SAS Programming
and Data Visualization
Techniques

A Power User’s Guide

Philip R. Holland

ApPress

SAS Programming and
Data Visualization
Techniques

Philip R. Holland

APIess®

SAS Programming and Data Visualization Techniques: A Power User’s Guide
Copyright © 2015 by Philip R. Holland

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed. Exempted from this legal reservation are brief excerpts in connection with
reviews or scholarly analysis or material supplied specifically for the purpose of being entered and executed
on a computer system, for exclusive use by the purchaser of the work. Duplication of this publication or
parts thereof is permitted only under the provisions of the Copyright Law of the Publisher’s location, in its
current version, and permission for use must always be obtained from Springer. Permissions for use may be
obtained through RightsLink at the Copyright Clearance Center. Violations are liable to prosecution under
the respective Copyright Law.

ISBN-13 (pbk): 978-1-4842-0569-3
ISBN-13 (electronic): 978-1-4842-0568-6

Trademarked names, logos, and images may appear in this book. Rather than use a trademark symbol
with every occurrence of a trademarked name, logo, or image we use the names, logos, and images only in
an editorial fashion and to the benefit of the trademark owner, with no intention of infringement of

the trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are
not identified as such, is not to be taken as an expression of opinion as to whether or not they are subject to
proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of publication,
neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or
omissions that may be made. The publisher makes no warranty, express or implied, with respect to the
material contained herein.

Managing Director: Welmoed Spahr

Acquisitions Editor: Susan McDermott

Developmental Editor: Douglas Pundick

Technical Reviewer: Preeti Pandhu

Editorial Board: Steve Anglin, Mark Beckner, Gary Cornell, Louise Corrigan, James DeWolf,
Jonathan Gennick, Robert Hutchinson, Celestin Suresh John, Michelle Lowman, James Markham,
Susan McDermott, Matthew Moodie, Jeffrey Pepper, Douglas Pundick, Ben Renow-Clarke,
Gwenan Spearing, Matt Wade, Steve Weiss

Coordinating Editor: Rita Fernando

Copy Editor: Tiffany Taylor

Compositor: SPi Global

Indexer: SPi Global

Distributed to the book trade worldwide by Springer Science+Business Media New York,

233 Spring Street, 6th Floor, New York, NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505, e-mail
orders-ny@springer-sbm.com, or visit www.springeronline.com. Apress Media, LLC is a California LLC
and the sole member (owner) is Springer Science + Business Media Finance Inc (SSBM Finance Inc).
SSBM Finance Inc is a Delaware corporation.

For information on translations, please e-mail rights@apress.com, or visit www.apress.com.

Apress and friends of ED books may be purchased in bulk for academic, corporate, or promotional use.
eBook versions and licenses are also available for most titles. For more information, reference our Special
Bulk Sales-eBook Licensing web page at waw.apress.com/bulk-sales.

Any source code or other supplementary materials referenced by the author in this text is available to
readers at www.apress.com. For detailed information about how to locate your book’s source code, go to
Www.apress.com/source-code/.

http://orders-ny@springer-sbm.com
www.springeronline.com
http://rights@apress.com
www.apress.com
www.apress.com/bulk-sales
www.apress.com/9781484204610
www.apress.com/source-code/

To my wife, Angela, for her tolerance and encouragement.

Contents at a Glance

About the AUthor ... —————————— XV
About the Technical ReVIEWETcssssssmssnsssassnsnsnnns Xvii
Acknowledgments........cccciuiissssmmmnmmmmmmsssssssssssnmnmmsssssssssssssnsseesssssssssnnnnnnnsessssssnnnnnnns Xix
INtroducCtionccuiieemmssannssssnnmsssnnmssannsssannsssansssssnnsssannnsssnnssssnnssssnnssssnnssssnnnsssnnnnssnnnsss Xxi
Part I: Programming Efficiency Techniques........ccccccernsssssemmnnnnnssssssnees 1
Chapter 1: The Basics of Efficient SAS Codingcccussssmemmmmmnnnsssssssssssssnnssessssnes 3
Chapter 2: How to Use Lookup Tables Effectively.......ccccunmmmmmssnnnnnsssssnnsnssssnnnnns 13
Chapter 3: Case: SAS Skills in Epidemiology.......ccuseemmrssssnnssssssssnssssssssnssssssssnnnss 29
Part lI: External Interfacesccouvcmmmismmmisssmssnsmssssssssssssssssnssnsnnes 39
Chapter 4: SAS t0 R t0 SAS........ccccccmmmmnmmmnmmmisssnmmmsssssnmssssssessssssessasssssssansns 41
Chapter 5: Knit Perl and SAS Software for DIY Web Applicationsccccusseennns 51
Chapter 6: Running SAS Programs in Enterprise GUIideccccusseenrrnsssnnnnsssssnnnns 65
Chapter 7: Running SAS Programs in SAS Studio or Enterprise Guide.........cusus.. 73
Chapter 8: Everyday Uses for SAS Output Delivery System (0DS).........cseunenuns 101
Part lll: Data Visualization..........cccsimmmssemmmmsssssssmssssssssnssssssssnsssssansnns 109
Chapter 9: Introduction to Graph Templates and 0DS Graphics Procedures......... 111
Chapter 10: Generating Graph Templates........cccvunnemmmmmsssnnnmmssssssnsssssssnessssnnn 127
Chapter 11: Converting SAS/GRAPH Plots to ODS Graphicscccvssseennsssssannnns 153

CONTENTS AT A GLANCE

Chapter 12: Converting SAS/GRAPH Annotate to ODS Graphics.........cccrrsssnnnnns 185
Chapter 13: Customizing Graph Templates.........cccusemmmsssemnmmmssssnmmnsssnnmsssnnns 205
Chapter 14: ODS GRAPHICS Statement...........cccevnnemmnmnnnsennnmsssssnnnnssssnsssssnnns 237
INA@X iiiiiiisnnnnnnnnnnnnssssssssnnnnnnnnnessssssssnnnnnnnnnsssssssssnnnnnnnnessssssssnnnnnnnnnssssssssnnnnnnnnnnsssssnns 241

vi

Contents

About the AUthOrccvcsmiemns s —————————_ XV
About the Technical REVIEWETccusmmsmmsssmssmsssmsssmsssssssssssssssssssssssssssssnsssnsssnsns Xvii
AcknOwIedgmENtS......ccceeermssssssnnsnnmnmssssssssssssssssssessssssssssnsnssssssssssssnnnnnnsssssssssssnnnnnns Xix
INtroductioncccvvemimmim s ———————_————_——— XXi

Part I: Programming Efficiency Techniques........c.ccccinnnsseennnnssssnnnnnnns 1

L0 TS 1
Chapter 1: The Basics of Efficient SAS Codingcccevvssemmnrssssssnsmsssssnssssssssssssssns 3
Is the SAS Programming World “Back to Front”?..........ccoeeeeeenecscrce s 3
Speed and LOW MaiNtENANCEccvveerierreerierreererseessesssesssessesssessesssessesssssssssssssssssesssssenns 4
Speed or Low Maintenance: Part 1ccccverirerninesne s sss e snes 5
Speed or Low Maintenance: Part 2ccoceeeeecrnrcncessessss s s e s e e 6
Personal PrefEreNCESc.covceererererereerese s s s 8
Reducing Maintenance: Part 1. s 9
Reducing Maintenance: Part 2 ... ssssessens 10
00T L]0 11
RETBIBNCES ...t s 11
Chapter 2: How to Use Lookup Tables Effectively......cccunsmmmmmmmimnsmmssssssssssnnsnsssssnns 13
Sample Data Sets........ccoicicrcrcrcr e —————————— 13
DATA SEEP MEIUE......ceireeererrerrsesssesse s s sss e sse s e sss s sn s s e s sn s snenn s sae e snesnnsnns 16
SOL JOIN coveeccereresessse e e e se e s sa s e e e e s e e e e e an s 17
Generated SAS FOrmMALS ... 18

vii

CONTENTS

Generated If .. TREN .. EISEcouceieeeicirerrerense e sn s sne e 20
Generated Select .. When .. Otherwise...........cccovererrrncrercnesssesese s e 22
DATA Step HaS........ooeererr i sn s nr e n s 24
00 e [T 0] LTSRN 26
RETBIENCE ... ———————— 27
Chapter 3: Case: SAS Skills in Epidemiology.......cccusemmmrssssnnsnssssssnnsssssssnnsssssssnnnss 29
Size Really IS Important! ..o s 29
Working with Longitudinal Databases.........c.ccccvvrvrircssssssr s 29
Needing to Clean the Data.............ccoceerrernneiennsenesnne e s ns 30
Choosing a Suitable Database..........ccecerererrrererr s sae e saesees 30
Programming TECANIQUES........cccvcerierrercerser s snenn s 31

SAMPIE DA SEIS ... e e nn 3

SAMPIE SAS COUR......eeeeeecee ettt sa e e e e e sae e e sa e e e sa e s e e sa e e e e e s e e sa e e e e e e e saesaesaenaesannnen 31

Performance RESUILScoouuieireceecre st 35
SUMMEAIY ...ttt e s a e R e s ae e s ae e s e nnennnnnas 37
Some Thoughts for Managersccevvvrrrrnnennenser s se e e sasssssnsses 38
Part II: External Interfacesccuccemmssemmmmssmsmnssessmssssssssssssssssssssssnnss 39
0 39
Chapter 4: SAS t0 R t0 SAS.......cccccmmmmmmmmnmmmsssssssss s 41
SOftware ENVIFONMENT...........ccoociiiicinenn s s 41
Program FIOW ...t 41

SAS Activity to Prepare the Data..........coccevrinrnncr e e 42

R ACHVITY....cvieeeeirisieesir e e s e R e e e R e e e e npnnn s 44

SAS Activity to Create the ODS REPOM........ccoovireeecrirrccirre e 45
00T T T T T U 47
Character-Based REPOrtSccccererererese e sse s s saesnesns s sns s snsnnannas 48
0] e [T (0] L PPN 48
Software Resources and Further Reading...........ccocvvuvvrvervenrernnsesses s e sessessenns 49

viii

CONTENTS

Chapter 5: Knit Perl and SAS Software for DIY Web Applicationscccceuveessssnns 51
HTML Programmingc.ccccveernmnsessmsssnens o1
System REqUIFEMENEScceceecercirser e n s n e e nn s 53
SAS Programimingccceeeeeersersersesssnes 53
Perl Programming and Operational Detailsc.ccocveversnssssses s 60
00 T 11 (0] PR STRRRN 63
RETBIENCES ...t —————————— 63
Chapter 6: Running SAS Programs in Enterprise Guideccussemmmnsssnnnnnssssnnnnns 65
ENVIronment SETUD......coccvvvirirrr sttt 65
Changes to the Automatic Initialization Program............ccceeeerenenessssessssnssss s sessneens 66
Limitations of Enterprise Guide SOftware..........cccocevevererrrererere e 66
Accessing Local SAS InStallations..........ccccverererernrens s ses s seeseesssssssassssssssassenns 66
Accessing Server-Based SAS Installations...........cccceeeeevenenecessse e sessnennens 67
Why You Cannot USE AUTOEXEC.SAS.......cceurereressmrsessssessessnes 67
Why Do Platform-Specific System Commands Fail?..........cccccoevvrvrnninnnsensensessesnennenns 67
Changing the Current DIr€CIOry.......ccoeeeeerere e snene s 68
Generating SAS Code Using Enterprise Guide TasKS.......ccurerererereerssssssesssssesssssssssnsens 70
Automatically Saving L0gs 10 DiSK........ccccvverermriernsisesnnese e sessese s ssssessessssens 4l
0] e 11 0] P 72
2= (=] =] T 72
Chapter 7: Running SAS Programs in SAS Studio or Enterprise Guide.........cu.. 73
Platform-SPECITiIC USEISccvuererierrerieererieererssesessssssesssessssssessessssssssssessssssesssssssssesaesns 73

WINAOWS USEIS ... ss s se s ss s e s s s s sasssssssssssssssssssssssssessssesssssssssnsssssnsans 73

UNIX OF LINUX USEIS ...cuerieeceresseecsessssesesessssessssssssesssnsssssssessasssssassaes 77

IMAC USEISveeeeseeeesesseseesessesssesss e sesss e s ss s e s s ase e sssse e s s s se e e s nse e e s e esase e nessesn e e nsesssssnsnsnnes 78
ROIE-SPECITIC USEIS....eererreererreerierreserssesssessesssessessssssssssessssssesssssssssssssssssssssssssssesssesaesns 78

ACAUBIMIC USEIS.......ceeecccecereeereseseseseseseseseseseses e e sese s e eseseseseseseseseseseseseeseseseseseseesesesesesesesesesenes 78

Non-Programming Data ANGIYSESccceecererrerre e e e e e s sae e ae e ses e sas e saesesassesassanaens 79

Novice and Intermediate Programmers..........ccoeerevrcerrrereseresersesessessssessesessesessessssessssessesessssessssanaens 86

CONTENTS

POWEK USEIS ...t ss e s s s sa s a s s a e p s s e e et e ae e s ae e s aesae e ne e enenenannnnnnas 91
Interface and TaSK DEVEIOPELScceverererirere e see e saesaesaessessesaesaesaesaesaesaesaesaesaesaesasssessessessensens 97
CONCIUSIONScueeercciecire et r e s n e s n e n e e en e s nesn s nnennnnnas 98
REFEIEBNCESeverererer sttt e e r e sn e e n e 99
Chapter 8: Everyday Uses for SAS Output Delivery System (0DS).........ccccunenues 101
DisguisSing @ WEb Page.........ccccvrerrerrersersisressesses s s s sessesses e sesssssnssnssnsssssssssssssssnnsnns 101
USBS ...ttt st et e E R AR AR A SR e e Re A Re A e Re A SR e e Re e Re e e e e e R e e 101
0 102
DIrAWDACKS......ceceeeee e e e R e R s 102
Creating Reports in Parallel............coooeeeeeeeieccccccsece e sn e snenns 102
USBS ...ttt et E A e R A e A e A e e Re A Re A e Re A SR e e Re e Re e e R e e e R e ns 102
0 103
DIrAWDACKS......ccceeecceee e e e e e e n e R s 103
Saving Reports for Later..........c e 103
USBS ...ttt sttt e e RS AR A e A e A e e Re A Re A e Re A e R e e Re e Re e e e e e R e e 104
0 104
DIrAWDACKS......ccceeecceee e e e e e e n e R s 105
Packaging Reports into Zip FileS........cccverirersersersis s snssnssnsnns 105
USBS ...ttt sttt A E R AR A e A SR e e Re A AR R e Re A SR e e Re e Re e e e A e e R e e 105
0 106
DIrAWDACKS......ccceeeccce e R e r e 106
CONCIUSIONSeeveeeeecierte st s e s e s e s e s e sae s e s aesr e s e nsesresnesnesnesnennennennennnnnnns 107
Part lIl: Data Visualization...........cuceeemmmmnnnnisssessnnmmmmmsnsssssssnnnnsnns 109
OVEIVIBW ...oeeceeeescese e e s sa s s ne s n s a s sae e n e e n e nne e e n e e s ae e e e 109
Chapter 9: Introduction to Graph Templates and ODS Graphics Procedures 111
COMING UP ceuvveeirrsresesesessssesesessssessesssssss e s ss s e sssssss e s sassssesessssasesessssssensssssssssssssssssssesssssssssnsnssnsnnns 112
Introduction to ODS GraphiCS ProCedUIEScceeeererereserressessesssssssesssssssssssssssssssnsnns 114
PROC SGPLOTouocvuecturruseessessssessesssssssssssssssssssssssssssssssssssssssessssssssssssssasessssssassssssssasesssnssassssssssssssses 114
PROC SGPANELcvuuvesseeessseesssessssnssssessssssssssnsssssessssssssssessssssssssssssssssssssssssesssssessssmessssnssssssssasessssnness 116
PROC SGSCATTERcouureuusessssessssessssesssasesssssssssessssesssssessssssssssesssssssssessssssssasessssmsssssessssssssasessssnness 118

0 10 13 0] T 126

CONTENTS

Chapter 10: Generating Graph Templates.........ccccnsmmnrnsssnnnmnsssssssmsssssssssssssnnnns 127

ODS GraphiCs DESIGNETcoceeererrerirerirsi e sr s s se s a e s nn s 127
How to Start the ODS Graphics DESIGNEr.........ccoecerererererersers s ses e sns e ssssesns 127
Using the Gallery to Create Simple Templates..........ccoeoverriernrnennesrer e s 130
Saving the Template as a Designer File (*.Sg0)ccuccerurerererienniesnesssese s sessssessssessesessens 148
Saving the Template as a SAS Program (*.SS)cccureerererresesessssessssessssessesesssssssssssessssesssssssssssssssssens 149

Graph Template USAQEcccceererrereererrersesse e sse e ssessessessesssssssssssssnssnsssssssssssssssssssnsnns 150
Preparing Data for Graph TEMPIAtES.........covueeererrrrnesererreere s sas s enas 150
Displaying Graph TEMPIALEScccoererererererireesere e 151

CONCIUSIONScviicccirt e s 152

Chapter 11: Converting SAS/GRAPH Plots to ODS GraphicCsuuussseeeesnssssssssnns 153

SCALLEr PIOTS......cocreieieiicc s ————— 153
SAS/GRAPH frOM SAS 9.2........ceceeeeeeeees s ses s sess s s s sss s s s s s ssenssssssssesnes 154
0DS Graphics from SAS 9.2 (EASY)c.cverermrmrmmsinsssinissssssssssssssssssss s sssssssssens 154

LiNe PIOtS....couiirricir i 155
SAS/GRAPH frOmM SAS 9.2........co ittt s s s bbb s s 156
0DS Graphics from SAS 9.2 (EASY)ccceerrrerrrrerrnserresersessssessssessssesss e sesssssssessssessesessssssssssssessssesssneens 156

RegresSion PIOtS..........ccvceierierrirsirerses s se s e e e sn s sn s sn e sn s snesnnnns 157
SAS/GRAPH frOM SAS 9.2........ceieiesisistssssessesssssssssssse st sssss s s s sssss s ssssssssssssssssssssssnsees 157
ODS Graphics from SAS 9.2 (EASY)ccceererererererereresesesesesesesssesess s sssens 158

Error Bar PIOtS ..o 159
SAS/GRAPH frOM SAS 9.2........ceceeceeeeeree e ses s ses s s ssesse s s s s s s s sssssssnsees 160
0DS Graphics from SAS 9.2 (EASY)ccceererrererrerrererseserseserersssersssessesessesessessssessssessesssssssssssassessssessenees 161

BOX PIOTS ...ttt 162
SAS/GRAPH frOm SAS 9.2........coceececieereeseeses st ssess bbb bbb s enaes 162
0DS Graphics from SAS 9.2 (EASY)ccoerrrrerrrrernrerresesssssssessssessssessssessesesssssssessssessssessssssssssssessssesssneens 163

Vertical Bar CharS ... s s s s sss s snes 164
SAS/GRAPH frOM SAS 9.2........ceieiesisistssssessesssssssssssse st sssss s s s sssss s ssssssssssssssssssssssnsees 164
ODS Graphics from SAS 9.2 (EASY)cccceererrrrerererrssesesessssesesesssssssesessssssessssssssssssssssssssssssssssssssssssssnns 166
ODS Graphics from SAS 9.3 (EASY)ccecerererrrserererrseseserssseesessssesssesessssssessssssssssssssssssssssssssssssssssssssens 169

xi

CONTENTS

Horizontal Bar ChAartS ... 170
SAS/GRAPH frOm SAS 9.2.......coeeeectr et ne e 170
ODS Graphics from SAS 9.2 (EASY)ccccrererrerereresrsesesessssessesssssssessens 173
ODS Graphics from SAS 9.3 (EASY)ccecerererrrserererrsesesersssesssessssssssesessssssessssssssssssssssssssssssssssssssssssssnns 176
0DS Graphics from SAS 9.4 (Difficult and IMpPOSSIDIE)........cccoreeererrreer s 177

2D Pie CRAMS.....courererriniciiise s 180
SAS/GRAPH frOm SAS 9.2.......ce e ssss s s sssns 180
0DS Graphics in SAS 9.2 (IMPOSSIDIE).....cccererrerrererrrrererererersersssersesersesesserssessssessesessessssssassessssessenees 181
0DS Graphics as 0f SAS 9.3 (DIffiCUIL).......ccccvrerererererererererrersereresersesesseresessssersesesssssssssassesassessenens 181

3D Pie Charts........coiiereriir i 183
0DS Graphics in SAS 9.2, 9.3, and 9.4 (IMPOSSIDIE)ceeerierrrrcrerre s 183

00 T (1 (0] LTRSS 183

Recommended ReAUINGc.ccvververrerierieriernirserserses s se e se s e se s e e snssassassassassnnns 183

Chapter 12: Converting SAS/GRAPH Annotate to ODS Graphics.........cccrrssnannnns 185

0 2 T 185
SAS/GRAPH frOm SAS 9.2.......ceoeeeeeeeeeeereeenrssssssssssessssssss s s sssnses 186
0DS Graphics from SAS 9.2 (EASY)ccvererrererrerserersesersesersersssessssessesessessssessssesssessssessssssssssssessssessenens 188

POINt LADEIS.......ceceer s ——————— 189
SAS/GRAPH from SAS Q.2.......coeeeireeci et e 190
ODS Graphics from SAS 9.2 (EASY)ccceereruriererersrenesesssseese s sesss s e e s e s ssss s sessssssssssasssnsssnas 191

Bar LADEIS ... e e 192
SAS/GRAPH frOm SAS 9.2.......coeeeectr et ne e 193
ODS Graphics from SAS 9.3 (EASY)cecerererrrrerererrsesesessssssesessssssssesessssssessssssssssssssssssssssssssssssssssssssnns 194
ODS Graphics from SAS 9.4 (EASY)cccceererrererererrssesesessssesesesesssssesesssnns 195

INFOrMAation BOXESc.oerereimiinmirini s 196
SAS/GRAPH frOm SAS 9.2.......ce e ssss s s sssns 197
0DS Graphics from SAS 9.3 (DIffiCUIL)cceererrererrrerererererrereerersesersesessereserssessesessesessssessesassessenenes 198
0DS Graphics from SAS 9.2 (DIffiCUIL)cceererererrrerererererrersererseserseserseresserasersesessssessssessesassessesenes 199
0DS Graphics from SAS 9.2 (EASY)ccvrererrererrersererseserseseressssessssessesessessssessssessssessssessssssssssssessssessenens 201

0] 3T] N 203

xii

CONTENTS

Chapter 13: Customizing Graph Templates.......c.cccusemmmnssssennmnsssssnnmnsssssnsnsannns 205
Structure and SYNTAX........ccoeeriiecrer e 205
SITUCTUNE ... s e s b e R e e R e e e Re e s e R e e eR e e eRe e e Renrnanns 205
TeMPIAE SYNTAXc.ccceeecece e e e p e e enn 211
Creating Your Own Templates.........ccoeeeeeeerenenesese e ses e s s s s s snsnnns 214
Customizing PROC SGSCATTER GFaphSccceceerrrenererenseesesesssssesesssssssesssssssssssssssssssssssssssssssssssssnns 214
Customizing PROC SGPLOT TEMPIALESceeeeererrreererenseeseseseesesesss e sessssssesesssssssesessssssssssssssssanns 225
Graph Template CONTENTS.........c.occceerrreccrrr e 232

00] T (1 (0] LSO 235
Chapter 14: ODS GRAPHICS Statement............ccccvieemmmninsenmmnnssssnmmssssnmsssnns 237
ODS GRAPHICS Statement...........ccoceoviernienennnesesesessssesse s sss e ss s ssessssessssesssssssenns 237
0DS Graphics Output Destinations.........c.ccoeeriernnrernrnerr s 238
SAS 0.2....oceeueevuseessees s st e s e R SRR AR R SRR R AR AR AR 238
SAS 0.3 .ouoreereeruseessseee st s R e eRaeeE AR R AR R SRR AR R AR AR 238
SAS 0.4 ...oeereeeueeesee st s R AR R SRR 239
EMF QUEPUL FIIES ..ot s aesa e sae e sa e sa e sa e sa e e st e e e sa e na e e e na e na e nn e naena e s 239
CONCIUSIONSeeeeierierrcree e rre e sesressesressesr e sae s e s aesaesaenreseesnesnssaesnennennennennannnns 240
INA@X.uetiiiisnnnnnnssssnnnnnssssnnnnnssssnnnnessssnnnnnssssnnnnsssssnsnnssssnnnnsssssnnnnessssnnnnsssssnnnnessssnnnnnsssn 241

xiii

About the Author

Philip R. Holland has over 30 years of experience of working with SAS
software. Having started in 1981 as an MVS Systems Programmer for the
University of London Computer Centre (ULCC), he moved on to Prudential
Assurance, where, as an MVS Systems Programmer and Performance Analyst,
he was the company’s SAS technical support representative. His third and
final permanent SAS position as a Capacity Planner for Centrefile ended in
1992, when he formed his own consultancy company, Holland Numerics
Ltd. Since then, he has provided SAS technical consultancy and training on
all major platforms that support SAS software in the financial, retail, and
pharmaceutical sectors in the UK, the USA, Belgium, Holland, and Germany.
Philip is the author of numerous articles and conference papers
relating to SAS and is an enthusiastic software developer, using not only
SAS but also Perl, Java, JavaScript, and Visual Basic. This is his fourth
SAS-related book, and his latest project has been to develop SAS-related
e-book apps for Android devices and Chrome/Chromium browsers.

XV

About the Technical Reviewer

Preeti Pandhu has a Master of Science degree in applied (industrial)
statistics from the University of Pune. She is SAS certified as a base and
advanced programmer for SAS 9 as well as a predictive modeler using SAS
Enterprise Miner 7.

Preeti has more than 16 years of experience in analytics and training.
She started her career as a lecturer in statistics and began her journey
into the corporate world with IDea$ (now a SAS company), where she
managed a team of business analysts in the optimization and forecasting
domain. She joined SAS as a corporate trainer before stepping back
into the analytics domain to contribute to a solution-testing team and
research/consulting team. She was with SAS for 9 years.

Preeti is currently passionately building her analytics training firm,
DataScienceLab (www.datasciencelab.in).

xvii

www.datasciencelab.in

Acknowledgments

My thanks to the PhUSE Conference and SAS Global Forum committee members, for giving me the chance
to present my ODS Graphics ideas at PhUSE Conferences and the SAS Global Forum.

Xix

Introduction

When selecting a technical book for myself, I tend to choose one that includes lots of examples and sample
code snippets that I can use and adapt for my own development projects. I wanted to write a book that
I could use for reference myself, so I have tried to make sure there are code snippets wherever possible.

As a former Performance Analyst, I still look at any programs I write to see if I can make them smaller,
quicker, and/or easier to maintain. Resources may appear to be limitless, but there will inevitably come a day
when a program needs more WORK disk space, more memory, more processing power, faster disk access, and
so on. Part I of this book is intended to help you look at your existing programs and move that day when you
run out of resources a little further into the future, thus saving money on resources and maintenance.

I have spent the majority of my time as an independent consultant assisting my clients to make better use
of their existing components by demonstrating new features, improving their coding efficiency, and helping
them to develop applications that are easier to maintain. I want this part of my book to continue this work.

Have you ever read about a new feature in the software you already use or are thinking about using,
and wondered whether it can be used in your day-to-day activities? I do this all the time, which is why the
chapters in Part II focus on how to use a range of different software applications with SAS software. Although
the capabilities of SAS software are constantly growing, there is always some type of functionality that SAS
cannot do but that exists in another software application. Interfacing SAS and this external application can
bridge the gap to achieve what you are trying to do.

I'have spent the vast majority of my SAS programming career drawing graphs—first on pen plotters
and, more recently, for web pages and books. SAS/GRAPH is now a vast and complicated SAS component,
requiring delicate configuration that changes from platform to platform and even from graph to graph. It was
ajoy to find a way to draw clear graphs using Base SAS with ODS Graphics that is consistent, reusable, and,
most important, simple to learn. I hope that by the end of Part III, you agree with me.

xxi

PART |

Programming Efficiency
Techniques

Overview

Throughout my career, I have worked in industries where programming performance was central to
my job. This part of the book examines various aspects of programming performance:

e Chapter 1, “The Basics of Efficient SAS Coding,” looks at performance in
terms of the difference between the speed of program processing and
program maintenance, and how to program to make maintenance easier.

e Chapter 2, “How to Use Lookup Tables Effectively,” examines different
techniques for merging large data sets with one or more smaller data sets,
and how the performance of each technique changes with increasing data
volumes.

e Chapter 3, “Case: SAS Skills in Epidemiology,” explains how SAS
programmers working in epidemiology use different programming
techniques than those working on clinical trials, due to the greater volumes
of data used in epidemiology.

http://dx.doi.org/10.1007/9781484205693_1
http://dx.doi.org/10.1007/9781484205693_2
http://dx.doi.org/10.1007/9781484205693_3

CHAPTER 1

The Basics of Efficient SAS Coding/

Coding efficiency is generally measured in CPU time, disk space, or memory usage. This is perfectly
reasonable for SAS code that will be submitted many more times than it will be updated. However, there
are coding environments where SAS programs are written for single production runs and then adapted and
updated for different production runs—for example, in clinical development. In these cases, a measurement
of maintenance time may be more important.

SAS programs like those used in clinical trials are unlikely to be used to process large amounts of data,
but they are very likely to be updated and adapted for use in a series of trials requiring similar processing.
Saving 50% of the CPU time when the program runs for only 5 minutes will not have a significant impact on
coding efficiency. But if a program is difficult to maintain, days or even weeks could be added to the time
needed to prepare the program for a new trial.

This chapter discusses the choices you need to make when coding efficiently in different types of SAS
programs. The various situations are illustrated with coding examples.

Is the SAS Programming World “Back to Front”?

I first used PROC SQL in financial projects; many of the SAS programmers had backgrounds in database
management, and SQL was routinely used. In retrospect, this was not efficient programming, because
joining large SAS data sets using PROC SQL, particularly on mainframes, does not usually improve processing
performance.

When I started my first clinical-trials contract, no one used PROC SQL, even though data volumes were
small and SQL is much easier to read and maintain than DATA steps and PROC SORT. DATA steps and PROC
SORT together are much better for working with large data volumes, whereas PROC SOL is usually better for
small data volumes.

The following examples reflect my personal views on coding efficiency. In some cases, the choice of an
appropriate coding approach depends on the programming experience within the SAS programming team—
particularly their knowledge of SQL programming.

CHAPTER 1 " THE BASICS OF EFFICIENT SAS CODING

Speed and Low Maintenance

IF...THEN...ELSE and SELECT. . .WHEN constructs are examples of code that can be written to improve both
speed and maintenance time. In a simple case of an input data set containing three possible values A-C for
avariable, the assignment of a new variable based on the value can be written a number of ways. All three
examples generate exactly the same output data set:

1. The following code is not efficient, because every IF condition is applied to
every record. However, for small input data sets, you may not notice the inherent
inefficiency:

DATA new;
SET old;
IF oldvar = 'A' THEN newvar
IF oldvar = 'B' THEN newvar
IF oldvar = 'C' THEN newvar
RUN;

nou
N =
e W

n
w
-

2. The following code is more efficient, because IF conditions are applied only up
to the condition that matches. However, for small input data sets, you may not
notice the increased speed. You can achieve further improvements in speed by
ordering the IF conditions so that the most commonly used is placed at the top,
but this may not be worthwhile unless the data is already well-known and the
most common value is very common:

DATA new;
SET old;
IF oldvar = 'A" THEN newvar = 1;
ELSE IF oldvar = 'B' THEN newvar = 2;
ELSE IF oldvar = 'C' THEN newvar = 3;
RUN;

3. The following code is comparable in efficiency to the code in example 2 in that
WHEN conditions are applied only up to the condition that matches. For small
input data sets, you may not notice the increased speed. Again, you can achieve
further improvements in speed by ordering the WHEN conditions so that the most
commonly used is placed at the top. In my opinion, this construct is easier to
maintain, because all the lines have the same layout; thus you can insert or
delete lines with a reduced risk of introducing syntax errors. The mandatory
OTHERWISE clause also provides an obvious place to include a default value if
none of the previous conditions have been fulfilled:

DATA new;
SET old;
SELECT (oldvar);
WHEN ('A") newvar =
WHEN ('B") newvar
WHEN ('C") newvar = 3;
OTHERWISE;
END;
RUN;

I I
N R
. e

CHAPTER 1 THE BASICS OF EFFICIENT SAS CODING

Extending conditional clauses to 10 or more conditions requires great care to avoid inefficient
processing, especially if the input data set is large. You can also avoid inefficient maintenance, particularly if
the conditional code is enclosed in a DO. . . END construct, if you lay out the code with indents indicating the
relative positions of each section of conditional code.

Speed or Low Maintenance: Part 1

Rewriting a data-step merge with a PROC SOL join can help reduce maintenance time but may reduce
processing speed. The following sample code merges three data sets using two variables and then reorders
the resulting data set by another variable:

1. This is a combination of PROC SORT and DATA steps. The code is efficient as far as
processing is concerned, but it is quite long and involved, because you have to
sort the individual data sets prior to merging them:

PROC SORT DATA = a OUT = a1;
BY cat_b;

RUN;

PROC SORT DATA = b OUT
BY cat_b;

RUN;

b1;

DATA a1 _bi;
MERGE a1 (IN
BY cat_b;

IF a AND b;

RUN;

b);

a) ba (IN

PROC SORT DATA = a1 b1 OUT = ai1_b1ii;
BY cat_c;
RUN;

PROC SORT DATA = c OUT
BY cat_c;
RUN;

c1;

DATA a1_b1 c1;
MERGE a1 bi1 (IN = ab) c1 (IN = c);

BY cat_c;
IF ab AND c;
RUN;

PROC SORT DATA = a1 b1 c1;
BY cat_a cat b cat_c;
RUN;

CHAPTER 1 " THE BASICS OF EFFICIENT SAS CODING

2. Thisis asingle PROC SQL step that does everything in the one step, including
the final sort. When input data sets are small to moderate in size, there is little
difference in the CPU time used by this and the previous code, but very large
input data sets can result in slower processing when using PROC SOL. Another
obvious disadvantage is that, when combining two or more data sets with
overlapping variables, you must list all the variables to be included in the output
data sets. However, assuming the SAS programming team has some experience
with SQL programming, this program should be easier to maintain:

PROC SOL;

CREATE TABLE a_b c AS

SELECT a.

FROM a

WHERE a.
AND a.
ORDER BY
a
,b.
,C.

5
QUIT;

cat_a

.cat b
.cat_c
.num_a1
.num_a2
.num_b1
.num_b2
.num_c1
.num_c2

cat b
cat_c

.cat_a

cat b
cat_c

b.cat b
c.cat_c

Speed or Low Maintenance: Part 2

Coding simple merges is fairly straightforward using DATA or PROC SOL steps, but PROC SQL may be the
number-one choice when you are joining tables based on a range of values, rather than a one-to-one match.
In this example, the code is being used to calculate the largest difference between records within 28 days of

each other:

1. This is a combination of PROC SORT, PROC TRANSPOSE, and DATA steps, which
can be efficient as far as processing is concerned but is quite long and involved
because you have to use arrays to categorize all the individual pairs of records:

PROC SORT DATA = old OUT = temp;

BY cat;
RUN;

DATA temp;
SET temp;
BY cat;

RETAIN order;

CHAPTER 1 THE BASICS OF EFFICIENT SAS CODING

IF FIRST.cat THEN order = 1;
ELSE order + 1;
RUN;

PROC TRANSPOSE DATA = temp OUT = num PREFIX = num;
BY cat;
VAR num;
ID order;

RUN;

PROC TRANSPOSE DATA val PREFIX
BY cat;
VAR val;
ID order;

RUN;

temp OUT

val;

DATA all (DROP = :);
MERGE num val;
BY cat;

RUN;

DATA new (KEEP = cat maxval);
SET all;
BY cat;
ARRAY num num:;
ARRAY val val:;
ARRAY test testi-tests0;
maxval = .;
reset = 1;
DO i = 1 TO DIM(num);
DO j = i+1 TO DIM(num);
IF num(j) - num(i) LE 28
AND ROUND(val(j) - val(i), .0001) GT maxval
THEN maxval = ROUND(val(j) - val(i), .0001);
END;
END;
IF LAST.cat THEN OUTPUT;
RUN;

This uses two PROC SOQL steps: one to join the input data set with itself to generate
all possible combinations of 1- to 28-day gaps, and a second PROC SQL step to
find the largest value difference. Again, when the input data sets are small to
moderate in size, there is little difference in CPU time between this and the
previous code; but very large input data sets can result in slower processing when
using PROC SQL. But assuming the SAS programming team has some experience
with SQL programming, this program should be much easier to maintain:

PROC SOL;
CREATE TABLE temp AS
SELECT b1.cat
,ba.num
,MAX(b2.val - bi.val) AS maxval

CHAPTER 1 " THE BASICS OF EFFICIENT SAS CODING

FROM old b1
LEFT JOIN
old b2

ON bi.cat = b2.cat
AND (b2.num - bil.num) BETWEEN 1 AND 28
GROUP BY
bi.cat
,bl.num

5
QUIT;

PROC SOL;
CREATE TABLE new AS
SELECT cat
,MAX(maxval) AS maxval
FROM temp
GROUP BY
cat

)
QUIT;

Personal Preferences

Every SAS programming team has its own “standard” reporting procedure, usually PROC REPORT or PROC
TABULATE. In terms of processing time, there is little difference between them. But, strangely, combining PROC
SUMMARY and PROC PRINT can create very acceptable tables in less processing time. As far as maintenance
time is concerned, the choice depends on what you are used to:

1. PROC REPORT is compact and easy to maintain. The order of the report columns is
determined by the COLUMN statement:

PROC REPORT DATA = old NOWD;
TITLE "Report";
COLUMN cat_a cat b = n_b cat_b = pct_b num val;
DEFINE cat_a / GROUP 'Category';
DEFINE n_b / SUM FORMAT = 8. 'N b';
DEFINE pct b / MEAN FORMAT = PERCENT8. 'Pct b';
DEFINE num / MEAN FORMAT = 8.1 'Mean num';
DEFINE val / MEDIAN FORMAT = 8.1 'Median val';
RUN;

n oo 1

2. PROC TABULATE has a more complex syntax but is easier to use when you need to
include multiple statistics for a single variable. All you have to remember is that
the syntax follows the simple rule [[[Page,] Row,] Column]:

PROC TABULATE DATA = old;
TITLE "Tabulate";
CLASS cat_a;
VAR cat_b num val;
TABLE cat_a = 'Category’
,(catb=""*(SUM = 'Nb" * F = 8.
MEAN = 'Pct b' * F = PERCENTS.)

CHAPTER 1 THE BASICS OF EFFICIENT SAS CODING

num = ' ' * MEAN = 'Mean num' * F

= 8.
val = ' ' * MEDIAN = 'Median val' * F

n =

8.1

RUN;

3. PROC PRINT is often ignored, but with PROC SUMMARY it makes a useful alternative,
with simple syntax and fast processing:

PROC SUMMARY DATA = old NWAY;
CLASS cat_a;
VAR cat_b num val;
OUTPUT OUT = temp SUM(cat b) = n b
MEAN(cat b num) = pct b num
MEDIAN(val)=

)

RUN;

PROC PRINT DATA = temp LABEL;
TITLE "SUMMARY + PRINT";
VAR cat_a n_b pct_b num val;
LABEL cat_a = 'Category'

nb="'Nb'

pct b = 'Pct b’
num = ‘Mean num'
val = 'Median val'

5
FORMAT n_b 8.
pct_b PERCENTS.
num val 8.1
5

RUN;

Reducing Maintenance: Part 1

In the following examples, the PROC SQL code is exactly the same. But, in my opinion, coding layout 3 is
easier to maintain, because all the lines have the same layout—you can insert or delete lines with a reduced
risk of introducing syntax errors:

1. This is a prose layout, which is quick to write but can be a nightmare to maintain:

PROC SOL;
CREATE TABLE new AS SELECT a.coli, b.col2, a.col3 FROM a, b
WHERE a.coll = b.col1l AND a.col2 = b.col2;

QUIT;

2. This splitlayout is easier to read, but inserting and deleting lines of code can
introduce syntax errors:

PROC SQL;
CREATE TABLE new AS
SELECT a.col1,
b.col2,

CHAPTER 1 " THE BASICS OF EFFICIENT SAS CODING

a.col3
FROM a,
b
WHERE a.col1l = b.col1l AND
a.col2 = b.col2;

QUIT;

3. Thisis a comma-firstlayout, which is easier to read and which lets you insert
and delete lines of code safely. Note that bolded lines are always written with
commas and operators at the beginning of each line so that they can be safely
duplicated or deleted:

PROC SQL;
CREATE TABLE new AS
SELECT a.col1
sb.col2
sa.col3
FROM a
sb
WHERE a.coll = b.col1
AND a.col2 = b.col2

)
QUIT;

Reducing Maintenance: Part 2

How else can you reduce the effort required to maintain code in the future? The following examples have
exactly the same functionality:

1. Thisis unsubstituted SQL:

PROC SOQL;
CREATE TABLE temp AS
SELECT b1.cat
,bl.num
»MAX(b2.val-b1.val) AS maxval
FROM old b1
LEFT JOIN
old b2
ON bl.cat = b2.cat
AND (b2.num-b1.num) BETWEEN 1 AND 28

GROUP BY
bi.cat
,bl.num;
QUIT;

2. Thisis parameterized SQL, which requires less effort to maintain:

Z%LET d = 28;
%LET c = cat;
%LET n = num;
%LET v = val;

10

CHAPTER 1

PROC SOL;
CREATE TABLE temp AS
SELECT b1.8c.

,b1.8n.

,MAX(b2.8&v.-b1.8&v.) AS maxval
FROM old b1
LEFT JOIN

old b2

ON b1.&c. = b2.&c.
AND (b2.8n.-b1.8n.) BETWEEN 1 AND &d.

GROUP BY
b1.&c.
,b1.8n.;
QUIT;

Conclusions

The following conclusions are based on my own experience:

THE BASICS OF EFFICIENT SAS CODING

e Any section of code used to create a single variable that cannot be printed on a single

side of A4 or Letter paper is too complex.

e Ifyou are processing a small amount of data, then saving 50% of the processing time

by spending 50% more development time is not efficient coding.
e High speed and low maintenance time mean efficient coding.

¢ Lowspeed and high maintenance time mean inefficient coding.

e The efficiency of coding with high speed and high maintenance time, or low speed
and low maintenance time, depends on how often the program is submitted.

References

e SAS Training Course: SAS Programming 3: Advanced Techniques and Efficiencies,

https://support.sas.com/edu/schedules.html?id=1917.

11

https://support.sas.com/edu/schedules.html?id=1917

CHAPTER 2

How to Use Lookup
Tables Effectively

There are many different ways to combine small lookup tables with larger SAS data sets. This chapter shows
how to use the most appropriate and efficient method, depending on the circumstances.

No matter what type of programming you do in any SAS programming environment, there will
eventually be a need to combine your data with a lookup table. This lookup table may be a code list for
adverse events, a list of names for visits, or just one of your own summary data sets containing totals that you
will be using to calculate percentages, and you may have your favorite way to incorporate it. This chapter
describes, and discusses the reasons for, using six different simple ways to merge data sets with lookup
tables. After reading this chapter, when you take over the maintenance of a new program, you will be ready
for anything!

Sample Data Sets

All six techniques described in this chapter use the same four SAS data sets to create the same output data set.
These data sets are as follows:

e MAIN includes multiple copies of SASHELP.CARS (428 observations and 15 variables)
saved in a single WORK data set to increase the size of this data set:

%LET mult = 1; /* 10, 100, 1000, 2000, 5000 */

DATA main;
SET sashelp.cars;
DO i = 1 TO 8mult.;
OUTPUT;
END;
RUN;

e LOOKUP_ORIGIN (3 observations and 3 variables) is shown in Figure 2-1:

PROC SOL;
CREATE TABLE lookup origin AS

SELECT origin /* key */

,COUNT(DISTINCT make) AS make n
,COUNT(DISTINCT type) AS type n

13

CHAPTER 2 © HOW TO USE LOOKUP TABLES EFFECTIVELY

FROM sashelp.cars
GROUP BY

origin
ORDER BY

origin

;
QUIT;

LOOKUP_ORIGIN ~

&% | &} Filter and Sort Zl5 Query Builder | Data v Describe + Graph v Analyze ~ | Export » Send To ~

@ Origin @ make_n @ type_n
1 |Asia . L
2(Euwope ¢ M0 A
BUSA e A 5

Figure 2-1. LOOKUP_ORIGIN data set

LOOKUP_TYPE (15 observations and 6 variables) is shown in Figure 2-2:

PROC SOL;
CREATE TABLE lookup_type AS
SELECT origin, type /* keys */
,COUNT(DISTINCT model) AS type model n
,COUNT(DISTINCT make) AS type make n
,MEAN(msp) AS type_msrp_mean
,MAX(horsepower) AS type horsepower max
FROM sashelp.cars
GROUP BY
origin, type
ORDER BY
origin, type

)
QUIT;

14

CHAPTER 2 © HOW TO USE LOOKUP TABLES EFFECTIVELY

LOOKUP_TYPE ~
€9 | i Filter and Sort El5 Query Builder | Data ~ Describe + Graph = Analyze ~ | Export » Send To ~ |

/s orgn A Type |@ type_modeln|@) type_make n|2) type_msm_mean D) type_horsepower_max
3 2 5 '

1 [Asia Hybrid _ 19920 110!
B e e B

T e ——— T
LRI s T — — 3251094963085?059300

N~ A N SR RIS SRR
21437272730 315
. e M0
429205128 483
493

Figure 2-2. LOOKUP_TYPE data set

e LOOKUP_MAKE (38 observations and 6 variables) is partially shown in Figure 2-3:

PROC SQL;
CREATE TABLE lookup_make AS
SELECT origin, make /* keys */
,COUNT(DISTINCT model) AS make_model n
,COUNT(DISTINCT type) AS make type n
,MEAN(msxp) AS make msrp mean
,MAX(horsepower) AS make_horsepower max
FROM sashelp.cars
GROUP BY
origin, make
ORDER BY
origin, make

;
QUIT;

15

CHAPTER 2 © HOW TO USE LOOKUP TABLES EFFECTIVELY

LOOKUP_MAKE ~
€9 | &3 Filter and Sort El5 Query Builder | Data » Describe = Graph ~ Analyze ~ | Export ~ Send To ~ |

/A Origin |/ Make @ make_moH_n@ make_tm_n@ make_msrp_nm@ make_horsepower_max
Asiz Lo L PR DRy 04 T T L COTRIRING <1 A) R e RN
Asia .. iHonda :
Asia Hyundai ;
e T
o T |

4 2eaj0sel 240
k3 174765 194
- 1
S 2
_1se7e%08091T 1%
44715 45454
a2y 238
ZRIIOWBO], e T
24730.941176 205
13565 108
25501.818182; ' 300
e 3
e POREERITE RN

MBI o b oo B o e s
‘Missan
Scion
(Subary

1 e

-
-

=k

-
-

Euope Jaguar W 2 61580416667
Europe Land Rover 3 i 45831666667
e . e ! i

e i "
e

30837.777778 275
50474.375. 45|
.. 26587.037037. '

USA Buiek 5
USA Cadillac 8
USA Chevrolet o :
USA Chrysler

[B[B[R[3[3[3 R [3]8[]8]2 = |3]@]]

B L ST

-
-

Figure 2-3. LOOKUP_MAKE data set

DATA Step Merge

This is probably the most commonly used technique to merge SAS data sets. The SAS environment was
originally built around the DATA step, so the technique has been included in SAS training courses for a very
long time. However, it is also one of the least efficient methods, because, for each join, the two data sets must
be sorted the same way. In this example, even though the smaller lookup data sets would be quicker to sort,
the large master data set has to resorted each time.

The output data set will include four new calculated variables:

e make msrp_flag, whichissetto1ifmsrp >mean msrp by make.

e make_horsepower pct, which is set to the percentage of the maximum horsepower
by make

e type msrp_flag, whichissetto 1ifmsrp >mean msrp by type

16

CHAPTER 2 © HOW TO USE LOOKUP TABLES EFFECTIVELY

e type horsepower pct, which is set to the percentage of the maximum horsepower
by type

PROC SORT DATA = main OUT = datastepmergel; BY origin make; RUN;

DATA datastepmerge2;
MERGE datastepmergel lookup_origin;
BY origin;

RUN;

DATA datastepmerge3;
MERGE datastepmerge2 lookup_make;
BY origin make;
IF msrp > make_msrp_mean THEN make msrp flag = 1;
ELSE make_msrp_flag = 0;
make_horsepower_pct = 100 * horsepower / make_horsepower max;
RUN;

PROC SORT DATA = datastepmerge3 OUT = datastepmerge4; BY origin type; RUN;

DATA datastepmerges;
MERGE datastepmerge4 lookup_type;
BY origin type;
IF msrp > type msrp mean THEN type msrp flag = 1;
ELSE type msrp flag = 0;
type_horsepower pct = 100 * horsepower / type_horsepower max;
RUN;

SQL Join

The strange fact about PROC SOL is that it becomes less efficient with increasing data, yet it is rarely used
with clinical data, where the data volumes are low, but widely used with financial data, where the data
volumes are high. The reason for this anomaly is that SQL is heavily used by database administrators, and
many SAS programmers working with financial data have had database administrator training. So, rather
than changing their working practices, they continue to use the programming environment where they are
comfortable:

PROC SOL;
CREATE TABLE sqljoinl AS

Copy all the variables from the a data set (main), along with the new variables from the lookup tables
(b=lookup_origin, c=lookup_make and d=lookup_type):

SELECT a.*
,b.make_n
,b.type_n
,c.make_model n
,C.make_type n
,C.make_msrp_mean
,C.make_horsepower_max

17

CHAPTER 2 © HOW TO USE LOOKUP TABLES EFFECTIVELY

,d.type model n
,d.type_make n
,d.type_msrp_mean
,d.type_horsepower_max

Calculate the percentages using the SQL expression syntax:

,(100 * a.horsepower / c.make_horsepower max) AS make_horsepower pct
,(100 * a.horsepower / d.type_horsepower max) AS type_horsepower pct

The CASE construct is the SQL equivalent of the DATA step IF statement:

, (CASE
WHEN a.msrp > c.make_msrp_mean THEN 1
ELSE 0
END) AS make msrp flag

, (CASE
WHEN a.msrp > d.type msrp _mean THEN 1
ELSE 0
END) AS type msrp_flag
FROM main a

The lookup tables are merged with main using a LEFT JOIN:

LEFT JOIN
lookup_origin b
ON a.origin = b.origin
LEFT JOIN
lookup_make ¢
ON a.origin = c.origin AND a.make = c.make
LEFT JOIN
lookup_type d
ON a.origin = d.origin AND a.type = d.type

;
QUIT;

Generated SAS Formats

Using SAS formats is inherently more efficient than joining data sets directly, because the format data is
stored in memory rather than on disk. There is a small downside—you have to convert the data sets into
formats—but these data sets are relatively small, so there is a significant benefit to using SAS formats as
lookup tables. Available memory is a limiting factor for the usable size of the format, but formats in excess of

50,000 entries are perfectly acceptable:

DATA format_origin;
LENGTH fmtname $7 start $80 label 8 type hlo $1;
SET lookup_origin;
type = 'I';

18

CHAPTER 2 © HOW TO USE LOOKUP TABLES EFFECTIVELY

hlo = " ';

start = origin;
fmtname = 'originm';
label = make_n;
output;

fmtname = 'origint';
label = type n;
output;

PROC SORT DATA = format_origin NODUPKEY; BY fmtname start; RUN;

PROC FORMAT CNTLIN = format_origin; RUN;

Remember to rename the levell= variable to prevent a clash between TYPE and the required variable of

the same name in the CNTLIN data set:

%MACRO generate format(leveli=, level2=);

DATA format 8levell.;
LENGTH fmtname $7 start $80 label 8 type hlo $1;
SET lookup &leveli. (RENAME = (&leveli.=levell));
type = 'I';
hlo = ' ';
start = CATX('|', origin, &levell.);
fmtname = "&levell.c";
label = 8levell. model n;
output;
fmtname = "&level1.x";
label = &levell. &level2. n;
output;
fmtname = "&levell.p";
label = &leveli. msrp_mean;
output;
fmtname = "&leveli.h";
label = &levell. horsepower max;
output;
RUN;

PROC SORT DATA = format_&levell. NODUPKEY; BY fmtname start; RUN;

PROC FORMAT CNTLIN = format &levell.; RUN;

%MEND generate format;

%generate_format(leveli=make, level2=type);
%generate format(leveli=type, level2=make);

DATA formati;

SET main;

make n = INPUT(origin, originm.);

type_n = INPUT(origin, origint.);

make_model n = INPUT(CATX('|', origin, make), makec.);

19

CHAPTER 2 © HOW TO USE LOOKUP TABLES EFFECTIVELY

make_type n = INPUT(CATX('|', origin, make), makex.);
make_msrp mean = INPUT(CATX('|', origin, make), makep.);
IF msrp > make_msrp_mean THEN make msrp_flag = 1;

ELSE make_msrp_flag = 0;
make_horsepower max = INPUT(CATX('|', origin, make), makeh.);
make_horsepower pct = 100 * horsepower / make_horsepower max;
type_model n = INPUT(CATX('|', origin, type), typec.);
type_make n = INPUT(CATX('|', origin, type), typex.);
type_msrp mean = INPUT(CATX('|', origin, type), typep.);

IF msrp > type msrp_mean THEN type msrp_flag =

ELSE type msrp flag =
INPUT(CATX("|", origin, type), typeh.);
100 * horsepower / type_horsepower max;

type_horsepower max
type_horsepower pct
RUN;

It is often helpful to see what the generated data looks like, so the data in format_origin is shownin
Figure 2-4.

format_origin

Obs | fmtname start label type hlo

1 originm Asia 14 1
2 originm | Europe 10 |
3 | originm USA 14 1
4 | origint Asia 6|1
5 origint Europe 411
6 origint USA b1

Figure 2-4. The data generated in format_origin

Generated If .. Then .. Else

To save all the sorting and memory usage, why not generate DATA step code to add the extra information
from the lookup data sets? In this case, IF .. THEN .. ELSE statements are generated from the lookup
data sets and stored as text records in a SAS Catalog Source entry in a WORK catalog so that they are deleted
automatically at the end of the SAS session:

FILENAME srcif CATALOG "work.generateif";

DATA NULL ;
SET lookup origin END = eof;
FILE srcif(origin.source);
IF _N_ =1 THEN PUT "IF origin = '" origin +(-1) "' THEN DO;";
ELSE PUT "ELSE IF origin = '" origin +(-1) "' THEN DO;";

20

CHAPTER 2

PUT "make n = " make n ";";
PUT "type n = " type n ";";
PUT "END;";

RUN;;
%MACRO generate if(levell=, level2=);
DATA NULL_;
SET lookup &leveli. END = eof;
FILE srcif(&levell..source);
IF _N_ =1 THEN PUT "IF origin =
&level1. +(-1) "' THEN DO;";
ELSE PUT "ELSE IF origin =
&levell. +(-1) "' THEN DO;";

HOW TO USE LOOKUP TABLES EFFECTIVELY

"" origin +(-1) "' AND &level1. = '"

"" origin +(-1) "' AND 8level1. = '"

n,on
))

100 * horsepower / &levell. horsepower max;";

PUT "&levell. model n = " &levell. model n ";";
PUT "&level1l. &level2. n = " &level1l. &level2. n ";";
PUT "&levell._msrp _mean = " &levell. msrp_mean ";";
PUT "IF msrp > &levell. msrp_mean THEN &levell. msrp_flag = 1;";
PUT " ELSE &levell. msrp_flag = 0;";
PUT "&levell. horsepower max = " &levell. horsepower max
PUT "&levell. horsepower pct =
PUT "END;";
RUN;

#MEND generate_if;

%generate_if(leveli=make, level2=type);
%generate_if(leveli=type, level2=make);

DATA generateifi;
SET main;
%INCLUDE srcif(origin.source);
%INCLUDE srcif(make.source);
%INCLUDE srcif(type.source);
RUN;

An extract from the SAS code generated in srcif(type.source) is shown in Figure 2-5.

21

CHAPTER 2 © HOW TO USE LOOKUP TABLES EFFECTIVELY

IF origin = 'Asia’ AND type = 'Hybrid' THEN DO;

type_model n = 3 ;

type_make n = 2 ;

type_msrp_mean = 19920 ;

IF msrp > type_msrp_mean THEN type msrp_flag = 1;
ELSE type_msrp_flag = 0;

type_horsepower_max 110 ;
type_horsepower_pct = 100 * horsepower / type_horsepower_max;
END;
ELSE IF origin = ‘'Asia’ AND type = 'SUV' THEN DO;
type_model n = 25 ;
type_make_n = 11 ;
type_msrp_mean = 29569 ;
IF msrp > type_msrp_mean THEN type msrp_flag = 1;
ELSE type_msrp_flag = 0;

type_horsepower_max 325 ;
type_horsepower_pct = 100 * horsepower / type_horsepower_max;
END;
ELSE IF origin = ‘Asia’ AND type = 'Sedan' THEN DO;
type_model n = 93 ;
type_make n = 13 ;
type_msrp_mean = 22763.968085 ;
IF msrp > type_msrp_mean THEN type_msrp_flag = 1;
ELSE type _msrp_flag = 0;

type_horsepower_max 340 ;
type_horsepower_pct = 100 * horsepower / type_horsepower_max;
END;

Figure 2-5. An extract from the SAS code generated in srcif(type. source)

Generated Select .. When .. Otherwise

In this case, SELECT .. WHEN .. OTHERWISE statements are generated from the lookup data sets and stored as
text records in a SAS Catalog Source entry in a WORK catalog so that they are deleted automatically at the end of
the SAS session. The advantage of these statements over IF .. THEN .. ELSE is that the OTHERWISE statement
forces an action if none of the previous tests are satisfied, and thus it can be used to highlight any omissions:

FILENAME srcsel CATALOG "work.generateselect";

DATA NULL_;
SET lookup origin END = eof;
FILE srcsel(origin.source);
IF _N_ =1 THEN PUT "SELECT;";
PUT "WHEN (origin = '" origin +(-1) "') DO;";

PUT "make_n = " make_n ";";

PUT "type n = " type n ";";

22

CHAPTER 2 © HOW TO USE LOOKUP TABLES EFFECTIVELY

PUT "END;";
IF eof THEN DO;
PUT "OTHERWISE;";
PUT "END;";
END;
RUN;

%MACRO generate select(leveli=, level2=);
DATA NULL_;
SET lookup_&leveli. END = eof;
FILE srcsel(8&levell..source);
IF N_ =1 THEN PUT "SELECT;";
PUT "WHEN (origin = '" origin +(-1) "' AND &leveli. = '" 8&levell. +(-1) "') DO;";
PUT "&levell. model n = " &levell. model n ";";
PUT "&level1l. &level2. n = " &level1l. &level2. n ";";

PUT "&levell._msrp _mean = " &levell. msrp_mean ";";

PUT "IF msrp > &levell. msrp_mean THEN &levell. msrp_flag = 1;";

PUT " ELSE &levell. msrp_flag = 0;";

PUT "&levell. horsepower max = " &levell. horsepower max ";";

PUT "&levell._ horsepower pct = 100 * horsepower / &levell._ horsepower max;";
PUT "END;";

IF eof THEN DO;
PUT "OTHERWISE;";
PUT "END;";
END;
RUN;
ZMEND generate select;

%generate_select(leveli=make, level2=type);
%generate_select(leveli=type, level2=make);

DATA generateselecti;
SET main;
%INCLUDE srcsel(origin.source);
%INCLUDE srcsel(make.source);
%INCLUDE srcsel(type.source);
RUN;

An extract from the SAS code generated in srcsel (make. source) is shown in Figure 2-6.

23

CHAPTER 2 © HOW TO USE LOOKUP TABLES EFFECTIVELY

SELECT;
WHEN (origin = 'Asia'’ AND make = 'Acura') DO;
make_model_n = 7 ; I

make_type_n = 3 ;

make_msrp_mean = 42938.571429 ;

IF msrp > make_msrp_mean THEN make_msrp_flag = 1;
ELSE make_msrp_flag = 0;

make_horsepower_max = 290 ;
make_horsepower_pct = 100 * horsepower / make_horsepower_max;
END;
WHEN (origin = 'Asia' AND make = 'Honda') DO;
make_model_n 178
make_type_n = 4 ;
make_msrp_mean = 21434.705882 ;
IF msrp > make_msrp_mean THEN make_msrp_flag = 1;
ELSE make_msrp_flag = 0;

make_horsepower_max = 240 ;
make_horsepower_pct = 100 * horsepower / make_horsepower_max;
END;
WHEN (origin = 'Asia' AND make = 'Hyundai') DO;
make_model_n = 12 ;
make_type_n = 3 ;
make_msrp_mean = 17476.5 ;
IF msrp > make_msrp_mean THEN make_msrp_flag = 1;
ELSE make_msrp_flag = 0;

make_horsepower_max = 194 ;
make_horsepower_pct 100 * horsepower / make_horsepower_max;
END;

n

Figure 2-6. An extract from the SAS code generated in srcsel (make. source)

DATA Step Hash

Mentioning hash joins to many SAS programmers can generate fear and apprehension. In fact, this
technique is not that difficult to use, although it does involve some very unfamiliar SAS syntax. Everything

can be achieved in a single DATA step:

e IF 0 THENis atrick to let the DATA step parser read the internal structure of an input

data set without any data being read by that statement during execution.

e DECLARE HASH uses HASHEXP: 7 to size the hash internal table, where the table is

27 =128 containers. DATASET is used to specify the lookup table.
e DEFINEKEY is used to specify the lookup variable(s).
e DEFINEDATA, in this case, specifies that all of the lookup data is used.

24

CHAPTER 2 © HOW TO USE LOOKUP TABLES EFFECTIVELY

DEFINEDONE completes the setup:

DATA hash;
/* create origin hash */
IF 0 THEN SET lookup_origin;
DECLARE HASH lookup origin(HASHEXP:7, DATASET:'lookup origin');
lookup_origin.DEFINEKEY('origin');
lookup origin.DEFINEDATA(ALL:'Y");
lookup origin.DEFINEDONE();
/* create make hash */
IF 0 THEN SET lookup_make;
DECLARE HASH lookup_make(HASHEXP:7, DATASET:'lookup_make');
lookup_make.DEFINEKEY('origin', 'make');
lookup_make.DEFINEDATA(ALL:'Y');
lookup_make .DEFINEDONE();
/* create type hash */
IF 0 THEN SET lookup_type;
DECLARE HASH lookup type(HASHEXP:7, DATASET:'lookup type');
lookup_type.DEFINEKEY('origin', 'type');
lookup_type.DEFINEDATA(ALL:'Y');
lookup_type.DEFINEDONE();

Now loop through the main data set using the FIND() function to test for matches using each hash table. This
does not appear to make sense, but FIND() = 0 means a match has been found. In other words, the return code is 0:

DO UNTIL (eof);

END;

SET main END = eof;
/* search origin hash */
IF lookup origin.FIND() = 0 THEN DO;
/* nothing to do here */
END;
ELSE CALL MISSING(make n, type n);
/* search make hash */
IF lookup make.FIND() = 0 THEN DO;
IF msrp > make_msrp_mean THEN make msrp_flag = 1;
ELSE make_msrp_flag = 0;
make_horsepower_pct = 100 * horsepower / make_horsepower max;
END;
ELSE CALL MISSING(make model n, make type n, make msrp mean, make horsepower max,
make_msrp flag, make_horsepower pct);
/* search type hash */
IF lookup type.FIND() = 0 THEN DO;
IF msrp > type msrp mean THEN type msrp flag = 1;
ELSE type msrp flag = 0;
type_horsepower pct = 100 * horsepower / type_horsepower max;
END;
ELSE CALL MISSING(type model n, type make n, type msrp mean, type horsepower max,
type_msrp flag, type horsepower pct);
/* output each record */
OUTPUT;

STOP;

RUN;

25

CHAPTER 2 © HOW TO USE LOOKUP TABLES EFFECTIVELY

Conclusions

Any discussion of performance of coding techniques needs to be supported by evidence. Comparing
techniques using CPU time, as shown in Figure 2-7, you can see that DATA step merges and SQL joins are
comparable, formats are quicker, and the DATA step statement-generating techniques are still quicker, but the
DATA step hash is the quickest. Note that CPU time is not generally seen as an important measure when the
SAS platform is not supporting a large number of concurrent users.

Lookup Results

type=CPU time (secs)

Recorded values

10 4

0 1000 2000 3000 4000 5000
Duplicates of SASHELP.CARS

Key:
—a— datastepmerge ---6-- sqljoin ----0---- format
— - — generateif o generateselect o hash

Figure 2-7. CPU time recorded from lookup table tests

Comparing techniques using elapsed time is more interesting, as you can see in Figure 2-8. All the
techniques show a linear increase in elapsed time, apart from SQL join, for which elapsed time increases
dramatically as the volume increases after being fairly fast at low data volumes. This is because, at low data
volumes, PROC SOL carries out most of its data processing in memory. At higher data volumes, it is forced
to use the WORK library to store intermediate data, because disk access is much less efficient than accessing
memory. Both DATA step merge and SQL join are significantly less efficient than the other three techniques,
which minimize the number of data passes.

26

CHAPTER 2 © HOW TO USE LOOKUP TABLES EFFECTIVELY

Lookup Results

type=Elapsed time (secs)

@
1000 ~

800 2
w
[1)
=2
o 600 -
=
[4]
-
=
o
(v 400

200 ~

0 1 - r o r - -
0 1000 2000 3000 4000 5000
Duplicates of SASHELP.CARS
Key:
—so— datastepmerge ---6-- sqljoin ----0---- format
— - — generateif o generateselect o hash

Figure 2-8. Elapsed time recorded from lookup table tests

Are you now considering a new technique for using lookup tables?

Reference

e SAS Training Course: SAS Programming 3: Advanced Techniques and Efficiencies,
https://support.sas.com/edu/schedules.html?id=1917.

27

https://support.sas.com/edu/schedules.html?id=1917

CHAPTER 3

Case: SAS Skills in Epidemiology/

In epidemiology, most data sets from SAS and other databases are big, and SAS programmers need
particular skills to work with the data. This case illustrates principles that are useful for programmers dealing
with large databases in all industries.

SAS programmers in epidemiology departments require very different skills than those working on
clinical trials, because of the sheer size, complexity, and irregular nature of the data used. This chapter
will investigate the skills required, and suggests that recruiting programmers with skills from outside the
pharmaceutical sector may not be such a bad idea.

Size Really Is Important!

A major difference between epidemiology and clinical trials is the amount of data that a SAS programmer
must be able to cope with. Data sets are routinely measured in gigabytes, not megabytes, and you should
reduce the data volume as much as possible before performing any processing by keeping only the
columns you need and by using a subset of the data set records. Even then, you should keep data sorting to
a minimum, consider at every step the amount of data stored in WORK, and expect processing to take hours
rather than minutes.

Working with Longitudinal Databases

SAS programmers in epidemiology use longitudinal databases in which patient details, medical events, and
prescriptions are selected separately from different files and then combined as required. This is similar to
the approach used with data in clinical trials, but the medical events and prescriptions in this case occur at
random times. Also, because each disease and therapeutic area has different coding requirements, only a
little of the SAS code is reusable; more often than not, a new program has to be written for each analysis.

If a SAS programmers who had previously worked with credit card data were to analyze this data, they
would probably see that the following:

e The patients are like credit cards.
e All medical events and prescriptions are like credit card transactions.

e Disease and therapeutic areas are like merchant types or countries where
transactions occur.

29

CHAPTER 3 ' CASE: SAS SKILLS IN EPIDEMIOLOGY

Needing to Clean the Data

Many longitudinal databases—clinical, financial, or both—were created to collect information from clinical
staff using drop-down lists for patient management. This results in data that includes common mismatches,
where very different items have similar names as well as data values that should be, but are not, compulsory.
The lack of internal data checking can also give rise to anomalies that are not necessarily critical with

regard to patient management but that add to the complexity of the analysis when data is processed for
epidemiological studies:

e Gender can be recorded as male, female, or unknown.

e Medical events and prescriptions can have associated dates before the practice
registration date, or after the date of death.

e Prostate cancer and other male-specific conditions can be recorded for females.
e Hysterectomy and other female-specific conditions can be recorded for males.

Depending on the analysis and data selection, you can correct these anomalies or remove the patients.
However, most of the programming effort is spent specifying codes to identify the medical conditions or
prescription drugs of interest.

Choosing a Suitable Database

Databases have different characteristics (geographical location, age profile, duration of patient registration,
and so on), and no single database includes the data required for every study in epidemiology. Therefore,
which database(s) to select can be an important decision when you are designing a study. Here are some
examples:

e GPRD, ffGPRD, and THIN - UK, GP records, 6m+ patients, representative age
sample, average registration 7.5 years, updated monthly

e LifeLink - US, employee claims database, 1.8m patients, good elderly coverage and
poor coverage of 25-34, average registration 6.9 years, no updates after Q1 2003

e THCIS - US, managed care database, 20m patients, poor coverage of elderly, average
registration 1.5 years, updated 6-monthly

Database selection must also consider which data items are available, because many databases do not
contain all types of data:

e Outpatient and hospitalization records
e Laboratory data

e Smoking data

e Repeat prescriptions

e Height and weight data

e Death information

e Links between family members

e Links between medical events and prescriptions

30

CHAPTER 3 ' CASE: SAS SKILLS IN EPIDEMIOLOGY

The selection decision should also take into account the therapeutic area, because some databases have
better representation of certain medical conditions due to their patient selection:

e LifeLink has better coverage of Type II diabetes than IHCIS due to the higher
coverage of elderly patients.

e US databases include more data on certain drugs than UK databases due to very
different prescribing patterns.

Programming Techniques

The simplest technique for a SAS programmer faced with large input data sets involves sorting the data after
it has been reduced to a more manageable volume. The code examples in the following sections have been
simplified to demonstrate the effect of increasing data volumes on elapsed time.

Sample Data Sets

Ilike to create sample data using SAS data sets readily available to SAS programmers. In this case, I have
saved multiple copies of sashelp.cars into the main data set:

%LET mult = 1000; /*1, 10, 100, 1000, 2000, 5000, 10000*/

DATA main;
SET sashelp.cars;
DO i = 1 to &mult.;
OUTPUT;
END;
RUN;

Sample SAS Code

The macro variables created here can be used to modify the sample code shown in the following sections:
#ZLET vars = Make Model Type Origin Horsepower MPG_City MPG Highway Weight;

%LET inkeep = KEEP = 8vars.;

%LET outkeep = KEEP = &vars.;
%LET datakeep = KEEP = &vars.;
ZLET setkeep = KEEP = &vars.;

%LET datawhere = WHERE = (type = 'Wagon');

%LET if = IF type = 'Wagon';
%LET setwhere = WHERE type = 'Wagon';

31

CHAPTER 3 ' CASE: SAS SKILLS IN EPIDEMIOLOGY

Following is a quick guide to where you can achieve performance savings:

e inkeep and &setkeep reduce the volume of input data before processing and
should be better than 8outkeep and &datakeep, which reduce the volume of data
output after processing.

e &setwhere selects data on input, which should be better than 8if, which selects data
after reading; and also better than 8datawhere, which selects data on output after
processing.

e The greatest gains should be made by reducing the data volume before any
processing, so subsetting the data before sorting will show the most significant
benefit.

PROC SORT before DATA Step Subset

The following code shows how you can modify the basic PROC SORT and DATA step statements using the
macro variables to adjust program performance:

PROC SORT DATA = main (&inkeep.) OUT = outdsn (&outkeep.);
BY origin make;
RUN;

DATA final (&datakeep. &datawhere.);
SET outdsn (&setkeep.);
&if.;
&setwhere. ;

RUN;

The following sections show the SAS code for which results are reported later, in Figure 3-1.

Code: sort_if
This is an unmodified PROC SORT step, followed by a DATA step subset using an IF statement:
PROC SORT DATA = main OUT = subset sort10;

BY origin make;
RUN;

DATA subset_sortii;
SET subset sorti10;
IF type = 'Wagon';
RUN;

Code: sort_setwhere

This is an unmodified PROC SORT step, followed by a DATA step subset using a WHERE statement:
PROC SORT DATA = main OUT = subset_sort10;

BY origin make;
RUN;

32

CHAPTER 3 ' CASE: SAS SKILLS IN EPIDEMIOLOGY

DATA subset sorti12;
SET subset_sort10;
WHERE type = 'Wagon';
RUN;

Code: sort_outkeep_if

This is a PROC SORT step using a KEEP option on the output data set to reduce the number of variables,
followed by a DATA step subset using an IF statement:

PROC SORT DATA = main OUT = subset sort20 (keep = &vars.);
BY origin make;
RUN;

DATA subset_sort21;
SET subset_sort20;
IF type = 'Wagon';
RUN;

Code: sort_outkeep_setwhere

This is a PROC SORT step using a KEEP option on the output data set to reduce the number of variables,
followed by a DATA step subset using a WHERE statement:

PROC SORT DATA = main OUT = subset sort20 (keep = &vars.);
BY origin make;
RUN;

DATA subset sort22;
SET subset_sort20;
WHERE type = 'Wagon';
RUN;

Code: sort_inkeep_if

This is a PROC SORT step using a KEEP option on the input data set to reduce the number of variables,
followed by a DATA step subset using an IF statement:

PROC SORT DATA = main (keep = &vars.) OUT = subset_ sort30;
BY origin make;
RUN;

DATA subset_sort3i;
SET subset_sort30;
IF type = 'Wagon';
RUN;

33

CHAPTER 3 ' CASE: SAS SKILLS IN EPIDEMIOLOGY

Code: sort_inkeep_setwhere

This is a PROC SORT step using a KEEP option on the input data set to reduce the number of variables,
followed by a DATA step subset using a WHERE statement:

PROC SORT DATA = main (keep = &vars.) OUT = subset sort30;
BY origin make;
RUN;

DATA subset_sort32;
SET subset_sort30;
WHERE type = 'Wagon';
RUN;

PROC SORT after DATA Step Subset

The following code shows how you can modify the basic DATA step and PROC SORT statements using the
macro variables to adjust program performance:

DATA datadsn (8datakeep. &datawhere.);
SET main (&setkeep.);
&if.;
&setwhere. ;

RUN;

PROC SORT DATA = datadsn (&inkeep.) OUT = final (8outkeep.);
BY origin make;
RUN;;

The following sections show the modified SAS code for which results are reported later, in Figures 3-1
and 3-2.

Code: if sort

This is a DATA step subset using an IF statement, followed by an unmodified PROC SORT step:

DATA subset_sort40;
SET main;
IF type = 'Wagon';
RUN;

PROC SORT DATA = subset_sort40 OUT = subset sort4i;

BY origin make;
RUN;

34

CHAPTER 3 ' CASE: SAS SKILLS IN EPIDEMIOLOGY

Code: setwhere_sort
This is a DATA step subset using a WHERE statement, followed by an unmodified PROC SORT step:

DATA subset_sortso;

SET main;

WHERE type = 'Wagon';
RUN;

PROC SORT DATA = subset_sort50 OUT = subset sortsi;
BY origin make;
RUN;

Code: datawhere_sort
This is a DATA step subset using a WHERE clause on the output data set, followed by an unmodified PROC SORT
step:

DATA subset sort60 (WHERE = (type = 'Wagon'));
SET main;
RUN;

PROC SORT DATA = subset_sort60 OUT = subset sort6i;
BY origin make;
RUN;

Code: setwhere_setkeep_sort

This is a DATA step subset with a WHERE statement, using a KEEP option on the input data set to reduce the
number of variables, followed by an unmodified PROC SORT step:

DATA subset sort80;
SET main (keep = &vars.);
WHERE type = 'Wagon';
RUN;

PROC SORT DATA = subset_sort80 OUT = subset sort81;
BY origin make;
RUN;

Performance Results

The sashelp.cars data set has 428 observations and 16 variables. You can use the &vars macro variable to
reduce the number of variables to 8. The number of observations in the main data set from the multiples of
sashelp.cars are as follows:

e x1=428
e x10=4,280
e x100=42,800

35

CHAPTER 3 ' CASE: SAS SKILLS IN EPIDEMIOLOGY

e x1,000 = 428,000
o x2,000 = 856,000

e x5,000=2,140,000
e x10,000 = 4,280,000

In Figures 3-1 and 3-2, the differences between the elapsed times of the different SAS programs
becomes more obvious with greater than 5,000 copies of sashelp.cars (that is, more than 2,140,000 records)
in the main data set, which is significantly larger than most SAS data sets used in clinical trials but typical
of those found in epidemiology. In particular, there is a definite separation of elapsed times between those
programs where sorting is completed first and those where sorting is completed after the subset.

20 [m)

{/mll
|',’ | Sort before Subset

Y|

/

15 fé
Key:

!
// T’ [—e— sort_if
—_ R ——
T e - - sort_setwhere
/ | / — -m — sort_outkeep_if

/ olf m — sort_outkeep_setwhere
/) —k— sort_inkeep_if

/ < M — & — sort_inkeep_setwhere
-—e-— if_sort

-—=-— setwhere_sort
-—ie-.— datawhere_sort

— %r— setkeep_setwhere_sort

Recorded values
=

5 ~
ot
p— =
Y \ Sort after Subset
—L |
i \ £
o/
0 2000 4000 6000 8000 10000

Duplicates of SASHELP.CARS

Figure 3-1. Elapsed time of programs including subset and sort steps, showing the benefit of sorting after the
subset

36

CHAPTER 3 " CASE: SAS SKILLS IN EPIDEMIOLOGY

4 Fome |

',

'%ﬁ ""| All variables
|

3 // e

4
f///) Key:
gt Reduced et

| =-—8-— setwhere_sornt

variables ", N ._a.._ datawhere_sort

/// _ %/ — % — setkeep_setwhere_sort

Recorded values
(%]
-4 __‘\\
N

/e
/.

ni-"‘“’éé//

0 2000 4000 6000 8000 10000
Duplicates of SASHELP.CARS

Figure 3-2. Elapsed time for programs where the subset completed before sorting, showing the benefit of
dropping unnecessary variables

Figure 3-2 looks in more detail at SAS programs where sorting is performed on the subset data. Elapsed
times are quite small, so it is difficult to infer very much from these figures, but it appears that reducing the
number of variables read into the DATA step and PROC SORT further improves the elapsed time.

Summary
SAS programmers in epidemiology may need to be able to cope with the following situations:

e Processing massive amounts of data

e (Cleaning input data so that it is consistent, which is not often done as part of data
management

¢ Developing coding lists for medical events and prescriptions, which again is not
done as part of data management

e Selecting an appropriate database for each protocol

e Adapting SAS code to cope with databases’ different data content and structures

37

CHAPTER 3 ' CASE: SAS SKILLS IN EPIDEMIOLOGY

Some Thoughts for Managers

Epidemiology data processing is like
e Detecting fraud in credit card transactions
e Selecting customers for direct marketing
e Analyzing web logs
Epidemiology data processing is not like
e (Clinical trials

Who should at least be interviewed for epidemiology data-processing jobs?

38

PART Il

External Interfaces

Overview

In every development project, there are interfaces between SAS and external applications. This part
of the book examines how SAS can communicate, directly or indirectly, with external applications:

e Chapter 4, “SAS to R to SAS,” demonstrates how to use R to create images for
a SAS report, as well as how other external applications can be interfaced
with SAS.

e Chapter 5, “Knit Perl and SAS for DIY Web Applications,” gives an example of
how you can use Perl to create an interactive web interface to a SAS program.

e Chapter 6, “Running SAS Programs in Enterprise Guide,” demonstrates how
to set up Enterprise Guide to run collections of SAS programs (for example,
for clinical trials).

e Chapter 7, “Running SAS Programs in SAS Studio or Enterprise Guide,”
compares three interactive user interfaces to SAS: Display Manager (the
interactive part of SAS software), Enterprise Guide (a front-end application
for Windows, written in .NET), and SAS Studio (a front-end web application
written in Java).

e Chapter 8, “Everyday Uses for SAS Output Delivery System (ODS),” explains
how to create external file formats suitable for Microsoft Office, OpenOffice.
org, LibreOffice, and Adobe Reader.

http://dx.doi.org/10.1007/9781484205693_4
http://dx.doi.org/10.1007/9781484205693_5
http://dx.doi.org/10.1007/9781484205693_6
http://dx.doi.org/10.1007/9781484205693_7
http://dx.doi.org/10.1007/9781484205693_8

CHAPTER 4

SAS to R to SAS

The aim of this chapter is to describe one method of passing SAS data from SAS to R, using R to produce

a graph, and then passing that graph back to SAS for inclusion in an ODS document. The R programming
language provides a wide range of graphical functionality, some of which is unavailable or time-consuming
to achieve in SAS—either in SAS/GRAPH or ODS Graphics. The method described here makes this
functionality available to SAS applications. You can also adapt these basic principles to create character-based
reports using R for inclusion in SAS reports.

Software Environment

This chapter includes the following software configurations and methods are described in this chapter:

¢ The examples use Windows, but you can use any platform compatible with SAS and
R. Unix and Linux file-naming conventions would require you to rename the files
passed between SAS and R.

e The techniques can be used in any version of Base SAS from version 7 onward. No
other licensed SAS components are required.

e Rrequires two nonstandard add-on libraries to be installed to support the
techniques used in this chapter. The Hnisc library adds R functions to import foreign
data into R (SAS data, comma-separated value (CSV) data, and so on). This library
requires an additional SAS macro, %exportlib, which can be used to export a folder
of SAS data sets into a collection of CSV files to be read into R using the sasxport.
get function. The lattice library adds R functions to create trellis graphics. In
addition, the grDevices library is supplied as part of the R system and includes
functions to create a variety of image file formats, including JPEG, GIF, and PNG.

Program Flow

The program flow covers both SAS and R activities. The following SAS code shown in this section creates
a sample SAS data set from the SAS-supplied sashelp.prdsale data set. This data set is processed using
the %exportlib macro to create CSV (comma-separated values) text files which that can be read by R. The
SAS program then writes the R code that will generate the lattice of plots in a JPEG image files, which will
ultimately be included in an ODS report.

41

CHAPTER 4 © SASTO RTO SAS

SAS Activity to Prepare the Data

The first step in the SAS activity involves selecting an SAS data set to transfer and saving the data setto a
folder, as follows:

LIBNAME new 'c:\temp\new';

PROC datasets LIB=new KILL;
RUN;
QUIT;

DATA sasuser.v_prdsale / VIEW = sasuser.v_prdsale;
SET sashelp.prdsale;
LENGTH yyq $6;
yyqtr = year + (quarter - 1)/4;
mon = MONTH(month);
yyq = PUT(month, YYQ6.);
yq = INTCK('QTR', '31dec1992'd, month);
SELECT (country);
WHEN ('U.S.A.") cntry = 'USA';
WHEN ('GERMANY') cntry = 'DE';
WHEN ('CANADA') cntry = 'CA';
OTHERWISE;
END;
RUN;

PROC SUMMARY DATA = sasuser.v_prdsale MISSING NWAY;
CLASS cntry yq product;
VAR actual;
OUTPUT OUT = new.prdsale SUM =;

RUN;

Next, you export the folder to CSV files (using %exportlib), including the contents of the folder and
any SAS user formats. Note that the folders must be written with '/' separators even if you are running the
program in Windows. The macro exports all SAS data sets in a data library to CSV files. One of the data sets is
assumed to be the result of PROC FORMAT CNTLOUT= if any user formats are referenced.

Numeric variables are formatted in BEST16. format so that date/time variables are exported with their
internal numeric values. A special file, _contents_.csv, is created to hold, for all data sets combined, the data
set name, data set label, variable names, labels, formats, types, and lengths. The code is expressed as follows:

/* Macro exportlib
Usage:
%exportlib(1lib, outdir, tempdir);

Arguments:
lib - SAS libname for input data sets
outdir - directory in which to write .csv files
(default ".")
tempdir - temporary directory to hold generated SAS code
(default C:/WINDOWS/TEMP)
*/

42

CHAPTER 4

%MACRO exportlib(lib, outdir, tempdir);
%IF %QUOTE(&outdir.) = %THEN %LET outdir = .;
%IF %QUOTE(8tempdir.) = %THEN %LET tempdir = C:/WINDOWS/TEMP;

OPTIONS NOFMTERR;

PROC COPY IN = &lib. OUT = work;
RUN;

PROC CONTENTS DATA = work. ALL_ NOPRINT
OUT=_contents_(KEEP = memname memlabel name type label
format length nobs);
RUN;

PROC EXPORT DATA = _contents_
OUTFILE = "&outdir./_contents_.csv" REPLACE;
RUN;

DATA NULL_;

SET _contents_;

BY memname;

FILE "&tempdir/_export_.sas";

RETAIN bk -1;

IF FIRST.memname AND (nobs > 0) THEN DO;
PUT 'DATA ' memname ';';
PUT ' SET ' memname ';';
PUT ' FORMAT _NUMERIC_ BEST14.;';

-
-

PUT 'RUN;';
PUT 'PROC EXPORT DATA = ' memname;
PUT ' OUTFILE = "'
"&outdir./" memname +bk '.csv"';
PUT REPLACE; ' ;
PUT 'RUN;';
END;
RUN;

ZINCLUDE "&tempdir./_ export_.sas";
ZMEND exportlib;

PROC FORMAT CNTLOUT = cntlout;
RUN;

%exportlib(new, c:/temp/r, c:/windows/temp);

SASTO RTO SAS

Next, generate the R code (including sasxport.get) to read CSV files and write the generated graph to a

JPEG file of 480 x 480 pixels:

DATA NULL_;
FILE 'c:\temp\r\program.r' LRECL = 1024;
PUT 'library(Hmisc)';
PUT 'library(lattice)';

43

CHAPTER 4 © SASTO RTO SAS

PUT 'library(grDevices)';

PUT "sasdata <- sasxport.get('c:/temp/r', method=('csv'))";
PUT "trellis.device(jpeg, file='c:/temp/x/program.jpg',";
PUT ' width=480, height=480)";

PUT 'trellis.par.set(theme=col.whitebg())';

PUT "trellis.par.set('background',list(col="white'))";
PUT "trellis.par.set('plot.symbol',list(col="blue'))";
PUT "trellis.par.set('dot.symbol',list(col="blue'))";

PUT "trellis.par.set('axis.line',list(col="red"'))";

PUT "trellis.par.set('box.rectangle’,list(col="red"))";
PUT "trellis.par.set('par.xlab.text',list(col="green'))";
PUT "trellis.par.set('par.ylab.text',list(col="green'))";
PUT "trellis.par.set('par.zlab.text',list(col="green'))";
PUT "trellis.par.set('axis.text',list(col="green'))";

PUT 'xyplot(actual ~ yq | product*cntry';

PUT ,data=sasdata$prdsale’;
pPUT " ,xlab = 'Quarter'";
pPuUT " ,ylab = 'Actual Sales'";
PUT ,panel = function(x, y) {';
PUT ' panel.grid(h=-1, v=-1)";
PUT ' panel.xyplot(x, y)';
PUT ' panel.loess(x, y';
PUT ' ,Span=1';
PUT ' ,degree=2";
PUT)
PUT 3
PUT " ymain = 'Plotted using R'";
PUT)';
PUT 'dev.off()';
PUT 'q()';
RUN;

Execute the R command line, including the R code file as the input program. In this case, you can find
the R program in the Windows default program path:

OPTIONS XWAIT XSYNC;
X "r.exe --no-save --quiet <""c:\temp\r\program.r
>""c:\temp\r\program.log""";

R Activity

Executing R code involves outputting the R log to a text file and the graph to a JPEG file. Note that the white
background is required for most ODS styles to allow the resulting graphs to coordinate with their color
schemes. The default background for R graphs is a light gray:

library(Hmisc)
library(lattice)
library(grDevices)

sasdata <- sasxport.get('c:/temp/r', method=('csv'))

44

trellis.device(jpeg, file='c:/temp/r/program.jpg’,
width=480, height=480)
trellis.par.set(theme=col.whitebg())
trellis.par.set('background',list(col="white"))
trellis.par.set('plot.symbol’,list(col="blue"))
trellis.par.set('dot.symbol',list(col="blue"))
trellis.par.set('axis.line',list(col="red"))
trellis.par.set('box.rectangle',list(col="red"))
trellis.par.set('par.xlab.text',list(col="green"'))
trellis.par.set('par.ylab.text',list(col="green"'))
trellis.par.set('axis.text',list(col="green"'))

xyplot(actual ~ yq | product*cntry
,data=sasdata$prdsale
,xlab = 'Quarter'
yylab = 'Actual Sales'
spanel = function(x, y) {
panel.grid(h=-1, v=-1)
panel.xyplot(x, y)
panel.loess(x, y
,Span=1
,degree=2
)
}

,main = 'Plotted using R'

)
dev.off()

Close R session:

q()

SAS Activity to Create the ODS Report

For the next SAS activity, open the ODS destination, such as HTML

ODS ESCAPECHAR = '';

ODS HTML FILE = 'c:\temp\r\report.html' STYLE = minimal
GPATH = 'c:\temp\r' GTITLE GFOOTNOTE;

or RTF:

ODS ESCAPECHAR = '';

ODS RTF FILE = 'c:\temp\r\report.rtf' STYLE = minimal
GTITLE GFOOTNOTE;

Incorporate the JPEG file in the SAS report in HTML

DATA NULL_;
FILE PRINT;

CHAPTER 4

SASTO RTO SAS

45

CHAPTER 4 = SASTO RTO SAS

PUT "";
RUN;

or RTF:
DATA NULL ;
FILE PRINT;
PUT "AS={PREIMAGE='c:\temp\r\program.jpg'}";
RUN;
Finally, close the ODS destination:

ODS ALL_ CLOSE;

The lattice image created by R is shown in Figure 4-1. Figure 4-2 shows the corresponding image
included in an ODS HTML report using SAS.

Plotted using R
2 46 8 2 45068
1 1 | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 L1
USA | USA | USA | USA | USA
| BED | CHAR [DESK [SOFA [TABLE |
8000 - ° o0 o =
7000 e—1* IO B
4000 — o =
DE DE DE DE DE
o [BED | CHAR | DESK | SOFA |TABLE |
T g s—lts o o - 8000
D g0 .9 o e el 20
I ¥ %;ﬂ%‘; e N
= CA CA CA CA CA
[BED | CHAR | DESK | SOFA |TABLE |
F_[Eg T | I i Ao e
7000 - M-Q_o_%/ -
6000 ;;/’9\ A AT M%:
2000 312 -
B -5 el oS & ikl e h oA aoalixl
2 468 2468 2468
Quarter

Figure4-1. Lattice image created by R

46

CHAPTER 4 © SASTO RTO SAS

A SAS Output - Microsoft Internet Explorer

Ble ER Yew Favorkes Iook Heb B
Qe - Q- (X [@ @ Psewcr Yoo @ 7 i
Address | @) C:\templrireport.biml v EJGo
The SAS System
Plotted using R
USA USA USA USA USA
BED | CHAIR | DESK | SOFA | TABLE

L L L L1

k
»
T
9
o
o
o
&
o
°
o
=]
o
Tl

Ll
&
<
o
<
-]
<
0,
<&
<
o
(=3
<
TTHETT

I
B
-]
.
~
(=
¢2
&
<&
-]
]
S
o
<
T I TN

‘ - - — - >
£) bone o My Comrputer

Figure 4-2. The same image incorporated into an HTML page using SAS ODS

Coding Issues

As an experienced SAS programmer but an inexperienced R programmer, I had to resolve the following
issues while developing this reporting application:

e HTML reports require a different syntax for displaying external image files than that
used for non-HTML reports, (e.g., RTE, PDF, and so on), so the code must include
separate code sections for use with HTML and non-HTML destinations.

e Because different output destinations have different acceptable image formats, you
need try to select an image format that is compatible with for all the expected output
destinations.

47

CHAPTER 4 © SASTO RTO SAS

e Because the export processing creates CSV files for every SAS data set in the specified
folder, limiting the number of SAS data sets in that folder will reduce the run time
required for the R code to import the data.

e The R code is executed by calling the R system in -command-line mode using the
SAS X statement. Therefore, you need to set the XSYNC and XWAIT SAS system options
must be set before calling R.

e Rprograms may fail with minimal error information in the R log file.

e If SAS/IML Studio is installed and the RLANG system option is set on session start,
then R code can be incorporated in SAS programs. You can test for the presence of
the RLANG system option with the following code, where RLANG means R code can be
included, and NORLANG means that it cannot:

PROC OPTIONS OPTION=RLANG;
RUN;

Character-Based Reports

Most R statistical functions can direct their output to text files instead of the screen, in the same way
graphical functions can write directly to image files:

library(Hmisc)

sasdata <- sasxport.get('c:/temp/r', method=('csv'))
attach(sasdata$prdsale)

sink('program.txt')

summary(sasdata$prdsale)

You can use SAS code like the following to include the text from the report generated in R into an ODS
report in SAS. Remembering to select an ODS style where that allows the text can to be read against the
report background:

DATA NULL ;
INFILE 'program.txt';
FILE PRINT,;

INPUT;
PUT _INFILE ;
RUN;

Conclusions

The example given in this chapter is not the only way to link SAS with external applications, but it
demonstrates that it is possible for SAS to make use of the strengths of suitable external software.

48

CHAPTER 4 © SASTO RTO SAS

Software Resources and Further Reading

R Project for Statistical Computing: www.r-project.org

%exportlib: http://biostat.mc.vanderbilt.edu/twiki/pub/Main/Hmisc/
exportlib.sas

Base SAS Focus Area, https://support.sas.com/rnd/base/index.html.

49

http://www.r-project.org/
http://biostat.mc.vanderbilt.edu/twiki/pub/Main/Hmisc/exportlib.sas
http://biostat.mc.vanderbilt.edu/twiki/pub/Main/Hmisc/exportlib.sas
https://support.sas.com/rnd/base/index.html

CHAPTER 5

Knit Perl and SAS Software for
DIY Web Applications

If your organization develops a web-based SAS application for 30+ users, then the logical choice is to
use SAS/IntrNet software, due to its speed, reliability, and cost-effectiveness. However, if your entire
organization has fewer than 30 employees, is there a cost-effective alternative to SAS/IntrNet software that
still allows access to SAS-based data?

The answer is yes—there are a number of possible solutions. For example, by combining a client license
for Base SAS software, a web server application, a simple application dispatcher written in Perl, and a
knowledge of HTML, it is possible to write SAS code and HTML to provide drill-down reports on SAS-based
data to users with access only to a web browser.

This chapter demonstrates some of the techniques available to SAS programmers to generate
drill-down applications for web browsers.

HTML Programming

The core of this simple drill-down web application is the HTML FORM, which allows the user to select the
data hierarchies to use across the top and down the side of the generated report. The drop-down lists used
to subset the data, which are generated later from the available data, should be hard-coded or omitted in the
initial HTML code, depending on your individual needs.

The two hidden INPUT tags, programand _grafics, are required by the Perl server application to
tell it where the SAS code is located and whether to generate a text web page or a single graphics image,
respectively. All other INPUT and SELECT tags create SAS macro variables in the generated SAS code.

The initial HTML code is regenerated by the SAS code in the left column of the two-column HTML
TABLE, with the report placed in the column on the right.

The web page used to send the initial web request forms the basis of the left column of the drill-down
reports. You see this HTML in the SAS code later in this chapter:

<HTML><HEAD>
<TITLE>
Generation of a Web-based Report from a SAS v9 Application
</TITLE>
</HEAD>

51

CHAPTER 5 © KNIT PERL AND SAS SOFTWARE FOR DIY WEB APPLICATIONS

<BODY>
<CENTER><TABLE CELLPADDING=5>
<TR><TD BGCOLOR="ffffco">

<FORM ACTION="../cgi-bin/new-sas9.pl" METHOD=POST>

<INPUT TYPE=HIDDEN NAME="_program" VALUE="code.drill9.sas">
<INPUT TYPE=HIDDEN NAME="_grafics" VALUE="n">

Report title?

<INPUT TYPE=TEXT NAME="title" VALUE="Title" SIZE=25>

<HR>
Select country?

<SELECT NAME=country>

<OPTION VALUE=" " SELECTED>

<OPTION VALUE="CANADA">CANADA

<OPTION VALUE="GERMANY">GERMANY

<OPTION VALUE="U.S.A.">U.S.A.

</SELECT>

<INPUT NAME=down TYPE=RADIO VALUE="1" CHECKED>Down
<INPUT NAME=across TYPE=RADIO VALUE="1">Across

<HR>
Select division?

<SELECT NAME=division>

<OPTION VALUE=" " SELECTED>

<OPTION VALUE="CONSUMER">CONSUMER

<OPTION VALUE="EDUCATION">EDUCATION

</SELECT>

<INPUT NAME=down TYPE=RADIO VALUE="2">Down
<INPUT NAME=across TYPE=RADIO VALUE="2">Across

<HR>
Select year?

<SELECT NAME=year>

<OPTION VALUE=" " SELECTED>

<OPTION VALUE="1993">1993

<OPTION VALUE="1994">1994

</SELECT>

<INPUT NAME=down TYPE=RADIO VALUE="3">Down
<INPUT NAME=across TYPE=RADIO VALUE="3" CHECKED>Across

<HR>
<INPUT TYPE=SUBMIT VALUE="Generate Report">
</FORM>
</TD></TR>
</TABLE></CENTER>
</BODY></HTML>

52

CHAPTER 5 " KNIT PERL AND SAS SOFTWARE FOR DIY WEB APPLICATIONS

System Requirements

A number of system requirements must be fulfilled by both the server and the client in this application.
Server requirements include the following:

e Windows XP/Vista/7/8 or UNIX/Linux operating system software running on a
server platform with sufficient processing power, memory, and disk space to run
multiple SAS software sessions

e Web server software, such as Apache, Microsoft IIS, Xitami, or similar
e Base SAS version 8 or 9 software installed on the web server
e Perl software version 5.002 or above installed on the web server

The client requires web browser software, such as Internet Explorer, Mozilla Firefox, Google Chrome,
Safari, Opera, or similar.

SAS Programming

The SAS code uses SAS macro variables passed to it by the Perl-generated SAS program to subset and
summarize the SAS data and to regenerate the HTML web page for the next selection:

* Program : Drillg.sas
* Comments: Generate web page with drill-down facility for the
SASHELP.PRDSALE SAS dataset:
Analysis=ACTUAL
Geographic=COUNTRY - U.S.A./GERMANY/CANADA
REGION - EAST/WEST
Product=DIVISION - CONSUMER/EDUCATION
PRODTYPE - OFFICE/FURNITURE
PRODUCT - SOFA/BED/TABLE/DESK/CHAIR
Date=YEAR - 1993/1994
QUARTER - 1/2/3/4
MONTH - Jan/Feb/.../Nov/Dec

¥ X X X X X X X ¥ %
X X X X X K X X ¥ X ¥ ¥
“e We We e Ve We e Ve We e We e

Make sure all the expected macro variables exist and are global before opening the macro:

%GLOBAL country region division prodtype product year quarter
month down across title;
%LET analysis=actual;

Select the output file reference to be used, along with the table colors:
ZLET fileref=_webout;
%LET leftcol=ffffco; /* yellow */

#LET rightcol=cocoff; /* blue */
%LET cellcol=ffffff; /* white */

53

CHAPTER 5 © KNIT PERL AND SAS SOFTWARE FOR DIY WEB APPLICATIONS

Find the path and filename of the physical output file specified by the &fileref macro variable using
the DICTIONARY views in SASHELP. This path and filename allow the code to be split up the production of
HTMLover several steps:

DATA NULL ;
SET sashelp.vextfl (WHERE=(fileref=UPCASE("&fileref.")));
PUT 'FILENAME=' fileref ', XPATH=' xpath;
CALL SYMPUT('extpath', TRIM(LEFT(xpath)));
STOP;
RUN;

Start the drill macro definition:
%MACRO drill;
Assign the report title:
TITLEL "&title. ";
Set default values for the hierarchies and selections:

%D0 i=1 %T0 8;
%LET c&i.=;
%END;

%LET flag=0;

%LET classi=country;
%LET class2=division;
%ZLET class3=year;

Update the country hierarchy and selection based on the &country and ®ion macro variable values
provided from the HTML FORM:

%IF %SUBSTR(&country.,1,1) NE %THEN %DO;
%LET cl=country=%STR(%'&country.%");
%LET flag=1;

%LET classi=region;

%END;

%IF %SUBSTR(®ion.,1,1) NE %THEN %DO;
%IF &flag.=1 %THEN %DO;
%LET c2=%STR(%'8region.%");
%END;
%ELSE %DO;
%LET c2=%STR(region=%'8®ion.%");
%END;
%LET flag=1;
%LET classi=region;
%END;

54

CHAPTER 5 " KNIT PERL AND SAS SOFTWARE FOR DIY WEB APPLICATIONS

Update the product hierarchy and selection based on the &division, 8prodtype, and &product macro
variable values provided from the HTML FORM:

%IF %SUBSTR(&division.,1,1) NE %THEN %DO;
ZIF &flag.=1 %THEN %DO;
%LET c3=%STR(AND division=%'&division.%"');
%END;
%ELSE %DO;
%LET ¢3=%STR(division=%'8division.%");
%END;
ZALET flag=1;
ZLET class2=prodtype;
%END;

%IF %SUBSTR(8prodtype.,1,1) NE %THEN %DO;
#IF &flag.=1 %THEN %DO;
%LET c4=%STR(AND prodtype=%'&prodtype.%');
%END;
%ELSE %DO;
%LET c4=%STR(prodtype=%'8&prodtype.%"');
%END;
#ALET flag=1;
ZLET class2=product;
%END;

%IF %SUBSTR(&product.,1,1) NE %THEN %DO;
%IF &flag.=1 %THEN %DO;
%LET c5=%STR(AND product=%'&product.%"');
%END;
%ELSE %DO;
%LET c5=%STR(product=%'&product.%"');
%END;
#ALET flag=1;
ZALET class2=product;
%END;

Update the date hierarchy and selection based on the &year, 8quarter, and 8month macro variable
values provided from the HTML FORM:

%IF %SUBSTR(&year.,1,1) NE %THEN %DO;
%IF &flag.=1 %THEN %DO;
%LET c6=AND year=&year.;
%END;
%ELSE %DO;
ZLET c6=year=&year.;
%END;
%LET flag=1;
%LET class3=quarter;
%END;

55

CHAPTER 5 © KNIT PERL AND SAS SOFTWARE FOR DIY WEB APPLICATIONS

%IF %SUBSTR(8quarter.,1,1) NE %THEN %DO;
%IF &flag.=1 %THEN %DO;
%LET c7=AND quarter=&quarter.;
%END;
%ELSE %DO;
%LET c7=quarter=&quarter.;
%END;
%LET flag=1;
%LET class3=month;
%END;

%IF %SUBSTR(&month.,1,1) NE %THEN %DO;
%IF &flag.=1 %THEN %DO;
%LET c8=%STR(AND month=%'8&month.%");
%END;
%ELSE %DO;
%LET c8=%STR(month=%"&month.%");
%END;
%LET flag=1;
%LET class3=month;
%END;

Amalgamate the selections, and create a subset of the data:
%LET cO=%UNQUOTE(8c1. &c2. &c3. &c4. &c5. 8c6. &c7. 8c8.);

DATA selected;
SET sashelp.prdsale
%IF &flag.=1 %THEN %DO;
(WHERE=(
&co.

)
%END;

)

RUN;
Summarize the subset using the across and down hierarchies:

PROC SUMMARY DATA=selected NWAY;
CLASS &8class&down. 8&class&across.;
VAR &analysis.;
OUTPUT OUT=prdsumm SUM=;

RUN;

56

CHAPTER 5 " KNIT PERL AND SAS SOFTWARE FOR DIY WEB APPLICATIONS

Create a list of hierarchy values for the drop-down selections on the web page, and count the values in
each hierarchy:

%D0 i=1 %T0 3;
PROC SOL;
CREATE TABLE values&i. AS
SELECT DISTINCT

&8classdi.
FROM selected
ORDER BY

&8classdi.

)
QUIT;

PROC SOL NOPRINT;
SELECT COUNT(*)
INTO :nvalues&i.
FROM values&i.

)
QUIT;
%END;

Write the HTML for the top of the web page to make sure all the ODS style information (the default style
in this case) is included in the top matter (the HTML text at the top of any web page). Do not write any of the
bottom matter HTML text at the end of the web page yet:

ODS LISTING CLOSE;
ODS HTML BODY=&fileref. (NO _BOTTOM MATTER TITLE="&title.");

DATA NULL ;
FILE PRINT;
PUT ' ';

RUN;

0ODS HTML CLOSE;

Reassign the output destination to allow more HTML text to be appended:
FILENAME &fileref. "&extpath." MOD;

Start the outer table, with the submission form in the left table column:
DATA NULL ;

FILE &fileref.;

PUT '<CENTER><TABLE CELLPADDING=5><TR><TD BGCOLOR="'

"8leftcol." '">';
PUT '<FORM ACTION="../cgi-bin/new-sas9.pl" METHOD=POST>';

PUT '<INPUT TYPE=HIDDEN NAME="_program" VALUE="code.drill9.sas">';
PUT '<INPUT TYPE=HIDDEN NAME="_grafics” VALUE="n">";

57

CHAPTER 5 © KNIT PERL AND SAS SOFTWARE FOR DIY WEB APPLICATIONS

%IF %SUBSTR(&country.,1,1) NE %THEN %DO;
PUT '<INPUT TYPE=HIDDEN NAME=country VALUE="' "&country." '">';
%END;

%IF %SUBSTR(&division.,1,1) NE %THEN %DO;
PUT '<INPUT TYPE=HIDDEN NAME=division VALUE="' "&division." '">';
%END;

%IF %SUBSTR(&prodtype.,1,1) NE %THEN %DO;
PUT '<INPUT TYPE=HIDDEN NAME=prodtype VALUE="' "8prodtype.” '">';
%END;

%IF %SUBSTR(8year.,1,1) NE %THEN %DO;
PUT '<INPUT TYPE=HIDDEN NAME=year VALUE="' "&year." '">';
%END;

%IF %SUBSTR(&quarter.,1,1) NE %THEN %DO;
PUT '<INPUT TYPE=HIDDEN NAME=quarter VALUE="' "&quarter." '">';
%END;

PUT '
Report title?
';
PUT '<INPUT TYPE=TEXT NAME=title VALUE="'
"8title." '" SIZE=25>
';
PUT '<HR>';
STOP;
RUN;

Create selection lists for the hierarchies:

DATA NULL ;
FILE &fileref.;
%D0 i=1 %TO 3;
DO i=1 TO &&nvaluesdi;
SET values&i. POINT=i,;
FILE &fileref.;

IF i = 1 THEN DO;
PUT "
Select &8class&i.?
";
PUT '<SELECT NAME=' "&8&class&i." '>';
PUT '<OPTION VALUE=" " SELECTED>
';
END;
PUT '<OPTION VALUE="' &&class8i. +(-1) '">' &8class&i. '
';

IF i = &8nvalues&i. THEN DO;
PUT '</SELECT>
';
PUT '<INPUT NAME=down TYPE=RADIO VALUE="' "&i." '"'

%IF &i. = &down. %THEN %DO;
' CHECKED'
%END;
" >Down ' ;
PUT '<INPUT NAME=across TYPE=RADIO VALUE="' "&i." '"'

58

CHAPTER 5 " KNIT PERL AND SAS SOFTWARE FOR DIY WEB APPLICATIONS

%IF &i. = &across. %THEN %DO;

' CHECKED'
%END;
'>Across
<HR>';
END;
END;
%END;
STOP;
RUN;
End the submission form and left table column, and start the right table column:
DATA NULL_ ;
FILE &fileref.;
PUT '<INPUT TYPE=HIDDEN NAME="_program" VALUE="code.drill9.sas">";
PUT '<INPUT TYPE=HIDDEN NAME="_grafics" VALUE="n">';
PUT '<INPUT TYPE=SUBMIT VALUE="Generate SAS v9 Report">';
PUT '</FORM>";
PUT '</TD><TD BGCOLOR="" "&rightcol." '">';
STOP;
RUN;

Create the report using PROC TABULATE and ODS. There is no need to specify an ODS style here, because
the style information has already been recorded in the HTML header (top matter). You still do not want to
write any of the bottom matter HTML text at the end of the web page:

ODS HTML BODY=&fileref. (NO_TOP_MATTER NO _BOTTOM MATTER);

PROC TABULATE DATA=selected;
CLASS &8class&down. 8&classdacross.;
VAR &analysis.;
TABLE &&class&down., &&class8across. * actual*F=COMMA13.2;
TITLE "&title. ";
TITLE2 "&co0. ";
KEYLABEL N=" ' SUM="' ';
RUN;

0ODS HTML CLOSE;

Finally, you can end the web page HTML by closing the TABLE and BODY sections. This is effectively the
bottom matter, which complete s the web page:

DATA NULL ;
FILE &fileref.;
PUT '</TD></TR></TABLE></CENTER>";
PUT '</BODY>';
PUT '</HTML>';
STOP;

RUN;

59

CHAPTER 5 © KNIT PERL AND SAS SOFTWARE FOR DIY WEB APPLICATIONS

End the drill macro definition, execute it, and clear the output file reference:
%MEND drill;
%drill;

FILENAME &fileref. CLEAR;

Perl Programming and Operational Details

Following are some sample user modifications to the header of the Perl server application to run SAS
programs in SAS 9.2 on Windows:

print "HTTP/1.0 200 OK\n";

#! c:\perl\bin\perl.exe -w

File name: c:\httpd\cgi-bin\...

...new-sas9.pl

#

USER Modification begins here

#

If running on Window, set 1; UNIX, set 0.
$0S_WIN= 1; ## If Windows, set 1.

Directory for SAS to use for temporary files
$HOME= 'e:\\web_server\\temp';

File containing libref & directory name pairs
$CONF= 'e:\\web_server\\cgi-bin\\new-sas9-perl.cfg';

This is the full path name of the SAS System.
$SAS_EXE= 'c:\\progra~i\\sas\\sasfou~1\\9.2\\sas.exe -nologo’;

SAS options

$OPTIONS= '';

#

End of USER Modification
#

The Perl server application, which was written by Michael Yu, needs to be customized before it can be
called from a web page (discussed earlier):

e $0S_WIN indicates whether the web server is on a Windows or UNIX platform; they
have different file-naming conventions.

e $HOME is the server directory, which holds the temporary files created by each web
request.

e $CONF is the parameter file (shown in a moment) containing the pointers to
directories on the server required by the processing.

60

H oH HE B H O R R

code!e:\web_server\code

web!e:\web_server\wuwwroot

Figure 5-1. The initial HTML web page

CHAPTER 5 " KNIT PERL AND SAS SOFTWARE FOR DIY WEB APPLICATIONS

e $SAS_EXE is the command line used to execute the SAS system on the server.

e $OPTIONS can be used for any relevant SAS options, although none are required for

this program.

Here is a sample Perl server application parameter file:

File name: new-sas9-perl.cfg

A line starting with pound sign,

'#', or blank is a comment line.

Typically place this file in the web server machine's CGI-BIN directory

Syntax:

a-SAS-fileref!physical-directory-existing-on-the-Web-server-machine

Note the use of exclamation mark,

"1, as separator

Figure 5-1 shows the web page used to generate the initial web request.

Report title?
Drilldown report

Select country?
CANADA ~
@ Down) Across

Select division?
EDUCATION ~
'Down) Across

Select year?

v

JDown @ Across

[Generate Report]

61

CHAPTER 5 © KNIT PERL AND SAS SOFTWARE FOR DIY WEB APPLICATIONS

The initial HTML web page calls the Perl server application used to generate a short SAS program
(shown next), which contains the following:

e SAS macro variables corresponding to the FORM variables from the web page
e FILENAME statement pointing the WEBOUT file reference to the HTML output file
e %INC statement pointing to the SAS program on the server to be executed
Here is the sample SAS program generated by the Perl server application:
ZLET year= ;
ZLET title=Drilldown report;
%LET country=CANADA;
%LET division=EDUCATION;

%LET down=1;
%LET across=3;

TITLE ; footnote ;
filename _WEBOUT 'e:\web_server\temp\p-2074705.out’;
%inc 'e:\web_server\code\drill9.sas';

The web page report generated using SAS version 9.2 software and the default ODS style is shown
in Figure 5-2.

Drilldown report

itle?
Report fitle* country="CANADA' and division="EDUCATION'

Drilldown report

Year
Select region?

EAST ~ 1993 1994
@ Down ACross

Actual Sales Actual Sales

Select prodtype? Region

EAST 34.656.00 33,133.00
Down @ Across o3 ’

WEST 30,139.00 31,078.00

Select year?

O Down @ Across

[Generate SAS v8 Report |

Figure 5-2. The generated web page report with the filter options on the left side

62

CHAPTER 5 " KNIT PERL AND SAS SOFTWARE FOR DIY WEB APPLICATIONS

Conclusions

This very simple application has been developed to demonstrate the capabilities of the web interface to SAS.
It returns dynamically created web reports on SAS-based data.

References

e Base SAS Focus Area, https://support.sas.com/rnd/base/index.html.

e Michael Yu, “Perl to SAS,” SUGICD.ZIP (from the SUGI 24 CD_ROM Proceedings),
and is included in the source code for this chapter.

63

https://support.sas.com/rnd/base/index.html

CHAPTER 6

Running SAS Programs in
Enterprise Guide

Geographical distribution of SAS programming teams across continents and oceans impacts access to study
programs and data. It is only practical for local programmers to use direct GUI access to files, and remote
programmers are forced to use copies of files on their local systems to achieve fast access. With Enterprise
Guide (EG), because executed code and data are located on the designated server but files are viewed and
edited on the local PC, network traffic is dramatically lessened, thus reducing the impact of remote working.
This chapter describes the steps needed to use EG instead of batch SAS to run server-based study programs
from anywhere in the world.

Environment Setup

When a SAS session is started on the server using EG, the current folder used is always the user’s home
folder by default: C: \WINDOWS\System32, /home/user, and so on. To change the current folder to a
study-specific location, you can use the following SAS code:

%SYSEXEC cd
/filespace/product/indication/studynumber/analysis/final/tables/programs;

%SYSEXEC setenv PWD
/filespace/product/indication/studynumber/analysis/final/tables/programs;

Any automatic initialization programs that calculate locations based on the current path can now be
able to set all the study-specific macro variables and allocate the library and filename references.
If you are using an autoexec.sas program to set the study-specific macro variables and allocate

the library and filename references, it must be started here, too:

%INCLUDE 'autoexec.sas' / SOURCE2;

65

CHAPTER 6 © RUNNING SAS PROGRAMS IN ENTERPRISE GUIDE

Changes to the Automatic Initialization Program

The only change required to the automatic initialization program is to alter the way the program name is
obtained. In batch SAS sessions, the program name forms part of the SYSPROCESSNAME macro variable, (such
as Program report.sas). However, when submitted from EG, the SYSPROCESSNAME macro variable in the SAS
session always contains Object Server, with no program name. Fortunately, the label of the EG code node
is stored in the _EGTASKLABEL macro variable. This label can be any string, until the code is saved to disk;
once saved, it is replaced by the name of the saved file.

For example, you can replace this

%LET pgm = %SCAN(&sysprocessname., 2, %STR());
with this:

%IF "&sysprocessname." = "Object Server"
%THEN %LET pgm = & egtasklabel.;
%ELSE %LET pgm = %SCAN(&sysprocessname., 2, %STR());

The code change in this automatic initialization program uses the EGTASKLABEL macro variable instead
of the SYSPROCESSNAME macro variable, but only if SYSPROCESSNAME contains Object Server, so batch SAS
sessions are not impacted.

Limitations of Enterprise Guide Software

Because EG software acts as an editor and batch scheduler for separate SAS systems, it cannot be used to run
SAS applications that have their own GUI interfaces or interactive features (SAS/AF, SAS/EIS, SAS/GIS, and
so on). All processes should be considered batch jobs in that they have no interactive facilities. However,

the SAS code is actually running in a single SAS session on the selected SAS server, so from the first code
submission, WORK data sets, option settings, and macro variables are retained until the end of the server
session, or until they are manually deleted. The batch SAS processes can only return the following items
back to EG:

e SASlog
e SAS outputvia ODS
e SAS-generated graphs

Although the EG user interface includes elements relating to Base SAS, SAS/STAT, SAS/GRAPH, SAS/
ETS, and SAS/QC, their applicability depends on the SAS license installed on the SAS server selected to run
the code.

Accessing Local SAS Installations

EG software can be used as a point-and-click front end to a locally installed SAS system. This requires the
client SAS software to be installed on the Windows system, including the local version of SAS Integration
Technologies, which is supplied as part of Base SAS. The only SAS component that must be licensed is
Base SAS.

66

CHAPTER 6 © RUNNING SAS PROGRAMS IN ENTERPRISE GUIDE

Accessing the locally installed SAS system may require it to be registered using the /REGSERVER option
on SAS. EXE, if the installation has not been installed into the default location or if several different versions
have been installed on the same PC. For automated installations, it is recommended that you carry out this
registration even if the location is the default.

Accessing Server-Based SAS Installations

A remote SAS server requires only Base SAS and SAS Integration Technologies to be installed and licensed,
although if SAS/STAT, SAS/GRAPH, SAS/ETS, and SAS/QC are installed and licensed on the server, code can
be generated for them by EG using standard tasks. You can also use other components, but doing so requires
direct coding in a SAS code node to be executed from EG.

The remote SAS server must be configured using the SAS Enterprise Guide Explorer, which you can
access from EG by clicking Tools » SAS Enterprise Guide Explorer. You can add new servers using the Server
Wizard, which you start from within the SAS Enterprise Guide Explorer by clicking File » New » Server.
Each new server definition requires the following information: server name (user-defined, but must be
unique), connection protocol (probably IOM), host address (either URL or IP address), and port number of
the Object Spawner on the remote server.

Why You Cannot Use Autoexec.sas

EG communicates with the SAS System via a special interface component called SAS Integration
Technologies. Requests for SAS functionality are normally small and frequent, so starting a full SAS session
each time would be wasteful and probably too slow. As a consequence, SAS Integration Technologies starts
only a minimal system, which can be extended, if required, as the code is compiled. This minimal system
does not include any autoexec processing, so any processing required to be carried out prior to each
request must be initiated using the -INITSTMT option. Therefore, the following option is equivalent to the
-AUTOEXEC option:

-INITSTMT '%INCLUDE "/home/user/autoexec.sas;"'

When using the Enterprise Guide Administrator, you specify this -INITSTMT option on the server setup
screens by typing the following text in the SAS Server Startup Statements box on the Options tab:

%INCLUDE "/home/user/autoexec.sas";

As an alternative, you can add the -INITSTMT option to the -sasCommand option in the SAS Object
Spawner configuration file.

Why Do Platform-Specific System Commands Fail?

The starting parameters for the SAS Object Spawners that start the SAS server sessions can have an
impact on the permitted functionality of the SAS code submitted to run on the server. Statements such as
X, 5SYSEXEC, SYSTASK, and CALL SYSTEM; the SYSTEM function; and the FILENAME option PIPE will not work
unless the -ALLOWXCMD or -NONOXCMD parameter is explicitly added to the Object Spawner configuration.
However, the use of these options should only be permitted with great caution, because other
platform-specific operating system commands can also be submitted from submitted SAS code, which
could be dangerous when used by inexperienced or malicious users!

67

CHAPTER 6 © RUNNING SAS PROGRAMS IN ENTERPRISE GUIDE

If you are running a SAS version before 9.4, even if you only run your SAS code on the local server, you
will not be able to use statements such as X, 3SYSEXEC, SYSTASK, and CALL SYSTEM; the SYSTEM function; and
the FILENAME option PIPE unless you have allowed operating system commands. The local server parameters
are stored in the Windows Registry and can be changed as follows (only after you make a backup of the
Windows Registry, because any manual updates of the Registry can impact the operation of Windows!):

1. Choose Start » All Programs » Accessories » System Tools » Backup.
Select Back Up Files And Settings, and then click Next.
Select Let Me Choose What To Back Up, and then click Next.

Expand My Computer, select System State, and then click Next.

e &~ N

Click Browse to select a location for the backup, click Save, click Next, and then
click Finish to start the backup.

To edit the Windows Registry, choose Start » Run, type REGEDIT, and click OK.
Select HKEY_CLASSES_ROOT with CLSID=440196D4, and click the LocalServer32 key.
Right-click Default, and choose Modify.

© o N &

Remove -noxcmd, which should be the last item in the list, and click OK.
10. Choose View » Refresh.

11. Exit the Registry window.

Changing the Current Directory

When you start a server SAS session, the current directory is always your home directory on the server
platform, such as C: \WINDOWS\System32 on Windows or /home/user on Linux or Unix. To change this to a
different location, you must have the ability to run operating system commands (see the section “Why Do
Platform-Specific System Commands Fail?”). Any of the six techniques described next are applicable:

e Xstatement

On a Windows server:
OPTIONS NOXSYNC NOXWAIT;
X 'd:; cd d:\data\lib';
On a Linux or Unix server:
OPTIONS NOXSYNC NOXWAIT;

X 'cd /data/lib’;
e %SYSEXEC statement

On a Windows server:
OPTIONS NOXSYNC NOXWAIT,

%SYSEXEC d:;
%SYSEXEC cd d:\data\lib;

68

CHAPTER 6

On a Linux or Unix server:
%SYSEXEC cd /data/lib;

SYSTASK statement

On a Windows server:

OPTIONS NOXSYNC NOXWAIT,

SYSTASK COMMAND 'd:; cd d:\data\lib';
On a Linux or Unix server:

OPTIONS NOXSYNC NOXWAIT,

SYSTASK COMMAND 'cd /data/lib';

CALL SYSTEM statement

On a Windows server:

OPTIONS NOXSYNC NOXWAIT,;

DATA NULL ;
CALL SYSTEM('d:; cd d:\data\lib');
RUN;;

On a Linux or Unix server:

OPTIONS NOXSYNC NOXWAIT,;
DATA NULL_;

CALL SYSTEM('cd /data/lib');
RUN;

SYSTEM function

On a Windows server:

OPTIONS NOXSYNC NOXWAIT,;

DATA NULL ;
rc = SYSTEM('d:; cd d:\data\lib');
RUN;;

RUNNING SAS PROGRAMS IN ENTERPRISE GUIDE

69

CHAPTER 6 © RUNNING SAS PROGRAMS IN ENTERPRISE GUIDE

On a Linux or Unix server:

OPTIONS NOXSYNC NOXWAIT,;

DATA NULL_;
rc = SYSTEM('cd /data/lib');
RUN;

e FILENAME statement with the PIPE option

On a Windows server:
FILENAME cmd PIPE 'd:; cd d:\data\lib’;

DATA NULL_;
INFILE cmd TRUNCOVER;
INPUT;

PUT _INFILE ;

RUN;

On a Linux or Unix server:
FILENAME cmd PIPE 'cd /data/lib’;

DATA NULL_;
INFILE cmd TRUNCOVER;
INPUT;
PUT _INFILE ;

RUN;

Generating SAS Code Using Enterprise Guide Tasks

All the GUI tasks in EG generate SAS code that can be submitted automatically, but using the Preview Code
option gives you an opportunity to copy the generated code prior to submission and paste it into a separate
SAS code node in EG to edit and run later, as shown in Figure 6-1.

70

CHAPTER 6 © RUNNING SAS PROGRAMS IN ENTERPRISE GUIDE

16| DATA=SASHELE.BASEBALL (RKEEP=nRuns Team)
1 TI OUT=WORF.. SORTTempTableSorted

18} :

19 BY Team;

20! RuN;

21 TITLE;

22| TITLE1 "Distribution analysis of: nRuns";
23| POOTNOTE;
qu FOOTNOTE1l "Generated by the SAS System (& SASSERVERNAME, &SYSSCPL) on STRIM(%QSYSFUNC (DATE(), NLDA

25 ODS EXCLUDE EXTREMEOBS MODES MOMENTS QUANTILES;

26

27} GOPTIONS htext=1 cells;

28 SYMBOL v=SQUARE c=BLUE h=1 cells;

29| PATTERN v=SOLID =
30 ;

31/-PROC UNIVARIATE DATA = WORE.SORTTempTableSorted

32! CIBASIC (TYPE=TWOSIDED ALPHA=0.05)

33 MUO=0

341

355 BY Team;

kLS| VAR nRuns;

37| HISTOGRAM / CFRAME=GRAY CAXES=BLACK WAXIS=1 CBARLINE=ELACK CFILL=BLUE PFILL=SOLID ;
38}

L I . ——————— T

401 End of task code

L I “f

42| RUN; QUIT; .
i

Figure 6-1. Preview code generated by the Distribution Analysis task

Automatically Saving Logs to Disk

By default, EG stores logs in the project file, and not to disk. However, you can add an Export node to
automatically save the log to disk, either to a locally referenced folder using the local server, or to a folder
connected to the remote server.

To create an export node for a log, you must have already run the code and generated a log:

1. Open the Project Explorer.

Find the log you wish to export, and right-click it.
Choose Export » Export Log As A Step In Project.
Click Next.

Select Log File (*.log) in the list, and click Next.

Select the SAS Servers radio button, and click Edit.

N o a &~ w0 Db

Double-click the appropriate server on the list, find the correct folder, edit the
filename, and then click Save.

0

Click Next, and then
9. Click Finish.

71

CHAPTER 6 © RUNNING SAS PROGRAMS IN ENTERPRISE GUIDE

Saving the SAS log as a file on disk is generally used by clinical-trials programmers as proof that this
program was run on a particular date. However, the benefits of EG are geared more toward improving the
development environment, rather than production running of SAS programs; so, I do not advocate saving
log files from within EG, but rather rerunning the finalized program using Batch SAS when all log and output
files will be automatically saved.

Conclusions

Introducing EG as the preferred development environment for SAS programmers, particularly those working
with clinical trials, allows companies to achieve the following objectives:

e Replacing a full PC SAS installation on the programmer’s desktop with a single
application (EG), which reduces time spent updating licensing each year

e Centralizing the updating of SAS software onto a single server or a small number
of them

e Giving developers access to up-to-date programs and data without significant
network delays, provided large files are not generated when programs run

e Using copies of the EG project files as templates for new studies with minimal
amendments by using program nodes to set up the location of the folders, which are
saved with the EG project file and not to disk

References

e Philip R. Holland, Saving Time and Money Using SAS, chapter 6 (SAS Press, 2007).

72

http://dx.doi.org/10.1007/9781484205693_6

CHAPTER 7

Running SAS Programs in SAS
Studio or Enterprise Guide

SAS Studio (previous known as SAS Web Editor) was introduced in SAS 9.4 M1 as an alternative
programming environment to Enterprise Guide (EG) and interactive SAS (Display Manager System [DMS]).
SAS Studio is different than EG and DMS in many ways. As a programmer, I currently use EG to help me
code, test, maintain, and organize my SAS programs. I have interactive SAS installed on my PC, but I still
prefer to write my programs in EG because I know it will save my log and output whenever Itun a
program—even if that program crashes and takes the SAS session with it! So should I now be using SAS
Studio instead, and should you be using it too?

In the early 1980s, SAS offered users a ? to prompt them to type in programming statements. In the late
1980s, DMS was introduced, which let users view their code, log, and output together. It was not until the
beginning of this century that EG was introduced and offered interactive access to remote SAS servers from
a Windows PC. Finally, in 2014, SAS Studio was introduced for users on any platform that can be used to
access a suitable web browser—the interface to SAS is a web page.

This chapter looks at the interactive options available for a range of users: those on Windows, Unix or
Linux, or Mac; academics; non-programming data analysts; novice and intermediate programmers; power
users; and interface and task developers. The discussion will help you decide whether SAS Studio is your
best choice.

Platform-Specific Users

The programming environments available depend on the platform you are using. When options for
particular types of users are discussed later, the environments also need to be taken into account.

Windows Users

The SAS System and EG run on the Windows platform. The addition of SAS Studio running in a web browser
means all the programming environments discussed in this chapter are available to Windows PC users. This
is not necessarily the case for the other platforms, though.

73

CHAPTER 7 © RUNNING SAS PROGRAMS IN SAS STUDIO OR ENTERPRISE GUIDE

Display Manager System (DMS)

DMS is the standard interactive programming environment for SAS programmers who have the SAS System
installed on their Windows PC. By default, there are five areas with information about the SAS programming
environment, as shown in Figure 7-1:

e Editor: Used for viewing and editing SAS code
e Log: Displays progress and messages generated by running SAS programs
e Output: Displays the text report output generated by SAS programs

e Explorer: Lets you find and view folders and files, including SAS libraries, data sets,
and external files

e Results: Lets you find and review output from SAS programs in all file formats
produced by those programs

e
ﬁ?l‘: Edit View Tools Run Solutions Window Help

- - DE@@R L vE o DAt X0
Explorer =]
Gl or SRS e NOTE: Updated analytical products:

5 Qm] SAS/STAT 13.2

Libraries File Shortcuts NOTE: Additional host information:

-
Log - (Untitled)

X64_7PRO WIN 6.1.7601 Service Pack | Horkstation

5 N
lj NOTE: SAS initialization used:
2

: real time 0.32 seconds
I;a;;::n:: Computer cpu time 1.37 seconds

[Output - Wntitled) |] Log - (Untitied) || ditor - Untitied1

S C:\Users\Phil Lnl, Coll

Figure 7-1. Opening screen for interactive SAS 9.4 on a Windows PC

Enterprise Guide

The EG view of the programming environment is much more structured and initially displays three areas of
information, as shown in Figure 7-2:

e Project Tree: Lists the files associated with each process flow contained in the EG
project. These files can be SAS programs and output files.

e Process Flow: Displays the files associated with a process flow in the form of a
flowchart.

74

CHAPTER 7 © RUNNING SAS PROGRAMS IN SAS STUDIO OR ENTERPRISE GUIDE

e Servers: Has five icons at the top that you can click to display the following
information:

e Tasks: Screens and menus that can generate SAS code
e SASfolders: Data locations predefined by server administrators

e Servers: SAS servers your EG session is connected to, and the files and SAS
libraries accessible of those servers

e Prompt Manager: Tool you can use to generate macro variable values to
customize your SAS programs

e Data Exploration History: Lets you easily view and subset multiple SAS data sets
without them being adding automatically to the project

|- 8 h@ X |» o[-

Favorites Program Tools Help

x| ProcessFlow ~

b Run » [Stop | Export » Schedule ~ | Zoom ~ | [Project Log | [Properties ~

%G 0
£ Refresh | Disconnect M Stop

(6} [}y Private OLAP Servers

»
| Y No profile selected | .;

Figure 7-2. Opening screen for EG 7.1

75

CHAPTER 7 © RUNNING SAS PROGRAMS IN SAS STUDIO OR ENTERPRISE GUIDE

SAS Studio

SAS Studio gives a view of the programming environment that is somewhere between those of DMS and EG.
It includes four main areas of information, as shown in Figure 7-3:

e Code: Used to view and edit SAS code.

e Log: Displays the progress and messages generated by running SAS programs.
e Results: Displays the report output generated from SAS programs.

e The area on the left has five expanding sections:

e Folders: A folder view of the connected SAS server, which could be the
user’s Windows PC if SAS is installed on it

e Tasks: Screens and menus that can generate SAS code
e Snippets: Generalized fragments of SAS code that can be pasted into the Code area
e Libraries: Available SAS libraries and their contents

e File Shortcuts: Available shortcuts to folders and files

SAS® Studio signout =- 0 @

Foders ____________[fpee—"

- @ & T B O cobE |LoG RESULTS |

b B Folder Shortcuts s & ¢ B LG ERE & o - By W
b g My Folders @ % ki @ E A

b [3 Desktop liEnter your code here

b) My Documents
b . o\

P R D\

W=

P B F\

> M G\

b BB P\

> M s\

Tasks
Snippets
Libraries

File Shortcuts

Line 1, Column 1

Figure 7-3. Opening screen for SAS Studio 3.2 connected to a Windows PC

76

CHAPTER 7 © RUNNING SAS PROGRAMS IN SAS STUDIO OR ENTERPRISE GUIDE

Unix or Linux Users

The SAS System runs on most varieties of Unix and Linux. Web browsers are included in Unix and Linux
installations, so users with access to these platforms have the choice of using DMS or SAS Studio to develop
SAS programs.

Display Manager System (DMS)

This is the standard interactive programming environment for SAS programmers who have access to the
SAS System installed on Unix or Linux. As in Windows, there are five areas with information about the SAS
programming environment, but in Unix and Linux they are displayed as separate floating windows, as
shown in Figure 7-4:

e Program Editor: Used for viewing and editing SAS code
e Log: Displays progress and messages generated by running SAS programs
e OQutput: Displays the text report output generated from SAS programs

e Explorer: Lets you find and view folders and files, including SAS libraries, data sets,
and external files

e Results: Lets you find and review output from SAS programs in all file formats
produced by SAS programs

Wiew Tools Solutions Help File Edit View Tools Sclutions Help

File Edit ‘iew Tools Solutions Help File Edit View Tools Solutions Help

Bnitialization. Edit the file "news" in the "misc/b[l Contents of 'SAS Environment'

display site-specific news and information in the pr |

The command line option "-nonews" will prevent this Z‘f’ Libraries
£l File Shortcuts

E § Favorite Folders

SAS: Program Editor-Untitled

File Edit View Tools Run Solutions Help

00001
-l____ 00002
00003
00004
00005
00008

Figure 7-4. Opening screen for interactive SAS 9.3 on Ubuntu Linux

77

CHAPTER 7 © RUNNING SAS PROGRAMS IN SAS STUDIO OR ENTERPRISE GUIDE

SAS Studio

The screen displayed by SAS Studio on a Unix or Linux platform depends completely on the type of SAS
server it is connected to, but broadly speaking it looks like the screen displayed on a Windows platform. The
differences are only seen in the Folders area, where a Windows server shows Windows-specific file naming
with \ separators, whereas Unix and Linux servers show Unix-specific file naming with / separators.

MAC Users

The SAS System can no longer be installed on Mac computers. The only available option is to use SAS Studio
in a web browser.

SAS Studio

Like the SAS Studio screen on Windows, Unix, and Linux platforms, the only differences are due to the SAS
server platform, not where the web browser is being used.

Role-Specific Users

The roles in the following sections have been selected to highlight specific functionality:

e Academic users: Users of SAS University Edition or SAS OnDemand for Academics,
both of which use SAS Studio as their interactive programming environment

e Non-programming data analysts: Users who access SAS data but do not necessarily
need to write SAS programs

e Novice and intermediate programmers: Programmers who are learning about SAS
but are not necessarily required to write SAS code yet

e Power users: Experienced SAS programmers who want to write SAS code rather than
use the menus to generate SAS code

e [Interface and task developers: XML or .NET developers who are creating new tasks for
SAS Studio or EG

The options available to all the roles in the following sections depend on the platform used.

Academic Users
Academic access to SAS is available through two specific products:

e OnDemand for Academics uses the web-based SAS Studio interface to access a
remote SAS server where course files are stored and submitted.

e SAS University Edition is supplied via a free virtual machine for the Oracle VirtualBox
and VMware Player virtualization software packages, both of which can also be installed
for free. The virtual Linux SAS 9.4 server runs on the user’s 64-bit Windows, Linux,
or Mac computer, but it can only be accessed through a web browser by using the IP
address supplied by the running virtual machine, which starts a SAS Studio session.

The web page that starts SAS Studio includes web links to discussion communities,
installation documentation, and frequently asked questions, as shown in Figure 7-5.

78

CHAPTER 7 © RUNNING SAS PROGRAMS IN SAS STUDIO OR ENTERPRISE GUIDE

NOTIFICATIONS RESOURCES

Communities (collaborate and share best practices)
Installation Documentation
Frequently Asked Questions (FAQ)

[Checking for updates...

Figure 7-5. Opening screen for SAS University Edition

Once the SAS University Edition has been started, all the functionality of SAS Studio is available.
Users may be non-programming data analysts, novice and intermediate programmers, or power users; the
following sections explain the relevant features of SAS Studio.

Non-Programming Data Analysts

Because of the built-in tasks available in EG and SAS Studio, and the fact that they can generate and run SAS
code without the user being aware they are doing so, non-programming data analysts can use either of these
products to investigate SAS data by using menus, variable lists, and drag-and-drop operations.

SAS Studio

Let’s use the Distribution Analysis as an example. You can find it in the statistics-related tasks, as shown in
Figure 7-6.

79

CHAPTER 7 © RUNNING SAS PROGRAMS IN SAS STUDIO OR ENTERPRISE GUIDE

SAS® Studio Signout | =~ | ®
Search Ll Distribution Analysis 1 *
Folders

Settings | Code/Results | Split H B 2

DATA |OPTIONS|INFORMATION |
a4 a R B O

- oo i 4 DATA
4 8 statistics PR R B =
X Summary Statistics @ ’
Lik Distribution Analysis 4 ROLES Select a table
One-Way Frequencies * Analysis variables: + 3 m +
l#* Correlations ®
[Table Analysis
|H One-sample t Test =L
|H Paired-sample t Test ?:?isiﬁ:atinn variables:(2 &+
|H Two-sample t Test 6 ;
ffx One-Way ANOVA
fiz Nonparametric One-Way aNOV,;

Linear Regression = + ADDITIONAL ROLES
: Li i -

Snippets
Libraries
File Shortcuts

Figure 7-6. Settings for the Distribution Analysis task in SAS Studio 3.2

The Settings menu requires a Data option, which you can select by clicking the icon at the right end
of the box; choose SASHELP.BASEBALL from the pop-up list. Select roles from the similar pop-up lists to
complete the information about the data for the analysis, as shown in Figure 7-7.

DATA |OPTIONS|INFORMATION |

4 DATA

SASHELPBASEBALL - B
4 ROLES

*Analysis variables: t &+ T +
@ nRuns

Classification variables: (2

m +
& Team

Figure 7-7. Completed data for the Distribution Analysis task in SAS Studio

The Options tab gives you choices about how to display the data. Then the Run icon becomes clickable,
as shown in Figure 7-8.

80

CHAPTER 7

Settings Code/Results Split

DATA |OPTIONS|INFORMATION |
4 EXPLORING DATA

Histogram
[¥] Add normal curve
[v] Add kernel density estimate
[V]ladd inset statistics |
¥ Inset Statistics
4 CHECKING FOR NORMALITY
[Goodness-of-fit tests

= Histogram with normal curve

[Normal probability plot

RUNNING SAS PROGRAMS IN SAS STUDIO OR ENTERPRISE GUIDE

Figure 7-8. Completed options for the Distribution Analysis task in SAS Studio

Clicking Run starts a SAS program running. It generates the results you were looking for, as shown in

Figure 7-9, without any SAS programming skills required.

G RESULTS |
& & A
Distribution of nRuns

m 100 N4
[=
=
8w
nw
g o0
%
2 40 -
£
¥ \
§=
2% o et ey N
$ 5 100 N4
%ﬂ_
g e
n
8 g
%
2 40 -
2 .,
% 20
[

625 375 125 125 375 625 875 1125 1375 1625 1875

Runs in 1986

Curves Normal

Kemel(c=0.79)

Figure 7-9. Graphical results for the Distribution Analysis task in SAS Studio

81

CHAPTER 7 © RUNNING SAS PROGRAMS IN SAS STUDIO OR ENTERPRISE GUIDE

Enterprise Guide

Again, take the Distribution Analysis as an example. You can find it in the Tasks list in the Servers area, as
shown in Figure 7-10, as well as in the Tasks list in the Servers area.

1A ®A

O & G R

T Filters | O

Name ~

[Find 3 task

Data Set Attributes

3% Delete Data Sets and Formats
[Discriminant Analysis
ik Distributio%nalysis

€ Donut Chart

iy Download Data Fil
[\, Factor Analysis

&3 Filter and Sort

28 Generalized Linear|
W' Generalized Linear|

£ Heckman Selectior]

luh, Histogram (2.41)

b, Distribution Analys

Distribution Analysis x

Open More Information Y¥

The Distribution Analysis task provides data summarization
tools as well as information about the distribution of numeric

variables.

Category: Describe

Type: Built-in Task

Last used: 3/27/2015 2:27:23 PM
Procs: UNIVARIATE

Figure 7-10. Finding the Distribution Analysis task in EG 7.1

Clicking the task opens a window where you can select data and settings. Select SASHELP.BASEBALL in
the Data tab by clicking the [Edit] button, and choose roles for variables by dragging them from Variables to
assign into the appropriate Task roles, as shown in Figure 7-11.

82

CHAPTER 7 © RUNNING SAS PROGRAMS IN SAS STUDIO OR ENTERPRISE GUIDE

Normal Data source: Local:SASHELP BASEBALL
oo |
Exponential
Weibul
Beta Variables to assign: Task roles: Team sort order:
G TR A ©) Analysis varables (2] | Ascending M
o s B gty (3]
Appearance | | /i) Team & Team ' [7] Sott by varisbles
Tabl::d @ naeat -E |@] Frequency count (Limit: 1)
i %"::B | @ Relative weight (Limt: 1)
n | Classffication variables (Limit: 2)
Properties @nﬁms &
@ nRBI L
%nBB
YrMajor
@ CrAtBat
@ CeHits
(@ CrHome
g?xs - 4 m (3
[] Preview code | R v|][Sae |[Cancel || Hep |

Figure 7-11. Completed data for the Distribution Analysis task in EG 7.1

The Appearance tab under Plots gives you choices regarding how to display the data, as shown in
Figure 7-12.

83

CHAPTER 7 © RUNNING SAS PROGRAMS IN SAS STUDIO OR ENTERPRISE GUIDE

Ot Plots > Appearance
Distributions =
Summary
Nomal Note: Insets are valid on histogram, probability Aois Background Axis wicth:
Exponential
Weibull — Il |
Beta I-leog'amPlot .v -v-! 1 -
Kemel |
i [7] Probabilty Plot m mj [1 -
Appearance
Inset |
Tables Dmﬂd -' .v |1i ¥
Titles =
g] Box plot m| = E -
S—) Produces a stem and leaf plot or bar chart (depending
i 1 [7] Text based plots on the number of observations), box plot and normal
ey " probability plot. Produces a side-by-side plot f there is
a by variable.
Creates a histogram and optionally superimposes density curves for continuous theoretical distributions and for kemel -
density estimates.
[’] Preview code [R [v][save |[Concel][Hep |

Figure 7-12. Completed Appearance tab for the Distribution Analysis task in EG 7.1

Clicking the Run button starts a SAS program running. It should generate the results you were looking
for, as shown in Figure 7-13, again without any SAS programming skills required.

84

CHAPTER 7 © RUNNING SAS PROGRAMS IN SAS STUDIO OR ENTERPRISE GUIDE

Distribution analysis of: nRuns

The UNIVARIATE Procedure

Team at the End of 1888=Los Angeles

Percent
=]

Runs in 1986

Generated by the SAS System (Local, X64_7PRO) on 27 March 2015 at 2:55:41 PM

Figure 7-13. Graphical results for the Distribution Analysis task in EG 7.1

Enterprise Guide and SAS Studio Together

At first sight, it would appear that SAS Studio is the obvious choice, at least for Distribution Analysis, because
the graphical output is much easier to view and is also easier to customize. SAS Studio uses ODS Graphics,
whereas EG mostly creates traditional SAS/GRAPH plots. However, if EG and SAS Studio are installed on the
same Windows PC, and a suitable web browser is also installed, EG 7.1 can use the tasks from SAS Studio, as
shown in Figure 7-14: the two Distribution Analysis tasks have different icons but can only be distinguished
precisely by hovering the mouse over the link. Note that you can only find both tasks in the Tasks list,
because only the EG tasks are shown in the Tasks menus.

85

CHAPTER 7 © RUNNING SAS PROGRAMS IN SAS STUDIO OR ENTERPRISE GUIDE

(1 A ®

O # G ¥

¥ Filters | O Name ~

[Data Set Attributes

B Delete Data Sets and Formats
[* Discriminant Analysis

lifly Distribution Analysis

[

b, Distribut@ Analysis

€& Donut Chart
B Download Data
|\, Factor Analysis | Open ¥¥

&3 Filter and Sort Distribution analysis provides information about the
; | distribution of numeric variables. A variety of plots such as
£] Generalized Lins histograms, probability plots, and quantile-quantile plots can

" Generalized Lin¢ be used in this analysis.

Distribution Analysis X

] Heckman Selec{ Category: Statistics.
Type: SAS Studio Task
Ll Histogram (9.41] Last used:
Procs: SORT, UNIVARIATE Eimis

Lil yictnnram (0 A

Ready

Figure 7-14. Finding the SAS Studio Distribution Analysis task in EG 7.1

Novice and Intermediate Programmers

Novice and intermediate programmers have limited SAS programming experience but wish to improve
their programming skills. They also need to use SAS software to investigate data, but they do not necessarily
have the SAS skills required to write code to a sufficient standard to do so unaided. Both SAS Studio and EG
include functionality to give them a helping help.

SAS Studio

SAS Studio includes a small but growing list of tasks that can be used to generate SAS code to perform
generic data manipulation and reporting actions. Figure 7-15 shows the data-related tasks available in
SAS Studio. Each one opens a series of menus where you can specify data, report content and, appearance
options.

86

CHAPTER 7 © RUNNING SAS PROGRAMS IN SAS STUDIO OR ENTERPRISE GUIDE

Tasks
f o & B O
I My Tasks

« @8 Data
[& Characterize Data
BB List Data
£1 Rank Data
£ Random Sample
13 Sort Data
I8 Table Attributes
8 Transpose Data

v @8 Graph

b @8 Statistics

Figure 7-15. Data-related tasks in SAS Studio 3.2

Figure 7-16 shows the graph-related tasks available in SAS Studio. ODS Graphics code is generated for
you, based on the choices made in the menus.

LES. S
fm & B O
I My Tasks

> B8 Data

“m8
[l Bar Chart
il Bar-Line Chart
[al Histogram
| Line Chart
& Pie Chart
|42 Scatter Plot
| Series Plot
[1al Simple HBar

> @8 Statistics

Figure 7-16. Graph-related tasks in SAS Studio 3.2

Figure 7-17 shows the statistics-related tasks available in SAS Studio.

87

CHAPTER 7 © RUNNING SAS PROGRAMS IN SAS STUDIO OR ENTERPRISE GUIDE

Tasks

f o B B O
I My Tasks

> @8 Data

> I8 Graph

4 M8 [Statistics
X Summary Statistics
|Lh.. Distribution Analysis
One-Way Frequencies
| Correlations
Table Analysis
|ﬂ One-sample t Test
|H Paired-sample t Test
[H Two-sample t Test
fx One-Way ANOVA
M Nonparametric One-Way ANOVA
|# Linear Regression

Figure 7-17. Statistics-related tasks in SAS Studio 3.2

As anovice or intermediate programmer, you may be interested in learning more about how these tasks
work. Looking at the code generated by SAS Studio in the Distribution Analysis example discussed earlier
may be helpful; see Figure 7-18.

CODE |LOG |RESULTS

(o B B o lnes ® i W edi
14

15/ods noproctitle;

16iods select where=(lowcase(_path_) ? 'plot' or lowcase(_path) ? 'gram');
17
18 proc univariate data=SASHELP.BASEBALL noprint;

i class Team;

20 histogram nRuns / normal kernel;
21 inset n / position=ne;

22 run;

Figure 7-18. SAS code generated by the Distribution Analysis task in SAS Studio

88

CHAPTER 7 © RUNNING SAS PROGRAMS IN SAS STUDIO OR ENTERPRISE GUIDE

The code in Figure 7-18 is part of the generated code from a SAS Studio task. If you wish to type in
some SAS code, opening a new program opens a Code tab where you can paste text that you have copied
from this generated code and amend it at will. As you type code in the Code tab, useful hints and tips pop
up, providing information about SAS syntax, as shown in Figure 7-19; this is another way to learn about SAS

programming.

44 *Program 1 *

CODE LOG RESULTS

s & B B & o
lproc report data

Procedure Options
& DATA=

= © % i A=

i

Keyword: DATA=
Context: [PROC REPORT] DATA= option

[Syntax: DATA=SAS-data-set]

Specifies the input data set.

Search: Product Documentation Samples and SAS Notes Papers

Figure 7-19. SAS syntax hints and help in SAS Studio

Enterprise Guide

EG includes a large and growing list of tasks you can use to generate SAS code to perform generic data-
manipulation and reporting actions. As a novice or intermediate programmer, you may be interested in
learning more about how these tasks work. Looking at the code generated by EG in the Distribution Analysis
example discussed earlier may be helpful; see Figure 7-20.

89

CHAPTER 7 © RUNNING SAS PROGRAMS IN SAS STUDIO OR ENTERPRISE GUIDE

Sort data set SASHELP.BASEBALL

-/ PROC SORT
DATA=SASHELF.BASEBALL (REEP=nRuns Team)
OUT=WORF.. SORTTempTableSorted

BY Team;

RUN;

TITLE;

TITLEl "Distribution analysis of: nRuns";

FOOTNOTE;

FOOTNOTE1l "Generated by the SAS System (& SASSERVERNAME, &SYSSCPL) on STRIM(%QSYSFUNC (DATE(), NLDA
ODS EXCLUDE EXTREMECBS MODES MOMENTS QUANTILES;

GOPTIONS htext=l1 cells;
SYMBOL v=SQUARE c=BLUE h=1 cells;
PATTERN v=8SCLID

FPROC UNIVARIATE DATA = WORK.SORTTempTableSorted
CIBASIC(TYPE=TWOSIDED ALPHA=0.05)
MUO0=0

BY Team;
VAR nRuns;
HISTOGRAM / CFRAME=GRAY CAXES=BLACK WAXIS=1 CBARLINE=BLACK CFILL=BLUE FFILL=SOLID ;

End of task code

RUN; QUIT;

Figure 7-20. SAS code generated by the Distribution Analysis task in EG 7.1

The code in Figure 7-20 is part of the generated code from an EG task. If you wish to type in some SAS
code, opening a new program opens a Code window where you can paste text that you have copied from
this generated code and amend it at will. As you type code in the Code tab, useful hints and tips pop up,
providing information about possible SAS keywords; see Figure 7-21.

(&) Program”
B Save » I Run ~ [Stop | Selected Server: Local (Connected) » % | Analyze Program ~ | Export » Send To ~ Create -

liZproc report data

(r' DATA= =
' EXCLNPWGT

‘A EXCLNPWGTS £
(" FORMCHAR=

‘' HEADLINE

i HEADSKIP

P HELP=

@ LIST

P LS= -

Figure 7-21. SAS keyword assistance in EG 7.1

90

CHAPTER 7 © RUNNING SAS PROGRAMS IN SAS STUDIO OR ENTERPRISE GUIDE

Hovering the mouse over a blue keyword displays more detailed syntax help and links, as shown in
Figure 7-22. This is another way to learn about SAS programming.

[&] Program” |
& Save + I Run ~ 11 Stop | Selected Server: Local (Connected) = % | Analyze Program ~ | Export + Send To = Create -
Sproc report datal
Keyword: REPORT
Context: [PROCEDURE DEFINITION] PROC REPORT

=

Syrtax: PROC REPORT <option(s)>:
BREAK location break-variable </ option(s)>;
BY <DESCENDING> variable-1 <...<DESCENDING> varnable-n> <NOTSORTED>;
COLUMN column-specfication(s);
COMPUTE location <target> </ STYLE=<style-element-name> <[style-attibute-specfication(s)]>>;
LINE specification(s);
... select SAS language elements ...
ENDCOMP;
COMPUTE report-tem </ type-specification>;
CALL DEFINE {column-d, ‘attibute-name’, value);
... select SAS language elements ...
ENDCOMP;
DEFINE report-tem / <usage> <attribute(s)> <option(s)>
qustification> <COLOR=color> <'column-header-1" <...'column-headern’>> <style>;
FREQ variable;
RBREAK location </ option(s)>:
WEIGHT variable;

The REPORT procedure combines features of the PRINT, MEANS, and TABULATE procedures with
features of the DATA step in a single report-writing tool that can produce a variety of
reports. You can use PROC REPORT in three ways:

o in a nonwindowing environment. In this case, you submit a series of statements with the
PROC REPORT statement, just as you do in other SAS procedures. You can submit these statements
from the Program Editor with the NOWINDOWS option in the PROC REPORT statement, or you can
run SAS in batch, noninteractive, or interactive line mode.

o in an interactive report window environment with a prompting facility that guides you
as you build a report.

o in an interactive report window environment without the prompting facility.

Search: The Product Documentation, Samples & SAS Notes, Papers

0

Figure 7-22. SAS syntax hints and help in EG 7.1

Power Users

If you are a power user, then reading to this part of the chapter has probably been an achievement in itself.
Traditionally, power users have programmed everything from scratch, or, at least, started from an existing
SAS program and amended it to suit their current requirements. That said, both SAS Studio and EG have
features that may be of great use to power users.

Display Manager System (DMS)

Most power users are familiar with the DMS programming environment. The Enhanced Editor, Log, and
Output windows are viewed as the natural way to program in SAS.

91

CHAPTER 7 © RUNNING SAS PROGRAMS IN SAS STUDIO OR ENTERPRISE GUIDE

Enterprise Guide

Have you ever needed to run a collection of SAS programs in a particular order, but forgotten what that order
is? EG has a solution to that problem. Any icon on the process flow in an EG project can be connected with
an arrow to another icon, and the processes associated with each icon will be run according to the direction
of that arrow. There is even an icon you can add that allows conditional execution, based on macro variable
values or the existence of SAS data sets. Figure 7-23 demonstrates a very simple flowchart; branching
networks are possible, as is starting execution from any icon.

testing -

P Run ~ @ Stop | Export » Schedule ~ | Zoom ~ | [Project Log | [iF] Properties ~

)-[#) barchart templates : e =
| = Linktotest code [?1—-—*

barchart |\, CLASS_AGE

templates ‘-.‘\

&GS
€ Refresh | Disconnect [Stop
= Servers
| @[] EeePC301 SAS Application Server
- 2 Local
. B-fz) Libraries
-5 MAPSGFK
@-{i) MAPSSAS -
@-(5) SASHELP : " ¢
P @ SASUSER
.| @) WORK
] E (1 Fies Task Stetus Queve Server
| @[SASMeta ;
EI[E OLAP Servers test code Running DATA step... Local
-y Private OLAP Servers

% (Details) Running: test code - Running DATA step... | % Connection: SAS Trusted User, stylenote2 | :

Figure 7-23. Connected program nodes in EG 7.1

Many other features of EG can be helpful to power users:

e Matching brackets can be highlighted, as shown in Figure 7-24. You can easily indent
selected code by pressing Ctrl+]; pressing Ctrl+Z restores the previous layout if you don’t
like the changes. Examples of unformatted and indented code are shown in Figures 7-25
and 7-26, respectively. You can also customize how and when the indenting is done.
Alog summary displays a list of ERROR, WARNING, and NOTE messages from the log.

92

CHAPTER 7 © RUNNING SAS PROGRAMS IN SAS STUDIO OR ENTERPRISE GUIDE

3‘] Program®
& Save ~ b Run ~ 11 Stop | Selected Server: Local ~ Y& | Analyze Program ~ | Export ~ Send To v Create ~ | Chams

1li-IDATA test;

| SET sashelp.ycolumn
' (WHERE =[(URCASE (libname) = 'SASHELE'
AND UPCASE (memname) = 'CLASS'

=] @ o W b

|

1

l AND UPCASE (name)

| IN ('NAME' 'SEX' 'AGE' 'HEIGHT' 'WEIGHT';
|

| RUN;

Figure 7-24. Highlighting matching brackets in EG 7.1

_|£J Program‘}
[Save ~ I Run - [1 Stop | Selected Server: Local ~ ¥ | Analyze Program ~ | Export ~ Send To ~ Create - |
1iCDATA test;
2 SET sashelp.vcolumn (WHERE = (UPCASE(libname) = 'SASHELP'
3 AND UPCASE (memname) = 'CLASS'
4 AND UPCASE (name) IN ('NAME' 'SEX' 'AGE' 'HEIGHT' 'WEIGHT'))):;
5i | RUN;

Figure 7-25. SAS code before formatting by EG 7.1

g Program™
[Save = b Run ~ 11 Stop | Selected Server: Local ~ % | Analyze Program ~ | Export ~ Send To » Create - | Changes

DATA test;
SET sashelp.vcolumn (WHERE = (UPCASE(libname) = 'SASHELP'
AND UPCASE (memname) = 'CLASS'
AND UPCASE (name) IN ('NAME' 'SEX' 'AGE' 'HEIGHT' 'WEIGHET'))):

Figure 7-26. SAS code after formatting by EG 7.1. You can also customize how and when the indenting is done

e Thelogand output are automatically retained as long as you save the EG project file.

e The program icons in the Project Tree and Process Flow views change to indicate any
ERROR or WARNING messages.

e You can save links to external files on the process flow, such as PDF, DOC(X) and RTF
files. Using this feature, EG project files can be project desktops, with links to all the
relevant files.

93

CHAPTER 7 © RUNNING SAS PROGRAMS IN SAS STUDIO OR ENTERPRISE GUIDE

SAS Studio

SAS Studio introduced the concept of snippets to the SAS programming environment. Basically, a snippet
is a small sample of SAS code that can be pasted directly into an existing program. The snippet shown in
Figure 7-27 provides some template code to import an XLS file.

SASOStLIdiO Sign Out .‘E ®
Search [43 *Program 1 =
Folders copE |Loc |REsuLTS|
L B4 ©- @R B/I& W & # &% [Lner © % ki m
Snippets ||
= = e
o« B O 3j/** Import an XLS file -y
2 L . 5
b [My Snippets 3 "IYour XLS File>"
4 B8 Data 4 UT=WORK.MYEXCEL
[Import CSV File S DBMS=XLS
; 5 REPLACE ;
[} Import XLS File B
[5s DS2 Package g
[DS2 Code 13./ * print the results /
[} DS2 Thread 11PROC PRINT DATA=WORK.MYEXCEL; RUN;

[Generate CSV File
[Generate PowerPoint Slide
[Generate XML File
[5 Simulate Linear Regression Dat:
[E5 Simulate One-Way ANOVA Dat
b @8 Descriptive
> B8 Graph
> B8 IML

b I8 Macro =

Libraries
File Shortcuts

Figure 7-27. A data-related snippet to import an XLS file in SAS Studio 3.2

Snippets are provided for a wide range of coding situations. The snippet in Figure 7-28 provides some
template code to create a horizontal bar chart using ODS Graphics.

94

CHAPTER 7 © RUNNING SAS PROGRAMS IN SAS STUDIO OR ENTERPRISE GUIDE

SAS® Studio
ISear;h [# *Program 1 *
Folders copE |Loc |ResuLTs|
L 4 - BRIBI&® & * & | Y% [[Lne? ® % i W
Snippets = =2
It i B« BO i/ =7
4 18 Code Snippets = g
* [My Snippets 4 "ODSEditorFiles","/folders/myfolders/");
b @8 Data 5
S 6|
b 8 Descriptive
K p dlods listing gpath="/folders/myfolders/CODSEditorFiles
4 8 Graph 8
[5: Bar Panel gititle 'Mileage by Type':

[E: Box Panel 10proc sgplot data=sashelp.cars ;
31| hbar type / respo

=mpg city stat=mean limits=both:
[E: Comparative Scatter Plot 12| yaxis display= bal) ;E‘:id;
[5: Dot Plot i 113 =xaxis display=(nolabel);
" " 14| run;
=3 Fit Plot
E! 15

[E HBar Plot
[E: HighLow Plot
[E: Histogram Plot
[E} Scatter Plot Matrix
[E VBox Plot
b A8 ML

Libraries
File Shortcuts

Figure 7-28. Horizontal bar chart template code from the graph-related snippets in SAS Studio 3.2

You may not need to be told how to import XLS files or draw horizontal bar charts in ODS Graphics, but
you can also save your own snippets in My Snippets. That way, you can save SAS code that you use regularly
and that is time-consuming to type, and reuse it easily in future programs.

A number of features in SAS Studio can assist power users, including formatting code.

For example, the code in Figure 7-29 becomes the code in Figure 7-30 after code formatting. However,

EG is much more aware of SAS syntax, which makes its indenting of code much better than that currently in
SAS Studio.

[£d *Program1 *

CODE [LoG |Results |

B £ ¢ HE BE & D& i Y%L ®
1DATA test; = —
2)SET sashelp.vcolumn (WHERE=(UPCASE (libname)='SASHELP' omatCode

3AND UPCASE (memname)='CLASS'

4AND UPCASE (name) IN ('N ' 'SEX' 'AGE' 'HEIGHT' 'WEIGHT'))):
SRUN;
|

Figure 7-29. SAS code before formatting by SAS Studio 3.2

95

CHAPTER 7 © RUNNING SAS PROGRAMS IN SAS STUDIO OR ENTERPRISE GUIDE

[*Program 1 *

CODE [LOG |RESULTS |

B £ ¢ BRIE E D& ¥ K| %% |Lne# ® % ki @ E
1DATA test;

2! SET sashelp.vcolumn (WHERE=(UPCASE (libname)='SASHELP' AND

3[UPCASE (memname) ='CLASS' AND UPCASE (name) IN ('NAME' 'SEX' 'AGE'
4'1 'HEIGHT' 'WEIGHT'))):

SFRUN;

|

Figure 7-30. SAS code after formatting by SAS Studio 3.2

Finally, SAS Studio 3.3, which was included with later releases of SAS 9.4M2, includes a new Visual
Programmer view in the form of a process flow area. The previous standard view was renamed SAS
Programmer view. The Visual Programmer view is very similar to the Process Flow window in EG, as shown
in Figure 7-31.

£ | T2 visual Programmer

T Process Flow 1.cpf X

prun | H B 52
FLOW RESULTS PROPERTIES

+- = m | e - B W& | SelectAll | ShowDetails ShowPorts | &*
E‘.‘ Program ;i Sort Data E Bubble Plot
Bi The SortDatatask R H: | Bubble plots show
@ enables youto @ the relationships @

Figure 7-31. Visual Programmer view in SAS Studio 3.3

The Visual Programmer view’s features are like those as in the EG Process Flow view:

e Items can be linked together by dragging from one of the small boxes (ports) on the
side of one item to a small box on another item.

e The colored icon in the lower-right corner of each item shows whether it has been
run and, if so, whether it completed successfully.

e Links to the input data and output results are located below the small boxes on either
side: input data on the left, and output results on the right.

e Clicking each item opens the program or parameter view for that item.

96

CHAPTER 7 © RUNNING SAS PROGRAMS IN SAS STUDIO OR ENTERPRISE GUIDE

Interface and Task Developers

The functionality of both SAS Studio and EG can be extended by writing your own custom tasks.

SAS Studio

SAS Studio tasks are based on XML files, which you can create and update in SAS Studio by clicking the New
Task icon, as shown in Figure 7-32.

SAS® Studio
Search [# *Program1 * [Task 1 *
HEALE AR &0 o % & [0er O M
» 5
— i EIBEG 94 <i--- Define the UI for task options
= S5 <!--- The UI engine will determine the best respresentatio
| New task = o o 5 3
|>'--D“,J 97 <Container option="DATATAB">
> 8 Graph 98 <Group option="DATAGRCUP" open="trus">
9s <Dataltem data="DATASOURCE"/>
> B Statistics 100 </Group>
101 <Group option="ROLESGROUP" open="true">
102 <Roleltem role="VAR"/>
103 <Roleltem role="OPTNVAR"/>
104 <Roleltem role="OFTCVAR"/>
105 </Group>
106 </Container>
107
108 <Container option="CPTICNSTRB">

109 <Group opt ="GRCUPO" cpen="trusa">
110 <CptionItem option="labelEXAMPLE"/>
s lrkal </Group>

312

113 <Group option="GRCUP1">

114 <OptionItem op ="chkCheck"/>

115 <CptionItem option="chkEXAMPLE"/>

116 </Group>

117
Snippets 118 <Group o;.:,tz.or_= GRG-.-F’L >“ .

119 <CptionItem option="labelEXAMPLEZ2"/> Vi
Libraries |] »
File Shortcuts

Figure 7-32. Creating a new task in SAS Studio 3.2

Clicking the Run (running man) icon displays the task template, as shown in Figure 7-33.

97

CHAPTER 7 © RUNNING SAS PROGRAMS IN SAS STUDIO OR ENTERPRISE GUIDE

SAS® Studio
Search [id *Program 1 * | “Task 1 @ |4 Task Template 1 X
Folders
Settings | Code/Results | Split H B | ¥ [Ecode [Ellog
Tasks :
E o DATA OPTIONS | INFORMATION CODE LOG RESULTS
S o 5 BO T . L
4DATA e B & % - @ &
W My Tasks = .
b @8 Data - ﬁ . /E‘dll
> 8 Graph 4ROLES 2l
] et *
v I8 Statistics *Required g : " e
variable label: S
& 8
> e */
7
81/
MNumeric 12 : B
variable label: ause
® 11
g
i 13
14 +
Character 12 .,
\Iejuz.i:ablelabel: 23
i3
b
Snippets
Libraries . .

File Shortcuts

Figure 7-33. Viewing a new task template in SAS Studio 3.2

Enterprise Guide

You can develop custom tasks for EG with Microsoft .NET. You cause Visual Basic .NET, or C# .NET, and
copy tasks into specific folders as *.d11 files. SAS provide a wide range of libraries for use in custom task
development.

Conclusions

This chapter asks which development environment is best for SAS programming. The answer inevitably
depends on what platform you are using, but also on your SAS programming experience.
My recommendations are as follows:

e Academic users should take advantage of SAS Studio, because it is available as a free
SAS programming environment in SAS University Edition.

¢ Novice and intermediate programmers should consider SAS Studio and Enterprise
Guide as equally valid alternatives, provided they are working on Windows PCs.
Otherwise, SAS Studio is the recommended option.

98

CHAPTER 7 © RUNNING SAS PROGRAMS IN SAS STUDIO OR ENTERPRISE GUIDE

e Power users should, in spite of peer pressure and inertia, convert their environment
of choice from DMS to EG. The change will give them access to vastly improved
editing functionality, as well as the ability to create a collection of links to relevant
documents.

e Interface and task developers have to consider whether they want to develop
tasks for SAS Studio or EG, with the knowledge that SAS Studio tasks are also
available to EG 7.1.

References

e Chris Hemedinger, Custom Tasks for SAS Enterprise Guide Using Microsoft .NET
(SAS Press, December 2012).

99

CHAPTER 8

Everyday Uses for SAS Output
Delivery System (ODS)

Interfacing with external programs does not necessarily require a direct connection. Sometimes, being able
to create a file in the correct file format is sufficient. This chapter shows you how to prepare SAS program
output suitable for Microsoft Office, OpenOffice.org/LibreOffice, Adobe Reader, or a web browser just by
changing a few program statements.

The Output Delivery System (ODS) was introduced into SAS software in version 7 and replaced the
various output routines used by SAS procedures, thus simplifying maintenance of the SAS reporting routines
and also providing users with a standardized way to create reports. To illustrate the ODS facilities, this
chapter describes a number of uses for the ODS HTML, ODS PDF, ODS RTF, ODS DOCUMENT, and ODS PACKAGE
statements for reporting.

Disguising a Web Page

To be able to create Word, Excel, and PowerPoint documents from SAS programs, it is necessary to license
SAS/ACCESS for PC Files. Only Base SAS is required to create HTML files (used for web pages), but there are
no restrictions on what file suffix is used. Normally HTML files are saved as *.htm or *.html files, but saving
them as *xIs, *.doc or *.ppt files instead will not affect the file contents. It will, however, disguise the web
pages by changing the way the files are read. Office suites are often very tolerant of the internal formats of
input files and will open web pages in the office application that the file extension suggests should be used
(*.xls files are opened by spreadsheet applications, *.doc files are opened by word-processing applications,
and so on).

Uses

This technique lets you generate formatted Microsoft Office documents directly from SAS code without
having to license the SAS/ACCESS component. Each example uses the same HTML output; but by changing
the file extension, you cause the program associated with that file extension to open and convert the file
appropriately. Note that a warning message may inform the user about this conversion process.

101

CHAPTER 8 ' EVERYDAY USES FOR SAS OUTPUT DELIVERY SYSTEM (0DS)

Code

These examples use the functionality found in office software suites that recognizes associated applications
by file extension and converts the file’s contents appropriately and automatically.

ODS HTML output is read as if it were anTo make Microsoft Excel and OpenOffice.org/LibreOffice Calc
read the ODS HTML output as if it were an Excel spreadsheet, you just change the file extension to “xIs”:

ODS HTML FILE = "report.xls";

To make Microsoft Word and OpenOffice.org/LibreOffice Writer read the same ODS HTML output as if it
were a Word document, change the file extension to “doc”:

ODS HTML FILE = "report.doc";

You can also make Microsoft PowerPoint and OpenOffice.org/LibreOffice Impress read the ODS HTML
output as if it were a PowerPoint presentation by changing the file extension to “ppt”:

ODS HTML FILE = "report.ppt";

Drawbacks

The underlying data is stored in an HTML web page, so data values are displayed according to the default
actions in the program reading the file (for example, numeric values with leading zeroes are reformatted
in Excel and Word; the displayed precision of numeric values may be reduced in Excel; and numeric and
character values in the same column are right- and left-justified, respectively, in Word).

OpenOffice.org and LibreOffice programs can read all versions of HTML. However, because Microsoft
Office programs only display HTML 3 files correctly, and the default HTML produced by SAS 9 is HTML 4,
you need to replace ODS HTML with ODS HTML3 to retain specified fonts and colors.

Creating Reports in Parallel

A very useful feature of ODS destinations is the ability to create many output files simultaneously. The SAS
procedure described in this section internally produces a standard output that you can convert via ODS
destinations to a range of different file formats.

Uses

You can generate multiple reports containing overlapping tables using a single SAS program. It is also
possible to create different reports using the same ODS destination by adding an index to each ODS
statement, where the index can be either a positive integer (as shown in the example code) or a character
string suitable for a SAS name (that is, beginning with a letter or an underscore, followed by letters,
underscores, or numbers).

102

CHAPTER 8 ' EVERYDAY USES FOR SAS OUTPUT DELIVERY SYSTEM (ODS)

Code

You can generate reports containing the same or overlapping parts of an overall report using indexed ODS
statements:

ODS HTML(1) FILE = "reporti.xls";
ODS RTF FILE = "reporti.rtf";

PROC REPORT DATA = summary NOWD;

ODS HTML(2) FILE = "report2.doc";
ODS HTML(3) FILE = "report3.xls";
ODS PDF FILE = "report4.pdf";

PROC REPORT DATA = details NOWD;

ODS PDF CLOSE;
0DS HTML(3) CLOSE;

PROC REPORT DATA = exceptions NOWD;

.......

0DS HTML(2) CLOSE;
0DS RTF CLOSE;
O0DS HTML(1) CLOSE;

The summary, details, and exceptions reports appear in reporti.x1s and reporti.rtf, the details and
exceptions reports appear in report2.doc, and the details report appears in report3.xls and report4.pdf.

Drawbacks

Reports can only contain information from adjacent SAS steps. Trying to append a report to an existing

one by reusing a file name results in the second report overwriting the first. Note that concatenation of

RTE Word, Excel, PowerPoint, and PDF files is not possible without considerable manipulation of the file
contents. You can concatenate HTML files if you include the top and bottom matter in the first and last files,
respectively, but only after the files have been created using ODS HTML.

Saving Reports for Later

Sometimes you must reproduce part of an existing collection of reports. Because of the processing time
required or the need to reproduce reports created from archived data, it may be impractical to rerun the
reports. However, if you save the reports in a SAS item store using ODS DOCUMENT, then it is possible, and
much quicker, to send the original reports directly to the new ODS destination from there.

103

CHAPTER 8 ' EVERYDAY USES FOR SAS OUTPUT DELIVERY SYSTEM (0DS)

Uses

All the reports generated by a program run can be stored, prior to printing, in a single file. You can then
use this file to generate reports selectively to one or more destinations in a user-defined order without the
need to rerun the original data processing. SAS item-store files have the “sas7bitm” extension in Windows
Explorer and UNIX Unix File Manager.

Code

The example code shows how to save reports into a SAS item store using ODS DOCUMENT, how to copy a
SAS item store, and how to output and manipulate reports in a SAS item store using PROC DOCUMENT:
This code saves your reports to a SAS item store:

0DS DOCUMENT NAME = work.doc1;

PROC MEANS DATA = sashelp.class;
CLASS age;
VAR height weight;

RUN;

PROC TABULATE DATA = sashelp.class;
CLASS age;
VAR height weight;
TABLE (age ALL)
, (height*MEAN weight*MEAN);
RUN;

ODS DOCUMENT CLOSE;
And the following code copies the item-store file:

PROC COPY IN = work OUT = sasuser;
SELECT doc1 (MEMTYPE = ITEMSTOR);
RUN;

Now you can produce reports from the item store without having to rerun your report processing:
ODS HTML FILE = "c:\temp\document.htm" STYLE = Default;

PROC DOCUMENT;
DOC;
DOC NAME = work.doc1;
LIST / LEVELS = ALL;
REPLAY;

RUN;

QUIT;

ODS HTML CLOSE;

104

CHAPTER 8 ' EVERYDAY USES FOR SAS OUTPUT DELIVERY SYSTEM (ODS)

You can also remove unwanted reports:

PROC DOCUMENT;
DOC NAME = work.doc1;
DELETE Means#1\Summary#1;

RUN;
QUIT;

Drawbacks

By default, item-store members cannot be seen in the SAS Explorer window. To allow them to be seen in SAS
Explorer from SAS 9.1.3 onward, make the following changes in the Explorer options:

1.

Start SAS Explorer with the EXPLORER command, or select Tools » Options »
Explorer.

Select the Members tab.
Select ITEMSTOR in the Type list.

Click the Unhide button, which changes to Hide. . A Select Icon windows will
appearopens:, select the ITEMSTOR icon in the Files, Folders, and Reports group,
and click the OK button.

Click OK.

Packaging Reports into Zip Files

Introduced in SAS 9.2, the ODS PACKAGE statement lets you use ODS destinations with the SAS Publishing
Framework, which is part of SAS Integration Technologies. This example, however, creates a zip file
containing ODS reports without requiring the SAS Publishing Framework, so you don’t need to license SAS
Integration Technologies.

Uses

Creating reports containing multiple outputs can result in files that are too large to e-mail or that contain
too many individual files to transmit together. Normally, a manual step is required, to copy the individual
outputs into a zip file. The ability to carry out this step in SAS lets you automate and document the process
without manual intervention.

The following code packages HTML and PDF outputs, together with all the files generated and required
by the HTML package_frame.html file. You can also use the PROC DOCUMENT code from the previous
example, instead of the PROC PRING and PROC SGPLOT code, to copy specific stored documents into the

zip file.

105

CHAPTER 8 ' EVERYDAY USES FOR SAS OUTPUT DELIVERY SYSTEM (0DS)

Code

You sort the data first, because the PROC PRING output will be reported in sections by AGE:

PROC SORT DATA = sashelp.class OUT = temp;
BY age;
RUN;

You open ODS PACKAGE using the NOPF option, which tells SAS that the SAS Publishing Framework is not
required:

0ODS PACKAGE OPEN NOPF;

The ODS destinations are opened in the usual way, but adding the PACKAGE option to each ODS
statement tells SAS to include each ODS report in the package file:

ODS HTML PATH = "." (URL = NONE) FILE = "package body.html"
CONTENTS = "package contents.html" FRAME = "package frame.html" PACKAGE;
ODS PDF FILE = "package body.pdf" PACKAGE;

PROC PRINT DATA = temp;
BY age;
RUN;

PROC SGPLOT DATA = temp;
SCATTER X = age Y = height / GROUP = sex NAME = 'scatter';
KEYLEGEND 'scatter';

RUN;

0ODS HTML CLOSE;
0ODS PDF CLOSE;

The ODS PACKAGE PUBLISH statement specifies the package type (ARCHIVE) and the name and path of
the package file. The ODS PACKAGE CLOSE statement uses the CLEAR option to tell SAS to remove all the files
after they have been copied into the package file, so that no temporary files are left behind:

0DS PACKAGE PUBLISH ARCHIVE
PROPERTIES(ARCHIVE NAME = "package html pdf output.zip" ARCHIVE PATH = ".");
O0DS PACKAGE CLOSE CLEAR;

Drawbacks

Currently the ODS EXCEL destination does not include PACKAGE in its statement options in SAS 9.4M2, so
Excel 2010 files cannot yet be included in zip files. Another potential drawback for companies that need
to send password-protected zip files is that, currently, ODS PACKAGE does not include functionality to add
passwords to the zipped items.

106

CHAPTER 8 ' EVERYDAY USES FOR SAS OUTPUT DELIVERY SYSTEM (ODS)

Conclusions

Simplifying the interface to output external files has allowed SAS to quickly expand the number of ODS
destinations available to SAS users, without having to update any of the SAS procedures. The current list of
available ODS destinations built into SAS 9.4M2 is as follows:

CSVALL: Comma-separated values text file

DOCUMENT: ODS document

EPUB, EPUB3: ePub format for e-book readers

EXCEL: Microsoft Excel 2010 format (* xlsx)

HTML, HTML3, HTML4, HTML5, CHTML, PHTML: Web page
LISTING: Plain text file

MARKUP: Markup language tagsets

OUTPUT: SAS data set

PDF: Portable Document Format (Adobe)

POWERPOINT: Microsoft PowerPoint 2010 format (*.pptx)
PRINTER, PCL, PS: Printable output

RTEF: Rich Text Format

107

PART Il

Data Visualization

Overview

My interest in creating graphs with SAS goes back to the early versions of SAS/GRAPH in SAS 82.4,
when I produced plots with mainframe SAS on screen or using pen plotters. In 2006, preproduction
ODS Graphics was introduced in SAS 9.1.3, allowing types of graphs that were previously practical
only in R to be created in SAS. This part of the book explains how to use ODS Graphics to generate
high-quality graphs:

e Chapter 9, “Introduction to Graph Templates and ODS Graphics Procedures,”
introduces graph templates and ODS Graphics procedures, and shows how
to create your own graph templates.

e Chapter 10, “Generating Graph Templates,” walks you through the
functionality of the ODS Graphics Designer. You learn to interactively
create graph templates from two different starting points, after which the
chapter explains how to generate graphs from graph templates using a
DATA _NULL_ step and PROC SGRENDER.

e Chapter 11, “Converting SAS/GRAPH Plots to ODS Graphics,” explains how
to re-create simple SAS/GRAPH plots using ODS Graphics.

e Chapter 12, “Converting SAS/GRAPH Annotate to ODS Graphics,” explains
how to re-create simple SAS/GRAPH plots customized with Annotate using
ODS Graphics.

e Chapter 13, “Customizing Graph Templates,” explains the syntax of graph
templates and how to customize graph templates similar to those generated
in Chapters 9 and 10.

e Chapter 14, “ODS GRAPHICS Statement,” discusses the syntax of the
0DS GRAPHICS statement, as well as the image file formats and SAS code to
create EMF image files available in different versions of SAS.

http://dx.doi.org/10.1007/9781484205693_9
http://dx.doi.org/10.1007/9781484205693_10
http://dx.doi.org/10.1007/9781484205693_11
http://dx.doi.org/10.1007/9781484205693_12
http://dx.doi.org/10.1007/9781484205693_13
http://dx.doi.org/10.1007/9781484205693_9
http://dx.doi.org/10.1007/9781484205693_10
http://dx.doi.org/10.1007/9781484205693_14

CHAPTER 9

Introduction to Graph Templates
and ODS Graphics Procedures W,

You will see a number of new terms mentioned throughout this section of the book. STATGRAPH is the name
of the template definition used for a graph template in PROC TEMPLATE, in the same way STYLE and TABLE are
the definitions used for style and table templates. Graph template Language (GTL) is a subset of the PROC
TEMPLATE statements designed specifically with graphics in mind; it is similar to other template subsets but
has some unique features.

Graph templates are very different than traditional SAS/GRAPH programs, because they need to be
displayed by rendering (that is, creating an image from data) with another SAS program step (for example, a
DATA step or PROC SGRENDER). At this point it is probably best to think of graph templates as similar to macros
with parameters.

You may have used a graph template before now and not realized it, because many SAS/STAT
procedures can generate graphs if you add 0DS GRAPHICS statements around them. PROC REG can generate a
diagnostic panel of graphs, among other output, to display the results of the regression model with very little
additional SAS code, as shown in the following code and in Figure 9-1:

0DS GRAPHICS ON;

PROC REG DATA = sashelp.class;
MODEL height = age;

RUN;

ODS GRAPHICS OFF;

111

CHAPTER 9 " INTRODUCTION TO GRAPH TEMPLATES AND ODS GRAPHICS PROCEDURES

Fit Diagnostics for Height

o o o
| 2 1 2
50 ° o o
° o o
w 25 o £ 1 o £ 1 o
= o 4 o a o
: : - 2 3 ° £ e ¢
2 00 o—g a0 ° 8 5 % 2 8
(v o o (14 o o o o
25 o - ° - °
50-1° o ° 2 [e e ° | o le ° ° :
575 625 67.5 575 625 B7.5 005 010 015 020
Predicted Value Predicted Value Leverage
o o /] [G
50| o 70 - . 03
(=]
25 o
=l &° o 557 °°8 0 02-
3 S £ o8 o r;
5 00 o D 60 - S
E: o e 4 3
251 e 55 e N W T
| o 00
-5‘0 % _o - - - - 50 .- r .o r - - OIO - To r Oo . ?n - T .
-2 -1 0 1 2 S50 55 60 65 7O 0 5 10 15 20
Quantile Predicted Value Observation
40 -) Fit-Mean Residual
n o
30 - °
= 59 am 8 Observations 19
S 90+ am & Parameters 2
a 0 e Error DF 17
o = MSE 9.5071
10 am - R-Square 06584
ol 5 o | AdjR-Square 0.6383
A0 -5 0 5 10 00 04 08B 00 04 08
Residual Proportion Less

Figure 9-1. ODS Graphics output from PROC REG

Note that templates written in SAS 9.1.3 are not compatible with SAS 9.2 and beyond.

Coming Up

The rest of this part of the book takes you on a journey from easy graph-template creation using the ODS

Graphics Designer to advanced techniques for updating generated templates to create flexible and reusable
templates in chapter 13.

112

http://dx.doi.org/10.1007/9781484205693_13

CHAPTER 9 * INTRODUCTION TO GRAPH TEMPLATES AND ODS GRAPHICS PROCEDURES

Over the years, [have standardized the way I write SAS code so that I can tell at a glance whether the
text shows standard SAS text or I have supplied it. The majority of the book’s code samples use the following
conventions. Where the code appears not to follow these conventions, the programs were generated by SAS
software, not me:

e Uppercase text is standard SAS text (for example, ODS GRAPHICS ON).
e Mixed-case text is user-supplied (for example, x = y + z).

e User-supplied parameters in DYNAMIC statements begin with an underscore and are
in lower- or mixed-case text (for example, title1).

On this journey, you are shown some data-preparation considerations, how to render data sets using
graph templates, and how you can use Statistical Graphics (SG) procedures to generate templates.

Because writing graph templates manually is not a task that is recommended unless you have a lot of
experience generating them, you will not see any generated-template programs until the SG procedures are
introduced. The template structure and syntax are not shown until the final advanced user chapter 13.

You will learn how to develop the templates that generate the graphs shown in Figure 9-2 and Figure 9-3.

Car comparison
500 ; - X 604 ; 1
x
o 400 . ' N 501,
2 % L 1% = i
2 300 x L X gf., we i © e I
a x ® 4 kL] 0] i*
w X ob % o e 30
=] X4 % W ? *.
£ 200« .; T = 43
a 204
Mﬂ& TR
100 . R,
T T T T T
8 2 4] 8
Engine Size (L)
500 Hybrid - |
5 400 - Truck D
E
§' 300 - § Wagon - D
— Sports |
g 200 + pors
X Sedan - |
T T T T T T T T T T T T
10 20 30 40 50 60 1] 50 100 150 200 250
MPG (City) Frequency
[Type o SUV + Sedan x Sports a Wagon n Truck T Hybrid |

Figure 9-2. Graph template generated by PROC SGSCATTER, modified to include a horizontal bar chart

113

http://dx.doi.org/10.1007/9781484205693_13

CHAPTER 9 * INTRODUCTION TO GRAPH TEMPLATES AND ODS GRAPHICS PROCEDURES

Standard Error of Sales

1400

1300

1200

Sales (3)

1100

1000

DESK - 181 190 191 180 190 196 188 106 205 198 203 200 202 213 205 215

CHAIR 4 191 193 192 194 185 180 202 188 207 208 206 206 204 198 218 202

Product

BED 4198 185 202 182 202 191 195 187 209 201 214 204 214 210 205 200

T T T T

5 10 15 20
Quarter

|Pr0ducl o BED + CHAIR x DESK

Figure 9-3. Adding a legend that shows the number of data points in each graph point

Introduction to ODS Graphics Procedures

The following sections describe the SAS procedures in ODS Graphics: PROC SGPLOT, PROC SGPANEL, and PROC

SGSCATTER.

PROC SGPLOT

PROC SGPLOT was introduced in SAS 9.2 and effectively replaces PROC GPLOT and PROC GCHART for most of the
standard graphs they produce. PROC SGPLOT also provides facilities to combine plots by overlaying them on

the same axes.

The example shown in Figure 9-4 displays only a subset of the data, with error bars and vertical

reference lines.

114

CHAPTER 9 * INTRODUCTION TO GRAPH TEMPLATES AND ODS GRAPHICS PROCEDURES

1300
1200
g
w
o
[~
7]
1100
1000
T T T T
5 10 18 20
Quarter
[Product CHAIR |

Figure 9-4. A simple plot of connected points, error bars, and reference lines, plotted by PROC SGPLOT

The following code was used to generate the graph. Note that a SAS program containing PROC TEMPLATE
code to re-create the graph is saved to sgplot_template.sas using the TMPLOUT= option:

PROC SGPLOT DATA = plotdata ods
(WHERE = (product = 'CHAIR"))
TMPLOUT = "sgplot_template.sas";
SERIES X = visitnum Y = valuel /
MARKERATTRS = (SIZE = 10PX)
LINEATTRS = (THICKNESS = 3PX)
GROUP = product;

SCATTER X = visitnum Y = valuel /
YERRORUPPER = valuel upper
YERRORLOWER = valuel lower
MARKERATTRS = (SIZE = 10PX)

GROUP = product;
REFLINE 1100 / AXIS = Y LINEATTRS = (PATTERN
REFLINE 1300 / AXIS = Y LINEATTRS = (PATTERN
RUN;

DOT);
DOT);

115

CHAPTER 9 * INTRODUCTION TO GRAPH TEMPLATES AND ODS GRAPHICS PROCEDURES

By comparing the graphs created by PROC GPLOT and PROC SGPLOT, you can see a number of obvious
differences in their default behavior. In particular, the y-axis labels are rotated and the tick marks on both
axes are sensibly spaced in PROC SGPLOT, as they are with the other SG procedures. Both features are
available in PROC GPLOT but require additional parameters to achieve.

The generated graph template created by this PROC SGPLOT example is as follows:

proc template;
define statgraph sgplot;
begingraph;
layout overlay;
SeriesPlot X='visitnum'n Y="valuel'n / Group='PRODUCT'n
Markerattrs=(Size=10px)
Lineattrs=(Thickness=3px)
LegendLabel="Sales ($)"
NAME="series";
ScatterPlot X='visitnum'n Y="valuel'n /
primary=true Group="'PRODUCT'n
Markerattrs=(Size=10px)
YErrorUpper="'valuel upper'n
YErrorLower="valuel lower'n
LegendLabel="Sales ($)"
NAME="SCATTER";
DiscretelLegend "series"/ title="Product";
endlayout;
endgraph;
end;
Tun;

PROC SGPANEL

PROC SGPANEL was introduced in SAS 9.2 and makes the production of multiple graphs in a grid very
straightforward. It includes the majority of the features in PROC SGPLOT but also includes the PANELBY
statement that specifies how the data for each panel is selected. Single or multiple panels can be generated
per page, and multiple graph pages are created if the number of panels exceeds the number available on
each page. Single panels (1 x 1 grids) are functionally similar to using a BY statement with PROC SGPLOT,
except that the panel variable values are presented in a box above each cell.

The example shown in Figure 9-5 displays only the three sub-graphs in the available spaces in
a2 x 2 grid. But it can also be used to create a grid of graphs where the rows are based on one category value
and the columns are based on another category value, allowing direct comparison of four different category
value combinations in a single image.

116

CHAPTER 9 * INTRODUCTION TO GRAPH TEMPLATES AND ODS GRAPHICS PROCEDURES

Product= BED Product= CHAIR

1400

1300

1200

1100 -

1000 -

Product= DESK

Sales ($)

1400

1300

1200

1100 -

1000

T T T T T T T T
5 10 15 20 5 10 15 20

Quarter
[Product BED CHAIR

DESK |

Figure 9-5. The same plot as that generated by PROC SGPLOT, but split by Product and generated by
PROC SGPANEL

The following code was used to generate the graph in Figure 9-5. Note that no SAS program containing
PROC TEMPLATE code to re-create the graph can be generated from PROC SGPANEL in SAS 9.3, because the
TMPLOUT= option is no longer available:

PROC SGPANEL DATA=plotdata ods;

PANELBY product / LAYOUT = PANEL;

SERIES X = visitnum Y = valuel /
MARKERATTRS = (SIZE = 10PX)
LINEATTRS = (THICKNESS = 3PX PATTERN = SOLID)
GROUP = product;

SCATTER X = visitnum Y = valuel /
YERRORUPPER = valuel upper YERRORLOWER = valuel lower
MARKERATTRS = (SIZE = 10PX)

117

CHAPTER 9 * INTRODUCTION TO GRAPH TEMPLATES AND ODS GRAPHICS PROCEDURES

GROUP = product;
REFLINE 1000 / AXIS = Y LINEATTRS = (PATTERN
REFLINE 1200 / AXIS = Y LINEATTRS = (PATTERN
RUN;

DOT);
DOT);

Creating similar graphs using PROC GPLOT would require PROC GREPLAY and careful template design
and sizing.

PROC SGSCATTER

PROC SGSCATTER was introduced in SAS 9.2 and has a number of different plot statements. MATRIX creates an

N x N grid of sub-graphs, where each variable is plotted against each of the other variables, with either variable

labels or graphs of each variable along the diagonal. COMPARE creates a row or column of sub-graphs of different

variables with a common axis. PLOT creates one or more scatter sub-graphs of pairs of specified variables.
The MATRIX statement can include just the variable labels along the diagonal and tick marks on the axes,

as shown in Figure 9-6.

50 55 60 65 70
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
_ o o-16
- + © ® o —15
- +0+ o + ® 0 —~14
Age
- + o+ e + =13
= +0 O+ o + & [-] o _12
_ . o + o 11
o o
704 -
o o
8 ® @
65 o * . L o -
o ¥ o %4
60 . Height . B
o o
° . + %
55— -
504 B
o o
= —140
o o
o o
- ~120
o L] + s 0
- o + ® o o + Weight —100
o + +
I A o
- 60
+ +
I I | I I | I I I I I I I I I I
11 12 13 14 15 16 60 80 100 120 140
Sex oM +F

Figure 9-6. AMATRIX plot generated by PROC SGSCATTER
118

CHAPTER 9 * INTRODUCTION TO GRAPH TEMPLATES AND ODS GRAPHICS PROCEDURES

The following code was used to generate the graph in Figure 9-6. Note that a SAS program containing
PROC TEMPLATE code to re-create the graph is saved to sgscatter_matrix_templateil.sas using the
TMPLOUT= option:

PROC SGSCATTER DATA = sashelp.class
TMPLOUT = "sgscatter_matrix_templateil.sas";
MATRIX age height weight / GROUP = sex;
RUN;

The generated graph template created by this PROC SGSCATTER example is as follows:

proc template;
define statgraph sgscatter;
begingraph / designwidth=640 designheight=640;
layout gridded;
layout lattice;
ScatterPlotMatrix Age Height Weight / NAME="MATRIX" Group=Sex;
endlayout;
Discretelegend "MATRIX" / order=rowmajor title="Sex";
endlayout;
endgraph;
end;
Tun;

The MATRIX statement can also include any combination of histograms, normal-density curves, and

kernel-density estimates of each variable along the diagonal by using the DIAGONAL= option, but this option
removes the tick marks from the axes. The graph in Figure 9-7 shows only the histograms.

119

CHAPTER 9 * INTRODUCTION TO GRAPH TEMPLATES AND ODS GRAPHICS PROCEDURES

Age Height Weight
o o
+ [=] [3 o
40+ o + @ 0O
@
2
< + o+ LI
+0 O+ +] + O o o
| + o + o
o o
] o
] ® o
o + . s o
- ¢ 2
= o + o +
=2
[* +
= o o
o o (= =]
+ + + +
[+] o —
o o
° o |
E [+] L] + L] o
=2 o - o 1o
S + +
g + +
o & e +4§ + o
+ +
+ + | | \ |
Sex oM +F

Figure 9-7. AMATRIX plot with a DIAGONAL histogram generated by PROC SGSCATTER

The following code was used to generate the graph in Figure 9-7, with the PROC TEMPLATE code saved to
sgscatter matrix_template2.sas using the TMPLOUT= option:

PROC SGSCATTER DATA = sashelp.class
TMPLOUT = "sgscatter matrix_template2.sas";
MATRIX age height weight / GROUP = sex DIAGONAL = (HISTOGRAM);
RUN;

The generated graph template is as follows:

proc template;
define statgraph sgscatter;
begingraph / designwidth=640 designheight=640;
layout gridded;
layout lattice;

120

CHAPTER 9 * INTRODUCTION TO GRAPH TEMPLATES AND ODS GRAPHICS PROCEDURES

ScatterPlotMatrix Age Height Weight /

endlayout;

Discretelegend "MATRIX" / order=rowmajor title="Sex";

endlayout;
endgraph;
end;

Tun;

NAME="MATRIX" Group=Sex
diagonal=(histogram);

The graph in Figure 9-8 shows normal-density curves and kernel-density estimates together. It could

include histograms, too.

Age Height Weight
+ [=] [3
40+ + @ 0O
@
2
< + o+ L] +
+0 O+ +] o o
+ o =}
o
] o
L]
+ +
o + +
- ¢ 2
= o o +
=2
> + +
= o o
o o (= =]
+ + +
+
[+]
o
o o
- [+] + L]
= . s
= o " o .
g + +
o & e +4§ + o
+ +
+ +
Sex oM +F

Figure 9-8. AMATRIX plot with DIAGONAL kernel and normal plots generated by PROC SGSCATTER

121

CHAPTER 9 * INTRODUCTION TO GRAPH TEMPLATES AND ODS GRAPHICS PROCEDURES

The following code was used to generate the graph in Figure 9-8, with the PROC TEMPLATE code saved to
sgscatter matrix_template3.sas using the TMPLOUT= option:

PROC SGSCATTER DATA = sashelp.class
TMPLOUT = "sgscatter matrix_template3.sas";
MATRIX age height weight / GROUP = sex DIAGONAL = (KERNEL NORMAL);
RUN;

The generated graph template is given next:

proc template;
define statgraph sgscatter;
begingraph / designwidth=640 designheight=640;
layout gridded;
layout lattice;

ScatterPlotMatrix Age Height Weight /
NAME="MATRIX" Group=Sex
diagonal=(normal kernel);

endlayout;
DiscreteLegend "MATRIX" / order=rowmajor title="Sex";
endlayout;
endgraph;
end;
Tun;

As with PROC SGPANEL, creating graphs similar to those generated by PROC SGSCATTER but using PROC
GPLOT instead would require PROC GREPLAY and careful template design and sizing.

The example shown in Figure 9-9 uses the COMPARE statement to plot a comparison of height and weight
by age. The different values where sex="M" and sex="F" are shown using a Loess curve.

122

CHAPTER 9 * INTRODUCTION TO GRAPH TEMPLATES AND ODS GRAPHICS PROCEDURES

Height

50

140

120

100 4

Weight

80

60

Age
Sex +F OM

Figure 9-9. A COMPARE plot generated by PROC SGSCATTER

The following code was used to generate the graph:

PROC SGSCATTER DATA = sashelp.class
TMPLOUT = "sgscatter_template.sas";
COMPARE Y = (height weight) X = age /
GROUP = sex
MARKERATTRS = (SIZE = 10)
LOESS = (ALPHA=0.05)
GRID;
RUN;

123

CHAPTER 9 * INTRODUCTION TO GRAPH TEMPLATES AND ODS GRAPHICS PROCEDURES

The generated graph template created by the preceding PROC SGSCATTER example is as follows:

proc template;
define statgraph sgscatter;
begingraph / designwidth=480 designheight=640;
DiscreteAttrVar attrvar=_ATTRVARL _
var=Sex attrmap="__ ATTRMAP_";
DiscreteAttrVar attrvar=_ ATTRVAR1 _
var=eval(sort(Sex, RETAIN=ALL)) attrmap="__ ATTRMAP_";
DiscreteAttrMap name="__ ATTRMAP__" / autocycleattrs=1;
Value "M";
Value "F";
EndDiscreteAttrMap;
layout gridded;
layout lattice / columnDataRange=union;
ColumnAxes;
ColumnAxis / griddisplay=on;
EndColumnAxes;
layout overlay /
xaxisopts=(griddisplay=on) yaxisopts=(griddisplay=on);
ScatterPlot X=Age Y=Height /
primary=true Group=_ ATTRVAR1__
Markerattrs=(Size=10) NAME="COMPARE";
LoessPlot X=Age Y=Height / Group=_ ATTRVAR1__ Alpha=0.05;
endlayout;
layout overlay /
xaxisopts=(griddisplay=on) yaxisopts=(griddisplay=on);
ScatterPlot X=Age Y=Weight /
primary=true Group=__ ATTRVAR1 _
Markerattrs=(Size=10);
LoessPlot X=Age Y=Weight / Group=_ ATTRVAR1__ Alpha=0.05;
endlayout;
endlayout;
DiscreteLegend "COMPARE" / order=rowmajor title="Sex";
endlayout;
endgraph;
end;
run;

Finally, the PLOT statement generates a grid of specified graphs, all with the same options—in this case,
each with a Loess curve—as shown in Figure 9-10.

124

CHAPTER 9 * INTRODUCTION TO GRAPH TEMPLATES AND ODS GRAPHICS PROCEDURES

Height
Weight

Height

60 80 100 120 140
Weight

Sex +F oM

Figure 9-10. A PLOT plot generated by PROC SGSCATTER

The following code was used to generate this graph, with the PROC TEMPLATE code saved to
sgscatter_plot_template.sas using the TMPLOUT= option:

PROC SGSCATTER DATA = sashelp.class
TMPLOUT = "sgscatter plot template.sas";
PLOT (height weight)*age height*weight /
GROUP = sex LOESS = (ALPHA=0.05);
RUN;

The generated graph template is given next:

proc template;
define statgraph sgscatter;
begingraph / designwidth=640 designheight=640;
DiscreteAttrVar attrvar=_ATTRVARL _
var=Sex attrmap="__ ATTRMAP_";

125

CHAPTER 9 " INTRODUCTION TO GRAPH TEMPLATES AND ODS GRAPHICS PROCEDURES

DiscreteAttrVar attrvar=_ ATTRVAR1 _
var=eval(sort(Sex, RETAIN=ALL)) attrmap="__ ATTRMAP_";
DiscreteAttrMap name="__ ATTRMAP__ " / autocycleattrs=1;
Value "M";
Value "F";
EndDiscreteAttrMap;
layout gridded;
layout lattice / rowgutter=10 columngutter=10 columns=2;
layout overlay;
ScatterPlot X=Age Y=Height /
primary=true Group=_ ATTRVAR1__ NAME="PLOT";
LoessPlot X=Age Y=Height / Group=_ ATTRVAR1__ Alpha=0.05;
endlayout;
layout overlay;
ScatterPlot X=Age Y=Weight / primary=true Group=_ ATTRVAR1_ ;
LoessPlot X=Age Y=Weight / Group=_ ATTRVAR1__ Alpha=0.05;
endlayout;
layout overlay;
ScatterPlot X=Weight Y=Height /
primary=true Group=__ ATTRVAR1 ;
LoessPlot X=Weight Y=Height / Group=__ ATTRVAR1__ Alpha=0.05;
endlayout;
endlayout;
Discretelegend "PLOT" / order=rowmajor title="Sex";
endlayout;
endgraph;
end;
run;

Conclusions

At this point, I hope you can appreciate that writing graph templates from scratch is definitely not an easy
task. The wide range of syntax and the varied options available to the programmer make the task daunting
for any beginner. It is, therefore, comforting that you can use the SGPLOT and SGSCATTER procedures to
generate graph templates with much less effort and with relatively simple syntax. More methods for
generating graph templates are discussed later in this part of the book, along with simple techniques to
modify them so that they can be used to create a much wider range of plots.

126

CHAPTER 10

Generating Graph Templates

The previous chapter showed how to generate graph templates while running PROC SGPLOT and
PROC SGSCATTER code. These procedures can generate graph templates on all platforms that support them
(for example, Windows, Unix, Linux, and z/0OS). However, these procedures are not interactive and do not
allow you to see the template output directly. If you have access to an interactive SAS environment, the
ODS Graphics Designer provides an interactive environment in which you can develop a graph template
incrementally and see the current status of the template throughout its development.

At the end of this chapter, you see various techniques that use graph templates to render data to create
graphs, and you are briefly introduced to how to prepare data for use with graph templates.

ODS Graphics Designer

The ODS Graphics Designer provides a drag-and-drop interface that lets you design a graph template while
viewing the resulting graph during the development phase.

How to Start the ODS Graphics Designer

You can start the ODS Graphics Designer from within SAS 9.2 and subsequent versions with a macro call:
%SGDESIGN

It can also be started from a drop-down menu option in SAS 9.3 (see Figure 10-1), which generates this
macro call.

127

CHAPTER 10 " GENERATING GRAPH TEMPLATES

File Edit View [Tools| Solutions Window Help
i Q@ Query
TS Table Editor
Contents of ‘SAS Em %4 Graphics Editor
= ODS Graphics Designer
=l Eeport Editor
Libraries File ™% Image Editor
[Text Editor

@ New Library

Favorite ¢, NewEile Shortcut

Folders

Customize...
Options »

I

Figure 10-1. Drop-down menu

This option starts a Java application you can use to build graph templates and then send them back to
SAS for execution. The screen shots in this section were taken in the SAS 9.3 version of the ODS Graphics
Designer; differences between SAS 9.2 and 9.3 are noted when necessary. The screen shown in Figure 10-2 is
displayed while the application is being loaded.

Gsas

SAS® ODS Graphics
Designer

Figure 10-2. Splash screen for the SAS ODS Graphics Designer

128

CHAPTER 10 GENERATING GRAPH TEMPLATES

Note that the ODS Graphics Designer runs on all SAS versions from SAS 9.2 M3 on Windows, Unix, and
Linux platforms, but it also requires access to a correctly configured Java installation and an interactive SAS
session on the same platform. An Enterprise Guide (EG) add-in for ODS Graphics Designer is available,
but it has same prerequisites as EG on Windows.

The initial screen layout, shown in Figure 10-3, includes Elements and Graph Gallery sections.

The ODS Graphics Designer is not part of the SAS System, but an external program using the SAS
software environment, so the SAS data sets used to create templates must be stored as permanent SAS

data sets in accessible libraries. The SAS System starts with the following permanent libraries allocated by
default: SASHELP, SASUSER, and MAPS.

File Edt View Insert Format Took Help
aSEHEAR/oon EES o

% Bements [| [Gepncuiey =
l_“‘*“"‘" ‘l 8o Grouped | Anstytica | Custom | Matrix [Paneis
¥ s lut A
QP e W
Scalter Series. tieede a®
o aa
i r 8 Ry
b A — | 6' L34
Sten Hstogras HastogramH)
o
i .-; b Scatter Piat Series Plot Step Plot
’ N’ lll -
Box Bar o
- - — =T
B i B él @
Barl) BaEmar BaErract) e
ey P
| .m_: T e Histogram Wertcal Box Horigontal Box
(1T T A J >
L . R
Froge Nomal Hormal(H)
| tnsets Vertical Bar Harizontal Bar Contour Flat
-— TT : (premaremg | o e (m
|Gl Gy 8| (o) e S
| Dscetelegend CelHeader i
=

Figure 10-3. Initial screen layout

The following code allocates a permanent SAS library called TEST and a new SAS data set called
test. cars for use with %sgdesign, prior to calling the macro:

LIBNAME test "C:\saslibrary\";

DATA test.cars;
SET sashelp.ashelp cars;
percent_saving = 100 * (msrp - invoice) / msrp;
highway increase = mpg_highway - mpg_city;
cylinder_size = enginesize / cylinders;

RUN;

%SGDESIGN

129

CHAPTER 10 " GENERATING GRAPH TEMPLATES

Using the Gallery to Create Simple Templates

The Gallery, shown in Figure 10-4, provides a collection of typical graphical reports that can be used as

starting points for more complex reports. They can also be used with minimal customization to generate
simple templates.

3 Graph Gallery = [
[Basic | Grouped [Analytical | Custom | Matrix | Panels|
o]
o o
o o o
o W4
@ oo °
o
Scatter Plot Series Plot Step Plot
Histogram Vertical Box Horizontal Box

Vertical Bar Horizontal Bar Contour Plot

Organize - erties E} Close

Figure 10-4. The Gallery with Vertical Bar selected

After you select a Gallery entry, you are asked for details of the data to be plotted, as shown in Figure 10-5.
Note that in SAS 9.2, there is no Group Display option.

130

CHAPTER 10 GENERATING GRAPH TEMPLATES

Dataset: |[asss v

Panel Variables | Plot Variabies |

plot:| [l bar |

Variables

Statistic: Frequency =

Group Display: | Stack =

Name: bar

Axis x o [x =
Advanced Options

Figure 10-5. Details of the data to be plotted

You can also select the style and graph layout from a menu by right-clicking the graph (see Figure 10-6).

oo ==

Type in your title...

o

R

Assign Data...

Plot Properties...
Axis Properties... ~
34 — Cell Contents...

Add an Element...

requency

24 Add a Row
Add a Column

Remove Row

Remove Column

Move Row r

Move Column »

Graph Prop

Type in your footnote. ..

Figure 10-6. Selecting the style and graph layout from the right-click menu 131

CHAPTER 10 " GENERATING GRAPH TEMPLATES

You can use the Graph Properties option in Figure 10-6 to change the style, as shown in Figure 10-7.

=)
B

Listing
P4

i O+XADOXO
e 3

5

=3

e

L1

| -

; 11

Type in your footnote...

ShSWeb
O+XAOXS

iy

=

Figure 10-7. Graph Properties option

It is also possible to change the background and image size, as shown in Figure 10-8. Note that in
SAS 9.2, you can't specify the template name—it is fixed as sgdesign.

132

CHAPTER 10 GENERATING GRAPH TEMPLATES

[¥] Outline

Size (in pixels)
Width: [64

[] Common

[] Commo

Figure 10-8. Changing the background color

The Plot Properties option in Figure 10-6, which is also the Plots tab on the Cell Properties window,
provides a dialog in which you can change the styles used for text and other graph features, as shown in
Figure 10-9.

133

CHAPTER 10 " GENERATING GRAPH TEMPLATES

Figure 10-9. Plot Properties option

The Axis Properties option in Figure 10-6, which is also the Axes tab on the Cell Properties window,
opens the Axes tab in the dialog opened by the Plot Properties option. You can use the Display tab to update
the way each axis is displayed, as shown in Figure 10-10.

134

CHAPTER 10 GENERATING GRAPH TEMPLATES

General |Pl0ts Axes

Aodis: | | X = |

Display | Label | value [= [Advanced|
[7] Label Fvave [eid [Tk
Label: Me

Figure 10-10. Axis Properties dialog

The Label tab lets you update the label style for each axis, as shown in Figure 10-11.

Cell Properties [
General | Plots | Axes
Axisi | e X v
[Display | Label | value [¢ | Advanced|
Style Element: GraphLabelText -
cor: Ao G - |
Font Famly: | Auto: Aria -
FontSze: | Auto: 10 -
FontStyle: | Auto: Regular -
Data Range: :Data v

Figure 10-11. The Label tab
135

CHAPTER 10 " GENERATING GRAPH TEMPLATES

You can use the Value tab to update the value style for each axis, as shown in Figure 10-12.

Style Element: I&ach\f&.ne'rext

Color: Auto I
Font Family: IAuho:Arid

Font Size: Auto: 9

FontStyle: | Auto: Regular

Figure 10-12. The Value tab

The Advanced tab gives you options for updating the way the values on the axis are arranged. These
options may be grayed out, depending on the type of graph displayed. In Figure 10-13, the only option
available is to reverse the order of the tick marks on the x-axis, because the axis range itself has been
automated.

136

CHAPTER 10 GENERATING GRAPH TEMPLATES

Custom Axis Range
Min: |Auto | Manx: | Auto
Tick Sequence
Start: [Auto End: [Auto Inc: [Auto
[F] Reverse

Figure 10-13. The Advanced tab

The Cell Contents option in Figure 10-6, which is also the General tab on the Cell Properties window,
lets you update the general appearance of the graph, as shown in Figure 10-14.

137

CHAPTER 10 " GENERATING GRAPH TEMPLATES

Figure 10-14. Cell Contents dialog

You can update the graph’s titles and footnotes by double-clicking the existing text and overwriting it, as
shown in Figure 10-15.

138

CHAPTER 10 GENERATING GRAPH TEMPLATES

—
') Graph i-:.-ﬁ
E" fertical bar title “:
§ —_— L
4
. 34
2
@
=
=4
'S
2_
1 -
0 T T T T T T
11 12 13 14 15 16
Age
Vertical bar footnote

Figure 10-15. Title and footnotes

To view the graph and the code together (if the Code window is not already visible), choose View » Code
in the ODS Graphics Designer window, as shown in Figure 10-16. The template code for this graph is
displayed as Template A in Graph Template Contents in Chapter 13.

File Edit [View] Insert Format Tools Help

[@' Eleme

Plot Layt_wk

‘?—_’j d Graph Gallery b o

&2 Elements [E
¥ Code

Step

. /.,/
&J 'k._‘—_.w e u“l_a
Series Needle

Scatter

Lo iy (B

Histogram Histogram(H) |_

Figure 10-16. View » Code menu option

HES =

¢ Code- Graph

proc template;
define statgraph

139

CHAPTER 10 " GENERATING GRAPH TEMPLATES

You also have an opportunity to split the graph into a paneled layout by using the Assign Data option in
Figure 10-6 and specifying Panel Variables, as shown in Figure 10-17.

Data Set:

Hlass 5

Variables

@-@mﬁmtﬁm ';.antapanel
Column: A sex v
Row: | <Optional> =
Number of Cells: 2

Figure 10-17. Assign Data dialog

Figure 10-18 shows what you see instead of Figure 10-17 in SAS 9.2, including a Customize Panel Layout
option that is no longer available in SAS 9.3. You split the graph into a paneled layout by using the Assign
Data option and specifying the Panel Variables.

140

CHAPTER 10 GENERATING GRAPH TEMPLATES

Assign Data - Bar
Library: .SP-SHELP -
Dataset: | [T} cLAsS v

Panel Variables | Plot Variables |

Variables

- E Data Lattice ® @ Data Panel
Column A SEX N v
Row: :<opt'mna|> |

Mumber of Cells: 2

[] Customize Panel Layout

Rows: |From Yariable |

variable

Columns: | From Va

Figure 10-18. Splitting a Graph into a paneled layout (showing the SAS 9.2 version with the Customize Panel
Layout check box)

The resulting graph shows the data split between Sex=M and E with a gap where there is no
corresponding data for Age=16 when Sex=F (see Figure 10-19). The template code for this graph is listed as
Template B in Graph Template Contents in Chapter 13.

141

CHAPTER 10 " GENERATING GRAPH TEMPLATES

&l Graph =~

Vertical bar title

Frequency
n
1

0.5+

00 - L b —

1 12 13 14 15 16 1 12 13 14 15 16

WVertical bar footnote

Figure 10-19. Final graph

Instead of arranging the data into a lattice, selecting the Data Panel option creates a different layout, as
shown in Figure 10-20.

Doss -
[PanelVacabls | ot variables

Data Set:

Variables

@Dﬂhhm (-] ED&BP&‘E'
Class 1) sEX v
Class 2 | <optional> =
Number of Cells: 2

Figure 10-20. Selecting the Data Panel option creates a different layout
142

CHAPTER 10 GENERATING GRAPH TEMPLATES

Panels are drawn with all the corresponding categorical variable values in boxes above the individual
cells. Lattices are drawn with the first categorical variable value above the corresponding column of cells and
the second (when used) next to the corresponding row of cells. In this case, because there are only fwo cells
in the panel, the resulting graph is indistinguishable from that generated using the Data Lattice option. The
template code for this graph is listed as Template C in Graph Template Contents in Chapter 13.

Building a Template from a Blank Graph

The difference between a Gallery entry and a blank graph (see Figure 10-21) is that no defaults are set, so you
have much more control over the content and layout of the final template.

_ Edit View Insert Format Tools__‘_lHelp

\ New »d) Blank Graph Ctrl+N

 Open.. Ctrl+O |53 Blank Shared Variable Graph *Ctrl+G
Open Recent From Graph Gallery

Close

Save Ctrl+S

Save As...

Save in Graph Gallery...

Print Setup...
Print... Ctrl+P

Print Preview...

Export Style... Ctrl+X

Exit

Figure 10-21. Creating a blank graph

A blank graph lets you add what you need. It is straightforward to add to a single graphical report
multiple graphical objects that use the same data. You just drag elements from the appropriate Elements
group (such as Plot Layers or Insets) onto the graph area, as shown in Figure 10-22.

143

CHAPTER 10 " GENERATING GRAPH TEMPLATES

m ENCamh [e=
Plot Layers _l
Whisg ity [7
Scatter HNeedle
Lo iy B
Step Hstogram(H) %E
|as s
L

(drop a plot here...)

[16 4 1 o 16 16

FivielnE&

e if ofs ofm

Gradient Legend

Figure 10-22. Dragging a Bar element onto the blank graph

Once you have dragged in a plotting element, the SAS data is requested, as shown in Figure 10-23. Note
that SAS 9.2 has no Group Display option.

144

CHAPTER 10 GENERATING GRAPH TEMPLATES

Figure 10-23. The data to be plotted

This approach generates a familiar graph, but without any titles or footnotes, as shown in Figure 10-24.

—

G =
L = TN
4
3a
e "
2 H
-4]
g, '
o H
['
24
14
0 - = T = T T
1" 12 13 14 15 16
Age

Figure 10-24. The initially generated graph

145

CHAPTER 10 " GENERATING GRAPH TEMPLATES

You can create an additional row for another graph on the same page by adding a new row under the
existing graph (see Figure 10-25).

File Edit View [Insert| Format Tools Help
Title ||
Footnote
Global Legend

Row k

[[l] Column

bR (R

&

4

Figure 10-25. Adding a new row from the Insert menu

Note that you can also insert a column instead of a row. There is no limit on the number of rows and
columns that can be added, other than the fact that each graph cell should be at least big enough that its
contents are legible.

Figure 10-26 shows a blank row in the image, ready for another graph to be dragged into place. Using
the Column menu option would have added a new column instead.

Ll—“.‘—JLiiJLLMJ 1 14_
Scatter | Series Heede g 3-
=
Lok
am & 1
G WE Y (il 0 . : . . : . |
= BoxtH) Bv 1 12 13 14 15 16
Age

EJ iy (&

Bar(H) BawEmor BarEmor(H)

Band Vector Contour %

(drop a plot here...)

LL“‘JLﬂJkQJ

Fringe Normal Normal(H)

L&.JLEJL%:J -
Insets

=— TT

==l (il

T Ll

TextEntry Gradent

Figure 10-26. Dragging a Scatter element into the new row

146

CHAPTER 10 GENERATING GRAPH TEMPLATES

Note that ODS Graphics Designer is only able to generate a lattice containing N1 x N2 cells, where every
row contains the same number of columns and every column contains the same number of rows. A lattice
that has, for example, more cells in row 1 than in row 2 requires a manual adjustment.

The data for the new graph is automatically requested, as shown in Figure 10-27. Note that the Group
Display option is not included in SAS 9.2.

Data Set: E}cuss 'v
Variables

x D4 =)
v @ reeT -]
Group: f(Opﬁonah- v
Datalabel: | <Optonal> v
Group Display: | Overlay >
Name scatter

Axis: X - -

[Advanced Options... |
ok J[cancel]

Figure 10-27. Data for the new graph

You can now add titles and footnotes (see Figure 10-28), but in ODS Graphics Designer they can only be
global titles and footnotes, not specific to each cell.

File Edit View[lm Format Tools Help

2 RS Title B E
Footnote

3 Global Legend

Z Row
—w

il Column

Figure 10-28. Adding a global title from the Insert menu

147

CHAPTER 10 GENERATING GRAPH TEMPLATES
The graph is now ready for use, as shown in Figure 10-29.

X Graph @@

Panel title

Frequency

704

65 o a
.-E_’ o g o
2 60
o -] o
55 -
50 °
L} T T T T T
' 1" 12 13 14 15 16 '
o -

Panel footnote

Figure 10-29. Final graph

Note that common column axes are possible in ODS Graphics Designer only when there is a single
column of graph cells. As soon as you add an additional column of cells, the common column axes are
changed back to individual axes. However, you can use common row axes in ODS Graphics Designer no
matter how many rows of cells are present.

The template code for this graph is listed as Template D in Graph Template Contents in Chapter 13.

Saving the Template as a Designer File (*.sgd)

Click the Graph window and then choose File » Save As to save the template as a designer file with file type
*.sgd (see Figure 10-30).

148

CHAPTER 10 GENERATING GRAPH TEMPLATES

Save
Save in: 0DS5_Graphics_Designer ~ T oBEE
[L. references

=i

Recent Items

Desktop

Documents
4-,,..'?!;
Computer

. k 5 >

g’ File name: vbar_designer.sgd [Save]

Network ; :
Files of type: | 5GD Files (*,59d) - [Cancel]

Resolution {in DPI): | 100 Target: |Elank

Figure 10-30. Saving a template as a designer file

These files can be opened and edited with ODS Graphics Designer, so you can use them to store the
latest versions of the templates you are developing for later use. They can also be saved as backup copies,
if you want to develop a range of templates from a single starting template. Note that these files can only be
opened with ODS Graphics Designer or PROC SGDESICN, which is not described in this book.

You can also save a template to the Gallery by clicking File » Save To Gallery, which makes the template
immediately available when ODS Graphics Designer is next used.

Saving the Template as a SAS Program (*.sas)

Click the Code window and then choose File » Save As to save a template as a SAS program with file type
*.sas, as shown in Figure 10-31.

149

CHAPTER 10 GENERATING GRAPH TEMPLATES

Save Es
Savein: | ODS_Graphics_Designer > FEE

- references
- ?

Recent Items

Deskiop

)
Documents

.Lu

Computer

L =
o File name: vbar_template]sas | S_a_ve

Netwark
Fies of type: 55 Files (*.sas) - I Cancel

Resolution (in DPI): | 100 Target: |Blank

Figure 10-31. Saving code as a SAS program

Graph Template Usage

There are a number of steps required before a graph template can generate a graph. Firstly the data needs to
be structured in a form that is suitable for the template, and then another program processes the data using
the instructions stored in the graph template.

Preparing Data for Graph Templates

The following code generates simulated clinical data with visit numbers, products, and an absolute value
with a standard error (for the simple line plot). The original data in sashelp.prdsal2 is very uniform, so a
filter is used to make the value counts less even:

PROC SOL;
CREATE TABLE plotdata AS
SELECT INTCK('QTR', '01jan1994'd, monyr) AS visitnum
sproduct
,MEAN(predict) AS valuel
/*used for the simple line plots*/
,STDERR(predict) AS valuel se
/*used for the simple line plots*/
,COUNT(*) AS count
FROM sashelp.prdsal2
(WHERE = (product IN ('BED' 'CHAIR' 'DESK')
AND predict > 400))

150

CHAPTER 10 GENERATING GRAPH TEMPLATES

GROUP BY
visitnum
sproduct;
QUIT;

The extra calculations in plotdata_ods are applied to visitnum to offset the points and prevent them
from overlapping and obscuring data; to price_upper and price lower to add upper and lower standard
error points for the error bars; and to ccount to convert the numeric counts to text for the final graph to be
generated from a template by PROC SGRENDER. The code looks like this:

DATA plotdata_ods;
SET plotdata;
LENGTH ccount $4;
SELECT (product);
WHEN ('BED') visitnum = visitnum - 0.1;
WHEN ('DESK') visitnum = visitnum + 0.1;
OTHERWISE;
END;
valuel upper = valuel + valuel se;
valuel lower = valuel - valuel se;
ccount = STRIP(PUT(count, 4.));
LABEL valuel = 'Sales ($)'
visitnum = 'Quarter’;
RUN;

Displaying Graph Templates

You can display graph templates two ways: the DATA _NULL_ method and the PROC SGRENDER method.
Generally, the PROC SGRENDER method is preferred for graph templates, unless other template types are
being used at the same time; the DATA _NULL_method is common to all template types.

DATA _NULL_

When graph templates were first introduced in SAS 9.1.3, before the introduction of PROC SGRENDER, the
DATA _NULL_ step with FILE PRINT ODS and PUT _ODS_ statements was the only way to display input data
using graph templates. This method is still available in SAS 9.3, but PROC SGRENDER is now preferred. The
sgplot_count template is described in detail in Chapter 13. Here is an example:

O0DS GRAPHICS ON;
DATA NULL ;
LENGTH ccount $4;
SET plotdata;
BY visitnum;
valuel_upper = valuel + valuel_se;
valuel lower = valuel - valuel se;
ccount = STRIP(PUT(count, 4.));
FILE PRINT ODS =
(TEMPLATE = 'sgplot count'
DYNAMIC = (_title = "Figure 1. Standard Error of Sales"
_title2 = "Overall"
_footnote = "Program: &pgm..sas"

151

http://dx.doi.org/10.1007/9781484205693_13

CHAPTER 10 GENERATING GRAPH TEMPLATES

_xvar = "visitnum"

_xlabel = "Quarter"

_ylabel = "Bed and Chair sales ($)"
_yvarl = "value1"

_yupperl = "valuel_upper"

_ylower1l = "value1l lower"

_nvarl = "ccount"

_group = "product”

);
PUT _ODS_;
RUN;
0DS GRAPHICS OFF;

PROC SGRENDER

PROC SGRENDER was introduced in SAS 9.2. It is probably more closely related to PROC GANNO than
PROC GPLOT, because it is used to render input data using predefined graph templates. The sgplot_count
template is described in detail in Chapter 13. Here is an example:

PROC SGRENDER DATA = plotdata_ods
(WHERE = (product IN ('BED' 'CHAIR')))
TEMPLATE = 'sgplot_count';
DYNAMIC _title = "Sales"
_title2 = "Bed and Chair"
_footnote = "Program: &pgm..sas"
_xvar = "visitnum"
_xlabel = "Quarter"
_ylabel = "Sales ($)"
_yvarl = "value1"
_yupperl = "valuel upper"
_ylower1l = "valuel lower"
_nvarl = "ccount"
_group = "product”;

RUN;

Note that the highlighted ODS GRAPHICS statements required with the DATA step are no longer necessary.
They are available as options when you need to modify the size and destination of the images with any of the
Statistical Graphics (SG) procedures.

Conclusions

This chapter showed you the two main routes through ODS Graphics Designer: starting from a prepackaged
template or from a blank page. Both routes can be used to created new, prepackaged templates for later use, or
the generated PROC TEMPLATE code can be stored as a SAS program file. Once you use the PROC TEMPLATE code
to create a graph template, it can be used to render data using a DATA _NULL_ step or with PROC SGRENDER to
create an image file.

152

http://dx.doi.org/10.1007/9781484205693_13

CHAPTER 11

Converting SAS/GRAPH Plots to
ODS Graphics

This chapter compares the output from the most commonly used SAS code for producing plots and charts
using SAS/GRAPH and ODS Graphics. Each ODS Graphics program is rated as follows:

e Easy: One SAS/GRAPH procedure statement can be replaced with an ODS Graphics
procedure. The conversion may also require some preprocessing of the input data.

e Difficult: One SAS/GRAPH procedure can be replaced with code containing PROC
TEMPLATE and PROC SGRENDER, or the conversion requires extensive preprocessing of
the input data.

e Impossible: There is currently no corresponding ODS Graphics procedure in that
version of SAS software to replicate the SAS/GRAPH graph.

Each plot is followed by the SAS code used to create it and is identified in the text.

Scatter Plots

The first and simplest of the commonly used plots is the scatter plot. Basically, many data points are
scattered over the graph area.

153

CHAPTER 11 © CONVERTING SAS/GRAPH PLOTS TO ODS GRAPHICS

SAS/GRAPH from SAS 9.2

Figure 11-1 shows a scatter plot from SAS/GRAPH in SAS 9.2. See Listing 11-1 for the SAS plot code.

Weight
150 B

1401

50 60 70 80
Height
Sex OCIDF ODOM

Figure 11-1. Scatter plot created by PROC GPLOT in SAS 9.2

Listing 11-1. PROC GPLOT Scatter Plot

PROC GPLOT DATA = sashelp.class;
SYMBOL V = CIRCLE I = NONE;
PLOT weight * height = sex;

RUN;

ODS Graphics from SAS 9.2 (Easy)

Note that because the input data is unsorted and the first record contains a record where sex="M", the
legend begins with sex="M", as shown in Figure 11-2. See Listing 11-2 for the SAS plot code.

154

CHAPTER 11 ' CONVERTING SAS/GRAPH PLOTS TO ODS GRAPHICS

[3)
140
o
[
120 4
+ @ o
%a +0
g 100 o +
+
+ + o
80 ¢
+
60
+
U Ll I T L
50 55 60 65 70
Height
Sex. OM +F

Figure 11-2. Scatter plot created by PROC SGPLOT in SAS 9.2

Listing 11-2. PROC SGPLOT Scatter Plot

PROC SGPLOT DATA = sashelp.class;
SCATTER Y = weight X = height /
GROUP = sex;
RUN;

Line Plots

The second and probably the most frequently used of the common plots is the line plot. SAS/GRAPH

provides a vast range of options for how the individual points are used to create the line. The example code

just joins each point to the next, which is why the points are sorted by the values on the x-axis.

155

CHAPTER 11 © CONVERTING SAS/GRAPH PLOTS TO ODS GRAPHICS

SAS/GRAPH from SAS 9.2

Figure 11-3 shows a line plot from SAS/GRAPH in SAS 9.2. See Listing 11-3 for the SAS plot code.

Weight
1501

1401
1304
1204
1104
1001 Q A
90 }\

801

701

601

50 60 70 80

Height

Sex eeef eee)|

Figure 11-3. Line plot created by PROC GPLOT in SAS 9.2

Listing 11-3. PROC GPLOT Line Plot

PROC SORT DATA = sashelp.class
OUT = class;
BY sex height;
RUN;

PROC GPLOT DATA = class;
SYMBOL V = CIRCLE I = JOIN;
PLOT weight * height = sex;

RUN;

ODS Graphics from SAS 9.2 (Easy)

Note that the input data has been sorted, and the first record contains a record where sex="F', so the legend
order matches that in the SAS/GRAPH plot. There are also fewer ticks on the two axes, as shown in Figure 11-4.
See Listing 11-4 for the SAS plot code.

156

CHAPTER 11

o
/
140 -
/
?\ /
?\ I| \ !
120 H [N
.
[} ¥
= \ [/
S 100 a
= /N /
/ ~
- F—)
80 |
60 -
I T I T Ll
50 55 60 65 70
Height
|Sex —e—F —e—m|

Figure 11-4. Line plot created by PROC SGPLOT in SAS 9.2

Listing 11-4. PROC SGPLOT Line Plot

PROC SORT DATA = sashelp.class
OUT = class;
BY sex height;
RUN;

PROC SGPLOT DATA = class;

SERIES Y = weight X = height /
GROUP = sex MARKERS
MARKERATTRS = (SYMBOL=CIRCLE);

RUN;

Regression Plots

CONVERTING SAS/GRAPH PLOTS TO ODS GRAPHICS

Another way to use points to generate a line is to calculate a regression line and confidence limits.

SAS/GRAPH from SAS 9.2

In SAS/GRAPH, the regression and confidence-limit lines are plotted well beyond the limits of the data points
and extend to the edge of the plotting area, as shown in Figure 11-5. See Listing 11-5 for the SAS plot code.

157

CHAPTER 11 © CONVERTING SAS/GRAPH PLOTS TO ODS GRAPHICS

Weight
150

140
130
120
110
100{
90
80
70
60

50

Figure 11-5. Regression plot created by PROC GPLOT in SAS 9.2

Listing 11-5. PROC GPLOT Regression Plot

PROC SORT DATA = sashelp.class
OUT = class;
BY sex height;
RUN;

PROC GPLOT DATA = class;
SYMBOL V = CIRCLE I = ROCLI9S;
PLOT weight * height = sex;
RUN;

ODS Graphics from SAS 9.2 (Easy)

Again, there are fewer ticks on the two axes, and the minimum and maximum values on the axes are
different to accommodate all the confidence-limit lines, whereas the SAS/GRAPH axis ranges are based on
the data points. Unlike in the SAS/GRAPH plot, the confidence-limit lines in the ODS Graphics plot do not
extend beyond the range of the data values on the x-axis, so no data extrapolation is carried out, as shown in

Figure 11-6. See Listing 11-6 for the SAS plot code.

158

CHAPTER 11

150 4

100 4

Weight

50 +

50 55 60 65 70
Height
F ———n]|

| Sex

Figure 11-6. Regression plot created by PROC SGPLOT in SAS 9.2

Listing 11-6. PROC SGPLOT Regression Plot

PROC SORT DATA = sashelp.class
OUT = class;
BY sex height;
RUN;

PROC SGPLOT DATA = class;
REG Y = weight X = height /
GROUP = sex CLI
MARKERATTRS = (SYMBOL=CIRCLE);
RUN;

Error Bar Plots

CONVERTING SAS/GRAPH PLOTS TO ODS GRAPHICS

This type of plot is often created using a scatter plot and a fair amount of annotation. But in SAS/GRAPH, a
little preprocessing of the input data lets you change the single data point into three points: original, upper
error limit, and lower error limit, as shown in Figure 11-7. See Listing 11-7 for the SAS plot code.

159

CHAPTER 11 CONVERTING SAS/GRAPH PLOTS TO ODS GRAPHICS

SAS/GRAPH from SAS 9.2

Weight
1601

1501
1404

1304
1204
1104
1004 %
90 /
80
704
60
50

40—y e
50 60 70 80
Height

Sex eeef eee)|

Figure 11-7. Error bar plot created by PROC GPLOT in SAS 9.2

Listing 11-7. PROC GPLOT Error Bar Plot

PROC SORT DATA = sashelp.class
OUT = class;
BY sex height;
RUN;

PROC SUMMARY DATA = class NWAY;
CLASS sex;
VAR weight;
OUTPUT OUT = class_se
STDERR = weight_se;
RUN;

DATA class_classic
(KEEP = sex height value);
MERGE class class_se;
BY sex;
value = weight;
OUTPUT;
value = weight + weight se;
OUTPUT;
value = weight - weight_se;
OUTPUT;

RUN;

160

CHAPTER 11 ' CONVERTING SAS/GRAPH PLOTS TO ODS GRAPHICS

PROC GPLOT DATA = class_classic;
SYMBOL V = CIRCLE I = HILOTJ;
PLOT value * height = sex;
LABEL value = "Weight";

RUN;

ODS Graphics from SAS 9.2 (Easy)

ODS Graphics also requires a little preprocessing of the input data to add two extra values to each data point
for the upper and lower error limits. This plot demonstrates an important feature of ODS Graphics: graphical
elements can be drawn on top of previously drawn elements. In this case, the error bars are drawn using the
SCATTER statement and then the line is drawn on top using the SERIES statement, so the error bars appear
behind the line, as shown in Figure 11-8. See Listing 11-8 for the SAS plot code.

160

140 4

100 +

Weight

80

60

40 4

50 55 60 65 70
Height
Sex OF +M

Figure 11-8. Error bar plot created by PROC SGPLOT in SAS 9.2

Listing 11-8. PROC SGPLOT Error Bar Plot

PROC SORT DATA = sashelp.class
OUT = class;
BY sex height;
RUN;

PROC SUMMARY DATA = class NWAY;
CLASS sex;
VAR weight;
OUTPUT OUT = class_se
STDERR = weight_se;
RUN;

161

CHAPTER 11 © CONVERTING SAS/GRAPH PLOTS TO ODS GRAPHICS

DATA class_ods
(KEEP = sex height value
value upper value lower);
MERGE class class_se;
BY sex;
value = weight;
value_upper = weight + weight_se;
value lower = weight - weight se;
OUTPUT;
RUN;

PROC SGPLOT DATA = class_ods;

SCATTER Y = value X = height /
GROUP = sex
YERRORUPPER = value_ upper
YERRORLOWER = value lower;

SERIES Y = value X = height /
GROUP = sex;

LABEL value = "Weight";

RUN;

Box Plots

You can use a box plot to display simple statistics, including quartiles and outliers.

SAS/GRAPH from SAS 9.2

The default SAS/GRAPH plot requires you to customize a number of features, such as the box width, to make
it useful for the viewer, as shown in Figure 11-9. See Listing 11-9 for the SAS plot code.

Height
80

704

601

50‘“”“--”.---;-|-|-||-|--|-|-||-|-:|||-l|-|-|-||-|

1 12 13 14 15 16
Age

Figure 11-9. Box plot created by PROC GPLOT in SAS 9.2
162

CHAPTER 11 ' CONVERTING SAS/GRAPH PLOTS TO ODS GRAPHICS

Listing 11-9. PROC GPLOT Box Plot

PROC SORT DATA = sashelp.class
OUT = class;
BY age;
RUN;

PROC GPLOT DATA = class;
SYMBOL I = BOX0OT;
PLOT height * age;

RUN;

ODS Graphics from SAS 9.2 (Easy)

Using the default settings for ODS Graphics produces a box plot that is recognizably similar to that produced
using the default settings in SAS/GRAPH, but the viewer can see the information in the graph much more clearly,
as shown in Figure 11-10. See Listing 11-10 for the SAS plot code. The means are marked as diamond symbols
and the medians as horizontal lines in the boxes, which mark the 25th and 75 percentiles. Whiskers (lines with T
ends) indicate the 5th and 95th percentiles. Outliers (points outside the whiskers) are shown as circles.

-
70 A
65 o o
=
=2
i
I 604 ﬁ
55
50 4
T] T I I I
1" 12 13 14 15 16
Age

Figure 11-10. Box plot created by PROC SGPLOT in SAS 9.2

163

CHAPTER 11 ' CONVERTING SAS/GRAPH PLOTS TO ODS GRAPHICS

Listing 11-10. PROC SGPLOT Box Plot

PROC SORT DATA = sashelp.class
OUT = class;
BY age;
RUN;

PROC SGPLOT DATA = class;

VBOX height / CATEGORY = age;
RUN;

Vertical Bar Charts

This is the first group of bar charts created by PROC GCHART in SAS/GRAPH. Each group includes a simple bar
chart, a stacked bar chart (referred to as subgrouped in SAS/GRAPH), and a clustered bar chart (referred to
as grouped in SAS/GRAPH). All the graphs in this chapter are drawn in square graph areas.

SAS/GRAPH from SAS 9.2

The simple and stacked bar charts drawn by SAS/GRAPH appear unusually narrow, probably because the
default bar widths are fixed rather than adapted to the graph area (see Figure 11-11). See Listing 11-11 for the

SAS plot code.

Simple Vertical Bar Chart

FREQUENCY
5

111111
1234586

Age

Figure 11-11. Vertical bar chart created by PROC GCHART in SAS 9.2

164

CHAPTER 11 ' CONVERTING SAS/GRAPH PLOTS TO ODS GRAPHICS

Listing 11-11. PROC GCHART Vertical Bar Chart

PROC GCHART DATA = class;
VBAR age / DISCRETE;
RUN;

Stacked Vertical Bar Chart

The stacked version of the graph is also rather narrow, as shown in Figure 11-12. See Listing 11-12 for the
SAS plot code.

FREQUENCE

Sex m=f =M

Figure 11-12. Stacked vertical bar chart created by PROC GCHART in SAS 9.2

Listing 11-12. PROC GCHART Stacked Vertical Bar Chart

PROC SORT DATA = sashelp.class
OUT = class;
BY sex age;
RUN;

PROC GCHART DATA = class;

VBAR age / SUBGROUP = sex DISCRETE;
RUN;

165

CHAPTER 11 ' CONVERTING SAS/GRAPH PLOTS TO ODS GRAPHICS

Clustered Vertical Bar Chart

The clustered version is also narrow, as shown in Figure 11-13. See Listing 11-13 for the SAS plot code.

FREQUENCY
3.

FM FM FM FM FM F M Sex
11 12 13 14 15 16 Age

Figure 11-13. Clustered vertical bar chart created by PROC GCHART in SAS 9.2

Listing 11-13. PROC GCHART Clustered Vertical Bar Chart

PROC SORT DATA = sashelp.class
OUT = class;
BY sex age;
RUN;

PROC GCHART DATA = class;
VBAR sex / GROUP = age
PATTERNID = MIDPOINT;
RUN;

ODS Graphics from SAS 9.2 (Easy)

Vertical bar charts are available in the simple and stacked forms from SAS 9.2, where stacked is the new
name for subgrouped.

166

CHAPTER 11 ' CONVERTING SAS/GRAPH PLOTS TO ODS GRAPHICS

Simple Vertical Bar Chart

The simple version is shown in Figure 11-14. See Listing 11-14 for the SAS plot code.

Frequency

Figure 11-14. Vertical bar chart created by PROC SGPLOT in SAS 9.2

Listing 11-14. PROC SGPLOT Vertical Bar Chart

PROC SORT DATA = sashelp.class
OUT = class;
BY sex age;
RUN;

PROC SGPLOT DATA = class;

VBAR age;
RUN;

167

CHAPTER 11 ' CONVERTING SAS/GRAPH PLOTS TO ODS GRAPHICS

Stacked Vertical Bar Chart

The stacked version is shown in Figure 11-15. See Listing 11-15 for the SAS plot code.

Frequency

1" 12 13 14 15 16
Age

Figure 11-15. Stacked vertical bar chart created by PROC SGPLOT in SAS 9.2

Listing 11-15. PROC SGPLOT Stacked Vertical Bar Chart

PROC SORT DATA = sashelp.class
OUT = class;
BY sex age;
RUN;

PROC SGPLOT DATA = class;
VBAR age / GROUP = sex;
RUN;

Clustered Vertical Bar Chart

The clustered form can only be approximated by using the paneled form in PROC SGPANEL. The simple
version is shown in Figure 11-16. See Listing 11-16 for the SAS plot code. Note that the graph bars make full

use of the available graph area!

168

CHAPTER 11 ' CONVERTING SAS/GRAPH PLOTS TO ODS GRAPHICS

Age=11]Age=12|Age=13]|Age=14|Age=15]|Age=16

Frequency

Figure 11-16. Clustered vertical bar chart created by PROC SGPANEL in SAS 9.2

Listing 11-16. PROC SGPANEL Clustered Vertical Bar Chart

PROC SORT DATA = sashelp.class
OUT = class;
BY sex age;
RUN;

PROC SGPANEL DATA = class;
PANELBY age / COLUMNS = 6;
VBAR sex / GROUP = sex;

RUN;

ODS Graphics from SAS 9.3 (Easy)

As of SAS 9.3, the clustered vertical bar chart is supported using the GROUPDISPLAY = CLUSTER option, so the
paneled form is no longer necessary. However, the bars are identified solely via the legend, as is the case for
the stacked bar chart, as shown in Figure 11-17. See Listing 11-17 for the SAS plot code.

169

CHAPTER 11 I CONVERTING SAS/GRAPH PLOTS TO ODS GRAPHICS

Frequency

Figure 11-17. Clustered vertical bar chart created by PROC SGPLOT in SAS 9.3

Listing 11-17. PROC SGPLOT Clustered Vertical Bar Chart

PROC SORT DATA = sashelp.class
OUT = class;
BY sex age;
RUN;

PROC SGPLOT DATA = class;
VBAR age / GROUP = sex
GROUPDISPLAY = CLUSTER;
RUN;

Horizontal Bar Charts

The default horizontal bar chart in SAS/GRAPH includes statistics on the right side of the chart. This feature
creates the biggest problem when attempting to replicate this chart in ODS Graphics.

SAS/GRAPH from SAS 9.2

Note that the default horizontal bar charts, unlike the vertical bar charts, make full use of the available graph
area.

170

Simple Horizontal Bar Chart
The simple version is shown in Figure 11-18. See Listing 11-18 for the SAS plot code.

Age
11

12

13

14

15

16

0

1

2

3

FREQUENCY

4

5

CUM.

FREQ. FREQ.
2 2

5 7

3 10

4 14

4 18

PCT.

10.53

26.32

15.79

21.05

21.05

5.26

CHAPTER 11

CUM.
PCT.

10.53

36.84

52.63

73.6€

94.74

100.0C

CONVERTING SAS/GRAPH PLOTS TO ODS GRAPHICS

Figure 11-18. Horizontal bar chart created by PROC GCHART in SAS 9.2

Listing 11-18. PROC GCHART Horizontal Bar Chart

PROC SORT DATA = sashelp.class

RUN;

PROC GCHART DATA = class;
HBAR age / DISCRETE;

RUN;

OUT = class;
BY sex age;

171

CHAPTER 11 ' CONVERTING SAS/GRAPH PLOTS TO ODS GRAPHICS

Stacked Horizontal Bar Chart

The stacked version is shown in Figure 11-19. See Listing 11-19 for the SAS plot code.

CUM. CUM.

Age FREQ. FREQ. PCT. PCT.
1 2 2 1053 1053
12 5 7 2632 3684

13 3 10 1579 52.63

14 4 14 2105 7368

15 4 18 2105 9474

16 1 19 526 100.0C

o 1 2 3 4 5
FREQUENCY

Sex ==mfF =M

Figure 11-19. Stacked horizontal bar chart created by PROC GCHART in SAS 9.2

Listing 11-19. PROC GCHART Stacked Horizontal Bar Chart

PROC SORT DATA = sashelp.class
OUT = class;
BY sex age;
RUN;

PROC GCHART DATA = class;

HBAR age / SUBGROUP = sex DISCRETE;
RUN;

172

CHAPTER 11 ' CONVERTING SAS/GRAPH PLOTS TO ODS GRAPHICS

Clustered Horizontal Bar Chart

The clustered version is shown in Figure 11-20. See Listing 11-20 for the SAS plot code.

CUM. CUM.

Age Sex FREQ. FREQ. PCT. PCT.
"n F 1 1 526 526
M 1 2 526 1053

12 F 2 1053 21.05
M 3 1579 36.84

13 F 2 1053 47.37
M 1 10 526 52.63

14 F 2 12 1053 63.1€
M 2 14 1053 73.68
15 F 2 16 1053 84.21
M 2 18 1053 94.74

16 F 0 18 0.00 94.74
M 1 19 526 100.0C

Figure 11-20. Clustered horizontal bar chart created by PROC GCHART in SAS 9.2

1 2
FREQUENCY

Listing 11-20. PROC GCHART Clustered Horizontal Bar Chart

PROC SORT DATA = sashelp.class

OUT = class;

BY sex age;

RUN;

PROC GCHART DATA = class;
HBAR sex / GROUP = age
PATTERNID = MIDPOINT;

RUN;

ODS Graphics from SAS 9.2 (Easy)

If you just want to create a horizontal bar chart in the form of a rotated vertical bar chart, you can do so in
SAS 9.2 for the simple and stacked forms. However, the statistics on the right side of the bar chart are not
added here, because doing so requires extensive PROC TEMPLATE code to plot text versions of the statistics in
separate layouts.

173

CHAPTER 11 © CONVERTING SAS/GRAPH PLOTS TO ODS GRAPHICS

Simple Horizontal Bar Chart

The simple form is shown in Figure 11-21. See Listing 11-21 for the SAS plot code.

Age

14 +

0 1 2 3 4 5
Frequency

Figure 11-21. Horizontal bar chart created by PROC SGPLOT in SAS 9.2

Listing 11-21. PROC SGPLOT Horizontal Bar Chart

PROC SORT DATA = sashelp.class
OUT = class;
BY sex age;
RUN;

PROC SGPLOT DATA = class;

HBAR age;
RUN;

174

CHAPTER 11 ' CONVERTING SAS/GRAPH PLOTS TO ODS GRAPHICS

Stacked Horizontal Bar Chart

The stacked version is shown in Figure 11-22. See Listing 11-22 for the SAS plot code.

Age

0 1 2 3 4 5
Frequency

Figure 11-22. Stacked horizontal bar chart created by PROC SGPLOT in SAS 9.2

Listing 11-22. PROC SGPLOT Stacked Horizontal Bar Chart

PROC SORT DATA = sashelp.class
OUT = class;
BY sex age;
RUN;

PROC SGPLOT DATA = class;

HBAR age / GROUP = sex;
RUN;

175

CHAPTER 11 ' CONVERTING SAS/GRAPH PLOTS TO ODS GRAPHICS

Clustered Horizontal Bar Chart

The clustered version of the horizontal bar chart is not possible directly in SAS 9.2, but you can create an
approximation using PROC SGPANEL, as shown in Figure 11-23. See Listing 11-23 for the SAS plot code.

=11

12[Age

13) Age

14 | Age

Sex

15| Age

16 [Age

Age

Frequency

Figure 11-23. Clustered horizontal bar chart created by PROC SGPANEL in SAS 9.2

Listing 11-23. PROC SGPANEL Clustered Horizontal Bar Chart

PROC SORT DATA = sashelp.class
OUT = class;
BY sex age;
RUN;

PROC SGPANEL DATA = class;
PANELBY age / ROWS = 6;
HBAR sex / GROUP = sex;

RUN;

ODS Graphics from SAS 9.3 (Easy)

As of SAS 9.3, the clustered horizontal bar chart is supported using the GROUPDISPLAY = CLUSTER option, so
the paneled form is no longer necessary, as shown in Figure 11-24. See Listing 11-24 for the SAS plot code.
The bars are identified solely via the legend, as is the case for the stacked bar chart.

176

CHAPTER 11 ' CONVERTING SAS/GRAPH PLOTS TO ODS GRAPHICS

Age

-

Frequency

Figure 11-24. Clustered horizontal bar chart created by PROC SGPLOT in SAS 9.3

Listing 11-24. PROC SGPLOT Clustered Horizontal Bar Chart

PROC SORT DATA = sashelp.class
OUT = class;
BY sex age;
RUN;

PROC SGPLOT DATA = class;
HBAR age / GROUP = sex
GROUPDISPLAY = CLUSTER;
RUN;

ODS Graphics from SAS 9.4 (Difficult and Impossible)

As of SAS 9.4, the YAXISTABLE statement in PROC SGPLOT lets you align text and bars, but only for the primary
midpoint axis in SAS 9.4 and 9.4M1, not for the clustering axis. Thus only single rows of text can be included.
The ability to align text with the clustering axis is expected to be included in SAS 9.4M2. The data needs to be
carefully prepared before rendering, which makes it much less convenient to use than the HBAR statement in

PROC GCHART.

177

CHAPTER 11 © CONVERTING SAS/GRAPH PLOTS TO ODS GRAPHICS

Simple Horizontal Bar Chart

The simple version is shown in Figure 11-25. See Listing 11-25 for the SAS plot code.

FRQ CFRQ PCT CPCT
1 | 2 2 1053 1053
12 5 7 2632 36584
13 3 10 1579 5263
L)
(=]
<
14 4 14 2105 7368
15 4 18 2105 9474
16 ~:| 1 19 526 10000
Ll T I I Ll
012345
Frequency C...

Figure 11-25. Horizontal bar chart created by PROC SGPLOT in SAS 9.4

Listing 11-25. PROC SGPLOT Horizontal Bar Chart

PROC SORT DATA = sashelp.class
OUT = class;
BY age;
RUN;

PROC FREQ DATA = class;
TABLES age /
OUT = class_summ NOPRINT;
RUN;

DATA class_summ;
SET class_summ;
BY age;
RETAIN cum_freq cum_pct .;
freq = count;
cum_freq + count;
cum_pct + percent;
FORMAT freq cum_freq 3.
percent cum pct 6.2;
LABEL freq = 'FRQ'
cum_freq = 'CFRQ'
percent = 'PCT'
cum_pct = 'CPCT';
RUN;

178

CHAPTER 11 ' CONVERTING SAS/GRAPH PLOTS TO ODS GRAPHICS

PROC SGPLOT DATA = class_summ;
HBAR age / STAT = FREQ;
YAXISTABLE freq cum_freq

percent cum_pct /
LOCATION = INSIDE
POSITION = RIGHT
LABELPOS = TOP;

RUN;

Stacked Horizontal Bar Chart

The stacked version is shown in Figure 11-26. See Listing 11-26 for the SAS plot code.

FRQ CFRQ PCT CPCT

1 2 5.26 10.53

3 7 15.79 36.84

1 10 5.26 5263

2 14 1053 7368

2 18 10.53 9474

1 19 5.26 100.00
012345
Frequency C...

Figure 11-26. Stacked horizontal bar chart created by PROC SGPLOT in SAS 9.4

Listing 11-26. PROC SGPLOT Stacked Horizontal Bar Chart

PROC SORT DATA = sashelp.class
OUT = class;
BY sex age;
RUN;

PROC FREQ DATA = class;
TABLES sex * age /
OUT = class_stack_summ NOPRINT;
RUN;

DATA class_stack_summ;
SET class_stack summ;
BY sex age;
RETAIN cum_freq cum pct .;

179

CHAPTER 11 © CONVERTING SAS/GRAPH PLOTS TO ODS GRAPHICS

freq = count;

cum_freq + count;

cum_pct + percent;

FORMAT freq cum_freq 3.

percent cum_pct 6.2;

LABEL freq = 'FRQ'
cum _freq = 'CFRQ'
percent = 'PCT'
cum_pct = 'CPCT';

RUN;

DATA class_stack summ;
SET class_stack_summ;

BY sex age;

IF NOT LAST.age THEN DO;
freq = .;
cum_freq = .;
percent = .;
cum_pct = .;

END;

RUN;

PROC SGPLOT DATA = class_stack_summ;
HBAR age / GROUP = sex;
YAXISTABLE freq cum freq

percent cum_pct /
LOCATION = INSIDE
POSITION = RIGHT
LABELPOS = TOP;

RUN;

2D Pie Charts

2D pie charts are simple to create using SAS/GRAPH, and many options let you manipulate the way the
segments and labels are presented. The example code is deliberately very simple.

SAS/GRAPH from SAS 9.2

A 2D pie chart is very easy to create using PROC GCHART in SAS 9.2, as shown in Figure 11-27. See Listing 11-27
for the SAS plot code.

180

CHAPTER 11

FREQUENCY of Age

Age =211 =212 =213 =214 =215 =216

Figure 11-27. 2D pie chart created by PROC GCHART in SAS 9.2

Listing 11-27. PROC GCHART 2D Pie Chart

PROC SORT DATA = sashelp.class
OUT = class;
BY age;
RUN;

PROC GCHART DATA = class;
PIE age / VALUE = ARROW
LEGEND DISCRETE;
RUN;

ODS Graphics in SAS 9.2 (Impossible)

CONVERTING SAS/GRAPH PLOTS TO ODS GRAPHICS

2D pie charts are not available in the SG procedures, nor in PROC TEMPLATE, in SAS 9.2.

ODS Graphics as of SAS 9.3 (Difficult)

2D pie charts are available in PROC TEMPLATE, but not in the SG procedures, as of SAS 9.3. The ODS
Graphics sample has been deliberately plotted with the segments in a clockwise direction from 9:00, instead
of counterclockwise from 3:00 as in the SAS/GRAPH code, to emphasize the differences, as shown in

Figure 11-28. See Listing 11-28 for the SAS plot code.

181

CHAPTER 11 I CONVERTING SAS/GRAPH PLOTS TO ODS GRAPHICS

[Age D1 012 @1 @14 015 06

Figure 11-28. 2D pie chart created by PROC TEMPLATE with PROC SGRENDER in SAS 9.3

Listing 11-28. PROC TEMPLATE 2D Pie Chart

PROC SORT DATA = sashelp.class
OUT = class;
BY age;
RUN;

PROC TEMPLATE;
DEFINE STATGRAPH pie;
BEGINGRAPH;
LAYOUT REGION;

PIECHART CATEGORY = age /
DATALABELLOCATION = OUTSIDE
CATEGORYDIRECTION = CLOCKWISE
START = 180 NAME = 'pie';

DISCRETELEGEND 'pie’ /

TITLE = 'Age';
ENDLAYOUT;
ENDGRAPH;
END;
RUN;
PROC SGRENDER DATA = class
TEMPLATE = pie;

RUN;

182

CHAPTER 11 ' CONVERTING SAS/GRAPH PLOTS TO ODS GRAPHICS

3D Pie Charts

I have never really liked this chart. My opinion is that, rather than informing the viewer, such graphics are
frequently used to mislead the viewer. As a consequence, I have not included any SAS/GRAPH example
code here.

ODS Graphics in SAS 9.2, 9.3, and 9.4 (Impossible)

It is with great delight that I have discovered that 3D pie charts will not be supported in any release of ODS
Graphics in the near future. This does not prevent SAS users who wish to create these charts from doing so,
but they will be required to license SAS/GRAPH first.

Conclusions

If you are reading this chapter with a view to converting all of your SAS graphics programs from SAS/GRAPH
to ODS Graphics, you must consider the following questions:

e Do you only create plots, and no charts? This means your programs can probably
be converted from SAS/GRAPH to ODS Graphics in SAS 9.2 or 9.3, provided any
annotation that is currently used can be plotted as another plot to be overlaid over
the base plot.

e Ifyou create bar charts, do you draw horizontal bar charts that require large amounts
of text alongside? If the bar charts (vertical or horizontal) require only a single value
plotted in or at the end of the bar, you should be able to convert your programs from
SAS/GRAPH to ODS Graphics in SAS 9.2 or 9.3, although some PROC TEMPLATE code
may be necessary for more complex charts.

e Ifyourequire horizontal clustered bar charts with large amounts of text added, or 2D
or 3D pie charts, then it may not be possible to convert your SAS/GRAPH programs
to ODS Graphics, even in SAS 9.4—or, at best, you may be able to do so with a great
deal of effort. It is recommended that you keep your SAS/GRAPH license for now,
because PROC GCHART is not going away in the foreseeable future!

Recommended Reading

e Philip R. Holland, Graphs: How Do You Do This in SAS? (Holland Numerics Ltd.,
2013), https://sites.google.com/site/hnlsas/apps/howsaso3.

e Sanjay Matange and Dan Heath, Statistical Graphics Procedures by Example: Effective
Graphs Using SAS (SAS Institute, 2011).

e Sanjay Matange, Getting Started with the Graph Template Language in SAS:
Examples, Tips, and Techniques for Creating Custom Graphs (SAS Institute, 2013).

e Sanjay Matange, Graphically Speaking (blog), http://blogs.sas.com/content/
graphicallyspeaking.

183

https://sites.google.com/site/hnlsas/apps/howsas03
http://blogs.sas.com/content/graphicallyspeaking
http://blogs.sas.com/content/graphicallyspeaking

CHAPTER 12

Converting SAS/GRAPH Annotate
to ODS Graphics

The previous chapter described how many standard SAS/GRAPH plots can be converted easily to ODS
Graphics by using simple PROC SGPLOT or PROC SGPANEL code. SAS/GRAPH Annotate code would seem, at
first glance, to be much more difficult to convert to ODS Graphics; but by making use of its layering features,
many Annotate plots can be replicated in a flexible and repeatable way.

This chapter compares the output from commonly used Annotate and SAS/GRAPH code for producing
annotated graphs with equivalent code that uses only ODS Graphics. Each ODS Graphics program is rated
as follows:

e Easy: One Annotate data set and one SAS/GRAPH procedure statement can be
replaced with an ODS Graphics procedure. The conversion may also require some
simple preprocessing of the input data.

e Difficult: One Annotate data set and one SAS/GRAPH procedure can be replaced
with code containing PROC TEMPLATE and PROC SGRENDER, or the conversion requires
extensive preprocessing of the input data.

e Impossible: There is currently no corresponding ODS Graphics procedure in that
version of SAS software to replicate the Annotate and SAS/GRAPH plot. However, the
annotated plots selected for this chapter can all be created using ODS Graphics, so
none of them are rated Impossible.

Each plot is followed by the SAS code used to create it and is identified in in the text.

Error Bars

Error-bar plots are used extensively in clinical trials to display collected data—such as laboratory test results
over time—and demonstrate the effect, or lack of effect, caused by the study drug. This type of plot is often
created using a scatter plot and a fair amount of annotation.

185

CHAPTER 12 CONVERTING SAS/GRAPH ANNOTATE TO ODS GRAPHICS

The sample data for SAS/GRAPH (class_error classic)and ODS Graphics (class_error ods) is
generated using the following code:

PROC SORT DATA = sashelp.class OUT = class_error;
BY sex height;
RUN;

PROC SUMMARY DATA = class_error NWAY;

CLASS sex;

VAR weight;

OUTPUT OUT = class_error_se STDERR = weight_se;
RUN;

DATA class_error classic (KEEP = sex height value)
class_error ods (KEEP = sex height value value upper value_ lower)

)

MERGE class_error class_error_se;
BY sex;
value = weight;
value upper = value + weight_se;
value lower = value - weight_se;
OUTPUT class_error_ods;
OUTPUT class_error_classic;
value = value_upper;
OUTPUT class_error_classic;
value = value_lower;
OUTPUT class_error_classic;

RUN;

SAS/GRAPH from SAS 9.2

You can create error-bar plots using PROC GPLOT and Annotate, instead of the HILOTJ interpolation used in
the previous chapter, as shown in Figure 12-1. See Listing 12-1 for the SAS plot code.

186

CHAPTER 12 ' CONVERTING SAS/GRAPH ANNOTATE TO 0DS GRAPHICS
Weight
1601
150
140
130
120
110
100
901

801
701
601
501
04—t

50 60 70 80

Height
Sex ©s9efF ese|

Figure 12-1. Error-bar plot created using PROC GPLOT and Annotate in SAS 9.2

Listing 12-1. PROC GPLOT Error-Bar Plot
ZLET height offset = 0.3;

DATA class_error_anno;
SET class_error ods;
BY sex;
LENGTH function $8
color $20
when xsys ysys $1
xy8
5
xsys = '2'
ysys = '2'
when = 'A';
IF sex = 'M" THEN color = 'RED';
ELSE color = 'BLUE';
function = 'MOVE';
x = height - &height offset.;
y = value_upper;

)
)

187

CHAPTER 12 CONVERTING SAS/GRAPH ANNOTATE TO ODS GRAPHICS

OUTPUT;
function = 'DRAW';
x = height + &height offset.;
y = value_upper;
OUTPUT;
function = '"MOVE';
x = height;
y = value_upper;
OUTPUT;
function = 'DRAW';
x = height;
y = value lower;
OUTPUT;
function = 'MOVE';
x = height - 8height offset.;
y = value_lower;
OUTPUT;
function = 'DRAW';
x = height + &height offset.;
y = value_lower;
OUTPUT;
RUN;

PROC GPLOT DATA = class_error ANNO = class_error anno;
SYMBOL V = CIRCLE I = JOIN;
PLOT weight * height = sex / VAXIS = 40 TO 160 BY 10;
LABEL weight = "Weight";

RUN;

ODS Graphics from SAS 9.2 (Easy)

As you saw in the previous chapter, the error bars are drawn using the YERRORUPPER= and YERRORLOWER=
parameters, as shown in Figure 12-2. See Listing 12-2 for the SAS plot code.

188

CHAPTER 12 I CONVERTING SAS/GRAPH ANNOTATE TO ODS GRAPHICS

160

140

120

100

Weight

80 +

60

40

T 1 L 1 1

50 55 60 65 70
Height
[Sex oF + m|

Figure 12-2. Error-bar plot created using PROC SGPLOT in SAS 9.2

Listing 12-2. PROC SGPLOT Error-Bar Plot

PROC SGPLOT DATA = class_error_ods;

SCATTER Y = value X = height / GROUP = sex YERRORUPPER = value upper
YERRORLOWER = value lower;
SERIES Y = value X = height / GROUP = sex;
LABEL value = "Weight";
RUN;

Point Labels

It is frequently useful to label specific points in a scatter plot so that the individual points can be identified.
In this example, all the points are labeled; you may not need to label every point in other circumstances, so
you could instead label just a subset of points with important features.

189

CHAPTER 12 CONVERTING SAS/GRAPH ANNOTATE TO ODS GRAPHICS

The sample data for SAS/GRAPH (class_point_classic) and ODS Graphics (class_point_ods) is
generated using the following code:

PROC SORT DATA = sashelp.class OUT = class_point;
BY sex height;
RUN;

DATA class_point_ods;
SET class_point;
If sex = '"F' THEN weight2 = weight + 10;
ELSE weight2 = weight - 10;

RUN;

SAS/GRAPH from SAS 9.2

Point-label plots can be created using PROC GPLOT and Annotate, as shown in Figure 12-3. See Listing 12-3
for the SAS plot code.

Height
801
Philip g
70
Alfred @
Wiliam o FRgld ©
o J?Jdgarba"ﬁoben o
Jeffrey o Henry 3 Cagol Janet
60 0 JOh.ljf.ne o
JHVRAs a0
o LBuisélice
b Joyce
50.[“"l""l""l""I""I""l""l“"l""l""l
50 60 70 80 90 100 110 120 130 140 150
Weight

Sex ©aofF aoo)

Figure 12-3. Point-label plot created using PROC GPLOT and Annotate in SAS 9.2

190

CHAPTER 12

Listing 12-3. PROC GPLOT Point-Label Plot

DATA class_point_anno;
SET class_point_ods;

BY sex;

LENGTH function $8
color $20
position when xsys ysys hsys $1
Xy size 8
5

xsys = '2';

ysys = '2°;

hsys = 'D';

when = 'A’;

size = '8';

IF sex = 'M" THEN color = 'RED';
ELSE color = 'BLUE';
function = 'LABEL';
X = weight2;
y = height;
text = name;
position = '+';
OUTPUT;
RUN;

PROC GPLOT DATA = class_point ANNO = class_point_anno;
SYMBOL V = CIRCLE;
PLOT height * weight = sex;

RUN;

ODS Graphics from SAS 9.2 (Easy)

CONVERTING SAS/GRAPH ANNOTATE TO ODS GRAPHICS

Point labels are plotted using a second SCATTER statement, as shown in Figure 12-4. See Listing 12-4 for the

SAS plot code.

191

CHAPTER 12 = CONVERTING SAS/GRAPH ANNOTATE TO ODS GRAPHICS

Philip +
70
Alfred +
William ® HHond T
_ O Barba
65 0 Judy hiohert +
Henry +
— Jeffrey + © "‘5°'J.\net
=
R=
@
T 60+ O Jane
John +
Thamasek
O LQuiddice
55
O Joyce
50
T T T T T
60 80 100 120 140
Weight
[Sex oOF + M|

Figure 12-4. Point-label plot created using PROC SGPLOT in SAS 9.2

Listing 12-4. PROC SGPLOT Point-Label Plot

PROC SGPLOT DATA = class_point_ods;

SCATTER Y = height X = weight / GROUP = sex;

SCATTER Y = height X = weight2 / GROUP = sex MARKERCHAR = name;
RUN;

Bar Labels

You can label bars with simple plot options in SAS/GRAPH, but labeling individual bar segments in a
stacked bar chart with SAS/GRAPH requires Annotate code. The sample data for SAS/GRAPH (class_bar)
and ODS Graphics (class_bar_ods) is generated using the following code:

PROC SUMMARY DATA = sashelp.class NWAY;
CLASS age sex;
VAR height;
OUTPUT OUT = class_bar N = count;
RUN;

DATA class_bar_ods;

SET class_bar;
BY age sex;

192

CHAPTER 12 I CONVERTING SAS/GRAPH ANNOTATE TO ODS GRAPHICS

LENGTH ccount $1;
RETAIN total count .;
ccount = STRIP(PUT(count, 1.));
IF FIRST.age THEN DO;
total_count = 0;
count_ods = count - 0.5;
END;
ELSE DO;
count_ods = count;
END;
total_count + count;
total count ods = total count - 0.5;
IF sex = 'F' THEN total_count_odsf = total count ods;
ELSE total count_odsm = total count_ods;
RUN;

SAS/GRAPH from SAS 9.2

Bar-label plots can be created using PROC GCHART and Annotate, as shown in Figure 12-5. See Listing 12-5 for
the SAS plot code.

count SUM
5

111111
1 23 456
Age

Sex mmf mmM

Figure 12-5. Bar-label plot created using PROC GCHART and Annotate in SAS 9.2
193

CHAPTER 12 CONVERTING SAS/GRAPH ANNOTATE TO ODS GRAPHICS

Listing 12-5. PROC GCHART Bar-Label Plot

DATA class_bar_anno;
SET class_bar_ods;

BY age sex;

LENGTH function $8
color $20
position when xsys ysys hsys $1
Xy size 8
5

xsys = '2';

ysys = '2°;

hsys = 'D';

when = 'A’;

size = '8';

color = 'WHITE';
function = 'LABEL';
X = age;
y = total_count;
text = ccount;
position = '8';
OUTPUT;

RUN;

PROC GCHART DATA = class_bar ANNO = class_bar_ anno;

PATTERN1 VALUE = SOLID COLOR = BLUE;

PATTERN2 VALUE = SOLID COLOR = RED;

VBAR age / SUBGROUP = sex TYPE = SUM SUMVAR = count DISCRETE;
RUN;

ODS Graphics from SAS 9.3 (Easy)

The following example uses the VLINE statement to plot a series of point labels, without the points, onto
the vertical bar chart, as shown in Figure 12-6 (see Listing 12-6 for the SAS plot code). The unfortunate side
effect of this technique is that there is no absolute guarantee where the label will be displayed on the bars.

194

CHAPTER 12 I CONVERTING SAS/GRAPH ANNOTATE TO ODS GRAPHICS

5_
3
4 -
2
£ 3
=
L2
=
=
S 24
2 2
1 -
0_
I I 1 1 I I
11 12 13 14 15 16
Age
|Sex BF @3 hﬂ|

Figure 12-6. Point-label plot created using PROC SGPLOT in SAS 9.3

Listing 12-6. PROC SGPLOT Point-Label Plot

PROC SGPLOT DATA = class_bar_ods;
VBAR age / GROUP = sex GROUPORDER = ASCENDING RESPONSE = count STAT = SUM;
VLINE age / GROUP = sex GROUPORDER = ASCENDING RESPONSE = total count_ods STAT = SUM
DATALABEL = ccount DATALABELPOS = DATA
DATALABELATTRS = (COLOR = WHITE WEIGHT = BOLD)
LINEATTRS = (THICKNESS = 0);
RUN;

ODS Graphics from SAS 9.4 (Easy)

SAS 9.4 introduces the SEGLABEL option for VBAR, which lets you place labels in the center of any bar
segment, as shown in Figure 12-7. See Listing 12-7 for the SAS plot code.

195

CHAPTER 12 ' CONVERTING SAS/GRAPH ANNOTATE TO ODS GRAPHICS

count

11 12 13 14 15 16
Age

[sex BEF @ M|

Figure 12-7. Point-label plot created using PROC SGPLOT in SAS 9.4.

Listing 12-7. PROC SGPLOT Point-Label Plot

PROC SGPLOT DATA = class_bar ods;
VBARPARM CATEGORY = age RESPONSE = count / GROUP = sex GROUPORDER = ASCENDING
GROUPDISPLAY = STACK DATALABEL = count
DATALABELPOS = DATA SEGLABEL

SEGLABELATTRS = (COLOR = WHITE WEIGHT = BOLD);
RUN;

Information Boxes

Information boxes are vital to add necessary textual data to graphs. Being able to generate the text and data
as part of the graph program helps ensure that the information displayed is relevant.

196

CHAPTER 12

CONVERTING SAS/GRAPH ANNOTATE TO ODS GRAPHICS

The sample data for SAS/GRAPH and ODS Graphics (class_info and class_info_range) is generated

using the following code:

PROC SORT DATA = sashelp.class OUT = class_info;
BY height weight;
RUN;

PROC SUMMARY DATA = class_info NWAY;
VAR height weight;

OUTPUT OUT = class_info_range MIN = min_height min_weight MAX = max_height max_weight;

RUN;

SAS/GRAPH from SAS 9.2

Information-box plots can be created using PROC GPLOT and Annotate, as shown in Figure 12-8.

See Listing 12-8 for the SAS plot code.

Height
801
Max height=72.0
Max weight=150.0
-
70
+
. +
+
-+
+
+ + +
601 +
+
-++
+ -+
4
50.[""l""l""l""I""I""l""l""l""l""l
50 60 70 80 90 100 110 120 130 140 150
Weight
SE.'X +++F +++|\

Figure 12-8. Information-box plot created using PROC GPLOT and Annotate in SAS 9.2

197

CHAPTER 12 CONVERTING SAS/GRAPH ANNOTATE TO ODS GRAPHICS

Listing 12-8. PROC GPLOT Information-Box Plot

DATA class_info_anno (DROP = min_: max_: :);

SET class_info_range;

%dclanno;

LENGTH text $50;

xsys = '1';

ysys = '1';

hsys = '3';

when = 'A’;

%RECT(5, 95, 40, 80, BLACK, 1, 1);

%LABEL(10, 90, "Max height=" || STRIP(PUT(max_height, 8.1)), BLACK, 0, 0, 3, Arial, 6);

%LABEL(10, 85, "Max weight=" || STRIP(PUT(max_weight, 8.1)), BLACK, 0, 0, 3, Arial, 6);
RUN;

PROC GPLOT DATA = class_info ANNO = class_info_anno;
PLOT height * weight = sex;
RUN;

ODS Graphics from SAS 9.3 (Difficult)

This code uses the Annotate facility introduced to ODS Graphics in SAS 9.3, as shown in Figure 12-9.
See Listing 12-9 for the SAS plot code.

+
70 + Max height=72.0
Max weight=150.0 +
® +
65 o o +
+
- + °© o
=
(=]
‘D
I 60+ (o]
+
|+
o ©O
55 -
o
50 +
I I I I I
60 80 100 120 140
Weight
[Sex OF + M|

Figure 12-9. Information-box plot created using PROC SGPLOT and SGANNO in SAS 9.3

198

CHAPTER 12 I CONVERTING SAS/GRAPH ANNOTATE TO ODS GRAPHICS

Listing 12-9. PROC SGPLOT Information Box Plot

DATA class_info_sganno (DROP = min_: max_: _:);
SET class_info_range;
LENGTH label $50;
drawspace = 'DATAPERCENT';
width = 40;
anchor = 'TOPLEFT';
function = 'RECTANGLE';

height = 15;
X1 =5;
yl = 95;

linecolor = 'BLACK';
linethickness = 1;
OUTPUT;
anchor = 'LEFT';
textsize = 8;
height = .;
function = 'TEXT';
label = "Max height=" || STRIP(PUT(max_height, 8.1));
x1 = 10;
yl = 90;
OUTPUT;
function = '"TEXT';
label = "Max weight=" || STRIP(PUT(max_weight, 8.1));
x1 = 10;
yl = 85;
OUTPUT;
RUN;

PROC SGPLOT DATA = class_info SGANNO = class_info_sganno;
SCATTER X = weight Y = height / GROUP = sex;
RUN;

ODS Graphics from SAS 9.2 (Difficult)

If you prefer to use the layering techniques in ODS Graphics, you can achieve the same annotation by
plotting the information box and the text inside as separate overlaid plots, as shown in Figure 12-10.
See Listing 12-10 for the SAS plot code.

199

CHAPTER 12 = CONVERTING SAS/GRAPH ANNOTATE TO ODS GRAPHICS

+
70 Max height=72.0
Max weight=150.0 +
® +
65 0
o +
+
- + ° o
=
o
EE 60 o
+
++
o ©
55
(o}
50
T I] I I
60 80 100 120 140
Weight
ISex OF + M # |

Figure 12-10. Information-box plot created using PROC SGPLOT and extra data in SAS 9.2

Listing 12-10. PROC SGPLOT Information-Box Plot

DATA class_info_box (DROP = min_: max_: _:);
SET class_info_range;
LENGTH text $50;

xbox = 5;
ybox = 95;
OUTPUT;
xbox = 45;
ybox = 95;
OUTPUT;
xbox = 45;
ybox = 80;
OUTPUT;
xbox = 5;
ybox = 80;
OUTPUT;
xbox = 5;
ybox = 95;
OUTPUT;

200

CHAPTER 12 I CONVERTING SAS/GRAPH ANNOTATE TO ODS GRAPHICS

xbox = .;

ybox = .;

xtext = 25;

ytext = 90;

text = "Max height=" || STRIP(PUT(max_height, 8.1));
OUTPUT;

xtext = 25;

ytext = 85;

text = "Max weight=" || STRIP(PUT(max_weight, 8.1));
OUTPUT;

RUN;

DATA class_info_ods;
SET class_info
class_info_box
5

RUN;

PROC SGPLOT DATA = class_info_ods;
SCATTER X = weight Y = height / GROUP = sex;
SERIES X = xbox Y = ybox / LINEATTRS = (COLOR = BLACK) X2AXIS Y2AXIS;
SCATTER X = xtext Y = ytext / MARKERCHAR = text MARKERCHARATTRS = (COLOR = BLACK)
X2AXIS Y2AXIS;
XAXIS OFFSETMIN = 0.02 OFFSETMAX = 0.02;
X2AXIS OFFSETMIN = 0 OFFSETMAX = 0 MIN = 0 MAX = 100
DISPLAY = (NOLABEL NOTICKS NOVALUES);
Y2AXIS MIN = 0 MAX = 100 DISPLAY = (NOLABEL NOTICKS NOVALUES);
RUN;

ODS Graphics from SAS 9.2 (Easy)

There is an ODS Graphics plotting statement that can create an information box, but it requires you to set up
a specific syntax in a macro variable, as shown in Figure 12-11. See Listing 12-11 for the SAS plot code.

201

CHAPTER 12 = CONVERTING SAS/GRAPH ANNOTATE TO ODS GRAPHICS

Max height=72.0 @
70 - Max weight=150.0
0
& o)
65 ©
o o
o
= o © o
h=y
i
I 60 O
o
R
o ©
55
fo
50
60 80 100 120 140
Weight

Sex OF OM

Figure 12-11. Information-box plot created using PROC SGPLOT and the INSET statement in SAS 9.2

Listing 12-11. PROC SGPLOT Information-Box Plot

DATA NULL_;
SET class_info_range;
CALL SYMPUT('inset', '"Max height=" || STRIP(PUT(max_height, 8.1)) || '"' ||
L
""Max weight=" || STRIP(PUT(max_weight, 8.1)) || '"');
RUN;;

PROC SGPLOT DATA = class_info;
SCATTER X = weight Y = height / GROUP = sex;
INSET &inset. / BORDER POSITION = TOPLEFT;
RUN;

202

CHAPTER 12 I CONVERTING SAS/GRAPH ANNOTATE TO ODS GRAPHICS

Conclusions

Generating plots using ODS Graphics is based on the very simple application of graph layers, where
individual graphs are drawn on top of each other to create the finished plot:

Error bars can be generated by plotting a SCATTER plot with YERRORUPPER= and
YERRORLOWER= options on top of, or below, a SERIES plot from SAS 9.2.

Point labels can be generated by plotting the labels with a second SCATTER plot
with MARKERCHAR options for the text, where the x-coordinates are offset to improve
readability from SAS 9.2.

Bar labels can be generated by plotting the labels with a VLINE plot on top of a VBAR
chart in SAS 9.3, although the positioning of the labels may be offset slightly. In

SAS 9.4, you can generate bar labels more precisely by using SEGLABEL options with a
VBARPARM chart.

Information boxes can be generated with the SGANNO= option of PROC SGPLOT in

SAS 9.3, which is the ODS Graphics equivalent of Annotate. However, by calculating
the location of the box corners and the text, you can draw a similar information box
with more flexibility in SAS 9.2 using a simple input data set containing extra data
coordinates, an extra SERIES statement for the box, and an extra SCATTER statement
with MARKERCHAR options for the text. The final alternative is to build the information
box in a macro variable and use an INSET statement to render it.

203

CHAPTER 13

Customizing Graph Templates W,

Previous chapters have discussed a variety of methods for generating graph templates. However, most of the
generated templates are usable only for specific applications, rather than for multiple uses. This chapter goes
more deeply into the structure and syntax of graph templates, so you can update the generated templates to
make them more generally applicable.

Structure and Syntax

It is a fact of life for template programmers that until you are aware of what templates can do, you will
struggle to develop useful template programs. The following sections explain the structure of graph
templates and then expand on the syntax.

Structure

The basic Graph Template Language (GTL) is made up of nested structures, including LAYOUT statements
and PLOT statements. The nested structure of a graph template is illustrated in Figure 13-1.

205

CHAPTER 13 ' CUSTOMIZING GRAPH TEMPLATES

PROC TEMPLATE;

DEFINE STATGRAPH name; /*create the template®/
DYNAMIC name(s); /*define any parameters (optional)*/
MVAR name(s); /*define character macro variables used by name (optional)*/
NMVAR namef(s); /*define numeric macro variables used by name (optional)*/

BEGINGRAPH; /*start the graph (new in SAS 9.21)*/
ENTRYTITLE title; /*create a title (repeated for additional titles)*/

LAYOUT /*at least one layout statement is required*/

LAYOUT /*nested layout statements (optional)*/

Any plot statements, including titles, graph areas, footnotes, etc.

ENDLAYOUT;

Any plot statements, including titles, graph areas, footnotes, etc.

ENDLAYOUT;

ENTRYFOOTNOTE footnote; /*create a footnote (repeated for additional footnotes)*/
ENDGRAPH;

END;
RUN;

Figure 13-1. The nested structure of a graph template

LAYOUT statements include the following styles:

206

LAYOUT GRIDDED and LAYOUT DATAPANEL: Allow you to create a grid of graph cells
with the same dimensions and properties (see Figure 13-2)

LAYOUT LATTICE and LAYOUT DATALATTICE: Allow you to create a grid of graph cells
with different dimensions and properties (see Figure 13-3)

LAYOUT OVERLAY (or LAYOUT PROTOTYPE inside LAYOUT DATALATTICE and LAYOUT
DATAPANEL): Lets you to create a single graph cell with one or more overlaid plots
(see Figure 13-4)

CHAPTER 13 ' CUSTOMIZING GRAPH TEMPLATES

Figure 13-2. The arrangement of cells in LAYOUT GRIDDED and LAYOUT DATAPANEL

Figure 13-3. The arrangement of cells in LAYOUT LATTICE and LAYOUT DATALATTICE

o
70 H &
8
65 - o ©
ogo
60 - 8
%8 o
55 -
(=]
50 4

50 55 60 65 70
Figure 13-4. A cell in LAYOUT OVERLAY and LAYOUT PROTOTYPE

207

CHAPTER 13 CUSTOMIZING GRAPH TEMPLATES

PLOT statements include the following:

SERIESPLOT: Allows you to create a plot of connected points (see Figure 13-5)
SCATTERPLOT: Lets you create a plot of symbols at specified points (see Figure 13-6)

NEEDLEPLOT: Allows you to create a plot of vertical lines joining the horizontal zero
axis line to each point (see Figure 13-7)

REFERENCELINE: Lets you draw a line on the graph parallel with the x-axis or y-axis
(see Figure 13-8)

LINEPARM: Allows you to draw a line on the graph with a specified starting position
and slope (see Figure 13-9)

DISCRETELEGEND: Lets you create a legend (see Figure 13-10)

Weight

140

120 4

100 -

80

55 60 65 70
Height

Figure 13-5. A SERIESPLOT example

208

CHAPTER 13 ' CUSTOMIZING GRAPH TEMPLATES

L+
140
o
[+]
120 o
o o o
b=
E’ 100 ° °° o
[+]
o &] o
80 -
[+]
60 -
=]
50 55 60 85 70
Height
Figure 13-6. A SCATTERPLOT example
150 -
125 4
100
=
=
= 75
H
50 -
25
o4 . T . .
50 55 60 85 70
Height

Figure 13-7. ANEEDLEPLOT example

209

CHAPTER 13 ' CUSTOMIZING GRAPH TEMPLATES

140 4
o
[+]
120 4
) o o
]
[+ +]
5 100 ° o
=2
o
o & < o
80
[+]
60
(2]
T T T T
50 55 60 65 70
Height

Figure 13-8. A vertical and horizontal REFERENCELINE example

140
o
~
\\'\..‘_ o
120 - ~—
““x‘ o o ©
2,, “‘x oo
= 100+ o ~— o
H T~
0 o & o o M‘“H‘...
4) .“‘“»\M
60
o
T T T T T
50 55 60 65 70
Height

Figure 13-9. A LINEPARM example

210

CHAPTER 13 ' CUSTOMIZING GRAPH TEMPLATES

140

120

100 4

Weight

80+

60

50 55 60 65 70

Figure 13-10. A DISCRETELEGEND example

Template Syntax

The following sections provide details of specific template syntax that is used later in this chapter.

What Does DYNAMIC Do?

If you are familiar with SAS macro programming, then you will notice that the DYNAMIC statement in a
template provides functionality similar to the list of parameters in parentheses supplied to a macro. For
example
DYNAMIC _varl _var2 _var3;

This is referenced in PROC SGRENDER as follows:

DYNAMIC _varl = "age" _var2 = "height" _var3 = "sex";

The only major difference between macro parameters and DYNAMIC variables is that it is not possible to
set default values for DYNAMIC variables.

Specifying Titles and Footnotes

Title and footnote parameters are necessary for flexible templates. The generated template includes a single
ENTRYTITLE statement. For example:

ENTRYTITLE 'This is a title';
ENTRYFOOTNOTE 'This is a footnote';

211

CHAPTER 13 CUSTOMIZING GRAPH TEMPLATES

This may not be sufficient in all cases; but, fortunately, any ENTRYTITLE and the corresponding
ENTRYFOOTNOTE statement with no associated text are ignored, so a template can include the maximum
reasonable number of both statements. The following code shows two titles:

ENTRYTITLE 'Title A';
ENTRYTITLE;
ENTRYTITLE 'Title C';

You can insert a blank title by using an empty string. The following code shows three titles, with the
second title blank:

ENTRYTITLE 'Title A';
ENTRYTITLE ' ';
ENTRYTITLE 'Title C';

The default formatting of the text from these statements is controlled by the current ODS style.

Specifying Axes and Legends

Unlike in traditional SAS/GRAPH, you don’t usually need to specify axes when plotting with ODS Graphics,
because the default settings based on the data are fairly good. However, when the graphics include more
than one graph panel with a common axis, you may need to remove one of the axes and keep the sizes of the
graph panels consistent.

The LAYOUT statement has options that only show the common axes on the outside edge:

LAYOUT LATTICE / ROWDATARANGE = UNION;
/* common row axes */
LAYOUT LATTICE / COLUMNDATARANGE = UNION;
/* common column axes */

The same is true for secondary axes:

LAYOUT LATTICE / ROW2DATARANGE = UNION;

/* common secondary row axes */
LAYOUT LATTICE / COLUMN2DATARANGE = UNION;

/* common secondary column axes */

COLUMNAXES and ROWAXES

COLUMNAXES and ROWAXES have the same function of replacing column and row axes, respectively, in existing
layouts. They act like additional LAYOUT statements to hold COLUMNAXIS or ROWAXIS statements that specify
the properties of the common axis to be displayed. Note that if there are multiple columns of panels, you can
specify a separate COLUMNAXIS statement for each column.

For example, the following code displays the x-axis below a single column of panels with all the axis ticks,
tick values, and labels shown:

COLUMNAXES;;

COLUMNAXIS / DISPLAY = (LABEL LINE TICKS TICKVALUES);
ENDCOLUMNAXES;

212

CHAPTER 13 ' CUSTOMIZING GRAPH TEMPLATES

You can find an examples of COLUMNAXES in the section “Enhancing a Template: Adding Labels to Points.”

SIDEBAR

It is possible to specify SIDEBAR areas around the graph area using the ALIGN= option, which has four
possible values: TOP, LEFT, RIGHT, and BOTTOM. These areas are located outside the axis areas. By default,

the contents are stretched to fill the entire width of the area, so using SPACEFILL=FALSE is recommended.

A common use of these areas is to move DISCRETELEGEND statements from the LAYOUT OVERLAY area to below
all the panels. Here’s an example:

SIDEBAR / ALICN = BOTTOM SPACEFILL = FALSE;
DISCRETELEGEND "scatter" / TITLE = _grouplabel ORDER = ROWMAJOR
BORDER = TRUE BORDERATTRS = (COLOR = BLACK);

ENDSIDEBAR;

This code generates the legend shown in Figure 13-11.

+ DESK- 181 190 191 189 190 196 198 196 205 198 203 209 202 213 205 215
=5
2 CHAIR-{191 193 192 194 185 180 202 188 207 208 206 208 204 198 218 202
o BED -{196 185 202 182 202 191 195 187 200 201 214 204 214 210 205 200
5 10 15 20
Quarter

[Product o BED o CHAIR o DESK|

Figure 13-11. A SIDEBAR legend with SPACEFILL=FALSE

If you use SPACEFILL=TRUE, which is the default setting, the generated legend changes to the one shown
in Figure 13-12.

+ DESK- 191 190 191 189 190 196 198 196 205 198 203 209 202 213 205 215
=
T CHAIR- 191 103 162 104 185 180 202 188 207 208 208 206 204 198 218 202
o BED - 198 185 202 182 202 191 195 187 200 201 214 204 214 210 205 200
5 10 15 20
Quarter

| Product © BED o CHAIR o DESK

Figure 13-12. A SIDEBAR legend with SPACEFILL=TRUE

You can find another example of SIDEBAR in the section “Enhancing a Template: Adding Labels to Points.”

213

CHAPTER 13 CUSTOMIZING GRAPH TEMPLATES

IF

You can use the IF statement to conditionally include a single template statement that can be used in this
template and that is followed by an ENDIF statement. The IF clause can include most Data step functions,
such as EXISTS() which checks whether a variable exists. Note that the IF clause is never followed by a semi-
colon and utilizes standard SAS WHERE statement expressions:

IF (EXISTS(age) AND EXISTS(weight))
SCATTERPLOT X = age Y = weight;
ENDIF;

IF can also be used to conditionally include multiple statements, like SCATTERPLOT and SERIESPLOT
statements, where the first statement is effectively included in the IF construct. Both SCATTERPLOT and
SERIESPLOT are included within the IF ... ENDIF clause:

IF (EXISTS(age) AND EXISTS(weight))
SCATTERPLOT X = age Y = weight;
SERIESPLOT X = age Y = weight;

ENDIF;

There is also the option of an ELSE clause, which has a syntax similar to IF, but no ELSE IF is currently
available. Here is an example that uses SCATTERPLOT, SERIESPLOT, and NEEDLEPLOT statements:

IF (EXISTS(scatter))
SCATTERPLOT X = age Y = weight;
SERIESPLOT X = age Y = weight;

ELSE
NEEDLEPLOT X = age Y = weight;

ENDIF;

You can find more examples of IF clauses in the sections “Adding Conditional Features: Handling
Missing Arguments” and “Adding Conditional Features: Optional Reference Lines.”

Creating Your Own Templates

Graph templates are not easy to simplify, so it is recommended that you use a graph template generator
(such as ODS Graphics Designer, PROC SGPLOT, or PROC SGSCATTER) to create a basic graph template. You
can then manually improve the template to fit your requirements.

It is important to remember when developing your own graph templates that they can only be applied
to a single SAS data set, so planning the input data set can be almost as important as designing the template.
Therefore, if the graph template requires data from several different input data sets, these data sets must
be combined into a single data set before rendering. Note that missing values should not affect the graph’s
appearance, provided the data is sorted appropriately.

Graph templates let you overlay many different plots within the same axes. This makes the templates
easier to generalize with parameters rather than with hard-coded values.

Customizing PROC SGSCATTER Graphs

PROC SGSCATTER graphs can be limited in their basic forms, so it’s useful to be able to take a simple graph
and enhance it to create a more relevant graph. The following sections explain how to add new cell to a basic
PROC SGSCATTER graph.

214

CHAPTER 13 ' CUSTOMIZING GRAPH TEMPLATES

Generating a Simple Template with PROC SGSCATTER

PROC SGSCATTER is an ideal starting point to develop multipanel graphs where the individual plots are
similar but not identical. You can use the PLOT statement to plot a series of different combinations of
variables from the same data set as scatter plots in separate panels. The following example demonstrates the
basic code:

PROC SGSCATTER DATA = sashelp.class
TMPLOUT = 'sgscatter.sas';
TITLE 'Class details';
PLOT (height weight) * age height * weight / GROUP = sex;
RUN;

Note that this code produces three scatter plots: height*age, weight*age, and height*weight. By
default, PROC SGSCATTER arranges plots in a 2 x 2 grid, so the three plots should appear in three of the four
cells. The GROUP= option is equivalent to the y*x=group syntax from PROC GPLOT, but it’s applied to every plot.

The generated template code (from SAS 9.3; only the DESIGNWIDTH= and DESIGNHEIGHT= options are
missing in SAS 9.2), stored in sgscatter.sas, is as follows:

proc template;
define statgraph sgscatter;
begingraph / designwidth=640 designheight=640;
EntryTitle "Class details" /;
layout gridded;
layout lattice / pad=(top=5) rowgutter=10
columngutter=10 columns=2;
ScatterPlot X=Age Y=Height /
primary=true Group=Sex NAME="PLOT";
ScatterPlot X=Age Y=Weight / primary=true Group=Sex;
ScatterPlot X=Weight Y=Height /
primary=true Group=Sex;
endlayout;
Discretelegend "PLOT" / order=rowmajor title="Sex";
endlayout;
endgraph;
end;
Tun;

The graph, generated with the SAS-supplied ODS Journal style, which has been designed for
publications, is shown in Figure 13-13.

215

CHAPTER 13 CUSTOMIZING GRAPH TEMPLATES

Class details
o o
70 4 o 140 4
o
8 o
65 o + 120 H
+ ° .
= o ? + =
® 60 5 100 o L, "
T 7 ; = +
o o
. . 80 & "
55
N 60
50 +
T T T T T T T T T T T T
1 12 13 14 15 16 11 12 13 14 15 16
Age Age
o
70
o
e o
65 - L 0
o
= o o+
2
£ 604 + o
oo
+ +
55
.
50
T T T T T
60 80 100 120 140
Weight
Sex oM +F

Figure 13-13. PROC SGSCATTER graph

Adding DYNAMIC Parameters to the Template

After being reformatted to match the other SAS code in this chapter, the generated template is as follows.
Hard-coded items to be converted to parameters are bolded and the template names are underlined:

PROC TEMPLATE;
DEFINE STATGRAPH sgscatter;
BEGINGRAPH / DESIGNWIDTH = 640 DESIGNHEIGHT = 640;
ENTRYTITLE "Class details" /;
LAYOUT GRIDDED;
LAYOUT LATTICE /
PAD = (TOP = 5) ROWGUTTER = 10
COLUMNGUTTER = 10 COLUMNS=2;
SCATTERPLOT X = Age Y = Height /
PRIMARY = TRUE GROUP = Sex NAME = "plot"
SCATTERPLOT X = Age Y = Weight /

216

CHAPTER 13 ' CUSTOMIZING GRAPH TEMPLATES

PRIMARY = TRUE GROUP = Sex;
SCATTERPLOT X = Weight Y = Height /
PRIMARY = TRUE GROUP = Sex;
ENDLAYOUT;
DISCRETELEGEND "plot" / ORDER = ROWMAJOR TITLE = "Sex";
ENDLAYOUT;
ENDGRAPH;
END;
RUN;

The aim of adding parameters to a template is to allow it to be used with data sets other than the data
set used during its development. The data set variables Age, Height, Weight, and Sex can be replaced with
_vari, var2, var3,and_group. The legend title Sex can also be converted to the parameter grouplabel.
All these new parameters are specified on the DYNAMIC statement:

PROC TEMPLATE;
DEFINE STATGRAPH sgscatter;
DYNAMIC _varl _var2 _var3 _group _grouplabel;
BEGINGRAPH / DESIGNWIDTH = 640 DESIGNHEIGHT = 640;
ENTRYTITLE "Class details" /;
LAYOUT GRIDDED;
LAYOUT LATTICE /
PAD = (TOP = 5) ROWGUTTER = 10
COLUMNGUTTER = 10 COLUMNS = 2;
SCATTERPLOT X = _varil Y = _var2 /
PRIMARY = TRUE GROUP = _group
NAME = "plot";
SCATTERPLOT X = _varl Y = _var3 /
PRIMARY = TRUE GROUP = _group;
SCATTERPLOT X = _var3 Y = _var2 /
PRIMARY = TRUE GROUP = _group;

ENDLAYOUT;
DISCRETELEGEND "plot" / ORDER = ROWMAJOR
TITLE = _grouplabel;
ENDLAYOUT,;
ENDGRAPH;
END;
RUN;

Title and footnote parameters are a necessity for flexible templates. The updated template includes
three ENTRYTITLE and three ENTRYFOOTNOTE statements, with parameters for each one.

This template is being updated to increase its flexibility, so you're encouraged to remove any hard-
coded values. That means DESIGNWIDTH= and DESIGNHEIGHT= should be removed from the BEGINGRAPH
statement.

217

CHAPTER 13 CUSTOMIZING GRAPH TEMPLATES

Replacing the Template Name

Finally, ODS Graphics Designer and each of the procedures give their generated templates a name. The
procedures use specific names that, without alteration, would restrict the number of templates available
for use. It is therefore strongly recommended that you change the default template name—in this case,
sgscatter—to something a little more descriptive (such as scatter 2x2):

PROC TEMPLATE;
DEFINE STATGRAPH scatter 2x2;
DYNAMIC _varl _var2 _var3 _group _grouplabel
_titlex _title2 _title3
_footnote1 _footnote2 _footnote3;
BEGINGRAPH /;
ENTRYTITLE _title1 /;
ENTRYTITLE _title2 /;
ENTRYTITLE _title3 /;
LAYOUT GRIDDED;
LAYOUT LATTICE /
PAD = (TOP = 5) ROWGUTTER = 10
COLUMNGUTTER = 10 COLUMNS = 2;
SCATTERPLOT X = _vari Y = _var2 /
PRIMARY = TRUE GROUP = _group
NAME = "plot";
SCATTERPLOT X = _vari1 Y = _var3 /
PRIMARY = TRUE GROUP = _group;
SCATTERPLOT X = _var3 Y = _var2 /
PRIMARY = TRUE GROUP = _group;

ENDLAYOUT;
DISCRETELEGEND "plot" / ORDER = ROWMAJOR
TITLE = _grouplabel;

ENDLAYOUT;

ENTRYFOOTNOTE _footnote1 /;

ENTRYFOOTNOTE _footnote2 /;

ENTRYFOOTNOTE _footnote3 /;

ENDGRAPH;
END;
RUN;

Having converted the generated template to use parameters, it is a good idea to test it to make sure it
creates the intended graph from sashelp.class:

PROC SGRENDER DATA = sashelp.class
TEMPLATE = 'scatter 2x2';
DYNAMIC varl = 'Age' var2 = 'Height' var3 = 'Weight'
_group = 'Sex' _grouplabel = 'Sex'
_titlel = 'Class details’;
RUN;

218

CHAPTER 13 ' CUSTOMIZING GRAPH TEMPLATES

The template has been generalized and made more useful, and it is now ready to be used with another
SAS data set (for example, sashelp.cars):

PROC SGRENDER DATA = sashelp.cars
TEMPLATE = 'scatter 2x2';
DYNAMIC _varl = 'EngineSize' _var2 = 'Horsepower'
_var3 = 'MPG_City'
_group = 'Type' grouplabel = 'Type'
_title1 = 'Car comparison';

RUN;

The graph generated with the ODS Journal style is shown in Figure 13-14. Note that the variable labels
in sashelp.cars are automatically used as the individual plot axis labels.

Car comparison

500 4) - % 604 ; =
: 400 - . * = 07,
-] EN] _
2 300 . gﬁamﬂ ° s 407,
@ ® ° % L L L) i»
5 X ok % 'I" # a 309 %
£ 200x % %y = :
“‘3 a 204, x %‘ p
1004 &% 10 " dhwy x
I Ll T I T T I T
2 4 6 8 2 4 6 8
Engine Size (L) Engine Size (L)
500 { =
x
4004 e
g o
2 3009 A
@
£ 200
100 - A, :
I

10 20 30 40 50 60
MPG (City)
[Type o SUV + Sedan x Sports a Wagon n Truck I Hybrid |

Figure 13-14. A graph generated with the modified PROC SGSCATTER graph template using sashelp. cars

219

CHAPTER 13 CUSTOMIZING GRAPH TEMPLATES

Enhancing a Template: Adding a New Graph

This template currently has four panels and four variables, but only three plots. The legend only includes a
list of values for the group variable, so a useful enhancement would be to include a bar chart of the group
frequencies:

PROC TEMPLATE;
DEFINE STATGRAPH scatter 2x2_bar;
DYNAMIC _varl _var2 _var3 _group _grouplabel
_titler _title2 _title3
_footnotel footnote2 _footnote3;
BEGINGRAPH /;
ENTRYTITLE _title1 /;
ENTRYTITLE _title2 /;
ENTRYTITLE _title3 /;
LAYOUT GRIDDED;
LAYOUT LATTICE /
PAD = (TOP = 5) ROWGUTTER
COLUMNGUTTER = 10 COLUMNS
SCATTERPLOT X = _varl Y = _var2 /
PRIMARY = TRUE GROUP = _group NAME = "plot";
SCATTERPLOT X = varl Y = _var3 /
PRIMARY = TRUE GROUP = _group;
SCATTERPLOT X = var3 Y = _var2 /
PRIMARY = TRUE GROUP = _group;
BARCHART X = _group /
PRIMARY = TRUE STAT = FREQ ORIENT = HORIZONTAL;
ENDLAYOUT;
DISCRETELEGEND "plot" / ORDER = ROWMAJOR TITLE = _grouplabel;
ENDLAYOUT;
ENTRYFOOTNOTE _footnotel /;
ENTRYFOOTNOTE _footnote2 /;
ENTRYFOOTNOTE _footnote3 /;
ENDGRAPH;
END;
RUN;

10
2;

The template is now ready for use:

PROC SGRENDER DATA = sashelp.cars
TEMPLATE = 'scatter_2x2 bar';
DYNAMIC _varl = 'EngineSize' var2 = 'Horsepower' var3 = 'MPG City'
_group = 'Type' _grouplabel = 'Type'
_title1l = 'Car comparison';
RUN;

220

CHAPTER 13

The graph generated with the ODS Journal style is shown in Figure 13-15.

CUSTOMIZING GRAPH TEMPLATES

Car comparison
500 N - x 60 ; 1
: 400 - . * = 501,
-] . t 2 - 40 -
.,8,' 300 . ..;i‘gﬁagaﬂ o % 0 §’+
] ot o X a 304 &
£ 200-~£2ﬁl& JF = :ga
- T x
TR
100 4 #°3 10- TRt b 8 .
I Ll T I T T T T
2 4 6 8 2 4 6 8
Engine Size (L)
500 Hybrid -
s 400 Truck < :‘
% 300 g Wagon L]
@ 200 = Sports |
o -
T Sedan
I I I T T T L I T T I Ll
10 20 30 40 50 60 0 50 100 150 200 250
MPG (City) Frequency
[Type o SUV + Sedan x Spors a Wagon m Truck I Hybrid |

Figure 13-15. A graph generated with the modified PROC SGSCATTER graph template including an extra bar
chart using sashelp.cars

Adding Conditional Features: Handling Missing Arguments

As it stands, this template is designed to plot information from four variables in four plots, three scatter plots,
and one bar chart. However, all three variables may not always be used in the scatter plots; how does this
template cope with just two scatter-plot variables?

PROC SGRENDER DATA = sashelp.cars
TEMPLATE = 'scatter_2x2 bar';
DYNAMIC _varl = 'EngineSize' _var2 = 'Horsepower'
_group = 'Type' _grouplabel = 'Type'
_title1 = 'Car comparison';
RUN;

Unfortunately, this code gives the following log warnings:
WARNING: The SCATTERPLOT statement will not be drawn because one or morxe
of the required arguments were not supplied.

WARNING: The SCATTERPLOT statement will not be drawn because one or more
of the required arguments were not supplied.

221

CHAPTER 13 CUSTOMIZING GRAPH TEMPLATES

But the graph is still created, as shown in Figure 13-16.

Car comparison

500 - Hybrid
x
* Truck
400 -]
x L]
§ . 1,:‘, "g Wagon - \
S 3004 . o e N 2
@ ¥ u ‘n o8 -
: T =
£ x 4t "iw Sports -
XX xj;:t + §
200 x ¥ gws, diawn
A S
- *
‘:“ - Sedan
o
100 &F
H SUV <
I L T I I Ll Ll I T
2 4 6 8 0 50 100 150 200 250
Engine Size (L) Frequency
[Type o SUV + Sedan x Spors a Wagon m Truck I Hybrid |

Figure 13-16. A graph generated with the modified PROC SGSCATTER graph template including an extra bar
chart using sashelp. cars, but with only two cells populated

Omitting the _group=and _grouplabel= values as shown here
PROC SGRENDER DATA = sashelp.cars
TEMPLATE = 'scatter_2x2_bar';
DYNAMIC varl = 'EngineSize' var2 = 'Horsepower' var3 = 'MPG_City'
_title1l = 'Car comparison';
RUN;

which produces the following log warning:

WARNING: The BARCHART statement will not be drawn because one or more
of the required arguments were not supplied.

However, the graph in Figure 13-17 is created, with the unexpected legend label.

222

CHAPTER 13 ' CUSTOMIZING GRAPH TEMPLATES

Car comparison

500 A ° ° 604 5 o
[+]
: 400 - o ° — 09,
-
8 B, Bo = 404
i o o8 o%Ebo 8 O 35 Bz
o o o P P s
£ 200-o§ @ =
o o 20—°
do 8
100-&50 104 %Nﬂq . o

2 4 6 8 2 4 6 8
Engine Size (L)

500 4

400 4

300 +

Horsepower

200 +

100 +

MPG (City)

© Horsepower

Figure 13-17. A graph generated with the modified PROC SGSCATTER graph template using sashelp.cars
with the group= and grouplabel= values omitted

You can prevent these log warnings and unexpected legend labels by using conditional processing
statements in the template. The IF statement can be used to conditionally include a single template
statement, which can be used in this template. However, IF cannot be used to conditionally include multiple
statements, like LAYOUT clauses, so its usefulness may be limited.

To prevent the warning messages, you can include the PLOT statements only when all the required
variables are present. Note that the IF clause is never followed by a semicolon and uses standard SAS WHERE
statement expressions:

IF (EXISTS(_varl) AND EXISTS(var2))
SCATTERPLOT X = _varl Y = _var2 /
PRIMARY = TRUE GROUP = _group NAME = "plot";
ENDIF;
IF (EXISTS(vari) AND EXISTS(var3))
SCATTERPLOT X = _varl Y = _var3 /
PRIMARY = TRUE GROUP = _group;
ENDIF;
IF (EXISTS(var3) AND EXISTS(var2))
SCATTERPLOT X = var3 Y = _var2 /
PRIMARY = TRUE GROUP = _group;
ENDIF;
IF (EXISTS(group))
BARCHART X = _group /
PRIMARY = TRUE STAT = FREQ ORIENT = HORIZONTAL;

223

CHAPTER 13 CUSTOMIZING GRAPH TEMPLATES

ENDIF;
IF (EXISTS(group))

DISCRETELEGEND "plot" / ORDER = ROWMAJOR TITLE = grouplabel;
ENDIF;

The EXISTS() function also works well here, because when a DYNAMIC parameter is not populated by
PROC SGRENDER, it simply “drops out” and ceases to exist. This produces a more robust template:

PROC TEMPLATE;
DEFINE STATGRAPH scatter 2x2 bar robust;
DYNAMIC _varl _var2 _var3 _group _grouplabel
_titler title2 _title3
_footnotel footnote2 _footnote3;
BEGINGRAPH /;
ENTRYTITLE _title1 /;
ENTRYTITLE _title2 /;
ENTRYTITLE _title3 /;
LAYOUT GRIDDED;
LAYOUT LATTICE /
PAD = (TOP = 5) ROWGUTTER = 10
COLUMNGUTTER = 10 COLUMNS = 2;
IF (EXISTS(vari) AND EXISTS(var2))
SCATTERPLOT X = varl Y = _var2 /
PRIMARY = TRUE GROUP = _group
NAME = "plot";

ENDIF;
IF (EXISTS(_ vari) AND EXISTS(var3))
SCATTERPLOT X = varl Y = _var3 /

PRIMARY = TRUE GROUP = _group;
ENDIF;
IF (EXISTS(_var3) AND EXISTS(_var2))
SCATTERPLOT X=_var3 Y=_var2 /
PRIMARY = TRUE GROUP = _group;
ENDIF;
IF (EXISTS(_group))
BARCHART X = _group /
PRIMARY = TRUE STAT = FREQ
ORIENT = HORIZONTAL;
ENDIF;
ENDLAYOUT,;
IF (EXISTS(_group))
DISCRETELEGEND "plot" /
ORDER = ROWMAJOR TITLE = _grouplabel;
ENDIF;
ENDLAYOUT;
ENTRYFOOTNOTE _footnote1 /;
ENTRYFOOTNOTE _footnote2 /;
ENTRYFOOTNOTE _footnote3 /;
ENDGRAPH;
END;
RUN;

224

The following PROC SGRENDER code uses the robust template:

PROC SGRENDER DATA = sashelp.cars
TEMPLATE = 'scatter_2x2_bar_robust';
'EngineSize' _var2 = 'Horsepower' _var3 = 'MPG_City'

DYNAMIC _var1

CHAPTER 13 ' CUSTOMIZING GRAPH TEMPLATES

_titlel = 'Car comparison';
RUN;
Now the graph shown in Figure 13-18 is created, without the unnecessary legend and without any
log warnings.
Car comparison
500 B o ° 6804 o o
o
_ 400 o ° %01,
z 8 82 g w0
2 300 ° of s%gmﬂg ° S
@ °. 0 pdg° o @
5 o Dnc’ o a; F o 3049 go
£ 2000 s%@ @ =
a o
: 8o 8
100 né %9 L 8 °
o o
T T T T T T T T
2 4 6 8 2 4 6 8
Engine Size (L)
500
.~ 4004
[
g
2 300
[
@
£ 200
100 °

MPG (City)

Figure 13-18. A graph generated with the modified PROC SGSCATTER graph template using sashelp. cars,
with robust error checking

Customizing PROC SGPLOT Templates

The previous PROC SGRENDER code with the full set of parameters still produces the full graph, as before.

PROC SGPLOT can produce a wide range of single-cell graphs. But adding an additional cell to contain a
legend requires template code, as explained next.

225

CHAPTER 13 CUSTOMIZING GRAPH TEMPLATES

Generating a Simple Template with PROC SGPLOT

PROC SGPLOT is intended to produce single plots. Both PROC SGPANEL and PROC SGSCATTER can produce
single plots, but that is not what they are designed to do, and the options available in these procedures are
more limited. All three procedures use the current ODS style to supply information regarding color, fonts,
sizes, and patterns to display in the plot being generated. This may not be exactly what is required, so

customizations can override these defaults.

The following code uses the plotdata_ods data set created earlier to generate one or more overlaid

lines with error bars at each point and a horizontal reference line:

PROC SGPLOT DATA = plotdata_ods
TMPLOUT = 'sgplot.sas';
TITLE 'Standard Error of Sales';
SCATTER X = visitnum Y = valuel /
GROUP = product YERRORLOWER = valuel lower
YERRORUPPER = valuel_upper;
SERIES X = visitnum Y = valuel / GROUP = product;
REFLINE 1100 / AXIS =Y;
RUN;

<<

This produces the graph shown in Figure 13-19.

Standard Error of Sales

1400

1300

valuel

1100

1000

T T T T

5 10 15 20
Quarter
[Product o BED + CHAIR x DESK]

Figure 13-19. A PROC SGPLOT graph

226

CHAPTER 13 ' CUSTOMIZING GRAPH TEMPLATES

The following template is also generated. It will be used as the starting point for customization:

proc template;
define statgraph sgplot;
begingraph /;
EntryTitle "Standard Error of Sales" /;
layout overlay;

ScatterPlot X=visitnum Y=valuel /
primary=true Group=PRODUCT
YErrorUpper=valuel upper YErrorLower=valuel lower
LegendLabel="value1" NAME="SCATTER";

SeriesPlot X=visitnum Y=valuel /
Group=PRODUCT LegendLabel="value1"
NAME="SERIES";

Referenceline y=1100 / clip=true;

DiscretelLegend "SCATTER"/ title="Product";

endlayout;
endgraph;
end;
run;

Adding DYNAMIC Parameters to the Template

After being reformatted to match the other SAS code in this chapter, the generated template is as follows.
Hard-coded items to be converted to parameters are bolded:

PROC TEMPLATE;
DEFINE STATGRAPH sgplot;
BEGINGRAPH /;
ENTRYTITLE "Standaxd Exror of Sales" /;
LAYOUT OVERLAY;
SCATTERPLOT X = visitnum Y = valuel /
PRIMARY = TRUE GROUP = product
YERRORUPPER = wvaluel_upper
YERRORLOWER = valuei_lower
LEGENDLABEL = "waluei" NAME = "scatter";
SERIESPLOT X = visitnum Y = valuel /
GROUP = product LEGENDLABEL = "value1"
NAME = "series";
REFERENCELINE Y = 11200 / CLIP = TRUE;
DISCRETELEGEND "scatter"/ TITLE = "Product";
ENDLAYOUT;
ENDGRAPH;
END;
RUN;

227

CHAPTER 13 CUSTOMIZING GRAPH TEMPLATES

The aim of adding parameters to a template is to allow its use with data sets other than the one used
during its development. The data-set variables Visitnum, Value1, Valuel lower, Valuel_upper, and
Product can be replaced with _xvar, yvari, yvarl lower, yvari upper,and group. The legend title
Product can also be converted to the parameter _grouplabel, and the reference-line value can be converted
to _yintercepta. All these new parameters are specified in the DYNAMIC statement:

PROC TEMPLATE;
DEFINE STATGRAPH sgplot;
DYNAMIC _xvar _yvarl _yvarl lower _yvarl_upper
_group _grouplabel
_yintercepta;
BEGINGRAPH /;
ENTRYTITLE "Standaxd Exror of Sales" /;
LAYOUT OVERLAY;
SCATTERPLOT X = _xwvar Y = _yvarl /
PRIMARY = TRUE GROUP = _group
YERRORUPPER = _yvari_upper
YERRORLOWER = _ywvari_lower
NAME = "scatter";
SERIESPLOT X = _xvar Y = _yvarl /
GROUP = _group NAME="series";
REFERENCELINE Y = _yintercepta / CLIP = TRUE;
DISCRETELEGEND "scatter" / TITLE = _grouplabel;
ENDLAYOUT;
ENDGRAPH;
END;
RUN;

In the same way that the template from PROC SGSCATTER had ENTRYTITLE and ENTRYFOOTNOTE
statements added, this template needs a similar number of titles and footnotes available to users. It is
also reasonable to make this new template unique by updating the template name (for example,
sgplot_dynamic):

PROC TEMPLATE;
DEFINE STATGRAPH sgplot_dynamic;
DYNAMIC _xvar _yvarl _yvarl lower _yvarl_upper
_group _grouplabel
_yintercepta
_title1 _title2 _title3
_footnote1 _footnote2 _footnote3;
BEGINGRAPH /;
ENTRYTITLE _titlea /;
ENTRYTITLE _title2 /;
ENTRYTITLE _title3 /;
LAYOUT OVERLAY;
SCATTERPLOT X = _xvaxr Y = _yvari /
PRIMARY = TRUE GROUP = _group
YERRORUPPER = _yvari_upper
YERRORLOWER = _ywvari_lower
NAME = "scatter";

228

CHAPTER 13 ' CUSTOMIZING GRAPH TEMPLATES

SERIESPLOT X = _xvar Y = _yvarl /
GROUP = _group NAME = "series";

REFERENCELINE Y = _yintercepta / CLIP = TRUE;
DISCRETELEGEND "scatter" / TITLE = _grouplabel;

ENDLAYOUT;

ENTRYFOOTNOTE _footnotel /;

ENTRYFOOTNOTE _footnote2 /;

ENTRYFOOTNOTE _footnote3 /;

ENDGRAPH;
END;
RUN;

Having converted the generated template to use parameters, it is a good idea to test it to make sure it
creates the intended graph from plotdata_ods:

PROC SGRENDER DATA = plotdata_ods
TEMPLATE = 'sgplot_dynamic';
DYNAMIC _xvar = 'Visitnum' _yvarl = 'Value1'

_yvarl lower = 'Valuel lower'
_yvarl upper = 'Valuel upper’
_group = 'Product' _grouplabel = 'Product’
_yintercepta = 1100
_title1 = 'Standard Error of Sales';

RUN;

Enhancing a Template: Adding Labels to Points

There is currently no information about how many data values contribute to each point on the graph.
However, a variable in plotdata_ods (ccount) contains this information in character format, so a useful
enhancement would be to include these values somewhere.

You can draw a separate graph panel with a common x-axis scale below the main graph, so the
values are aligned with the points on the graph, and plot text values as data points in a row per group. The
MARKERCHARACTER= and MARKERCHARACTERATTRS= options of the SCATTERPLOT statement make this very easy
to achieve. The LAYOUT LATTICE statement determines the relative height of each panel in the lattice, and
the _nvaril parameter provides the value to be plotted in the new panel.

Finally, in order to position the legend below the new panel, you move the DISCRETELEGEND statement
into a SIDEBAR located at the bottom of the graph, using the SPACEFILL=FALSE option so the legend is not
stretched across the entire width of the SIDEBAR:

PROC TEMPLATE;
DEFINE STATGRAPH sgplot_marker;
DYNAMIC _xvar _yvarl _yvarl lower _yvarl_upper
_group _grouplabel
_yintercepta
_nhvari
_titler _title2 _title3
_footnotel footnote2 _footnote3;
BEGINGRAPH /;
ENTRYTITLE title1 /;
ENTRYTITLE _title2 /;

229

CHAPTER 13 CUSTOMIZING GRAPH TEMPLATES

ENTRYTITLE _title3 /;
LAYOUT LATTICE /
COLUMNS = 1 ROWS = 2 COLUMNDATARANGE = UNION
ROWWEIGHTS = (0.85 0.15);
LAYOUT OVERLAY;
SCATTERPLOT X = xvar Y = _yvaril /
PRIMARY = TRUE GROUP = _group
YERRORUPPER = _yvarl upper
YERRORLOWER = _yvari lower
NAME = "scatter";
SERIESPLOT X = xvar Y = _yvari /
GROUP = group NAME = "series";
REFERENCELINE Y = _yintercepta / CLIP = TRUE;
ENDLAYOUT;
LAYOUT OVERLAY;
SCATTERPLOT X = xvar Y = _group /
PRIMARY = TRUE GROUP = _group
MARKERCHARACTERATTRS = (COLOR = BLACK)
MARKERCHARACTER = _nvari;

ENDLAYOUT;

COLUMNAXES;;

COLUMNAXIS / DISPLAY = (LABEL LINE TICKS TICKVALUES);

ENDCOLUMNAXES;

SIDEBAR / ALIGN = BOTTOM SPACEFILL = FALSE;
DISCRETELEGEND "scatter" / TITLE = _grouplabel
ORDER = ROWMAJOR;

ENDSIDEBAR;

ENDLAYOUT;
ENTRYFOOTNOTE _footnotel /;
ENTRYFOOTNOTE _footnote2 /;
ENTRYFOOTNOTE _footnote3 /;
ENDGRAPH;
END;
RUN;

The template is now ready for use:

PROC SGRENDER DATA = plotdata_ods
TEMPLATE = 'sgplot_marker';
DYNAMIC xvar = 'Visitnum' _yvarl = 'Value1l'

_yvarl lower = 'Valuel lower'
_yvarl upper = 'Valuel upper’
_group = 'Product' _grouplabel = 'Product’
_yintercepta = 1100
_nvar1 = 'ccount’
_titlel = 'Standard Error of Sales';

RUN;

This code string generates the graph shown in Figure 13-20.

230

CHAPTER 13

Sales (§)

Product

1400

1300

1200

Standard Error of Sales

1100

1000

DESK

CHAIR

181 1860 191 180 180 196 198 186 205 188 203 200 202 213 205 215

191 193 192 194 185 180 202 188 207 208 208 208 204 188 218 202

BED

186 185 202 182 202 191 185 187 2080 201 214 204 214 210 205 200
T T T T

5 10 15 20
Quarter
[Product o BED + CHAIR x DESK]

CUSTOMIZING GRAPH TEMPLATES

Figure 13-20. A graph generated with the PROC SGPLOT graph template including an embedded legend

Adding Conditional Features: Optional Reference Lines

As it stands, this template will always generate a single reference line. But you may need two, three, or even
no reference lines. You can use the IF statement to provide this flexibility by adding two more reference line
parameters, yinterceptb and yinterceptc, and making all the reference lines dependent on values being
specified. This produces a more robust template:

PROC TEMPLATE;
DEFINE STATGRAPH sgplot_count;

ENTR
ENTR
ENTR

DYNAMIC xvar _yvarl _yvarl lower _yvarl upper

_group _grouplabel

_yintercepta _yinterceptb _yinterceptc
_nvarl

_titler _title2 _title3

_footnotel footnote2 footnote3;

BEGINGRAPH /;

YTITLE _title1 /;
YTITLE _title2 /;
YTITLE _title3 /;

LAYOUT LATTICE /

COLUMNS = 1 ROWS = 2 COLUMNDATARANGE = UNION
ROWWEIGHTS = (0.85 0.15);

LAYOUT OVERLAY;

SCATTERPLOT X = _xvar Y = _yvarl /
PRIMARY = TRUE GROUP = _group
YERRORUPPER = _yvaril_upper

231

CHAPTER 13 CUSTOMIZING GRAPH TEMPLATES

YERRORLOWER = _yvari lower
NAME = "scatter";
SERIESPLOT X = xvar Y = _yvarl /
GROUP = _group NAME = "series";
IF (EXISTS(_yintercepta))

REFERENCELINE Y = _yintercepta / CLIP = TRUE;
ENDIF;
IF (EXISTS(_yintercepta))

REFERENCELINE Y = _yinterceptb / CLIP = TRUE;

ENDIF;
IF (EXISTS(_yintercepta))
REFERENCELINE Y = _yinterceptc / CLIP = TRUE;
ENDIF;
ENDLAYOUT,;
LAYOUT OVERLAY;
SCATTERPLOT X = xvar Y = _group /
PRIMARY = TRUE GROUP = _group
MARKERCHARACTERATTRS = (COLOR = BLACK)
MARKERCHARACTER = _nvari;
ENDLAYOUT;
COLUMNAXES;;
COLUMNAXIS / DISPLAY = (LABEL LINE TICKS TICKVALUES);
ENDCOLUMNAXES;
SIDEBAR / ALIGN = BOTTOM SPACEFILL = FALSE;
DISCRETELEGEND "scatter" / TITLE = _grouplabel
ORDER = ROWMAIJOR;

ENDSIDEBAR;
ENDLAYOUT;
ENTRYFOOTNOTE _footnotel /;
ENTRYFOOTNOTE _footnote2 /;
ENTRYFOOTNOTE _footnote3 /;
ENDGRAPH;
END;
RUN;

The previous PROC SGRENDER code, with the same set of parameters, still produces the same graph.

Graph Template Contents

The following templates were generated by the ODS Graphics Designer eatrlier in this book.

Template A

Note that in SAS 9.2 there is no CLUSTERWIDTH= parameter, and the generated code does not include the PROC
SGRENDER step:

proc template;

define statgraph sgdesign;
dynamic _AGE;

begingraph;

232

CHAPTER 13 ' CUSTOMIZING GRAPH TEMPLATES

entrytitle halign=center 'Vertical bar title';
entryfootnote halign=left 'Vertical bar footnote';
layout lattice / rowdatarange=data columndatarange=data
rowgutter=10 columngutter=10;
layout overlay;
barchart x=_AGE / name='bar' stat=freq clusterwidth=1.0;
endlayout;
endlayout;
endgraph;
end;
run;
proc sgrender data=SASHELP.CLASS template=sgdesign;
dynamic _AGE="AGE";
Tun;

Template B

Comparing this new generated template with the original graph Template A, you see that multiple panels are
achieved using LAYOUT DATALATTICE around LAYOUT PROTOTYPE, instead of LAYOUT LATTICE around LAYOUT
OVERLAY:

proc template;
define statgraph sgdesign;
dynamic _AGE _SEX;
dynamic _panelnumber ;
begingraph;
entrytitle halign=center 'Vertical bar title';
entryfootnote halign=left 'Vertical bar footnote';
layout datalattice columnvar=_SEX / cellwidthmin=1 cellheightmin=1
rowgutter=3 columngutter=3 rowdatarange=unionall
row2datarange=unionall columndatarange=unionall
column2datarange=unionall
headerlabeldisplay=value;
layout prototype;
barchart x=_AGE / name='bar' stat=freq barwidth=0.85
clusterwidth=0.85;
endlayout;
endlayout;
endgraph;
end;
Tun;
proc sgrender data=SASHELP.CLASS template=sgdesign;
dynamic _AGE="AGE" _SEX="SEX";
Tun;

233

CHAPTER 13 CUSTOMIZING GRAPH TEMPLATES

Template C

Comparing this new generated template with the original graph Template B, you see that multiple panels are
achieved using LAYOUT DATAPANEL around LAYOUT PROTOTYPE, instead of LAYOUT LATTICE around LAYOUT
OVERLAY:

proc template;
define statgraph sgdesign;
dynamic _AGE _SEX2;
dynamic _panelnumber_;
begingraph;
entrytitle halign=center 'Vertical bar title';
entryfootnote halign=left 'Vertical bar footnote';
layout datapanel classvars=(_SEX2) / cellwidthmin=1 rowgutter=3
columngutter=3 rowdatarange=unionall
row2datarange=unionall columndatarange=unionall
column2datarange=unionall headerlabeldisplay=value
rows=1 columns=2;
layout prototype / ;
barchart x=_AGE / name='bar' stat=freq barwidth=0.85
clusterwidth=0.85;
endlayout;
endlayout;
endgraph;
end;
Tun;
proc sgrender data=SASHELP.CLASS template=sgdesign;
dynamic _AGE="AGE" _SEX2="SEX";
Tun;

Template D

The generated template includes a LAYOUT LATTICE around two LAYOUT OVERLAY sections. Note that the
GROUPDISPLAY=and CLUSTERWIDTH= parameters and the PROC SGRENDER step are not available in SAS 9.2:

proc template;
define statgraph Graph;
dynamic _AGE _AGE2 HEIGHT;
begingraph;
entrytitle halign=center 'Panel title';
entryfootnote halign=left 'Panel footnote';
layout lattice / rowdatarange=data columndatarange=data rows=2
rowgutter=10 columngutter=10;
layout overlay;
barchart x=_AGE / name='bar' stat=freq groupdisplay=Cluster
clusterwidth=1.0;
endlayout;
layout overlay;
scatterplot x=_AGE2 y= HEIGHT / name='scatter';
endlayout;

234

CHAPTER 13 ' CUSTOMIZING GRAPH TEMPLATES

endlayout;
endgraph;
end;
Tun;
proc sgrender data=SASHELP.CLASS template=Graph;
dynamic AGE="AGE" AGE2="AGE" HEIGHT="HEIGHT";
Tun;

Conclusions

You can use manual updates to generated graph templates to create useful customized templates. By using
incremental updates, you can assess the impact of each change.

235

CHAPTER 14

ODS GRAPHICS Statement

When using the SG procedures—PROC SGPLOT, PROC SGPANEL, PROC SGSCATTER, and PROC SGRENDER—the
0DS GRAPHICS statement is optional. However, doing so can change a number of important features of the
output image (such as the size and file format); and with new SAS versions, ODS Graphics supports new
image formats. In particular, this chapter examines the EMF image-file format in more detail, because it

changes significantly across SAS versions.

In the same way that you can use ODS to prepare output suitable for other applications, you can use the 0DS
GRAPHICS statement to create graphs in specific formats depending on your need. This chapter explains them all.

ODS GRAPHICS Statement

The ODS GRAPHICS statement is used to switch the output of ODS Graphics on and off, but you can also use it
to specify the default features of any graphs produced. The basic syntax is as follows:

ODS GRAPHICS {ON} {/ option(s)};
ODS GRAPHICS OFF,;

Options include those shown in Table 14-1.

Table 14-1. ODS GRAPHICS Options

Option

Usage

IMAGEFMT

Specifies the output format used to generate image or
vector graphic files. For example, IMAGEFMT=PNG.

This option has been replaced by OUTPUTFMT from SAS 9.3.

IMAGEFILE

Specifies the base image filename. For example:
IMAGEFILE="C:\temp\image".

HEIGHT

Specifies the height of any graph. For example:
HEIGHT=8cm.

WIDTH

Specifies the width of any graph. For example:
WIDTH=10cm.

The default is STATIC. Version-specific
information is provided in the next section.

The default name is the output object, the
default folder is the current folder, and the
suffix is set by IMAGEFMT.

The default is the value of the SAS registry
entry ODS > STATISTICAL GRAPHICS > Design
Height, or the value of the DESIGNHEIGHT=
option in a STATGRAPH template.

The default is the value of the SAS registry
entry ODS > STATISTICAL GRAPHICS > Design
Width, or the value of the DESIGNWIDTH= option
in a STATGRAPH template.

237

CHAPTER 14 © ODS GRAPHICS STATEMENT

0DS Graphics Output Destinations

ODS Graphics output destinations included in SAS 9.2, SAS 9.3, and SAS 9.4.

SAS 9.2

The ODS GRAPHICS ON statement is not required before any of the SG procedures—PROC SGPLOT, PROC
SGPANEL, PROC SGSCATTER, and PROC SGRENDER—but it is required if the DATA step is used to render data
with graph templates or if you want to generate ODS graphics from other SAS procedures. The output
destinations are listed in Table 14-2.

Table 14-2. Output Destinations in SAS 9.2

Output Destination Supported Image File Types: IMAGEFMT=

HTML PNG (default), GIE, JPEG, JPG

LISTING PNG (default), BMP, DIB, EME EPS], GIF, JFIF, JPEG, JPG, PBM, PDE PS,
SASEME STATIC, TIFE, WMF

LATEX PS (default), EPSI, GIF, PNG, PDE, JPG

PDE PCL (PRINTER), and PNG (default), JPEG, JPG, GIF

PS (PRINTER)

RTF PNG (default), JPEG, JPG, JFIF

Markup tagsets All markup family tagsets have the default value built in.

SAS 9.3

The ODS GRAPHICS ON statement is no longer required in the interactive environments of SAS 9.3 (including
Enterprise Guide) on Windows, Unix, and Linux platforms, because it is automatically switched on by
default whenever you start an interactive SAS session. All batch SAS sessions, as well as interactive SAS
sessions on other platforms, behave the same way as in SAS 9.2, unless the SAS options relating to the default
behavior have been changed.

The documentation only mentions the OUTPUTFMT= option for specifying the output image file format,
but IMAGEFMT= still works as an alternative, so there is no need to change your existing programs yet. The
output destinations are listed in Table 14-3.

Table 14-3. Output Destinations in SAS 9.3

Output Destination Supported Image File Types: OUTPUTFMT=

HTML PNG (default), GIE, JPEG, JPG, PBM, SVG, EMF, BMP

LISTING PNG (default), BMP, DIB, EME, EPSI, GIF, JFIF, JPEG, JPG, PBM, PDE, PS,
SASEME STATIC, TIFE WME XBM, XPM, PSL, SVG

LATEX PS (default), EPSI, GIF, PNG, PDF, JPG, PSL, EPS, EMF

PDF and PCL (PRINTER) SVG (default), JPEG, JPG, GIF, PSL, EPS, EPSI, PDF, PCL, PNG, EMF

PS (PRINTER) PNG (default), JPEG, JPG, GIF, PSL, EPS, EPSI, PDF, PCL, EMF

RTF PNG (default), JPEG, JPG, JFIF, EMF

Markup tagsets All markup family tagsets have the default value built in.

238

CHAPTER 14 I ODS GRAPHICS STATEMENT

SAS 9.4

The documentation only mentions the OUTPUTFMT= option for specifying the output image file format, but
IMAGEFMT= still works as an alternative, so there is no need to change your existing programs yet. The output
destinations are listed in Table 14-4.

Table 14-4. Output Destinations in SAS 9.4

Output Destination Supported Image File Types: OUTPUTFMT=

EPUB PNG (default), GIE, JPG, SVG

HTML PNG (default), GIF, JPEG, JPG, PBM, SVG, EMF, BMP

HTML5 SVG (default), PNG, GIF, JPEG, JPG, PBM, EMF, BMP

LISTING PNG (default), BMP, DIB, EME, EPSI, GIF, JFIF, JPEG, JPG, PBM, PDF, PS,

SASEME, STATIC, TIFE, WME, XBM, XPM, PSL, SVG
PDF and PCL (PRINTER) SVG (default), JPEG, JPG, GIE, PSL, EPS, EPSI, PDE, PCL, PNG, EMF

POWERPOINT PNG (default), JPEG, JPG, GIE, EPS, EMF, BMP, CGM, TIFF

PS (PRINTER) PNG (default), JPEG, JPG, GIF, PSL, EPS, EPSI, PDF, PCL, EMF
RTF EMF (default), PNG, JPEG, JPG, JFIF

Markup tagsets All markup family tagsets have the default value built in.
EMF Output Files

EMEF output file formats included in SAS 9.2, SAS 9.3, and SAS 9.4 are available for use in the ODS RTF
destination, but not in ODS HTML or ODS PDF destination.

SAS 9.2

EMEF files are supposed to be vector files that can be increased in size without impacting the plot detail. But
in SAS 9.2 they are actually rendered files, rather than vector files, so zooming into the plots will eventually
result in pixelation:

0ODS GRAPHICS / IMAGEFMT = EMF;

or

ODS GRAPHICS / IMAGEF MT = SASEMF;

SAS 9.3

In SAS 9.3, EMF files are vector files and generate much better plots than SASEME:

0ODS GRAPHICS / OUTPUTFMT

EMF;
or
ODS GRAPHICS / OUTPUTFMT = SASEMF;

239

CHAPTER 14 © ODS GRAPHICS STATEMENT

To display a full page of a report in an EMF file, there is an EMF printer device:
ODS PRINTER PRINTER = EMF;

There are, however, some limitations:
e Footnotes are limited to 132 characters.

e Plots should not be zoomed beyond their original dimensions. Therefore, it is
recommended that you create EMF files with the maximum dimensions at which
they are expected to be viewed.

SAS 9.4

Further improvements have been made to the EMF image formats in SAS 9.4:

0ODS GRAPHICS / OUTPUTFMT

EMF;
or
ODS GRAPHICS / OUTPUTFMT = SASEMF;

To display a full page of a report in an EMF file, there are now three EMF printer devices:

ODS PRINTER PRINTER = EMF;

or

ODS PRINTER PRINTER = SASEMF;
or

ODS PRINTER PRINTER = EMFDUAL;

Conclusions

Software evolves over time and versions, so it is recommended that you periodically review your ODS
GRAPHICS usage to make sure you're using the full extent of the current SAS version’s features.

240

Index

A

Academic users, 78-79
Automatic initialization program, 66
Axes and legends, 212

Box plots
ODS Graphics, SAS 9.2, 163
SAS/GRAPH, SAS 9.2, 162

C

Coding efficiency
clinical-trials contract, 3
PROC PRINT, 9
PROC REPORT, 8
PROC TABULATE, 8
reduce maintenance
comma-first layout, 10
parameterized SQL, 10
prose layout, 9
splitlayout, 9
unsubstituted SQL, 10
speed and maintenance time
IF conditions, 4
PROC SQL steps, 6-7
PROC SORT and DATA steps, 5-6
WHEN conditions, 4
COLUMNAXES and ROWAXES, 212
Comma-separated value (CSV), 41
Conditional features
PROC SGPLOT templates, 231
PROC SGSCATTER graphs, 221

D

Data exploration history, 75
DISCRETELEGEND, 208, 211

Display manager system (DMS)
power users, 91
Unix or Linux users, 77
Windows users, 74
Drill-down applications, web browsers
HTML code, 51
Perl server application
filter options, web page, 62
parameter file, 61
web page, 60
web request, 61
SAS code
country hierarchy, 54
date hierarchy, 55
drop-down selections, 57
macro variables, 53
ODS style information, 57
output destination, reassign, 57
path and filename, 54
PROC TABULATE, 59
product hierarchy, 55
selection lists, 58
set default values, 54
submission form, 59
subset creation, 56
TABLE and BODY sections, 59
server requirements, 53
DYNAMIC statement, 211
DYNAMIC parameters
PROC SGPLOT templates, 227
PROC SGSCATTER graphs, 216

E

EMF output file formats, ODS GRAPHICS
statement, 239
Enterprise Guide (EG), SAS sessions
automatic initialization program, 66
current directory, 68
distribution analysis task, 70

241

INDEX

Enterprise Guide (EG), SAS sessions (cont.)
environmental setup, 65
-INITSTMT option, 67
limitations, 66
local SAS installation, 66
log file storage, 71
server-based SAS installation, 67

Error-bar plots, 185
ODS Graphics, SAS 9.2, 161
PROC GPLOT, 186
SAS/GRAPH, SAS 9.2, 160
SAS plot code, 188

EXISTS() function, 224

F

Footnote parameters, 211

G

Graph template
data points, 114
ODS Graphics designer, 112
PROC SGSCATTER, 113
Statistical Graphics, 113
Graph template Language (GTL), 111, 205
Graph templates, 127
contents, 232
data preparation, 150
display
DATA _NULL, 151
PROC SGRENDER, 152

ODS Graphics Designer (see ODS Graphics

Designer, SAS)
PROC SGPLOT templates, 225
PROC SGSCATTER graphs, 214
structure, 205
syntax, 214

H

Hmisc library, 41
Horizontal bar chart
ODS Graphics, SAS 9.2
clustered version, 176
simple version, 174
stacked version, 175
ODS Graphics, SAS 9.3, 176
ODS Graphics, SAS 9.4, 177
simple version, 178
stacked version, 179
SAS/GRAPH, SAS 9.2, 170
clustered version, 173
simple version, 171
stacked version, 172

242

LJ, K

IF statement, 214
IF .. THEN .. ELSE statements, 20
Interface and task developers, 78
enterprise guide, 98
SAS studio, 97-98

L

LAYOUT statements, 206
Legends, 212
LINEPARM, 208, 210
Line plots
ODS Graphics, SAS 9.2, 156
SAS/GRAPH, SAS 9.2, 156
Longitudinal databases, 29
characteristics, 30
clinical, financial, 30
data sets, 31
data types, 30
macro variables, 31
PROC SORT and DATA step statements
datawhere_sort, 35
if_sort, 34
setwhere_setkeep_sort, 35
setwhere_sort, 35
sort_if, 32
sort_inkeep_if, 33
sort_inkeep_setwhere, 34
sort_outkeep_if, 33
sort_outkeep_setwhere, 33
sort_setwhere, 32, 33
sashelp.cars data set, 35
Lookup tables
data sets, 13
hash joins, 24
IF .. THEN .. ELSE statements, 20
merge data sets, 16
PROC SQL, 17
SAS formats, 18

SELECT .. WHEN .. OTHERWISE statements, 22

MAC users, 78

MATRIX statement, 118
histograms, 119
kernel-density, 121
normal-density curves, 121

N

NEEDLEPLOT, 208-209
Non-programming data analysts, 78

Enterprise Guide
appearance tab, 83-84
graphical results, 85
SASHELP.BASEBALL, 82-83
SAS studio, 85-86
tasks list, 82

SAS studio, 79

Novice and intermediate programmers

Enterprise Guide
distribution analysis task, 89-90
SAS keywords, 90
SAS syntax hints, 91

SAS studio
data-related tasks, 86-87
distribution analysis task, 88
graph-related tasks, 87
SAS syntax hints and, 89
statistics-related tasks, 88

(0

ODS Graphics
bar labels, 192
PROC GCHART, 193
SEGLABEL option, 195
VLINE statement, 194
error-bar plots, 185
information boxes, 196
Annotate facility, 198
layering techniques, 199
PROC GPLOT, 197
PROC SGPLOT, 201
point labels, 189
PROC GPLOT, 190
SCATTER statement, 191
PROCREG, 111
ratings, 185
ODS Graphics Designer, SAS
blank graph
column menu, 146
creation, 143
elements group, 144
final graph, 148
global titles, 147
group display, 147
insert menu, 146
plotting element, 145
titles/footnotes, 145
code implementation, 129
drop-down menu, 127
elements and graph gallery, 129
Enterprise Guide, 129
save
designer file (*.sgd), 148
SAS program (*.sas), 149

INDEX

splash screen, 128
using Gallery
Advanced tab, 136
Assign Data dialog, 140
Axis Properties dialog, 134
background color, 132
Cell Properties dialog, 137
Data Panel option, 142
final graph, 142
Graphics Designer window, 139
Graph Properties dialog, 132
group display option, 130
image size, 132
Label tab, 135
Panel Layout, 140
Plot Properties dialog, 133
style and graph layout, 131
titles and footnotes, 138
Value tab, 136
ODS Graphics procedures
PROC SGPANEL, 116
PROC SGPLOT, 114
graph template, 116
PROC template code, 115
PROC SGSCATTER, 118
COMPARE statement, 122
MATRIX statement (see MATRIX
statement)
PLOT statement, 124
ODS GRAPHICS statement
options, 237
output destinations
EMF output file formats, 239
SAS9.2,238
SAS 9.3, 238
SAS 9.4, 239
syntax, 237
Output Delivery System (ODS)
packaging reports, 105
report creation, 102
saving reports, 103
web page, 101-102

PQ

Packaging reports (zip files)
code, 106
drawbacks, 106
uses, 105
Platform-specific users
Unix/Linux users
DMS, 77
MAC users, 78
SAS studio, 78
windows users (see Windows users)

243

INDEX

PLOT statements, 208
Power users, 78
DMS, 91
enterprise guide, 92
SAS studio
data-related snippet, 94
horizontal bar chart, ODS Graphics, 95
SAS syntax, 95-96
visual programmer view, 96
PROC SGPLOT templates
conditional features, 231
DYNAMIC parameters, 227
enhancement, 229
simple template, 226
PROC SGSCATTER graphs
conditional features, 221
DYNAMIC parameters, 216
enhancement, 220
replace, 218
simple template, 214
Prompt manager, 75

R

REFERENCELINE, 208, 210
Regression plots
ODS Graphics, SAS 9.2, 158
SAS/GRAPH, SAS 9.2, 157
Report creation (Parallel)
code, 103
drawbacks, 103
ODS destinations, 102
uses, 102
RLANG system option, 48
Role-specific users
academic users, 78-79
interface and task developers, 78
enterprise guide, 98
SAS studio, 97-98
non-programming data analysts
(see Non-programming data analysts)
Novice and intermediate programmers
(see Novice and intermediate
programmers)
power users (see Power users)
ROWAXES, 212

S

SAS 9.2, ODS GRAPHICS statement, 238
SAS 9.3, ODS GRAPHICS statement, 238
SAS 9.4, ODS GRAPHICS statement, 239

244

SAS Integration Technologies, 67
Saving reports
code, 104
drawbacks, 105
uses, 104
SCATTERPLOT, 208-209
Scatter plots, 153
ODS Graphics, SAS 9.2, 154
SAS/GRAPH, SAS 9.2, 154
SELECT .. WHEN .. OTHERWISE statements, 22
SERIESPLOT, 208
Servers, 75
SIDEBAR, 213
Software environment
coding issues, 47-48
program flow
ODS report, 45-47
R activity, 44-45
SAS activity, data selection, 42
SQLJoin, 17
Statistical Graphics (SG), 113
Structure, graph template
LAYOUT statements, 206
nested structure, 205
PLOT statements, 208

T

Template A, 232
Template B, 233
Template C, 234
Template D, 234
Template syntax
axes and Legends, 212
COLUMNAXES and ROWAXES, 212
DYNAMIC statement, 211
IF statement, 214
SIDEBAR, 213
title and footnote parameters, 211
Template syntax. See Graph templates
3D pie charts, 183
Title and footnote parameters, 211
2D pie charts
ODS Graphics, SAS 9.2, 181
ODS Graphics, SAS 9.3, 181
SAS/GRAPH, SAS 9.2, 180

U

Unix/Linux users
DMS, 77
SAS studio, 78

Vv

Vertical bar charts

ODS Graphics, SAS 9.2
clustered version, 168
simple version, 166
stacked version, 168

ODS Graphics,

SAS 9.3, 169

SAS/GRAPH, SAS 9.2, 164
clustered version, 166
simple version, 164
stacked version, 165

INDEX

W, XY, Z

Web page
code, 102
drawbacks, 102
uses, 101

Windows users
DMS, 74
EG7.1,75
process flow, 74
project tree, 74
SAS studio, 76
servers, 75

245

	Contents at a Glance
	Contents
	About the Author
	About the Technical Reviewer
	Acknowledgments
	Introduction
	Part I: Programming Efficiency Techniques
	 Overview
	Chapter 1: The Basics of Efficient SAS Coding
	 Is the SAS Programming World “Back to Front”?
	 Speed and Low Maintenance
	 Speed or Low Maintenance: Part 1
	 Speed or Low Maintenance: Part 2
	 Personal Preferences
	 Reducing Maintenance: Part 1
	 Reducing Maintenance: Part 2
	 Conclusions
	 References

	Chapter 2: How to Use Lookup Tables Effectively
	 Sample Data Sets
	 DATA Step Merge
	 SQL Join
	 Generated SAS Formats
	 Generated If .. Then .. Else
	 Generated Select .. When .. Otherwise
	 DATA Step Hash
	 Conclusions
	 Reference

	Chapter 3: Case: SAS Skills in Epidemiology
	 Size Really Is Important!
	 Working with Longitudinal Databases
	 Needing to Clean the Data
	 Choosing a Suitable Database
	 Programming Techniques
	 Sample Data Sets
	 Sample SAS Code
	PROC SORT before DATA Step Subset
	Code: sort_if
	Code: sort_setwhere
	Code: sort_outkeep_if
	Code: sort_outkeep_setwhere
	Code: sort_inkeep_if
	Code: sort_inkeep_setwhere

	PROC SORT after DATA Step Subset
	Code: if_sort
	Code: setwhere_sort
	Code: datawhere_sort
	Code: setwhere_setkeep_sort

	 Performance Results

	 Summary
	 Some Thoughts for Managers

	Part II: External Interfaces
	 Overview
	Chapter 4: SAS to R to SAS
	 Software Environment
	 Program Flow
	 SAS Activity to Prepare the Data
	 R Activity
	 SAS Activity to Create the ODS Report

	 Coding Issues
	 Character-Based Reports
	 Conclusions
	 Software Resources and Further Reading

	Chapter 5: Knit Perl and SAS Software for DIY Web Applications
	 HTML Programming
	 System Requirements
	 SAS Programming
	 Perl Programming and Operational Details
	 Conclusions
	 References

	Chapter 6: Running SAS Programs in Enterprise Guide
	 Environment Setup
	 Changes to the Automatic Initialization Program
	 Limitations of Enterprise Guide Software
	 Accessing Local SAS Installations
	 Accessing Server-Based SAS Installations
	 Why You Cannot Use Autoexec.sas
	 Why Do Platform-Specific System Commands Fail?
	 Changing the Current Directory
	 Generating SAS Code Using Enterprise Guide Tasks
	 Automatically Saving Logs to Disk
	 Conclusions
	 References

	Chapter 7: Running SAS Programs in SAS Studio or Enterprise Guide
	 Platform-Specific Users
	 Windows Users
	Display Manager System (DMS)
	Enterprise Guide
	SAS Studio

	 Unix or Linux Users
	Display Manager System (DMS)
	SAS Studio

	 MAC Users
	SAS Studio

	 Role-Specific Users
	 Academic Users
	 Non-Programming Data Analysts
	SAS Studio
	Enterprise Guide
	Enterprise Guide and SAS Studio Together

	 Novice and Intermediate Programmers
	SAS Studio
	Enterprise Guide

	 Power Users
	Display Manager System (DMS)
	 Enterprise Guide
	SAS Studio

	 Interface and Task Developers
	SAS Studio
	Enterprise Guide

	 Conclusions
	 References

	Chapter 8: Everyday Uses for SAS Output Delivery System (ODS)
	 Disguising a Web Page
	 Uses
	 Code
	 Drawbacks

	 Creating Reports in Parallel
	 Uses
	 Code
	 Drawbacks

	 Saving Reports for Later
	 Uses
	 Code
	 Drawbacks

	 Packaging Reports into Zip Files
	 Uses
	 Code
	 Drawbacks

	 Conclusions

	Part III: Data Visualization
	 Overview
	Chapter 9: Introduction to Graph Templates and ODS Graphics Procedures
	
	 Coming Up

	 Introduction to ODS Graphics Procedures
	 PROC SGPLOT
	 PROC SGPANEL
	 PROC SGSCATTER

	 Conclusions

	Chapter 10: Generating Graph Templates
	 ODS Graphics Designer
	 How to Start the ODS Graphics Designer
	 Using the Gallery to Create Simple Templates
	Building a Template from a Blank Graph

	 Saving the Template as a Designer File (*.sgd)
	 Saving the Template as a SAS Program (*.sas)

	 Graph Template Usage
	 Preparing Data for Graph Templates
	 Displaying Graph Templates
	DATA _NULL_
	PROC SGRENDER

	 Conclusions

	Chapter 11: Converting SAS/GRAPH Plots to ODS Graphics
	 Scatter Plots
	 SAS/ GRAPH from SAS 9.2
	 ODS Graphics from SAS 9.2 (Easy)

	 Line Plots
	 SAS/ GRAPH from SAS 9.2
	 ODS Graphics from SAS 9.2 (Easy)

	 Regression Plots
	 SAS/GRAPH from SAS 9.2
	 ODS Graphics from SAS 9.2 (Easy)

	 Error Bar Plots
	 SAS/ GRAPH from SAS 9.2
	 ODS Graphics from SAS 9.2 (Easy)

	 Box Plots
	 SAS/GRAPH from SAS 9.2
	 ODS Graphics from SAS 9.2 (Easy)

	 Vertical Bar Charts
	 SAS/GRAPH from SAS 9.2
	Simple Vertical Bar Chart
	Stacked Vertical Bar Chart
	Clustered Vertical Bar Chart

	 ODS Graphics from SAS 9.2 (Easy)
	Simple Vertical Bar Chart
	Stacked Vertical Bar Chart
	Clustered Vertical Bar Chart

	 ODS Graphics from SAS 9.3 (Easy)

	 Horizontal Bar Charts
	 SAS/GRAPH from SAS 9.2
	Simple Horizontal Bar Chart
	Stacked Horizontal Bar Chart
	Clustered Horizontal Bar Chart

	 ODS Graphics from SAS 9.2 (Easy)
	Simple Horizontal Bar Chart
	Stacked Horizontal Bar Chart
	Clustered Horizontal Bar Chart

	 ODS Graphics from SAS 9.3 (Easy)
	 ODS Graphics from SAS 9.4 (Difficult and Impossible)
	Simple Horizontal Bar Chart
	Stacked Horizontal Bar Chart

	 2D Pie Charts
	 SAS/GRAPH from SAS 9.2
	 ODS Graphics in SAS 9.2 (Impossible)
	 ODS Graphics as of SAS 9.3 (Difficult)

	 3D Pie Charts
	 ODS Graphics in SAS 9.2, 9.3, and 9.4 (Impossible)

	 Conclusions
	 Recommended Reading

	Chapter 12: Converting SAS/GRAPH Annotate to ODS Graphics
	
	 Error Bars
	 SAS/GRAPH from SAS 9.2
	 ODS Graphics from SAS 9.2 (Easy)

	 Point Labels
	 SAS/GRAPH from SAS 9.2
	 ODS Graphics from SAS 9.2 (Easy)

	 Bar Labels
	 SAS/GRAPH from SAS 9.2
	 ODS Graphics from SAS 9.3 (Easy)
	 ODS Graphics from SAS 9.4 (Easy)

	 Information Boxes
	 SAS/GRAPH from SAS 9.2
	 ODS Graphics from SAS 9.3 (Difficult)
	 ODS Graphics from SAS 9.2 (Difficult)
	 ODS Graphics from SAS 9.2 (Easy)

	 Conclusions

	Chapter 13: Customizing Graph Templates
	 Structure and Syntax
	 Structure
	 Template Syntax
	What Does DYNAMIC Do?
	Specifying Titles and Footnotes
	 Specifying Axes and Legends
	COLUMNAXES and ROWAXES
	 SIDEBAR
	IF

	 Creating Your Own Templates
	 Customizing PROC SGSCATTER Graphs
	Generating a Simple Template with PROC SGSCATTER
	 Adding DYNAMIC Parameters to the Template
	 Replacing the Template Name
	 Enhancing a Template: Adding a New Graph
	 Adding Conditional Features: Handling Missing Arguments

	 Customizing PROC SGPLOT Templates
	Generating a Simple Template with PROC SGPLOT
	 Adding DYNAMIC Parameters to the Template
	 Enhancing a Template: Adding Labels to Points
	 Adding Conditional Features: Optional Reference Lines

	 Graph Template Contents
	 Template A
	 Template B
	 Template C
	 Template D

	 Conclusions

	Chapter 14: ODS GRAPHICS Statement
	 ODS GRAPHICS Statement
	 ODS Graphics Output Destinations
	 SAS 9.2
	 SAS 9.3
	 SAS 9.4
	 EMF Output Files
	SAS 9.2
	SAS 9.3
	SAS 9.4

	 Conclusions

	Index

