========

The previous output is only a small subset of the overall output produced by the com-
mand, and it’s worth executing it yourself to see the full metrics it exposes. This output
is useful in quickly evaluating metrics such as average- and worst-task execution times.

 Both the JobHistory UI and the CLI can be used to identify a number of perfor-
mance issues in your job. As we go through the techniques in this section, I’ll high-
light how the job history counters can be used to help identify issues.

 Let’s get things moving by looking at the optimizations that can be made on the
map side.

8.2.2 Map optimizations

Optimizations in the map side of a MapReduce job are usually related to the input data
and how it’s being processed, or to your application code. Your mappers are responsible
for reading the job inputs, so variables such as whether your input files are splittable,
data locality, and the number of input splits all can have an impact on the performance
of your job. Inefficiencies in your mapper code can also lead to longer-than-expected
job execution times.

 This section covers some of the data-related issues that your job could encounter.
The application-specific issues are covered in section 8.2.6.

TECHNIQUE 73 Data locality

One of MapReduce’s biggest performance traits is the notion of “pushing compute to
the data,” which means that map tasks are scheduled so that they read their inputs
from local disk. Data locality isn’t guaranteed, however, and your file formats and clus-
ter utilization can impact data locality. In this technique you’ll learn how to identify
indications of lack of locality, and also learn about some solutions.

■ Problem
You want to detect whether you have map tasks that are reading inputs over the net-
work.

■ Solution
Examine some key counters in the job history metadata.

■ Discussion
There are a number of counters in the job history that you should keep an eye on to
make sure data locality is in play in your mappers. These are listed in table 8.1.

344 CHAPTER 8 Tuning, debugging, and testing

There could be a number of causes for non-local reads:

■ You’re working with large files and a file format that can’t be split, which means
that mappers need to stream some of the blocks from other data nodes.

■ The file format supports splitting, but you’re using an input format that doesn’t
support splitting. An example of this is using LZOP to compress a text file and
then using TextInputFormat, which doesn’t know how to split the file.

■ The YARN scheduler wasn’t able to schedule the map container to a node. This
can happen if your cluster is under load.

There are a few options you can consider to address the problems:

■ When using an unsplittable file format, write files at or near the HDFS block size
to minimize nonlocal reads.

■ If you’re using the capacity scheduler, set yarn.scheduler.capacity.node-locality-
delay to introduce more delay in the scheduler and thus increase the chance that
a map task is scheduled onto a data-local node.

■ If you’re using text files, switch to a compression codec that supports splitting,
such as LZO or bzip2.

Next let’s look at another data-related optimization that comes into play when you’re
working with large datasets.

TECHNIQUE 74 Dealing with a large number of input splits

Jobs with a large number of input splits are not optimal, because each input split is
executed by a single mapper, and each mapper executes as a single process. The
aggregate pressure on the scheduler and the cluster due to forking these processes
results in slow job execution times. This technique examines some methods that can
be used to reduce the number of input splits and still maintain data locality.

■ Problem
You want to optimize a job that runs with thousands of mappers.

■ Solution
Use the CombineFileInputFormat to combine multiple blocks that are run with fewer
mappers.

■ Discussion
There are two primary issues that will cause a job to require a large number of
mappers:

Table 8.1 Counters that can indicate if nonlocal reads are occurring

Counter name JobHistory name You may have nonlocal reads if ...

HDFS_BYTES_READ HDFS: Number of bytes read ... this number is greater than the block size
of the input file.

DATA_LOCAL_MAPS Data-local map tasks ... any map tasks have this value set to 0.

RACK_LOCAL_MAPS Rack-local map tasks ... any map tasks have this value set to 1.

345TECHNIQUE 74 Dealing with a large number of input splits

■ Your input data consists of a large number of small files. The total size of all
these files may be small, but MapReduce will spawn a mapper for each small
file, so your job will spend more time launching processes than it will actually
processing the input data.

■ Your files aren’t small (they’re close to, or over, the HDFS block size), but your
aggregate data size is large and spans thousands of blocks in HDFS. Each block
is assigned to an individual mapper.

If your problem is related to small files, you should consider compacting these files
together or using a container format such as Avro to store your files.

 In either of the preceding situations, you can use the CombineFileInputFormat,
which will combine multiple blocks into input splits to reduce the overall number of
input splits. It does so by examining all the blocks that are occupied by the input files,
mapping each block to the set of data nodes that stores it, and then combining blocks
that exist on the same data node into a single input split to preserve data locality.
There are two concrete implementations of this abstract class:

■ CombineTextInputFormat works with text files and uses TextInputFormat as the
underlying input format to process and emit records to the mappers.

■ CombineSequenceFileInputFormat works with SequenceFiles.

Figure 8.4 compares the splits generated by TextInputFormat with those generated by
CombineTextInputFormat.

f1_b1

HDFS blocks.

file1.txt f1_b2

f2_b1file2.txt

Data node 1 Data node 2

f1_b1 f2_b1 f1_b2

Two data nodes, with the file blocks distributed
with a replication factor of 1.

TextInputFormat splits:
Input split 1

f1_b1

Input split 2

f2_b1

Input split 3

f1_b2

CombineTextInputFormat splits:

Input split 1

f1_b1 f2_b1

Input split 2

f1_b2

Figure 8.4 An example of how CombineTextInputFormat works with the default size settings

346 CHAPTER 8 Tuning, debugging, and testing

There are some configurables that allow you to tune how input splits are composed:

■ mapreduce.input.fileinputformat.split.minsize.per.node—Specifies the mini-
mum number of bytes that each input split should contain within a data node.
The default value is 0, meaning that there is no minimum size.

■ mapreduce.input.fileinputformat.split.minsize.per.rack—Specifies the mini-
mum number of bytes that each input split should contain within a single rack.
The default value is 0, meaning that there is no minimum size.

■ mapreduce.input.fileinputformat.split.maxsize—Specifies the maximum size of
an input split. The default value is 0, meaning that there is no maximum size.

With the default settings, you’ll end up with a maximum of one input split for each
data node. Depending on the size of your cluster, this may hamper your parallelism, in
which case you can play with mapreduce.input.fileinputformat.split.maxsize to allow
more than one split for a node.

 If the input files for a job are significantly smaller than the HDFS block size, it’s
likely that your cluster will spend more effort starting and stopping Java processes
than it spends performing work. If you’re suffering from this problem, you should
consult chapter 4, where I explained various approaches you can take to working effi-
ciently with small files.

TECHNIQUE 75 Generating input splits in the cluster with YARN

If the client that submits MapReduce jobs is not in a network that’s local to your
Hadoop cluster, then input split calculation can be expensive. In this technique you’ll
learn how to push the input split calculation to the MapReduce ApplicationMaster.

Only on YARN This technique only works with YARN.

■ Problem
Your client is remote and input split calculation is taking a long time.

■ Solution
Set yarn.app.mapreduce.am.compute-splits-in-cluster to true.

■ Discussion
By default, input splits are calculated in the MapReduce driver. When the input
source is HDFS, then the input format needs to perform operations such as file listings
and file status commands to retrieve block details. When working with a large number
of input files, this can be slow, especially when there’s network latency between the
driver and the Hadoop cluster.

 The solution is to set yarn.app.mapreduce.am.compute-splits-in-cluster to true,
pushing the input split calculation to the MapReduce ApplicationMaster, which runs
inside the Hadoop cluster. This minimizes the time taken to calculate input splits and
thus reduces your overall job execution time.

347TECHNIQUE 76 Using the combiner

EMITTING TOO MUCH DATA FROM YOUR MAPPERS

Outputting a lot of data from your mappers is to be avoided if possible, because all of
that emitted data results in a lot of disk and network I/O as a result of the shuffle. You
can use filters and projections in your mappers to cut down on the amount of data that
you’re working with, and spilling, in MapReduce. Pushdowns can further improve your
data pipeline. Technique 55 contains examples of filters and pushdowns.

8.2.3 Shuffle optimizations

The shuffle in MapReduce is responsible for organizing and delivering your mapper
outputs to your reducers. There are two parts to the shuffle: the map side and the
reduce side. The map side is responsible for partitioning and sorting data for each
reducer. The reduce side fetches data from each mapper and merges it before supply-
ing it to the reducer.

 As a result there are optimizations you can perform on both sides of the shuffle,
including writing a combiner, which is covered in the first technique.

TECHNIQUE 76 Using the combiner

The combiner is a powerful mechanism that aggregates data in the map phase to cut
down on data sent to the reducer. It’s a map-side optimization, where your code is
invoked with a number of map output values for the same output key.

■ Problem
You’re filtering and projecting your data, but your shuffle and sort are still taking lon-
ger than you want. How can you cut down on them even further?

■ Solution
Define a combiner and use the setCombinerClass method to set it for your job.

■ Discussion
The combiner is invoked on the map side as part of writing map output data to disk in
both the spill and merge phases, as shown in figure 8.5. To help with grouping values
together to maximize the effectiveness of a combiner, use a sorting step in both phases
prior to calling the combiner function.

 Calling the setCombinerClass sets the combiner for a job, similar to how the map
and reduce classes are set:

job.setCombinerClass(Combine.class);

Your combiner implementation must conform to the reducer specification. In this
technique you’ll write a simple combiner whose job is to remove duplicate map output

348 CHAPTER 8 Tuning, debugging, and testing

records. As you iterate over the map output values, you’ll only emit those that are con-
tiguously unique:5

public static class Combine
implements Reducer<Text, Text, Text, Text> {

@Override
public void reduce(Text key, Iterator<Text> values,

OutputCollector<Text,
Text> output,

Reporter reporter) throws IOException {

Text prev = null;
while (values.hasNext()) {
Text t = values.next();

if (!t.equals(prev)) {
output.collect(key, t);

}
prev = ReflectionUtils.copy(job, t, prev);

}
}

}

5 GitHub source: https://github.com/alexholmes/hiped2/blob/master/src/main/java/hip/ch8/Combine-
Job.java.

Spill 1 Spill 2

Final
outputSpill N

In-memory
buffer of

map
outputs

Map Collector Spill + sort Merge

Spill file

.

.

.

...

One partition for
each reducer

Combiner Combiner

Write output
into buffer

1
Sort buffer2

Merge spill files4

Write to new
single output file,
combining in
the process

5

Write buffer to new spill
file, calling combiner
in the process

3

Partition 1
Partition 2

Partition N

Figure 8.5 How the combiner is called in the context of the map task

Much like a reducer, the combiner will be called with
multiple values for the same key in situations where

a block of map outputs contains the same key.

You only output a key/
value pair if you detect

a new value. The MapReduce framework reuses
the iterator value objects supplied
to combiners/reducers, so you need

to clone the value to ensure it’s
not overwritten.

https://github.com/alexholmes/hiped2/blob/master/src/main/java/hip/ch8/CombineJob.java
https://github.com/alexholmes/hiped2/blob/master/src/main/java/hip/ch8/CombineJob.java

349TECHNIQUE 77 Blazingly fast sorting with binary comparators

It’s important that if you have a combiner, the function is distributive. In figure 8.5
you saw that the combiner will be called multiple times for the same input key, and
there are no guarantees about how the output values will be organized when they’re
sent to the combiner (other than that they were paired with the combiner key). A dis-
tributive function is one where the end result is identical regardless of how inputs
were combined.

■ Summary
The combiner is a powerful tool in your MapReduce toolkit, as it helps cut down on
the amount of data transmitted over the network between mappers and reducers.
Binary comparators are another tool that will improve the execution times of your
MapReduce jobs, and we’ll examine them next.

TECHNIQUE 77 Blazingly fast sorting with binary comparators

When MapReduce is sorting or merging, it uses the RawComparator for the map output
key to compare keys. Built-in Writable classes (such as Text and IntWritable) have byte-
level implementations that are fast because they don’t require the byte form of the
object to be unmarshaled to Object form for the comparison.

 When writing your own Writable, it may be tempting to implement the Writable-
Comparable interface, but this can lead to longer shuffle and sort phases because it
requires Object unmarshaling from byte form for comparisons.

■ Problem
You have custom Writable implementations and you want to reduce the sort times for
your jobs.

■ Solution
Write a byte-level comparator to ensure optimal comparisons during sorting.

■ Discussion
In MapReduce there are multiple stages where output keys are compared to each
other when data is being sorted. To facilitate key sorting, all map output keys must
implement the WritableComparable interface:

public interface WritableComparable<T>
extends Writable, Comparable<T> {

}

In the PersonWritable you created in technique 64 (when implementing a secondary
sort), your implementation was as follows: 6

public class Person implements WritableComparable<Person> {

private String firstName;
private String lastName;

6 GitHub source: https://github.com/alexholmes/hiped2/blob/master/src/main/java/hip/ch6/sort/
secondary/Person.java.

https://github.com/alexholmes/hiped2/blob/master/src/main/java/hip/ch6/sort/ secondary/Person.java
https://github.com/alexholmes/hiped2/blob/master/src/main/java/hip/ch6/sort/ secondary/Person.java

350 CHAPTER 8 Tuning, debugging, and testing

@Override
public int compareTo(Person other) {
int cmp = this.lastName.compareTo(other.lastName);
if (cmp != 0) {
return cmp;

}
return this.firstName.compareTo(other.firstName);

}
...

The trouble with this Comparator is that MapReduce stores your intermediary map out-
put data in byte form, and every time it needs to sort your data it has to unmarshal it
into Writable form to perform the comparison. This unmarshaling is expensive
because it re-creates your objects for comparison purposes.

 If you look at the built-in Writables in Hadoop, you’ll see that not only do they extend
the WritableComparable interface, but they also provide their own custom Comparator that
extends the WritableComparator class. The following code presents a subsection of the
WritableComparator class:

public class WritableComparator implements RawComparator {

public int compare(byte[] b1, int s1, int l1,
byte[] b2, int s2, int l2
) {

try {
buffer.reset(b1, s1, l1);
key1.readFields(buffer);

buffer.reset(b2, s2, l2);
key2.readFields(buffer);

} catch (IOException e) {
throw new RuntimeException(e);

}

return compare(key1, key2);
}

/** Compare two WritableComparables.
*
* <p> The default implementation uses the natural ordering,
* calling {@link
* Comparable#compareTo(Object)}. */
@SuppressWarnings("unchecked")
public int compare(WritableComparable a, WritableComparable b) {
return a.compareTo(b);

}
...
}

To write a byte-level Comparator, the compare method needs to be overridden. Let’s look
at how the IntWritable class implements this method:

The b1 field contains a byte array, part of which contains the
WritableComparable in byte form. The s1 field is the offset into the byte array
where the WritableComparable object starts, and l1 is the number of bytes that

the WritableComparable occupies in the byte array.The second batch
of arguments
pertain to the
second object
being compared.

Unmarshal the first object into
WritableComparable form. The class reuses the

key1 instance so that it’s not recreated.

Unmarshal the
second object into
WritableComparable
form.

Call a function to
compare the objects.

The default
implementation uses the
WritableComparable’s
compare function.

351TECHNIQUE 77 Blazingly fast sorting with binary comparators

public class IntWritable implements WritableComparable {

public static class Comparator extends WritableComparator {
public Comparator() {
super(IntWritable.class);

}

public int compare(byte[] b1, int s1, int l1,
byte[] b2, int s2, int l2) {

int thisValue = readInt(b1, s1);
int thatValue = readInt(b2, s2);
return (thisValue<thatValue ? -1 :
(thisValue==thatValue ? 0 : 1));

}
}

static {
WritableComparator.define(IntWritable.class,

new Comparator());
}

The built-in Writable classes all provide WritableComparator implementations, which
means you don’t need to worry about optimizing the Comparators as long as your
MapReduce job output keys use these built-in Writables. But if you have a custom Writ-
able that you use as an output key, you’ll ideally provide a WritableComparator. We’ll
now revisit your Person class and look at how you can do this.

 In your Person class, you had two fields: the first and last names. Your implementation
stored them as strings and used the DataOutput’s writeUTF method to write them out:

private String firstName;
private String lastName;

@Override
public void write(DataOutput out) throws IOException {
out.writeUTF(lastName);
out.writeUTF(firstName);

}

The first thing you need to understand is how your Person object is represented in byte
form, based on the previous code. The writeUTF method writes two bytes containing
the length of the string, followed by the byte form of the string. Figure 8.6 shows how
this information is laid out in byte form.

Override the
WritableComparator.compare method

to provide an optimized version.Use the
WritableComparator’s
helper method to
read the integer
form of the first
value.

Read the
second value.

Register the WritableComparator.
This tells MapReduce to use the

WritableComparator implementation
rather than the IntWritable’s

compareTo method for comparison.

String length
(L1)

String length
(L2)

Bit 0 16

String contents String contents

17 17 + L1 18 + L1 34 + L1 35 + L1 35 + L1 + L2

Last name First name

Figure 8.6 Byte layout of Person

352 CHAPTER 8 Tuning, debugging, and testing

You want natural ordering of your records that include both the last and first names,
but you can’t do this directly using the byte array because the string lengths are also
encoded in the array. Instead, the Comparator needs to be smart enough to skip over
the string lengths. The following code shows how to do this:7

@Override
public int compare(byte[] b1, int s1, int l1, byte[] b2, int s2,

int l2) {

int lastNameResult = compare(b1, s1, b2, s2);

if (lastNameResult != 0) {
return lastNameResult;

}

int b1l1 = readUnsignedShort(b1, s1);
int b2l1 = readUnsignedShort(b2, s2);

return compare(b1, s1 + b1l1 + 2, b2, s2 + b2l1 + 2);
}

public static int compare(byte[] b1, int s1, byte[] b2, int s2) {
int b1l1 = readUnsignedShort(b1, s1);
int b2l1 = readUnsignedShort(b2, s2);

return compareBytes(b1, s1 + 2, b1l1, b2, s2 + 2, b2l1);
}

public static int readUnsignedShort(byte[] b, int offset) {
int ch1 = b[offset];
int ch2 = b[offset + 1];
return (ch1 << 8) + (ch2);

}

■ Summary
The writeUtf method is limited because it can only support strings that contain less
than 65,536 characters. This is probably fine for the scenario where you’re working with
people’s names, but if you need to work with a larger string, you should look at using
Hadoop’s Text class, which can support much larger strings. If you look at the Compara-
tor inner class in the Text class, you’ll see that its binary string comparator works in a
fashion similar to the one discussed here. This approach could easily be extended to
work with names represented with Text objects rather than Java String objects.

 The next issue in performance tuning is how you can guard against the impact
that data skews can have on your MapReduce jobs.

USING A RANGE PARTITIONER TO AVOID DATA SKEW

It’s common for a handful of the reducers to be in the long tail when it comes to task
execution time, due to the way that the default hash partitioner works. If this is

7 GitHub source: https://github.com/alexholmes/hiped2/blob/master/src/main/java/hip/ch8/
PersonBinaryComparator.java.

Compare the
last name. If the last name isn’t

identical‚ return the result
of the comparison.

Read the size
of the last name
from the first
byte array.

Read the size of the
last name from the
second byte array.

Return the result of the
comparison on the first name.

Read the size of
the UTF-8 string
containing the last
name from the
first record.

Read the size of
the UTF-8
string containing
the last name
from the second
record.

Use the WritableComparator.compareBytes
method to perform a natural ordering of

the UTF-8 binary data.

https://github.com/alexholmes/hiped2/blob/master/src/main/java/hip/ch8/PersonBinaryComparator.java
https://github.com/alexholmes/hiped2/blob/master/src/main/java/hip/ch8/PersonBinaryComparator.java

353TECHNIQUE 78 Tuning the shuffle internals

impacting your job, then take a look at technique 63 on handling skews generated by
the hash partitioner.

TECHNIQUE 78 Tuning the shuffle internals

The shuffle phase involves fetching the map output data from the shuffle service and
merging it in the background. The sort phase, which is another merge, will merge the
files together into a smaller number of files.

■ Problem
You want to determine if a job runs slowly due to the shuffle and sort phases.

■ Solution
Use the JobHistory metadata to extract statistics related to the shuffle and sort execu-
tion times.

■ Discussion
We’re going to look at three areas of the shuffle and for each identify areas that can be
tuned for increased performance.

Tuning the map side
When a mapper emits output records, they’re first stored in an in-memory buffer.
After the buffer grows to a certain size, the data is spilled to a new file on disk. This
process continues until the mapper has completed emitting all its output records. Fig-
ure 8.7 shows this process.

Mapper

Map output records
and metadata are
wri�en to an in-
memory buffer.

In-memory
map output

buffer.

Sorted,
partitioned

outputs on disk.

Collect(k, v)
Spill Merge

Final output
of disk

mapreduce.task.io.sort.mb
specifies the size of the in-memory
buffer in megabytes. The default

value is 100 (MB).

Spills occur every time the
in-memory buffer goes over

mapreduce.map.sort.spill.percent
percent of the size of the buffer. The
default value is 0.8 (80%). The spill

process partitions and sorts map
outputs and writes them to file.

Once the mapper is complete, all the
spilled files are partitioned and merged

into a single output file.

Map process

Figure 8.7 The map-side shuffle

354 CHAPTER 8 Tuning, debugging, and testing

The expensive part of the map-side shuffle is the I/O related to spilling and merging
the spill files. The merge is expensive, as all the map outputs need to be read from the
spill files and rewritten to the merged spill file.

 An ideal mapper is able to fit all its output in the in-memory buffer, which means
that only one spill file is required. Doing so negates the need to merge multiple spill
files together. This isn’t possible for all jobs, but if your mapper filters or projects the
input data so that the input data can fit into memory, then it’s worthwhile tuning
mapreduce.task.io.sort.mb to be large enough to store the map outputs.

 Examine the job counters shown in table 8.2 to understand and tune the shuffle
characteristics of your job.

Tuning the reduce side
On the reduce side, the map outputs for the reducer are streamed from the auxiliary
shuffle service that runs on each slave node. The map outputs are written into an in-
memory buffer that is merged and written to disk once the buffer reaches a certain
size. In the background, these spilled files are continuously merged into a smaller
number of merged files. Once the fetchers have fetched all their outputs, there’s a
final round of merging, after which data from the merged files is streamed to the
reducer. Figure 8.8 shows this process.

 Much like with the map side, the goal of tuning the reduce-size shuffle is to
attempt to fit all the map outputs into memory to avoid spilling to disk and merging
spilled files. By default, records are always spilled to disk even if they can all fit in
memory, so to enable a memory-to-memory merge that bypasses disk, set mapreduce
.reduce.merge.memtomem.enabled to true.

 The job counters in table 8.3 can be used to understand and tune the shuffle char-
acteristics of your job.

Table 8.2 Map shuffle counters

Counter Description

MAP_OUTPUT_BYTES Use the MAP_OUTPUT_BYTES counter for your map tasks to determine if it’s
possible to increase your mapreduce.task.io.sort.mb so that it can store
all the map outputs.

SPILLED_RECORDS
MAP_OUTPUT_RECORDS

Ideally these two values will be the same, which indicates that only one spill
occurred.

FILE_BYTES_READ
FILE_BYTES_WRITTEN

Compare these two counters with MAP_OUTPUT_BYTES to understand the addi-
tional reads and writes that are occurring as a result of the spilling and merging.

Table 8.3 Map shuffle counters

Counter Description

SPILLED_RECORDS The number of records that are written to disk. If your goal is for map outputs
to never touch disk, this value should be 0.

FILE_BYTES_READ
FILE_BYTES_WRITTEN

These counters will give you an idea of how much data is being spilled and
merged to disk.

355TECHNIQUE 78 Tuning the shuffle internals

Shuffle settings
Table 8.4 shows the properties covered in this technique.

Table 8.4 Configurables to tune the shuffle

Name
Default
value

Map side or
reduce side?

Description

mapreduce.task.io.sort
.mb

100 (MB) Map The total amount of buffer memory in
megabytes to use when buffering map out-
puts. This should be approximately 70% of
the map task’s heap size.

mapreduce.map.sort
.spill.percent

0.8 (80%) Map The soft limit in the serialization buffer.
Once reached, a thread will begin to spill
the contents to disk in the background.
Note that collection will not block if this
threshold is exceeded while a spill is
already in progress, so spills may be larger
than this threshold when it is set to less
than 0.5.

Fetcher

Fetcher
Reducer

Merge Stream

Mergemapreduce.reduce.shuffle.input.buffer.percent
specifies the amount of data that's buffered in memory, and

mapreduce.reduce.shuffle.merge.percent
determines when the in-memory data should be merged

and wri�en to disk.

Spilled files are merged in the background during
the fetching. Once fetching has completed, there

may be a final merge if the number of spill
files is greater than

mapreduce.task.io.sort.factor.

mapreduce.reduce.shuffle.parallelcopies
specifies the number of fetcher threads that

read map outputs. The default value is 5.

Reduce process

Either in-memory or on-
disk buffers

Shuffle
service

Shuffle
service

Shuffle
service

Shuffle
service

Figure 8.8 The reduce-side shuffle

356 CHAPTER 8 Tuning, debugging, and testing

■ Summary
The simplest way to cut down on shuffle and sort times is to aggressively filter and
project your data, use a combiner, and compress your map outputs. These approaches
reduce the amount of data flowing between the map and reduce tasks and lessen the
network and CPU/disk burden related to the shuffle and sort phases.

 If you’ve done all that, you can look at some of the tips outlined in this technique
to determine if your job can be tuned so that the data being shuffled touches disk as
little as possible.

8.2.4 Reducer optimizations

Much like map tasks, reduce tasks have their own unique problems that can affect per-
formance. In this section we’ll look at how common problems can affect the perfor-
mance of reducer tasks.

TECHNIQUE 79 Too few or too many reducers

For the most part, parallelism on the map side is automatically set and is a function of
your input files and the input format you’re using. But on the reduce side you have
total control over the number of reducers for your job, and if that number is too small
or too large, you’re potentially not getting the most value out of your cluster.

■ Problem
You want to determine if a job runs slowly due to the number of reducers.

mapreduce.task.io.sort
.factor

10 Map and
reduce

The number of streams to merge at once
while sorting files. This determines the
number of open file handles. Larger clus-
ters with 1,000 or more nodes can bump
this up to 100.

mapreduce.reduce
.shuffle.parallelcopies

5 Reduce The default number of parallel transfers
run on the reduce side during the copy
(shuffle) phase. Larger clusters with 1,000
or more nodes can bump this up to 20.

mapreduce.reduce.shuffle
.input.buffer.percent

0.70 Reduce The percentage of memory to be allocated
from the maximum heap size to store map
outputs during the shuffle.

mapreduce.reduce.shuffle
.merge.percent

0.66 Reduce The usage threshold at which an in-memory
merge will be initiated, expressed as a per-
centage of the total memory allocated to
storing in-memory map outputs, as defined
by mapreduce.reduce.shuffle.input
.buffer.percent.

mapreduce.reduce.merge
.memtomem.enabled

false Reduce If all the map outputs for each reducer can
be stored in memory, then set this prop-
erty to true.

Table 8.4 Configurables to tune the shuffle (continued)

Name
Default
value

Map side or
reduce side?

Description

357TECHNIQUE 79 Too few or too many reducers

■ Solution
The JobHistory UI can be used to inspect the number of reducers running for your job.

■ Discussion
Use the JobHistory UI to look at the number of reducers for your job and the number of
input records for each reducer. You may be running with too few or too many reducers.
Running with too few reducers means that you’re not using the available parallelism of
your cluster; running with too many reducers means the scheduler may have to stagger the
reducer execution if there aren’t enough resources to execute the reducers in parallel.

 There are circumstances where you can’t avoid running with a small number of
reducers, such as when you’re writing to an external resource (such as a database)
that you don’t want to overwhelm.

 Another common anti-pattern in MapReduce is using a single reducer when you
want job output to have total order and not be ordered within the scope of a reducer’s
output. This anti-pattern can be avoided with the TotalOrderPartitioner, which we
looked at in technique 65.

DEALING WITH DATA SKEW

Data skew can be easily identified—it’s manifested by a small percentage of your reduce
tasks taking significantly longer to complete than the other tasks. This is usually due to
one of two reasons—poor hash partitioning or high join-key cardinality when you’re
performing joins. Chapter 6 provides solutions to both problems in section 6.1.5.

8.2.5 General tuning tips

In this section we’ll look at problems that can affect both map and reduce tasks.

COMPRESSION

Compression is an important part of optimizing Hadoop. You can gain substantial
space and time savings by compressing both intermediary map outputs and job out-
puts. Compression is covered in detail in chapter 4.

USING A COMPACT DATA FORMAT

Much like compression, using space-efficient file formats such as Avro and Parquet
results in a more compact representation of your data and yields improved marshaling
and unmarshaling times compared to storing data as text. A large part of chapter 3 is
dedicated to working with these file formats.

 It should also be noted that text is an especially inefficient data format to work
with—it’s space-inefficient and computationally expensive to parse, and parsing
data at scale can cost a surprising amount of time, especially if regular expressions
are involved.

 Even when the end result of your work in MapReduce is a nonbinary file format,
it’s good practice to store your intermediate data in binary form. For example, if you
have a MapReduce pipeline involving a sequence of MapReduce jobs, you should con-
sider using Avro or SequenceFiles to store your individual job outputs. The last job
that produces the final results can use whatever output format is required for your use
case, but intermediate jobs should use a binary output format to speed up the writing
and reading parts of MapReduce.

358 CHAPTER 8 Tuning, debugging, and testing

TECHNIQUE 80 Using stack dumps to discover unoptimized user code

Imagine you’re running a job and it’s taking longer than you expect. You can often
determine if this is due to inefficient code by taking several stack dumps and examin-
ing the output to see if the stacks are executing in the same location. This technique
walks you through taking stack dumps of a running MapReduce job.

■ Problem
You want to determine if a job runs slowly due to inefficiencies in your code.

■ Solution
Determine the host and process ID of currently executing tasks, take a number of
stack dumps, and examine them to narrow down bottlenecks in your code.

■ Discussion
If there’s anything particularly inefficient in your code, chances are that you’ll be able
to discover what it is by taking some stack dumps of the task process. Figure 8.9 shows
how to identify the task details so that you can take the stack dumps.

Go to the job’s ApplicationMaster UI
via the ResourceManager and click on a
long-running task to get to this page.

1

Make a note of the host
that the task is executing on.

2

Click on the logs link,
which will take you to
the task’s container logs.

3

Make a note of the task’s
container ID in the URL

4

Figure 8.9 Determining the container ID and host for a MapReduce task

359TECHNIQUE 80 Using stack dumps to discover unoptimized user code

Now that you know the container ID and the host it’s executing on, you can take stack
dumps of the task process, as shown in figure 8.10.

■ Summary
The best approach to understanding what your code is spending time doing is to pro-
file your code, or update your code to time how long you spend in each task. But
using stack dumps is useful if you want to get a rough sense of whether this is an issue
without having to change your code.

 Stack dumps are a primitive, yet often effective, means of discovering where a Java
process is spending its time, particularly if that process is CPU-bound. Clearly dumps
are not as effective as using a profiler, which will more accurately pinpoint where time
is being spent, but the advantage of stack dumps is that they can be performed on any
running Java process. If you were to use a profiler, you’d need to reexecute the pro-
cess with the required profiling JVM settings, which is a nuisance in MapReduce.

 When taking stack dumps, it’s useful to take multiple dumps with some pauses
between successive dumps. This allows you to visually determine if the code execution
stacks across multiple dumps are roughly in the same point. If this is the case, there’s a
good chance the code in the stack is what’s causing the slowness.

ssh to the machine that the task is running on, and take a number of stack dumps.5

$ ssh cdh
$ ps auxwww | grep container_1398974791337_0066_01_000002
0 S aholmes 8168 554284 ...

The process ID (PID) of the task...

Location of container logs
(view your yarn-site.xml to
determine this location).

Application ID Container ID

$ kill -s SIGQUIT 554284
$ kill -s SIGQUIT 554284
$ kill -s SIGQUIT 554284

… which you use to send a SIGKILL signal to the
process, telling the JVM to perform a stack dump.

Wait a few seconds between
each execution of the kill.

View the contents of standard out,
which will contain the three stack dumps.

The task's container ID.

View the contents of the task's output file and determine if time is being spent
in a particular method call.

6

$ cd $yarn.nodemanager.log-dirs/application_139337_0066/container_1398974791337_0066_01_000002/

$ less stdout

Figure 8.10 Taking stack dumps and accessing the output

360 CHAPTER 8 Tuning, debugging, and testing

If your code isn’t in the same location across the different stack dumps, this doesn’t
necessarily indicate that there aren’t inefficiencies. In this case, the best approach is to
profile your code or add some measurements in your code and rerun the job to get a
more accurate breakdown of where time is being spent.

TECHNIQUE 81 Profiling your map and reduce tasks

Profiling standalone Java applications is straightforward and well supported by a large
number of tools. In MapReduce, you’re working in a distributed environment run-
ning multiple map and reduce tasks, so it’s less clear how you would go about profil-
ing your code.

■ Problem
You suspect that there are inefficiencies in your map and reduce code, and you need
to identify where they exist.

■ Solution
Use HPROF in combination with a number of MapReduce job methods, such as set-
ProfileEnabled, to profile your tasks.

■ Discussion
Hadoop has built-in support for the HPROF profiler, Oracle’s Java profiler built into
the JVM. To get started, you don’t need to understand any HPROF settings—you can
call JobConf.setProfileEnabled(true) and Hadoop will run HPROF with the following
settings:

-agentlib:hprof=cpu=samples,heap=sites,force=n,

thread=y,verbose=n,file=%s

This will generate object allocation stack sizes that are too small to be useful, so
instead you can programmatically set custom HPROF parameters:

job.setProfileEnabled(true);
job.setProfileParams(

"-agentlib:hprof=depth=8,cpu=samples,heap=sites,force=n," +
"thread=y,verbose=n,file=%s");

job.setProfileTaskRange(true, "0,1,5-10");
job.setProfileTaskRange(false, "");

JobClient.runJob(job);

The sample job profiled is quite simple. It parses a file containing IP addresses,
extracts the first octet from the address, and emits it as the output value:8

public void map(LongWritable key, Text value,
OutputCollector<LongWritable, Text> output,
Reporter reporter) throws IOException {

8 GitHub source: https://github.com/alexholmes/hiped2/blob/master/src/main/java/hip/ch8/
SlowJob.java.

Enable profiling.Specify the
HPROF options.

This method sets the range of tasks
that will be profiled. The first flag
is a Boolean that indicates whether
the range is being specified for the

map or reduce tasks.

You don’t want to
profile any reduce
tasks, because
your example job
uses the identity
reducer.

https://github.com/alexholmes/hiped2/blob/master/src/main/java/hip/ch8/SlowJob.java
https://github.com/alexholmes/hiped2/blob/master/src/main/java/hip/ch8/SlowJob.java

361TECHNIQUE 81 Profiling your map and reduce tasks

String[] parts = value.toString().split("\\.");
Text outputValue = new Text(parts[0]);
output.collect(key, outputValue);

}

You can upload a large(ish) file of IP addresses and run your job against it, with the
previous profiling options set:

$ hadoop fs -put test-data/ch8/large-ips.txt .

$ hip hip.ch8.SlowJob \
--input large-ips.txt \
--output output

The HPROF option you specified earlier via the setProfileParams method call will create
a text file that can be easily parsed. The file is written to the container’s log directory
into a file titled profile.out. There are two ways of accessing this file: either through the
JobHistory UI or by using your shell to ssh to the node that ran the task. The previous
technique showed you how to determine the host and log directory for a task.

 The profile.out file contains a number of stack traces, and at the bottom contains
memory and CPU time accumulations, with references to stack traces that accounted
for the accumulations. In the example you ran, look at the top two items, which
accounted for the most CPU time, and correlate them with the code:

CPU SAMPLES BEGIN (total = 995) Sat Dec 24 18:26:15 2011
rank self accum count trace method

1 7.44% 7.44% 74 313153 java.lang.Object.<init>
2 4.42% 11.86% 44 313156 java.lang.Object.<init>
3 3.52% 15.38% 35 313176 java.lang.Object.<init>
4 3.32% 18.69% 33 313132 java.util.regex.Pattern.compile
5 2.81% 21.51% 28 313172 java.lang.Object.<init>
6 2.61% 24.12% 26 313151 java.lang.Object.<init>
7 2.61% 26.73% 26 313152 java.lang.Object.<init>
8 2.51% 29.25% 25 313128 java.nio.HeapCharBuffer.<init>

TRACE 313153: (thread=200001)
java.lang.Object.<init>(Object.java:20)
java.lang.String.<init>(String.java:636)
java.lang.String.substring(String.java:1939)
java.lang.String.subSequence(String.java:1972)
java.util.regex.Pattern.split(Pattern.java:1002)
java.lang.String.split(String.java:2292)
java.lang.String.split(String.java:2334)
com.manning.hip.ch8.SlowJob$Map.map(SlowJob.java:23)

TRACE 313156: (thread=200001)
java.lang.Object.<init>(Object.java:20)
org.apache.hadoop.io.BinaryComparable.<init>(BinaryComparable.java:25)
org.apache.hadoop.io.Text.<init>(Text.java:80)
com.manning.hip.ch8.SlowJob$Map.map(SlowJob.java:24)

The stack trace that had the most
accumulated time has a trace ID of

313153. You can use this ID to search
for the stack in the file.

This is the stack trace for ID 313153. It
looks like your String.split method is using

a regular expression, which is slow.

The second-most utilized time in your task
is in the constructor of the Text object,

which has the overhead of creating a
BinaryComparable. This is also something

that you need to optimize.

362 CHAPTER 8 Tuning, debugging, and testing

The first issue identified is the use of the String.split method, which uses regular
expressions to tokenize strings. Regular expressions are computationally expensive,
especially when they’re executed over millions of records, which is normal when work-
ing with data volumes typical with MapReduce. One solution is to replace the
String.split method with any of the StringUtils.split methods in the Apache Com-
mons Lang library, which doesn’t use regular expressions.

 To avoid the overhead associated with the Text class constructor, construct the
instance once and call the set method repeatedly, which is much more efficient.

■ Summary
Running HPROF adds significant overhead to the execution of Java; it instruments Java
classes to collect the profiling information as your code is executing. This isn’t some-
thing you’ll want to regularly run in production.

 There’s a simpler way to profile tasks by adding -Xprof to mapred.child.java.opts as
recommended in Todd Lipcon’s excellent presentation.9

 In fact, the ideal way to profile your code is to isolate your map or reduce code in
such a way that it can be executed outside of Hadoop using a profiler of your choice.
Then you can focus on quickly iterating your profiling without worrying about
Hadoop getting in your way.

 This wraps up our look at some of the methods you can use to tune the perfor-
mance of your jobs and to make your jobs as efficient as possible. Next up is a look at
various mechanisms that can help you debug your applications.

8.3 Debugging
In this section we’ll cover a number of topics that will help with your debugging
efforts. We’ll kick things off with a look at the task logs.

8.3.1 Accessing container log output

Accessing your task logs is the first step to figuring out what issues you’re having with
your jobs.

TECHNIQUE 82 Examining task logs

In this technique we’ll look at ways to access task logs in the event that you have a
problem job you want to debug.

■ Problem
Your job is failing or generating unexpected outputs, and you want to determine if the
logs can help you figure out the problem.

■ Solution
Learn how to use the JobHistory or ApplicationMaster UI to view task logs. Alterna-
tively, you can SSH to individual slave nodes and access the logs directly.

9 Todd Lipcon, “Optimizing MapReduce Job Performance,” http://www.slideshare.net/cloudera/mr-perf.

363TECHNIQUE 83 Figuring out the container startup command

■ Discussion
When a job fails, it’s useful to look at the logs to see if they tell you anything about the
failure. For MapReduce applications, each map and reduce task runs in its own con-
tainer and has its own logs, so you need to identify the tasks that failed. The easiest way
to do this is to use the JobHistory or ApplicationMaster UI, which in the task views pro-
vide links to the task logs.

 You can also use the steps outlined in technique 80 for accessing stack dumps to
directly access the logs on the slave node that executed a task.

 YARN will automatically delete the log files after yarn.nodemanager.log.retain-seconds
seconds if log aggregation isn’t enabled, or yarn.nodemanager.delete.debug-delay-sec
seconds if log aggregation is enabled.

 If a container fails to start, you’ll need to examine the NodeManager logs that exe-
cuted the task. To do this, use the JobHistory or ApplicationMaster UI to determine
which node executed your task, and then navigate to the NodeManager UI to examine
its logs.

 Often, when things start going wrong in your jobs, the task logs will contain details
on the cause of the failure. Next we’ll look at how you get at the command used to
launch a map or reduce task, which is useful when you suspect there’s an issue related
to the environment.

8.3.2 Accessing container start scripts

This a useful technique in situations where you suspect there’s an issue with the envi-
ronment or startup arguments for a container. For example, sometimes the classpath
ordering of JARs is significant, and issues with it can cause class-loading problems.
Also, if a container has dependencies on native libraries, the JVM arguments can be
used to debug issues with java.library.path.

TECHNIQUE 83 Figuring out the container startup command

The ability to examine the various arguments used to start a container can be helpful
in debugging container-launching problems. For example, let’s say you’re trying to
use a native Hadoop compression codec, but your MapReduce containers are failing,
and the errors complain that the native compression libraries can’t be loaded. In this
case, review the JVM startup arguments to determine if all of the required settings
exist for native compression to work.

■ Problem
You suspect that a container is failing due to missing arguments when a task is being
launched, and you want to examine the container startup arguments.

■ Solution
Set the yarn.nodemanager.delete.debug-delay-sec YARN configuration parameter to
stop Hadoop from cleaning up container metadata, and use this metadata to view the
shell script used to launch the container.

364 CHAPTER 8 Tuning, debugging, and testing

■ Discussion
As the NodeManager prepares to launch a container, it creates a shell script that’s sub-
sequently executed to run the container. The problem is that YARN, by default, removes
these scripts after a job has completed. During the execution of a long-running appli-
cation, you’ll have access to these scripts, but if the application is short-lived (which it
may well be if you’re debugging an issue that causes the containers to fail off the bat),
you’ll need to set yarn.nodemanager.delete.debug-delay-sec to true.

 Figure 8.11 shows all of the steps required to gain access to the task shell script.

Set "yarn.nodemanager.delete.debug-delay-sec" to "true"
for the application that you want to keep the shell scripts around for.

1

Run the application.2

Figure out the application ID, container ID, and host that the failed container executed on.3

SSH to the host the container was executed on, and go into the following directory.4

/usr/local/hadoop/tmp/nm-local-dir/usercache/aholmes/appcache/

The value of "yarn.nodemanager.local-dirs".
The default value is

"${hadoop.tmp.dir}/nm-local-dir".

User running
the job.

/application_1398974791337_0072/container_1398974791337_0072_01_000004

This directory contains the shell script
used to launch the container.

launch_container.sh
export JVM_PID=`echo $$`
export HADOOP_CLIENT_OPTS="-Dhadoop.tasklog.taskid=attempt_201112081615_0552_m_000000_0 -Dhadoop.tasklog.iscleanup=false -Dhadoop.tasklog.totalLogFileSize=0"
export HADOOP_WORK_DIR="/var/lib/hadoop-0.20/cache/mapred/mapred/local/taskTracker/aholmes/jobcache/job_201112081615_0552/attempt_201112081615_0552_m_000000_0/work"
export HADOOP_TOKEN_FILE_LOCATION="/var/lib/hadoop-0.20/cache/mapred/mapred/local/taskTracker/aholmes/jobcache/job_201112081615_0552/jobToken"
export HADOOP_ROOT_LOGGER="INFO,TLA"
export LD_LIBRARY_PATH="/var/lib/hadoop-0.20/cache/mapred/mapred/local/taskTracker/aholmes/jobcache/job_201112081615_0552/attempt_201112081615_0552_m_000000_0/work:/usr/java/jdk1.6.0_27/jre/lib/amd64/server:/usr/java/jdk1.6.0_27/jre/lib/amd64:/usr/java/jdk 1.6.0_27/jre/../lib/amd64"

exec setsid '/usr/java/jdk1.6.0_27/jre/bin/java' '-Djava.library.path=/usr/local/hadoop/lib/native/Linux-amd64-64:/usr/local/hadoop/lib/native/Linux-i386-32:/usr/lib64:/usr/lib/hadoop-0.20/lib/native/Linux-amd64-64:/var/lib/hadoop-0.20/cache/mapred/mapred/ local/taskTracker/aholmes/jobcache/
job_201112081615_0552/attempt_201112081615_0552_m_000000_0/work' '-Xmx200m' '-Djava.io.tmpdir=/var/lib/hadoop-0.20/cache/mapred/mapred/local/taskTracker/aholmes/jobcache/job_201112081615_0552/attempt_201112081615_0552_m_000000_0/work/tmp' '-classpath' '/et c/hadoop-0.20/conf:/usr/java/jdk1.6.0_27/
lib/tools.jar:/usr/lib/hadoop-0.20:/usr/lib/hadoop-0.20/hadoop-core-0.20.2-cdh3u2.jar:/usr/lib/hadoop-0.20/lib/ant-contrib-1.0b3.jar:/usr/lib/hadoop-0.20/lib/aspectjrt-1.6.5.jar:/usr/lib/hadoop-0.20/lib/aspectjtools-1.6.5.jar:/usr/lib/hadoop-0.20/lib/avro- 1.5.2.jar:/usr/lib/hadoop-0.20/lib/
avro-1.5.2-sources.jar:/usr/lib/hadoop-0.20/lib/avro-1.5.4.jar:/usr/lib/hadoop-0.20/lib/avro-1.5.4-sources.jar:/usr/lib/hadoop-0.20/lib/avro-compiler-1.5.2.jar:/usr/lib/hadoop-0.20/lib/avro-compiler-1.5.4.jar:/usr/lib/hadoop-0.20/lib/avro-ipc-1.5.2.jar:/us r/lib/hadoop-0.20/lib/avro-
mapred-1.5.2.jar:/usr/lib/hadoop-0.20/lib/avro-mapred-1.5.2-sources.jar:/usr/lib/hadoop-0.20/lib/avro-mapred-1.5.4.jar:/usr/lib/hadoop-0.20/lib/avro-tools-1.5.2-sources.jar:/usr/lib/hadoop-0.20/lib/avro-tools-1.5.4.jar:/usr/lib/hadoop-0.20/lib/commons-cli- 1.2.jar:/usr/lib/hadoop-0.20/lib/commons-
codec-1.4.jar:/usr/lib/hadoop-0.20/lib/commons-daemon-1.0.1.jar:/usr/lib/hadoop-0.20/lib/commons-el-1.0.jar:/usr/lib/hadoop-0.20/lib/commons-httpclient-3.1.jar:/usr/lib/hadoop-0.20/lib/commons-io-2.0.1.jar:/usr/lib/hadoop-0.20/lib/commons-lang-2.4.jar:/usr /lib/hadoop-0.20/lib/commons-
logging-1.0.4.jar:/usr/lib/hadoop-0.20/lib/commons-logging-api-1.0.4.jar:/usr/lib/hadoop-0.20/lib/commons-net-1.4.1.jar:/usr/lib/hadoop-0.20/lib/core-3.1.1.jar:/usr/lib/hadoop-0.20/lib/elephant-bird-2.0.5.jar:/usr/lib/hadoop-0.20/lib/hadoop-fairscheduler-0 .20.2-cdh3u2.jar:/usr/lib/hadoop-0.20/
lib/hadoop-lzo-0.4.10.jar:/usr/lib/hadoop-0.20/lib/hadoop-lzo-0.4.13.jar:/usr/lib/hadoop-0.20/lib/hbase-0.90.4-cdh3u2.jar:/usr/lib/hadoop-0.20/lib/hsqldb-1.8.0.10.jar:/usr/lib/hadoop-0.20/lib/jackson-core-asl-1.5.2.jar:/usr/lib/hadoop-0.20/lib/jackson-mapp er-asl-1.5.2.jar:/usr/lib/hadoop-0.20/
lib/jasper-compiler-5.5.12.jar:/usr/lib/hadoop-0.20/lib/jasper-runtime-5.5.12.jar:/usr/lib/hadoop-0.20/lib/jets3t-0.6.1.jar:/usr/lib/hadoop-0.20/lib/jetty-6.1.26.cloudera.1.jar:/usr/lib/hadoop-0.20/lib/jetty-servlet-tester-6.1.26.cloudera.1.jar:/usr/lib/ha doop-0.20/lib/jetty-util-6.1.26.cloudera.
1.jar:/usr/lib/hadoop-0.20/lib/jsch-0.1.42.jar:/usr/lib/hadoop-0.20/lib/json-simple-1.1.jar:/usr/lib/hadoop-0.20/lib/junit-4.5.jar:/usr/lib/hadoop-0.20/lib/kfs-0.2.2.jar:/usr/lib/hadoop-0.20/lib/libthrift-0.5.0.jar:/usr/lib/hadoop-0.20/lib/log4j-1.2.15.jar :/usr/lib/hadoop-0.20/lib/mockito-
all-1.8.2.jar:/usr/lib/hadoop-0.20/lib/oro-2.0.8.jar:/usr/lib/hadoop-0.20/lib/protobuf-java-2.3.0.jar:/usr/lib/hadoop-0.20/lib/servlet-api-2.5-20081211.jar:/usr/lib/hadoop-0.20/lib/servlet-api-2.5-6.1.14.jar:/usr/lib/hadoop-0.20/lib/slf4j-api-1.4.3.jar:/us r/lib/hadoop-0.20/lib/slf4j-
log4j12-1.4.3.jar:/usr/lib/hadoop-0.20/lib/xmlenc-0.52.jar:/usr/lib/hadoop-0.20/lib/zookeeper.jar:/usr/lib/hadoop-0.20/lib/jsp-2.1/jsp-2.1.jar:/usr/lib/hadoop-0.20/lib/jsp-2.1/jsp-api-2.1.jar:/var/lib/hadoop-0.20/cache/mapred/mapred/local/taskTracker/aholm es/jobcache/job_201112081615_0552/jars/
classes:/var/lib/hadoop-0.20/cache/mapred/mapred/local/taskTracker/aholmes/jobcache/job_201112081615_0552/jars/job.jar:/var/lib/hadoop-0.20/cache/mapred/mapred/local/taskTracker/aholmes/jobcache/job_201112081615_0552/attempt_201112081615_0552_m_000000_0/wo rk' '-Dhadoop.log.dir=/usr/lib/
hadoop-0.20/logs' '-Dhadoop.root.logger=INFO,TLA' '-Dhadoop.tasklog.taskid=attempt_201112081615_0552_m_000000_0' '-Dhadoop.tasklog.iscleanup=false' '-Dhadoop.tasklog.totalLogFileSize=0' 'org.apache.hadoop.mapred.Child' '127.0.0.1' '54858' 'attempt_20111208 1615_0552_m_000000_0' '/usr/lib/
hadoop-0.20/logs/userlogs/job_201112081615_0552/attempt_201112081615_0552_m_000000_0' '-1388442913' < /dev/null 1>> /usr/lib/hadoop-0.20/logs/userlogs/job_201112081615_0552/attempt_201112081615_0552_m_000000_0/stdout 2>> /usr/lib/hadoop-0.20/logs/userlog s/job_201112081615_0552/
attempt_201112081615_0552_m_000000_0/stderr

For MapReduce applications use the steps in technique 80,
"Using stack dumps to discover unoptimized user code"

to access this information.

${yarn.nodemanager.local-dirs}/usercache/${user}/appcache/application_${appid}/container_${contid}

Application ID Container ID, within which
the launch script exists.

Figure 8.11 How to get to the launch_container.sh script

365TECHNIQUE 85 Augmenting MapReduce code for better debugging

It’s also useful to examine the logs of the NodeManager that attempted to launch the
container, as they may contain container startup errors. Also double-check the con-
tainer logs if they exist.

■ Summary
This technique is useful in situations where you want to be able to examine the argu-
ments used to launch the container. If the data in the logs suggests that the problem
with your job is with the inputs (which can be manifested by a parsing exception),
you’ll need to figure out what kind of input is causing the problem.

8.3.3 Debugging OutOfMemory errors

OutOfMemory (OOM) errors are common in Java applications that have memory
leaks or are trying to store too much data in memory. These memory errors can be dif-
ficult to track down, because often you aren’t provided enough information when a
container exits.

TECHNIQUE 84 Force container JVMs to generate a heap dump

In this technique you’ll see some useful JVM arguments that will cause Java to write a
heap dump to disk when OOM errors occur.

■ Problem
Containers are failing with OutOfMemory errors.

■ Solution
Update the container JVM arguments to include -XX:+HeapDumpOnOutOfMemoryError
-XX:HeapDumpPath=<path>, where <path> is a common directory across all your slave
nodes.

■ Discussion
If you’re running a MapReduce application, you can update mapred.child.java.opts
with the preceding JVM arguments. For non-MapReduce applications, you’ll need to
figure out how to append these JVM startup arguments for the container exhibiting
the OOM errors.

 Once a container running with the preceding JVM arguments fails, you can load
the generated dump file using jmap or your favorite profiling tool.

8.3.4 MapReduce coding guidelines for effective debugging

Debugging MapReduce code in production can be made a lot easier if you follow a
handful of logging and exception-handling best practices.

TECHNIQUE 85 Augmenting MapReduce code for better debugging

Debugging a poorly written MapReduce job consumes a lot of time and can be chal-
lenging in production environments where access to cluster resources is limited.

■ Problem
You want to know the best practices to follow when writing MapReduce code.

366 CHAPTER 8 Tuning, debugging, and testing

■ Solution
Look at how counters and logs can be used to enhance your ability to effectively
debug and handle problem jobs.

■ Discussion
Add the following features to your code:

■ Include logs that capture data related to inputs and outputs to help isolate
where problems exist.

■ Catch exceptions and provide meaningful logging output to help track down
problem data inputs and logic errors.

■ Think about whether you want to rethrow or swallow exceptions in your code.
■ Use counters and task statuses that can be utilized by driver code and humans

alike to better understand what happened during the job execution.

In the following code, you’ll see a number of the previously described principles
applied.

public static class Map
extends Mapper<Text, Text, Text, Text> {

protected Text outputValue = new Text();
protected int failedRecords;
public static enum Counters {
FAILED_RECORDS

}

@Override
protected void setup(Context context)

throws IOException, InterruptedException {
super.setup(context);
log.info("Input split = {}", context.getInputSplit());

}

@Override
protected void map(Text key, Text value, Context context)

throws IOException, InterruptedException {

if(log.isDebugEnabled()) {
log.debug("Input K[{}],V[{}]", key, value);

}

try {
String id = StringUtils.split(value.toString())[5];
outputValue.set(id);
if(log.isDebugEnabled()) {
log.debug("Output K[{}],V[{}]", key, value);

}
context.write(key, outputValue);

} catch(Exception t) {
processError(context, t, key, value);

}
}

Listing 8.1 A mapper job with some best practices applied to assist debugging

When the task starts, write the input
split details to the log. This will tell
you the input file for each specific

task and the byte offset within that
input file that was used to read map

input records.

If the logger is in debug mode (which it
should never be in production environments

unless you’re debugging a job),
write out the input record key and value. You

wouldn’t want this to be a System.out or
log.info because that would dramatically

slow down your job. Enclose both the
key and value with square brackets so you can

easily identify leading and trailing
whitespace. This will help isolate
 potential problems in your input

 data or InputFormat/RecordReader classes.

Log the map output
key and value. This
can be compared to
reducer inputs to help
determine if there’s
a serialization or
partitioning problem
between map and
reduce tasks.

Catch any exceptions
thrown in your code.

367TECHNIQUE 85 Augmenting MapReduce code for better debugging

protected void processError(Context c, Throwable t, Text k, Text v) {
log.error("Caught exception processing key[" +
k + "], value[" + v + "]", t);
c.getCounter(Counters.FAILED_RECORDS).increment(1);
c.setStatus("Records with failures = " +
(++failedRecords));

}
}

The reduce task should have similar debug log statements added to write out each
reduce input key and value and the output key and value. Doing so will help identify
any issues between the map and reduce sides, in your reduce code, or in the Output-
Format or RecordWriter.

Should exceptions be swallowed? In the previous code example, you caught
any exceptions in your code and then wrote the exception to the logs, along
with as much contextual information as possible (such as the current key and
value that the reducer was working on). The big question is whether you
should rethrow the exception or swallow it.

Rethrowing the exception is tempting because you’ll immediately be aware of
any issues in your MapReduce code. But if your code is running in produc-
tion and fails every time it encounters a problem—such as some input data
that’s not handled correctly—the ops, dev, and QA teams will be spending
quite a few cycles addressing each issue as it comes along.

Writing code that swallows exceptions has its own problems—for example, what
if you encounter an exception on all inputs to the job? If you write your code
to swallow exceptions, the correct approach is to increment a counter (as in the
code example), which the driver class should use after job completion to ensure
that most of the input records within some tolerable threshold were successfully
processed. If they weren’t, the workflow being processed should probably be
terminated and the appropriate alerts be sent to notify operations.

Another approach is to not swallow exceptions and to configure record skip-
ping with a call to setMapperMaxSkipRecords or setReducerMaxSkipGroups, indicat-
ing the number of records that you can tolerate losing if an exception is
thrown when they’re processed. This is covered in more detail in Hadoop in
Action by Chuck Lam (Manning, 2010).

You used counters to count the number of bad records you encountered, and the
ApplicationMaster or JobHistory UI can be used to view the counter values, as shown
in figure 8.12.

Write out the key and value to the logs. Enclose both
strings with square brackets so you can easily track
down leading or trailing whitespace.

Increment a counter
to signal that you hit
an error. Set the task status to indicate you hit

an issue with a record, including a count
of the total number of failed records

this task encountered.

Figure 8.12 Screenshot of a counter in the JobHistory counter page

368 CHAPTER 8 Tuning, debugging, and testing

Depending on how you executed the job, you’ll see the counters dumped on standard
out. If you look at the logs for your tasks, you’ll also see some informative data related
to the task:

Input split = hdfs://localhost/user/aholmes/users.txt:0+110

Caught exception processing key[anne], value[22 NY]

Because you also updated the task status in your code, you can use the Application-
Master or JobHistory UI to easily identify the tasks that had failed records, as shown in
figure 8.13.

■ Summary
We looked at a handful of simple yet useful coding guidelines for your MapReduce
code. If they’re applied and you hit a problem with your job in production, you’ll be
in a great position to quickly narrow down the root cause of the issue. If the issue is
related to the input, your logs will contain details about how the input caused your
processing logic to fail. If the issue is related to some logic error or errors in serializa-
tion or deserialization, you can enable debug-level logging and better understand
where things are going awry.

8.4 Testing MapReduce jobs
In this section we’ll look at the best methods for testing your MapReduce code, as well
as design aspects to consider when writing MapReduce jobs to help in your testing
efforts.

8.4.1 Essential ingredients for effective unit testing

It’s important to make sure unit tests are easy to write and to ensure that they cover a
good spectrum of positive and negative scenarios. Let’s take a look at the impact that
test-driven development, code design, and data have on writing effective unit tests.

TEST-DRIVEN DEVELOPMENT

When it comes to writing Java code, I’m a big proponent of test-driven development
(TDD),10 and with MapReduce things are no different. Test-driven development
emphasizes writing unit tests ahead of writing the code, and it recently has gained in

10 For an explanation of test-driven development, see the Wikipedia article: http://en.wikipedia.org/wiki/
Test-driven_development.

This tells you what file the
task was working on, as well as

the input split range.

Write out the key and value. Note that
because you used square brackets to

encapsulate your strings, any whitespace
issues will be easily identified.

Figure 8.13 JobTracker UI showing map task and status

http://en.wikipedia.org/wiki/Test-driven_development
http://en.wikipedia.org/wiki/Test-driven_development

369Testing MapReduce jobs

importance as quick development turnaround times have become the norm rather
than the exception. Applying test-driven development to MapReduce code is crucial,
particularly when such code is part of a critical production application.

 Writing unit tests prior to writing your code forces you to structure your code in a
way that easily facilitates testing.

CODE DESIGN

When you write code, it’s important to think about the best way to structure it so you
can easily test it. Using concepts such as abstraction and dependency injection will go
a long way toward reaching this goal.11

 When you write MapReduce code, it’s a good idea to abstract away the code doing
the work, which means you can test that code in regular unit tests without having to
think about how to work with Hadoop-specific constructs. This is true not only for
your map and reduce functions, but also for your input formats, output formats, data
serialization, and partitioner code.

 Let’s look at a simple example to better illustrate this point. The following code
shows a reducer that calculates the mean for a stock:

public static class Reduce
extends Reducer<Text, DoubleWritable, Text, DoubleWritable> {

DoubleWritable outValue = new DoubleWritable();
public void reduce(Text stockSymbol, Iterable<DoubleWritable> values,

Context context)
throws IOException, InterruptedException {

double total = 0;
int instances = 0;
for (DoubleWritable stockPrice : values) {
total += stockPrice.get();
instances++;

}
outValue.set(total / (double) instances);
context.write(stockSymbol, outValue);

}
}

This is a trivial example, but the way the code is structured means you can’t easily
test this in a regular unit test, because MapReduce has constructs such as Text,
DoubleWritable, and the Context class that get in your way. If you were to structure the
code to abstract away the work, you could easily test the code that’s doing your work,
as the following code shows:

public static class Reduce2
extends Reducer<Text, DoubleWritable, Text, DoubleWritable> {

SMA sma = new SMA();

11 For an explanation of dependency injection, see the Wikipedia article: http://en.wikipedia.org/wiki/
Dependency_injection.

http://en.wikipedia.org/wiki/Dependency_injection
http://en.wikipedia.org/wiki/Dependency_injection

370 CHAPTER 8 Tuning, debugging, and testing

DoubleWritable outValue = new DoubleWritable();
public void reduce(Text key, Iterable<DoubleWritable> values,

Context context)
throws IOException, InterruptedException {

sma.reset();
for (DoubleWritable stockPrice : values) {
sma.add(stockPrice.get());

}
outValue.set(sma.calculate());
context.write(key, outValue);

}
}

public static class SMA {
protected double total = 0;
protected int instances = 0;

public void add(double value) {
total += value;
instances ++;

}

public double calculate() {
return total / (double) instances;

}

public void reset() {
total = 0;
instances = 0;

}
}

With this improved code layout, you can now easily test the SMA class that’s adding and
calculating the simple moving average without the Hadoop code getting in your way.

IT’S THE DATA, STUPID

When you write unit tests, you try to discover how your code handles both positive and
negative input data. In both cases, it’s best if the data you’re testing with is a represen-
tative sample from production.

 Often, no matter how hard you try, issues in your code in production will arise
from unexpected input data. It’s important that when you do discover input data that
causes a job to blow up, you not only fix the code to handle the unexpected data, but
you also pull the data that caused the blowup and use it in a unit test to prove that the
code can now correctly handle that data.

8.4.2 MRUnit

MRUnit is a test framework you can use to unit-test MapReduce code. It was developed
by Cloudera (a vendor with its own Hadoop distribution) and it’s currently an Apache
project. It should be noted that MRUnit supports both the old (org.apache.hadoop
.mapred) and new (org.apache.hadoop.mapreduce) MapReduce APIs.

371TECHNIQUE 86 Using MRUnit to unit-test MapReduce

TECHNIQUE 86 Using MRUnit to unit-test MapReduce

In this technique we’ll look at writing unit tests that use each of the four types of tests
provided by MRUnit:

■ MapDriver class—A map test that only tests a map function
■ ReduceDriver class—A reduce test that only tests a reduce function
■ MapReduceDriver class—A map and reduce test that tests both the map and

reduce functions
■ TestPipelineMapReduceDriver class—A pipeline test that allows a series of Map-

Reduce functions to be exercised

■ Problem
You want to test map and reduce functions, as well as MapReduce pipelines.

■ Solution
Use MRUnit’s MapDriver, ReduceDriver, MapReduceDriver, and PipelineMapReduceDriver
classes as part of your unit tests to test your MapReduce code.

■ Discussion
MRUnit has four types of unit tests—we’ll start with a look at the map tests.

Map tests
Let’s kick things off by writing a test to exercise a map function. Before starting, let’s
look at what you need to supply to MRUnit to execute the test, and in the process learn
about how MRUnit works behind the scenes.

 Figure 8.14 shows the interactions of the unit test with MRUnit and how it in turn
interacts with the mapper you’re testing.

Set up and
execute test.

1

Supply the following data:
. The mapper class
. The input key and value
. The expected output, as
 a list of key/value pairs

Call map method
with key/value.

2

Map output
is captured.

3

Compare expected
outputs to generated
outputs.

4

MRUnit

Unit Test
MapDriver

Mapper Mock
output

collector

Figure 8.14 MRUnit test using MapDriver

372 CHAPTER 8 Tuning, debugging, and testing

The following code is a simple unit test of the (identity) mapper class in Hadoop:12

public class IdentityMapTest {

private Mapper<Text, Text, Text, Text> mapper;
private MapDriver<Text, Text, Text, Text> driver;

@Before
public void setUp() {
mapper = new Mapper<Text, Text, Text, Text>();
driver = new MapDriver<Text, Text, Text, Text>(mapper);

}

@Test
public void testIdentityMapper() {
driver.withInput(new Text("foo"), new Text("bar"))

.withOutput(new Text("foo"), new Text("bars"))

.runTest();
}

}

MRUnit is not tied to any specific unit-testing framework, so if it finds an error, it logs
the error and throws an exception. Let’s see what would happen if your unit test had
specified output that didn’t match the output of the mapper, as in the following code:

driver.withInput(new Text("foo"), new Text("bar"))
.withOutput(new Text("foo"), new Text("bar2"))
.runTest();

If you run this test, your test will fail, and you’ll see the following log output:

ERROR Received unexpected output (foo, bar)
ERROR Missing expected output (foo, bar2) at position 0

MRUnit logging configuration Because MRUnit uses the Apache Commons
logging, which defaults to using log4j, you’ll need to have a log4j.properties
file in the classpath that’s configured to write to standard out, similar to the
following:

log4j.rootLogger=WARN, stdout
log4j.appender.stdout=org.apache.log4j.ConsoleAppender
log4j.appender.stdout.layout=org.apache.log4j.PatternLayout
log4j.appender.stdout.layout.ConversionPattern=
➥ %-5p [%t][%d{ISO8601}] [%C.%M] - %m%n

One of the powerful features of JUnit and other test frameworks is that when tests fail,
the failure message includes details on the cause of the failure. Unfortunately, MRUnit

12 GitHub source: https://github.com/alexholmes/hiped2/blob/master/src/test/java/hip/ch8/mrunit/
IdentityMapTest.java.

 Create the map class you’re testing.
Here you’re using Hadoop’s built-in
IdentityMapper, which outputs the

input data without any
transformations.

The MRUnit driver
class you’ll use in
your test. This is
the MapDriver, and
as such you need to
specify the key/
value input and
output types for
the mapper you’re
testing.

The withInput method is used to
specify an input key/value, which will

be fed to the IdentityMapper.

The withOutput method is used to specify the output
key/value, which MRUnit will compare against the

output generated by the mapper being tested.

Run the test . If a
failure is encountered,
it logs the discrepancy
and throws an
exception.

https://github.com/alexholmes/hiped2/blob/master/src/test/java/hip/ch8/mrunit/IdentityMapTest.java
https://github.com/alexholmes/hiped2/blob/master/src/test/java/hip/ch8/mrunit/IdentityMapTest.java

373TECHNIQUE 86 Using MRUnit to unit-test MapReduce

logs and throws a nondescriptive exception, which means you need to dig through the
test output to determine what failed.

 What if you wanted to use the power of MRUnit, and also use the informative errors
that JUnit provides when assertions fail? You could modify your code to do that and
bypass MRUnit’s testing code:

@Test
public void testIdentityMapper() throws IOException {
List<Pair<Text, Text>> results = driver

.withInput(new Text("foo"), new Text("bar"))

.run();

assertEquals(1, results.size());
assertEquals(new Text("foo"), results.get(0).getFirst());
assertEquals(new Text("bar"), results.get(0).getSecond());

}

With this approach, if there’s a mismatch between the expected and actual outputs,
you get a more meaningful error message, which report-generation tools can use to
easily describe what failed in the test:

junit.framework.AssertionFailedError: expected:<bar2> but was:<bar>

To cut down on the inevitable copy-paste activities with this approach, I wrote a simple
helper class to use JUnit asserts in combination with using the MRUnit driver.13 Your
JUnit test now looks like this:

@Test
public void testIdentityMapper() throws IOException {
List<Pair<Text, Text>> results = driver

.withInput(new Text("foo"), new Text("bar"))

.withOutput(new Text("foo"), new Text("bar"))

.run();

MRUnitJUnitAsserts.assertOutputs(driver, results);
}

This is much cleaner and removes any mistakes that might arise from the copy-paste
anti-pattern.

Reduce tests
Now that we’ve looked at map function tests, let’s look at reduce function tests. The
MRUnit framework takes a similar approach for reduce testing. Figure 8.15 shows the
interactions of your unit test with MRUnit, and how it in turn interacts with the
reducer you’re testing.

13 GitHub source: https://github.com/alexholmes/hiped2/blob/master/src/test/java/hip/ch8/mrunit/
MRUnitJUnitAsserts.java

The run method executes the map function
and returns a list of all the output records

emitted by the function. Also note that there
was no need to call the withOutput method,

because you’ll do the validation yourself.

You assert the size
and contents of the

records.

You call withOutput because the
helper function can extract the

outputs directly from the driver.

Call the helper function that uses
JUnit asserts to test the contents

of the expected output with the
generated output.

https://github.com/alexholmes/hiped2/blob/master/src/test/java/hip/ch8/mrunit/MRUnitJUnitAsserts.java
https://github.com/alexholmes/hiped2/blob/master/src/test/java/hip/ch8/mrunit/MRUnitJUnitAsserts.java

374 CHAPTER 8 Tuning, debugging, and testing

The following code is a simple unit test for testing the (identity) reducer class in
Hadoop:14

public class IdentityReduceTest {

private Reducer<Text, Text, Text, Text> reducer;
private ReduceDriver<Text, Text, Text, Text> driver;

@Before
public void setUp() {
reducer = new Reducer<Text, Text, Text, Text>();
driver = new ReduceDriver<Text, Text, Text, Text>(reducer);

}

@Test
public void testIdentityMapper() throws IOException {
List<Pair<Text, Text>> results = driver

.withInput(new Text("foo"),
Arrays.asList(new Text("bar1"), new Text("bar2")))

.withOutput(new Text("foo"), new Text("bar1"))

.withOutput(new Text("foo"), new Text("bar2"))

.run();

MRUnitJUnitAsserts.assertOutputs(driver, results);
}

}

14 GitHub source: https://github.com/alexholmes/hiped2/blob/master/src/test/java/hip/ch8/mrunit/
IdentityReduceTest.java.

Set up and
execute test .

1

Call the reduce
method with the
key and list of
values.

2

Reducer output
is captured.

3

MRUnit

Unit test

Reducer Mock
output

collector

Compare expected
outputs to generated
outputs.

4

ReduceDriver

Supply the following data:
. The reducer class
. The input key and list of values
. The expected output, as
 a list of key/value pairs

Figure 8.15 MRUnit test
using ReduceDriver

When testing the
reducer, you specify
a list of values that
MRUnit sends to
your reducer.

With the identity reducer you
specified two value inputs, so you

expect two outputs.

Add the expected
output for the

second value.

Use the helper class from
the previous map section.

https://github.com/alexholmes/hiped2/blob/master/src/test/java/hip/ch8/mrunit/IdentityReduceTest.java
https://github.com/alexholmes/hiped2/blob/master/src/test/java/hip/ch8/mrunit/IdentityReduceTest.java

375TECHNIQUE 86 Using MRUnit to unit-test MapReduce

Now that we’ve completed our look at the individual map and reduce function tests,
let’s look at how you can test a map and reduce function together.
MapReduce tests
MRUnit also supports testing the map and reduce functions in the same test. You feed
MRUnit the inputs, which in turn are supplied to the mapper. You also tell MRUnit
what reducer outputs you expect.

 Figure 8.16 shows the interactions of your unit test with MRUnit and how it in turn
interacts with the mapper and reducer you’re testing.

 The following code is a simple unit test for testing the (identity) mapper and
reducer classes in Hadoop:15

public class IdentityMapReduceTest {

private Reducer<Text, Text, Text, Text> reducer;
private Mapper<Text, Text, Text, Text> mapper;
private MapReduceDriver<Text, Text, Text, Text, Text, Text> driver;

@Before
public void setUp() {
mapper = new Mapper<Text, Text, Text, Text>();
reducer = new Reducer<Text, Text, Text, Text>();
driver =

15 GitHub source: https://github.com/alexholmes/hiped2/blob/master/src/test/java/hip/ch8/mrunit/
IdentityMapReduceTest.java.

Set up and
execute test .

1

Call map method
with key/value.

2

Call the reduce
method.

4

MRUnit

Unit test
MapReduceDriver

Mapper

Reducer

MapDriver

Shuffle

Reduce
driver

MRUnit performs
its own in-memory

shuffle phase.

3

Compare expected
outputs to generated
outputs.

5

Supply the following data:. The MapReduce classes. The input key and value. The expected output, as
 a list of key/value pairs

Figure 8.16 MRUnit test
using MapReduceDriver

With the MapReduce driver, you need to specify six
types: the map input and output key/value types, as

well as the reducer key/value output types.

https://github.com/alexholmes/hiped2/blob/master/src/test/java/hip/ch8/mrunit/IdentityMapReduceTest.java
https://github.com/alexholmes/hiped2/blob/master/src/test/java/hip/ch8/mrunit/IdentityMapReduceTest.java

376 CHAPTER 8 Tuning, debugging, and testing

new MapReduceDriver<Text, Text, Text, Text, Text, Text>(
mapper, reducer);

}

@Test
public void testIdentityMapper() throws IOException {
List<Pair<Text, Text>> results = driver

.withInput(new Text("foo"), new Text("bar"))

.withInput(new Text("foo2"), new Text("bar2"))

.withOutput(new Text("foo"), new Text("bar"))

.withOutput(new Text("foo2"), new Text("bar2"))

.run();

MRUnitJUnitAsserts.assertOutputs(driver, results);
}

}

Now we’ll look at the fourth and final type of test that MRUnit supports, pipeline tests,
which are used to test multiple MapReduce jobs.

Pipeline tests
MRUnit supports testing a series of map and reduce functions—these are called pipe-
line tests. You feed MRUnit one or more MapReduce functions, the inputs to the first
map function, and the expected outputs of the last reduce function.

 Figure 8.17 shows the interactions of your unit test with the MRUnit pipeline
driver.

Supply the map inputs. In contrast to the
MapDriver and ReduceDriver, the

MapReduceDriver supports multiple inputs.

Set the expected
reducer outputs.

1

2

MRUnit

Unit Test
Pipeline

MapReduceDriver

Mapper

Reducer

3
Mapper

Reducer

MapReduceDriver

MapReduceDriver

Compare expected
outputs to generated
outputs.

4

Multiple MapReduce drivers
are called in a sequence,

creating a pipeline of jobs.

. .
 .

Supply the following data:
. The MapReduce classes
. The input key and value
. The expected output, as
 a list of key/value pairs

Figure 8.17 MRUnit test using PipelineMapReduceDriver

377TECHNIQUE 86 Using MRUnit to unit-test MapReduce

The following code is a unit test for testing a pipeline containing two sets of (identity)
mapper and reducer classes in Hadoop:16

public class PipelineTest {

private Mapper<Text, Text, Text, Text> mapper1;
private Reducer<Text, Text, Text, Text> reducer1;
private Mapper<Text, Text, Text, Text> mapper2;
private Reducer<Text, Text, Text, Text> reducer2;

private PipelineMapReduceDriver<Text, Text, Text, Text> driver;

@Before
public void setUp() {
mapper1 = new IdentityMapper<Text, Text>();
reducer1 = new IdentityReducer<Text, Text>();
mapper2 = new IdentityMapper<Text, Text>();
reducer2 = new IdentityReducer<Text, Text>();
driver = new PipelineMapReduceDriver<Text, Text, Text, Text>();
driver.addMapReduce(
new Pair<Mapper, Reducer>(mapper1, reducer1));

driver.addMapReduce(
new Pair<Mapper, Reducer>(mapper2, reducer2));

}

@Test
public void testIdentityMapper() throws IOException {
List<Pair<Text, Text>> results = driver

.withInput(new Text("foo"), new Text("bar"))

.withInput(new Text("foo2"), new Text("bar2"))

.withOutput(new Text("foo"), new Text("bar"))

.withOutput(new Text("foo2"), new Text("bar2"))

.run();

MRUnitJUnitAsserts.assertOutputs(driver, results);
}

}

Note that the PipelineMapReduceDriver is the only driver in MRUnit that doesn’t come
in both old and new MapReduce API versions, which is why the preceding code uses
the old MapReduce API.

■ Summary
What type of test should you use for your code? Take a look at table 8.5 for some
pointers.

16 GitHub source: https://github.com/alexholmes/hiped2/blob/master/src/test/java/hip/ch8/mrunit/
PipelineTest.java.

Table 8.5 MRUnit tests and when to use them

Type of test Works well in these situations

Map You have a map-only job, and you want low-level unit tests where the framework takes
care of testing the expected map outputs for your test map inputs.

Reduce Your job has a lot of complexity in the reduce function, and you want to isolate your tests
to only that function.

Add the first map and reduce
pair to the pipeline.

Add the second map
and reduce pair to

the pipeline.

As with the MapReduceDriver, the
PipelineMapReduceDriver supports

multiple input records.

https://github.com/alexholmes/hiped2/blob/master/src/test/java/hip/ch8/mrunit/PipelineTest.java
https://github.com/alexholmes/hiped2/blob/master/src/test/java/hip/ch8/mrunit/PipelineTest.java

378 CHAPTER 8 Tuning, debugging, and testing

MRUnit has a few limitations, some of which we touched on in this technique:

■ MRUnit isn’t integrated with unit-test frameworks that provide rich error-reporting
capabilities for quicker determination of errors.

■ The pipeline tests only work with the old MapReduce API, so MapReduce code
that uses the new MapReduce API can’t be tested with the pipeline tests.

■ There’s no support for testing data serialization, or InputFormat, RecordReader,
OutputFormat, or RecordWriter classes.

Notwithstanding these limitations, MRUnit is an excellent test framework that you can
use to test at the granular level of individual map and reduce functions; MRUnit also
can test a pipeline of MapReduce jobs. And because it skips the InputFormat and
OutputFormat steps, your unit tests will execute quickly.

 Next we’ll look at how you can use the LocalJobRunner to test some MapReduce
constructs that are ignored by MRUnit.

8.4.3 LocalJobRunner

In the last section we looked at MRUnit, a great, lightweight unit-test library. But what
if you want to test not only your map and reduce functions, but also the InputFormat,
RecordReader, OutputFormat, and RecordWriter code, as well as the data serialization
between the map and reduce phases? This becomes important if you’ve written your
own input and output format classes, because you want to make sure you’re testing
that code too.

 Hadoop comes bundled with the LocalJobRunner class, which Hadoop and related
projects (such as Pig and Avro) use to write and test their MapReduce code. LocalJob-
Runner allows you to test all the aspects of a MapReduce job, including the reading and
writing of data to and from the filesystem.

TECHNIQUE 87 Heavyweight job testing with the LocalJobRunner

Tools like MRUnit are useful for low-level unit tests, but how can you be sure that your
code will play nicely with the whole Hadoop stack?

■ Problem
You want to test the whole Hadoop stack in your unit test.

■ Solution
Use the LocalJobRunner class in Hadoop to expand the coverage of your tests to
include code related to processing job inputs and outputs.

MapReduce You want to test the combination of the map and reduce functions. These are higher-level
unit tests.

Pipeline You have a MapReduce pipeline where the input of each MapReduce job is the output
from the previous job.

Table 8.5 MRUnit tests and when to use them (continued)

Type of test Works well in these situations

379TECHNIQUE 87 Heavyweight job testing with the LocalJobRunner

■ Discussion
Using the LocalJobRunner makes your unit tests start to feel more like integration tests,
because what you’re doing is testing how your code works in combination with the
whole MapReduce stack. This is great because you can use this to test not only your
own MapReduce code, but also to test input and output formats, partitioners, and
advanced sort mechanisms.

 The code in the next listing shows an example of how you can use the LocalJobRunner
in your unit tests.17

public class IdentityTest {

@Test
public void run() throws Exception {
Path inputPath = new Path("/tmp/mrtest/input");
Path outputPath = new Path("/tmp/mrtest/output");

Configuration conf = new Configuration();

conf.set("mapred.job.tracker", "local");
conf.set("fs.default.name", "file:///");

FileSystem fs = FileSystem.get(conf);
if (fs.exists(outputPath)) {
fs.delete(outputPath, true);

}
if (fs.exists(inputPath)) {
fs.delete(inputPath, true);

}
fs.mkdirs(inputPath);

String input = "foo\tbar";
DataOutputStream file = fs.create(new Path(inputPath, "part-" + 0));
file.writeBytes(input);
file.close();

Job job = runJob(conf, inputPath, outputPath);
assertTrue(job.isSuccessful());

List<String> lines =
IOUtils.readLines(fs.open(new Path(outputPath, "part-r-00000")));

assertEquals(1, lines.size());
String[] parts = StringUtils.split(lines.get(0), "\t");
assertEquals("foo", parts[0]);
assertEquals("bar", parts[1]);

}

public Job runJob(Configuration conf, Path inputPath, Path outputPath)
throws ClassNotFoundException, IOException, InterruptedException {

Listing 8.2 Using LocalJobRunner to test a MapReduce job

17 GitHub source: https://github.com/alexholmes/hiped2/blob/master/src/test/java/hip/ch8/localjobrunner/
IdentityTest.java.

Force the use of the
LocalJobRunner by setting
mapred.job.tracker to local

(which is the default).
Force the
filesystem to be
local (which is
the default).

Retrieve the filesystem. By default
this will be the local filesystem. The

next few lines of code delete the input
and output directories to remove any

lingering data from other tests.

Write the
job inputs
into a file.

Run an identity
MapReduce job.

Assert that the
job completed
successfully.

Read the job
output from the
filesystem.

Verify the
job output.

https://github.com/alexholmes/hiped2/blob/master/src/test/java/hip/ch8/localjobrunner/IdentityTest.java
https://github.com/alexholmes/hiped2/blob/master/src/test/java/hip/ch8/localjobrunner/IdentityTest.java

380 CHAPTER 8 Tuning, debugging, and testing

Job job = new Job(conf);
job.setInputFormatClass(KeyValueTextInputFormat.class);
job.setMapOutputKeyClass(Text.class);
FileInputFormat.setInputPaths(job, inputPath);
FileOutputFormat.setOutputPath(job, outputPath);
job.waitForCompletion(false);
return job;

}
}

Writing this test is more involved because you need to handle writing the inputs to the
filesystem and reading them back out. That’s a lot of boilerplate code to have to deal
with for every test, and it’s probably something that you’ll want to factor out into a
reusable helper class.

 Here’s an example of a utility class to do that; the following code shows how
IdentityTest code can be condensed into a more manageable size:18

@Test
public void run() throws Exception {

TextIOJobBuilder builder = new TextIOJobBuilder()
.addInput("foo", "bar")
.addExpectedOutput("foo", "bar")
.writeInputs();

Job job = runJob(
builder.getConfig(),
builder.getInputPath(),
builder.getOutputPath());

assertTrue(job.isSuccessful());

builder.verifyResults();
}

■ Summary
What are some of the limitations to be aware of when using LocalJobRunner?

■ LocalJobRunner runs only a single reduce task, so you can’t use it to test
partitioners.

■ As you saw, it’s also more labor intensive; you need to read and write the input
and output data to the filesystem.

■ Jobs are also slow because much of the MapReduce stack is being exercised.
■ It’s tricky to use this approach to test input and output formats that aren’t file-

based.

The most comprehensive way of testing your code is covered next. It uses an in-memory
cluster that can run multiple mappers and reducers.

18 GitHub source: https://github.com/alexholmes/hiped2/blob/master/src/test/java/hip/ch8/localjobrunner/
IdentityWithBuilderTest.java.

Set the job
inputs.

Set the expected job outputs.
Write the inputs

to the filesystem.

Delegate testing the
expected results with

the results to the
utility class.

https://github.com/alexholmes/hiped2/blob/master/src/test/java/hip/ch8/localjobrunner/IdentityWithBuilderTest.java
https://github.com/alexholmes/hiped2/blob/master/src/test/java/hip/ch8/localjobrunner/IdentityWithBuilderTest.java

381TECHNIQUE 88 Using MiniMRYarnCluster to test your jobs

8.4.4 MiniMRYarnCluster

All of the unit-testing techniques so far have had restrictions on which parts of a
MapReduce job could be tested. The LocalJobRunner, for example, only runs with a sin-
gle map and reduce task, so you can’t simulate production jobs that run with multiple
tasks. In this section you’ll learn about a built-in mechanism in Hadoop that allows
you to exercise your job against the full-stack Hadoop.

TECHNIQUE 88 Using MiniMRYarnCluster to test your jobs

The MiniMRYarnCluster class is included in the Hadoop testing code, and it supports
test cases that require the complete Hadoop stack to be executed. This includes tests
that need to test input and output format classes, including output committers, which
can’t be tested using MRUnit or LocalTestRunner. In this technique, you’ll see how to
use MiniMRYarnCluster.

■ Problem
You want to execute your tests against an actual Hadoop cluster, giving you the addi-
tional assurance that your jobs work as expected.

■ Solution
Use MiniMRYarnCluster and MiniDFSCluster, which allow you to launch in-memory YARN
and HDFS clusters.

■ Discussion
MiniMRYarnCluster and MiniDFSCluster are classes contained in Hadoop’s testing code,
and are used by various tests in Hadoop. They provide in-process YARN and HDFS clus-
ters that give you the most realistic environment within which to test your code. These
classes wrap the full-fledged YARN and HDFS processes, so you’re actually running the
complete Hadoop stack in your test process. Map and reduce containers are launched
as processes external to the test process.

 There’s a useful wrapper class called ClusterMapReduceTestCase that encapsulates
these classes and makes it easy to quickly write your unit tests. The following code
shows a simple test case that tests the identity mapper and reducer:19

import com.google.common.collect.Lists;
import org.apache.commons.io.IOUtils;
import org.apache.hadoop.fs.FileUtil;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapred.*;

import java.io.*;
import java.util.List;

public class IdentityMiniTest extends ClusterMapReduceTestCase {

public void testIdentity() throws Exception {

19 GitHub source: https://github.com/alexholmes/hiped2/blob/master/src/test/java/hip/ch8/minimrcluster/
IdentityMiniTest.java.

Extend ClusterMapReduceTestCase to
leverage the mini-cluster wrapping.

https://github.com/alexholmes/hiped2/blob/master/src/test/java/hip/ch8/minimrcluster/IdentityMiniTest.java
https://github.com/alexholmes/hiped2/blob/master/src/test/java/hip/ch8/minimrcluster/IdentityMiniTest.java

382 CHAPTER 8 Tuning, debugging, and testing

JobConf conf = createJobConf();

createInput();

conf.setNumReduceTasks(1);

conf.setInputFormat(KeyValueTextInputFormat.class);
conf.setMapOutputKeyClass(Text.class);
conf.setMapOutputValueClass(Text.class);
FileInputFormat.setInputPaths(conf, getInputDir());
FileOutputFormat.setOutputPath(conf, getOutputDir());
RunningJob runningJob = JobClient.runJob(conf);

assertTrue(runningJob.isSuccessful());

Path[] outputFiles = FileUtil.stat2Paths(
getFileSystem().listStatus(getOutputDir(),

new Utils.OutputFileUtils.OutputFilesFilter()));

assertEquals(1, outputFiles.length);

InputStream is = getFileSystem().open(outputFiles[0]);
List<String> lines = IOUtils.readLines(is);
assertEquals(1, lines.size());
assertEquals("foo\tbar", lines.get(0));
is.close();

}

private void createInput() throws Exception {
OutputStream os = getFileSystem().create(new Path(getInputDir(),

"text.txt"));
Writer wr = new OutputStreamWriter(os);
for(String inp : Lists.newArrayList("foo\tbar")) {
wr.write(inp+"\n");

}wr.close();
}

}

■ Summary
The only disadvantage to using the mini-clusters is the overhead of running your
tests—each test class that extends ClusterMapReduceTestCase will result in a cluster
being brought up and down, and each test has a considerable amount of time over-
head because the full Hadoop stack is being executed.

 But using the mini-clusters will provide you with the greatest assurance that your
code will work as you expect in production, and it’s worth considering for jobs that are
critical to your organization.

 Therefore, the optimal way to test your code is to use MRUnit for simpler jobs that
use built-in Hadoop input and output classes, and only use this technique for test
cases where you want to test input and output classes and output committers.

8.4.5 Integration and QA testing

Using the TDD approach, you wrote some unit tests using the techniques in this sec-
tion. You next wrote the MapReduce code and got it to the point where the unit tests

Call a base class method to create the
job configuration for the mini-clusters.

Create the test
input for the job.

Extract the job output files and
verify there’s just one (you ran with

a single reducer).

Read the output
file into a list and

verify the expected
output.

383Chapter summary

were passing. Hooray! But before you break out the champagne, you still want assur-
ance that the MapReduce code is working prior to running it in production. The last
thing you want is your code to fail in production and have to debug it over there.

 But why, you ask, would my job fail if all of my unit tests pass? Good question, and
it could be due to a variety of factors:

■ The data you used for your unit tests doesn’t contain all of the data aberrations
and variances of the data used in production.

■ Volume or data skew issues could cause side effects in your code.
■ Differences in Hadoop and other libraries result in behaviors different from

those in your build environment.
■ Hadoop and operating system configuration differences between your build

host and production may cause problems.

Because of these factors, when you build integration or QA test environments, it’s crucial
to ensure that the Hadoop version and configurations mirror those of the production
cluster. Different versions of Hadoop will behave differently, as will the same version of
Hadoop configured in different ways. When you’re testing changes in test environ-
ments, you’ll want to ensure a smooth transition to production, so do as much as you can
to make sure that the version and configuration are as close as possible to production.

 After your MapReduce jobs are successfully running in integration and QA, you
can push them into production, knowing there’s a much higher probability that your
jobs will work as expected.

 This wraps up our look at testing MapReduce code. We looked at some TDD and
design principles to help you write and test your Java code, and we also covered some
unit-test libraries that make it easier to unit-test MapReduce code.

8.5 Chapter summary
This chapter only scratched the surface when it comes to tuning, debugging, and test-
ing. We laid the groundwork for how to tune, profile, debug, and test your Map-
Reduce code.

 For performance tuning, it’s important that you have the ability to collect and visu-
alize the performance of your cluster and jobs. In this chapter we presented some of
the more common issues that can impact the performance of your jobs.

 If you’re running any critical MapReduce code in production, it’s crucial to at least
follow the steps in the testing section of this chapter, where I showed you how to best
design your code so it easily lends itself to basic unit-testing methodologies outside the
scope of Hadoop. We also covered how the MapReduce-related parts of your code could
be tested in both lightweight (MRUnit) and more heavyweight (LocalTestRunner) setups.

 In part 4, we’ll venture beyond the world of MapReduce and examine various sys-
tems that allow you to interact with your data using SQL. Most SQL systems have
moved beyond MapReduce to use YARN, so our last chapter looks at how to write your
own YARN applications.

Part 4

Beyond MapReduce

This part of the book is dedicated to examining languages, tools, and pro-
cesses that make it easier to do your work with Hadoop.

 Chapter 9 dives into Hive, a SQL-like domain-specific language that’s one of
the most accessible interfaces for working with data in Hadoop. Impala and
Spark SQL are also shown as alternative SQL-processing systems on Hadoop; they
provide some compelling features, such as increased performance over Hive
and the ability to intermix SQL with Spark.

 Chapter 10, the final chapter, shows you how to write a basic YARN applica-
tion, and goes on to look at key features that will be important for your YARN
applications.

387

SQL on Hadoop

Let’s say that it’s nine o’clock in the morning and you’ve been asked to generate a
report on the top 10 countries that generated visitor traffic over the last month.
And it needs to be done by noon. Your log data is sitting in HDFS ready to be used.
Are you going to break out your IDE and start writing Java MapReduce code? Not
likely. This is where high-level languages such as Hive, Impala, and Spark come into
play. With their SQL syntax, Hive and Impala allow you to write and start executing
queries in the same time that it would take you to write your main method in Java.

 The big advantage of Hive is that it no longer requires MapReduce to execute
queries—as of Hive 0.13, Hive can use Tez, which is a general DAG-execution
framework that doesn’t impose the HDFS and disk barriers between successive steps
as MapReduce does. Impala and Spark were also built from the ground up to not
use MapReduce behind the scenes.

This chapter covers
■ Learning the Hadoop specifics of Hive, including

user-defined functions and performance-tuning tips
■ Learning about Impala and how you can write user-

defined functions
■ Embedding SQL in your Spark code to intertwine the

two languages and play to their strengths

388 CHAPTER 9 SQL on Hadoop

 These tools are the easiest ways to quickly start working with data in Hadoop. Hive
and Impala are essentially Hadoop data-warehousing tools that in some organizations
(such as Facebook) have replaced traditional RDBMS-based data-warehouse tools.
They owe much of their popularity to the fact that they expose a SQL interface, and as
such are accessible to those who’ve had some exposure to SQL in the past.

 We’ll spend most of this chapter focusing on Hive, as it’s currently the most
adopted SQL-on-Hadoop tool out there. I’ll also introduce Impala as an MPP database
on Hadoop and a few features unique to Impala. Finally we’ll cover Spark SQL, which
allows you to use SQL inline with your Spark code, and it could create a whole new
paradigm for programmers, analysts, and data scientists.

 We’ll start with Hive, which has been the mainstay of SQL-on-Hadoop.

9.1 Hive
Hive was originally an internal Facebook project that eventually tenured into a full-
blown Apache project. It was created to simplify access to MapReduce by exposing a
SQL-based language for data manipulation. The Hive architecture can be seen in fig-
ure 9.1.

 In this chapter we’ll look at practical examples of how you can use Hive to work
with Apache web server logs. We’ll look at different ways you can load and arrange
data in Hive to optimize how you access that data. We’ll also look at some advanced
join mechanisms and other relational operations such as grouping and sorting. We’ll
kick things off with a brief introduction to Hive.

Learning more about Hive basics To fully understand Hive fundamentals, refer
to Chuck Lam’s Hadoop in Action (Manning, 2010). In this section we’ll just
skim through some Hive basics.

9.1.1 Hive basics

Let’s quickly look at some Hive basics, including recent developments in its execution
framework.

Hive

HDFS
+

MapReduce

Driver
(compiler, optimizer, executor)

CLI Web interface

Metastore

Figure 9.1 The Hive
high-level architecture

389Hive

INSTALLING HIVE

The appendix contains installation instructions for Hive. All the examples in this
book were executed on Hive 0.13, and it’s possible some older Hive versions don’t
support some of the features we’ll use in this book.

THE HIVE METASTORE

Hive maintains metadata about Hive in a metastore, which is stored in a relational
database. This metadata contains information about what tables exist, their columns,
user privileges, and more.

 By default, Hive uses Derby, an embedded Java relational database, to store the
metastore. Because it’s embedded, Derby can’t be shared between users, and as such it
can’t be used in a multi-user environment where the metastore needs to be shared.

DATABASES, TABLES, PARTITIONS, AND STORAGE

Hive can support multiple databases, which can be used to avoid table-name collisions
(two teams or users that have the same table name) and to allow separate databases
for different users or products.

 A Hive table is a logical concept that’s physically composed of a number of files in
HDFS. Tables can either be internal, where Hive organizes them inside a warehouse
directory (controlled by the hive.metastore.warehouse.dir property with a default
value of /user/hive/warehouse [in HDFS]), or they can be external, in which case
Hive doesn’t manage them. Internal tables are useful if you want Hive to manage the
complete lifecycle of your data, including the deletion, whereas external tables are
useful when the files are being used outside of Hive.

 Tables can be partitioned, which is a physical arrangement of data, into distinct
subdirectories for each unique partitioned key. Partitions can be static and dynamic,
and we’ll look at both cases in technique 92.

HIVE’S DATA MODEL

Hive supports the following data types:

■ Signed integers—BIGINT (8 bytes), INT (4 bytes), SMALLINT (2 bytes), and TINYINT (1
byte)

■ Floating-point numbers—FLOAT (single precision) and DOUBLE (double precision)
■ Booleans—TRUE or FALSE
■ Strings—Sequences of characters in specified character sets
■ Maps—Associative arrays with collections of key/value pairs where keys are

unique
■ Arrays—Indexable lists, where all elements must be of the same type
■ Structs—Complex types that contain elements

HIVE’S QUERY LANGUAGE

Hive’s query language supports much of the SQL specification, along with Hive-specific
extensions, some of which are covered in this section. The full list of statements sup-
ported in Hive can be viewed in the Hive Language Manual: https://cwiki.apache.org/
confluence/display/Hive/LanguageManual.

https://cwiki.apache.org/confluence/display/Hive/LanguageManual
https://cwiki.apache.org/confluence/display/Hive/LanguageManual

390 CHAPTER 9 SQL on Hadoop

TEZ

On Hadoop 1, Hive was limited to using MapReduce to execute most of the statements
because MapReduce was the only processing engine supported on Hadoop. This wasn’t
ideal, as users coming to Hive from other SQL systems were used to highly interactive
environments where queries are frequently completed in seconds. MapReduce was
designed for high-throughput batch processing, so its startup overhead coupled with its
limited processing capabilities resulted in very high-latency query executions.

 With the Hive 0.13 release, Hive now uses Tez on YARN to execute its queries, and
as a result, it’s able to get closer to the interactive ideal for working with your data.1

Tez is basically a generalized Directed Acyclic Graph (DAG) execution engine that
doesn’t impose any limits on how you compose your execution graph (as opposed to
MapReduce) and that also allows you to keep data in-memory in between phases,
reducing the disk and network I/O that MapReduce requires. You can read more
about Tez at the following links:

■ Hive on Tez: https://cwiki.apache.org/confluence/display/Hive/Hive+on+Tez
■ Tez incubation Apache project page: http://incubator.apache.org/projects/

tez.html

In the Hive 0.13 release, Tez isn’t enabled by default, so you’ll need to follow these
instructions to get it up and running:

■ Tez installation instructions: https://github.com/apache/incubator-tez/blob/
branch-0.2.0/INSTALL.txt

■ Configuring Hive to work on Tez: https://issues.apache.org/jira/browse/
HIVE-6098

INTERACTIVE AND NON-INTERACTIVE HIVE

The Hive shell provides an interactive interface:

$ hive
hive> SHOW DATABASES;
OK
default
Time taken: 0.162 seconds

Hive in non-interactive mode lets you execute scripts containing Hive commands. The
following example uses the -S option so that only the output of the Hive command is
written to the console:

$ cat hive-script.ql
SHOW DATABASES;

$ hive -S -f hive-script.ql
default

1 Carter Shanklin, “Benchmarking Apache Hive 13 for Enterprise Hadoop,” http://hortonworks.com/blog/
benchmarking-apache-hive-13-enterprise-hadoop/.

http://hortonworks.com/blog/benchmarking-apache-hive-13-enterprise-hadoop/
http://hortonworks.com/blog/benchmarking-apache-hive-13-enterprise-hadoop/
http://incubator.apache.org/projects/tez.html
http://incubator.apache.org/projects/tez.html
https://cwiki.apache.org/confluence/display/Hive/Hive+on+Tez
https://github.com/apache/incubator-tez/blob/branch-0.2.0/INSTALL.txt
https://github.com/apache/incubator-tez/blob/branch-0.2.0/INSTALL.txt
https://issues.apache.org/jira/browse/HIVE-6098

391TECHNIQUE 89 Working with text files

Another non-interactive feature is the -e option, which lets you supply a Hive com-
mand as an argument:

$ hive -S -e "SHOW DATABASES"
default

If you’re debugging something in Hive and you want to see more detailed output on
the console, you can use the following command to run Hive:

$ hive -hiveconf hive.root.logger=INFO,console

That concludes our brief introduction to Hive. Next we’ll look at how you can use
Hive to mine interesting data from your log files.

9.1.2 Reading and writing data

This section covers some of the basic data input and output mechanics in Hive. We’ll
ease into things with a brief look at working with text data before jumping into how
you can work with Avro and Parquet data, which are becoming common ways to store
data in Hadoop.

 This section also covers some additional data input and output scenarios, such as
writing and appending to tables and exporting data out to your local filesystem. Once
we’ve covered these basic functions, subsequent sections will cover more advanced
topics such as writing UDFs and performance tuning tips.

TECHNIQUE 89 Working with text files

Imagine that you have a number of CSV or Apache log files that you want to load and
analyze using Hive. After copying them into HDFS (if they’re not already there), you’ll
need to create a Hive table before you can issue queries. If the result of your work is
also large, you may want to write it into a new Hive table. This section covers these text
I/O use cases in Hive.

■ Problem
You want to use Hive to load and analyze text files, and then save the results.

■ Solution
Use the RegexSerDe class, bundled with the contrib library in Hive, and define a regular
expression that can be used to parse the contents of Apache log files. This technique
also looks at how serialization and deserialization works in Hive, and how to write your
own SerDe to work with log files.

■ Discussion
If you issue a CREATE TABLE command without any row/storage format options, Hive
assumes the data is text-based using the default line and field delimiters shown in
table 9.1.

 Because most of the text data that you’ll work with will be structured in more stan-
dard ways, such as CSV, let’s look at how you can work with CSV.

392 CHAPTER 9 SQL on Hadoop

First you’ll need to copy the stocks CSV file included with the book’s code into HDFS.
Create a directory in HDFS and then copy the stocks file into the directory:2

$ hadoop fs -mkdir hive-stocks
$ hadoop fs -put test-data/stocks.txt hive-stocks

Now you can create an external Hive table over your stocks directory:

hive> CREATE EXTERNAL TABLE stocks (
symbol STRING,
date STRING,
open FLOAT,
high FLOAT,
low FLOAT,
close FLOAT,
volume INT,
adj_close FLOAT

)
ROW FORMAT DELIMITED FIELDS TERMINATED BY ','
LOCATION '/user/YOUR-USERNAME/hive-stocks';

Creating managed tables with the LOCATION keyword When you create an
external (unmanaged) table, Hive keeps the data in the directory specified by
the LOCATION keyword intact. But if you were to execute the same CREATE com-
mand and drop the EXTERNAL keyword, the table would be a managed table,
and Hive would move the contents of the LOCATION directory into /user/hive/
warehouse/stocks, which may not be the behavior you expect.

Run a quick query to verify that things look good:

hive> SELECT symbol, count(*) FROM stocks GROUP BY symbol;
AAPL 10
CSCO 10
GOOG 5
MSFT 10
YHOO 10

Table 9.1 Default text file delimiters

Default
delimiter

Syntax example to change
default delimiter

Description

\n LINES TERMINATED BY '\n' Record separator.

^A FIELDS TERMINATED BY '\t' Field separator. If you wanted to replace ̂ A with another non-
readable character, you’d represent it in octal, e.g., '\001'.

^B COLLECTION ITEMS
TERMINATED BY ';'

An element separator for ARRAY, STRUCT, and MAP data types.

^C MAP KEYS TERMINATED BY ':' Used as a key/value separator in MAP data types.

2 Hive doesn’t allow you to create a table over a file; it must be a directory.

393TECHNIQUE 89 Working with text files

Sweet! What if you wanted to save the results into a new table and then show the
schema of the new table?

hive> CREATE TABLE symbol_counts
ROW FORMAT DELIMITED FIELDS TERMINATED BY ','
LOCATION '/user/YOUR-USERNAME/symbol_counts'
AS SELECT symbol, count(*) FROM stocks GROUP BY symbol;

hive> describe symbol_counts;
symbol string

Create-Table-As-Select (CTAS) and external tables CAS statements like the pre-
ceding example don’t allow you to specify that the table is EXTERNAL. But
because the table that you’re selecting from is already an external table, Hive
ensures that the new table is also an external table.

If the target table already exists, you have two options—you can either overwrite the
entire contents of the table, or you can append to the table:

hive> INSERT OVERWRITE TABLE stock_symbols
SELECT symbol, count(*) FROM stocks GROUP BY symbol;

hive> INSERT INTO TABLE stock_symbols
SELECT symbol, count(*) FROM stocks GROUP BY symbol;

You can view the raw table data using the Hadoop CLI:

$ hdfs -cat symbol_counts/*
AAPL,10
CSCO,10
GOOG,5
MSFT,10
YHOO,10

The great thing about Hive external tables is that you can write into them using any
method (it doesn’t have to be via a Hive command), and Hive will automatically pick
up the additional data the next time you issue any Hive statements.

Tokenizing files with regular expressions
Let’s make things more complicated and assume you want to work with log data. This
data is in text form, but it can’t be parsed using Hive’s default deserialization. Instead,
you need a way to specify a regular expression to parse your log data. Hive comes with
a contrib RegexSerDe class that can tokenize your logs.

 First, copy some log data into HDFS:

$ hadoop fs -mkdir log-data
$ hadoop fs -put test-data/ch9/hive-log.txt log-data/

The OVERWRITE keyword replaces
the contents of the existing table
with the results of the SELECT.

If the INTO keyword is used, the
operation appends the results of

the SELECT to the table.

394 CHAPTER 9 SQL on Hadoop

Next, specify that you want to use a custom deserializer. The RegexSerDe is bundled
with the Hive contrib JAR, so you’ll need to add this JAR to Hive:

hive> ADD JAR <HIVE-HOME>/lib/hive-contrib-<version>.jar;

hive> CREATE EXTERNAL TABLE logs (
host STRING,
identity STRING,
user STRING,
time STRING,
request STRING,
status STRING,
size STRING)

ROW FORMAT SERDE 'org.apache.hadoop.hive.contrib.serde2.RegexSerDe'
WITH SERDEPROPERTIES (
"input.regex" =

"([^]*) ([^]*) ([^]*) (-|\\[[^\\]]*\\])
➥ ([^ \"]*|\"[^\"]*\") (-|[0-9]*) (-|[0-9]*)",
"output.format.string"="%1$s %2$s %3$s %4$s %5$s %6$s %7$s"
)
STORED AS TEXTFILE LOCATION '/user/YOUR-USERNAME/log-data/';

A quick test will tell you if the data is being correctly handled by the SerDe:

hive> SELECT host, request FROM logs LIMIT 10;

89.151.85.133 "GET /movie/127Hours HTTP/1.1"
212.76.137.2 "GET /movie/BlackSwan HTTP/1.1"
74.125.113.104 "GET /movie/TheFighter HTTP/1.1"
212.76.137.2 "GET /movie/Inception HTTP/1.1"
127.0.0.1 "GET /movie/TrueGrit HTTP/1.1"
10.0.12.1 "GET /movie/WintersBone HTTP/1.1"

If you’re seeing nothing but NULL values in the output, it’s probably because you have a
missing space in your regular expression. Ensure that the regex in the CREATE state-
ment looks like figure 9.2.

 Hive’s SerDe is a flexible mechanism that can be used to extend Hive to work with
any file format, as long as an InputFormat exists that can work with that file format. For
more details on SerDes, take a look at the Hive documentation at https://
cwiki.apache.org/confluence/display/Hive/SerDe.

WORKING WITH AVRO AND PARQUET

Avro is an object model that simplifies working with your data, and Parquet is a
columnar storage format that can efficiently support advanced query optimizations

The regular expression used to match and extract
groups that are mapped to the table columns. Also
note that there’s a single space separator where
the regular expression is split across two lines.

Determines the order and
formatting of the table
when it’s being written.

"input.regex" =
 "([^]*) ([^]*) ([^]*) (-|\\[[^\\]]*\\]) ([^ \"]*|\"[^\"]*\") (-|[0-9]*) (-|[0-9]*)",

Space Space Space Space Space Space

Figure 9.2 CREATE table regex showing spaces

https://cwiki.apache.org/confluence/display/Hive/SerDe
https://cwiki.apache.org/confluence/display/Hive/SerDe

395TECHNIQUE 90 Exporting data to local disk

such as predicate pushdowns. Combined, they’re a compelling pair and could well
become the canonical way that data is stored in Hadoop. We covered both Avro and
Parquet in depth in chapter 3, which in technique 23 shows you how to use Avro
and Parquet in Hive.

TECHNIQUE 90 Exporting data to local disk

Getting data out of Hive and Hadoop is an important function you’ll need to be able
to perform when you have data that you’re ready to pull into your spreadsheets or
other analytics software. This technique examines a few methods you can use to pull
out your Hive data.

■ Problem
You have data sitting in Hive that you want to pull out to your local filesystem.

■ Solution
Use the standard Hadoop CLI tools or a Hive command to pull out your data.

■ Discussion
If you want to pull out an entire Hive table to your local filesystem and the data format
that Hive uses for your table is the same format that you want your data exported in,
you can use the Hadoop CLI and run a hadoop -get /user/hive/warehouse/... com-
mand to pull down the table.

 Hive comes with EXPORT (and corresponding IMPORT) commands that can be used to
export Hive data and metadata into a directory in HDFS. This is useful for copying
Hive tables between Hadoop clusters, but it doesn’t help you much in getting data out
to the local filesystem.

 If you want to filter, project, and perform some aggregations on your data and
then pull it out of Hive, you can use the INSERT command and specify that the results
should be written to a local directory:

hive> INSERT OVERWRITE LOCAL DIRECTORY 'local-stocks' SELECT * FROM stocks;

This will create a directory on your local filesystem containing one or more files.
If you view the files in an editor such as vi, you’ll notice that Hive used the default
field separator (^A) when writing the files. And if any of the columns you exported
were complex types (such as STRUCT or MAP), then Hive will use JSON to encode
these columns.

 Luckily, newer versions of Hive (including 0.13) allow you to specify a custom
delimiter when you export tables:

hive> INSERT OVERWRITE LOCAL DIRECTORY 'local-stocks'
ROW FORMAT DELIMITED FIELDS TERMINATED BY ','
SELECT * FROM stocks;

With Hive’s reading and writing basics out of the way, let’s take a look at more com-
plex topics, such as user-defined functions.

396 CHAPTER 9 SQL on Hadoop

9.1.3 User-defined functions in Hive

We’ve looked at how Hive reads and writes tables, so it’s time to start doing something
useful with your data. Since we want to cover more advanced techniques, we’ll look at
how you can write a custom Hive user-defined function (UDF) to geolocate your logs.
UDFs are useful if you want to mix custom code inline with your Hive queries.

TECHNIQUE 91 Writing UDFs

This technique shows how you can write a Hive UDF and then use it in your Hive
Query Language (HiveQL).

■ Problem
How do you write a custom function in Hive?

■ Solution
Extend the UDF class to implement your user-defined function and call it as a function
in your HiveQL.

■ Discussion
You can geolocate the IP addresses from the logs table using the free geolocation data-
base from MaxMind.

 Download the free country geolocation database,3 gunzip it, and copy the
GeoIP.dat file to your /tmp/ directory. Next, use a UDF to geolocate the IP address
from the log table that you created in technique 89:

hive> ADD JAR <HIVE_HOME>/lib/hive-contrib-0.13.0.jar;
hive> ADD JAR <HIP_HOME>/hip-2.0.0.jar;
hive> ADD JAR <HIP_HOME>/lib/geoip-api-1.2.13.jar;

hive> ADD file /tmp/GeoIP.dat;
hive> CREATE temporary function country AS 'hip.ch9.hive.Geoloc';

hive> SELECT host, country(host, "GeoIP.dat") FROM logs;

89.151.85.133 GB
212.76.137.2 RU
74.125.113.104 US
212.76.137.2 RU
127.0.0.1 NULL
10.0.12.1 NULL

When writing a UDF, there are two implementation options: either extend the UDF
class or implement the GenericUDF class. The main differences between them are that
the GenericUDF class can work with arguments that are complex types, so UDFs that
extend GenericUDF are more efficient because the UDF class requires Hive to use reflec-
tion for discovery and invocation. Figure 9.3 shows the two Hive UDF classes, one of
which you need to extend to implement your UDF.

3 See MaxMind’s “GeoIP Country Database Installation Instructions,” http://dev.maxmind.com/geoip/
legacy/install/country/.

Add the JAR containing
your UDF so that it can

be used in MapReduce.
Add the
geolocation data
file into the
distributed cache.

Define country
as the alias for
your geolocation
UDF, and specify
the class name.

Call your UDF, specifying the field on which it
should operate (the host column from the logs

table), and the filename of the geolocation
data file, which is in the distributed cache.

http://dev.maxmind.com/geoip/legacy/install/country/
http://dev.maxmind.com/geoip/legacy/install/country/

397TECHNIQUE 91 Writing UDFs

The following listing shows the geolocation UDF, which you’ll implement using the
GenericUDF class.4

@Description(
name = "country",
value = "_FUNC_(ip, geolocfile) - Returns the geolocated " +
"country code for the IP"

)
public class GeolocUDF extends GenericUDF {

private LookupService geoloc;
private ObjectInspectorConverters.Converter[] converters;

@Override
public ObjectInspector initialize(ObjectInspector[] arguments) {
converters =
new ObjectInspectorConverters.Converter[arguments.length];

for (int i = 0; i < arguments.length; i++) {
converters[i] =
ObjectInspectorConverters.getConverter(arguments[i],
PrimitiveObjectInspectorFactory.javaStringObjectInspector);

}

return PrimitiveObjectInspectorFactory
.getPrimitiveJavaObjectInspector(

Listing 9.1 The geolocation UDF

4 GitHub source: https://github.com/alexholmes/hiped2/blob/master/src/main/java/hip/ch9/hive/
Geoloc.java.

// Nothing useful or interesting here

<<concrete>>
UDF

int evaluate(int input)

<<concrete>>
IntUDF

String evaluate(String input)

<<concrete>>
StringUDF

Hive UDF class for simple
functions. Only works

with Java scalar types.

UDF implementations must have a method
called evaluate, which takes the same

type as input and output.

Generic UDFs are more efficient as
they don’t require reflection to call the

evaluate methods, as opposed to the
simple UDFs.

!

ObjectInspector initialize(ObjectInspector[] arguments)
Object evaluate(DeferredObject[] arguments)

<<abstract>>
GenericUDF

// Implements the initialize and
evaluate methods

<<concrete>>
ComplexUDF

Hive UDF class for
functions that can

support complex types.

Figure 9.3 Hive UDF class diagram

The Description annotation is used to provide
usage information in the Hive shell (you’ll see

how this works following this code).

The geolocation
lookup class.

Converters, which you’ll use to
convert the input types to the

types you want to operate with.

Create a converter that
you can use in the evaluate
method to convert all the
arguments (which in your
case are the IP address
and geolocation file) from
their native types into
Java Strings. Specify that the return type for the

UDF (in other words, the evaluate
function) will be a Java String.

https://github.com/alexholmes/hiped2/blob/master/src/main/java/hip/ch9/hive/Geoloc.java
https://github.com/alexholmes/hiped2/blob/master/src/main/java/hip/ch9/hive/Geoloc.java

398 CHAPTER 9 SQL on Hadoop

PrimitiveObjectInspector.PrimitiveCategory.STRING);
}

@Override
public Object evaluate(GenericUDF.DeferredObject[] arguments) {

Text ip = (Text) converters[0].convert(arguments[0].get());
Text filename = (Text) converters[1].convert(arguments[1].get());

return lookup(ip, filename);
}

protected String lookup(Text ip, Text filename)
throws HiveException {

try {
if (geoloc == null) {
URL u = getClass().getClassLoader()
.getResource(filename.toString());
geoloc =

new LookupService(u.getFile(),
LookupService.GEOIP_MEMORY_CACHE);

}

String countryCode =
geoloc.getCountry(ip.toString()).getCode();

if ("--".equals(countryCode)) {
return null;

}

return countryCode;
} catch (IOException e) {
throw new HiveException("Caught IO exception", e);

}
}

@Override
public String getDisplayString(String[] children) {
assert (children.length == 2);
return "country(" + children[0] + ", " + children[1] + ")";

}
}

The Description annotation can be viewed in the Hive shell with the describe function
command:

hive> describe function country;
OK
country(ip, geolocfile) - Returns the geolocated country code
for the IP

■ Summary
Although the UDF we looked at operates on scalar data, Hive also has something
called user-defined aggregate functions (UDAF), which allows more complex process-
ing capabilities over aggregated data. You can see more about writing a UDAF on the

After retrieving the IP address and
geolocation filename from the arguments,

call a function to perform the geolocation.

Load the geolocation
data file from the
distributed cache.

Create an instance
of the MaxMind

Lookup class.

Perform the geolocation
and extract the
country code.

Return the
country code.

Create a string that’s used
in situations such as

exceptions to provide some
context on how the UDF

was being invoked.

399TECHNIQUE 92 Partitioning

Hive wiki at the page titled “Hive Operators and User-Defined Functions (UDFs)”
(https://cwiki.apache.org/confluence/display/Hive/LanguageManual+UDF).

 Hive also has user-defined table functions (UDTFs), which operate on scalar data
but can emit more than one output for each input. See the GenericUDTF class for more
details.

 Next we’ll take a look at what you can do to optimize your workflows in Hive.

9.1.4 Hive performance

In this section, we’ll examine some methods that you can use to optimize data man-
agement and processing in Hive. The tips presented here will help you ensure that as
you scale out your data, the rest of Hive will keep up with your needs.

TECHNIQUE 92 Partitioning

Partitioning is a common technique employed by SQL systems to horizontally or verti-
cally split data to speed up data access. With reduced overall volume of data in a parti-
tion, partitioned read operations have a lot less data to sift through, and as a result
can execute much more rapidly.

 This same principle applies equally well to Hive, and it becomes increasingly
important as your data sizes grow. In this section you’ll explore the two types of parti-
tions in Hive: static partitions and dynamic partitions.

■ Problem
You want to arrange your Hive files so as to optimize queries against your data.

■ Solution
Use PARTITIONED BY to partition by columns that you typically use when querying your
data.

■ Discussion
Imagine you’re working with log data. A natural way to partition your logs would be
by date, allowing you to perform queries on specific time periods without incurring
the overhead of a full table scan (reading the entire contents of the table).
Hive supports partitioned tables and gives you control of determining which
columns are partitioned.

 Hive supports two types of partitions: static partitions and dynamic partitions. They
differ in the way you construct INSERT statements, as you’ll discover in this technique.

Static partitioning
For the purpose of this technique, you’ll work with a very simple log structure. The
fields are IP address, year, month, day, and HTTP status code:

$ cat test-data/ch9/logs-partition.txt
127.0.0.1,2014,06,21,500
127.0.0.1,2014,06,21,400
127.0.0.1,2014,06,21,300
127.0.0.1,2014,06,22,200
127.0.0.1,2014,06,22,210
127.0.0.1,2014,06,23,100

https://cwiki.apache.org/confluence/display/Hive/LanguageManual+UDF

400 CHAPTER 9 SQL on Hadoop

Load them into HDFS and into an external table:

$ hadoop fs -mkdir logspartext
$ hadoop fs -put test-data/ch9/logs-partition.txt logspartext/

hive> CREATE EXTERNAL TABLE logs_ext (
ip STRING,
year INT,
month INT,
day INT,
status INT

)
ROW FORMAT DELIMITED FIELDS TERMINATED BY ','
LOCATION '/user/YOUR-USERNAME/logspartext';

Now you can create a partitioned table, where the year, month, and day are partitions:

CREATE EXTERNAL TABLE IF NOT EXISTS logs_static (
ip STRING,
status INT)

PARTITIONED BY (year INT, month INT, day INT)
ROW FORMAT DELIMITED FIELDS TERMINATED BY '\t'
LOCATION '/user/YOUR-USERNAME/logs_static';

By default, Hive inserts follow a static partition method that requires all inserts to
explicitly enumerate not only the partitions, but the column values for each
partition. Therefore, an individual INSERT statement can only insert into one day’s
worth of partitions:

INSERT INTO TABLE logs_static
PARTITION (year = '2014', month = '06', day = '21')
SELECT ip, status FROM logs_ext WHERE year=2014 AND month=6 AND day=21;

Luckily Hive has a special data manipulation language (DML) statement that allows
you to insert into multiple partitions in a single statement. The following code will
insert all the sample data (spanning three days) into the three partitions:

FROM logs_ext se
INSERT INTO TABLE logs_static
PARTITION (year = '2014', month = '6', day = '21')
SELECT ip, status WHERE year=2014 AND month=6 AND day=21
INSERT INTO TABLE logs_static
PARTITION (year = '2014', month = '6', day = '22')
SELECT ip, status WHERE year=2014 AND month=6 AND day=22
INSERT INTO TABLE logs_static
PARTITION (year = '2014', month = '6', day = '23')
SELECT ip, status WHERE year=2014 AND month=6 AND day=23;

This approach has an additional advantage in that it will only make one pass over the
logs_ext table to perform the inserts—the previous approach would have required N
queries on the source table for N partitions.

401TECHNIQUE 92 Partitioning

Flexibility of single-pass static partitioned inserts Hive doesn’t limit either the
destination tables or whether the query conditions need to align with the par-
titions. Therefore, there’s nothing stopping you from inserting into different
tables and having overlapping rows in multiple partitions or tables.

One disadvantage of static partitions is that when you’re inserting data, you must
explicitly specify the partition that’s being inserted into. But you’re not stuck with
static partitions as the only partitions supported in Hive. Hive has the notion of
dynamic partitions, which make life a little easier by not requiring you to specify the
partition when inserting data.

Dynamic partitioning
Dynamic partitions are smarter than static partitions, as they can automatically deter-
mine which partition a record needs to be written to when data is being inserted.

 Let’s create a whole new table to store some dynamic partitions. Notice how the
syntax to create a table that uses dynamic partitions is exactly the same as that for
static partitioned tables:

CREATE EXTERNAL TABLE IF NOT EXISTS logs_dyn (
ip STRING,
status INT)

PARTITIONED BY (year INT, month INT, day INT)
ROW FORMAT DELIMITED FIELDS TERMINATED BY '\t'
LOCATION '/user/YOUR-USERNAME/logs_dyn';

The differences only come into play at INSERT time:

hive> SET hive.exec.dynamic.partition=true;
hive> SET hive.exec.dynamic.partition.mode=nonstrict;

hive> INSERT INTO TABLE logs_dyn
PARTITION (year, month, day)
SELECT ip, status, year, month, day FROM logs_ext;

That’s a lot better—you no longer need to explicitly tell Hive which partitions you’re
inserting into. It’ll dynamically figure this out.

Mixing dynamic and static partitions in the same table
Hive supports mixing both static and dynamic columns in a table. There’s also noth-
ing stopping you from transitioning from a static partition insert method to dynami-
cally partitioned inserts.

Partition directory layout
Partitioned tables are laid out in HDFS differently from nonpartitioned tables. Each
partition value occupies a separate directory in Hive containing the partition column
name as well as its value.

 These are the contents of HDFS after running the most recent INSERT:

logs_static/year=2014/month=6/day=21/000000_0
logs_static/year=2014/month=6/day=22/000000_0
logs_static/year=2014/month=6/day=23/000000_0

Dynamic partitions need to
be explicitly enabled via

this configuration setting.

By default, Hive requires dynamic
partition inserts to contain at
least one static partition. This

disables that requirement.

The INSERT
statement doesn’t
require you to call
out specific
partitions.

402 CHAPTER 9 SQL on Hadoop

The “000000_0” are the files that contain the rows. There’s only one per partitioned
day due to the small dataset (running with a larger dataset with more than one task
will result in multiple files).

Customizing partition directory names
As you just saw, left to its own devices, Hive will create partition directory names using
the column=value format. What if you wanted to have more control over the directo-
ries? Instead of your partitioned directory looking like this,

logs_static/year=2014/month=6/day=27

what if you wanted it to look like this:

logs_static/2014/6/27

You can achieve this by giving Hive the complete path that should be used to store a
partition:

ALTER TABLE logs_static
ADD PARTITION(year=2014, month=6, day=27)
LOCATION '/user/YOUR-USERNAME/logs_static/2014/6/27';

You can query the location of individual partitions with the DESCRIBE command:

hive> DESCRIBE EXTENDED logs_static
PARTITION (year=2014, month=6, day=28);

...
location:hdfs://localhost:8020/user/YOUR-USERNAME/logs_static/2014/6/27
...

This can be a powerful tool, as Hive doesn’t require that all the partitions for a table be
on the same cluster or type of filesystem. Therefore, a Hive table could have a partition
sitting in Hadoop cluster A, another sitting in cluster B, and a third in a cluster in Ama-
zon S3. This opens up some powerful strategies for aging out data to other filesystems.

Querying partitions from Hive
Hive provides some commands to allow you to see the current partitions for a table:

hive> SHOW PARTITIONS logs_dyn;
year=2014/month=6/day=21
year=2014/month=6/day=22
year=2014/month=6/day=23

Bypassing Hive to load data into partitions
Let’s say you had some data for a new partition (2014/6/24) that you wanted to man-
ually copy into your partitioned Hive table using HDFS commands (or some other
mechanism such as MapReduce).

 Here’s some sample data (note that the date parts are removed because Hive only
retains these column details in the directory names):

403TECHNIQUE 92 Partitioning

$ cat test-data/ch9/logs-partition-supplemental.txt
127.0.0.1 500
127.0.0.1 600

Create a new partitioned directory and copy the file into it:

$ hdfs -mkdir logs_dyn/year=2014/month=6/day=24
$ hdfs -put test-data/ch9/logs-partition-supplemental.txt \

logs_dyn/year=2014/month=6/day=24

Now go to your Hive shell and try to select the new data:

hive> SELECT * FROM logs_dyn
WHERE year = 2014 AND month = 6 AND day = 24;

No results! This is because Hive doesn’t yet know about the new partition. You can run
a repair command so that Hive can examine HDFS to determine the current partitions:

hive> msck repair table logs_dyn;
Partitions not in metastore: logs_dyn:year=2014/month=6/day=24
Repair: Added partition to metastore logs_dyn:year=2014/month=6/day=24

Now your SELECT will work:

hive> SELECT * FROM logs_dyn
WHERE year = 2014 AND month = 6 AND day = 24;

127.0.0.1 500 2014 6 24
127.0.0.1 600 2014 6 24

Alternatively, you could explicitly inform Hive about the new partition:

ALTER TABLE logs_dyn
ADD PARTITION (year=2014, month=6, day=24);

■ Summary
Given the flexibility of dynamic partitions, in what situations would static partitions
offer an advantage? One example is in cases where the data that you’re inserting
doesn’t have any knowledge of the partitioned columns, but some other process does.

 For example, suppose you have some log data that you want to insert, but for what-
ever reason the log data doesn’t contain dates. In this case, you can craft a static parti-
tioned insert as follows:

$ hive -hiveconf year=2014 -hiveconf month=6 -hiveconf day=28
hive> INSERT INTO TABLE logs_static
PARTITION (year=${hiveconf:year},

month=${hiveconf:month},
day=${hiveconf:day})

SELECT ip, status FROM logs_ext;

Let’s next take a look at columnar data, which is another form of data partitioning
that can provide dramatic query execution time improvements.

404 CHAPTER 9 SQL on Hadoop

COLUMNAR DATA

Most data that we’re used to working with is stored on disk in row-oriented order,
meaning that all the columns for a row are contiguously located when stored at rest
on persistent storage. CSV, SequenceFiles, and Avro are typically stored in rows.

 Using a column-oriented storage format for saving your data can offer huge
performance benefits, both from space and execution-time perspectives.
Contiguously locating columnar data together allows storage formats to use
sophisticated data-compression schemes such as run-length encoding, which can’t be
applied to row-oriented data. Furthermore, columnar data allows execution engines
such as Hive, MapReduce, and Tez to push predicates and projections to the storage
formats, allowing these storage formats to skip over data that doesn’t match the
pushdown criteria.

 There are currently two hot options for columnar storage on Hive (and Hadoop):
Optimized Row Columnar (ORC) and Parquet. They come out of Hortonworks and
Cloudera/Twitter, respectively, and both offer very similar space- and time-saving opti-
mizations. The only edge really comes out of the goal of Parquet to maximize compat-
ibility in the Hadoop community, so at the time of writing, Parquet has greater
support for the Hadoop ecosystem.

 Chapter 3 has a section devoted to Parquet, and technique 23 includes instructions
on how Parquet can be used with Hive.

TECHNIQUE 93 Tuning Hive joins

It’s not uncommon to execute a join over some large datasets in Hive and wait hours
for it to complete. In this technique we’ll look at how joins can be optimized, much
like we did for MapReduce in chapter 4.

■ Problem
Your Hive joins are running slower than expected, and you want to learn what options
you have to speed them up.

■ Solution
Look at how you can optimize Hive joins with repartition joins, replication joins, and semi-
joins.

■ Discussion
We’ll cover three types of joins in Hive: the repartition join, which is the standard
reduce-side join; the replication join, which is the map-side join; and the semi-join,
which only cares about retaining data from one table.

 Before we get started, let’s create two tables to work with:

$ hadoop fs -mkdir stocks-mini
$ hadoop fs -put test-data/ch9/stocks-mini.txt stocks-mini
$ hadoop fs -mkdir symbol-names
$ hadoop fs -put test-data/ch9/symbol-names.txt symbol-names

hive> CREATE EXTERNAL TABLE stocks (
symbol STRING,
date STRING,

405TECHNIQUE 93 Tuning Hive joins

open FLOAT
)
ROW FORMAT DELIMITED FIELDS TERMINATED BY ','
LOCATION '/user/YOUR-USERNAME/stocks-mini';

hive> CREATE EXTERNAL TABLE names (
symbol STRING,
name STRING

)
ROW FORMAT DELIMITED FIELDS TERMINATED BY ','
LOCATION '/user/YOUR-USERNAME/symbol-names';

You’ve created two tables. The stocks table contains just three columns—the stock
symbol, the date, and the price. The names table contains the stock symbols and the
company names:

hive> select * from stocks;
AAPL 2009-01-02 85.88
AAPL 2008-01-02 199.27
CSCO 2009-01-02 16.41
CSCO 2008-01-02 27.0
GOOG 2009-01-02 308.6
GOOG 2008-01-02 692.87
MSFT 2009-01-02 19.53
MSFT 2008-01-02 35.79
YHOO 2009-01-02 12.17
YHOO 2008-01-02 23.8

hive> select * from names;
AAPL Apple
GOOG Google
YHOO Yahoo!

Join table ordering
As with any type of tuning, it’s important to understand the internal workings of a sys-
tem. When Hive executes a join, it needs to select which table is streamed and which
table is cached. Hive picks the last table in the JOIN statement for streaming, so you
should take care to ensure that this is the largest table.

 Let’s look at the example of our two tables. The stocks table, which includes daily
quotes, will continue to grow over time, but the names table, which contains the stock
symbol names, will be mostly static. Therefore, when these tables are joined, it’s
important that the larger table, stocks, comes last in the query:

SELECT stocks.symbol, date, open, name
FROM names
JOIN stocks ON (names.symbol = stocks.symbol);

You can also explicitly tell Hive which table it should stream:

SELECT /*+ STREAMTABLE(stocks) */ stocks.symbol, date, open, name
FROM names
JOIN stocks ON (names.symbol = stocks.symbol);

406 CHAPTER 9 SQL on Hadoop

Map-side joins
A replicated join is a map-side join where a small table is cached in memory and the
large table is streamed. You can see how it works in MapReduce in figure 9.4.

 Map-side joins can be used to execute both inner and outer joins. The current rec-
ommendation is that you configure Hive to automatically attempt to convert joins into
map-side joins:

hive> set hive.auto.convert.join = true;
hive> SET hive.auto.convert.join.noconditionaltask = true;
hvie> SET hive.auto.convert.join.noconditionaltask.size = 10000000;

The first two settings must be set to true to enable autoconversion of joins to map-side
joins (in Hive 0.13 they’re both enabled by default). The last setting is used by Hive to
determine whether a join can be converted. Imagine you have N tables in your join. If
the size of the smallest N – 1 tables on disk is less than hive.auto.convert.join.nocondi-
tionaltask.size, then the join is converted to a map-side join. Bear in mind that the
check is rudimentary and only examines the size of the tables on disk, so factors such
as compression and filters or projections don’t come into the equation.

Map-join hint Older versions of Hive supported a hint that you could use to instruct
Hive which table was the smallest and should be cached. Here’s an example:

SELECT /*+ MAPJOIN(names) */ stocks.symbol, date, open, name
FROM names
JOIN stocks ON (names.symbol = stocks.symbol);

Map initialization

Cache

Map function

Map taskDistributed
cache

Map

Map

Map

Small dataset.

Large dataset.

Read users from the
distributed cache.

1

Create cache.2

Look up and join map input
records with cache.

3

Emit combined records.4

Figure 9.4 A
replicated join

407TECHNIQUE 93 Tuning Hive joins

Recent versions of Hive ignore this hint (hive.ignore.mapjoin.hint is set to
true by default) because it put the onus on the query author to determine the
smaller table, which can lead to slow queries due to user error.

Sort-merge-bucket joins
Hive tables can be bucketed and sorted, which helps you to easily sample data, and it’s
also a useful join optimization as it enables sort-merge-bucket (SMB) joins. SMB joins
require that all tables be sorted and bucketed, in which case joins are very efficient
because they require a simple merge of the presorted tables.

 The following example shows how you’d create a sorted and bucketed stocks table:

CREATE TABLE stocks_bucketed (
symbol STRING,
date STRING,
open FLOAT

)
CLUSTERED BY(symbol) SORTED BY(symbol) INTO 32 BUCKETS;

Inserting into bucketed tables You can use regular INSERT statements to insert
into bucketed tables, but you need to set the hive.enforce.bucketing property
to true. This instructs Hive that it should look at the number of buckets in
the table to determine the number of reducers that will be used when insert-
ing into the table (the number of reducers must be equal to the number
of buckets).

To enable SMB joins, you must set the following properties:

set hive.auto.convert.sortmerge.join=true;
set hive.optimize.bucketmapjoin = true;
set hive.optimize.bucketmapjoin.sortedmerge = true;
set hive.auto.convert.sortmerge.join.noconditionaltask=true;

In addition, you’ll also need to ensure that the following conditions hold true:

■ All tables being joined are bucketed and sorted on the join column.
■ The number of buckets in each join table must be equal, or factors of one

another.

Skew
Skew can lead to lengthy MapReduce execution times because a small number of
reducers may receive a disproportionately large number of records for some join val-
ues. Hive, by default, doesn’t attempt to do anything about this, but it can be config-
ured to detect skew and optimize joins on skewed keys:

hive> SET hive.optimize.skewjoin = true;
hive> SET hive.skewjoin.key = 100000;

Sets the threshold beyond
which a key is considered

to be skewed.
Tell Hive to optimize joins
where it sees skewed data.

408 CHAPTER 9 SQL on Hadoop

So what happens when Hive detects skew? You can see the additional step that Hive
adds in figure 9.5, where skewed keys are written to HDFS and processed in a separate
MapReduce job.

 It should be noted that this skew optimization only works with reduce-side reparti-
tion joins, not map-side replication joins.

Skewed tables
If you know ahead of time that there are particular keys with high skews, you can tell
Hive about them when creating your table. If you do this, Hive will write out skewed
keys into separate files that allow it to further optimize queries, and even to skip over
the files if possible.

 Imagine that you have two stocks (Apple and Google) that have a much larger
number of records compared to the others—in this case you’d modify your CREATE
TABLE statement with the keywords SKEWED BY, as follows:

CREATE TABLE stocks_skewed (
symbol STRING,
date STRING,
open FLOAT

)
SKEWED BY (symbol) ON ('AAPL', 'GOOGL');

No Yes

Map

Job 1

Reduce

Table A

Table B

Join results

Skewed
keys from

table A

Skewed
keys from

table B

HDFS:
regular reducer

output

Tables being
joined

HDFS:
file per skewed key

Join as normal

Number of join key values
<

 "hive.skewjoin.key" ?

Write to separate
HDFS file

Job 2

Map
(replicated join)

Figure 9.5 Hive skew optimization

409Impala

9.2 Impala
Impala is a low-latency, massively parallel query engine, modeled after Google’s
Dremel paper describing a scalable and interactive query system.5 Impala was con-
ceived and developed out of Cloudera, which realized that using MapReduce to exe-
cute SQL wasn’t viable for a low-latency SQL environment.

 Each daemon in Impala is designed to be self-sufficient, and a client can send a
query to any Impala daemon. Impala does have some metadata services, but it can
continue to function even when they’re not working, as the daemon nodes talk
directly to one another to execute queries. An overview of the Impala architecture can
be seen in figure 9.6.

 Impala allows you to query data in HDFS or HBase with a SQL syntax, so it supports
access via ODBC. It uses the Hive metastore, so it can read existing Hive tables, and
DDL statements executed via Impala are also reflected in Hive.

 In this section I’ll present some of the differences between Impala and Hive, and
we’ll also look at some basic examples of Impala in action, including how Hive UDFs
can be used.

5 Sergey Melnik et al., “Dremel: Interactive Analysis of Web-Scale Datasets,” http://research.google.com/
pubs/pub36632.html.

Slave

Impala daemon
(slave daemon
that can accept

and execute queries
from any client)

Query planner

Query coordinator

Query execution

HDFS HBase

Slave

Impala daemon

Query planner

Query coordinator

Query execution

HDFS HBase

Slave

Impala daemon
(slave daemon
that can accept

and execute queries
from any client)

Query planner

Query coordinator

Query execution

HDFS HBase

Coordinators communicate
with local and remote execution

engines to execute queries in parallel.

Clients Impala state store
(manages cluster

metadata)
ODBC/JDBC Impala CLI Hue

Clients can
send queries to
any daemon.

Checks and broadcasts
health details to all the

daemons.
Impala reads and writes metadata to the
Hive metastore so it can read Hive tables

that use types, file formats, and
compression codecs formats.

Impala catalog store
(relays SQL metadata

changes)

Hive metastore
(stores metadata
about Hive tables

and partitions)

RDBMS

Figure 9.6 The Impala architecture

http://research.google.com/pubs/pub36632.html
http://research.google.com/pubs/pub36632.html

410 CHAPTER 9 SQL on Hadoop

9.2.1 Impala vs. Hive

There are a handful of differences between Impala and Hive:

■ Impala is designed from the ground up as a massively parallel query engine and
doesn’t need to translate SQL into another processing framework. Hive relies
on MapReduce (or more recently Tez) to execute.

■ Impala and Hive are both open source, but Impala is a curated project under
Cloudera’s control.

■ Impala isn’t fault-tolerant.
■ Impala doesn’t support complex types such as maps, arrays, and structs (includ-

ing nested Avro data). You can basically only work with flat data.6

■ There are various file formats and compression codec combinations that require
you to use Hive to create and load tables. For example, you can’t create or load
data into an Avro table in Impala, and you can’t load an LZO-compressed text file
in Impala. For Avro you need to create the table in Hive before you can use it in
Impala, and in both Avro and LZO-compressed text, you’ll need to load your data
into these tables using Hive before you can use them in Impala.

■ Impala doesn’t support Hive user-defined table-generating functions (UDTSs),
although it does support Hive UDFs and UDAFs and can work with existing JARs
that contain these UDFs without any changes to the JAR.

■ There are certain aggregate functions and HiveQL statements that aren’t sup-
ported in Impala.

Impala and Hive versions This list compares Hive 0.13 and Impala 1.3.1, both of
which are current at the time of writing. It should be noted that the Impala 2
release will address some of these items.

Cloudera has a detailed list of the SQL differences between Impala and Hive: http://
mng.bz/0c2F.

9.2.2 Impala basics

This section covers what are likely the two most popular data formats for Impala—text
and Parquet.

TECHNIQUE 94 Working with text

Text is typically the first file format that you’ll work with when exploring a new tool,
and it also serves as a good learning tool for understanding the basics.

■ Problem
You have data in text form that you want to work with in Impala.

■ Solution
Impala’s text support is identical to Hive’s.

6 Impala and Avro nested type support is planned for Impala 2.0: https://issues.cloudera.org/browse/
IMPALA-345.

http://mng.bz/0c2F
http://mng.bz/0c2F
https://issues.cloudera.org/browse/IMPALA-345
https://issues.cloudera.org/browse/IMPALA-345

411TECHNIQUE 94 Working with text

■ Discussion
Impala’s basic query language is identical to Hive’s. Let’s kick things off by copying
the stocks data into a directory in HDFS:

$ hadoop fs -mkdir hive-stocks
$ hadoop fs -put test-data/stocks.txt hive-stocks

Next you’ll create an external table and run a simple aggregation over the data:

$ impala-shell

> CREATE EXTERNAL TABLE stocks (
sym STRING,
dt STRING,
open FLOAT,
high FLOAT,
low FLOAT,
close FLOAT,
volume INT,
adj_close FLOAT

)
ROW FORMAT DELIMITED FIELDS TERMINATED BY ','
LOCATION '/user/YOUR-USERNAME/hive-stocks';

> SELECT sym, min(close), max(close) FROM stocks GROUP BY sym;
+------+-------------------+-------------------+
| sym | min(close) | max(close) |
+------+-------------------+-------------------+
| MSFT | 20.32999992370605 | 116.5599975585938 |
| AAPL | 14.80000019073486 | 194.8399963378906 |
| GOOG | 202.7100067138672 | 685.1900024414062 |
| CSCO | 13.64000034332275 | 108.0599975585938 |
| YHOO | 12.85000038146973 | 475 |
+------+-------------------+-------------------+

Using Hive tables in Impala The example in technique 94 shows how to create
a table called stocks in Impala. If you’ve already created the stocks table in
Hive (as shown in technique 89), then rather than create the table in Impala,
you should refresh Impala’s metadata and then use that Hive table in Impala.

After creating the table in Hive, issue the following statement in the Impala
shell:

> INVALIDATE METADATA stocks;

At this point, you can issue queries against the stocks table inside the Impala
shell.

Alternatively, if you really want to create the table in Impala and you’ve
already created the table in Hive, you’ll need to issue a DROP TABLE command
prior to issuing the CREATE TABLE command in Impala.

412 CHAPTER 9 SQL on Hadoop

That’s it! You’ll notice that the syntax is exactly the same as in Hive. The one differ-
ence is that you can’t use symbol and date as column names because they’re reserved
symbols in Impala (Hive doesn’t have any such restrictions).

 Let’s take a look at working with a storage format that’s a bit more interesting:
Parquet.

TECHNIQUE 95 Working with Parquet

It’s highly recommended that you use Parquet as your storage format for various space
and time efficiencies (see chapter 3 for more details on Parquet’s benefits). This tech-
nique looks at how you can create Parquet tables in Impala.

■ Problem
You need to save your data in Parquet format to speed up your queries and improve
the compression of your data.

■ Solution
Use STORED AS PARQUET when creating tables.

■ Discussion
One way to get up and started quickly with Parquet is to create a new Parquet table
based on an existing table (the existing table doesn’t need to be a Parquet table).
Here’s an example:

CREATE TABLE stocks_parquet LIKE stocks STORED AS PARQUET;

Then you can use an INSERT statement to copy the contents from the old table into the
new Parquet table:

INSERT OVERWRITE TABLE stocks_parquet SELECT * FROM stocks;

Now you can ditch your old table and start using your shiny new Parquet table!

> SHOW TABLE STATS stocks_parquet;
Query: show TABLE STATS stocks_parquet
+-------+--------+--------+---------+
| #Rows | #Files | Size | Format |
+-------+--------+--------+---------+
| -1 | 1 | 2.56KB | PARQUET |
+-------+--------+--------+---------+

Alternatively, you can create a new table from scratch:

CREATE TABLE stocks_parquet_internal (
sym STRING,
dt STRING,
open DOUBLE,
high DOUBLE,
low DOUBLE,
close DOUBLE,
volume INT,
adj_close DOUBLE

) STORED AS PARQUET;

413TECHNIQUE 96 Refreshing metadata

One of the great things about Impala is that it allows the INSERT ... VALUES syntax, so
you can easily get data into the table:7

INSERT INTO stocks_parquet_internal
VALUES ("YHOO","2000-01-03",442.9,477.0,429.5,475.0,38469600,118.7);

Parquet is a columnar storage format, so the fewer columns you select in your query,
the faster your queries will execute. Selecting all the columns, as in the following
example, can be considered an anti-pattern and should be avoided if possible:

SELECT * FROM stocks;

Next, let’s look at how you can handle situations where the data in your tables is mod-
ified outside of Impala.

TECHNIQUE 96 Refreshing metadata

If you make table or data changes inside of Impala, that information is automatically
propagated to all the other Impala daemons to ensure that any subsequent queries
will pick up that new data. But Impala (as of the 1.3 release) doesn’t handle cases
where data is inserted into tables outside of Impala.

 Impala is also sensitive to the block placement of files that are in a table—if the
HDFS balancer runs and relocates a block to another node, you’ll need to issue a
refresh command to force Impala to reset the block locations cache.

 In this technique you’ll learn how to refresh a table in Impala so that it picks up
the new data.

■ Problem
You’ve inserted data into a Hive table outside of Impala.

■ Solution
Use the REFRESH statement.

■ Discussion
Impala daemons cache Hive metadata, including information about tables and block
locations. Therefore, if data has been loaded into a table outside of Impala, you’ll
need to use the REFRESH statement so that Impala can pull the latest metadata.

 Let’s look at an example of this in action; we’ll work with the stocks table you cre-
ated in technique 94. Let’s add a new file into the external table’s directory with a
quote for a brand new stock symbol:

echo "TSLA,2014-06-25,236,236,236,236,38469600,236" \
| hadoop fs -put - hive-stocks/append.txt

7 The use of INSERT ... VALUES isn’t recommended for large data loads. Instead, it’s more efficient to move files
into your table’s HDFS directory, use the LOAD DATA statement, or use INSERT INTO ... SELECT or CREATE TABLE
AS SELECT ... statements. The first two options will move files into the table’s HDFS directory, and the last two
statements will load the data in parallel.

414 CHAPTER 9 SQL on Hadoop

Bring up the Hive shell and you’ll immediately be able to see the stock:

hive> select * from stocks where sym = "TSLA";
TSLA 2014-06-25 236.0 236.0 236.0 236.0 38469600 236.0

Run the same query in Impala and you won’t see any results:

> select * from stocks where sym = "TSLA";

Returned 0 row(s) in 0.33s

A quick REFRESH will remedy the situation:

> REFRESH stocks;

> select * from stocks where sym = "TSLA";
+------+------------+------+------+-----+-------+----------+-----------+
| sym | dt | open | high | low | close | volume | adj_close |
+------+------------+------+------+-----+-------+----------+-----------+
| TSLA | 2014-06-25 | 236 | 236 | 236 | 236 | 38469600 | 236 |
+------+------------+------+------+-----+-------+----------+-----------+

What’s the difference between REFRESH and INVALIDATE METADATA? In the
“Using Hive tables in Impala” sidebar (see technique 94), you used the INVAL-
IDATE METADATA command in Impala so that you could see a table that had been
created in Hive. What’s the difference between the two commands?

The INVALIDATE METADATA command is more resource-intensive to execute, and
it’s required when you want to refresh Impala’s state after creating, dropping,
or altering a table using Hive. Once the table is visible in Impala, you should
use the REFRESH command to update Impala’s state if new data is loaded,
inserted, or changed.

■ Summary
You don’t need to use REFRESH when you use Impala to insert and load data because
Impala has an internal mechanism by which it shares metadata changes. Therefore,
REFRESH is really only needed when loading data via Hive or when you’re externally
manipulating files in HDFS.

9.2.3 User-defined functions in Impala

Impala supports native UDFs written in C++, which ostensibly provide improved per-
formance over their Hive counterparts. Coverage of the native UDFs is out of scope for
this book, but Cloudera has excellent online documentation that comprehensively
covers native UDFs.8 Impala also supports using Hive UDFs, which we’ll explore in the
next technique.

8 For additional details on Impala UDFs, refer to the “User-Defined Functions” page on Cloudera’s website at
http://mng.bz/319i.

415TECHNIQUE 97 Executing Hive UDFs in Impala

TECHNIQUE 97 Executing Hive UDFs in Impala

If you’ve been working with Hive for a while, it’s likely that you’ve developed some
UDFs that you regularly use in your queries. Luckily, Impala provides support for these
Hive UDFs and allows you to use them without any change to the code or JARs.

■ Problem
You want to use custom or built-in Hive UDFs in Impala.

■ Solution
Create a function in Impala referencing the JAR containing the UDF.

■ Discussion
Impala requires that the JAR containing the UDF be in HDFS:

$ hadoop fs -put <PATH-TO-HIVE-LIB-DIR>/hive-exec.jar

Next, in the Impala shell you’ll need to define a new function and point to the JAR
location on HDFS and to the fully qualified class implementing the UDF.

 For this technique, we’ll use a UDF that’s packaged with Hive and converts the
input data into a hex form. The UDF class is UDFHex and the following example creates
a function for that class and gives it a logical name of my_hex to make it easier to refer-
ence it in your SQL:

create function my_hex(string) returns string
location '/user/YOUR-USERNAME/hive-exec.jar'
symbol='org.apache.hadoop.hive.ql.udf.UDFHex';

At this point you can use the UDF—here’s a simple example:

> select my_hex("hello");
+-------------------------+
| default.my_hex('hello') |
+-------------------------+
| 68656C6C6F |
+-------------------------+

■ Summary
What are the differences between using a Hive UDF in Hive versus using it in Impala?

■ The query language syntax for defining the UDF is different.
■ Impala requires you to define the argument types and the return type of the

function. This means that even if the UDF is designed to work with any Hive
type, the onus is on you to perform type conversion if the defined parameter
type differs from the data type that you’re operating on.

■ Impala currently doesn’t support complex types, so you can only return scalar
types.

■ Impala doesn’t support user-defined table functions.

This brings us to the end of our coverage of Impala. For a more detailed look at
Impala, see Richard L. Saltzer and Istvan Szegedi’s book, Impala in Action (Manning,
scheduled publication 2015).

416 CHAPTER 9 SQL on Hadoop

 Next let’s take a look at how you can use SQL inline with Spark for what may turn out
to be the ultimate extract, transform, and load (ETL) and analytical tool in your toolbox.

9.3 Spark SQL
New SQL-on-Hadoop projects seem to pop up every day, but few look as promising as
Spark SQL. Many believe that Spark is the future for Hadoop processing due to its sim-
ple APIs and efficient and flexible execution models, and the introduction of Spark
SQL in the Spark 1.0 release only furthers the Spark toolkit.

 Apache Spark is a cluster-computing engine that’s compatible with Hadoop. Its
main selling points are enabling fast data processing by pinning datasets into memory
across a cluster, and supporting a variety of ways for processing data, including Map-
Reduce styles, iterative processing, and graph processing.

 Spark came out of UC Berkeley and became an Apache project in 2014. It’s gener-
ating a lot of momentum due to its expressive language and because it lets you get up
and running quickly with its API, which is currently defined in Java, Scala, and Python.
In fact, Apache Mahout, the machine-learning project that historically has imple-
mented its parallelizable algorithms in MapReduce, has recently stated that all new
distributed algorithms will be implemented using Spark.

 Early in Spark’s evolution, it used a system called Shark to provide a SQL interface
to the Spark engine. More recently, in the Spark 1.0 release we were introduced to
Spark SQL, which allows you to intermingle SQL with your Spark code. This promises
a new Hadoop processing paradigm of intermixing SQL with non-SQL code.

What’s the difference between Spark SQL and Shark? Shark was the first Spark
system that provided SQL abilities in Spark. Shark uses Hive for query plan-
ning and Spark for query execution. Spark SQL, on the other hand, doesn’t
use the Hive query planner and instead uses its own planner (and execu-
tion) engine. The goal is to keep Shark as the Hive-compatible part of Spark,
but there are plans to move to Spark SQL for query planning once Spark
SQL has stabilized.9

In this section we’ll look at how you can work with SQL in Spark and also look at its
SQL-like APIs, which offer a fluent style to compose your queries in.

Production readiness of Spark SQL At the time of writing, Spark 1.0 has been
released, which introduced Spark SQL for the first time. It is currently labeled
as alpha quality and is being actively developed.10 As a result, the code in this
section may differ from the production-ready Spark SQL API.

Before we get started with Spark SQL, let’s become familiar with Spark by looking at
some simple Spark examples.

9 The future of Shark is discussed by Michael Armbrust and Reynold Xin, “Spark SQL: Manipulating Structured
Data Using Spark,” http://mng.bz/9057.

10 Michael Armbrust and Zongheng Yang, “Exciting Performance Improvements on the Horizon for Spark
SQL,” http://mng.bz/efqV.

417Spark SQL

9.3.1 Spark 101

Spark consists of a core set of APIs and an execution engine, on top of which exist other
Spark systems that provide APIs and processing capabilities for specialized activities, such
as designing stream-processing pipelines. The core Spark systems are shown in figure 9.7.

The Spark components can be seen in figure 9.8. The Spark driver is responsible for
communicating with a cluster manager to execute operations and the Spark executors
handle the actual operation execution and data management.

Spark
(a generalized processing engine that supports distributed datasets)

Shark
(SQL and Hive

support)

Spark streaming
(stream processing that uses
the same language as batch)

MLlib
(scalable machine

learning)

GraphX
(work with graphs
and collections)

Any Spark system can work on an RDD generated by another
system, allowing you to colocate your processing code.

Figure 9.7 Spark systems

Spark driver

SparkContext

Cluster manager

Client node

Slave node

Spark executor

Task

Task
Cache

Slave node

Spark executor

Task

Task
Cache

Slave node

Spark executor

Task

Task
Cache

Tasks are threads in
an executor providing

additional parallelization.

Each executor has an
in-memory cache that is

used to store RDDs.

Executors are processes
that execute operations

over RDDs.

Spark can run on Hadoop YARN,
Mesos, or in standalone mode
where Spark uses a built-in

cluster manager.

Figure 9.8 Spark architecture

418 CHAPTER 9 SQL on Hadoop

Data in Spark is represented using RDDs (resilient distributed datasets), which are an
abstraction over a collection of items. RDDs are distributed over a cluster so that each
cluster node will store and manage a certain range of the items in an RDD. RDDs can be
created from a number of sources, such as regular Scala collections or data from HDFS
(synthesized via Hadoop input format classes). RDDs can be in-memory, on disk, or a
mix of the two.11

 The following example shows how an RDD can be created from a text file:

scala> val stocks = sc.textFile("stocks.txt")
stocks: org.apache.spark.rdd.RDD[String] = MappedRDD[122] at textFile

The Spark RDD class has various operations that you can perform on the RDD. RDD
operations in Spark fall into two categories—transformations and actions:

■ Transformations operate on an RDD to create a new RDD. Examples of transfor-
mation functions include map, flatMap, reduceByKey, and distinct.12

■ Actions perform some activity over an RDD, after which they return results to
the driver. For example, the collect function returns the entire RDD contents
to the driver process, and the take function allows you to select the first N
items in a dataset.13

Lazy transformations Spark will lazily evaluate transformations, so you actually
need to execute an action for Spark to execute your operations.

Let’s take a look at an example of a Spark application that calculates the average stock
price for each symbol. To run the example, you’ll need to have Spark installed,14 after
which you can launch the shell:

$./bin/spark-shell --master yarn-client
scala> val stocks = sc.textFile("stocks.txt")
scala> val pairs = stocks.map(_.split(",")).map(p =>

(p(0), p(2).trim.toDouble))
scala> val counts = pairs.mapValues((_, 1)).reduceByKey((a, b) =>

(a._1 + b._1, a._2 + b._2)).mapValues{ case (sum, count) =>
(1.0 * sum)/count}

scala> counts.collect.foreach(println)
...
(MSFT,44.63100000000001)
(GOOG,417.47799999999995)
(AAPL,68.631)
(CSCO,31.148000000000003)
(YHOO,69.333)

11 More information on RDD caching and persistence can be found in the Spark Programming Guide at https://
spark.apache.org/docs/latest/programming-guide.html#rdd-persistence.

12 A more complete list of transformations is shown in the Spark Programming Guide at https://
spark.apache.org/docs/latest/programming-guide.html#transformations.

13 A more complete list of actions can be found in the Spark Programming Guide at https://spark.apache.org/
docs/latest/programming-guide.html#actions.

14 To install and configure Spark on YARN, follow the instructions on “Running Spark on YARN” at http://
spark.apache.org/docs/latest/running-on-yarn.html.

Create an RDD from
the stocks file.Tokenize the CSV

file and project
the stock
symbol and the
price inside a
Scala tuple.

Reduce the stocks
using the symbols, and
sum and calculate the

averages.

Execute the collect action,
which results in Spark

executing the operations.

http://spark.apache.org/docs/latest/running-on-yarn.html
http://spark.apache.org/docs/latest/running-on-yarn.html
https://spark.apache.org/docs/latest/programming-guide.html#rdd-persistence
https://spark.apache.org/docs/latest/programming-guide.html#rdd-persistence
https://spark.apache.org/docs/latest/programming-guide.html#transformations
https://spark.apache.org/docs/latest/programming-guide.html#transformations
https://spark.apache.org/docs/latest/programming-guide.html#actions
https://spark.apache.org/docs/latest/programming-guide.html#actions

419Spark SQL

This was a very brief introduction to Spark—the Spark online documentation is excel-
lent and is worth exploring to learn more about Spark.15 Let’s now turn to an intro-
duction to how Spark works with Hadoop.

9.3.2 Spark on Hadoop

Spark supports several cluster managers, one of them being YARN. In this mode, the
Spark executors are YARN containers, and the Spark ApplicationMaster is responsible
for managing the Spark executors and sending them commands. The Spark driver is
either contained within the client process or inside the ApplicationMaster, depending
on whether you’re running in client mode or cluster mode:

■ In client mode the driver resides inside the client, which means that executing a
series of Spark tasks in this mode will be interrupted if the client process is ter-
minated. This mode works well for the Spark shell, but it isn’t suitable for use
when Spark is being used in a non-interactive method.

■ In cluster mode the driver executes in the ApplicationMaster and doesn’t rely on
the client to exist in order to execute tasks. This mode works best for cases
where you have some existing Spark code that you wish to execute and that
doesn’t require any interaction from you.

Figure 9.9 shows the architecture of Spark running on YARN.
 The default installation of Spark is set up for standalone mode, so you’ll have to

configure Spark to make it work with YARN.16 The Spark scripts and tools don’t
change when you’re running on YARN, so once you’ve configured Spark to use YARN,
you can run the Spark shell just like you did in the previous example.

 Now that you understand some Spark basics and how it works on YARN, let’s look at
how you can execute SQL using Spark.

9.3.3 SQL with Spark

This section covers Spark SQL, which is part of the core Spark system. Three areas of
Spark SQL will be examined: executing SQL against your RDDs, using integrated query
language features that provide a more expressive way to work with your data, and inte-
grating HiveQL with Spark.

Stability of Spark SQL Spark SQL is currently labeled as alpha quality, so it’s
probably best not to use it in your production code until it’s marked as
production-ready.

15 A great starting place for learning about Spark is the Spark Programming Guide, http://spark.apache.org/
docs/latest/programming-guide.html.

16 Follow the instructions at https://spark.apache.org/docs/latest/running-on-yarn.html to set up Spark to use
YARN.

http://spark.apache.org/docs/latest/programming-guide.html
http://spark.apache.org/docs/latest/programming-guide.html

420 CHAPTER 9 SQL on Hadoop

TECHNIQUE 98 Calculating stock averages with Spark SQL

In this technique you’ll learn how to use Spark SQL to calculate the average price for
each stock symbol.

■ Problem
You have a Spark processing pipeline, and expressing your functions would be simpler
using SQL as opposed to the Spark APIs.

■ Solution
Register an RDD as a table and use the Spark sql function to execute SQL against the
RDD.

Spark executor

Task

Task
Cache

Client process

Spark driver

YARN container

YARN
container

Spark ApplicationMaster

Client node

Client mode

Slave node

YARN
container

Slave node

YARN container

Client process

Spark driver

YARN container

YARN
container

Spark ApplicationMaster

Client node

Cluster mode

Slave node

YARN
container

Slave node

Figure 9.9 Spark running on YARN

421TECHNIQUE 98 Calculating stock averages with Spark SQL

■ Discussion
The first step in this technique is to define a class that will represent each record in
your Spark table. In this example, you’ll calculate the stock price averages, so all you
need is a class with two fields to store the stock symbol and price:

scala> case class Stock(symbol: String, price: Double)

Why use Scala for Spark examples? In this section we’ll use Scala to show
Spark examples. The Scala API, until recently, has been much more concise
than Spark’s Java API, although with the release of Spark 1.0, the Java support
in Spark now uses lambdas to expose a less verbose API.

Next you need to register an RDD of these Stock objects as a table so that you can per-
form SQL operations on it. You can create a table from any Spark RDD. The following
example shows how you can load the stocks data from HDFS and register it as a table:

scala> val sqlContext = new org.apache.spark.sql.SQLContext(sc)

scala> import sqlContext._

scala> val stocks = sc.textFile("stocks.txt").map(_.split(",")).map(
p => Stock(p(0), p(3).trim.toDouble))

scala> stocks.registerAsTable("stocks")

Now you’re ready to issue queries against the stocks table. The following shows how
you’d calculate the average price for each symbol:

scala> val stock_averages = sql(
"SELECT symbol, AVG(price) FROM stocks GROUP BY symbol")

scala> stock_averages.collect().foreach(println)
[CSCO,31.564999999999998]
[GOOG,427.032]
[MSFT,45.281]
[AAPL,70.54599999999999]
[YHOO,73.29299999999999]

The sql function returns a SchemaRDD, which supports standard RDD operations. This is
where the novel aspect of Spark SQL comes into play—mixing SQL and regular data pro-
cessing paradigms together. You use SQL to create an RDD and you can then immediately
turn around and execute your usual Spark transformations over that data.

 In addition to supporting the standard Spark RDD operations, SchemaRDD also allows
you to execute SQL-like functions such as where and join over the data, which is cov-
ered in the next technique.17

17 Language-integrated queries that allow more natural language expression of queries can be seen at the Scala
docs for the SchemaRDD class at http://spark.apache.org/docs/latest/api/scala/index.html#org.apache.spark.sql
.SchemaRDD.

Create a SQL context.

Import the context to access
all the SQL functions.

Create an RDD
of Stock objects
by loading the
stocks from a
text file,
tokenizing the
file, and creating
Stock instances.

Register the RDD as
a table called stocks.

http://spark.apache.org/docs/latest/api/scala/index.html#org.apache.spark.sql.SchemaRDD
http://spark.apache.org/docs/latest/api/scala/index.html#org.apache.spark.sql.SchemaRDD

422 CHAPTER 9 SQL on Hadoop

TECHNIQUE 99 Language-integrated queries

The previous technique demonstrated how you can execute SQL over your Spark data.
Spark 1.0 also introduced a feature called language-integrated queries, which expose
SQL constructs as functions, allowing you to craft code that’s not only fluent but that
expresses operations using natural language constructs. In this technique you’ll see
how to use these functions on your RDDs.

■ Problem
Although the Spark RDD functions are expressive, they don’t yield code that is particu-
larly human-readable.

■ Solution
Use Spark’s language-integrated queries.

■ Discussion
Once again, let’s try to calculate the average stock prices, this time using language-
integrated queries. This example uses the groupBy function to calculate the average
stock price:

scala> val sqlContext = new org.apache.spark.sql.SQLContext(sc)
scala> import sqlContext._
scala> import org.apache.spark.sql.catalyst.expressions._

scala> val stocks = sc.textFile("stocks.txt").map(_.split(",")).map(
p => Stock(p(0), p(3).trim.toDouble)).toSchemaRDD

scala> val stocks_avg =
stocks.groupBy('symbol)(First('symbol) as
'symbol, Average('price) as 'avgPrice)
scala> stocks_avg.collect.foreach(println)
[CSCO,31.564999999999998]
[GOOG,427.032]
[MSFT,45.281]
[AAPL,70.54599999999999]
[YHOO,73.29299999999999]

The preceding code leverages the Average and First aggregate functions—there are
other aggregate functions such as Count, Min, and Max, among others.18

 The next is more straightforward; it simply selects all the quotes for days where the
value was over $100:

scala> stocks.where('price >= 100).collect.foreach(println)
[AAPL,200.26]
[AAPL,112.5]
...

The third option with Spark SQL is to use HiveQL, which is useful when you want to
execute more complex SQL grammar.

18 See the code at the following link for the complete list: https://github.com/apache/spark/blob/master/
sql/catalyst/src/main/scala/org/apache/spark/sql/catalyst/expressions/aggregates.scala.

Import aggregated
functions.

Load stocks
data from file

and create a
SchemaRDD.

Execute the groupBy function and
specify that the grouping should occur on

the symbol field and that the result
should retain the stock name. The

Average aggregate function is used over
the grouped stock prices.

View the
resulting RDD.

https://github.com/apache/spark/blob/master/sql/catalyst/src/main/scala/org/apache/spark/sql/catalyst/expressions/aggregates.scala
https://github.com/apache/spark/blob/master/sql/catalyst/src/main/scala/org/apache/spark/sql/catalyst/expressions/aggregates.scala

423Chapter summary

TECHNIQUE 100 Hive and Spark SQL

You can also work with data in Hive tables in Spark. This technique examines how you
can execute a query against a Hive table.

■ Problem
You want to work with Hive data in Spark.

■ Solution
Use Spark’s HiveContext to issue HiveQL statements and work with the results in Spark.

■ Discussion
Earlier in this chapter you created a stocks table in Hive (in technique 89). Let’s query
that stocks table using HiveQL from within Spark and then perform some additional
manipulations within Spark:

spark> val hiveContext = new org.apache.spark.sql.hive.HiveContext(sc)
spark> import hiveContext._
spark> import org.apache.spark.sql.catalyst.expressions._

spark> val stocks = hql("FROM stocks SELECT symbol, open")

spark> stocks.take(3).foreach(println)
[AAPL,85.88]
[AAPL,199.27]
[CSCO,16.41]

spark> val pairs = stocks.map{ case Row(symbol: String, open: Float) =>
(symbol, open) }.mapValues((_, 1)).reduceByKey((a, b) =>

(a._1 + b._1, a._2 + b._2)).mapValues{ case (sum, count) =>
(1.0 * sum)/count}

spark> counts.collect.foreach(println)
(MSFT,27.65999984741211)
(GOOG,500.7349853515625)
(AAPL,142.5749969482422)
(CSCO,21.704999923706055)
(YHOO,17.985000610351562)

You have access to the complete HiveQL grammar in Spark, as the commands that
are wrapped inside the hql calls are sent directly to Hive. You can load tables, insert
into tables, and perform any Hive command that’s needed, all directly from Spark.
Spark’s Hive integration also includes support for using Hive UDFs, UDAFs, and
UDTFs in your queries.

 This completes our brief look at Spark SQL.

9.4 Chapter summary
SQL access to data in Hadoop is essential for organizations, as not all users who want
to interact with data are programmers. SQL is often the lingua franca for not only data
analysts but also for data scientists and nontechnical members of your organization.

 In this chapter I introduced three tools that can be used to work with your data via
SQL. Hive has been around the longest and is currently the most full-featured SQL

A HiveContext instance
must be created before

you can issue HiveQL
statements.

Execute a Hive
query and load the
results into a Spark
SchemaRDD.

Dump out the first three
records in the RDD.Convert the Row

objects into tuples
and perform the
stock average
calculation.

Dump the contents of
the resulting RDD.

424 CHAPTER 9 SQL on Hadoop

engine you can use. Impala is worth a serious look if Hive is not providing a rapid
enough level of interaction with your data. And finally, Spark SQL provides a glimpse
into the future, where technical members of your organization such as programmers
and data scientists can fuse together SQL and Scala to build complex and efficient
processing pipelines.

425

Writing a
 YARN application

Looking at the source code for any reasonably sized YARN application typically
results in words like “complex” and “low-level” being thrown around. At its core,
writing a YARN application isn’t that complex, as you’ll discover in this chapter. The
complexity with YARN is typically introduced once you need to build more
advanced features into your application, such as supporting secure Hadoop clus-
ters or handling failure scenarios, which are complicated in distributed systems
regardless of the framework. That being said, there are emerging frameworks that
abstract away the YARN APIs and provide common features that you’ll require.

 In this chapter, you’ll write a simple YARN application that will run a Linux
command on a node in the cluster. Once you’ve run your application, you’ll be

This chapter covers
■ Understanding key capabilities of a YARN

application
■ How to write a basic YARN application
■ An examination of YARN frameworks and

applications

426 CHAPTER 10 Writing a YARN application

introduced to some of the more advanced features that you may need in your YARN
application. Finally, this chapter looks at some of the open source YARN abstractions
and examine their features.

 Before we get started, let’s ease into YARN programming by looking at the building
blocks of a YARN application.

10.1 Fundamentals of building a YARN application
This section provides a brief high-level overview of the YARN actors and the basic com-
munication flows that you’ll need to support in your YARN application.

10.1.1 Actors

There are five separate pieces of a YARN application that are either part of the YARN
framework or components that you must create yourself (which I call the user space),
all of which are shown in figure 10.1.

ApplicationMasterYARN client

ResourceManager NodeManager

YARN user space

YARN framework

Create and then submit
an application.

Request containers by
sending AllocateRequest

messages.

Launch containers by sending
ContainerLaunchContext

requests.

AllocateRequest

ResourceRequest

0..N

ApplicationSubmissionContext

ContainerLaunchContext

Each request can have zero or more
resource requests, which specify

container resource details.

Resource

1 1

GetNewApplicationRequest

Figure 10.1 The main actors and communication paths in a YARN application

427Fundamentals of building a YARN application

The actors in a YARN application and the YARN framework include

■ YARN client—The YARN client, in the user space, is responsible for launching
the YARN application. It sends createApplication and submitApplication requests
to the ResourceManager and can also kill the application.

■ ResourceManager—In the framework, a single cluster-wide ResourceManager is
responsible for receiving container allocation requests and asynchronously
notifying clients when resources become available for their containers.

■ ApplicationMaster—The ApplicationMaster in the user space is the main coordi-
nator for an application, and it works with the ResourceManager and Node-
Managers to request and launch containers.

■ NodeManager—In the framework, each node runs a NodeManager that’s
responsible for servicing client requests to launch and kill containers.

■ Container—The container in the user space is an application-specific process
that performs work on behalf of the application. A container could be a simple
fork of an existing Linux process (such as the find command to find files), or
an application-developed service such as a map or reduce task for MapReduce
YARN applications.

The following sections discuss these actors and their role in your Yarn application.

10.1.2 The mechanics of a YARN application

When implementing a YARN application, there are a number of interactions that you
need to support. Let’s examine each interaction and what information is relayed
between the components.

RESOURCE ALLOCATION

When the YARN client or the ApplicationMaster asks the ResourceManager for a new
container, they indicate the resources that the container needs in a Resource object. In
addition, the ApplicationMaster sends some more attributes in a ResourceRequest, as
shown in figure 10.2.

 The resourceName specifies the host and rack where the container should be exe-
cuted, and it can be wildcarded with an asterisk to inform the ResourceManager that
the container can be launched on any node in the cluster.

 The ResourceManager responds to a resource request with a Container object that
represents a single unit of execution (a process). The container includes an ID, a
resourceName, and other attributes. Once the YARN client or ApplicationMaster
receives this message from the ResourceManager, it can communicate with the Node-
Manager to launch the container.

LAUNCHING A CONTAINER

Once a client receives the Container from the ResourceManager, it’s ready to talk to the
NodeManager associated with the container to launch the container. Figure 10.3 shows
the information that the client sends to the NodeManager as part of the request.

428 CHAPTER 10 Writing a YARN application

vCores Number of virtual cores.

memory Memory required.

Should locality be loose (i.e., allow container
allocation to fall through to another node on
the local rack or any node in the cluster), or
strict (i.e., hard constraint on resource
allocation).

relaxLocality

Number of containers.containers

The resource name (e.g., host/rack)
on which the allocation is desired.resourceName

The priority assigned to a ResourceRequest or
Application or Container.priority

<<org.apache.hadoop.yarn.api.records>>
ResourceRequest

<<org.apache.hadoop.yarn.api.records>>
Resource

1

0..1

Figure 10.2 Resource
properties that can be
requested for a container

Identify data needed from any auxiliary
services. For example, MRv2 uses the shuffle
auxiliary service for MapReduce.

serviceData

The command used to launch the container.commands

Application ACLs.acls

Environment variables that should be set prior
to launching the container process.environment

Security tokens needed by the container
(required if security is enabled).tokens

Resources required for the container to run
(e.g., binary files, JARs, shared objects).localResources

<<org.apache.hadoop.yarn.api.records>>
ContainerLaunchContext

Figure 10.3 Container
request metadata

429TECHNIQUE 101 A bare-bones YARN client

The NodeManager is responsible for downloading any local resources identified in the
request (including items such as any libraries required by the application or files in the
distributed cache) from HDFS. Once these files are downloaded, the NodeManager
launches the container process.

 With these YARN preliminaries out of the way, let’s go ahead and start writing a
YARN application.

10.2 Building a YARN application to collect cluster statistics
In this section you’ll build a simple YARN application that will launch a single con-
tainer to execute the vmstat Linux command. As you build this simple example, we’ll
focus on the plumbing needed to get a YARN application up and running. The next
section covers the more advanced capabilities that you’ll likely require in a full-blown
YARN application.

 Figure 10.4 shows the various components that you’ll build in this section and
their interactions with the YARN framework.

Let’s get started by building the YARN client.

TECHNIQUE 101 A bare-bones YARN client

The role of the YARN client is to negotiate with the ResourceManager for a YARN
application instance to be created and launched. As part of this work, you’ll need to
inform the ResourceManager about the system resource requirements of your Appli-
cationMaster. Once the ApplicationMaster is up and running, the client can choose to
monitor the status of the application.

 This technique will show you how to write a client that performs the three steps
illustrated in figure 10.5.

■ Problem
You’re building a YARN application, so you need to write a client to launch your
application.

ResourceManager

ApplicationMaster

NodeManagerYARN client vmstat

Fork new container
(i.e., process).

C

Request a
container.

A Launch
container.

B

Create application.1

Submit application.2

Poll until application
has completed.

3

Figure 10.4 An overview of the YARN application that you’ll build

430 CHAPTER 10 Writing a YARN application

■ Solution
Use the YarnClient class to create and submit a YARN application.

■ Discussion
Let’s walk through the code for each of the steps highlighted in figure 10.5, starting
with creating a new YARN application.

Creating a YARN application
The first thing your YARN client needs to do is communicate with the Resource-
Manager about its intent to start a new YARN application. The response from the
ResourceManager is a unique application ID that’s used to create the application and
that’s also supported by the YARN command line for queries such as retrieving logs.

 The following code shows how you can get a handle to a YarnClient instance and
use that to create the application:1

YarnConfiguration conf = new YarnConfiguration();
YarnClient yarnClient = YarnClient.createYarnClient();
yarnClient.init(conf);
yarnClient.start();

YarnClientApplication app = yarnClient.createApplication();

The createApplication method will call the ResourceManager, which will return a new
application ID. In addition, the YarnClientApplication object contains information
about the cluster, such as the resource capabilities that can be used to predetermine
container resource properties.

 The YarnClient class used in the preceding code contains a number of APIs that
result in an RPC call to the ResourceManager. Some of these methods are shown in
the following extract from the code:2

1 GitHub source: https://github.com/alexholmes/hiped2/blob/master/src/main/java/hip/ch10/dstat/
Client.java.

2 Some queue and security APIs were omitted from the YarnClient class—refer to the YarnClient Javadocs for
the complete API: http://hadoop.apache.org/docs/stable/api/org/apache/hadoop/yarn/client/api/
YarnClient.html.

ResourceManagerYARN client

Create application1

Submit application2

Poll until application
has completed

3 Figure 10.5 The three activities
that your YARN client will perform

Create a YarnConfiguration object. This class extends the Hadoop
Configuration object so that in addition to loading the standard
Hadoop config files, it will also attempt to load yarn-site.xml from
the classpath, which contains your cluster configuration. Create a new client to

communicate with the
ResourceManager.

Create the YARN
application.

http://hadoop.apache.org/docs/stable/api/org/apache/hadoop/yarn/client/api/YarnClient.html
http://hadoop.apache.org/docs/stable/api/org/apache/hadoop/yarn/client/api/YarnClient.html
https://github.com/alexholmes/hiped2/blob/master/src/main/java/hip/ch10/dstat/Client.java
https://github.com/alexholmes/hiped2/blob/master/src/main/java/hip/ch10/dstat/Client.java

431TECHNIQUE 101 A bare-bones YARN client

package org.apache.hadoop.yarn.client.api;

public abstract class YarnClient extends AbstractService {

YarnClientApplication createApplication();

ApplicationId submitApplication(ApplicationSubmissionContext ctx);

void killApplication(ApplicationId applicationId);

ApplicationReport getApplicationReport(ApplicationId appId);

List<ApplicationReport> getApplications();

YarnClusterMetrics getYarnClusterMetrics();

List<NodeReport> getNodeReports(NodeState... states);

...
}

Creating an application in YARN doesn’t actually do anything other than inform the
ResourceManager of your intent to actually launch the application. The next step shows
what you need to do to have the ResourceManager launch your ApplicationMaster.

Submitting a YARN application
Submitting the YARN application launches your ApplicationMaster in a new container
in your YARN cluster. But there are several items you need to configure before you can
submit the application, including the following:

■ An application name
■ The command to launch the ApplicationMaster, along with the classpath and

environment settings
■ Any JARs, configuration files, and other files that your application needs to per-

form its work
■ The resource requirements for the ApplicationMaster (memory and CPU)
■ Which scheduler queue to submit the application to and the application prior-

ity within the queue
■ Security tokens

Let’s look at the code required to get a basic Java-based ApplicationMaster up and
running. We’ll break this code up into two subsections: preparing the Container-
LaunchContext object, and then specifying the resource requirements and submitting
the application.

 First up is the ContainerLaunchContext, which is where you specify the command to
launch your ApplicationMaster, along with any other environmental details required
for your application to execute:3

3 GitHub source: https://github.com/alexholmes/hiped2/blob/master/src/main/java/hip/ch10/dstat/
Client.java.

Create a new
application, a
precursor to
submitting the
application.

Tell the
ResourceManager

to launch the
ApplicationMaster.

Kill an application.Fetch the
current state of
an application.

Fetch all
applications
currently running
in the cluster.

Retrieve the cluster metrics, which as
of the Hadoop 2.2 release only return

the number of NodeManagers.

Fetch a summary
of each node in

the cluster.

https://github.com/alexholmes/hiped2/blob/master/src/main/java/hip/ch10/dstat/Client.java
https://github.com/alexholmes/hiped2/blob/master/src/main/java/hip/ch10/dstat/Client.java

432 CHAPTER 10 Writing a YARN application

ContainerLaunchContext container =
Records.newRecord(ContainerLaunchContext.class);

String amLaunchCmd =
String.format(

"$JAVA_HOME/bin/java -Xmx256M %s 1>%s/stdout 2>%s/stderr",
ApplicationMaster.class.getName(),
ApplicationConstants.LOG_DIR_EXPANSION_VAR,
ApplicationConstants.LOG_DIR_EXPANSION_VAR);

container.setCommands(Lists.newArrayList(amLaunchCmd));

String jar = ClassUtil.findContainingJar(Client.class);
FileSystem fs = FileSystem.get(conf);
Path src = new Path(jar);
Path dest = new Path(fs.getHomeDirectory(), src.getName());
fs.copyFromLocalFile(src, dest);

FileStatus jarStat = FileSystem.get(conf).getFileStatus(dest);

LocalResource appMasterJar = Records.newRecord(LocalResource.class);
appMasterJar.setResource(ConverterUtils.getYarnUrlFromPath(dest));
appMasterJar.setSize(jarStat.getLen());
appMasterJar.setTimestamp(jarStat.getModificationTime());
appMasterJar.setType(LocalResourceType.FILE);
appMasterJar.setVisibility(LocalResourceVisibility.APPLICATION);

container.setLocalResources(
ImmutableMap.of("AppMaster.jar", appMasterJar));

Map<String, String> appMasterEnv = Maps.newHashMap();
for (String c : conf.getStrings(

YarnConfiguration.YARN_APPLICATION_CLASSPATH,
YarnConfiguration.DEFAULT_YARN_APPLICATION_CLASSPATH)) {

Apps.addToEnvironment(appMasterEnv, Environment.CLASSPATH.name(),
c.trim());

}
Apps.addToEnvironment(appMasterEnv,

Environment.CLASSPATH.name(),
Environment.PWD.$() + File.separator + "*");

container.setEnvironment(appMasterEnv);

The final steps are specifying the memory and CPU resources needed by the Applica-
tionMaster, followed by the application submission:4

Resource capability = Records.newRecord(Resource.class);
capability.setMemory(256);
capability.setVirtualCores(1);

// Finally, set-up ApplicationSubmissionContext for the application
ApplicationSubmissionContext appContext =

app.getApplicationSubmissionContext();
appContext.setApplicationName("basic-dshell");

4 GitHub source: https://github.com/alexholmes/hiped2/blob/master/src/main/java/hip/ch10/dstat/
Client.java.

Specify the launch command and
instruct the process to pipe

standard output and error to the
container’s work directory.

Find the JAR that
contains your code.

Copy the JAR
to HDFS.

Create a LocalResource
for the JAR and

populate the HDFS URI
for the JAR.

Add the JAR as a local
resource for the container.

Add the YARN JARs
to the classpath for

the ApplicationMaster.

Include the classpath as a
variable to export to the
container’s environment.

Specify the amount of
memory needed by the

ApplicationMaster in
megabytes.

Set the number
of virtual cores.

Give your
application
a name.

https://github.com/alexholmes/hiped2/blob/master/src/main/java/hip/ch10/dstat/Client.java
https://github.com/alexholmes/hiped2/blob/master/src/main/java/hip/ch10/dstat/Client.java

433TECHNIQUE 101 A bare-bones YARN client

appContext.setAMContainerSpec(container);
appContext.setResource(capability);
appContext.setQueue("default");

ApplicationId appId = appContext.getApplicationId();
yarnClient.submitApplication(appContext);

All container requests sent to the ResourceManager are processed asynchronously, so
just because submitApplication returns doesn’t mean your ApplicationMaster is up and
running. To figure out the state of your application, you’ll need to poll the Resource-
Manager for the application status, which will be covered next.

Waiting for the YARN application to complete
After submitting an application, you can poll the ResourceManager for information
on the state of your ApplicationMaster. The result will contain details such as

■ The state of your application
■ The host the ApplicationMaster is running on, and an RPC port (if any) where

it’s listening for client requests (not applicable in our example)
■ A tracking URL, if supported by the ApplicationMaster, which provides details

on the progress of the application (again not supported in our example)
■ General information such as the queue name and container start time

Your ApplicationMaster can be in any one of the states shown in figure 10.6 (the states
are contained in the enum YarnApplicationState).

 The following code performs the final step of your client, which is to regularly poll
the ResourceManager until the ApplicationMaster has completed:5

ApplicationReport report = yarnClient.getApplicationReport(appId);
YarnApplicationState state = report.getYarnApplicationState();

EnumSet<YarnApplicationState> terminalStates =
EnumSet.of(YarnApplicationState.FINISHED,

YarnApplicationState.KILLED,
YarnApplicationState.FAILED);

while (!terminalStates.contains(state)) {
TimeUnit.SECONDS.sleep(1);
report = yarnClient.getApplicationReport(appId);
state = report.getYarnApplicationState();

}

5 GitHub source: https://github.com/alexholmes/hiped2/blob/master/src/main/java/hip/ch10/dstat/
Client.java.

Set the container properties
(specified in the previous code).Set the memory

and CPU
properties.

Specify which
scheduler queue
to submit the
container to.

Tell the ResourceManager to
launch the ApplicationMaster.

Fetch current state of
the application from

the ResourceManager.

Define the
terminal
ApplicationMaster
states.

Loop until the
ApplicationMaster
is in a terminal
state. Refetch the

application state.

https://github.com/alexholmes/hiped2/blob/master/src/main/java/hip/ch10/dstat/Client.java
https://github.com/alexholmes/hiped2/blob/master/src/main/java/hip/ch10/dstat/Client.java

434 CHAPTER 10 Writing a YARN application

■ Summary
There are a number of more advanced client capabilities that weren’t explored in this
section, such as security. Section 10.3 discusses this and other features that you’ll prob-
ably want to build into your client.

 With your YARN client in place, it’s time to turn to the second half of your YARN
application—the ApplicationMaster.

TECHNIQUE 102 A bare-bones ApplicationMaster

The ApplicationMaster is the coordinator of the YARN application. It’s responsible
for asking the ResourceManager for containers and then launching the containers
via the NodeManager. Figure 10.7 shows these interactions, which you’ll explore in
this technique.

■ Problem
You’re building a YARN application and need to implement an ApplicationMaster.

■ Solution
Use the YARN ApplicationMaster APIs to coordinate your work via the Resource-
Manager and NodeManager.

NEW

FAILED

Application that
was just created

SUBMITTED

ACCEPTED

RUNNING

FINISHED

KILLED

NEW_SAVING
Application that is

being saved

Application that has
been submi�ed

Application that
has been accepted
by the scheduler

Application that is
currently running

Application that
has completed

Application
that failed

Application that
was terminated by
a user or admin

Figure 10.6 ApplicationMaster states

435TECHNIQUE 102 A bare-bones ApplicationMaster

■ Discussion
As in the previous technique, we’ll break down the actions that the ApplicationMaster
needs to perform.

Register with the ResourceManager
The first step is to register the ApplicationMaster with the ResourceManager. To do
so, you need to get a handle to an AMRMClient instance, which you’ll use for all your
communication with the ResourceManager:6

Configuration conf = new YarnConfiguration();

AMRMClient<ContainerRequest> client = AMRMClient.createAMRMClient();
client.init(conf);
client.start();

client.registerApplicationMaster("", 0, "");

Submit a container request and launch it when one is available
Next you’ll need to specify all the containers that you want to request. In this simple
example, you’ll request a single container, and you won’t specify a specific host or rack
on which it’ll run:7

NMClient nmClient = NMClient.createNMClient();
nmClient.init(conf);
nmClient.start();

Priority priority = Records.newRecord(Priority.class);
priority.setPriority(0);

Resource capability = Records.newRecord(Resource.class);
capability.setMemory(128);
capability.setVirtualCores(1);

ContainerRequest containerAsk =

6 GitHub source: https://github.com/alexholmes/hiped2/blob/master/src/main/java/hip/ch10/dstat/
ApplicationMaster.java.

7 GitHub source: https://github.com/alexholmes/hiped2/blob/master/src/main/java/hip/ch10/dstat/
ApplicationMaster.java.

ResourceManager

ApplicationMaster

NodeManager vmstat

Fork new container
(i.e., process).

C

Request a
container.

A
Launch
container.

B

Figure 10.7 The basic functions that
your ApplicationMaster will perform

Create a client to
talk to the

ResourceManager.

Register with the
ResourceManager.

Create a client to
talk to the

NodeManagers.
Specify the
priority for
the container.

Set the resource
requirements for

the container.
Create the request
object that you’ll
send to the
ResourceManager.

https://github.com/alexholmes/hiped2/blob/master/src/main/java/hip/ch10/dstat/ApplicationMaster.java
https://github.com/alexholmes/hiped2/blob/master/src/main/java/hip/ch10/dstat/ApplicationMaster.java
https://github.com/alexholmes/hiped2/blob/master/src/main/java/hip/ch10/dstat/ApplicationMaster.java
https://github.com/alexholmes/hiped2/blob/master/src/main/java/hip/ch10/dstat/ApplicationMaster.java

436 CHAPTER 10 Writing a YARN application

new ContainerRequest(capability, null, null, priority);
rmClient.addContainerRequest(containerAsk);

boolean allocatedContainer = false;
while (!allocatedContainer) {
AllocateResponse response = rmClient.allocate(0);
for (Container container : response.getAllocatedContainers()) {
allocatedContainer = true;

ContainerLaunchContext ctx =
Records.newRecord(ContainerLaunchContext.class);

ctx.setCommands(
Collections.singletonList(

String.format("%s 1>%s/stdout 2>%s/stderr",
"/usr/bin/vmstat",
ApplicationConstants.LOG_DIR_EXPANSION_VAR,
ApplicationConstants.LOG_DIR_EXPANSION_VAR)

));
nmClient.startContainer(container, ctx);

}
TimeUnit.SECONDS.sleep(1);

}

The AMRMClient’s allocate method performs a number of important functions:

■ It acts as a heartbeat message to the ResourceManager. If the ResourceManager
doesn’t receive a heartbeat message after 10 minutes, it will consider the Appli-
cationMaster to be in a bad state and will kill the process. The default expiry
value can be changed by setting yarn.am.liveness-monitor.expiry-interval-ms.

■ It sends any container allocation requests that were added to the client.
■ It receives zero or more allocated containers that resulted from container allo-

cation requests.

The first time that allocate is called in this code, the container request will be sent to
the ResourceManager. Because the ResourceManager handles container requests
asynchronously, the response won’t contain the allocated container. Instead, a subse-
quent invocation of allocate will return the allocated container.

Wait for the container to complete
At this point you’ve asked the ResourceManager for a container, received a container
allocation from the ResourceManager, and communicated with a NodeManager to
launch the container. Now you have to continue to call the allocate method and
extract from the response any containers that completed:8

boolean completedContainer = false;
while (!completedContainer) {
AllocateResponse response = rmClient.allocate(0);
for (ContainerStatus s : response.getCompletedContainersStatuses()) {

8 GitHub source: https://github.com/alexholmes/hiped2/blob/master/src/main/java/hip/ch10/dstat/
ApplicationMaster.java.

Loop until you have
allocated and

launched a container.

Send any pending
client-side
messages (such as
the container
request), and pull
any messages from
the
ResourceManager.

Loop through any
containers that the

ResourceManager
allocated to you.

Create a request to
launch your container
via the NodeManager.

Specify your command
and redirect the
outputs to disk.

Tell the NodeManager
to launch your

container.

Loop until you receive
word that the container

has completed.

Call the allocate
method, which
also returns
completed
containers.

https://github.com/alexholmes/hiped2/blob/master/src/main/java/hip/ch10/dstat/ApplicationMaster.java
https://github.com/alexholmes/hiped2/blob/master/src/main/java/hip/ch10/dstat/ApplicationMaster.java

437TECHNIQUE 102 A bare-bones ApplicationMaster

completedContainer = true;
}
TimeUnit.SECONDS.sleep(1);

}

rmClient.unregisterApplicationMaster(
FinalApplicationStatus.SUCCEEDED, "", "");

■ Summary
In this technique you used the AMRMClient and NMClient classes to communicate with the
ResourceManager and NodeManagers. These clients provide synchronous APIs to the
YARN services. They have asynchronous counterparts (AMRMClientAsync and NMClient-
Async) that encapsulate the heartbeat functionality and will call back into your code
when messages are received from the ResourceManager. The async APIs may make it eas-
ier to reason about the interactions with the ResourceManager because the Resource-
Manager processes everything asynchronously.

 There are a few more features that the ResourceManager and NodeManager
expose to ApplicationMasters:9

package org.apache.hadoop.yarn.client.api;

abstract class AMRMClient<T extends AMRMClient.ContainerRequest>
extends AbstractService {

RegisterApplicationMasterResponse
registerApplicationMaster(String appHostName,

int appHostPort,
String appTrackingUrl);

void unregisterApplicationMaster(FinalApplicationStatus appStatus,
String appMessage,
String appTrackingUrl);

void addContainerRequest(T req);
AllocateResponse allocate(float progressIndicator);
void removeContainerRequest(T req);
void releaseAssignedContainer(ContainerId containerId);

Resource getAvailableResources();
int getClusterNodeCount();

...
}

9 The complete Javadocs for AMRMClient can be viewed at http://hadoop.apache.org/docs/stable/api/org/
apache/hadoop/yarn/client/api/AMRMClient.html.

If you received any
completed containers, you’re

done (because you only
launched one container).

Unregister
with the
ResourceManager,
and then exit the
process.

Register the
ApplicationMaster.
This must be called
before any other
interaction.

Unregister the
ApplicationMaster.

This must be called at
the end.Request containers for

resources before
calling allocate.

Request additional
containers and receive new

container allocations.
Remove previous container
request. The previous
container request may have
already been sent to the
ResourceManager, so the app
must be prepared to receive
an allocation for the previous
request even after the
remove request.

Release containers assigned by
the ResourceManager. If the

app can’t use the container or
wants to give up the container,
then it can release it. The app
needs to make new requests for
the released resource capability

if it still needs it.

Get the currently
available resources
in the cluster. A
valid value is
available after a
call to allocate
has been made.

Get the current
number of nodes in the
cluster. A valid value is
available after a call to
allocate has been made.

http://hadoop.apache.org/docs/stable/api/org/apache/hadoop/yarn/client/api/AMRMClient.html
http://hadoop.apache.org/docs/stable/api/org/apache/hadoop/yarn/client/api/AMRMClient.html

438 CHAPTER 10 Writing a YARN application

Similarly, the NMClient API exposes a handful of mechanisms that you can use to con-
trol and get metadata about your containers:10

package org.apache.hadoop.yarn.client.api;

abstract class NMClient extends AbstractService {

Map<String, ByteBuffer> startContainer(Container container,
ContainerLaunchContext containerLaunchContext);

void stopContainer(ContainerId containerId, NodeId nodeId);

ContainerStatus getContainerStatus(ContainerId containerId,
NodeId nodeId);

void cleanupRunningContainersOnStop(boolean enabled);
}

At this point you’ve written the code for a complete YARN application! Next you’ll exe-
cute your application on a cluster.

TECHNIQUE 103 Running the application and accessing logs

At this point you have a functional YARN application. In this section, you’ll look at how
to run the application and access its output.

■ Problem
You want to run your YARN application.

■ Solution
Use the regular Hadoop command line to launch it and view the container outputs.

■ Discussion
The hip script that you’ve been using to launch all the examples in this book also
works for running the YARN application. Behind the scenes, hip calls the hadoop script
to run the examples.

 The following example shows the output of running the YARN application that was
written in the last two techniques. It runs a vmstat Linux command in a single
container:

$ hip --nolib hip.ch10.dstat.basic.Client
client.RMProxy: Connecting to ResourceManager at /0.0.0.0:8032
Submitting application application_1398974791337_0055
impl.YarnClientImpl: Submitted application
application_1398974791337_0055 to ResourceManager at /0.0.0.0:8032

Application application_1398974791337_0055 finished with state FINISHED

10 The complete Javadocs for NMClient are available at http://hadoop.apache.org/docs/stable/api/org/
apache/hadoop/yarn/client/api/NMClient.html.

Start an allocated
container.

Stop a started
container.

Query the status
of a container.

Set whether the containers that are
started by this client and are still running
should be stopped when the client stops. By
default, this feature should be enabled.

http://hadoop.apache.org/docs/stable/api/org/apache/hadoop/yarn/client/api/NMClient.html
http://hadoop.apache.org/docs/stable/api/org/apache/hadoop/yarn/client/api/NMClient.html

439TECHNIQUE 103 Running the application and accessing logs

If you have log aggregation enabled (see technique 3 for more details), you can issue
the following command to view the log output of both the ApplicationMaster and the
vmstat container:

$ yarn logs -applicationId application_1398974791337_0055
client.RMProxy: Connecting to ResourceManager at /0.0.0.0:8032

Container: container_1398974791337_0055_01_000002
===
LogType: stderr
LogLength: 0
Log Contents:

LogType: stdout
LogLength: 244
Log Contents:
procs -----------memory---------- -----io---- --system-- -----cpu------
r b swpd free buff cache bi bo in cs us sy id wa st
2 0 37600 57648 24988 479752 16 109 55 18 1 0 99 0 0

Container: container_1398974791337_0055_01_000001
===
LogType: stderr
LogLength: 297
Log Contents:
client.RMProxy: Connecting to ResourceManager at /0.0.0.0:8030

LogType: stdout
LogLength: 603
Log Contents:
registerApplicationMaster: pending
registerApplicationMaster: complete
adding container ask:Capability[<memory:128, vCores:1>]Priority[0]
Launching container Container: [
ContainerId: container_1398974791337_0055_01_000002,
NodeId: localhost.localdomain:40339,
NodeHttpAddress: localhost.localdomain:8042,
Resource: <memory:1024, vCores:1>,
Priority: 0, Token: Token ...]

Completed container container_id {
app_attempt_id { application_id {
id: 55 cluster_timestamp: 1398974791337 }
attemptId: 1 } id: 2 }

state: C_COMPLETE diagnostics: ""
exit_status: 0

The ApplicationMaster directed the container standard output to the stdout file, and
you can see the output of the vmstat command in that file.

Accessing logs when containers fail to start
It’s likely that during the development of your YARN application, either the
ApplicationMaster or one of your containers will fail to launch due to missing
resources or errors in the startup command. Depending on where the failure occurs,
your container logs will have the error related to startup or you’ll need to examine
the NodeManager logs if the process failed to start outright.

The output of the
vmstat container

The ApplicationMaster
output

440 CHAPTER 10 Writing a YARN application

Retaining localized and log directories
The yarn.nodemanager.delete.debug-delay-sec configuration property controls how
long the localized and log directories for the application are kept around. The
localized directory contains the command executed by the NodeManager to launch
containers (both the ApplicationMaster and the application containers), as well
as any JARs and other localized resources that were specified by the application for
the container.

 It’s recommended that you set this property to a value that gives you enough time
to diagnose failures. But don’t set this value too high (say, in the order of days) as this
could create pressure on your storage.

 An alternative to hunting down ApplicationMaster startup problems is to run an
unmanaged ApplicationMaster, which is covered in the next technique.

TECHNIQUE 104 Debugging using an unmanaged application master

Debugging a YARN ApplicationMaster is a challenge, as it’s launched on a remote
node and requires you to pull logs from that node to troubleshoot your code. Applica-
tionMasters that are launched by the ResourceManager in this way are called managed
ApplicationMasters, as shown in figure 10.8.

 YARN also supports the notion of an unmanaged ApplicationMaster, where the Appli-
cationMaster is launched on a local node, as seen in figure 10.9. Issues with an Appli-
cationMaster are easier to diagnose when it’s running on the local host.

Slave node

Client node

Slave node

YARN client

ResourceManager

NodeManager

ApplicationMaster

NodeManager

Container "vmstat"

You implement a YARN client,
which talks to the ResourceManager

to start the ApplicationMaster.

The ApplicationMaster runs as
a container in the cluster. It
is created and managed by

the ResourceManager.

Figure 10.8 A managed ApplicationMaster

441TECHNIQUE 104 Debugging using an unmanaged application master

In this section you’ll discover how to run an unmanaged ApplicationMaster and learn
how they can be used by projects.

■ Problem
You want to run a local instance of an ApplicationMaster.

■ Solution
Run an unmanaged ApplicationMaster.

■ Discussion
YARN comes bundled with an application called the UnmanagedAMLauncher, which
launches an unmanaged ApplicationMaster. An unmanaged ApplicationMaster is one
that is not launched by the ResourceManager. Instead, the UnmanagedAMLauncher liaises
with the ResourceManager to create a new application, but instead of issuing a submit-
Application call to the ResourceManager (as is the case with managed Application-
Masters), the UnmanagedAMLauncher starts the process.

 When using the UnmanagedAMLauncher, you don’t have to define a YARN client, so all
you need to provide are the details required to launch your ApplicationMaster. The
following example shows how you can execute the ApplicationMaster that you wrote
in the previous techniques:

$ hadoop jar $HADOOP_YARN_HOME/share/hadoop/yarn/
hadoop-yarn-applications-unmanaged-am-launcher-2.2.0.jar \

Client \
-classpath $HIP_HOME/hip-2.0.0.jar \

Slave node

Client node

Slave node

UnmanagedAMLauncher

ResourceManager

NodeManager

ApplicationMaster

NodeManager

Container "vmstat"

The ApplicationMaster talks to the
ResourceManager and NodeManagers as
normal to create and launch containers.

The UnmanagedAMLauncher (bundled with Hadoop) asks the
ResourceManager to create an unmanaged ApplicationMaster,
and then launches the ApplicationMaster on the local host.

ApplicationMaster

Figure 10.9 An unmanaged ApplicationMaster

The classpath containing
your YARN application

442 CHAPTER 10 Writing a YARN application

-cmd "java hip.ch10.dstat.ApplicationMaster"

client.RMProxy: Connecting to ResourceManager at /0.0.0.0:8032
UnmanagedAMLauncher: Setting up application submission context for ASM
UnmanagedAMLauncher: Setting unmanaged AM
UnmanagedAMLauncher: Submitting application to ASM
impl.YarnClientImpl: Submitted application

application_1398974791337_0065 to ResourceManager at /0.0.0.0:8032
UnmanagedAMLauncher: Got application report from ASM for, appId=65, ...
UnmanagedAMLauncher: Launching application with id:

appattempt_1398974791337_0065_000001
client.RMProxy: Connecting to ResourceManager at /0.0.0.0:8030
registerApplicationMaster: pending
registerApplicationMaster: complete
adding container ask:Capability[<memory:128, vCores:1>]Priority[0]
Launching container Container:
[ContainerId: container_1398974791337_0065_01_000001, ...]

ContainerManagementProtocolProxy: Opening proxy : localhost:40339
Completed container ... exit_status: 0
UnmanagedAMLauncher: AM process exited with value: 0
UnmanagedAMLauncher: App ended with state: FINISHED
UnmanagedAMLauncher: Application has completed successfully.

The UnmanagedAMLauncher captures the ApplicationMaster’s standard output and stan-
dard error and outputs them to its own standard output. This is useful in situations
where your ApplicationMaster is failing to start, in which case the error will be seen in
the output of the preceding command, as opposed to being tucked away in the logs of
the NodeManager.

 Figure 10.10 shows the interactions between the UnmanagedAMLauncher and the
ResourceManager.

The command to launch
the ApplicationMaster

Client node

ApplicationMaster

UnmanagedAMLauncher ResourceManager

NodeManager

When the ApplicationMaster starts, it registers
itself with the ResourceManager and starts

talking with the ResourceManager and
NodeManager for container management.

Poll until application
has completed.

3

Create an unmanaged
application.

1

Launch process
on local host

2

Figure 10.10 The unmanaged launcher
working with the ResourceManager to
launch an unmanaged ApplicationMaster

443Additional YARN application capabilities

There’s nothing stopping you from writing your own unmanaged ApplicationMaster
launcher if the capabilities in UnmanagedAMLauncher are too limited. The following code
shows the key step that the UnmanagedAMLauncher takes to tell the ResourceManager that
the ApplicationMaster is unmanaged:

ApplicationSubmissionContext appContext = ...;

appContext.setUnmanagedAM(true);

Unmanaged ApplicationMasters are useful as they provide local access to an Applica-
tionMaster, which can ease your debugging and profiling efforts.

 Next, let’s look at some more advanced capabilities that you may want to support
in your YARN applications.

10.3 Additional YARN application capabilities
So far in this chapter, we’ve looked at a bare-bones YARN application that launches a
Linux command in a container. However, if you’re developing a YARN application, it’s
likely that you’ll need to support more sophisticated capabilities. This section high-
lights some features that you may need to support in your application.

10.3.1 RPC between components

If you have a long-running application, you may want to allow clients to communicate
with the ApplicationMaster. Your ApplicationMaster may also need to be able to com-
municate with containers, and vice versa. An example could be a SQL-on-Hadoop
application that allows clients to send queries to the ApplicationMaster, and whose
ApplicationMaster then coordinates containers to perform the work.

 YARN doesn’t provide you with any plumbing here, so you need to pick an RPC pro-
tocol and supporting library. You have a few options:

■ Thrift or Avro—Both of these provide an interface definition language (IDL)
where you can define endpoints and messages, which are compiled into con-
crete client and service code that can be easily incorporated into your code.
The advantages of these libraries are code generation and schema evolution,
allowing your services to evolve over time.

■ Protocol Buffers—Google didn’t open source the RPC layer, so you’ll need to roll
your own. You can use REST over HTTP for your transport and easily implement
it all using Jersey’s annotations.

■ Hadoop’s RPC—Behind the scenes, this uses Protocol Buffers.

Because YARN doesn’t support communication between your components, how can
you know which hosts or ports your services are listening on?

444 CHAPTER 10 Writing a YARN application

10.3.2 Service discovery

YARN can schedule multiple containers on the same node, so hard-wiring the listening
port for any service in your container or ApplicationMaster isn’t ideal. Instead, you
can pick one of the following strategies:

■ If your ApplicationMaster has a built-in service, pass the launched containers
the ApplicationMaster host and port details, and have containers call back to
the ApplicationMaster with their port number.

■ Use ZooKeeper as a service registry by having containers publish their host and
port details to ZooKeeper, and have clients look up services in ZooKeeper. This
is the strategy that Apache Twill, covered later in this chapter, employs.

Next up is a look at maintaining state in your application so that you can resume from
a well-known state in the event of an application restart.

10.3.3 Checkpointing application progress

If your application is long-running and maintains and builds state during its execu-
tion, you may need to periodically persist that state so that in the event of a container
restart, a container or ApplicationMaster can pick up where it left off. Containers can
be killed for a variety of reasons, including making resources available for other users
and applications. ApplicationMasters going down are typically the result of an error in
your application logic, the node going down, or a cluster restart.

 Two services you can use for checkpointing are HDFS and ZooKeeper. Apache
Twill, an abstracted framework for writing YARN applications, uses ZooKeeper to
checkpoint container and ApplicationMaster state.

 One area to be aware of with checkpointing is handling split-brain situations.

10.3.4 Avoiding split-brain

It’s possible that a networking problem will result in the ResourceManager believing
that an ApplicationMaster is down and launching a new ApplicationMaster. This can
lead to an undesired outcome if your application produces outputs or intermediary
data in a way that’s not idempotent.

 This was a problem in the early MapReduce YARN application, where task- and job-
level commits could be executed more than once, which was not ideal for commit
actions that couldn’t be repeatedly executed.11 The solution was to introduce a delay in
committing, and to use the ResourceManager heartbeat to verify that the Application-
Master was still valid. Refer to the JIRA ticket for more details.

10.3.5 Long-running applications

Some YARN applications, such as Impala, are long-running, and as a result have
requirements that differ from applications that are more transient in nature. If your

11 See the JIRA ticket titled “MR AM can get in a split brain situation” at https://issues.apache.org/jira/browse/
MAPREDUCE-4832.

https://issues.apache.org/jira/browse/MAPREDUCE-4832
https://issues.apache.org/jira/browse/MAPREDUCE-4832

445YARN programming abstractions

application is also long-lived, you should be aware of the following points, some of
which are currently being worked on in the community:

■ Gang scheduling, which allows a large number of containers to be scheduled in
a short period of time (YARN-624).

■ Long-lived container support, allowing containers to indicate the fact that
they’re long-lived so that the scheduler can make better allocation and manage-
ment decisions (YARN-1039).

■ Anti-affinity settings, so that applications can specify that multiple containers
aren’t allocated on the same node (YARN-397).

■ Renewal of delegation tokens when running on a secure Hadoop cluster.
Kerberos tokens expire, and if they’re not renewed, you won’t be able to access
services such as HDFS (YARN-941).

There’s an umbrella JIRA ticket that contains more details: https://issues.apache.org/
jira/browse/YARN-896.

 Even though Impala is a YARN application, it uses unmanaged containers and its
own gang-scheduling mechanism to work around some of the issues with long-
running applications. As a result, Cloudera created a project called Llama (http://
cloudera.github.io/llama/), which mediates resource management between Impala
and YARN to provide these features. Llama may be worth evaluating for your needs.

10.3.6 Security

YARN applications running on secure Hadoop clusters need to pass tokens to the
ResourceManager that will be passed on to your application. These tokens are
required to access services such as HDFS. Twill, detailed in the next section, provides
support for secure Hadoop clusters.

 This concludes our overview of additional capabilities that you may need in your
YARN applications. Next up is a look at YARN programming abstractions, some of
which implement the capabilities discussed in this section.

10.4 YARN programming abstractions
YARN exposes a low-level API and has a steep learning curve, especially if you need to
support many of the features that were outlined in the previous section. There are a
number of abstractions on top of YARN that simplify the development of YARN applica-
tions and help you focus on implementing your application logic without worrying
about the mechanics of YARN. Some of these frameworks, such as Twill, also support
more advanced capabilities, such as shipping logs to the YARN client and service dis-
covery via ZooKeeper.

 In this section I’ll provide a brief summary of three such abstractions: Apache
Twill, Spring, and REEF.

http://cloudera.github.io/llama/
http://cloudera.github.io/llama/
https://issues.apache.org/jira/browse/YARN-896
https://issues.apache.org/jira/browse/YARN-896

446 CHAPTER 10 Writing a YARN application

10.4.1 Twill

Apache Twill (http://twill.incubator.apache.org/), formerly known as Weave, not
only provides a rich and high-level programming abstraction, but also supports many
features that you’ll likely require in your YARN application, such as service discovery,
log shipping, and resiliency to failure.

 The following code shows an example YARN client written in Twill. You’ll note that
construction of the YarnTwillRunnerService requires a ZooKeeper connection URL,
which is used to register the YARN application. Twill also supports shipping logs to the
client (via Kafka), and here you’re adding a log handler to write the container and
ApplicationMaster logs to standard output:

YarnConfiguration config = new YarnConfiguration();

YarnTwillRunnerService runnerService = new YarnTwillRunnerService(
new YarnConfiguration(),
"127.0.0.1:2181/twill");

runnerService.startAndWait();

TwillController controller =
runnerService.prepare(new DStats())
.addLogHandler(new PrinterLogHandler(

new PrintWriter(System.out)))
.start();

final CountDownLatch stopLatch = new CountDownLatch(1);
controller.addListener(new ServiceListenerAdapter() {

@Override
public void terminated(Service.State from) {
stopLatch.countDown();

}

@Override
public void failed(Service.State from, Throwable failure) {
stopLatch.countDown();

}
}, Threads.SAME_THREAD_EXECUTOR);

stopLatch.await();

Twill’s programming model uses well-known Java types such as Runnable to model
container execution. The following code shows a container that launches the vmstat
utility:

public final class DStats extends AbstractTwillRunnable {

@Override
public void run() {
try {

Create the client service
and configure it with the

ZooKeeper URL.

The controller is
used to configure
and manage a
YARN application.

Specify the Runnable that will
be executed in a container.

Write out the
container logs to
standard output.

Register a callback handler
to capture failure and
termination messages.

AbstractTwillRunnable extends Runnable and provides
additional capabilities, such as receiving messages from

the YARN client or ApplicationMaster.

Implement the Runnable.run method,
which is executed within a container.

447YARN programming abstractions

Process process = new ProcessBuilder("vmstat")
.redirectErrorStream(true).start();

BufferedReader reader = new BufferedReader(
new InputStreamReader(process.getInputStream(),

Charsets.US_ASCII));
try {
String line = reader.readLine();
while (line != null) {
LOG.info(line);
line = reader.readLine();

}
} finally {
reader.close();

}
} catch (IOException e) {
LOG.error("Fail to execute command ", e);

}
}

}

Figure 10.11 shows how Twill uses ZooKeeper and Kafka to support features such as
log shipping and service discovery.

Launch a vmstat process.

Capture and log the
vmstat standard output.

Twill
container

ZooKeeper is used for service
discovery, allowing a Twill client
to discover existing application

instances.

Twill ApplicationMaster

Kafka

Container logs are streamed
back to the client via Kafka

in real time.

ZooKeeper

Twill
container

Twill
client

HTTP

The ApplicationMaster has an
HTTP endpoint for access
to container information,
including resource details.

ZooKeeper is also used to maintain
ApplicationMaster and container
state to allow the application to
be restarted and resume from

a previously good state.

ZooKeeper can also be used to send
commands to the ApplicationMaster and

containers from the client.

Figure 10.11 Twill features

448 CHAPTER 10 Writing a YARN application

You can get a detailed overview of Twill from Terence Yim’s “Harnessing the Power
of YARN with Apache Twill” (http://www.slideshare.net/TerenceYim1/twill-apache-
con-2014?ref=). Yim also has a couple of blog entries on programming with Twill
(formerly Weave).12

10.4.2 Spring

The 2.x release of Spring for Hadoop (http://projects.spring.io/spring-hadoop/)
brings support for simplifying YARN development. It differs from Twill in that it’s
focused on abstracting the YARN API and not on providing application features; Twill,
in contrast, offers log shipping and service discovers. But it’s very possible that you
may not want the added complexity that these features bring to Twill and instead want
more control over your YARN application. If so, this may make Spring for Hadoop a
better candidate.

 Spring for Hadoop provides default implementations of a YARN client, Applica-
tionMaster, and container that can be overridden to provide application-specific func-
tionality. You can actually write a YARN application without writing any code! The
following example is from the Spring Hadoop samples, showing how you can config-
ure a YARN application to run a remote command.13 This first snippet shows the appli-
cation context, and configures the HDFS, YARN, and application JARs:

<beans ...>

<context:property-placeholder location="hadoop.properties"
system-properties-mode="OVERRIDE"/>

<yarn:configuration>
fs.defaultFS=${hd.fs}
yarn.resourcemanager.address=${hd.rm}
fs.hdfs.impl=org.apache.hadoop.hdfs.DistributedFileSystem

</yarn:configuration>

<yarn:localresources>
<yarn:hdfs path="/app/simple-command/*.jar"/>

<yarn:hdfs path="/lib/*.jar"/>
</yarn:localresources>

<yarn:environment>
<yarn:classpath use-yarn-app-classpath="true"/>

</yarn:environment>

<util:properties id="arguments">
<prop key="container-count">4</prop>

</util:properties>

12 Terence Yim, “Programming with Weave, Part I,” http://blog.continuuity.com/post/66694376303/
programming-with-weave-part-i; “Programming with Apache Twill, Part II,” http://blog.continuuity.com/
post/73969347586/programming-with-apache-twill-part-ii.

13 “Spring Yarn Simple Command Example,” https://github.com/spring-projects/spring-hadoop-samples/
tree/master/yarn/yarn/simple-command.

http://www.slideshare.net/TerenceYim1/twill-apache-con-2014?ref=
http://www.slideshare.net/TerenceYim1/twill-apache-con-2014?ref=
http://blog.continuuity.com/post/66694376303/programming-with-weave-part-i
http://blog.continuuity.com/post/66694376303/programming-with-weave-part-i
http://blog.continuuity.com/post/73969347586/programming-with-apache-twill-part-ii
http://blog.continuuity.com/post/73969347586/programming-with-apache-twill-part-ii
https://github.com/spring-projects/spring-hadoop-samples/tree/master/yarn/yarn/simple-command
https://github.com/spring-projects/spring-hadoop-samples/tree/master/yarn/yarn/simple-command

449YARN programming abstractions

<yarn:client app-name="simple-command">
<yarn:master-runner arguments="arguments"/>

</yarn:client>
</beans>

The following code defines the ApplicationMaster properties and tells it to run the
vmstat command:

<beans ...>

<context:property-placeholder location="hadoop.properties"/>

<bean id="taskScheduler" class="
org.springframework.scheduling.concurrent.ConcurrentTaskScheduler"/>
<bean id="taskExecutor" class="

org.springframework.core.task.SyncTaskExecutor"/>

<yarn:configuration>
fs.defaultFS=${SHDP_HD_FS}
yarn.resourcemanager.address=${SHDP_HD_RM}
yarn.resourcemanager.scheduler.address=${SHDP_HD_SCHEDULER}

</yarn:configuration>

<yarn:localresources>
<yarn:hdfs path="/app/simple-command/*.jar"/>
<yarn:hdfs path="/lib/*.jar"/>

</yarn:localresources>

<yarn:environment>
<yarn:classpath use-yarn-app-classpath="true" delimiter=":">
./*

</yarn:classpath>
</yarn:environment>

<yarn:master>
<yarn:container-allocator/>
<yarn:container-command>
<![CDATA[
vmstat
1><LOG_DIR>/Container.stdout
2><LOG_DIR>/Container.stderr
]]>
</yarn:container-command>

</yarn:master>

</beans>

The samples also include a look at how you can extend the client, ApplicationMaster,
and container.14

 You can find some sample Spring for Hadoop applications on GitHub (https://
github.com/spring-projects/spring-hadoop-samples). There’s also a wiki for the proj-
ect: https://github.com/spring-projects/spring-hadoop/wiki.

14 Example of extending the Spring YARN classes: “Spring Yarn Custom Application Master Service Example,”
https://github.com/spring-projects/spring-hadoop-samples/tree/master/yarn/yarn/custom-amservice.

https://github.com/spring-projects/spring-hadoop-samples/tree/master/yarn/yarn/custom-amservice
https://github.com/spring-projects/spring-hadoop-samples
https://github.com/spring-projects/spring-hadoop-samples
https://github.com/spring-projects/spring-hadoop/wiki

450 CHAPTER 10 Writing a YARN application

10.4.3 REEF

REEF is a framework from Microsoft that simplifies scalable, fault-tolerant runtime
environments for a range of computational models, including YARN and Mesos
(www.reef-project.org/; https://github.com/Microsoft-CISL/REEF). REEF has some
interesting capabilities, such as container reuse and data caching.

 You can find a REEF tutorial on GitHub: https://github.com/Microsoft-CISL/
REEF/wiki/How-to-download-and-compile-REEF.

10.4.4 Picking a YARN API abstraction

YARN abstractions are still in their early stages because YARN is a young technology.
This section provided a brief overview of three abstractions that you could use to hide
away some of the complexities of the YARN API. But which one should you pick for
your application?

■ Apache Twill looks the most promising, as it already encapsulates many of the
features that you’ll need in your application. It has picked best-of-breed tech-
nologies such as Kafka and ZooKeeper to support these features.

■ Spring for Hadoop may be a better fit if you’re developing a lightweight applica-
tion and you don’t want a dependency on Kafka or ZooKeeper.

■ REEF may be useful if you have some complex application requirements, such as
the need to run on multiple execution frameworks, or if you need to support
more complex container choreographies and state sharing across containers.

10.5 Chapter summary
This chapter showed you how to write a simple YARN application and then introduced
you to some of the more advanced capabilities that you may need in your YARN appli-
cations. It also looked at some YARN abstractions that make it easier to write your appli-
cations. You’re now all set to go out and start writing the next big YARN application.

 This concludes not only this chapter but the book as a whole! I hope you’ve
enjoyed the journey and along the way have picked up some tips and tricks that you
can employ in your Hadoop applications and environments. If you have any questions
about items covered in this book, please head on over to Manning’s forum dedicated
to this book and post a question.15

15 Manning forum for Hadoop in Practice: http://www.manning-sandbox.com/forum.jspa?forumID=901.

https://github.com/Microsoft-CISL/REEF
https://github.com/Microsoft-CISL/REEF/wiki/How-to-download-and-compile-REEF
www.reef-project.org/

451

appendix
Installing

 Hadoop and friends

This appendix contains instructions on how to install Hadoop and other tools that
are used in the book.

Getting started quickly with Hadoop The quickest way to get up and run-
ning with Hadoop is to download a preinstalled virtual machine from one
of the Hadoop vendors. Following is a list of the popular VMs:

■ Cloudera Quickstart VM—http://www.cloudera.com/content/cloudera-content/
cloudera-docs/DemoVMs/Cloudera-QuickStart-VM/cloudera_quickstart_vm.html

■ Hortonworks Sandbox—http://hortonworks.com/products/hortonworks-
sandbox/

■ MapR Sandbox for Hadoop—http://doc.mapr.com/display/MapR/MapR
+Sandbox+for+Hadoop

A.1 Code for the book
Before we get to the instructions for installing Hadoop, let’s get you set up with the
code that accompanies this book. The code is hosted on GitHub at https://
github.com/alexholmes/hiped2. To get you up and running quickly, there are pre-
packaged tarballs that don’t require you to build the code—just install and go.

Downloading
First you’ll need to download the most recent release of the code from https://
github.com/alexholmes/hiped2/releases.

http://www.cloudera.com/content/cloudera-content/cloudera-docs/DemoVMs/Cloudera-QuickStart-VM/cloudera_quickstart_vm.html
http://www.cloudera.com/content/cloudera-content/cloudera-docs/DemoVMs/Cloudera-QuickStart-VM/cloudera_quickstart_vm.html
http://hortonworks.com/products/hortonworks-sandbox/
http://hortonworks.com/products/hortonworks-sandbox/
http://doc.mapr.com/display/MapR/MapR+Sandbox+for+Hadoop
http://doc.mapr.com/display/MapR/MapR+Sandbox+for+Hadoop
https://github.com/alexholmes/hiped2
https://github.com/alexholmes/hiped2
https://github.com/alexholmes/hiped2/releases
https://github.com/alexholmes/hiped2/releases

452 APPENDIX Installing Hadoop and friends

Installing
The second step is to unpackage the tarball into a directory of your choosing. For
example, the following untars the code into /usr/local, the same directory where
you’ll install Hadoop:

$ cd /usr/local
$ sudo tar -xzvf <download directory>/hip-<version>-package.tar.gz

Adding the home directory to your path
All the examples in the book assume that the home directory for the code is in your
path. The methods for doing this differ by operating system and shell. If you’re on
Linux using Bash, then the following should work (use of the single quotes for the sec-
ond command is required to avoid variable substitution):

$ echo "export HIP_HOME=/usr/local/hip-<version>" >> ~/.bash_profile
$ echo 'export PATH=${PATH}:${HIP_HOME}/bin' >> ~/.bash_profile

Running an example job
You can run the following commands to test your installation. This assumes that you
have a running Hadoop setup (if you don’t, please jump to section A.3):

create two input files in HDFS
$ hadoop fs -mkdir -p hip/input
$ echo "cat sat mat" | hadoop fs -put - hip/input/1.txt
$ echo "dog lay mat" | hadoop fs -put - hip/input/2.txt

run the inverted index example
$ hip hip.ch1.InvertedIndexJob --input hip/input --output hip/output

examine the results in HDFS
$ hadoop fs -cat hip/output/part*

Downloading the sources and building
There are some techniques (such as Avro code generation) that require access to the
full sources. First, check out the sources using git:

$ git clone git@github.com:alexholmes/hiped2.git

Set up your environment so that some techniques know where the source is installed:

$ echo "export HIP_SRC=<installation dir>/hiped2" >> ~/.bash_profile

You can build the project using Maven:

$ cd hiped2
$ mvn clean validate package

This generates a target/hip-<version>-package.tar.gz file, which is the same file that’s
uploaded to GitHub when releases are made.

453Hadoop

A.2 Recommended Java versions
The Hadoop project keeps a list of recommended Java versions that have been proven
to work well with Hadoop in production. For details, take a look at “Hadoop Java Ver-
sions” on the Hadoop Wiki at http://wiki.apache.org/hadoop/HadoopJavaVersions.

A.3 Hadoop
This section covers installing, configuring, and running the Apache distribution of
Hadoop. Please refer to distribution-specific instructions if you’re working with a dif-
ferent distribution of Hadoop.

Apache tarball installation

The following instructions are for users who want to install the tarball version of the
vanilla Apache Hadoop distribution. This is a a pseudo-distributed setup and not for a
multi-node cluster.1

 First you’ll need to download the tarball from the Apache downloads page at
http://hadoop.apache.org/common/releases.html#Download and extract the tar-
ball under /usr/local:

$ cd /usr/local
$ sudo tar -xzf <path-to-apache-tarball>

$ sudo ln -s hadoop-<version> hadoop

$ sudo chown -R <user>:<group> /usr/local/hadoop*
$ mkdir /usr/local/hadoop/tmp

Installation directory for users that don’t have root privileges If you don’t have
root permissions on your host, you can install Hadoop under a different
directory and substitute instances of /usr/local in the following instructions
with your directory name.

Configuration for pseudo-distributed mode for Hadoop 1 and earlier
The following instructions work for Hadoop version 1 and earlier. Skip to the next sec-
tion if you’re working with Hadoop 2.

 Edit the file /usr/local/hadoop/conf/core-site.xml and make sure it looks like
the following:

<?xml version="1.0"?>
<?xml-stylesheet type="text/xsl" href="configuration.xsl"?>

<configuration>

<property>
<name>hadoop.tmp.dir</name>

1 Pseudo-distributed mode is when you have all the Hadoop components running on a single host.

454 APPENDIX Installing Hadoop and friends

<value>/usr/local/hadoop/tmp</value>
</property>

<property>
<name>fs.default.name</name>
<value>hdfs://localhost:8020</value>

</property>

</configuration>

Then edit the file /usr/local/hadoop/conf/hdfs-site.xml and make sure it looks like
the following:

<?xml version="1.0"?>
<?xml-stylesheet type="text/xsl" href="configuration.xsl"?>

<configuration>
<property>
<name>dfs.replication</name>
<value>1</value>

</property>
<property>

<!-- specify this so that running 'hadoop namenode -format'
formats the right dir -->

<name>dfs.name.dir</name>
<value>/usr/local/hadoop/cache/hadoop/dfs/name</value>

</property>
</configuration>

Finally, edit the file /usr/local/hadoop/conf/mapred-site.xml and make sure it looks like
the following (you may first need to copy mapred-site.xml.template to mapred-site.xml):

<?xml version="1.0"?>
<?xml-stylesheet type="text/xsl" href="configuration.xsl"?>

<configuration>
<property>
<name>mapred.job.tracker</name>
<value>localhost:8021</value>

</property>
</configuration>

Configuration for pseudo-distributed mode for Hadoop 2
The following instructions work for Hadoop 2. See the previous section if you’re work-
ing with Hadoop version 1 and earlier.

 Edit the file /usr/local/hadoop/etc/hadoop/core-site.xml and make sure it looks
like the following:

<?xml version="1.0"?>
<?xml-stylesheet type="text/xsl" href="configuration.xsl"?>

<configuration>

<property>

455Hadoop

<name>hadoop.tmp.dir</name>
<value>/usr/local/hadoop/tmp</value>

</property>

<property>
<name>fs.default.name</name>
<value>hdfs://localhost:8020</value>

</property>

</configuration>

Then edit the file /usr/local/hadoop/etc/hadoop/hdfs-site.xml and make sure it
looks like the following:

<?xml version="1.0"?>
<?xml-stylesheet type="text/xsl" href="configuration.xsl"?>

<configuration>
<property>
<name>dfs.replication</name>
<value>1</value>

</property>
</configuration>

Next, edit the file /usr/local/hadoop/etc/hadoop/mapred-site.xml and make sure it
looks like the following:

<?xml version="1.0"?>
<?xml-stylesheet type="text/xsl" href="configuration.xsl"?>

<configuration>
<property>
<name>mapreduce.framework.name</name>
<value>yarn</value>

</property>
</configuration>

Finally, edit the file /usr/local/hadoop/etc/hadoop/yarn-site.xml and make sure it
looks like the following:

<?xml version="1.0"?>
<?xml-stylesheet type="text/xsl" href="configuration.xsl"?>

<configuration>
<property>
<name>yarn.nodemanager.aux-services</name>
<value>mapreduce_shuffle</value>
<description>Shuffle service that needs to be set for

Map Reduce to run.</description>
</property>
<property>
<name>yarn.log-aggregation-enable</name>
<value>true</value>

</property>
<property>

456 APPENDIX Installing Hadoop and friends

<name>yarn.log-aggregation.retain-seconds</name>
<value>2592000</value>

</property>
<property>
<name>yarn.log.server.url</name>
<value>http://0.0.0.0:19888/jobhistory/logs/</value>

</property>
<property>
<name>yarn.nodemanager.delete.debug-delay-sec</name>
<value>-1</value>
<description>Amount of time in seconds to wait before

deleting container resources.</description>
</property>

</configuration>

Set up SSH
Hadoop uses Secure Shell (SSH) to remotely launch processes such as the Data-
Node and TaskTracker, even when everything is running on a single node in pseudo-
distributed mode. If you don’t already have an SSH key pair, create one with the fol-
lowing command:

$ ssh-keygen -b 2048 -t rsa

You’ll need to copy the .ssh/id_rsa file to the authorized_keys file:

$ cp ~/.ssh/id_rsa.pub ~/.ssh/authorized_keys

You’ll also need an SSH agent running so that you aren’t prompted to enter your pass-
word a bazillion times when starting and stopping Hadoop. Different operating sys-
tems have different ways of running an SSH agent, and there are details online for
CentOS and other Red Hat derivatives2 and for OS X.3 Google is your friend if you’re
running on a different system.

 To verify that the agent is running and has your keys loaded, try opening an SSH
connection to the local system:

$ ssh 127.0.0.1

If you’re prompted for a password, the agent’s not running or doesn’t have your keys
loaded.

Java
You need a current version of Java (1.6 or newer) installed on your system. You’ll need
to ensure that the system path includes the binary directory of your Java installation.
Alternatively, you can edit /usr/local/hadoop/conf/hadoop-env.sh, uncomment the
JAVA_HOME line, and update the value with the location of your Java installation.

2 See the Red Hat Deployment Guide section on “Configuring ssh-agent” at www.centos.org/docs/5/html/
5.2/Deployment_Guide/s3-openssh-config-ssh-agent.html.

3 See “Using SSH Agent With Mac OS X Leopard” at www-uxsup.csx.cam.ac.uk/~aia21/osx/leopard-ssh.html.

www.centos.org/docs/5/html/5.2/Deployment_Guide/s3-openssh-config-ssh-agent.html
www.centos.org/docs/5/html/5.2/Deployment_Guide/s3-openssh-config-ssh-agent.html
www-uxsup.csx.cam.ac.uk/~aia21/osx/leopard-ssh.html

457Hadoop

Environment settings
For convenience, it’s recommended that you add the Hadoop binary directory to your
path. The following code shows what you can add to the bottom of your Bash shell
profile file in ~/.bash_profile (assuming you’re running Bash):

HADOOP_HOME=/usr/local/hadoop
PATH=$PATH:$HADOOP_HOME/bin:$HADOOP_HOME/sbin
export PATH

Format HDFS
Next you need to format HDFS. The rest of the commands in this section assume that
the Hadoop binary directory exists in your path, as per the preceding instructions. On
Hadoop 1 and earlier, type

$ hadoop namenode -format

On Hadoop versions 2 and newer, type

$ hdfs namenode -format

After HDFS has been formatted, you’re ready to start Hadoop.

Starting Hadoop 1 and earlier
A single command can be used to start Hadoop on versions 1 and earlier:

$ start-all.sh

After running the start script, use the jps Java utility to check that all the processes are
running. You should see the following output (with the exception of the process IDs,
which will be different):

$ jps
23836 JobTracker
23475 NameNode
23982 TaskTracker
23619 DataNode
24024 Jps
23756 SecondaryNameNode

If any of these processes aren’t running, check the logs directory (/usr/local/
hadoop/logs) to see why the processes didn’t start correctly. Each of the preceding
processes has two output files that can be identified by name and should be checked
for errors.

 The most common error is that the HDFS formatting step, which I showed earlier,
was skipped.

Starting Hadoop 2
The following commands are required to start Hadoop version 2:

458 APPENDIX Installing Hadoop and friends

$ yarn-daemon.sh start resourcemanager
$ yarn-daemon.sh start nodemanager
$ hadoop-daemon.sh start namenode
$ hadoop-daemon.sh start datanode
$ mr-jobhistory-daemon.sh start historyserver

After running the start script, use the jps Java utility to check that all the processes are
running. You should see the output that follows, although the ordering and process
IDs will differ:

$ jps
32542 NameNode
1085 Jps
32131 ResourceManager
32613 DataNode
32358 NodeManager
1030 JobHistoryServer

If any of these processes aren’t running, check the logs directory (/usr/local/
hadoop/logs) to see why the processes didn’t start correctly. Each of the preceding
processes has two output files that can be identified by name and should be checked
for errors. The most common error is that the HDFS formatting step, which I showed
earlier, was skipped.

Creating a home directory for your user on HDFS
Once Hadoop is up and running, the first thing you’ll want to do is create a home
directory for your user. If you’re running on Hadoop 1, the command is

$ hadoop fs -mkdir /user/<your-linux-username>

On Hadoop 2, you’ll run

$ hdfs dfs -mkdir -p /user/<your-linux-username>

Verifying the installation
The following commands can be used to test your Hadoop installation. The first two
commands create a directory in HDFS and create a file in HDFS:

$ hadoop fs -mkdir /tmp
$ echo "the cat sat on the mat" | hadoop fs -put - /tmp/input.txt

Next you want to run a word-count MapReduce job. On Hadoop 1 and earlier, run the
following:

$ hadoop jar /usr/local/hadoop/*-examples*.jar wordcount \
/tmp/input.txt /tmp/output

On Hadoop 2, run the following:

$ hadoop jar /usr/local/hadoop/share/hadoop/mapreduce/*-examples*.jar \
wordcount /tmp/input.txt /tmp/output

459Hadoop

Examine and verify the MapReduce job outputs on HDFS (the outputs will differ
based on the contents of the config files that you used for the job inputs):

$ hadoop fs -cat /tmp/output/part*
at 1
mat 1
on 1
sat 1
the 2

Stopping Hadoop 1
To stop Hadoop 1, use the following command:

$ stop-all.sh

Stopping Hadoop 2
To stop Hadoop 2, use the following commands:

$ mr-jobhistory-daemon.sh stop historyserver
$ hadoop-daemon.sh stop datanode
$ hadoop-daemon.sh stop namenode
$ yarn-daemon.sh stop nodemanager
$ yarn-daemon.sh stop resourcemanager

Just as with starting, the jps command can be used to verify that all the Hadoop pro-
cesses have stopped.

Hadoop 1.x UI ports

There are a number of web applications in Hadoop. Table A.1 lists them, along with
the ports they run on and their URLs (assuming they're running on the local host, as is
the case if you have a pseudo-distributed installation running).

Table A.1 Hadoop 1.x web applications and ports

Component Default port Config parameter Local URL

MapReduce
JobTracker

50030 mapred.job.tracker.http.address http://127.0.0.1:50030/

MapReduce
TaskTracker

50060 mapred.task.tracker.http.address http://127.0.0.1:50060/

HDFS
NameNode

50070 dfs.http.address http://127.0.0.1:50070/

HDFS
DataNode

50075 dfs.datanode.http.address http://127.0.0.1:50075/

HDFS Secondary-
NameNode

50090 dfs.secondary.http.address http://127.0.0.1:50090/

HDFS Backup and
Checkpoint Node

50105 dfs.backup.http.address http://127.0.0.1:50105/

460 APPENDIX Installing Hadoop and friends

Each of these URLs supports the following common paths:

■ /logs—This shows a listing of all the files under hadoop.log.dir. By default, this
is under $HADOOP_HOME/logs on each Hadoop node.

■ /logLevel—This can be used to view and set the logging levels for Java packages.
■ /metrics—This shows JVM and component-level statistics. It’s available in

Hadoop 0.21 and newer (not in 1.0, 0.20.x, or earlier).
■ /stacks—This shows a stack dump of all the current Java threads in the daemon.

Hadoop 2.x UI ports

There are a number of web applications in Hadoop. Table A.2 lists them, including
the ports that they run on and their URLs (assuming they’re running on the local
host, as is the case if you have a pseudo-distributed installation running).

A.4 Flume
Flume is a log collection and distribution system that can transport data across a large
number of hosts into HDFS. It’s an Apache project originally developed by Cloudera.

 Chapter 5 contains a section on Flume and how it can be used.

Getting more information

Table A.3 lists some useful resources to help you become more familiar with Flume.

Table A.2 Hadoop 2.x web applications and ports

Component Default port Config parameter Local URL

YARN Resource-
Manager

8088 yarn.resourcemanager.webapp
.address

http://localhost:8088/cluster

YARN Node-
Manager

8042 yarn.nodemanager.webapp
.address

http://localhost:8042/node

MapReduce
Job History

19888 mapreduce.jobhistory.webapp
.address

http://localhost:19888/jobhistory

HDFS Name-
Node

50070 dfs.http.address http://127.0.0.1:50070/

HDFS DataNode 50075 dfs.datanode.http.address http://127.0.0.1:50075/

Table A.3 Useful resources

Resource URL

Flume main page http://flume.apache.org/

Flume user guide http://flume.apache.org/FlumeUserGuide.html

Flume Getting Started guide https://cwiki.apache.org/confluence/display/FLUME/Getting+Started

461Oozie

Installation on Apache Hadoop 1.x systems

Follow the Getting Started guide referenced in the resources.

Installation on Apache Hadoop 2.x systems

If you’re trying to get Flume 1.4 to work with Hadoop 2, follow the Getting Started
guide to install Flume. Next, you’ll need to remove the protobuf and guava JARs from
Flume’s lib directory because they conflict with the versions bundled with Hadoop 2:

$ mv ${flume_bin}/lib/{protobuf-java-2.4.1.jar,guava-10.0.1.jar} ~/

A.5 Oozie
Oozie is an Apache project that started life inside Yahoo. It’s a Hadoop workflow
engine that manages data processing activities.

Getting more information

Table A.4 lists some useful resources to help you become more familiar with Oozie.

Installation on Hadoop 1.x systems

Follow the Quick Start guide to install Oozie. The Oozie documentation has installa-
tion instructions.

 If you’re using Oozie 4.4.0 and targeting Hadoop 2.2.0, you’ll need to run the fol-
lowing commands to patch your Maven files and perform the build:

cd oozie-4.0.0/
find . -name pom.xml | xargs sed -ri 's/(2.2.0\-SNAPSHOT)/2.2.0/'
mvn -DskipTests=true -P hadoop-2 clean package assembly:single

Installation on Hadoop 2.x systems

Unfortunately Oozie 4.0.0 doesn’t play nicely with Hadoop 2. To get Oozie working
with Hadoop, you’ll first need to download the 4.0.0 tarball from the project page and
then unpackage it. Next, run the following command to change the Hadoop version
being targeted:

$ cd oozie-4.0.0/
$ find . -name pom.xml | xargs sed -ri 's/(2.2.0\-SNAPSHOT)/2.2.0/'

Table A.4 Useful resources

Resource URL

Oozie project page https://oozie.apache.org/

Oozie Quick Start https://oozie.apache.org/docs/4.0.0/DG_QuickStart.html

Additional Oozie resources https://oozie.apache.org/docs/4.0.0/index.html

https://oozie.apache.org/
https://oozie.apache.org/docs/4.0.0/DG_QuickStart.html
https://oozie.apache.org/docs/4.0.0/index.html

462 APPENDIX Installing Hadoop and friends

Now all you need to do is target the hadoop-2 profile in Maven:

$ mvn -DskipTests=true -P hadoop-2 clean package assembly:single

A.6 Sqoop
Sqoop is a tool for importing data from relational databases into Hadoop and vice
versa. It can support any JDBC-compliant database, and it also has native connectors
for efficient data transport to and from MySQL and PostgreSQL.

 Chapter 5 contains details on how imports and exports can be performed with Sqoop.

Getting more information

Table A.5 lists some useful resources to help you become more familiar with Sqoop.

Installation

Download the Sqoop tarball from the project page. Pick the version that matches with
your Hadoop installation and explode the tarball. The following instructions assume
that you’re installing under /usr/local:

$ sudo tar -xzf \
sqoop-<version>.bin.hadoop-<hadoop-version>.tar.gz \
-C /usr/local/

$ ln -s /usr/local/sqoop-<version> /usr/local/sqoop

Sqoop 2 This book currently covers Sqoop version 1. When selecting which
tarball to download, please note that version 1.99.x and newer are the
Sqoop 2 versions, so be sure to pick an older version.

If you’re planning on using Sqoop with MySQL, you’ll need to download the MySQL
JDBC driver tarball from http://dev.mysql.com/downloads/connector/j/, explode it
into a directory, and then copy the JAR file into the Sqoop lib directory:

$ tar -xzf mysql-connector-java-<version>.tar.gz
$ cd mysql-connector-java-<version>
$ sudo cp mysql-connector-java-<version>-bin.jar \
/usr/local/sqoop/lib

To run Sqoop, there are a few environment variables that you may need to set. They’re
listed in table A.6.

 The /usr/local/sqoop/bin directory contains the binaries for Sqoop. Chapter 5
contains a number of techniques that show how the binaries are used for imports and
exports.

Table A.5 Useful resources

Resource URL

Sqoop project page http://sqoop.apache.org/

Sqoop User Guide http://sqoop.apache.org/docs/1.4.4/SqoopUserGuide.html

463Kafka

A.7 HBase
HBase is a real-time, key/value, distributed, column-based database modeled after
Google’s BigTable.

Getting more information

Table A.7 lists some useful resources to help you become more familiar with HBase.

Installation

Follow the installation instructions in the Quick Start guide at https://
hbase.apache.org/book/quickstart.html.

A.8 Kafka
Kafka is a publish/subscribe messaging system built by LinkedIn.

Getting more information

Table A.8 lists some useful resources to help you become more familiar with Kafka.

Table A.6 Sqoop environment variables

Environment variable Description

JAVA_HOME The directory where Java is installed. If you have the Sun
JDK installed on Red Hat, this would be /usr/java/latest.

HADOOP_HOME The directory of your Hadoop installation.

HIVE_HOME Only required if you’re planning on using Hive with Sqoop.
Refers to the directory where Hive was installed.

HBASE_HOME Only required if you’re planning on using HBase with Sqoop.
Refers to the directory where HBase was installed.

Table A.7 Useful resources

Resource URL

Apache HBase project page http://hbase.apache.org/

Apache HBase Quick Start http://hbase.apache.org/book/quickstart.html

Apache HBase Reference Guide http://hbase.apache.org/book/book.html

Cloudera blog post on HBase Dos
and Don’ts

http://blog.cloudera.com/blog/2011/04/hbase-dos-and-donts/

Table A.8 Useful resources

Resource URL

Kafka project page http://kafka.apache.org/

Kafka documentation http://kafka.apache.org/documentation.html

Kafka Quick Start http://kafka.apache.org/08/quickstart.html

https://hbase.apache.org/book/quickstart.html
https://hbase.apache.org/book/quickstart.html

464 APPENDIX Installing Hadoop and friends

Installation

Follow the installation instructions in the Quick Start guide.

A.9 Camus
Camus is a tool for importing data in Kafka into Hadoop.

Getting more information

Table A.9 lists some useful resources to help you become more familiar with Camus.

Installation on Hadoop 1

Download the code from the 0.8 branch in GitHub, and run the following command
to build it:

$ mvn clean package

Installation on Hadoop 2

At the time of writing, the 0.8 version of Camus doesn’t support Hadoop 2. You have a
couple of options to get it working—if you’re just experimenting with Camus, you can
download a patched version of the code from my GitHub project. Alternatively, you
can patch the Maven build files.

Using my patched GitHub project
Download my cloned and patched version of Camus from GitHub and build it just as
you would the Hadoop 1 version:

$ wget https://github.com/alexholmes/camus/archive/camus-kafka-0.8.zip
$ unzip camus-kafka-0.8.zip
$ cd camus-camus-kafka-0.8
$ mvn clean package

Patching the Maven build files
If you want to patch the original Camus files, you can do that by taking a look at the
patch I applied to my own clone: https://mng.bz/Q8GV.

A.10 Avro
Avro is a data serialization system that provides features such as compression, schema
evolution, and code generation. It can be viewed as a more sophisticated version of a
SequenceFile, with additional features such as schema evolution.

Table A.9 Useful resources

Resource URL

Camus project page https://github.com/linkedin/camus

Camus Overview https://github.com/linkedin/camus/wiki/Camus-Overview

https://github.com/linkedin/camus
https://github.com/linkedin/camus/wiki/Camus-Overview
https://mng.bz/Q8GV

465Apache Thrift

 Chapter 3 contains details on how Avro can be used in MapReduce as well as with
basic input/output streams.

Getting more information

Table A.10 lists some useful resources to help you become more familiar with Avro.

Installation

Avro is a full-fledged Apache project, so you can download the binaries from the
downloads link on the Apache project page.

A.11 Apache Thrift
Apache Thrift is essentially Facebook’s version of Protocol Buffers. It offers very simi-
lar data-serialization and RPC capabilities. In this book, I use it with Elephant Bird to
support Thrift in MapReduce. Elephant Bird currently works with Thrift version 0.7.

Getting more information

Thrift documentation is lacking, something which the project page attests to. Table
A.11 lists some useful resources to help you become more familiar with Thrift.

Building Thrift 0.7

To build Thrift, download the 0.7 tarball and extract the contents. You may need to
install some Thrift dependencies:

$ sudo yum install automake libtool flex bison pkgconfig gcc-c++ \
boost-devel libevent-devel zlib-devel python-devel \
ruby-devel php53.x86_64 php53-devel.x86_64 openssl-devel

Table A.10 Useful resources

Resource URL

Avro project page http://avro.apache.org/

Avro issue tracking page https://issues.apache.org/jira/browse/AVRO

Cloudera blog about Avro use http://blog.cloudera.com/blog/2011/12/apache-avro-at-richrelevance/

CDH usage page for Avro http://www.cloudera.com/content/cloudera-content/cloudera-docs/
CDH5/5.0/CDH5-Installation-Guide/cdh5ig_avro_usage.html

Table A.11 Useful resources

Resource URL

Thrift project page http://thrift.apache.org/

Blog post with a Thrift tutorial http://bit.ly/vXpZ0z

http://www.cloudera.com/content/cloudera-content/cloudera-docs/CDH5/5.0/CDH5-Installation-Guide/cdh5ig_avro_usage.html
http://www.cloudera.com/content/cloudera-content/cloudera-docs/CDH5/5.0/CDH5-Installation-Guide/cdh5ig_avro_usage.html

466 APPENDIX Installing Hadoop and friends

Build and install the native and Java/Python libraries and binaries:

$./configure
$ make
$ make check
$ sudo make install

Build the Java library. This step requires Ant to be installed, instructions for which are
available in the Apache Ant Manual at http://ant.apache.org/manual/index.html:

$ cd lib/java
$ ant

Copy the Java JAR into Hadoop’s lib directory. The following instructions are for CDH:

replace the following path with your actual
Hadoop installation directory
#
the following is the CDH Hadoop home dir
#
export HADOOP_HOME=/usr/lib/hadoop

$ cp lib/java/libthrift.jar $HADOOP_HOME/lib/

A.12 Protocol Buffers
Protocol Buffers is Google’s data serialization and Remote Procedure Call (RPC)
library, which is used extensively at Google. In this book, we’ll use it in conjunction
with Elephant Bird and Rhipe. Elephant Bird requires version 2.3.0 of Protocol Buf-
fers (and won’t work with any other version), and Rhipe only works with Protocol
Buffers version 2.4.0 and newer.

Getting more information

Table A.12 lists some useful resources to help you become more familiar with Protocol
Buffers.

Building Protocol Buffers

To build Protocol Buffers, download the 2.3 or 2.4 (2.3 for Elephant Bird and 2.4 for
Rhipe) source tarball from http://code.google.com/p/protobuf/downloads and
extract the contents.

Table A.12 Useful resources

Resource URL

Protocol Buffers project page http://code.google.com/p/protobuf/

Protocol Buffers Developer
Guide

https://developers.google.com/protocol-buffers/docs/overview?csw=1

Protocol Buffers downloads
page, containing a link for
version 2.3.0 (required for
use with Elephant Bird)

http://code.google.com/p/protobuf/downloads/list

467Snappy

 You’ll need a C++ compiler, which can be installed on 64-bit RHEL systems with the
following command:

sudo yum install gcc-c++.x86_64

Build and install the native libraries and binaries:

$ cd protobuf-<version>/
$./configure
$ make
$ make check
$ sudo make install

Build the Java library:

$ cd java
$ mvn package install

Copy the Java JAR into Hadoop’s lib directory. The following instructions are for CDH:

replace the following path with your actual
Hadoop installation directory
#
the following is the CDH Hadoop home dir
#
export HADOOP_HOME=/usr/lib/hadoop

$ cp target/protobuf-java-2.3.0.jar $HADOOP_HOME/lib/

A.13 Snappy
Snappy is a native compression codec developed by Google that offers fast compres-
sion and decompression times. It can’t be split (as opposed to LZOP compression). In
the book’s code examples, which don’t require splittable compression, we’ll use
Snappy because of its time efficiency.

 Snappy is integrated into the Apache distribution of Hadoop since versions 1.0.2
and 2.

Getting more information

Table A.13 lists some useful resources to help you become more familiar with Snappy.

Table A.13 Useful resources

Resource URL

Google’s Snappy project page http://code.google.com/p/snappy/

Snappy integration with Hadoop http://code.google.com/p/hadoop-snappy/

468 APPENDIX Installing Hadoop and friends

A.14 LZOP
LZOP is a compression codec that can be used to support splittable compression in
MapReduce. Chapter 4 has a section dedicated to working with LZOP. In this section
we’ll cover how to build and set up your cluster to work with LZOP.

Getting more information

Table A.14 shows a useful resource to help you become more familiar with LZOP.

Building LZOP

The following steps walk you through the process of configuring LZOP compression.
Before you do this, there are a few things to consider:

■ It’s highly recommended that you build the libraries on the same hardware that
you have deployed in production.

■ All of the installation and configuration steps will need to be performed on any
client hosts that will be using LZOP, as well as all the DataNodes in your cluster.

■ These steps are for Apache Hadoop distributions. Please refer to distribution-
specific instructions if you’re using a different distribution.

Twitter’s LZO project page has instructions on how to download dependencies and
build the project. Follow the Building and Configuring section on the project home
page.

Configuring Hadoop
You need to configure Hadoop core to be aware of your new compression codecs. Add
the following lines to your core-site.xml. Make sure you remove the newlines and
spaces so that there are no whitespace characters between the commas:

<property>
<name>mapred.compress.map.output</name>
<value>true</value>

</property>
<property>
<name>mapred.map.output.compression.codec</name>
<value>com.hadoop.compression.lzo.LzoCodec</value>

</property>
<property>
<name>io.compression.codecs</name>
<value>org.apache.hadoop.io.compress.GzipCodec,
org.apache.hadoop.io.compress.DefaultCodec,
org.apache.hadoop.io.compress.BZip2Codec,
com.hadoop.compression.lzo.LzoCodec,
com.hadoop.compression.lzo.LzopCodec,

Table A.14 Useful resource

Resource URL

Hadoop LZO project maintained by Twitter https://github.com/twitter/hadoop-lzo

https://github.com/twitter/hadoop-lzo

469Hive

org.apache.hadoop.io.compress.SnappyCodec</value>
</property>
<property>
<name>io.compression.codec.lzo.class</name>
<value>com.hadoop.compression.lzo.LzoCodec</value>

</property>

The value for io.compression.codecs assumes that you have the Snappy compression
codec already installed. If you don’t, remove org.apache.hadoop.io.compress.SnappyCodec
from the value.

A.15 Elephant Bird
Elephant Bird is a project that provides utilities for working with LZOP-compressed
data. It also provides a container format that supports working with Protocol Buffers
and Thrift in MapReduce.

Getting more information

Table A.15 shows a useful resource to help you become more familiar with Elephant
Bird.

At the time of writing, the current version of Elephant Bird (4.4) doesn’t work with
Hadoop 2 due the use of an incompatible version of Protocol Buffers. To get Elephant
Bird to work in this book, I had to build a version of the project from the trunk that
works with Hadoop 2 (as will 4.5 when it is released).

A.16 Hive
Hive is a SQL interface on top of Hadoop.

Getting more information

Table A.16 lists some useful resources to help you become more familiar with Hive.

Installation

Follow the installation instructions in Hive’s Getting Started guide.

Table A.15 Useful resource

Resource URL

Elephant Bird project page https://github.com/kevinweil/elephant-bird

Table A.16 Useful resources

Resource URL

Hive project page http://hive.apache.org/

Getting Started https://cwiki.apache.org/confluence/display/Hive/GettingStarted

https://github.com/kevinweil/elephant-bird

470 APPENDIX Installing Hadoop and friends

A.17 R
R is an open source tool for statistical programming and graphics.

Getting more information

Table A.17 lists some useful resources to help you become more familiar with R.

Installation on Red Hat–based systems

Installing R from Yum makes things easy: it will figure out RPM dependencies and
install them for you.

 Go to http://www.r-project.org/, click on CRAN, select a download region that’s
close to you, select Red Hat, and pick the version and architecture appropriate for
your system. Replace the URL in baseurl in the following code and execute the com-
mand to add the R mirror repo to your Yum configuration:

$ sudo -s
$ cat << EOF > /etc/yum.repos.d/r.repo
R-Statistical Computing
[R]
name=R-Statistics
baseurl=http://cran.mirrors.hoobly.com/bin/linux/redhat/el5/x86_64/
enabled=1
gpgcheck=0
EOF

A simple Yum command can be used to install R on 64-bit systems:

$ sudo yum install R.x86_64

Perl-File-Copy-Recursive RPM On CentOS, the Yum install may fail, complain-
ing about a missing dependency. In this case, you may need to manually
install the perl-File-Copy-Recursive RPM (for CentOS you can get it from
http://mng.bz/n4C2).

Installation on non–Red Hat systems

Go to http://www.r-project.org/, click on CRAN, select a download region that’s close
to you, and select the appropriate binaries for your system.

Table A.17 Useful resources

Resource URL

R project page http://www.r-project.org/

R function search engine http://rseek.org/

471RHadoop

A.18 RHadoop
RHadoop is an open source tool developed by Revolution Analytics for integrating R
with MapReduce.

Getting more information

Table A.18 lists some useful resources to help you become more familiar with RHadoop.

rmr/rhdfs installation

Each node in your Hadoop cluster will require the following components:

■ R (installation instructions are in section A.17).
■ A number of RHadoop and dependency packages

RHadoop requires that you set environment variables to point to the Hadoop binary
and the streaming JAR. It’s best to stash this in your .bash_profile (or equivalent).

$ export HADOOP_CMD=/usr/local/hadoop/bin/hadoop
$ export HADOOP_STREAMING=${HADOOP_HOME}/share/hadoop/tools/lib/
hadoop-streaming-<version>.jar

We’ll focus on the rmr and rhdfs RHadoop packages, which provide MapReduce and
HDFS integration with R. Click on the rmr and rhdfs download links on https://
github.com/RevolutionAnalytics/RHadoop/wiki/Downloads. Then execute the fol-
lowing commands:

$ sudo -s
yum install -y libcurl-devel java-1.7.0-openjdk-devel
$ export HADOOP_CMD=/usr/bin/hadoop
$ R CMD javareconf
$ R
> install.packages(c('rJava'),

repos='http://cran.revolutionanalytics.com')
> install.packages(c('RJSONIO', 'itertools', 'digest', 'Rcpp','httr',

'functional','devtools', 'reshape2', 'plyr', 'caTools'),
repos='http://cran.revolutionanalytics.com')

$ R CMD INSTALL /media/psf/Home/Downloads/rhdfs_1.0.8.tar.gz
$ R CMD INSTALL /media/psf/Home/Downloads/rmr2_3.1.1.tar.gz
$ R CMD INSTALL rmr_<version>.tar.gz
$ R CMD INSTALL rhdfs_<version>.tar.gz

Table A.18 Useful resources

Resource URL

RHadoop project page https://github.com/RevolutionAnalytics/RHadoop/wiki

RHadoop downloads and
prerequisites

https://github.com/RevolutionAnalytics/RHadoop/wiki/Downloads

https://github.com/RevolutionAnalytics/RHadoop/wiki
https://github.com/RevolutionAnalytics/RHadoop/wiki/Downloads
https://github.com/RevolutionAnalytics/RHadoop/wiki/Downloads
https://github.com/RevolutionAnalytics/RHadoop/wiki/Downloads

472 APPENDIX Installing Hadoop and friends

If you get an error installing rJava, you may need to set JAVA_HOME and reconfigure R
prior to running the rJava installation:

$ sudo -s
$ export JAVA_HOME=/usr/java/latest
$ R CMD javareconf
$ R
> install.packages("rJava")

Test that the rmr package was installed correctly by running the following command—
if no error messages are generated, this means you have successfully installed the RHa-
doop packages.

$ R
> library(rmr2)

A.19 Mahout
Mahout is a predictive analytics project that offers both in-JVM and MapReduce imple-
mentations for some of its algorithms.

Getting more information

Table A.19 lists some useful resources to help you become more familiar with Mahout.

Installation

Mahout should be installed on a node that has access to your Hadoop cluster. Mahout
is a client-side library and doesn’t need to be installed on your Hadoop cluster.

BUILDING A MAHOUT DISTRIBUTION

To get Mahout working with Hadoop 2, I had to check out the code, modify the build
file, and then build a distribution. The first step is to check out the code:

$ git clone https://github.com/apache/mahout.git
$ cd mahout

Next you need to modify pom.xml and remove the following section from the file:

<plugin>
<inherited>true</inherited>
<groupId>org.apache.maven.plugins</groupId>
<artifactId>maven-gpg-plugin</artifactId>
<version>1.4</version>

Table A.19 Useful resources

Resource URL

Mahout project page http://mahout.apache.org/

Mahout downloads https://cwiki.apache.org/confluence/display/MAHOUT/Downloads

473Mahout

<executions>
<execution>
<goals>
<goal>sign</goal>

</goals>
</execution>

</executions>
</plugin>

Finally, build a distribution:

$ mvn -Dhadoop2.version=2.2.0 -DskipTests -Prelease

This will generate a tarball located at distribution/target/mahout-distribution-1.0-
SNAPSHOT.tar.gz, which you can install using the instructions in the next section.

INSTALLING MAHOUT

Mahout is packaged as a tarball. The following instructions will work on most Linux
operating systems.

 If you’re installing an official Mahout release, click on the “official release” links
on the Mahout download page and select the current release. If Mahout 1 hasn’t yet
been released and you want to use Mahout with Hadoop 2, follow the instructions in
the previous section to generate the tarball.

 Install Mahout using the following instructions:

$ cd /usr/local
$ sudo tar -xzf <path-to-mahout-tarball>

$ sudo ln -s mahout-distribution-<version> mahout

$ sudo chown -R <user>:<group> /usr/local/mahout*

For convenience, it’s worthwhile updating your ~/.bash_profile to export a
MAHOUT_HOME environment variable to your installation directory. The following com-
mand shows how this can be performed on the command line (the same command
can be copied into your bash profile file):

$ export MAHOUT_HOME=/usr/local/mahout

475

index

A

actors, YARN 426–427
acyclic graphs 303
adjancency matrix 304
adjancy lists 304
aggregated data 142
aggregation process 175
allocate method 436
allowinsert 249
AMRMClient class 437
Apache Ambari 339
Apache distribution 12–13
Apache Drill 54
Apache Hama 55
Apache Lucene 62
Apache Spark 56
Apache Storm 55
Apache Thrift 465–466
Apache Twill 446–448, 450
application IDs 33
ApplicationManager 427, 433, 440
ApplicationMaster 28, 434–438
atomic argument 191
atomic data movement 157–158
automating data ingress and egress

of binary files 204–214
to local filesystem 246–247

Avro
compact formats 357
copying data using Camus 234–240
defined 78
feature comparison 77
format pushdown support 260
Hive and 108–110, 394–395
installing 465

mixing non-Avro data with 99–101
overview 93
Pig and 111–113
reading and writing data in Parquet 119–120
resources for 465
RPC using 443
schema and code generation 93–98
serialization of 93, 99, 102
sorting 108
storing small files using 151–157
using key/value pairs in MapReduce 104–107
using records in MapReduce 102–104
ways of working with 98–99

AvroInputFormat class 100
AvroKey class 104
AvroKeyValue class 104
AvroOutputFormat class 100
AvroParquetInputFormat class 121
AvroParquetOutputFormat class 121
AvroValue class 104

B

backward compatibility for MapReduce 46–48
-bandwidth argument 191
baseurl 470
BIGINT (8 bytes) 389
binary comparators 349–352
binary compatibility 46
block-compressed SequenceFiles 79
Bloom filter

overview 326–328
parallelized creation in MapReduce 328–333
reduce-side joins 279–283

boundary-query 221

INDEX476

brokers, Kafka 232
BSP (bulk synchronous parallel) applications 55
bucketed tables 407
byte array 137
bzip2 compression codec 159–161, 163–164

C

Caffeine 15
Camus

copying Avro data using 234–240
installing 464

CAS (Create-As-Select) statements 393
channels, Flume 201
checkpointing application progress 444
clear-staging-table 250
CLI (command-line interface)

extracting files using 241–242
loading files using 178–180

client mode 419
client, YARN 427
Cloudera distribution 13, 451
cluster mode 419
cluster statistics application

ApplicationMaster 434–438
client 429–434
debugging 440–443
running 438–440

ClusterMapReduceTestCase class 381–382
clusters, determining configuration of 29–30
code compatability 46
code for book 451–452
codecs, compression

caching 165
overview 159–163

columnar storage
object models and storage formats 115–116
overview 113–115

CombineFileInputFormat class 144, 157, 345
CombineSequenceFileInputFormat class 345
CombineTextInputFormat class 345
comma-separated values. See CSV
command-line interface. See CLI
committing output 137
commodity hardware 11
common connectors 217
compacting data

overview 148–149
storing small files using Avro 151–157
using filecrush 149–151

compare method 350
COMPLETE_DIR setting 206
complex types 389
components

HDFS 5

MapReduce 8
YARN 7

composite key 290
CompositeInputFormat class 270
Comprehensive R Archive Network. See CRAN
compression

data movement and 176
HDFS

choosing codec 159–163
overview 158–173
using compressed files 163–168
using splittable LZOP 168–173

of log files 38
MapReduce performance 357

CompressionCodec class 208
CompressionCodecFactory class 160, 165–166
connectors in Sqoop 217, 462
consumers, Kafka 232
containers

defined 29, 427
IDs for 34
launching 427
logs for 439
waiting for completion 436

Context class 369
coordinator.xml file 210
core-site.xml file 71, 80, 219
core-site.xml.lzo file 170–171
Counter class 47
CRAN (Comprehensive R Archive Network) 470
CREATE statement 394
Create-As-Select statements. See CAS

statements 393
createApplication method 430
createRecordReader method 64
CSV (comma-separated values) 129–137
CSVLoader class 137
CSVRecordWriter class 134
cyclic graphs 303

D

DAG (Directed Acyclic Graphs) 56
data ingress and egress

automating 204–214, 246–247
CLI

extracting files using 241–242
loading files using 178–180

copying data between clusters 188–194, 244
from/to databases

overview 214–215
using Sqoop 215–227, 247–251

from/to HBase
MapReduce using 230–231
overview 227–230

INDEX 477

data ingress and egress (continued)
HDFS behind firewall 183–186, 243
Java

extracting files using 245–246
loading files using 194–196

from Kafka
copying Avro data using Camus 234–240
overview 232–234

key elements of 175–177
log files

autumated copying of 204–209
scheduling activities with Oozie 209–214
using Flume 197–204

mounting with NFS 186–188, 243–244
from NoSQL 251
REST

extracting files using 242–243
loading files using 180–183

data locality 343–344
data model, Hive 389
data plane architecture 53
data skew

avoiding using range partitioner 352–353
dealing with 357
high join-key cardinality 284–285
overview 283–284
poor hash partitioning 286–287

data structures
Bloom filters

overview 326–328
parallelized creation in MapReduce 328–333

HyperLogLog
calculating unique counts 335–336
overview 333–334

modeling data with graphs
calculating PageRank 321–326
friends-of-friends algorithm 313–319
Giraph 319–321
overview 303–326
representing graphs 304
shortest-path algorithm 304–313

data tiers 141–142
DATA_LOCAL_MAPS counter 344
databases

data ingress and egress from 214–215
in Hive 389
using Sqoop 215–227, 247–251

DataNode 459–460
DATASOURCE_NAME setting 206, 209
DBInputFormat class 251
debugging

coding guidelines for 365–368
JVM settings 363–365
log output 362–363

OutOfMemory errors 365
YARN cluster statistics application 440–443

decimal type 128
decoders, Camus 235
Deflate compression codec 159–161, 164
DelimitedJSONSerDe 75
delimiters, text 392
dependencies for RHadoop 471
derived data 142
deserialization 391
DEST_DIR setting 206, 208
DEST_STAGING_DIR setting 206
dfs.block.size property 148
dfs.namenode.http-address property 181
dfs.webhdfs.enabled property 180
Directed Acyclic Graphs. See DAG
directory layout in HDFS 140–141
DistCp 188–194, 244
DistributedFileSystem class 158
DistributedLzoIndexer class 171
DistributedShell application 31, 34
distributions

Apache 12–13
Cloudera 13
Hortonworks 13
MapR 13–14
overview 12

dynamic copy strategy 191
dynamic partitioning 143, 401

E

ecosystem of Hadoop 10
Effective Java 3
Elephant Bird project 47–48, 74, 92, 469
encoders, Camus 235
encryption 16
ERROR_DIR setting 206
ETL (extract, transform and load) 14
exceptions, swallowing 367
Export class 227–229
EXPORT command 395
export-dir 248
Extensible Markup Language. See XML
EXTERNAL keyword 393
extract, transform and load. See ETL

F

Facebook 14, 92, 114
failover 16
fast connectors 217
file channels 201
FILE_BYTES_READ counter 354

INDEX478

FILE_BYTES_WRITTEN counter 354
filecrush 149–151
FileInputFormat class 64–65, 131, 166
FileOutputCommitter class 137
FileOutputFormat class 67, 133, 138
FileSystem class 195
filesystem implementations 193–194
filtering data 259–260
firewall, HDFS behind 183–186, 243
FLOAT (singleprecision) 389
Flume

installing 461
resources for 460
using with log files 197–204

FoFs (friends-of-friends) algorithm 313–319
fs command 179
ftp filesystem implementation 194

G

gang-scheduling 445
Ganglia utility 338
generic data 93
GenericRecord 219
GenericUDF class 396–397
GenericUDTF class 399
GeoIP.dat file 396
geolocation 396
getConfiguration method 48
getCounter method 48
getPartition method 291
getTaskAttemptID method 48
GFS (Google File System) 4–5
Giraph

calculating PageRank 321–326
overview 319–321

Google 15
Google File System. See GFS
graphs

calculating PageRank 321–326
friends-of-friends algorithm 313–319
Giraph 319–321
overview 303–326
processing applications 54–55
representing graphs 304
shortest-path algorithm 304–313

grouping 292
gzip compression codec 159–161, 164

H

HA (High Availability) 6, 15–16
Hadoop

components of
HDFS 5

MapReduce 8
YARN 7

configuring 453
distributions

Apache 12–13
Cloudera 13
Hortonworks 13
MapR 13–14
overview 12

ecosystem 10
hardware requirements 11–12
HDFS 5–7
installing

Hadoop 1.x UI ports 459–460
Hadoop 2.x UI ports 460
tarball installation 453–459

limitations
HDFS 17
high availability 15–16
MapReduce 17
multiple datacenter support 16
security 16
version incompatibilities 17

MapReduce 8–10
overview 4–5
popularity of 14–15
ports 459–460
setting up 17–21
starting 457
stopping 459
version 2 job metrics 341
YARN 7–8

Hadoop Archive files. See HAR files
Hadoop Distributed File System. See HDFS
Hadoop in Action 3
HADOOP_HOME environment variable 463
hadoop-datajoin module 275
HadoopCompat class 47–48
HAR (Hadoop Archive) files 157
hash-partitioning skew 284
hashCode 290
HBase

data ingress and egress from/to 227–230, 251
installing 463
MapReduce using 24, 230–231
resources for 463
YARN and 23

HBASE_HOME environment variable 463
HBaseExportedStockReader class 229
HDFS (Hadoop Distributed File System)

accessing from behind firewall 183–186, 243
atomic data movement 157–158
compacting

overview 148–149
storing small files using Avro 151–157

INDEX 479

HDFS (Hadoop Distributed File System) (continued)
using filecrush 149–151

compression
choosing codec 159–163
overview 158–173
using compressed files 163–168
using splittable LZOP 168–173

copying files
overview 178, 241
using DistCp 188, 244

data tiers 141–142
directory and file layout 140–141
extracting files

using Java 245
using REST 242

formatting 457
limitations of Hadoop 17
loading files

using Java 194
using REST 180

mounting with NFS 186, 243
organizing data and 140–158
overview 5–7
partitioning

using custom MapReduce partitioner
145–148

using MultipleOutputs 142–145
ports 459–460

HDFS File Slurper project 204
HDFS_BYTES_READ counter 344
hdfs-site.xml 172
hftp filesystem implementation 194
High Availability. See HA
hip script 21
hip_sqoop_user 217
HITS link-analysis method 321
Hive

Avro and 108–110, 394–395
bypassing to load data into partitions 402–403
columnar data 404
data model 389
databases and tables in 389
exporting data to disk 395
Impala vs. 410
installing 389, 469
interactive vs. noninteractive mode 390–391
metastore 389
overview 388
Parquet and 125–126, 394–395
partitioning tables 399
performance

columnar data 404
of joins 404–408
partitioning 399–403

query language 389

reading and writing text file 391–394
repartition join optimization 278
resources for 469
SequenceFiles in 86
serialization and deserialization 391
sort-merge join 271
in Spark SQL 423
UDFs 396–399
using compressed files 163–168
using tables in Impala 411
using Tez 390

Hive command 390–391
Hive Query Language. See HiveQL
HIVE_HOME environment variable 463
hive-import 224
hive-json-serde project 76
hive-overwrite 224
hive-partition-key 225
hive.metastore.warehouse.dir property 389
HiveQL (Hive Query Language) 396
Hortonworks distribution 13
Hortonworks Sandbox 451
hsftp filesystem implementation 194
HttpFS gateway 183, 186
HTTPFS_* properties 185
Htuple 273
HyperLogLog

calculating unique counts 335–336
overview 333–334

I

-i flag 190
I/O (input/output) 5
idempotent operations 175, 249
IdentityTest 380
IDL (interface definition language) 443
Impala

architecture 409
Hive vs. 410
overview 409
refreshing metadata 413–414
UDFs 414–416
using Hive tables in 411
working with Parquet 412–413
working with text 410–412

Impala in Action 415
IMPORT command 395
in-memory applications 56
incrementCounter method 48
inittab utility 209
inner joins 256
input splits 344–346
input/output. See I/O
InputFormat class 63–66, 130–131, 230, 394

INDEX480

InputSampler function 296
installing

Apache Thrift 465–466
Avro 465
Camus 464
code for book 452
Elephant Bird 469
Flume 461
Hadoop

Hadoop 1.x UI ports 459–460
Hadoop 2.x UI ports 460
tarball installation 453–459

HBase 463
Hive 389, 469
Kafka 464
LZOP 468–469
Mahout 473
Oozie 461–462
Protocol Buffers 466–467
R 470
RHadoop 471–472
Sqoop 462
Tez 390

INT (4bytes) 389
interactive Hive 390
interceptors 201
interface definition language. See IDL
Internal tables 389
IntervalSampler 296
IntWritable class 350
INVALIDATE METADATA command 414
io.compression.codecs property 219, 469
io.serializations property 80, 89
io.sort.record.percent property 45
IP addresses in log files 396

J

Java
extracting files using 245–246
loading files using 194–196
recommended versions 453

Java Virtual Machine. See JVM
JAVA_HOME environment variable 463
JavaScript Object Notation. See JSON
JDBC channels 201
JDBC drivers 217, 462
JDBC-compliant database 222, 462
job.properties 213
JobContext class 47
jobs 340
JobTracker 42, 459
Join class 256
join-product skew 284

joins
choosing best strategy 257–259
data skew from

high join-key cardinality 284–285
overview 283–284
poor hash partitioning 286–287

filtering and projecting data 259–260
Hive performance for 404–408
map-side

pre-sorted and pre-partitioned data 269–271
replicated joins 261–264
semi-joins 264–268

overview 256–257
pushdowns 260
reduce-side

caching smaller dataset in reducer 275–278
repartition joins 271–275
using Bloom filter 279–283

JSON (JavaScript Object Notation) 72–76
JsonLoader 75
JsonRecordFormat 74
JVM (Java Virtual Machine) 363–365
jvm-serializers project 78

K

Kafka
copying Avro data using Camus 234–240
data ingress and egress from 232–233
installing 464
resources for 463

Kerberos 16, 188
keys, sorting across multiple reducers 294

L

Lambda Architecture 55
language-integrated queries 422
last-value 221
lazy transformations in Spark 418
limitations of Hadoop

HDFS 17
high availability 15–16
MapReduce 17
multiple datacenter support 16
security 16
version incompatibilities 17

limitations of YARN 39–40
LineReader class 66
LineRecordReader class 66, 74, 131
LineRecordWriter class 68
LinkedIn 53
list command 227
Llama 54, 445

INDEX 481

LocalJobRunner class 378–380
LOCATION keyword 392
log files

accessing
in HDFS 38
using CLI 36
using UI 38

accessing container 32–36
aggregating 36–39
autumated copying of 204–209
compression 38
loading in Hive 391
for MRUnit 372
NameNode and 39
retention of 38
scheduling activities with Oozie 209–214
for tasks 362
using Flume 197–204

log4j.properties file 372
/logLevel path 460
/logs path 460
long-running applications 444–445
LongWritable 74
LZ4 compression codec 159–161, 163–164
LZO compression codec 159–161, 164, 168
LzoIndexer class 171
LzoIndexOutputFormat class 171
LzoJsonInputFormat class 73–74
LzoJsonLoader class 75
LZOP compression codec 74, 159–161, 163–164,

468–469
LZOP files 170–173
LzoPigStorage class 173
LzoSplitInputFormat class 171
LzoTextInputFormat class 172

M

Mahout 472–473
main method 387
managed ApplicationManager 440
Map class 100
map performance

data locality 343–344
emitting too much data from mappers 347
generating input splits with YARN 346
large number of input splits 344–346

MAP_OUTPUT_BYTES counter 354
MAP_OUTPUT_RECORDS counter 354
map-join hints 263, 406
map-side joins

pre-sorted and pre-partitioned data 269–271
replicated joins 261–264
semi-joins 264–268

MapDriver class 371

MapR distribution 13–14
MapR Sandbox for Hadoop 451
mapred-default.xml file 68
mapred-site.xml file 68
MapReduce

Avro and
using key/value pairs in 104–107
using records in 102–104

combiner 347
custom partitioner 145–148
data skew from join

high join-key cardinality 284–285
overview 283–284
poor hash partitioning 286–287

debugging
coding guidelines for 365–368
JVM settings 363–365
log output 362–363
OutOfMemory errors 365

filtering 259
HBase as data source 230–231
joins

choosing best strategy 257–259
filtering and projecting data 259–260
overview 256–257
pushdowns 260

limitations of Hadoop 17
map-side joins

pre-sorted and pre-partitioned data 269–271
replicated joins 261–264
semi-joins 264–268

monitoring tools 338–339
overview 8–10
parallelized creation of Bloom filters 328–333
Parquet and 120–124
performance

common inefficiencies 339
compact data format 357
compression 357
data locality 343–344
dealing with data skew 357
discovering unoptimized user code 358–360
emitting too much data from mappers 347
fast sorting with binary comparators 349–352
generating input splits with YARN 346
job statistics 340–343
large number of input splits 344–346
profiling map and reduce tasks 360–362
shuffle optimizations 353–356
too few or too many reducers 356–357
using combiner 347–349
using range partitioner to avoid data

skew 352–353
ports 459–460
projections 259

INDEX482

MapReduce (continued)
pushdowns 259
reduce-side joins

caching smaller dataset in reducer 275–278
repartition joins 271–275
using Bloom filter 279–283

running jobs 18
sampling 297–300
serialization and 62–63
shuffle phase 41
sorting

secondary sort 288–294
total order sorting 294–297

speculative execution 177
testing

code design and 369–370
LocalJobRunner class 378–380
MiniMRYarnCluster class 381–382
MRUnit framework 370–378
QA test environments 382–383
test-driven development 368–369
unexpected input data 370

using compressed files 163–168
working with disparate data 271
YARN and 25–26

MapReduce 2
backward compatibility 46–48
configuration

container properties 43–44
deprecated properties 44–46
new properties 42–43

history of 40
monitoring running jobs 49–50
overview 40–42
running jobs 48–49
uber jobs 50–52
See also MapReduce

MapReduce ApplicationMaster. See MRAM
MapReduceDriver class 371
master-slave architecture 4
--max-file-blocks argument 151
Maxmind 396
memory

data movement and 176
Parquet and 128

memory channels 201
Mesos 450
Message Passing Interface. See MPI
meta-connect 222
metastore, Hive 389
/metrics path 460
MiniDFSCluster class 381
MiniMRYarnCluster class 381–382
modeling data

calculating PageRank 321–326

friends-of-friends algorithm 313–319
Giraph 319–321
overview 303–326
representing graphs 304
shortest-path algorithm 304–313

monitoring 176, 338–339
MPI (Message Passing Interface) 56
MRAM (MapReduce ApplicationMaster) 40
MRUnit framework 370–378
MultipleInputs class 271, 273
MultipleOutputs class 142–145
MySQL databases 215–227, 247–251
mysqldump 223, 226
mysqlimport 250

N

Nagios utility 338
NameNode

metadata overhead 148
ports 459–460

NameNode High Availability 15
natural key 289
NFS, mounting with 186–188, 243–244
NMClient class 437
NodeManager 27

defined 427
ports 460
responsibilities of 429

non-interactive Hive 390
NoSQL

applications 53–54
data ingress and egress from 251

num-mappers 221

O

OLAP databases 247
OLTP (online transaction processing) 8, 214,

256, 264
Oozie

installing 461–462
resources for 461
scheduling activities with 209–214

OpenMPI 56
ORC (Optimized Row Columnar) 114–115, 404
organizing data

atomic data movement 157–158
compacting

overview 148–149
storing small files using Avro 151–157
using filecrush 149–151

data tiers 141–142
directory and file layout 140–141

INDEX 483

organizing data (continued)
overview 140–158
partitioning

using custom MapReduce partitioner
145–148
using MultipleOutputs 142–145

outer joins 256
OutOfMemory errors 365
OutputCommitter class 137
OutputFormat class 66–67, 72, 130, 133
-overwrite argument 190

P

-P option 220
P2P (peer-to-peer) 302
PageRank

calculating over web graph 322–326
overview 321

Pair class 102
Parquet

block and page sizes 117
columnar formats comparison 115
compact formats 357
defined 78
feature comparison 77
format pushdown support 260
Hadoop ecosystem and 116–117
Hive and 125–126
limitations of 128–129
MapReduce and 120–124
pushdown and projection with 126–128
reading and writing Avro data in 119–120
reading file contents using command line

117–119
using with Hive 394–395
using with Impala 412–413

Partitioner interface 240, 291
partitioning data

using custom MapReduce partitioner 145–148
using MultipleOutputs 142–145

partitions, Kafka 232
PATH environment variable 452
peer-to-peer. See P2P
performance

data movement and 176
Hive

columnar data 404
of joins 404–408
partitioning 399–403

MapReduce
common inefficiencies 339
compact data format 357
compression 357
data locality 343–344

dealing with data skew 357
discovering unoptimized user code 358–360
emitting too much data from mappers 347
fast sorting with binary comparators 349–352
generating input splits with YARN 346
job statistics 340–343
large number of input splits 344–346
overview 353–356
profiling map and reduce tasks 360–362
too few or too many reducers 356–357
using combiner 347–349
using range partitioner to avoid data

skew 352–353
PID file 209
Pig

Avro and 111–113
Bloom filter support 283
SequenceFiles in 84
using compressed files 163–168

Piggy Bank library 72
pipeline tests 376
ports 459–460
pre-partitioned data 269–271
pre-sorted data 269–271
producers, Kafka 232
profiling map and reduce tasks 360–362
projecting data 259–260
projection with Parquet 126–128
properties, MapReduce 2

container 43–44
deprecated 44–46
new 42–43

.proto files 91
Protocol Buffers

building 466–467
defined 77
encoding using SequenceFile 87–91
feature comparison 77
overview 91–92
resources for 466
RPC using 443

proxy users 188
pseudo-distributed mode

for Hadoop 1 453–454
for Hadoop 2 454–456

pushdowns 126–128, 260
-put command 178

Q

QA test environments 382–383

INDEX484

R

R 470
RACK_LOCAL_MAPS counter 344
RandomSampler 296
range partitioner 286, 352–353
raw data 142
RawComparator class 288, 349
RCFile 114–115
Reader class 79
real-time data processing applications 55
record-compressed SequenceFiles 79
RecordReader class 65–66, 74, 130
RecordWriter class 63, 67–68
recoverability 176
reduce functions 20
reduce-side joins

caching smaller dataset in reducer 275–278
repartition joins 271–275
using Bloom filter 279–283

ReduceDriver class 371
reducers

performance optimizations
data skew problems 357
slow shuffle and sort 353
too few or too many 356–357

sorting keys across multiple 294
REEF 450
ReflectionUtils class 165
REFRESH command 414
RegexSerDe class 393
remote procedure calls. See RPC
repartition joins

caching smaller dataset in reducer 275–278
defined 257
optimizing 275
overview 271–275

replication joins
defined 257
optimizing 406
overview 261–264

representational state transfer. See REST
reservoir sampling algorithm 297–300
ReservoirSamplerInputFormat class 299–300
ReservoirSamplerRecordReader class 298–299
resource allocation for YARN applications 427
ResourceManager. See RM
resources

Apache Thrift 465
Avro 465
Camus 464
code for book 451–452
Elephant Bird 469
Flume 460
HBase 463

Hive 469
Kafka 463
LZOP 468
Mahout 472
Oozie 461
Protocol Buffers 466
R 470
RHadoop 471
Snappy 467
Sqoop 462

REST (representational state transfer)
extracting files using 242–243
loading files using 180–183

RHadoop 471–472
RM (ResourceManager) 27, 34, 49

creating application ID 430
defined 427
ports 460
response from 427

rollover properties for Flume sinks 202
RPC (remote procedure calls) 29, 443, 466
running jobs

MapReduce 2 48–49
monitoring 49–50

running YARN commands 31–32

S

s3 filesystem implementation 194
s3n filesystem implementation 194
sampling 297–300
sar utility 338
Scala 421
scan command 227
scheduling activities with Oozie 209–214
schema registry, Camus 235
screen utility 194
secondary key 289
secondary sort 288–294
SecondaryNameNode 459
Secure Shell. See SSH
security

limitations of Hadoop 16
YARN application capabilities 445

selectors 201
semi-joins

defined 257
overview 264–268

SequenceFile
defined 77
encoding Protocol Buffers using 87–91
feature comparison 77
overview 78–80
using Sqoop with 219
working with 80–87

INDEX 485

SequenceFileLoader class 84
SequenceFileOutputFormat class 83
SerDe class 393
serialization

Avro
Hive and 108–110
mixing non-Avro data with 99–101
overview 93
Pig and 111–113
schema and code generation 93–98
sorting 108
using key/value pairs in MapReduce 104–107
using records in MapReduce 102–104
ways of working with 98–99

columnar storage
object models and storage formats 115–116
overview 113–115

CSV 129–137
custom file formats 129–138
format comparison 76–78
in Hive 391
input for

custom formats 129–137
InputFormat class 63–65
RecordReader class 65–66

JSON 72–76
MapReduce and 62–63
output for

committing 137–138
custom formats 129–137
OutputFormat class 66–67
RecordWriter class 67–68

Parquet
block and page sizes 117
Hadoop ecosystem and 116–117
Hive and 125–126
Impala and 125–126
limitations of 128–129
MapReduce and 120–124
pushdown and projection with 126–128
reading and writing Avro data in 119–120
reading file contents using command

line 117–119
performance optimizations 357
Protocol Buffers 91–92
SequenceFile

encoding Protocol Buffers using 87–91
overview 78–80
working with 80–87

Thrift 92
XML 69–72

service discovery 444
setCombinerClass method 347
setMapperMaxSkipRecords method 367
setProfileParams method 361

setReducerMaxSkipGroups method 367
setStatus method 48
shared-nothing architecture 9
Shark 416
shortest-path algorithm 304–313
shuffle phase 41

fast sorting with binary comparators 349–352
overview 353–356
using combiner 347–349
using range partitioner to avoid data skew

352–353
sinks, Flume 201
skew

differentiating between types of 286
high join-key cardinality 284–285
Hive optimization 408
overview 283–284
poor hash partitioning 286–287

SKEWED BY keyword 408
small files

map issues 344
storing using Avro 151–157

SMALLINT (2 bytes) 389
SMB (sort-merge-bucket) joins 407
Snappy compression codec 159–161, 164, 467
sort-merge join 271
sort-merge-bucket joins. See SMB joins
sorting

Avro 108
fast, with binary comparators 349–352
reducer issues 353
secondary sort 288–294
total order sorting 294–297

sources, Flume 199
Spark SQL 56

calculating stock averages 420–421
on Hadoop 419
language-integrated queries 422
overview 416–419
production readiness 416
Shark vs. 416
working with Hive tables in 423
YARN and 419

Spark Streaming 55
speculative execution 177
SPILLED_RECORDS counter 354
split method 362
split-brain 444
splittable LZOP compression 168–173
Spring for Hadoop 448–450
SQL (Structured Query Language)

Hive
Avro 394–395
data model 389
databases and tables in 389

INDEX486

SQL (Structured Query Language) (continued)
exporting data to disk 395
installing 389
interactive vs. noninteractive mode 390–391
metastore 389
overview 388
Parquet 394–395
performance 399–408
query language 389
reading and writing text file 391–394
UDFs 396–399
using Tez 390

Impala
Hive vs. 410
overview 409
refreshing metadata 413–414
UDFs 414–416
working with Parquet 412–413
working with text 410–412

interactive applications 54
Spark SQL

calculating stock averages 420–421
language-integrated queries 422
overview 416–419
working with Hive tables in 423
YARN and 419

Sqoop
data ingress and egress using 215–227, 247–251
installing 462

SRC_DIR setting 206
SSH (Secure Shell) 456
stack dumps 358
/stacks path 460
static partitioning 143, 399–401
StAX (Streaming API for XML) 71
Stinger 54
Storm 23, 55
String class 352
StringUtils class 362
Structured Query Language. See SQL
swallowing exceptions 367

T

tail command 200
TaskAttemptContext class 47
TaskTracker class 459
tasktracker.http.threads property 45
TDD (test-driven development) 368–369
-test command 179
testing

code design and 369–370
LocalJobRunner class 378–380
MiniMRYarnCluster class 381–382
MRUnit framework 370–378

QA test environments 382–383
test-driven development 368–369
unexpected input data 370

TestPipelineMapReduceDriver class 371
Text class 349, 352
TextInputFormat class 63–64, 129, 137
TextOutputFormat class 63, 67–68, 129
Tez

DAG execution and 56
using with Hive 390

--threshold argument 150
Thrift

defined 78
feature comparison 77
format pushdown support 260
overview 92
RPC using 443

timestamp type 128
topics, Kafka 232
toString() method 86, 309, 332
total order sorting 294–297
TotalOrderPartitioner class 286, 295, 357
-touchz option 179
transactional semantics 201
Twill 446
Twitter 14

U

uber jobs 50–52
UDF class 396
UDFs (user-defined functions)

for Hive 396–399
for Impala 414–416

uncompressed SequenceFiles 78
unit testing

code design and 369–370
LocalJobRunner class 378–380
MiniMRYarnCluster class 381–382
MRUnit framework 370–378
QA test environments 382–383
test-driven development 368–369
unexpected input data 370

unmanaged ApplicationManager 440
unoptimized user code 358–360
unsplittable files 343
-update argument 190
URI schemes 193–194
user-defined functions. See UDFs

V

version incompatibilities 17
version number in directories 140

INDEX 487

vertices 303
VMs (virtual machines) 451

W

Weave 446
WebHDFS 180, 182–183, 186
webhdfs filesystem implementation 194
WORK_DIR setting 206
workflow.xml file 211
Writable class 80, 83, 219, 349
WritableComparable interface 349
WritableComparator class 291
writeUTF method 351–352

X

XML (Extensible Markup Language) 69–72

Y

Yahoo! 14, 148
YARN (Yet Another Resource Negotiator)

accessing logs 32–36, 438
actors 426–427
advantages of 24–26
applications

avoiding split-brain 444
BSP 55
checkpointing application progress 444
DAG execution 56
graph-processing 54–55
in-memory 56
interactive SQL 54
long-running applications 444–445
MPI 56
NoSQL 53–54
overview 27–29, 52–53
real-time data processing 55
RPC 443
security 445
service discovery 444

cluster statistics application
ApplicationMaster 434–438
client 429–434
debugging 440–443
running 438–440

debugging ApplicationMaster 440
debugging OutOfMemory errors 365
determining cluster configuration 29–30
framework 26–27
generating input splits with 346
launching container 427–429
limitations of 39–40
log aggregation using 36–39
MapReduce 1 25–26
MapReduce 2

backward compatibility 46–48
configuration 42–46
history of 40
monitoring running jobs 49–50
overview 40–42
running jobs 48–49
uber jobs 50–52

overview 7–23
ports 460
programming abstractions

Apache Twill 446–448
choosing 450
REEF 450
Spring 448–449

resource allocation 427
running commands 31–32
Spark SQL and 419
submitting application 431
unmanaged ApplicationMaster 440

yarn-site.xml file 31
YarnApplicationState enum 433
YarnClient class 430
Yet Another Resource Negotiator. See YARN

Z

ZooKeeper 444

I
t’s always a good time to upgrade your Hadoop skills!
Hadoop in Practice, Second Edition provides a collection of 104
tested, instantly useful techniques for analyzing real-time

streams, moving data securely, machine learning, managing
large-scale clusters, and taming big data using Hadoop.

Th is completely revised second edition covers changes and new
features in Hadoop core, including MapReduce 2 and YARN.
You’ll pick up hands-on best practices for integrating Spark,
Kafk a, and Impala with Hadoop, and get new and updated
techniques for the latest versions of Flume, Sqoop, and Mahout.
In short, this is the most practical, up-to-date coverage of
Hadoop available.

What’s Inside
Th oroughly updated for Hadoop 2
How to write YARN applications
Integrate real-time technologies like Storm,
Impala, and Spark
Predictive analytics using Mahout and RR

Readers need to know a programming language like Java and
have basic familiarity with Hadoop.

Alex Holmes works on tough big-data problems. He is a soft ware
engineer, author, speaker, and blogger specializing in large-scale
Hadoop projects.

To download their free eBook in PDF, ePub, and Kindle formats, owners
of this book should visit manning.com/HadoopinPracticeSecondEdition

$49.99 / Can $52.99 [INCLUDING eBOOK]

DATABASES/PROGRAMMING

M A N N I N G

“Very insightful.
A deep dive into

 the Hadoop world.”—Andrea Tarocchi, Red Hat, Inc.

“Th e most complete
material on Hadoop and

its ecosystem known
 to mankind!”

—Arthur Zubarev, Vital Insights

“Clear and concise,
full of insights and highly

 applicable information.”—Edward de Oliveira Ribeiro
DataStax, Inc.

“Comprehensive
 up-to-date coverage

 of Hadoop 2.”
—Muthusamy Manigandan

 OzoneMedia

Alex Holmes
Hadoop IN PRACTICE Second Edition

SEE INSERT

	Hadoop in Practice, Second Edition
	brief contents
	contents
	preface
	acknowledgments
	about this book
	Roadmap
	What’s new in the second edition?
	Getting help
	Code conventions and downloads
	Third-party libraries
	Datasets
	NASDAQ financial stocks
	Apache log data
	Names
	Author Online

	about the cover illustration
	Part 1: Background and fundamentals
	Chapter 1: Hadoop in a heartbeat
	1.1 What is Hadoop?
	1.1.1 Core Hadoop components
	1.1.2 The Hadoop ecosystem
	1.1.3 Hardware requirements
	1.1.4 Hadoop distributions
	1.1.5 Who’s using Hadoop?
	1.1.6 Hadoop limitations

	1.2 Getting your hands dirty with MapReduce
	1.3 Chapter summary

	Chapter 2: Introduction to YARN
	2.1 YARN overview
	2.1.1 Why YARN?
	2.1.2 YARN concepts and components
	2.1.3 YARN configuration
	Technique 1: Determining the configuration of your cluster
	2.1.4 Interacting with YARN
	Technique 2: Running a command on your YARN cluster
	Technique 3: Accessing container logs
	Technique 4: Aggregating container log files
	2.1.5 YARN challenges

	2.2 YARN and MapReduce
	2.2.1 Dissecting a YARN MapReduce application
	2.2.2 Configuration
	2.2.3 Backward compatibility
	Technique 5: Writing code that works on Hadoop versions 1 and 2
	2.2.4 Running a job
	Technique 6: Using the command line to run a job
	2.2.5 Monitoring running jobs and viewing archived jobs
	2.2.6 Uber jobs
	Technique 7: Running small MapReduce jobs

	2.3 YARN applications
	2.3.1 NoSQL
	2.3.2 Interactive SQL
	2.3.3 Graph processing
	2.3.4 Real-time data processing
	2.3.5 Bulk synchronous parallel
	2.3.6 MPI
	2.3.7 In-memory
	2.3.8 DAG execution

	2.4 Chapter summary

	Part 2: Data logistics
	Chapter 3: Data serialization— working with text and beyond
	3.1 Understanding inputs and outputs in MapReduce
	3.1.1 Data input
	3.1.2 Data output

	3.2 Processing common serialization formats
	3.2.1 XML
	Technique 8: MapReduce and XML
	3.2.2 JSON
	Technique 9: MapReduce and JSON

	3.3 Big data serialization formats
	3.3.1 Comparing SequenceFile, Protocol Buffers, Thrift, and Avro
	3.3.2 SequenceFile
	Technique 10: Working with SequenceFiles
	Technique 11: Using SequenceFiles to encode Protocol Buffers
	3.3.3 Protocol Buffers
	3.3.4 Thrift
	3.3.5 Avro
	Technique 12: Avro’s schema and code generation
	Technique 13: Selecting the appropriate way to use Avro in MapReduce
	Technique 14: Mixing Avro and non-Avro data in MapReduce
	Technique 15: Using Avro records in MapReduce
	Technique 16: Using Avro key/value pairs in MapReduce
	Technique 17: Controlling how sorting worksin MapReduce
	Technique 18: Avro and Hive
	Technique 19: Avro and Pig

	3.4 Columnar storage
	3.4.1 Understanding object models and storage formats
	3.4.2 Parquet and the Hadoop ecosystem
	3.4.3 Parquet block and page sizes
	Technique 20: Reading Parquet files via the command line
	Technique 21: Reading and writing Avro data in Parquet with Java
	Technique 22: Parquet and MapReduce
	Technique 23: Parquet and Hive/Impala
	Technique 24: Pushdown predicates and projection with Parquet
	3.4.4 Parquet limitations

	3.5 Custom file formats
	3.5.1 Input and output formats
	Technique 25: Writing input and output formats for CSV
	3.5.2 The importance of output committing

	3.6 Chapter summary

	Chapter 4: Organizing and optimizing data in HDFS
	4.1 Data organization
	4.1.1 Directory and file layout
	4.1.2 Data tiers
	4.1.3 Partitioning
	Technique 26: Using MultipleOutputs to partition your data
	Technique 27: Using a custom MapReduce partitioner
	4.1.4 Compacting
	Technique 28: Using filecrush to compact data
	Technique 29: Using Avro to store multiple small binary files
	4.1.5 Atomic data movement

	4.2 Efficient storage with compression
	Technique 30: Picking the right compression codec for your data
	Technique 31: Compression with HDFS, MapReduce, Pig, and Hive
	Technique 32: Splittable LZOP with MapReduce, Hive, and Pig

	4.3 Chapter summary

	Chapter 5: Moving data into and out of Hadoop
	5.1 Key elements of data movement
	5.2 Moving data into Hadoop
	5.2.1 Roll your own ingest
	Technique 33: Using the CLI to load files
	Technique 34: Using REST to load files
	Technique 35: Accessing HDFS from behind a firewall
	Technique 36: Mounting Hadoop with NFS
	Technique 37: Using DistCp to copy data within and between clusters
	Technique 38: Using Java to load files
	5.2.2 Continuous movement of log and binary files into HDFS
	Technique 39: Pushing system log messages into HDFS with Flume
	Technique 40: An automated mechanism to copy files into HDFS
	Technique 41: Scheduling regular ingress activities with Oozie
	5.2.3 Databases
	Technique 42: Using Sqoop to import data from MySQL
	5.2.4 HBase
	Technique 43: HBase ingress into HDFS
	Technique 44: MapReduce with HBase as a data source
	5.2.5 Importing data from Kafka
	Technique 45: Using Camus to copy Avro data from Kafka into HDFS

	5.3 Moving data out of Hadoop
	5.3.1 Roll your own egress
	Technique 46: Using the CLI to extract files
	Technique 47: Using REST to extract files
	Technique 48: Reading from HDFS when behind a firewall
	Technique 49: Mounting Hadoop with NFS
	Technique 50: Using DistCp to copy data out of Hadoop
	Technique 51: Using Java to extract files
	5.3.2 Automated file egress
	Technique 52: An automated mechanism to export files from HDFS
	5.3.3 Databases
	Technique 53: Using Sqoop to export data to MySQL
	5.3.4 NoSQL

	5.4 Chapter summary

	Part 3: Big data patterns
	Chapter 6: Applying MapReduce patterns to big data
	6.1 Joining
	Technique 54: Picking the best join strategy for your data
	Technique 55: Filters, projections, and pushdowns
	6.1.1 Map-side joins
	Technique 56: Joining data where one dataset can fit into memory
	Technique 57: Performing a semi-join on large datasets
	Technique 58: Joining on presorted and prepartitioned data
	6.1.2 Reduce-side joins
	Technique 59: A basic repartition join
	Technique 60: Optimizing the repartition join
	Technique 61: Using Bloom filters to cut down on shuffled data
	6.1.3 Data skew in reduce-side joins
	Technique 62: Joining large datasets with high join-key cardinality
	Technique 63: Handling skews generated by the hash partitioner

	6.2 Sorting
	6.2.1 Secondary sort
	Technique 64: Implementing a secondary sort
	6.2.2 Total order sorting
	Technique 65: Sorting keys across multiple reducers

	6.3 Sampling
	Technique 66: Writing a reservoir-sampling InputFormat

	6.4 Chapter summary

	Chapter 7: Utilizing data structures and algorithms at scale
	7.1 Modeling data and solving problems with graphs
	7.1.1 Modeling graphs
	7.1.2 Shortest-path algorithm
	Technique 67: Find the shortest distance between two users
	7.1.3 Friends-of-friends algorithm
	Technique 68: Calculating FoFs
	7.1.4 Using Giraph to calculate PageRank over a web graph
	Technique 69: Calculate PageRank over a web graph

	7.2 Bloom filters
	Technique 70: Parallelized Bloom filter creation in MapReduce

	7.3 HyperLogLog
	7.3.1 A brief introduction to HyperLogLog
	Technique 71: Using HyperLogLog to calculate unique counts

	7.4 Chapter summary

	Chapter 8: Tuning, debugging, and testing
	8.1 Measure, measure, measure
	8.2 Tuning MapReduce
	8.2.1 Common inefficiencies in MapReduce jobs
	Technique 72: Viewing job statistics
	8.2.2 Map optimizations
	Technique 73: Data locality
	Technique 74: Dealing with a large number of input splits
	Technique 75: Generating input splits in the cluster with YARN
	8.2.3 Shuffle optimizations
	Technique 76: Using the combiner
	Technique 77: Blazingly fast sorting with binary comparators
	Technique 78: Tuning the shuffle internals
	8.2.4 Reducer optimizations
	Technique 79: Too few or too many reducers
	8.2.5 General tuning tips
	Technique 80: Using stack dumps to discover unoptimized user code
	Technique 81: Profiling your map and reduce tasks

	8.3 Debugging
	8.3.1 Accessing container log output
	Technique 82: Examining task logs
	8.3.2 Accessing container start scripts
	Technique 83: Figuring out the container startup command
	8.3.3 Debugging OutOfMemory errors
	Technique 84: Force container JVMs to generate a heap dump
	8.3.4 MapReduce coding guidelines for effective debugging
	Technique 85: Augmenting MapReduce code for better debugging

	8.4 Testing MapReduce jobs
	8.4.1 Essential ingredients for effective unit testing
	8.4.2 MRUnit
	Technique 86: Using MRUnit to unit-test MapReduce
	8.4.3 LocalJobRunner
	Technique 87: Heavyweight job testing with the LocalJobRunner
	8.4.4 MiniMRYarnCluster
	Technique 88: Using MiniMRYarnCluster to test your jobs
	8.4.5 Integration and QA testing

	8.5 Chapter summary

	Part 4: Beyond MapReduce
	Chapter 9: SQL on Hadoop
	9.1 Hive
	9.1.1 Hive basics
	9.1.2 Reading and writing data
	Technique 89: Working with text files
	Technique 90: Exporting data to local disk
	9.1.3 User-defined functions in Hive
	Technique 91: Writing UDFs
	9.1.4 Hive performance
	Technique 92: Partitioning
	Technique 93: Tuning Hive joins

	9.2 Impala
	9.2.1 Impala vs. Hive
	9.2.2 Impala basics
	Technique 94: Working with text
	Technique 95: Working with Parquet
	Technique 96: Refreshing metadata
	9.2.3 User-defined functions in Impala
	Technique 97: Executing Hive UDFs in Impala

	9.3 Spark SQL
	Technique 98: Calculating stock averages with Spark SQL
	Technique 99: Language-integrated queries
	Technique 100: Hive and Spark SQL
	9.3.1 Spark 101
	9.3.2 Spark on Hadoop
	9.3.3 SQL with Spark

	9.4 Chapter summary

	Chapter 10: Writing a YARN application
	10.1 Fundamentals of building a YARN application
	10.1.1 Actors
	10.1.2 The mechanics of a YARN application

	10.2 Building a YARN application to collect cluster statistics
	Technique 101: A bare-bones YARN client
	Technique 102: A bare-bones ApplicationMaster
	Technique 103: Running the application and accessing logs
	Technique 104: Debugging using an unmanaged application master

	10.3 Additional YARN application capabilities
	10.3.1 RPC between components
	10.3.2 Service discovery
	10.3.3 Checkpointing application progress
	10.3.4 Avoiding split-brain
	10.3.5 Long-running applications
	10.3.6 Security

	10.4 YARN programming abstractions
	10.4.1 Twill
	10.4.2 Spring
	10.4.3 REEF
	10.4.4 Picking a YARN API abstraction

	10.5 Chapter summary

	appendix: Installing Hadoop and friends
	A.1 Code for the book
	A.2 Recommended Java versions
	A.3 Hadoop
	Apache tarball installation
	Hadoop 1.x UI ports
	Hadoop 2.x UI ports

	A.4 Flume
	Getting more information
	Installation on Apache Hadoop 1.x systems
	Installation on Apache Hadoop 2.x systems

	A.5 Oozie
	Getting more information
	Installation on Hadoop 1.x systems
	Installation on Hadoop 2.x systems

	A.6 Sqoop
	Getting more information
	Installation

	A.7 HBase
	Getting more information
	Installation

	A.8 Kafka
	Getting more information
	Installation

	A.9 Camus
	Getting more information
	Installation on Hadoop 1
	Installation on Hadoop 2

	A.10 Avro
	Getting more information
	Installation

	A.11 Apache Thrift
	Getting more information
	Building Thrift 0.7

	A.12 Protocol Buffers
	Getting more information
	Building Protocol Buffers

	A.13 Snappy
	Getting more information

	A.14 LZOP
	Getting more information
	Building LZOP

	A.15 Elephant Bird
	Getting more information

	A.16 Hive
	Getting more information
	Installation

	A.17 R
	Getting more information
	Installation on Red Hat–based systems
	Installation on non–Red Hat systems

	A.18 RHadoop
	Getting more information
	rmr/rhdfs installation

	A.19 Mahout
	Getting more information
	Installation

	index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z

