Pro
Couchbase
Development

A NoSQL Platform for the Enterprise

A HANDS-ON GUIDE TO LEARNING AND
DEVELOPING WITH COUCHBASE

Deepak Vohra

Apresse

Pro Couchbase
Development

Deepak Vohra

ApPress’

Pro Couchbase Development
Copyright © 2015 by Deepak Vohra

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed. Exempted from this legal reservation are brief excerpts in connection with
reviews or scholarly analysis or material supplied specifically for the purpose of being entered and executed
on a computer system, for exclusive use by the purchaser of the work. Duplication of this publication or
parts thereof is permitted only under the provisions of the Copyright Law of the Publisher’s location, in its
current version, and permission for use must always be obtained from Springer. Permissions for use may be
obtained through RightsLink at the Copyright Clearance Center. Violations are liable to prosecution under
the respective Copyright Law.

ISBN-13 (pbk): 978-1-4842-1435-0
ISBN-13 (electronic): 978-1-4842-1434-3

Trademarked names, logos, and images may appear in this book. Rather than use a trademark symbol
with every occurrence of a trademarked name, logo, or image we use the names, logos, and images only
in an editorial fashion and to the benefit of the trademark owner, with no intention of infringement of the
trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are
not identified as such, is not to be taken as an expression of opinion as to whether or not they are subject to
proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of publication,
neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or
omissions that may be made. The publisher makes no warranty, express or implied, with respect to the
material contained herein.

Managing Director: Welmoed Spahr

Lead Editor: Steve Anglin

Technical Reviewer: Massimo Nardone

Editorial Board: Steve Anglin, Louise Corrigan, Jonathan Gennick, Robert Hutchinson,
Michelle Lowman, James Markham, Susan McDermott, Matthew Moodie, Jeffrey Pepper,
Douglas Pundick, Ben Renow-Clarke, Gwenan Spearing, Steve Weiss

Coordinating Editor: Mark Powers

Copy Editor: Karen Jameson

Compositor: SPi Global

Indexer: SPi Global

Artist: SPi Global

Distributed to the book trade worldwide by Springer Science+Business Media New York,

233 Spring Street, 6th Floor, New York, NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505, e-mail
orders-ny@springer-sbm.com, or visit www.springeronline.com. Apress Media, LLC is a California LLC
and the sole member (owner) is Springer Science + Business Media Finance Inc (SSBM Finance Inc).
SSBM Finance Inc is a Delaware corporation.

For information on translations, please e-mail rights@apress.com, or visit www.apress.com.

Apress and friends of ED books may be purchased in bulk for academic, corporate, or promotional use.
eBook versions and licenses are also available for most titles. For more information, reference our Special
Bulk Sales-eBook Licensing web page at waw.apress.com/bulk-sales.

Any source code or other supplementary materials referenced by the author in this text is available to
readers at www.apress.com/9781484214350. For detailed information about how to locate your book’s source
code, go to www.apress.com/source-code/. Readers can also access source code at SpringerlLinkin the
Supplementary Material section for each chapter.

http://orders-ny@springer-sbm.com
www.springeronline.com
http://rights@apress.com
www.apress.com
www.apress.com/bulk-sales
www.apress.com/9781484214350
www.apress.com/source-code/

Contents at a Glance

About the AUNOFccouusemmmsnnmmssnmsssssmssssssssssssssssnsssssnsssssnnesssnnssssnnesssnnsssnnnnsssnnnsss xiii
About the Technical REVIEWEFcuccesssesssssssssssmsssssssssssssmssssssssssssssssssssnsssnssnsssnsannas XV
Chapter 1: Why NOSQL?cccccurmmsmmnmmmssssnssmsssnnssssssnnnnsssns 1
Chapter 2: Using the Java Clientccouemmmmssnmmssssmmsssssmsssssssssssssssssssssssssssnsnsssns 19
Chapter 3: Using Spring Dataccocummmmmmmmmssmmmmmssssnmmssssssssmssssssssmsssssssssssssnnsnns 55
Chapter 4: Accessing Couchhase with PHP.............ccccimnnnemmmnnnssssnnmnsssssssssssssnns 99
Chapter 5: Accessing with Ruby........ccccccinnnnemmmnnnsssmmmmnsssnmmsssssmssssnsssnn 119
Chapter 6: USiNg NOUE.jS ...uceerrrssssnmnmmssssnnnmsssssnsnssssssnsnssssssnnnssssssnnnsssssnnnnsssssnnnnss 155
Chapter 7: Using Elasticsearch..........ccusccemmmnnssemnmnnsssssnnmssssssnmmssssssssssssssssssssssnnns 175
Chapter 8: Querying with NT1QLcccccnnnnmeemmmmmmmmmmmmssssssssssssesssssssssssssmmnns 197
Chapter 9: Migrating MongoDBccccimnmmmnnmmmmsnnnmmmmsssnmesssssssssssssssssssssnnns 233
Chapter 10: Migrating Apache Cassandra..........cccusmmmmsssnnnmmsssssnssssssssssssssssnnns 255
Chapter 11: Migrating Oracle Databaseccovnnsmmnmmsssesnmmssssnsmmssssssnssssssnnn 281
Chapter 12: Using the Couchbase Hadoop Connectorccuuseerrnsssnnnnsssssnnnnas 291
INdeX.ciiiiiirri s —————————_——————_———_—_—_ 327

iii

Contents

AboUt the AULNOKciirmeeiiireenerirresesrrss s nns s rsnsa s s s nnas s nannnassnnnnnssssnnnnnnssnnnns Xiii

About the Technical REVIEWETccurrrrrmmmmmnsssssssmmsssssssssssssssssssssssssssssssnsssssssssssssssnns XV

Chapter 1: Why NOSQL?.......ccccmsemmmsmsmsssmsassmssssssssssssmsssssssnsasssssssssnsssnssnsnssnsnsnnnnas 1
WhAL IS JSON? ...t ss s n s a s re e nen s nn e s e s 2
What Is Wrong With SQL? ..ot 4
Advantages of NOSQL Databasesccerererrereerereiesesse e ssessesse e ssessssssssssssssssssssssssseas 5
T2 1 Lo 4O 5
Ultra-High AVAIADITIEYccceeeereeeceee et e 6
COMMOAitY HAIAWAIEceeeecceeeccir et 6
Flexible Schema or NO SChema...........ccovnnnn s 6
51 1 D - O 6
Object-Oriented Programming...........cococereeecnernenesesesesesesessss e sesssss e sssss e s s e s sssssssesssssaes 7
PEITOIMANCE ... 7
FAIIUIE HANGIING ...t 7
LesS AdMINISTration ... s 7
Asynchronous Replication with AUt0-FailOVErcccourrieerirreserreee s 7
Caching for Read and Write PErfOrmanceccccoceururercneresencnirsesssesesse e sssnens 10
Cloud ENADIR........cciiic 10
What Has Big Data Got to Do with NOSQL?ccccvveeevrennseresessesese e ssse e 11
NoSQL Is Not without Drawbacks...........cccurrrninnn s 11
BASE, NOTACIDcueeeeeeeeesresseseiesssssessessessssssssssessess s s s st s bbbt snseas 11
SHll NEW 10 The FIBlt ... 12
Vendor SUPPOIT IS LACKING......cuicvriricrcrirre et se s sas e st et 12

vi

CONTENTS

Why COUCNDASE SEIVEI? ...t 12
Flexible Schema JSON DOCUMENTS.......cccovueererrrereeresrsseeseses s sss s s s s s s ssssssssssssssssssaes 12
T2 1 o111 4TRSS 12
Auto-Sharding Cluster TEChNOIOQYccccovueererererenerirseeseresee e sesnns 12
High Performance from High Throughput and LOW Latency.........c.ccceecernenenerennsesesesesesesesssesesessssenes 13
Cluster High AVAIlabilityc.cceoceerereiesernesecssseeses s 13
Cross Data Center RepliCALION..........cccceceereeescririeeesis e 14
DAtA LOCAITY.....coveeeeeeeresreeseserie e e e s e e e e nr e 14
RACK AWAIENESSecuceerreeesesseseesesssesesessssssessssssssesssssssssssssssssssssssessssssssensssssssssssssssessnsssssesssssssasenes 15
Multiple Readers ant WHTEISccceeerereiencnrieesesis e snss 15
Support for Commonly Used Object-Oriented LANQUAGEScovvereererrerererenerinerie e sesesessessesenaes 15
Administration and Monitoring GUL..........ccoeeerrrencnresescreseese e ssssns 15

Who Uses Couchbase Server and for What?...........ccccoeevieensnicssscssse s 15

T 1 11 18

Chapter 2: Using the Java Clientcccciunninemmmmnnssssnmmmmssssmmmssssssmssssssssssssssn 19

Setting Up the ENVIFONMENt ...t e 19

Creating @ Maven ProjeCt.........ccveeiierensiierinsese e s sss e s snssessssnnnens 20

Creating @ Data BUCKEL...........ccceerererrrc e ree e s saesa e sassas e sn e sa s sassasnnes 26

Connecting to CouChbhase SErVer ... cere e 30

Creating @ DOCUMENLccvveeerimrenisseressse s sns s sn s sne e s sns s sns e snesnnnens 34

Getting @ DOCUMENT.........coceierere e raesa e sa e sa e sa e sa e sa e sa s sn e sn e naenn e nn 38

Updating @ DOCUMENL.........coeoeeeecececece e nesn e s n e sn e n e sn e sn e sn e nnennenas 40

Creating @ VIBWcccceierresrreressesessssessssssesss e ssesesesssssssesss s ssessssesssssssssssssssessssessensasens 43

QUETYING @ VIBW ..ottt e ettt 48

Deleting @ DOCUMENL.........ocoocercercrrr s 50

1111 1P SRS 53

CONTENTS

Chapter 3: Using Spring Dataccccunemmmmmnsssnnmmmmssssmmmssssmmsssssssessssssssssssssnns 55
Setting Up the ENVIFONMENTc..ccoecirieerccrc e sn s sne e 55
Creating @ Maven Project ... sse s s snesnesns s s s snennas 55
Installing Spring Data COUCNDASEcccvcereereerererere e saesne e 60
Configuring JavaConfigccoceererereresesessesse e se e e e ssesne e snesnssnssnssnesnennenas 62
Creating @ MOGEIcoceeeirierereceser e n s nnenn s 64
Using Spring Data with Couchbase with Template..........ccccocevvrerrrrrrrrrrrr e 66
Running Couchbase CRUD Operationscccvernmrnersesnssssssessessssssssssssssssssssssssssesssnsens 70
T LT 0 oSS 70
REIMOVE OPS...cviieirieiirierierere e s s e s saesae s e ae s e s s e s b e s e sa e sa e s e e e e s e e e e saeee e e e e e saesaenaesaesaenaesee e e neesansnnnan 72
11 EST<T A0 0SSR 73
EXISTS MEBENOM ... 74
LT 00RO 74
QUETY VIBW....cvecereecie e se e e et se e e s e e s a e R e e s e deRe A e e R e e e Re e e Re e e e ReeR e e e Re e eRenennnnennees 78
L1010 (e 0] oSSR 78
BUCKET CalIDACK........c.ceeieeeireceereeee et 80
Using Spring Data Repositories with Couchbasecccccvvrvervrrrrver s 85
Creating the all VIEW.........ccccreeee et 85
DOCUMENT COUNL ...t s e enp e e e e nrn s 88
Finding Entities from the REPOSITOrY ..o 89
Finding if @n ENtity EXISTSccovouececreieccseec st 91
SAVING ENEILIESvcucceeeeeecririre e enp e 91
DEIEtiNG ENTILIEScvceeeeeeccresiecire et e e e p s 93
E3 1141 1P 2SS 97
Chapter 4: Accessing Couchhase with PHP..............ccciinnnemmmnnnssssmnnnsssssnmsssssnns 99
Setting the ENVIFONMENT..........cooecrierrrr e 99
LTS3 221140 5 PSSR 100
Installing Couchbase PHP SDK...........coiiierecere s ses s s s s s snnnns 101
Connecting with COUChDASE SEIVENcoevererrerrrr e sae e 102

vii

CONTENTS

Creating @ DOCUMENL..........cccveeicererreris et ne s s 105
Upserting @ DOCUMENL..........ooerererrrr s e e sas e e e sassassnssaesassassassasnns 108
Getting @ DOCUMENT.........coeecee e sr e sr e sr e sr e sn e n e sn e sn e nn e nnenn 109
Replacing @ DOCUMENTcccceveeesriernsr e sss s s sn s sns e s s s 111

Incrementing and Decrementing @ DOCUMENT..........cccovreererneneseneree s eens 112
Deleting @ DOCUMENL........cocvvririerr st se s e e sn s sn s sn s sa e nn e 116
ST 117
Chapter 5: Accessing with Ruby........ccccccinnnnemnmnnnsennmmmssssnmmsssssmssssssssssnns 119
Setting the ENVIFONMENL...........coooee e 119
INSEAIlING RUDY.....cooeireiicrecrcer e sr s s e 120
INStalling DEVKItLceeireecee e e en e s ne 123
Installing Ruby Client LIDFarycocoeeeeeeeeerecccesee s ssssssssssnssnssnsssssnssnssnnnnns 124
Connecting with COUCNDASE SEIVEFccceeiverenirerinere e s ns 125
Creating a Document in COUChDASE SEIVEN........cocevvrereererrre e seeeens 130

SEttiNg @ DOCUMENL ..o ssssnssssssansnsnsnsnnas 130

AddiNg @ DOCUMENT ..ottt rere e s s ses e raesesae e sae e s s s e saesesaesasaesassesassesassesaesasaeassesasnesasnsnaes 134
Retrieving @ DOCUMENL...........cocrcercrcrsirersir s nnn e 136
Updating @ DOCUMENT..........ccoeereresrserisse e 141
Deleting @ DOCUMENL........ccocvveririerir st se s e sn e sn s sn e sn e sn e 147
Querying a Document With VIEW ... 150
SUMMAIY ...t r s a s a s srenn s e r e e s e n s e e ae e nsnnnnnnnnas 154
Chapter 6: USiNg NOUE.jS ...ucccerrrssssnmmmmssssnnnmsssssnsnssssssnsnssssssnnnssssssnnnsssssnnnnsssssnnnnss 155
Setting Up the ENVIFONMENTccvceiiiiiicnnsiresnssese e sss s snssnsnens 155

INSEAIING NOUEJSveeeeieeecreririe e s e e s s s e e s ne e e ne e e e 155

Installing Node.jS ClIENt LIDFAry.........cccoceerereseneresrsesesesseesessssesesesssssesesssssssssssssssssssssssssssssssssssnns 160
Connecting with COUChDASE SEIVENcoevereererirr s sne e e 160
Creating a Document in CouChbase Server..........oiererecesese e 163

Upserting @ DOCUMENL.........ccocciicirecrers e p s b p e e e e sn e p e s 164

INSerting @ DOCUMENT ..o e e p e e 166

viii

CONTENTS

Getting @ DOCUMENL.........covoeieeeeer e s s 168
Updating @ DOCUMENL.........coevererererie s sse e e s s sassassassassaesassassaesassassassasnnnns 170
Deleting @ DOCUMENL..........cocicrcscr s s nnenns 172
31111111 LRSS 173
Chapter 7: Using Elasticsearch...........ccccnnnnmmmmmmmmmnmnmssssssssssmmsmssssssssssssssssssssnes 175
Setting the ENVIFONMENT.........c.ccoeeiiererrern e 176
Installing the Couchbase Plugin for ElasticSearchccoevvvverrnssssnsssessessessennenns 177
Configuring EIaStiCSEAICN.........cceeeereererertrerererse v see s saere s sa s sae e sae e saesasaesas e sae e sae e sae e saesansesannenes 178
Installing the Elasticsearch Head Third-Party PIUGIN.........cccecevrrererresrererereserse e sessesessesessessssenes 179
Starting EIaStiCSEArCh ..o e 180
Providing an Index Template in Elasticsearch...........ccccverrvrenriennscnessnsesesesesensens 181
Creating an Empty Index in EIastiCSEarch.........cceevvrrrrrrrsss s ses e sesenns 182
Setting the Limit on Concurrent Requests in Elasticsearchcccoevvvercrcrcencnnen. 183
Setting the Limit on Concurrent Replications in
COUCHDASE SEIVEceecereecrerieiresse e se s s se s sns e saenis 184
Creating an Elasticsearch Cluster Reference in Couchbasecccccvververcericencerinnne 184
Creating a Replication and Starting Data Transfercccccvrvrirennssesssesssesesenens 187
Querying ElastiCSBAICN...........ccccceereriririrr et se s se e s 191
Adding Documents to Couchbase Server while Replicatingccccceeveerriercercnnnnne. 194
The Document Count in EIaStICSEArC...........covceerricnirrere e 195
SUMMAIY ...ttt ae s e e s ae e e re e s e n e ae e e e nennaens 196
Chapter 8: Querying with NTQLcccocccemmmmsssenmmmmmsssnmmmmssssnmmsssssssssssssssssssssnsns 197
Setting Up the ENVIFONMENTccveieeirccr e 198
Running @ SELECT QUETY.......ccvererererereressesse s s s e e sss s sss e sss s sesss e sssssssessssesnns 199
Filtering With WHERE ClaUSE............ccocvverierrerirserer s e ses e e e e s e s ssssssnnns 200
JSON with Nested ODJECLScccucceeeerierenscrerine s se s 203
JSON With NeSted Arraysc.cccvvrrrrersensessesses s se s sns s sns e srssnssns s s 205
JSON with Nested Objects and Arraysccccevrverversessessensesses s e sessssssssassasses 209
Applying Arithmetic & Comparison OPerators..........cccccveeerserenessernsessesessessesessessssesns 220

CONTENTS

Applying ROUND() and TRUNC() FUNCHONSccccovrcerrenircrneresessesese s 222
Concatenating SIriNGSccvererererererere s sresaesaesaesaesaesassaesaesaennens 223
Matching Patterns with LIKE & NOT LIKEcoorereece e ses s s snnnns 224
Including and Excluding Null and Missing Fields..........ccoviiernninennsenesnssesssesesensenns 225
Using Multiple Conditions With AND..........ccccevirerenererr s see e e snesesneens 226
Making Multiple Selections with the OR Clause..........cccooovvrersercssesss s 227
Ordering RESUIL SEt........ccoeoeieeniererriers e n s s 228
Using LIMIT and OFFSET to Select @ Subsetccoceveverenennnens s seesessensenns 228
Grouping With GROUP BY........coeoeeerererecresse e ssessessesssssesssssssssssssssssssnssnssnsssssssssssssnsnns 229
Filtering With HAVINGccoorirrr ittt se s ss e se e e snssn s sn s snssn s snesaenns 231
Selecting DiStiNCt VAIUEScccovveercrerecrirecsese s se s 231
31111111 LR 231
Chapter 9: Migrating MongoDBccccimmnmmnmmmmmsnsnmmmmsssnmmsssssssesssssssssssnsns 233
Setting Up the ENVIrONMENtoooeoececee e 234
Creating @ Maven ProjecCtoovvevererererese e sss s sss s ssesesssesassassasssssasssssssnnnns 235
Creating Java ClaSSEScccuerrerrenrressssise s ses e sss e sss s s e sss e s e ssssessessssessssesssssssenns 238
Configuring the Maven Project ... e e sne s e 242
Creating a BSON Document in MONGODBcccoerererenrrrrcree s sas e seeeens 244
Migrating the MongoDB Document to Couchbase...........ccooeevveenirenniennsccesnsesensennes 249
1111 11T SRS 254
Chapter 10: Migrating Apache Cassandra.........cccusmrmsssnmmsssnsssssssesssssesssssssssnness 255
Setting Up the ENVIrONMENt ..o n s 255
Creating a Maven Project in EClIPSE.......cvcevererererereree s s ssessesssssssassasssssassassassassenns 256
Creating a Database in Cassandracccerverenniernsnesn s s ses s 267
Migrating the Cassandra Database t0 COUChDASEccccorervcirenrnserssenesesse e 273

E3 1111 P2 7SS 280

CONTENTS

Chapter 11: Migrating Oracle Databasecccovnnnmmmnmmsssssnnmnnsssnnnnnssssnsnsannn 281
Overview of the chtransfer TOOL..........cccovererrescrnesrse s 281
Setting the ENVIFONMENT..........c.ooecececccecre e n s 283
Creating an Oracle Database TabIecccecererererinere s e 285
Exporting Oracle Database Table to CSV File.........cccooevrvrcercessesses e snesennns 287
Transferring Data from CSV File to Couchbaseccccoverrieresincsssesessesessesesenens 288
Displaying JSON Data in COUCNDASEccecrverrerrerrirrerrer e ses e e e saeeens 289
1111111 R 290
Chapter 12: Using the Couchbase Hadoop Connectorccccusseemrmnsssnnnnsnsssnnnn 291
Setting Up the ENVIrONMENt ...t 291
Installing Couchbase Server 0N LINUX ..o sesssssssessssessesesssssssssssssssssessssenns 292
Installing Hadoop and SQO0Pcccoerieriernrerr e s e n e sn e sn e s r e 299
Installing Couchbase Hadoop ConNector...........ccccceeeecececccc s 301
Listing Tables in COUChDASE SEIVEN.........ccceverrrerereree s sae e s s e e s sannens 302
Exporting from HDFS 10 COUChDASEccoceeeiririrrer e 303
Importing into HDFS from CouChDASEcccccervniiennsircsnnse s 310
Importing the Key-Value Pairs Previously EXPOrted...........ccovreeenenreiescnnsescsessee s 310
Importing the BACKFILL TADIE.........ccoieeeerirreecreeisesesesisse s ses s e e ssssssssesasssssssnens 313
Importing JSON from Couchbase Server into HDFS ...t 323

E3 1111 1P 7SS 325
INO@X uueniissnnnsssnnnsssnnssssanssssanssssanssssanssssanssssannssssnsssssnnssssnnssssnnssssnnssssnnssssnnssssnnnsssnns 327

xi

About the Author

Deepak Vohra is a consultant and a principal member of the

NuBean. com software company. Deepak is a Sun-certified Java
programmer and Web component developer. He has worked in the fields
of XML, Java programming, and Java EE for over ten years. Deepak is the
coauthor of Pro XML Development with Java Technology (Apress, 2006).
Deepak is also the author of the JDBC 4.0 and Oracle JDeveloper for
J2EE Development, Processing XML Documents with Oracle JDeveloper
11g, EJB 3.0 Database Persistence with Oracle Fusion Middleware 11g,
and Java EE Development in Eclipse IDE (Packt Publishing). He also
served as the technical reviewer on WebLogic: The Definitive Guide
(O'Reilly Media, 2004) and Ruby Programming for the Absolute Beginner
(Cengage Learning PTR, 2007).

xiii

http://NuBean.com

About the Technical Reviewer

Massimo Nardone holds a Master of Science degree in Computing
Science from the University of Salerno, Italy. He worked as a PCI QSA
and Senior Lead IT Security/Cloud/SCADA Architect for many years
and currently works as Security, Cloud and SCADA Lead IT Architect
for Hewlett Packard Finland. He has more than twenty years of work
experience in IT including Security, SCADA, Cloud Computing,
IT Infrastructure, Mobile, Security, and WWW technology areas for both
national and international projects. Massimo has worked as a Project
Manager, Cloud/SCADA Lead IT Architect, Software Engineer, Research
Engineer, Chief Security Architect, and Software Specialist. He worked
as visiting a lecturer and supervisor for exercises at the Networking
Laboratory of the Helsinki University of Technology (Aalto University).
Massimo has been programming and teaching how to program with Perl,
PHBP, Java, VB, Python, C/C++, and MySQL for more than twenty years.
He holds four international patents (PKI, SIP, SAML, and Proxy areas).
Massimo is the author of Pro Android Games (Apress, 2015).

XV

CHAPTER 1

Why NoSQL?

NoSQL databases refer to the group of databases that are not based on the relational database model.
Relational databases such as Oracle database, MySQL database, and DB2 database store data in tables,
which have relations between them and make use of SQL (Structured Query Language) to access and query
the tables. NoSQL databases, in contrast, make use of a storage and query mechanism that is predominantly
based on a non-relational, non-SQL data model.
The data storage model used by NoSQL databases is not some fixed data model, but the common
feature among the NoSQL databases is that the relational and tabular database model of SQL-based
databases is not used. Most NoSQL databases make use of no SQL at all, but NoSQL does not imply that
absolutely no SQL is used, because of which NoSQL is also termed as “not only SQL.” Some examples of
NoSQL databases are discussed in Table 1-1.

Table 1-1. NoSQL Databases

Database Type Data Model

Support for SQL-like query
language

NoSQL Database

Couchbase Server Document
Apache Cassandra Columnar
MongoDB Document
Oracle NoSQL Key-Value
Database

Key-Value pairs in which the
value is a JSON (JavaScript
Object Notation) document.

Key-Value pairs stored in a
column family (table).

Key-Value pairs in which the
value is a Binary JSON (BSON)
document.

Key-Value pairs. The value is

a byte array with no fixed data
structure. The value could be
simple fixed string format or a
complex data structure such as a
JSON document.

Supports N1QL, which is an
SQL-like query language.

Cassandra Query Language
(CQL) is an SQL-like query
language.

MongoDB query language is an
SQL-like query language.

SQL query support from an
Oracle database External Table.

CHAPTER 1 © WHY NOSQL?

This chapter covers the following topics.
e Whatis JSON?
e Whatis wrong with SQL?
e Advantages of NoSQL Databases
e What has Big Data got to do with NoSQL?
e NoSQL is not without Drawbacks
¢ Why Couchbase Server?

e Who Uses Couchbase Server and for what?

What Is JSON?

As mentioned in Table 1-1, the Couchbase Server data model is based on key-value pairs in which the value
is a JSON (JavaScript Object Notation) document. JSON is a data-interchange format, which is easy to read
and write and also easy to parse and generate by a machine. The JSON text format is a language format that
is language independent but makes use of conventions familiar to commonly used languages such as Java,
C, and JavaScript.

Essentially a JSON document is an object, a collection of name/value pairs enclosed in curly braces {}.
Each name in the collection is followed by ‘:’ and each subsequent name/value pair is separated from the
precedingbya',". An example of a JSON document is as follows in which attributes of a catalog are specified
as name/value pairs.

{

"journal":"Oracle Magazine",
"publisher":"Oracle Publishing",
"edition": "January February 2013"

}

The name in name/value pairs must be enclosed in double quotes "". The value must also be enclosed

in "" if a string includes at least a single character. The value may have one of the types discussed in Table 1-2.

Table 1-2. JSON Data Types

CHAPTER 1 © WHY NOSQL?

Type Description Example
string A string literal. A string {
literal must be enclosed "c1":"v1",
in IIII. IIC2II:IIVZII
}
The string may consist of any Unicode character except " and
\. Each value in the following JSON document is not valid.
{
megni
Mgt
}
The " and \ may be included in a string literal by preceding
them with a \.
The following JSON document is valid.
{
IIC1II : II\IIII ,
"CZ" : II\\|I
}
number A number may be positive {
or negative, integer or "c1": 1,
decimal. "c2": -2.5,
n C3 n :0
}
array An array is a list of values ~ {
enclosed in []. "c1":[1,2,3,4,5,"v1","v2"],
"c2":[-1,2.5,"v1",0]
}
true false The value may be a {
Boolean true or false. "c1":true,
"c2":false
}
null The value may be null. {
"c1":null,
"c2":null
}
object The value may be another {

JSON object.

Clllz{"al":"V].", ua2 . VZ“, l|a3||:[1)2,3]},
"c2":{"a1":1, "A2":null, "a3":true},

"c3":{)

CHAPTER 1 © WHY NOSQL?

The JSON document model is most suitable for storing unstructured data, as the JSON objects can
be added in a hierarchical structure creating complex JSON documents. For example, the following JSON
document is a valid JSON document consisting of hierarchies of JSON objects.

{

"1t ",

"CZ": {
"c21":[1,2,3],
“C22“ :

{
"c221":"v221",
"c222":
{
"c2221":"v2221"
b
"c223":
{
"c2231":"v2231"
}
}
}
}

What Is Wrong with SQL?

NoSQL databases were developed as a solution to the following requirements of applications:

e Increase in the volume of data stored about users and objects, also termed as big
data.

e Rate at which big data influx is increasing.

e Increase in the frequency at which the data is accessed.

¢ Fluctuations in data usage.

e Increased processing and performance required to handle big data.
e Ultra-high availability.

e The type of data is unstructured or semi-structured.

SQL-based relational databases were not designed to handle the scalability, agility, and performance
requirements of modern applications using real-time access and processing big data. While most RDBMS
databases provide scalability and high availability as features, Couchbase Server provides higher levels
of scalability and high availability. For example, while most RDBMS databases provide replication within
a datacenter, Couchbase Server provides Cross Datacenter Replication (XDCR), which is replication to
multiple, geographically distributed datacenters. XDCR is discussed in more detail in a later section.
Couchbase Server also provides rack awareness, which traditional RDBMS databases don't.

Big data is growing exponentially. Concurrent users have grown from a few hundred or thousand to
several million for applications running on the Web. It is not just that once big data has been stored new data
is not added. It is not just that once a web application is being accessed by millions of users it shall continue
to be accessed by as many users for a predictable period of time. The number of users could drop to a few

CHAPTER 1 © WHY NOSQL?

thousand within a day or a few days. Relational database is based on a single server architecture. A single
database is a single point of failure (SPOF). For a highly available database, data must be distributed across a
cluster of servers instead of relying on a single database. NoSQL databases provide the distributed, scalable
architecture required for big data. "Distributed" implies that data in a NoSQL database is distributed across
a cluster of servers. If one server becomes unavailable another server is used. The "distributed" feature is a
provision and not a requirement for a NoSQL database. A small scale NoSQL database may consist of only
one server.

The fixed schema data model used by relational databases makes it necessary to break data into small
sets and store them in separate tables using table schemas. The process of decomposing large tables into
smaller tables with relationships between tables is called database normalization. Normalized databases
require table joins and complex queries to aggregate the required data. In contrast, the JSON document
data model provided by NoSQL databases such as Couchbase provide a denormalized database. Each JSON
document is complete unto itself and does not have any external references to other JSON documents.
Self-contained JSON documents are easier to store, transfer, and query.

Advantages of NoSQL Databases

In this section I'll cover the advantages of NoSQL databases.

Scalability

NoSQL databases are easily scalable, which provides an elastic data model. Why is scalability important?
Suppose you are running a database with a fixed capacity and the web site traffic fluctuates, sometimes
rising much in excess of the capacity, sometimes falling below the capacity. A fixed capacity database won't
be able to serve the requests of the load in excess of the capacity, and if the load is less than the capacity the
capacity is not being utilized fully. Scalability is the ability to scale the capacity to the workload. Two kinds of
scalability options are available: horizontal scalability and vertical scalability. With horizontal scalability or
scaling-out, new servers/machines are added to the database cluster. With vertical scalability or scaling-up,
the capacity of the same server or machine is increased. Vertical scalability has several limitations.

e Requires the database to be shut down so that additional capacity may be added,
which incurs a downtime.

e Asingle server has an upper limit.

e Asingle server is a single point of failure. If the single server fails, the database
becomes unavailable.

While relational databases support vertical scalability, NoSQL databases support horizontal scalability.
Horizontal scalability does not have the limitations that vertical scalability does. Additional server nodes
may be added to a Couchbase cluster without a dependency on the other nodes in the cluster. The capacity
of the NoSQL database scales linearly, which implies that if you add four additional servers to a single server,
the total capacity becomes five times the original, not a fraction multiple of the original due to performance
loss. The NoSQL cluster does not have to be shut down to add new servers. Ease of scalability is provided by
the shared-nothing architecture of NoSQL databases. The monolithic architecture provided by traditional
SQL databases is not suitable for the flexible requirements of storing and processing big data. Traditional
databases support scale-up architecture (vertical scaling) in which additional resources may be added to
a single machine. In contrast, NoSQL databases provide a scale-out (horizontal scaling), nothing shared
architecture, in which additional machines may be added to the cluster. In a shared-nothing architecture,
the different nodes in a cluster do not share any resources, and all data is distributed (partitioned) evenly
(load balancing) across the cluster by a process called sharding.

CHAPTER 1 © WHY NOSQL?

Ultra-High Availability

Why is high availability important? Because interactive real-time applications serving several users need
to be available all the time. An application cannot be taken offline for maintenance, software, or hardware
upgrade or capacity increase. NoSQL databases are designed to minimize downtime, though different
NoSQL databases provide different levels of support for online maintenance and upgrades. Couchbase
Server supports online maintenance, software and hardware upgrades, and scaling-out. As mentioned
earlier, Couchbase Server provides ultra-high availability.

Commodity Hardware

NoSQL databases are designed to be installed on commodity hardware, instead of high-end hardware.
Commodity hardware is easier to scale-out: simply add another machine and the new machine added does
not even have to be of similar specification and configuration as the machine/s in the NoSQL database
cluster.

Flexible Schema or No Schema

While the relational databases store data in the fixed tabular format for which the schema must be defined
before adding data, the NoSQL databases do not require a schema to be defined or provide a flexible
dynamic schema. Some NoSQL databases such as Oracle NoSQL database and Apache Cassandra have a
provision for a flexible schema definition, still others such as Couchbase are schema-less in that the schema
is not defined at all. Any valid JSON document may be stored in a Couchbase Server. One document may
be different from another and the same document may be modified without adhering to a fixed schema
definition. The support for flexible schemas or no schemas makes NoSQL databases suitable for structured,
semi-structured, and unstructured data. In an agile development setting the schema definition for data
stored in a database may need to change, which makes NoSQL databases suitable for such an environment.
Dissimilar data may be stored together. For example, in the following JSON document the c21 name has an
array of dissimilar data types as value.

{

et it
"c21":[1,"c213", 2.5, null, true]

In contrast, a value in a relation database column must be of the schema definition type such as a string,
an integer, or a Boolean. Flexible schemas make development faster, code integration uninterrupted by
modifications to the schema, and database administration almost redundant.

Big Data

NoSQL databases are designed for big data. Big data is in the order of tens or even hundreds of PetaByte
(PB). For example, eBay, which makes use of Couchbase stores 5.3 PB on a 532 node cluster. TuneWiki uses
Couchbase to store more than one billion documents. Big data is usually associated with a large number of
users and a large number of transactions. Viber, a messaging and VoIP services company handles billions of
messages a month and thousands of ops per second with Couchbase for its big data requirements.

https://wiki.apache.org/hadoop/PoweredBy#E
http://blog.couchbase.com/couchbase-nosql-tunewiki-billion-documents-and-counting
http://www.couchbase.com/press-releases/viber-chooses-couchbase-to-support-high-scalability-applications-for-hundreds-of-millions-of-users

CHAPTER 1 © WHY NOSQL?

Object-Oriented Programming

The key-value data model provided by NoSQL databases supports object-oriented programming, which is
both easy to use and flexible. Most NoSQL databases are supported by APIs in object-oriented programming
languages such as Java, PHP, and Ruby. All client APIs support simple put and get operations to add and get data.

Performance

Why is performance important? Because interactive real-time applications require low latency for read
and write operations for all types and sizes of workloads. Applications need to serve millions of users
concurrently at different workloads. The shared-nothing architecture of NoSQL databases provides
low latency, high availability, reduced susceptibility to failure of critical sections, and reduced
bandwidth requirement. The performance in a NoSQL database cluster does not degrade with the
addition of new nodes.

Failure Handling

NoSQL databases typically handle server failure automatically to failover to another server. Why is auto-
failover important? Because if one of the nodes in a cluster were to fail and if the node was handling a
workload, the application would fail and become unavailable. NoSQL databases typically consist of a
cluster of servers and are designed with the failure of some nodes as expected and unavoidable. With a large
number of nodes in a cluster the database does not have a single point of failure, and failure of a single node
is handled transparently with the load of the failed server being transferred to another server. Couchbase
keeps replicas (up to three) of each document across the different nodes in the cluster with a document on
a server being either in active mode or as an inactive replica. The map of the different document replicas on
the different servers in the cluster is the cluster topology. The client is aware of the cluster topology. When

a server fails, one of the inactive replica is promoted to active state, and the cluster topology is updated,
without incurring any downtime as is discussed in a later section.

Less Administration

NoSQL databases are easier to install and administer without the need for specialized DBAs. A developer is
able to handle the administration of a NoSQL database, but a specialized NoSQL DBA should still be used.
Schemas are flexible and do not need to be modified periodically. Failure detection and failover is automatic
without requiring user intervention. Data distribution in the cluster is automatic using auto-sharding. Data
replication to the nodes in a cluster is also automatic. When a new server node is added to a cluster, data gets
distributed and replicated to a new node as required automatically.

Asynchronous Replication with Auto-Failover

Most NoSQL databases such as Couchbase provide asynchronous replication across the nodes of a cluster.
Replication is making a copy of data and storing the data in a different node in the cluster. Couchbase stores
up to three replicas. The replication is illustrated in Figure 1-1 in which a JSON document is replicated to
three nodes in a Couchbase cluster. On each node the document is available either in Active state or as

a passive Replica. If the Active document on a node becomes unavailable due to server failure or some
reason such as power failure, a replica of the document on another server is promoted to Active state. The
promotion from Replica passive state to Active Sate is transparent to the client without any downtime or very
less downtime.

CHAPTER 1 © WHY NOSQL?

JSON Document

Active |Replica Active ﬁ Active |Replica

Couchbhase Cluster

Figure 1-1. Replication on a Couchbase Cluster

Replication within a cluster provides durability, reliability, and high availability in the eventuality of
a single node failure. The terms durability, reliability, and high availability seem similar but have different
connotations. Durability is a measure of the time for which the data is not lost and is in a persistent state.
Reliability is a measure of the operational efficiency of the database. Common measures of reliability are
Mean Time Between Failure (MTBF=total time in service/number of failures during the same time) and
Failure rate (number of failures/total time in service). High availability is the measure of time for which the
database is available; Available time/(Available time+Not Available time).

Couchbase also supports Cross Datacenter Replication (XDCR), which is replication of data from one
data center to another. In addition to failure recovery, XDCR provides data locality because, with the same
data replicated across multiple data centers, it is more likely to find a cluster/node closer to a client. I cover
XDCR in the section “Cross Data Center Replication.”

“Asynchronous” implies that a server does not wait for the replication to complete before sending
an ACK (acknowledgment) to the client. The difference between synchronous and asynchronous mode
is explained next. In synchronous mode a data is replicated in the following sequence and illustrated in
Figure 1-2.

1. Client sends a new data record to Serverl.

The data record is stored in NoSQL database on Serverl.
The data record is propagated to Server2 for replication.
The data record is stored in NoSQL database on Server2.

The Server2 sends ACK to Server1 that the data record has been replicated.

S o W Db

The Serverl sends ACK to Client that the data record has been replicated.

CHAPTER 1 © WHY NOSQL?

Synchronous Mode

Client

1 Send database record 6 ACKto Client

--'-'_"\

3 Propogate data

Servert Server2

5 ACK to Servert

2 Add database record 4 Add database record

NoSQL DB MNoSGL DB

Figure 1-2. Data Replication in Synchronous Mode

In asynchronous mode, a data is replicated in the following sequence and illustrated in Figure 1-3.
1. Client sends a new data record to Serverl.

The data record is stored in NoSQL database on Serverl.

The data record is propagated to Server2 for replication.

The Serverl sends ACK to Client that the data record has been replicated.

The data record is stored in NoSQL database on Server2.

o @ w bh

The Server2 sends ACK to Server1 that the data record has been replicated.

CHAPTER 1 © WHY NOSQL?

Asynchronous Mode

Client

1 Send database record 4 ACKto Client

.-—-—---.\

3 Propogate data

Servert Server2

6 ACK to Servert

2 Add datahase record 5 Add database record

NoSQL DB NoSGL DB

Figure 1-3. Data Replicationin Asynchronous Mode

Asynchronous mode prevents the latency associated with waiting for a response from the servers to
which data is propagated for replication. But, the servers in the cluster could be an inconsistent state while
data is being replicated. The client, however, gets an ACK for data replication before the consistent state is
stored. Data in asynchronous mode is eventually consistent.

Caching for Read and Write Performance

Most NoSQL databases, including Couchbase Server, provide integrated object-level caching to improve
read and write performance. With caching, applications are able to read and write data with a latency of less
than a millisecond. Caching improves read performance more than it improves write performance.

Cloud Enabled

Cloud computing has made unprecedented capacity and flexibility in choice of infrastructure available.
Cloud service providers such as Amazon Web Services (AWS) provide fully managed NoSQL database
services and also the option to develop custom NoSQL database services. AWS has partnered with
Couchbase to provide support and training to those running Couchbase Server on Amazon EC2 and
Amazon EBS.

10

CHAPTER 1 © WHY NOSQL?

What Has Big Data Got to Do with NoSQL?

Though NoSQL databases may be used for storing small quantities of data, NoSQL databases were motivated
by big data and the dynamic requirements of big data storage and processing. Couchbase Server is designed
for big data with features such as scalability, intra cluster, and cross datacenter replication. In some of the
examples in the book we shall use small quantities of data to demonstrate features and client APIs. The
quantity of data stored or fetched may be scaled as required in a big data application. The same application
that is used to stored ten lines of data in Couchbase may be modified to store a million lines of data. The
same application that is used to migrate five rows of data from Apache Cassandra to Couchbase Server may
be used to migrate a million rows of data. The performance of Couchbase Server does not deteriorate with
increase in data processed.

NoSQL Is Not without Drawbacks

While much has been discussed about their merits, NoSQL databases are not without drawbacks. Some of
the aspects in which NoSQL databases have limitations are as follows.

BASE, Not ACID

NoSQL databases do not provide the ACID (Atomicity, Consistency, Isolation, and Durability) properties in
transactions that relational databases do.

e Atomicity ensures that either all task/s within a transaction are performed or none
are performed.

e Consistency ensures that the database is always in a consistent state without any
partially completed transactions.

e Isolation implies that transactions are isolated and do not have access to the data
of other transactions until the transactions have completed. Isolation provides
consistency and performance.

e Atransaction is durable when it has completed.

NoSQL database provide BASE (Basically Available, Soft state, and Eventually consistent) transactional
properties.

¢ Basically Available implies that a NoSQL database returns a response to every
request though the response could be a failure to provide the requested data, or the
requested data could be returned in an inconsistent state.

e Soft state implies that the state of the system could be in transition during which
time the state is not consistent.

e Eventually consistent implies that when the database stops receiving input,
eventually the state of a NoSQL database becomes consistent when the data has
replicated to the different nodes in the cluster as required. But, while a NoSQL
database is receiving input, the database does not wait for its state to become
consistent before receiving more data.

11

CHAPTER 1 © WHY NOSQL?

Still New to the Field

The NoSQL databases are still new to the field of databases and not as functionally stable and reliable as the
established relational databases.

Vendor Support Is Lacking

Most NoSQL databases such as MongoDB and Apache Cassandra are open source projects and lack

the official support provided by established databases such as Oracle database or IBM DB2 database.
Couchbase Server is also an open source project. Couchbase, however does provide subscription-based
support for its Enterprise Edition server.

Why Couchbase Server?

Couchbase Server is a high-performance, distributed, NoSQL database. Couchbase Server provides several
benefits additional or similar to those provided by some of the other leading NoSQL databases.

Flexible Schema JSON Documents

Interactive, real-time applications, processing unstructured data required to support a varying data model
as the unstructured data does not conform to any fixed schema. Not all NoSQL databases are based on the
JSON data model. In Couchbase Server, data is stored as JSON documents with each document assigned an
Id. The JSON data storage and exchange format is a schema-less data model as discussed earlier and stores
hierarchies of name/value pairs. The JSON document structure is not fixed and may vary from document to
document and may be modified in the same document. The only requirement is that the document is a valid
JSON document. A flexible schema data model does not require an administrator's intervention to modify
schema, which could lead to downtime.

Scalability
While all NoSQL databases are scalable Couchbase's scalability feature has the following advantages.

¢ Adding and removing nodes is a one-click solution without incurring downtime.
All nodes are the same type, which precludes the requirement to configure different
types of nodes.

e Auto-sharding, which is discussed in more detail in the next subsection, provides
automatic load balancing across the cluster with no hot spots on overloaded servers.

e The Cross Data Center Replication feature is unique to Couchbase and makes
Couchbase scalable across geographies.

Auto-Sharding Cluster Technology

When a new server is added or removed from a Couchbase cluster, data is automatically redistributed to

the nodes in the cluster and rebalanced without downtime in serving client requests. The process of evenly
distributing data across the cluster automatically is called auto-sharding. If more RAM and I/O capacity is
required, simply add a server. Data is available continuously while being balanced evenly among the cluster
nodes. Client requests are routed to a server closest to the client making use of data locality. Data locality
improves response time and reduces network traffic as data is being served from a server that is close to the client.

12

CHAPTER 1 © WHY NOSQL?

High Performance from High Throughput and Low Latency

Latency may be defined in different forms but all imply a delay: for example, the delay in receiving requested
data or a delay in data transfer to another server for replication. Throughput is defined as the rate of data
transfer over a network.

Couchbase is designed for the flexible data management requirements of interactive web applications
providing high throughput and low latency. While most NoSQL databases provide a fast response,
Couchbase's sub-millisecond latency is consistent across read and write operations and consistent across
varying workloads. The latency of some of the other NoSQL databases such as MongoDB and Apache
Cassandra increases as the number of ops/sec increases, but Couchbase's latency stays low even at high
workloads. While most NoSQL databases provide a high throughput, Couchbase's high throughput is
consistent across a mix of read and write operations. Throughput scales linearly with additional nodes. In a
performance benchmark (http://www.slideshare.net/renatko/couchbase-performance-benchmarking)
comparing Apache Cassandra, MongoDB, and Couchbase, Couchbase showed the lowest latencies and
highest throughput. One of the reasons Viber cited for choosing Couchbase was that “Couchbase was able to
provide several times more throughput using less than half the number of nodes.”

Couchbase provides built-in memcache-based caching technology. What is memcache? Memcache is
a cache in the memory (RAM) to store temporarily (also called to cache) frequently used data. Memcache
is used to optimize disk I/O; if data is made available from the RAM the disk does not have to be accessed.
Memcache is also used to optimize CPU; results of CPU intensive computations are stored in the cache
to avoid recomputation. What is "frequently used data" is determined by the server based on the number
and frequency of requests for the data. The RAM not being used for other purposes is used as memcache,
and memcache is temporary as the RAM may be reclaimed for other use if required. Couchbase Server
coordinates with the disk to keep sufficient RAM to serve incoming requests with low latency for high
performance. When the frequently used information is re-requested it is served from the memcache
instead of fetching from the database. Memcache improves response time, which results in reduced latency
and high throughput. With sub-millisecond read and write performance, Couchbase Server is capable
of hundreds of thousands of ops per second per server node. Couchbase Server persists data from RAM
to disk asynchronously while keeping a set of data for client access in the object-level cache in RAM. An
append-only storage tier appends data contiguously to the end of a file, improving performance. Updates
are first committed to RAM and subsequently to disk using per-document commit. A cache miss is defined
as a direct access of a database disk when the cache does not provide the required data. Orbitz mentioned
caching mechanism as the main reason for choosing Couchbase.

Cluster High Availability

Couchbase cluster stays highly available without downtime. While most NoSQL databases provide high
availability, Couchbase has the following advantages over the others.

e Cross Data Center Replication, which is discussed in detail in the next section,
provides high availability even in the eventuality of a whole data center failing.

e Software upgrades are done online, without shutting down the Couchbase Server.
e Hardware upgrades are done online.

e Maintenance operations such as compaction are done online.

13

http://www.slideshare.net/renatko/couchbase-performance-benchmarking

CHAPTER 1 © WHY NOSQL?

Cross Data Center Replication

Replication of data stores multiple copies of data on different nodes in a cluster for durability and high
availability. Durability implies that if one copy of the data is lost due to machine failure or some other reason
such as power failure, another copy of the data is still available. High Availability implies that the database
does not have downtime due to the failure of a single node in the cluster as a copy of the data from another
node is fetched. In additional to replication within a cluster (intra cluster replication), Couchbase 2.0 added
a feature called Cross Data Center Replication (XDCR) in which data is replicated across data centers to
cluster/s in another data center, which could be at a geographically remote location. XDCR provides data
locality in addition to the benefits discussed previously in this section. Data locality is the closeness of

data to a client. If each client is able to access a node that is close to the client, data is not required to be
transmitted across the network. If data is available at a data center close to a client, data is fetched from the
data center instead of fetching over the network from a distant data center. Transmitting data across the
network incurs delay (latency) and increased bandwidth requirement. Data locality improves response time.
Cross Datacenter Replication is illustrated in Figure 1-4 in which a JSON Document A is replicated using
intra cluster replication on Datacenterl, and JSON Document B is replicated using intra cluster replication
on Datacenter2. JSON document is also replicated using XDCR on Datacenter2 and JSON Document B is
replicated using XDCR on Datacenterl. The number of replicas may vary based on requirement.

JESON Document & JEON Document B
e [—
Datacenter! ANy 'T P Datacenter?

N /

™,

ephica T (:‘DlICd
= Active B .. | .‘ep ica I Active B
[Actr»'e A eiluca] [Active A epllca] [A five A eDIlce] tive B
Replica’
Active B Couchbase Cluster | CTVE [~ Aclive Couchbase Cluster | Active A ephco

g
N o \\l—'
i

Figure 1-4. Cross Data Center Replication (XDCR)

XDCR replicates data unidirectionally or bidirectionally between data centers. With bidirectional
replication, data may be added in either data center and read from another data center.

Data Locality

Data locality is the closeness of a Couchbase Server to its client. Cross Data Center Replication makes it
feasible to replicate data across geographies. A client is served from a data center that is closest to the client,
thereby reducing the network latency.

14

CHAPTER 1 © WHY NOSQL?

Rack Awareness

Couchbase Servers in a cluster are stored across several racks and each rack has its own power supply

and switches. Failure of a single rack makes data stored on the rack susceptible to loss. To prevent loss

of all copies of a data and provide high availability, Couchbase Server 2.5 Enterprise Edition introduced
Rack Awareness. Using Couchbase, Rack Awareness replicas of a document are placed on nodes across
different racks so that failure of a single rack does not cause all replicas of the document to be lost or become
unavailable, even temporarily.

Multiple Readers and Writers

As of Couchbase Server 2.1, multiple readers and writers are supported to persist/access data to/from a
disk to fully utilize the increase in disk speeds to provide high read and write efficiency. With a single thread
read and write, the data in the cache is less as compared to data on the disk resulting in cache misses, which
results in increased response time and increased latency. With multiple threads accessing the same disk,
more data may be fetched into the cache to improve efficiency of read and write to improve the response
time and reduce the latency. Multithreaded engine includes synchronization among threads to prevent
multiple threads from accessing the same data concurrently.

Support for Commonly Used Object-Oriented Languages

Couchbase Server provides client APIs for commonly used languages such as Java, PHP, Ruby, and C.

Administration and Monitoring GUI

Couchbase provides administration and monitoring graphical user interface (GUI), which some of the other
NoSQL databases such as MongoDB don't. Some third-party admin GUIs are available for MongoDB but a
built-in integrated admin GUI is not provided.

Who Uses Couchbase Server and for What?

A wide spectrum of companies from different industries use Couchbase Server. Different companies have
different reasons for choosing Couchbase Server. Reasons cited by some of the companies who chose
Couchbase are listed in Table 1-3.

Table 1-3. Reasons for Using Couchbase

Company Reasons

AOL for ad targeting AOL uses Couchbase in conjunction with Hadoop to make hundreds
of user profiles and statistics available for their ad targeting platform
with sub-millisecond latency.

DOCOMO Innovations for mobile Real-time data infrastructure, mobile-to-cloud-data

services synchronization, elastic scalability, production-ready solution with
high availability.

OMGPOP for Draw Something Scalability without downtime or performance degradation.

Orbitz for travel services Couchbase provides no downtime. Couchbase is used store user online

sessions. Couchbase provides integrated Memcache for fast response.

(continued)
15

CHAPTER 1 © WHY NOSQL?

Table 1-3. (continued)

Company

Reasons

Betfair for online betting

AdAction for ad serving

Amadeus for travel services

Concur for business travel

LinkedIn for professional social
networking

Nami Media for enterprise class
advertising solutions

Scalability and Replication with auto-failover are suitable for
Betfair's Continuous Delivery methodology. Betfair processes
more than 7 million transactions per day with each completing in
less than a second. Betfair uses Couchbase to store session data
across sessions and for storing user preferences for customization.
Couchbase provides high performance, scalability, schema
flexibility and continuous delivery.

Couchbase is used to store large quantities of consumer data for
about 75 million users per month. Couchbase chosen because of
its performance, uptime, high response time, low administrative
overhead, scalability without performance loss, and rapid
deployment.

Couchbase server was chosen because of its low (sub-millisecond)
latency, elasticity to handle traffic growth, high throughput and
linear scalability when adding/removing nodes.

As Concur processes more than a billion Couchbase operations
per day Couchbase's low latency was one of the reasons for being
chosen. Couchbase's cluster management made it feasible to
add/remove nodes without downtime. Couchbase's seamless
transition when adding/removing nodes requires no configuration
management with all clients being updated automatically. A single
solution for multiple tiers and languages was one of the main
reasons for choosing Couchbase.

With hundreds of millions of users LinkedIn chose Couchbase for its
performance and scalability that can be used for logging, monitoring
and analyzing the metrics of user activity. High availability caching
was one of the main reasons for choosing Couchbase.

Couchbase was chosen for its fault-tolerance, data persistence
and high availability. Linear scalability with no downtime and
Couchbase's monitoring of the cluster to provide RAM and disk
persistence statistics were some of the other reasons.

Couchbase users include AOL, Orbitz, Cisco, LinkedIn, and Concur. Table 1-4 lists additional Internet

companies and Enterprises who use Couchbase Server.

16

http://www.concur.com
http://www.namimedia.com

CHAPTER 1 © WHY NOSQL?

Table 1-4. Some Companies Using Couchbase

Internet Companies Enterprises
AOL LG

Orbitz ADP
LinkedIn Cisco

adscale NTT Docomo
Ubisoft Vodafone
Tapjoy Skechers
Dotomi NCR Corporation
Playdom Comcast
Concur ITT

Sabre Experian

Couchbase Server is used for a wide variety of applications ranging from advertising to VoIP services.
Couchbase Server and NoSQL, in general, are used for applications storing and processing big data.
Examples of types of applications using NoSQL are discussed in Table 1-5.

Table 1-5. Types of Applications Using Couchbase

Application Example

User profile management The user profile of millions of LinkedIn, Tunewiki, and AOL users is

distributed globally stored in Couchbase NoSQL database. The semi-transient device data
of millions of musiXmatch users is stored in Couchbase Server.

Session store management The user sessions of millions of clients who log on to Orbitz, Concur,
Sabre, and musiXmatch are stored in Couchbase database.

Content and metadata store Some of the challenges in content and metadata store management are:

management Content and metadata are unstructured.

Scalability to support millions of concurrent users.
High-performance interactive, customized applications.
Search across the full dataset.

Couchbase is suitable for the following reasons:

« Elastisearch provides real-time, integrated, distributed, full-text
search.

o Flexible data model to provide a wide variety of data.

Scalability for fluctuations in workload.

High performance with low latency and high throughput.
No downtime.

(continued)

17

CHAPTER 1 © WHY NOSQL?

Table 1-5. (continued)

Application Example

Data aggregation Couchbase is used to store social media data. Used for data
aggregation by Sambacloud.

High-availability cache Couchbase Server is used as the cache tier by Orbitz. Couchbase is
suitable for providing a caching layer to replace a separate Memcache
tier. A separate Memcache tier has several drawbacks such as
cold cache, heavy RDBMS contention, lack of scalability, complex
monitoring, and stale data access.

Mobile Apps Couchbase is used to store user info and app content by Kobo and
Playtika.
Ad Targeting AOL makes use of Couchbase for advertising targeting in real time.

Couchbase provides fast access. Some others using Couchbase for ad
targeting are Dotomi, Nami Media, Xclaim, adscale, Chango, Delta
Project’s Ad Action. The following features of Couchbase make it
suitable for ad targeting.

Production proven in large-scale ad and offer targeting systems.
Schema-less data model.

Elastic scaling on commodity hardware or cloud computing instances.
Sub-millisecond read and write latency.

Hadoop support.

Built-in caching.

Social Gaming Couchbase stores player and game data, for example: Tapjoy, Ubisoft,
Pokemon, Quepasa, Antic Entertainment, Gamegos, Meteor Games,
Nexon, Playtika, Scoreloop, Shuffle Master, Sojo Studios, Tribal
Crossing, Betfair, VNG, Vostu. The following features make Couchbase
suitable for social gaming:
Sub-millisecond response time.
No downtime provides interruption-free platform.
Flexible schema provides rapid game development.

Communications NTT Docomo, VodafoneCisco, ITT. Couchbase’s ability to provide real-
time data makes it suitable for the Communications industry.

Business Services Salesforce.com, ADP, Concur, Deutsche Post, LG CNS, Navteq

E-Commerce Skechers, Ganz, Kobo, Skyscanner, The Knot

Social networking Vimeo, mig33, Spotme, Tango, The Ladders, Tunewiki

Summary

This chapter introduced the NoSQL databases. We discussed the JSON data format, which is the format used
in Couchbase Server. We discussed the advantages of NoSQL databases over SQL-relational databases. We
introduced the Couchbase Server and why it is one of the best NoSQL databases. We also listed some of the
users of Couchbase Server. We introduced NoSQL in the context of Big Data. In the next chapter, we shall
discuss accessing Couchbase Server with a Java client and running CRUD operations in the database.

18

CHAPTER 2

Using the Java Client

Couchbase Server is a document object store based on the flexible JSON model. Unlike relational

databases, which support only the fixed row-column model, no fixed schema is required for the Couchbase
Server. Hierarchies of JSON structure can be constructed to develop a custom data model. With fast
(sub-millisecond) response times, high throughput, scalability, view-based querying, and support for Map

& Reduce function, Couchbase Server is one of the leading NoSQL databases, if not the leader, in NoSQL
databases. In this chapter we shall create a document store in Couchbase Server using the Java Client Library
for Couchbase Server. We shall use Eclipse IDE for developing a Java application to access Couchbase Server.
This chapter covers the following topics.

e Setting up the Environment

e (Creating a Maven Project

e Connecting to Couchbase Server
e Creating a Data Bucket

e (Creating a Document

e Getting a Document

e Updating a Document

e (Creating a View

e Querying a View

e Deleting a Document

Setting Up the Environment

Download and install the following software components.

e Couchbase Server for Windows, Community or Enterprise Edition, from
http://www.couchbase.com/download.

e Couchbase Java Client Library 2.1.3 as Maven dependency.

e Eclipse IDE for Java Developers (Eclipse Luna SR2) from http://www.eclipse.org/
downloads/.

e JDK1.7or 1.8 from http://www.oracle.com/technetwork/java/javase/downloads/.

19

http://www.couchbase.com/download
http://www.eclipse.org/downloads/
http://www.eclipse.org/downloads/
http://www.oracle.com/technetwork/java/javase/downloads/

CHAPTER 2 * USING THE JAVA CLIENT

Creating a Maven Project

In this section we shall create a Maven project in Eclipse for the Couchbase Java Client to access the
Couchbase Server. We shall also add a Java class to the Maven project.

1. Select File » New » Other. Select Maven » Maven Project in New as shown in
Figure 2-1. Click on Next.

r |’ B
@] New l_lﬁlﬁ

Select a wizard —>

Create a Maven Project

Wizards:
type filter text

» = Git -
> (= Java
b (= Java EE
» (= Java Emitter Templates
» JavaScript
o JAXE
> JPA
> Maven
%, Check out Maven Projects from SCM
M Maven Module
1% Maven Project
> (= Plug-in Development -

PP

Figure 2-1. Creating a New Maven Project

2. In New Maven Project window, select the Create a simple project check box
and the Use default Workspace location check box as shown in Figure 2-2. Click
on Next.

20

CHAPTER 2 * USING THE JAVA CLIENT

E:.} New Maven Project uﬂﬂ

New Maven project —
Select project name and location M

[V] Create a simple project (skip archetype selection)

[V] Use default Workspace location

Lacation: * | | Browse...

[]&dd project(s) to working set

More..,

» Advanced

@ <Back || Next>!}J Finish

Figure 2-2. Selecting New Maven Project name and location

3. As Maven project configuration, specify Group Id, Artifact Id, Version, Packaging
and Name as shown in Figure 2-3. Click on Finish.

21

CHAPTER 2 * USING THE JAVA CLIENT

E:.} New Maven Project uﬂﬂ

New Maven project -

Configure project M
Artifact

Groupld: couchbase.clientjava -
Artifactld: Couchbaselava v
Version: 100 -

Packaging: jar -

Name: Couchbaselava -
Description: —

Parent Project

Group Id: -
Artifact Id: -
Wersion: - Browse... Clear

» Advanced

® Next » Finish %J I Cancel

Figure 2-3. Configuring New Maven Project

4. Next, add a Java application to the Maven project. Select File » New » Other as
before. In New window, select Java » Java Class as shown in Figure 2-4. Click
on Next.

22

CHAPTER 2 * USING THE JAVA CLIENT

N
) New (O

Select a wizard —>

Create a Java class

Wizards:
type filter text

4 (= Java

@ Annotation
@ Class|
& Enum
€5 Interface
122 Java Project
% Java Project from Existing Ant Buildfile
141 Java Working Set
H#5 Package
£ Source Folder

b (= Java Run/Debug

b = JUnit &

m

®

Figure 2-4. Creating a New Java Class

5. In New Java Class, select the Source folder as CouchbaseJava/src/main/java,
specify Package as couchbase and class Name as CouchbaseJavaClient as shown
in Figure 2-5. Select the check box public static void main (String|[] args) and
click on Finish.

23

CHAPTER 2 * USING THE JAVA CLIENT

@] New Java Class - =18

Java Class
Create a new Java class. @
Source folder: Couchbaselava/src/main/java Browse...
Package: couchbase Browse..,
[TIEnclosing type: | Browse... J
MName: CouchbaselavaClient
Modifiers: @ public () package private protected

abstract [final [] static

Superclass: javalang.Object Browse..,

Interfaces: | Add...
Remaove

Which method stubs would you like to create?
public static void main(String(] args)
Constructors from superclass
[IInherited abstract methods
Do you want to add comments? (Configure templates and default value here)
Generate comments

® | < Back [Neds] [Finish I}J I Cancel]

Figure 2-5. Creating New Java Class

6. ATJava class gets created in Maven project as shown in the Package Explorer in
Figure 2-6.

24

CHAPTER 2 " USING THE JAVA CLIENT

@ Java - CouchbaseJa-.ra/;rc/r;ain/java/cou;base!CouchbasejavaCIient.java - Eclipse - J

e

[File Edit Source Refactor MNavigate Search Project Run Window Help

Jw i AFRNESER R : " c A ST CRS S ERIIEE - R A0 B A B &0 =022 SRR ATIR & R

[# Package Explorer 2 = | m Couchbaselava/porm.xml CouchbaselavaClientjava 2
=] J:=':>| e v 1 package couchbase;
"=J 2
4. ?ouchbase.Ja\Tfa 3 public class CouchbaselavaClient {
4 (B src/main/java 4
4 1} couchbase 5= public static void main{String[] args) {

o

> |[J) CouchbaselavaClient.java

8 src/mainfresources

(# src/ftest/java

(8 srcftest/resources
> B Maven Dependencies
& =8 JRE System Library [jdk1.7.0_51]
b & src

(= target

[w pornxml

Figure 2-6. New Java Class CouchbaseJavaClient

7. Next, add the Maven dependency for Couchbase Java Client to the pom.xml.
Right-click on pom.xml in Package Explorer and select Open With » Maven POM
Editor as shown in Figure 2-7.

8 Jova - Coushbaseionalpom -Edipse L W W - - %
‘File Edt Sowrce Refactor Navigate Search Project Run Window Help
e MR RN CR R U B N iR S e Quick Access |
(8 Package Explorer a% | @ T 7 8 | *Couchbaselwa/pormoml & Couchbaselwallientjma
4 12 Couchbaselava 1= cproject xmlnse"http://moven. gpache. org/PON/4. 8, @ xmlns ixsie"http:/fiwar. . org/ 2001 /XHLScheno-instance™
4 5 src/mainfjava 2 xsi:ssh lrotatiunl"htﬂ‘.‘ﬁha\'?ﬂ-mcﬁe- org/POMI4. 8. & http:/Snoven, apache. orgfsdinaven-4, 8,0, 250>

sion>4, 9. 8¢/modelversi
couchbase, client. fav P
<artifactld>Couchbaselavac/artifactld
on>l. 8. 8¢/ versions
ouchbaselavac/names

4 [B couchbase
- [l CouchbaselavaClientjmva
™ srefmainfresources
B sreftest/java
W srefrest/resources
B Maven Dependencies
mh JRE Systern Library [jdic1.7.0_51]
= sre
2 tanget
| pom.rnl

cdependenciess
cdependencys

om. couchbase. client</grouplds

tIdrjava-client</artifactlds

on>2.1.3¢/version>

</dependency>

</dependenciess

18

19 </project>

Figure 2-7. Maven POM Configuration File pom.xml

8. The Couchbase Java Client Library 2.1.3 and dependency jar files get added to
the project build path. Right-click on the CouchbaseJavaClient project node in
Package Explorer and select Properties. In Properties window select the Java
Build Path node and subsequently the Libraries tab. The Maven jar files are listed
in the Java Build Path as shown in Figure 2-8. Click on OK.

25

CHAPTER 2 " USING THE JAVA CLIENT

1@} Properties for Couchm ‘ - L@lﬁ

type filter text Java Build Path e
i Resource —
Builders | (% Source] = Projects | B Libraries I'%- Order and Export
Java Build Path J&Rs and class folders on the build path:
b Java Code Shyle > =i JRE System Library [jdk1.7.0_51] Add JARs...

b Java Compiler 4 B, Maven Dependencies

[)

> Java Editor) (2 Bccess rules: No rules defined ’ Add External JARs... l

Javadoc Location 27 Native library location: (None) [add Variabl]
b Muven b fes java-client-2.1.3 jar - CAUsers\Deepak Vohrat.rm2ire alRnen

PmJ.ect Facets core-io-1.1.3,jar - C:\Users\Deepak Vohra\.m2\repo: [&dd Library...]

Project Referenc.es e rgava-1.0.4jar - CA\Users\Deepak Vohra\.m2\reposil|

Run/Debug Settings [AddClass Folder... |
i Task Repository

Task Tags Add External Class Folder...|
b Walidation

WikiText Edit...

Remowve
Migrate JAR File..,

@ [ok h‘” Cancel

Figure 2-8. Maven Dependency Jars

The pom.xml configuration file is listed below.

<project xmlns="http://maven.apache.org/POM/4.0.0" xmlns:xsi="http://www.w3.0rg/2001/
XMLSchema-instance"
xsi:schemalocation="http://maven.apache.org/POM/4.0.0 http://maven.apache.org/xsd/maven-
4.0.0.xsd">
<modelVersion>4.0.0</modelVersion>
<groupId>couchbase.client.java</groupId>
<artifactId>CouchbaseJava</artifactId>
<version>1.0.0</version>
<name>CouchbaseJava</name>
<dependencies>
<dependency>
<groupId>com.couchbase.client</groupIld>
<artifactId>java-client</artifactId>
<version>2.1.3</version>
</dependency>
</dependencies>
</project>

26

CHAPTER 2 " USING THE JAVA CLIENT

In the following sections we shall connect to the Couchbase Server using the Couchbase Java Client
library and add, get, update, and delete document/s. We shall also query Couchbase using a view. Add the
methods listed in Table 2-1 to CouchbaseJavaClient.

Table 2-1. Methods in CouchbaseJavaClient Class

Constructor Description

createDocument() Creates a Couchbase document
updateDocument() Updates a document
getDocument() Gets a document
removeDocument() Deletes a document
queryView() Queries a view

Documents may be stored in the default bucket or a user created bucket. In the next section we shall
discuss creating a bucket.

Creating a Data Bucket

Couchbase Server stores data in Data buckets. The “default” data bucket is created by default when the
Couchbase Server is installed. The data bucket supports items up to 20MB in size. Additional data buckets
may be added as required. A new data bucket could be added for a new application or if the bucket limit is
reached. A new data bucket may be created in the Couchbase Console. If the available RAM is not sufficient
to create multiple buckets the RAM/Quota Usage for one of the buckets may have to be reduced. For
example, reduce the RAM/Quota Usage for the default bucket to 100 MB. In the Console select the Data
Buckets link and click on Create New Data Bucket button to create a new data bucket as shown in Figure 2-9.

el
Couchbase

& Cluster Overview Server Nodes Data Buckets XDCR
Data Buckets

Couchbase Buckets Create New Data Bucket |

Y]

Bucket Name Nodes Item Count Opsisec Disk Fetches/sec RAM/Quota Usage Data/Disk Usage

Documents = Views

b default @ 0 0

Figure 2-9. Creating a New Data Bucket in Couchbase Server from the Admin Console

In the Create Bucket pop-up specify a Bucket Name, json, for example, as shown in Figure 2-10. Select
Bucket type as Couchbase, Memcached being the other. The Couchbase bucket type supports the full
range of Couchbase-specific functionality and also has a higher Item size (20 MB) in contrast to 1 MB for
Memcached. Memcached bucket type provides none of the advantages of Couchbase bucket type such as
replication and XDCR. In fact, Memcached does not provide persistence and is just an in-memory cache

27

CHAPTER 2 " USING THE JAVA CLIENT

designed to be used alongside a relational database for frequently used data. Select the default setting for the

Memory Size. For Access control specify a password. Replicas are not enabled by default. If replicas are to be
created, select Replicas » Enable.

Create Bucket %

Bucket Settings

Bucket Name: |son
Bucket Type: (@ Couchbase

(O Memcached
Memory Size

Cluster quota (4.11 GB)
Per Node RAM Quota: 4118 MB U
Other Buckets (100 MB) This Bucket (4.02 GB) Free (0 B)

Total bucket size = 4118 MB (4118 MB x 1 node)

Cache Metadata: @ Value Eviction What's this?

O Full Eviction
Access Control
(® Standard port (TCP port 11211, Needs SASL auth.)
Enter password: esessssss
(O Dedicated port (supports ASCII protocol and is auth-less)

Protocol Port:

Replicas
Figure 2-10. Configuring the Data Bucket

Enable Flush as shown in Figure 2-11. The Flush option makes the data in bucket deletable; without the
Flush option the data in the bucket cannot be cleared. Click on Create to create a data bucket.

28

CHAPTER 2 * USING THE JAVA CLIENT

() Dedicated port (supports ASCII protocol and is auth-less)
Protocol Port:

Replicas

[] Enable

[Index replicas
Disk I/O Optimization

Set the bucket disk 1/O priority: ® Low (default) What's this?
O High

Auto-Compaction

Auto-Compaction settings trigger the compaction process. The

databases and their respective view indexes when the following conditions are met.

[] Override the default autocompaction settings?
Flush

¥ Enable What's this?

Figure 2-11. Enabling Flush and Creating the Data Bucket

A new data bucket gets created as shown in Figure 2-12.

process comparts

Cancel

[]
Couchbase

A& Cluster Overview Server Nodes Data Buckets Views XDCR Log Settings

Data Buckets

Couchbase Buckets

Bucket Name Nodes Item Count Opsisec DiskF Usage Usage
P default "} 0 0 0 it bl Documents || Views
p ison N @ 0 0 0 el S Documents | Views

Figure 2-12. New Data Bucket

29

CHAPTER 2 USING THE JAVA CLIENT

Connecting to Couchbase Server

In this section we use the Java client class for Couchbase Server, com. couchbase.client. java.
CouchbaseCluster, to connect to Couchbase Server. We shall connect using the CouchbaseJavaClient
application. The CouchbaseCluster class is the main entry point for connecting to the Couchbase Server.
The CouchbaseCluster class provides the overloaded, static create() method to create an instance of
CouchbaseCluster constructors, which are listed in Table 2-2.

Table 2-2. CouchbaseCluster Class Constructors

Constructor Description

create() Creates a CouchbaseCluster instance.
create(CouchbaseEnvironment Creates a CouchbaseCluster instance usinga
environment) CouchbaseEnvironment. CouchbaseEnvironment

represents the Couchbase properties such as
connection timeout, disconnect timeout, query
timeout, and view timeout shared across the cluster.

create(CouchbaseEnvironment environment, Creates a CouchbaseCluster instance usinga

java.util.List<java.lang.String> nodes) CouchbaseEnvironment and a List of nodes.

create(CouchbaseEnvironment Same as the preceding method except that the

environment, java.lang.String... nodes) second parameter is a vararg of type String instead
of a List.

create(java.util.List<java.lang.String> nodes) Creates a CouchbaseCluster using a List of nodes.

create(java.lang.String... nodes) Same as the preceding method except that the

parameter s a String vararg instead of a List.

Next, we connect to Couchbase cluster. First, create a CouchbaseCluster instance in the main()
method using the static method create().

Cluster cluster = CouchbaseCluster.create();

Or, one of the overloaded create methods may be used to create a CouchbaseCluster instance.
For example, to create a CouchbaseCluster instance using a List of nodes use the create(java.util.
List<java.lang.String> nodes) method.

List<String> nodes = Arrays.asList("192.168.1.71", "192.168.1.72");
cluster = CouchbaseCluster.create(nodes);

The CouchbaseCluster provides the overloaded openBucket () method, which returns a Bucket
instance, to connect to a Couchbase bucket. Invoke the openBucket(java.lang.String name,
java.lang.String password) method to connect to the “json” bucket created in the previous section.

Bucket jsonBucket = cluster.openBucket("json", "password");

Alternatively, connect to the default bucket using the openBucket () method. For connecting to the
default bucket, bucket name and password are not required to be specified.

Bucket defaultBucket = cluster.openBucket();

30

CHAPTER 2 * USING THE JAVA CLIENT

The Bucket interface represents a connection to a bucket to perform operations on the bucket
synchronously. An asynchronous representation of a bucket is also provided with the AsyncBucket interface,
which may be used to perform asynchronous operations on a bucket. An AsyncBucket instance may be
created as follows.

AsyncBucket asyncBucket = jsonBucket.async();

To disconnect from all open buckets invoke the disconnect() method.
cluster.disconnect();

The starter CouchbaseJavaClient class is listed below.

import com.couchbase.client.CouchbaseClient;
import java.io.IOException;

import java.net.URI;

import java.util.linkedlist;

import java.util.list;

import java.util.concurrent.TimeUnit;
package couchbase;

import java.util.Arrays;
import java.util.list;

import com.couchbase.client.java.AsyncBucket;
import com.couchbase.client.java.Bucket;

import com.couchbase.client.java.Cluster;

import com.couchbase.client.java.CouchbaseCluster;

public class CouchbaseJavaClient {
private static Bucket jsonBucket;

public static void main(String args[]) {
Cluster cluster = CouchbaseCluster.create();
//List<String> nodes = Arrays.aslList("192.168.1.71", "192.168.1.72");
// cluster = CouchbaseCluster.create(nodes);
jsonBucket = cluster.openBucket("json", "password");
Bucket defaultBucket = cluster.openBucket();
AsyncBucket asyncBucket = jsonBucket.async();
cluster.disconnect();

}

public static void createDocument() {

}
public static void getDocument() {

}
public static void updateDocument() {

}

public static void removeDocument() {

}
public static void queryView() {

}

31

CHAPTER 2 * USING THE JAVA CLIENT

]

| |

Before we may run the CouchbaseJavaClient. java application we need to install the Maven
application. Right-click on pom.xml and select Run As » Maven; install as shown in Figure 2-13.

5

[# Package Explor

4 1 Couchbase

4 B srefmai

4 8 cou
R

B src/mai =)
B srcftest] o
(B srcftest|

. B, Maven

» 2 JRE Syst

> 4= src
(= target
|| porm .

MNew

Open
Open With
Show In

Copy

Copy Qualified Name
Paste

Delete

Remove from Context
Mark as Landmark
Build Path

Refactor

Import...
Export...

Refresh
Assign Working Sets...

Validate
Show in Rernote Systerns view
Profile As
Debug &s

Run &s

Teamn

Replace With
Mawven

JPA Tools
Compare With
Source

Figure 2-13. Installing the Maven Project

Maven project gets built as shown in Figure 2-14. The Maven project is required to be built only once
before the first time the Java application CouchbaseJavaClient is run. For subsequent modifications and

F3

13

Alt+Shift+\W »

Ctrl+C

Ctrl+V
Delete
Ctrl +Alt+Shift+Down
Ctrl+Alt+Shift+Up
»
Alt+Shift+T »

F5

L‘_:’,,,Jv v‘_.v’t;:(:jv

{J] CouchbaselavaClientjava &2
3

ase.client. java.Bucket;
ase.client. java.Cluster;
pse.client, java. CouchbaseCluster;

hbaselavaClient {

bid main(String args[]) {

ster = CouchbaseCluster.create();
LltBucket = cluster.openBucket();
connect();

Declaration B Console 2

TIREEEEY

1 Maven build

2 Maven build...

3 Maven clean

4 Maven generate-sources
5 Maven install

6 Maven test L}

Run Configurations...

runs, the Maven project is not required to be rebuilt and reinstalled.

32

[Java Application] C:AProgram Files\Javaljdk1.7.0_514binY

Alt+Shift+X, M

CHAPTER 2 * USING THE JAVA CLIENT

1 Problems @ Javadoc [, Declaration ') Console 3 EX% BEEPE -
<terrningted> CAProgram Files\Java\jdik1T.0_ST\bin\javaw.exe (Jul €, 2015, 5:08:16 PM)

[IWFO] --- maven-install-plugin:Z.4:install (default-install) @ Couchbaselava ---

[IIIFO] Installing C:\Users\Deepak Vohralworkspace hb aval\target hbaselava-1.9.@. jar to C:\Users\Deepak vohra\.m2\repository\couchbase\client\javaiCou

Java'il. @, @\Couchbase) 1.2.8. jor
[IHFO] Installing C:\Users\Deepak Vohra\workspace\Couchbaselava\pom.aml to C:\Users\Deepak Vohra\.m2\repository\couchbase\clientljava\Couchbaselavall. @, @\Couchb
aselava-1.0.0.pom
[TMFO] =====sasecacssammssssasssassssassssssssssssesasssasessssssssasssannsann
[IHFO] BUILD SUCCESS
[THFO) ------ =
[IHFO] Total time: 9.878 s
[I8FO] Finished at: 2015-07-@6T17:08:30-08:00
[IWFO) Final Memory: 14M/189M

[IHFO] ==ssmssssessns

Figure 2-14. Maven Project Built

Subsequently, right-click on CouchbaseJavaClient. java source file in Package Explorer and select
Run As » Java Application as shown in Figure 2-15.

@] Java - CouchbaseJa\w'srdmain.-fj;v-afccu_chbasechuchbase.lavaClien_ija -1

File Edit Source Refactor MNavigate New »
g’_['ﬁ' Al _.\9\‘&?@'. ¥ Open F3 AR ' x
[§ Package Explorer &2 Bg| s Open With b bvaClientjava 3
4 {2 Couchbaselava OpenTypeHienrchy B
4 B srcfmainfjava ShowlIn Alt+Shift+W » _—
ucket;
4 3} couchbase 1 [Cary el Elusters
»|{1] CouchbaselavaClientjay *~) CouchbaseCluster;
8 src/mainfresources 52 Copy Qualified Name
B srcftest/java [Paste Ctrl+V
8 srcftestfresources 3¢ Delete Delete
» B Maven Dependencies pres[1) { o
b i i Remowve from Context Ctrl +Alt+Shift+Down pluster. o ();
> B JRE System Library [jdk1.7.0_51] ter.openBucket();
b g src Build Path 3
b & target Source Alt+Shift+S »
[pormsrnl .
Refactor Alt+Shift+T »
e Import.
g Export.
References >
Declarations »
«® Refresh F5 lonsole &2
Assign Working Sets.., njavaw.exe (Jul 6, 2015, 5:08:16 PM)
stall (default-install) @ Couchbaselaw:
Profile As » 2\workspace\Couchbaselava\target\Coucht
ar
Deb"'g As L Amluackenscal Cauchhacalausinem wml +a C
Run &5 » | 33 1Runon Server Alt+Shift+X, R
Walidate 3 2Jawa Appli:a&n Alt+Shift+X, |
UL) ' Run Configurations...
Compare With [k T
Replace With »
Fsimoiemniasiniame | e e e
Web Services » I

Figure 2-15. Running Java Application CouchbaseJavaClient.java

33

CHAPTER 2 " USING THE JAVA CLIENT

The client gets connected to the Couchbase Server. The output from running the class shows that the
client “Connected to Node 127.0.0.1” and subsequently “Opened bucket default,” “Closed bucket default,”
and “Disconnected from Node 127.0.0.1 as shown in Figure 2-16.

able Declaration) Console 53 o X | B LE|&]S
<terminated > Couchbaselava [Java Application] C:\Program Files\Javaljdk1.7.0_S1\binkjavaw.exe (Jul 6, 2015, 5:09:14 PM)

Jul @6, 2815 5:@9:17 PN com.couchbase.client.core. env, DefaultCoreEnvironment <init>

INFO: olsi is less than 3 (2), setting to: 3

Jul @6, 2815 5:@9:17 PN com.couchbase. client. core. env. DefaultCoreEnvironment <init>

INFO: computationPooliize is less than 3 (2), setting to: 3

Jul @6, 22815 5:09:17 PH com.couchbase.client.core.CouchbaseCore <init>

INFO: CouchbaseEnvi {sslEnabled=false, sslieystorefile="null’, sslkeystorePassword='null", queryEnabl
» bootstraplarrierEnabl bootstrapHttphirectPort=8091, bootstrapHttps
15izes=3, computationPools responseBuffersizes16384, requestBuffe
=HicEventLoopGroup, coresch eScheduler, eventB

ranm d=false, queryPort=85093, bootstraph
Part=18891, bootstraplarrierDirectPort=11218, bootstraplarrierSslPc
16384, kvServiceEndpointss=1l, viewServiceEndpointssl, queryServiceEndp
packageNamefAndversion=cou -java-client/2.1.3 (git: 2.1.3), dcpEnz
ryStrategy=BestEffort, maxi fetime=75000, retryDelay=ExponentialDelay{grouBy 1.@ MICROSECONDS; lower=102, upper=100000}, reconnectDelay=Ex
grouBy 1.2 MILLISECONDS; lower=32, upper=4@96}, cbservelntervalDelay=ExponentialDelay{growBy 1.@ MICROSECONDS; lower=1@, upper=120000), keepAlive
autoreleaseAfter=2000, bufferPoolingEnabled=true, queryTimeocut=75002, viewTimeout=75888, kvTimeocut=2580, connectTimeout=5000, disconnectTimeouts=
abledsfalse}

Jul @6, 2815 5:@9:18 PN com.couchbase.client.core.node. CouchbaseNodefl call

INFO: Connected to Mode 127.8.0.1

:19 PH com.couchbase.client.core.config. DefaultConfigurationProvideris call

default

config.DefaultConfigurationProvideri? call

node. CouchbaseNodefl call

Figure 2-16. Running Java Application CouchbaseJavaClient.java

Creating a Document

In this section we shall add a document to a data bucket. A document in Couchbase Server is a key/value
pair in which the value is a JSON document. The com.couchbase.client.java.document.json.JsonObject
class represents a JSON object that may be stored in Couchbase Server. A document is represented with

the Document interface and several class implementations are provided including the JsonDocument, which
creates a document from a JsonObject. The JsonObject class provides two static methods, empty() and
create(), to create an empty JsonObject instance. The JsonObject class also provides the overloaded

put methods to put field/value pairs in a JsonObject instance. The field name in each of these methods is
of type String. A put method is provided for each of the value types String, int, long, double, boolean,
JsonObject, JsonArray, and Object.

The CouchbaseCluster class provides several overloaded insert and upsert methods to add a document
to a bucket. A document is represented with the Document interface. The difference between the insert and
the upsert methods is that the insert methods adds a document only if the document with the specified
key does not already exist while the upsert methods add a document even if a document with the same
key exists. If the document already exists, a DocumentAlreadyExistsException is generated with the
insert methods and a new document is not added. The upsert methods replace the document if it already
exists and add a new document if it does not exist. The insert and upsert methods return an instance of
Document. Some of the overloaded insert methods are discussed in Table 2-3.

34

CHAPTER 2 " USING THE JAVA CLIENT

Table 2-3. CouchbaseCluster Class insert Methods

Method Description

insert(D document) Inserts a document if it does not already exist with the
default key/value timeout.

insert(D document, long timeout, java.util. Inserts a document if it does not already exist with a

concurrentTimeUnit timeUnit) custom key/value timeout.

insert(D document, PersistTo persistTo) Inserts a document if it does not already exist with the default
key/value timeout as the specified number of disk copies.

insert(D document, Inserts a document if it does not already exist with

PersistTo persistTo, the default key/value timeout and with the specified

ReplicateTo replicateTo) replication.

insert(D document, PersistTo persistTo, Inserts a document if it does not already exist with a

ReplicateTo replicateTo, long timeout, custom key/value timeout and the specified durability

java.util.concurrent.TimeUnit timeUnit) and replication.

In the createDocument () custom method in the CouchbaseJavaClient class create a JsonObject
instance for a JSON document with fields journal, publisher and edition with String values using the
put(java.lang.String name, java.lang.String value) method. First, invoke the empty() method to return a
JsonObject instance and subsequently invoke the put(java.lang.String name, java.lang.String value)
method to add field/value pairs.

JsonObject catalogObj = JsonObject.empty().put("journal”, "Oracle Magazine").
put("publisher", "Oracle Publishing").put("edition", "March April 2013");

An instance of Bucket was created earlier.

Cluster cluster = CouchbaseCluster.create();
Bucket defaultBucket = cluster.openBucket("default");

Next, we shall use the insert(D document) method in Bucket to add a document. The JsonDocument

class provides several static methods, some of which are discussed in Table 2-4, to create an instance of
JsonDocument.

Table 2-4. JsonDocument Class Methods

Method Description
empty() Creates an empty JsonDocument instance.
create(java.lang.String id) Creates an empty JsonDocument instance with the specified

document id, which is unique within a bucket.
create(java.lang.String id, Creates a JsonDocument instance using the specified document
JsonObject content) id and JsonObject data.
create(java.lang.String id, Creates a JsonDocument instance using the specified document
JsonObject content, long cas) id, JsonObject data, and CAS value.

(continued)

35

CHAPTER 2 " USING THE JAVA CLIENT

Table 2-4. (continued)

Method

Description

create(java.lang.String id,
int expiry, JsonObject content,
long cas)

from(JsonDocument doc, JsonObject
content)

from(JsonDocument doc, long cas)

from(JsonDocument doc,
java.lang.String id)
from(JsonDocument doc,
java.lang.String id,
JsonObject content)

Creates a JsonDocument instance using the specified document
id, document expiry, JsonObject data, and CAS value.

Creates a JsonDocument instance from another JsonDocument
instance by replacing the JsonObject data.

Creates a JsonDocument from another JsonDocument instance
by replacing the CAS value.

Creates a JsonDocument from another JsonDocument instance
by replacing the document id.

Creates a JsonDocument from another JsonDocument instance
by replacing the document id and the JsonObject data.

Add the JsonObject instance created earlier to the default bucket using an instance of Bucket and the
insert(D document) method. Create an instance of JsonDocument using the JsonDocument. create(java.
lang.String id, JsonObject content) method. Specify document id as "catalog."

Document document = defaultBucket.insert(JsonDocument.create("catalog", catalogObj));

Alternatively, the overloaded upsert () method may be used to add a new document. The upsert()

method adds a new document if it does not already exists and replaces a document if it already exists. Some
of the overloaded upsert methods are discussed in Table 2-5.

Table 2-5. Bucket Class upsert() Methods

Method

Description

upsert(D document)

upsert(D document, long timeout,
java.util.concurrent.TimeUnit timeUnit)

upsert(D document, PersistTo persistTo)

upsert(D document, PersistTo persistTo,
ReplicateTo replicateTo)

upsert(D document, PersistTo persistTo,
ReplicateTo replicateTo, long timeout,
java.util.concurrent TimeUnit timeUnit)

Inserts a document if it does not already exist and replaces a
document if it already exists with the default key/value timeout.

Inserts a document if it does not already exist and replaces a
document if it already exists with a custom key/value timeout.

Inserts a document if it does not already exist and replaces
a document if it already exists with the default key/value
timeout to the specified number of disk copies.

Inserts a document if it does not already exist and replaces
a document if it already exists with the default key/value
timeout and with the specified replication.

Inserts a document if it does not already exist and replaces a
document if it already exists with a custom key/value timeout
and the specified durability and replication.

36

CHAPTER 2 " USING THE JAVA CLIENT

If the upsert(D document) method is used instead of the insert(D document) method, a new
document may be added as follows.

Document document = defaultBucket.upsert(JsonDocument.create("catalog", catalogObj));

The createDocument () method in the CouchbaseJavaClient class is as follows with jsonBucket being a
class variable of type Bucket. Invoke the createDocument () method from the main() method.

public static void createDocument() {

JsonObject catalogObj = JsonObject.empty().put("journal”, "Oracle Magazine").
put("publisher", "Oracle Publishing")

.put("edition", "March April 2013");

JsonDocument document = defaultBucket.insert(JsonDocument.create("catalog", catalogObj));
// document = jsonBucket.upsert(JsonDocument.create("catalog",

// catalogObj));

}

To add a document, right-click on the CouchbaseJavaClient class with the createDocument() method
added and select Run As » Java Application. The document object gets added to the Couchbase document
store. In the Couchbase Console select Data Buckets and click on the Documents button for the “default”
bucket. The catalog document that we added is listed including its content. Click on Edit Document to
display the full JSON for the catalog document as shown in Figure 2-17.

=]
Couchbase
.] ister Overview Server Nodes)ata Buckets XDCR Log Settings
default - > Documents Current page: 1 5 =
Documents Filter Document 1D | Lookup id | Create Document |
[[1] Content
catalog "journal®: "Oracle Magazine”, “edition”: "March April 2013 Edit Document || Delete

Figure 2-17. Editing/Displaying a Document in the Default Data Bucket

The JSON for the “catalog” document gets displayed as shown in Figure 2-18.

37

CHAPTER 2 " USING THE JAVA CLIENT

= |
Couchbase
#& Cluster Overview Server Nodes
default - > Documents
catalog o

Figure 2-18. Couchbase JSON Document Catalog

Getting a Document

Delete | SaveAs.. Save
] A—

In this section we shall get (or retrieve) a document from Couchbase Server in the getDocument () method
of the CouchbaseJavaClient application. The Bucket class provides the overloaded get () method to get
a document. Some of the get () methods are discussed in Table 2-6. Each of the get () methods returns a

Document instance.

Table 2-6. Bucket Class get() Methods

Method

Description

get(D document)

get(D document, long timeout, java.util.
concurrent TimeUnit timeUnit)

get(java.lang.String id)

get(java.lang.String id,
java.lang.Class<D> target)

get(java.lang.String id,
java.lang.Class<D> target, long timeout,
java.util.concurrent.TimeUnit timeUnit)

get(java.lang.String id, long timeout, java.util.
concurrent.TimeUnit timeUnit)

Gets a document with the default key/value timeout.

Gets a document with a custom key/value timeout.

Gets a JsonDocument with the specified document id
using the default timeout.

Gets a document with the specified document id using
the default timeout. The target type of the document is
also supplied.

Gets a document with the specified document id using a
custom timeout. The target type of the document is also
supplied.

Gets a JsonDocument with the specified document id
using custom timeout.

Using an instance of Bucket for the default bucket get a JsonDocument instance with id catalog using

the get(String) method.

JsonDocument catalog = defaultBucket.get("catalog");

38

CHAPTER 2 " USING THE JAVA CLIENT
The JsonDocument class provides various methods to get document properties as discussed in Table 2-7.

Table 2-7. JsonDocument Class Methods

Method Description

cas() Returns the CAS value of the document as a long. The default CAS value is 0.
content() Returns document content.

expiry() Returns the expiration time of the document as an int. The default value is 0.
id() Returns the document id as a String. The id is unique within a bucket.
toString() Returns the String representation of the document.

Output the CAS value of the document retrieved using the cas () method and also output the document
content using the content () method. The getDocument () method in CouchbaseJavaClient is as follows;
catalog is a class variable of type JsonDocument.

public static void getDocument() {
catalog = defaultBucket.get("catalog");
System.out.println("Cas Value: " + catalog.cas());
System.out.println("Catalog: " + catalog.content());

Right-click on CouchbaseJavaClient. java in Package Explorer and select Run As » Java Application.
The document with the specified id gets retrieved and its CAS value and content get output as shown in
Figure 2-19.

39

CHAPTER 2 " USING THE JAVA CLIENT

Couchbaselava/porn.xml 1J] CouchbaselavaClientjava &2
24 cluster.disconnect();
25 }
26
27 public static void createDocument() {
28
29 cotologObi = JsonObject.enpty()
3@ .put("journal™, "Oracle Magazine™)
31 .put(“publisher™, "Oracle Publishing")
32 .put(edition™, "March April 2013");
33 dociment = defoultBucket.upsert(JsonDocument. creote(“catalog”, cateloglbi));
34
35 }
36
37 public static void getDocument() {
8

TR

L
W

cotolog = defoultBucket.get("cataleg");
49 system.out.println(“Cas Value: " + cotolog.cas());
system.out.println{“Catalog: " + cotolog.content());

5h
TR S

w
-

Problems lavadoc Declaration [Console 52
<terminated > CouchbaselavaClient [Java Application] C\Program FilesWavayjdk1.7.0_SThbinYyjavaw.exe (Jul 6, 2015, 5:48:44 PM)
abled=false}
Jul @6, 2015 5:48:47 PM com.couchbase.client.core.node. CouchbaseNodetl call
INFO: Connected to Node 127.@.0.1
Jul @6, 2015 5:48:48 PM com.couchbase.client.core.config.DefaultConfigurationProviderié call
INFO: Opened bucket json
Cas Value: 1436229230842159204
Catalog: {"journal™:"Oracle Magazine","edition":"March April 2013","publisher™:"Oracle Publishing"}
Jul @6, 2015 5:48:48 PM com.couchbase.client.core.config.DefaultConfigurationProvider$9o call
INFO: Closed bucket json
Jul @6, 2015 5:48:48 PM com.couchbase.client.core.node. CouchbaseNode$l call
INFO: Disconnected from Node 127.0.@.1

Figure 2-19. Getting a Document

Updating a Document

In this section we shall update a document previously added to a Couchbase bucket. We shall use the
updateDocument () custom method in the CouchbaseJavaClient class for the update. Assuming a document
has previously been added to the json bucket we need to create an instance of Bucket for the json bucket
using the openBucket () method of a CouchbaseCluster instance.

Bucket jsonBucket = cluster.openBucket("json", "password");

The Bucket class provides two overloaded methods to update a document: upsert and replace. The
upsert method as discussed earlier replaces a document if it exists and adds a document if it does not
already exist. The replace method also replaces a document. The difference between replace and upsert
is that the replace method should be used only if the document to be replaced exists. If the document to
be replaced does not exist a DocumentDoesNotExistException error is generated. Some of the replace()
methods are discussed in Table 2-8.

40

Table 2-8. Overloaded replace() Methods

CHAPTER 2 " USING THE JAVA CLIENT

Method

Description

replace(D document)

replace(D document, long timeout,
java.util.concurrent.TimeUnit timeUnit)

replace(D document, PersistTo persistTo)

replace(D document,
PersistTo persistTo,
ReplicateTo replicateTo)

replace(D document, PersistTo persistTo,
ReplicateTo replicateTo, long timeout,
java.util.concurrent.TimeUnit timeUnit)

Replaces a document using the default key/value
timeout.

Replaces a document using a custom key/value timeout.

Replaces a document using the specified persistence
and default key/value timeout.

Replaces a document using the specified persistence
and replication, and default key/value timeout.

Replaces a document using the specified persistence
and replication, and custom key/value timeout.

We shall replace the following JSON document.

{

"journal":"Oracle Magazine",
"publisher":"Oracle Publishing",
"edition":"March April 2015"

}

The JSON document with id catalog in the json bucket is shown in Figure 2-20.

5=

Couchbase

L

json » > Documents

Figure 2-20. Document to be replaced

i MAEM e

In the updateDocument () method create a JsonObject instance for the replacement document.
As discussed earlier first create and empty JsonObject instance using the class method empty() in JsonObject
and subsequently invoke the put(String, String) method to add field/value pairs to the JsonObject
instance. Add a new field called section and modify the edition field.

41

CHAPTER 2 " USING THE JAVA CLIENT

JsonObject catalogObj = JsonObject.empty().put("journal”, "Oracle Magazine").put("publisher",
"Oracle Publishing").put("edition", "January February 2015").put("section", "Technology");

Invoke the replace(D document) method to replace the catalog document with a replacement document.
jsonBucket.replace(JsonDocument.create("catalog",catalogObj));

Alternatively, invoke the upsert(D document) method.
jsonBucket.upsert(JsonDocument.create("catalog", catalogObj));
The updateDocument () custom method is as follows.

public static void updateDocument() {
catalogObj = JsonObject.empty().put("journal”, "Oracle Magazine")
.put("publisher", "Oracle Publishing")
.put("edition", "January February 2015")
.put("section", "Technology");
jsonBucket.replace(JsonDocument.create("catalog",catalogObj));
// jsonBucket.upsert(JsonDocument.create("catalog", catalogObj));

Invoke the replaceDocument () method in the main() method and subsequently invoke the
getDocument () method to get and output the new document.

replaceDocument();
getDocument();

Right-click on the CouchbaseJavaClient application and select Run As » Java Application. The
document with id catalog in the json bucket gets replaced, and the replaced document CAS value and
JSON get output to the Eclipse console.

oblems n B Console 52 o 5| B : sl
<terminated > CouchbaselavaClient [Java Application] C:\Program Files\Javayjdk1.7.0_51\bin\javaw.exe (Jul 6, 2015, 6:01:24 PM)

abled=false}

Jul @5, 2015 6:01:27 PN com.couchbase.client.core.node. CouchbaseNodedl call

INFO: Connected to Node 127.@.0.1

Jul @6, 2015 6:01:29 PMN com.couchbase.client.core.config. DefaultConfigurationProvideris call

INFO: Opened bucket json

Cas Value: 1436230889511029726

Catalog: {"journal™:"Oracle Magazine","edition":"January February 2015","section™:"Technology"”,"publisher”:"Oracle Publishing"}
Jul @6, 2015 6:01:29 PN com.couchbase.client.core.config. DefaultConfigurationProvideri9 call

INFO: Closed bucket json

Jul @6, 2015 6:01:29 PM com.couchbase.client.core.node. CouchbaseNodefl call

INFO: Disconnected from Node 127.8.8.1

Figure 2-21. Replaced Document CAS and JSON data

The document in the Couchbase json bucket with id catalog gets replaced as shown in Figure 2-22.
The edition field has been modified and a new field called section has been added.

42

CHAPTER 2 " USING THE JAVA CLIENT

68
Couchbase
A& Cluster Overview Server Nodes Jata Buckels XDCF
json - > Documents
cala!og% g Delete Save As... Save

Figure 2-22. Replaced Document

Next, we shall query a document using a Couchbase View. But, first we need to create the View.

Creating a View

The JSON data stored in Couchbase Server can be indexed using a View, which creates an index on the data
according to the defined format and structure. A View extracts the fields from the JSON document object in
Couchbase Server and creates an index that can be queried. A view is a logical structure, and a map function
maps the fields of the JSON document object stored in the Couchbase Server to a view.

Optionally a reduce function can also be applied to summarize (or average or sum) the data. In this section
we create a View on the JSON document in the Couchbase Server. A map function has the following format.

function(doc, meta)
{

emit(doc.name, [doc.field1, doc.field2]);

}

When the function is translated to amap() function, the map() function is supplied with two arguments
for each document stored in a bucket: the doc arg and the meta arg. The doc arg is the document object
stored in the Couchbase bucket and its content type can be identified with the meta.type field. The meta
arg is the metadata for the document object stored in the bucket. Every document in the data bucket is
submitted to the map () function. Within the map () function any custom code can be specified. The emit ()
function is used to emit a row or a record of data from the map() function. The emit() function takes two
arguments: a key and a value.

emit(key,value)

The emitted key is used for sorting and querying the document object fields mapped to the view. The
key may have any format such as a string, a number, a compound structure such as an array, or a JSON
object. The value is the data to be output in a row or record and it may have any format including a string,
number, an array, or JSON. Specify the following function for the mapping from the Couchbase Server
bucket to the view. The function first tests if the type of the document is JSON and subsequently emits
records with each record key being the document name and each record value being the data stored in the
fields of the document object.

Next, create a View in Couchbase Console. Select Data Buckets » json bucket. Subsequently, select
View. The Development View tab is selected by default. Click on Create Development View to create a
development view as shown in Figure 2-23.

43

CHAPTER 2 * USING THE JAVA CLIENT

H pcumentation « port « About = Sign Out
Couchbase
A& Ciuster Overview Server Nodes Data Buckets Views XDCR Log Settings
| json > > Views
[oorcoprent views JETRERTY sz poppranvew
Hame Language Status

Thera are currently no Design Documents in Development. Click "Create Development View”™ above to create one.

Figure 2-23. Selecting Create Development View

In Create Development View dialog specify a Design Document Name (_design/dev_catalog) and View
Name (catalog view) as shown in Figure 2-24. The _design prefix is not included in the design document
name when accessed programmatically with a Java client. Click on Save.

Create Development View

Design Document Name:
_design/dev_catalog
View Name:

catalog_view

Cancel

Figure 2-24. Creating a Development View

A development view called catalog_view gets created as shown in Figure 2-25.

44

CHAPTER 2 * USING THE JAVA CLIENT

(S]
Couchbase

A& Cluster Overview Server Nodes Data Buckets Views XDCR

Log Seftings

json » | >\iews

Development Views

Name

Language Status

_design/dev_catalog javascript

Compact Delete = Add Spatial View = Add View

Publish

catalog_view

Edit = Delete
N

Figure 2-25. Development View catalog_view
We need to convert the development view to a production view before we are able to access the view from
a Couchbase Java client. Click on Publish as shown in Figure 2-26 to convert the view to a production view.

=8
Couchbase

A& Cluster Overview Server Nodes Data Buckets Views XDCR

Log Settings

json » > \Views

0
 oevcipmen viows [TV
HName

Language Status

_design/dev_catalog javascript

Compact | Delete Add Spatial View Add View

Publish

catalog_view

Edit = Delete

Figure 2-26. Converting a Development View to Production View

The Production View gets created as shown in Figure 2-27.

45

46

CHAPTER 2 * USING THE JAVA CLIENT

=8
Couchbase

A& Cluster Overview Server Nodes Data Buckets

json > | > \Views

(1)

Name Language b

Status

_designicatalog avascripl

catalog_view

Figure 2-27. Production View

Views XDCR Log Settings

Compact Delete | Copy to Dev

Show

Next, add a document to be indexed by the view to the json bucket. Select the json bucket and click on
Documents. Click on Create Document as shown in Figure 2-28.

=

Couchbase

A& Cluster Overview Server Nodes Data Buckets

json o

> Documents

Documents Filter

(1] Content

Views

« Sign Out

XDCR Log Settings
Current page: 1 5 -
Document ID W

There are curently no documents in this bucket comesponding to the search criteria

Figure 2-28. Creating a Document in json Bucket

In Create Document dialog specify Document Id as catalog and click on Create as shown in Figure 2-29.

CHAPTER 2 * USING THE JAVA CLIENT

Create Document

Document ID: catalog

Figure 2-29. Specifying a Document Id

A new document with catalog id gets created. Copy and paste the following JSON document to the
catalog id document JSON and click on Save.

"journal":"Oracle Magazine",
"publisher":"Oracle Publishing",
"edition":"March April 2015"

}

AJSON document gets added to the json bucket as shown in Figure 2-30.

t = About = Sign Qut
Couchbase

A& Cluster Overview Server Nodes Data Buckets Views XDCR Log Settings
json ~ > Documents

catalog [y (Deite | Savess. swe
TR -

“journal®™: “"Oracle Magazine®,
“publisher”: “Oracle Publishing”,
 Medition®: "March April 20157

Figure 2-30. Adding JSON document

47

CHAPTER 2 USING THE JAVA CLIENT

We had previously added the catalog_view to the json bucket. To index the catalog id document using
the catalog view view select the catalog view view in json » Views. Copy the following map function to
View Code » Map.

function(doc,meta) { if (meta.type == 'json') { emit(doc.name,
[doc.journal,doc.publisher,doc.edition]); } }

The catalog_view is shown in Figure 2-31 with the catalog document indexed using the specified
Map function.

json - = Views > | _design/dev_catalog/ view/catalog_view =
e WGiexiena Radon Docuelly WEUDouEly
"Journal”: " "id":
“publisher”: rev
“edition”: °Mi eeBB0 0g0000000000000
“expiration~: 0,
“flags®: 0
W VIEW CODE %A&.. %
Map Reduce (built in: _count, _sum, _stats)
h:‘:r.al,d:c.;-';bl'.!hz:. doc.edition]):
: Show Resulls
Filter Results ?stale=falsedinclusive_end=true&connection_timeout=60000&lmit=108&skip=([P
Development Time Subset FHII Cluster Dat: Set
Key Value

Figure 2-31. Mapping the catalog document using a View Map Function

Querying a View

Next, we shall query the view we created in the previous section. A View query is represented with the
ViewQuery class, which provides the from(java.lang.String design, java.lang.String view) class
method to create a ViewQuery instance. The Bucket class provides the overloaded query() method
discussed in Table 2-9 to query a view. Each of the query () methods return a ViewResult instance, which
represents the result from a ViewQuery.

48

CHAPTER 2 * USING THE JAVA CLIENT

Table 2-9. Overloaded query() Methods

Method Description
query(ViewQuery query) Queries a Couchbase Server View with the default timeout.
query(ViewQuery query, long timeout, Queries a Couchbase Server View with a custom timeout.

java.util.concurrent TimeUnit timeUnit)

In the queryView() method invoke the query(ViewQuery query) method inBucket. Create a
ViewQuery argument using the static method from(java.lang.String design, java.lang.String view)
with the design document name as “catalog” and view name as “catalog_view,” which were created in the
preceding section.

ViewResult result = jsonBucket.query(ViewQuery.from("catalog","catalog view"));

ViewResult provides the overloaded rows () method that returns an Iterator over the rows in the view
result. The ViewRow interface represents a view row. Using an enhanced for loop, iterate over the rows in the
ViewResult and output the row value for each row.

for (ViewRow row : result) {
System.out.println(row);

}
The queryView() custom method is as follows.

public static void queryView() {
ViewResult result = jsonBucket.query(ViewQuery.from("catalog","catalog_view"));

for (ViewRow row : result) {

System.out.println(row);

Invoke the queryView() method in the main() method. When the CouchbaseJavaClient class is run,
the output from the view query shown in Figure 2-32 gets displayed.

Probler Declarstion | B Console 53 " X% BEEE B-mr =t

<terminated » CouchbaselavaClient [Java Application] C:\Program Files\Javaljdk1.7.0_51\bin\javaw.exe (Jul §, 2015, 7:10:35 PM)

15ize=3, computationPoolSize=3, responseBufferSize=16384, requestBufferSize=16384, kvServiceEndpeints=1, viewServiceEndpoints=1, queryServiceEndp
ventLoopGroup, coreSched r=CoreScheduler, eventBuss=DefaultEventBus, packageNameAndversions=couchbase-java-client/2.1.3 (git: 2.1.3), dcpEns

yitrategy=BestEffort, maxRequestLifetime=75000, retryDelay=ExponentialDelay{growBy 1.2 MICROSECONDS; lower=12Q, upper=120000}, reconnectDelay=Ex

growBy 1.0 MILLISECONDS; lower=32, upper=4@96}, ocbservelntervalDelay=ExponentialDelay{growBy 1.@ MICROSECONDS; lower=1@, upper=100280}, keepAlive

autoreleaseAfter=2000, bufferPoclingEnableds=true, queryTimeout=75200, viewTimeout=75880, kvTimecut=2500, connectTimecut=5000, disconnectTimeouts

sbled=false}

Jul @5, 2015 7:190:44 PM com.couchbase.client. core.node. CouchbaseNode$l call

INFO: Connected to Node 127.9.0.1

Jul @5, 2015 7:10:46 PH com.couchbase.client.core.config. DefaultlonfigurationProvideris call

INFO: Opened bucket json

DefaultviewRow{id=catalog, key=null, wvalues[“"Oracle Magazine™,“Oracle Publishing™,"March April 2@15"]}

Figure 2-32. Result of Querying a View

49

CHAPTER 2 USING THE JAVA CLIENT

Deleting a Document

In this section we shall delete a document from Couchbase Server.
The Bucket class provides the overloaded remove () method to remove a document. Some of the

remove () methods are discussed in Table 2-10.

Table 2-10. Overloaded remove() Methods

Method

Description

remove(D document)

remove(D document, long timeout, java.util.
concurrent.TimeUnit timeUnit)

remove(D document, PersistTo persistTo,

ReplicateTo replicateTo, long timeout, java.util.

concurrent.TimeUnit timeUnit)

remove(java.lang.String id)

remove(java.lang.String id, PersistTo persistTo,

ReplicateTo replicateTo, long timeout, java.util.

concurrent.TimeUnit timeUnit)

Removes a document using the default key/value
timeout. Returns a Document instance.

Removes a document using a custom key/value timeout.
Returns a Document instance.

Removes a document using the specified persistence
and replication and default key/value timeout. Returns a
Document instance.

Removes a document using the specified document id.
Returns a JsonDocument instance.

Removes a document using the specified document
id, persistence and replication, and custom key/value
timeout. Returns a JsonDocument instance.

In the removeDocument () custom method invoke the remove(String id) method in a Bucket instance
to remove the catalog id document from the json bucket. Subsequently output the CAS value and

document JSON data.

public static void removeDocument() {

document = jsonBucket.remove("catalog");

System.out.println("Cas Value:
System.out.println("Catalog: "

+ document.cas());
+ document.content());

The CoucbaseJavaClient class used to add, get, update, query using a view, and delete a document in

Couchbase Server, and query a view is listed.
package couchbase;
import java.util.Arraylist;

import java.util.Arrays;
import java.util.list;

import com.couchbase.client.java.AsyncBucket;

import com.
import com.
import com.
import com.
import com.

50

couchbase.

couchbase

client.java

.client.java
couchbase.
couchbase.
couchbase.

client.java
client.java
client.java

.CouchbaseCluster;
.document.JsonDocument;
.document. json.JsonObject;

import
import
import
import
import
import

public

private static
private static
private static
private static

com.couchbase.
com.couchbase.

com. couchbase

com.couchbase.
com.couchbase.
com.couchbase.

client. java.
client. java.
.client. java.
client. java.
client. java.
client.java.

class CouchbaseJavaClient

view
view
view
view
view
view

{

Bucket jsonBucket;
JsonDocument document;
JsonObject catalogObj;
JsonDocument catalog;

CHAPTER 2

.DefaultView;
.DesignDocument;
View;
.ViewQuery;
.ViewResult;
.ViewRow;

public static void main(String args[]) {
Cluster cluster = CouchbaseCluster.create();
//jsonBucket = cluster.openBucket("json", "calgary10");

}

// AsyncBucket asyncBucket = jsonBucket.async();

USING THE JAVA CLIENT

// List<String> nodes = Arrays.asList("192.168.1.71", "192.168.1.72");
// cluster = CouchbaseCluster.create(nodes);

// Bucket defaultBucket = cluster.openBucket();

// createDocument();
// updateDocument();
// getDocument();

// removeDocument();
//queryView();

//cluster.disconnect();

public static void createDocument() {

catalogObj = JsonObject.empty().put("journal”, "Oracle Magazine")
.put("publisher", "Oracle Publishing")
.put("edition", "March April 2013");

document = defaultBucket
.insert(JsonDocument.create("catalog", catalogObj));

// document = defaultBucket.upsert(JsonDocument.create("catalog”,

// catalogObj));

51

CHAPTER 2 USING THE JAVA CLIENT

public static void getDocument() {

catalog = defaultBucket.get("catalog");
System.out.println("Cas Value: " + catalog.cas());
System.out.println("Catalog: " + catalog.content());

}

public static void updateDocument() {

catalogObj = JsonObject.empty().put("journal”, "Oracle Magazine")

.put("publisher", "Oracle Publishing")

.put("edition", "January February 2015")

.put("section", "Technology");
jsonBucket.replace(JsonDocument.create("catalog",catalogObj));
// jsonBucket.upsert(JsonDocument.create("catalog", catalogObj));

}

public static void removeDocument() {

document = jsonBucket.remove("catalog");
System.out.println("Cas Value: " + document.cas());
System.out.println("Catalog: " + document.content());

}

public static void queryView() {

ViewResult result = jsonBucket.query(ViewQuery.from("catalog","catalog view"));
for (ViewRow row : result) {

System.out.println(row);
}

Right-click on the CouchbaseJavaClient Java source file in Package Explorer and select Run As » Java
Application. The output from the application is shown in Figure 2-33.

52

CHAPTER 2 " USING THE JAVA CLIENT

Prablemns Javadoc Declaration & Console 52
<terminated > CouchbaselavaClient [Java Application] C:\Program Files\Java\jdk1.7.0_51\bin\javaw.exe (Jul 6, 2015, 6:05:59 PM)
abled=false}

Jul @6, 2015 6:@6:02 PM com.couchbase.client.core. node. CouchbaseNodell call
INFO: Connected to Node 127.@.2.1

Jul @6, 2015 6:06:@3 PM com.couchbase.client.core.config.DefaultConfigurationProviders call
INFO: Opened bucket json

Cas Value: 1436231007900801209

Catalog: null

Jul @6, 2015 6:06:@3 PM com.couchbase.client.core.config.DefaultConfigurationProvider$d call
INFO: Closed bucket json

Jul @6, 2015 6:@6:@3 PM com.couchbase.client.core. node.CouchbaseNodell call
INFO: Disconnected from Node 127.0.0.1

Figure 2-33. Result of Running the CouchbaseJavaClient Application to Delete a Document

Summary

In this chapter we learned to add, get, update, and delete a document in a Couchbase Server bucket with
the Couchbase Java Client library. We also created a view for a document and queried the document using

a view query with the Couchbase Java Client library. In the next chapter we shall discuss using Couchbase
Server with Spring Data.

53

CHAPTER 3

Using Spring Data

Spring Data is designed for new data access technologies such as non-relational databases. Couchbase

is a non-relational NoSQL database with benefits such as scalability, flexibility, and high performance.
The Spring Data Couchbase project adds Spring Data functionality to the Couchbase Server. This chapter
explains how to use the Spring Data Couchbase project in Eclipse and assumes knowledge about using
Maven. The chapter covers the following topics.

e Setting Up the Environment

e C(Creating a Maven Project

e Installing Spring Data Couchbase

e Configuring JavaConfig

e (Creating a Model

e Using Spring Data with Couchbase with Template
¢ Running Couchbase CRUD Operations

e Using Spring Data Repositories with Couchbase

Setting Up the Environment

Download and install the following software components.

e Couchbase Server 3.0.x for Windows, Enterprise Edition from
http://www.couchbase.com/nosql-databases/downloads.

e Eclipse IDE for Java EE Developers from http://www.eclipse.org/downloads/.

e JDK 1.5 or later from http://www.oracle.com/technetwork/java/javase/
downloads/jdk7-downloads-1880260.html.

Creating a Maven Project

First, we need to create a Maven project in Eclipse.

1. Select File » New » Other. In the New window, select the Maven » Maven
Project wizard as shown in Figure 3-1 and click on Next.

55

http://www.couchbase.com/nosql-databases/downloads
http://www.eclipse.org/downloads/
http://www.oracle.com/technetwork/java/javase/downloads/jdk7-downloads-1880260.html
http://www.oracle.com/technetwork/java/javase/downloads/jdk7-downloads-1880260.html

CHAPTER 3 " USING SPRING DATA

E‘j MNew bﬁlﬁg

Select a wizard —>
Create a Mawven Project r

Wifizards:
l type filter text

> = Git -

b > Java

» (> Java EE

b (= Java Emitter Templates

b (= JawaScript

b (= JAXB

b = JPA

4 [Mawven
%, Check out Maven Projects from SCM
M Maven Module

v

(= Plug-in Development -

@ < Back | Next >£ | .I Finish | | Cancel |

Figure 3-1. Creating a new Maven Project

2. The New Maven Project wizard gets started. Select the Create a simple project
check box and the Use default Workspace location check box as shown in
Figure 3-2. Click on Next.

56

CHAPTER 3 I USING SPRING DATA

y r - ~N
:.'_} New Maven Project I_‘M

New Maven project e
Select project name and location M

[V] Create a simple project (skip archetype selection)

Use default Workspace location

Location: i Browse...

[]Add project(s) to working set

Working set: v More...

» Advanced

® T e T

Figure 3-2. Selecting Maven Project Name and Location

3. In Configure project specify the following as shown in Figure 3-3 and click on
Finish.

e Group Id (com.couchbase.core)
e Artifact Id (SpringCouchbase)

e Version (1.0.0)

e Packaging (jar)

e Name (SpringCouchbase)

57

CHAPTER 3 " USING SPRING DATA

¥
@) New Maven Project UM

New Maven project e
Configure project M

Artifact

Group Id: com.couchbase.core -
ArtifactId: SpringCouchbase v
Version: 1.0.0 -

Packaging: jar -

Name: SpringCouchbase -
Description: -

Parent Project

Group Id: A
Artifact Id: -
Wersion: v Clear
» Advanced

@ Mext > l Finish !}J [Cancel]

Figure 3-3. Configuring Maven Project

A Maven project (SpringCouchbase) gets created as shown in Package Explorer in Figure 3-4. A newly
created project could have error markers, which would get fixed as the application is developed.

58

CHAPTER 3 I USING SPRING DATA

|| File Edit Source Refactor Nawigate Search Project Run Window Help
| a P . . =3 5 . .
e LR BT ™E Sy A Quick Access 1| 15 | 98 lava e (§TTova)
[# Package Explorer 2 = B [SpringCouchbase/pormaml 3 el o |
a 2218 7 overview 3 & .
| 5 SpringCouchbase b
@ srefmain/java Artifact ~ Project
8 src/main/resources
@ sre/test/java Group Id: com.couchbase.core Mame: SpringCouchbase
@ sre/ftest/resources Artifactld: « SpringCouchbase URL: -
a ibrary [J25E-15 . ’
=i JRE System Library | 1 Versiond 100 Description: -
= src
(= target Packaging: jar -
s el
a4 pomam » Parent e
» Properties ¥
T 7 F Inception: =
Overview | Dependencies Dependency Hierarchy | Effective POM pomasml

Figure 3-4. Maven Project SpringCouchbase

We also need to add some Java classes to the Maven project to demonstrate the use of Spring Data
Couchbase. Add the Java classes listed in Table 3-1.

Table 3-1. Java Classes

Class Description

com. couchbase.config. JavaConfig class.

SpringCouchbaseApplicationConfig

com. couchbase.core.App Java application for using Spring Data with
Couchbase with Template.

com. couchbase.model.Catalog Model class.

com.couchbase.repositories.CatalogRepository Implementation class for Couchbase-specific
Repository.

com.couchbase.service.CatalogService Service class to invoke CRUD operations on
Couchbase Repository.

The Java classes are shown in Figure 3-5.

59

CHAPTER 3 " USING SPRING DATA

File Edit Source Refactor Mavigate Search Project

SR R (A AR A &

(% Package Explorer &2 [=] “":?,l ol =M
4 2 SpringCouchbase
4 (% src/mainfjava
4 [H com.couchbase.config
> 11 SpringCouchbasefpplicationConfig,java
4 [§ com.couchbase.core
> 4] Appjaval
4 £} com.couchbase.moadel
» [J) Catalog.java
4 8 com.couchbase.repositories
» [J) CatalogRepository.java
4 {#} com.couchbase.service
> |J) CatalogService.java
(# src/mainfresources
(8 srcftest/java
B src/test/resources
> B, Maven Dependencies
> = JRE System Library [jdk1.7.0_51]
b §= src
(= target
[m] pormuxml

Figure 3-5. Java Classes in Maven Project

Installing Spring Data Couchbase

The Maven project includes a pom. xml to specify the dependencies for the project and the build
configuration for the project. Specify the dependency/(ies) listed in Table 3-2 in pom. xmL1.

Table 3-2. Maven Project Dependencies

Dependency Group Id Artifact Id Version Description

org.springframework.data spring-data-couchbase 1.3.1.RELEASE Spring Data Couchbase

60

CHAPTER 3 I USING SPRING DATA

Specify the maven-compiler-plugin and maven-eclipse-plugin plug-in in the build configuration. The
pom.xml to use the Spring Data Couchbase project is listed.

<project xmlns="http://maven.apache.org/POM/4.0.0" xmlns:xsi="http://www.w3.0rg/2001/
XMLSchema-instance"
xsi:schemalocation="http://maven.apache.org/POM/4.0.0 http://maven.apache.org/xsd/
maven-4.0.0.xsd">
<modelVersion>4.0.0</modelVersion>
<groupId>com.couchbase.core</groupld>
<artifactId>SpringCouchbase</artifactId>
<version>1.0.0</version>
<name>SpringCouchbase</name>
<dependencies>
<dependency>
<groupIld>org.springframework.data</groupIld>
<artifactId>spring-data-couchbase</artifactId>
<version>1.3.1.RELEASE</version>
</dependency>
</dependencies>
<build>
<plugins>
<plugin>
<artifactId>maven-compiler-plugin</artifactId>
<version>3.0</version>
<configuration>
<source>1.7</source>
<target>1.7</target>
</configuration>
</plugin>
<plugin>
<groupId>org.apache.maven.plugins</groupId>
<artifactId>maven-eclipse-plugin</artifactId>
<version>2.9</version>
<configuration>
<downloadSources>true</downloadSources>
<downloadJavadocs>true</downloadJavadocs>
</configuration>
</plugin>
</plugins>
</build>
</project>

The Spring Data Couchbase dependency has sub-dependencies, which also get downloaded when the

pom.xml is saved with File » Save All. The jars for all the dependencies get added to the Java Build Path of
the Maven project as shown in Figure 3-6.

61

CHAPTER 3 " USING SPRING DATA

@) Properties for SoringCouchbase M.

[ERRIEN==)

» Java Compiler
» Java Editor
Javadoc Location

(i Access rules: No rules defined
‘5":3’ Mative library location: (None)
|l spring-data-couchbase-13.1.RELEASE jar - C:\Us

' Mafﬂm » Eo spring-context-4,0,9,RELEASE jar - C:\Users\Deep.
Prcrj_ectFacets y Eo spring-aop-4.0,9.RELEASE jar - C:\Users\Deepak "
Project Referenc'es b (s aopalliance-1.0.jar - C\Users\Deepak Vohra\um| _
RunIDebugl Satting: b (s spring-beans-4.0.9.RELEASE jar - C:\Users\Deepa I

+ Task Repository . (w8 spring-core-4,0.9,RELEASE jar - C:\Users\Deepak
Tas_k T?gs . [#s commons-logging-1.1.3jar - C:\Users\Deepak V

- Validation . @ spring-expression-4.0.9.RELEASE jar - C:AUsers\D
WikiText L

e spring-web-4.0.9.RELEASE jar - C:\Users\Deepak
- lma spring-te-4.0,9.RELEASE jar - C:\Users\Deepak Vo
» (@ spring-data-commons-1.10.1RELEASE jar - C:\U
» [wd couchbase-client-1.4.7.jar - C:\Users\Deepak Vol
+ lvg netty-3.5.5.Final,jar - C\Users\Deepak Vohralum:

o jettison-1.1jar - C:\Users\Deepak VYohra\.m2\rep
> lme stax-api-1.0.1jar - C:\Users\Deepak Vohra\.m2\n

b lwd commons-codec-1.5.jar - C:\Users\Deepak Wohr
4 LI b

type filter text Java Build Path TeTw
» Resource = X 1L T
Builders I (# Source I (= Projects | =i Libraries | %% Orderand EXPORI
Java Build Path JARs and class folders on the build path:
» Java Code Style 4 =) Maven Dependencies a Add JARs...

Add External JARs...
Add Variable...
Add Library...
Add Class Folder...
Add External Class Folder...
Edit...

Rernowve

Migrate JAR File...

Q)

oK k“ Cancel

Figure 3-6. Maven Project SpringCouchbase Java Build Path

Configuring JavaConfig

In this section we shall configure the Spring environment with POJOs using JavaConfig, which is known

officially as “annotation-based configuration.” The base class for Spring Data Couchbase configuration with

JavaConfig is org.springframework.data.couchbase.config.AbstractCouchbaseConfiguration.

1. Create a class, SpringCouchbaseApplicationConfig, which declares some
@®Bean methods and extends the org. springframework.data.couchbase

.config.AbstractCouchbaseConfiguration class.

2. Annotate the class with @Configuration, which indicates that the class is
processed by the Spring container to generate bean definitions and service

requests for the beans at runtime.

3. Declare a @Bean annotated method that returns a CouchbaseClient instance.

62

The SpringCouchbaseApplicationConfig class must implement the inherited
abstract method couchbaseClient().

The http://127.0.0.1:8091/pools URI is used to create a CouchbaseClient
instance for the “default” bucket, which does not require a password.

CHAPTER 3 I USING SPRING DATA

The Spring configuration class SpringCouchbaseApplicationConfig is listed below.
package com.couchbase.config;

import org.springframework.context.annotation.Bean;

import org.springframework.context.annotation.Configuration;

import org.springframework.data.couchbase.config.AbstractCouchbaseConfiguration;

import org.springframework.data.couchbase.repository.config.EnableCouchbaseRepositories;

import com.couchbase.client.CouchbaseClient;

import java.net.URI;
import java.util.Arrays;

import java.util.list;

@Configuration
//@EnableCouchbaseRepositories("com.couchbase.repositories")
public class SpringCouchbaseApplicationConfig extends

AbstractCouchbaseConfiguration {

@Bean

public CouchbaseClient couchbaseClient() throws Exception {

return new CouchbaseClient(Arrays.asList(new URI(
"http://127.0.0.1:8091/pools")), "default", "");

}

@verride
protected List<String> bootstrapHosts() {

return Arrays.aslList(new String("http://127.0.0.1:8091/pools"));
}

@0verride
protected String getBucketName() {

return "default";

}

@0verride
protected String getBucketPassword() {

return "";

63

CHAPTER 3 " USING SPRING DATA

Creating a Model

Next, we'll create the model class to use with the Spring Data Couchbase project. A domain object to be
persisted to Couchbase Server must be annotated with @ocument.

1. Create a POJO class Catalog with fields for id, journal, edition, publisher,
title, and author and the corresponding get/set methods.

2. Annotate the id field with @Id.
3. Add a constructor that may be used to construct a Catalog instance.

The Catalog entity is listed below.

package com.couchbase.model;
import org.springframework.data.annotation.Id;
import org.springframework.data.couchbase.core.mapping.Document;

@Document
public class Catalog {

@Id

private String id;

private String journal;

private String publisher;

private String edition;

private String title;

private String author;
public String getId() {

return id;
}

public void setId(String id) {
this.id = id;
}

public String getJournal() {
return journal;
}

public void setJournal(String journal) {
this.journal = journal;
}

public String getPublisher() {
return publisher;
}

public void setPublisher(String publisher) {
this.publisher = publisher;
}

public String getEdition() {
return edition;
}

public void setEdition(String edition) {

this.edition = edition;

}

64

CHAPTER 3 I USING SPRING DATA

public String getTitle() {
return title;
}

public void setTitle(String title) {
this.title = title;
}

public String getAuthor() {
return author;
}

public void setAuthor(String author) {
this.author = author;

public Catalog(String journal, String publisher, String edition, String title, String
author) {

id = "catalog:" + title.tolLowerCase().replace(" ", "-");

this.journal = journal;

this.publisher = publisher;

this.edition = edition;

this.title = title;

this.author = author;

Add class methods listed in Table 3-3 to the App.java application. In subsequent sections we shall run
various CRUD operations using these class methods.

Table 3-3. Class Methods

Method Description

saveDocument () Saves a single document
saveDocuments() Saves multiple documents
removeDocument () Removes a single document
removeDocuments () Removes multiple documents
insertDocument() Inserts a single document
insertDocuments () Inserts a collection of documents
documentExists() Finds if a document exists
findDocumentById() Finds document by Id
findDocumentByView() Finds document by view
queryDocumentView() Query Document View
updateDocument() Update document
updateDocuments () Update documents
bucketCallback() Bucket Callback

65

CHAPTER 3 " USING SPRING DATA

Using Spring Data with Couchbase with Template

The common CRUD operations on a Couchbase datasource may be performed using the
org.springframework.data.couchbase.core.CouchbaseOperations interface. The org.springframework
.data.couchbase.core.CouchbaseTemplate class implements the CouchbaseOperations interface.

A CouchbaseTemplate instance may be obtained using the ApplicationContext. In the com.couchbase.core.
App application, which we created earlier, create an ApplicationContext as follows.

ApplicationContext context = new AnnotationConfigApplicationContext
(SpringCouchbaseApplicationConfig.class);

The getBean(String name,Class requiredType) method returns a named bean of the specified type. The
bean name for a CouchbaseTemplate is couchbaseTemplate. The class type is CouchbaseOperations.class.

CouchbaseOperations ops = context.getBean("couchbaseTemplate",CouchbaseOperations.class);

The CouchbaseOperations instance may be used to perform various CRUD operations on a domain
object stored in the Couchbase. For example, create a Catalog instance and save it in the Couchbase Server
using the save(Object objectToSave) method.

Catalog catalogl = new Catalog("Oracle Magazine", "Oracle Publishing",
"November-December 2013", "Engineering as a Service","David A. Kelly");
ops.save(catalogl);

Create another Catalog instance and persist it to Couchbase Server.

Catalog catalog2 = new Catalog("Oracle Magazine", "Oracle Publishing",

"November-December 2013", "Quintessential and Collaborative","Tom Haunert");
ops.save(catalog2);

Subsequently, the Id of the domain object stored may be output using the getId() method.

System.out.println("Catalog ID : " + catalogl.getId());
System.out.println("Catalog ID : " + catalog2.getId());

The application used to create a CouchbaseOperations/CouchbaseTemplate instance is listed below.
Some method definitions do not have any code in them as we shall further develop the application in
subsequent sections. Method invocations for each of the class methods have been added to the main
method. Uncomment the method invocation that is to be invoked before running the App application. For
example, to run the App application for the saveDocument () method uncomment the saveDocument ()
method invocation in the main method and run the App application.

package com.couchbase.core;

import org.springframework.context.ApplicationContext;

import org.springframework.context.annotation.AnnotationConfigApplicationContext;
import com.couchbase.config.SpringCouchbaseApplicationConfig;

import org.springframework.data.couchbase.core.CouchbaseOperations;

import com.couchbase.model.Catalog;

66

http://java.sun.com/javase/6/docs/api/java/lang/String.html?is-external=true#class%20or%20interface%20in%20java.lang
http://java.sun.com/javase/6/docs/api/java/lang/Class.html?is-external=true#class%20or%20interface%20in%20java.lang
http://docs.spring.io/spring-data/couchbase/docs/1.0.0.M1/api/org/springframework/data/couchbase/core/CouchbaseTemplate.html#save(java.lang.Object)
http://download.oracle.com/javase/1.5.0/docs/api/java/lang/Object.html?is-external=true#class%20or%20interface%20in%20java.lang

CHAPTER 3 I USING SPRING DATA

public class App {
static CouchbaseOperations ops;
static Catalog catalogi;
static Catalog catalog2;

public static void main(String[] args) {

ApplicationContext context = new AnnotationConfigApplicationContext(
SpringCouchbaseApplicationConfig.class);

ops = context.getBean("couchbaseTemplate", CouchbaseOperations.class);

catalogl = new Catalog("Oracle Magazine", "Oracle Publishing",
"November-December 2013", "Engineering as a Service",
"David A. Kelly");

catalog2 = new Catalog("Oracle Magazine", "Oracle Publishing",
"November-December 2013", "Quintessential and Collaborative",
"Tom Haunert");

saveDocument();

// saveDocuments();

// removeDocument();

// removeDocuments();
// insertDocument();

// insertDocuments();
// documentExists();

// findDocumentById();
// findDocumentByView();
// queryDocumentView();
// updateDocument();

// updateDocuments();

//bucketCallback();

}

public static void saveDocument() {
ops.save(catalogl);
ops.save(catalog2);

System.out.println("Catalog ID : " + catalogl.getId());
System.out.println("Catalog ID : " + catalog2.getId());

}

public static void saveDocuments() {

}

public static void removeDocument() {

}

public static void removeDocuments() {

}

67

CHAPTER 3 " USING SPRING DATA

public static void insertDocument() {

}

public static void insertDocuments() {

}

public static void documentExists() {

}

public static void findDocumentById() {

}
public static void findDocumentByView() {

}

public static void queryDocumentView() {

}

public static void updateDocument() {

public static void updateDocuments() {

public static void bucketCallback() {

Next, run the App. java class. Right-click on App.java and select Run As » Java Application as shown in
Figure 3-7.

68

CHAPTER 3 I USING SPRING DATA

1@ 1ave _&n@ New >

File Edit Source Refal Open 3
- _;\§| Open With PP e O e Quickaccess | B8 | 59 JaveE (G
[% Package Explorer i3 :':'"lwt e Alt+Shift :: b “atalog java J] CatalogRepo... P2 =
- 1 oW t+ W
4 E:ﬂ SpringCouchbase se.core;
4 §® srefmainfjava | [Co Ctrl+C
': H com l:’outh I' 4 - amework. context. ApplicationContext;
as AR B Copy Qualified Name amework. context. annotation. AnnotationConfigApplicationContext ;
42 SpringC ® Paste Culsy pe-config.SpringCouchbaseApplicationConfig;
i com.couch| amework.data. couchbase. core. CouchbaseOperations;
17) App.jovi 3 Delete Delete Lo model. Catalog;
« @ l_:?m‘l:ouch Remove from Context Ctrl+AltsShift+Down boperations ops;
+ 4] Catalog . : N .
h Build Path » pid main(String[] args) {
« @B com.couc . pntext context = new AnnotationConfighpplicationContest(
b 4] Cataleg Source Alt+ShiftsS P b chbasenpplicationConfig. class);
4 8 com.couch Refactor Alt+Shift+T » k. getBean("couchbaseTemplate™,
5[] Catalog sseOperations. class);
@ srefmainfresod i Import.. logl = new Catalog("orafle H?gazine", "Dr?cle Publishing”,
. = er-December 2013", “Engineering as a Service",
@ sreftestfjava | g Export. A Kelly™);
(@ sreftestfresours aloel):
. B\ Maven Depend References * »
. i Declarations »
.B\ JRE System Libt Declaration 5 Console I3 d =
> = sre N
£ target <" Refresh F5 e,
[pom.ml Assign Working Sets...
Profile As *
Debug &s > |
Run As » 5 1Runon Server Alt+Shift+X, R
Walidate 1 2Java Application b Alt+Shift+X, |
e ' Run Configurations...
Compare With Loy |

Figure 3-7. Running Maven Project App.java

Two Catalog instances gets persisted to the “default” bucket. The Catalog ids of the persisted instance
are output in the Console as shown in Figure 3-8.

hashAlgo=NATIVE_HASH, authWaitTime=2500}

2015-07-1@ ©9:37:55.312 INFO com.couchbase.client.CouchbaseClient:
uction mode
Catalog ID
Catalog ID

viewmode property isn't

catalog:engineering-as-a-service
catalog:quintessential-and-collaborative

Figure 3-8. Catalog id of Persisted Catalog Instance

To list the JSON document objects added to Couchbase Server, click on the Documents button in
the Couchbase Console. Two JSON document objects with ids catalog:engineering-as-a-service and
catalog:quintessential-and-collaborative getlisted. Click on Edit Document to display a document
object as shown in Figure 3-9.

69

CHAPTER 3 " USING SPRING DATA

=8
Couchbase
A& Cluster Overview Server Nodes Data Buckets Views XDCR Log Settings

default - > Documents Current page: 1 5
Documents Filter catalog engineering-as-a m Create w
o Content

cata[og;engineeringm "journal”: “Oracle Magazine®, “edition”: “November-[ecembe Edit Document Delete
catalog:quintessenti... "journal”: "Oracle Magazine”, “edition": "November-Decembe Edit Document Delete

Figure 3-9. Two Document Ids in Couchbase Server Console

The JSON document object gets displayed in the Console as shown in Figure 3-10.

Bl
Couchbase
& Cluster Ov Server Nodes Data Buckets Views XDCR Log Settings
default - > Documents
: i ing-as-a-: ica_Ly . Save
S ee———— Do SEeA,

Figure 3-10. Displaying a JSON document

Running Couchbase CRUD Operations

The CouchbaseOperations interface provides various methods for CRUD operations on a JSON document
object stored in Couchbase Server. The different Couchbase operations are discussed next. First, the save
operations.

Save Ops

The CouchbaseOperations interface provides the methods discussed in Table 3-4 for the save operation.

70

CHAPTER 3 I USING SPRING DATA

Table 3-4. CouchbaseOperations interface Methods for saving documents

Method Description

void save(Object objectToSave) Saves an object. If the document with the same id already exists it is
overridden. If a document with the id does not exist it is created.

void save(Collection<? extends Saves a collection of objects. If a document with the same id as in
Object> batchToSave) the collection already exists it is overridden. If a document with the
id does not exist it is created.

We created two Catalog instances and persisted them to Couchbase Server in the previous section.
We invoked the save(Object objectToSave) method twice to save two documents. We could also use
the save(Collection<? extends Object> batchToSave) method to save a batch of documents. To
use the save(Collection<? extends Object> batchToSave) method create an ArraylList instance
and add Catalog instances to it using ArrayList’s add method. Before, running the application with
the save(Collection<? extends Object> batchToSave) method delete the two documents persisted
with the save(Object objectToSave) method as we shall add the same two Catalog instances with the
save(Collection<? extends Object> batchToSave).Couchbase Server documents may be removed from
the Couchbase Console by selecting Delete for a document.

public static void saveDocuments() {

Arraylist arraylist = new Arraylist();
arraylist.add(catalogl);
arraylList.add(catalog2);
ops.save(arraylist);

When the App application, which is available with the downloads for this book (see the Source Code/
Downloads tab at www.apress.com/9781484214350), is run with only the saveDocuments() method
invocation uncommented, two Catalog instances get saved in Couchbase Server. The two JSON document
objects get listed in the Console again as shown in Figure 3-11.

(=1

Couchbase

#& Cluster Overview

default = > Documents Current page: 1 5

Documents Filter catalogiengineering-as-a | Lookup id | | Create Document

0 Content

catalog:engineering... “journal”: "Oracle Magazine™, "edition”: "Hovember-Decembe Edit Document ~ Delete

catalog:quintessenti... "journal”: "Oracle Magazine”, "edition”: "November-Decembe Edit Document Delete

Figure 3-11. The two JSON Documents Persisted to Couchbase using Batch Save

71

http://download.oracle.com/javase/1.5.0/docs/api/java/lang/Object.html?is-external=true#class%20or%20interface%20in%20java.lang
http://download.oracle.com/javase/1.5.0/docs/api/java/util/Collection.html?is-external=true#class%20or%20interface%20in%20java.util
http://download.oracle.com/javase/1.5.0/docs/api/java/lang/Object.html?is-external=true#class%20or%20interface%20in%20java.lang
http://download.oracle.com/javase/1.5.0/docs/api/java/util/Collection.html?is-external=true#class%20or%20interface%20in%20java.util
http://download.oracle.com/javase/1.5.0/docs/api/java/lang/Object.html?is-external=true#class%20or%20interface%20in%20java.lang
http://download.oracle.com/javase/1.5.0/docs/api/java/util/Collection.html?is-external=true#class%20or%20interface%20in%20java.util
http://download.oracle.com/javase/1.5.0/docs/api/java/lang/Object.html?is-external=true#class%20or%20interface%20in%20java.lang
http://download.oracle.com/javase/1.5.0/docs/api/java/lang/Object.html?is-external=true#class%20or%20interface%20in%20java.lang
http://download.oracle.com/javase/1.5.0/docs/api/java/util/Collection.html?is-external=true#class%20or%20interface%20in%20java.util
http://download.oracle.com/javase/1.5.0/docs/api/java/lang/Object.html?is-external=true#class%20or%20interface%20in%20java.lang
http://www.apress.com/9781484214350
http://download.oracle.com/javase/1.5.0/docs/api/java/lang/Object.html?is-external=true#class%20or%20interface%20in%20java.lang
http://download.oracle.com/javase/1.5.0/docs/api/java/util/Collection.html?is-external=true#class%20or%20interface%20in%20java.util
http://download.oracle.com/javase/1.5.0/docs/api/java/lang/Object.html?is-external=true#class%20or%20interface%20in%20java.lang

CHAPTER 3 " USING SPRING DATA

Remove Ops

The CouchbaseOperations interface provides the methods discussed in Table 3-5 for the remove operation.

Table 3-5. CouchbaseOperations interface Methods for removing documents

Method Description

void remove(Object object) Removes an entity instance from the Couchbase document store.

void remove(Collection<? extends Removes a Collection of entities from the Couchbase
Object> batchToRemove) document store.

As an example, remove the catalogi instance, which was previously added using the
remove(Object object) method.

public static void removeDocument() {
ops.remove(catalogl);
}

When the App application is run with only the removeDocument() method invocation uncommented,
the document object for the catalogi entity instance gets removed from the Couchbase Server as shown by
the single document in the Console in Figure 3-12.

[=)
Couchbase
A& Cluster Ove Data Buckets Views XDCR
default » > Documents Current page: 1 5
Documents Filter catalog engineering-as-a Loow Id | Create Document
11} Content
catalog:quintessenti... "journal”: "Oracle Magazine™, "edition”: "November-Decembe Edit Document = Delete

Figure 3-12. Listing only one Document as the other has been removed

As an example remove a Collection of objects with the remove(Collection<? extends Object>
batchToRemove) method. First, create an ArrayList instance for the documents to remove and subsequently
invoke the remove(Collection<? extends Object> batchToRemove) method.

public static void removeDocuments() {
arraylist.add(catalogl);
arraylList.add(catalog2);
ops.remove(arraylList);

72

http://download.oracle.com/javase/1.5.0/docs/api/java/lang/Object.html?is-external=true#class%20or%20interface%20in%20java.lang
http://download.oracle.com/javase/1.5.0/docs/api/java/util/Collection.html?is-external=true#class%20or%20interface%20in%20java.util
http://download.oracle.com/javase/1.5.0/docs/api/java/lang/Object.html?is-external=true#class%20or%20interface%20in%20java.lang
http://download.oracle.com/javase/1.5.0/docs/api/java/lang/Object.html?is-external=true#class%20or%20interface%20in%20java.lang
http://download.oracle.com/javase/1.5.0/docs/api/java/util/Collection.html?is-external=true#class%20or%20interface%20in%20java.util
http://download.oracle.com/javase/1.5.0/docs/api/java/lang/Object.html?is-external=true#class%20or%20interface%20in%20java.lang
http://download.oracle.com/javase/1.5.0/docs/api/java/util/Collection.html?is-external=true#class%20or%20interface%20in%20java.util
http://download.oracle.com/javase/1.5.0/docs/api/java/lang/Object.html?is-external=true#class%20or%20interface%20in%20java.lang

CHAPTER 3 I USING SPRING DATA

Run the App application with only the saveDocuments () method invocation uncommented again
before running the App with the removeDocuments () method invocation. All the document objects get
removed from the Couchbase Server as shown in the Couchbase Console as shown in Figure 3-13.

=8
Couchbase

A& Cluster Overview Server Nodes

default » > Documents

Documents Filter

[} Content

itak b -a5-
cataleg:engineering-as-a | Lookup ld | | Create Document

There are cumantly no documents in this bucket cormesponding to the search critena

Figure 3-13. Listing no Documents as all have been removed

Insert Ops

The CouchbaseOperations interface provides the overloaded insert methods discussed in Table 3-6 for the

insert operation.

Table 3-6. CouchbaseOperations interface Methods for adding documents

Method

Description

void insert(Object objectToSave)

void insert(Collection<? extends
Object> batchToSave)

Inserts an object to the Couchbase Server. The difference
between the insert and save method is that the insert method
does not replace an object if an object by the same Id already
exists in the Couchbase Server data bucket. An error is not
generated either if a document with the same id already exists in
the data bucket.

Inserts a Collection of objects in the Couchbase Server. The
difference between the insert and save method is that the insert
method does not replace an object if an object by the same Id
already exists in the Couchbase Server data bucket. An error is
not generated either if a document with the same id already exists
in the data bucket.

As an example of using the insert(Object objectToSave) method, add the catalogi instance. If the
catalogl instance was previously added with the save method, remove the previously added document

object.

public static void insertDocument() {

ops.insert(catalogl);

}

73

http://download.oracle.com/javase/1.5.0/docs/api/java/lang/Object.html?is-external=true#class%20or%20interface%20in%20java.lang
http://download.oracle.com/javase/1.5.0/docs/api/java/util/Collection.html?is-external=true#class%20or%20interface%20in%20java.util
http://download.oracle.com/javase/1.5.0/docs/api/java/lang/Object.html?is-external=true#class%20or%20interface%20in%20java.lang
http://download.oracle.com/javase/1.5.0/docs/api/java/lang/Object.html?is-external=true#class%20or%20interface%20in%20java.lang

CHAPTER 3 " USING SPRING DATA

As an example of using the insert(Collection<? extends Object> batchToSave) method, add an
Arraylist instance arraylList. If the arraylList was previously added with the save method, remove the
previously added document objects.

public static void insertDocuments() {
arraylList.add(catalog1);
arraylList.add(catalog2);
ops.insert(arraylist);

Exists Method

The exists(String id) method may be used to find out if a document with a given Id exists in the
Couchbase Server. For example, find if documents with the ids catalog:engineering-as-a-service and
catalog:quintessential-and-collaborative exist.

public static void documentExists() {
System.out.println("catalog:engineering-as-a-service ID exists:
+ ops.exists("catalog:engineering-as-a-service"));
System.out.println("catalog:quintessential-and-collaborative ID exists:
+ ops.exists("catalog:quintessential-and-collaborative"));

}

The output in Eclipse Console indicates that the documents exist as shown in Figure 3-14.

2015-@7-10@ 12:19:13.75@ INFO com.couchbase.client.CouchbaseClient: wviewmode property isn't
uction mode

catalog:engineering-as-a-service ID exists: true

catalog:quintessential-and-collaborative ID exists: true

Figure 3-14. Output from invoking the exists method

Find Ops

The CouchbaseOperations interface provides the methods discussed in Table 3-7 for the find operation.

Table 3-7. CouchbaseOperations interface Methods for finding documents

Method Description

<T> T findById(Stringid, Finds an object by the given entity and maps it to the
Class<T> entityClass) specified entity class.

<T> List<T> findByView(String design, Queries a View using the specified design document
String view, and Query object for a list of documents and maps the
com.couchbase.client. documents to the specified entity class.

protocol.views.Query query,
Class<T> entityClass)

74

http://download.oracle.com/javase/1.5.0/docs/api/java/util/Collection.html?is-external=true#class%20or%20interface%20in%20java.util
http://download.oracle.com/javase/1.5.0/docs/api/java/lang/Object.html?is-external=true#class%20or%20interface%20in%20java.lang
http://download.oracle.com/javase/1.5.0/docs/api/java/lang/String.html?is-external=true#class%20or%20interface%20in%20java.lang
http://download.oracle.com/javase/1.5.0/docs/api/java/lang/String.html?is-external=true#class%20or%20interface%20in%20java.lang
http://download.oracle.com/javase/1.5.0/docs/api/java/lang/Class.html?is-external=true#class%20or%20interface%20in%20java.lang
http://download.oracle.com/javase/1.5.0/docs/api/java/util/List.html?is-external=true#class%20or%20interface%20in%20java.util
http://download.oracle.com/javase/1.5.0/docs/api/java/lang/String.html?is-external=true#class%20or%20interface%20in%20java.lang
http://download.oracle.com/javase/1.5.0/docs/api/java/lang/String.html?is-external=true#class%20or%20interface%20in%20java.lang
http://download.oracle.com/javase/1.5.0/docs/api/java/lang/Class.html?is-external=true#class%20or%20interface%20in%20java.lang

CHAPTER 3 I USING SPRING DATA

As an example, find a document with id catalog:engineering-as-a-service and map the document
to the Catalog type. Output the properties of the Catalog instance using the get methods.

public static void findDocumentById() {
Catalog catalog = ops.findById("catalog:engineering-as-a-service",Catalog.class);
System.out.println("Journal : " + catalog.getJournal());
System.out.println("Publisher : " + catalog.getPublisher());
System.out.println("Edition : " + catalog.getEdition());
System.out.println("Title : " + catalog.getTitle());
System.out.println("Author : " + catalog.getAuthor());

}

When the App application is run with only the findDocumentById() method invocation uncommented,
the output is shown in the Eclipse Console in Figure 3-15.

2015-07-10 1@:20:50.208 INFO com.couchbase.client.CouchbaseClient: viewmode property isn‘t
uction mode

Journal : Oracle Magazine

Publisher : Oracle Publishing

Edition : November-December 2013

Title : Engineering as a Service

Author : David A. Kelly

Figure 3-15. Output from findByld method

For using the findByView method we need to create a design document and a view in the Couchbase
Server. To add a design document we need to create a CouchbaseClient instance using a List of URIs and
the “default” bucket. Create a DesignDocument object using the DesignDocument (String) constructor in the
findDocumentByView() class method of the App application.

DesignDocument designDoc = new DesignDocument("JSONDocument");

Create a ViewDesign object using a view name and a map function. Add the ViewDesign instance to the
DesignDocument instance using the getViews () method and subsequently the add method.

ViewDesign viewDesign = new ViewDesign(viewName, mapFunction);
designDoc.getViews().add(viewDesign);

Store a DesignDocument in the Couchbase cluster using the asyncCreateDesignDoc(DesignDocument doc)
method of com. couchbase.client.CouchbaseClient. Get access to the view contained in the design
document using the getView(java.lang.String designDocumentName,java.lang.String viewName)
method in CouchbaseClient.

HttpFuture<java.lang.Boolean> httpFuture = couchbaseClient
.asyncCreateDesignDoc(designDoc);
View view = couchbaseClient.getView("JSONDocument”, "by name");

What the view does is to take the structured JSON document stored in Couchbase Server and extracts
and indexes its fields, allowing you to query the stored data. The Query class is used to create custom view
queries. To include full documents in the result invoke the setIncludeDocs(boolean include) method of
the Query class. Optionally limit the number of documents using the setLimit(int limit) method of Query

75

http://www.couchbase.com/autodocs/couchbase-java-client-1.1-dp4/com/couchbase/client/CouchbaseClient.html#asyncCreateDesignDoc(com.couchbase.client.protocol.views.DesignDocument)
http://www.couchbase.com/autodocs/couchbase-java-client-1.1-dp4/com/couchbase/client/protocol/views/DesignDocument.html#class%20in%20com.couchbase.client.protocol.views
http://www.couchbase.com/autodocs/couchbase-java-client-1.1-dp4/com/couchbase/client/protocol/views/Query.html#setIncludeDocs(boolean)

CHAPTER 3 " USING SPRING DATA

class. To disallow results from a stale view to be used, invoke the setStale(Stale stale) method from Query
using Stale.FALSE as argument.

Query query = new Query();
query.setIncludeDocs(true).setLimit(20);
query.setStale(Stale.FALSE);

Invoke the findByView method using the design document, view name, Query instance, and the entity
class as arguments.

List<Catalog> cataloglist = ops.findByView("JSONDocument",viewName, query, Catalog.class);

Finally, obtain an Iterator from the List and use the Iterator to iterate over the List and output the
Catalog entity instance fields. The finished method is shown below:

public static void findDocumentByView(){
List<URI> uris = new LinkedList<URI>();
uris.add(URI.create("http://127.0.0.1:8091/pools"));
CouchbaseClient couchbaseClient;
try {
couchbaseClient = new CouchbaseClient(uris, "default", "");
DesignDocument designDoc = new DesignDocument("JSONDocument");
String viewName = "by name";

String mapFunction = function(doc,meta) {\n"

+ " if (meta.type == 'json') {\n"
+ " emit(doc.name, [doc.journal,doc.publisher,doc.edition,doc.title,doc.
author]);\n"
+ " HA\n" o+ "}
ViewDesign viewDesign = new ViewDesign(viewName, mapFunction);
designDoc.getViews().add(viewDesign);
HttpFuture<java.lang.Boolean> httpFuture = couchbaseClient
.asyncCreateDesignDoc(designDoc);
View view = couchbaseClient.getView("JSONDocument", "by name");
Query query = new Query();
query.setIncludeDocs(true).setLimit(20);
query.setStale(Stale.FALSE);
List<Catalog> cataloglist = ops.findByView("JSONDocument",
viewName, query, Catalog.class);
Iterator<Catalog> iter = cataloglist.iterator();
while (iter.hasNext()) {
Catalog catalog = iter.next();
System.out.println("Journal : " + catalog.getJournal());
System.out.println("Publisher : " + catalog.getPublisher());
System.out.println("Edition : " + catalog.getEdition());
System.out.println("Title : " + catalog.getTitle());
System.out.println("Author : " + catalog.getAuthor());

}
} catch (UnsupportedEncodingException e) {

76

http://www.couchbase.com/autodocs/couchbase-java-client-1.1-dp4/com/couchbase/client/protocol/views/Stale.html#enum%20in%20com.couchbase.client.protocol.views

e.printStackTrace();
} catch (IOException e) {

e.printStackTrace();

CHAPTER 3 I USING SPRING DATA

Invoke only the findDocumentByView method in the main method and run the App application.

The result is shown in Eclipse Console in Figure 3-16.

2015-27-10 1@:24:17.131 INFO com.couchbase.client.CouchbaseClient:

Journal : Oracle Magazine

Publisher : Oracle Publishing

Edition : November-December 2013

Title : Engineering as a Service

Author : David A. Kelly

Journal : Oracle Magazine

Publisher : Oracle Publishing

Edition : November-December 2013

Title : Quintessential and Collaborative
Author : Tom Haunert

Figure 3-16. Output from findByView method

Creating Design Document :JSONDocument

A by _name View also gets created in a JSONDocument design document as shown in Figure 3-17.

Couchbase

A& Cluster Overview Server Nodes Data Buckets

default

“journal®:
"edition”:
"author”
"title":

_Class™:

"publisher”:

W VIEW CODE

function (doc,meta)
if (meta.type == '
emit(doc.nawe, |

Figure 3-17. The by_name View

» Sign Out

Views XDCR Log

Seftings

- >Views >| design/JSONDocument/ view/by_name -

“expiration”
“flags”: 0

Reduce

nal,doc.publisher, doc.edition, doc.title, doc.author]) ;

77

CHAPTER 3 " USING SPRING DATA

Query View

A View can be queried with direct access to the ViewResponse object using the queryView(String
design,String view, com.couchbase.client.protocol.views.Query query) method, which returns
a ViewResponse object. The design argument is the design document name, the view argument is the
view name, and the query argument is the view query. In the queryDocumentView() class method in App
application create a ViewResponse instance.

com. couchbase.client.protocol.views.ViewResponse viewResponse =
ops.queryView("JSONDocument", viewName, query);

Iterate over the ViewResponse object to generate ViewRows and output the Id, key, and value in each
view row using the corresponding get methods.

for (ViewRow row : viewResponse) {
System.out.println("Id " + row.getId());
System.out.printIn("Key " + row.getKey());
System.out.println("Value " + row.getValue());

Invoke the findDocumentByView() and queryDocumentView() in sequence as the viewName and
query are set in the findDocumentByView() method.

findDocumentByView();
queryDocumentView();

When the App application is run. the output from the ViewResponse obtained with the queryView
method is shown in Eclipse Console in Figure 3-18.

B~~~ =E

Problems Javadoc Declaration [E) Console 33 L %

App [Java Application] C:\Program Files\Java\jdk1.7.0_51\bin\javaw.exe (Jul 10, 2015, 10:30:22 AM)
2015-27-1@ 1@:32:24.92@ INFO com.couchbase.client.CouchbaseClient: viewmode property isn't defined. Setting viewmode to prod
uction mode

2015-87-1@ 10:32:24.923 INFO com.couchbase.client.CouchbaseClient: Creating Design Document :]SONDocument

Journal : Oracle Magazine

Publisher : Oracle Publishing

Edition : November-December 2813

Title : Engineering as a Service

Author : David A. Kelly

Journal : Oracle Magazine

Publisher : Oracle Publishing

Edition : November-December 2013

Title : Quintessential and Collaborative

fAuthor : Tom Haunert

Id catalog:engineering-as-a-service

Key null

Walue [“Oracle Magazine",“Oracle Publishing",“November-December 2013","Engineering as a Service”,"David A. Kelly™]

Id catalog:quintessential-and-collabeorative

Key null

Walue ["Oracle Magazine",“Oracle Publishing”,“November-December 2@13","Quintessential and Collaborative™,"Tom Haunert™]

Figure 3-18. Output from queryView method

Update Ops

The CouchbaseOperations interface provides the methods discussed in Table 3-8 for the update operation.

78

http://download.oracle.com/javase/1.5.0/docs/api/java/lang/String.html?is-external=true#class%20or%20interface%20in%20java.lang
http://download.oracle.com/javase/1.5.0/docs/api/java/lang/String.html?is-external=true#class%20or%20interface%20in%20java.lang

CHAPTER 3 I USING SPRING DATA

Table 3-8. CouchbaseOperations interface Methods for updating documents

Method Description

void update(Object objectToSave) Updates the given object. If the update is invoked on a document
that is not in the Couchbase datastore, a new document object is
not created, and the method invocation is effectively ignored.

void update(Collection<? Updates the given Collection of objects. If one of the documents
extends Object> batchToSave) does not exist in the Couchbase datastore, a new document object
is not created, and the method invocation is effectively ignored.

As an example, update the document with title Engineering as a Service, which is stored as id
catalog:engineering-as-a-service. Specify different values for the edition and author fields in the
updated Catalog instance with title Engineering as a Service. Update the document object using the
update(Object objectToSave) method.

public static void updateDocument() {
catalogl = new Catalog("Oracle Magazine", "Oracle Publishing",
"11/12 2013", "Engineering as a Service", "Kelly, David A.");
ops.update(catalogl);
}

When the preceding example is run, the document object gets updated as shown in the Console in
Figure 3-19.

[E)
Couchbase
A& Cluster Overview Server Nodes Data Buckets XDCR '
default - > Documents
N catalog:engineering-as-a-service Delete | Save As.. Save

Figure 3-19. Updating a Document with the update method

As an example of using the update(Collection<? extends Object> batchToSave) method, create
an Arraylist instance for Catalog ids to be updated. If the preceding examples have been run Couchbase
Server should have two documents stored. If not, first save the entity instances to be updated using one
of the save methods. Subsequently, invoke the update(Collection<? extends Object> batchToSave)
method on the ArraylList instance.

public static void updateDocuments() {

Catalog catalogl = new Catalog(“"Oracle Magazine", "Oracle Publishing",
"November December 2013", "Engineering as a Service", "David Kelly");

79

http://download.oracle.com/javase/1.5.0/docs/api/java/lang/Object.html?is-external=true#class%20or%20interface%20in%20java.lang
http://download.oracle.com/javase/1.5.0/docs/api/java/lang/Object.html?is-external=true#class%20or%20interface%20in%20java.lang
http://download.oracle.com/javase/1.5.0/docs/api/java/util/Collection.html?is-external=true#class%20or%20interface%20in%20java.util
http://download.oracle.com/javase/1.5.0/docs/api/java/lang/Object.html?is-external=true#class%20or%20interface%20in%20java.lang
http://download.oracle.com/javase/1.5.0/docs/api/java/util/Collection.html?is-external=true#class%20or%20interface%20in%20java.util
http://download.oracle.com/javase/1.5.0/docs/api/java/lang/Object.html?is-external=true#class%20or%20interface%20in%20java.lang
http://download.oracle.com/javase/1.5.0/docs/api/java/util/Collection.html?is-external=true#class%20or%20interface%20in%20java.util
http://download.oracle.com/javase/1.5.0/docs/api/java/lang/Object.html?is-external=true#class%20or%20interface%20in%20java.lang

CHAPTER 3 " USING SPRING DATA

Catalog catalog2 = new Catalog("Oracle Magazine", "Oracle Publishing",
"11/12 2013", "Quintessential and Collaborative",
"Haunert, Tom");

arraylist = new ArraylList();

arraylist.add(catalogl);

arraylList.add(catalog2);

ops.update(arraylList);

}

When the preceding example is run the document objects in the Couchbase datastore get updated.

Bucket Callback

The org.springframework.data.couchbase.core.BucketCallback<T> interface defines a callback, which
is wrapped and executed on a bucket. The callback may be used to add/update/delete data in the connected
bucket. The execute (BucketCallback<T> action) method in CouchbaseOperations may be used to
execute a BucketCallback. The doInBucket () method is the only method in the BucketCallback interface.
As an example, invoke the execute(BucketCallback<T> action) method and use an anonymous class as
an argument to the method. Output the fields of the Catalog instance added to the document store in the
doInBucket() method.

Catalog catalog = ops.execute(new BucketCallback<Catalog>() {
public Catalog doInBucket() throws TimeoutException,
ExecutionException, InterruptedException {

Catalog catalogl = new Catalog("Oracle Magazine",
"Oracle_Publishing", "11/12 2013",
"Engineering as_a Service", "Kelly, David");

ops.save(catalogl);

return catalogi;

}

1;
System.out.println("Journal : " + catalog.getJournal());

System.out.println("Publisher : " + catalog.getPublisher());
System.out.println("Edition : " + catalog.getEdition());
System.out.println("Title : " + catalog.getTitle());
System.out.println("Author : " + catalog.getAuthor());

The output from running the preceding example is shown in Eclipse Console in Figure 3-20.

2015-07-1@ 12:42:50.031 INFO com.couchbase.client.CouchbaseClient: viewmode property isn't defined. Setting viewmode to pred
uction mode

Journal : Oracle Magazine

Publisher : Oracle_Publishing

Edition : 11_12_2013

Title : Engineering_as_a_Service

futhor : Kelly_David

Figure 3-20. Output from using the BucketCallback Interface

80

http://docs.spring.io/spring-data/couchbase/docs/1.0.0.M1/api/org/springframework/data/couchbase/core/BucketCallback.html#interface%20in%20org.springframework.data.couchbase.core
http://docs.spring.io/spring-data/couchbase/docs/1.0.0.M1/api/org/springframework/data/couchbase/core/BucketCallback.html#interface%20in%20org.springframework.data.couchbase.core
http://docs.spring.io/spring-data/couchbase/docs/1.0.0.M1/api/org/springframework/data/couchbase/core/BucketCallback.html#doInBucket()
http://docs.spring.io/spring-data/couchbase/docs/1.0.0.M1/api/org/springframework/data/couchbase/core/BucketCallback.html#interface%20in%20org.springframework.data.couchbase.core
http://docs.spring.io/spring-data/couchbase/docs/1.0.0.M1/api/org/springframework/data/couchbase/core/BucketCallback.html#interface%20in%20org.springframework.data.couchbase.core
http://docs.spring.io/spring-data/couchbase/docs/1.0.0.M1/api/org/springframework/data/couchbase/core/BucketCallback.html#doInBucket()

CHAPTER 3 I USING SPRING DATA

The App. java application used to run CRUD operations using the CouchbaseOperations is listed; this is
the result of all the code we have looked at in this chapter so far.

package com.couchbase.core;

import
import
import
import
import
import
import
import
import
import
import
import
import
import
import
import
import
import
import
import
import
import
import

public

java.io.IOException;
java.io.UnsupportedEncodingException;

java.net.URI;

java.util.Arraylist;

java.util.Iterator;

java.util.LinkedlList;

java.util.list;
java.util.concurrent.ExecutionException;
java.util.concurrent.TimeoutException;
org.springframework.context.ApplicationContext;
org.springframework.context.annotation.AnnotationConfigApplicationContext;
org.springframework.data.couchbase.core.BucketCallback;
org.springframework.data.couchbase.core.CouchbaseOperations;
com.couchbase.model.Catalog;
com.couchbase.client.CouchbaseClient;
com.couchbase.client.internal.HttpFuture;
com.couchbase.client.protocol.views.DesignDocument;
com.couchbase.client.protocol.views.Query;
com.couchbase.client.protocol.views.Stale;
com.couchbase.client.protocol.views.View;
com.couchbase.client.protocol.views.ViewDesign;
com.couchbase.client.protocol.views.ViewRow;
com.couchbase.config.SpringCouchbaseApplicationConfig;

class App {

static CouchbaseOperations ops;
static Catalog catalogi;

static Catalog catalog2;

static Arraylist arraylist;
static Query query;

static String viewName;

public static void main(String[] args) {

ApplicationContext context = new AnnotationConfigApplicationContext(
SpringCouchbaseApplicationConfig.class);

ops = context.getBean("couchbaseTemplate", CouchbaseOperations.class);

catalogl = new Catalog("Oracle Magazine", "Oracle Publishing",
"November-December 2013", "Engineering as a Service",
"David A. Kelly");

ops.save(catalogl);

catalog2 = new Catalog("Oracle Magazine", "Oracle Publishing",
"November-December 2013", "Quintessential and Collaborative",
"Tom Haunert");

arraylist = new ArraylList();

// saveDocument();

// saveDocuments();

// removeDocument();

81

CHAPTER 3 " USING SPRING DATA

82

// removeDocuments();

// insertDocument();

// insertDocuments();

// documentExists();

// findDocumentById();
// findDocumentByView();
// queryDocumentView();
// updateDocument();

// updateDocuments();
bucketCallback();

}

public static void saveDocument() {
ops.save(catalogl);
ops.save(catalog2);
System.out.println("Catalog ID : " + catalogl.getId());

public static void saveDocuments() {
arraylist.add(catalogl);
arraylist.add(catalog2);
ops.save(arraylist);

}

public static void removeDocument() {
ops.remove(catalogl);
}

public static void removeDocuments() {
arraylList.add(catalog1);
arraylList.add(catalog2);
ops.remove(arraylist);

}

public static void insertDocument() {
ops.insert(catalogl);
}

public static void insertDocuments() {
arraylList.add(catalogl);
arraylList.add(catalog2);
ops.insert(arraylist);

}

public static void documentExists() {
System.out.println("catalog:engineering-as-a-service ID exists:
+ ops.exists("catalog:engineering-as-a-service"));

System.out
.println("catalog:quintessential-and-collaborative ID exists:
+ ops.exists("catalog:quintessential-and-collaborative"));

CHAPTER 3 I USING SPRING DATA

public static void findDocumentById() {

Catalog catalog = ops.findById("catalog:engineering-as-a-service",
Catalog.class);

System.out.println("Journal :

System.out.println("Publisher : " + catalog.getPublisher());

System.out.println("Edition : " + catalog.getEdition());

System.out.println("Title : " + catalog.getTitle());

System.out.println("Author : " + catalog.getAuthor());

+ catalog.getJournal());

}

public static void findDocumentByView() {

List<URI> uris = new LinkedList<URI>();

uris.add(URI.create("http://127.0.0.1:8091/pools"));

CouchbaseClient couchbaseClient;

try {
couchbaseClient = new CouchbaseClient(uris, "default", "");
DesignDocument designDoc = new DesignDocument("JSONDocument");
viewName = "by name";

String mapFunction = " function(doc,meta) {\n"

+ " if (meta.type == 'json') {\n"
+ " emit(doc.name, [doc.journal,doc.publisher,doc.edition,doc.
title,doc.author]);\n"
+ " R\n" o+ "}
ViewDesign viewDesign = new ViewDesign(viewName, mapFunction);
designDoc.getViews().add(viewDesign);
HttpFuture<java.lang.Boolean> httpFuture = couchbaseClient
.asyncCreateDesignDoc(designDoc);
View view = couchbaseClient.getView("JSONDocument”, "by name");
query = new Query();
query.setIncludeDocs(true).setLimit(20);
query.setStale(Stale.FALSE);
List<Catalog> cataloglist = ops.findByView("JSONDocument",
viewName, query, Catalog.class);
Iterator<Catalog> iter = cataloglist.iterator();
while (iter.hasNext()) {
Catalog catalog = iter.next();
System.out.println("Journal : " + catalog.getJournal());
System.out.println("Publisher : " + catalog.getPublisher());
System.out.println("Edition : " + catalog.getEdition());
System.out.println("Title : " + catalog.getTitle());
System.out.println("Author : " + catalog.getAuthor());
}
} catch (UnsupportedEncodingException e) {
e.printStackTrace();
} catch (IOException e) {
e.printStackTrace();
}

83

CHAPTER 3 " USING SPRING DATA

public static void queryDocumentView() {
com.couchbase.client.protocol.views.ViewResponse viewResponse = ops
.queryView("JSONDocument", "by name", query);
for (ViewRow row : viewResponse) {
System.out.println("Id " + row.getId());
System.out.println("Key " + row.getKey());
System.out.println("Value " + row.getValue());

}

public static void updateDocument() {
catalogl = new Catalog("Oracle Magazine", "Oracle Publishing",
"11/12 2013", "Engineering as a Service", "Kelly, David A.");
ops.update(catalogl);

public static void updateDocuments() {

Catalog catalogl = new Catalog("Oracle Magazine", "Oracle Publishing",
"November December 2013", "Engineering as a Service",
"David Kelly");

Catalog catalog2 = new Catalog("Oracle Magazine", "Oracle Publishing",
"11/12 2013", "Quintessential and Collaborative",
"Haunert, Tom");

arraylList = new ArraylList();

arraylist.add(catalogl);

arraylist.add(catalog2);

ops.update(arraylList);

}

public static void bucketCallback() {
Catalog catalog = ops.execute(new BucketCallback<Catalog>() {
public Catalog doInBucket() throws TimeoutException,
ExecutionException, InterruptedException {

Catalog catalogl = new Catalog("Oracle Magazine",
"Oracle_Publishing", "11_12 2013",
"Engineering as_a Service", "Kelly David");

ops.save(catalogl);

return catalogi;

1;
System.out.println("Journal : " + catalog.getJournal());

System.out.println("Publisher : " + catalog.getPublisher());
System.out.println("Edition : " + catalog.getEdition());
System.out.println("Title : " + catalog.getTitle());
System.out.println("Author : " + catalog.getAuthor());

84

CHAPTER 3 I USING SPRING DATA

Using Spring Data Repositories with Couchbase

Spring Data Repositories are an abstraction that implement a data access layer over the underlying
datastore. Spring Data Repositories reduce the boilerplate code required to access a datastore. Spring

Data Repositories may be used with Couchbase datastore. The automatic implementation of Repository
interfaces including using for custom finder methods is one of the most important features of Couchbase.
To enable the Spring Data Repositories infrastructure for Couchbase, annotate the JavaConfig class with
@EnableCouchbaseRepositories. Annotate the JavaConfig SpringCouchbaseApplicationConfig class with
@EnableCouchbaseRepositories("com.couchbase.repositories"). com.couchbase.repositories isthe
package to search for repositories.

@Configuration
@EnableCouchbaseRepositories("com.couchbase.repositories™)
public class SpringCouchbaseApplicationConfig extends AbstractCouchbaseConfiguration {

}

The central repository marker interface is org. springframework.data.repository.Repository, and it
provides CRUD access on top of the entities. The entity class Catalog is defined earlier in the chapter.
The generic interface for CRUD operations on a repository is org.springframework.data.repository
.CrudRepository. The Couchbase Server specific repository interface is org. springframework.data
.couchbase.repository.CouchbaseRepository<T,ID extends Serializable>. The interface is
parameterized over the domain type, which would be Catalog for the example and ID type, which is
String in the example. The ID extends the java.io.Serializable interface to be able to serialize the ID
in the Couchbase Server. Create an interface, CatalogRepository, which extends the parameterized type
CouchbaseRepository<Catalog, String>.The CatalogRepository representsthe Couchbase-specific
repository interface to store entities of type Catalog and with Id of type String in Couchbase Server.

package com.couchbase.repositories;

import org.springframework.data.couchbase.repository.CouchbaseRepository;

import com.couchbase.model.Catalog;

public interface CatalogRepository extends CouchbaseRepository<Catalog, String>{

}

Create a service class CatalogService and in the class create a repository instance from the context
as follows.

ApplicationContext context = new AnnotationConfigApplicationContext
(SpringCouchbaseApplicationConfig.class);
CatalogRepository repository = context.getBean(CatalogRepository.class);

Subsequently, we shall perform CRUD operations on the Couchbase document store using the
CatalogRepository instance. But, first we need to create an “all” View for the data bucket in which the
documents are stored. An “all” view is required for some of the methods such as findAll(), deleteAll() and
count(), which do not make use of a document id.

Creating the all View

A view extracts and indexes the fields of a document store for subsequent querying. To do so, you

need to specify a List of URIs for the Couchbase Server; in the code below we specify only the
http://127.0.0.1:8091/pools URL Create a CouchbaseClient instance using the List of URIs and the
“default” bucket.

85

http://download.oracle.com/javase/1.5.0/docs/api/java/io/Serializable.html?is-external=true#class%20or%20interface%20in%20java.io

CHAPTER 3 " USING SPRING DATA

List<URI> uris = new LinkedList<URI>();
uris.add(URI.create("http://127.0.0.1:8091/pools"));
CouchbaseClient couchbaseClient;

try {
couchbaseClient = new CouchbaseClient(uris, "default", "");

Create a DesignDocument “catalog”” Specify view name as “all” and specify map and reduce functions to
create a ViewDesign instance from.

DesignDocument designDoc = new DesignDocument("catalog");
String viewName = "all";

String mapFunction = function(doc,meta) {"

+ " if (meta.type == "json') {"
+ " emit(doc.name, [doc.journal,doc.publisher,doc.edition,doc.title,doc.author]);"
+ "+

String reduceFunction = "function(key, values, rereduce) {"

"if (rereduce) {" + "var result = 0;"

"for (var i = 0; i < values.length; i++) {"

"result += values[i];" + "}" + "return result;"

"} else {" + " return values.length;" + " }" + "}";

+ + + +

Add the ViewDesign instance to the DesignDocument instance. Create the DesignDocument instance in
the Couchbase Server using the CouchbaseClient instance.

ViewDesign viewDesign = new ViewDesign(viewName, mapFunction,
reduceFunction);

designDoc.getViews().add(viewDesign);

HttpFuture<java.lang.Boolean> httpFuture = couchbaseClient
.asyncCreateDesignDoc(designDoc);

The partial CatalogService class in which the “all” view is created is listed below.
package service;

import java.io.IOException;

import java.net.URI;

import java.util.Arraylist;

import java.util.Iterator;

import java.util.linkedList;

import java.util.list;

import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.context.ApplicationContext;

import org.springframework.context.annotation.AnnotationConfigApplicationContext;
import com.couchbase.client.CouchbaseClient;

import com.couchbase.client.internal.HttpFuture;

import com.couchbase.client.protocol.views.DesignDocument;
import com.couchbase.client.protocol.views.ViewDesign;

import com.couchbase.config.SpringCouchbaseApplicationConfig;
import com.couchbase.model.Catalog;

import com.couchbase.repositories.CatalogRepository;

86

CHAPTER 3 I USING SPRING DATA

public class CatalogService {
// @Autowired
// public static CatalogRepository repository;
public static void main(String[] args) {
/**ApplicationContext context = new AnnotationConfigApplicationContext(
SpringCouchbaseApplicationConfig.class);
repository = context.getBean(CatalogRepository.class);*/
List<URI> uris = new LinkedList<URI>();
uris.add(URI.create("http://127.0.0.1:8091/pools"));
CouchbaseClient couchbaseClient;
try {
couchbaseClient = new CouchbaseClient(uris, "default", "");
DesignDocument designDoc = new DesignDocument("catalog");
String viewName = "all";
String mapFunction = " function(doc,meta) {"
+ " if (meta.type == 'json') {"
+ " emit(doc.name, [doc.journal,doc.publisher,doc.edition,doc.title,
doc.author]);"
+ "3 Y
String reduceFunction = "function(key, values, rereduce) {"
"if (rereduce) {" + "var result = 0;"
"for (var i = 0; i < values.length; i++) {"
"result += values[i];" + "}" + "return result;"
+" } else {" + " return values.length;" + " }" + "}";
ViewDesign viewDesign = new ViewDesign(viewName, mapFunction,
reduceFunction);
designDoc.getViews().add(viewDesign);
HttpFuture<java.lang.Boolean> httpFuture = couchbaseClient
.asyncCreateDesignDoc(designDoc);
} catch (IOException e) {

e.printStackTrace();
}

+ + +

}
}

Right-click on the CatalogService class in Package Explorer and select Run As » Java Application.
The “all” view gets added on the “default” bucket. In the Console click on Views to list the “all” view.

Click on the “all” view to list the map and reduce functions and the Key/Value result for the view as shown in

Figure 3-21.

87

CHAPTER 3 " USING SPRING DATA

(]
Couchbase
A& Cluster Overview Server Nodes Data Buckets Views XDCR og Settings

default = =\iews = | _design/catalog/_view/all -

W catalog:engineering_as_a_service Preview a Random Document | | Edit Document
"journal™: "Or azine®, "id": "catalog:engineering as a service”,
"edition” “rev"

“author” 13efatafed5%065d40
“"title": “expiration”: 0,
"_class™: " “flags”: O
"publisher™: “Or
W VIEW CODE
Map Reduce
function (doc,meta) if (meta.type == 'jason') emit (doc.name, [doc.journal,doc.puk functionikey, wvalues, rereduce iR
< > < >

Figure 3-21. Listing the all View
Next, we shall perform CRUD operations on the document stored in the Couchbase Server “default”

bucket using the CatalogRepository instance. Add the class methods listed in Table 3-9 to the CatalogService
class. Invoke the methods in the main method to perform CRUD operations using Couchbase Repository.

Table 3-9. Class Methods

Method Description
countDocuments() Counts number of documents.
findAl1lDocuments() Finds all documents.
findOneDocument () Finds a single document.
findDocumentExists() Finds if a document exists.
saveDocument () Saves a document.
saveDocuments () Saves a batch of documents.
deleteDocument() Deletes a single document.
deleteDocuments () Deletes a batch of documents.
Document Count

The CouchbaseRepository<T,ID extends Serializable> interface, which extends the
CrudRepository<T,ID> interface provides CRUD operation methods. The CouchbaseRepository interface
also includes a count () method, which returns the number of entities stored in a data bucket. The count()
method makes use of the “all” view. To be able to count entities, first create some entities using the
CouchbaseOperations instance as discussed earlier in the Running Couchbase CRUD Operations section.

88

http://download.oracle.com/javase/1.5.0/docs/api/java/io/Serializable.html?is-external=true#class%20or%20interface%20in%20java.io
http://static.springsource.org/spring-data/data-commons/docs/current/api/org/springframework/data/repository/CrudRepository.html?is-external=true#class%20or%20interface%20in%20org.springframework.data.repository

CHAPTER 3 I USING SPRING DATA

Invoke the count () method using the CatalogRepository instance and output the long value returned.
public static void countDocuments() {

long count = repository.count();
System.out.println("Number of catalogs: " + count);

The output in the Eclipse Console in Figure 3-22 shows that the number of document entities stored is 3.

Problerr n B Console &2 L A EE 2By =
CatalugSeMce |Java Appllcatlon] C:\Program Files\Javaljdk1.7.0_51%bin\javaw.exe (Jul 10, 2015, 11:07:26 AM)
2015-27-1@ 11:07:32.352 INFO com.couchbase.client.vbucket.provider.BucketConfigurationProvider: Could bootstrap through carr

ier publication.
2015-27-1@ 11:07:32.356 INFO com.couchbase.client.CouchbaseConnection: Added {QA s4=/127.0.0.1:1121@, #Rops=@, #Wops=0, #iq=
@, 'o.;‘%c,.; null p=null, tolrite=2, interested=0} to connect queue
.357 INFO com.couchbase.client.CouchbaseClient: CouchbaseConnectionFactory{bucket="default®, nodes=[http:

8091/pools], order=RANDON, opT =2 ueue=16384, opQueueBlockTime=10000, cbsPolllnt=108, chsPollMax=50@,

02, viewConns=10, viewTimeout s=1, configCheck=10, reconnectInt=110@, failureMode=Redistribute,
IVE_HASH, authWaitTime=2500}
2015-87-10 11:07:30.361 INFO com.couchbase.client.CouchbaseClient: viewnode property isn't defined. Setting viewnode to prod
uction mode
Number of catalogs: 3

Figure 3-22. Counting Documents

Finding Entities from the Repository

The CouchbaseRepository interface provides the methods discussed in Table 3-10 for finding documents
from the repository.

Table 3-10. CouchbaseRepository interface Methods for Finding documents

Method Description

T findOne(ID id) Returns the entity instance for the specified ID.

Iterable<T> findAll() Returns all instances of the entity type specified in the repository.
Iterable<T> Returns all instances of an entity type for the given IDs.

findAll(Iterable<ID> ids)

As an example, find all instances from the CatalogRepository instance repository using the findA11()
method.

Iterable<Catalog> iterable = repository.findAll();

The findAl1() method returns an Iterable from which it obtains an Iterator using the iterator()
method.

Iterator<Catalog> iter = iterable.iterator();

89

http://docs.spring.io/spring-data/data-commons/docs/current/api/org/springframework/data/repository/CrudRepository.html#type%20parameter%20in%20CrudRepository
http://docs.spring.io/spring-data/data-commons/docs/current/api/org/springframework/data/repository/CrudRepository.html#type%20parameter%20in%20CrudRepository
http://download.oracle.com/javase/1.5.0/docs/api/java/lang/Iterable.html?is-external=true#class%20or%20interface%20in%20java.lang
http://docs.spring.io/spring-data/data-commons/docs/current/api/org/springframework/data/repository/CrudRepository.html#type%20parameter%20in%20CrudRepository
http://download.oracle.com/javase/1.5.0/docs/api/java/lang/Iterable.html?is-external=true#class%20or%20interface%20in%20java.lang
http://docs.spring.io/spring-data/data-commons/docs/current/api/org/springframework/data/repository/CrudRepository.html#type%20parameter%20in%20CrudRepository
http://download.oracle.com/javase/1.5.0/docs/api/java/lang/Iterable.html?is-external=true#class%20or%20interface%20in%20java.lang
http://docs.spring.io/spring-data/data-commons/docs/current/api/org/springframework/data/repository/CrudRepository.html#type%20parameter%20in%20CrudRepository

CHAPTER 3 " USING SPRING DATA

Iterate over the entity instances using the Iterator and output the fields for each entity instance.

while (iter.hasNext()) {
Catalog catalog = iter.next();
System.out.println("Journal: "
System.out.println("Publisher: " + catalog.getPublisher());
System.out.printIn("Edition: " + catalog.getEdition());
System.out.println("Title: " + catalog.getTitle());
System.out.println("Author: " + catalog.getAuthor());

+ catalog.getJournal());

When the preceding example is run the field values for the two entity instances are output in the Eclipse
Console as shown in Figure 3-23.

Journal: Oracle Magazine
Publisher: Oracle Publishing
Editicn: November-December 2013
Title: Engineering as a Service
futhor: David A, Kelly

Journal: Oracle_Magazine
Publisher: Oracle_Publishing
Edition: 11_12 2013

Title: Engineering_as_a_Service
Author: Kelly David

Journal: Oracle Magazine
Publisher: Oracle Publishing
Edition: 11/12 2813

Title: Quintessential and Collaborative
Auther: Haunert, Tom

Figure 3-23. Field Values for the Two entity Instances

As an example of using the findOne method, find the entity instance with Id catalog:engineering-as-
a-service. Subsequently output the field values for the entity instance.

Catalog catalog = repository.findOne("catalog:engineering-as-a-service");
System.out.println("Journal: " + catalog.getJournal());
System.out.println("Publisher: " + catalog.getPublisher());
System.out.println("Edition: " + catalog.getEdition());
System.out.println("Title: " + catalog.getTitle());
System.out.println("Author: " + catalog.getAuthor());

The field values for the entity instance are output in the Eclipse Console as shown in Figure 3-24.

Problem @ Console I L «HEE 8-0-=t¢
CatalogService [Java Application] C:\Program Files\Javaljdk1.7.0_51\bin'yavaw.exe (Jul 10, 2015, 11:11:25 AM)

@, topRop=null, teplop=null, toWrite=@, interested=0} to connect queue

2015-27-1@ 11:11:29.918 INFO com.couchbase.client.Couchbasellient: CouchbaseConnectionFactory{bucket="default", nodes
1s], order=RANDOM, cpTimeout=258@, oplue 5384, opQueueBlockTime=128282, obsPollInt=18, obsPoll
viewConns=1@, vieuTimecut=75000, viewdorkerss=
SH, authWaitTime=2500}

2015-27-1@ 11:11:29.922 INFO com.couchbase.client.CouchbaseClient: wviewmode property isn't defined. Setting viewmocde to prod
uction mode

Journal: Oracle Magazine

Publisher: Oracle Publishing

Editicn: November-December 2013

Title: Engineering as a Service

Author: David A, Kelly

hashilgo=

Figure 3-24. Output from findOne method

90

CHAPTER 3 I USING SPRING DATA

Finding if an Entity Exists

The CouchbaseRepository interface provides the exists(ID id) method to determine if an entity instance
by the given id exists. As an example find if the catalog:quintessential-and-collaborative Id exists in
the Couchbase datastore.

boolean bool = repository.exists("catalog:quintessential-and-collaborative");
System.out .println(“"Catalog with Id catalog:quintessential-and-collaborative exists: " +bool);

The output from invoking the exists() method indicates that the catalog:quintessential-and-
collaborative Id exists in the datastore as shown in Figure 3-25.

2015-07-1@ 11:13:07.576 INFO com.couchbase.client.CouchbaseClient: viewnode property isn't defined. Setting viewnode to prod
ucticn mode
Catalog with Id catalog:quintessential-and-collaborative exists: true

Figure 3-25. Output from exists() method

Saving Entities

The CouchbaseRepository interface provides the methods discussed in Table 3-11 for saving documents
using the repository. As discussed in Table 3-8 the save methods may also be used for updating an entity.

Table 3-11. CouchbaseRepository interface Methods for saving documents

Method Description

<S extends T> S save(S entity) Saves a given entity. If the entity is already in the server, overwrites
the entity. Returns the saved entity instance.

<S extends T> Iterable<S> Saves a given collection of entities. If an entity is already in the
save(Iterable<S> entities) server, overwrites the entity. Returns the saved entity instances.

As an example create and save an entity instance using the save(S entity) method.

public static void saveDocument() {
Catalog catalog = new Catalog("Oracle Magazine", "Oracle Publishing",
"11/12 2013", "Engineering as a Service", "Kelly, David");
repository.save(catalog);

When the CatalogService application is run with only the saveDocument() class method invocation in
the main method an entity instance with Id generated from the title Engineering as a Service as specified in
the entity class constructor gets saved as shown in the Console as shown in Figure 3-26.

91

http://docs.spring.io/spring-data/data-commons/docs/current/api/org/springframework/data/repository/CrudRepository.html#type%20parameter%20in%20CrudRepository
http://docs.spring.io/spring-data/data-commons/docs/current/api/org/springframework/data/repository/CrudRepository.html#type%20parameter%20in%20CrudRepository
http://docs.spring.io/spring-data/data-commons/docs/current/api/org/springframework/data/repository/CrudRepository.html#type%20parameter%20in%20CrudRepository
http://download.oracle.com/javase/1.5.0/docs/api/java/lang/Iterable.html?is-external=true#class%20or%20interface%20in%20java.lang
http://download.oracle.com/javase/1.5.0/docs/api/java/lang/Iterable.html?is-external=true#class%20or%20interface%20in%20java.lang

CHAPTER 3 " USING SPRING DATA

Bl
Couchbase
& Cluster Overview Server Nodes Datz Views XDCR Log Seftings
default - > Documents
catalog:engineering-as-a-service | Delete | SaveAs. | save

Figure 3-26. Saving a document with the save method

As an example of using the save(Iterable<S> entities) method create an Arraylist of entity instances.

Arraylist arraylist = new Arraylist();

Catalog catalogl = new Catalog("Oracle Magazine", "Oracle Publishing",
"November-December_2013", "EngineeringasaService",

"David A. Kelly");

Catalog catalog2 = new Catalog("Oracle Magazine", "Oracle Publishing",
"11/12_2013", "Engineering as_a_Service", "Kelly, David");
arraylist.add(catalogl);

arraylList.add(catalog2);

Invoke the save(Iterable<S> entities) method on the ArraylList instance.
repository.save(arraylist);

When the preceding example is run by invoking the saveDocuments() class method in CatalogService
application the collection of entity instances in the ArrayList get added to the Couchbase Server as shown
in Figure 3-27.

Bl
Couchbase
#& Cluster Overview Server Nodes Data Buckets Views XDCR og Settings

default - > Documents Current page: 1 5 =
Documents Filter catalog-engineering-as-a Wk’ Cmbﬁﬂ:mem
{11} Content

catalog:engineering... ["journal”: "Oracle Magazine®, "edition™: "11/12 2013", "am. Edit Document = Delete
catalog:engineering... ["journal®: "Oracle Magazine", "edition™: "11/12 2013", "au Edit Document | Delete
catalog:engineering... | "journal”: "Oracle Magazine”, “edition": "November-Decembe Edit Document = Delete

Figure 3-27. Saving a Collection of documents
92

http://download.oracle.com/javase/1.5.0/docs/api/java/lang/Iterable.html?is-external=true#class%20or%20interface%20in%20java.lang
http://download.oracle.com/javase/1.5.0/docs/api/java/lang/Iterable.html?is-external=true#class%20or%20interface%20in%20java.lang

CHAPTER 3 I USING SPRING DATA

Deleting Entities

The CouchbaseRepository interface provides the methods discussed in Table 3-12 for deleting documents
using the repository.

Table 3-12. CouchbaseRepository interface Methods for deleting documents

Method Description

void delete(IDid) Deletes the entity by the given ID managed by the repository.
void delete(Tentity) Deletes the specified entity managed by the repository.

void delete(Iterable<? extends T> Deletes the entities in the specified Iterable managed by the
entities) repository.

void deleteAll() Deletes all entities managed by the repository.

As an example of using the delete(ID id) method delete the entity with
ID catalog:engineeringasaservice.

repository.delete("catalog:engineeringasaservice");

The entity with Id catalog:engineeringasaservice gets deleted as shown by the two remaining
entities in the Console in Figure 3-28.

Bl
Couchbase
#& Cluster Overview Server Nodes Data Buckets XDCR og Settings
default ~ = Documents Curment page: 1 5 =
Documents Filter i a8~
catalog engineenng-as-a | Lookupld | | Create Document
[} Content
catalog:engineering... "journal”: "Oracle Magazine”, "edition”: "11/12 2013", "au Edit Document = Delete
catalog:engineering... "journal”: "Oracle Magazine", "edition™: "11/12_2013", "au Edit Document = Delete

Figure 3-28. Listing two of the three documents

As an example of using the delete(T entity) method delete the catalog?2 entity instance, which was
added previously.

Catalog catalog2 = new Catalog("Oracle Magazine", "Oracle Publishing",

"11/12_2013", "Engineering as_a_Service", "Kelly, David");
repository.delete(catalog2);

93

http://docs.spring.io/spring-data/data-commons/docs/current/api/org/springframework/data/repository/CrudRepository.html#type%20parameter%20in%20CrudRepository
http://docs.spring.io/spring-data/data-commons/docs/current/api/org/springframework/data/repository/CrudRepository.html#type%20parameter%20in%20CrudRepository
http://download.oracle.com/javase/1.5.0/docs/api/java/lang/Iterable.html?is-external=true#class%20or%20interface%20in%20java.lang
http://docs.spring.io/spring-data/data-commons/docs/current/api/org/springframework/data/repository/CrudRepository.html#type%20parameter%20in%20CrudRepository
http://docs.spring.io/spring-data/data-commons/docs/current/api/org/springframework/data/repository/CrudRepository.html#type%20parameter%20in%20CrudRepository
http://docs.spring.io/spring-data/data-commons/docs/current/api/org/springframework/data/repository/CrudRepository.html#type%20parameter%20in%20CrudRepository

CHAPTER 3 " USING SPRING DATA

The catalog?2 entity gets deleted. Run the saveDocuments() again before the next delete to
add a collection of entities as we deleted some in the preceding examples. As an example of using
the delete(Iterable<? extends T> entities) method create an ArrayList of entity IDs and invoke the
delete(Iterable<? extends T> entities) method on the ArrayList.

Arraylist arraylist = new Arraylist();
arraylist.add("catalog:engineering as a service");
arraylist.add("catalog:engineeringasaservice");
repository.delete(arraylList);

Next, invoke the deleteAll() method, which makes use of the “all” view, on the repository instance.

repository.deleteAll();

All the entity instances get deleted as indicated by the Item Count of 0 in the Console in Figure 3-29.

(=]

Couchbase

A

Data Buckets

Couchbase Buckets Create Mew Data Bucket
Bucket Hame Hodes Hem Count Ops/sec Disk Fetches/sec RAMQuota Usage DataDisk Usage
b default @ 0 N 0 0 bt Documents | Views

Figure 3-29. Item Count is 0 after deleting all documents

Selecting Documents for the “default” bucket does not list any documents.
The CatalogService class is listed below.

package com.couchbase.service;

import
import
import
import
import
import
import
import
import
import
import
import
import

94

Jjava.
Jjava.
Jjava.
Jjava.
java.
Jjava.
.springframework.beans.factory.annotation.Autowired;

org
org.
org.
com.
com
com.
com

io.IOException;
net.URI;
util.Arraylist;
util.Iterator;
util.Llinkedlist;
util.List;

springframework.context.ApplicationContext;
springframework.context.annotation.AnnotationConfigApplicationContext;
couchbase.client.CouchbaseClient;

.couchbase.client.internal.HttpFuture;

couchbase.client.protocol.views.DesignDocument;

.couchbase.client.protocol.views.ViewDesign;

http://download.oracle.com/javase/1.5.0/docs/api/java/lang/Iterable.html?is-external=true#class%20or%20interface%20in%20java.lang
http://docs.spring.io/spring-data/data-commons/docs/current/api/org/springframework/data/repository/CrudRepository.html#type%20parameter%20in%20CrudRepository
http://download.oracle.com/javase/1.5.0/docs/api/java/lang/Iterable.html?is-external=true#class%20or%20interface%20in%20java.lang
http://docs.spring.io/spring-data/data-commons/docs/current/api/org/springframework/data/repository/CrudRepository.html#type%20parameter%20in%20CrudRepository

CHAPTER 3

import com.couchbase.config.SpringCouchbaseApplicationConfig;
import com.couchbase.model.Catalog;
import com.couchbase.repositories.CatalogRepository;

public class CatalogService {
// @Autowired
public static CatalogRepository repository;

public static void main(String[] args) {
ApplicationContext context = new AnnotationConfigApplicationContext(
SpringCouchbaseApplicationConfig.class);
repository = context.getBean(CatalogRepository.class);

List<URI> uris = new LinkedList<URI>();
uris.add(URI.create("http://127.0.0.1:8091/pools"));
CouchbaseClient couchbaseClient;
try {
couchbaseClient = new CouchbaseClient(uris, "default", "");
DesignDocument designDoc = new DesignDocument("catalog");
String viewName = "all";

String mapFunction = " function(doc,meta) {"

+ " if (meta.type == 'json') {"

+ emit(doc.name, [doc.journal,doc.publisher,doc.edition,

doc.title,doc.author]);"
+ "
String reduceFunction = "function(key, values, rereduce) {"
+ "if (rereduce) {" + "var result = 0;"
+ "for (var i = 0; i < values.length; i++) {"

+ "result += values[i];" + "}" + "return result;"

+" } else {" + " return values.length;" + " }" + "}";
ViewDesign viewDesign = new ViewDesign(viewName, mapFunction,
reduceFunction);

designDoc.getViews().add(viewDesign);
// HttpFuture<java.lang.Boolean> httpFuture =
// couchbaseClient.asyncCreateDesignDoc(designDoc);

} catch (IOException e) {
e.printStackTrace();
}

// countDocuments();

// findAllDocuments();
// findOneDocument();

// findDocumentExists();
// saveDocument();

// saveDocuments();

// deleteDocument();
//deleteDocuments();

USING SPRING DATA

95

CHAPTER 3 " USING SPRING DATA

96

public static void countDocuments() {
long count = repository.count();
System.out.println("Number of catalogs:

+ count);

}

public static void findAllDocuments() {

Iterable<Catalog> iterable = repository.findAll();

Iterator<Catalog> iter = iterable.iterator();

while (iter.hasNext()) {
Catalog catalog = iter.next();
System.out.println("Journal: "
System.out.println("Publisher: " + catalog.getPublisher());
System.out.println("Edition: " + catalog.getEdition());
System.out.println("Title: " + catalog.getTitle());
System.out.println("Author: " + catalog.getAuthor());

+ catalog.getJournal());

}

public static void findOneDocument() {

Catalog catalog = repository
.findOne("catalog:engineering-as-a-service");

System.out.println("Journal: " + catalog.getJournal());

System.out.println("Publisher: " + catalog.getPublisher());

System.out.println("Edition: " + catalog.getEdition());

System.out.println("Title: " + catalog.getTitle());

System.out.println("Author: " + catalog.getAuthor());

}

public static void findDocumentExists() {

boolean bool = repository
.exists("catalog:quintessential-and-collaborative");
System.out
.println("Catalog with Id catalog:quintessential-and-collaborative exists:
+ bool);

}
public static void saveDocument() {
Catalog catalog = new Catalog("Oracle Magazine", "Oracle Publishing",

"11/12 2013", "Engineering as a Service", "Kelly, David");
repository.save(catalog);

CHAPTER 3 I USING SPRING DATA

public static void saveDocuments() {

Arraylist arraylist = new Arraylist();

Catalog catalogl = new Catalog("Oracle Magazine", "Oracle Publishing",
"November-December 2013", "EngineeringasaService",
"David A. Kelly");

Catalog catalog2 = new Catalog("Oracle Magazine", "Oracle Publishing",
"11/12_2013", "Engineering as_a_Service", "Kelly, David");

arraylist.add(catalogl);

arraylist.add(catalog2);

repository.save(arraylist);

}

public static void deleteDocument() {
// repository.delete("catalog:engineeringasaservice");

Catalog catalog2 = new Catalog("Oracle Magazine", "Oracle Publishing",
"11/12 2013", "Engineering as_a_Service", "Kelly, David");
repository.delete(catalog2);

}

public static void deleteDocuments() {
Arraylist arraylist = new Arraylist();
arraylist.add("catalog:engineering as_a service");
arraylist.add("catalog:engineeringasaservice");
// repository.delete(arraylList);
repository.deleteAll();

Summary

In this chapter we discussed using the Spring Data Couchbase project. We used Spring Data to access
Couchbase Server with a Maven application and perform CRUD operations on the Couchbase Server. In the
next chapter, we shall use PHP with Couchbase Server.

97

CHAPTER 4

Accessing Couchbase with PHP W,

PHP is one of the most commonly used scripting languages, and its usage (http://php.net/usage.php) for
developing web sites continues to increase. PHP is an open source, object-oriented, server-side language
and has the advantages of simplicity with support for all or most operating systems and web servers.

The Couchbase PHP SDK provides access to Couchbase Server from a PHP script. JSON documents in
Couchbase may be created and updated from PHP. In this chapter we shall use CRUD (create, read, update,
delete) operations on Couchbase from PHP scripts. The chapter covers the following topics.

e Setting the Environment

Installing PHP

e Installing the Couchbase PHP SDK

e Connecting with Couchbase Server

e (Creating a Document

e Upserting a Document

e Getting a Document

e Replacing a Document

e Incrementing and Decrementing a Document

e Deleting a Document

Setting the Environment

This chapter is based on 64-bit Windows OS. We need to install the following software in addition to
installing Couchbase Server.

. PHP
e Web Server (packaged with PHP installation)
e Couchbase PHP SDK including C SDK (libcouchbase)

As the PHP and Couchbase PHP SDK binaries for Windows are specific to a Visual Studio version
(Visual Studio 2012), download and install Visual C++ Redistributable for Visual Studio 2012, if not already
installed, from https://www.microsoft.com/en-ca/download/details.aspx?id=30679. In the subsequent
few sections we shall install the required software.

99

http://php.net/usage.php
https://www.microsoft.com/en-ca/download/details.aspx?id=30679

CHAPTER 4 © ACCESSING COUCHBASE WITH PHP

Installing PHP

PHP 5.4 and later versions include a web server packaged in the PHP installation and does not require the
web server to be installed separately. Download PHP 5.5 (5.5.26) VC11 x64 Thread-Safe version of the

PHP zip file php-5.5.26-Win32-VC11-x64.zip from http://windows.php.net/download/. Extract the
php-5.5.26-Win32-VC11-x64.zip file to a directory. A php-5.5.26-Win32-VC11-x64 directory gets created.
Create a document root directory (C: \PHP used in this chapter) and copy the files and directories within the
php-5.5.26-Win32-VC11-x64 directory to the C:/PHP directory. Rename the php.ini-development or
php.ini-production in the root directory of the PHP installation, C: \PHP, to php. ini. Connect to the
packaged web server at port 8000 with the following command from the document root directory C: \PHP
directory.

php -S localhost:8000
The output from the command indicates that the Development Server has been started and listening on

http://localhost:8000 as shown in Figure 4-1. PHP scripts copied to the document root directory can be
run in the web server.

N
[Bl Administrator: C:\Windows\system32\cmd.exe - php -S localhost:3000 lﬂ‘é]

Microsoft Windows [Uersion 6.1.76811] |.~
Copyright <(c?> 2809 Microsoft Corporation. All rights reserved.

C:\Users\Deepak Uohra>cd c:/php |

c:\php>php -8 localhost:86860

PHP 5.5.26 Development Server started at Fri Jul 83 11:36:26 28615 |
Listening on http://localhost:80008

Document root is C:sphp

||Press Ctrl-C to guit.

Figure 4-1. Running the PHP Development Server

To test that PHP and the web server have been installed, create the following PHP script index.php in
the document root directory, the C: /PHP directory.

<?php
echo "<p>Welcome to PHP</p>";
>

Run the PHP script on the web server by visiting the URL http://localhost:8000. The output from the
script is shown in the browser in Figure 4-2.

100

http://windows.php.net/download/

CHAPTER 4 © ACCESSING COUCHBASE WITH PHP

r ——— T
&) http://localhost:8000/ = | &

File Edit View History Bookmarks Develop Window Help
< + | hitp://localhost:8000/ ¢ | | Q- Bing @ MO~ ¥~

Welcome to PHP ‘
|

% 4

Figure 4-2. Running the example Script index.php

Installing Couchbase PHP SDK

Next, we install the Couchbase PHP SDK.

1. Download PHP SDK prebuilt Windows binaries PHP 5.5 VC11 ZTS php_
couchbase-2.0.7-5.5-zts-vc11-x64.zip file from http://docs. couchbase. com/
developer/php-2.0/download-1links.html. The thread-safe version (ZTS)
should be downloaded and not the non-thread-safe version (NTS).

2. Extract the couchbase-2.0.7-5.5-zts-vc11-x64.zip file to a directory (for example,
the C:/PHP directory).

3. Copy the libcouchbase.dll and the php_couchbase.dl1l from the C: \PHP\php_
couchbase-2.0.7-5.5-zts-vc11-x64 directory to the C: \PHP directory.

4. Add the following line in the php.ini configuration file in the C: /PHP directory.
Even though the 1ibcouchbase.dll extension is required to be copied to the
C:/PHP, it must not be added as an extension to the php.ini file as it is invoked
internally by the php_couchbase.d11 extension.

extension=php_couchbase.dll
5. Shut down the PHP web server if running and restart the web server.

Next, we shall test if the Couchbase PHP SDK has been installed. Create a PHP script
couchbaseconnect. php in the document root directory C: \PHP. Copy the following code listing to the
couchbaseconnect. php script.

<?php

$cluster = new CouchbaseCluster('couchbase://localhost:8091");
$bucket = $cluster->openBucket('default');

$res = $bucket->get('catalog');

var_dump($res);
?>

We shall be getting a document (added to Couchbase Server in an earlier chapter) using the Couchbase
PHP SDK APL If a document with Id ‘catalog’ has not been retained from an earlier chapter log in to
the Couchbase Admin Console and create a document with Id ‘catalog’ as shown in Figure 4-3 or use a
document with some other Id (modify the preceding script to specify the document Id).

101

http://docs.couchbase.com/developer/php-2.0/download-links.html
http://docs.couchbase.com/developer/php-2.0/download-links.html

CHAPTER 4 © ACCESSING COUCHBASE WITH PHP

="
Couchbase
A& Cluster Overview Server Nodes Data Buckets Views XDCR _0g Sefttings
default - > Documents
catalog \Reitey SmBANuy v

Figure 4-3. Couchbase Server Document

We shall discuss the script in a later section, but for testing run the script with the URL
http://localhost:8000/couchbaseconnect.php. The script should generate the following output shown
in Figure 4-4 in the browser to indicate that the Couchbase PHP SDK has been installed.

|
&) http://localhost:8000/couchbaseconnect.php Eﬂlﬁ

File Edit View History Bookmarks Develop Window Help

<4 » || + @ httpy/flocalhost:8000/couchbaseconnectphp & | | Qr Bing O O~ L&~

object{CouchbaseletaDoc)#d (4) { ["error"]=> NULL ["value"]=> string(190) "

{" 1d""55968c90cd73501 1a8bfad4a","journal":"Oracle Magazine", "publisher":"Oracle

| Publishing","edition":"November December 2013","title":"Engineering as a Service","author":"David
A Kelly"}" ["lags"]=> nt(0) ["cas"]=> resource(2) of type (CouchbaseCAS) }

Figure 4-4. Testing the Couchbase PHP SDK

Connecting with Couchbase Server

In this section we shall connect to Couchbase Server for which create a PHP script connection.php in the

document root directory C:\PHP.
A connection to Couchbase Server cluster is represented with the CouchbaseCluster class in the
Couchbase package. To create an instance of CouchbaseCluster class instance the class constructor with the

following signature is provided.

__construct(string $dsn = 'http://127.0.0.1/", string $username = '', string $password = '')

The different parameters in the constructor are discussed in Table 4-1.

102

CHAPTER 4 © ACCESSING COUCHBASE WITH PHP

Table 4-1. Constructors for the CouchbaseCluster Class

Parameter Type Description

$dsn string Anstring representing the Couchbase servers in the Couchbase cluster in the
format 'couchbase://host1:porti,host2:port2,host3:port3’. Specifying ports
is optional if using standard ports. The ports on which server/s are running may
be found from the Couchbase Administration Console. If one server is running the
port is 8091. The hostname is localhost and the Ipv4 address of the server may also
be specified, which is required to be specified if the server is running on a different
machine than the PHP Client machine. If more than one server is specified in the
string the first one that connects is used.

$username string The username to connect to Couchbase Server cluster.

$password string The password to connect to Couchbase Server cluster.

Using the default hostname, port, and bucket, a Couchbase cluster connection can be obtained without
specifying any connection parameters.

$cluster = new CouchbaseCluster();

Alternatively, the connection parameters may be specified redundantly, or if the connection parameters
are other than the default the connection parameters must be specified. The hostname is localhost by
default and port is 8091 by default. In the following CouchbaseCluster connection instance, the username
and password are empty strings as username and password are not required for the default cluster.

$cluster = new CouchbaseCluster('couchbase://localhost:8091',",");

While the CouchbaseCluster class constructor creates a connection with a cluster to create a
connection with a bucket the openBucket(string $name = 'default', string $password = '') method,
which returns an instance of the CouchbaseBucket class, must be invoked to create a connection with a
bucket. The CouchbaseBucket class provides various methods for adding, getting, updating and deleting
data from a Couchbase bucket and also provides various properties to represent the connection state. Some
of the methods in CouchbaseBucket class are discussed in Table 4-2.

103

CHAPTER 4 © ACCESSING COUCHBASE WITH PHP

Table 4-2. Methods in the CouchbaseBucket Class

Method

Return Type

Description

manager ()
enableNigl(mixed $hosts)

insert(string|array $ids,
mixed $val = NULL,
array $options = array())

upsert(string|array $ids,
mixed $val = NULL,
array $options = array())

replace(string|array $ids,
mixed $val = NULL, array
$options = array())

append(string|array $ids,
mixed $val = NULL,
array $options = array())

prepend(string|array $ids,
mixed $val = NULL, array
$options = array())

remove(string|array $ids,
array $options = array())
get(string|array $ids,

array $options = array())
counter(string|array $ids,

integer $delta, array
$options = array())

query(\CouchbaseQuery
$query)

setTranscoder(string
$encoder, string $decoder)

CouchbaseBucketManager

mixed

mixed

mixed

mixed

mixed

mixed
mixed

mixed

mixed

Returns Couchbase bucket manager for
management of the Couchbase bucket.

Enables N1QL support. A cbq-server URI
must be provided as an argument.

Inserts a document. The method fails if the
document already exists.

Like the insert method, inserts a document.
But, unlike the insert method, updates the
document if the document already exists.

Replaces a document.

Appends data to a document.

Prepends data to a document.

Removes a document.

Gets a document.

Increments or decrements a document key
by the specified $delta.

Queries a document based on a view query
or N1QL query.

Sets a custom encoder/decoder for
serialization.

Some of the properties in the CouchbaseBucket class are discussed in Table 4-3.

Table 4-3. Properties in the CouchbaseBucket Class

Property Type Description

operationTimeout integer Operation timeoutin milliseconds (ms) after which an operation is timed out.
viewTimeout integer View timeoutin ms after which a view request is timed out.

httpTimeout integer HTTP timeoutin ms.

configTimeout integer Configuration timeout after which the configuration is refreshed.

configNodeTimeout integer

Configuration timeout for a node after which the configuration is refreshed.

104

CHAPTER 4 © ACCESSING COUCHBASE WITH PHP

Obtain and output some of the bucket properties in the connection.php script. The connection.php
script is listed below.

<?php
$cluster = new CouchbaseCluster();
$bucket = $cluster->openBucket('default');

echo "Operation timeout (ms): "; echo $bucket->operationTimeout;
echo "
\n";

echo "Configuration timeout (ms): "; echo $bucket->configTimeout;
echo "
\n";

echo "Configuration Node timeout (ms) : "; echo $bucket->configNodeTimeout;
echo "
\n";

echo "HTTP timeout (ms): "; echo $bucket->httpTimeout;
echo "
\n";

echo "View timeout (ms): "; echo $bucket->viewTimeout;
echo "
\n";

>

Run the connection.php script with the URL http://localhost:8000/connection.php. The output
from the script is shown in the browser in Figure 4-5.

) =l) S

| localhost:8000/connectior X
& - C [localhost8000/connectionphp 1% =

Operation timeout (ms): 2500000
Configuration timeout (ms): 5000000
Configuration Node timeout (ms) : 2000000
HTTP timeout (ms): 75000000

View timeout (ms): 75000000

Figure 4-5. Creating a Connection to Couchbase Server

Creating a Document

The CouchbaseBucket class provides two different methods to create a document in the Couchbase
Server; insert(string|array $ids, mixed $val = NULL, array $options = array()) and
upsert(string|array $ids, mixed $val = NULL, array $options = array()).We shall discuss each of
these methods in this section. The difference between the two methods is discussed in Table 4-2.

The difference between the two methods is that the insert method fails if the added document already
exists and the upsert method updates the document if the document already exists.

Create a PHP script insertDocument.php in the C: /PHP directory. Create a Couchbase bucket
connection instance to the ‘default’ bucket as discussed earlier.

$cluster = new CouchbaseCluster();
$bucket = $cluster->openBucket('default');

105

CHAPTER 4 © ACCESSING COUCHBASE WITH PHP

The insert method is defined to accept different parameters, which are discussed in Table 4-4.

Table 4-4. Parameters for the insert Method

Parameter Type Description

$ids string|array = The document IDs to store.

$val mixed The document value to store.

$options array An array of options. Supported options are expiry and flags. The expiry

option is the time duration after which the document gets removed. By
default the document does not get removed.

At the minimum the document id and the document value are required to be specified. Use the insert
method to create documents with ID catalog2. PHP includes the JSON extension, which provides the
json_encode and json_decode methods to encode/decode JSON value respectively. The JSON extension is
available in the PHP installation PHP 5.5 and is not required to be installed. A document with a JSON value
may be stored by using an array to specify the key/value pairs for the JSON document.

$arr = array('journal' => 'Oracle Magazine', 'publisher' => 'Oracle Publishing', 'edition'
=> 'November December 2013', 'title' => 'Quintessential and Collaborative', 'author' =>
'Tom Haunert');

Encode the array into a JSON representation using the json_encode method.
$catalog2=json_encode($arr);

Store the JSON encoded array using the insert method.
$res = $bucket->insert('catalog2', $catalog2);

The preceding insert method invocation creates document ID with JSON value. The insert method
returns an object of type CouchbaseMetaDoc. To output the CAS value of the objects stored with the set
method echo has been prepended to the set method statements. The insertDocument.php script is listed
below.

<?php
$cluster = new CouchbaseCluster();
$bucket = $cluster->openBucket('default');

$arr = array('journal' => 'Oracle Magazine', 'publisher' => 'Oracle Publishing',
'edition' => 'November December 2013', 'title' =>

'Quintessential and Collaborative', 'author' => 'Tom Haunert');
$catalog2=json_encode($arr);

$res = $bucket->insert('catalog2', $catalog2);

var_dump($res);

>

Run the PHP script in the browser with URL http://localhost:8000/insertDocument.php as shown in
Figure 4-6.

106

CHAPTER 4 © ACCESSING COUCHBASE WITH PHP

@& http://localhost:8000/insertDocument.php E@u
File Edit View History Bookmarks Develop “Window Help
(<[> | | + | http://localhost:3000/insertDocument.php G] [Qv Bing O @O &%~

object(CouchbaseMetaDoc)#4 (4) { ["error']== NULL ["value"]== string{0) " ["flags"]==> mt(0)
"cas"]=> resource(2) of type (CouchbaseCAS) }

[-

Figure 4-6. Running the insertDocument.php Script

In the Couchbase Server the document with the specified ID gets created as shown in the Couchbase
Console in Figure 4-7.

H tation i= t = Sign Out

Couchbase
& Cluster Overview Server Nodes Data Buckets Views XDCR Log Settings

default - > Documents Current page: 1 [5 |o=
Documents Filter Document 1D w Create
(1] Content
catalog { = id": "55068c90cd735011a8bfadda, “journal™: "Oracle Maga.. Edit Document | Delete
catalog2 b ["journal®: "Oracle Magazine™, "publisher”: "Oracle Publish.. Edit Document = Delete

Figure 4-7. Listing Documents added with the insert Method

Click on Edit Document for catalog2 document ID to display the JSON document for the ID as shown
in Figure 4-8.

107

CHAPTER 4 © ACCESSING COUCHBASE WITH PHP

el
Couchbase
“ usier Lverview Server Nodes Jata Buckets views XDCR
default - > Documents
catalog2 [y Delete | | Save As... Save

Figure 4-8. Displaying JSON for a Document catalog2

If the insertDocument. php script is run again without deleting the catalog2 document, the Uncaught
exception ‘CouchbaseException’ with message ‘The key already exists in the server.” exception gets generated.

Upserting a Document

The upsert(string|array $ids, mixed $val = NULL, array $options = array()) method is used
to add a new document or update an existing one. The upsert method is defined to accept the same
parameters as the insert method.

Create a PHP script upsertDocument.php in the document root directory C:/PHP. Create JSON encoded
array of catalog fields. Use the same document id ‘catalog2’ and the same keys as the catalog2 document
added earlier but supply different values. Invoke the upsert method on the JSON encoded array using a
CouchbaseBucket instance to store the updated document.

$arr = array('journal' => 'OracleMagazine', 'publisher' => 'OraclePublishing', 'edition' =>
'11/12 2013', 'title' => 'Quintessential and Collaborative', 'author' => 'Haunert, Tom');
$catalog2=json_encode($arr);$res = $bucket->upsert('catalog2', $catalog2);

The PHP script upsertDocument. php is listed below.

<?php
$cluster = new CouchbaseCluster();
$bucket = $cluster->openBucket('default');$arr = array('journal' => 'OracleMagazine',
'publisher' => 'OraclePublishing', 'edition' => '11/12 2013', 'title' => 'Quintessential
and Collaborative', 'author' => 'Haunert, Tom');
$catalog2=json_encode($arr);
$res = $bucket->upsert('catalog2', $catalog2);
var_dump($res);
>

Run the upsertDocument. php script with the URL http://localhost:8000/upsertDocument.php as
shown in Figure 4-9.

108

CHAPTER 4 © ACCESSING COUCHBASE WITH PHP

& http://localhost:8000/upsertDocument.php o [B

File Edit View History Bookmarks Dewvelop Window Help
4|» + @ http:/flocalhost:8000/upsertDocument.php & | | Q- Bing © MO~ £

object(CouchbaseletaDoc)#d (4) { ["error']== NULL ["value"]=> string(0) " ["flags"]== mt(0)
["cas"]=> resource(2) of type (CouchbaseCAS) }

Figure 4-9. Running the upsertDocument.php Script

The JSON document for document ID catalog2 added gets updated as shown in Figure 4-10.

Rl
Couchbase
A Cluster Overview Server Nodes Data Buckets Views XDCR Log Settings
default ~ > Documents
catalog2 ekl WSBBARG S0

Figure 4-10. Listing Updated Document

Getting a Document

In this section we shall retrieve document/s previously added to the server. Create a PHP script
getDocument.php in the C:/PHP folder. The get(string|array $ids, array $options = array()) method
is used to get a document.

The get method returns the document object. The get method is defined to accept different
parameters, which are discussed in Table 4-5.

Table 4-5. Parameters for the get Method

Parameter Type Description
$ids string|array The documentid/s to get.
$options array An array of options.

109

CHAPTER 4 * ACCESSING COUCHBASE WITH PHP

Create an array of documents and invoke the get method on the array.

array('catalog', 'catalog2');
$bucket->get($arr);

$arr
$res

The PHP script getDocument. php is listed below.

<?php
$cluster = new CouchbaseCluster();
$bucket = $cluster->openBucket('default');

$arr = array('catalog', 'catalog2');
$res = $bucket->get($arr);
var_dump($res);

>

Run the PHP script with URL http://localhost:8000/getDocument.php. The documents get retrieved
and output in the browser including the CAS value as shown in Figure 4-11.

& http://localhost:8000/getDocument.php E‘E&

File Edit View History Bookmarks Develop Window Help

<4 » | | + http/flocalhost:2000/getDocument.php ¢ | | Q- Bing O M~ %~

array(2) { ["catalog"]=> object{CouchbaseletaDoc)#4 (4) { ["error']=> NULL ["value"]=>
string(190) "{"_id""55968c90cd735011a8bfaB4a","journal""Oracle Magazine","publisher""Oracle
Publishing","edition":"November December 2013","title":"Engineering as a Service","author":"David
A Kelly"}" ["lags"]=> nt(0) ["cas"]== resource(2) of type (CouchbaseCAS) } ["catalog2"]=>
object{CouchbaselMetaDoc)#5 (4) { ["error']=> NULL ["value"]=> string(151) "
{"journal":"OracleMagazine","publisher":"OraclePublishing","edition":" 11412

2013" "ttle™:"Quintessential and Collaborative","author":"Haunert, Tom"}" ["flags"]=>
nt(67108864) ["cas"]=> resource(3) of type (CouchbaseCAS) } }

Figure 4-11. Running the getDocument.php Script

A single document may be output by providing the document id. For example, the document with id
‘catalog’ is output as follows.

var_dump($res["catalog"]);

When the getDocument. php script is run again, just the ‘catalog’ id document is output as shown in
Figure 4-12.

110

CHAPTER 4 © ACCESSING COUCHBASE WITH PHP

&) http://localhost:8000/getDocument.php [ﬂ‘&l
File Edit View History Bookmarks Dewvelop Window Help
) + | http:/flocalhost:8000/getDocument.php ¢ | | Qr Bing O O~ £~

object{CouchbaselMetaDoc)#d (4) { ["error"]==> NULL ["value"]=> string(120) "
{"_1d""55968c90cd735011a8bfa84a","journal":"Oracle Magazine","publisher":"Oracle
Publishing","edition":"November December 2013","title":"Engineering as a Service","author":"Dawid
A Kelly"}" ["lags" == nt(0) ["cas"]=> resource(2) of type (CouchbaseCAS) }

Figure 4-12. Running the getDocument.php Script to access a single document

Replacing a Document

The CouchbaseBucket class provides the replace(string|array $ids, mixed $val = NULL, array
$options = array()) method for replacing a document. The method parameters are the same as those of
the insert and the upsert methods. The $options parameter supports an additional option of CAS.

Create a script replaceDocument.php in the C: /PHP folder. Specify the JSON encoded replacement
document.

$arr = array('journal' => 'Oracle Magazine', 'publisher' => 'Oracle Publishing', 'edition'
=> 'November December 2013', 'title' => 'Quintessential and Collaborative', 'author' =>
'Tom Haunert');

$catalog2=json_encode($arr);

Invoke the replace method to replace the document ID ‘catalog’
$res = $bucket->insert('catalog2', $catalog2);
The replaceDocument. php script is listed below.

<?php
$cluster = new CouchbaseCluster();
$bucket = $cluster->openBucket('default');
$arr = array('journal' => 'Oracle Magazine', 'publisher' => 'Oracle Publishing', 'edition'
=> 'November December 2013', 'title' => 'Quintessential and Collaborative', 'author' =>
"Tom Haunert');
$catalog2=json_encode($arr);
$res = $bucket->insert('catalog2', $catalog2);
var_dump($res);
>

Run the PHP script with the URL http://localhost:8000/replaceDocument.php as shown in Figure 4-13.

111

CHAPTER 4 * ACCESSING COUCHBASE WITH PHP

&) http://localhost:8000/replaceDocument.php o[B

File Edit View History Bookmarks Develop Window Help

4| » i_"i_'___“é_httf__J_:,_’{Ioca!host:BUUE_I,-_’re_PIaceDocument._th 55. Qv Bing _@| [~ £t~

object(CouchbaseMetaDoc)#4 (4) { ["error"]=> NULL ["value"]=> string(0) " ["flags"]=> nt(0)
["cas"]== resource(2) of type (CouchbaseCAS) }

Figure 4-13. Running the replaceDocument.php Script

In the Couchbase Console the document is shown to be replaced for the specified document ID as
shown in Figure 4-14. The catalog2 document, which we had upserted using the upsert method, gets
replaced with the document before the upsert.

(5]
Couchbase
& Cluster Overview Server Nodes Data Buckets Views XDCR Log Seftings
default - > Documents
catalog2 Delete || SaveAs.. Save

Figure 4-14. Listing Replaced Document

Incrementing and Decrementing a Document

The CouchbaseBucket class provides the counter(string|array $ids, integer $delta, array
$options = array()) method to increment/decrement the numeric value of a document in the cluster.
The counter method is defined to accept different parameters, which are discussed in Table 4-6.

112

CHAPTER 4 © ACCESSING COUCHBASE WITH PHP

Table 4-6. Parameters for the counter Method

Parameter Type Description

$ids string|array The document IDs whose value is to be incremented/decremented.
The value must be numeric.

$delta integer The value to increment/decrement by. Default is 1. If a negative value is
supplied, the value is decremented.

$options array Array of options. Supported options are initial and expiry. The
initial option may be used to specify an initial value for the document
and to create the document if the document does not already exist.

Create a PHP script counterDocument. php in the C:/PHP folder. To demonstrate the increment method,
add a key-value pair with numeric value 15 using the insert method. Subsequently increment the value by 5.

$bucket->insert('id1', 15);
$res=$bucket->counter('id1',5);

To demonstrate argument decrementing a document value, create a key/value pair with value as 1 and
subsequently invoke the counter method with $delta as -1.

$bucket->insert('id2", 1);
$res= $bucket->counter('id2',-1);

To demonstrate setting the initial value for a document, specify the initial option in the counter
method. Set the initial option to a value of 10 .

$res=$bucket->counter('id3', 5, array('initial'=»>10));

If the initial option argumentis used to create a document the document value does not get
incremented/decremented in the same invocation of the counter method. The counter method must be
invoked again to increment/decrement the numeric value.

$res=$bucket->counter('id3"', 5);

Couchbase stores numbers as unsigned values. Negative numbers cannot be incremented using the
counter method if after the increment the value is still negative. An integer overflow occurs and a non-
logical numerical result is returned. For example, set a document to -15. Subsequently increment the
document by 5.

$bucket->insert('id4', -15);
$res=$bucket->counter('ids',5);

When the script is run the value is not incremented to -10 as expected but a non-logical numerical
value is stored due to an integer overflow. A value cannot be decremented below 0. For example store
document ‘id5’ with a value of 1 and subsequently decrement using a delta of -2. Instead of -1 the value is
decremented to 0.

$bucket->insert('ids', 1);
$res=$bucket->counter('ids"',-2);

113

CHAPTER 4 * ACCESSING COUCHBASE WITH PHP

The counter. php script is listed below.

<?php
$cluster = new CouchbaseCluster();
$bucket = $cluster->openBucket('default');

$bucket->insert('id1', 15);
$res=$bucket->counter('id1',5);
var_dump($res);

$bucket->insert('id2", 1);

$res= $bucket->counter('id2',-1);
var_dump($res);
$res=$bucket->counter('id3', 5, array('initial'=»>10));
var_dump($res);
$res=$bucket->counter('id3', 5);
var_dump($res);
$bucket->insert('id4', -15);
$res=$bucket->counter('id4',5);
var_dump($res);
$bucket->insert('ids', 1);
$res=$bucket->counter('ids",-2);
var_dump($res)?>

Run the counter.php in a browser with URL http://localhost:8000/counter.php as shown in
Figure 4-15.

& http://localhost:8000/counter.php IE]M

File Edit View History Bookmarks Develop Window Help
<I_P“| +-8http:{jlocaIhost:ﬂﬂﬂﬂ,’counter.php ¢ | | Q- Bing @ O~ L&~

object{CouchbaseletaDoc)#4 (4) { ["error"]=> NULL ["value"]=> nt(20) ["flags"]=> nt(0)
["cas"]== resource(3) of type (CouchbaseCAS) } object{CouchbaseletaDoc)#5 (4) {
["error']=> NULL ["value"]=> mt(0) ["flags"]=> nt(0) ["cas"]=> resource(5) of type
{CouchbaseCAS) } object(CouchbaselMetaDoc)#4 (4) { ["error']=> NULL ["value"]=> mt(10)
["lags"]== mt(0) ["cas"]== resource(6) of type (CouchbaseCAS) }
object{CouchbaseldetaDoc)#5 (4) { ["error"]=> NULL ["value"]=> int(15) ["flags"]=> nt(0)
["cas"]== resource(7) of type (CouchbaseCAS) } object{CouchbaseletaDoc)#4 (4) {
["error"]=> NULL ["value"]=> mnt(-10) ["flags"]=> mnt(0) ["cas"]=> resource(9) of type
{CouchbaseCAS) } object(CouchbaseletaDoc)#5 (4) { ["error']=> NULL ["value"]=> nt(0)
["flags"]== mt(0) ["cas"]== resource(11) of type (CouchbaseCAS) }

Figure 4-15. Running the counter.php Script

114

CHAPTER 4 © ACCESSING COUCHBASE WITH PHP

The integer 15 incremented by 5 is stored as 20 as shown in Figure 4-16. The document ‘id3; which was
initialized to 10 and incremented in the same invocation of counter by 5 does not get incremented until the
counter method is invoked again to increment by 5. The stored value is 15 and not 20, which would have
been the stored value if the counter method had also incremented in the first invocation that included the
initialization to 10. Document id4, which is initially -15 and incremented by 5 is stored as a non-logical
number due to an integer overflow. Document id5, which has an initial value of 1, does not get decremented
below 0 even though a delta of -2 is applied.

=8
Couchbase

L] Cluster Overview

default

Documents Filter

o

catalog

catalog2

id1

~ > Documents

Document 1D

Content

"journal”: "Oracle Magazins", "publisher”: "Oracle Publish

18446744073709552000

Figure 4-16. Result of incrementing/decrementing with counter method

Current page: 1

Lookup.

Edit Document
Edit Document
Edit Document
Edit Document
Edit Document
Edit Document

Edit Document

10 -

Id | Create Document.
s

Delete

Delete

Delete

Delete

Delete

Delete

Delete

The ‘id2’ document that has the value of 1 to start with gets decremented to 0 after a delta of -1 is
applied as shown in Figure 4-17. Similarly the ‘id5’ document is decremented to 0 to demonstrate that
a document value does not get decremented below 0 even if the delta applied makes the initial value a

negative integer.

115

CHAPTER 4 © ACCESSING COUCHBASE WITH PHP

(5]
Couchbase
& Cluster Overview Server Nodes Jata Buckets Views XDCR Log Settings
default - > Documents
id2 Delete Save As.. Save

Figure 4-17. Result of decrementing with Negative Delta

Deleting a Document

In this section we shall delete a document using the remove (string|array $ids, array $options =
array()) method in the CouchbaseBucket class.
The remove method provides the parameters listed in Table 4-7.

Table 4-7. Parameters for the remove Method

Method Type Description
$ids String|array The document ids to delete.
$options array An array of options. The only supported option is CAS.

Create a PHP script removeDocument. php in the C:/PHP folder. Create an array of documents to remove
and invoke the remove method. The removeDocument. php script is listed below.

<?php
$cluster = new CouchbaseCluster();
bucket = $cluster->openBucket('default');
$arr = array('catalog2','id1','id2',"'id3", 'id4", " 'id5");
$res = $bucket->remove($arr);
var_dump($res);
?>

Run the PHP script with URL http://localhost:8000/removeDocument.php as shown in Figure 4-18.

116

CHAPTER 4 © ACCESSING COUCHBASE WITH PHP

&) http//localhost:8000/removeDocument.php Eﬂlﬁ
File Edit ‘iew History Bookmarks Develop Window Help
| < [» | [+ A http://localhost:8000/removeDocumentphp G | Q- Bing Q O~ £~

array(6) { ["catalog2"]=> object(CouchbaseMetaDoc)#4 (4) { ["error"]=> NULL ["value"]=>
NULL ["flags"]== nt(0) ["cas"]== resource(2) of type (CouchbaseCAS) } ["id1"]=>
object(CouchbaseldetaDoc)#5 (4) { ["error"]=> NULL ["value"]=> NULL ["flags"]=> int(0)
["cas"]== resource(3) of type (CouchbaseCAS) } ["1d2"]== object(CouchbaseldetaDoc)#6 (4) {
["error"]=> NULL ["value"]=> NULL ["flags"]== int(0) ["cas"]=> resource(d) of type
(CouchbaseCAS) } ["1d3"]=> object{CouchbaseMetaDoc)#7 (4) { ["error']=> NULL ["value"]=>
NULL ["flags"]== nt(0) ["cas"]=> resource(5) of type (CouchbaseCAS) } ["id4"]==
object(CouchbaselMetaDoc)#8 (4) { ["error"]=> NULL ["value"]=> NULL ["flags"]=> int(0)
["cas"]== resource(6) of type (CouchbaseCAS) } ["1d5"]=> object{CouchbaseldetaDoc)#9 (4) {
"error"]=> NULL ["value"]=> NULL ["flags"]=> mnt(0) ["cas"]=> resource(7) of type
{CouchbaseCAS) } }

Figure 4-18. Running the removeDocument.php Script

In the Couchbase Console the documents with ids ‘catalog?; ‘id1, ‘id2, ‘id3, ‘id4, and ‘id5’ are deleted,
and as shown in Figure 4-19 the only document listed is the ‘catalog’ id document, which was not included
in the array of documents to remove.

Couchbase
A Cluster Overview Server Nodes Data Buckets Views XDCR Log Setfiings
default - > Documents Current page: 1 5
Documents Filter Document ID
i Content
catalog [™ id": "5596Bc90cd73S011aBbfas4a”, "journal”: "Oracle Maga Edit Document | Delete

Figure 4-19. The deleted documents are not listed

Summary

In this chapter we discussed using Couchbase Server with PHP. In the next chapter we shall discuss using
Couchbase Server with Ruby, including accessing the server and performing CRUD operations.

117

CHAPTER 5

Accessing with Ruby

Ruby is an object-oriented, open source, programming language. Some of the salient features of Ruby are
simplicity, flexibility, extensibility, portability, and OS independent threading. The Ruby Client library for
Couchbase provides access to Couchbase server from a Ruby application. In this chapter we shall access
Couchbase server using Ruby and perform simple CRUD (create, read, update, delete) operations.

The chapter covers the following topics.

e Setting the Environment

e Installing Ruby

e Installing DevKit

e Installing Ruby Client for Couchabse

e Connecting with Couchbase Server

e Creating a Document in Couchbase Server
e Retrieving a Document

e Updating a Document

e Deleting a Document

e Querying a Document with a View

Setting the Environment

We need to download and install the following software to access Couchbase Server from Ruby.

1. Ruby Installer for Ruby 2.1.6 (rubyinstaller-2.1.6-x64.exe). Download it from
http://rubyinstaller.org/downloads/. The Couchbase Ruby client library
supports Ruby versions 1.8.7,1.9.3, 2.0, and 2.1.

2. Rubygems.

3. Rubylnstaller Development Kit (DevKit). Download the appropriate version
from http://rubyinstaller.org/downloads/. For Ruby 2.1.6, download
DevKit-mingw64-64-4.7.2-20130224-1432-sfx.exe.

4. Ruby Client Library.
The specific versions listed for Ruby and DevKit are the versions to download. Ruby Client for

Couchbase may not get installed with other versions.

119

http://rubyinstaller.org/downloads/
http://rubyinstaller.org/downloads/

CHAPTER 5 " ACCESSING WITH RUBY

Installing Ruby

To install Ruby double-click on the Ruby installer application rubyinstaller-2.1.6-x64.exe. The Ruby Setup
wizard starts.

i5

1. Select the Setup Language and click on OK.
2. Accept the License Agreement and click on Next.

3. InInstallation Destination and Optional Tasks specify a destination folder to
install Ruby, or select the default folder. The directory path should not include
any spaces. Select Add Ruby Executables to your PATH.

4. Click on Install as shown in Figure 5-1.

Setup - Ruby 2.1.6-p336-x64 =] = -—Se-

Installation Destination and Optional Tasks w

Setup will install Ruby 2.1.6-p336-x64 into the following Folder. Click Install to
continue or click Browse to use a different one.

Please avoid any folder name that contains spaces (e.g. Program Files).

C:\Ruby21-x64

[| Install TcljTk support
(V] add Ruby executables to your PATH
[] Associate .rb and .rbw files with this Ruby installation

TIP: Mouse over the above options For more detailed information.

Required free disk space: ~48.2 MB

< Back][Install !}] [Cancel

Figure 5-1. Selecting Installation Directory for Ruby

120

Ruby starts installing as shown in Figure 5-2.

CHAPTER 5 " ACCESSING WITH RUBY

ﬂ Setup - Ruby 2.1.6-p336-x64 = —

Installing
Please wait while Setup installs Ruby 2.1.6-p336-x64 on your computer, w

Extracting files. ..
C:\Ruby21-x64\liblrubyi2.1.0\x64-mingw32\encliso_8859_14.s50

. - =

Figure 5-2. Installing Ruby

The Setup wizard completes installing Ruby as shown in Figure 5-3. Click on Finish.

121

CHAPTER 5 " ACCESSING WITH RUBY

§5) Setup - Rut - (o i S

Completing the Ruby
2.1.6-p336-x64 Setup Wizard

Setup has finished installing Ruby 2.1.6-p336-x64 on your
computer, The application may be launched by selecting the
installed icons.

Click Finish to exit Setup.

Web Site: http:/frubyinstaller,org
Support group: http:/faroups.google.comfgroupfrubyinstaller
Wiki: http:ffwiki.github.comjoneclickfrubyinstaller

How about a toolkit for building native C RubyGems?
DevKit: http:/frubvinstaller.org/add-ons/devkit

Figure 5-3. Ruby Installed

Next, install Rubygems, which is a package management framework for Ruby. Run the following
command to install Rubygems.

gem install rubygems-update

The rubygems gem gets installed as shown in Figure 5-4.

:N\NRuby21-x64>gem install rubygems—update
Fetching: rubygems—update-2.4.8.gem (186x)>
Successfully installed rubygems—update-2.4.8
IParsing documentation for rubygems-update-2.4.8

lInstalling »i documentation for rubygems—update-2.4.8
Done installing documentation for rubygems—update after 7 seconds
gem installed

IC:\Ruby21-x64>

Figure 5-4. Installing Rubygems
122

CHAPTER 5 " ACCESSING WITH RUBY

If Rubygems is already installed update to the latest version with the following command.
update_rubygems

Rubygems gets updated as shown in Figure 5-5.

BN Administrator: C:\Windows\system32\cmd.exe - update_rubygems !ﬂlﬁ

C:\Ruby21-x64>update_rubygems

RubyGems 2.4.8 installed |
Parsing documentation for rubygems-2.4.8

Installing »i documentation for rubygems-2.4.8 ‘

Figure 5-5. Updating Rubygems

Installing DevKit

DevKit is a toolkit that is used to build many of the C/C++ extensions available for Ruby. To install DevKit
double-click on the DevKit installer application (DevKit-mingw64-64-4.7.2-20130224-1432-sfx.exe) to
extract DevKit files to a directory. cd (change directory) to the directory in which the files are extracted.
cd C:\Ruby21-x64

Initialize DevKit and auto-generate the config.xml file using the following command.

ruby dk.rb init

A config.xml file gets generated in the C:\Ruby21-x64 directory. Add the following line to the
config.xml file.

- C:/Ruby21-x64
Install DevKit using the following command.
ruby dk.rb install
Verify that DevKit has been installed using the following command.
ruby -rubygems -e "require 'json'; puts JSON.load('[42]').inspect”

The output from the preceding commands to initialize/install DevKit are shown in command shell in
Figure 5-6.

123

CHAPTER 5 " ACCESSING WITH RUBY

e

)
B Administrator: C:\Windows\system32\icmd.exe E@lﬂ

C:\Ruby21-x64>ruby dk.rb init

Initialization complete?! Please review and modify the auto—generated P
‘config.yml’ file to ensure it contains the root directories to all
of the installed Rubies you want enhanced by the DevKit.

C:\Ruby21-x64>ruby dk.rb install
[INFO] Installing ’C:/Ruby21-x64-/lib/rubys/site_ruby-s2.1.08/rubygens/defaults/oper
ating_system.rb’

[INFO] Installing ’C:-/Ruby21-x64-/1lib/vruby/site_ruby/devkit.rb’

C:\Ruby21-x64>ruby —rubygems -e "require ’json’; puts JSON.load(’[421’)>.inspect"
[421]
C:5\Ruby21i-x64>_ o

Figure 5-6. Installing Devkit

Installing Ruby Client Library

Couchbase C Client library (libcouchbase) is a pre-requisite for installing the Ruby Client library, but for
Windows the dependencies are included in the couchbase gem. Run the following command to install the
Ruby Client library for Couchbase.

gem install couchbase

The Ruby Client library gem for couchbase and the dependencies get installed as shown in Figure 5-7.

e

)
B Administrator: C:\Windows\system32icmd.exe E@lﬂ

:\Ruby21-x64>gem install couchbhase

etching: connection_pool-2.2.08.gem <{108:x> A
uccessfully installed connection_pool-2.2.0 —
etching: multi_json-1.11.2.gem <{188x)>

uccessfully installed multi_json—-1.11.2

etching: yaji-0.3.5—x64-mingw32.gem (10081
Successfully installed vaji-8.3.5-x64-minguw32
Fetching: couchbase—1.3.13-x64-mingw32.gem <{108x>
Successfully installed couchbhase—1.3.13-x64-mingw32
Parsing documentation for connection_pool-2.2.8
Installing »i documentation for connection_pool-2.2.8
Parsing documentation for multi_json—1.11.2
Installing »i documentation for multi_json-1.11.2

Parsing documentation for yaji-8.3.5-x64-minguw32
Installing »i documentation for yaji—0.3.5-x64-mingw32
Parsing documentation for couchhase—1.3.13-x64-mingw32
Installing »i documentation for couchbase-1.3.13-x64-mingw32
Done installing documentation for connection_pool, multi_json, vaji. couchbhase a
fter 7 seconds

4 gems installed

C:\Ruby21-x64>_ Y

Figure 5-7. Installing Ruby Client Library for Couchbase

124

CHAPTER 5 " ACCESSING WITH RUBY

To test that the Ruby Client library has been installed create a Ruby file (couchbaseconnect.rb for
example) and add the following script to the file.

require 'rubygems'

require 'couchbase’

client = Couchbase.connect("http://localhost:8091")
client.set("Client Type","Ruby")

Run the following command in a command shell to run the script.
ruby couchbaseconnect.rb
Connection with Couchbase Server gets established from the Ruby script and a key-value pair gets

created in Couchbase Server as shown in the Couchbase Console in Figure 5-8. The Ruby script does not
generate an output message.

i)
Couchbase
#
default = = Documents Current page: 1 5
Documents Filter | Lockup ld | | Create Document
o Content
Client Type Edit Document = Delete

Figure 5-8. Creating a Key/Value Pair in Couchbase Server

Connecting with Couchbase Server

Create a Ruby script connection.rb to connect to Couchbase Server. First, we need to load the Ruby Client
for Couchbase library and the rubygems using require statements. At the minimum a Couchbase. connect
or Couchbase.new method invocation is required to establish a connection with Couchbase Server.

require 'rubygems'
require 'couchbase’
client = Couchbase.connect
client2= Couchbase.new

We did not need to specify any connection URL or port. The default endpoint used to connect to
Couchbase Server is http://localhost:8091/pools/default/buckets/default. Run the script with the
following command.

ruby connection.rb

The script runs and a connection with Couchbase Server gets established as shown in Figure 5-9.

125

CHAPTER 5 " ACCESSING WITH RUBY

o

X|
:\Couchbase~Ruby>ruby connection.rb _:J
=

C:\Couchhase\Ruby>_

Figure 5-9. Running the connection.rb Ruby Script

The default endpoint connects to the default pool and the default bucket. The pool and the bucket may
also be specified explicitly using the : pool and :bucket ruby connect options.

client = Couchbase.connect(:pool => "default", :bucket => "default")

The default bucket is not password protected and does not require a username or password to be
specified, but if using another bucket the username and password may be specified.

client =Couchbase.connect(:bucket => 'catalog’,
:username => 'user',
:password => 'password")

If the ‘catalog’ bucket is not defined in Couchbase server but specified in the connection the
Couchbase: :Error: :BucketNotFound error gets created. To demonstrate do not create a ‘catalog’ bucket
but specify the bucket in the connection.

require 'rubygems'

require 'couchbase’

client = Couchbase.connect(:bucket => "catalog")

#client = Couchbase.connect("http://localhost:8091","catalog")

The Couchbase: :Exror: :BucketNotFound error gets generated as shown in Figure 5-10.

C:\Couchhase\Ruby>ruby connection.rh
C:/Ruby28B8-x64/1ib/ruby/gemns/2 .0.8/gemns/couchbhase—1.3 .4-x64-nmingw32/1ib/couchhas
e.rb:63:in ‘initialize’: <{error=0x19> {(Couchhase::Error::BucketMNotFound>

from C:/Ruby288-x64/1ib/ruby/gens/2.08.8/gemns/couchbase-1.3.4-x64-minguw32
/lib/couchbhase.rb:63:in ‘new’

from C:/Ruby288-x64/1ib/ruby/gens/2.08.8/gems/couchbase-1.3.4-x64-minguw32
/lib/couchbase.rbh:63:in ‘connect’

from connection.rb:3?:in ‘<main>’

C:\Couchbase\Ruby>

Figure 5-10. Couchbase::Error::BucketNotFound

By default hostname is ‘localhost’ and may also be explicitly specified as ‘localhost’ The hostname may
also be specified explicitly as ‘127.0.0.1’ or as the Ipv4 address using the :hostname option. By default the
port is 8091 and the port may be explicitly specified using the : port option.

client = Couchbase.connect(:hostname => "127.0.0.1", :port => 8091)

126

CHAPTER 5 " ACCESSING WITH RUBY

All of the following are alternative methods of connecting to Couchbase Server on the default bucket
and the default host and port; 127.0.0.1 is the Couchbase Server node name, 192.168.1.71 is the Ipv4 address
for the localhost and 8091 is the default port number. The Ipv4 address would be different for different users/
systems and should be replaced in the following script and other scripts in which it is used. The Ipv4 address
may be found with the ipconfig /all command. The user credentials could be different than those listed.

client = Couchbase.connect("http://localhost:8091")
c3 = Couchbase.connect("http://127.0.0.1:8091/pools/default/buckets/default")
c4 = Couchbase.connect("http://127.0.0.1:8091/pools/default")

c5 = Couchbase.connect("http://127.0.0.1:8091")

c6 = Couchbase.connect(:hostname => "127.0.0.1")

c7 = Couchbase.connect(:hostname => "127.0.0.1", :port => 8091)

c8 = Couchbase.connect(:pool => "default", :bucket => "default")

€10 = Couchbase.connect("http://127.0.0.1:8091", "default")

€12 =Couchbase.connect('http://192.168.1.71:8091/pools/default/buckets/default’,

:username => 'default’,
:password => '")

Alist of possible nodes can be specified using the :node_list option.

c9 = Couchbase.connect(:bucket => "default",
:node_list => ['127.0.0.1:8092", '127.0.0.1:8091'])

If one of the nodes is not available another node is tried from the node list till a connection is
established. After a connection is established the node list is not referred to again and the current cluster
topology is used to re-connect on failover or rebalance. By default whenever a connection is requested a
new connection instance is created, but the Couchbase.bucket method can be used to create a persistent
connection instance and store the connection instance in memory. When a connection is requested again
the connection instance stored in the thread storage is returned.

client=Couchbase.bucket

The following Ruby script connection.rb includes alternative methods of connecting to Couchbase
Server. To test that a connection gets established with each of these alternatives add a key-value pair for each
the alternative connection instances.

require 'rubygems'

require 'couchbase’

client = Couchbase.connect("http://localhost:8091")

¢ = Couchbase.connect

c.set("c","ruby client")

c2 = Couchbase.new

c2.set("c2","ruby client")

c3 = Couchbase.connect("http://127.0.0.1:8091/pools/default/buckets/default")
c3.set("c3","ruby client")

c4 = Couchbase.connect("http://127.0.0.1:8091/pools/default")
c4.set("c4","ruby client")

¢5 = Couchbase.connect("http://127.0.0.1:8091")
c5-set("c5", " "ruby client")

c6 = Couchbase.connect(:hostname => "127.0.0.1")
c6.set("c6","ruby client")

c7 = Couchbase.connect(:hostname => "127.0.0.1", :port => 8091)

c7.set("c7","ruby client")

127

CHAPTER 5 © ACCESSING WITH RUBY

c8 = Couchbase.connect(:pool => "default", :bucket => "default")
c8.set("c8","ruby client")
c9 = Couchbase.connect(:bucket => "default",
:node_list => ['127.0.0.1:8092", '127.0.0.1:8091'])
c9.set("c9","ruby client")
€10 = Couchbase.connect("http://127.0.0.1:8091", "default")
cl10.set("c10", "ruby client")
c11 =Couchbase.connect(:bucket => 'default’,
:username => ‘',
:password => '")
c11.set("c11","ruby client")
€12 =Couchbase.connect('http://192.168.1.71:8091/pools/default/buckets/default’,
:username => 'default’,
:password => '")
c12.set("c12","ruby client")
c1 =Couchbase.bucket

cl.set("c1","ruby client")
Run the script with the following command.
ruby connection.rb

The key-value pairs for the different alternative methods of creating a connection instance are created
in Couchbase Server as shown in Couchbase Console in Figure 5-11.

c1 "ruby client” Edit Document =~ Delete
c10 "ruby clisnt” Edit Document |~ Delete
c11 "ruby client” Edit Document =~ Delete
cl12 “ruby client” Edit Document =~ Delete
c2 "ruby client Edit Document = Delete
c3 "ruby client” Edit Document |~ Delete
cd ~ruby client” Edit Document | Delete
ch "ruby client" Edit Document == Delete
cB "ruby client” Edit Document = Delete
c7 "ruby client” Edit Document == Delete
cB8 "ruby client” Edit Document =~ Delete
co9 "ruby client" Edit Document =~ Delete

Figure 5-11. Key/value Pairs in Couchbase Server

128

CHAPTER 5 " ACCESSING WITH RUBY

A connection instance can be created as a Singleton object using connection_options.

Couchbase. connection_options = {:bucket => "default",:hostname => "127.0.0.1",
:password => ""}

The connection_options may even be empty initially and the connection options may be set using the
set method.

client =Couchbase.bucket.set("c1","value set using Couchbase.bucket.set")

Or, the connection options of the singleton connection may even be modified at runtime, on reconnect.
Couchbase.bucket.reconnect(:bucket => "catalog")
In the following Ruby script the value of c1 key is updated using the set method.

require 'rubygems'
require 'couchbase’
Couchbase. connection _options = {:bucket => "default",:hostname => "127.0.0.1",
:password => ""}

c1 =Couchbase.bucket.set("c1

,"value set using Couchbase.bucket.set")

When the script is run the value of key c1 gets updated as shown in the Couchbase Console as shown in
Figure 5-12.

e
Couchbase
A
default - > Documents Current page: 1 5
Documents Filter _L_mmp_lg_. Create Document |
o Content
c "ruby clisnt” Edit Document =~ Delete
cl "yalue set using Couchbaze.bucket,set” Edit Document =~ Delete
c10 "ruby clienc” Edit Document | Delete
c11 "ruby clienc” Edit Document =~ Delete
cl12 "ruby client” Edit Document =~ Delete

Figure 5-12. Updating value of key c1

129

CHAPTER 5 © ACCESSING WITH RUBY

Timeout for a connection can be set using the : timeout option. The timeout can later be set to another
value using the timeout property. In the following connection.rb script the timeout is initially set to
10 second and subsequently modified to 1 x 10/-6 seconds.

require 'rubygems'

require 'couchbase’

conn = Couchbase.connect(:timeout => 10 _000_000)
conn.timeout = 1 0

conn.set("connection timeout", "1 0")

When the script is run the Couchbase:Exrror:Timeout error is generated because the connection times
out before the connection is established as shown in Figure 5-13.

[es.Command Prompt [=10] x|
C:\Couchbase~Ruby>ruby connection.rb :J

!connectinn.rh:S?:in ‘set’: failed to store value (key="connection timeout", erro

1»=Bx17> (Couchbhase::Error::Timeout>
| from connection.rb:57zin ‘<main’>’

jC:\Couchbase\Ruhy) j

Figure 5-13. Couchbase:Error:Timeout error

Creating a Document in Couchbase Server

To create and store a JSON object in Couchbase Server two methods are available, set and add. The difference
between set and add is that the set method overrides the value if the same key is already defined in the
server, while the add method can only be used to add a new key-value pair and if used to add a key already
defined generates an error.

Setting a Document

The set method is used to create a new key-value pair or set the value of a key already in the server to a new
value. The set method has the following signature.

object.set(key, value, options)

The set method returns the CAS value of the object stored as a fixed number. The method args are
discussed in Table 5-1.

Table 5-1. The set method Arguments

Argument Type Description

key string Document ID used to identify the value. Must be unique in a bucket.
value object Value to be stored.

options hash Options for the set method. The : format option is used to specify the format of the stored
value. The different formats supported are :document for JSON data, : plain for string
storage and :marshal to serialize the ruby object using Marshal.dump and Marshal.load.
The : cas option can be used to set the CAS value of the object stored, which is unique
and generated by the server. The : cas may be used to perform optimistic concurrency
control while setting a value and is discussed with an example in this section.

130

CHAPTER 5 " ACCESSING WITH RUBY

Create a Ruby script storeDocument.rb and use the set method to set different key-value pairs. For
example, set key-value pairs for journal, publisher, edition, title and author. Also set a key-value pair
with the value as a JSON document.

require 'rubygems'

require 'couchbase’

client = Couchbase.connect("http://127.0.0.1:8091")
client.set("journal","Oracle Magazine")
client.set("publisher","Oracle Publishing")
client.set("edition", "November-December 2013")
client.set("title","Quintessential and Collaborative")

client.set("author","Tom Haunert")

client.set("catalog2","{"'journal': 'Oracle Magazine','publisher': 'Oracle
Publishing','edition': 'November December 2013','title': 'Engineering as a
Service', 'author': 'David A. Kelly'}")

Run the script with the following command.

ruby storeDocument.rb

The different key-value pairs get set as shown in the Couchbase Console as shown in Figure 5-14.

=3

Couchbase
#A

default - > Documents Current page: 1 [0 | -]
Documents Filter | Lookupld | Create Document |
1] Content
author "Tom Haunert” Edit Document = Delete
catalog2 "{'journal’: 'Oracle Magazine', 'publisher': 'Oracle Publishing Edit Document =~ Delete
edition "Hovember-December 2013" Edit Document =~ Delete
journal "Oracle M Edit Document | Delete
publisher "Oracle Publishing™ Edit Document =~ Delete
title "Quintessential and Collaborative” Edit Document =~ Delete

Figure 5-14. Key/Value Pairs added with the set method

131

CHAPTER 5 © ACCESSING WITH RUBY

The catalog2 key has a JSON object as a value as shown in Figure 5-15.

L=
Couchbase
A
default ~ > Documents
catalog2 [% Delete || Saves.. — Save
“{'journal': 'Oracle Hagazine','publisher': 'Oracle Pu‘:Jnsm.ng','edlcwn': 'Novenmber December 2013','ticle’': 'Engineering as a Jer
4] I |

Figure 5-15. Key/Value Pair for key catalog2 has JSON document as value

Next, we demonstrate optimistic concurrency control in setting a value. The set method returns the CAS
value of the object stored on the server. For optimistic concurrency control the last known CAS value may
be used when invoking the set method on the same key again. Update the storeDocument. rb script to store
the CAS value returned by the set method in a variable and subsequently specify the CAS value in the :cas
option when invoking the set method again.

require 'rubygems'

require 'couchbase’

client = Couchbase.connect("http://127.0.0.1:8091")

cas= client.set("catalog2","{"'journal': 'Oracle Magazine','publisher': 'Oracle
Publishing','edition': 'November

December 2013','title': 'Engineering as a Service','author': 'David A. Kelly'}")

print cas

client.set("catalog2”, "{'journal': 'Oracle Magazine', 'publisher’:
'Oracle-Publishing','edition’: 'November

December 2013','title': 'Engineering as a Service','author': 'Kelly, A. David'}", :cas=>cas)

Run the script to output the CAS value as shown in Figure 5-16.

[es]Command Prompt & _|_|- O 5'
C:\Couchbase\Ruby>ruby casSet.rbh :j
2267117235703906364

C:\Couchbhase\Ruby> ;f

Figure 5-16. Outputting a Cas Value

The value of the key catalog?2 is first set to a JSON object and the CAS value for the object returned
and stored in a variable in the script. Subsequently the CAS value is used to re-set the value of the catalog2
ID to a different value as shown in Figure 5-17. Concurrency control is used to avoid data corruption
when multiple operations are run concurrently. With the :cas option it is ensured that no other operation
modifies the value of a key while the set method using the CAS value runs.

132

CHAPTER 5 " ACCESSING WITH RUBY

Couchbase
L]
default ~ > Documents
catalog2 % Delete | Save As.. Save
«'publizher': 'Oracle-Publishing','edition': 'November December 2013','title': 'Engineering as a Service','suthor': 'Kelly, A. Dawid'}"
Al 1+]

Figure 5-17. JSON Document stored using the :cas option in set method

By default the set method runs in synchronous mode. But, the set method can be run in asynchronous
mode as follows.

client.run do
client.set("", "") do |ret|
ret.operation
ret.success?
ret.key
ret.cas
end
end

Asynchronous implies that the method returns immediately and the processing of the script continues
while the request is processed on the server and a response returned. In the following modified script the
catalog2 key is set using the asynchronous mode. The operation, success, key and cas properties are
output.

require 'rubygems'

require 'couchbase

client = Couchbase.connect("http://127.0.0.1:8091")

client.run do
client.set("catalog2","{"journal': 'Oracle Magazine', 'publisher': 'Oracle
Publishing','edition': 'November

December 2013','title': 'Engineering as a Service','author': 'David A. Kelly'}") do |ret|
print ret.operation

print "\n"
print ret.success?
print "\n"
print ret.key
print "\n"
print ret.cas
end
end

133

CHAPTER 5 " ACCESSING WITH RUBY

When the script is run the operation is output as “set’; the success is output as “true’; the key is output as
“catalog2” and the cas is output as the CAS value of the object stored as shown in Figure 5-18. The cas value
would be different for each run of the script.

v Command Prompt . A[gfll

iC:\Couchbase\Ruby)ruby asyncSet.rh i:J
iset =

true

icatalogz
89913583085272594432
!C:\Couchbase\ﬂuby>

=

Figure 5-18. Running the asyncSet.rb Script to invoke the set method in asynchronous Mode

Adding a Document

The add method is used to create a new key-value pair and cannot be used to set the value of a key already in
the server to a new value. The add method has the following signature.

object.add(key, value, options)

Just as the set method the add method returns the CAS value of the object stored as a fixed number. The
method args for the add method are the same as for the set method. Create a Ruby script addDocument.rb.
To demonstrate that unlike the set method the add method cannot be used to update a value use the add
method on a key that is already defined in the server, the “journal” key for example.

require 'rubygems'
require 'couchbase’
client = Couchbase.connect("http://127.0.0.1:8091")
client.add("journal","Oracle Magazine")
To run the script invoke the following command.

ruby addDocument.rb

The script generates the error Couchbase: :Error: :KeyExists because the journal key is already
defined from a previous set method example as shown in Figure 5-19.

@:\dminisﬂatﬂn C:\Windows\system32\cmd.exe _ - C="ro

.F}:\Ruhy21—x64)ruhy addDocument .rh =
addDocument.rh:?:in ‘add’: failed to store value, The key already exists in the |
server. If you have supplied a CAS then the key exists with a CAS value differen| |
t than specified (key="journal', error=0xBc> {(Couchhase::Error::KeyExists)

from addDocument.rb:?:in “<main>’

*\Ruby21-x64>_

Figure 5-19. Couchbase::Error::KeyExists error

134

CHAPTER 5 " ACCESSING WITH RUBY

Delete all the key-value pairs in the Couchbase Server from the Couchbase Admin Console. Deleting
key-value pairs using a Ruby script is discussed later in this chapter. Use the add method to add the same
key-value pairs as in the following script.

require 'rubygems'

require 'couchbase’

client = Couchbase.connect("http://127.0.0.1:8091")
client.add("journal","Oracle Magazine")

client.add("publisher","Oracle Publishing")

client.add("edition", "November-December 2013")
client.add("title","Quintessential and Collaborative")
client.add("author","Tom Haunert")

client.add("catalog2","{"'journal': 'Oracle Magazine','publisher': 'Oracle
Publishing','edition’: 'November December

2013', "title': 'Engineering as a Service','author': 'David A. Kelly'}")

When the addDocument . rb script is run the key-value pairs in the script get added to Couchbase Server
as shown in Figure 5-20.

3

default » > Documents Current page: 1 10 -
Documents Filter r Lau_mE_ Id | | Create Document
] Content

author "Tom Haunert" Edit Document == Delete
catalog { "journal”: "Oracle Magazine”, "publisher”: "Oracle Publishin Edit Document = Delete
catalog2 "{'journal': 'Oracle Magazine','publisher': 'Oracle Publishing Edit Document =~ Delete
edition "Hoveuber-December 2013" Edit Document =~ Delete
journal "Oracle Hagazine™ Edit Document | Delete
publisher “Oracle Publishing” Edit Document =~ Delete
title "Quintessential and Collaborative” Edit Document =~ Delete

Figure 5-20. Key/Value Pairs added with the add method

135

CHAPTER 5 © ACCESSING WITH RUBY

Retrieving a Document

The get method is used to retrieve a key-value pair from the server. The get method has the following

signature.

object.get(keyn [, ruby-get-options] [, ruby-get-keys])

The get method returns a hash value container with key-value pairs. The method args are discussed

in Table 5-2.

Table 5-2. The get method Arguments

Argument Type Description
keyn String/Symbol/ Document ID to get. A single key may be specified as a string
Array/Hash or, separated multiple key IDs may be specified. ID/IDs may be
keyn specified as symbol/symbols such as : journal. ID/IDs may be
specified as a hash.
ruby-get-options Hash Options for the get method. The : format option is used to specify
the format of the stored value. The different formats supported are
:document for JSON data, : plain for string storage and :marshal
to serialize the ruby object using Marshal.dump and Marshal.load.
Default format is nil. The :extended option may be used to return
the result as ordered key => value pairs. For a single key the result
is an array. More than one pair is returned as a hash.
ruby-get-keys Hash Hash of options containing key-value pairs.

Create a Ruby script getDocument. rb. Invoke the get method to get and print the value for journal,
publisher, edition, title, author, and catalog2.

require 'rubygems'

require 'couchbase’

client = Couchbase.connect("http://127.0.0.1:8091")
print client.get("journal")
print "\n"

print client.get("publisher")
print "\n"

print client.get("edition")
print "\n"

print client.get("title")
print "\n"

print client.get("author")
print "\n"

print client.get("catalog2")

Run the script with the following command.
ruby getDocument.rb

The value objects for the specified IDs are returned as shown in Figure 5-21.

136

CHAPTER 5 " ACCESSING WITH RUBY

e
=

{'journal’: ’'Oracle Magazine’,’publisher’: ’Oracle Publishing’,’edition’: ’Novemn
her December 2813’ ,.’title’: ’'Engineering as a Service’.’author’: ’David A. Kelly

>
:\Couchhase“\Ruby> 1

Figure 5-21. Running the getDocument.rb Script to get Key Values

The default mode for the get method is synchronous, but the get method may be invoked in
asynchronous mode with the following notation.

client.run do
client.get("key1", "key2", "key3") do |ret]|
ret.operation
ret.success?
ret.key
ret.value
ret.flags
ret.cas
end
end

Create a script asycnGet . rb and invoke the get method on the ‘catalog2’ key using the asynchronous
mode.

require 'rubygems'
require 'couchbase’
client = Couchbase.connect("http://127.0.0.1:8091")
client.run do
client.get("catalog2") do |ret|
print ret.operation

print "\n"
print ret.success?
print "\n"
print ret.value
print "\n"
print ret.flags
print "\n"
print ret.key
print "\n"
print ret.cas
end
end

Run the script to get the document value asynchronously. The operation, success, flags, key, and cas
are also output as shown in Figure 5-22.

137

CHAPTER 5 " ACCESSING WITH RUBY

R
I |a
C:\Couchbase\Ruby>ruby asyncGet.rh :]
gat =
true

{’journal’: ’'Oracle Magazine’,’publisher’: ’Oracle—-Publishing’.

edition’: ’MNoven
her December 2013’ .’title’: ’'Engineering as a Service’.’author’: ’
d’ >

Kelly, A. Davi

»

catalog2
1275795256772132864
IC:\Couchbase\Huby) i:J

Figure 5-22. Running the asyncGet.rb Script to get Document Value asynchronously

The key IDs to be retrieved can also be specified using an array. In the following script an array is
created for the IDs to be retrieved and the array is supplied as an argument to the get method.

require 'rubygems'

require 'couchbase’

client = Couchbase.connect("http://127.0.0.1:8091")

ary= ["journal","publisher","edition","title","author","catalog2"]
print client.get(ary)

The result from the get method is also returned as an array of values in the same order as the document
IDs are specified as shown in Figure 5-23.

_ioix

:\Couchhase\Ruhy>

:\Couchhase\Ruby>ruby getDocument.rh

[YOracle Magazine", “Oracle Publishing', "Novemher-December 2813", "Quintessenti
1 and Collaborative", "Tom Haunert", "{’journal’: ’Oracle Magazine’,’publisher’
: ’Oracle Publishing’.’edition’: ’November December 2813’ .’title’: ’Engineering
s a Service’.’author’: ’David A. Kelly’>"]

:\Couchhase\Rubhy>

Figure 5-23. Getting Documents’ Values as an Array

The document IDs to be retrieved can also be specified as a key/expiry hash. The document is removed
after the specified expiry. In the following script the get method arguments are key/expiry hash for the
journal and publisher fields.

require 'rubygems'
require 'couchbase’
client = Couchbase.connect("http://127.0.0.1:8091")
print client.get("journal" => 10, "publisher" => 20)

Run the script to output the JSON document consisting of the key/value pairs for the IDs requested as
shown in Figure 5-24.

138

CHAPTER 5 " ACCESSING WITH RUBY

T _ioix

IC:\Couchbase \Ruby>ruby getDocument.rb .:J
Lg"journal"=>"0rac1e Magazine", “publisher"=>"Oracle Publishing">
C:\Couchbhase\Ruby’>_ !

Figure 5-24. Specifying get method args as a hash

The journal and publisher ID documents get removed after running the preceding script. Add
the journal and publisher IDs again using the storeDocument. rb script for the next example. Next, we
demonstrate the use of the :extended and :format options. In the following script : extended is set to true
and :format is set to :document.

require 'rubygems'

require 'couchbase’

client = Couchbase.connect("http://127.0.0.1:8091")

print client.get("journal","publisher","edition","title","author",
true, :format => :document)

catalog2", :extended =>

When the script is run the result is returned as a hash of key=>value, flags, cas pairs. Because the
:format is set to :document the result is returned as a JSON document as shown in Figure 5-25.

T — ioid

.\Couchbase\ﬂuby)ruby getDocument

“journal'=>["Oracle Magazine', 8, 53@88??385329192768] “publisher"=>["0Oracle P
blishing", 8, 424941687169941534] "edition" >[”Nouemher December 2813", B, 141
6775534002831361, “"title"=>["Quintessential and Collahorative', 8, 989770715846
1251841, “author”=>["Tom Haunert“, @, 133286878486895667281, "cata1092"=>["{’jo
rnal’: ’Oracle Magazine’.,’publisher’: ’Oracle Publishing’,’edition’: ’November |
December 2813’ .’title’: ’‘Engineering as a Service’.’author’: ’David A. Kelly’2".
8, 6246137775158923776 1> t
:\Couchbase\Rubhy>_ Nt

Figure 5-25. Using the :extended and :format options in get method

If the : format is :marshal the key to be retrieved cannot have a value of type JSON document. In the
following script the : format is set to :marshal and one of the document IDs is catalog2, which has a JSON
document as value.

require 'rubygems'

require 'couchbase’

client = Couchbase.connect("http://127.0.0.1:8091")

print client.get("journal”,"publisher","edition","title","author",
true, :format => :marshal)

catalog2", :extended =>

When the script is run the Couchbase: :Exrror: :ValueFormat error is generated as shown in Figure 5-26.

c». Command Prompt . =0 x|

IC: \Couchbase\ﬂuby)ruby getDocument .»h o
getDocument .»h:32:in "get’: unable to convert value for key “catalog2': incompat
ible marshal file format C(can’t be read)> (Couchbhase::Error::UalueFormat)

format version 4.8 required; 34.123 given

from getDocument.rbh:32:in *<main>’

C:\Couchhase\Ruby>

Figure 5-26. Couchbase::Error::ValueFormat error 139

CHAPTER 5 " ACCESSING WITH RUBY

In the following script the : format is set to :plain.

require 'rubygems'
require 'couchbase’
client = Couchbase.connect("http://127.0.0.1:8091")

print client.get("journal","publisher","edition","title","author","catalog2", :extended =>
true, :format => :plain)

When the script is run the result is in plain format as a string without any conversion as shown in
Figure 5-27.

Command Prompkt) ¥ &[Eill

'C-\Couchbase\ﬂuby)ruby getDocument .»b ';I
{"journal”=>["\"Oracle Magazine\"", B, 50888770850201927681, “publisher"=>["\"0r
acle Publishing\"", B, 42494168716994156841, “edition"=>["\""Novembher—-December 201
3\"", B, 14196775534002831361, “title"=>["\"Quintessential and Collaborative\"",|
B, 98977871584601251841, “author"=>["\"Tom Haunert\"", 8. 133286678486095667201]
» Ycatalog2"=>["\"{’ journal’: ’Oracle Magazine’.,’publisher’: ’Oracle Publishing’
,'edition’: ’November December 2013’.°’title’: ’'Engineering as a Service’.’author
*: ’David A. Kelly’2>\"", B, 62461377751509237761> ;
IC:\Couchbhase\Ruby> |

Figure 5-27. Using the ;format set to :plain

If the get method is invoked on key not defined in the Couchbase Server the
Couchbase: :Exror: :NotFound error is generated. To demonstrate delete the document with ID catalog2
and run the following script.

require 'rubygems'

require 'couchbase’

client = Couchbase.connect("http://127.0.0.1:8091")
print client.get("catalog2")

The Couchbase: :Exror: :NotFound error gets generated as shown in Figure 5-28.

N
B Administrator: C:\Windows\system32icmd.exe E@Iﬂ

C:\Ruby21-x64>
C:“Ruby21i-x64>ruby getDocument.rh
getDocument ..rb:4:in ‘get’: failed to get value, The key does not exist on the se
rver C(key=""catalog2", error=08x8d> {(Couchbase::Error::NotFound>
from getDocument.rbh:4:in “<{main>’

C:NRuby21-x64>_

Figure 5-28. Couchbase::Error::NotFound error

140

CHAPTER 5 " ACCESSING WITH RUBY

Updating a Document

The replace method may be used to replace a key-value pair. The set method may also be used to update
the value of a key already in the server to a new value. The replace method has the following signature.

object.replace(key, value [, ruby-replace-options])

The replace method returns the CAS value of the object stored as a fixed number. The method args are
discussed in Table 5-3.

Table 5-3. The replace method Arguments

Argument Type Description

key string Document ID used to identify the value. Must be unique in a bucket.
value object Value to be stored.

ruby-replace-options hash Options containing key-value pairs for the replace method.

Create a script updateDocument. rb. As an example replace the value of the catalog2 key with a new
JSON object.

client.replace("catalog2","{'journal': 'Oracle Magazine','publisher': 'Oracle Publishing',
'edition': 'November December 2013','title': 'Quintessential and Collaborative','author':
'Tom Haunert'}")

The increment method may be used to increment a numerical value. The increment method has the
following signature.

object.increment(key [, offset] [, ruby-incr-decr-options])

The increment method returns the CAS value of the object stored as a fixed number. The method args
are discussed in Table 5-4.

Table 5-4. The increment method Arguments

Argument Type Description

key string Document ID used to identify the value. Must be unique in a bucket.
offset Integer The integer offset value to increment. Default is 1.

hash ruby- hash Options containing key-value pairs for the increment method. The
incr-options :create option may be set a boolean value (true or false) to indicate

if the key to be incremented should be created if not already in the
server. If the key is created it is initialized to 0 and the value is not
incremented in the same operation. The :initial option may be used
to initialize a newly created key to a value other than the default 0. The
:create option is assumed to be true if the :initial option is specified,
regardless of whether the :create option is set or not and regardless of
whether the create option is set to false. The :extended option may be
used to return an array [value, cas] instead of just value.

141

CHAPTER 5 © ACCESSING WITH RUBY

The decrement method may be used to decrement a numerical value. The decrement method has the
following signature.

object.decrement(key [, offset] [, ruby-incr-decr-options])

The decrement method returns the CAS value of the object stored as a fixed number. The method args
are discussed in Table 5-5.

Table 5-5. The decrement method Arguments

Argument Type Description

key string Document ID used to identify the value. Must be unique in a bucket.
offset Integer The integer offset value to decrement. Default is 1.
ruby-decr-options hash Options containing key-value pairs for the decrement method. The

:create option may be set a boolean value (true or false) to indicate if
the key to be decremented should be created if not already in the server.
If the key is created it is initialized to 0 and the value is not decremented
in the same operation. The :initial option may be used to initialize a
newly created key to a value other than the default 0. The : create option
is assumed to be true if the :initial option is specified, regardless of
whether the : create option is set or not and regardless of whether the
create option is set to false. The :extended option may be used to return
an array [value, cas] instead of just value.

To demonstrate the increment and decrement methods create numerical key-value pairs; only a
numerical value can be incremented/decremented. The key may or may not be numerical.

client.set("2",2)
client.set("catalog",1)

Increment the value of the “catalog” Id by 2. And, decrement the value of the “2” Id by 1.

client.increment("catalog",2)
client.decrement("2",1)

Couchbase stores numbers as unsigned values, therefore a value cannot be decremented below 0. If the
value of “2” is decremented by 3 instead of 1 the value is decremented to 0.

client.decrement("2",3)

Negative numbers cannot be incremented using the increment method if after the increment the value
is still negative. An integer overflow occurs and a non-logical numerical result is returned. For example, set
the key “2” to -3. Subsequently increment the key by 2.

require 'rubygems'

require 'couchbase’

client = Couchbase.connect("http://127.0.0.1:8091")
client.set("2",-3)

client.increment("2",2)

142

CHAPTER 5 " ACCESSING WITH RUBY

When the script is run the value is not incremented to -1 as expected but a non-logical numerical value
is stored due to an integer overflow as shown in Figure 5-29.

default » > Documents
Documents Filter
1} Content

2 15446744073709552000

Figure 5-29. Demonstrating integer overflow

But if the increment of a negative number makes the value positive the increment is applied as
expected.

require 'rubygems'

require 'couchbase’

client = Couchbase.connect("http://127.0.0.1:8091")
client.set("2",-1)

client.increment("2",2)

If the preceding script is run the value of the “2” key is initially set to -1 and subsequently incremented
by 2 to 1 as shown in Figure 5-30.

default - > Documents

Documents Filter

1] Content

Figure 5-30. Demonstrating incrementing a negative number to a positive number

If the :create option is used to create a new key if not already in the server a new key is created, but
not incremented/decremented in the same operation. For example if the server does not have a key “1’) the
following creates a new key “1” but does not increment the key by 2 in the same operation even though the
increment offset is set to 2.
client.increment("1",2,:create=>true)

To increment the key “1” invoke the increment method again and supply the increment offset.

client.increment("1",2)

143

CHAPTER 5 © ACCESSING WITH RUBY

By default a newly created key has the value 0. In the following example the intial value is set to 1 as the
:initial optionis setto 1. The : create option is not required if the : initial option is set; the :initial
option implies that a new key is to be created if not already in the server. If the : create option is set it is
ignored. In the following example the :create is set to false, but because :initial is set a new key is
created. The :extended is set to true.

print client.increment("3",2,:initial=>1,:create=>false, :extended=>true)

In the following script updateDocument.rb numerical values are set and incremented/decremented.
The replace method is used to replace a JSON document.

require 'rubygems'

require 'couchbase’

client = Couchbase.connect("http://127.0.0.1:8091")

client.set("2",2)

client.set("catalog",1)

client.increment("1",2,:create=>true)

client.decrement("2",1)

client.increment("1",2)

print client.increment("3",2,:initial=>1,:create=>false, :extended=>true)
client.increment("catalog",2)

client.replace("catalog2","{"'journal': 'Oracle Magazine','publisher': 'Oracle
Publishing','edition': 'November December 2013','title': 'Quintessential and
Collaborative','author': 'Tom Haunert'}")

Run the script with the following command.
ruby updateDocument.rb
One of the increment method invocations has the :extended option set to true. And return value is

printed with print. When the script is run the value is initialized to 1 as specified in the :initial option and
the CAS value of the object is also returned in the array as shown in Figure 5-31.

[c~]Command Prompt : =[O x|
C:\Couchbhase\Ruby>ruby updateDocument .r»h :j
[1, 38651953841844848641

C:\Couchbase\Ruby>_ ;!

Figure 5-31. Running the updateDocument.rb Script

The different key/value pairs in Couchbase Server after running updateDocument.rb Script are as
follows as shown in Figure 5-32.

144

CHAPTER 5 " ACCESSING WITH RUBY

default ~ > Documents

Documents Filter

1] Content

1 2

2 1

3 1

catalog 3

catalog2 “{'jJournal': 'Oracle Magazine', 'publisher': 'Oracle Publishing...

Figure 5-32. Key/value pairs in Couchbase Server after running updateDocument.rb

The replaced catalog2 document is shown in Couchbase Admin Console in Figure 5-33.

default + > Documents

catalog2 [y \Delte Savesey o

alisher': 'Oracle Publishing','edition': 'November December 2013','title': 'Quintessential and Collaborative','author': 'Tom Haunert')}™

A I3

Figure 5-33. Replaced catalog2 Document

The cas method may be used to compare and set a value provided the supplied CAS key matches. The
cas method has the following signature.

object.cas(key [, ruby-cas-options])

The cas method returns the CAS value of the object stored as a fixed number. The method args are
discussed in Table 5-6.

145

CHAPTER 5 © ACCESSING WITH RUBY

Table 5-6. The cas method Arguments

Argument Type Description

key string Document ID used to identify the value. Must be unique in a bucket.

ruby-cas-options hash Options containing key-value pairs for the cas method. The : format option
is used to specify the format of the stored value. The different formats
supported are :document for JSON data, : plain for string storage and
:marshal to serialize the ruby object using Marshal.dump and Marshal.load.

The cas method compares the supplied CAS key and provides the value to the subsequent do end
block. The value may be updated in the block and the CAS value also gets updated. In the following script
the default format is set to :document, implying a JSON document. The “catalog” key is set to a JSON object
containing a key/value hash. Subsequently the cas method is invoked with the “catalog” key. The cas
method compares and sets/updates the value if the supplied key matches. The CAS value of the object is
also updated. The CAS value is output for the original object and the updated object after the cas method is
invoked using the :extended option in the get method.

require 'rubygems'
require 'couchbase
client = Couchbase.connect("http://127.0.0.1:8091")
client.default_format = :document
print ver= client.set("catalog", {"journal" => "Oracle Magazine"})
client.cas("catalog") do |val]
val["publisher"] = "Oracle Publishing"

val["edition"] = "November December 2013"
val["title"] = "Engineering as a Service"
val["author"] = "David A. Kelly"
val
end

print client.get("catalog"”, :extended => true)

When the script is run the CAS value of the “catalog” document is output before and after the cas
method is invoked. The CAS value is different before and after the cas method is invoked as shown in
Figure 5-34.

ommand Prompt =10 x|

C:“Couchbhase\Ruby>ruby caslUpdateDocument.rb E
13072646339380445184[{"journal”=>"0racle Magazine', “publisher"=>"0Oracle Publish
ing", "edition"=>"November December 2013", "title"=>"Engineering as a Service",
"author"=>"David A. Kelly">, B, 78731598615298183681

C:\Couchbhase\Ruby>

1]

Figure 5-34. The CAS value before and after invoking the cas method

The cas method updates the “catalog” object in the server as shown in Figure 5-35.

146

CHAPTER 5 " ACCESSING WITH RUBY

default - > Documents

catalog Delete | Save As... Save

": "Oracle Magazine"™,
"publisher”: "Oracle Publishing”,
"November December 2013,
“title”: "Engineering as a Service",
"author™: "David A. Kelly™

Figure 5-35. The cas method updated catalog key Value

Deleting a Document

The delete method may be used to delete a key/value pair. The delete method has the following signature.
object.delete(key [, ruby-delete-options])

The delete method returns a boolean (true or false) to indicate if the key got deleted. The method
args are discussed in Table 5-7.

Table 5-7. The delete method Arguments

Argument Type Description

key string Document ID used to identify the value. Must be unique in a bucket.

ruby-delete-options hash Options containing key-value pairs for the delete method. The :cas
option is used to specify the CAS value for the object for concurrency
control. The :quiet option may be set to : false to raise error if the
delete method fails in synchronous mode.

One or more document IDs may be supplied to the delete method. In the following script
(deleteDocument.rb), first the “journal” key and the “catalog2” document IDs are deleted individually and
subsequently the “publisher” and “edition” IDs are deleted in the same delete method invocation. Add
print to the output the value returned by the delete method.

require 'rubygems'

require 'couchbase’

client = Couchbase.connect("http://127.0.0.1:8091", "default")
print client.delete("journal")

print client.delete("catalog2")

print client.delete("publisher","edition")

Add the “journal’; “publisher’, “edition” and “catalog2” documents prior to running the script. Run the
script with the following command.

ruby deleteDocument.rb
The output indicates that the document IDs get deleted. For multiple document IDs in the same delete

method invocation the delete method returns a key=>value hash for the document IDs. A value of true
indicates the document gets deleted as shown in Figure 5-36.

147

CHAPTER 5 " ACCESSING WITH RUBY

_ioix

:\Couchbhase\Ruby>ruby deleteDocument.»rb ;I
truetrue{"publisher=>true, “"edition"=>true’
:\Couchbase\Ruby>_ Ll

Figure 5-36. Deleting Couchbase Documents

For concurrency control the :cas option may be used to match the CAS value supplied with the CAS
value of the object in the server. In the following script the : cas option is supplied a value, but not the CAS
value returned by the set method for the document ID to be deleted.

require 'rubygems'

require 'couchbase’

client = Couchbase.connect("http://127.0.0.1:8091","default")
ver = client.set("journal"”, "Oracle Magazine")
client.delete("journal", :cas => 12345)

As the given CAS value does not match the CAS value for the object stored in the server the
Couchbase: :Exrror: :KeyExists error is generated as shown in Figure 5-37.

Teommenderome _loix]

:\Couchbase~Ruby>ruby deleteDocument.rb -:J
eleteDocument.rb:16:in ‘delete’: failed to remove value (key=""journal', error=0
Bc?> (Couchhase: :Error::KeyExists>

from deleteDocument.rh:16:in *<main>’

:\Couchbhase\Ruby>_ EI

Figure 5-37. Couchbase::Error::KeyExists error

The :quiet option is set to true by default, which implies that if the delete fails nil is returned and an
error is not raised. In the following script some document IDs that have been deleted are again invoked as
arguments to delete method. The :quiet option is set to false to raise an error if the delete method fails.
Add the “journal’; “publisher’, “edition” and “catalog2” documents prior to running the script.

require 'rubygems'

require 'couchbase’

client = Couchbase.connect("http://127.0.0.1:8091","default")
print client.delete("journal")

print client.delete("catalog2")

print client.delete("publisher","edition")

print client.delete("journal","publisher","edition",:quiet => false)

Run the script, and the Couchbase: :Exror: :NotFound error is generated as shown in Figure 5-38.

148

CHAPTER 5 " ACCESSING WITH RUBY

B8 Administator: C\Winde
IC:\Ruby21-x64>ruby deleteDocument.rbh |
ruetrue{"publisher"=>true, "edition"=>true>deleteDocument.rb:?:in ‘delete’: fai

{led to remove value, The key does not exist on the server (key="edition", error=_ |

BxBd> {(Couchhase: :Error::NotFound)
from deleteDocument.rb:?:in “<main>’

C:\Ruby21-x64>_

Figure 5-38. Couchbase::Error::NotFound error

If the same script is run with :quiet set to true an error is not raised but false is returned for the
document IDs that could not be deleted. The reason for not being able to delete is not output as shown in
Figure 5-39.

ommand Prompt _ = &!E‘ﬂ

|-

:\Couchbhase\Ruby>ruby deleteDocument2.rhb J

truetrue{"publisher"=>true, “edition"=>truer{"journal“=>false. "publisher"=>fals__i
- "edition"=>false>? |

:\Couchbase\Ruhy> ﬂ

Figure 5-39. Deleting documents with the :quiet option

The :cas option was set to a CAS value different than the CAS value stored in the server for the object in
an earlier example. In the following script the CAS value supplied to the :cas option is the CAS value stored
for the object as returned by the set method.

require 'rubygems'

require 'couchbase’

client = Couchbase.connect("http://127.0.0.1:8091","default")
ver = client.set("journal", "Oracle Magazine")

print client.delete("journal", :cas => ver)

When the script is run true is returned because the CAS values match and the “journal” document gets
deleted as shown in Figure 5-40.

Feommandrromae e

C:\Couchhase\Ruby>ruby deleteDocument.rh

e E
¥

:\Couchhase\Ruby>_ (=]

Figure 5-40. Deleting a document using the :cas option

149

CHAPTER 5 © ACCESSING WITH RUBY

Querying a Document with View

Create a Ruby script queryDocument. rb for querying document/s using a view. Add some documents to
Couchbase Server as shown in Figure 5-41.

default - > Documents Current page: 1 5 v
Documents Filter | Lookupld | Create Document |
] Content

catalog { "journal”: "Oracle Magazine”, “"publisher”: "Oracle Publishin Edit Document = Delete

catalog2 { "jouwrnal”: "Oracle Magazine”, "publisher”: "Oracle Publishin Edit Document ~ Delete

Figure 5-41. Adding some documents to Couchbase for querying using a view

Couchbase views were introduced in an earlier chapter. Views are used to query a document stored in
Couchabse server. First, we need to create a design document to query, so we'll use the Couchbase Console.

1. Select Views and click on Create Development View.

2. Inthe Create Development View dialog specify a Design Document Name
(dev_catalog for example).

3. Specify a View Name (catalog_view for example). Click on Save.

A design document and a view get added. The view is not usable as such. We need to add map and
reduce functions to the view. Map and reduce functions were also introduced in an earlier chapter. Click on
the Edit button to edit the catalog_view. The default Map function is listed in the VIEW CODE. Specify the
following map function to replace the default map function. The map function emits the document name,
journal, publisher, edition, title and author attributes.

function (doc, meta) {
if (meta.type == 'json'){
emit(doc.name, [doc.journal,doc.publisher,doc.edition,doc.title,doc.author]);
}

}

Click on Save to save the map function. We also need to provide a reduce function. Specify the following
function in the Reduce section. The reduce function iterates over the values in the values array and creates a
result string to return.

function(key, values, rereduce) {

if (!rereduce) { var result = 0;

for (var i = 0; i < values.length; i++) {
result += values[i];

} return result;

} else {
return values.length;
}
}

150

CHAPTER 5 " ACCESSING WITH RUBY

Click on the Save button to save the Map and Reduce functions. The catalog_view, including the JSON
document on which the view is defined, and the Map and Reduce functions are shown in Figure 5-42.

A& Cluster Overview ket i XDCR S
default - = Views > | _design/dev_catalog/_view/catalog_view =
W catalog Pm a Random Document | Edit Document
"journal“: "Oracle Ma id™: "caraloo
“publisher™ rev"
redition™: * e e T
"title": "expiration”: 0,

“author”: "flags™: 0

W VIEW CODE

o

;,;:urr:nl.d::.put lisher,doc.edition,doc.title, doc.auther]);

Filter Results ST TRt | S o o R R &imibe 1085k / I

Figure 5-42. Adding Map and Reduce Functions to a View

Using the design document ‘dev_catalog’ and the view ‘catalog_view’ we shall query the documents in
the default bucket. The design_docs method in the Couchbase: :Bucket class is used to obtain the design
documents stored in the bucket as a hash. definition for the dev_catalog design document. The dev_catalog
design document is obtained as a Couchbase: :DesignDoc object from the design documents has as follows.

ddoc = client.design docs["dev_catalog"]

The Couchbase: :DesignDoc class method views is used to obtain the list of views stored in a design
document.

ddoc.views

The catalog_viewis retrieved as a Couchbase: :View object from the design document as follows.
view=ddoc.catalog view

The each method only yields each document that was fetched by the view as Couchbase: :ViewRow,
which encapsulates a structured JSON document. Because of streaming JSON parser the results are not

instantiated by the each method. The results are instantiated when the results are accessed.
Several params may be supplied to the each method, some of which are listed in Table 5-8.

151

http://rubydoc.info/github/couchbase/couchbase-ruby-client/Couchbase/ViewRow#Couchbase::ViewRow%20(class)

CHAPTER 5 © ACCESSING WITH RUBY

Table 5-8. The each method Parameters

Param

Description

:include_docs (true, false)

:quiet (true, false)

:descending

tkey (String, Fixnum, Hash, Array)
:1imit (Fixnum)

skip (Fixnum)

:connection_timeout (Fixnum)

:reduce (true, false)
:stale (String, Symbol, false)

:group (true, false)

Include full document. Default is true.

Do not raise error if associated document not found.
Default is true.

Returns the documents in descending order by key.
Return only documents for the specified key.

Limit the number of documents in the output.

Skip the specified number of records.

Connection timeout for the view request in millisecond.
Defaults to 75000.

Whether to use the reduce function. Defaults to true.

Allow the results from stale view to be used. Valid values are
false, :ok and :update_after, the default being
:update_after. If set to false view update is forced before
returning data. The : ok value allows stale views and the
:update_after updates the view after it has been accessed.

Groups the results using a reduce function to a group or a
single row.

The each method may be used with a block as follows.

view.each(:1imit => 5, :reduce=>true, :descending=>true) do |row|

puts row.key

puts row.value

puts row.id

puts row.doc
end

The queryDocument.rb script is listed below.

require 'rubygems'
require 'couchbase’
class Couchbase: :Bucket

alias old_initialize initialize

def initialize(*args)
options = args.last

if options.is_a?(Hash) &3 options[:environment]
self.class.send(:define_method, :environment) do
return options[:environment]

end
end
old initialize(*args)
end
end

152

CHAPTER 5 " ACCESSING WITH RUBY

client = Couchbase::Bucket.new(:environment => :development)
puts client.design docs.inspect
ddoc = client.design docs["dev_catalog"]
print ddoc.views
view=ddoc.catalog view
view.each(:limit => 5, :reduce=>true, :descending=>true) do |row|
puts row.key
puts row.value
puts row.id
puts row.doc
end

Run the queryDocument.rb script with the following command.
ruby queryDocument.rb

The result from the script is shown in the command shell as shown in Figure 5-43.

=+]Command Prompt i =10 x|

|

IC:\Couchbase\Ruby>ruby queryDocument.rh
{"dev_catalog"=>H#{Couchbase::DesignDoc:2398620 Rid="_design/dev_catalog" Buieus=
[Ycatalog_view"] @spatial=[1>>

@0racle Magazine,Oracle Publishing,.November December 2813,Engineering as a Servi
ice,David A. KellyOracle Magazine,Oracle Publishing.MNovemher—Decembher 2013,Quinte
ssential and Collahorative,Tom Haunert

IC:\Couchbhase\Ruhy> j

Figure 5-43. Running the queryDocument.rb script to Query Documents

Alternatively the each method may be invoked to return an Enumerator. Subsequently the attributes of
each row returned as a ViewRow object may be output.

enum = view.each
enum.map{ | row|
puts row.value
puts row.meta
puts row.key
puts row.id

puts row.doc
puts row.data

}

The version of queryDocument, which returns a ViewRow, is listed.

require 'rubygems'
require 'couchbase’
class Couchbase: :Bucket
alias old_initialize initialize
def initialize(*args)

153

CHAPTER 5 " ACCESSING WITH RUBY

options = args.last
if options.is_a?(Hash) && options[:environment]
self.class.send(:define_method, :environment) do
return options[:environment]
end
end
old initialize(*args)
end
end
client = Couchbase::Bucket.new(:environment => :development)
puts client.design docs.inspect
ddoc = client.design_docs["dev_catalog"]
print ddoc.views
view=ddoc.catalog view
enum = view.each
enum.map{ | doc|
puts doc.value
puts doc.meta
puts doc.key
puts doc.id
puts doc.doc
puts doc.data

}

The output from the queryDocument. rb script with the Enumerator version of the each method is shown
in command shell as you can see in Figure 5-44.

e

-
C:\Couchbase\Ruby>ruby queryDocument.rh "J
{"dev_catalog"=>#<{Couchbase::DesignDoc:1644940 Rid="_design/dev_catalog" Buieus=
[Ycatalog_view'] @spatial=[1>>
[Ycatalog_view"]1B0racle Magazine,Oracle Publishing.,.MNovemher—December 2013,Quinte
ssential and Collahorative,.Tom HaunertOracle Magazine.Oracle Publishing.November
December 2813,Engineering as a Service,.David A. Kelly

{"key"=>nil, "value'=>"B0racle Magazine.Oracle Publishing.Novembher—December 2813
»Quintessential and Collaborative,.Tom HaunertOracle Magazine,.Oracle Publishing.N
ovember December 2013,.Engineering as a Service.David A. Kelly'>

IC:\Couchbase\Rubhy> EI

Figure 5-44. Using the each method and enum to output document values

Summary

In this chapter we used a Ruby client library to access Couchbase Server. We added, retrieved, updated and
deleted documents using Ruby scripts. We also queried a document using a view. In the next chapter we
shall use Node.js to connect to Couchbase and perform similar CRUD operations.

154

CHAPTER 6

Using Node.js

Node.js is a lightweight platform built on a V8 JavaScript engine for developing efficient scalable network
applications. Node.js is designed for data-intensive real-time applications. Couchbase provides a Node.js
Client library for accessing documents stored in Couchbase Server. The Node.js Client library has built-in
support for JSON and scales automatically with an expanding Couchbase cluster. In this chapter we shall
discuss using Couchbase Server with the Node.js Client library to perform CRUD (Create, Retrieve, Update,
Delete) operations on the documents stored in Couchbase. We shall also query Couchbase Server using a
View. The chapter covers the following topics.

e Setting Up the Environment

e Connecting with Couchbase Server

e Creating a Document in Couchbase Server
e Getting a Document

e Updating a Document

e Deleting a Document

Setting Up the Environment

The following software is required to be downloaded and installed for this chapter.
¢ Couchbase Server
e Node,js
e Node.js Client Library

Installing Node.js

Download the node-v0.12.0-x64.msi application for Node.js from http://blog.nodejs.org/2015/02/06/
node-v0-12-0-stable/.

1. Double-click on the msi application to launch the Node.js Setup Wizard.

2. Click on Next in the Setup Wizard as shown in Figure 6-1.

155

http://blog.nodejs.org/2015/02/06/node-v0-12-0-stable/
http://blog.nodejs.org/2015/02/06/node-v0-12-0-stable/

CHAPTER 6 " USING NODE.JS

Node.js Setup =l X

Welcome to the Node.js Setup Wizard

n . d c [:9 The Setup Wizard will install Node. js on your computer. Click

Next to continue or Cancel ko exit the Setup Wizard,

Back | Naxti:}J | Cancel

Figure 6-1. Node.js Setup Wizard

3. Accept the End-User License Agreement and click on Next.

4. InDestination Folder specify a directory to install Node.js in, the default being
C:\Program Files\nodejs as shown in Figure 6-2. Click on Next.
14 Nodejs Setup ="l =

Destination Folder

Choose a custom location or click Next to install n ‘ d c @

Install Node. js to:

IC:‘qPrograrn Files\nodeijs),

|

[Back | Naxt!}J | Cancel

Figure 6-2. Selecting Installation Directory for Node.js

156

CHAPTER 6 " USING NODE.JS

In Custom Setup, the Node.js features to be installed including the core Node.js runtime are listed for
selection as shown in Figure 6-3. Choose the default settings and click on Next.

15 Nodejs Setup =]l —

Custom Setup

Select the way you want features to be installed. ﬂ . d e :9

Click the icons in the tree below to change the way features will be installed.

R [="2d|riode. js runtime Install the core Node.js runtime
npm package manager (node.exe).
Online documentation shortcuts
(=) = | Add to PATH

This feature requires 10MB on your
hard drive, It has 2 of 2
subfeatures selected, The
subfeatures require 16KB on your
hard drive.

< n] »

Browse, ..

(Reset I Disk Usage |[Back || Nm!}“ Cancel |

Figure 6-3. Selecting the Features to Install

5. InReady to install Node.js, click on Install as shown in Figure 6-4.

18 Nodejs Setup (=] -

Ready to install Node.js n . d c (9

Click Install to begin the installation. Click Back to review or change any of your
installation settings. Click Cancel to exit the wizard.

[Back | Instau%_] | Cancel |

Figure 6-4. Clicking on Install
157

CHAPTER 6 " USING NODE.JS

6. The installation of Node.js starts as shown in Figure 6-5. Wait for the installation to finish.

18 Node js Setup (=] o S|

S e

Installing Node.js n ‘ d c @

Please wait while the Setup Wizard installs Node. js.

Status: Copying new Files

= T

Figure 6-5. Installing Node.js
7. When the Node.js completes installing, click on Finish as shown in Figure 6-6.

ﬂ Nedejs Setup =izl

Completed the Node.js Setup Wizard

Click the Finish button to exit the Setup Wizard.
nedec

Node. js has been successfully installed.

Back | Cancel

Figure 6-6. Node.js Installed

158

CHAPTER 6 " USING NODE.JS

To find the version of Node.js installed, run the following command in a command shell.
node --version

The output from the command lists the version as 0.12.0 as shown in Figure 6-7.

Administrator: C:\Windows\system32\cmd.exe - node example,js @E&
Microsoft Windows [Uersion 6.1.76011 [
Copyright (c> 2609 Microsoft Corporation. All rights reserved. |—_|

C:\Users\Deepak Uohra>cd C:\Couchhase\NodeJ$

C:\Couchhase\NodeJS>node ——version
i3.12.3 =

[P —— A ——— -

Figure 6-7. Finding the Node.js Version

To test the Node.js create a server using the following script; store the script in example. js.

var http = require('http');

http.createServer(function (req, res) {
res.writeHead(200, {'Content-Type': 'text/plain'});
res.end('Hello World\n');

}).listen(1337, '127.0.0.1");

console.log('Server running at http://127.0.0.1:1337/");

From the directory containing the script, run the script with the following command.
node example.js

The output from the script is shown in the command shell in Figure 6-8.

Microsoft Windows [Uersion 6.1.76011]
Copyright (c> 2089 Microsoft Corporation. All rights reserved.

i :\Users\Deepak Uohrarcd C:\Couchhase\NodeJ$S

C:N\Couchbhase\NodeJS >node —--version
vB.12.0

C:\Couchbhase\NodeJS>node example.js
Server running at http:-/-/127.8.8.1:1337~/

Figure 6-8. Running the Node.js Example Script

159

CHAPTER 6 " USING NODE.JS

Installing Node.js Client Library

Install the Node.js Client Library version 2.08 for Couchbase using npm with the following command in a
Windows command shell.

npm install couchbase@2.0.8

The Node.js Client library gets installed as shown in Figure 6-9.

v T —
é Administrator: C:\

IC:\Couchhase\NndeJS) L

C:“\Couchbase“NodeJS>npm install couchhaseB2.0.8

Y
> couchhaseP2.8.8 install C:\Couchbase\NodeJS\node_modules\couchhase
l) (node—gyp rebuild 2> builderror.log> ii (exit 8>

C:\Couchhase\NodeJS\node_modules\couchhase>node "C:\Program Files\nodejs\node_mo
dules\npm\binNnode—gyp—bin\\..\..\node_modules node—gyp\bin\node—gyp.js" rebuild

couchbaseP2.0.8 node_modules\couchbhase

bindings@1.2.1

nan1.7.8

Jjsonparse@1.0.8

requestP2.55.0 (caseless(A.?.08, forever—agent@B.6.1, stringstream@B.B.4, aus
sign2fB.5.8, tunnel-agentPB.4.8, ocauth-signfB.6.8, isstreamPB.1.2, json—stringi
fy-safef5.0.1,. node—uuid@1.4.3, gsP2.4.2, combined-streamPB.0.7, form-datalB.2.0
-, mime—typesP2.8.14, http-signaturelfd.10.1, bh1RPA.?.4. tough-cookiel2.0.0,. hawk(2
.3.1, har-validator@1.8.8>

C:\Couchbase“NodeJS>_

‘ I

Figure 6-9. Installing Node.js Client Library for Couchbase

Next, we shall connect with the Couchbase Server using the Node.js Client library.

Connecting with Couchbase Server

Create a JavaScript file (connection. js) to connect with the Couchbase Server. First, add a require
statement for the Node.js Client library.

var couchbase = require('couchbase');

The Node.js Client library provides the Cluster class to connect with the Couchbase Server and create a
singular cluster containing the buckets. Only one instance of the Cluster class is required in an application. A
new Cluster instance can be created using the new operator.

new Cluster(cnstr, options)

The Cluster class provides a constructor with the parameters listed in Table 6-1.

160

CHAPTER 6 " USING NODE.JS

Table 6-1. Cluster class Constructor Parameters

Parameter Description

options Parameter of type Object containing the list of options/properties to be passed
to the connection. The only supported option is certpath, the path to the certificate
to use for SSL connections. Providing an argument for the parameter is optional.

cnstr Connection string for the cluster. Providing an argument for the parameter
is optional.

Create an instance of Couchbase class using host string as 'localhost:8091'". Alternatively the Ipv4
address may be used instead of localhost. The port is 8091.

var cluster = new couchbase.Cluster('couchbase://localhost:8091");

The Cluster class provides the openBucket (name, password, callback) method to open a bucket for
subsequent operations on the bucket. The openBucket method is asynchronous and returns immediately.
Operations on the bucket may be queued subsequent to the method returning. When the connection with
the bucket is established the queued operations are run. The openBucket method returns an instance of the
Bucket class, which represents a connection with a Couchbase Server bucket. The Bucket class is not to be
instantiated directly. Create a callback function that has an err argument for the error generated, if any, by
the openBucket method. Output the error, if any, or output a message to indicate that a connection has been
established using an if-else statement.

callback = function(err)

{
if (err)
console.log("Error in establishing connection with Couchbase Server bucket 'default': "+err);
else
console.log("Connection with Couchbase Server bucket 'default' established.");

}

Invoke the openBucket method using bucket name as ‘default’ and supply the callback function to
invoke when the method returns.

var bucket = cluster.openBucket('default',callback);
The openBucket method returns an instance of Bucket class.

The Bucket class provides some class members about the properties of the connection as discussed
in Table 6-2.

161

CHAPTER 6 ' USING NODE.JS

Table 6-2. Cluster class Properties

Member Description

clientVersion The Node.js client library version as string.

configThrottle Gets/sets the configuration throttling in ms. The bucket waits for the
specified ms for a configuration refresh to occur, and if no refresh occurs
the bucket forces a configuration refresh.

connectionTimeout The connection timeout in msecs used in the initial connection or
re-connection on connection failure. Default value is 5000.

lcbVersion The libcouchbase version. Libcouchbase is the Client library.
Node.js builds on the Couchbase C SDK 2.0 version.

operationTimeout The operation timeout in milliseconds. Operation timeout is the time a
Bucket waits for a response from the server for a CRUD operation before
getting timed out. Default value is 2500.

nodeConnectionTimeout The node connection timeout in milliseconds. Similar to the connection
timeout except that it is for a particular node to respond before trying
the next node.

viewTimeout The view timeout in milliseconds is the time a Bucket waits for a response

from a server for a view request before failing the request with an error.

Log the Cluster class member settings to the console.

console
console
console
console
console
console
console

.log("Client Version "+bucket.clientVersion);

.log("Configuration throttle in msecs "+bucket.configThrottle);
.log("Connection Timeout in msecs "+ bucket.connectionTimeout);
.log("Node Connection Timeout msecs "+ bucket.nodeConnectionTimeout);
.log("libcouchbase version "+bucket.lcbVersion);

.log("Operation timeout in msecs "+bucket.operationTimeout);
.log("view timeout in msecs "+bucket.viewTimeout);

The complete connection. js is listed below.

var couchbase = require('couchbase")
var cluster = new couchbase.Cluster('couchbase://localhost:8091");
callback = function(err)

{

if (err)

console.log("Error in establishing connection with Couchbase Server bucket 'default’:

else

"+err);

console.log("Connection with Couchbase Server bucket 'default' established.");

var bucket = cluster.openBucket('default',callback);

console
console
console
console
console
console
console

162

.log("Client Version "+bucket.clientVersion);

.log("Configuration throttle in msecs "+bucket.configThrottle);
.log("Connection Timeout in msecs "+ bucket.connectionTimeout);
.log("Node Connection Timeout msecs "+ bucket.nodeConnectionTimeout);
.log("libcouchbase version "+bucket.lcbVersion);

.log("Operation timeout in msecs "+bucket.operationTimeout);
.log("View timeout in msecs "+bucket.viewTimeout);

CHAPTER 6 " USING NODE.JS

To connect with Couchbase Server run the following command in a command shell.
node connection.js

The output from the command indicates that a connection with the server has been established.
The connection properties are also output as shown in Figure 6-10.

- .
BN Administrator: C:\Windows\system32\cmd.exe - node connection,js |i@é]

C:\Couchbhase“NodedJS >node connection.js

Client Uersion 2.8.8

Configuration throttle in msecs 10008008

Connection Timeout in msecs 56008

Node Connection Timeout msecs 2588

libcouchbase version 2.4.9

Operation timeout in msecs 25680

Uiew timeout in msecs 75008

Connection with Couchbase Server bucket ’‘default’ established.

Figure 6-10. Establishing a Connection with Node.js Server

Creating a Document in Couchbase Server

In this section we shall connect with the Couchbase Server and create a JSON document in the server. Two
methods are provided in the Bucket class to create a document: upsert () and insert (). The difference
between the upsert() and insert() methods is that the upsert () method sets a value for a specified key
and overrides the value if the key is already defined in the Couchbase Server, and the insert() method

can only be used to add a new key-value pair. If insert () is used with a key already defined in the server,

an exception is thrown. Regardless of which method is used for creating a document we need to create a
connection with a Couchbase Server bucket as discussed earlier. We also need to specify a key-value pair to
be stored in the server. In the following example the key is specified with the catalog_id var, and the value is
specified with the catalog var. The value to be stored is a JSON document.

var couchbase = require('couchbase")
var cluster = new couchbase.Cluster
('couchbase://localhost:8091");
var bucket = cluster.openBucket('default');var catalog id = 'catalog';
var catalog = {
"journal": "Oracle Magazine",
"publisher": "Oracle Publishing",
"edition": "November-December 2013",
"title": "Quintessential and Collaborative",
"author": "Tom Haunert"

};

163

CHAPTER 6 ' USING NODE.JS

Upserting a Document

Create a JavaScript file storeDocument. js for creating a document using the upsert () method. The connection
and key-value pair are specified with the catalog_id and catalog variable, respectively. The upsert()
method has the following signature.

upsert(key, value, options, callback)

The upsert () method parameters are listed in Table 6-3.

Table 6-3. The upsert() method parameters

Parameter Description

key The document key to store of type string or Buffer is a parameter that requires an
argument to be supplied.

value The value to store of any type is a parameter that requires an argument to be supplied.

options The options of type Object are optional and discussed in Table 6-4.

callback The callback function is of type Bucket .0OpCallback, which has the signature

function(error, result).The error parameter is the error thrown by the upsert
method and is of type ‘undefined’ or ‘Error’ The result parameter of type Object is the
result of the upsert method.

The options for the upsert () method are discussed in Table 6-4. All options are optional and except
the cas option, which does not have a default value, have the default value of 0.

Table 6-4. The upsert() method Options

Option Type Description

cas Bucket.CAS Of type CAS, the unique value to use for a document. CAS value is a
special object that indicates the state of a document on the server.
When the state of a document is modified on the server the CAS value
also changes. CAS objects are used by operations that modify value
to verify that the value on the server matches - or does not match - a

specified CAS value.

expiry number The initial expiration of the document. The default value of 0 implies
that the document does not expire.

persist_to number Number of nodes to persist operation to.

replicate to number Number of nodes to replicate operation to.

Using the catalog_id as the key and catalog as the value invoke the upsert () method, and in the
callback function output the result of the operation to the console.

db.upsert(catalog id, catalog, function(err, result) {
console.log(result);

s

164

CHAPTER 6 " USING NODE.JS

The storeDocument. js is listed below.

var couchbase = require('couchbase")
var cluster = new couchbase.Cluster
('couchbase://localhost:8091");
var bucket = cluster.openBucket('default');
var catalog id = 'catalog’;
var catalog = {
"journal": "Oracle Magazine",
"publisher": "Oracle Publishing",
"edition": "November-December 2013",
"title": "Quintessential and Collaborative",
"author": "Tom Haunert"
};
bucket.upsert(catalog id, catalog, function(err, result) {
console.log(result);

1);

To store a JSON document using the upsert () method run the following command in a command shell.
node storeDocument.js

The output from the command is shown in the command shell in Figure 6-11.

T N
Bl Administrator: C:\Windows\system32\cmd.exe - node storeDocument.js E@li—hj
:\Couchhase\NodeJS> I
:\Couchbase“NodeJS >node storeDocument.js
cas: CouchbaseCas<11393167343957896467> >

Figure 6-11. Storing a Document with the storeDocument.js Script

A document with key as “catalog” gets added to the Couchbase Server as shown in the Couchbase
Console in Figure 6-12.

=
Couchbase
A& Cluster Overview Server Nodes Data Buckets Views XDCR Log Settings
default - > Documents Current page: 1 I's -
Documents Filter Document 1D | Lookupid || Create Document
D Content
catalog "journal”: “Oracle Magazine”, "publisher": "Oracle Publish Edit Document Delete

Figure 6-12. A Document with key catalog in Couchbase Server

165

CHAPTER 6 ' USING NODE.JS

Click on the catalog key to display the JSON stored in the document as shown in Figure 6-13.

=]
Couchbase
i1ster Overview Server Nodes ata Buckets XDCR oq Settings
default = > Documents
catalog NS Delete Save As Save

catalog |

Figure 6-13. The catalog Document JSON

Inserting a Document

Create a JavaScript file insertDocument. js for adding a document. As mentioned before, the insert()
method can only be used to add a new document, implying that the key of the document added must not
already be defined in the Couchbase Server. The insert() method has the following signature.

insert(key, value, options, callback)

The insert method is identical to the upsert method other than the cas option not being one of the
options and that the method fails if the document with the same key already exists.

To demonstrate that the document key must not be same as another document, create a
insertDocument. js script and add a document using the insert method and the same key/value pair as used
for the upsert method in the previous section. Using the same variables as for the other storeDocument. js
example, bucket for the Bucket instance, catalog_id for the key, and catalog for the value, add a key-value
pair with the insert method and output the result in the console in the callback function.

bucket.insert(catalog_id, catalog, function(err, result) {
console.log(result);

1;

The insertDocument. js JavaScript file is listed below.

var couchbase = require('couchbase")
var cluster = new couchbase.Cluster

('couchbase://localhost:8091");

var bucket = cluster.openBucket('default');
var catalog id = 'catalog';

var catalog = {
"journal": "Oracle Magazine",
"publisher": "Oracle Publishing",
"edition": "November-December 2013",

166

CHAPTER 6 " USING NODE.JS

"title": "Quintessential and Collaborative",
"author": "Tom Haunert"

};

bucket.insert(catalog id, catalog, function(err, result) {
console.log(result);

1);

Run the script with the following command.
node insertDocument.js

The output from the command is shown in the command shell in Figure 6-14. As indicated by the
null value returned, a new document does not get added as a document with the same key-value pair that
already exists.

y N
BEX Administrator: C:\Windows\system32\cmd.exe l&@lﬂ
Microsoft Windows [Version 6.1.76011] . ~
Copyright <(c)> 288? Microsoft Corporation. All rights reserved. E

k: :\Users\Deepak Uohra>cd C:\Couchbase\NodedJ$S
|

C =;(17|:| uchbases\NodeJS >node insertDocument.js
nu

C:\Couchhase\NodeJS>_

N A

Figure 6-14. Running insertDocument.js Script does not add a new document

If the same insertDocument. js script is run with a different key, catalog?2 for example, the script
returns a new CAS value when run as shown in Figure 6-15.

BN Administrator: C:\Windows\system32\cmd.exe - node insertDocument,js lﬂm

Microsoft Windows [Uersion 6.1.76011 ~
Copyright <(c> 2689 Microsoft Corporation. All rights reserved. -

C:\Users\Deepak Uohra>cd C:\Couchhase\NodeJS

C:}(llouc hbase“NodeJS >node insertDocument.js
nu

C:\Couchhase\NodeJS>node insertDocument.js
{ cas: CouchbaseCas(l22?8'8946?221568?87) >

L

Figure 6-15. Running insertDocument.js Script to add a Document

167

CHAPTER 6 ' USING NODE.JS

The document with id ‘catalog2’ gets added to the Couchbase Server as shown in the Couchbase
Console in Figure 6-16.

(]
Couchbase
& Cluster Overview Server Nodes Data Buckets Views XDCR
default - > Documents Cument page: 1 5 -
Documents Filter Document 1D
Document I Lookup id | Create Document
¢} Content
catalog “journal~: "Oracle Magazine”, "publisher~: "Oracle Publish Edit Document Delete
catalog2 b "journal®: "Oracle Magazine”, “publisher®: "Oracle Publish.. Edit Document = Delete

Figure 6-16. Document with id ‘catalog2’ in Couchbase Server

Getting a Document

Create a JavaScript file getDocument. js for getting a document. In this section we shall retrieve a document
from Couchbase Server.

The Bucket class provides the get(key, options, callback) method to get a key from a Couchbase
cluster/server. The method parameters for the get () method are listed in Table 6-5.

Table 6-5. The get() method Parameters

Parameter Description

key The key to get of type string or Buffer is a required parameter.
options The options of type Object are optional.

callback The callback function of type Bucket.OpCallback has the signature

function(error, result).The error argument is the error thrown by the get
method and is of type ‘undefined’ or ‘Error’ The result parameter of type
Object is the result of the get method.

Using Bucket instance as the bucket variable and key to retrieve as ‘catalog, invoke the get () method
and output the result retrieved to the console.

bucket.get('catalog', function(err, result) {
console.log(result);

};

168

CHAPTER 6 " USING NODE.JS

The getDocument. js JavaScript file is listed below.
var couchbase = require('couchbase")
var cluster = new couchbase.Cluster('couchbase://localhost:8091");
var bucket = cluster.openBucket('default');

bucket.get('catalog', function(err, result) {
console.log(result);

1
To retrieve the document with ID ‘catalog; run the following command in a command shell.
node getDocument.js

The document retrieved is shown in the command shell in Figure 6-17.

BX Administrator: C:\Windows\system32\cmd.exe - node getDocumentjs = | &

C:\Couchbhase\NodeJS >node getDocument.js
X cas: CouchbhaseCas<11393167343957896467>.
value:
{ journal: ’Oracle Magazine’,
publisher: ’Oracle Publishing’.,
edition: ‘November-December 20137,
title: ’Quintessential and Collahorative’.,
author: ’Tom Haunert’

L

Figure 6-17. Running the getDocument.js script to retrieve a Document

The Bucket class provides the getMulti(keys, callback) method to get an array of documents. Create
agetMultiDocuments. js script to demonstrate getting multiple documents.

var couchbase = require('couchbase")

var cluster = new couchbase.Cluster
('couchbase://localhost:8091");

var bucket = cluster.openBucket('default');
var ids = ['catalog', 'catalog2'];
bucket.getMulti(ids, function(err, results) {
console.log(results);

};

The output from getMultiDocuments. js lists the two documents for which keys are specified in the
getMulti method as shown in Figure 6-18.

169

CHAPTER 6 " USING NODE.JS

Administrator: C:\Windows\system32\cmd.exe - node getMultiDocuments.js
—

catalog:
{ cas: CouchbhaseCas<11393167343957896467>,
value:
{ journal: ’Oracle Magazine’.,
publisher: ’Oracle Publishing’.
edition: ’Novembher—-December 28137,
title: ’Quintessential and Collabhorative’,
author: "Tom Haunert’ > >,
catalog2:
{ ca§= CouchbhaseCas<1227808%467221568787>.
value:
{ journal: ’Oracle Magazine’,
publisher: ’Oracle Publishing’.
edition: ‘November—December 20137,
title: ’Quintessential and Collabhorative’,
author: 'Tom Haunert’ > 2 >

|
'F:\Cauchhase\NadeJS)nnde getMultiDocuments. js

Figure 6-18. Running the getMultiDocuments.js script to to get multiple documents

Updating a Document

Create a JavaScript file replaceDocument. js for updating a document. The Bucket class provides the

replace() method to replace a document and the method has the following signature.

replace(key, value, options, callback)

The replace() method has the following parameters listed in Table 6-6.

Table 6-6. The replace() method Parameters

Parameter Description

key The key to update of type string or Buffer is a parameter for which an argument is
required.

value The value to update.

options The options of type object are optional and are the same as for upsert methods as

discussed in Table 6-4.

callback The callback function has the signature function(error, result).The error
parameter is the error thrown by the replace method and is of type ‘undefined’ or
‘Error’ The result parameter of type object is the result of the replace method.

170

CHAPTER 6 " USING NODE.JS

We shall update the JSON document with ID ‘catalog, which we added earlier. Using Bucket class
instance variable bucket, document ID to retrieve as ‘catalog; and with a replacement document
specified with the catalog2 variable, invoke the replace method. The result is output in the console in
the callback function.

bucket.replace(catalog_id, catalog2, {}, function(err, result) {
console.log(result);

1)

The replaceDocument. js JavaScript file is listed below.

var couchbase = require('couchbase")
var cluster = new couchbase.Cluster
('couchbase://localhost:8091");

var bucket = cluster.openBucket('default');
var catalog id = 'catalog';
var catalog2 =
{
"journal": “Oracle Magazine”,
"publisher": "Oracle Publishing",
"edition": "November December 2013",
"title": "Engineering as a Service",
"author": "David A. Kelly",
};
bucket.replace(catalog id, catalog2, {}, function(err, result) {
console.log(result);

s

To replace the document with ID ‘catalog’ run the following command in a command shell.
node replaceDocument.js

The output from the command is shown in command shell in Figure 6-19.

BN Administrator: C:\Windows\system32\cmd.exe - node replaceDocument,js |ﬂlﬁ

C:\Couchbhase\NodeJS >node replaceDocument.js
{ cas: CouchhaseCas<9198595858619952483> >

Figure 6-19. Running the replaceDocument.js to replace a Document

171

CHAPTER 6 ' USING NODE.JS

The updated document is shown in the Couchbase Console in Figure 6-20.

Ol
Couchbase
A& Cluster Overview Server Nodes Data Buckets XDCR Log Seftings
default » > Documents
catalog Delete | Save As.. Save

Figure 6-20. The updated document catalog

Deleting a Document

Create a JavaScript file deleteDocument. js for deleting a document. The Bucket class provides the remove ()
method to replace a document and the method has the following signature.

remove(key, options, callback)

The remove () method parameters are discussed in Table 6-7.

Table 6-7. The remove() method Parameters

Parameter Description
key The key to remove of type string or Buffer is a required parameter.
options The options of type Object are optional. All the options are the same as those supported

by the upsert method except the expiry option and are discussed in Table 6-4.

callback The callback function has the signature function(error, result).The error
parameter is the error thrown by the remove method and is of type ‘undefined’ or ‘Error’
The result parameter of type object is the result of the remove method.

Next, we shall delete the document with ID ‘catalog2’ Use a Bucket class instance to invoke the
remove method.

bucket.remove(catalog id, {},function(err, result) {
console.log(result);

1

172

CHAPTER 6 " USING NODE.JS

The deleteDocument. js JavaScript file is listed below.

var couchbase = require('couchbase")

var cluster = new couchbase.Cluster
('couchbase://localhost:8091");

var bucket = cluster.openBucket('default');

var catalog id = 'catalog2';
bucket.remove(catalog id, {},function(err, result) {
console.log(result);

Ok
Run the script in a command shell with command node deleteDocument. js as shown in Figure 6-21.

r -

B Administrator: C:\Windows\system32\icmd.exe - node deleteDocumentjs = | E

C:\Couchhase“NodeJS >node deleteDocument. js
{ cas: Cl:luchbaseCas<12353147361259496?23> >

Figure 6-21. Running the deleteDocument.js to delete a Document

The document with ID ‘catalog2’ gets removed as shown in the Couchbase Console in Figure 6-22.

=]
Couchbase
#& Cluster Overview Server Nodes Data Buckeis Views XDCR Log Settings
default » > Documents Curent page: 1 5 ~
Documents Filter Document ID Li Id | Create Document
(1] Content
catalog { "journal™: "Oracle Magazine”, “publisher®: "Oracle Fublish Edit Document Delete

Figure 6-22. The document catalog2 is removed and only the document catalog is listed

The Bucket class provides some other methods for bucket operations such as appending data,
prepending data, enabling N1QL, querying using a View query or N1QL query, and incrementing/
decrementing a key’s value.

Summary

In this chapter we discussed the Node.js client library for Couchbase access and Couchbase Server. We also
performed CRUD (create, read, update, delete) operations on the Couchbase Server using Node.js scripts.
In the next chapter we shall discuss using Elasticsearch with Couchbase.

173

CHAPTER 7

Using Elasticsearch

Elasticsearch is a real-time, full-text search and analytics engine based on RESTful API using JSON over
HTTP. Some of the features of Elasticsearch are distributed, highly available, document-oriented, and
schema-free. Couchbase Plugin for Elasticsearch makes it feasible to index and search data stored in
Couchbase Server in real-time using Elasticsearch. With the plugin, data streams from Couchbase Server
to Elasticsearch in real-time. Couchbase data gets indexed in Elasticsearch and may be queried using a
RESTful API. To make use of the plugin, two clusters are required to be created: an Elasticsearch cluster
and a Couchbase cluster. The plugin is installed in the Elasticsearch cluster. Using the Cross Datacenter
Replication (XDCR) in Couchbase Server, the Couchbase data is replicated and streamed to Elasticsearch
cluster. The Elasticsearch cluster may be queried to get results as document IDs. The document IDs may
be used to retrieve the document from Couchbase Server directly. The Couchbase Server data is kept in
sync with the Elasticsearch cluster index. Any changes in the Couchbase data are streamed in real-time to
Elasticsearch.

This chapter covers the following topics:

e Setting the Environment

e Installing the Couchbase Plugin for Elasticsearch

e Configuring Elasticsearch

e Installing the Elasticsearch head third-party Plugin

e Starting Elasticsearch

e Providing an index Template in Elasticsearch

e (Creating an empty index in Elasticsearch

e Setting the limit on concurrent Requests in Elasticsearch

e Setting the limit on Concurrent Replications in Couchbase Server
e Creating an Elasticsearch Cluster Reference in Couchbase
e Creating a Replication and starting data Transfer

e Querying Elasticsearch

e Adding Documents to Couchbase Server while Replicating

e The Document Count in Elasticsearch

175

CHAPTER 7 USING ELASTICSEARCH

Setting the Environment

Only specific versions of Elasticsearch Plugin are compatible with specific versions of Elasticsearch.
The compatibility matrix for Elasticsearch Plugin/Elasticsearch is listed in Table 7-1.

Table 7-1. Compatibility Matrix for Elasticsearch Plugin and Elasticsearch

Elasticsearch Plugin Version Elasticsearch Version
Elasticsearch Plugin 2.0.0 1.3.0 Compatible
Elasticsearch Plugin 1.3.0 1.0.1 Compatible
Elasticsearch Plugin 1.2.0 0.90.5 Compatible
Elasticsearch Plugin 1.1.0 0.90.2 Compatible
Elasticsearch Plugin 1.0.0 0.19.9 Compatible

We need to download the following software (different versions may be used if compatible according
to Table 7-1):

e Couchbase Server Enterprise Edition 3.0.x from http://www.couchbase.com/
download.

e Elasticsearch 1.3.0 elasticsearch-1.3.0.zip file from https://www.elastic.co/
downloads/elasticsearch.

e Curlfrom http://curl.haxx.se/download.html.
Here are the steps to set up your environment:

1. Install the Couchbase Server if not already installed.
Double-click on the curl installer .exe file to install curl.

Extract the Elasticsearch zip to a directory.

Eal

Add Elasticsearch bin directory(C: \elasticsearch\elasticsearch-1.3.0\bin)
and Curl bin directory(C:\Program Files\cURL\bin) to the PATH
environment variable.

Now we'll create sample data in Couchbase Server. The sample data shall be indexed for search
in Elasticsearch cluster. For example, create a document with ID “catalog” and data as the following
JSON document.

{
"journal": "OracleMagazine",
"publisher": "OraclePublishing",
"edition": "NovemberDecember2013",
"title": "EngineeringasaService",
"author": "DavidA.Kelly"

}

176

http://www.couchbase.com/download
http://www.couchbase.com/download
https://www.elastic.co/downloads/elasticsearch
https://www.elastic.co/downloads/elasticsearch
http://curl.haxx.se/download.html

CHAPTER 7 " USING ELASTICSEARCH

Add another document with id catalog2.

{
"journal": "OracleMagazine",
"publisher": "OraclePublishing",
"edition": "NovemberDecember2013",
"title": "QuintessentialandCollaborative",
"author": "TomHaunert"

}

The documents in Couchbase are listed in Administration Console as shown in Figure 7-1.

u Documentation = Support » About » Sign Out
Couchbase
A Cluster Overview Server Nodes Data Buckets Views XDCR Log Settings

default » > Documents Current page: 1 5 -

Documents Filter £ Document ID m W

] Content

catal'og ["journal": "OracleMagazine”, “publisher®: "OracleFublishin.. Edit Document Delete
catalog2 { "journal®: "OracleMagazine”, "publisher®: "OraclePublishin.. Edit Document | Delete

Figure 7-1. Listing Couchbase Documents

Installing the Couchbase Plugin for Elasticsearch

Change directory (cd) to the directory in which Elasticsearch is installed, the C:\elasticsearch\
elasticsearch-1.3.0 directory for example. Run the following command to install Couchbase Plugin 2.0.0
for Elasticsearch.

plugin -install transport-couchbase -url http://packages.couchbase.com.s3.amazonaws.com/
releases/elastic-search-adapter/2.0.0/elasticsearch-transport-couchbase-2.0.0.zip

As shown in the output from the command, the plugin gets installed as shown in Figure 7-2.

177

http://packages.couchbase.com.s3.amazonaws.com/releases/elastic-search-adapter/2.0.0/elasticsearch-transport-couchbase-2.0.0.zip
http://packages.couchbase.com.s3.amazonaws.com/releases/elastic-search-adapter/2.0.0/elasticsearch-transport-couchbase-2.0.0.zip

CHAPTER 7 * USING ELASTICSEARCH

s
B® Administrator: Elasticsearch Plugin Manager 1.3.0 (o | B s

-
C:selasticsearchhelasticsearch-1.3.8>plugin -install transport—-couchhase -url ht
tp://packages.couchbase.com.sS.amazonaws.com/releases/e1astic~search—adapter/2.B[j
.Bselasticsearch—transport—couchbase-2.08.08.zip

> Installing transport—-couchhase...

Trying http://packages.couchbhase.com.s3.amazonaws.con/releases/elastic-search—-ad
apter/2._.0.8/elasticsearch—-transport—couchhase-2.8.8.zip...

R B LT b T e e i e T e T R it o e o e DONE

Installed transport—-couchbase into C:“\elasticsearchselasticsearch-1.3.8%plugins™
transport—couchhase

C:selasticsearchselasticsearch-1.3.8>

Figure 7-2. Installing Couchbase Plugin for Elasticsearch

The plugin is not ready for use yet; we need to configure Elasticsearch, such as setting username and
password. We also need to install another plugin for Elasticsearch web user interface.

Configuring Elasticsearch

Set the username and password for the plugin using the following commands.

echo couchbase.password: couchbase >> config/elasticsearch.yml
echo couchbase.username: Administrator >> config/elasticsearch.yml

The commands update the C: \elasticsearch\elasticsearch-1.3.0\config/elasticsearch.yaml
configuration file with the username and password. The following two lines get added at the bottom of the

elasticsearch.yaml file.

couchbase.password: couchbase
couchbase.username: Administrator

The output from the commands is shown in Figure 7-3.

BN Administrator: Elasticsearch Plugin Manager 1.3.0 EEE‘

-
C:\elasticsearchn\elasticsearch-1.3.8>echo couchbase.password: couchbhase >> confi
g/elasticsearch.yml U

C:selasticsearchh\elasticsearch-1.3.8%echo couchbase.username: Administrator >> c
onfigselasticsearch.yml

C:nelasticsearchh\elasticsearch-1.3.8>_]

Figure 7-3. Configuring Elasticsearch Username and Password

The elasticsearch paths may be optionally configured using the configuration settings in
elasticsearch.yaml listed in Table 7-2.

178

CHAPTER 7 " USING ELASTICSEARCH

Table 7-2. Configuration Settings

Configuration Setting Description Default setting
path.data Path to directory where to store index data C:\elasticsearch\
allocated for this node. elasticsearch-1.3.0\data
path.work Path to temporary files
path.logs Path to log files C:\elasticsearch\
elasticsearch-1.3.0\logs
path.plugins Path to where plugins are installed. The C:\elasticsearch\
Couchbase plugin for elasticsearch gets elasticsearch-1.3.0\plugins

installed in this directory.

The default configuration settings are used for the parameters not explicitly configured.

Installing the Elasticsearch Head Third-Party Plugin

We also need to install a third-party plugin for Elasticsearch that provides a web user interface to
Elasticsearch called elasticsearch-head. Install the head plugin with the following command.

plugin -install mobz/elasticsearch-head

The head plugin gets installed in the plugins sub-directory of the Elasticsearch installation. The

plugins directory should have two folders called “transport-couchbase” and “head” for the two plugins
installed. The output from the command is shown in the command line shell in Figure 7-4.

-

\

)
BEX Administrator: Elasticsearch Plugin Manager 1.3.0 E@li_hJ

C:selasticsearchnelasticsearch-1.3.8>plugin -install mobz- elasticsearch—head —’
—»> Installing mobz/elasticsearch—head...

Trying https://github.com/mobhz/elasticsearch—head-/archive/master.zip...

Downloadingccccececceccccananaccanasscacscscacsnssassncsassnssassnssassnssassnssssss

Installed mobhz-/elasticsearch—-head into C:“\elasticsearchelasticsearch-1.3.8%pluyg
insNhead
Identified as a _site plugin, moving to _site structure ...

C:s\elasticsearchhselasticsearch-1.3.8>_

Figure 7-4. Installing Elasticsearch Head Third-Party Plugin

179

CHAPTER 7 * USING ELASTICSEARCH

Starting Elasticsearch

Having installed Elasticsearch, the Couchbase plugin for Elasticsearch and the web user interface plugin for

Elasticsearch, next we shall start Elasticsearch. Start Elasticsearch with the following command.
elasticsearch

Elasticsearch cluster gets started as shown in the output from the command in Figure 7-5.

N
Bl Administrator: Elasticsearch 1.3.0 li@lﬂ

C:nelasticsearchhelasticsearch-1.3.8%elasticsearch
[2815-87-18 16:26:43,.5941LINFO lLlnode 1

ionl[1.3.01, pid[5052]1, build[1265h14-/2014-07-23T13:46:36Z1

[2015-07-108 16:26:43,.5961LINFO l[node 1 [Amanda Seftonl init
ializing ...

[2315—9? 18 16:26:45,1521[INF0 1lplugins 1 [Amanda Seftonl load
ed [transport- couchbase] sites [headl

[Amanda Seftonl vers

[2015-87-108 16:26:50,8171[INFO lLnode 1 [Amanda Seftonl] init
ialized
[2815-07-10 16:26:50,018 1LINFO lLnode 1 [Amanda Seftonl stap

ting ...

éfgéi;g?—l@ 16:26:58,.9251LINFO Jlorg.eclipse.jetty.server.Serverl] jetty-8.1.0.v2
[2815-87-18 16:26:51,0751[INFO llorg.eclipse.jetty.server.fAbstractConnector] Sta
rted SelectChannelConnectorPB.0.0.8:9091

[2815-87-18 16:26:51,076 ILINFO 1[transport.couchbhase 1 [Amanda Seftonl boun

ﬁyaddress {inet[P.0.0.6,8.8.0.0:98911>,. publish_address {inet[,/192.168.1.72:9891
[2015-07-18 16:26:51,6431[INFO 1[transport 1 [Amanda Seftonl boun
]gddress {inet[-P:0:0:0:0:0:0:8:930081>, publish_address {inetl[-192.168.1.72:930
[2815-87-18 16:26:52,8911[INF0O][discovery 1 [Amanda Seftonl elas

ticsearch/jA SS?OQRDSLiilrr up_Q

[2015-87-108 16:26:55,9131[INFO 1[cluster.service 1 [Amanda Sefton] new_|

master [ﬂmanda Seftonl[jA_S3920QRDSL11iry UD_Qlldvohra-PCllinet[-192.168.1.72:930

B1]1, reason: zen—disco—join {elected_as_master)

[2815-07-18 16:26:56,1291[INF0O llgateway 1 [Amanda Seftonl reco

vered [A] indices into cluster_state

[2015-87-18 16:26:56,481 1[INFO 1[http 1 [Amanda Seftonl boun
_gddress {inet[,/B:0:0:9:0:0:8:0:92081>, publish_address {inetl[,/192.168.1.72:920
[2815-87-18 16:26:56,4831[INFO 1Lnode 1 [Amanda Seftonl] stap

ted

e

Figure 7-5. Starting Elasticsearch Cluster

Access the administrative client user interface to Elasticsearch with the URL http://localhost:9200/

_plugin/head/ in a browser. The Elasticsearch user interface is shown in the browser in Figure 7-6.

180

CHAPTER 7 * USING ELASTICSEARCH

+ {8hitp:Hfou:alhost:92ﬂl]f_plug|nfhead;‘ ¢ | | Q- Bing O~ 2~

http:/localhost 3200/ Connect| elasticsearch (SIS HRCHERNGEEEROISHONN

Elastlcsear(:h Overview | Indices = Browser = Structured Query [+] = Any Request [+]

Figure 7-6. Elasticsearch Graphical User Interface

With the Couchbase Server/cluster running and the Elasticsearch cluster running we need make a
few other configurations. We need to set the index templates for Elasticsearch and configure Couchbase to
replicate data to the remote Elasticsearch cluster.

Providing an Index Template in Elasticsearch

The index template defines the scope of indexing and searching and is used to index the Couchbase data in
Elasticsearch. The default index template is the plugins/transport-couchbase/couchbase_template.json
template, which is listed.

{
"template" : "*",
"order" : 10,
"mappings" : {
"couchbaseCheckpoint" : {
" source" : {
"includes" : ["doc.*"]
}5
"dynamic_templates": [
{
"store no_index": {
"match": "*",
"mapping”: {
"store" : "no",
"index" : "no",
"include_in all" : false

181

CHAPTER 7 USING ELASTICSEARCH

35
" default " : {
" source" : {
"includes" : ["meta.*"]
1
"properties"” : {
"meta" : {
"type" : "object",
"include_in_all" : false
}
}
}

Another index template may also be used in addition or instead of the default template. To set the
index template run the following curl command from the elasticsearch directory, which also applies to all
subsequent curl commands.

curl -XPUT http://localhost:9200/_template/couchbase -d @plugins/transport-couchbase/
couchbase_template.json

If multiple templates are provided, multiple indexes get generated.

Creating an Empty Index in Elasticsearch

For each Couchbase cluster data bucket create an empty index. We shall be using only the “default” bucket.
To create an empty index for the “default” bucket, run the following command.

curl -XPUT http://localhost:9200/default

The output from the preceding command and the command to set the index template is shown in the
command shell in Figure 7-7.

r a
BN Administrator: C:\Windows\system32\cmd.exe E@‘i—h]

C:\UserssDeepak Uohra>cd C:“elasticsearchuwelasticsearch-1.3.8

C:nelasticsearchhelasticsearch-1.3.8%curl —XEPUT http://localhost:9280/default
{"acknowledged":true’
C:\elasticsearch\elasticsearch-1.3.8>_ |

L = 3 - 4

Figure 7-7. Creating an empty index in Elasticsearch

An index may be deleted with -XDELETE. For example, the empty index for the default index is deleted
as follows.

curl -XDELETE http://localhost:9200/default

182

CHAPTER 7 " USING ELASTICSEARCH

Setting the Limit on Concurrent Requests in Elasticsearch

Set the limit on the number of concurrent requests Elasticsearch can handle with the following command.
echo couchbase.maxConcurrentRequests: 1024 >> config/elasticsearch.yml

Running too many concurrent requests could result in OutOfMemory error. The output from the
command is shown in a command shell in Figure 7-8.

- —
Administrator: C:\Windows\system32\cmd.exe E@u
{"acknouledged":true’ 3
C:s\elasticsearchhselasticsearch-1.3.8>echo couchbhase.maxConcurrentRequests: 1824

>> configrelasticsearch.yml :]

C:“\elasticsearchhselasticsearch-1.3.8>_

Figure 7-8. Setting Limit on Concurrent Requests

For the new configuration settings to take effect we need to restart Elasticsearch. Run the following
command to shut down Elasticsearch.

curl -XPOST http://localhost:9200/_shutdown

Elasticsearch cluster gets shutdown as shown by the output in Figure 7-9.

7 T N
B Administrator: C:\Windows\system32\cmd.exe l&@li—hj

C:\elasticsearchh\elasticsearch-1.3.8%curl -XPOST http://localhost: 9233/_s}1utduwn7‘

{"cluster_name":"elasticsearch","nodes":{"jA_S390QRDSL11irr_UD_Q":{"name": "Amand

a Sefton">2>>

C:selasticsearchhelasticsearch-1.3.8>_

| —

A V]

Figure 7-9. Shutting Down Elasticsearch Cluster

Restart Elasticsearch with the same command as used before.

elasticsearch

183

CHAPTER 7 USING ELASTICSEARCH

Setting the Limit on Concurrent Replications in
Couchbase Server

The Elasticsearch nodes have a limit on the indexing data replicated and received from Couchbase Server.
To avoid Elasticsearch getting overwhelmed with replication data, run the following command to reduce the
limit on concurrent replications from the default value of 32 to 8.

curl -X POST -u Administrator:couchbase http://127.0.0.1:8091/internalSettings -d
xdcrMaxConcurrentReps=8 --verbose

In the preceding command Administrator:couchbase are Couchbase admin credentials. The output
from the command is shown in a command shell in Figure 7-10.

<
| Administrator: Elasti =

IC:\elasticsearch\elasticsearch—i.3.B)curl =8 POST —u Administrator:couchbhase ht
tp:/7127.0.8.1:8091/internalSettings —d xdcrMaxConcurrentReps=8 —--verhose
* Trying 127.8.0.1...

* Connected to 127.8.8.1 {(127.08.6.1)> port 88%1 (HBAD

Server auth using Basic with user ’Administrator’

POST /internalSettings HITP-1.1

Host: 127.0.0.1:88%91

Authorization: Basic QWRtaWSpc3RyYXRvcjpjb3VjaGdhc2l=

User—Agent: curl-/?7.42.8

flccept: »*/%

Content-Length: 23

Content-Type: application/x—www—form-urlencoded

upload completely sent off: 23 out of 23 hytes

HTTP/1.1 481 Unauthorized

Authentication problem. Ignoring this.

WWW-Authenticate: Basic realm="Couchbhase Server Admin ~ REST"
Server: Couchbhase Server

Pragma: no—cache

Date: Fri, 18 Jul 2015 23:43:34 GMT

Content—Length: 8

Cache-Control: no-cache

[O RAAAAAAANAERARVVVVVVVV X

Connection #8 to host 127.8.8.1 left intact

:\elasticsearch\elasticsearch-1.3.8>_

-
h

Figure 7-10. Setting Limit on Concurrent Replications

Next, we shall configure Couchbase Server to replicate and send data to Elasticsearch cluster.

Creating an Elasticsearch Cluster Reference in Couchbase

Couchbase Server provides XDCR to replicate and transfer documents to another cluster. We shall use the
XDCR feature to replicate data to the Elasticsearch cluster. XDCR was discussed in Chapter 1. First, we need
to configure the Elasticsearch cluster as a remote cluster in Couchbase Server and subsequently we need

to start the replication process. The replication runs in real-time and streams all documents in Couchbase
Server to Elasticsearch cluster. To create a cluster reference for the Elasticsearch cluster in Couchbase Server,
click on XDCR in Couchbase Administration Console in Figure 7-11.

184

http://dx.doi.org/10.1007/9781484214350_1

CHAPTER 7 * USING ELASTICSEARCH

u [nentation = Support « About = Sign Ova
Couchbase

A& Cluster Overview Server Nodes Data Buckets Views XDCR Log Settings

Cluster Overview

Cluster
Total Allocated (4.11 GB) Total in Cluster (4.11 GB)
v overve
In Use (31.1 MB) Unused (4.08 GB) Unallocated (0 B)
Usable Free Space (165 GB) Total Cluster Storage (570 GB)
Disk Overview | i ‘
In Use (12.2 MB) Other Data (405 GB) Free (165 GBl)

Figure 7-11. Selecting XDCR

Click on Create Cluster Reference button as shown in Figure 7-12.

H I nentation = Support = About = Sign Or s
Couchbase

A& Cluster Overview Server Nodes Data Buckets Views XDCR Log Settings

Replications

W REMOTE CLUSTERS

Name IP/hostname

No cluster references defined. Please create one.

ONGOING REPLICATIONS
Bucket Protocol From To Status When

There are no replications currently in progress.

Figure 7-12. Selecting Create Cluster Reference

In the Create Cluster Reference dialog specify a cluster name, which may be obtained from the
Elasticsearch web user interface. Specify the IP/hostname, which includes the Ipv4 address of the machine
running the Elasticsearch cluster and the port on which Elasticsearch is running. The port is 9091 and the
Ipv4 may be obtained with the ipconfig/all command. Click on Save as shown in Figure 7-13.

185

CHAPTER 7 * USING ELASTICSEARCH

Create Cluster Reference x

Cluster Name: Amanda Sefton

IP/hostname: 192.168.1.72:9091 What's this?

Security what's this?

Username: Administrator
Password: eeeesssee

Enable Encryption [] What's this?

Cancel L {b J

Figure 7-13. Creating Cluster Reference

A remote cluster reference for the Elasticsearch cluster gets added to Couchbase Administration
Console as shown in Figure 7-14.

Couchbase
A& Cluster Overview Server Nodes Data Buckets Views XDCR Log Settings

Replications

W REMOTE CLUSTERS

Name IP/hostname

Amanda Sefton h 192.168.1.72:9091 Delete | Edit
ONGOING REPLICATIONS

Bucket Protocol From To

Status When

There are no replications currently in progress.

Figure 7-14. Remote Cluster Reference

186

CHAPTER 7 " USING ELASTICSEARCH

Creating a Replication and Starting Data Transfer

Next, we shall start the replication of the Couchbase Server data to Elasticsearch. Click on Create Replication
button as shown in Figure 7-15.

Gl
Couchbase
A& Clu Server Nodes Data Buckets Views XDCR 0g Settings

Replications

W REMOTE CLUSTERS Create Cluster Reference

it sinis)

Name IPfhostname

Amanda Sefton Delete | Edit
ONGOING REPLICATIONS Create Replication
Bucket Protocol From To Status When

There are no replications currently in progress

Figure 7-15. Selecting Create Replication

In the Create Replication dialog the From cluster is the “this cluster,” which is the Couchbase cluster.
Select the From data Bucket as the “default” bucket in which we created sample documents. Select the
To cluster as Amanda Sefton and the To Bucket as “default.” Click on Advanced Settings and select XDCR
Protocol as Version 1. Click on Replicate as shown in Figure 7-16.

187

CHAPTER 7 * USING ELASTICSEARCH

Create Replication x
Replicate changes from: To:
Cluster: this cluster Cluster: |Amanda Sefton v
Bucket: |default v Bucket: | default

Advanced settings:

XDCR Protocol: v
XDCR Max Replications per Bucket: 16

XDCR workers per Replication: 4

XDCR Checkpoint Interval: 1300

XDCR Batch Count: 500

XDCR Batch Size (kB): 2048

XDCR Failure Retry Interval: 30

XDCR Optimistic Replication Threshold: 256

Cancel | Replic:
1 —,

Figure 7-16. Creating Replication

An “ONGOING REPLICATION” for the default bucket gets created from the Couchbase cluster to the
Elasticsearch cluster. The Status of the replication is “Starting Up” at first as shown in Figure 7-17.

188

CHAPTER 7 * USING ELASTICSEARCH

T el
Couchbase

« Sign O

A& Cluster Overview Server Nodes Data Buckets Views XDCR Log Settings
Replications
W REMOTE CLUSTERS
Name IPMhostname
Amanda Sefton 192.168.1.72:9091 Delete | Edit
ONGOING REPLICATIONS
Bucket Protocol From To Status When
default h Version 1 this cluster g:g}lﬁ;de{aun” on cluster “Amanda Starting Up on change Settings = Delete
Figure 7-17. “Starting Up” Replication
When the replication of data begins, the Status changes to “Replicating” as shown in Figure 7-18.
el W+ SignQ
Couchbase

A& Cluster Overview

Replications

W REMOTE CLUSTERS

Name

Amanda Sefton

ONGOING REPLICATIONS

Bucket Protocol From

default Version 1 this cluster

Figure 7-18. “Replicating”

Server Nodes

Data Buckets Views XDCR
IPMostname
192.168.1.72:9091
To Status
ket "default” I o Bt
gi%:;_ default” on cluster "Amanda Replicating o b

Log Settings

Delete | Edit

When

on change Settings = Delete

In the Elasticsearch web user interface, click on Refresh to refresh the status of the indexed documents

as shown in Figure 7-19.

189

CHAPTER 7 * USING ELASTICSEARCH

® _itas'_"—ncsea_rch-head‘

File Edit ‘iew History Bookmarks Develop Window Help
> |+ B httpilocalhost 200/ plugin/head/ ¢)[a-8ing | O~ %
http://localhost 8200/ elasticsearch [ElEEHRCEENGCeIIGHoN
Elasticsearch Overview | Indices = Browser = Structured Query [+] = Any Request [+]
Cluster Overview View Aliases ~ JIIEEEIEY

L

Amanda Sefton

Lo Y Acion:

Figure 7-19. Refreshing indexed Document Status

The docs parameter is the number of documents indexed. The documents in the Couchbase Server
are shown indexed in Elasticsearch in Figure 7-20. The number outside the () brackets is the unique number
of indexed documents and the number inside the () is the total number of indexed documents across all
shards including replicas.

—

© closticsearch-nead R o
— - - - e -

File Edit View History Bookmarks Develop Window Help

[- ;.P | \.+ {8 http:/flocalhost:0200/_plugin/head/ C [Q‘ Bing __| [~ £~

http:#flocalhost 32007 elasticsearch cluster health: yellow (5 of 10)

ElastlcsearCh Overview | Indices = Browser @ Structured Query [+] = Any Request [+] -
Cluster Overview |- er ~ || View Aliases ~ I a1
default

size: 108ki (108ki)
%ducs: 1027 (1027)

|

Figure 7-20. Indexed 1027 documents as indicated by docs: 1027

After the documents have been indexed in Elasticsearch, the documents may be queried using the
REST API provided by Elasticsearch.

190

CHAPTER 7 " USING ELASTICSEARCH

Querying Elasticsearch

In this section we shall run some sample queries using the REST API with the curl tool. To search for
all JSON documents with query string “NovemberDecember2013” in the document, run the following
command in a command shell.

curl http://localhost:9200/default/_search?q=NovemberDecember2013

The result from the command is displayed. The result is not the actual document but a JSON containing
attributes of the document. Some of the document attributes are listed in Table 7-3.

Table 7-3. Result JSON Attributes

Attribute Description

_index The index name, which is the same as the bucket name. For the
default bucket the index is “default””
_type The type is _couchbaseDocument for the Couchbase document.
id The id of the document.

_source The metadata of the document.

_score The relevance of the search result to the query as a fraction. A value
of 1 being most relevant and a value of 0 being not relevant at all.

The sample search returns a “total” of two with “_ids” as “catalog” and “catalog2” and with
_index” as “default” By default Elasticsearch indexes each unique word, not phrases. The preceding
query for the phrase NovemberDecember2013 returns results for the two JSON documents with the term
NovemberDecember2013.

“«

C:selasticsearchhelasticsearch-1.3.8%curl http://localhost:9208/default/_search?
g=MovemberDecember2813

{"took":13,"timed_out":false.,"_shards":{"total":5, "successful":5, "failed":8>, "hi
ts":{"total":2,"max_score":2.4673123, "hits": [{"_index":"default",."_type":"couchh

aseDocument","_id":"catalog"," score"=2.46?3123,”_source":(”meta”:("id":"catalog
", "reu’:"3-13efh?792164cdcIhB0BBONOOBANANRGARA", "'f lags " @, Yexpiration:@33>, {"_ :|.nde
x":"default",." _type':"couchbaseDocument”,.'”_id":"catalog2",."_score':1. 7638528 s
ource" {"metatz{"id": ‘catalog2',"rev': 12713efh7c2a4211ch200BRRRRORARARARA" , ' lag
s":0,"expiration":822>> 13>

C:\elasticsearch\elasticsearch-1.3 .8>_

Figure 7-21. Querying Elasticsearch

Using an id, a document may be searched in Couchbase Console with the Lookup id button as shown
in Figure 7-22.

191

CHAPTER 7 * USING ELASTICSEARCH

=B
Couchbase
A& Cluster Overview Server Nodes Data Buckets
.default ~ > Documents

Documents Fiter ()

Views XDCR

= About = Sign Oumy

Log Setlings

Current page: 1 EI -

catalog2 x “ w Cume
)
i} Content
catalog { “journal”: "OracleMagazine”, “"publisher”: "OraclePublishin.. | Edit Documemi Deqe[ei
catalog2 { "journal”: "OracleMagazine”, "publisher”: "OraclePublishin. .. |

Figure 7-22. Using Lookup Id to find a document

Click on Edit Document to display the document as shown in Figure 7-23.

(=]
Couchbase
& Cluster Overview Server Nodes Data Buckets
default ~ > Documents
catalog2

| catalog2 i

Figure 7-23. Displaying a document

Views XDCR

| Edit Document || Delete |

Log Setlings

ek uSRhty o

The query term must not have empty space/s in it. For example, querying search with query Oracle

Magazine, which is a phrase, would make use of the following curl command.

curl http://localhost:9200/default/_search?q=Oracle Magazine

If the publisher field were stored as Oracle Magazine with a space in it only the first word in the query is
used for the search. A message “Could not resolve host: Magazine” is returned for the second word as shown

in Figure 7-24.

192

CHAPTER 7 * USING ELASTICSEARCH

C:\Couchbhase\elasticsearch-8.98.5>

:\Couchbhase\elasticsearch-8.98.5>curl http://localhost:9208/default/_search?g=0
racle Magazine
{"took":11,"timed_out":false."_shards":{"total":5, " successful":5,"failed":8>, "hi
ts":{"total":1,""max_score':8.35355338, "hits": [{"_index":"default",."_type":"couch

aseDocument”,"_id":"catalog"." _score":8.35355338, “_source" : {(meta':{"id":'ca
talog". "rev':"2-00000277a8177ed000NNONNVOBOARAB" . 'f lags '@, "expiration:8222> 12>
curl: (6> Could not resolve host: Magazine

Figure 7-24. Querying Elasticsearch - another example

The query string must be provided without quotes. Run the following query as an example.
curl http://localhost:9200/default/_search?q="OracleMagazine"

An “Empty reply from server” message is received as shown in Figure 7-25.

y N
Bl Administrator: Elasticsearch 1.3.0 l&@lﬂ

:\elasticsearch\elasticsearch-1.3.08> -
:nelasticsearchselasticsearch-1.3.8>curl http://localhost:9280/default/_search?
="0Oracle Magazine" (4
url: (52> Empty reply from server

:snelasticsearchselasticsearch-1.3.8>_

Figure 7-25. Querying Elasticsearch using double quotes

The query term must not be a partial term. For example, run a search with query term as “David.”
curl http://localhost:9200/default/_search?q=David

A document id is not returned in the result as shown in Figure 7-26. Instead the search must be run with
the full query term as follows.

curl http://localhost:9200/default/_search?q=DavidA.Kelly

The search result includes a document id as shown in Figure 7-26.

r N
Bl Administrator: Elasticsearch 1.3.0 @m

C:\elasticsearch\elasticsearch-1.3.8>curl http://localhost:9280/default/_search? .
g=David —
{"tnuk"=2,"timed_out":false,”_shards"={“tota1"=5,”Sucﬁessfu1"=5,”Eailed":G},"hitLj
s":{"total":0, "max_score":null, "hits":[12>>
C:\elasticsearchh\elasticsearch-1.3.8>curl http://localhost:92080/default/_search?
g=DavidA.Kelly
{“took":3,"timed_out":false,"_shards"”:{"total":5,"successful":5,"failed":8>, "hit
s":{"total":1,"max_score':2.4673123, "hits": [{"_index":"default", " _type':"couchha
seDocument"."_id":"catalog"”." _score':2.4673123,." _source”:{"meta":{"id":"catalog"

- rev':"3-13efh792164cdc?hBPBBBABABRARAGAAB" . "'f lags:8, Yexpiration:8333 13>
C:selasticsearchhelasticsearch-1.3.8>_

Figure 7-26. Querying Elasticsearch using a single word-another example

193

CHAPTER 7 USING ELASTICSEARCH

The Couchbase plugin for Elasticsearch is designed to mainly search JSON documents. Search of
document ids is not supported.

Adding Documents to Couchbase Server while Replicating

Elasticsearch is a real-time search engine and the Couchbase plugin for Elasticsearch replicates and
streams Couchbase data store to Elasticsearch cluster in real-time. To demonstrate real-time replication

and indexing, add some documents to Couchbase Server while the replication is running as shown in
Figure 7-27.

bl

Couchbase
A& Cluster Overview Server Nodes X[1 tt

default - > Documents Current page: 1 5
Documents Filter catalog2 |_I_._(;N:[ki.lj:i Id | Create Document
Lt Content
catalog "journal”: "OracleMagazine”, "publisher”: "OraclePublishin Edit Document = Delete
catalog2 { "journal™: "OracleMagazine”, "publisher”: "OraclePublishin Edit Document =~ Delete
Cata[cgs % { "journal™: "Oraclel ", "publisher™: "OraclePublishin Edit Document Delete

Figure 7-27. Documents added while the application is running

The documents added get indexed in real-time. The number of indexed documents as indicated by
the docs attribute is shown to have increased with the increase in the number of documents indexed.
For example, docs has increased from 1027 to 1028 as shown in Figure 7-28.

194

CHAPTER 7 " USING ELASTICSEARCH

9 elasticsearch-head

File Edit View History Bookmarks Dewvelop Window Help
4 > ||+ {8 http:f/localhost:9200/_plugin/head,

http:/flocalhost: 3200/ elasticsearch

Elasticsearch Overview Indices Browser = Structun
Cluster Overview

default
size: 112ki (112ki)
[} docs: 1028(1028}

Figure 7-28. Increase in number of indexed documents

Run the curl query using the REST API again with query string as “OracleMagazine” or “Oracle.”
curl http://localhost:9200/default/_search?q=OracleMagazine

The result includes three document ids including the newly added catalog3 as shown in Figure 7-29.

)
Bl Administrator: Elasticsearch 1.3.0 EM

:\elasticsearch\elasticsearch-1.3.8>curl http://localhost:9280/default/_search? .
=0racleMagazine

“took":5, "tlmed —out":false,"_shards":{"total":5,"successful":5,. " failed":8>, "hit[j
“'{"total"‘3 "max_score':2.29203, "hits":[{" 1ndex" "default'," type”'"couchbase
ocument"’, "’ 1d”'"catalog” v score”-2 292083,." source"'{”meta”'{"1d"'“catalog” Yre
"3 13efh792164cdc9]338@3.8@88335@8.8" "flag‘s"‘ﬂ explrat1on"'ﬂ}}} {" :Lnr.lex"'"d
fault",."_type":"couchbaseDocument" . " 1d" “"catalog3" core':2.292083,."_source":
metali{"id": "catalog3".,"rev'':"2- 13efhbcc87b3eh4bBBBGBBBBGBBBGGEB“ ”Elags“'ﬂ ‘e
piration":822> . {" _index":"default"." _type":"couchbaseDocument",."_id":"catalog2"
."_score”:l.?638528."_source”:("meta"={"id"="cata1092”."reu“:"2—133fh7c2a42116b2
ARRAERARPRARRAA"Y, 'f lags ': 0, Yexpiration:0233> 13>
:\elasticsearch\elasticsearch-1.3.0>_

Figure 7-29. Elasticsearch query returns multiple documents

The Document Count in Elasticsearch

The number of documents added to the index in Elasticsearch is indicated by the docs attribute in the
web console for Elasticsearch. The number of documents shown as indexed may be more than the actual
number of Couchbase documents indexed. For example, docs is shown as 1027 or 1028 in the preceding
examples.

The Item Count in the “default” bucket is listed as 3 as shown in Figure 7-30.

195

CHAPTER 7 * USING ELASTICSEARCH

H meniat . poit = i = Sign Oy
Couchbase

A Cluster Overview Server Nodes Data Buckets Views XDCR Log Settings

Data Buckets

Couchbase Buckels L Create New Dataucket
Bucket Name Nodes Hem Count Ops/sec Disk Fetches/sec RAM/Quota Usage Data/Disk Usage
P default [} 3 N 0 0 AL iy Documents || Views

Figure 7-30. Item Count in Couchbase Admin Console

The difference is because the Couchbase plugin for Elasticsearch and the XDCR sends some additional
documents that describe the status of the replication. To get the actual number of documents indexed, run
the following curl command.

curl http://localhost:9200/default/couchbaseDocument/_count

The result has an attribute “count,” which is the actual number of documents indexed. A value of 3 is the
same as the Item Count in Couchbase console as shown in Figure 7-31.

N
Bl Administrator: Elasticsearch 1.3.0 I\EEM

C:\elasticsearch\elasticsearch-1.3.8>curl http://localhost:9280/default/couchbas .
eDocument/_count —
K"count":3,"_shards':{"total":=5,"successful":5,"Failed":=0>> (4
C:\elasticsearch\elasticsearch-1.3.8>

-

Figure 7-31. Querying Elasticsearch for Document Count

Summary

In this chapter we indexed some Couchbase Server documents using the Couchbase Plugin for
Elasticsearch. Subsequently we queried the indexed documents. In the next chapter we shall discuss the
Couchbase Query Language N1QL.

196

CHAPTER 8

Querying with N1QL

Though Couchbase Server is a NoSQL database it supports an SQL-like query language called N1QL. N1QL
supports most of SQL features with additional features suitable for a document-oriented database. N1Ql’s
use cases include complex queries embedded in applications, and analytics & reporting using ad-hoc
queries. Unlike the fixed format of a table in a relational database, the documents stored in Couchbase
Server are based on a flexible schema JSON model with nested objects and arrays. The schema-based
document model of Couchbase Server requires a flexible path-based language rather than the fixed
row/column structure of SQL. N1QL supports different kind of expressions for different kind of operations
such as filtering, grouping, and ordering, to mention a few. N1QL queries Couchbase documents, not rows
or columns. In this chapter we shall introduce N1QL with some examples:

e Setting the Environment

¢ Running a SELECT Query

e Filtering with WHERE Clause

e JSON with Nested Objects

e JSON with Nested Arrays

e JSON with Nested Objects and Arrays

e Applying Arithmetic

e Applying ROUND() and TRUNC() Functions
e Concatenating Strings

e Matching Patterns with LIKE & NOT LIKE
e Including and Excluding Null and Missing fields
e Using Multiple Conditions with AND

e Making Multiple Selections with OR Clause
e Ordering Result Set

e Using LIMIT and OFFSET to select a Subset
e Grouping with GROUP BY

e Filtering with HAVING

e Selecting Distinct Values

197

CHAPTER 8 " QUERYING WITH N1QL

Note The N1QL query engine is currently available either as deprecated software (the developer preview of
the stand-alone server as described above) or as Beta software (Couchbase 4). To test the N1QL in this chapter,
you can choose either option because the N1QL itself will not change, though some features of N1gl could be
enhanced. I've chosen to use the DP2 software because that will not change, whereas the Beta software could
change between the time of writing and publication.

Setting Up the Environment

In addition to the Couchbase Server Community Edition (2.x or 3.x) or Enterprise Edition (2.x or 3.x),
download the N1QL (Developer Preview 2 or later) couchbase-query_dev_preview2 x86_64 win.zip file
from http://cbfs-ext.hq.couchbase.com/tuqtng/. Extract the zip file to a directory and add the directory,
for example, C: \Couchbase\N1QL\couchbase-query dev_preview2_ x86_ 64 win, to the PATH environment

variable. To connect to Couchbase Server run the following one of the following commands in a command-
line shell.

cbg-engine -couchbase http://192.168.1.71:8091
or
cbg-engine -couchbase http://127.0.0.1:8091

The “192.168.1.71” is Ipv4 address and would be different for different users. A connection gets
established as shown in Figure 8-1.

[zv.Command Prompt - chg-engine -couchbase http://192.168.1.71:8091 . =10} x|
C:“Couchbhase“\N1QLxcouchbase—query_dev_preview2_x86_64_win>chg—engine —-couchhase E‘
http://192.168.1.71:8091
16:37:48.343013 tugtng started... i
16:37:48.344013 version: vB.6.1 |
16:37:48.344013 site: http://192.168.1.71:8691 E’

Figure 8-1. Connecting with Couchbase

To use the command-line query engine run the following command.
cbq -engine=http://192.168.1.71:8093

or
cbq -engine=http://localhost:8093

The cbq » prompt gets displayed as shown in Figure 8-2 in which the N1QL queries may be run.

198

http://cbfs-ext.hq.couchbase.com/tuqtng/

CHAPTER 8 © QUERYING WITH N1QL

[z»]Command Prompt - chq -engine=http://192.168.1.71:8093/ =10} x|
-
:\Couchbase“N1QL:\couchbhase—query_dev_preview2_x86_64_win> H
C:\Couchhase\N1QL\couchhase—query_dev_preview2_ x86_64_win>chy —engine=http:/,/192
.168.1.71:8893/ |
bo> =l

Figure 8-2. The cbq » Prompt

Running a SELECT Query

The SELECT statement is used to extract data from Couchbase Server. The SELECT statement returns one or
more objects as a JSON array result set. To demonstrate the use of SELECT create the following document
with id ‘catalog’ in Couchbase Server using the Couchbase Console.

{
"journal": "Oracle Magazine",
"publisher": "Oracle Publishing",
"edition": "November December 2013",
"title": "Engineering as a Service",
"author": "David A. Kelly"
}
The document is shown in the Couchbase Console in Figure 8-3.
=
Couchbase
default - > Documents
catalog 1 \Relele (Savesy Sav

"Oracle Magazine”,

: "Oracle Publishing”,
ovember-December 2013",
"title”: "Quintessential and Collaborative”,
“author”: “Tom Haunert”

Figure 8-3. Couchbase Document

The SELECT statement requires the SELECT clause followed by the result expression, which could be
the wildcard * or a document path. The FROM clause specifies the data bucket to query. After adding the
preceding document run the following query in the command-line interactive query shell to select all
documents from the ‘default’ bucket.

cbg>SELECT * FROM default
The result from the query is a JSON document, which contains resultset as the first field. The resultset

field is the result set of the N1QL query. The query is run over all the documents in the data bucket. For the
example query, the document that we added gets returned as shown in Figure 8-4.

199

CHAPTER 8 © QUERYING WITH N1QL

v Command Prompt - cbq -engine=http://192.168.1.71:8093/

C:“Couchbhase\N1QL~couchbase—query_dev_preview2_x86_64_win>chg —-engine
.168.1.71:8893/

ichg>
chg> SELECT » FROM default

H
ichg>

=101x]

“"pesultset': [
{

“author": “David A. Kelly",
“edition": "Novemher December 2813%,
“journal': "Oracle Magazine",
“publisher": "Oracle Publishing".
“title": “Engineering as a Service"

[

"caller": “http_response:152",
"code': 108,

“key': “total_rows".
“message'’: "1V

“caller": “http_response:l154",
“"code'': 101,

"key': “total_elapsed_time".
“"message": "826.8473ms"

=http: /z19zz]

|

Figure 8-4. Running a SELECT query on the default bucket

The JSON document also includes an info field, which has the metadata for the query.

Filtering with WHERE Clause

The WHERE clause is used to filter the query. For example, to select the title field from all the documents in
the default bucket in which the author field is ‘David A. Kelly’ run the following query.

SELECT title FROM default WHERE author='David A. Kelly'

The query returns the title as ‘Engineering as a Service!

200

CHAPTER 8 © QUERYING WITH N1QL

T+v)Command Prompt - cbq -engine=http://192.168.1.71:8093/ =10l x|

chg> _:_l
chg> SELECT title FROM default WHERE author=’David A. Kelly’
<

“pesultset': [

“title": “Engineering as a Service"

1

"infa": [

"caller': “http_response:152",

"code": 160, .J
"key': “total_rows",
"message|l: I’1|l

}’
<
“caller': “http_response:i54",
code": 161,
"key': “total_elapsed_time",
3 “message': "256.0146ms"
]
>
chq> _

Figure 8-5. Running a SELECT Query with a WHERE clause Filter

We added only one document to the database bucket, therefore only one title is returned. Add another
document with id catalog2.

{
"journal": "Oracle Magazine",
"publisher": "Oracle Publishing",
"edition": "November-December 2013",
"title": "Quintessential and Collaborative",
"author": "Tom Haunert"

}

Couchbase Server has two documents as shown in the Couchbase Admin Console as shown in Figure 8-6.

base Consale (2.1.1)

Fle Edb View Hitory Bookmarks Develop Window Hep

<> | [+ | @http:/flocahost: 8091 ndex htmi fsec ~documer thiame = dafaud ageNh.rmber=0 ¢ (@ Geose
& [0 B Apple Yahoo! GoogleMaps YouTube Wikpedia Mews(214) ¥ Popular ¥ Infoogo
==
Couchbase
A& Cluster Overview Diata Buckets XDCR
default ~ > Documents Cument page: 1 5
Sayes — Loopio, Crests Document
0 Content
catalog { "jowrnal”: "Oracle Magazine”, "publisker”: "Oracle Fublishin Edit Docurnent Delete
catalog2 { "jowrnal”: “Oracle Nagazine”, “publishker”: "Oracle Publishin Edit Docurnent ~ Delete

Figure 8-6. Two Documents in Couchbase Server

201

CHAPTER 8 * QUERYING WITH N1QL

Run the same query again.
SELECT * FROM default

The resultset field contains two JSON documents as shown in Figure 8-7.

&+ Command Prompt - cbq -engine=http://192.168.1.71:8093/

2hq) SELECT »* FROM default
"res%ltset"= [
“author': “David A. Kelly",
"edition"': "Movember December 2813",
“journal': "Oracle Magazine",
“publisher': “Oracle Publishing",
5 "title": "Engineering as a Service"
i
"author": "Tom Haunert",
Yedition": "Novembher-December 2813%,
“journal': "Oracle Magazine",
“"publisher": “"Oracle Publishing",
" “title": “Quintessential and Collahorative"
1.
“"info": [
"caller": "http_response:152",
code': 168,
"key': “total_rouws",
} Ilmessage I!: II21I
{’
“caller': “http_response:154",
code': 161,
"key': “total_elapsed_time",
% “message': "286.0163ms"
]
>
chg>

Figure 8-7. SELECT Query returns two Documents

Run the following N1QL query to select all the ‘title’ fields from the data bucket ‘default’

SELECT title FROM default

The result set has two titles as compared to only one title when the default bucket had only one
document as shown in Figure 8-8.

202

CHAPTER 8 © QUERYING WITH N1QL

v Command Prompt - cbq -engine=http://192.168.1.71:8093/ _‘- _[U 5‘
chg> B
chg> SELECT title FROM default

<

“"pesultset': [

“title": “Engineering as a Service"

“title": "Quintessential and Collaborative"

1

1.
"info': [

“caller': “http_response:152",
“code': 108,

“key': “total_rows',
llmessage'l: Il2ll

}’
<
“caller": “http_response:154",
“code': 101,
“"key': “total_elapsed_time".
§ "message': "487.8279ms"
1
>
chg>

Figure 8-8. Selecting ‘title’ from the default Bucket

JSON with Nested Objects

When referring to nested documents the ‘." operator is used to refer to children, and the ‘[]’ is used to refer
to an element in an array. You can use a combination of these operators to access data at any depth in a
document. The documents added to Couchbase were simple JSON documents without any nested objects
or arrays. Next, add the following document with ID catalog4, which has nested JSON objects.

{

"journal": "Oracle Magazine",

"publisher": "Oracle Publishing",

"edition": "November-December 2013",

"title": {
"title1": "Engineering as a Service",
"title2": "Quintessential and Collaborative"

b
"author": {
"author1": "David A. Kelly",
"author2": "Tom Haunert"
}
}

The document is shown in Couchbase Console as shown in Figure 8-9.

203

CHAPTER 8 * QUERYING WITH N1QL

& Couchbase Console (2.1.1)

File Edt View History Bookmarks Develop Window Help

< = | | + @ http:fflocahast:8091index htrmi #sec =documentsibuckethame = defaultad tsPagetiurmber =Oidocd=catalogt ¢ (@ Googe

&y [T] B3 Apple Yahoo! GoogheMaps YouTube Wikipedla MNews(213) * Popular ¥ Infoogo

5]
Couchbase
& Cluster Overview Server Nodes B Tews XDC L ng
default = = Documents
catalogd (Dete | Saehs.

"ournal”:

"Ozacle Magazine™,
Oracle Publishing™,
wesber-Decenber 20137,

el”: "Engineering as a Service”,
"ticlei”: "Quintessential and Collaborative"
Tauthor”: |
"authorl™: "Dawid A. Kelly",
"auchor2”: "Tom Haunerc”™

Figure 8-9. Couchbase Document with nested JSON Objects

Save

The ‘.’ operator is used to reference the nested objects. For example, the following query is used to

select the title1 field from the nested object title.

SELECT title.titlel1 FROM default

The result set returns the title1 field in the nested object title as shown in Figure 8-10.

v Command Prompt - cbq -engine=http://192.168.1.71:8093/

chg>
chgq> SELECT title.titlel FROM default
4
“"pesultset': [
oo
3.
<

“titlel": “Engineering as a Service"
":'i.nfg": L

“caller': “http_response:152",
“code': 108,

"key': “total rouws".
“"message'’: 4"

¥»
<
“caller": “http_response:154",
“code': 161,
"key': “total_elapsed_time",
5 “"message': "281.8161ims"
1
>
chyg>

Figure 8-10. Using the ‘.’ Operator to access a nested object

204

CHAPTER 8 © QUERYING WITH N1QL

A field in a nested object may also be referred to using the [] operator with the field name in the
specified in the []. For example, the following query selects the author1 field in the nested object author.

SELECT author["author1i"] FROM default

As author1 in author is David A. Kelly, the result set includes the same as shown in Figure 8-11.

T+ /Command Prompt - chq -engine=http://192.168.1.71:8093/) =10] x|

>
chq> SELECT author[“authori"] FROM default
<

“"pesultset': [

3.
3.
{
3 "$1": “David A. Kelly"
1.
“"info': [
<
“caller': “http_response:152%,
“code': 100,
"key': “total_rows".
"message'’: 4"
2
{

“caller": “http_response:l54",
“code': 101,

“"key': “total_elapsed_time".
“"message": "261.6814%9ms"

1
>
ichg> M

Figure 8-11. Using the [] operator to access a field in a nested object

JSON with Nested arrays

The preceding example had nested JSON objects, but a top-level JSON document may also have nested
arrays. Add a document with ID catalog3 with nested arrays for the title and the author fields.

{
"journal": "Oracle Magazine",
"publisher": "Oracle Publishing",
"edition": "November-December 2013",
"title": [
"Engineering as a Service",
"Quintessential and Collaborative"
1,
"author": [
"David A. Kelly",
"Tom Haunert"
]
}

The catalog3 document is shown in the Couchbase Console as shown in Figure 8-12.

205

CHAPTER 8 * QUERYING WITH N1QL

i) . Sy T . » Sign Out
Couchbase
A& Cluster Overview Server Nodes Data Buckets Views XDCR Log Settings
default = = Documents
catalog3 |\ WBEEky SRRy | ST

"journal™: "Oracle Magazine",
"publisher™: "Oracle Publishing”,
"edition": "November-December 2013",
"ticle™: [

"Enginesring as a Service”,

"Quintessential and Collaborative"”
14
Tauthor™: [

"David A. Kelly”,

"Ton Haunert”
1

Figure 8-12. Couchbase Document with nested Arrays

To refer an element in an array the [] operator is used. Array elements are indexed starting from 0. For
example, the following query selects the first element in the title array. The AS clause is used to specify the
identifier for the result returned by the query.

SELECT title[o0] AS titleir FROM default

The query returns the first element in the title array and is identified as titlel as shown in Figure 8-13.

v Command Prompt - cbq -engine=http://192.168.1.71:8093/ i ._ _i_i-] ll
%hq) SELECT titlelB] AS titlel FROM default 3
|

“"pesultset': [|
, |

£
<

"titlel": “Engineering as a Service"

1f2
“info': [
{

caller': a"htt p_response:152",

"code"': - |
"key": “total_rows". —J
Ilmessage tl: Il3|l A

i |

<

“caller': “http_response:154",
"code': 181, |
“"key': “total_elapsed_time"., |
"message': "277.0158ms"

1
>
chg> hd |

Figure 8-13. Using the [] operator to access a nested array element

206

CHAPTER 8 © QUERYING WITH N1QL

The same query may select multiple fields/elements. For example, the following query selects the first
element in the title array and the second element in the author array.

SELECT title[o], author[1] FROM default

The result set includes the selected array elements as shown in Figure 8-14. Because an AS clause is not
specified in the query, the resultset fields are identified by the default $1 and $2 identifiers.

v Command Prompt - cbq -engine=http://192.168.1.71:8093/ _J._l-] .5]
%bq> SELECT titlel®], author[1] FROM default -
“"pesultset': [
.
<

"$1": “Engineering as a Service",
v52Y: "Tom Haunert"

>
1.
Yinfo': L
"caller": “http_response:152",
Y"code'': 108,
"key': “total_rows",
llmESSage IF: IF3|I
e
: |
"caller": “http_response:154",
code': 161,
"key': “total_elapsed_time",
5 “message': "254.0145ms"
1
>
chqg>

Figure 8-14. Selecting Multiple fields

We have added four different documents to the default bucket: catalog, catalog2, catalog3, and
catalog4. If a query to select title is run on the default bucket, all the title fields are returned. Run the
following query to select title from all documents.

SELECT title FROM default
The result set has title fields from all the documents in the default bucket. In two of the documents,

catalog & catalog?, the title field has a string value. In the catalog3 document the title field is a nested
array, and in the catalog4 document the title field is a nested JSON object as shown in Figure 8-15.

207

CHAPTER 8 © QUERYING WITH N1QL

&) Command Prompt - cbq -engine=http://192.168.1.71:8093/ . -||:||_>_(_|
?Jq) SELECT title FROM default :'
”resgltset": L
3 “title": “Engineering as a Service"
{’
5 “title": "Quintessential and Collaborative"
i
Yeditle s I
“Engineering as a Service",
"Quintessential and Collaborative"
1
B
{
Y¢itle": £
"titlel": “Engineering as a Serwvice".
"title2": “Quintessential and Collaborative"
2>
b3
“info": [
“caller': "http_response:l152",
Ycode': 100,
“key": “total_rows".
l’messagel!: ll4ll
>
{
caller': “"http_response:154",
“"code": 101,
"key": "total_elapsed_time",
3 "message': "263.815ms"
1
D>
chq> 2

Figure 8-15. Selecting ‘title’ fields from all Documents from the default Bucket

The query to select title fields may be filtered using a WHERE clause. For example, the following query
selects only those documents in which the edition field has value as ‘November-December 2013’

SELECT title FROM default WHERE edition = 'November-December 2013’

The result set has only those title fields that have the edition field set to ‘November-December 2013!

&3] Command Prompt - cbq -engine=http://192.168.1.71:8093/ = ||:||‘_>£|

21":[) SELECT title FROM default WHERE edition = ’Nouember—l)eceme 2813’ 'AI

"resultset': [
title": “Quintessential and Collaborative"
“title": [

"Engineering as a Service",
"Quintessential and Collahorative"

>
<
Yeitle''=s
"titlel": “Engineering as a Service",
"title2": “Quintessential and Collaborative"
>

1;

Figure 8-16. Using the WHERE clause to filter a SELECT query
208

CHAPTER 8 © QUERYING WITH N1QL

JSON with Nested Objects and Arrays

As the JSON documents stored in Couchbase Server are not based on a fixed-format schema complex JSON
documents with nested JSON objects and nested arrays can be queried. Add a document catalog5, which
has as value an array in which each array element is a JSON document object.

{
"catalog": [
{
"journal": "Oracle Magazine",
"publisher": "Oracle Publishing",
"edition": "November-December 2013",
"title": "Quintessential and Collaborative",
"author": "Tom Haunert"
1
{
"journal": "Oracle Magazine",
"publisher": "Oracle Publishing",
"edition": "November December 2013",
"title": "Engineering as a Service",
"author": "David A. Kelly"
}
]
}

The document ID catalogs is shown in Couchbase Console as shown in Figure 8-17.

@ Couchbase Console (2.1.1)

Fle Edt View Hstoy Bookmerks Devekp Window Heb

4 » ||+ @ http:/flocahost: 8091 findesx. htmi#sec=documer defaultidon, age =0&docid=cataogs ¢ | [Qr Googe
& [T Hi Apple vahoo! GoogleMaps YouTube Wikipeda News(213) ¥ Fopulsr ¥ Infoogo

g
Couchbase

default ~ > Documents

catalogs N |Delete | Saveds . Save

~ rcatalog®: [

"4 ourn "Oracle Magazine”,
- i

2e 20137,
"t sential and Collaborative”,
“mutho “Tom Haunert”

cle Magazine”,
racle Publizhing”,

gineering as a Jervice®,
“Pavid A. Kelly”

Figure 8-17. AJSON document with array elements as JSON documents

209

CHAPTER 8 * QUERYING WITH N1QL

A mixture of . notation and [] notation may be used to select nested arrays and JSON object fields. For
example, the following query selects the title field in the first array element from the catalog field value.

SELECT catalog[o].title AS title FROM default

If the document we added is referred to, the first array element has the title field as “Quintessential
and Collaborative,” which is returned in the result set as shown in Figure 8-18.

n.lCommand Prompt - chq -engine=http://192.168.1.71:8093/ - il:l[_;l
2bq) SELECT cataloglBl.title AS title FROM default -
“"pesultset': [

¥

3.

€.

3.

<

“title": "Quintessential and Collaborative"

1,
“info": [
{

“caller': “http_response:l152%,
“code': 160,

"key'": “total_wrows',
“"message'’: 5"

“caller': “http_response:154",
“code': 101,

"key': “total_elapsed_time".
“"message': "287.8164ms"

>
1
>
chq> _ D

Figure 8-18. Using a mixture of [| and " notation

As another example select the author field from the second element in the catalog array.
SELECT catalog[1].author AS author FROM default

The catalog5 document has the author field in the second element of the array as “David A. Kelly,”
which is the value returned in the result set as shown in Figure 8-19.

210

CHAPTER 8 © QUERYING WITH N1QL

v Command Prompt - cbq -engine=http://192.168.1.71:8093/

=101x]

%bq> SELECT cataloglil.author AS author FROM default
“"pesultset': [
¥
3.
€.
3.
<
3 “"author": “David A. Kelly"
1.
“info": [
<
"caller": “http_response:z152",
“code': 100,
"key': "total rows".
“"message'’: 5"
o
<
“caller': “http_response:154",
“code': 101,
"key': “total_elapsed_time".
5 “"message': "333.81%ms"’
1
>
chq>

Figure 8-19. Selecting the author field from the second element in the catalog array

The JSON document could be even more complex than the preceding example. Add a document
catalog6 in which the value of the catalog field is an array in which each element is a JSON object and the

journal field of the nested JSON object is an array in which each field is also a JSON object.

{
"catalog": [

"edition": "November-December 2013",
"journal": [

{ "title": "Engineering as a Service", "author": "David A. Kelly" },
{ "title": "Quintessential and Collaborative", "author": "Tom Haunert"}

]

15
{
"edition": "September-October 2013",
"journal": [
{ "title": "Plug into the Cloud", "author": "David Baum" },
{ "title": "Deploy and Manage Database Clouds", "author": "David Baum" }
]
b

211

CHAPTER 8 " QUERYING WITH N1QL

{
"edition": "July-August 2013",
"journal™: [
{ "title": "Grow up, Branch Out", "author": "David A. Kelly" },
{ "title": "The CX Factor", "author": "Bob Rhubart" }
]
}

]
}

The document with ID catalogé is shown in the Couchbase Console as shown in Figure 8-20.

@ Couchbase Consale (2.1.1) =
Fle Edt Vew Hstory Sockmads Develop Widow Heb
4 + 8 firci harvi #zoc agehirm c catalogs ¢l |a- o= -
e [1] S fpple Wohoo! GoopleMaps VouTube Whipeds Mews(213) ¥ Popus v Infoogo
catalogb s Deiste || Saveds Save

Figure 8-20. A complex JSON document with nested arrays and objects

With multiple levels of nesting the path used in the SELECT query also has multiple levels of references.
As an example, the following query selects the title field in the first array element in the journal field in the
first element in the catalog array.

SELECT catalog[0].journal[0].title FROM default.
The first array element in the catalog array is the JSON object with edition field as “November-

December 2013 The journal field in the array element is also an array in which the first element has the
title field set to “Engineering as a Service,” which is the value returned by the query as shown in Figure 8-21.

212

CHAPTER 8 © QUERYING WITH N1QL

&+ Command Prompt - cbq -engine=http://192.168.1.71:8093/ . = !Ufll
2):"1) SELECT cataloglBl. journall@l.title FROM default _:J
"pesultset': [
<.
e
18
o
€
<
5 "title": “Engineering as a Service"
i i
“info': [
<
"caller": “http_response:152",
"code'': 108,
“key': “total_rows".
“message": 6"
¥a
<

"caller": “http_response:154",
“"code'': 181,

"key': “total_elapsed_time".,
"message": "338.0193ms"

>
1
>
chg> _ i

Figure 8-21. Using multiple levels of element dereferencing

As another example select the value of the edition field in the first array element in the catalog array
with the following query. The query is filtered using a WHERE clause.

SELECT catalog[0].edition AS Edition FROM default WHERE catalog[0].edition=
'November-December 2013

The result set includes a JSON object with two fields as Edition. Two fields are returned because
another document, catalog5, also has an edition element with value ‘November-December 2013’ in the
first element in the catalog array. As the query runs on all documents in the default bucket, results from all
documents are returned.

213

CHAPTER 8 © QUERYING WITH N1QL

nmand Prompt - cbq -engi p://192.168.1.71:8093/ E =10} x|

ch SELECT catalag[B] edition AS Edition FROM default UHERE cataloglBl.edition a
chg> {AS Edition FROM default WHERE cataloglBl.edition=’MNovember—-Decemher 2013’
<

“pesultset': [

“"Edition": “Novemher—-Decembher 2813"

e

"Edition": "Novembher—Decembher 2813"

"

1.
Yinfo": [

“caller': “http_response:152",
“code': 160,

key': “total_rous",
Ilnessagetl: tlzll

*a

<
“caller": "http_response:154",
“code': 101,
"key"' “total_elapsed_time",
"message": "279.015%ms"’

>

1
>
chgq> _ M

Figure 8-22. Including the WHERE clause in array/field dereferencing

In the preceding queries the result sets had field values as strings. The field values in the JSON resultset
could be arrays or JSON objects themselves; a query of a JSON object could return a JSON object. For
example, the following query selects the journal field in the first array element from the catalog array using
a WHERE clause to include only those documents in which the edition field in the first array element in the
catalog array is set to ‘November-December 2013.

SELECT catalog[0].journal FROM default WHERE catalog[0].edition="November-December 2013’

The result set includes one of the journal field values as an array with JSON objects as array elements,
selected from the catalogb document. Another journal field is selected from the catalog5 document.

214

CHAPTER 8 © QUERYING WITH N1QL

e+ Command Prompt - cbq -engine=http://192.168.1.71:8093/ - !ﬂiﬂ
I
3 B

chg>

chq> SELECT cataloglB]l1. journal FROM default WHERE cataloglBl.edition=’'MNovembher—|
chgq> {l.journal FROM default WHERE catalogl@l.edition=’November-December 2013’
<

“pesultset': [

“journal': ""Oracle Magazine"

“journal': [
{

"author': "David A. Kelly",
"title": “Engineering as a Service"

p
{
Yauthor': “Tom Haunert",
3 "title": “Quintessential and Collabhorative"
1
>
]f
Yinfo': [
"caller": “http_response:152",
“"code'': 108,
key': “total_rows".
!!message U’: !’2ll
¥
<
"caller": "http_response:154",
"code'': 101,
"key': “total_elapsed_time".,
5 "message": "283.0162ms"
1
>
chg> Y

Figure 8-23. Resultset with a field value as an array

All of the standard comparison operators (>, >=, <, <=, =, and !=) are supported in the WHERE clause.
Next, we shall run some example queries from the documents in the default bucket. Select the journal field
in the first array element in the catalog array in which the title field of the first array element of the journal
field is ‘Engineering as a Service’ as shown in Figure 8-24.

SELECT catalog[0].journal FROM default WHERE catalog[o0].journal[0].title="Engineering as a
Service'

215

CHAPTER 8 * QUERYING WITH N1QL

Tv)Command Prompt - cbq -engine=http://192.168.1.71:8093/ =10 x|

chgq> SELECT cataloglB]l. journal FROM default WHERE catalog[B].journal[ﬁ].title=’3
chgq> {FROM default WHERE catalogl@]l.journallBl.title="Engineering as a Service’ |
<
“"pesultset': [
“journalv: [
£
“"author': "David A. Kelly".
3 "title": “Engineering as a Service"
{’
Yauthor": “Tom Haunert".
"title": “Quintessential and Collabhorative"
1
>
llinf2|l: [
“caller': “http_response:152Y,
“code': 100,
"key": “total_rows".
"message": "1V
e
<
“caller': “http_response:154",
“code': 101,
"key': "total_elapsed_time",
"message": "281.016ms"
>
1
>
chg> ¥

Figure 8-24. Select a journal field

The value returned is an array with each element as a JSON object. The value is selected from the
catalog6 document.

Select the edition field in the first element in the catalog array in which the journal field has the title
field in its first array element as ‘Engineering as a Service'

SELECT catalog[o0].edition

FROM default WHERE catalog[0].journal[0].title="Engineering as a
Service'

The query returns only one edition field from the catalogé document as shown in Figure 8-25.

216

CHAPTER 8 © QUERYING WITH N1QL

Tv)Command Prompt - cbq -engine=http://192.168.1.71:8093/ F =101 x|

chgq> SELECT cataloglBl.edition FROM default WHERE cataloglBl. journallBl.title='|a
chg> {FROM default WHERE cataloglBl.journallBl.title=’Engineering as a Serwvice’

“"pesultset': [

"edition": “Novemher—Decembher 2813"

“info": [
<

"caller": “http_response:152",
"code': 108,

"key': “total_rows".
"message'’: "1V

"caller": “http_response:154",
“"code'': 101,

"key': “total_elapsed_time".
"message": "275.0157ms"’

- J

>
chg> .

Figure 8-25. Running a complex SELECT query

Select journal, publisher, title, author field values from documents in which the edition field is set
to “November-December 2013

SELECT journal, publisher, title, author from default WHERE edition="November-December 2013"

The result set array has multiple JSON documents as elements as multiple documents as shown in
Figure 8-26.

217

CHAPTER 8 * QUERYING WITH N1QL

v Command Prompt - cbq -engine=http://192.168.1.71:8093/

“pesultset': [

"author": "Tom Haunert",

“journal': "Oracle Magazine",

“publisher': “Oracle Publishing",

"title": "Quintessential and Collaborative"

Yauthor": [

“"David A. Kelly",
p “"Tom Haunert"
"journal': "Oracle Magazine',
“publisher": “Oracle Publishing",
"ecitle": [

“Engineering as a Service",

"Quintessential and Collahorative"

Y"author': {
Yauthor1": "David A. Kelly",
Yauthor2": “"Tom Haunert"

"journal': "Oracle Magazine".,

“publisher": “Oracle Publishing",

"eitle": ¢
“titlel": “Engineering as a Service",
"title2": “Quintessential and Collaborative"

=101x]

ichg> SELECT journal, publisher, title, author from default WHERE edition="Novemb a
chgq> {lisher, title, author from default WHERE edition="November—Decembher 28013"

Figure 8-26. Multiple JSON documents in the resultset

The WHERE clause is useful when the result set is required to be filtered. One of the documents has an
edition set to “November December 2013” instead of “November-December 2013 The journal, publisher,

title, and author fields from the document may be selected with the following query.

SELECT journal, publisher, title, author from default WHERE edition="November December 2013"

The filtered result set includes one row as shown in Figure 8-27.

218

CHAPTER 8 © QUERYING WITH N1QL

&) Command Prompt - cbq -engine=http://192.168.1.71:8093/ = ||:||‘£I

chg> SELECT journal, publisher, title, author from default WHERE-Edition="Nouemﬂ:]
chq> {lisher, title, author from default WHERE edition="MNovember December 2813" |
K |

"resgltset": [

Yauthor": "David A. Kelly".
“journal': “Oracle Magazine",
“publisher”: "Oracle Publishing".
“title": “Engineering as a Service"

1.
Yinfo': [
<

“caller': "http_response:152",
Ycode': 100,

“key": “"total_rows",
"message': 1"

Ycode": 181

Ykey"': "total_clapsed_time”.
“message': 259 _0148ms"

1
>
chy> =

Figure 8-27. Using the WHERE clause in a SELECT query to get one row

"caller":a”http_respoase=154".

Complex JSON structures may be selected from a document with complex JSON structures using a query
with a top-level path. For example, the following query selects the first element in the catalog array from all
documents in which the first element in the catalog array has the edition field set to ‘November-December 2013!

SELECT catalog[0] FROM default WHERE catalog[0].edition="November-December 2013’

The resultset includes complex JSON structures as shown in Figure 8-28.

=v]Command Prompt - cbq -engine=http://192.168.1.71:8093/ =101 x|

chbg> SELECT catalog[@]1 FROM default WHERE catalog[ﬁ].edition=’Nouember—Decembeﬂz]
chq> {ataloglB] FROM default WHERE catalogl[Bl.edition=’MNovember—-December 2013°
K |

“resgltset": [

u$1 . {
Yauthor": “"Tom Haunewt",
Yedition': “MNovember—December 2613",

"journal': "Oracle Magazine".
"publisher': "Oracle Publishing".
“title": "Quintessential and Collaborative"

>
p |
<
|’$1Il: {
“"edition": “"Novemher—-December 2813". |
”jougnal":
“author": “"David A. Kelly",
"title": “Engineering as a Service" |
¥
<
author": "Tom Haunert",
title": “Quintessential and Collaborative" [
J u
> [
} I
1 |~

Figure 8-28. Complex JSON structures in the result set
219

CHAPTER 8 " QUERYING WITH N1QL

Applying Arithmetic & Comparison Operators

N1QL supports the common arithmetic operators +, -, /, * and %. Add a JSON document that has an id field
value as an integer on which we may apply the arithmetic operator.

{
"id": 1,
"journal": "Oracle Magazine"

}

The document with id catalog7 is shown in the Couchbase Console in Figure 8-29.

@ Couchbase Console (2.1.1)

Fie Edt View History Bockmarks Develop Window Help
4> + |6 http:/flocahost:8091/incex. htmi #sec = documentssbuckethame = defaultEdocumentsPagetimber = O8docid = catalog? < | | Q- Goog
& [0 HE Apple Yahoo! GoogleMaps YouTube Wikipedia News(242) ¥ Popusr v Infoogo

]

Couchbase
L

default - > Documents

catalog7 I Delete | | Save As... Save

"t "Dracle Magazine™

Figure 8-29. A JSON Document with a numeric id

The following SELECT query makes use of the * operator on the value of the id field.
SELECT id*10, journal from default WHERE journal="Oracle Magazine"

The id field value returned is multiplied by 10 in the resultset. The WHERE clause includes all documents

in which the journal field is set to “Oracle Magazine” regardless of whether the document has an id field or
not as shown in Figure 8-30.

220

CHAPTER 8 © QUERYING WITH N1QL

v Command Prompt - cbq -engine=http://192.168.1.71:8093/ _ - ._l- _lﬂ .5'
2hq) SELECT id*18, journal from default WHERE journal=""Oracle Magazine" -
"res%ltset": [
3 "journal’: "Oracle Magazine"
{’
“journal': "Oracle Magazine"
e
<
5 "journal”: ""Oracle Magazine"
{F
“journal': “Oracle Magazine"
Fi
<
i DL [8
3 “journal’: “Oracle Magazine"
“info': [
“caller': “http_response:152",
code': 168,
"key': “total_rows",
} IlmesSagell: Il5ll
{’
"caller': "http_response:154",
code': 161,
"key'": "total_elapsed_time",
% "message": "286.0163ms"
1
> Rd|

Figure 8-30. Using arithmetic Operators

N1QL also supports the comparison operators >, >=, <, <=, =, and ! =. To demonstrate the use of the
comparison operators, add some documents (key-value pairs) with numerical values as listed in Figure 8-31.

D Content
KY { "kKey": 5.5, "value”: 11122013 }
Kv2 { "key": 4.5, "value”: 10 }
KV3 { "key": 10, "value": 10 }

Figure 8-31. Key/value pairs with numeric values

221

CHAPTER 8 " QUERYING WITH N1QL

Run the following query to select the value in which key is greater than 5 as denoted by the comparison
operator >.

SELECT value FROM default WHERE key > 5

The result set includes all the value fields greater than 5 as shown in Figure 8-32.

[c+. Command Prompt - cbq -engine=http://192.168.1.71:8093/ : ,.__[- _JU .’Sl
gbq) SELECT value FROM default WHERE key > 5 -

"resgltset": [

“walue": 1.1122613e+87

ek

5 "yalue': 10 Ly

1. 2

Figure 8-32. Using the comparison Operator >

Applying ROUND() and TRUNG() Functions

N1QL supports the built-in functions ROUND() and TRUNC(). The ROUND() function rounds off a value and the
TRUNC() function truncates a value. Run the following query to select rounded-off key and truncated value
from all the documents.

SELECT ROUND(key), TRUNC(value/7) from default

Three of the JSON objects returned by the query include the numerical key-value pairs in which the key
is rounded off and the value is truncated as shown in Figure 8-33. The other documents also return key-value
pairs with both the key and the value fields set to null.

222

CHAPTER 8 © QUERYING WITH N1QL

e+ Command Prompt - cbq -engine=http://192.168.1.71:8093/ _I_I-] 1'
2]:":() SELECT ROUND<(key>, TRUNC{valuer/?7> from default 3
"resgltset“: [
st bl Y
$ v62": 1.588859%e+@6
4
a ll: 5,
.'$2!.: 1
2.
{
L ik
.l$2!l: 1
2 8
4
a1 null.
“$2': null
z 8
<
"e1': null.
"2 pull
¥
<
a1t null.
"2 null
i
{
ve1v: null,
"$2': null
i
{
"e1': null.
“$2Y: null
z 8
4
a1t null.
wg2v: pull
¥
{
el null.
3 “$2': null
L hd|

Figure 8-33. Using ROUND() and TRUC() function

Concatenating Strings

The || operator can be used to concatenate (link) strings. The following query concatenates the string values
returned for the journal, publisher, edition, and title and author fields from documents with edition field
set to ‘November December 2013!

SELECT journal || " " || publisher || " " || edition || " " || title || " " || author FROM
default WHERE edition='November December 2013’

The resultset includes a string value created from joining the string values of individual fields as shown
in Figure 8-34.

223

CHAPTER 8 * QUERYING WITH N1QL

v Command Prompt - cbq -engine=http://192.168.1.71:8093/) ..[[5'
cbq> SELECT journal ii " * i! publisher ii “ " i} edition ii © " i} title ii " "_:]
chg> {tle i1 " " il author FROM default WHERE edition=’November Decembher 2013’

“pesultset': [

v$1v: “Oracle Magazine Oracle Publishing Movember December 2013 Engi
neering gs a Service David A. Kelly

.|inf2.': [

"caller”' “http_response:152",
“"code': 168,
"key"' “total_rows",
"message': 1Y

7.

<
“caller': “http_response:154",
“code': 101,
"key': “total_elapsed_time",
"message": "266.8153ms"

>

1
>
chg> ¥

Figure 8-34. Using String concatenation

Matching Patterns with LIKE & NOT LIKE

N1QL supports using string patterns in the SELECT statement. The LIKE clause is used to match a pattern. The
% can be used as a wildcard to match 0 or more characters. The underscore _ can be used as a wildcard to
match exactly one character. The following query uses a string pattern to match titles which start with “Quin.”
SELECT title FROM default WHERE title LIKE 'Quin’k’

The title that starts with ‘Quin’ is returned in the result set as shown in Figure 8-35.

v Command Prompt - cbqg -engine=http://192.168.1.71:8093/ = [I:Ifﬂ

chg>
2bq) SELECT title FROM default WHERE title LIKE ’Quinx’

“"pesultset': [
"title": "Quintessential and Collabhorative"

iz 24

Figure 8-35. Using the LIKE clause for pattern matching

The following query selects title field in documents with edition field specified by a string pattern in
which the _ character is used.

SELECT title FROM default WHERE edition LIKE 'No_ember-_ecember 201 '

The resultset includes title fields with edition field value as ‘November-December 2013’ as shown in
Figure 8-36.

224

CHAPTER 8 © QUERYING WITH N1QL

=v)Command Prompt - cbq -engine=http://192.168.1.71:8093/] =10f x|

chg> _:j
chgq> SELECT title FROM default WHERE edition LIKE ’MNo_ember-_ecember 2081_°
\
“"pesultset': [
"title": "Quintessential and Collaborative"
"title": [

"Engineering as a Service".
"Quintessential and Collaborative"

1
i
<
"title": {
"titlel": "Engineering as a Service",
"title2": "Quintessential and Collaborative" L
>
% ~|

Figure 8-36. Using the _ character in pattern matching

The NOT LIKE clause can be specified to select fields in which the specified pattern is not matched. In the
following query the title field is selected from documents in which the title does not match the pattern Quin’%.

SELECT title FROM default WHERE title NOT LIKE 'QuinZ%'

The result set includes the title that does not match the pattern as shown in Figure 8-37.

T+ Command Prompt - cbq -engine=http://192.168.1.71:8093/ =101 x|
ﬁggg SELECT title FROM default WHERE title NOT LIKE ’Quinx’
s “resultset": [
$ “title": "Engineering as a Service"
']'info“: L .

Figure 8-37. Using the NOT LIKE clause

Including and Excluding Null and Missing Fields

N1QL supports testing null and missing field values using the IS NULL and IS MISSING clauses. To test null
and missing field conditions, add a document KV with a field value as null as shown in Figure 8-38.

e

Ykey': 5.35;
"galue™: 11122013,
"value2™: null

Figure 8-38. JSON Document with a null field value
225

CHAPTER 8 * QUERYING WITH N1QL

Use the following query to select a key from a document in which the value2 field is null.
SELECT key from default WHERE value2 IS null

The key-value pairs from the document in which the value2 field is null is returned as shown in
Figure 8-39.

=v]Command Prompt - cbq -engine=http://192.168.1.71:8093/ _ =10f x|

chg>
chgq> SELECT key from default WHERE value2 IS null
A

“"pesultset': [
“key': 5.5

1,
“info": [
{

Figure 8-39. Including the null field with the IS NULL clause

The following query selects key field from documents in which the value2 is missing.
SELECT key from default WHERE value2 IS MISSING

The KV2 and KV3 documents are returned in the resultset as shown in Figure 8-40.

v Command Prompt - cbq -engine=http://192.168.1.71:8093/ - [U[ﬂ

chqg>

chgq> SELECT key from default WHERE value2 IS MISSING
A

“resultset': [

"key': 4.5

ek

llkeyll: 18

L

Figure 8-40. Using IS MISSING clauses

The IS NOT NULL and IS NOT MISSING clauses can be used to test the conditions in which a value is not
null or not missing.

Using Multiple Conditions with AND

Multiple conditions can be tested in selecting documents using the AND clause. The following query tests
the condition that the edition field in the first element in the catalog array is ‘November-December’ and the
journal field in the first element in the catalog array is ‘Oracle Magazine!

SELECT catalog[0] FROM default WHERE catalog[0].edition="November-December 2013' AND
catalog[0].journal="0Oracle Magazine'

The result set contains the catalog[0] array element from the catalog5 document as shown in Figure 8-41.

226

CHAPTER 8 " QUERYING WITH N1QL

=v)Command Prompt - cbq -engine=http://192.168.1.71:8093/ =10 x|

hl’.‘() -
bg> SELECT catalog[@] FROM default WHERE catalog[ﬁ]-edition='Houemher—l)ecembev—l
bg> {edition=’MNovember—-December 2013’ AND cataloglBl.journal=’0Oracle Magazine’

<

“"pesultset': [

|.$1 w : { 4
“author': “Tom Haunert",
Yedition": "Movember—December 2813".
Yjournal': "“Oracle Magazine",
“publisher': “Oracle Publishing",
“title": "Quintessential and Collabhorative"

> hd

Figure 8-41. Using multiple conditions with the AND clause

As another example of the AND operator select the catalog[0] array element from documents with the
edition in the catalog[0] set to ‘November-December’ and the catalog[1].edition setto
‘September-October 2013!

SELECT catalog[0] FROM default WHERE catalog[0].edition="November-December 2013"' AND
catalog[1].edition="September-October 2013'

The first array element from the catalog array in the catalogb document is returned in the result set as
shown in Figure 8-42.

%v)Command Prompt - cbq -engine=http://192.168.1.71:8093/ =10 x|

ichgq> SELECT cataloglB] FROM default WHERE cataloglBl.edition=’MNovember-December .
chgq> {=’November—Decembher 2813’ AND catalogllil.edition=’September-Octobher 2013’

“"pesultset': [
<

t'$1!’: {
:qditi02:= “November—December 2613",
journal:

"author": “David A. Kelly".
"title": “Engineering as a Service"

}J
<
“"author': “"Tom Haunert",
3 "title": "Quintessential and Collaborative"

>

H B

Figure 8-42. Another example of using the AND clause

Making Multiple Selections with the OR Clause

The OR clause may be used to select one of the several conditions. The following query selects the title field
in which the author is either ‘David A. Kelly’ or ‘Tom Haunert’

SELECT title FROM default WHERE author='David A. Kelly' OR author='Tom Haunert'

The result set includes the title field values from the catalog2 and catalog3 documents as shown in
Figure 8-43.

227

CHAPTER 8 * QUERYING WITH N1QL

v, Command Prompt - cbq -engine=http://192.168.1.71:8093/ ;[Q[

X|

chg> SELECT title FROM default WHERE author=’David A. Rell}‘ OR author=’Tom Hau
chg> {title FROM default WHERE author=’David A. Kelly’ OR author=’Tom Haunert’
<

“"pesultset': [

“title": "Engineering as a Service"

ek

"title": "Quintessential and Collaborative"
>

1.

-

Figure 8-43. Using the OR clause

Ordering Result Set

The results can be ordered using the ORDER BY clause to order by a specific field in ascending order by
default. Adding the DESC clause orders in descending order instead. The following query selects all
“key” and “value” fields and orders them by the “value” field in descending order.

SELECT key, value from default ORDER BY value DESC

The result set includes the “key” and “value” fields from the KV, KV2, and KV3 documents ordered by
value in descending order as shown in Figure 8-44.

Tv]Command Prompt - cbq -engine=http://192.168.1.71:8093/ _ =]

X|

2hq) SELECT key, value from default ORDER BY wvalue DESC
Y"pesultset': [
key': 5.5,
"walue": 1.1122013e+87

"key': 10,
"walue': 10

"key': 4.5,
"value': 10

Figure 8-44. Using the ORDER BY clause

Using LIMIT and OFFSET to Select a Subset

The number of results returned in the resultset can be limited using the LIMIT clause. When we ran the
following query, two results were returned.

SELECT catalog[0] FROM default WHERE catalog[0].edition="'November-December 2013’
To limit the number of results to one in the preceding query add LIMIT 1 to the query.
SELECT catalog[0] FROM default WHERE catalog[0].edition="November-December 2013' LIMIT 1

The result set includes only one result, the first result, instead of two as shown in Figure 8-45.

228

CHAPTER 8 © QUERYING WITH N1QL

=v)Command Prompt - cbq -engine=http://192.168.1.71:8093/ =10] x|

chg> SELECT cataloglB] FROM default WHERE catalog[ﬂ].ed:i.tion='Nt;uenber—])ecenber;l
chg> {1 FROM default WHERE catalogl@l.edition=’Novembher-December 2013’ LIMIT 1
<

“resultset": [

u$1": {
Yauthor": “"Tom Haunert",
Yedition": "“November-December 2813",
Yjournal'”: "Oracle Magazine",
“publisher': “Oracle Publishing",
"title": "Quintessential and Collabhorative" —

>

1
“info': [hd|

Figure 8-45. Using the LIMIT clause

But, if only the second of the two results is required, add the OFFSET clause to the query.

SELECT catalog[0] FROM default WHERE catalog[0].edition="November-December 2013"' LIMIT 1
OFFSET 1

The resultset includes only the second result as shown in Figure 8-46.

Tv]Command Prompt - cbq -engine=http://192.168.1.71:8093/ =10 x|

chgq> SELECT catalog[B] FROM default WHERE catalog[ﬁl].editio='Houenber—Decenber;
chq> {efault WHERE cataloglBl.edition=’MNovember—December 2013’ LIMIT 1 OFFSET 1
\

“"pesultset': [
!!51!!: {
Yedition'": "“November—-December 2813",
“journal': [
“author": “David A. Kelly",
"title": “Engineering as a Service"

“"author': “Tom Haunert",
"title": "Quintessential and Collaborative"

>

1.
Yinfo': [j

Figure 8-46. Using the LIMIT and OFFSET clauses

Grouping with GROUP BY

The GROUP BY clause may be used to group multiple results by the value of a common field. The following
query returns the catalog field and the document count grouped by the catalog field. The document count is
returned as a separate object. Each of the catalog field values is returned as a separate JSON object with the
corresponding document count to indicate the number of JSON documents in each group.

SELECT catalog, COUNT(*) AS count FROM default GROUP BY catalog

229

CHAPTER 8 * QUERYING WITH N1QL

In the result set from the query, the document count is returned as a separate object as shown in
Figure 8-47. Each of the catalog field values is returned as a separate JSON object with the corresponding
document count to indicate the number of JSON documents in each group.

v, Command Prompt - cbq -engine=http://192.168.1.71:8093/ |

%hq) SELECT catalog, COUNT<(*> AS count FROM default GROUP BY cataiag
Yresultset': [

“"count": 8

"catalog": [

"author': "Tom Haunert".

“edition": “November—December 2813",
"journal': "Oracle Magazine",

“publisher': "Oracle Publishing",

“title": “Quintessential and Collahorative"

i
£
“"author": “"David A. Kelly",
“edition": "“November December 2813",
Yjournal': “Oracle Magazine".
“"publisher': "Oracle Publishing",
2 "titleY: “Engineering as a Service"
1.
Ycount": 1

el
w

“catalog": [

Yedition": “Novemher-December 2813",
“journalv: [
<

“"author": "David A. Kelly",
"title": "“Engineering as a Service"

“"edition": "July—-August 2613,
".:iouz-nal":

>
{
“author': "Tom Haunert"'.
“title": "Quintessential and Collabhorative"
>
1
> o
£
"edition": "September-Octobher 2013",
"jouznal": [
“author': "David Baum",
5 “title": "Plug into the Cloud"
{’
Yauthor': “"David Baum".
3 "title": "Deploy and Manage Database Clouds"
1
Fa
{

Figure 8-47. Using the GROUP BY clause

230

CHAPTER 8 © QUERYING WITH N1QL

Filtering with HAVING

The HAVING clause when added subsequent to the GROUP BY clause filters the resultset using the condition
specified in HAVING. The following query adds the HAVING clause to the preceding query.

SELECT catalog, COUNT(*) AS count FROM default GROUP BY catalog HAVING COUNT(*) > 1

Only JSON document objects with a count greater than one are returned, which excludes all the
catalog field JSON documents as none have a count greater than one as shown in Figure 8-48.

T+v)Command Prompt - cbq -engine=http://192.168.1.71:8093/ (O] x|

chq> SELECT catalog, COUNI(»*> AS count FROM default GROUP BY catalog HAUVING COU .
chg> {log, COUNT<(>> AS count FROM default GROUP BY catalog HAUING COUNT<(»> > 1
<

“"pesultset': [
“count": 8

1,
“info": [
{

B

Figure 8-48. Using the HAVING clause

Selecting Distinct Values

Duplicate result objects may be returned using the DISTINCT clause. The following query returns distinct
edition fields.

SELECT DISTINCT edition FROM default

Only two distinct fields are returned by the query as shown in Figure 8-49.

v Command Prompt - cbq -engine=http://192.168.1.71:8093/ ._[_l-] 5'
21::() SELECT DISTINCT edition FROM default -

Y"pesultset': [

»

Lalal
W

"edition': “Novemher December 2813"

"edition": "Novemher—Decembher 2013"

LU L

1,
“info': [
{

L L

Figure 8-49. Using the DISTINCT clause

Summary

In this chapter we discussed the Couchbase Query Language N1QL. We ran the SELECT query to select
document/s from Couchbase. We used the WHERE clause in SELECT query to filter the resultset. We also
discussed other clauses such as LIKE, NOT LIKE, AND, OR, LIMIT, GROUP BY, and HAVING. We also discussed
some commonly used functions such as ROUND() and TRUNC(). In the next chapter we will migrate a
MongoDB document to Couchbase.

231

CHAPTER 9

Migrating MongoDB

MongoDB is an open source NoSQL database written in C++ with support for dynamic schemas. MongoDB
stores documents in JSON-like format called BSON. BSON supports embedding of objects and arrays within
other arrays and objects. BSON is lightweight, traversable, and efficient. While MongoDB offers some of

the same advantages offered by Couchbase, it also has some limitations. Couchbase has the following
advantages over MongoDB.

Scalability. Couchbase is scalable and it is easy to add new servers to a cluster.
Couchbase cluster manager is built on top of Erlang/OTP, a proven environment for
building fault-tolerant distributed systems. For MongoDB the configuration is fixed;
once the shard key, the key to distribute documents between different nodes of a
shard cluster, is defined it is fixed and is difficult to change afterwards.

Monitoring. Couchbase comes with a monitoring package while MongoDB requires
a subscription. MongoDB can be monitored using the command-line, but the
command-line does not provide a graphical user interface.

Querying. Couchbase provides querying using views, which is based on the
Map-Reduce concept. A map function and a reduce function may be defined
for a query. Couchbase also provides Elasticsearch as a plug-in. MongoDB
provides querying based on SQL-like operators with support for indexes and
secondary indexes.

Management Console. Couchbase provides a Management GUI Console, which
MongoDB doesn’t.

In this chapter we shall migrate data from MongoDB to Couchbase Server. The chapter has the
following sections.

Setting Up the Environment

Creating a Maven Project

Creating Java Classes

Configuring the Maven Project

Creating a BSON Document in MongoDB

Migrating the MongoDB Document to Couchbase

233

CHAPTER 9 " MIGRATING MONGODB

Setting Up the Environment

Download the following software for Couchbase Server and MongoDB.

e Couchbase Server Community or Enterprise Edition 3.0.x (or later version)
couchbase-server-enterprise_3.0.3-windows_amd64..exe file from
http://www.couchbase.com/nosql-databases/downloads. Double-click
on the exe file to launch the installer and install Couchbase Server.

e Eclipse IDE for Java EE Developers from http://www.eclipse.org/downloads/.

e MongoDB 3.04 (or a later version) Windows binaries mongodb-win32-x86_64-
2008plus-ssl-3.0.4-signed.exe from http://www.mongodb.org/downloads.
Double-click on the mongodb-win32-x86_64-2008plus-ssl-3.0.4-signed.exe file
to install MongoDB 3.04. Add the bin directory, for example, C:\Program Files\
MongoDB\Server\3.0\bin, to the PATH environment variable.

Start MongoDB server with the following command.
>mongod

MongoDB server gets started as shown in Figure 9-1.

N
BEX Administrator: C:\Windows\system32\cmd.exe - mongod E@‘i’

e

C:\MongoDB>mongod -
2015-87-18TP6:32:39.689-8788 I CONTROL Hotfix KB2731284 or later update is not L
installed, will zero—out data files

A15-07-18TP6:32:39.890-A70@ 1 JOURNAL [initandlisten] journal dir=C::\datasdb\j

ournal
2815 B7-108T66:32:39.891-8780 I JOURNAL [initandlisten] recover : no journal fil
present. no recovery needed

2915 A7-108T86:32:39.923-8780 I JOURNAL [durability] Durability thread started

2015- g?—IBTIG :32:39.926-8780 I JOURNAL [journal writer] Journal writer thread s

tarte

2015-07-18T0A6:32:39.987-8780 1 CONTROL [initandlisten] MongoDB starting : pid=6

692 port=27017 dbhpath=C:\data\db\ 64-bit host=dvohra-PC

2015-87-18TP6:32:39.987-8780 1 CONTROL [initandlisten] targetMin0S: Windows 7/
indows Server 20088 R2

2815-07-10TA6:32:39.987-078@ 1 CONTROL [initandlisten] db version v3.08.4

2015-87-10T06:32:-39.987-0708 I CONTROL [initandlisten] git version: B481c958dae

h2969800511e?4?75dc66986fa%edS

2015-87-10T06:32:39.987-8708 I CONTROL [initandlisten] OpenSSL version: OpenSSL
1.8.1mn—fips 19 Mar 2015

2015-87- 1IT06 32:39.987-8708 I CONTROL [initandlisten] build info: windows sys.

getwindowsversion{(major=6, minor=1, bhuild=76081, platform=2, service_pack=’Servic

e Pack 1’> BOOST_LIB_UERSION=1_49

2015-87-10T06:32:39.987-8780 1 CONTROL [initandlisten] allocator: tcmalloc

2015-87-10TA6:32:39.988-878@ 1 CONTROL [initandlisten] options: {3

2015-87-10T06:32:42.644-8708 I NETWORK [initandlistenl] waiting for connections

on port 276817

Figure 9-1. Starting MongoDB

234

http://www.couchbase.com/nosql-databases/downloads
http://www.eclipse.org/downloads/
http://www.mongodb.org/downloads

CHAPTER 9 " MIGRATING MONGODB

Creating a Maven Project
Next, create a Maven project in Eclipse.
1. Select File » New » Other.

2. Inthe New window, select Maven » Maven Project and click on Next as shown
in Figure 9-2.

a—— e —
8] New | D S
Select a wizard p—>
Create a Maven Project
J =

Wizards:
ltype filter text I

P % Git -

b Java

b (= Java EE

b = Java Emitter Templates

b (= JavaScript

b = JAXB

> & JPA

4 (= Maven
% Check out Maven Projects from SCM
M< Maven Module

% Mawven Project

b (= Plug-in Development e

@ <Back [Next> QH Finish | (... Cancel. |

Figure 9-2. Selecting Maven » Maven Project

235

CHAPTER 9 " MIGRATING MONGODB

3.

In the New Maven Project wizard select the “Create a simple project” check box

and the “Use default Workspace location” check box and click on Next as shown

in Figure 9-3.

i@ New Maven Project

—TT e

New Maven project

Select project name and location

™

[¥] Use default Workspace location

Create a simple project (skip archetype selection)

Location: l

) (Emes)

[] Add project(s) to working set

Warking set: [Vl [Mare... }
» Advanced
@ . <Back " Next > !}J [Finish } [Cancel

Figure 9-3. Creating a new Maven Project

236

CHAPTER 9 " MIGRATING MONGODB

To configure the Maven project, specify the following settings and click Finish as shown in Figure 9-4.
e Group Id: com.couchbase.configuration
e Artifact Id: MongoDBToCouchbase
e Version: 1.0.0
e Packaging: jar

e Name: MongoDBToCouchbase

@] New Maven Project - E=ES—)

New Maven project
Configure project

Artifact

Group Id: com.couchbase.migration v
Artifactld: MongoDBToCouchabse -
Version: 1.0.0 -

Packaging: jar -

Name: MongoDBToCouchabse ~

Description: -

Parent Project

Group Id: v
ArtifactId: v
Version: - I_Browse...” Clear]
L]
» Advanced
@ . < Back l[Next >] l Finish ['\ I [Cancel

Figure 9-4. Configuring Maven Project

237

CHAPTER 9 " MIGRATING MONGODB

A Maven project gets added to the Package Explorer in Eclipse as shown in Figure 9-5.

Quick Access I.I B | 92 Jna ke
I% Package Explorer &2 = B [u MongoDBToCouchabse/pomaml 53 e = |
9 9
& e ’
EEI%® 7 overview Q $
- MongoDEToCouchabse
srefmainfjava Q Artifact ~ Project
@ srefrmain/resources A
@ srcftestfjava Group Id: com.couchbase migration Name: MongoDBToCouchabse
& srcftest/resources Artifactld: + MongoDBToCouchabse URL:
b ; E Sysam Libary k11051 Version: 100 Description: -
b & src
& target Packaging: | jar e
1
8 pomaan » Parent)
» Properties i
Inception:
* Modules MNew module element e =
Ovtm'tw] Dependencies [

IUepend:ncyHimrchy| Effective POM | pom.ml |

Figure 9-5. Maven Project in Package Explorer

Creating Java Classes

We shall migrate a MongoDB database document to Couchbase Server in a Java application. Create two
classes: CreateMongoDB and MigrateMongoDBToCouchbase.

1.
2.

To create a Java class select File » New » Other.

In the New window, select Java » Class and click on Next as shown in Figure 9-6.

238

CHAPTER 9 " MIGRATING MONGODB

R ——

Select a wizard

Create a Java class

Wizards:
| type filter text |

4 (= Java -
@ Annotation

G Enum
€& Interface

25 Java Project
& Java Project from Existing Ant Buildfile
15} Java Working Set
#5 Package
&9 Source Folder
b = Java Run/Debug
b & JUnit -

@ <Back |[LNext> %][Finish | (L..Cancel

Figure 9-6. Selecting Java » Java Class

239

CHAPTER 9 " MIGRATING MONGODB

3. InNew Java Class wizard select the Source folder and specify Package as
couchbase. Specify class Name as CreateMongoDB and click on Finish
as shown in Figure 9-7.

f@] New Java Class EIEE‘

Java Class
Create a new Java class. @

Source folder: MongoDBToCouchabse/src/main/java ~ Browse...
Package: couchbase Browse..,
[F]Enclosing type: |] [Browse...]
Name: CreateMongoDB

Modifiers: @ public ©) package private protected

abstract [final [] static

Superclass: javalang.Object Browse...

Interfaces: | Add... I

Which method stubs would you like to create?
[¥] public static void main(String[] args)

@ < Back l[Next >] [Finish S [Cancel

Figure 9-7. New Java Class Wizard

240

CHAPTER 9 " MIGRATING MONGODB

4. Similarly, add a class MigrateMongoDBToCouchbase as shown in Figure 9-8.

(@] New Java Class | ——

Java Class

Create a new Java class.

Which method stubs would you like to create?
[¥] public static void main(String[] args)

Source folder: MongoDBToCouchabse/src/main/java
Package: couchbase _
[T] Enclosing type: |] [Browse...]
Name: MigrateMongoDBToCouchbase
Modifiers: @ public ©) package private () protected

[abstract [final [] static
Superclass: javalang.Object . Browse..,
Interfaces: Add...

@ oo<Back)| Net> | [Finish E; | Cancel

Figure 9-8. Creating MigrateMongoDBToCouchbase Java Class

241

CHAPTER 9 " MIGRATING MONGODB

The two classes CreateMongoDB and MigrateMongoDBToCouchbase are shown in Package Explorer as
shown in Figure 9-9.

ORI
File Edit Source Refactor Mavigate Search Project Run Window Help

[4 Package Explorer 53 | = ('q";| ¢ T =0 MongoDBToCouchabse/pomxml J] CreateMongoDB.java [4] *MigrateMongoDBToCouchbasej.. &2

55 | 52 Java EE

4 [/ MongoDBToCouchabse| 1 packege couchbase;
4 (@ srcfmainfjava [:? 2
4 8 couchbase
b [CreateMongoDB.java
b [4] MigrateMongoDBToCouchbase java
@@ src/mainfresources
@@ srcftestfjava
(@8 src/test/resources 2
i B JRE System Library [jak1.7.0_51] 1
b & src
(= target
[pornaaml

public class MigrateMongeDBTeCouchbase {

public static void main{String[] args) {

}
}

3
4
5
]
7
-]
9
@
1

Figure 9-9. Java Classes in Package Explorer

Configuring the Maven Project

We need to add some Maven dependencies to the project classpath. Add the dependencies listed in Table 9-1
to pom.xml configuration file in the Maven project.

Table 9-1. Maven Dependencies

Dependency Description

Mongo Java Driver 3.0.2 The MongoDB Java driver required to access MongoDB
from a Java application.

Couchbase Server Java SDK Client library 2.1.3 The Java Client to Couchbase Server.

Apache Commons BeanUtils 1.9.2 Utility Jar for Java classes developed with the JavaBeans
pattern.

Apache Commons Collections 3.2.1 Java Collections framework provides data structures
that accelerate development.

Apache Commons Logging 1.2 An interface for common logging implementations.

EZMorph 1.0.6 Provides conversion from one object to another and
is used to convert between non-JSON objects and
JSON objects.

242

CHAPTER 9 " MIGRATING MONGODB

The pom.xml is listed below.

<project xmlns="http://maven.apache.org/POM/4.0.0"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemalocation="http://maven.apache.org/POM/4.0.0
http://maven.apache.org/xsd/maven-4.0.0.xsd">
<modelVersion>4.0.0</modelVersion>
<groupId>com.couchbase.migration</groupId>
<artifactId>MongoDBToCouchabse</artifactId>
<version>1.0.0</version>
<name>MongoDBToCouchabse</name>
<dependencies>
<dependency>
<groupId>com.couchbase.client</groupId>
<artifactId>java-client</artifactId>
<version>2.1.4</version>
</dependency>
<dependency>
<groupId>org.mongodb</groupIld>
<artifactId>mongo-java-driver</artifactId>
<version>3.0.2</version>
</dependency>
<dependency>
<groupld>commons-beanutils</groupId>
<artifactId>commons-beanutils</artifactId>
<version>1.9.2</version>
</dependency>
<dependency>
<groupld>commons-collections</groupld>
<artifactId>commons-collections</artifactId>
<version>3.2.1</version>
</dependency>
<dependency>
<groupId>commons-logging</groupld>
<artifactId>commons-logging</artifactId>
<version>1.2</version>
</dependency>
<dependency>
<groupIld>net.sf.ezmorph</groupld>
<artifactId>ezmorph</artifactId>
<version>1.0.6</version>
</dependency>
</dependencies>
</project>

Select File » Save All to save the pom.xml configuration file. The required jar files get downloaded, and
added to the Java build path. To find which Jars have been added to Maven project Java build path, right-click
on the project node in Package Explorer and select Properties. In Properties select Java Build Path. The Jars
added to the migration project are shown in Figure 9-10.

243

CHAPTER 9 " MIGRATING MONGODB

m Properties for MongoDBToCouchabse

[type filter text

p Resource
Builders
Java Build Path
Java Code Style
Java Compiler
o b Java Editor
i Javadoc Location
b Maven
Project Facets
Project References
Run/Debug Settings
i Server
> Task Repository
Task Tags
Validation
WikiText

v v

v

Java Build Path

pryoprw

I@ Source I =3 Projects‘ B Libraries |<}{} Order and Expcut|

JARs and class folders on the build path:

b E JRE System Library [jdk1.7.0_51]
4 B\ Maven Dependencies
{8 Access rules: No rules defined
2 Native library location: (None)
b (o9 java-client-2.1.4,jar - C\Users\Deepak Vohral.m2\re
b [core-io-114.jar - CAUsers\Deepak Vohra\.m2\repo:
b (@9 ngava-1.0.4jar - C:AUsers\Deepak Vohra\.m2\reposil
b (@3 mongo-java-driver-3.0.2,jar - C:\Users\Deepak Vohr
b (@ commons-beanutils-1.9.2,jar - C:\Users\Deepak Vo
b (@ commons-collections-3.2.1jar - C:AUsers\Deepak Vs
b @9 commons-logging-1.2jar - C:\Users\Deepak Vohra'
b [ezmorph-10.6.jar - C\Users\Deepak Vohral.m2\rep
b [@3 commons-lang-2.3.jar - C:\Users\Deepak Vohra\.m.

Add JARs...

Add External JARs...

Add Varable,..

[
I
[
[
I

Add Class Folder...

[

)
|
]
Add Library.. |
|
Add External Class Folder...]

Edit... |

Remowve l

Migrate JAR File... l

©)

OK %J [Cancel

Figure 9-10. Jar Files in Java Build Path

Creating a BSON Document in MongoDB

We need to add some data to MongoDB to migrate the data to Couchbase. Next, we shall create a document
in MongoDB using the Java application CreateMongoDB. The main packages for MongoDB classes in

the MongoDB Java driver are com.mongodb and com.mongodb.client. A MongoDB client to connect to
MongoDB server is represented with the com.mongodb .MongoClient class. A MongoClient object provides
connection pooling and only one instance is required for the entire instance. The MongoClient class

provides several constructors to create an instance from some of which are listed in Table 9-2.

244

CHAPTER 9 " MIGRATING MONGODB

Table 9-2. MongoClient Class Constructors

Constructor Description

MongoClient() Creates an instance based on a single MongoDB node
for localhost and default port 27017.

MongoClient(String host) Creates an instance based on a single MongoDB node
with host specified as a host:port String.

MongoClient(Stringhost, int port) Creates an instance based on a single MongoDB node
using the specified host and port.

MongoClient(List<ServerAddress> seeds) Creates an instance using a List of MongoDB servers
to select from. The server with the lowest ping time
is selected. If the lowest ping time server is down, the
next in the list is selected.

MongoClient(List<ServerAddress> seeds, Same as the previous version except a List of

List<MongoCredential> credentialsList) credentials are provided to authenticate connections to
the server/s.

MongoClient(List<ServerAddress> seeds, Same as the previous version except that Mongo client

List<MongoCredential> credentialsList, options are also provided.

MongoClientOptions options)

Create a MongoClient instance using the MongoClient (List<ServerAddress> seeds) constructor.
Supply “localhost” or the IPv4 address of the host and port as 27017.

MongoClient mongoClient = new MongoClient(Arrays.asList(new ServerAddress("192.168.1.71", 27017)));

When creating many MongoClient instances, all resource usage limits apply per MongoClient instance.
To dispose of an instance you need to make sure you call MongoClient.close() to clean up resources.
Alogical database in MongoDB is represented with the com.mongodb.client. MongoDatabase class. Obtain
a com.mongodb.client. MongoDatabase instance for the “local” database, which is a default MongoDB
database instance, using the getDatabase(String dbname) method in MongoClient class.

MongoDatabase db = mongoClient.getDatabase("local");

Some of the Mongo client API has been modified in version 3.0. For example, a database instance is
represented with the MongoDatabase in 3.0 instead of com.mongodb.DB and a database collection in 3.0
is represented with com.mongodb.client.MongoCollection instead of com.mongodb.DBCollection.
MongoDB stores data in collections. Get all collections from the database instance using the
listCollectionNames() method in MongoDatabase.

MongoIterable<String> colls = db.listCollectionNames();

The listCollectionNames() method returns a MongoIterable<String> of collections. Iterate over the
collection to output the collection names.

for (String s : colls) {
System.out.println(s);}

245

http://download.oracle.com/javase/1.5.0/docs/api/java/lang/String.html?is-external=true#class%20or%20interface%20in%20java.lang
http://api.mongodb.org/java/2.12/com/mongodb/MongoClient.html#MongoClient()
http://api.mongodb.org/java/2.12/com/mongodb/MongoClient.html#MongoClient(java.lang.String)
http://download.oracle.com/javase/1.5.0/docs/api/java/lang/String.html?is-external=true#class%20or%20interface%20in%20java.lang
http://api.mongodb.org/java/2.12/com/mongodb/MongoClient.html#MongoClient(java.lang.String,%20int)
http://download.oracle.com/javase/1.5.0/docs/api/java/lang/String.html?is-external=true#class%20or%20interface%20in%20java.lang
http://api.mongodb.org/java/2.12/com/mongodb/MongoClient.html#MongoClient(java.util.List)
http://download.oracle.com/javase/1.5.0/docs/api/java/util/List.html?is-external=true#class%20or%20interface%20in%20java.util
http://api.mongodb.org/java/2.12/com/mongodb/ServerAddress.html#class%20in%20com.mongodb
http://api.mongodb.org/java/2.12/com/mongodb/MongoClient.html#MongoClient(java.util.List,%20java.util.List)
http://download.oracle.com/javase/1.5.0/docs/api/java/util/List.html?is-external=true#class%20or%20interface%20in%20java.util
http://api.mongodb.org/java/2.12/com/mongodb/ServerAddress.html#class%20in%20com.mongodb
http://download.oracle.com/javase/1.5.0/docs/api/java/util/List.html?is-external=true#class%20or%20interface%20in%20java.util
http://api.mongodb.org/java/2.12/com/mongodb/MongoCredential.html#class%20in%20com.mongodb
http://api.mongodb.org/java/2.12/com/mongodb/MongoClient.html#MongoClient(java.util.List,%20java.util.List,%20com.mongodb.MongoClientOptions)
http://download.oracle.com/javase/1.5.0/docs/api/java/util/List.html?is-external=true#class%20or%20interface%20in%20java.util
http://api.mongodb.org/java/2.12/com/mongodb/ServerAddress.html#class%20in%20com.mongodb
http://download.oracle.com/javase/1.5.0/docs/api/java/util/List.html?is-external=true#class%20or%20interface%20in%20java.util
http://api.mongodb.org/java/2.12/com/mongodb/MongoCredential.html#class%20in%20com.mongodb
http://api.mongodb.org/java/2.12/com/mongodb/MongoClientOptions.html#class%20in%20com.mongodb

CHAPTER 9 ' MIGRATING MONGODB

Next, create a new DBCollection instance using the getCollection(String collectionName) method
in MongoDatabase.
Create a collection of Document instances called catalog.

MongoCollection<Document> coll = db.getCollection("catalog");
A MongoDB specific BSON object is represented with the org.bson.Document class, which implements

the Mapinterface. The Document class provides the following constructors listed in Table 9-3 to create
anew instance.

Table 9-3. Document class Constructors

Constructor Description

Document () Creates an empty Document instance.

Document (Map<String,Object> map) Creates a Document instance initialized with a Map.
Document(String key, Object value) Creates a Document instance initialized with a key-value pair.

The Document class provides some other utility methods, some of which are in Table 9-4.

Table 9-4. Document class utility Method

Method Description

append(String key, Object value) Appends a key-value pair to a Document object and returns
anew instance.

toString() Returns a JSON serialization of the object.

Create a Document instance using the Document (String key, Object value) constructor and use the
append(String key, Object val) method to append key-value pairs.

Document catalog = new Document("journal", "Oracle Magazine")
.append("publisher"”, "Oracle Publishing")

.append("edition", "November December 2013")

.append("title", "Engineering as a Service").append("author", "David A. Kelly");

The MongoCollection interface provides insertOne(TDocument document,
SingleResultCallback<Void> callback) method to add Document/s to a collection. Add the catalog
Document to the MongoCollection instance for the catalog collection.
coll.insertOne(catalog);

The MongoCollection interface also provides overloaded find() method to find a Document instance.
Obtain the document added using the find() method. The find() method returns an iterable collection

from which we obtain the first document using the first() method.

Document dbObj = coll.find().first();

246

http://api.mongodb.org/java/2.12/com/mongodb/DBCollection.html#class%20in%20com.mongodb
http://api.mongodb.org/java/2.12/com/mongodb/BasicDBObject.html#toString()
http://api.mongodb.org/java/2.12/com/mongodb/BasicDBObject.html#append(java.lang.String,%20java.lang.Object)
http://download.oracle.com/javase/1.5.0/docs/api/java/lang/String.html?is-external=true#class%20or%20interface%20in%20java.lang
http://download.oracle.com/javase/1.5.0/docs/api/java/lang/Object.html?is-external=true#class%20or%20interface%20in%20java.lang

CHAPTER 9 " MIGRATING MONGODB

Output the Document object found as such and also by iterating over the Set obtained from the Document
using the keySet () method. The keySet () method returns a Set<String>. Create an Iterator from the
Set<String> using the iterator() method. While the Iterator has elements as determined by the hasNext ()
method obtain the elements using the next () method. Each element is a key in the Document fetched.
Obtain the value for the key using the get (String key) method in Document.

System.out.println(dbObj);

Set<String> set = dbObj.keySet();

Iterator iter = set.iterator();
while(iter.hasNext()){

Object obj= iter.next();
System.out.println(obj);
System.out.println(dbObj.get(obj.toString()));
}

Clost the MongoClient instance.
mongoClient.close();

The CreateMongoDB class is listed below.
package couchbase;

import java.util.Arrays;

import java.util.Iterator;

import java.util.Set;

import org.bson.Document;

import com.mongodb.MongoClient;

import com.mongodb.ServerAddress;

import com.mongodb.client.MongoCollection;
import com.mongodb.client.MongoDatabase;
import com.mongodb.client.MongoIterable;

public class CreateMongoDB {
public static void main(String[] args) {

MongoClient mongoClient = new MongoClient(
Arrays.asList(new ServerAddress("localhost", 27017)));
for (String s : mongoClient.listDatabaseNames()) {
System.out.println(s);
}

MongoDatabase db = mongoClient.getDatabase("local");
MongoIterable<String> colls = db.listCollectionNames();
System.out.println("MongoDB Collection Names: ");
for (String s : colls) {

System.out.println(s);
}

MongoCollection<Document> coll = db.getCollection("catalog");

Document catalog = new Document("journal", "Oracle Magazine")
.append("publisher", "Oracle Publishing")

247

http://download.oracle.com/javase/1.5.0/docs/api/java/lang/String.html?is-external=true#class%20or%20interface%20in%20java.lang

CHAPTER 9 ' MIGRATING MONGODB

.append("edition", "November December 2013")
.append("title", "Engineering as a Service")
.append("author", "David A. Kelly");
coll.insertOne(catalog);
coll.find().first();
System.out.println(dbObj);

Document dbObj

Set<String> set = catalog.keySet();

Iterator<String> iter = set.iterator();
while (iter.hasNext()) {

Object obj

iter.next();

System.out.println(obj);
System.out.println(dbObj.get(obj.toString()));

}

mongoClient.close();

To run the CreateMongoDB application, right-click on the CreateMongoDB. java file in Package Explorer
and select Run As » Java Application as shown in Figure 9-11.

o . ==

RO

File Edit Source Refactor Mavigs

4 ¥ MongoDBToCouchabse
4 (& src/mainfjava
4 couchbase

@ src/mainfresources
@8 src/testfjava
E® src/test/resources

» B Maven Dependencies

b & src
& target
[l pormaaml

Figure 9-11. Running CreateMongoDB.java Class

248

[2 Package Explorer m| = %l q

»[[3] CreateMongoDB jav:

& 3] MigrateMongoDBTo,

» = JRE System Library [jdk1.7.0]

xXEHo

EE

S

Mew

Open

Open With

Open Type Hierarchy
Show In

Copy

Copy Qualified Name
Paste

Delete

Removwve from Context
Build Path

Source

Refactor

Import...
Export..

References

Declarations

Refresh
Assign Working Sets...

Profile As
Debug As

Run As
Walidate

Team
Compare With

»

F3
3

F4
Alt+Shift+W »

Ctrl+C

Ctrl+
Delete

Ctrl +Alt+Shift+Down
»
Alt+Shift+3 ¥
Alt+Shift+T »

s e Quick Access !'E] i | 22 JavaEE

ateMongoDB.java 52

;
bllection;
stabase;
terable;

rel] sres) {

Eo nsole &3

= new Mongollient(

U] MigrateMongoDBToCouchbase.ja...

B

s 1Run on Server

31 2Java Application b

Run Configurations..,

Alt+Shift+X, R
Alt+Shift+X, |

r

CHAPTER 9 ' MIGRATING MONGODB

A new BSON document gets stored in a new collection catalog in MongoDB database. The document
stored is also output as such and as key-value pairs as shown in Figure 9-12.

<terminated > CreateMongoDB (1) [Java Application] C:\Program Files'Java'jdk1.7.0_51\bin‘javaw.exe (Jul 10, 2015, 6:46:15 AM)

INFO: Opened connection [connectionId{localValue:1l, serverValue:l}] to localhost:27217

Jul 1@, 2015 6:46:2@ AM com.mongodb.diagnostics.logging. JULLogger log

INFO: Monitor thread successfully connected to server with description ServerDescription{address=localhost:27@17, type=STANDE
LONE, state=CONNECTED, ok=true, version=ServerVersion{versionList=[3, @, 4]}, minWireVersion=2, maxllireVersion=3, electionId=
null, maxDocumentSize=16777216, roundTripTimeNanos=1@32185}

Jul 1@, 2015 6:46:2@ AM com.mongedb.diagnostics. logging. JULLogger log

INFO: Discovered cluster type of STANDALONE

Jul 1@, 2015 6:46:22 AM com.mongodb. diagnostics.logging. JULLogger log

INFO: Opened connection [cennectionId{localvalue:2, serverValue:2}] to localhost:27217

Locsr

local

mengo

test

MongoDB Collection Names:

catalog

startup_log

system. indexes

wlslog

Document{{_id=55968c9@cd735@11a8bfad4a, journal=Oracle Magazine, publisher=Oracle Publishing, edition=November December 2013,
title=Engineering as a Service, author=David A. Kelly}}

journal

Oracle Magazine

publisher

Oracle Publishing

edition

November December 2013

title

Engineering as a Service

author

David A. Kelly

_id

55968c9@cd735@11a8bfas4a

Jul 1@, 2015 6:46:2@ AM com.mongedb.diasgnostics.logging. JULLogger log i
INFO: Closed connection [connectionId{localValue:2, serverValue:2}] to localhost:27@17 because the pool has been closed.

Figure 9-12. Outputting Document Stored in MongoDB

Migrating the MongoDB Document to Couchbase

In this section we shall migrate the MongoDB document stored in the previous section to the Couchbase
Server. We shall migrate the document in the MigrateMongoDBToCouchbase application. Create a
MongoClient instance as discussed in the previous section to add a document.

MongoClient mongoClient = new MongoClient(Arrays.asList(new ServerAddress("localhost", 27017)));

Create a MongoDatabase object for the local database instance using the getDatabase(String dbname)
method in MongoClient. To make a connection to a MongoDB you need to have at the minimum the
name of a database to connect to. Using the MongoDatabase instance get the catalog collection as a
MongoCollection object. Get a Document instance from the document stored in MongoDB in the previous
section using the findOne () method in DBCollection class.

MongoDatabase db = mongoClient.getDatabase("local");

MongoCollection<Document> coll = db.getCollection("catalog");
Document catalog = coll.find().first();

249

http://download.oracle.com/javase/1.5.0/docs/api/java/lang/String.html?is-external=true#class%20or%20interface%20in%20java.lang

CHAPTER 9 ' MIGRATING MONGODB

Add a method called migrate() to the MigrateMongoDBToCouchbase class and invoke the method in
the main method. In the migrate() method we shall migrate the MongoDB document as represented by the
Document object catalog to Couchbase Server. As discussed in Chapter 2 the CouchbaseCluster class is used
to connect to a Couchbase cluster. Create a CouchbaseCluster instance using the static method create().

Cluster cluster = CouchbaseCluster.create();

A Bucket class instance represents a connection to a data bucket in Couchbase Server. Create a Bucket
instance using the openBucket () method. To connect to the default bucket the bucket name may be
optionally supplied as an argument to the openBucket () method.

Bucket defaultBucket = cluster.openBucket("default");

Couchbase Server stores documents as JSON. Next, we shall construct JSON strings from data retrieved
for MongoDB and store the JSON string in Couchbase. The Document instance catalog is the document
fetched from the MongoDB database. The keySet () method in Document returns a Set<String> of the BSON
keys. Create an Iterator from the Set<String> to iterate over the Set using the iterator() method.

Iterator<String> iter = set.iterator();

The com. couchbase.client. java.document. json.JsonObject class represents a JSON document in
Couchbase Server. We shall use the JsonObject class to create a JSON object representation of the Document
object and subsequently store the String created from JsonObject in Couchbase. Create an instance of
JsonObject using the class method empty().

JsonObject catalogObj = JsonObject.empty();

While the Iterator has elements as determined by the hasNext () method obtain the elements using
the next () method with each element being a key in the Document fetched. Obtain the value for the key
using the get(String key) method in Document. Use the put(String key, String value) method in
JsonObject to put the column name and column value in the JsonObject object.

while (iter.hasNext()) {
String columnName = iter.next().toString();
String value = catalog.get(columnName.toString()).toString();
catalogObj.put(columnName, value);

The Bucket class provides overloaded insert methods to store documents to Couchbase Server. Add the
JsonObject instance to the default bucket using the Bucket instance and the insert(D document) method.
Create an instance of JsonDocument to add with the static method JsonDocument.create(java.lang.
String id, JsonObject content).

JsonDocument document = defaultBucket.insert(JsonDocument.create("catalog", catalogObj));

250

http://dx.doi.org/10.1007/9781484214350_2
http://download.oracle.com/javase/1.5.0/docs/api/java/lang/String.html?is-external=true#class%20or%20interface%20in%20java.lang

CHAPTER 9

The MigrateMongoDBToCouchbase class is listed below.

package couchbase;

import
import
import
import
import
import
import
import
import
import
import
import
import

public

java.util.Arrays;

java.util.Iterator;

java.util.Set;

org.bson.Document;
com.couchbase.client.java.Bucket;
com.couchbase.client.java.Cluster;
com.couchbase.client.java.CouchbaseCluster;
com.couchbase.client.java.document.JsonDocument;
com.couchbase.client.java.document.json.JsonObject;
com.mongodb.MongoClient;
com.mongodb . ServerAddress;
com.mongodb.client.MongoCollection;
com.mongodb.client.MongoDatabase;

class MigrateMongoDBToCouchbase {

private static Document catalog;

public static void main(String[] args) {

}

MongoClient mongoClient = new MongoClient(

Arrays.asList(new ServerAddress("localhost", 27017)));
MongoDatabase db = mongoClient.getDatabase("local");
MongoCollection<Document> coll = db.getCollection("catalog");
catalog = coll.find().first();
migrate();
mongoClient.close();

private static void migrate() {

Cluster cluster = CouchbaseCluster.create();
Bucket defaultBucket = cluster.openBucket("default");

Set<String> set = catalog.keySet();

Iterator<String> iter = set.iterator();

JsonObject catalogObj = JsonObject.empty();

while (iter.hasNext()) {
String columnName = iter.next().toString();
String value = catalog.get(columnName.toString()).toString();
catalogObj.put(columnName, value);

}

JsonDocument document = defaultBucket.insert(JsonDocument.create(

"catalog", catalogObj));

System.out.println("Set Succeeded");

MIGRATING MONGODB

251

CHAPTER 9 " MIGRATING MONGODB

To run the MigrateMongoDBToCouchbase application, right-click on the MigrateMongoDBToCouchbase
source file in the Package Explorer and select Run As » Java Application as shown in Figure 9-13.

File Edit Source
O - L NS e R
Bgle ¥

Refactor Mavigate Search

% Package Explorer &2

4 52 MongoDBTaCouchabse
4§18 srefmainfjava
4 fB couchbase
b [CreateMongoDB java
& | 4] MigrateMongoDBToCouchbase,jav
(@ sre/mainfresources
@ sreftestfjava
(8 srcftestfresources
» B Maven Dependencies
> B JRE System Library [jdk1.7.0_51]
b = src
= target
Ml pomaml

]

T

t 3=

EFE

Open

Open With

Open Type Hierarchy
ShowlIn

Copy

Copy Qualified Name
Paste

Delete

Remaove from Context
Build Path

Source

Refactor

Import...
Export...

References

Declarations

Refresh
Assign Working Sets...

Profile As
Debug As

Run As
Validate

Team
Compare With

F4
Alt+Shift+W »

Ctrl+C

Ctrl+¥
Delete

Ctrl +Alt+Shift+Down
L3
Alt+Shift+5 »
Alt+Shift+T »

-

F5

Figure 9-13. Running the MigrateMongoDBToCouchbase.java Class

252

vy - Quick Access | 5| ¥2 Java EE

1) MigrateMongeDBToCouchba... &2

H

seCluster;

t. JsonDocument ;
t.json.JsonCbject;

. e X% AEEE -0

Gram Files\Javajdk 7.0 5 1\binjavaw.exe (ul 10, 2015,

é 1 Run on Server
0 2laa Applitatiw

Run Configurations...

Alt+Shift+X, R
Alt+Shift+X,)

CHAPTER 9 ' MIGRATING MONGODB

As the output from the application indicates the document fetched from MongoDB gets set in
Couchbase Server as shown in Figure 9-14.

<terminated > MigrateMongoDBToCouchbase (1) [Java Application] C:\Program Files\Javaljdk1.7.0_51\bin\javaw.exe (Jul 10,
INFO: Opened connection [connectionId{localvalue:2, serverValue:4}] to localhost:27017 :
Jul 1@, 2015 7:02:37 &M com.couchbase.client.core.env.DefaultCoreEnvironment <init>

INFO: ioPoolSize is less than 3 (2), setting to: 3

Jul 1@, 2015 7:00:37 &M com.couchbase.client.core.env.DefaultCoreEnvironment <init>

INFO: computationPoolsSize is less than 3 (2), setting to: 3

Jul 1@, 2015 7:2@:37 AM com.couchbase.client.core.CouchbaseCore <init>

INFO: CouchbaseEnvironment: {sslEnabled=false, sslKeystoreFile='null’, sslKeystorePassword="i
ort=8@93, bootstrapHttpEnabled=true, bootstraplarrierEnabled=true, bootstrapHttpDirectPort=8
bootstrapCarrierDirectPort=1121@, bootstrapCarriersSslPort=11207, ioPoolSize=3, computationPor
4, requestBuffersize=16384, kvServiceEndpoints=1, viewServiceEndpoints=1, queryServiceEndpoii
coreScheduler=CoreScheduler, eventBus=DefaultEventBus, packageNamefndversion=couchbase-java-i—
bled=false, retryStrategy=BestEffort, maxRequestLifetime=750@@, retryDelay=ExponentialDelay{,
@, upper=1020020}, reconnectDelay=ExponentialDelay{growBy 1.@ MILLISECONDS; lower=32, upper=4
ntialDelay{growBy 1.@ MICROSECONDS; lower=1@, upper=100000}, keepAlivelnterval=30000, autore.
bled=true, queryTimeout=750@0, viewTimeout=7500@, kvTimeout=250@, connectTimeout=5002, discol
=false}

Jul 1@, 2@15 7:2@:39 AM com.couchbase.client.core.node. CouchbaseNode}l call

INFO: Connected to Node 127.2.0.1

Jul 1@, 2015 7:22:39 AM com.couchbase.client.core.config.DefaultConfigurationProvider$6 call
INFO: Opened bucket default

Set Succeeded

Jul 1@, 2015 7:202:39 AM com.mongodb.diagnostics.logging.JULLogger log

INFO: Closed connection [connectionId{localvalue:2, serverValue:4}] to localhost:27@17 becau:—

m

Figure 9-14. Output from running MigrateMongoDBToCouchbase.java Class

Log in to the Administration Console for Couchbase Server and click on the Data Buckets node.
The default bucket should be listed and the catalog ID document should be listed in the default bucket.
Click on Edit Document to display the document as shown in Figure 9-15.

[) Documentation = Support = About = Sign Out

Couchbase

A& Cluster Overview Server Nodes Data Buckets Views XDCR Log Settings

default = > Documents Current page: 1 5 -
s) oo oopiay \Gieaeponuneny

] Content

cafalon { "jourmal™: "Oracle Magazine®, "edition™: “November Decembe... Edit Document [Delete

Figure 9-15. Selecting Edit Document

253

CHAPTER 9 " MIGRATING MONGODB

The document migrated from MongoDB is listed as a JSON document as shown in Figure 9-16.

Bl scumentation « Support « About » Sign Out
Couchbase
A& Cluster Overview Server Nodes Data Buckets Views XDCR Log Settings
default ~ > Documents

[y catalog WRekicy \SamASa S

Oracle Magazine”,

ber December 20137,
A. Helly*,

as a Service®,

Figure 9-16. Couchbase Document migrated from MongoDB

Summary

MongoDB is an NoSQL database based on the JSON-like BSON format. In this chapter we discussed some
of the advantages of Couchbase Server over MongoDB and subsequently migrated a document stored in
MongoDB to Couchbase. First, we created a BSON document in MongoDB using the Mongo DB Client
Java driver, and subsequently we used the Mongo DB Java driver to migrate the MongoDB document

to Couchbase. In the next chapter we shall migrate Apache Cassandra, another NoSQL database, to
Couchbase Server.

254

CHAPTER 10

Migrating Apache Cassandra

Apache Cassandra is a NoSQL, highly available, distributed database based on a row/column structure.

The top-level namespace in Cassandra is Keyspace. A Keyspace is the equivalent of a database instance in

an SQL relational database. An installation of Cassandra may have several Keyspaces. The top-level data
structure for data storage is Column Family (also called a table), which is a set of key-value pairs. A Column
Family definition consists of columns with one of the columns being the primary key column and the other
columns being the data columns. A Column is the smallest unit of data stored in Cassandra and is associated
with a name, a value, and a timestamp. One of the columns in a Column Family is the primary key (or row
key). A primary key is identified with PRIMARY KEY in a column family definition.

Cassandra is not based on the JSON document object model, which has built-in support for hierarchical
structures. In this chapter we shall migrate rows of data stored in Cassandra to Couchbase. Though any
Cassandra client may be used to retrieve data from Cassandra and a Couchbase client in the same language
and may be used to store the Cassandra data in Couchbase, we shall use a Java client for Cassandra and a
Java client for Couchbase. The Java client for Cassandra that we shall use is the Datastax Java driver. The Java
client for Couchbase that we shall use is the Couchbase Java Client. This chapter covers the following topics.

e Setting Up the Environment
e Creating a Maven Project in Eclipse
e Creating a Database in Cassandra

e Migrating the Cassandra Database to Couchbase

Setting Up the Environment

Download the following software for Apache Cassandra and Couchbase Server.

¢ Couchbase Server Enterprise Edition 3.0.3 couchbase-server-enterprise_3.0.3-
windows_amd64.exe file from http://www.couchbase.com/download. Double-click
on the exe file to launch the installer and install Couchbase Server.

e Eclipse IDE for Java EE Developers from http://www.eclipse.org/downloads/.

e Apache Cassandra 2.1.7 apache-cassandra-2.1.7-bin.tar.gz from
http://cassandra.apache.org/download/. Extract tar.gz file to a directory and
add the bin directory, for example the C:\apache-cassandra-2.1.7\bin directory to
the PATH variable.

Start Apache Cassandra server with the following command.

cassandra -f

255

http://www.couchbase.com/download
http://www.eclipse.org/downloads/
http://cassandra.apache.org/download/

CHAPTER 10 " MIGRATING APACHE CASSANDRA

The server gets started as shown in the server output as shown in Figure 10-1.

b
BN Administrator: C:AWindows\system32\cmd.exe - cassandra —f l&@‘ﬂ

INFO 17:52:09 Netty using Java NIO event loop -
INFO 17:52:89 Using MNetty Uersion: [netty-buffer=netty-bhuffer-4.8.23.Final.2881
98c, netty-codec=netty-codec—4.8.23.Final.288198c, netty—codec—http=netty—codec— -
http-4.0.23.Final.2088198c, netty-codec-socks=netty-codec—-socks—4.8.23.Final.2@81 |
98c. netty—-common=netty-common—-4.8.23_.Final.2688198c. netty-handler=netty-handler
—4.8.23.Final.288198c,. netty—transport=netty—transport—-4.08.23.Final.288198c, net
ty—transport-rxtx=netty—transport-rxtx—4.0.23.Final.288198c. netty—transport-sct
p=netty—transport-sctp-4.08.23.Final.208198c, netty—transport-udt=netty—-transport
—udt—-4.08.23 _Final.288198c]

INFO 17:52:09 Starting listening for CQL clients on localhost/127.0.8.1:9042...

INFO 17:52:13 Binding thrift service to localhost-/127.8.8.1:9168

INFO 17:52:13 Compacting [SSTableReader{(path=’C:\apache—cassandra—2.1.7 \data\da

tassystemslocal-7ad54392bcdd35a684174eB847868Bb37 7 \system—local-ka-2-Data.db’ >, 8§

TableReader{path=’C:N\apache—cassandra-2.1.7 datasdatassystem\local-7ad54392bcdd3
a684174eB47860h37?7\system—local-ka-1-Data.db’ >, SSTableReader{path=’C:\apache-c
ssandra-2.1.“datasdatassystem~local-7ad54392bcdd35a684174eB47868b37? 7 \systen—1lo
al-ka—-3-Data.dbh’>, SSTableReader(path=’C:\apache—cassandra—-2.1.7\data\data\syst
mN\local-7ad54392hcdd35a684174e047860h3?7\system—local-ka—-4-Data.db’>1]

INFO 17:52:15 Listening for thrift clients...

INFO 17:52:18 Compacted 4 sstables to [C::apache—cassandra-2.1.7~datasdatassyst
mN\local-7ad54392hcdd35a684174e047860h37?7\system—local-ka-5,1. 5,899 hytes to 5
L7808 (“96% of original) in 4.972ms = B.801895MB/s. 4 total partitions merged to
1. Partition merge counts were {4:1, >

Figure 10-1. Starting Apache Cassandra

Creating a Maven Project in Eclipse
Next, create a Java project in Eclipse IDE for migrating Cassandra database data to a Couchbase database.
1. Select File » New » Other.

2. Inthe New window, select Maven » Maven Project and click on Next as shown
in Figure 10-2.

256

CHAPTER 10 " MIGRATING APACHE CASSANDRA

& e =

Select a wizard —<>
Create a Maven Project r

Wifizards:
[type filter text ‘

b Java -~
b (= Java EE
b (= Java Emitter Templates
b (= JavaScript
b= JAXB
b = JPA
4 (= Maven
‘::L Check out Mawven Projects from SCM
M Maven Module
M Maven Project |
b (= Plug-in Development
b (= Remote Systermn Explorer -

@ <Back || Net» !}]| Finish | [Cancel |

Figure 10-2. Selecting Java » Java Project

257

CHAPTER 10 " MIGRATING APACHE CASSANDRA

3. The New Maven Project wizard gets started. Select the Create a simple project
check box and the Use default Workspace location check box and click on Next as

shown in Figure 10-3.

i@] New Maven Project

New Maven project

Select project name and location

[¥] Create a simple project (skip archetype selection)

Use default Warkspace location

[] &dd project(s) to working set

Working set;

» Advanced

® [< Back][Next > Q‘I

Browse...

More..,

Figure 10-3. New Maven Project Wizard

258

CHAPTER 10 MIGRATING APACHE CASSANDRA

4. In Configure project, specify the following and then click on Finish as shown in

Figure 10-4.

e Group Id: com.couchbase.migration
e Artifact Id: CassandraToCouchbase

e Version: 1.0.0

e Packaging: jar

e Name: CassandraToCouchbase

i@] New Maven Project

New Maven project

Configure project

Artifact

Group Id: com.couchbase.migration
Artifactld: CassandraToCouchbase
Wersion: 1.0.0 -
Packaging: jar -
Name: CassandraToCouchbase

Description:

Parent Project

1>

Group Id:
Artifact Id:

Wersion: v

» Advanced

@

MNext >

Browse... Clear

Finish D’J [Cancel]

Figure 10-4. Configuring Maven Project

259

CHAPTER 10 " MIGRATING APACHE CASSANDRA

A Maven Project gets created in Eclipse IDE as shown in Figure 10-5.

1®; Java - CassandraTol se/pomxml - Eclips -
File Edit Source MNavigate Search Project Run Window Help

L N S e e

[# Package Explorer 52 B %| & Y= B 4 CasandraToCouchbase/pomxml 53

EI{‘,J, CassandraToCouchbase 1= <project mlnsn”http://maven.apache. OﬂngOl‘ifti. a.8”
. (8 srcfmainfjava % 2 cmodel\IF:r‘sion>4.aggdmod?l\fe;:jion; i
! . E <greoupld>com.couchbase.migration</grou >
@ src{rnau'fz'resources 4 cgrti\p’actId>CassandraToCchhbase(;‘Ertiwp‘actlw
(B sreftestfjava 5 <version»l.@.0</version>
(8 srcftestfresources 6 <name>CassandraToCouchbase</name>
(+-2%, JRE System Library [J2SE-1.5] 7 </project>
@ src
L target
oo |m) pornsxml

Figure 10-5. Maven Project CassandraToCouchbase in Package Explorer

Now we need to create two Java classes for the migration: one to create the initial data in Cassandra and
the other to migrate the data to Couchbase.

1. To create a Java class click on File » New » Other.

2. InNew select Java » Class and click on Next as shown in Figure 10-6.

260

CHAPTER 10 " MIGRATING APACHE CASSANDRA

] New L [©

Select a wizard —<>

Create a Java class r

Wifizards:
[type filter text ‘

4 (= Java -

@ Annotation
|& Class|
G Enum
€V Interface
25 Java Project
$ Java Project from Existing Ant Buildfile
151 Java Working Set
H#5 Package
&9 Source Folder

b = Java Run/Debug

p = JUnit =

@ <Back || Net» !}|| Finish | [Cancel |

Figure 10-6. Selecting Java » Java Class

261

CHAPTER 10 " MIGRATING APACHE CASSANDRA

3. InNew Java Class wizard select the Source folder as src and specify Package
as couchbase and class name as CreateCassandraDatabase. Click on Finish as
shown in Figure 10-7.

i@] New Java Class

—

Java Class

Source folder:
Package:

("] Enclosing type:

Create a new Java class.

CassandraToCouchbase/src/mainfjava

couchbase

Browse...

Browse...

Browse...

Narne: CreateCassandraDatabase
Modifiers: © public () package private protected
(| abstract [Ifinal static
Superclass: java.lang.Object
Interfaces: Add...
Which method stubs would you like to create?
public static void main(String[] args)
® MNext > Finish] [Cancel
s
Pl

Figure 10-7. Configuring Java Class CreateCassandraDatabase

262

CHAPTER 10 MIGRATING APACHE CASSANDRA

4. Similarly create a Java class MigrateCassandraToCouchbase as shown in
Figure 10-8.

i@] New Java Class

Java Class

Create a new Java class.

|

Source folder: CassandraToCouchbase/src/mainfjava Browse..,
Package: couchbase Browse...
[Enclosing type: Browse...
Narne: MigrateCassandraToCouchbase
Modifiers: @ public () package private protected

(| abstract [Ifinal [static

Superclass: java.lang.Object - Browvse..,

Interfaces: Add...

Which method stubs would you like to create?
public static void main(String(] args)

® MNext > Finish hj [Cancel

Figure 10-8. Configuring Java Class MigrateCassandraToCouchbase

263

CHAPTER 10 MIGRATING APACHE CASSANDRA

The two Java classes are shown in the Package Explorer in Figure 10-9.

E Java - CassandraToCouchbase/src/main/javalt
File Edit Source Refactor Mavigate
LG s Fhfe
(2 Package Explorer 33 S B @ 8

T2 CassandraToCouchbase
- (src/mainfjava
- couchbase
#-{J] CreateCassandraDatabase java |
GRI] MigrateCassandraToCouchbase java ¥
[src/mainfresources b
(B srcftestjava |
3 srcfest/resources
412 JRE System Librany [1256-1.5]
$- & sre
= target
) pomoml

Search Project Ru

n Window Help
Q- To o= N v S e .

&java [3] *MigrateCassandraToCouchbase java 52

I package couchbase;

i public class MigrateCassandraTolouchbase {

7
B

public static void main{String[] args) {

}

Figure 10-9. Java Classes in Package Explorer

We need to add some dependencies to the pom.xml. Add the following dependencies listed in
Table 10-1; some of the dependencies are indicated as being included with the Apache Cassandra Project
dependency and should not be added separately.

Table 10-1. Dependencies

Jar

Description

Couchbase server Java SDK
Client library 2.1.3

Apache Cassandra
Cassandra Driver Core
Apache Commons BeanUtils 1.9.2

Apache Commons Collections
Apache Commons Lang3

Apache Commons Logging

EZMorph

Guava

Jackson Core Asl

Jackson Mapper Asl

The Java Client to Couchbase Server.

Apache Cassandra Project.
The Datastax Java driver.
Utility Jar for Java classes developed with the JavaBeans pattern.

Provides Data Structures that accelerate Java application
development.

Provides extra classes for manipulation of Java core classes.
Included with Apache Cassandra Project dependency.

An interface for common logging implementations.

Provides conversion from one object to another and is used to
convert between non-JSON objects and JSON objects.

Google’s core libraries used in Java-based projects. Included
with Apache Cassandra dependency.

High performance JSON processor. Included with Apache
Cassandra Project dependency.

High performance data binding a package built on Jackson
JSON processor. Included with Apache Cassandra Project
dependency.

264

(continued)

CHAPTER 10 MIGRATING APACHE CASSANDRA

Table 10-1. (continued)

Jar Description

Metrics Core The core library for Metrics. Included with Apache Cassandra
Project dependency.

Netty NIO client server framework to develop network applications
such as protocol servers and clients. Included with Apache
Cassandra Project dependency.

Slf4j Api Simple Logging Facade for Java, which serves as an abstraction
for various logging frameworks. Included with Apache Cassandra
Project dependency

The pom.xml is listed below.

<project xmlns="http://maven.apache.org/POM/4.0.0" xmlns:xsi="http://www.w3.0rg/2001/
XMLSchema-instance"
xsi:schemalocation="http://maven.apache.org/POM/4.0.0 http://maven.apache.org/xsd/
maven-4.0.0.xsd">
<modelVersion>4.0.0</modelVersion>
<groupId>com.couchbase.migration</groupId>
<artifactId>CassandraToCouchbase</artifactId>
<version>1.0.0</version>
<name>CassandraToCouchbase</name>
<dependencies>
<dependency>
<groupId>com.couchbase.client</groupId>
<artifactId>java-client</artifactId>
<version>2.1.4</version>
</dependency>
<dependency>
<groupId>com.datastax.cassandra</groupId>
<artifactId>cassandra-driver-core</artifactId>
<version>2.1.6</version>
</dependency>
<dependency>
<groupId>org.apache.cassandra</groupId>
<artifactId>cassandra-all</artifactId>
<version>2.1.7</version>
</dependency>
<dependency>
<groupId>commons-beanutils</groupId>
<artifactId>commons-beanutils</artifactId>
<version>1.9.2</version>
</dependency>
<dependency>
<groupId>commons-collections</groupld>
<artifactId>commons-collections</artifactId>
<version>3.2.1</version>
</dependency>

265

CHAPTER 10 " MIGRATING APACHE CASSANDRA

<dependency>
<groupId>commons-logging</groupld>
<artifactId>commons-logging</artifactId>
<version>1.2</version>

</dependency>

<dependency>
<groupId>net.sf.ezmorph</groupId>
<artifactId>ezmorph</artifactId>
<version>1.0.6</version>

</dependency>

</dependencies>
</project>

Some of these dependencies have further dependencies, which get added automatically and should
not be added separately. To find the required Jars that get added from the dependencies, right-click on the
project node in Package Explorer and select Properties. In Properties select Java Build Path. The Jars added
to the migration project are shown in Figure 10-10.

([© |

ﬁ- ===
1®; Properties for CassandraToCouchbase

> Task Repository

©)

netty-handler-4.0.27.Final jar - C\Users\Deepak Vohral.m2\re
netty-buffer-4.0.27.Final.jar - C\Users\Deepak Vohra\.m2\rep

o guava-14.0.1Ljar - C\Users\Deepak Vohra\.m2\repositony\corr
s metrics-core-3.0.2,jar - C\Users\Deepak Vohra\,m2\repositon
0 cassandra-all-2,17 jar - CAUsers\Deepak Vohrah.m2\repositor
s snappy-java-10.5ar - C:\Users\Deepak Vohra\.m2\repository
o 1z4-1.2.0 jar - ChUsers\Deepak Vohra\.m2\repositonnetijpou

b compress-lzf-0.8.4.jar - C:\Users\Deepak Vohra\.m2\repositor ™
< I ’

Add External Class Folder..

type filter text Java Build Path @~ T
> Resource ;
Builders (® Source ’ (= Projects | B Libraries | % Order and Export
Java Build Path JARs and class folders on the build path:
> Java Code Style > = JRE System Library [jdk1.7.0_51) -1 Add JARs..,]
> Java Colmpllgr 4 =) Maven Dependencies
> Java Editor) (& Access rules: No rules defined ’ Add Bternal JARs..]
. :;:‘::‘ Location .E} !\Iati\.re_libraryloc_atian: {Mone) _ B I Add Variable.. |
’ ’ » (g java-client-2.14 jar - C:\Users\Deepak Vohrah.m2\repository
Prol_ect Facets . (w core-io-1.L4jar - C:\Users\Deepak Vohra\.m?\repository\corr!) ’ Add Library... ‘
Project Re“"“‘f‘ s rjava-L0.4jar - CAUsers\Deepak Vohra\.m2\repositonAio\re:
::::[:Ebl"g Settings > [wo cassandra-driver-core-2.1.6 jar - C\Users\Deepak Vohra\.m2\ ’ Add Class Folder..]
I 3

Tas_k T?gs netty-common-4.0.27.Final jar - C:\Users\Deepak Vohralum2\ [-]
g ::hi:tmn i netty-transport-4.0.27.Final jar - C:\Users\Deepak Vohra\.m2y Edit
TkiText j netty-codec-4.0.27.Final jar - C:\Users\Deepak Vohra\.m2\rep ’ Remove]

Migrate IAR File...

AN

Cancel

Figure 10-10. Jar Files in the Java Build Path

266

CHAPTER 10 MIGRATING APACHE CASSANDRA

Creating a Database in Cassandra

Before we are able to migrate Cassandra data to Couchbase we must create Cassandra data. Cassandra
table may be created either using the Cassandra-Cli or using a Java application with Cassandra Java driver.
We shall create Cassandra data in a Java application. We shall use the CreateCassandraDatabase class
for creating a Cassandra database. First, we need to connect to Cassandra from the application. Create
an instance of Cluster, which is the main entry point for the Datastax Java driver. The Cluster maintains a
connection with one of the server nodes to keep information on the state and current topology of the cluster.
The driver discovers all the nodes in the cluster using auto-discovery of nodes including new nodes that
join later. Build a Cluster.Builder instance, which is a helper class to build Cluster instances, using static
method builder().

We need to provide the connect address of at least one of the nodes in the Cassandra cluster for
the Datastax driver to be able to connect with the cluster and discover other nodes in the cluster using
auto-discovery. Using the addContactPoint (String) method of Cluster.Builder, add the address of
the Cassandra server running on the localhost (127.0.0.1). Next, invoke the build() method to build the
Cluster using the configured address/es. The methods may be invoked in sequence as we don’t need the
intermediary Cluster.Builder instance.

cluster = Cluster.builder().addContactPoint("127.0.0.1").build();

Next, invoke the connect () method to create a session on the cluster. A session is represented with
the Session class, which holds multiple connections to the cluster. A Session instance is used to query
the cluster. The Session instance provides policies on which node in the cluster to use for querying the
cluster. The default policy is to use a round-robin on all the nodes in the cluster. Session is also used to
handle retries of failed queries. Session instances are thread-safe and a single instance is sufficient for an
application. But, a separate Session instance is required if connecting to multiple keyspaces as a single
Session instance is specific to a particular keyspace only.

Session session = cluster.connect();

The Cassandra server must be running to be able to connect to the server when the application is run.
If Cassandra server is not running the following exception is generated when a connection is tried.

com.datastax.driver.core.exceptions.NoHostAvailableException: All host(s) tried for query failed
(tried: /127.0.0.1 (com.datastax.driver.core.TransportException: [/127.0.0.1] Cannot connect))
at com.datastax.driver.core.ControlConnection.reconnectInternal(ControlConnection.java:179)
at com.datastax.driver.core.ControlConnection.connect(ControlConnection.java:77)
at com.datastax.driver.core.Cluster$Manager.init(Cluster.java:890)
at com.datastax.driver.core.Cluster$Manager.access$100(Cluster.java:806)
at com.datastax.driver.core.Cluster.getMetadata(Cluster.java:217)
at datastax.CQLClient.connection(CQLClient.java:43)
at datastax.CQLClient.main(CQLClient.java:23)

The Session class provides several methods to prepare and run queries on the server, some of which
are discussed in Table 10-2.

267

CHAPTER 10 MIGRATING APACHE CASSANDRA

Table 10-2. Session Class Methods to run Queries

Method Description

execute(Statement statement) Executes the query provided as a Statement object to
return a ResultSet.

execute(String query) Executes the query provided as a String to return a
ResultSet.

execute(String query, Object... values) Executes the query provided as a String and using the

specified values to return a ResultSet.

We need to create a keyspace to store tables in. Add a method createKeyspace() to create a keyspace to
the CreateCassandraDatabase application. CQL 3 (Cassandra Query Language 3) has added support to run
CREATE statements conditionally, which is only if the object to be constructed does not already exist. The IF
NOT EXISTS clause is used to create conditionally. Create a keyspace called datastax using replication with
strategy class as SimpleStrategy and replication factor as 1.

session.execute("CREATE KEYSPACE IF NOT EXISTS datastax WITH replication "
+ "= {'class':'SimpleStrategy', 'replication factor':1};");

Invoke the createKeyspace() method in the main method. When the application is run, a keyspace

gets created. Cassandra supports the following strategy classes listed in Table 10-3 that refer to the replica
placement strategy class.

Table 10-3. Strategy Classes

Class Description
org.apache.cassandra. Used for a single data center only. The first replica is placed on a
locator.SimpleStrategy node as determined by the partitioner. Subsequent replicas are

placed on the next node/s in a clockwise manner in the ring of
nodes without consideration to topology. The replication factor is
required only if SimpleStrategy class is used.

org.apache.cassandra.locator. Used with multiple data centers. Specifies how many replicas to

NetworkTopologyStrategy store in each data center. Attempts to store replicas on different
racks within the same data center because nodes in the same rack
are more likely to fail together.

Next, we shall create a column family, which is also called a table in CQL 3. Add a method
createTable() to CreateCassandraDatabase. CREATE TABLE command also supports IF NOT EXISTS to
create a table conditionally. CQL 3 has added the provision to create a compound primary key, a primary
key created from multiple component primary key columns. In a compound primary key the first column is
called the partition key. Create a table called catalog, which has columns catalog_id, journal, publisher,
edition, title and author. In catalog table the compound primary key is made from catalog_id, journal
columns with catalog_id being the partition key. Invoke the execute(String) method to create table
catalog as follows.

session.execute("CREATE TABLE IF NOT EXISTS datastax.catalog (catalog id text,journal text,
publisher text, edition text,title text,author text,PRIMARY KEY (catalog id, journal))");

268

CHAPTER 10 MIGRATING APACHE CASSANDRA

Prefix the table name with the keyspace name. Invoke the createTable method in main method. When
the CreateCassandraDatabase application is run the catalog table gets created. Next, we shall add data to
the table catalog using the INSERT statement. Use the IF NOT EXISTS keyword to add rows conditionally.
When a compound primary key is used all the component primary key columns must be specified, including
the values for the compound key columns.

Add a method insert() to the CreateCassandraDatabase class and invoke the method in the main
method. Add two rows identified by row ids catalogi, catalog2 to the table catalog. For example, the two
rows are added to the catalog table as follows.

session.execute("INSERT INTO datastax.catalog (catalog id, journal, publisher,
edition,title,author) VALUES ('catalogl','Oracle Magazine', 'Oracle Publishing',
'November-December 2013", 'Engineering as a Service','David A. Kelly') IF NOT EXISTS");
session.execute("INSERT INTO datastax.catalog (catalog id, journal, publisher,
edition,title,author) VALUES ('catalog2','Oracle Magazine', 'Oracle Publishing',
'November-December 2013', 'Quintessential and Collaborative','Tom Haunert') IF NOT EXISTS");

Next, we shall run a SELECT statement to select columns from the catalog table. Add a method
select() to run SELECT statement/s. Select all the columns from the catalog table using the * for column
selection. The SELECT statement is run as a test to find that the data we added got added.

ResultSet results = session.execute("select * from datastax.catalog");

A row in the ResultSet is represented with the Row class. Iterate over the ResultSet to output the
column value or each of the columns.

for (Row row : results) {

System.out.println("Journal: " + row.getString("journal™));
System.out.println("Publisher: " + row.getString("publisher"));
System.out.println("Edition: " + row.getString("edition"));
System.out.println("Title: " + row.getString("title"));
System.out.println("Author: " + row.getString("author"));
System.out.printIn("\n");

System.out.println("\n");

}

The CreateCassandraDatabase class is listed below.
package couchbase;

import com.datastax.driver.core.Cluster;
import com.datastax.driver.core.ResultSet;
import com.datastax.driver.core.Row;
import com.datastax.driver.core.Session;

public class CreateCassandraDatabase {
private static Cluster cluster;
private static Session session;
public static void main(String[] argv) {
cluster = Cluster.builder().addContactPoint("127.0.0.1").build();
session = cluster.connect();
createKeyspace();

269

CHAPTER 10 MIGRATING APACHE CASSANDRA

createTable();
insert();
select();
}
private static void createKeyspace() {
session.execute("CREATE KEYSPACE IF NOT EXISTS datastax WITH replication "
+ "= {'class':'SimpleStrategy', 'replication factor':1};");
}
private static void createTable() {
session.execute("CREATE TABLE IF NOT EXISTS datastax.catalog (catalog id text,journal
text,publisher text, edition text,title text,author text,PRIMARY KEY (catalog id, journal))");
}
private static void insert() {
session.execute("INSERT INTO datastax.catalog (catalog_id, journal, publisher,
edition,title,author) VALUES ('catalogl','Oracle Magazine', 'Oracle Publishing', 'November-
December 2013', 'Engineering as a Service','David A. Kelly') IF NOT EXISTS");
session.execute("INSERT INTO datastax.catalog (catalog id, journal, publisher,
edition,title,author) VALUES ('catalog2','Oracle Magazine', 'Oracle Publishing', 'November-
December 2013', 'Quintessential and Collaborative','Tom Haunert') IF NOT EXISTS");
}
private static void select() {
ResultSet results = session.execute("select * from datastax.catalog");
for (Row row : results) {
System.out.println("Catalog Id: " + row.getString("catalog id"));
System.out.println("\n");
System.out.println("Journal:
System.out.printIn("\n");
System.out.println("Publisher:
System.out.println("\n");
System.out.println("Edition:
System.out.println("\n");
System.out.println("Title: " + row.getString("title"));
System.out.printIn("\n");
System.out.println("Author: " + row.getString("author"));
System.out.println("\n");

+ row.getString("journal™));

+ row.getString("publisher"));

+ row.getString("edition"));

Run the CreateCassandraDatabase application to add two rows of data to the catalog table. Right-click on
CreateCassandraDatabase. java in Package Explorer and select Run As » Java Application as shown in Figure 10-11.

270

File Edt Source Refactor Nagate e New
AP e o
18 Package Bxploner 5| = B | ¢] OpenWith
2 CassandraToCouchbase
3 srefmsindpna Shograe I
+ B couchbase

Th CrateCainnanbabucy] & -7

1) MegrateCassandaaToCouchtl M8l Copy Quakified Hame

B sro/mainfeesources T Paste
W schutlien K Delete
5 sreftestfrescurces

+ WA Maven Dependencies

» B JRE Systern Library [jdi17.0 51] Build Path
r > o Seurce
& target
B pomamd Refactor
L Import
Lz Eport
References
Declantions
£ Refresh

Assign Working Sets...

Profile As
Duebug A3
Run s
Valdate

Team

Compare With

Open Type Hierarchy

Remove from Contedt

e B W S e - T
»
r oAb
ot andraToCouchbase.
F4
Al Shift W b
[
seel) {
Coloy [PPACE IF NOT EXISTS datastax WITH replication ™
leitrategy®, “replication_factor®:1};");
Dadete

Ctrl vt + Shift « Down

»
Al +ShifeaSh
A+ ShiftsT ¥

CHAPTER 10 I MIGRATING APACHE CASSANDRA

D datastax.catalog

L execute("select * from dstastax.catalog™);

blog Id: * + row.getString{“cataleg 1d7));

iole 52

8 1Run on Sewer AeShiftKR |

1 2w Application AltsThift+ X
Fur Confrguatbons...

Figure 10-11. Running Java Application CreateCassandraDatabase.java

———

T il

Quick Biecess || 1% | §% el [T

{
LE IF NOT EXISTS datastax.catalog (catalog id text,jourmsl text,publisher text, edition text,title tet

ETRE, jcurnal, publisher, editfon,title,suthor] WALLES ['catalogl®,'Oracle M
D datastex.catalog (catalog id, journal, publisher, edition,title,suthor) VALUES (‘catalog?’,'Oracle ha

The Cassandra keyspace datastax gets created, the catalog table gets created, and data gets added to the table.
The SELECT statement, which is run as a test, outputs the two rows added to Cassandra as shown in Figure 10-12.

& Problems @ Javadoc [, Declaration) Console 2

X BEEE rE-rn-= 0

CreateCassandraDatabase [Java Application] C:\Program Files\Java\jdk1.7.0_51\bin\javaw.exe (Jul 9, 2015, 12:02:54 PM)

12:

3:02.811 [clusterl-nio-worker-1] DEBUS com.dstastax.driver.core.Cluster - Refreshing schema for datastax.catalog .

12:83:02.821 [clusterl-worker-@] DEBUG c.d.driver.core.ControlCennection - Checking for schema agreement: versions are [5534ade2-dfSc-34b2-%e

Cataleog Id: catalogl

Journal: Oracle Magazine

Publisher: Oracle Publishing

Edition: November-December 2013

Title: Engineering as a Service

Author: David A, Kelly

Cataleg Id: catalog2

Jeurnal: Oracle Magazine

Publisher: Oracle Publishing

Editien: November-December 2013

Title: Quintessential and Collaborative

Auther: Tom Haunert

Figure 10-12. The two rows of data added to Cassandra Database

271

CHAPTER 10 MIGRATING APACHE CASSANDRA

To verify that the datastax keyspace got created in Cassandra, log in to the Cassandra Client interface
with the following command.

cassandra-cli
Run the following command to authenticate the datastax keyspace.
use datastax;

The datastax keyspace gets authenticated as shown in Figure 10-13.

y)
B Administrator: C:\Windows\system32\cmd.exe - cassandra-cli E@]&J

C:Napache—-cassandra-2.1.7>cassandra-cli

Starting Cassandra Client r
Connected to: “"Test Cluster" on 127.08.0.1-/9168

Unable to open C:“\UserssDeepak Uohra“.cassandra>cli.history for writingllelcome t
o Cassandra CLI version 2.1.7

The CLI is deprecated and will be removed in Cassandra 2.2. Consider migrating
to cglsh.

CQL is fully backwards compatible with Thrift data; see http:/suuww.datastax.com/
dev/blog/thrift—to—-cgl3

Type "help;’ or '?’ for help.
Type ’quit;’ or ’exit;’ to guit.

[defaultPunknown] use datastax;
uthenticated to keyspace: datastax
[defaultPdatastax]

Figure 10-13. Selecting the datastax keyspace

To output the table stored in Cassandra run the following commands in Cassandra-Cli.

assume catalog keys as utf8;
assume catalog validator as utf8;
assume catalog comparator as utf8;
GET catalog[utf8('catalogl')];

GET catalog[utf8('catalog2')];

The two rows stored in the catalog table get listed as shown in Figure 10-14.

272

CHAPTER 10 I MIGRATING APACHE CASSANDRA

N
Administrator: C:\Windows\system32\cmd.exe - cassandra-cli EM
-
[default@datastax] ~

[defaultPdatastax] assume catalog keys as utf8;

Assumption for column family ‘catalog’ added successfully.

[default@datastax] assume catalog validator as utf8;

Assumption for column family ‘catalog’ added successfully.

[defaultPdatastax] assume catalog comparator as utf8;

Assumption for column family ’catalog’ added successfully.

[defaultPdatastax] GET cataloglutf8<{’catalogl’>];

=>» {(name= ¥0racle Magazine » value=, timestamp=1436468582885000>

;gségan§= #0racle Magazine <®author , value=David A. Kelly, timestamp=143646858
15]5]

=>» (name= ¥0racle Magazine edition , value=Novemher—December 2013, timestamp=14

364685828850008>

=>» (name= ¥0racle Magazine publisher . value=0racle Publishing. timestamp=1

436468582885080)

=>» (name= ¥0racle Magazine #title , value=Engineering as a Service, timestamp=1

43646858288500808)>

Returned 5 results.

Elapsed time: 36 msec{s).

[default@datastax] GET cataloglutf8{’catalog2’>1;

=>» (name= ¥0racle Magazine . value=, timestamp=1436468583077080>

;éagname= #0racle Magazine <®author , value=Tom Haunert, timestamp=14364685838077

=> {name= ¥)racle Magazine edition , value=Novemher-December 2813, timestamp=14
36468583077008>

=> (name= ¥0racle Magazine publisher , value=0racle Publishing, timestamp=1
436468583077000>

=>» {(name= ¥0racle Magazine #title , value=Quintessential and Collaborative, tim
estamp=1436468583077008>

Returned 5 results.

Elapsed time: 65 msec{s).

[defaultPdatastax] _

Figure 10-14. Listing the catalog table Rows

Next, we shall migrate the Cassandra data to Couchbase Server.

Migrating the Cassandra Database to Couchbase

In this section we shall get the data stored earlier in Cassandra NoSQL database and migrate the data to
Couchbase Server. We shall use the MigrateCassandraToCouchbase class to migrate the data from Cassandra
database to Couchbase Server. Add a method called migrate() to the MigrateCassandraToCouchbase class
and invoke the method from the main method. From the MigrateCassandraToCouchbase class, connect to
the Cassandra server as explained in the previous section in the main method.

cluster = Cluster.builder().addContactPoint("127.0.0.1").build();
session = cluster.connect();

A Session object is created to represent a connection with Cassandra server. We shall use the Session
object to run a SELECT statement on Cassandra to select the data to be migrated. Run a SELECT statement as
follows to select all rows from the catalog table in the datastax keyspace in the migrate() method.

ResultSet results = session.execute("select * from datastax.catalog");

273

CHAPTER 10 MIGRATING APACHE CASSANDRA

The result set of the query is represented with the ResultSet class. A row in the ResultSet is
represented with the Row class. Iterate over the ResultSet to fetch each row as a Row object.

for (Row row : results) {

}

Before we migrate the rows of data fetched from Cassandra create a Java client for Couchbase because
we would need to add the fetched data to Couchbase. As discussed in Chapter 2, the CouchbaseCluster
class is the main entry point for connecting to the Couchbase Server. In the migrate() method create a
CouchbaseCluster instance using the static method create().

Cluster cluster = CouchbaseCluster.create();

Couchbase Server stores documents in Data Buckets. The default data bucket is called “default.” As
discussed in Chapter 2, the CouchbaseCluster provides the overloaded openBucket () method to connect to
a Couchbase bucket. Create a Bucket instance for the default bucket.

Bucket defaultBucket = cluster.openBucket("default");

Couchbase server stores documents as JSON. Next, we shall construct JSON strings from data retrieved
for Cassandra and store the JSON string in Couchbase. In the migrate() method add a counter variable for
the rows fetched from Cassandra. Next, we shall migrate the data using a for loop row by row. Add an int
counter i for the rows of data and increment the counter in the for loop with each row iterated.

int i = 0;
for (Row row : results) {
i=1+1;

}

An unordered collection of name-value pairs that constitute a JSON document is represented by the
com. couchbase.client. java.document. json.JsonObject class. Within the for loop create an empty
JsonObject instance, which represents a JSON object that may be stored in Couchbase Server, using the
static method empty().

JsonObject catalogObj = JsonObject.empty();

Obtain the column definitions as represented by a ColumnDefinitions object using the
getColumnDefinitions() method of Row. Create an Iterator over the ColumnDefinitions object using the
iterator() method with each column definition being represented with ColumnDefinitions.Definition.
Using the Iterator in conjunction with its hasNext method iterate over the columns and obtain the
column names.

while (iter.hasNext()) {
ColumnDefinitions.Definition column = iter.next();
String columnName = column.getName();

Using the getString(String columnName) method in Row obtain the value corresponding to each column.

String value = row.getString(columnName);

274

http://dx.doi.org/10.1007/9781484214350_2
http://dx.doi.org/10.1007/9781484214350_2

CHAPTER 10 I MIGRATING APACHE CASSANDRA

Using the put(String key, String value) method in JsonObject put the column name and column
value in the JsonObject object.

catalogObj.put(columnName, value);

The Bucket class provides overloaded insert and upsert methods to store/add documents to Couchbase
Server. We shall use the insert(D document) method. Add the JsonObject instance created earlier to
the default bucket using the Bucket instance and the insert(D document) method. Create an instance of
JsonDocument to add using the insert(D document) method with the JsonDocument. create(java.lang.
String id, JsonObject content) method. Specify documentid as “catalog” suffixed with the row counter i.

JsonDocument document = defaultBucket.insert(JsonDocument.create("catalog" + i, catalogObj));

The MigrateCassandraToCouchbase class is listed below.

package couchbase;

import
import
import
import

import
import
import
import
import
import
import
import
import

public

java.
java.
java.
java.

com
com.
com
com.
com.
com.
com.
com
com.

net.URI;

.couchbase.
couchbase.
.couchbase

util.Iterator;
util.LinkedList;
util.list;

client.java
client. java

.client.java
couchbase.
couchbase.

client.java
client.java

.Bucket;
.CouchbaseCluster;
.Cluster;
.document.JsonDocument;
.document. json.JsonObject;

datastax.driver.core.ColumnDefinitions;
datastax.driver.core.ResultSet;

.datastax.driver.core.Row;

datastax.driver.core.Session;

class MigrateCassandraToCouchbase {
private static com.datastax.driver.core.Cluster cluster;
private static Session session;

public static void main(String[] argv) {

cluster = com.datastax.driver.core.Cluster.builder()
.addContactPoint("127.0.0.1").build();
session = cluster.connect();

mig

rate();

private static void migrate() {

Cluster cluster = CouchbaseCluster.create();

Bucket defaultBucket = cluster.openBucket("default");

ResultSet results = session.execute("select * from datastax.catalog");

int
for

i=0;
(Row row : results) {
i=1+1;

JsonObject catalogObj = JsonObject.empty();

275

CHAPTER 10 MIGRATING APACHE CASSANDRA

ColumnDefinitions columnDefinitions = row.getColumnDefinitions();
Iterator<ColumnDefinitions.Definition> iter = columnDefinitions
.iterator();
while (iter.hasNext()) {
ColumnDefinitions.Definition column = iter.next();
String columnName = column.getName();
String value = row.getString(columnName);
catalogObj.put(columnName, value);

}

JsonDocument document = defaultBucket.insert(JsonDocument
.create("catalog" + i, catalogObj));
System.out.println("Set Succeeded");

Next, we shall run the MigrateCassandraToCouchbase application in Eclipse IDE. Right-click on
MigrateCassandraToCouchbase.java and select Run As » Java Application as shown in Figure 10-15.

File Edit Source Refactor Navigate Searchi New 3

w1 PR R e . Open B s
|4 Package Explorer i =3 | ¢ ¥ I'_"| Open With ¥ haToCouchbasejava &3
=12 CassandraToCouchbase Open Type Hierarchy F4
=-4® src/mainfjava Show In Alt+Shift+ W »
= couchbase s
=-{f cou B Copy Ctrl+C

#-[4] CreateCassandraDatabase java

N MigrateCassandraToCouchbase j2 .“\—- Copy Qualified Name

{® sre/main/resources Paste Ctrl+W
2B srefrestfjna x Del
b= elete Delete .
{38 srcftestfresources eCluster;
-2, JRE System Library [J256-1.5] Remove from Context Ctrl +A1t+Shift+Down . 3sonboc t;
@ -\ Maven Dependencies Build Path b 1. json.IsonObject;
@B Referenced Libraries Gy Alt+Shiftss s |initions;
et o Refactor Alt+Shift+T »
= target
[pomaeml | g2z Import...
|t Export.
i3 Expo re.Cluster cluster;
References »
Declarations 3
| & Refresh Sl Files\lava\jdk1.7.0_S1\bin\javaw:exe (ul 9, 2015, 1:31:18 PM)

Assign Warking Sets...

Profile As L3

Debug As (]

Run As » | o5 1Run on Server Alt+Shift+) R
Validate [37 2 Java Application Alt+Shifte), |
s " Run Configurations...

Compare With » r

Figure 10-15. Running the MigrateCassandraToCouchbase.java Application

276

CHAPTER 10 I MIGRATING APACHE CASSANDRA

Two rows of data get fetched from Cassandra and get stored in Couchbase Server. Now, complete the
following steps.

1. Login to the Couchbase Administration Console with URL
http://localhost:8091/index.html.

2. Specify the Username and Password to log in to the Console and click on Sign In.
3. Inthe Console, click on Data Buckets.
4. The Couchbase Buckets gets listed, the “default” bucket being one of them.
5. The Item Count for the default bucket should be listed as 2 for the two
documents migrated from Cassandra as shown in Figure 10-16.
=8
Couchbase
A& Cluster Overview Server Nodes Data Buckets XDCR 0g Settings
Data Buckets
Couchbase Buckets Create New Data Bucket
Bucket Name Nodes ttem Count Opsisec Disk Fetches/sec RAM/Quota Usage Data/Disk Usage
P default @ 2 0 0 S ol Documents | Views
O
Figure 10-16. Selecting the Documents button
6. Click on the Documents button for the default bucket.
7. The two documents catalogl and catalog? are listed as added to the default
bucket as shown in Figure 10-17. Click on the Edit Document button for a
document to list the JSON document. For example, click on the Edit Document
button for the catalogl document as shown in Figure 10-17.
=B
Couchbase
A& Cluster Server Nodes Data Buckets XDCR Log Settings
default ~ > Documents Cunent page: 1 5
Documents Filter Document ID LDOKI.IE Id | Create ument
4] Content
catalog1 { "journal®: "Oracle Magazine™, "amthor™: "David A. Kelly", Edit Document = Delete
catalog2 { "journal®: "Oracle Magazine”, “"author™: "Tom Haunert”, “ed Edit Document = Delete

Figure 10-17. The two documents migrated from Cassandra to Couchbase

277

CHAPTER 10 MIGRATING APACHE CASSANDRA

The catalogl document JSON gets listed as shown in Figure 10-18.

u tation = 1e t = Sign Out
Couchbase
& Cluster Overview Server Nodes Data Buckets Views XDCR Log Settings
default ~ > Documents

[y catalogt WDk WBRRlsay S

Figure 10-18. The catalogl JSON Document

8. Similarly, click on the Edit Document button for the catalog2 document as
shown in Figure 10-19.

antation » 1e t » Sign Cut
Couchbase
A& Cluster Overview Server Nodes Data Buckets Views XDCR Log Settings

default = > Documents Cument page: 1 |5 -
Documents Filter Document ID

[1i] Content

catalogi { "journal®: "Oracle Magazine®, "author": "David A. Kelly",. Edit Document Delete
catalog2 { "journal®: "Oracle Magazine", “author™: "Tom Haunert®, “ed Edit Document = Delete

Figure 10-19. Selecting the catalog2 JSON document

278

CHAPTER 10 MIGRATING APACHE CASSANDRA

The catalog2 id JSON document gets displayed as shown in Figure 10-20.

==
Couchbase
% Cluster O Server Nodes Data Buckets XDCR Log Settings
default ~ > Documents
 [cetoion? \Rekey WSmmdny o

Figure 10-20. catalog2 JSON

We migrated two rows listed in Table 10-4 from Cassandra server to two JSON documents in
Couchbase Server.

Table 10-4. The two rows migrated from Cassandra to Couchbase

Row catalog_id journal publisher edition title author JSON Document

Row1 catalogl Oracle Oracle November- Engineering David A. Kelly {
Magazine Publishing December asa Service “catalog_id":
2013 “catalogl’,

“journal”: “Oracle
Magazine’,
“author”:
“David A. Kelly’,
“edition”:
“November-
December 2013,
“publisher”:
“Oracle
Publishing’,
“title”:
“Engineering as a
Service”

(continued)

279

CHAPTER 10 MIGRATING APACHE CASSANDRA

Table 10-4. (continued)

Row catalog_id journal publisher edition title author JSON Document

Row?2 catalog2 Oracle Oracle November- Quintessential Tom Haunert {
Magazine Publishing December and “catalog_id”:
2013 Collaborative “catalog?2’,

“journal”: “Oracle
Magazine’,
“author”:
“Tom Haunert’,
“edition”:
“November-
December 2013’
“publisher”:
“Oracle
Publishing’,
“title”:
“Quintessential
and Collaborative”

We did not hard-code any column names or column values. Any number of rows with each row having
any columns and any number of columns may be migrated using the MigrateCassandraToCouchbase
application. The keyspace and table name in the SELECT statement to fetch data from Cassandra are the only
two values hard-coded and may be modified as required.

Summary

In this chapter we migrated data from Cassandra database to Couchbase database using a Java application.
First, we created sample data in Cassandra. Subsequently we fetched the sample data in a Java application
and migrated the data as JSON documents to Couchbase Server. In the next chapter we shall migrate Oracle
Database to Couchbase Server.

280

CHAPTER 11

Migrating Oracle Database

Couchbase Server is one of the leading NoSQL databases in the document store type databases category.
Couchbase stores documents using the JSON data format, which is the most flexible of data models with
provision to create hierarchies of data structures. In contrast, Oracle database stores data in a fixed schema
table format. The database model of Couchbase is based on Document store while in Oracle Database data
is organized as tables with two-dimensional matrices made of columns and rows. In this chapter we shall
migrate an Oracle Database table to Couchbase Server. A direct migration tool is not available for migrating
from Oracle to Couchbase. We shall first export Oracle Database table to a CSV file. Subsequently we

shall import the CSV file data into Couchbase Server using the cbtransfer tool. This chapter covers the
following topics.

e Overview of the cbtransfer Tool

e Setting the Environment

e Creating an Oracle Database Table

e Exporting Oracle Database Table to CSV File

e Transferring Data from CSV File to Couchbase

Overview of the cbtransfer Tool

The cbtransfer tool is used to transfer data between two Couchbase clusters or between a file and a
Couchbase cluster. The syntax for using the cbtransfer tool is as follows.

cbtransfer [options] source destination

For example to transfer between a source cluster and a destination cluster run the following command.
cbtransfer http://SOURCE:8091 http://DEST:8091

To transfer from a backup to a cluster run the following command.
cbtransfer /backups/backup-42 http://DEST:8091

To transfer from a cluster to a backup run the following command.

cbtransfer http://SOURCE:8091 /backups/backup-42

281

CHAPTER 11 MIGRATING ORACLE DATABASE

We need to transfer from a CSV file to a cluster for which the command has the following format.
cbtransfer c:/wlslog.csv http://DEST:8091

Some of the options supported by cbtransfer are discussed in Table 11-1.

Table 11-1. Options supported by cbtransfer Tool

Option Description

-b BUCKET_SOURCE, --bucket- Specifies the source bucket.
source=BUCKET_SOURCE

-B BUCKET_DESTINATION, --bucket- Specifies the destination bucket.
destination=BUCKET_DESTINATION

-u USERNAME, --username=USERNAME Username
-p PASSWORD, --password=PASSWORD Password

-t THREADS, --threads=THREADS Number of concurrent threads performing the transfer.

-i ID, --id=ID Specifies the vbucketID of the items to transfer.

-k KEY, --key=KEY Specifies the regexp for the item keys for the items to transfer.
-n, --dry-run A dry run does not actually transfer data but just performs a

validation of the files, connectivity, and configuration.

Extra configuration parameters may be set using -x. Some of the extra configuration parameters are
discussed in Table 11-2.

Table 11-2. Extra Configuration Parameters supported by cbtransfer Tool

Configuration Parameters Description

batch_max_bytes Transfer this # of bytes per batch

batch_max_size Transfer this # of documents per batch

max_retry Max number of sequential retries if transfer fails

recv_min_bytes Amount of bytes for every TCP/IP call transferred

report Number of batches transferred before updating progress bar in console

report full Number of batches transferred before emitting progress information in console
uncompress For value 1, restore data in uncompressed mode

282

Setting the Environment

We need to download the following software for this chapter.

CHAPTER 11 I MIGRATING ORACLE DATABASE

e Oracle Database 12c. Download from http://www.oracle.com/technetwork/
database/enterprise-edition/downloads/index-092322.html.

e Couchbase Server (Version: 3.0.x Enterprise Edition).

e The cbtransfer tool is installed with Couchbase Server and for Windows located in

C:\Program Files\Couchbase\Server\bin\ directory.

As areminder, when installing and configuring Couchbase Server in the CREATE DEFAULT BUCKET for
the default bucket, select Bucket Type as Couchbase as shown in Figure 11-1.

CREATE DEFAULT BUCKET

Bucket Settings

Bucket Name: default
Bucket Type: (@ Couchbase

Memcached

Memory Size

Per Node RAM Quota: 4794 MB

Step 3 of 5

Cluster quota (4.68 GB)

Other Buckets (0 B) This Bucket (4.68 GB) Free (0 B)
Total bucket size = 4794 MB (4794 MB x 1 node)
Cache Metadata: @ Value Ejection What's this?
Full Ejection
Replicas
#| Enable 1 ¥ | Number of replica (backup) copies

Index replicas

Disk I/O Optimization

Set the bucket disk 1/0 priority: ® Low (default) What's this?

Figure 11-1. Selecting Data Bucket Type as Couchbase

283

http://www.oracle.com/technetwork/database/enterprise-edition/downloads/index-092322.html
http://www.oracle.com/technetwork/database/enterprise-edition/downloads/index-092322.html

CHAPTER 11 " MIGRATING ORACLE DATABASE

Select the Enable checkbox for Flush as shown in Figure 11-2.

() Memcached

Memory Size

Cluster quota (4.68 GB)
Per Node RAM Quota: 4794 M2

Other Buckets (0 B) This Bucket (4.63 GB) Free (0 B)
Total bucket size = 4794 MB (4794 MB x 1 node)

Cache Metadata: @ Value Ejection What's this?

() Full Ejection
Replicas

#! Enable 1___{ Number of replica (backup) copies

[Index replicas
Disk I/O Optimization

Set the bucket disk 1/0 priority: @ Low (default) What's this?
) High

Flush N

[# Enable What's this?

Figure 11-2. Enabling Flush

284

CHAPTER 11 I MIGRATING ORACLE DATABASE

Creating an Oracle Database Table

First, create an Oracle Database table WLSLOG using the following SQL script.

CREATE TABLE OE.WLSLOG (ID VARCHAR2(255) PRIMARY KEY, TIME_STAMP VARCHAR2(255),
CATEGORY VARCHAR2(255), TYPE VARCHAR2(255), SERVERNAME VARCHAR2(255), CODE VARCHAR2(255),
MSG VARCHAR2(255));

INSERT INTO OE.WLSLOG (ID, TIME STAMP, CATEGORY, TYPE, SERVERNAME, CODE, MSG) values
('catalogl','Apr-8-2014-7:06:16-PM-PDT', 'Notice', 'WebLogicServer', 'AdminServer',
'BEA-000365", 'Server state changed to STANDBY');

INSERT INTO OE.WLSLOG (ID, TIME_STAMP, CATEGORY, TYPE, SERVERNAME, CODE, MSG) values
('catalog2','Apr-8-2014-7:06:17-PM-PDT', 'Notice', 'WebLogicServer','AdminServer',
'BEA-000365", 'Server state changed to STARTING');

INSERT INTO OE.WLSLOG (ID,TIME_STAMP, CATEGORY, TYPE, SERVERNAME, CODE, MSG) values
('catalog3','Apr-8-2014-7:06:18-PM-PDT', 'Notice', 'WeblLogicServer', 'AdminServer',
'BEA-000365', 'Server state changed to ADMIN');

INSERT INTO OE.WLSLOG (ID,TIME STAMP, CATEGORY, TYPE, SERVERNAME, CODE, MSG) values
('cataloga','Apr-8-2014-7:06:19-PM-PDT', 'Notice', 'WebLogicServer', 'AdminServer',
'BEA-000365', 'Server state changed to RESUMING');

INSERT INTO OE.WLSLOG (ID,TIME_STAMP, CATEGORY, TYPE, SERVERNAME, CODE, MSG) values
('catalogs', 'Apr-8-2014-7:06:20-PM-PDT', 'Notice', 'WeblLogicServer', 'AdminServer',
'BEA-000361', 'Started WebLogic AdminServer');

INSERT INTO OE.WLSLOG (ID,TIME STAMP, CATEGORY, TYPE, SERVERNAME, CODE, MSG) values
('catalog6','Apr-8-2014-7:06:21-PM-PDT', 'Notice', 'WebLogicServer', 'AdminServer',
'BEA-000365', 'Server state changed to RUNNING');

INSERT INTO OE.WLSLOG (ID,TIME STAMP, CATEGORY, TYPE, SERVERNAME, CODE, MSG) values
('catalog7','Apr-8-2014-7:06:22-PM-PDT', 'Notice', 'WeblLogicServer', 'AdminServer',
'BEA-000360"', 'Server started in RUNNING mode');

Run the SQL script in SQL*Plus to create the OE.WLSLOG table and add data to the table as shown in
Figure 11-3.

285

CHAPTER 11 " MIGRATING ORACLE DATABASE

- E hl
BN Administrator: C:\Windows\s;temBZ\cmd.exe-sqlpl?}s ’ sawEn @Jﬂu

QL> CREATE TABLE OE.WLSLOG <(ID UARCHAR2<(255> PRIMARY KEY, TIME_STAMP UARCHARZ(2
5>, CATEGORY UARCHAR2(255), TYPE UARCHAR2(255)>, SERUVERNAME UARCHAR2(255), CODE
ARCHAR2(255)>, MSG UARCHAR2(255)>;

able created.

qL>

QL> INSERT INTO OE.WLSLOG <ID, TIME_STAMP, CATEGORY, TYPE, SERUERNAME, CODE, MS
> values (’catalogl’.’Apr—-8-2014-7:06:16-PM-PDT’,’Notice’.’WebLogicServer’ .’ Adn
inServer’ .’ BEA-BBB365’ .’ Server state changed to STANDBY’);

row created.

QL> INSERT INTO OE.WLSLOG <ID, TIME_STAMP, CATEGORY, TYPE, SERUERNAME, CODE, MS
> values (‘catalog2’.,’Apr-8-2014-7:86:17-PM-PDT’,’Notice’,.’WebLogicServer’ .’Adn
inServer’ .’ BEN-BOB365’ .’ Server state changed to STARTING’);

row created.

> values (’catalog3’.,’Apr-8-2014-7:86:18-PM-PDT’, ’Notice’, ’WebLogicServer’, 'A
dminServer’, 'BEA-BB6B365’, ’'Server state changed to ADMIN’ D;

row created.

E QL> INSERT INTO OE.WLSLOG <ID.TIME_STAMP, CATEGORY, TYPE. SERUERNAME, CODE. MSQ
P values (‘catalog4’.’Apr—-8-2014-7:86:19-PM-PDT’, ’Notice’, ’WebLogicServer’, ‘A
dminServer’, 'BEA-BBB365°’, ’Server state changed to RESUMING’);

row created.
QL> INSERT INTO OE.WLSLOG <ID,.TIME_STAMP,. CATEGORY, TYPE, SERUVERNAME, CODE, MSG

values (’catalogb’.’Apr—-8-2014-7:06:20-PM-PDT’, ’Notice’, ’WebLogicServer’, ’'A
dminServer’, 'BEA-008361°’, ’Started WebLogic AdminServer’);

row created.

8QL> INSERT INTO OE.WLSLOG <(ID,TIME_STAMP, CATEGORY, TYPE, SERUERNAME, CODE, MSG
P values {’catalogb’.’Apr-8-2014-7:86:21-PM-PDT’', ’Notice’, ’WebLogicServer’, ’A
dminServer’ . ’BEA-BBB365’, ’Server state changed to RUNNING’>;

i rouw created.

BQL> INSERT INTO OE.WLSLOG (ID.TIME_STAMP, CATEGORY, TYPE, SERUERNAME, CODE, MSG
P values (‘catalog?’.,.’Apr—-8-2014-7:86:22-PM-PDT’, ’Notice’, ’WebLogicServer’, 'A
‘dminServer’, 'BEA-0B0368’, ’Server started in RUNNING mode’);

row created.

SaL>

BQL> INSERT INTO OE.WLSLOG (ID.TIME_STAMP, CATEGORY, TYPE, SERUERNAME. CODE, MSG.

-~

m

|\

Figure 11-3. Creating Oracle Database Table OE.WLSLOG

286

CHAPTER 11 I MIGRATING ORACLE DATABASE

Exporting Oracle Database Table to CSV File

Next, run the following SQL script in SQL*Plus to select data from the OE.WLSLOG table and export to a
wlslog.csv file.

set pagesize 0 linesize 500 trimspool on feedback off echo off

select ID || '," || TIME_STAMP || ',"' || CATEGORY || '," || TYPE || '," || SERVERNAME ||
[| CODE || *," || MSG from OE.WLSLOG;

spool wlslog.csv

/

spool off

When the SQL script is run as shown in Figure 11-4, data is exported to the wlslog.csv file.

QL> set pagesize B linesize 508 trimspool on feedback off echo off

SQL> select ID i1 *.* i TIME_STAMP ii ’.” i CATEGORY i *.” i TYPE i *.’ i
ERVERNAME i *,.’ i1 CODE i ’,’ ii MSG from OE.WLSLOG;
atalogl,Apr-8-2014-7:86:16-PM-PDT,.Notice WebLogicServer,.AdninServer . BEA-BBA365,
erver state changed to STANDBY
atalog2,Apr—-8-2014-7:06:17-PH-PDT ,Notice ,WebLogicServer . AdninServer. . BEA-BBA365,
erver state changed to STARTING

atalog3,.Apr—-8-2014-7:06:18-PM-PDT .Notice,WebLogicServer . AdninServer . BEA-BBA36S5 .,
erver state changed to ADMIN
atalog4.Apr—-8-2014-7:06:19-PM-PDT .Notice ,WebLogicServer . AdninServer . BEA-BBA36S5,
Berver state changed to RESUMING
atalog5,.Apr-8-2814-7:06:20-PM-PDT .Notice ,WebLogicServer. .AdninServer . BEA-BB0361 .,
Started WebLogic AdminServer

atalogb,Apr—8-2014—-7:86:21-PM-PDT ,Notice,YebLogicServer,.AdminServer . BEA-BBA365 .
erver state changed to RUNNING

atalog?,.Apr-8-2014-7:06:22-PM-PDT ,.Notice,WebLogicServer, .AdminServer,.BEA-B00360,
erver started in RUNNING mode

QL> spool wlslog.csv

QL> /

atalogl,Apr—-8-2014-7:86:16—PM-PDT ,Notice,YebLogicServer,.AdminServer . BEA-BBA365 .
erver state changed to STANDBY
atalog2,Apr—8-2014—-7:86:17-PM-PDT ,Notice ,YebLogicServer,.AdminServer,. BEA-BBA365 .
erver state changed to STARTING
atalog3,Apr—8-2014—-7:86:18-PM-PDT ,Notice ,YebLogicServer,.AdminServer, BEA-BBA365 .
erver state changed to ADMIN

atalog4,Apr—8-2014-7:86:19-PM- PDT Notice.WebLogicServer.AdminServer . BEA-BBA365 .
erver state changed to RESUMIN

atalog5,Apr—8-2014-7:86:20-PM- PDT Notice.WebLogicServer.AdminServer . BEA-BB80361 .
tarted WebLogic AdminServer
atalogb.Apr—8-2014-7:86:21-PM-PDT .Notice . WebLogicServer.AdminServer . BEA-BBA365 .
erver state changed to RUNNING
atalog?.Apr—-8-2014-7:086:22-PM-PDT .Notice . WebLogicServer.AdminServer . BEA-BB00360.
erver started in RUNNING mode

QL> spool off

QL>

Figure 11-4. Exporting Oracle Database Table to CSV File

Remove the leading and trailing output that is not the data exported to save the following as the
wlslog.csv file.

catalogl,Apr-8-2014-7:06:16-PM-PDT,Notice,WebLogicServer,AdminServer,BEA-000365,Server state
changed to STANDBY
catalog2,Apr-8-2014-7:06:17-PM-PDT,Notice,WebLogicServer,AdminServer,BEA-000365,Server state
changed to STARTING
catalog3,Apr-8-2014-7:06:18-PM-PDT,Notice,WebLogicServer,AdminServer,BEA-000365,Server state
changed to ADMIN

287

CHAPTER 11 MIGRATING ORACLE DATABASE

catalog4,Apr-8-2014-7:06:19-PM-PDT,Notice,WebLogicServer,AdminServer,BEA-000365,Server state
changed to RESUMING
catalog5,Apr-8-2014-7:06:20-PM-PDT,Notice,WebLogicServer,AdminServer,BEA-000361, Started
WebLogic AdminServer
catalog6,Apr-8-2014-7:06:21-PM-PDT,Notice,WebLogicServer,AdminServer,BEA-000365,Server state
changed to RUNNING
catalog7,Apr-8-2014-7:06:22-PM-PDT,Notice,WebLogicServer,AdminServer,BEA-000360, Server
started in RUNNING mode

Transferring Data from CSV File to Couchbase

In this section we shall transfer data from the wlslog.csv file to Couchbase Server using the cbtransfer
tool. Log in to the Couchbase Admin Console with the URL localhost:8091. Click on Data Buckets. The
default bucket should get listed with Item Count as 0 as shown in Figure 11-5.

localhost

(=]

Couchbase

#®

Data Buckets

Couchbase Buckeis | Create New Data Bucket
Bucket Hame Hodes Hem Count Ops/sec Disk Fetches/sec RAM/Quota Usage Datalisk Usage

afm 1 fl N 0l 3.3MB 1 125KB 1
p default b @ 0 0 45008 T abiE Documents | Views

Figure 11-5. The default bucket with Item Count as 0

Run the cbtransfer tool to transfer data from the wlslog.csv file to the Couchbase Server default
bucket. The command parameters in order are listed in Table 11-3.

Table 11-3. Command Parameters used for the cbtransfer Tool command

Parameter Description

C:\Couchbase\wlslog.csv The source CSV file to transfer data from
http://127.0.0.1:8091 The destination Couchbase Server URL

-B default The bucket to transfer data to

-u Administrator The username

-p couchbase The password

-x batch_max_size The # of documents to transfer per batch

-X max_retry=10 The max number of sequential retries if transfer fails

288

CHAPTER 11 I MIGRATING ORACLE DATABASE

Run the following cbtransfer command.

cbtransfer C:\Couchbase\wlslog.csv http://127.0.0.1:8091 -B default -u Administrator -p
couchbase -x batch_max_size=2 -x max_retry=10

As the output indicates, data gets transferred to Couchbase Server from the wlslog.csv file as shown in
Figure 11-6.

:\Couchhase>
:\Couchhase>chtransfer C:\Couchhase\wlslog.csv http://127.0.8.1:8091 -B default

-u Administrator —p couchbase -x batch_max_size=2 -x max_retry=10
.ucket: wlslog.csv, msgs transferred...
= total | last 1 per sec
byte = 49 | 49 | 6.7
one =
:\Couchbase?>_ .

Figure 11-6. Running the cbtransfer tool command

Displaying JSON Data in Couchbase

In the Couchbase Server Admin Console the Item Count should get listed as 7 as shown in Figure 11-7.

] localhost 209

Ball

Couchbase

#®

Data Buckets

Couchbase Buckets Create New Data Bucket
Bucket Hame Hodes Hem Count Ops/gec Disk Fetchesisec RAM/Guota Usage DataDisk Usage
p defauit @ 7 [N] 0 AT Documents Views

Figure 11-7. The default bucket with Item Count as 7

Click on the Documents button for the default bucket. The 7 rows of data in Oracle Database are listed
as being transferred as 7 documents as shown in Figure 11-8.

289

CHAPTER 11 " MIGRATING ORACLE DATABASE

(k::!;::ase

default ~ > Documents N Current page: 1 10 v
Documents Filter | Lookupid || Create Document
n Content

catalog1 { "category": "Notice", "code": "BEA-D00365", "servermame”: "A Edit Document = Delete
catalog2 { "category”: "Notice”, "code": "BEA-0003 "servername”: "A Edit Document ~ Delete
catalog3 { "category”: "Notice”, "code": "EEA-000355", "servermame”: "A.. Edit Document | Delete
catalog4 { "category”: "Notice"”, "code"”: "BEA-000355", "servername": "A Edit Document | = Delete
catalog5 { "category”: "Notice”, "code": "BEA-000361", "servername”: "A Edit Document | Delete
catalogb { "category”: "Notice”, "code”: "BEA-000365", "servername”: "A Edit Document | Delete
catalog? { "category”: "Notice”, "code”: "BEA-000360", "servername”: "A Edit Document ~ Delete

Figure 11-8. The 7 documents transferred to Couchbase Server

Click on a catalogl document. The JSON data in the document gets listed as shown in Figure 11-9.

Couchbase

& Cluster Overview Server Nodes Diata Buckets Views
default ~ = Documents

catalog Releey (Saveny S

{
“category”: “Notice”,
“code”: "BEA-000365",
"servername’: "AdminServer"”,
“mag™: "Server state changed to STANDEY",
“time stamp”: "Apr-8-2014-7:06:16-FN-PDT",
"type™: "WeblogicServer”,
"id": "catalogl”

Figure 11-9. The catalogl JSON Document

Summary

In this chapter we transferred Oracle Database table data to Couchbase Server. First, we created an Oracle
Database table. As a direct data transfer tool is not available, first we exported the Oracle Database table to a CSV
file. Subsequently the CSV file data is transferred to Couchbase Server using the Couchbase chtransfer tool. In the
next chapter we shall use the Couchbase Hadoop Connector to transfer data between Couchbase and HDEFS.

290

CHAPTER 12

Using the Couchbhase Hadoop
Connector

Apache Sqoop is a tool designed for transferring bulk data between Hadoop and a structured data

store. The Couchbase Hadoop Connector is designed for using Sqoop with Couchbase Server. With the
Couchbase Hadoop Connector bulk data may be transferred between Hadoop ecosystem-HDEFS or Hive,
and Couchbase data store. Typically, Hadoop is used for performing data analytics on the data stored in
Couchbase Server. In this chapter we shall discuss using the Couchbase Hadoop Connector to transfer data
between Couchbase Server and Hadoop HDFS. The chapter covers the following topics.

e Setting Up the Environment

¢ Installing Couchbase Hadoop Connector
e Listing Tables in Couchbase Server

e Exporting from HDFS to Couchbase

e Importing into HDFS from Couchbase

Setting Up the Environment

The following software is required for this chapter.
e Couchbase Server

e Couchbase Hadoop Connector

e Sqoop
e Hadoop
e Java?7

Hadoop including Sqoop is designed to be used on Linux. If using Windows, Hadoop may still be used
by using Cygwin, a Linux-like environment for using Windows for running software designed for POSIX
systems. Download and install Cygwin from http://cygwin.com/install.html. When installing Cygwin
install the Net: :OpenSSH package. Cygwin should be installed in a directory without spaces in the directory
path. Create a sub-directory without spaces in the /cygwin64/home directory. We shall install Couchbase
Server, Hadoop, Sqoop, and the Couchbase Hadoop Connector on Oracle Linux 6.5, which is based on Red
Hat Linux. Another Linux distribution may also be used. Also, Sqoop 1 is used in this chapter instead of
Sqoop 2 as Sqoop 2 currently lacks some of the features of Sqoop 1.

201

http://cygwin.com/install.html

CHAPTER 12 I USING THE COUCHBASE HADOOP CONNECTOR

Installing Couchbase Server on Linux

We have used Couchbase Server 32-bit Red Hat 6 Community Edition 2.2.0 Release in this chapter. If another
Linux distribution is used the Couchbase Server download for the Linux distribution should be used.

1. Install Couchbase Server with the following commands.
rpm -i couchbase-server-community 2.2.0 x86.rpm

As indicated by the output Couchbase Server gets installed as shown in Figure 12-1.
[root@localhost couchbase]# rpm -i couchbase-server-community 2.2.0 x86.rpm
Minimum RAM required : 4 GB
System RAM configured : 2070564 kB

Minimum number of processors required : 4 cores
Number of processors on the system : 1 cores

Starting couchbase-server[0K]

You have successfully installed Couchbase Server.

Please browse to http://localhost.oraclelinux:8091/ to configure your server.
Please refer to http://couchbase.com for additional resources.

Please note that you have to update your firewall configuration to

allow connections to the following ports: 11211, 11210, 11209, 4369,

8091, 8092 and from 21100 to 21299.

By using this software you agree to the End User License Agreement.
See /opt/couchbase/LICENSE.txt.

[root@localhost couchbasel#]

Figure 12-1. Installing Couchbase Server on Linux

2. Login to the Couchbase Server Console with URL http://localhost:8091.
Click on SETUP as shown in Figure 12-2.

Couchbase Console (2.2.0) - Mozilla Firefox

Elle Edit View History Bookmarks Tools Help
|t Couschbase Console (2.2.0) (£

4 | @ localhost.oraclelinux e ~ @ [Bv coogie w 4

Couchbase

¥]
Always scalable,
always on NoSQL

L 3

Figure 12-2. Clicking on SETUP button

292

CHAPTER 12 I USING THE COUCHBASE HADOOP CONNECTOR

3. In CONFIGURE SERVER the Database Path is specified. The Hostname is
127.0.0.1 as shown in Figure 12-3.

CONFIGURE SERVER Step 1015

Configure Disk Storage

Databases Path: jopt/couchbase/var/lib/couchbase/data

Free: 6GB
Indices Path: fopt/couchbasefvar/lib/couchbase/data
Free: 6 GB

Configure Server Hostname

Hostname: 127.0.0.1

Join Cluster / Start new Cluster

It you want to add this server to an existing Couchbase Cluster, select "Join a cluster
now". Altematively, you may create a new Couchbase Cluster by selecting "Start a
new cluster”.

Figure 12-3. Configuring Couchbase Server

4. In Start new Cluster header, the Start a new cluster is selected as shown in
Figure 12-4. Click on Next.

293

CHAPTER 12 I USING THE COUCHBASE HADOOP CONNECTOR

Hostname: 127.0.0.1

Join Cluster / Start new Cluster

If you want to add this server to an existing Couchbase Cluster, select "Join a cluster
now". Alternatively, you may create a new Couchbase Cluster by selecting "Start a
new cluster”.

If you start a new cluster the "Per Server RAM Quota® you set below will define the
amount of RAM each server provides to the Couchbase Cluster. This value will be
Inherited by all servers subsequently joining the cluster, so please set appropriately.

@® Start a new cluster.
RAM Available: 2022 MB

Per Server RAM Quota: |‘I213 MB (256 MB — 1617 MB)

O Join a cluster now.

Figure 12-4. Starting a new Cluster

5. In SAMPLE BUCKETS the Sample Data and MapReduce samples are listed as
shown in Figure 12-5. We won’t be using the samples but adding new datasets.
Click on Next.

SAMPLE BUCKETS Step 2 0f 5

Sample Data and MapReduce

Sample buckets are available to demonstrate the power of Couchbase Server. These
samples contain data and sample MapReduce queries.

Available Samples

O beer-sample
O gamesim-sample

0

Figure 12-5. Listing the Sample Buckets

294

CHAPTER 12 I USING THE COUCHBASE HADOOP CONNECTOR

6. In CREATE DEFAULT BUCKET the Bucket name is set as default and the Bucket
Type is Couchbase as shown in Figure 12-6.

CREATE DEFAULT BUCKET Step 3 of 5

Bucket Settings

Bucket Name: default
Bucket Type: @ Couchbase
O Memcached
Memory Size
Cluster quota (1.18 GB)

Per Node RAM Quota: p213 me \
Other Buckets (0 B} This Buckel (1.18 GB Free (0 B}

Total bucket size = 1213 MB (1213 MB x 1 node)

Replicas

M Enable 112 | Number of replica (backup) copies

[Index replicas

Nicl Rasd.\Writa Canciirransv

Figure 12-6. Selecting Data Bucket Name and Type

7. The Per Node RAM Quota is also set. The Number of replica copies is set as 1.
Click on Next as shown in Figure 12-7.

295

CHAPTER 12 I USING THE COUCHBASE HADOOP CONNECTOR

Cluster quota (1.18 GB)
Per Node RAM Quota: h213 me S|

Other Buckets {0 B) This Buckst (1.18 GB) Free {0 B)

Total bucket size = 1213 MB (1213 MB x 1 node)

Replicas
Enable I 12 l Number of replica (backup) coples

[J Index replicas
Disk Read-Write Concurrency

Provision number of reader/writer workers: 3 | (Min = 2, Max = 8)

Flush

O Enable

Figure 12-7. Specifying Per Node RAM Quota

8. In Update Notifications click on Next as shown in Figure 12-8.

Update Notifications

[0 Enable software update notifications What's this?

Community Updates

Please provide your emall address to join the community and receive news on coming
events.

Email:
First name:

Last name:

Company:

Figure 12-8. Update Notifications

296

CHAPTER 12 I USING THE COUCHBASE HADOOP CONNECTOR

9. Specify Username (Administrator) and Password and click on Next as shown in
Figure 12-9.

CONFIGURE SERVER Stop 5015

Secure this Server

Please create an administrator account for this Server. If you want to join other
servers to this one to form a cluster, you will need to use these administrator
credentials in the "join cluster” process.

Username: Administrator

Password: srsssvene

Verify Password: essesecss

Figure 12-9. Specifying Username and Password

In Cluster Overview the RAM (Total Allocated, In Use, Unused, and Unallocated) and Disk (Unused
Free Space, In Use, Other Data and Free) are listed as shown in Figure 12-10.

= . ekition Supiiort Focoms < Aboul HgD)
Couchbase

A& Cluster Overview Server Nodes Data Buckets Views XDCR Log Settings

Cluster Overview

Cluster
Tolal Allocated (1.18 GB) Total in Cluster (1.18 GB)
]
Ravovevie (.,
In Use (16.3 MB) Unused (1.17 GB) Unallocated (0 B)
Usable Free Space (6.4 GB) Total Cluster Storage (49.2 GB)
Disk Overview | |
In Use (662 KB) Oiher Dala (42.8 GB) Free (6.4 GBI]

Buckets (1 bucket active)

Figure 12-10. Cluster Overview

297

CHAPTER 12 I USING THE COUCHBASE HADOOP CONNECTOR

On the same page one active server and one active bucket are listed as shown in Figure 12-11.

Buckets (1 bucket active)

Operations per second

Disk fetches per second

o8 0.8
06 06
04 04
02 02
o o
01:08pm 01:08pm 01:08p 01:08pm
Servers

Active Servers: 1

Figure 12-11. Active Server and Active Bucket

Servers Failed Over: 0

. Servers Down: 0

. Servers Pending Rebalance: 0

In Data Buckets/Couchbase Buckets, the default bucket is listed along with the number of Nodes, Item
Count, and other stats about the bucket as shown in Figure 12-12.

Ol

Couchbase

A& Cluster Overview Server Nodes Data Buckets Views XDCR Log Settings

Data Buckets

Couchbase Buckets

Bucket Name Nodes Item Count Ops/sec Disk Felches/sec Ratl’l.uuota Data/Disk Usage
sage
16.3MI 14MB /

W default @ 0 0 0 ol oyt Documents = Views

Access Control: None Replicas: 1 replica copy Compaction: Not active Compact Edit
Cache Size

Cluster quota (1.18 GB)
Dynamic RAM Quota: 1.18GE i

Other Buckets {0 B)

Figure 12-12. The default bucket

298

This Bucket (1.18 GB| Free {0 B)

CHAPTER 12 © USING THE COUCHBASE HADOOP CONNECTOR

Installing Hadoop and Sqoop

First, we need to install the Hadoop ecosystem in which to install the Couchbase Hadoop Connector.
We shall use CDH 4.6 and download Hadoop 2.0.0 CDH 4.6 and Sqoop 1.4.3 CDH 4.6 TAR files from
http://archive.cloudera.com/cdh4/cdh/4/

1.

Create a directory /couchbase for installing Couchbase Hadoop Connector and
set its permissions.

mkdir /couchbase

chmod -

R 777 /couchbase

cd /couchbase

Install Java 7 by downloading the Java 7 Linux gz file and subsequently running
the following tar command.

tar zxvf jdk-7u55-linux-i586.gz

Download and install Hadoop 2.0.0 CDH 4.6 with the following commands.

wget http://archive.cloudera.com/cdh4/cdh/4/hadoop-2.0.0-cdh4.6.0.tar.gz
tar -xvf hadoop-2.0.0-cdh4.6.0.tar.gz

Create Symlinks for the Hadoop MapReduce 2 (MRv2) bin and conf directories.

1n -s /couchbase/hadoop-2.0.0-cdh4.6.0/bin /couchbase/hadoop-2.0.0-cdh4.6.0/

share/hadoop/mapreduce2/bin
1n -s /couchbase/hadoop-2.0.0-cdh4.6.0/etc/hadoop /couchbase/hadoop-2.0.0-

cdh4.6.

0/share/hadoop/mapreduce2/conf

Download and install Sqoop 1.4.3 CDH 4.6 with the following commands.

wget http://archive-primary.cloudera.com/cdh4/cdh/4/sqoop-1.4.3-cdh4.6.0.tar.gz
tar -xzf sqoop-1.4.3-cdh4.6.0.tar.gz

Set the environment variables for Java, Hadoop, and Sqoop in the bash shell.

vi ~/.bashrc

export
export
export
export
export
export
export
export

HADOOP_HOME=/couchbase/hadoop-2.0.0-cdh4.6.0/share/hadoop/mapreduce2
HADOOP_PREFIX=/couchbase/hadoop-2.0.0-cdh4.6.0
HADOOP_CONF=$HADOOP_PREFIX/etc/hadoop
SQ00P_HOME=/couchbase/sqoop-1.4.3-cdh4.6.0

JAVA HOME=/couchbase/jdk1.7.0_55
HADOOP_MAPRED_HOME=/couchbase/hadoop-2.0.0-cdh4.6.0/bin
HADOOP_CLASSPATH=$HADOOP_HOME/*: $HADOOP_HOME/1ib/*

PATH=$PATH: $HADOOP_HOME/bin:$HADOOP_MAPRED HOME :$SQO0P_HOME/bin

299

http://archive.cloudera.com/cdh4/cdh/4/
http://archive.cloudera.com/cdh4/cdh/4/
http://archive.cloudera.com/cdh4/cdh/4/hadoop-2.0.0-cdh4.6.0.tar.gz
http://archive-primary.cloudera.com/cdh4/cdh/4/sqoop-1.4.3-cdh4.6.0.tar.gz

CHAPTER 12

USING THE COUCHBASE HADOOP CONNECTOR

Copy the required Hadoop Jar files to the Sqoop classpath.

cp /couchbase/hadoop-2.0.0-cdh4.6.0/share/hadoop/mapreduce2/*
/couchbase/sqoop-1.4.3-cdh4.6.0/1ib

cp /couchbase/hadoop-2.0.0-cdh4.6.0/share/hadoop/mapreduce1/1ib/
hadoop-common-2.0.0-cdh4.6.0.jar /couchbase/sqoop-1.4.3-cdh4.6.0/1ib
cp /couchbase/hadoop-2.0.0-cdh4.6.0/share/hadoop/mapreduce1/1ib/
commons-configuration-1.6.jar /couchbase/sqoop-1.4.3-cdh4.6.0/1ib
cp /couchbase/hadoop-2.0.0-cdh4.6.0/share/hadoop/mapreduce1/1ib/
hadoop-auth-2.0.0-cdh4.6.0.jar /couchbase/sqoop-1.4.3-cdh4.6.0/1ib
cp /couchbase/hadoop-2.0.0-cdh4.6.0/share/hadoop/mapreduce1/1ib/
slf4j-api-1.6.1.jar /couchbase/sqoop-1.4.3-cdh4.6.0/1ib

cp /couchbase/hadoop-2.0.0-cdh4.6.0/share/hadoop/mapreduce1/1ib/
commons-httpclient-3.1.jar /couchbase/sqoop-1.4.3-cdh4.6.0/1ib

cp /couchbase/hadoop-2.0.0-cdh4.6.0/share/hadoop/mapreduce1/1ib/
commons-collections-3.2.1.jar /couchbase/sqoop-1.4.3-cdh4.6.0/1ib

The sqoop tool usage may be listed with the following command.

sqoop help

The output from the command lists the available commands as shown in Figure 12-13.

14/06/20 17
usage: s5qoo

Available c
codegen
create-hi
eval
export
help
import
import-al
job
list-data
list-tabl
merge
metastore
version

See 'sqoop
[root@local

:54:40 INFO sqoop.Sqoop: Running Sqoop version: 1.4.3-cdh4.6.0
p COMMAND [ARGS]

ommands :
Generate code to interact with database records
ve-table Import a table definition into Hive
Evaluate a SQL statement and display the results
Export an HDFS directory to a database table
List available commands
Import a table from a database to HDFS

l-tables Import tables from a database to HDFS
Work with saved jobs

bases List available databases on a server

es List available tables in a database

Merge results of incremental imports
Run a standalone Sqoop metastore
Display version information

help COMMAND' for information on a specific command.
host couchbase]# |

Figure 12-13. Sqoop Commands

In subsequent sections we shall discuss the Sqoop commands listed in Table 12-1.

Table 12-1.

Sqoop Commands

Sqoop command Description

list-tables Lists the tables in the Couchbase Server.

export

import

Exports Key-value pairs from HDFS to Couchbase Server.

Imports Key-Value pairs from Couchbase Server to HDFS.

300

CHAPTER 12 © USING THE COUCHBASE HADOOP CONNECTOR

Installing Couchbase Hadoop Connector

The procedure to install Couchbase Hadoop Connector is as follows.

1.

Download the CDH4 compatible Couchbase Hadoop Connector couchbase-
hadoop-plugin-1.1-dp3.zip file from http://packages.couchbase.com.s3
.amazonaws.com/clients/connectors/couchbase-hadoop-plugin-1.1-dp3.zip.

Extract the couchbase-hadoop-plugin-1.1-dp3.zip file to the /couchbase directory.

cd /couchbase
unzip couchbase-hadoop-plugin-1.1-dp3.zip

Copy the Couchbase Hadoop Connector Jar files from the /couchbase directory
to the Sqoop classpath, which is the /couchbase/sqoop-1.4.3-cdh4.6.0/1ib
directory.

cp /couchbase/*.jar /couchbase/sqoop-1.4.3-cdh4.6.0/1ib

Copy the couchbase-config.xml from the Couchbase Hadoop Connector
installation to the /couchbase/sqoop-1.4.3-cdh4.6.0/conf directory.

cp /couchbase/couchbase-config.xml /couchbase/sqoop-1.4.3-cdh4.6.0/conf
Create a directory /couchbase/sqoop-1.4.3-cdh4.6.0/conf/managers.d

and copy the couchbase-manager.xml from the /couchbase directory to the
managers.d sub-directory.

mkdir /couchbase/sqoop-1.4.3-cdh4.6.0/conf/managers.d

cp /couchbase/couchbase-manager.xml /couchbase/sqoop-1.4.3-cdh4.6.0/
conf/managers.d

Copying the Couchbase Hadoop Connector jars and configuration files to the

Sqoop installation completes the installation of Couchbase Hadoop Connector. To
verify the Couchbase Hadoop Connector installation, run the following command.

sh ./install.sh %SQO0P_HOME%

The output from the command indicates that the required files are found in
Sqoop and the connector installation is successful as shown in Figure 12-14.

301

http://packages.couchbase.com.s3.amazonaws.com/clients/connectors/couchbase-hadoop-plugin-1.1-dp3.zip
http://packages.couchbase.com.s3.amazonaws.com/clients/connectors/couchbase-hadoop-plugin-1.1-dp3.zip

CHAPTER 12 I USING THE COUCHBASE HADOOP CONNECTOR

[root@localhost couchbase]# sh install.sh
usage: ./install.sh path to sqoop home
[root@localhost couchbase]# sh ./install.sh %SQOOP HOME%

---Checking for install files---
/couchbase/couchbase-config.xml FOUND
/couchbase/couchbase-manager.xml FOUND
/couchbase/couchbase-hadoop-plugin-1.1-dp3.jar FOUND

Installing files to Sqoop

Install Successful!
[root@localhost couchbasel# |

Figure 12-14. Installing Couchbase Hadoop Connector

If the couchbase-manager . xml file is not found in the sqoop-1.4.3-cdh4.6.0\conf\managers.d
directory, the following error message is generated.

ERROR tool.BaseSqoopTool: Got error creating database manager: java.io.IOException: No
manager for connect string: http://localhost:8091/pools
at org.apache.sqoop.ConnFactory.getManager(ConnFactory.java:185)

Listing Tables in Couchbase Server

Sqoop is designed for relational databases in which tables are the norm, which as we know is not how
Couchbase is structured. The Couchbase Hadoop Connector accepts the -table option and uses it for
imports only as the tap stream to import from. For exports any value for the -table option may be specified
as it is ignored by the connector. For the sqoop import command the following values listed in Table 12-2
may be specified for the -table option.

Table 12-2. Sqoop import -table Options

Table Description

DUMP Contains all key-value pairs in the Couchbase Server and the sqoop import command
imports all the key-value pairs into HDFS.

BACKFILL nn Contains all key mutations for a specified time (nn) in minutes. Sqoop import command
with the BACKFILL_nn streams all subsequent key mutations into HDFS for the specified
time. For example, BACKFILL_5 as -table option value streams key mutations for the
subsequent 5 minutes.

Though Couchbase Server does not store data in tables the DUMP and BACKFILL nn may be used as
values to the -table option. To list the tables in the Couchbase Server run the following command; the
-connect option specifies the connection URL to the Couchbase Server and should include the Ipv4 address
(10.0.2.15 in the example) instead of “localhost” if Linux is running in a virtual machine such as Oracle
VirtualBox.

sqoop list-tables --connect http://10.0.2.15:8091/pools

302

CHAPTER 12 I USING THE COUCHBASE HADOOP CONNECTOR

The DUMP and BACKFILL_ NN tables get listed as shown in Figure 12-15.

[root@localhost couchbase]# sqoop list-tables --connect http://10.0.2.15:8091/po
ols

Warning: /usr/lib/hbase does not exist! HBase imports will fail.

Please set $HBASE HOME to the root of your HBase installation.

Warning: /usr/lib/hcatalog does not exist! HCatalog jobs will fail.

Please set $HCAT HOME to the root of your HCatalog installation.

Warning: /couchbase/sqoop-1.4.3-cdh4.6.0/../accumulo does not exist! Accumulo im
ports will fail.

Please set $ACCUMULO HOME to the root of your Accumulo installation.

Warning: /couchbase/sqoop-1.4.3-cdh4.6.0/../zookeeper does not exist! Accumulo i
mports will fail.

Please set $ZOOKEEPER HOME to the root of your Zookeeper installation.

14/06/20 08:55:54 INFO sqoop.Sqoop: Running Sqoop version: 1.4.3-cdh4.6.0

DUMP

BACKFILL NN

[root@localhost couchbase]# || [

Figure 12-15. Listing Tables in Couchbase

Next, we shall export key-value pairs from HDFS to Couchbase Server.

Exporting from HDFS to Couchbase

To export data from HDFS to Couchbase Server the data has to be available in HDFS in a key-value format.
Store data to be exported in a file (catalog. json) on the local filesystem.

"journal": "Oracle Magazine",
"publisher": "Oracle Publishing",
"edition": "November-December 2013",
"title": "Engineering as a Service",
"author": "David A. Kelly",

In JSON format the fields are delimited by the “’ character and the records are demarcated by the
‘; character. A field value must be enclosed in double quotes (“”), though a key may be un-enclosed or
enclosed in single quotes. Create a directory on the HDFS to store the catalog.json using the following
command.
hdfs dfs -mkdir /catalog

Put or copy the catalog. json from the local filesystem to the HDFS using the following command.
hdfs dfs -put catalog.json /catalog/catalog.json

The data in catalog.json in HDFS may be listed with the following command.

hdfs dfs -cat /catalog/catalog.json

303

CHAPTER 12 I USING THE COUCHBASE HADOOP CONNECTOR

The output from the command lists the key-value pairs in the catalog.json as shown in Figure 12-16.

[root@localhost couchbasel# hdfs dfs -mkdir /catalog
14/06/20 09:00:47 WARN util.NativeCodelLoader: Unable to load native-hadoop libra|
ry for your platform... using builtin-java classes where applicable
[root@localhost couchbasel]# hdfs dfs -put catalog.json /catalog

14/06/20 ©09:01:21 WARN util.NativeCodeLoader: Unable to load native-hadoop libra|
ry for your platform... using builtin-java classes where applicable
[root@localhost couchbasel# hdfs dfs -cat /catalog/catalog.json

14/06/20 09:01:40 WARN util.NativeCodelLoader: Unable to load native-hadoop libra
ry for your platform... using builtin-java classes where applicable

"journal": "Oracle Magazine",

"publisher": "Oracle Publishing",

"edition": "November-December 2013",

"title": "Engineering as a Service",

"author": "David A. Kelly",

[root@localhost couchbasel# || |

Figure 12-16. Listing the Key-Value Pairs in catalog.json

To export the key-value pairs in catalog. json to the Couchbase Server run the following sqoop export
command. The -connect option specifies the connection URL to Couchbase Server. The -export-dir option
specifies the directory in HDFS that is to be exported to Couchbase Server. The -table option is required
to be specified though the value specified is not used, therefore any arbitrary value may be specified. The
--fields-terminated-by option must be set to ‘" and the --1ines-terminated-by option to ‘,’.

sqoop export --connect http://10.0.2.15:8091/pools --export-dir /catalog --table catalog
--fields-terminated-by : --lines-terminated-by ,

The output from the command indicates that five records have been exported to Couchbase Server as
shown in Figure 12-17.

304

CHAPTER 12 I USING THE COUCHBASE HADOOP CONNECTOR

root@localhost:/couchbase

File Edit View Search Terminal Help

FILE: Number of read operations=0 B
FILE: Number of large read operations=0
FILE: Number of write operations=0
Map-Reduce Framework
Map input records=5
Map output records=5
Input split bytes=471
Spilled Records=0
Failed Shuffles=0
Merged Map outputs=0
GC time elapsed (ms)=45
CPU time spent (ms)=0
Physical memory (bytes) snapshot=0
Virtual memory (bytes) snapshot=0
Total committed heap usage (bytes)=163692544
File Input Format Counters
Bytes Read=0
File Output Format Counters
Bytes Written=0
14/06/20 09:15:47 INFO mapreduce.ExportJobBase: Transferred 0 bytes in 32.6602 s
econds (0 bytes/sec)
14/06/20 09:15:47 INFO mapreduce.ExportJobBase: Exported 5 records.
[root@localhost couchbasel# |}

"

Figure 12-17. Listing the Records exported to Couchbase Server

A more detailed output from the export command is listed:

14/06/20 09:15:37 INFO mapreduce.Job: The url to track the job: http://localhost:8080/
14/06/20 09:15:37 INFO mapreduce.Job: Running job: job_local193560694 0001

14/06/20 09:15:38 INFO mapred.LocalJobRunner: OutputCommitter set in config null

14/06/20 09:15:38 INFO mapred.LocalJobRunner: OutputCommitter is org.apache.hadoop
.mapreduce.lib.output.FileOutputCommitter

14/06/20 09:15:39 INFO mapreduce.Job: Job job_local193560694 0001 running in uber mode : false
14/06/20 09:15:39 INFO mapred.lLocalJobRunner: Waiting for map tasks

14/06/20 09:15:39 INFO mapreduce.Job: map 0% reduce 0%

14/06/20 09:15:39 INFO mapred.LocalJobRunner: Starting task: attempt_local193560694 0001
_m_000000 0

14/06/20 09:15:40 INFO mapred.Task: Using ResourceCalculatorProcessTree : []

14/06/20 09:15:40 INFO mapred.MapTask: Processing split: Paths:/catalog/catalog.json:126+22,
/catalog/catalog.json:148+23

14/06/20 09:15:44 INFO client.CouchbaseConnection: Added {QA sa=/10.0.2.15:11210, #Rops=0,
#Wops=0, #iq=0, topRop=null, topWop=null, toWrite=0, interested=0} to connect queue
14/06/20 09:15:44 INFO client.CouchbaseConnection: Connection state changed for
sun.nio.ch.SelectionKeyImpl@1c0280b

14/06/20 09:15:45 INFO mapreduce.AutoProgressMapper: Auto-progress thread is

finished. keepGoing=false

305

CHAPTER 12 I USING THE COUCHBASE HADOOP CONNECTOR

14/06/20 09:15:45 INFO mapred.LocalJobRunner:

14/06/20 09:15:45 INFO client.CouchbaseConnection: Shut down Couchbase client

14/06/20 09:15:45 INFO mapred.Task: Task:attempt_ local193560694 0001_m 000000 O is done.
And is in the process of committing

14/06/20 09:15:45 INFO mapred.LocalJobRunner: map

14/06/20 09:15:45 INFO mapred.Task: Task 'attempt_local193560694 0001_m 000000 0' done.
14/06/20 09:15:45 INFO mapred.LocalJobRunner: Finishing task: attempt_ local193560694 0001
_m_000000_0

14/06/20 09:15:45 INFO mapred.LocalJobRunner: Starting task: attempt local193560694 0001
_m_000001_0

14/06/20 09:15:45 INFO mapred.Task: Using ResourceCalculatorProcessTree : []

14/06/20 09:15:45 INFO mapred.MapTask: Processing split: Paths:/catalog/catalog.json:0+42
14/06/20 09:15:46 INFO client.CouchbaseConnection: Added {QA sa=/10.0.2.15:11210, #Rops=0,
#Wops=0, #ig=0, topRop=null, topWop=null, toWrite=0, interested=0} to connect queue
14/06/20 09:15:46 INFO client.CouchbaseConnection: Connection state changed for sun.nio.ch
.SelectionKeyImpl@e8c6f

14/06/20 09:15:46 INFO mapreduce.AutoProgressMapper: Auto-progress thread is finished.
keepGoing=false

14/06/20 09:15:46 INFO mapred.LocalJobRunner:

14/06/20 09:15:46 INFO client.CouchbaseConnection: Shut down Couchbase client

14/06/20 09:15:46 INFO mapred.Task: Task:attempt_local193560694_0001_m 000001 O is done.
And is in the process of committing

14/06/20 09:15:46 INFO mapred.LocalJobRunner: map

14/06/20 09:15:46 INFO mapred.Task: Task 'attempt_local193560694 0001 _m 000001 0' done.
14/06/20 09:15:46 INFO mapred.lLocalJobRunner: Finishing task: attempt_local193560694 0001
_m_000001_0

14/06/20 09:15:46 INFO mapred.LocalJobRunner: Starting task: attempt_local193560694 0001
_m_000002_0

14/06/20 09:15:46 INFO mapreduce.Job: map 100% reduce 0%

14/06/20 09:15:46 INFO mapred.Task: Using ResourceCalculatorProcessTree : []

14/06/20 09:15:46 INFO mapred.MapTask: Processing split: Paths:/catalog/catalog.json:42+42
14/06/20 09:15:46 INFO client.CouchbaseConnection: Added {QA sa=/10.0.2.15:11210, #Rops=0,
#hWops=0, #iq=0, topRop=null, topWop=null, toWrite=0, interested=0} to connect queue
14/06/20 09:15:46 INFO client.CouchbaseConnection: Connection state changed for sun.nio
.ch.SelectionKeyImpl@5c414e

14/06/20 09:15:46 INFO mapreduce.AutoProgressMapper: Auto-progress thread is

finished. keepGoing=false

14/06/20 09:15:46 INFO mapred.LocalJobRunner:

14/06/20 09:15:46 INFO client.CouchbaseConnection: Shut down Couchbase client

14/06/20 09:15:46 INFO mapred.Task: Task:attempt local193560694 0001 m 000002 O is done.
And is in the process of committing

14/06/20 09:15:46 INFO mapred.lLocalJobRunner: map

14/06/20 09:15:46 INFO mapred.Task: Task 'attempt local193560694 0001 m 000002_0' done.
14/06/20 09:15:46 INFO mapred.LocalJobRunner: Finishing task: attempt_local193560694 0001
_m_000002_0

14/06/20 09:15:46 INFO mapred.LocalJobRunner: Starting task: attempt local193560694 0001
_m_000003_0

14/06/20 09:15:46 INFO mapred.Task: Using ResourceCalculatorProcessTree : []

14/06/20 09:15:46 INFO mapred.MapTask: Processing split: Paths:/catalog/catalog.json:84+42
14/06/20 09:15:46 INFO client.CouchbaseConnection: Added {QA sa=/10.0.2.15:11210, #Rops=0,
#Wops=0, #iq=0, topRop=null, topWop=null, toWrite=0, interested=0} to connect queue

306

CHAPTER 12 © USING THE COUCHBASE HADOOP CONNECTOR

14/06/20 09:15:46 INFO client.CouchbaseConnection: Connection state changed for
sun.nio.ch.SelectionKeyImpl@dfc71d
14/06/20 09:15:46 INFO mapreduce.AutoProgressMapper: Auto-progress thread is
finished. keepGoing=false
14/06/20 09:15:46 INFO mapred.LocalJobRunner:
14/06/20 09:15:46 INFO client.CouchbaseConnection: Shut down Couchbase client
14/06/20 09:15:46 INFO mapred.Task: Task:attempt local193560694 0001 _m_000003 O is done.
And is in the process of committing
14/06/20 09:15:46 INFO mapred.lLocalJobRunner: map
14/06/20 09:15:46 INFO mapred.Task: Task 'attempt local193560694 0001 m 000003 _O' done.
14/06/20 09:15:46 INFO mapred.LocalJobRunner: Finishing task: attempt_local193560694 0001
_m_000003_0
14/06/20 09:15:46 INFO mapred.LocalJobRunner: Map task executor complete.
14/06/20 09:15:47 INFO mapreduce.Job: Job job_local193560694_0001 completed successfully
14/06/20 09:15:47 INFO mapreduce.Job: Counters: 18
File System Counters
FILE: Number of bytes read=77331208
FILE: Number of bytes written=78780032
FILE: Number of read operations=0
FILE: Number of large read operations=0
FILE: Number of write operations=0
Map-Reduce Framework
Map input records=5
Map output records=5
Input split bytes=471
Spilled Records=0
Failed Shuffles=0
Merged Map outputs=0
GC time elapsed (ms)=45
CPU time spent (ms)=0
Physical memory (bytes) snapshot=0
Virtual memory (bytes) snapshot=0
Total committed heap usage (bytes)=163692544
File Input Format Counters
Bytes Read=0
File Output Format Counters
Bytes Written=0
14/06/20 09:15:47 INFO mapreduce.ExportJobBase: Transferred O bytes in 32.6602 seconds
(0 bytes/sec)
14/06/20 09:15:47 INFO mapreduce.ExportJobBase: Exported 5 records.

The following error message if generated during export may be ignored as indicated by the error message
the “issue might not necessarily be caused by current input” and is “due to the batching nature of export.”

INFO mapreduce.ExportJobBase: Exported 4 records.

14/01/01 17:49:56 ERROR tool.ExportTool: Error during export: Export job failed!

ERROR mapreduce.TextExportMapper: This issue might not necessarily be caused by current input
14/01/01 17:49:56 ERROR mapreduce.TextExportMapper: due to the batching nature of export.

307

CHAPTER 12 I USING THE COUCHBASE HADOOP CONNECTOR

Log in to the Couchbase Administration Console and select the Data Buckets link. The “default” bucket
has Item Count as 5 as shown in Figure 12-18.

D Couchbase Console (2.2.0) - Mozilla Firefox

File Edit View History Bookmarks Iools Help
L]

Data Buckets

Couchbase Buckets

Bucket Name Hodes MemCounl Opsisec DiskFelches'sec RAMGuota DataDisk Usage
sage
1 a 16.3MB 14.1M
p default 8 @ 5 0 0 118GE e Documents | Views

Figure 12-18. Displaying the Item Count in the default Bucket

Click on the Documents button for the “default” button to list the five key-value records exported to
Couchbase Server as shown in Figure 12-19.

Couchbase
A Clus e Server Nod D XDCR

default - > Documents Current page: 1 5 -
Documents Filter Jocument ID w W
D Content

"author” David A. Kelly" Edit Document = Delete
"edition™ November -December 2613" Edit Document = Delete
"journal” Oracle Magazine" Edit Document = Delete
"publisher” Oracle Publishing* Edit Document | Delete
"title” Engineering as a Service" Edit Document = Delete

Figure 12-19. Listing the Key-Value Records Exported to Couchbase Server

308

CHAPTER 12 © USING THE COUCHBASE HADOOP CONNECTOR

A key may be un-enclosed (or enclosed in single quotes), but the field value must be enclosed in
double quotes in the key-value records exported from HDFS. To demonstrate copy the following listing to
catalog2. jsonfile.

journal:"Oracle Magazine",
publisher:"Oracle Publishing",
edition:"November December 2013",
title:"Engineering as a Service",
author:"David A. Kelly",

journal2: "Oracle Magazine",

publisher2: "Oracle Publishing",

edition2: "November-December 2013",

title2: "Quintessential and Collaborative",
author2: "Tom Haunert",

A key must be unique, but the key value may be the same as some other field value. Remove the
catalog. json file from HDFS and put the catalog2. json file into HDFS.

hdfs dfs -rm /catalog/catalog.json
hdfs dfs -put catalog2.json /catalog

Run the Sqoop command to export from HDFS to Couchbase Server.

sqoop export --connect http://10.0.2.15:8091/pools --export-dir /catalog --table catalog
--fields-terminated-by : --lines-terminated-by ,

The key/value pairs get exported to Couchbase Server as shown in Figure 12-20.

& Couchbase Console (2.2.0) L=
author David A. Kelly Edit Document = Delete
author2 "Tom Haunert Edit Document | Delete
edition "Novesber December 2813 Edit Document = Delele
edition2 Noves December 2013 Edit Document | Delete
journal Oracle Mag o Edit Document | Delete
journal2 "Oracle Magazine Edit Document | Delete
publisher "Oracle Publishing Edit Document = Delete
publisher2 Oracle Publishing Edit Document = Delete
title "Engineering as a Service Edit Document = Delete
title2 *Quintessential and Collaborative Edit Document = Delete

Figure 12-20. Listing the key/value Pairs exported to Couchbase

309

CHAPTER 12 I USING THE COUCHBASE HADOOP CONNECTOR

The key-value pairs exported from HDFS must be in the specified format in --fields-terminated-by
and --lines-terminated-by options. If some other format is used the fields may not get parsed and the
following exception might get generated.

java.util.NoSuchElementException
at java.util.ArraylList$Itr.next(ArrayList.java:794)
at catalog._ loadFromFields(catalog.java:198)
at catalog.parse(catalog.java:147)

Importing into HDFS from Couchbase

In this section we import key-value pairs from Couchbase Server to HDFS. The key-value pairs in Couchbase
Server are not directly importable, but may be imported via the DUMP and BACKFILL nn tables, which were
discussed eatrlier.

Importing the Key-Value Pairs Previously Exported

In this section we shall import back the key-value pairs previously exported from HDFS file catalog.json to
Couchbase Server. To import the key-value pairs import the DUMP table using the sqoop import command in
which the table is specified with the —table option. The HDFS directory to import into is specified with the
--target-dir option as /dump_dir, The --as-textfile indicates that the key-value pairs are to be imported
as text file. The other options are --as-avrodatafile and --as-sequencefile. Data may be imported in
append mode with the -append option. Run the following command to import the DUMP table.

sqoop import -Dmapreduce.job.max.split.locations=2048 --connect http://10.0.2.15:8091/pools
--table DUMP --target-dir hdfs://localhost:8020/dump_dir --as-textfile

The mapreduce. job.max.split.locations property has been set to a value higher than the default
value of 10. If the default value is used the following exception gets generated (some intermediate values
have been omitted).

ERROR tool.ImportTool: Encountered IOException running import job: java.io.IOException: Max
block location exceeded for split: 0123456789 10 1018 1019 1020 1021 1022
1023 splitsize: 1024 maxsize: 10

The value to set mapreduce. job.max.split.locations may be obtained from running the command

with the default value and finding the splitsize; set the value to higher than the splitsize. The output from the
sqoop import command indicates that five records have been imported as shown in Figure 12-21.

310

CHAPTER 12 I USING THE COUCHBASE HADOOP CONNECTOR

El root@localhost:/couchbase S E

File Edit View Search Terminal Help

FILE: Number of read operations=0]
FILE: Number of large read operations=0
FILE: Number of write operations=0
Map-Reduce Framework
Map input records=5
Map output records=5
Input split bytes=2103
Spilled Records=0
Failed Shuffles=0
Merged Map outputs=0
GC time elapsed (ms)=16
CPU time spent (ms)=0
Physical memory (bytes) snapshot=0
Virtual memory (bytes) snapshot=0
Total committed heap usage (bytes)=41136128
File Input Format Counters
Bytes Read=0
File Output Format Counters
Bytes Written=173
14/06/20 09:20:45 INFO mapreduce.ImportlobBase: Transferred © bytes in 28.2448 s
econds (0 bytes/sec)
14/06/20 09:20:45 INFO mapreduce.ImportJobBase: Retrieved 5 records.
[root@localhost couchbase]# I

< Tl

Figure 12-21. Output from the sqoop Import Command

The more detailed output from the command is listed below.

14/06/20 09:20:42 INFO mapreduce.Job: The url to track the job: http://localhost:8080/
14/06/20 09:20:42 INFO mapreduce.Job: Running job: job local352714375_0001

14/06/20 09:20:42 INFO mapred.LocalJobRunner: OutputCommitter set in config null

14/06/20 09:20:43 INFO mapred.LocalJobRunner: OutputCommitter is org.apache.hadoop.mapreduce
.lib.output.FileOutputCommitter

14/06/20 09:20:43 INFO mapred.LocalJobRunner: Waiting for map tasks

14/06/20 09:20:43 INFO mapred.LocalJobRunner: Starting task: attempt local352714375_0001
_m_000000 0

14/06/20 09:20:43 INFO mapred.Task: Using ResourceCalculatorProcessTree : []

14/06/20 09:20:43 WARN conf.Configuration: mapreduce.map.class is deprecated. Instead, use
mapreduce.job.map.class

14/06/20 09:20:43 INFO mapreduce.Job: Job job_local352714375 0001 running in uber mode : false
14/06/20 09:20:43 INFO mapreduce.Job: map 0% reduce 0%

14/06/20 09:20:43 INFO mapred.MapTask: Processing split: 01 23 456 7 8 9 10 11 12 13 14
15 16 17 18 19 20 21 ... 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018
1019 1020 1021 1022 1023

14/06/20 09:20:44 INFO client.CouchbaseConnection: Added {QA sa=/10.0.2.15:11210, #Rops=0,
#hWops=0, #iq=0, topRop=null, topWop=null, toWrite=0, interested=0} to connect queue
14/06/20 09:20:44 INFO client.CouchbaseConnection: Connection state changed for
sun.nio.ch.SelectionKeyImpl@d3ec2f

311

CHAPTER 12 I USING THE COUCHBASE HADOOP CONNECTOR

14/06/20 09:20:45 INFO client.CouchbaseConnection: Shut down Couchbase client
14/06/20 09:20:45 INFO db.CouchbaseRecordReader: All TAP messages have been received.

14/06/20 09:20:45 INFO mapreduce.AutoProgressMapper: Auto-progress thread is finished.
keepGoing=false
14/06/20 09:20:45 INFO mapred.LocalJobRunner:
14/06/20 09:20:45 INFO mapred.Task: Task:attempt local352714375_0001_m_000000 O is done.
And is in the process of committing
14/06/20 09:20:45 INFO mapred.LocalJobRunner:
14/06/20 09:20:45 INFO mapred.Task: Task attempt local352714375_0001_m 000000 O is allowed
to commit now
14/06/20 09:20:45 INFO output.FileOutputCommitter: Saved output of task
"attempt_local352714375_0001_m_000000 0' to file:/dump dir/ temporary/o/task_
local352714375_0001_m_000000
14/06/20 09:20:45 INFO mapred.LocalJobRunner: map
14/06/20 09:20:45 INFO mapred.Task: Task 'attempt_local352714375_0001_m 000000 _O' done.
14/06/20 09:20:45 INFO mapred.LocalJobRunner: Finishing task: attempt_local352714375_0001
_m_000000_0
14/06/20 09:20:45 INFO mapred.LocalJobRunner: Map task executor complete.
14/06/20 09:20:45 INFO mapreduce.Job: map 100% reduce 0%
14/06/20 09:20:45 INFO mapreduce.Job: Job job_local352714375_0001 completed successfully
14/06/20 09:20:45 INFO mapreduce.Job: Counters: 18
File System Counters
FILE: Number of bytes read=19336214
FILE: Number of bytes written=19701015
FILE: Number of read operations=0
FILE: Number of large read operations=0
FILE: Number of write operations=0
Map-Reduce Framework
Map input records=5
Map output records=5
Input split bytes=2103
Spilled Records=0
Failed Shuffles=0
Merged Map outputs=0
GC time elapsed (ms)=16
CPU time spent (ms)=0
Physical memory (bytes) snapshot=0
Virtual memory (bytes) snapshot=0
Total committed heap usage (bytes)=41136128
File Input Format Counters
Bytes Read=0
File Output Format Counters
Bytes Written=173
14/06/20 09:20:45 INFO mapreduce.ImportJobBase: Transferred 0 bytes in 28.2448 seconds
(0 bytes/sec)
14/06/20 09:20:45 INFO mapreduce.ImportJobBase: Retrieved 5 records.

312

CHAPTER 12 © USING THE COUCHBASE HADOOP CONNECTOR

To list the import file generated in HDFS run the following command.
1s -1 /dump_dir

The output file gets listed as shown in Figure 12-22.

[root@localhost couchbase]# 1ls -1 /dump dir
total 4

-rwxr-xr-x. 1 root dba 161 Jun 20 09:20
-rwxr-xr-x. 1 root dba © Jun 20 09:20
[root@localhost couchbase]# l

Figure 12-22. Listing the files in the /dump_dir

To list the data in the output file of the import command run the following command.
vi /dump_dir/part-m-00000

The data in the output file gets listed as shown in Figure 12-23.

root@localhost:/couchbase

File Edit View Search Terminal Help

Qiournal”, "oracle Magazine"
"author", "David A. Kelly"

“title", "Engineering as a Service"
"edition”, "November-December 2013"
"publisher", "Oracle Publishing"

Figure 12-23. Listing the Data in the output File

Importing the BACKFILL Table

The import of the BACKFILL_ nn table generates an output that includes the following artifacts that are able to
get streamed in the specified nn number of minutes.

e All the documents in the server.

e All mutations made in the same login session of the OS, whether while the command
is running or prior to running the command.

Next, we shall import the BACKFILL_10 table, which streams key mutations for 10 minutes and also
imports the key-value pairs in the Couchbase Server. Run the sqoop import command with the -table
option set to BACKFILL_10.

sqoop import -Dmapreduce.job.max.split.locations=2048 --connect http://10.0.2.15:8091/pools
--table BACKFILL_10 --target-dir /backfill dir --as-textfile

313

CHAPTER 12 I USING THE COUCHBASE HADOOP CONNECTOR

The command runs for 10 minutes as key mutations are being streamed for 10 minutes as shown in

Figure 12-24.

&

connect queue

14/06/20 09:27

14/06/20 09:29

14/06/20 09:32

14/06/20 09:36

14/06/20 09:30:
14/06/20 09:30:
14/06/20 09:31:
14/06/20 09:31:
14/06/20 09:32:
144
14/06/20 09:33:
14/06/20 09:33:
14/06/20 09:34:
14/06/20 09:34:
14/06/20 09:35:
14/06/20 09:35:
14/06/20 09:36:
144
14/06/20 09:37:

46

13
43
13

13
43
13
44
14

14
44
14
44
14
44
14

14

INFO
INFO
INFO
INFO
INFO
INFO
INFO
INFO
INFO
INFO
INFO
INFO
INFO
INFO
INFO
INFO
INFO
INFO
INFO
INFO
INFO

root@localhost:/couchbase

File Edit View Search Terminal

|e 1011 16012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1622 1023 Ee
14/06/20 09:27:40 INFO client.CouchbaseConnection: Added {QA sa=/10.0.2.15:11210
, #Rops=0, #Wops=0, #1iq=0, topRop=null, topWop=null, toWrite=0, interested=0} to

mapred.
mapred.
mapred.
mapred.
mapred.
mapred.
mapred.
mapred.
mapred.
mapred.
mapred.
mapred.
mapred.
mapred.
mapred.
mapred.
mapred.
mapred.
mapred.
mapred.
mapred.

Help

LocalJobRunner:
LocalJobRunner:
LocalJobRunner:
LocalJobRunner:
LocalJobRunner:
LocalJobRunner:
LocalJobRunner:
LocalJobRunner:
LocalJobRunner:
LocalJobRunner:
LocalJobRunner:
LocalJobRunner:
LocalJobRunner:
LocalJobRunner:
LocalJobRunner:
LocalJobRunner:
LocalJobRunner:
LocalJobRunner:
LocalJobRunner:
LocalJobRunner:
LocalJobRunner:

Figure 12-24. Importing the BACKFILL_10 Table

If no key mutations are made in the 10 minutes, the output indicates that the ten records from the

map
map
map
map
map
map
map
map
map
map
map
map
map
map
map
map
map
map
map
map
map

VVVVYVVVVVVVYVYVYVVYVYYVYVYVYVY VY

map
map
map
map
map
map
map
map
map
map
map
map
map
map
map
map
map
map
map
map
map

14/06/20 09:27:40 INFO client.CouchbaseConnection: Connection state changed for
sun.nio.ch.SelectionKeyImpl@lbdb173
14/06/20 09:27:
149
14/06/20 09:28:
14/06/20 09:28:
14/06/20 09:29:
143

CouchbaseS have been imported to HDFES. As no key-value mutations were made in the ten minutes the

command runs the output file from the command only has the key-value pairs already in the Couchbase

i

Server and the mutations made prior to running the import command in the same login session as shown in

Figure 12-25.

314

CHAPTER 12 I USING THE COUCHBASE HADOOP CONNECTOR

root@localhost:/couchbase

File Edit View Search Terminal Help

cessfully
14/06/20 09:37:42 INFO mapreduce.Job: Counters: 18
File System Counters
FILE: Number of bytes read=19336236
FILE: Number of bytes written=19702203
FILE: Number of read operations=0
FILE: Number of large read operations=0
FILE: Number of write operations=0
Map-Reduce Framework
Map input records=10
Map output records=10
Input split bytes=2103
Spilled Records=0
Failed Shuffles=0
Merged Map outputs=0
GC time elapsed (ms)=13
CPU time spent (ms)=0
Physical memory (bytes) snapshot=0
Virtual memory (bytes) snapshot=0
Total committed heap usage (bytes)=40951808
File Input Format Counters
Bytes Read=0
File Output Format Counters
Bytes Written=334
14/06/20 09:37:42 INFO mapreduce.ImportlobBase: Transferred 0 bytes in 633.8266
seconds (0 bytes/sec)
14/06/20 09:37:42 INFO mapreduce.ImportJobBase: Retrieved 10 records.
[root@localhost couchbase]# |j

&

Figure 12-25. Importing the BACKFILL_10 Table with no key-value mutations

List the files in the backfill_dir directory. The part-m-00000 is the file with the data imported from
backfill nn table as shown in Figure 12-26.

[root@localhost backfill dir]# ls -1

total 4

-rwxr-xr-x. 1 root dba 322 Jun 20 09:37
-rwxr-xr-x. 1 root dba © Jun 20 09:37
[root@localhost backfill dir]# vi part-m-00000
[root@localhost backfill dir]# |}

Figure 12-26. Listing the files in the backfill_dir

Display the data in the part-m-00000 file.

vi /backfill dir/part-m-00000

315

CHAPTER 12 I USING THE COUCHBASE HADOOP CONNECTOR

The key-value pairs in the server and the mutations made prior to running the command get displayed.
As the mutations were made in the same login session the key-value pairs get listed twice as shown in
Figure 12-27.

root@localhost:/backfill_dir

File Edit View Search Terminal Help

Jiournal”, "oOracle Magazine"
"author", "David A. Kelly"

“title", "Engineering as a Service"
"edition", "November-December 2013"
"publisher", "Oracle Publishing"
"journal", "Oracle Magazine"
"author", "David A. Kelly"

"title", "Engineering as a Service"
"edition", "November-December 2013"
"publisher", "Oracle Publishing"

Figure 12-27. Displaying the data in the /backfill_dir

Next, we shall import the BACKFILL 2 table, which streams key-value mutations for 2 minutes. Delete
any key-value pairs from Couchbase Server prior to running the command as we shall we demonstrating the
streaming of key-value mutations while the command is running as shown in Figure 12-28.

A& Cluster Overview Server Nodes Data Buckets XDCR Settings
default » > Documents Current page: 1 5 -
Documents Filter Yocument ID Lookup Id | Create Document
D Content
"edition” November-December 26813 Edit Document Dele_!e
"publisher” Oracle Publishing® Edit Document Dele—le
"title" Engineering as a Service Edit Document = Delete

Figure 12-28. Importing the BACKFILL_2 table

We shall add some key-value pairs while the command is running and the key-value pairs added shall
be streamed by the sqoop import command. Run the following command to stream key-value mutations for
2 minutes to HDFS.

sqoop import -Dmapreduce.job.max.split.locations=2048 --connect http://10.0.2.15:8091/pools
--table BACKFILL_2 --target-dir /backfill dir 2 --as-textfile

316

CHAPTER 12 I USING THE COUCHBASE HADOOP CONNECTOR

The local job runner runs for two minutes streaming mutations from Couchbase Server as shown in
Figure 12-29.

root@localhost:/backfill_dir

File Edit View Search Terminal Help

13 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 6/~
33 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 6
53 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 6
73 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 6
93 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 7
13 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 7
33 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 7
53 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 7
73 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 7
93 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 8
13 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 8
33 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 8
53 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 8
73 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 8
93 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 969 910 911 912 9
13 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 9
33 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 9
53 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 9
73 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 9
93 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 101
0 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023
14/06/20 09:46:35 INFO client.CouchbaseConnection: Added {QA sa=/10.0.2.15:11210
, #Rops=0, #Wops=0, #iq=0, topRop=null, topWop=null, toWrite=0, interested=0} to
connect queue
14/06/20 09:46:35 INFO client.CouchbaseConnection: Connection state changed for
sun.nio.ch.SelectionKeyImpl@le®19cc
14/06/20 09:47:09 INFO mapred.LocalJobRunner: map > map

(< T

Figure 12-29. Streaming mutations from Couchbase Server

While the command is running, select Create Document in Couchbase Administration Console to
create a document as shown in Figure 12-30.

317

CHAPTER 12 I USING THE COUCHBASE HADOOP CONNECTOR

& Cluster Overview Server Nodes Data Buckets Views XDCR Log Setlings
defauilt ~ > Documents Current page: 1 5 -
Documents Filter © - Document iD

] Content

There are currently no documents In this bucket.

Figure 12-30. Selecting Create Document

Specify the Document Id (catalogi for example) and click on Create as shown in Figure 12-31.

Create Document

Document ID: ' catalogl]

Figure 12-31. Creating a Document

A document with Id “Catalog” gets added with the default JSON document. Similarly, add one other
JSON document (catalog2) with non-default JSON.

{"journal": "Oracle Magazine",
"publisher": "Oracle Publishing",
"edition": "November-December 2013",
"title": "Engineering as a Service",
"author": "David A. Kelly"}

Click on Save to save catalog2 document as shown in Figure 12-32.

318

A& Cluster Overview Server Nodes Data Buckets

default - > Documents
catalog2

{*journal®: *“Oracle Magazine®,

“publisher”: "0Oracle Publishing",

"edigl' November - December 3013‘.

"title":

EngmeersnE ﬁ a Service",
elly”

"author®: "David A.

Figure 12-32. Saving the catalog2 Document

CHAPTER 12 I USING THE COUCHBASE HADOOP CONNECTOR

Views XDCR Log Settings

Two JSON documents catalogl and catalog2 get added to Couchbase Server as shown in Figure 12-33.

& Cluster Overview Server Nodes Data Buckets Views XDCR Log Settings
default - > Documents Current page: 1 5 -
Documents Filter Document 1D
1] Content
cataiog1 { "elick": "to edit", "new in 2.8": "there are no reserved fie... Edit Document Delete
cataiog'z { "Journal": "Oracle Magazine", "publisher": "Oracle Publishin... Edit Document = Delete

Figure 12-33. Listing the JSON Documents catalogl and catalog2

When the 2 minutes have elapsed, the command completes and the command output indicates that six

records have been imported as shown in Figure 12-34.

319

CHAPTER 12 I USING THE COUCHBASE HADOOP CONNECTOR

El root@localhost:/backfill_dir o E
File Edit View Search Terminal Help
cessfully (~

14/06/20 09:54:56 INFO mapreduce.Jlob: Counters: 18
File System Counters
FILE: Number of bytes read=19336233
FILE: Number of bytes written=19702251
FILE: Number of read operations=0
FILE: Number of large read operations=0
FILE: Number of write operations=0
Map-Reduce Framework
Map input records=6
Map output records=6
Input split bytes=2103
Spilled Records=0
Failed Shuffles=0
Merged Map outputs=0
GC time elapsed (ms)=30
CPU time spent (ms)=0
Physical memory (bytes) snapshot=0
Virtual memory (bytes) snapshot=0
Total committed heap usage (bytes)=41230336
File Input Format Counters
Bytes Read=0
File Output Format Counters
Bytes Written=365
14/06/20 09:54:56 INFO mapreduce.ImportJobBase: Transferred © bytes in 153.0398
seconds (@ bytes/sec)
14/06/20 09:54:56 INFO mapreduce.ImportJobBase: Retrieved 6 records.
[root@localhost backfill dir]# |}

(< T

Figure 12-34. Importing six records from BACKFILL_2

A more detailed output from the import command is listed:

14/06/20 09:52:51 INFO mapreduce.Job: The url to track the job: http://localhost:8080/
14/06/20 09:52:51 INFO mapreduce.Job: Running job: job_local2053954453_0001

14/06/20 09:52:51 INFO mapred.LocalJobRunner: OutputCommitter set in config null

14/06/20 09:52:52 INFO mapred.LocalJobRunner: OutputCommitter is org.apache.hadoop.
mapreduce.lib.output.FileOutputCommitter

14/06/20 09:52:52 INFO mapreduce.Job: Job job_local2053954453_0001 running in uber mode : false
14/06/20 09:52:52 INFO mapreduce.Job: map 0% reduce 0%

14/06/20 09:52:52 INFO mapred.LocalJobRunner: Waiting for map tasks

14/06/20 09:52:52 INFO mapred.lLocalJobRunner: Starting task: attempt_ local2053954453 0001
_m_000000_0

14/06/20 09:52:54 INFO mapred.Task: Using ResourceCalculatorProcessTree : []

14/06/20 09:52:54 WARN conf.Configuration: mapreduce.map.class is deprecated. Instead, use
mapreduce.job.map.class

14/06/20 09:52:54 INFO mapred.MapTask: Processing split: 0123 456 7 8 9 10 11 12 13 14
15 16 17 18 19 20 21 ... 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018
1019 1020 1021 1022 1023

320

CHAPTER 12 I USING THE COUCHBASE HADOOP CONNECTOR

14/06/20 09:52:55 INFO client.CouchbaseConnection: Added {QA sa=/10.0.2.15:11210, #Rops=0,
#Wops=0, #ig=0, topRop=null, topWop=null, toWrite=0, interested=0} to connect queue
14/06/20 09:52:55 INFO client.CouchbaseConnection: Connection state changed for
sun.nio.ch.SelectionKeyImpl@122d536

14/06/20
14/06/20
14/06/20
14/06/20
14/06/20
14/06/20
14/06/20
14/06/20
14/06/20

14/06/20

09:53:05 INFO mapred.LocalJobRunner: map > map

09:53:17 INFO mapred.LocalJobRunner: map > map

09:53:26 INFO mapred.LocalJobRunner: map > map

09:53:29 INFO mapred.LocalJobRunner: map > map

09:53:41 INFO mapred.LocalJobRunner: map > map

09:53:59 INFO mapred.LocalJobRunner: map > map

09:54:29 INFO mapred.LocalJobRunner: map > map

09:54:56 INFO client.CouchbaseConnection: Shut down Couchbase client
09:54:56 INFO db.CouchbaseRecordReader: All TAP messages have been received.
09:54:56 INFO mapreduce.AutoProgressMapper: Auto-progress thread is finished.

keepGoing=false
14/06/20 09:54:56
14/06/20 09:54:56

14/06/20
14/06/20
14/06/20
_m_00000!
14/06/20
14/06/20
14/06/20
14/06/20

File

Map-

INFO mapred.LocalJobRunner: map > map

INFO mapred.Task: Task:attempt local2053954453 0001 _m_000000 O is done.
And is in the process of committing
14/06/20 09:54:56 INFO mapred.LocalJobRunner: map > map

14/06/20 09:54:56 INFO mapred.Task: Task attempt_local2053954453_0001_m 000000 O is allowed
to commit now
14/06/20 09:54:56 INFO output.FileOutputCommitter: Saved output of task
"attempt_local2053954453_0001_m 000000 0' to file:/backfill dir 2/ temporary/0/task_
local2053954453_0001_m_000000

INFO mapred.Task: Task 'attempt_local2053954453_0001_m_000000 _O' done.
INFO mapred.LocalJobRunner: Finishing task: attempt local2053954453 0001

INFO mapreduce.Job: Job job local2053954453_0001 completed successfully

09:54:56 INFO mapred.LocalJobRunner: map

09:54:56

09:54:56

0 0

09:54:56 INFO mapred.LocallobRunner: Map task executor complete.
09:54:56 INFO mapreduce.Job: map 100% reduce 0%

09:54:56

09:54:56 INFO mapreduce.Job: Counters: 18

System Counters
FILE: Number of bytes read=19336233
FILE: Number of bytes written=19702251
FILE: Number of read operations=0
FILE: Number of large read operations=0
FILE: Number of write operations=0
Reduce Framework
Map input records=6
Map output records=6
Input split bytes=2103
Spilled Records=0
Failed Shuffles=0
Merged Map outputs=0
GC time elapsed (ms)=30
CPU time spent (ms)=0
Physical memory (bytes) snapshot=0
Virtual memory (bytes) snapshot=0
Total committed heap usage (bytes)=41230336

321

CHAPTER 12 © USING THE COUCHBASE HADOOP CONNECTOR

File Input Format Counters
Bytes Read=0
File Output Format Counters
Bytes Written=365
14/06/20 09:54:56 INFO mapreduce.Import]obBase: Transferred O bytes in 153.0398 seconds
(0 bytes/sec)
14/06/20 09:54:56 INFO mapreduce.ImportJobBase: Retrieved 6 records.
[root@localhost backfill dir]#

List the files in the backfill_dir_ 2 directory. The part-m-00000 file gets listed as shown in Figure 12-35.

[root@localhost backfill dir]# 1s -1 /backfill dir 2
total 4

-rwxr-xr-x. 1 root dba 353 Jun 20 09:54

-rwxr-xr-x. 1 root dba © Jun 20 09:54
[root@localhost backfill dir]# |j

Figure 12-35. Listing files in the backfill_dir 2

List the data in the output file generated from the sqoop import command with the following command.
vi /backfill dir_ 2/part-m-00000

The data in the output file has all the key-value mutations made in the Couchbase Server while the
command was running and prior to the command in the same login session. We had deleted catalogi,
catalog2, and catalog3 prior to running the import command and the documents are listed in the output
generated. We added catalogl and catalog2 to the Couchbase Server while the import command was
running and the documents are also streamed. We modified the catalog2 document and the modified
catalog2 is listed separately in the key-value pairs streamed as shown in Figure 12-36.

root@localhost:/backfill_dir

File Edit View Search Terminal Help

Batalogs,

catalogz,

catalogl,

catalogl,{"click":"to edit","new in 2.0":"there are no reserved field names"}
catalog2,{"click":"to edit","new in 2.0":"there are no reserved field names"}
catalog2,{"journal":"Oracle Magazine","publisher":"Oracle Publishing","edition":
“November-December 2013","title":"Engineering as a Service","author”:"David A. K
elly"}

Figure 12-36. Displaying the data in the backfill_dir

322

CHAPTER 12 I USING THE COUCHBASE HADOOP CONNECTOR

Importing JSON from Couchbase Server into HDFS

In the preceding section we imported key-value pairs in which the value was a text string. Using the
BACKFILL_nn we imported key-value mutations, which included JSON. In this section we shall import
key-value pairs in which the values are JSON documents. Click on Create Document in Couchbase
Administration Console to create two documents “catalogl” and “catalog2” as shown in Figure 12-37. Store
JSON in the two documents.

default ~ > Documents Current page: 1 5 ¥
Documents Filter ycument i | Lookup Id | Create Document
D Content

catalog1 { "click”: "to edit”, "new in 2.8": “there are no reserved fie Edit Document = Delete
catalog2 { "journal®: "Oracle Magazine®, "publisher": "Oracle Publishin Edit Document Delete

Figure 12-37. Creating two JSON Documents

Next, import the DUMP table using the following sqoop import command.

sqoop import -Dmapreduce.job.max.split.locations=2048 --connect http://10.0.2.15:8091/pools
--table DUMP --target-dir /dump_dir --as-textfile

The output from the command indicates that two records get imported as shown in Figure 12-38.

323

CHAPTER 12 I USING THE COUCHBASE HADOOP CONNECTOR

root@localhost:/backfill_dir

File Edit View Search Terminal Help

essfully
14/06/20 10:02:38 INFO mapreduce.Job: Counters: 18
File System Counters
FILE: Number of bytes read=19336214
FILE: Number of bytes written=19701100
FILE: Number of read operations=0
FILE: Number of large read operations=0
FILE: Number of write operations=0
Map-Reduce Framework
Map input records=2
Map output records=2
Input split bytes=2103
Spilled Records=0
Failed Shuffles=0
Merged Map outputs=0
GC time elapsed (ms)=69
CPU time spent (ms)=0
Physical memory (bytes) snapshot=0
Virtual memory (bytes) snapshot=0
Total committed heap usage (bytes)=41410560
File Input Format Counters
Bytes Read=0
File Output Format Counters
Bytes Written=257
14/06/20 10:02:38 INFO mapreduce.ImportJobBase: Transferred 0 bytes in 35.398 se
conds (0 bytes/sec)
14/06/20 10:02:38 INFO mapreduce.ImportJobBase: Retrieved 2 records.
[root@localhost backfill dir]# l

Figure 12-38. Importing the DUMP table
Run the following command to output the data imported in the two records.

vi /dump_dir/part-m-00000

The two records imported get listed. The two records imported are the two JSON documents in the
Couchbase Server as shown in Figure 12-39.

324

CHAPTER 12 I USING THE COUCHBASE HADOOP CONNECTOR

root@localhost:/backfill_dir

File Edit View Search Terminal Help
Batalog2,{"journal”:"Oracle Magazine","publisher":"Oracle Publishing","edition":|

"November-December 2013","title":"Engineering as a Service","author":"David A. K

elly"}
catalogl,{"click":"to edit","new in 2.0":"there are no reserved field names"}

Figure 12-39. Displaying the data in the /dump_dir

Summary

In this chapter we used the Couchbase Hadoop Connector to export data from HDFS to Couchbase Server
and import data from Couchbase Server to HDFS.

This is the last chapter in the book, and you should have a learned about using Couchbase Server in
web development. We discussed using Couchbase Server with commonly used languages such as Java, PHP,
JavaScript, and Ruby. You learned about querying Couchbase with Elasticsearch and N1QL. You also learned
about migrating MongoDB, Apache Cassandra, and Oracle Database to Couchbase Server. As Couchbase is
designed to be used with big data, you learned about using Couchbase Server with the Hadoop, a big data
framework.

325

Index

A

AND operator, 227
Apache Cassandra, 12-13
and Couchbase Server
Bucket class, 275
catalogl JSON document, 278-279
catalog2 JSON document, 278
data buckets, 274
dependencies, 264
getString(String columnName) method, 274
installer, 255
Jar Files, Java Build Path, 266
Java Class CreateCassandraDatabase, 262
Java Class
MigrateCassandraToCouchbase, 263
Java project, 256, 258
MigrateCassandraToCouchbase class, 275
MigrateCassandraToCouchbase.java
Application, 276, 280
New Maven Project Wizard, 258-259
Package Explorer, 260, 264
pom.xml, 265-266
server output, 256
session object, 273
static method empty(), 274
Cassandra-Cli, 272
connect() method, 267
Couchbase, 255
CreateCassandraDatabase class, 269-271
datastax keyspace, 272
Java Application
CreateCassandraDatabase.java, 271
Keyspaces, 255
ResultSet, 269
Session class methods, 268
strategy classes, 268
Apache Sqoop, 291
Arithmetic and comparison operators, 220-222
AsyncBucket instance, 31
Atomicity, consistency, isolation, and durability
(ACID) transactional properties, 11
Auto-sharding, 7, 12

BACKFILL_2, 316, 320

Basically available, soft state, and eventually
consistent (BASE) transactional
properties, 11

Big data, NoSQL databases, 6

Bucket class, 250

BucketCallback interface, doInBucket()
method, 80, 82-84

Bucket Class upsert() methods, 36

C

Couchbase access
connection.php script, 105
constructors, 102
document
creation, 106, 108
get method, 109-111
incrementing and decrementing, 112-116
remove method, 116-117
replace method, 111-112
upserting, 108-109
environment, setting, 99
methods, 103-104
properties, 104
script index, 100
SDK installment, 101-102
server development, 100
Catalog(0] array element, 226
Catalog5 document, 210
com.couchbase.client.java.document.json.
JsonObject class, 34
Complex JSON structures, 219
CoucbaseJavaClient class, 50, 52
CouchbaseCluster Class insert methods, 35
Couchbase Console, 203
Couchbase Document, 199, 206, 254
Couchbase Hadoop Connector
Apache Sqoop, 291
BACKFILL Table, 313-314
Couchbase Hadoop Connector, 301

327

INDEX

Couchbase Hadoop Connector (cont.)

Couchbase Server on Linux installation,
292-295, 297-298

Cygwin, 291

Hadoop and Sqoop installation, 299-300

HDEFS, 303-305, 307

import-table Options, 302

installation, 302

Red Hat Linux, 291

CouchbaseJavaClient class, 25, 27, 31-32
Couchbase JSON document catalog, 38
Couchbase Plugin installation

configuration settings, 179
third-party plugin, 179
web user interface, 178

Couchbase Server, 201, 250, 317

administration and monitoring GUI, 15
App.java, 68-69
applications, 17-18
AsyncBucket interface, 31
auto-sharding cluster technology, 12
Batch Save, 71
by_name View, 77
catalog document, 48
catalog view gets, 44
client APIs, commonly used languages, 15
cluster class constructor parameters, 160
cluster class properties, 162
cluster high availability, 13
CouchbaseCluster constructors, 30
CouchbaseCluster instance, 30
Couchbase Console, 129
Couchbase::Error::BucketNotFound, 126
CouchbaseJavaClient.java application, 32-34
CouchbaseOperations interface, 66
Create Development View, 44
Data Bucket, 27-29
data locality, 14
definition, 12
document creation

add method, 134-135

asynchronous mode, 133

CASvalue, 132

JSON document, 131, 133

key-value pairs, 131-132

set method arguments, 130
Document Id, 46
emit() function, 43
exists(String id) method, 74
findByIld method, 75
findByView method, 77
findDocumentByld() method, 75
findDocumentByView method, 77
flexible schema JSON documents, 12

from(java.lang.String design, java.lang.String
view) class, 48
high performance, 13
interface methods
adding documents, 73
finding documents, 74
removing documents, 72
saving documents, 71
updating documents, 79
internet companies, 17
json bucket, 46
JSON data, 43
JSON document object, 47, 70
JSON model, 19
key-value pairs, 128
localhost, 126
map() function, 43
multiple readers and writers, 15
Node.js server establishing, 163
nodes, 127
NoSQL databases, 19
openBucket method, 161
overloaded query() methods, 49
Persisted Catalog Instance, 69
Production View, 45
rack awareness, 15
rb Ruby Script, 126
reasons, 15-16
saveDocuments() method, 73
scalability, 12
setting up environment, 19
timeout error, 130
user credentials, 127
XDCR, 14
Couchbase Server Community, 234
Couchbase Server installation, Linux
active bucket, 298
Click SETUP, 292
Cluster header, 293
Database Path, 293
Data Bucket name and type, 295
default bucket, 298
Node RAM Quota, 296
notifications, 296
Sample Buckets, 294
username and password, 297
static method create(), 250
CreateMongoDB application, 247-248
Cross Data Center Replication (XDCR), 14
CSV file
Couchbase Server, 288-289
exporting oracle database table, 287
wlslog.csv file, 287-288
Cygwin, 291

D

Database normalization, 5
Data locality, 14
default bucket, 202-203, 253
DevKit, 123-124
DISTINCT clause, 231
Document
addition, 194-195
creation, 34-38
deletion, 50-53, 172-173
Elasticsearch count, 195-196
getting, 38-40, 168-170
insertion, 166-168
replication, 194
updation, 40-41, 43, 170-172
upserting, 164-166
DocumentAlreadyExistsException, 34
Document class Constructors, 246
Document class utility method, 246
DUMP and BACKFILL_NN tables, 303
DUMP table, 323-324

E

Edition field, 216
Elasticsearch
cluster, 180
cluster reference creation, 184-186
compatibility matrix, 176
concurrent replications and requests, 183-184
Couchbase documents, 177
Couchbase Plugin installation, 177-179
document, 194-196
empty index, 182
graphical User Interface, 180-181
index template, 181-182
JSON attributes, 191
JSON document, 176-177
querying, 191-194
replication and starting
data transfer, 187-190

F

find() method, 246
findOne() method, 249
Flush option, 28-29

G

getDocument() method, 38-39
get(String key) method, 247
GROUP BY clause, 229

INDEX

H

Hadoop and Sqoop installation, 299-300
hasNext() method, 247, 250
HAVING clause, 231
HDEFS
catalog.json, 303
data in output file, 313
default Bucket, 308
JSON format, 303
key-value pairs, 309, 316
key-value records, 309

ISNOT NULL and IS NOT MISSING clauses, 226

J

Java application, 252

Java classes
Jar files, Java Build Path, 244
MigrateMongoDBToCouchbase, 241
MongoClient class, 244
selection, 239
wizard, 240

json Bucket, 46

JSON documents, 200, 202, 318-319, 323
array elements, 207
catalogl, 290
class methods, 35-36, 39
Couchbase Server, 204, 289-290
data types, 3
default bucket, 207
definition, 2
hierarchies, 4
nested arrays and objects, 205, 212
nested object title, 204

K

keySet() method, 247

L

LIMIT clause, 229
ListCollectionNames() method, 245

mapreduce.job.max.split.locations, 310
Maven project
configuration, 22, 58, 237
CouchbaseJavaClient class, 20, 27

329

INDEX

Maven project (cont.)
creation, 20, 55-56, 236
dependencies, 61, 242
Dependency Jars, 26
Java classes, 59-60
name and location, 57
New Java Class, 23-25
new window, 21
in Package Explorer, 238
pom.xml configuration file, 25-26
selection, 235
Spring Data Couchbase, 59
Memcache, 13, 27
MigrateMongoDBToCouchbase.java Class, 251-252
MongoClient, 245, 249
MongoClient Class Constructors, 245
MongoDatabase object, 249
MongoDB, 12-13
Maven project, 235-238
monitoring package, 233
querying, 233
scalability, 233
server, 244
MongoDB.java Class, 248

N

Nested array element, 206
Nested documents, 203
Node.js
clicking, 157
client library installation, 160
features, 157
installation directory, 156
script, 159
setup wizard, 155-156
version, 159
NoSQL databases
ACID properties, 11
arithmetic and comparison operators, 220-222
asynchronous replication
Couchbase cluster, 7-8
data replication, 9-10
author field, 210
BASE properties, 11
Big data, 6
caching, 10
cloud enabled, 10
commodity hardware, 6
Couchbase Server, 197
definition, 1
examples, 1
failure handling, 7
features, 198
flexible schema, 6

330

journal field, 214-216
less administration, 7
object-oriented programming, 7
pattern matching, 224
performance, 7
“Quintessential and Collaborative’; 210
ROUND() and TRUNC() functions, 222-223
scalability, 5
SELECT statement, 199, 217
string concatenation, 223-224
ultra-high availability, 6

NOT LIKE clause, 225

NULL and IS MISSING clauses, 225-226

(0

OFFSET clause, 229
openBucket() method, 161, 250
OR clause, 227-228
Oracle database
cbtransfer tool, 281-282
creation, 285-286
CSV file, 287-289
data bucket type selection, 283
flush, 284
JSON document, 289-290
‘Oracle Magazine, 226
ORDER BY clause, 228
Overloaded query() methods, 49
Overloaded remove() methods, 50
Overloaded replace() methods, 41

P

pom.xml configuration file, 243

Q

queryView() method
“catalog” and “catalog_view’, 49
Couchbase datastore, 80
findDocumentByView() method, 78
update method, 79
ViewResponse object, 78

R

Rack awareness, 15
replaceDocument() method, 42
Resultset field, 199
ROUND() and TRUNC() functions, 222-223
Ruby
client library installation, 124-125
delete method, 147-149
DevKit, 123

download and installation, 119
get method, 136
installation, 120-123
querying document
catalog view, 151
Couchbase::DesignDoc class method, 151
Couchbase Server, 150
each method, 151, 154
queryDocument.rb script, 152-154
retrieving document
array, 138
asynchronous mode, 137-138
Couchbase::Error::NotFound error, 140
Couchbase::Error::ValueFormat error, 139
get method, 136, 139
getDocument.rb Script, 136-137
plain format, 140
updating document
cas method, 145-146
catalog2 document, 145
decrement method, 142
increment method, 141
integer overflow, 143
key/value pairs, 144-145
preceding script, 143
replace method, 141, 144
updateDocument.rb Script, 144

S, T

SELECT query, 200, 212
SELECT statement, 199
Sharding, 5
Spring Data
Couchbase, 55
data access technologies, 55
removeDocument() method, 72
repositories
CatalogService class, 86-87, 94-95, 97
class methods, 88

INDEX

CouchbaseRepository
interface, 89-90
count() method, 89
delete(ID id) method, 93
deleting documents, 93
description, 85
DesignDocument instance, 86
exists(ID id) method, 91
finding documents, 89
findOne method, 90
marker interface, 85
Package Explorer, 87
save method, 91-92
software components, 55
Spring Data Couchbase dependency
App.java application, 65
class methods, 65
JavaConfig, 62-63
Maven Project, 62
model class, 64-65
project and build configuration, 60
sub-dependencies, 61
Sqoop commands, 300
Sqoop import command, 311
String concatenation, 223-224

uVv

updateDocument() method, 41
Upsert() method
catalog_id, 164
catalog key, 165
JSON document, 165-166
options, 164
parameters, 164
storeDocument.js, 165

W, XY, Z

WHERE clause Filter, 200-201, 218

331

	Contents at a Glance
	Contents
	About the Author
	About the Technical Reviewer
	Chapter 1: Why NoSQL?
	 What Is JSON?
	 What Is Wrong with SQL?
	 Advantages of NoSQL Databases
	 Scalability
	 Ultra-High Availability
	 Commodity Hardware
	 Flexible Schema or No Schema
	 Big Data
	 Object-Oriented Programming
	 Performance
	 Failure Handling
	 Less Administration
	 Asynchronous Replication with Auto-Failover
	 Caching for Read and Write Performance
	 Cloud Enabled

	 What Has Big Data Got to Do with NoSQL?
	 NoSQL Is Not without Drawbacks
	 BASE, Not ACID
	 Still New to the Field
	 Vendor Support Is Lacking

	 Why Couchbase Server?
	 Flexible Schema JSON Documents
	 Scalability
	 Auto-Sharding Cluster Technology
	 High Performance from High Throughput and Low Latency
	 Cluster High Availability
	 Cross Data Center Replication
	 Data Locality
	 Rack Awareness
	 Multiple Readers and Writers
	 Support for Commonly Used Object-Oriented Languages
	 Administration and Monitoring GUI

	 Who Uses Couchbase Server and for What?
	 Summary

	Chapter 2: Using the Java Client
	 Setting Up the Environment
	 Creating a Maven Project
	 Creating a Data Bucket
	 Connecting to Couchbase Server
	 Creating a Document
	 Getting a Document
	 Updating a Document
	 Creating a View
	 Querying a View
	 Deleting a Document
	 Summary

	Chapter 3: Using Spring Data
	 Setting Up the Environment
	 Creating a Maven Project
	 Installing Spring Data Couchbase
	 Configuring JavaConfig
	 Creating a Model
	 Using Spring Data with Couchbase with Template
	 Running Couchbase CRUD Operations
	 Save Ops
	 Remove Ops
	 Insert Ops
	 Exists Method
	 Find Ops
	 Query View
	 Update Ops
	 Bucket Callback

	 Using Spring Data Repositories with Couchbase
	 Creating the all View
	 Document Count
	 Finding Entities from the Repository
	 Finding if an Entity Exists
	 Saving Entities
	 Deleting Entities

	 Summary

	Chapter 4: Accessing Couchbase with PHP
	 Setting the Environment
	 Installing PHP
	 Installing Couchbase PHP SDK
	 Creating a Document
	 Upserting a Document
	 Getting a Document
	 Replacing a Document
	 Incrementing and Decrementing a Document

	 Deleting a Document
	 Summary

	Chapter 5: Accessing with Ruby
	 Setting the Environment
	 Installing Ruby
	 Installing DevKit
	 Installing Ruby Client Library
	 Connecting with Couchbase Server
	 Creating a Document in Couchbase Server
	 Setting a Document
	 Adding a Document

	 Retrieving a Document
	 Updating a Document
	 Deleting a Document
	 Querying a Document with View
	 Summary

	Chapter 6: Using Node.js
	 Setting Up the Environment
	 Installing Node.js
	 Installing Node.js Client Library

	 Connecting with Couchbase Server
	 Creating a Document in Couchbase Server
	 Upserting a Document
	 Inserting a Document

	 Getting a Document
	 Updating a Document
	 Deleting a Document
	 Summary

	Chapter 7: Using Elasticsearch
	 Setting the Environment
	 Installing the Couchbase Plugin for Elasticsearch
	 Configuring Elasticsearch
	 Installing the Elasticsearch Head Third-Party Plugin

	 Starting Elasticsearch
	 Providing an Index Template in Elasticsearch
	 Creating an Empty Index in Elasticsearch
	 Setting the Limit on Concurrent Requests in Elasticsearch
	 Setting the Limit on Concurrent Replications in Couchbase Server
	 Creating an Elasticsearch Cluster Reference in Couchbase
	 Creating a Replication and Starting Data Transfer
	 Querying Elasticsearch
	 Adding Documents to Couchbase Server while Replicating
	 The Document Count in Elasticsearch
	 Summary

	Chapter 8: Querying with N1QL
	 Setting Up the Environment
	 Running a SELECT Query
	 Filtering with WHERE Clause
	 JSON with Nested Objects
	 JSON with Nested arrays
	 JSON with Nested Objects and Arrays
	 Applying Arithmetic & Comparison Operators
	 Applying ROUND( ) and TRUNC( ) Functions
	 Concatenating Strings
	 Matching Patterns with LIKE & NOT LIKE
	 Including and Excluding Null and Missing Fields
	 Using Multiple Conditions with AND
	 Making Multiple Selections with the OR Clause
	 Ordering Result Set
	 Using LIMIT and OFFSET to Select a Subset
	 Grouping with GROUP BY
	 Filtering with HAVING
	 Selecting Distinct Values
	 Summary

	Chapter 9: Migrating MongoDB
	 Setting Up the Environment
	 Creating a Maven Project
	 Creating Java Classes
	 Configuring the Maven Project
	 Creating a BSON Document in MongoDB
	 Migrating the MongoDB Document to Couchbase
	 Summary

	Chapter 10: Migrating Apache Cassandra
	 Setting Up the Environment
	 Creating a Maven Project in Eclipse
	 Creating a Database in Cassandra
	 Migrating the Cassandra Database to Couchbase
	 Summary

	Chapter 11: Migrating Oracle Database
	 Overview of the cbtransfer Tool
	 Setting the Environment
	 Creating an Oracle Database Table
	 Exporting Oracle Database Table to CSV File
	 Transferring Data from CSV File to Couchbase
	 Displaying JSON Data in Couchbase
	 Summary

	Chapter 12: Using the Couchbase Hadoop Connector
	 Setting Up the Environment
	 Installing Couchbase Server on Linux
	 Installing Hadoop and Sqoop

	 Installing Couchbase Hadoop Connector
	 Listing Tables in Couchbase Server
	 Exporting from HDFS to Couchbase
	 Importing into HDFS from Couchbase
	 Importing the Key-Value Pairs Previously Exported
	 Importing the BACKFILL Table
	 Importing JSON from Couchbase Server into HDFS

	 Summary

	Index

