
Reid

Shelve in:
Web Design/HTML

User level:
Beginning–Intermediate

www.apress.com

SOURCE CODE ONLINE

RELATED

BOOKS FOR PROFESSIONALS BY PROFESSIONALS®

HTML5 Programmer’s Reference
The HTML5 Programmer’s Reference aims to provide everything a programmer needs
for understanding and using the new HTML5 family of standards. Previous HTML
standards were focused on defining tags for marking up documents. The HTML5
family of standards includes not only new semantic tags, but also defines exciting, new
JavaScript APIs that can be used to build rich, interactive web applications for both
mobile and desktop platforms.

The HTML5 Programmer’s Reference focuses on providing real-world, non-trivial
examples to demonstrate concepts. Chapters include both in-depth discussions and
full references for all HTML5 features, as well as extras like how to find the standards,
the history of their evolution, and other examples and helpful resources. With this
book, the reader will learn everything they need to know to build the next generation of
web applications, such as:

• How to improve the semantics of your documents using the new HTML5
structural tags

• How to add interactivity to your applications using dialogs and progressive
disclosure areas, Audio and Video tags, and the Canvas element and its
drawing API

• How to make your forms more dynamic and mobile-ready using the new
HTML5 form features

• How to use the new HTML5 JavaScript APIs: WebWorkers,
Cross-Document Messaging, Web Sockets and Server-Sent Events,
Web Storage, and more

• How to use related technologies such as Animation Timing and
DOM Selectors, and important mobile device APIs such as Geolocation and
Device Orientation

• How to detect the HTML5 features you need, and what to do when
they’re missing

9 781430 263678

54999
ISBN 978-1-4302-6367-8

For your convenience Apress has placed some of the front
matter material after the index. Please use the Bookmarks

and Contents at a Glance links to access them.

v

Contents at a Glance

About the Author��xv

About the Technical Reviewer��xvii

Acknowledgments���xix

Introduction���xxi

■■Part I: HTML5 in Depth��� 1

■■Chapter 1: Welcome to HTML5�� 3

■■Chapter 2: HTML5 Elements��� 13

■■Chapter 3: HTML5 APIs��� 55

■■Chapter 4: Canvas�� 105

■■Chapter 5: Related Standards��� 149

■■Chapter 6: Practical HTML5�� 185

■■Part II: HTML5 Reference��� 239

■■Chapter 7: HTML5 Element Reference�� 241

■■Chapter 8: HTML5 API Reference�� 285

■■Chapter 9: Canvas Reference��� 309

■■Appendix A: JavaScript Tips and Techniques��� 347

Index�� 361

xxi

Introduction

The World Wide Web has existed for almost 25 years now. It started as a simple proposal by Tim Berners-Lee
and Robert Cailliau as a way for the scientists at CERN to publish papers easily, but it rapidly grew into a
platform that captured the imagination of the world.

The Web may have started out as a simple document-publishing platform, but it quickly became
clear that it was destined to become much more than that. As people demanded more interactivity and
richer experiences, the limits of the original HTML standards quickly became obvious. The advent of other
technologies like Cascading Style Sheets and JavaScript helped, but developers were still spending extensive
resources on building the experiences that people wanted.

HTML5 is meant to help solve some of these problems. The fifth incarnation of the HTML standard,
HTML5, is designed to be both feature rich and easier to work with. Prior versions of HTML focused on how
best to standardize document markup, which was a great way to bring standards to the chaos of the early
Web. HTML5, however, is focused on providing a platform for building rich interactions. Much of HTML5
was also specifically designed with mobile technologies in mind, while older versions of HTML were not.

What This Book Covers
This book is designed to be your go-to reference for HTML5 features. It is divided into two sections.

Part I, “HTML5 in Depth,” has chapters that provide detailed examinations of the HTML5 features,
including multiple examples and the current level of support at press time.

•	 Chapter 1, “Welcome to HTML5,” is a history lesson, explaining how the World Wide
Web and its technologies evolved, and how HTML5 came to be. This will hopefully
help you understand why HTML5 is so much different from previous HTML
standards, and will give you better insight in how HTML5 is structured.

•	 Chapter 2, “HTML5 Elements,” covers the new semantic tags in HTML5. As with
predecessor standards, HTML5 includes a new set of tags for marking up the content
in your documents. This is where you’ll find out how to use the new audio and video
tags, as well as a host of other HTML5 features.

•	 Chapter 3, “HTML5 APIs,” dives into the JavaScript APIs that are specified in the
HTML5 standard. You’ll learn about new ways for your HTML5 applications to
communicate and save data.

•	 Chapter 4, “Canvas,” covers one of the most innovative features of HTML5: the
canvas element. Here you’ll learn how to use this element to draw, modify images,
and create animations.

http://dx.doi.org/10.1007/9781430263678_1
http://dx.doi.org/10.1007/9781430263678_2
http://dx.doi.org/10.1007/9781430263678_3
http://dx.doi.org/10.1007/9781430263678_4

xxii

■ Introduction

•	 Chapter 5, “Related Standards,” covers several JavaScript APIs that are related to
HTML5 (and frequently used with HTML5) but are not actually a part of the HTML5
standard. These APIs also tend to have a strong mobile focus.

•	 Chapter 6, “Practical HTML5,” covers actually working with HTML5 in production
projects. It covers detecting features and applying shims, and includes a complete
HTML5 mobile game designed and built from the ground up.

Part II, “HTML5 Reference,” contains reference chapters for all of the HTML5 features covered in
Part 1. Each chapter is designed to provide an at-a-glance reference for each feature and includes a brief
description of the feature, how it is used (including both syntax and examples), and where to find its
standards.

•	 Chapter 7 is the reference chapter for HTML5 elements.

•	 Chapter 8 is the reference chapter for the HTML5 JavaScript APIs.

•	 Chapter 9 is the reference chapter for the canvas element.

What You Need to Know
Though there are lots of detailed examples throughout the book, it is written as a reference and not as a
tutorial. I’m assuming you have an intermediate understanding of how browsers work as well as how to
work with JavaScript, and at least a basic understanding of CSS and the network protocols involved in HTTP.
You should be comfortable creating and editing web pages and writing your own CSS and JavaScript.

Running the Code Samples
There are extensive code samples throughout the book. You can download the samples from www.apress.com,
or you can type them in by hand. Many of the examples can be run by simply loading the file into a web
browser using the browser’s File menu.

Some examples, though, must be run from an actual server, either due to security limitations or
because you will want to view them on a mobile device. To build and test all the examples in the book, I’ve
used Aptana Studio, available for free at http://www.aptana.com. Aptana Studio comes with an internal
debugging server that you can use to run any of these examples. If you prefer a stand-alone solution, I’ve
had very good luck with XAMPP, a stand-alone installation of the Apache web server, along with optional
components like MySQL, PHP, and Perl. And of course both MacOS and Windows come with their own web
server solutions that you can activate and use, as do most standard Linux distributions.

Finally, be sure to check out the “Comment Annotations” section in Appendix A, “JavaScript Tips and
Techniques,” for an explanation of the format of the examples and how to read the annotations.

http://dx.doi.org/10.1007/9781430263678_5
http://dx.doi.org/10.1007/9781430263678_6
http://dx.doi.org/10.1007/9781430263678_7
http://dx.doi.org/10.1007/9781430263678_8
http://dx.doi.org/10.1007/9781430263678_9
http://dx.doi.org/www.apress.com
http://dx.doi.org/http://www.aptana.com

Part I

HTML5 in Depth

3

Chapter 1

Welcome to HTML5

In this chapter, I’m going to dive into the history of HTML and how HTML5 came to be. I’ll talk about the
evolution of HTML from a simple proposal all the way to its current version, including reviews of related
technologies. I’ll also cover what HTML5 is, its scope, how it differs from previous versions, and how it fits in
with other technologies.

What Is HTML5?
Hypertext Markup Language, or HTML, has been with us since 1989. Versions of HTML prior to 5 only defined
markup tags for content: lists, paragraphs, headers, tables, and so on. HTML5, though, defines much more.
It has new content tags (such as <audio> and <video>) but it also defines complex interactions like dragging
and dropping, new network interfaces like server events, and even has new asynchronous functionality like
web workers. HTML specifications prior to HTML5 also defined the tags in SGML (more on that in a bit), but
the HTML5 specification is careful only to define tags in terms of annotated content and expected behavior.
And because HTML5 is a big part of a new set of advanced web technologies, many times you’ll see articles
on the Web or in popular media that mistakenly include technologies in HTML5 that have nothing to do
with HTML.

So what exactly is HTML5? Why does HTML5 define so much more than tags? How did HTML5
come about? Why is the HTML5 standard such a big departure from previous standards, both in terms of
definition and scope? To answer these questions, I’ll start with a quick review of how HTML came to be in
the first place.

A Brief History of HTML
HTML’s humble beginnings go all the way back to 1989. At that time the most common ways of sharing
information online was via e-mail, Usenet newsgroups, and public FTP sites. E-mail and newsgroups made
it easy for people to communicate directly with one another, and FTP sites provided a way for people to
provide access to sets of files. The main issue is that all of these forms of sharing information required
different software, and a certain level of skill to be able to actually navigate the Internet—though at that time
the Internet was considerably smaller than it is today.

Tim Berners-Lee proposed a better solution in 1989. At the time he was working at the European
Organization for Nuclear Research (known better by its French acronym CERN, for Conseil Européen pour
la Recherche Nucléaire), and he was keenly aware of the need for a better way to share information online.
In particular, Berners-Lee needed to solve the problem of sharing technical documents online. CERN
produced huge amounts of technical documentation, ranging from nuclear physics papers intended for
publication to internal policy documents, and they needed a solution that would work for all of these
different use cases.

Chapter 1 ■ Welcome to HTML5

4

Berners-Lee found himself trying to solve two problems at once:

•	 He needed a solution that provided a way of visually formatting the information that
CERN scientists were producing. This information could take the form of documents
such as published papers as well as data observed during experiments.

•	 He needed a solution that was capable of handling cross-references and embedding
graphics and other media. Many of the documents and at CERN included diagrams
and graphics and referenced one another, or other internal data sources, or even
external documents and data sources.

Fortunately, Berners-Lee already had some experience with solving these problems. Back in 1980 when
he was a contractor at CERN he had built a prototype system called ENQUIRE that provided some of the
functionality the organization needed, but failed to scale well. It did, however, employ a very important key
concept: hypertext.

Enter Hypertext
Hypertext is text with references to other information that the user can activate to gain immediate access to
that information. This includes information contained within the same document as well as information
in external documents or other data sources. These links are referred to as hyperlinks. In the case of most
modern computers, hypertext is displayed on the screen and hyperlinks are activated by clicking them with
a mouse or (in the case of touchscreens) tapping them with a finger. The term hypermedia is an extension
of the concept of hypertext to include not only hyperlinks but graphics, audio, video, and other sources of
information.

The concept of hypermedia has been around for quite some time. In 1945 American engineer and
inventor Vannevar Bush wrote an essay titled “As We May Think” for the Atlantic Monthly. As part of the
essay Bush proposed a “memory extender” or “memex,” a device that people can use to store all of their
personal information sources: books, records, albums, and so on. The memex would provide a person with
access to all of their information through the use of a set of bookmarks, and could be expanded as needed.

■■ Tip  You can read “As We May Think” on the Atlantic’s web site at www.theatlantic.com/magazine/
archive/1945/07/as-we-may-think/303881/.

In 1960 Ted Nelson founded Project Xanadu in an attempt to build a word processing system capable of
storing multiple versions of many documents that would allow the user to move through those documents
in a nonsequential fashion. He referred to these nonsequential paths as “zippered lists” and posited that by
using these zippered lists, new documents could be formed from pieces of other documents in a process
he called “transclusion.” In 1963 Nelson coined the terms hypertext and hypermedia, which were first
published in his paper “Complex Information Processing: A File Structure for the Complex, the Changing
and the Indeterminate” (available at http://dl.acm.org/citation.cfm?id=806036). At that time Nelson
used hypertext to refer to editable text rather than a text-based cross-reference, so the term has had some
semantic drift since Nelson first coined it.

■■ Tip P roject Xanadu is alive and well today at www.xanadu.com/, and even has a demonstration of a
“xanadoc” that is created on demand via transclusion.

http://www.theatlantic.com/magazine/archive/1945/07/as-we-may-think/303881/
http://www.theatlantic.com/magazine/archive/1945/07/as-we-may-think/303881/
http://dl.acm.org/citation.cfm?id=806036
http://www.xanadu.com/

Chapter 1 ■ Welcome to HTML5

5

In 1962 American engineer and inventor Douglas Englebart began work on his “oNLine System” or “NLS.”
The NLS was the first system that included most of the modern computer features available today: a
pointing device, windows, separate programs for presenting different kinds of data, information organized
by relevance, hypermedia links, and so forth. Englebart demonstrated the NLS at the Fall Joint Computer
Conference in San Francisco in December 1968. This demonstration was groundbreaking not only because it
was the first to show all of these modern features in use at once, but also because it used state-of-the-art video
conferencing technology to show the user interface for NLS as Englebart used it. Because the demonstration
was so groundbreaking in scope, it is often referred to as “The Mother of All Demos.”

■■ Tip T he demonstration can be seen on Stanford University’s web site at http://web.stanford.edu/dept/
SUL/library/extra4/sloan/MouseSite/1968Demo.html.

Berners-Lee had built ENQUIRE on the concept of hypertext (Figure 1-1). Within ENQUIRE a given
document was represented by a single page of information called a “card,” which was essentially a list of
hyperlinks defining what the document included, how it was used, a description, and who the authors were.
The links could easily be followed by activating them, allowing the user to explore the entire network of
documents.

Figure 1-1.  A Screenshot of ENQUIRE

http://web.stanford.edu/dept/SUL/library/extra4/sloan/MouseSite/1968Demo.html
http://web.stanford.edu/dept/SUL/library/extra4/sloan/MouseSite/1968Demo.html

Chapter 1 ■ Welcome to HTML5

6

In this respect, ENQUIRE was similar to an online version of a library’s card catalog system, and
unfortunately required a significant amount of effort to keep updated.

ENQUIRE also didn’t address the requirement for visually formatting documents. However, CERN
already made use of a possible solution in the form of a document markup language.

Enter Markup Languages
Document markup languages are programming languages that provide a way to annotate (or “mark up” as an
editor marks up a document under review) a document in such a way that the annotations are syntactically
distinct from the main content document. Markup languages exist in three broad categories based on the
goal of the annotations:

•	 Presentational markup languages are used to describe how a document should be
presented to the user. Most modern word processors use presentational markup
in the form of binary codes embedded in the document. Presentational markup is
typically designed for a specific program or display method and thus not meant to be
human readable.

•	 Procedural markup languages provide annotations that specify how the contents of
the document should be processed, often in the context of layout and typesetting
for printing. One of the most common examples of a procedural markup language is
PostScript.

•	 Descriptive markup languages are used to annotate the document with descriptions
of its content. Descriptive markup does not give any indication of how the contents
should be processed or displayed; that is left up to the processing agent.

Document markup languages have existed for decades. The first widely known document markup
language was presented by computer scientist William Tunnicliffe in 1967, but IBM researcher Charles
Goldfarb is typically called the “father” of modern markup languages because of his invention of the IBM
Generalized Markup Language (GML) in 1969. Goldfarb was responsible for pushing IBM to include GML
in its document management solutions. GML would eventually evolve into Standard Generalized Markup
Language (SGML, which became an ISO standard (ISO 8879:1986 Information processing—Text and office
systems -- Standard Generalized Markup Language) in 1986 with Goldfarb as the chair of the committee.

SGML isn’t a language you use directly; instead it is a “meta-language”—a language that is used to
define other languages. In this case, SGML is used to define markup languages that can then be used to
describe documents. Specifically, SGML requires that markup languages describe a document’s structure
and content attributes (vs. describing how to process the document), and that the markup languages
be rigorously defined so that processing and viewing software can be built that follows the same rules.
Languages defined by SGML are referred to as “SGML applications” (not to be confused with applications
that run on computers and perform tasks). Common SGML applications include XML (the eXtensible
Markup Language) and DocBook (a markup language designed for technical documentation).

CERN had been using an SGML application called SGMLguid) for marking up its documents, and
Berners-Lee recognized that a combination of SGMLguid with hypertext could be the solution he needed for
CERN’s document management problems.

Chapter 1 ■ Welcome to HTML5

7

Hypertext Markup Language Is Born
In late 1989, Berners-Lee proposed a pilot project that would employ hypertext and a simple markup
language as its basis. Berners-Lee envisioned that hyperlinks would be the key feature that tied all of the
disparate documents together:

HyperText is a way to link and access information of various kinds as a web of nodes in
which the user can browse at will. Potentially, HyperText provides a single user-interface
to many large classes of stored information such as reports, notes, data-bases, computer
documentation and on-line systems help.

from “WorldWideWeb: Proposal for a HyperText Project,” 12 November 1990
(www.w3.org/Proposal.html)

This proposal outlined a simple client/server network protocol for the new “web” of documents and
how they would function together to transfer information from the server to the viewing client. Berners-
Lee dubbed the new protocol “the Hypertext Transfer Protocol” or HTTP. The project was approved, and
Berners-Lee and his team began working on what would eventually become the World Wide Web.

After creating both client and server software for the new document system, Berners-Lee published
the first document that defined a basic set of tags that could be used to mark up documents that were to be
included in the new online document web. This document, titled “HTML Tags,” defined 18 tags that could be
used to mark up the contents of a document in such a way that the new web clients would be able to parse
and display them. Almost all of the tags came from SGMLguid except one: the anchor tag. The anchor tag
was the implementation of the hypertext linking feature that was so important to the new system.

■■ Tip  You can read the original “HTML Tags” document in the W3C’s historical archive at
www.w3.org/History/19921103-hypertext/hypertext/WWW/MarkUp/Tags.html.

This first document was a simple list of tags with a description of how to use them to describe the
content of a document. Later the tags were formalized as an SGML application in 1993 with the publication of
“Hypertext Markup Language (HTML)”(www.w3.org/MarkUp/draft-ietf-iiir-html-01.txt) as a working
draft submitted to the Internet Engineering Task Force (IETF). This draft expired and was followed by a
competing draft titled “HTML+ (Hypertext Markup Format)” later that same year, authored by Dave Raggett.

OPEN AND COLLABORATIVE

Tim Berners-Lee worked to keep the HTML definition process open and collaborative, leveraging
the knowledge and experience of many participants. These early collaborations paved the way not
only for the creation of the entire web technology ecosystem that would be designed through public
collaboration, but also for the creation of the core groups that would maintain the projects.

http://www.w3.org/Proposal.html
http://www.w3.org/History/19921103-hypertext/hypertext/WWW/MarkUp/Tags.html
http://www.w3.org/MarkUp/draft-ietf-iiir-html-01.txt

Chapter 1 ■ Welcome to HTML5

8

The Browser Wars
While working on the definition of HTML, Tim Berners-Lee was also working on the first software that
could make use of the new web of documents. In 1991 Berners-Lee released the first web browser,
“WorldWideWeb,” for the NeXTStep platform. There was significant interest from other programmers in
developing their own web browsers, so in 1993 Berners-Lee released a portable C library called libwww to the
public domain so that anyone could work on building web browsers. (The library was available prior to that
as part of the larger WorldWideWeb software application.)

By this point there were several experimental web browser projects on multiple platforms. Some of
these were simple text-based browsers that could be used from any terminal, such as the Lynx browser.
Others were graphical applications for use in the graphic desktops of the time.

One of the most popular of the graphical applications was Mosaic, developed at the National Center for
Supercomputing Applications (NCSA) at the University of Illinois. Work on Mosaic was begun in late 1992 by
Marc Andreesen and Eric Bina, with the first release in 1993.

In 1994 Andreesen left the NCSA to found a company called Mosaic Communications, where they built
a new browser from entirely new code. The new browser was called Netscape Navigator (and eventually
Mosaic Communications was renamed to Netscape Communications).

The actual Mosaic code base itself was licensed from the NCSA by a company called Spyglass, Inc.
Spyglass never did anything with the code, and in 1995 Microsoft licensed the code from them, modified it,
and renamed it Internet Explorer.

Both Netscape and Microsoft began expanding the capabilities of their browsers, adding new HTML
tags and other features. Netscape added JavaScript (codenamed “mocha” and originally released as
“LiveScript”) in Navigator in 1995. Microsoft quickly followed with their own version of the same language,
called JScript to avoid trademark issues, in 1996.

Netscape Navigator and Internet Explorer both had radically different implementations of the same
features, as well as their own proprietary features. A given HTML document could render one way in
Navigator and look completely different when rendered by Internet Explorer. Even simple HTML markup
produced significantly different visual results in the two browsers, and any attempt to do anything more
advanced was simply not possible.

This set the stage for the so-called Browser Wars. Anyone producing content for the Web had to make a
choice: choose a single browser to support, or spend significant resources to try and support both (in many
cases this meant producing two different versions of the same content, one version for each browser).
It became commonplace to see web sites that were optimized for only one browser, with graphics indicating
the choice, as shown in Figure 1-2.

Figure 1-2.  Graphics from the Browser Wars

Chapter 1 ■ Welcome to HTML5

9

Microsoft handily won the first round of the Browser Wars by including Internet Explorer as a standard
part of the Windows operating system. This gave Internet Explorer a huge base of installations and little
reason for people to pay for Netscape. By 1999 Internet Explorer made up 96% of the browser usage on the
World Wide Web. Netscape Communications was acquired by AOL, and Netscape Navigator (by then called
Netscape Communicator) was mothballed.

BROWSER WARS: NETSCAPE STRIKES BACK

AOL open-sourced the Netscape Communicator code base and entrusted it to the newly formed
nonprofit organization named the Mozilla Foundation. The Mozilla Foundation continued to build upon
the Navigator code base as an open source project and gained considerable momentum, adding new
features to the browser including e-mail and HTML editing features. In late 2002 a stripped-down
browser-only version of the suite was created, initially called Phoenix, then Firebird, and then later
(due to project naming conflicts) Firefox. Firefox went on to successfully challenge Internet Explorer’s
hold on the browser market in what many people refer to as the second round of the Browser Wars.

Standards to the Rescue
Combating the fragmentation of the Web meant bringing all parties to the table and agreeing upon
technology standards everyone could build upon. Standards provided a common ground for both browser
manufacturers and content creators:

•	 By adopting standards as part of their manufacturing process, browser
manufacturers would provide a predictable platform for the Web.

•	 By adapting standards as part of their coding practices, content creators could be
assured that their content would render consistently across all browsers.

In October 1994, that’s exactly what Tim Berners-Lee did, in a move that harkened back to his desire
to keep the Web open and collaborative. He left CERN and formed the World Wide Web Consortium
(W3C), a standards organization devoted to web technologies. The consortium was made up of anyone
who wanted to participate in defining and maintaining the standards for web technologies: companies that
eventually included Microsoft, Apple, Facebook, and Google; government organizations like NASA and
National Institute of Standards and Technologies; universities like Stanford University and the University of
Oxford; research organizations like CERN; and nonprofit organizations like the Mozilla Foundation and the
Electronic Frontier Foundation.

The W3C standards process starts by publishing a working draft for a standard. The consortium
members can then comment on the draft, which can undergo considerable evolution. Once the draft
has solidified, a candidate recommendation is published. Candidate recommendations are reviewed
from an implementation viewpoint—how difficult will it be to implement and use the standard. Once
the implementers have had their say, the draft moves to the proposed recommendation status. Proposed
recommendations go before the W3C advisory council for final approval. Once that final approval is granted,
the standard is given the status of an official W3C recommendation.

Standards didn’t resolve the browser wars overnight. It took a while before browser manufacturers
implemented the standards. Microsoft in particular espoused an “embrace and extend” philosophy in which
they agreed to the standards but also continued to add on their own proprietary technologies in an attempt
to make Internet Explorer a more attractive platform for web development. In the end, though, the demand
for consistent behavior across all browsers won out, and standards provided the blueprint for the victory.

Chapter 1 ■ Welcome to HTML5

10

The Continuing Evolution of HTML
The HTML standard was initially maintained by the IETF, which published the HTML 2.0 standard in 1995 as
RFC 1866.

■■ Note  “RFC” stands for “Request for Comments,” which means the document was published and
stakeholders were invited to comment on it as part of an ongoing review process.

The W3C took over the HTML standard in 1996. In 1997 the W3C published the HTML 3.2 standard.
This version officially deprecated several vendor-specific features and further stabilized the standard for
both browser manufacturers and content creators. In less than a year the W3C published HTML 4.0. This
version of HTML moved the standard in the direction of purely semantic markup: many visual tags such as
those that created bold or italic tags were deprecated in favor of using Cascading Style Sheets (CSS). The
W3C published HTML 4.1 in 1999, which was essentially HTML 4.0 with some minor edits and corrections.
In 2000 HTML 4.1 because an ISO standard: ISO/IEC 15445:2000.

All of these HTML versions were defined as SGML applications. Each tag along with its attributes was
defined using SGML rules, as show in in Listing 1-1.

Listing 1-1.  SGML Definition of the UL Tag in HTML 4.1

<!ELEMENT UL - - (LI)+ -- unordered list -->
<!ATTLIST UL
 %attrs; -- %coreattrs, %i18n, %events -->
<!ELEMENT OL - - (LI)+ -- ordered list -->
<!ATTLIST OL
 %attrs; -- %coreattrs, %i18n, %events -->

As the standards progressed, content creators had to follow them more and more strictly in order to
guarantee consistent behavior across browsers.

THE RISE AND FALL OF XHTML

In 2008 a new SGML application was proposed that would provide a smaller and more manageable
subset of SGML directives. Called the Extensible Markup Language, or XML, it was also meant to be
used to define data markup languages. The HTML 4 standard was quickly translated into XML, resulting
in XHTML. The XHTML 1.0 standard was published in 2000.

XHTML was meant to make the HTML language more modular and extensible. XHTML syntax is stricter
than plain HTML, and errors in XHTML markup will cause the rendering agent to publish an error and
stop rather than revert to a base behavior and continue. XHTML was never widely adopted, however,
because of lack of backward compatibility with older content and lack of browser support.

Chapter 1 ■ Welcome to HTML5

11

The Formation of the WHATWG and the Creation of HTML5
By 2004, the W3C was focusing its efforts on XHTML 2.0. However, some members of the consortium felt that
the XML-based direction wasn’t the correct path to follow for web technologies. The Mozilla Foundation and
Opera Software presented a position paper to the W3C in June 2004. This paper focused on web applications
as a whole: how to build them, what technologies they should employ, backward compatibility with existing
web browsers, and so forth. The paper included a draft specification for Web Forms as an example of direction.
You can read the paper on the W3C’s web site at www.w3.org/2004/04/webapps-cdf-ws/papers/opera.html.
The paper asked more questions than it answered, but overall it pointed in a different direction than the
W3C’s current XML-based solutions. In the end the W3C voted down the paper, opting to continue with
XML solutions.

Many stakeholders felt very strongly about looking at web applications in the holistic fashion proposed
by the paper, so a group was formed to focus on the creation of a web applications standard. Called the
Web Hypertext Application Technology Working Group (WHATWG), members included individuals from
Apple Inc., the Mozilla Foundation, and Opera Software. Initially they created a draft proposal for a Web
Applications standard, which covered all of the features that the group felt was important for creating rich,
interactive web applications, including:

•	 New semantic markup tags for common content patterns such as footers, sidebars,
and pull quotes.

•	 New state managemen0074 and data storage features.

•	 Native drag-and-drop interactions.

•	 New network features such as server-pushed events.

This new standard was eventually merged with the Web Forms standard (also being worked on by the
WHATWG) and the combined standard was renamed HTML5. This is why the HTML5 standard is not an
SGML application, and why it covers so much more than just markup: it was designed to provide better tools
for creating web applications.

In 2007 the W3C’s HTML group adopted the WHATWG’s HTML5 specification and began moving
forward with it. Both groups have continued to maintain their own versions of the same standard. By mutual
agreement the W3C maintains the canonical standard for HTML5. The WHATWG’s standard is considered a
“living standard,” which is therefore never complete and always evolving. In this way the W3C’s standard is
like a snapshot of the WHATWG’s standard.

THE W3C HTML5 STANDARD

The W3C’s HTML5 standard is available at www.w3.org/TR/html5/Overview.html. It is officially a W3C
recommendation.

THE WHATWG LIVING STANDARD

The WHATWG HTML standard is located at https://html.spec.whatwg.org/multipage/index.html.

http://www.w3.org/2004/04/webapps-cdf-ws/papers/opera.html
http://www.w3.org/TR/html5/Overview.html
https://html.spec.whatwg.org/multipage/index.html

Chapter 1 ■ Welcome to HTML5

12

HTML5 Features
Because it was designed to enable the creation of rich interactive web applications, HTML5 specifies a lot
more than just markup tags—though it covers those as well.

New Tags
The HTML5 standard specifies a host of new tags for marking up documents. New sectioning tags provide
ways of indicating common design patterns such as footers and navigation components and providing
improved semantic information for screen readers. New grouping tags offer ways to indicate groups of
content such as figures. And of course, HTML5 includes the new audio and video tags, for embedding
multimedia into web applications as easily as images. HTML5 also includes a whole set of new interactive
elements for implementing common design patterns such as dialogs and progressive disclosure.

Since it includes the Web Forms specification, HTML5 also includes many new form elements,
including data lists (filterable dropdowns), meters and progress bars, and sliders. HTML5 also specifies
several new form attributes to allow for richer interactions with forms. Now with simple attributes you can
specify placeholder text in a form field, or indicate what form field should have focus (be active) when the
page is loaded.

Canvas
HTML5 specifies the new canvas feature, a way to programmatically draw on a web page. The canvas also
includes features for text, layer blending, and image manipulation.

JavaScript APIs
The HTML5 standard includes a set of new JavaScript APIs to add more features to web applications. There
are new APIs for client/server communication, including the ability for servers to push events to web pages
and new ways of securing communication across documents and domains. There are also features for
storing data locally in the browser, drag-and-drop interactions, and multithreading.

Related Standards
There are a family of related standards that interact with HTML5, and are maintained by the W3C, but aren’t
technically members of the HTML5 standard. These include features like geolocation, device orientation,
and WebGL.

Summary
In this chapter I covered the history of HTML and how HTML5 came about, including:

•	 the origins of the underlying technologies,

•	 the browser wars, and

•	 the birth of the standards.

I also covered the overall composition of the HTML5 standard and its relatives.
Enough history! The next chapter will dive into the new HTML5 elements, including the audio and

video elements.

13

Chapter 2

HTML5 Elements

Though the HTML5 specification is much more complex than previous versions, like those versions it
includes definitions of new elements and deprecations of old elements. In this chapter I’m going to focus on
the Elements section of the HTML5 specification.

I will start by showing how best practices have contributed to the evolution of HTML. Then I will cover
many of the new tags included in the HTML5 specification: tags for creating new sections, grouping content,
semantic markup, embedded content, new interactive content, and forms. I’ll also cover the new features of
web forms: new form properties, field properties, and input types. Finally, I’ll cover the elements that have
been deprecated in HTML5.

Functionality, Semantics, and the Evolution of HTML
HTML5 represents the latest in the language’s evolutionary line. In the beginning of the Web this evolution
was largely driven by the browser manufacturers, who all wanted to create their own proprietary spaces on
the Web to distinguish themselves from their competitors. Unfortunately, this led to the fracturing of the
Web that is now known as the “Browser Wars.”

The first standards were born to combat this fracturing. By providing a common ground for all browser
manufacturers, they made it possible for developers to code HTML that was platform independent.

More important, as the standards evolved further, a set of best practices evolved along with them to
help developers leverage the strengths of complying with the standards. Probably the two most important of
these practices were the concepts of separation of functionality and semantic markup.

Separation of functionality dictates that we should use each of our tools according to their strengths. It is
often summarized as “separation of presentation from content,” but it goes deeper than that: use HTML for
content, CSS for presentation, and JavaScript for functionality.

Decoupling HTML from CSS and JavaScript allows the three languages to evolve independently, and
also makes it possible for developers to upgrade more easily or even completely change technologies later
without having to totally redo the code for all three languages.

The core idea of semantic markup is to use the right tag to mark up a given section or piece of data as
determined by its content. In a way it’s a deeper application of separation of functionality: use the right tag
for the job. Thus paragraphs should be marked up with <p> tags, unordered (bulleted) lists with , list
items with , and so forth. Today this best practice has become second nature to web developers, but it
wasn’t always that way. It was common to see tags used just for the indentation or margins that their default
styles provided, which made for pretty confusing markup.

The problem with these best practices is they were of little help outside of building simple informational
documents on the Web. If you wanted to do complex layouts, HTML didn’t have the necessary semantics.
And if you wanted to build functionality with web technologies, HTML really started to show its lack of
semantics.

Chapter 2 ■ HTML5 Elements

14

A major symptom of this lack was the proliferation of nonsemantic tags like <div> and . Because
these tags only denote sections (<div> denotes a block-level section and denotes an inline section)
they can safely be used to encompass just about any content. This suffusion of nonsemantic tags caused the
coining of the neologism “div-itis” or, more commonly, “divitis.”

One of the main purposes of HTML5 was to address these shortcomings. HTML5 specifies several
new tags for different sections of documents, new semantic tags, and tags for improving interactivity and
expanding the functionality of forms.

Sections
SUPPORT LEVEL

Good

All major browsers support section elements for at least the last two versions.

WHATWG Living Standard: http://www.whatwg.org/specs/web-apps/current-work/multipage/
sections.html#sections

W3C Candidate Recommendation: http://www.w3.org/TR/html5/sections.html#sections

HTML5 includes a set of new tags that are designed to address the lack of structural tags in previous
versions of HTML. Marking up even moderately complex documents revealed several weaknesses in the
original HTML tag set that resulted in the use of nonsemantic tags for many common purposes, such as
navigation sections, document headers, and document footers.

The new tags are as follows:

•	 <article> An article is a complete, self-contained set of content within a page.
Conceptually an article could be distributed or reused by itself. Examples of valid
articles include a single magazine article within a larger magazine, a blog post, a
reusable widget in the user interface, or any other self-contained set of content.

•	 <aside> An aside is a way of indicating a sidebar: a set of content that is independent
of, and tangential to, the content that surrounds it. Examples include pull quotes,
sidebars, or even advertising sections within larger documents.

•	 <nav> A nav section is the section with the major navigation links to other articles, or
to other documents. It is not generally meant for collections of minor links, such as
the links that are often relegated to a footer (in that specific case, the <footer> tag is
considered semantically sufficient).

•	 <footer> This well-named tag represents the footer of the containing section
element (<body>, <article>, etc.). Footers typically contain information about the
containing section element like copyright information, contact information, and
links to supporting documents and site maps.

•	 <header> The <header> tag groups together a set of introductory tags for the
current containing section element (<body>, <article>, etc.). Headers can contain
navigation, search forms, or even the document’s table of contents and internal links.

•	 <section> The <section> tag is used to group thematically similar content together,
often with a heading of some sort.

http://www.whatwg.org/specs/web-apps/current-work/multipage/sections.html#sections
http://www.whatwg.org/specs/web-apps/current-work/multipage/sections.html#sections
http://www.w3.org/TR/html5/sections.html#sections

Chapter 2 ■ HTML5 Elements

15

Before these tags were introduced, these sections were typically marked up using <div> tags with
relevant CSS classes, as in Listing 2-1.

Listing 2-1.  Old and Busted Markup with Nonsemantic Tag0073

<!DOCTYPE HTML>
<html>
 <head>
 <title>The HTML5 Programmer's Reference</title>
 <style>
body {
 margin: 0;
 padding: 0;
}
.page {
 background-color: #C3DBE8;
}
.header {
 background-color: #DDDDDD;
}
.header li {
 display: inline-block;
 border: 1px solid black;
 border-radius: 5px;
 padding: 0 5px;
}
.footer {
 background-color: #DDDDDD;
}
 </style>
 </head>
 <body>
 <div class="page">
 <div class="header">
 <h1>Lorem Ipsum Dolor Sit Amet</h1>
 <div class="navigation">

 one
 two
 three

 </div>
 </div>
 <div class="section">
 <h2>Section Header</h2
 <p>Lorem ipsum dolor sit amet, consectetur adipiscing elit.
 Proin congue leo ut nut tincidunt, sed hendrerit justo
 tincidunt. Mauris vel dui luctus, blandit felis sit amet,
 mollis enim. Nam tristique cursus urna, id vestibulum
 tellus condimentum vulputate. Aenean ut lectus adipiscing,

Chapter 2 ■ HTML5 Elements

16

 molestie nibh vitae, dictum mauris. Donec lacinia odio
 sit amet odio luctus, non ultrices dui rutrum. Cras
 volutpat tellus at dolor rutrum, non ornare nisi
 consectetur. Pellentesque sit amet urna convallis, auctor
 tortor pretium, dictum odio. Mauris aliquet odio vel
 congue fringilla. Mauris pellentesque egestas lorem.</p>
 </div>
 <div class="aside">
 <h2>Aside Header</h2>
 <p>Vivamus hendrerit nisl nec imperdiet bibendum. Nullam
 imperdiet turpis vitae tortor laoreet ultrices. Etiam
 vel dignissim orci, a faucibus dui. Pellentesque
 tincidunt neque sed sapien consequat dignissim.</p>
 </div>
 <div class="footer">
 <div class="address">
 Sisko's Creole Kitchen, 127 Main Street,
 New Orleans LA 70112
 </div>
 </div>
 </div>
 </body>
</html>

Listing 2-1 divides your content into a single “page,” contained within a <div> tag with the class "page"
applied to it. Within this page you have a header with our navigation, a section, an aside, and a footer. You’ve
also applied some basic styling to the markup to better illustrate the header and footer sections, and make
the navigation elements look more like buttons than a simple unordered list.

This is the kind of markup that you’re probably used to seeing, and other than the fact that it relies a great
deal on nonsemantic <div> tags there’s nothing wrong with it. With the new HTML5 tags, however, you can
do away with all of those <div> tags and replace them instead with semantic tags, as you do in Listing 2-2.

Listing 2-2.  New Hotness Markup with HTML5 Semantic Tags

<!DOCTYPE HTML>
<html>
 <head>
 <title>The HTML5 Programmer's Reference</title>
 <style>
body {
 margin: 0;
 padding: 0;
}
.page, article {
 background-color: #C3DBE8;
}
.header, header {
 background-color: #DDDDDD;
}
.header li, header li {
 display: inline-block;
 border: 1px solid black;

Chapter 2 ■ HTML5 Elements

17

 border-radius: 5px;
 padding: 0 5px;
}
.footer, footer {
 background-color: #DDDDDD;
}
 </style>
 </head>
 <body>
 <article>
 <header>
 <h1>Lorem Ipsum Dolor Sit Amet</h1>
 <nav>

 one
 two
 three

 </nav>>
 </header>
 <section>
 <h2>Section Header</h2>
 <p>Lorem ipsum dolor sit amet, consectetur adipiscing elit.
 Proin congue leo ut nut tincidunt, sed hendrerit justo
 tincidunt. Mauris vel dui luctus, blandit felis sit amet,
 mollis enim. Nam tristique cursus urna, id vestibulum
 tellus condimentum vulputate. Aenean ut lectus adipiscing,
 molestie nibh vitae, dictum mauris. Donec lacinia odio
 sit amet odio luctus, non ultrices dui rutrum. Cras
 volutpat tellus at dolor rutrum, non ornare nisi
 consectetur. Pellentesque sit amet urna convallis, auctor
 tortor pretium, dictum odio. Mauris aliquet odio vel
 congue fringilla. Mauris pellentesque egestas lorem.</p>
 </section>
 <aside>
 <h2>Aside Header</h2>
 <p>Vivamus hendrerit nisl nec imperdiet bibendum. Nullam
 imperdiet turpis vitae tortor laoreet ultrices. Etiam
 vel dignissim orci, a faucibus dui. Pellentesque
 tincidunt neque sed sapien consequat dignissim.</p>
 </aside>
 <footer>
 <address>
 Sisko's Creole Kitchen, 127 Main Street,
 New Orleans LA 70112
 </address>
 </footer>
 </article>
 </body>
</html>

Chapter 2 ■ HTML5 Elements

18

You have replaced all of the nonsemantic divs with their associated semantic HTML5 tags. You’ve also
updated the style sheet so the new tags will share the same styles with the old classes that were applied to
the <div> tags you removed.

Browsers do render the two examples slightly differently. The differences vary from browser to browser:
Internet Explorer 10 has the least variation, with the only difference being that text contained within an
<address> tag is automatically rendered in italics. With Chrome and Firefox, the differences are greater, as
seen in Figure 2-1.

As you can see, the font size for <h1> tags within <header> tags is smaller in both browsers, and they
both render text within <address> tags in italics, as does Internet Explorer. If you are migrating to the new
semantic tags, be sure you take these differences into account.

Figure 2-1.  Screenshots of Listing 2-1 rendered in Chrome (left) and Listing 2-2 rendered in Firefox (right)

Chapter 2 ■ HTML5 Elements

19

Grouping
SUPPORT LEVEL

Good

All major browsers support <figure> and <figcaption> features for at least the last two versions.
Internet Explorer does not support the <main> tag natively but other browsers do.

WHATWG Living Standard: http://www.whatwg.org/specs/web-apps/current-work/multipage/
grouping-content.html#grouping-content

W3C Candidate Recommendation: http://www.w3.org/TR/html5/grouping-content.
html#grouping-content

HTML5 defines a few new tags for grouping content. These tags differ from the HTML5 Section tags in
that they define a given group of data as a particular kind of data, while the Section tags provide structure for
the document. The new tags are as follows:

•	 <figure> This tag is used to group together a set of content that is self-contained
and independent from the main document flow, but is referenced from within the
document flow. Examples of figures include illustrations, screenshots, and code
snippets.

•	 <figcaption> This tag is used to provide a caption for a <figure> tag. Captions
are optional.

•	 <main> The definition of the <main> tag differs between the W3C and the WHATWG
specifications. According to the W3C the <main> tag should be used to group
together the primary content of the document or application that has to do with
the main subject or functionality. According to the WHATWG, the <main> tag has
no intrinsic meaning and instead represents its contents. The rationale for this
difference is explained in detail in Bug 21553 over on the W3C’s bugbase:
https://www.w3.org/Bugs/Public/show_bug.cgi?id=21553.

The new grouping tags are simple to use, as demonstrated in Listing 2-3.

Listing 2-3.  Using the New HTML5 Grouping Tags

<!DOCTYPE HTML>
<html>
 <head>
 <title>The HTML5 Programmer's Reference</title>
 <style>
figure figcaption {
 font-style: italic;
}
 
figure pre {
 line-height: 1.6em;
 font-size: 11px;
 padding: 1em 0.5em 0.0em 0.9em;

http://www.whatwg.org/specs/web-apps/current-work/multipage/grouping-content.html#grouping-content
http://www.whatwg.org/specs/web-apps/current-work/multipage/grouping-content.html#grouping-content
http://www.w3.org/TR/html5/grouping-content.html#grouping-content
http://www.w3.org/TR/html5/grouping-content.html#grouping-content
https://www.w3.org/Bugs/Public/show_bug.cgi?id=21553

Chapter 2 ■ HTML5 Elements

20

 border: 1px solid #bebab0;
 border-left: 11px solid #ccc;
 margin: 0.3 0 1.7em 0.3em;
 overflow: auto;
 max-height: 500px;
 position: relative;
 background: #faf8f0;
}
 </style>
 </head>
 <body>
 <main>
 <article>
 <h1>Main, Figure and Figcaption</h1>
 <h2>Best Things Ever</h2>
 <p>Vivamus hendrerit nisl nec imperdiet bibendum. Nullam
 imperdiet turpis vitae tortor laoreet ultrices. Etiam
 vel dignissim orci, a faucibus dui. Pellentesque
 tincidunt neque sed sapien consequat dignissim.</p>
 <figure>
 <figcaption>Using Figure and Figcaption for Code Samples</figcaption>
 <pre>
[sample code here]
 </pre>
 </figure>
 <p>More content about Main, Figure and Figcaption...</p>
 </article>
 </main>
 </body>
</html>

This example uses <main> to indicate the main section of the example document, and <figure> and
<figcaption> to define a code sample area. You have also applied some simple CSS styling to the code area
and its caption, to make it stand out more from the rest of the document, as shown in Figure 2-2.

Chapter 2 ■ HTML5 Elements

21

In this screenshot you can see that the browser applies some default margins to the <figure> tag, which
is fairly consistent across browsers.

Semantics
SUPPORT LEVEL

Mixed

There is little support in any browser for <bdi>, <data>, <ruby>, <rt>, <rp>, or <time>.

Support for <mark> is good (going back at least two versions of the major browsers) and <wbr> is
excellent (going back to the very earliest versions of the major browsers).

WHATWG Living Standard: http://www.whatwg.org/specs/web-apps/current-work/multipage/
text-level-semantics.html#text-level-semantics

W3C Candidate Recommendation: http://www.w3.org/TR/html5/text-level-semantics.
html#text-level-semantics

Figure 2-2.  Screenshot of Listing 2-3 rendered in Firefox

http://www.whatwg.org/specs/web-apps/current-work/multipage/text-level-semantics.html#text-level-semantics
http://www.whatwg.org/specs/web-apps/current-work/multipage/text-level-semantics.html#text-level-semantics
http://www.w3.org/TR/html5/text-level-semantics.html#text-level-semantics
http://www.w3.org/TR/html5/text-level-semantics.html#text-level-semantics

Chapter 2 ■ HTML5 Elements

22

HTML5 includes several new semantic tags designed to help clarify content types.

•	 <bdi> The Bi-Directional Isolation Element is used to isolate an inline span of text
that might be rendered in a different direction than the surrounding text.

•	 <data> The <data> tag is used to associate machine-readable data with the content it
encloses. It provides a semantic way of annotating content with data002E

•	 <mark> This tag is used to mark occurrences within a document, such as search results.

•	 <ruby>, <rp>, and <rt> These tags are for Ruby annotations, which are used for
showing pronunciation of East Asian characters. For details about Ruby annotations,
see http://www.w3.org/TR/ruby/ and http://en.wikipedia.org/wiki/Ruby_
character.

•	 <time> The <time> tag is similar to <data> in that it provides a way to associate data
(in this case, specifically date/time data) with the enclosed content.

•	 <wbr> The Word Break Opportunity tag is used to indicate a position in the
document flow where the browser may initiate a line break though its internal rules
might not otherwise do so. It has no effect on bidi-ordering, and if the browser does
initiate a break at the tag, a hyphen is not used.

Unfortunately support for these tags is rather poor. The <data> and <time> tags, along with the tags for
Ruby annotations, are not widely supported, even in the most modern browsers.

The <mark> tag, though, is quite well supported, and is as easy to use as any other inline tag. Listing 2-4
shows a very simple use of the <mark> tag to highlight certain words within a document.

Listing 2-4.  Marking Words in a Document

<!DOCTYPE HTML>
<html>
 <head>
 <title>The HTML5 Programmer's Reference</title>
 <style>
mark {
 background-color: #E3DA5D;
}
 </style>
 </head>
 <body>
 <article>
 <h1>Using the <mark> tag</h1>
 <p>Vivamus hendrerit nisl nec imperdiet <mark>bibendum</mark>. Nullam
 imperdiet turpis vitae tortor laoreet ultrices. Etiam
 vel dignissim orci, a faucibus dui. Pellentesque
 tincidunt <mark>neque</mark> sed sapien consequat dignissim.</p>
 </article>
 </body>
</html>

This example renders the same in all browsers (Figure 2-3).

http://www.w3.org/TR/ruby/
http://en.wikipedia.org/wiki/Ruby_character
http://en.wikipedia.org/wiki/Ruby_character

Chapter 2 ■ HTML5 Elements

23

The <wbr> tag is probably one of the most broadly supported of all the HTML5 tags. It was a
nonstandard tag available in all browsers that was brought into the standard with HTML5. It’s used to
provide word break suggestions in long words, which can be situationally useful. Listing 2-5 shows a simple
example with long words before inserting <wbr> tags:

Listing 2-5.  Long Words in a Document

<!DOCTYPE HTML>
<html>
 <head>
 <title>The HTML5 Programmer's Reference</title>
 <style>
.larger {
 font-size: 2em;
}
 </style>
 </head>

Figure 2-3.  Screenshot of Listing 2-4 rendered in Firefox

Chapter 2 ■ HTML5 Elements

24

 <body>
 <article>
 <h1>Using the <wbr> tag</h1>
 <p>Here are some long words in a slightly larger font size to demonstrate
 how useful the <wbr> tag can be.</p>
 <p class="larger">Supercalifragilisticexpialidocious and antidisestablishmentarianism,
 also pneumonoultramicroscopicsilicovolcanoconiosis.</p>
 </article>
 </body>
</html>

As shown in Figure 2-4, Listing 2-5 renders as you would expect in all modern browsers.

You can easily use some <wbr> tags to help the browser decide where to break those long words, as in
Listing 2-6.

Figure 2-4.  Rendering of Listing 2-5 in Firefox

Chapter 2 ■ HTML5 Elements

25

Listing 2-6.  Suggesting Line Breaks in Large Words

<!DOCTYPE HTML>
<html>
 <head>
 <title>The HTML5 Programmer's Reference</title>
 <style>
.larger {
 font-size: 2em;
}
 </style>
 </head>
 <body>
 <article>
 <h1>Using the <wbr> tag</h1>
 <p>Here are some long words in a slightly larger font size to demonstrate
 how useful the <wbr> tag can be.</p>
 <p class="larger">Supercali<wbr>fragilistic<wbr>expialidocious and
 antidis<wbr>establishment<wbr>arianism.</p>
 </article>
 </body>
</html>

The browser can break the words at our suggestions if needed (Figure 2-5).

Figure 2-5.  Rendering Listing 2-6 at different browser widths

Chapter 2 ■ HTML5 Elements

26

As you can see, the browser can now use our word break suggestions if it needs to. This can be
particularly useful if you are working on cramped layouts where screen real estate is at a premium, such as
on a mobile device.

Audio and Video Content
SUPPORT LEVEL

Good

All modern browsers support audio and video elements for at least the last two versions, but see the
following for information about format support.

WHATWG Living Standard: http://www.whatwg.org/specs/web-apps/current-work/multipage/
edits.html#embedded-content

W3C Candidate Recommendation: www.w3.org/TR/html5/embedded-content-0.html#embedded-
content-0

One of the biggest shortcomings of previous versions of HTML was their inability to easily include
multimedia content on web pages. HTML5 has new tags that specifically address that problem. With these
new tags, including multimedia content on a web page is as easy as including static images. Even better, all
modern browsers support these capabilities very well.

Before HTML5, if you wanted to embed a video into your web page, you needed a third-party plug-in
that had the ability to play the desired content, as well as do things like adjust the volume, fast-forward or
reverse through the content, and so forth. With HTML5, browser manufacturers have built these capabilities
into their software. These capabilities include a user interface for controlling playback and the ability to play
various media formats for audio and video encoding.

An unfortunate complication is that audio and video can both be encoded in many different formats,
and many of these formats have patent encumbrances that made the browser manufacturers unwilling to
support them. So while all modern browsers support multimedia tags, some browsers support different
formats than others. For details on what browser supports which formats, see Chapter 7.

Another complication arises from interacting with multimedia. For example, users will often want
to skip around in content, going forward or back as desired. Supporting interactive functionality like that
requires a server that is capable of reacting to these user interactions and can provide the portions of content
as needed. Simple web servers typically don’t have this capability, though many of them can be configured
to do so. For more information on configuring servers for multimedia, see Chapter 7.

Embedded Audio Content
With the HTML5 <audio> tag, you can embed audio content into your web pages as easily as including an
image. Like any HTML tag, the <audio> tag has several properties that you can set:

•	 autoplay: This is a boolean flag that, when set (to anything, even false), will cause
the browser to immediately begin playing the audio content as soon as it can without
stopping for buffering.

•	 controls: If this attribute is set, the browser will display its default user interface
controls for the audio player (volume controls, progress meter/scrub bar, etc.).

http://www.whatwg.org/specs/web-apps/current-work/multipage/edits.html#embedded-content
http://www.whatwg.org/specs/web-apps/current-work/multipage/edits.html#embedded-content
http://www.w3.org/TR/html5/embedded-content-0.html#embedded-content-0
http://www.w3.org/TR/html5/embedded-content-0.html#embedded-content-0
http://dx.doi.org/10.1007/9781430263678_7
http://dx.doi.org/10.1007/9781430263678_7

Chapter 2 ■ HTML5 Elements

27

•	 loop: If this attribute is set, the browser will loop playback of the specified file.

•	 muted: This attribute specifies that the playback should be muted by default.

•	 preload: This attribute is used to provide to the browser a hint for how to provide the
best user experience for the specified content. It can take three values: none, metadata,
and auto. The none value specifies that the author wants to minimize the download
of the audio content, possibly because the content is optional, or because the server
resources are limited. The metadata value specifies that the author recommends
downloading the metadata for the audio content (duration, track list, tags, etc.) and
possibly the first few frames of the content. The auto value specifies that the browser
can put the user’s needs first without risk to the server. This means the browser can
begin buffering the content, download all the metadata, and so forth. Note that these
values can be changed after the page has loaded. For example, if you have a page with
many <audio> tags each with preload set to none to prevent swamping the server,
when the user makes a choice of which of the <audio> tags they want to hear, you can
dynamically change its preload value to auto to provide a better user experience. This
enables you to balance user experience with available resources.

•	 src: This attribute specifies the source of the content, just as with an tag.
If desired, this attribute can be omitted in favor of one or more <source> tags
contained within the <audio> tag.

The <audio> tag is not self-closing and thus requires a closing tag. Note that since older browsers do
not support the <audio> tag, any content contained within one will be displayed in those browsers, thus
providing a backward-compatible way of providing alternate content in older browsers.

The audio tag is very easy to use, as shown in Listing 2-7.

Listing 2-7.  Embedding Audio Content in a Web Page

<!DOCTYPE HTML>
<html>
 <head>
 <title>The HTML5 Programmer's Reference</title>
 </head>
 <body>
 <article>
 <h1>Using the <audio> tag</h1>
 <audio controls="controls" src="../media/windows-rolled-down.mp3">
 </audio>
 </article>
 </body>
</html>

■■ Note T he examples in this section use audio files. You should substitute your own files as needed.

Listing 2-7 has opted to show the controls for the native player to demonstrate what they look like by
default. Each browser’s native player looks slightly different and has somewhat different features (Figure 2-6).

Chapter 2 ■ HTML5 Elements

28

Chrome’s default audio player has a volume slider, while Firefox’s player has a tooltip indicating current
play time. It is not possible to style the player, so if you want to have a consistent look and feel across all
browsers you will have to build your own player—which is actually quite easy to do because HTML5 also
specifies a JavaScript API for working with <audio> tags. For details on this API, please see Chapter 7.

■■ Tip  In Chrome, the audio and video players are implemented as web components using the new Shadow
DOM specification. Using the Shadow DOM APIs it is possible to access and style the components of the player
directly. For example, the background of the player is a shadow <div>, which can be selected with the CSS
selector audio::-webkit-media-controls-panel and whose appearance (such as the background color)
can be altered as desired. Similarly, the volume bar is an <input type="range"> tag with the selector
audio::-webkit-media-controls-volume-slider. Unfortunately, at the time of this writing Chrome and
Opera are the only two browsers to support the Shadow DOM specification. Other browsers may also be
implementing their players using Shadow DOM, and when they fully support the specification, their players may
become accessible as well, allowing web developers to control the appearance of the players without having to
resort to building their own from scratch.

Figure 2-6.  Listing 2-7 rendered in Chrome (left) and Firefox (right)

http://dx.doi.org/10.1007/9781430263678_7

Chapter 2 ■ HTML5 Elements

29

Embedded Video Content
The HTML5 <video> tag enables basic video capabilities in browsers. It functions similarly to the <audio>
tag and has a similar set of properties that can be set:

•	 autoplay: This is a boolean flag that, when set (to anything, even false), will cause
the browser to immediately begin playing the video content as soon as it can without
stopping for buffering.

•	 controls: If this attribute is set, the browser will display its default user interface
controls for the video player (volume controls, progress meter/scrub bar, etc.).

•	 height: This attribute can be used to specify the height, in pixels, of the video player.

•	 loop: If this attribute is set, the browser will loop playback of the specified file.

•	 muted: This attribute specifies that the playback should be muted by default.

•	 poster: This attribute can be used to specify a URL for a poster to display before the
video is played. If no poster is specified, then the player will show the first frame of
the video by default, once it has loaded.

•	 preload: This attribute is used to provide the browser a hint for how to provide
the best user experience for the specified content. It can take three values: none,
metadata, and auto. The none value specifies that the author wants to minimize the
download of the video content, possibly because the content is optional, or because
the server resources are limited. The metadata value specifies that the author
recommends downloading the metadata for the video content (duration, track list,
tags, etc.) and possibly the first few frames of the content. The auto value specifies
that the browser can put the user’s needs first without risk to the server. This means
the browser can begin buffering the content, download all the metadata, and so
forth. Note that these values can be changed after the page has loaded. For example,
if you have a page with many <video> tags, each with preload set to none to prevent
swamping the server, when the user chooses which of the <video> tags they want to
view, you can dynamically change its preload value to auto to provide a better user
experience. This enables you to balance user experience with available resources.

•	 src: This attribute specifies the source of the content, just as with an tag.
If desired, this attribute can be omitted in favor of one or more <source> tags
contained within the <video> tag.

•	 width: This attribute can be used to specify the width of the video player, in pixels.

The <video> tag is just as easy as the <audio> tag to use, as shown in Listing 2-8.

Listing 2-8.  Embedding Video Content in a Web Page

<!DOCTYPE html>
<html>
 <head>
 <title>The HTML5 Programmer's Reference</title>
 </head>
 <body>
 <article>
 <h1>Using the <video> tag</h1>
 <video controls="controls" src="../media/podcast.m4v">

Chapter 2 ■ HTML5 Elements

30

 </video>
 </article>
 </body>
</html>

■■ Note T he examples in this section use video files. You should substitute your own files as needed.

And as with the <audio> tag, each browser provides a slightly different video player, as shown in
Figure 2-7.

As before, the two browsers have slightly different interfaces for their video players. If you want to
change the appearance of the player and its controls, you’ll have to build your own.

Specifying Multiple Sources
Both the <audio> and <video> tags have an src attribute, but you can forgo that attribute in favor of
including a list of one or more <source> tags inside of the <audio> or <video> tag. You can even specify
different encodings of the same file, thus working around any limitations that browsers might have with
encoding support. The browser will go down the list of <source> tags and play the first file that it supports.

The <source> tag has two attributes:

•	 src: The URL for the audio file.

•	 type: The MIME type of the audio file, with an optional codecs parameter, specified
according to RFC 4281.

As an example, imagine you have a video that we want to serve. You have it in two different formats: Ogg
Vorbis and MP4. Use two <source> tags as shown in Listing 2-9.

Figure 2-7.  Listing 2-8 rendered in Chrome (left) and Firefox (right)

Chapter 2 ■ HTML5 Elements

31

Listing 2-9.  Specifying Multiple Sources for Multimedia

<video controls>
 <source src="../media/video-1.mp4" type="video/mp4">
 <source src="../media/video-1.ogv" type="video/ogg">
</video>

You can get very precise about the encoding of your audio and video by using the optional codecs
parameter in the type attribute. For example, if you have an H.264 video (profile 3) with low-complexity AAC
audio all contained in an MP4 container, you could specify the codecs as shown in Listing 2-10:

Listing 2-10.  Specifying Audio and Video Codecs for a Video Source

<source src="../media/video-1.mp4" type="video/mp4, codecs=' avc1.4D401E, mp4a.40.2'">

This can be particularly useful for providing the best possible quality encoding for your video while
allowing the most browsers to access it regardless of encoding support limitations.

Interactive Elements
SUPPORT LEVEL

Unsupported

Interactive elements are not supported by modern browsers except for experimental versions.

WHATWG Living Standard: http://www.whatwg.org/specs/web-apps/current-work/multipage/
interactive-elements.html#interactive-elements

W3C Candidate Recommendation: http://www.w3.org/TR/html5/interactive-elements.html

HTML5 includes a new set of interactive elements that are intended to provide some prebuilt user
interface elements that can be used in web pages and applications. Unfortunately, these features are not yet
supported in most browsers, but support probably will improve with time.

Dialogs
One of the most exciting new features is the <dialog> tag, which provides the ability to easily create pop-up
dialogs. Any content enclosed in a <dialog> tag is not rendered in the document until you call one of its
display methods:

•	 show: Calling this method will open the dialog as a standard pop-up.

•	 showModal: Calling this method will open the dialog as modal dialog, with the rest of
the page grayed out behind the dialog.

In addition, each dialog will dispatch a close event when it is closed.
Listing 2-11 is a simple example that demonstrates how to use the <dialog> tag. As of this writing, the

only browser that supports the <dialog> tag is Chrome, and even then you have to activate the Experimental
Web Platform Features in chrome://flags. If you enable the features, the example will work great.

http://www.whatwg.org/specs/web-apps/current-work/multipage/interactive-elements.html#interactive-elements
http://www.whatwg.org/specs/web-apps/current-work/multipage/interactive-elements.html#interactive-elements
http://www.w3.org/TR/html5/interactive-elements.html

Chapter 2 ■ HTML5 Elements

32

Listing 2-11.  Web Dialogs

<!DOCTYPE HTML>
<html>
 <head>
 <title>The HTML5 Programmer's Reference</title>
 <style>
li {
 display: inline-block;
 background-color: #A9DCF5;
 border-radius: 4px;
 padding: 2px 10px;
 cursor: pointer;
}
 </style>
 </head>
 <body>
 <article>
 <h1>Using the <dialog> tag</h1>

 <li id="open-dialog">Open Dialog
 <li id="open-modal">Open Modal

 <dialog id="dialog">
 <p>Hello World!</p>
 <button id="close-dialog">Okay</button>
 </dialog>
 </article>
 <script>
var myDialog = document.getElementById('dialog'),
 openDialog = document.getElementById('open-dialog'),
 openModal = document.getElementById('open-modal'),
 closeDialog = document.getElementById('close-dialog'),
 status = document.getElementById('status');
 
closeDialog.addEventListener('click', function(event) {
 myDialog.close();
}, false);
 
openDialog.addEventListener('click', function(event) {
 myDialog.show();
}, false);
 
openModal.addEventListener('click', function(event) {
 myDialog.showModal();
}, false);
 
myDialog.addEventListener('close', function(event) {
 alert('A close event was dispatched.');
}, false);
 </script>
 </body>
</html>

Chapter 2 ■ HTML5 Elements

33

This will render a very simple dialog shown in Figure 2-8.

Each time you close one of the dialogs, the close event will fire, producing an alert that reads, “A close
event was dispatched.”

This is the default appearance of the dialogs. They can easily be styled with CSS to make them more
attractive, and of course they can contain any content, including images, form fields, and so forth. You can
also style the backdrop for the modal instance; it is a pseudo-element that can be accessed using ::backdrop
on your dialog selector.

For example, in Listing 2-12, if you add a couple of simple CSS directives to your style sheet, you’ll have
a much more attractive dialog.

Listing 2-12.  CSS Styles for Web Dialogs

dialog {
 text-align: center;
 padding: 1.5em;
 margin: 1em auto;
 border: 0;
 border-radius: 8px;
 box-shadow: 0 2px 10px #111;
}
 
dialog::backdrop {
 background-color: rgba(187, 217, 242, 0.8);
}

Figure 2-8.  The dialogs that Listing 2-11 produces

Chapter 2 ■ HTML5 Elements

34

These styles will change the appearance of both the dialog and the modal backdrop (Figure 2-9).

Though the <dialog> tag is currently only supported in Chrome, there is a polyfill that provides most of
the functionality in other browsers available at https://github.com/GoogleChrome/dialog-polyfill.

■■ Tip  Polyfill is a term for a library that enables or duplicates unsupported features in browsers. Another
term for polyfill is shim.

Progressive Disclosure
One common UI feature is progressive disclosure: you provide a simple list of items, and when the user
clicks on one, the space beneath expands, revealing more information. These widgets go by different names
depending on the framework used (jQuery UI, for example, refers to them as accordions). HTML5 includes
a definition for this feature using the <summary> and <details> tags. The <details> tag encloses all of the
desired content, including a <summary> tag, which should enclose just a brief summary of the content. The
default rendering of a <details> tag is to show just the contents of the <summary> tag preceded by a small
triangle. The user can then click anywhere on the summary and the rest of the content will be revealed. You
can specify that a given <details> tag is to be rendered in the open state by giving it the open attribute.

At the moment, Chrome, Opera, and Safari are the only browsers that support the <details> and
<summary> tags. Firefox will be supporting the tags and you can check the status of their support in bug
591737 at https://bugzilla.mozilla.org/show_bug.cgi?id=591737. The status of support in Internet
Explorer is unknown.

Figure 2-9.  Web dialog (modal state) with CSS styles applied

https://github.com/GoogleChrome/dialog-polyfill
https://bugzilla.mozilla.org/show_bug.cgi?id=591737

Chapter 2 ■ HTML5 Elements

35

The tags are simple to use, as shown in Listing 2-13.

Listing 2-13.  Progressive Disclosure

<!DOCTYPE HTML>
<html>
 <head>
 <title>The HTML5 Programmer's Reference</title>
 </head>
 <body>
 <article>
 <h1>Using the <summary> and <details> tags</h1>
 <details>
 <summary>Item 1</summary>
 <p>Lorem ipsum dolor sit amet, consectetur adipiscing elit. Phasellus
 accumsan orci nec justo rhoncus facilisis. Integer pellentesque
 ipsum vitae semper lacinia. Quisque non nisl rutrum, porta est at,
 ultrices neque. Aenean consequat, lacus vulputate vestibulum
 faucibus, turpis magna mollis quam, a congue neque lorem at
 justo.</p>
 </details>
 <details>
 <summary>Item 2</summary>
 <p>Lorem ipsum dolor sit amet, consectetur adipiscing elit. Phasellus
 accumsan orci nec justo rhoncus facilisis. Integer pellentesque
 ipsum vitae semper lacinia. Quisque non nisl rutrum, porta est at,
 ultrices neque. Aenean consequat, lacus vulputate vestibulum
 faucibus, turpis magna mollis quam, a congue neque lorem at
 justo.</p>
 </details>
 <details open>
 <summary>Item 3--this one will be open by default</summary>
 <p>Lorem ipsum dolor sit amet, consectetur adipiscing elit. Phasellus
 accumsan orci nec justo rhoncus facilisis. Integer pellentesque
 ipsum vitae semper lacinia. Quisque non nisl rutrum, porta est at,
 ultrices neque. Aenean consequat, lacus vulputate vestibulum
 faucibus, turpis magna mollis quam, a congue neque lorem at
 justo.</p>
 </details>
 <details>
 <summary>Item 3</summary>
 <p>Lorem ipsum dolor sit amet, consectetur adipiscing elit. Phasellus
 accumsan orci nec justo rhoncus facilisis. Integer pellentesque
 ipsum vitae semper lacinia. Quisque non nisl rutrum, porta est at,
 ultrices neque. Aenean consequat, lacus vulputate vestibulum
 faucibus, turpis magna mollis quam, a congue neque lorem at
 justo.</p>
 </details>
 </article>
 </body>
</html>

Chapter 2 ■ HTML5 Elements

36

In Chrome, this example renders nicely, as shown in Figure 2-10.

Clicking on a closed item reveals its hidden content, and clicking on an open item hides its content.

Forms
Forms have been significantly improved in HTML5. The specification includes both new tags for forms
(such as data lists, progress meters, and date pickers) as well as new attributes for existing form tags. These
new features are designed to make forms more interactive for users and easier to build and maintain.

New Form Elements

SUPPORT LEVEL

Mixed

Most of these features are well supported in the major browsers for the last two versions. Internet
Explorer does not support the <meter> tag, however.

WHATWG Living Standard: http://www.whatwg.org/specs/web-apps/current-work/multipage/
forms.html#forms

W3C Candidate Recommendation: http://www.w3.org/TR/html5/forms.html#forms

Figure 2-10.  Listing 2-13 rendered in Chrome

http://www.whatwg.org/specs/web-apps/current-work/multipage/forms.html#forms
http://www.whatwg.org/specs/web-apps/current-work/multipage/forms.html#forms
http://www.w3.org/TR/html5/forms.html#forms

Chapter 2 ■ HTML5 Elements

37

HTML5 has a few new form elements that are specifically designed to implement common user
interface patterns that have evolved over the last few years. Specifically these new tags implement
autocomplete features and progress bars.

Data Lists
The first of the new tags implements a common autocomplete feature: when you begin typing into a form
field, a drop-down appears that has a list of options that match what has already been typed. As you continue
to type, the list becomes more specific, and at any time you can use the arrow keys to select one of the options.
These sort of autocomplete fields are often referred to as data lists (and sometimes combo boxes) and HTML5
has a new <datalist> tag that implements this exact user interface element.

In practice, a <datalist> tags contain <option> tags, one for each item in the data list. By themselves
<datalist> elements are not rendered in page, and can go anywhere in the document structure. Once
created, a data list must be associated with an input field in order to use it. Give the <datalist> tag a unique
id attribute. To associate it with an <input> element, set that element’s list attribute to the unique id. That
tells the browser to render the specified data list with the <input> element, as demonstrated in Listing 2-14.

Listing 2-14.  A Data List

<!DOCTYPE html>
<html>
 <head>
 <title>The HTML5 Programmer's Reference</title>
 </head>
 <body>
 <!-- Note the datalist can be anywhere -->
 <datalist id="browsers">
 <option value="Chrome">
 <option value="Firefox">
 <option value="Internet Explorer">
 <option value="Opera">
 <option value="Safari">
 </datalist>
 <article>
 <h1>Using the <datalist> tag</h1>
 <input list="browsers" />
 </article>
 </body>
</html>

As with other HTML5 user interface elements, each browser renders the data list slightly differently
(Figure 2-11).

Chapter 2 ■ HTML5 Elements

38

As you can see, Chrome provides a drop-down arrow hint on the right side of the input field to indicate
that the input field is a data list, and Firefox has a slight drop shadow on the dropdown. The functionality of
the list remains the same between browsers.

Meter
The new <meter> tag provides a simple meter bar or gauge visual element. This bar is meant to model a
measurement within a known range, or a fractional value of a whole (e.g., volume, disk usage, etc.). It should
not be used to show progress (e.g., in a download); use the new <progress> tag for this.

The <meter> tag has the following properties:

•	 value: The current value to be displayed. This value must be within the min and max
values, if specified. If no value is set, or if it is malformed, the browser will default to 0.
If specified but the value is greater than the max attribute, the value will be set to the
value of the max attribute. If the value is less than the min attribute, the value will be
set to the value of the min attribute.

•	 min: The minimum value of the range. Defaults to 0 if not specified.

•	 max: The maximum value of the range. Must be greater than the value of the min
attribute (if specified). Defaults to 1.

It is also possible to specify subranges within the measured range. There can be a low range, a high
range, and an optimum range. The low range goes from the min value to a specified value, while the high
range goes from the high value to the max value. Either the low range or the high range can be specified as an
optimum range by specifying a number within them using the optimum attribute.

•	 low: The highest value of the low range. When the value attribute is within the low
range, the bar will render yellow by default.

•	 high: The lowest value of the high range, which ranges from this value to the value
of the max attribute. When the value attribute is within the high range, the bar will
render yellow by default.

Figure 2-11.  Listing 2-14 rendered in Chrome (left) and Firefox (right)

Chapter 2 ■ HTML5 Elements

39

•	 optimum: Indicates an optimum value for the range. The value must be between the
min and max values of the range. If the low and high ranges are used, specifying an
optimum value within one of them will indicate which of those ranges is preferred.
When the value is within the preferred range, the bar will render green. When it is in
the other range, it will render red.

Creating these meters is as simple as adding a <meter> tag to your document, as demonstrated in
Listing 2-15.

Listing 2-15.  Meter Bars

<!DOCTYPE html>
<html>
 <head>
 <title>The HTML5 Programmer's Reference</title>
 </head>
 <body>
 <article>
 <h1>Using the <meter> tag</h1>
 <p>Simple meter from 1 to 100, value set to 25:

 <meter min="1" max="100" value="25"></meter>
 </p>
 <p>Simple meter from 1 to 100, low range from 1 to 25, high range from
 75 to 100, value set to 90:

 <meter min="1" max="100" low="25" high="75" value="90"></meter>
 </p>
 <p>Simple meter from 1 to 100, low range from 1 to 25, high range from
 75 to 100, value set to 10:

 <meter min="1" max="100" low="25" high="75" value="10"></meter>
 </p>
 <p>Simple meter from 1 to 100, low range from 1 to 25, high range from
 75 to 100, optimum set to 10, value set to 10:

 <meter min="1" max="100" low="25" high="75" optimum="10" value="10"></meter>
 </p>
 <p>Simple meter from 1 to 100, low range from 1 to 25, high range from
 75 to 100, optimum set to 10, value set to 10:

 <meter min="1" max="100" low="25" high="75" optimum="10" value="90"></meter>
 </p>
 </article>
 </body>
</html>

The meters render pretty consistently across browsers (Figure 2-12).

Chapter 2 ■ HTML5 Elements

40

Output
The new <output> tag provides a way of specifying the output of a calculation or other user action within
a form. It doesn’t have any special features; instead it provides a semantic tag for marking up this kind of
content.

A simple example is shown in Listing 2-16.

Listing 2-16.  Calculation Output in a Form

<!DOCTYPE html>
<html>
 <head>
 <title>The HTML5 Programmer's Reference</title>
 </head>
 <body>
 <article>
 <h1>Using the <output> tag</h1>
 <form id="mainform" onsubmit="return false">
 <label for="input-number">Temperature</label>

Figure 2-12.  Listing 2-15 rendered in Chrome (left) and Firefox (right)

Chapter 2 ■ HTML5 Elements

41

 <input name="input-number" id="input-number" type="number" step="any">

 <input type="radio" name="convert-choice" id="radio-ftoc" checked value="ftoc">
 <label for="radio-ftoc">Convert Fahrenheit to Celcius</label>

 <input type="radio" name="convert-choice" id="radio-ctof" value="ctof">
 <label for="radio-ctof">Convert Celcius to Fahrenheit</label>

 Result:
 <output name="output-target" for="input-number" id="output-target"></output>
 </form>
 </article>
 <script>
var myForm = document.getElementById('mainform');
var converter = {
 ctof: function(degreesC) {
 return (((degreesC * 9) / 5) + 32);
 },
 ftoc: function(degreesF) {
 return (((degreesF - 32) * 5) / 9);
 }
};
myForm.addEventListener('input', function() {
 var inputNumber = document.getElementById('input-number'),
 outputTarget = document.getElementById('output-target');
 var sel = document.querySelector('input[name=convert-choice]:checked').value;
 outputTarget.value = converter[sel](parseInt(inputNumber.value));
}, false);
 </script>
 </body>
</html>.

This is a simple example, but you’ve used a couple of nifty tricks.

•	 You created a converter object, which has two methods, ctof (for converting Celsius
to Fahrenheit) and ftoc (for converting Fahrenheit to Celsius).

•	 You set one of the radio button’s value properties to ctof, and the other to ftoc.

•	 You used the selector input[name=convert-choice]:checked to get whichever radio
button is checked and then fetch its value (either “ctof” or “ftoc”).

•	 Then you can directly access the correct method on the converter object just by
using the result of your query.

■■ Tip  JavaScript is also governed by a standard—ECMA-262—which specifically defines two ways to
access object members: dot notation or bracket notation. So objectName.identifierName is functionally
equivalent to objectName[<identifierName string>] even if the object in question is not an array. For
details, see Section 11.2.1, “Property Accessors,” in ECMA-262 at http://www.ecma-international.org/
ecma-262/5.1/.

http://www.ecma-international.org/ecma-262/5.1/
http://www.ecma-international.org/ecma-262/5.1/

Chapter 2 ■ HTML5 Elements

42

Figure 2-13 shows Listing 2-16 as rendered in Chrome.

Progress
HTML5 defines a new <progress> tag, which renders as a progress meter in the document. It is used to
indicate progression or completion of a task, and provides the user with an idea of how much has been done
and what still remains. It should not be used for visualizing a measurement within a known range—for that,
use the <meter> tag.

The <progress> tag takes the following attributes:

•	 max: The maximum value of the activity. This value must be a valid positive
floating-point number. If max is not specified, the maximum value defaults to 1.

•	 value: The current value of the progress. This value must be a valid floating-point
number between 0 and max (if specified) or 1 (if max is not specified). If value is not
specified, then the progress bar is considered indeterminate, meaning the activity
it is modeling is ongoing but gives no indication of how much longer it will take to
complete.

Listing 2-17 provides a simple demonstration of progress bars.

Figure 2-13.  Listing 2-16 rendered in Chrome

Chapter 2 ■ HTML5 Elements

43

Listing 2-17.  Progress Bars

<!DOCTYPE html>
<html>
 <head>
 <title>The HTML5 Programmer's Reference</title>
 </head>
 <body>
 <article>
 <h1>Using the <progress> tag</h1>
 <p>Downloading file1

 <progress max="100" value="10">10/100</progress> 10%</p>
 <p>Downloading file2

 <progress max="100" value="50" orient="vertical">50/100</progress> 50%</p>
 </article>
 </body>
</html>

As shown in Figure 2-14, the progress bar renders differently in the various browsers.

The examples would look different when rendered on MacOS as well. Fortunately, the bars are easy
to style. Firefox and Internet Explorer give direct access to the element’s styling, while in Chrome you have
to select the pseudo-elements to change them. By adding a few simple directives to your CSS, as shown in
Listing 2-18, you can make the bar look the same in all browsers.

Listing 2-18.  CSS Rules for Progress Bars

progress {
 color: #0063a6;
 font-size: .6em;
 line-height: 1.5em;
 text-indent: .5em;
 width: 15em;
 height: 1.8em;
 border: 1px solid #0063a6;
 background-color: #fff;
}

Figure 2-14.  Listing 2-17 rendered in Chrome (left), Internet Explorer (middle), and Firefox on Windows 8
(right)

Chapter 2 ■ HTML5 Elements

44

::-webkit-progress-bar {
 background-color: #fff;
}
::-webkit-progress-value {
 background-color: #0063a6;
}

As you can see in Figure 2-15 the bars now render the same across browsers.

A slightly more practical example would be a timer. Using the <progress> tag you can indicate that
some allotted time—ten seconds, for example—is passing, as shown in Listing 2-19.

Listing 2-19.  A Ten-Second Timer

<!DOCTYPE html>
<html>
 <head>
 <title>The HTML5 Programmer's Reference</title>
 <style>
progress {
 color: #0063a6;
 font-size: .6em;
 line-height: 1.5em;
 text-indent: .5em;
 width: 15em;
 height: 1.8em;
 border: 1px solid #0063a6;
 background-color: #fff;
}
::-webkit-progress-bar {
 background-color: #fff;
}
::-webkit-progress-value {
 background-color: #0063a6;
}
 </style>
 </head>

Figure 2-15.  Progress bars with CSS rules applied

Chapter 2 ■ HTML5 Elements

45

 <body>
 <article>
 <h1>Using the <progress> tag</h1>
 <h2>Ten Second Timer</h2>
 <p><progress max="10" value="0" id="myProgress">0</progress></p>
 </article>
 <script>
var progress = 0;
var myProgress = document.getElementById("myProgress");
var myTimer = setInterval(function() {
 myProgress.value = ++progress;
 if (progress > 10) {
 clearInterval(myTimer);
 }
}, 1000);
 </script>
 </body>
</html>

This example uses the DOM method setInterval() to run a function every second that updates the
value of the progress bar. When the progress bar is full, it cancels the timer with the clearInterval() method.

New Form Element Attributes
The HTML5 specification includes a few useful new attributes for form elements. Again, these new attributes
were designed specifically to address shortcomings in previous versions of HTML forms and to add
commonly needed functionality that, until now, had to be built using JavaScript.

Autocomplete
All browsers offer the capability of storing form data for later reuse. This is of particular help with mobile
devices because it reduces typing. The autocomplete attribute allows you to specify which <input> elements
can be autocompleted and which should always be filled in manually. The autocomplete attribute can take
two values: on (autocomplete is allowed; this is the default) or off (autocomplete is not allowed).

Listing 2-20 is a simple example with two form fields, one with autocomplete allowed and the other
with it disallowed.

Listing 2-20.  Controlling Autocomplete in Forms

<!DOCTYPE html>
<html>
 <head>
 <title>The HTML5 Programmer's Reference</title>
 </head>
 <body>
 <article>
 <h1>Using the autocomplete attribute</h1>
 <form id="test-form" action="#" method="post">
 <p><label for="input-auto">This input allows autocomplete:</label>

 <input autocomplete="on" id="input-auto" name="input-auto"></p>
 <p><label for="input-noauto">This input does not allow autocomplete:</label>

Chapter 2 ■ HTML5 Elements

46

 <input autocomplete="off" id="input-noauto" name="input-noauto"></p>
 <p><input type="submit"></p>
 </form>
 </article>
 </body>
</html>

In just about every browser, you should be able to fill out the form fields and click the submit button.
Then, reload the page. Double-click in the first form field, and you should be presented with a drop-down
containing the value you entered earlier (Figure 2-16).

Note that you will have to enable the autofill feature in your browser. Most browsers will enable it by
default, but many people turn it off for security purposes. If the user has disabled the feature in their browser,
the autocomplete attribute will have no effect.

Browsers use a number of cues to determine which form fields should be autocompleted with what
data: the name and ID for the fields, the action and method attributes of the <form> tag, and so forth.
The process is fairly nonstandard and edges into the realm of “magic.” In 2012, Google proposed an
extension to the autocomplete property to help standardize the process. In this proposal they suggested an
autocompletetype attribute with an extensive set of values ranging from address-line1 to postal-code to
url. You can read their full proposal at http://wiki.whatwg.org/wiki/Autocompletetype. That proposal
was never fully adopted, but sections from it eventually went into the new Autofill specification, which you
can view at https://html.spec.whatwg.org/multipage/forms.html#autofill.

Autofocus
The autofocus attribute allows you to specify what form field should have focus when the page loads.
Because it is exclusive, you can only set autofocus on one form field on a given page, and the focus will go
to that element when the page is done loading. You cannot set autofocus on a form element of type hidden.
Autofocus can be set to any <input>, <button>, or <textarea> field.

If you add an autofocus attribute to the second field in listing 2-20 on page load it will be focused, as in
Listing 2-21.

Figure 2-16.  Listing 2-20 rendered in Chrome (left) and Firefox (right)

http://wiki.whatwg.org/wiki/Autocompletetype
https://html.spec.whatwg.org/multipage/forms.html#autofill

Chapter 2 ■ HTML5 Elements

47

Listing 2-21.  Automatically Focusing an Input Field

<!DOCTYPE html>
<html>
 <head>
 <title>The HTML5 Programmer's Reference</title>
 </head>
 <body>
 <article>
 <h1>Using the autofocus attribute</h1>
 <form id="test-form" action="#" method="post">
 <p><label for="input-auto">This input allows autocomplete:</label>

 <input autocomplete="on" id="input-auto" name="input-auto"></p>
 <p><label for="input-noauto">This input does not allow autocomplete:</label>

 <input autocomplete="off" id="input-noauto" name="input-noauto" autofocus="autofocus"></p>
 <p><input type="submit"></p>
 </form>
 </article>
 </body>
</html>

When the page finishes loading, the second input field will be selected and ready to receive input, as
shown in Figure 2-17.

Figure 2-17.  Listing 2-21 rendered in Chrome

Chapter 2 ■ HTML5 Elements

48

Of course, as soon as the user clicks anywhere else in the browser, the field will loose focus, and it will
not return unless the user clicks on the field again. The autofocus only happens on page load.

Placeholder
Another commonly designed feature of forms is placeholder text inside of an <input> field. Placeholder text
helps provide more information about what the field is for, and it disappears when the user starts typing.
HTML5 includes a new placeholder attribute that can be applied to both <input> and <textarea> fields.
The value specified for the attribute is used as placeholder text inside the field.

Listing 2-22 is a simple example of a form in which the user can compose and send an e-mail.

Listing 2-22.  Placeholder Text

<!DOCTYPE html>
<html>
 <head>
 <title>The HTML5 Programmer's Reference</title>
 </head>
 <body>
 <article>
 <h1>Using the placeholder attribute</h1>
 <p><label for="message-title">Title:</label>

 <input placeholder="title of message" id="message-title"></p>
 <p><label for="message-body">Body:</label>

 <textarea placeholder="body of message" id="message-body"></textarea></p>
 <p><input type="submit" value="Send Email"></p>
 </article>
 </body>
</html>

In modern browsers the placeholder text will be visible as grayed-out text within the form fields (Figure 2-18).

Figure 2-18.  Listing 2-22 rendered in Chrome

Chapter 2 ■ HTML5 Elements

49

As soon as the user begins to type in a field, the placeholder text will disappear, as shown in Figure 2-19.

Note that this example still includes <label> tags. Placeholder text is a nice design concept, but it
should not replace <label> tags, which are an important part of form accessibility. You don’t typically need
both—as you can see in the example, the labels are somewhat redundant. In this case, you can simply hide
the <label> tags with CSS, as per Listing 2-23.

Listing 2-23.  Hiding Labels with CSS

label: {
 display: none;
}

This simple bit of CSS makes the form look much nicer in Figure 2-20.

Figure 2-19.  Listing 2-22 after user input

Chapter 2 ■ HTML5 Elements

50

New Input Types
The HTML5 specification also includes new values for the input element’s type attribute. You’re probably
familiar with using this attribute to create checkboxes and radio buttons:

<input type="checkbox">
<input type="radio">

HTML5 adds several new types that add new user interface capabilities to the input field, from color
and date pickers to search boxes. Unfortunately, support for these new input types varies widely from
browser to browser.

For desktop browsers, Chrome has the best support, with Firefox and Internet Explorer both far behind.
This limits their usefulness for desktop applications, unfortunately.

On mobile browsers the support is better. Most of the new input types will use the device’s special
keyboards and input widgets. For example, when an input field with the type of tel is active in Safari Mobile,
the phone will display the telephone keyboard. This makes it easier for mobile users to enter a phone number.

Even though these new types aren’t widely supported now, support is growing for them, especially on
mobile devices. Given the benefits of using specific keyboards for mobile input, it’s a good practice to use
these input types even if they’re not widely supported.

The new input types are as follows:

•	 color: Allows the user to select a color. In Chrome desktop this displays a color chip
that, when clicked, shows the host operating system’s color-picker user interface
widget. No other browser supports this element.

•	 date, datetime, datetime-local, month, time, and week: These input types allow
users to input dates and times. In Chrome desktop these display calendar and time
selection widgets that are built into Chrome. On mobile devices these display date
and time selectors (on iOS these take the form of spinners).

•	 email: Indicates an input field that will be used for collecting e-mail addresses. On
mobile devices this type will display an Internet address–friendly keyboard when
active. On iOS this keyboard takes the form of a regular keyboard with the @ key
easily available, and a .com key.

Figure 2-20.  Listing 2-23 rendered in Chrome

Chapter 2 ■ HTML5 Elements

51

•	 number: This input type specifies that the user will be entering a number. On Chrome
and Firefox desktop, this input type will display a simple increase/decrease widget.
On mobile devices this input type will display the numeric page of the alphanumeric
keyboard.

•	 range: Displays a slider widget. This is the only input type that is widely supported by
all browsers on both desktop and mobile.

•	 search: Indicates that the field is a search field. The primary difference between
a search field and a regular input field is that search fields include a “clear”
functionality, typically implemented as an × button at the edge of the input field.
On Chrome and Internet Explorer desktop this displays a simple search field, with a
clear button on the right.

•	 tel: Indicates that the field will be used to enter a telephone number. On mobile
devices, an input field with this type will display the telephone number keyboard
when active.

•	 url: Indicates the field will be used to enter a URL, most probably a web address. On
mobile devices this will display an Internet address–friendly keyboard while active.

If you would like to test these input fields, Listing 2-24 has a full set of them that you can load into any
browser.

Listing 2-24.  New Input Types Demonstrated

<!DOCTYPE html>
<html>
 <head>
 <title>The HTML5 Programmer's Reference</title>
 <meta name="viewport" content="width=device-width, user-scalable=no">
 <style>
input {
 display: block;
 margin-bottom: 20px;
}
 </style>
 </head>
 <body>
 <article>
 <h1>New HTML5 Input Types</h1>
 <form id="mainform" onsubmit="return false">
 <label>type=color</label>
 <input type="color">
 <label>type=date</label>
 <input type="date">
 <label>type=datetime</label>
 <input type="datetime">
 <label>type=datetime-local</label>
 <input type="datetime-local">
 <label>type=email</label>
 <input type="email">
 <label>type=month</label>
 <input type="month">

Chapter 2 ■ HTML5 Elements

52

 <label>type=number</label>
 <input type="number">
 <label>type=range</label>
 <input type="range">
 <label>type=search</label>
 <input type="search">
 <label>type=tel</label>
 <input type="tel">
 <label>type=time</label>
 <input type="time">
 <label>type=url</label>
 <input type="url">
 <label>type=week</label>
 <input type="week">
 </form>
 </article>
 </body>
</html>

Chrome is the most interesting browser for this example. It produces several highly useful widgets for
several of the types, as shown in Figure 2-21.

Figure 2-21.  Color, date, and search input types rendered in Chrome desktop

Chapter 2 ■ HTML5 Elements

53

Deprecated Elements and Obsolete Parameters
HTML5 has officially deprecated several elements. Some of these have been replaced with new tags or
superseded by CSS features, while others are just no longer needed.

•	 <applet>: Use <embed> or <object> instead.

•	 <acronym>: Use <abbr> instead.

•	 <frame>, <frameset>, and <noframes>: Frame sets have been completely deprecated
in HTML5. Instead, consider using iframes or a server-side technology.

•	 <strike>: Use <s>, unless the markup is for an edit, in which case use .

•	 <basefont>, <big>, <blink>, <center>, , <marquee>, <multicol>, <nobr>,
<spacer>, and <tt>: Use appropriate elements or CSS instead. For the <tt> element
use <kbd> (to denote keyboard input), <var> (for variables), <code> (for computer
code), or <samp> (for sample output). In the case of the <big> element, use header
tags if the content is a heading, the element for denoting emphasis or
importance, or the <mark> element for highlighting references.

In addition, HTML5 has rendered obsolete many parameters on existing elements. Again, many of these
parameters have been replaced by CSS or other features, while others were holdovers from earlier versions
of HTML or XHTML.

•	 The properties background, datasrc, datafld, and dataformats have been
deprecated from all applicable tags. In the case of background, use CSS to apply
backgrounds to elements.

•	 <a>: charset, coords, methods, name, rev (use rel with an opposite term), shape (use
area for image maps), and urn.

•	 <body>: alink, bgcolor, link, marginbottom, marginheight, marginleft,
marginright, margintop, marginwidth, text, and vlink.

•	
: clear.

•	 <caption>: align.

•	 <col>: align, char, charoff, valign, and width.

•	 <div>: align.

•	 <dl>: compact.

•	 <hr>: align, color, noshade, size, and width.

•	 All header tags: align.

•	 <iframe>: align, allowtransparency, frameborder, hspace, longdesc,
marginheight, marginwidth, scrolling, and vspace.

•	 : align, border, datasrc, hspace, longdesc, lowsrc, name, vspace.

•	 <input>: align, hspace, ismap, usemap, vspace.

•	 <legend>: align.

•	 <link>: charset, methods, rev, target, and urn.

•	 <menu>: compact.

Chapter 2 ■ HTML5 Elements

54

•	 <object>: align, archive, border, classid, code, codebase, codetype (use data and
type attributes and the <param> element), declare, hspace, standby, and vspace.

•	 : compact.

•	 <option>: name (use id instead).

•	 <p>: align.

•	 <param>: type and valuetype (use name and value attributes).

•	 <pre>: width.

•	 <script>: event, for, and language.

•	 <table>: align, bgcolor, border, bordercolor, cellpadding, cellspacing, frame,
rules, summary, and width.

•	 <tbody>: align, char, charoff, and valign.

•	 <td>: abbr, align, axis, bgcolor, char, charoff, height, nowrap, scope,
valign, and width.

•	 <tfoot>: align, char, charoff, and valign.

•	 <th>: align, bgcolor, char, charoff, height, nowrap, valign, and width.

•	 <thead>: align, char, charoff, and valign.

•	 <tr>: align, bgcolor, char, charoff, and valign.

•	 : compact and type.

Though browsers may still render these tags and recognize these properties in an HTML5 document,
you should not use them. Any validator should throw errors on them as well.

Summary
In this chapter, I have covered the highlights of the Elements section of the HTML5 specification:

•	 I discussed how the evolution of HTML has been influenced by semantics.

•	 I took you on a brief tour of the new tags that HTML5 introduces for sections,
grouping and semantics. These tags further expand the languages capabilities to
handle complex documents and layouts.

•	 I explored the new multimedia features of HTML5, and demonstrated the basic use
of the <audio> and <video> tags.

•	 I then gave you a look at the new interactive elements specified by HTML5: dialogs
and progressive disclosure. Unfortunately, these features are not yet well supported,
but that should change as time passes.

•	 I reviewed the changes to forms that HTML5 has introduced, some of which are
especially useful in a mobile context.

•	 And finally, I went over the tags and attributes that have been deprecated in HTML5.

In the next chapter, you’ll dive into the JavaScript APIs that HTML5 specifies.

55

Chapter 3

HTML5 APIs

As mentioned in Chapter 1, the HTML5 standard differs from previous HTML standards in that it is more
than just the definition for a markup language. Since the standard was designed to be a platform for creating
web applications as well as web pages, it introduces a host of new features designed to make building
applications easier: new ways for the browser to communicate with the server, new ways to store and
retrieve data, support for common user interactions like drag and drop, and so forth.

Like the new audio and video tags, many of these new web application features have been
implemented in the past using extensive JavaScript programs or even browser plugins. Now, with HTML5,
the browser manufacturers implement them directly in their browsers.

All of these new features can be used in JavaScript programs, so browser manufacturers provide
interfaces for accessing them with your scripts. These interfaces typically take the form of JavaScript objects
and methods. The HTML5 standard defines these interfaces as well, so the JavaScript objects and methods
appear and function the same way in all browsers that implement the standard (assuming they implement
the standard completely and correctly).

These interfaces are called Application Programming Interfaces (APIs). If you’ve done any scripting at
all in a browser you’re probably already familiar with one of the most common APIs: the Document Object
Model (DOM). The DOM is an API for accessing the document currently rendered in the browser. Any
method for fetching a reference to an element in the browser (like getElementById) is a part of the DOM
API, as is any method for accessing the event model (like addEventListener). The browser also publishes
the Navigator API for accessing internal browser features like browsing history. Another commonly used
API is the XMLHttpRequest constructor, which is an interface to the browser’s network communications
system that allows you to communicate asynchronously with the server.

■■ Note  The term API has fairly broad application, from libraries and frameworks to network services
(including many web services that you can access asynchronously with the browser) and even internal
interfaces between objects in a single application.

In this chapter I’ll cover the new APIs that are defined in the HTML5 specification. I’ll take a practical
approach to the APIs, focusing on how well the feature is supported and what you can do with it, and provide
plenty of examples that you can use as a starting point for your own web applications.

http://dx.doi.org/10.1007/9781430263678_1

Chapter 3 ■ HTML5 APIs

56

Server-sent Events
SUPPORT LEVEL

Mixed

Internet Explorer does not support this API. All other browsers have full support.

WHATWG Living Standard: http://www.whatwg.org/specs/web-apps/current-work/multipage/
comms.html#server-sent-events

W3C Draft: http://dev.w3.org/html5/eventsource/

Imagine you’re building a simple stock ticker application. You have a server resource that publishes the
APIs you need for getting stock values, so it’s quite easy to get things started. But how do you get updates to
the stock values? How does the server let your client application know that a stock’s value has changed?

This is probably the canonical use case for Server-sent Events: a situation in which the server needs
to inform the client that something has happened. Because HTTP as a standard only defines stateless
communication, and thus only clients can initiate requests to servers, there was no way for a server to send
a message to a client without the client first asking for one. Server-sent Events is one of the ways that HTML5
addresses this issue, in the specific case of one-way communication from the server to the client.

In the past, people wrote simple polling timers into their scripts that would essentially ask the server
“Is there anything new?” on a timer, as shown in Listing 3-1.

■■ Note  The examples in this section will need to be run from a server, rather than loaded directly from your
filesystem.

Listing 3-1.  An Example Polling Script

<!DOCTYPE HTML>
<html>
 <head>
 <title>The HTML5 Programmer's Reference</title>
 </head>
 <body>
 <script>
 
// This is a mock API that simply returns the same JSON structure
// every time the URL is requested. This JSON structure has a single
// property, isChanged, which is set to false.
var strUri = './example3-1.json';
 
// This is how often we'll query the mock API, in milliseconds.
var timerLength = 1000;
 

http://www.whatwg.org/specs/web-apps/current-work/multipage/comms.html#server-sent-events
http://www.whatwg.org/specs/web-apps/current-work/multipage/comms.html#server-sent-events
http://dev.w3.org/html5/eventsource/

Chapter 3 ■ HTML5 APIs

57

/**
 * Fetch an update from a web service at the specified URL. Initiates an
 * XMLHttpRequest to the service and attaches an event handler for the success
 * state.
 * @param {string} strUrl The URL of the target web service.
 */
function fetchUpdates(strUrl) {
 // Create and configure a new XMLHttpRequest object.
 var myXhr = new XMLHttpRequest();
 myXhr.open("GET", strUrl);
 // Register an event handler for the readyStateChange event published by
 // XMLHttpRequest.
 myXhr.onreadystatechange = function() {
 // If readyState is 4, request is complete.
 if (myXhr.readyState === 4) {
 handleUpdates(myXhr.responseText);
 }
 };
 // Everything is configured. Send the request.
 myXhr.send();
}
 
/**
 * Handle an update from the mock API. Parses the JSON returned by the API and
 * looks for changes.
 * @param {string} jsonString A JSON-formatted string.
 */
function handleUpdates(jsonString) {
 // Parse the JSON string.
 var jsonResponse = JSON.parse(jsonString);
 if (jsonResponse.isChanged) {
 // Handle changes here, probably by checking the structure to determine
 // what changed and then route the change to the approprate part of the app.
 console.log('change reported.');
 } else {
 console.log('no changes reported.');
 }
}
 
// Everything is all set up: we have a function for fetching an update and a
// function to handle the results of an update query. Now we just have to kick
// off everything. Using setInterval, we will call our fetchUpdates method every
// timerLength milliseconds. We can cancel the timer by calling the
// cancelInterval(pollTimer) method.
var pollTimer = setInterval(fetchUpdates.bind(this, strUri), timerLength);
 </script>
 </body>
</html>

Chapter 3 ■ HTML5 APIs

58

This example does a lot of setup before it starts the polling process. Begin by defining the URL for the
mock API, which is just a file you have created on the filesystem. You also define how often you want to
poll your mock API. Then create a function for fetching an update. This is the method you will call with
the timer, and it initiates the XMLHttpRequest (XHR for short) to the mock service. The XHR will publish
readyStateChange events as it communicates with the server. By looking at the readyState property
of the XHR object, you can tell what state the query is in: still talking with the server, or done talking, or
even if an error has occurred. So add an event handler to the XHR object that will be called each time a
readyStateChange event occurs. In this case you’re using an inline function to keep the code simple, though
you could have defined it outside of this code block and referred to it by name. The event handler checks the
readyState property and, if it is in the correct state, it calls the handleResponse function. That function takes
the JSON-formatted string that you fetched from your mock API and processes it accordingly.

This is a pretty unsophisticated example, but it demonstrates the basics of using a timer to regularly poll
a web service. Using the methods setInterval and cancelInterval it’s easy to start and stop timers. If your
application will need multiple timers, you can build a constructor with convenience methods for creating,
starting, stopping, pausing, and disposing of them. You can rapidly build up a lot of code just around
creating and managing your timers.

And if you think about it, simple timers aren’t really a good way of handling this problem. What if there
is a temporary network problem and one of the calls to fetchUpdates takes longer than a second? In that
case, another call to fetchUpdates would be executed before the first has returned, resulting in two active
and pending calls to the server. Depending on the network conditions, the second call could return before
the first. This situation is referred to as a race condition, because the two pending calls are essentially in a
race to see which one completes first.

Fortunately this race condition is fairly easy to fix: instead of having a timer fire off requests regardless
of external limitations, alter the handleUpdates method so that the last thing it does is schedule the next
call to fetchUpdates. That way you won’t ever have more than one call happening and the race condition is
eliminated. The script would change as shown in Listing 3-2 (the surrounding HTML remains the same).

Listing 3-2.  Eliminating the Race Condition from Example in Listing 3-1

// This is a mock API that simply returns the same JSON structure
// every time the URL is requested. This JSON structure has a single
// property, isChanged, which is set to false.
var strUri = './example3-1.json';
 
// This is how often we'll query the mock API, in milliseconds.
var timerLength = 1000;
 
// Reference to the currently active timer.
var pollTimeout;
 
/**
 * Fetch an update from a web service at the specified URL. Initiates an
 * XMLHttpRequest to the service and attaches an event handler for the success
 * state.
 * @param {string} strUrl The URL of the target web service.
 */
function fetchUpdates(strUrl) {
 // Create and configure a new XMLHttpRequest object.
 var myXhr = new XMLHttpRequest();
 myXhr.open("GET", strUrl);

Chapter 3 ■ HTML5 APIs

59

 // Register an event handler for the readyStateChange event published by
 // XMLHttpRequest.
 myXhr.onreadystatechange = function() {
 // If readyState is 4, request is complete.
 if (myXhr.readyState === 4) {
 handleUpdates(myXhr.responseText);
 }
 };
 // Everything is configured. Send the request.
 myXhr.send();
}
 
/**
 * Handle an update from the mock API. Parses the JSON returned by the API and
 * looks for changes, and then initiates the next query to the mock service.
 * @param {string} jsonString A JSON-formatted string.
 */
function handleUpdates(jsonString) {
 // Parse the JSON string.
 var jsonResponse = JSON.parse(jsonString);
 if (jsonResponse.isChanged) {
 // Handle changes here, probably by checking the structure to determine
 // what changed and then route the change to the approprate part of the app.
 console.log('change reported.');
 } else {
 console.log('no changes reported.');
 }
 // Schedule the next polling call.
 pollTimeout = setTimeout(fetchUpdates.bind(this, strUri), timerLength);
}
 
// Initiate polling process.
fetchUpdates(strUri);

The changes from the previous version of the script have been bolded. This version of the code
eliminates the race condition, because only one call to fetchUpdates will be active at any given time.
However, you could now be polling the server at an unpredictable rate.

It is possible to program around these problems as well, but handling all of the edge cases well can be
difficult, and you will end up with a significant amount of code, all just to intelligently handle polling a web
service.

Ideally, this sort of communication should be a feature of the browser, and that’s what the new Server-
sent Events feature does. Server-sent Events has the browser handle all of the details of connecting to the
server and polling it for events, and lets you leave behind timer-based polling scripts and all of the problems
they entail. Server-sent Events provide a way for you to open a channel to the server, and then attach event
listeners to that channel to handle various event types that the server will publish. The browser handles
everything else for you.

To use Server-sent Events, you need not only a client that can open a channel to a web service and
handle the events that occur on that channel; you also need a server that will handle incoming channel
subscriptions correctly and publish correctly formatted events.

Chapter 3 ■ HTML5 APIs

60

Client Setup
The Server-sent Events specification defines a new constructor, EventSource, in the global context, which
you can use to create new connections to the server:

var serverConnection = new EventSource(targetUrl);

The constructor returns an EventSource object that is an interface to a connection that the browser
will maintain to the server resource specified by targetUrl. The browser will handle all of the connection
maintenance and polling for you—all you have to do is listen for events from the server.

As the server publishes events to the connection, the server resource will publish events that will
be dispatched from the EventSource object. Like any DOM event, you can attach event handlers to the
EventSource object using the addEventListener method.

By default, the EventSource interface will publish three event types:

•	 open: Published when the connection is first opened and network communication
has been initialized. Useful for initializing the connection. Fires at most once, and if
the browser fails to establish a connection to the specified service, it won’t fire at all.

•	 message: Published when the server sends a new message.

•	 error: Published if an error occurs in the connection (e.g., the connection times out).

When an event is dispatched, the EventSource will call the event handling function registered for that
event type. The function will be called with an event object as a parameter, and that event object will have a
data attribute that will contain the data that was sent from the server. Listing 3-3 shows how to create a new
EventSource object and attach event listeners to it.

Listing 3-3.  Stubbed EventSource Event Handlers and Subscriptions

/**
 * Handles message events published by the EventSource.
 * @param {EventSourceEvent} event
 */
function handleMessage(event) {
 // Handle message.
 console.log('A message was sent from the server: ', event.data);
}
 
/**
 * Handles error events published by the EventSource.
 * @param {EventSourceEvent} event
 */
function handleError(event) {
 // Handle an error.
 console.error('An error happened on the EventSource: ', event.data);
}
 
/**
 * Handles an open event published by the EventSource.
 * @param {EventSourceEvent} event
 */

Chapter 3 ■ HTML5 APIs

61

Function handleOpen(event) {
 // Handle the open event.
 console.log('The connection is now open.');
}
 
// Create a new connection to the server.
var serverConnection = new EventSource(targetUrl);
 
// Attach event handlers.
serverConnection.addEventListener('message', handleMessage);
serverConnection.addEventListener('error', handleError);
serverConnection.addEventListener('open', handleOpen);

Now whenever the resource specified by strUrl publishes an event, the handleMessage event
handler will be called. If an error arises in the connection the browser will publish an error event and the
handleError event handler will be called. Note that you can configure your server to publish custom event
types, and you can add event handlers for them in exactly the same way (see next section, “Sending Events
from the Server”).

To close the connection to the server, call the close method on the EventSource object:

serverConnection.close();

This will signal the browser to stop polling the server and close the connection. You can then set the
EventSource object to null to eliminate it from memory. There is no way to reopen a connection once it has
been closed.

Sending Events from the Server
For Server-sent Events to work, you need a resource on a server that knows how to handle the incoming
polling requests from the browser and how to correctly publish events as needed. The server resource can
be written in any language—Java, PHP, JavaScript, C++, and so forth. The resource must respond to polling
requests with the text/event-stream MIME type. Responses consist of multiline key: value pairs, and are
terminated by a double linefeed. Valid keys are as follows:

•	 data: This specifies a line of arbitrary data to be sent to the client, which will receive
it as the data property of the event object.

•	 event: Specifies an arbitrary event type associated with this Server-sent Event. This
will cause an event of the same name to be dispatched from the active EventSource
object, thus enabling arbitrary events beyond open, message, and error to be fired
from the server. If no event type is specified, the event will just trigger a message
event on the EventSource.

•	 id: This specifies an arbitrary ID to associate with the event sequence. Setting an ID
on an event stream enables the browser to keep track of the last event fired, and if the
connection is dropped it will send a last-event-ID HTTP header to the server.

•	 retry: Specifies the number of milliseconds before the browser should re-query
the server for the next event. By default this is set to 3000 (three seconds). This
enables the server resource to throttle browser queries and prevent itself from being
swamped.

Chapter 3 ■ HTML5 APIs

62

For example, a basic Server-sent Event would look like this:

data: arbitrary line of text\n\n

This event would trigger a message event on the associated EventSource object and call the message
event handler (assuming one was registered). The event object received by the message event handler
will have a data attribute, which will contain the text sent by the server (in the preceding case, it would be
“arbitrary line of text”).

You can send multiple line events as well—just terminate the event with a double-linefeed:

data: arbitrary line of text\n
data: another arbitrary line of text\n\n

In this case, the event.data attribute would be set to “arbitrary line of text\nanother arbitrary line of text”.
The event data can be any text: HTML, CSS, XML, JSON, and so forth.

Multiple event types can be included in a single Server-sent Event as well. Going back to the original
example of a stock ticker, here is an event that shows updates on two different stocks:

event: update\n
data: {\n
data: "ticker":"GOOG",\n
data: "newval":"559.89",\n
data: "change":"+0.05"\n
data: }\n
event: update\n
data: {\n
data: "ticker":"GOOGL"\n
data: "newval":"571.65"\n
data: "change":"+1.09"\n
data: }\n\n

This single Server-sent Event would trigger two update events on the EventSource object. Each time the
update event handler would be called, with an event object containing the data for that event. The data for
the first event would be the following JSON-formatted text:

{
 "ticker":"GOOG",
 "newval":"559.89",
 "change":"+0.05"
}

And the data for the second event would be the following JSON-formatted text:

{
 "ticker":"GOOGL",
 "newval":"571.65",
 "change":"+1.09"
}

Chapter 3 ■ HTML5 APIs

63

Origin Limitations
Server-sent Events are subject to the Same Origin Policy, so a page from one origin cannot subscribe to an
event stream from another. In particular, event streams are often published on different TCP ports than
standard web pages, so it’s not possible for a web page published on a standard port like port 80 to subscribe
to an event stream published on a different port, even if it is from the same server. Only clients served from
the same origin as the event stream can access that event stream.

If you want to use Server-sent Events, you will need to have a web server that is flexible enough to
serve the HTML-based client (and all of its dependent resources like CSS, JavaScript, images, etc.) and
publish event streams. This makes server-integrated scripting languages like PHP, JSP, or ColdFusion prime
candidates for building application servers that rely on Server-sent Events, because you can write the
event streams in the integrated scripting language and serve the clients using the same web server. It’s also
quite easy to configure most web servers to route requests to special URLs to different resources, making it
possible to publish both regular web content and event streams from the same server. The details of such
implementations are beyond the scope of this book, but this is an important limitation to Server-sent Events.

In the example that follows, you’ll opt for a simpler solution: building a server that can serve the client
HTML file while acting as an event stream. Since both the HTML client file and the event stream are from the
same origin, there will be no problems with the subscription.

Security
Just as with any technique for handling network communication, it’s a good idea to be conscious of
security when you’re building applications with Server-sent Events. Never send sensitive information
(e.g., passwords) on unencrypted connections, because server events are sent in plain text. If you need to
send sensitive information you should at the very least use HTTPS.

As mentioned, Server-sent Events are limited by the Same Origin Policy, so a script cannot subscribe
to an event stream from a network resource different than its own. In addition, the event object received by
EventSource event handlers will have an origin property that you can check to verify that the server event is
coming from the source you expect, as shown in Listing 3-4.

Listing 3-4.  Checking Event Origins from Server-sent Events

// The EventSource object.
var serverConnection;
 
/**
 * Handle an event published on an EventSource object.
 * @param {EventSourceEvent} event
 */
function messageHandler(event) {
 if (event.origin !== 'https://www.myexample.com') {
 // Something bad has happened, stop listening for events and surface a warning to the user.
 serverConnection.close();
 alert('Warning: Server event received from wrong network resource.');
 return;
 }
 // Handle event here.
}
 
// Initiate subscription to event stream and register event handler.
serverConnection = new EventSource(targetUrl);
serverConnection.addEventListener('message', messageHandler);

https://www.myexample.com/

Chapter 3 ■ HTML5 APIs

64

In this snippet you’re checking the origin of the event as reported by the browser. This is not a foolproof
check, however, as it can be spoofed, but it’s one more layer of security you can add to your application.

An Example Application
To build a functional example application, you’ll need a server resource that can send the events in the
expected format and can also serve the client that will subscribe to the event stream. As mentioned, you
could use any language to build this server resource, but to stay consistent with the other examples in
the book, use JavaScript. You’re probably used to using JavaScript in the browser. You can also use it on a
server, just like any other scripting engine. The most popular implementation of JavaScript as a standalone
scripting engine is the Node.js framework, which has been ported to multiple operating systems. The Node.
js framework provides a fast JavaScript interpreter and a framework of APIs for accessing the filesystem,
network stack, and other resources on the server.

■■ Tip  If you’ve never used Node.js, you can learn more about it at http://nodejs.org.

To run this example, you’ll need a server with Node.js installed. You’ll build a simple script that will
both act as the event streamer and serve the event client. As you can see in Listing 3-5, it’s quite easy to build
a simple HTTP server with Node.js.

Listing 3-5.  A Simple Event Stream Server Written in JavaScript

// Include the modules needed to build the server.
var http = require('http');
var sys = require('sys');
var fs = require('fs');
 
// Use the http.createServer method to create a server listening on port 8030.
// The server will call the handleRequest method each time a request is
// received.
http.createServer(handleRequest).listen(8030);
 
/**
 * Handle an incoming request from the server.
 * @param {Object} request The request headers.
 * @param {Object} resource A reference to the server resource that received
 * the request.
 */
function handleRequest(request, resource) {
 // Incoming requests to our server will be to one of two URLs.
 // If the request is for /example3-5-events we should send our SSE.
 // If the request is for /example3-5.html, we should serve the example client.
 if (request.url == '/example3-5-events') {
 // Initialize an event stream.
 sendSSE(request, resource);
 } else if (request.url == '/example3-6.html'){
 // Send the client.
 resource.writeHead(200, {'Content-Type': 'text/html'});

http://nodejs.org/

Chapter 3 ■ HTML5 APIs

65

 resource.write(fs.readFileSync('example3-6.html'));
 resource.end();
 }
}
 
/**
 * Initializes an event stream and starts sending an event every 5 seconds.
 * @param {Object} request
 * @param {Object} resource
 */
function sendSSE(request, resource) {
 // Initialize the event stream.
 resource.writeHead(200, {
 'Content-Type': 'text/event-stream',
 'Cache-Control': 'no-cache',
 'Connection': 'keep-alive'
 });
 
 // Send an event every 5 seconds.
 setInterval(function() {
 // Randomly generate either 0 or 1.
 var randNumber = Math.floor(Math.random() * 2);
 // If the random number is 1, set isChanged to true. Otherwise, set it to
 // false.
 var isChanged = (randNumber === 1) ? true : false;
 resource.write('data: ' + '{"isChanged":' + isChanged + '}\n\n');
 }, 5000);
}

If you request example3-6.html it will serve the HTML client (which you’ll define in Listing 3-6), and
if you request example3-5-events it will initiate an event stream that will push an event to the client every
five seconds. The event will be a simple JSON-formatted string with an isChanged property that will be set
randomly to true or false. To run this server, use the following command:
node example3-5server.js

The HTML client for this server just has to initiate the EventSource to the correct URL, as shown in
Listing 3-6.

Listing 3-6.  A Server-sent Event Client

<!DOCTYPE HTML>
<html>
 <head>
 <title>The HTML5 Programmer's Reference</title>
 <style>
#changeme {
 width: 300px;
 height: 300px;
 border: 1px solid black;
 overflow: auto;
}
 </style>
 </head>

Chapter 3 ■ HTML5 APIs

66

 <body>
 <h1>Server-sent Events Demonstration</h1>
 <div id="changeme"></div>
 <script>
// The URL for our event stream. Note that we are not specifying a domain or
// port, so they will default to the same ones used by the host script.
var strUri = '/example3-5-events';
// Get a reference to the DOM element we want to update.
var changeMe = document.getElementById('changeme');
 
// Create a new server-side event connection and register an event handler for
// the 'message' event.
var serverConnection = new EventSource(strUri);
serverConnection.addEventListener('message', handleSSE, false);
 
/**
 * Handles a server-sent event by parsing the JSON in the data and handling
 * any changes.
 * @param {EventSourceEvent} event The event object from the event source.
 */
function handleSSE(event) {
 // Parse the JSON string.
 var jsonResponse = JSON.parse(event.data);
 // Create a new element to append to the DOM.
 var newEl = document.createElement('div');
 if (jsonResponse.isChanged) {
 newEl.innerHTML = 'Change reported.';
 } else {
 newEl.innerHTML = 'No changes reported.';
 }
 // Append the new element to the DOM.
 changeMe.appendChild(newEl);
}
 </script>
 </body>
</html>

This client initiates a new EventSource for the event stream’s URL and then attaches a message event
handler to it. Every time the server publishes an event, the message event handler is called, the event
data is parsed, and the results are appended to the DOM. This client is a lot simpler than your previous
polling example because all of the details are handled by the browser now. There’s no need to initiate an
XMLHttpRequest object, no need to manage your own timers—all you have to do is initialize an EventSource
object and register event handlers.

Server-sent Events only allow for one-way communication from the server to the browser. For full
duplex communication, see the section on WebSockets.

Chapter 3 ■ HTML5 APIs

67

WebSockets
SUPPORT LEVEL

Good

All modern browsers support WebSockets.

WHATWG Living Standard: https://html.spec.whatwg.org/multipage/comms.html#network

W3C Draft: http://www.w3.org/TR/websockets/

WebSockets build on Server-sent Events by providing full duplex communication between client and
server: not only can the server send arbitrary information to the client, but the client can transmit arbitrary
information back to the server. In addition, WebSockets are not beholden to the Same Origin Policy, which
prevents scripts from one origin from interacting with pages from a different origin.

The WebSocket JavaScript API in the browser manifests as a new WebSocket constructor in the global
context, which returns a WebSocket object:

var mySocket = new WebSocket(url, protocols);

The url parameter specifies a valid URL to a WebSocket compliant service. WebSockets have their own
communication protocol, which is different than the hypertext transfer protocol (HTTP) we see all the time.
The WebSocket protocol is specified by either ws:// (for a standard WebSocket connection) or wss://
(for a secure WebSocket connection). Any attempt to specify a different protocol (such as http or https)
when constructing a WebSocket will result in an error.

The optional protocols parameter is either a single protocol string or an array of protocol strings
specifying one or more sub-protocols implemented by the server. (A protocol in this context is a set of
rules for how data is transmitted between the client and the server.) This parameter does not change
the overall network protocol used by the browser to create and maintain the connection with the server;
instead it allows you to specify acceptable data formats for sending and receiving information through that
connection. This enables a single server to implement multiple ways of transmitting data to and receiving
data from clients. For example, you can implement a server that implements both a Server-sent Event
protocol (using the key/value pairs specified for that API) and a protocol that sends JSON-formatted strings
as text. Your client can then specify which protocol it expects. If a protocol is not specified, the server will
have to choose a default. If the specified protocols are not available on the server, the server will refuse the
connection.

Connecting to the Server: Inside the WebSocket Handshake
A web browser creates a two-way connection with a service using a handshake process. When you create
a new WebSocket using the constructor, the browser will immediately send a simple GET query to the host
specified in the URL. The query will contain all the headers needed to specify that the browser is attempting
to create a WebSocket connection (as opposed to making a simple HTTP request). For example, assume
you went to the web site at example.com and they were advertising their new WebSocket-based chat service.
(A chat service is a common example use case for WebSockets, since it involves the need to both send and
receive messages.) You click the link to sign on to the chat service, and the application starts.

https://html.spec.whatwg.org/multipage/comms.html#network
http://www.w3.org/TR/websockets/

Chapter 3 ■ HTML5 APIs

68

Behind the scenes, the browser will attempt to connect to the chat service. Assuming the service was
also hosted on the same domain example.com at the URL ws://www.example.com/chat, the JavaScript
socket creation might look something like:

var mySocket = new WebSocket('ws://www.example.com/chat', ['chat', 'json']);

and the resulting request and its headers would look something like:

GET /chat HTTP/1.1
Host: example.com:8000
Upgrade: websocket
Connection: upgrade
Origin: http://www.example.com
Sec-WebSocket-Key: dGhlIHNhbXBsZSBub25jZQ==
Sec-WebSocket-Protocol: chat, json
Sec-WebSocket-Version: 13

The first line is a simple GET request. The “chat” part of the request is optional, but allows a single server
to publish many WebSocket services.

The headers contain the information needed to establish a WebSocket connection with the server.
Specifically, the Sec-WebSocket-Key header contains a unique identifier that the client will expect the server
to use in a specific way in its response. The Sec-WebSocket-Protocol header contains the sub-protocols
specified in the constructor. In this case the client is specifying that it knows the 'chat' and 'json'
protocols.

The server will take the information in the headers and formulate a response, which could look
something like the following:

HTTP/1.1 101 Switching Protocols
Upgrade: websocket
Connection: Upgrade
Sec-WebSocket-Accept: s3pPLMBiTxaQ9kYGzzhZRbK+xOo=
Sec-WebSocket-Protocol: chat

The value of the Sec-WebSocket-Accept header depends on the value of the Sec-WebSocket-Key
header sent by the client. The client knows to expect a specific value from the server, and if a different one
is specified (or if one is not specified at all), the client knows that the server can’t handle a WebSocket
connection. The Sec-WebSocket-Protocol header indicates that the service has chosen the 'chat' protocol
for communication.

■■ Note  The WebSocket Protocol is defined in RFC 6455, “The WebSocket Protocol,” which you can read at
https://tools.ietf.org/html/rfc6455. That document specifies the entire protocol, including the details of
handling the Sec-WebSocket-Key header to create the Sec-WebSocket-Accept value.

Once the handshake is complete, the client and server will communicate with one another using a
special data frame protocol. This protocol allows the client and server to send arbitrary information to one
another easily.

http://www.example.com/chat
http://www.example.com/chat
http://www.example.com/
https://tools.ietf.org/html/rfc6455

Chapter 3 ■ HTML5 APIs

69

Receiving Information from the Server
On the client, interactions with the server are event driven: when communication happens with the server,
specific events are published on the associated WebSocket connection object.

•	 error: An error event is published on the connection object when the WebSocket
fails to connect to the server, or loses the connection.

•	 open: The open event is published on the connection object when the WebSocket
first succeeds in connecting with the specified service. This event indicates that the
socket is ready to send and receive data.

•	 close: When a WebSocket closes, either due to an error or because the client
deliberately closed the connection, a close event is published on the connection
object.

•	 message: When the server sends information through the connection, the browser
will publish a message event on the connection object. The event will contain the
data that was transmitted from the server.

Listing 3-7 demonstrates some stubbed event handlers for these events using the hypothetical chat
service.

Listing 3-7.  Stubbed Event Handlers for a Web Socket

// Create a new WebSocket connection to the chat service.
var chatUrl = 'ws://www.fgjkjk4994sdjk.com/chat';
var validProtocols = ['chat', 'json'];
var chatSocket = new WebSocket(chatUrl, validProtocols);
 
/**
 * Handles an error event on the chat socket object.
 */
function handleError() {
 console.log('An error occurred on the chat connection.');
}
 
/**
 * Handles a close event on the chat socket object.
 * @param {CloseEvent} event The close event object.
 */
function handleClose(event) {
 console.log('The chat connection was closed because ', event.reason);
}
 
/**
 * Handles an open event on the chat socket object.
 * @param {OpenEvent} event The open event object.
 */
function handleOpen(event) {
 console.log('The chat connection is open.');
}
 

http://www.fgjkjk4994sdjk.com/chat

Chapter 3 ■ HTML5 APIs

70

/**
 * Handles a message event on the chat socket object.
 * @param {MessageEvent} event The message event object.
 */
function handleMessage(event) {
 console.log('A message event has been sent.');
 
 // The event object contains the data that was transmitted from the server.
 // That data is encoded either using the chat protocol or the json protocol,
 // so we need to determine which protocol is being used.
 if (chatSocket.protocol === validProtocols[0]) {
 console.log('The chat protocol is active.');
 console.log('The data the server transmitted is: ', event.data);
 // etc...
 } else {
 console.log('The json protocol is active.');
 console.log('The data the server transmitted is: ', event.data);
 // etc...
 }
 
// Register the event handlers on the chat socket.
chatSocket.addEventListener('error', handleError);
chatSocket.addEventListener('close', handleClose);
chatSocket.addEventListener('open', handleOpen);
chatSocket.addEventListener('message', handleMessage);

In this example you create a set of simple event handlers, one for each of the event types, then register
those handlers on the connection object. You can actually run this example if you want. The domain
fgjkjk4994sdjk.com doesn’t exist, so first the browser will publish an error event on the connection,
followed by a close event. In the console, you’ll see something similar to Figure 3-1.

Figure 3-1.  The results of running Listing 3-7 in Chrome

In the closed event handler handleClose you check the reason property on the event object to see if a
reason for the closing was specified. This property may or may not be present, depending on the error that
occurred and the subprotocol that was specified for the connection.

Chapter 3 ■ HTML5 APIs

71

The handleMessage event handler is very simple, but demonstrates how to check the active
subprotocol, and how to access the data that was transmitted by the server. We’re used to simple text-based
communication through HTTP (as with Server-sent Events), but WebSockets can transmit binary data as
well. You could transmit any arbitrary binary data through a WebSocket; for example, you can send and
receive images.

In JavaScript, binary data is represented using either binary large objects (also known as blobs) or array
buffers. Both of these are valid data types in JavaScript: Blob represents blobs and ArrayBuffer represents
array buffers. The difference between the two types is how the data is being used. If you are working with
a single chunk of raw data that never has to be changed (like an image) it is best represented by a Blob.
If you need to process the data (look at parts of it, or even change it), it’s probably best represented using
an ArrayBuffer. Both of these are data types in JavaScript, so it’s easy to check to see if the information
transmitted from the server is in that format. Here’s an update to the handleMessage event handler that
demonstrates checking for Blobs and ArrayBuffers:

/**
 * Handles a message event on the chat socket object.
 * @param {MessageEvent} event The message event object.
 */
function handleMessage(event) {
 console.log('A message event has been sent.');
 
 // The event object contains the data that was transmitted from the server.
 // That data is encoded either using the chat protocol or the json protocol,
 // so we need to determine which protocol is being used.
 if (chatSocket.protocol === validProtocols[0]) {
 console.log('The chat protocol is active.');
 
 // Check the data type of the incoming data.
 if (event.data instanceof Blob) {
 console.log('The data is a Blob.');
 }
 if (event.data instanceof ArrayBuffer) {
 console.log('The data is an ArrayBuffer.');
 }
 
 console.log('The data the server transmitted is: ', event.data);
 // etc...
 } else {
 console.log('The json protocol is active.');
 console.log('The data the server transmitted is: ', event.data);
 // etc...
 }
 
}

Here you’ve added checks in the chat subprotocol section to determine if the data is a Blob or an
ArrayBuffer. You could do a similar check in the json subprotocol section as well; it is possible to encode
both Blobs and ArrayBuffers in JSON format (typically using Base64 encoding).

Chapter 3 ■ HTML5 APIs

72

■■ Note  For more details on handling Blobs, see https://developer.mozilla.org/en-US/docs/Web/API/
Blob, and for more details on working with Array Buffers, see https://developer.mozilla.org/en-US/docs/
Web/JavaScript/Reference/Global_Objects/ArrayBuffer.

Sending Information to the Server
You can transmit information to the server using a WebSocket as well. Each WebSocket connection object
has a send method that you can use to immediately transmit information to the server. You should make
sure only to send information after the open event has fired, otherwise the information likely will be lost.
As a result, you will often see a pattern in WebSocket applications in which the open event handler kicks off
the initialization of an application to guarantee nothing happens until the connection is available.

The send method takes only one parameter: the data to send, as shown next:

var mySocket = new WebSocket(url);
mySocket.send('hello world!');

Valid data types are Strings, Blobs, and ArrayBuffers.

Closing the Connection
The connection object has a close method that can be used to close the connection to the server when
you’re done with it. Calling this method will immediately cause the client to send a close request to the
server, which in turn will close the connection. The client will then dispatch a close event on the connection
object. There is no way to reopen a closed WebSocket connection object.

An Example WebSocket Application
As with Server-sent Events, you will need a server capable of handling WebSocket connections in order to
build a functioning example. Building such a server from scratch is a moderately difficult task, as the server
has to know how to upgrade the HTTP connection to a WebSocket connection, and also how to send and
receive data according to the WebSocket protocol. Fortunately you probably won’t have to build one from
scratch. There are many open source projects devoted to creating WebSocket servers that you can use in
your projects. For the example WebSocket application you will build a simple WebSocket server using Node.
js, a JavaScript framework for servers. Node.js provides a fast JavaScript interpreter as well as libraries for
accessing the filesystem, network stack, and other server technologies.

Rather than build the server from scratch, you’ll use WebSocket-Node, an open source implementation
of the WebSocket protocols in Node.js. The home for this project is at https://github.com/theturtle32/
WebSocket-Node. To install the module, use the node package manager npm:

npm install websocket

This should install the module for you. If it doesn’t, see the Installation notes at the project home site.
Once WebSocket-Node is installed, you can use it to build a server for your example. The simplest

WebSocket example is a server that simply echoes back anything that the client sends. Listing 3-8 shows how
simple it is to build a server using the WebSocket-Node library.

https://developer.mozilla.org/en-US/docs/Web/API/Blob
https://developer.mozilla.org/en-US/docs/Web/API/Blob
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/ArrayBuffer
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/ArrayBuffer
https://github.com/theturtle32/WebSocket-Node
https://github.com/theturtle32/WebSocket-Node

Chapter 3 ■ HTML5 APIs

73

Listing 3-8.  A Simple WebSocket Server

// Include the modules needed to build the server.
var WebSocketServer = require('websocket').server;
var http = require('http');
var currentConnection;
 
// Define the subprotocol name for the WebSocket connection.
var subProtocol = 'echo';
 
/**
 * Handles a request event on the WebSocket server.
 * @param {Object} request
 */
function handleRequest(request) {
 currentConnection = request.accept(subProtocol, request.origin);
 currentConnection.on('message', handleMessage);
}
 
/**
 * Handles a message event on a socket connection.
 * @param {Object} message The message event object.
 */
function handleMessage(message) {
 // Echo back whatever was received.
 if (message.type === 'utf8') {
 currentConnection.sendUTF(message.utf8Data);
 } else if (message.type === 'binary') {
 currentConnection.sendBytes(message.binaryData);
 }
}
 
// Create a simple server that always returns 404 (not found) to any request.
// (We're only going to use it to upgrade to the WebSocket protocol.)
var simpleServer = http.createServer(function(request, response) {
 response.writeHead(404);
 response.end();
});
simpleServer.listen(8080);
 
// Create a WebSocket server based on the simple server.
var socketServer = new WebSocketServer({
 httpServer: simpleServer,
 autoAcceptConnections: false
});
 
// Register the request event handler.
socketServer.on('request', handleRequest);

Chapter 3 ■ HTML5 APIs

74

This example creates a WebSocket server based on a simple HTTP server. Whenever a connection
request comes in on the socket server, a request event is dispatched on that object. In the handleRequest
event handler you establish a WebSocket connection by accepting the request, and then register an
event handler for message events. Whenever the client sends a message to the server, a message event is
dispatched on the connection object. Your handleMessage event handler simply echoes back whatever data
was received.

Save this script in a file called example3-8-server.js. To run it, type node example3-8-server.js.

■■ Tip  If you don’t want to build a server yourself, there is a simple echo server running at
ws://echo.websocket.org. Use that as the URL and do not specify a protocol. Note that if you do run the
example this way, it will demonstrate that WebSockets are not bound to the Single Origin Policy, since the
original page will be served from a local server but the WebSocket server is on an entirely different domain.

Next you need to build a client that can make use of the server. Your client should try sending various
types of data and display anything that is echoed back from the server. Listing 3-9 shows a client that will
connect to your server and run a set of tests.

Listing 3-9.  A WebSocket Demonstration Class

<!DOCTYPE HTML>
<html>
 <head>
 <title>The HTML5 Programmer's Reference</title>
 </head>
 <body>
 <h1>WebSockets Demonstration</h1>
 <div id="display"></div>
 <script>
function WebSocketDemo() {
 
 /**
 * The URL for the WebSocket server. There is a simple echo server running at
 * ws://echo.websocket.org/ if you don't have a local server running.
 * @private {string}
 */
 this.demoUrl_ = 'ws://localhost:8080/';
 
 /**
 * The protocol used by the server. If using the server at echo.websocket.org
 * set this to null, as it does not have a protocol.
 * @private {string|Array<string>}
 */
 this.subProtocol_ = 'echo';
 
 /**
 * @private {WebSocket}
 */
 this.demoSocket_ = null;
 

Chapter 3 ■ HTML5 APIs

75

 /**
 * A reference to the DOM element to use for displaying messages.
 * @private {HtmlElement}
 */
 this.display = document.getElementById('display');
 
 /**
 * Displays a message on the page.
 * @param {string} messageText A simple string of text.
 * @param {*=} opt_messageData An optional set of data to append to the text
 * string.
 * @private
 */
 this.displayMessage_ = function(messageText, opt_messageData) {
 var messageData = opt_messageData ? opt_messageData : '';
 var newParagraph = document.createElement('p');
 newParagraph.innerText = messageText + messageData;
 this.display.appendChild(newParagraph);
 };
 
 /**
 * Handles an error event on the demo socket object.
 * @private
 */
 this.handleError_ = function() {
 this.displayMessage_('An error occurred on the demo connection.');
 };
 
 /**
 * Handles a close event on the demo socket object.
 * @private
 */
 this.handleClose_ = function() {
 this.displayMessage_('The demo connection was closed.');
 };
 
 /**
 * Handles an open event on the demo socket object.
 * @private
 */
 this.handleOpen_ = function() {
 this.displayMessage_('The demo connection is open.');
 
 // Now that the socket is open, we can send data.
 this.sendDataAndClose_();
 };
 

Chapter 3 ■ HTML5 APIs

76

 /**
 * Handles a message event on the demo socket object.
 * @param {MessageEvent} event The message event object.
 * @private
 */
 this.handleMessage_ = function(event) {
 this.displayMessage_('A message event has been received from the server.');
 // Check the data type of the incoming data.
 if (event.data instanceof Blob) {
 this.displayMessage_('The data is a blob.');
 }
 if (event.data instanceof ArrayBuffer) {
 this.displayMessage_('The data is an ArrayBuffer.');
 }
 this.displayMessage_('The data the server transmitted is: ', event.data);
 };
 
 /**
 * Initializes the demo by creating a new connection and registering event
 * handlers.
 * @private
 */
 this.initDemo_ = function() {
 // Open the socket.
 this.demoSocket_ = new WebSocket(this.demoUrl_, this.subProtocol_);
 
 // Register the event handlers on the demo socket.
 this.demoSocket_.addEventListener('error', this.handleError_.bind(this));
 this.demoSocket_.addEventListener('open', this.handleOpen_.bind(this));
 this.demoSocket_.addEventListener('message', this.handleMessage_.bind(this));
 this.demoSocket_.addEventListener('close', this.handleClose_.bind(this));
 };
 
 /**
 * Sends data to the server, then closes the socket.
 * @private
 */
 this.sendDataAndClose_ = function() {
 // Send a text string.
 this.demoSocket_.send('Hello world!');
 
 // Send a JSON-formatted string.
 var testObject = {
 message: 'hello world',
 active: true
 };
 var testObjectString = JSON.stringify(testObject);
 this.demoSocket_.send(testObjectString);
 

Chapter 3 ■ HTML5 APIs

77

 // Send a Blob.
 var testBlob = new Blob(['some data']);
 this.demoSocket_.send(testBlob);
 
 // Done! Demo over. Close the socket after waiting for a few seconds for
 // all of the messages to be sent and received. You might need to adjust
 // this depending on the speed of your connection.
 setTimeout(function() {
 this.demoSocket_.close();
 }.bind(this), 5000);
 };
 
 /**
 * Runs the demonstration.
 */
 this.run = function() {
 this.initDemo_();
 };
}
 
// Create the demo and run it.
var myDemo = new WebSocketDemo();
myDemo.run();
 
 </script>
 </body>
</html>

In this example you’ve encapsulated the demonstration in a class constructor. Although you’re only
running the demonstration once, this is a good pattern to follow when building complex connections like
this because it helps encapsulate their functionality. It also means you can easily instantiate more than one
connection at once if you want.

Everything that was previously a function or variable in the global scope has been moved into the class.
You’ve also added a new method, sendDataAndClose_, which demonstrates sending various types of data,
and then closes the connection after a five-second delay. The open event handler calls sendDataAndClose_,
so no data would be sent unless the connection was ready. Anything that the server sends will be displayed
on the page.

Run this example and it will produce a result similar to the screenshot in Figure 3-2.

Chapter 3 ■ HTML5 APIs

78

You can also induce an error in the WebSocket connection by specifying an invalid subprotocol value
for this.subProtocol_:

/**
 * The protocol used by the server. If using the server at echo.websocket.org
 * set this to null, as it does not have a protocol.
 * @private {string|Array<string>}
 */
this.subProtocol_ = 'invalid protocol';

The WebSocket server will not perform the upgrade and the socket connection will fail.

Cross Document Messaging/Web Messaging
SUPPORT LEVEL

Good

All modern browsers support these features.

WHATWG Living Standard: http://www.whatwg.org/specs/web-apps/current-work/multipage/
web-messaging.html#crossDocumentMessages

W3C Draft: http://www.w3.org/TR/webmessaging/

Figure 3-2.  The result of running Listing 3-9

http://www.whatwg.org/specs/web-apps/current-work/multipage/web-messaging.html#crossDocumentMessages
http://www.whatwg.org/specs/web-apps/current-work/multipage/web-messaging.html#crossDocumentMessages
http://www.w3.org/TR/webmessaging/

Chapter 3 ■ HTML5 APIs

79

When web browsers manufacturers started adopting JavaScript, it quickly became clear that security
was going to be an important issue. Early on, Netscape introduced the Same Origin Policy, which dictates
that a script can only access DOM content from the same origin as itself. If it weren’t for this policy,
malicious scripts from any domain could run on your browser, then read—and modify—all of the data to
which the browser had access: rendered pages, history, cookies, even saved passwords.

There is no explicit standard for the Same Origin Policy, but it is based largely on RFC 6454, “The Web
Origin Concept.” (You can read this RFC at http://tools.ietf.org/html/rfc6454.) Roughly speaking,
two resources have the same origin if their protocol (HTTP, HTTPS), host (e.g., www.example.com), and port
(the default is port 80) all match.

■■ Note  Internet Explorer does not include the port in its origin determinations. Instead it uses the Security
Zone that the resource falls within.

The Same Origin Policy is a cornerstone of web application security, and it is strictly enforced by
browsers. Unfortunately it creates difficulties in building web applications that utilize multiple resources on
different domains or even subdomains (e.g., www.example.com will have a different origin than services.
example.com, even though they both h 3-2 ave the same root domain of example.com). As a result, web
developers have created many different workarounds, some more hackish than others.

Web Messaging, also known as Cross Document Messaging, is one of the ways HTML5 provides a
secure method of working within the Same Origin Policy, while allowing safe communication between
resources from different origins. Specifically, the feature allows scripts in one frame to communicate with
scripts in another frame using events that can be triggered at will.

The specification creates the new method postMessage on the browser’s window object. You use this
method to send a message to a target frame, which in turn causes a message event to be fired in that window.
An event handler in the target frame can capture the event and receive the message.

The postMessage method takes two parameters:

•	 message: The message you want to transmit to the target frame.

•	 origin: The origin you expect the resources in the target frame to have. If the
resources in the target frame do not have the specified origin, the event will not be
dispatched.

The target frame will dispatch a message event when it receives a message. The resulting event object
will have two important attributes:

•	 Event.data: This attribute will contain the message that was sent from the other
window.

•	 Event.source: This attribute will contain the origin of the sending window. You
should always double-check the origin of message sources to prevent accidentally
capturing and processing events from unexpected (and possibly malicious) origins.

To create an example, you’ll need two pages, which you should call the Main Page (Listing 3-10) and the
Target Page (Listing 3-11). The Main Page will contain an iframe that loads the Target Page.

http://tools.ietf.org/html/rfc6454

Chapter 3 ■ HTML5 APIs

80

Listing 3-10.  Cross-Domain Messaging, Main Page

<!DOCTYPE html>
<html>
 <head>
 <title>The HTML5 Programmer's Reference</title>
 </head>
 <body>
 <h1>Cross-Domain Messaging</h1>
 <iframe src="example3-8.html" id="targetFrame"></iframe>
 <p><button id="clickme">Click to send a message to the iframe.</button></p>
 <script>
// Message to send to the target window.
var strMessage = "This is a message sent from the main window.";
 
// Reference to the button.
var clickme = document.getElementById("clickme");
 
// Reference to the target frame.
var targetFrame = document.getElementById("targetFrame");
 
// Add a click event handler to the button.
clickme.addEventListener("click", function() {
 // Send a message to the target frame.
 targetFrame.contentWindow.postMessage(strMessage, "*");
});
 
/**
 * Handle a cross domain message.
 * @param {Event} event The event object from the cross domain message.
 */
function handleMessage(event) {
 // Create a message and show it to the user using an alert.
 var strAlert = "Message event in the main window!\nThe message was:\n";
 strAlert += event.data;
 alert(strAlert);
}
 
// Register the handleMessage event handler on the window.
window.addEventListener("message", handleMessage, false);
 </script>
 </body>
</html>

Chapter 3 ■ HTML5 APIs

81

Listing 3-11.  Cross-Domain Messaging, Target Page

<!DOCTYPE html>
<html>
 <head>
 <title>The HTML5 Programmer's Reference</title>
 </head>
 <body>
 <h1>Target iframe</h1>
 <script>
/**
 * Handles message events dispatched to this window.
 * @param {Event} event The event object from the cross domain message.
 */
function handleMessage(event) {
 // Create a message and show it to the user using an alert.
 var strAlert = "Message event in target iframe!\nThe message was:\n";
 strAlert += event.data;
 alert(strAlert);
 
 // Post a message back to the parent frame.
 window.top.postMessage("This is a message from the target iframe.", "*");
}
 
// Register the message event handler on the window.
window.addEventListener("message", handleMessage, false);
 </script>
 </body>
</html>

To run this example, save both pages in the same directory. Save the Target Page under the name
“example3-8.html.” When you load the Main Page into your browser, it will load the Target Page into the
iframe. Run the example by clicking the text “Click to send a message to the iframe.”

Upon load, both documents bind message event handlers to their window objects. When you click the
button, the parent document sends a message to the iframe using postMessage. This triggers a message
event in the iframe, which is handled there by the handleMessage event handler. This alerts the event data,
and then posts a message back to the parent document. This in turn triggers a message event in the parent
window, which invokes the handleMessage event handler there and causes the second alert to occur.

In this example you are not taking advantage of the main purpose for this feature, which is to send
messages from resources from different origins. If you have access to more than one origin, I encourage you
to experiment with this example. Upload the pages to different origins (be sure to alter the URL of the iframe
accordingly) and see if the results work as expected.

Note that in this example, you are not specifying the target origin in your calls to postMessage, nor
are you checking the origin in your event handlers. This is inherently insecure and I strongly recommend
against doing this in production code. You are only doing it here because this is an example, and the specific
domain information will vary depending on how you are serving the files. I encourage you to modify these
scripts so that they specify the target origin correctly and check the source origin according to your specific
environment. Also, try setting them to different values to induce origin violations so you can see the results
for yourself.

Chapter 3 ■ HTML5 APIs

82

Web Storage
SUPPORT LEVEL

Excellent

All modern browsers support these features and have for the last three versions.

WHATWG Living Standard: http://www.whatwg.org/specs/web-apps/current-work/multipage/
webstorage.html

W3C Draft: http://www.w3.org/TR/webstorage/

I’ve mentioned already that Hypertext Transfer Protocol is stateless. Partly this means that the server
treats each request from a client independently from every other request. As a result there is no built-in
mechanism for maintaining data across web page loads or reloads. For example, if the first page of an
application is a login form and the user successfully logs in, there is no mechanism to maintain that session
as the user navigates through the rest of the site. Or if you were building a shopping cart application, there is
no way to carry the user’s choices from one page to another.

Of course that makes for terrible user interaction, so in 1995—quite early in the history of the
Web—Netscape employee Lou Montulli created a specification for allowing small pieces of data to be
communicated between the browser and the server using special HTTP requests. These pieces would be
stored in the client, but the server could request them as needed. Montulli called these small pieces of data
“magic cookies,” and that is the origin of the term HTTP Cookie. Cookies enabled stateful communication
on the web and quickly became a cornerstone for web applications. However, HTTP Cookies are a bit
clunky. They are quite limited in size (4KB in most browsers) and are rather difficult to manage directly with
JavaScript.

HTML5 introduced the concept of Web Storage as an alternative to HTTP Cookies. Web Storage allows
for significantly more data to be stored in the browser (up to 5MB per origin in all browsers except Internet
Explorer, which allows 10MB per origin). Web Storage also has a very simple key/value API, making it quite
easy to use with JavaScript. Unlike HTTP Cookies, Web Storage is controlled entirely by the browser, and the
server cannot access the contents directly. If you want to share Web Storage data with the server, your script
will specifically have to transmit the data to the server.

Web Storage defines two different forms of storage: Session Storage and Local Storage. Session Storage,
as its name suggests, only stores data for the current browser session. When the user closes their browser,
the contents of Session Storage are cleared. Local Storage, on the other hand, is permanent. Once you store
data in Local Storage it will stay there until you remove it, even if the user closes their browser or reboots
their computer or device.

Like HTTP Cookies, Web Storage is limited by origin. Scripts from a given origin can only access Web
Storage for that origin. Cross-origin access is not permitted. Unlike HTTP Cookies, you cannot set an
expiration date or specify a path for Web Storage data.

Methods and Syntax
Web Storage defines two new objects in the global context: sessionStorage and localStorage. They both
have the same methods:

•	 getItem(key): Returns the data associated with the specified key.

•	 removeItem(key): Removes the data associated with the specified key.

http://www.whatwg.org/specs/web-apps/current-work/multipage/webstorage.html
http://www.whatwg.org/specs/web-apps/current-work/multipage/webstorage.html
http://www.w3.org/TR/webstorage/

Chapter 3 ■ HTML5 APIs

83

•	 setItem(key, data): Stores the data in storage with the specified key.

•	 clear(): Clears the storage of all contents.

Using Web Storage is quite simple, as shown in Listing 3-12.

Listing 3-12.  Using Web Storage

<!DOCTYPE html>
<html>
 <head>
 <title>The HTML5 Programmer's Reference</title>
 </head>
 <body>
 <h1>localStorage Example</h1>
 <script>
// Check to see if we've visited this page before.
var myValue = localStorage.getItem("test");
if (myValue == null) {
 alert('This is the first time you loaded this page! Now reload this page.');
 localStorage.setItem("test", "true");
} else {
 alert('You have loaded this page before!');
}
 </script>
 </body>
</html>

This example first tests to see if you have visited this page before. If you haven’t, it stores some data in
Local Storage. When you reload the page, the data should still be present there.

One of the main limitations of Web Storage is that it can only store primitives (text, numbers, and
booleans). More complex data like arrays or objects cannot be stored in Web Storage. However, if the desired
data can be formatted as a JSON string, it can be serialized and then stored. Upon retrieval, the JSON string
can be parsed and the data structure restored for use. It’s not hard to write functions to handle this for you:

/**
 * Serializes and stores an object in session storage under the specified key.
 * @param {string} key The key to store the data under.
 * @param {Object} value The object to serialize and store.
 */
function setSessionObject(key, value) {
 sessionStorage.setItem(key, JSON.stringify(value));
}
 
/**
 * Retrieves, deserializes, and returns the object stored in session
 * storage under the specified key.
 * @param {string} key The key that the object was stored under.
 * @return {Object} The restored object.
 * /

Chapter 3 ■ HTML5 APIs

84

function getSessionObject(key) {
 var value = sessionStorage.getItem(key);
 return value && JSON.parse(value);
}

Here the setSessionObject wraps the sessionStorage.setItem method and the getSessionObject
method wraps the sessionStorage.getItem method. You could easily create similar functions for
localStorage as well. But wouldn’t it be great if both sessionStorage and localStorage had getObject
and setObject methods, without having to use separate functions? Fortunately, that’s quite easy to do
thanks to the extendable nature of JavaScript and its inheritance model.

Without going into prototypal inheritance in detail, here’s the secret: both the sessionStorage and
localStorage objects inherit from the Storage abstract object. That means that any method available on the
prototype object for Storage will be available to both sessionStorage and localStorage. So all you have to
do is add your new methods to Storage:

/**
 * Serializes and stores an object in web storage under the specified key.
 * @param {string} key The key to store the data under.
 * @param {Object} value The object to serialize and store.
 */
Storage.prototype.setObject = function(key, value) {
 this.setItem(key, JSON.stringify(value));
};
 
/**
 * Retrieves, deserializes, and returns the object stored in web storage under
 * the specified key.
 * @param {string} key The key that the object was stored under.
 * @return {Object} The restored object.
 */
Storage.prototype.getObject = function(key) {
 var value = this.getItem(key);
 return value && JSON.parse(value);
};

Again, don’t get too hung up on the syntax, just remember that both sessionStorage and localStorage
are “children” of Storage, so any improvements you make to Storage will also be available to its children.

Listing 3-13 demonstrates using the new methods.

Listing 3-13.  Using Custom Storage Methods

<!DOCTYPE html>
<html>
 <head>
 <title>The HTML5 Programmer's Reference</title>
 </head>
 <body>
 <h1>Web Storage Example</h1>
 <script>

Chapter 3 ■ HTML5 APIs

85

/**
 * Serializes and stores an object in web storage under the specified key.
 * @param {string} key The key to store the data under.
 * @param {Object} value The object to serialize and store.
 */
Storage.prototype.setObject = function(key, value) {
 this.setItem(key, JSON.stringify(value));
};
 
/**
 * Retrieves, deserializes, and returns the object stored in web storage under
 * the specified key.
 * @param {string} key The key that the object was stored under.
 * @return {Object} The restored object.
 */
Storage.prototype.getObject = function(key) {
 var value = this.getItem(key);
 return value && JSON.parse(value);
};
 
// Create a simple test object.
var myObject = {
 test: true
};
 
// Create a simple test array.
var myArray = [1, 'two', true];
 
// Check session storage for the stored data.
if (sessionStorage.getItem('myObject') == null) {
 // First time here, so store the data.
 sessionStorage.setObject('myObject', myObject);
 sessionStorage.setObject('myArray', myArray);
 alert('Data stored. Reload the page to validate.');
} else {
 // We have been here before. Get values from storage and test them.
 var newObject = sessionStorage.getObject('myObject');
 var newArray = sessionStorage.getObject('myArray');
 alert(myObject.test === newObject.test); // should alert true.
 alert(myArray[1] === newArray[1]); // should alert true.
}
 </script>
 </body>
</html>

The first step in this example is to extend Storage with your new methods. Next, create an object and an
array for testing the new methods. When you load the page it checks for the stored value, and if it isn’t there
it stores the object and array using your new methods. If it is there, it gets them using your new methods and
then tests to see that the values are the same.

Chapter 3 ■ HTML5 APIs

86

Privacy and Web Storage
The possibility of extensive, permanent data storage within a browser raises serious privacy concerns.
Though Web Storage is limited by the Single Origin Policy, the same techniques that can be used for setting
third-party HTTP Cookies can also be used for setting third-party Web Storage data. And while all browsers
offer users a great deal of control over the HTTP Cookies that they store, most browsers have not yet
extended those features to Web Storage. In fact, Web Storage is one of the methods used to create so-called
Evercookies (you can read about Evercookies at http://samy.pl/evercookie/).

As with HTTP Cookies, you should not regard Web Storage as secure. Do not store any sensitive
information, such as passwords, in Web Storage.

Most browsers implement some form of private browsing. There’s no standard governing what “private
browsing” entails, but in most cases it means that all client-side storage is limited to the current session. This
includes Web Storage. If the user is using the browser’s private browsing feature, any data stored using Web
Storage will be wiped out when the user closes that tab, even if you stored it using localStorage. As a result
there is no guarantee that what you store in localStorage will be there the next time the user returns to your
application, so bear that in mind if your application relies heavily on localStorage.

Drag and Drop
SUPPORT LEVEL

Excellent

All modern browsers support these features and have for at least the last three versions.

WHATWG Living Standard: http://www.whatwg.org/specs/web-apps/current-work/multipage/
dnd.html

W3C Draft: http://www.w3.org/TR/html5/editing.html#dnd

One of the most common interactions in a graphical interface is dragging elements from one place and
dropping them in another. Unfortunately there was no easy way to achieve this basic interaction with HTML
and JavaScript. You could do it, but it was quite difficult and required extensive scripting, or the use of an
existing library such as jQuery UI (see http://jqueryui.com/draggable/ for an example).

Now the HTML5 specification brings native drag-and-drop interactions to the browser. The process is
event driven, and follows these simple steps:

•	 Declare one or more objects as draggable, and attach desired event handlers.

•	 Attach drop event handlers to target elements.

•	 As the user drags items and drops them on targets, the various events are fired and
your handlers are called.

The specification includes several new events, a draggable property for HTML elements, and a
dataTransfer object for safely communicating data between events.

There are typically two reasons why you would want to build a drag-and-drop interaction into your
application. The simplest (and probably the most common) is when the drag-and-drop operation is a
representation of another process that will be performed by the application. In this situation, the items being
dragged and the targets upon which they’re dropped aren’t themselves important—they’re just elements in
the user interface. Based on the results of the drag-and-drop operation, something else will happen behind
the scenes. An example of this is an interface for a shopping cart system. You drag items from the page into

http://samy.pl/evercookie/
http://www.whatwg.org/specs/web-apps/current-work/multipage/dnd.html
http://www.whatwg.org/specs/web-apps/current-work/multipage/dnd.html
http://www.w3.org/TR/html5/editing.html#dnd
http://jqueryui.com/draggable/

Chapter 3 ■ HTML5 APIs

87

your shopping cart, but the things you’re dragging, and the target cart, are just arbitrary HTML elements
that have been styled in such a way that the user recognizes them. Behind the scenes, the data is being
manipulated based on the drag-and-drop operations: the data structure for the cart is being changed as
items are added or removed, and so forth.

The other situation is where the items being dragged and/or the targets on which they’re being
dropped are themselves important. In this situation what is being dragged actually matters, because it will
be processed itself. An example of this is a visual clipboard, where you can highlight text in a document and
then drag it to the clipboard. The text is actually transferred from one place to another in the DOM via the
drag-and-drop process.

The HTML5 drag-and-drop specification handles both situations easily, and I will show you both in my
examples. Before diving into these, take a look at the process in detail.

The draggable Property
The first component of the Drag and Drop specification is the new draggable property. This property is set
on any HTML element in the DOM you wish to be draggable. If an element has the draggable property set
to true, the browser will initiate a drag-and-drop sequence from that element if the user holds down the
mouse button while the pointer is over the element and then moves the pointer.

The draggable property can be set to true (indicating the item is draggable), false (indicating the item
cannot be used to initiate a drag sequence), or auto (indicating the browser’s default rules apply).

The exception is selected text anywhere in the DOM, including form fields such as input and textarea
fields. Selected text can always initiate a drag sequence.

Drag-and-Drop Events
There are several new drag-and-drop events:

•	 dragstart: Dispatched from the element being dragged.

•	 dragenter: Dispatched from any element when a draggable item is dragged into it.

•	 dragover: Dispatched continuously from any element as long as a draggable item
is over it. Note that this event fires continuously regardless of whether or not the
draggable item is moving.

•	 dragleave: Dispatched from an element when a draggable item leaves its boundary.

•	 drag: Dispatched from the element being dragged throughout the drag sequence.
Like dragover, this event is fired continuously regardless of whether the pointer is
being moved.

•	 dragend: Dispatched from the element being dragged when the mouse button is
released.

•	 drop: Dispatched from an element when the user drops a draggable item on it by
releasing the mouse button.

Like other DOM events, you can add event handlers for drag-and-drop events to any desired element.
Remember, though, that drag-and-drop events will only fire while a drag sequence is underway.

One important quirk about drag-and-drop events is how you specify drop targets. The HTML5
specification defines a dropzone attribute as a counterpart to the draggable attribute. The dropzone
attribute is supposed to indicate which elements are valid drop targets. The dropzone attribute is not widely
implemented, so instead you have to indicate valid drop targets by manipulating events.

Chapter 3 ■ HTML5 APIs

88

Generally speaking, the majority of elements in the DOM should not be valid drop targets, so the default
action of the dragover event is to cancel drops. As a result, to indicate a valid drop target you have to cancel
the default action of the dragover event by calling the preventDefault() method on the event object within
the event handler.

The dataTransfer Object
The final piece of the drag-and-drop puzzle is the dataTransfer object. All of the drag-and-drop events
can be handled with standard event handlers, and those event handlers will receive an event object as a
parameter. One of the properties on drag-and-drop event objects is the dataTransfer object. This object
is used to control the appearance of the drag-and-drop helper (the ghosted visual element that follows the
cursor during the drag-and-drop operation), to indicate what the drag-and-drop process is doing, and to
easily transfer data from the dragstart event to the drop event.

The dataTransfer object has the following methods:

•	 Event.dataTransfer.addElement(HtmlElement): Specify the source element of
the drag sequence. This affects where the drag and dragend events are fired from.
Ordinarily you probably won’t need to change this.

•	 Event.dataTransfer.clearData(opt_DataType): Clear the data associated with a
specific DataType (see setData in this list). If the DataType is not specified, all data is
cleared.

•	 Event.dataTransfer.getData(DataType): Get the data associated with a specific
DataType (see setData, next).

•	 Event.dataTransfer.setData(DataType, data): Associates the specified data
with the DataType. Valid DataTypes depend on the browser. Internet Explorer only
supports DataTypes of text and url. Other browsers support standard MIME types
and even arbitrary types. The data has to be a simple string but could conceivably be
a JSON-formatted serialized object.

•	 Event.dataTransfer.setDragImage(HtmlElement, opt_offsetX, opt_offsetY):
Sets the drag helper image to the specified HTML element. By default the upper left
corner of the helper image is placed under the mouse pointer, but that can be offset
by specifying the optional parameters opt_offsetX and opt_offsetY, in pixels.
This method is not available in Internet Explorer and apparently never will be—see
http://connect.microsoft.com/IE/feedback/details/804304/implement-
datatransfer-prototype-setdragimage-method.

The dataTransfer object also has the following properties:

•	 Event.dataTransfer.dropEffect: The drop effect that is being performed by the
drag-and-drop sequence. Valid values are copy, move, link, and none. This value
is automatically initialized in the dragenter and dragover events based on what
interaction the user has requested through a combination of mouse actions and
modifier keys (e.g., Ctrl-drag, Shift-drag, Option-drag, etc.). These are platform
dependent. Only values specified by effectAllowed (see next) will actually initiate
drag-and-drop sequences.

http://connect.microsoft.com/IE/feedback/details/804304/implement-datatransfer-prototype-setdragimage-method
http://connect.microsoft.com/IE/feedback/details/804304/implement-datatransfer-prototype-setdragimage-method

Chapter 3 ■ HTML5 APIs

89

•	 Event.dataTransfer.effectAllowed: Which dropEffects are permitted for this
drag-and-drop sequence. Valid values and the effects they permit are as follows:

•	 copy: Allow a copy dropEffect.

•	 move: Allow a move dropEffect.

•	 link: Allow a link dropEffect.

•	 copyLink: Allow both a copy and a link dropEffect.

•	 copyMove: Allow both a copy and a move dropEffect.

•	 linkMove: Allow both a link and a move dropEffect.

•	 all: All dropEffects are permitted. This is the default value.

•	 none: No dropEffects are permitted (the item cannot be dropped).

•	 Event.dataTransfer.files: Contains a list of all the files available on the data
transfer. Will only have values if files are being dragged from the desktop to the
browser.

•	 Event.dataTransfer.types: Contains a list of all the DataTypes that have been
added to the dataTransfer object, in the order in which they were added.

Drag-and-Drop API Examples
Listing 3-14 produces the simplest thing imaginable: a set of draggable boxes that can be dropped on a single
target. As the boxes are dropped on the target, a counter increases to show the number of times a drop has
happened.

Listing 3-14.  A Simple Drag-and-Drop Interface

<!DOCTYPE html>
<html>
 <head>
 <title>The HTML5 Programmer's Reference</title>
 <style>
.draggable {
 margin: 5px;
 width: 100px;
 height: 100px;
 background-color: #ccc;
 border: 1px solid #000;
 display: inline-block;
}
 
.target {
 border: 10px solid #000;
 width: 315px;
 height: 100px;
 margin-left: 5px;
 margin-top: 50px;
}
 

Chapter 3 ■ HTML5 APIs

90

.target.over {
 border: 10px solid green;
}
 </style>
 </head>
 <body>
 <div class="draggable" draggable='true'></div>
 <div class="draggable" draggable='true'></div>
 <div class="draggable" draggable='true'></div>
 <div class="target"></div>
 <script>
 
// Get a reference to the drop target.
var dropTarget = document.querySelector('.target');
 
// Add a dragenter event handler to the drop target.
dropTarget.addEventListener('dragenter', function(event) {
 // Add the 'over' CSS class to the drop target. This lets the user know that
 // they have dragged something over a valid drop target.
 this.classList.add('over');
}, false);
 
// Add a dragleave event handler to the drop target.
dropTarget.addEventListener('dragleave', function(event) {
 // Remove the 'over' CSS class.
 this.classList.remove('over');
}, false);
 
// Add a dragover event handler to the drop target.
dropTarget.addEventListener('dragover', function(event) {
 // Prevent the default event action.
 event.preventDefault();
}, false);
 
// A counter that indicates how many times something has been dropped onto the
// drop target.
var counter = 1;
 
// Add a drop event handler to the drop target.
dropTarget.addEventListener('drop', function(event) {
 // Update the counter and remove the 'over' CSS class.
 this.innerHTML = counter;
 this.classList.remove('over');
 counter++;
}, false);
 </script>
 </body>
</html>

Chapter 3 ■ HTML5 APIs

91

In the script, all you did was register dragenter, dragleave, dragover, and drop event handlers on the
drop target. On dragenter you add a CSS class to the element, and on dragleave you remove the CSS class.
This gives visual feedback that the user has successfully dragged the element over a target that can receive it.
Then you prevent the default action of the dragover event, to prevent drop events. In the drop event handler
you update the innerHTML of the target element and increment the counter. You also remove the visual
feedback CSS class, since at this point you’ll be terminating the drag-and-drop sequence and a dragleave
event will not fire.

This example works great in Internet Explorer and Chrome. It does not work at all in Firefox. This is because
Firefox requires that the dataTransfer object be initialized on dragstart by specifying some data—any data.
To update your script, you have to add a dragstart event handler to each of your draggable elements and set
some arbitrary data within them so Firefox will initiate drag sequences from them. Listing 3-15 has the necessary
changes to the script (the surrounding HTML and CSS remain the same as in Listing 3-14).

Listing 3-15.  Drag-and-Drop Script Updated to Work in Firefox

// Get a reference to all of the draggable objects.
var draggables = document.querySelectorAll('.draggable');
 
// On each draggable element intialize the dataTransfer object on dragstart so
// Firefox will initiate drag events with them.
for (var i = 0; i < draggables.length; i++) {
 currEl = draggables[i];
 currEl.addEventListener('dragstart', function(event) {
 event.dataTransfer.setData('text', 'anything');
 }, false);
};
 
// Get a reference to the drop target.
var dropTarget = document.querySelector('.target');
 
// Add a dragenter event handler to the drop target.
dropTarget.addEventListener('dragenter', function(event) {
 // Add the 'over' CSS class to the drop target. This lets the user know that
 // they have dragged something over a valid drop target.
 this.classList.add('over');
}, false);
 
// Add a dragleave event handler to the drop target.
dropTarget.addEventListener('dragleave', function(event) {
 // Remove the 'over' CSS class.
 this.classList.remove('over');
}, false);
 
// Add a dragover event handler to the drop target.
dropTarget.addEventListener('dragover', function(event) {
 // Prevent the default event action.
 event.preventDefault();
}, false);
 
// A counter that indicates how many times something has been dropped onto the
// drop target.
var counter = 1;
 

Chapter 3 ■ HTML5 APIs

92

// Add a drop event handler to the drop target.
dropTarget.addEventListener('drop', function(event) {
 // Update the counter and remove the 'over' CSS class.
 this.innerHTML = counter;
 this.classList.remove('over');
 counter++;
}, false);

You’ll notice that the code uses querySelectorAll to get a reference to all of your draggable elements.
Then it loops through each of those elements in a for loop and applies the dragstart event listener to
each one. (Another way to do this would have been to delegate the dragstart event handler to a containing
element.) Now the elements are draggable in Firefox, and the example works in that browser the same as in
the others.

In practice, you’ll probably be initializing the data for a drag-and-drop sequence anyway. I mentioned
earlier an example of a visual clipboard, which you can see in Listing 3-16.

Listing 3-16.  A Visual Clipboard

<!DOCTYPE html>
<html>
 <head>
 <title>The HTML5 Programmer's Reference</title>
 <style>
p {
 margin-bottom: 0;
}
div#dropTarget {
 width: 300px;
 height: 300px;
 border: 10px solid black;
}
div#dropTarget.over {
 border: 10px solid green;
}
.draggable {
 width:100px;
 height: 100px;
 background-color: #ccc;
}
 </style>
 </head>
 <body>
 <p>Type some text here, then highlight it and drag it to the clipboard below.</p>
 <textarea id="dragSource"></textarea>
 <p>Clipboard</p>
 <div id="dropTarget"></div>
 <script>
// Get references to our drag source and drop target.
var dragSource = document.getElementById('dragSource');
var dropTarget = document.getElementById('dropTarget');
 

Chapter 3 ■ HTML5 APIs

93

// Add a dragstart event handler to the dragsource element.
dragSource.addEventListener('dragstart', function(event) {
 // Initialize the dataTransfer object with the current text.
 event.dataTransfer.setData('text', this.value);
}, false);
 
// Add a dragenter event handler to the target.
dropTarget.addEventListener('dragenter', function(event) {
 // Add the 'over' CSS class to the element.
 this.classList.add('over');
}, false);
 
// Add a dragleave event handler to the target.
dropTarget.addEventListener('dragleave', function(event) {
 // Remove the 'over' CSS class from the element.
 this.classList.remove('over');
}, false);
 
// Add a dragover event handler to the target.
dropTarget.addEventListener('dragover', function(event) {
 // Prevent the default action of the dragover event.
 event.preventDefault();
}, false);
 
// Finally, add a drop event handler to the target.
dropTarget.addEventListener('drop', function(event) {
 // Append the text in the dataTransfer object to the clipboard.
 this.innerHTML = event.dataTransfer.getData('text');
 // Remove the 'over' CSS class from the element.
 this.classList.remove('over');
}, false);
 </script>
 </body>
</html>

In this example you’ve created a simple textarea where you can enter some text. You can then highlight
the text and drag it to the clipboard. Behind the scenes, the code sets the text as data on the dataTransfer
object during the dragstart event, and then gets the text from the dataTransfer object on the drop event.

This example works great in almost all browsers, except once again Firefox has a small problem. When
you drop text onto the clipboard area, Firefox fires a default action on drop that tries to update the URL of the
page to the text that was dropped. To prevent this, you will need to call event.preventDefault() in the drop
event handler. By adding that line, the example will work the same in all browsers.

For a final example, consider the need to restrict the movement of the draggable item to a specific area.
You don’t want to allow it to leave a containing element. Or perhaps you want to limit the movement to a
single axis. Unfortunately, the HTML5 Drag and Drop API doesn’t provide a ready-made solution for this
fairly common use case, but you can build one with the tools it does provide.

The core of the problem is you have no way to limit the mouse pointer with JavaScript. This makes
sense; being able to manipulate mouse pointer actions with JavaScript would pose a large security risk. The
way the drag-and-drop sequence is set up, wherever the pointer goes, the helper image follows, so if you
can’t limit the pointer, you can’t limit the location of the helper image.

Chapter 3 ■ HTML5 APIs

94

This means the first thing you’ll have to do is remove the default helper image using dataTransfer.
setDragImage(), and that means this example won’t work in Internet Explorer because it doesn’t implement
that method. But the example does work in other browsers, and it’s a worthwhile example to demonstrate
some more complex interactions with the API.

The next step is to build your own helper image that can be manipulated as needed. Once that’s done,
it’s just a matter of listening to events.

Listing 3-17 provides the full example.

Listing 3-17.  Limiting Drag and Drop to a Specific Region

<!DOCTYPE html>
<html>
 <head>
 <title>The HTML5 Programmer's Reference</title>
 <style>
.container {
 width:200px;
 height:500px;
 border: 1px solid #000;
 position: relative;
}
#dragTarget {
 height: 20px;
 background-color: #ccc;
}
.drag-helper {
 opacity: 0.5;
 position: absolute;
 width: 200px;
 height: 20px;
 background-color: #ccc;
}
.hidden {
 display: none;
}
 </style>
 </head>
 <body>
 <div class="container">
 <div id="dragTarget" draggable="true">Drag me!</div>
 </div>
 <div id="helper" style="width: 1px;height: 1px;"></div>
 <script>
// Get references to the drag target and container.
var dragTarget = document.getElementById('dragTarget');
var dragContainer = document.querySelector('.container');
 
// This variable will hold the new helper when we build it.
var dragHelper;
 

Chapter 3 ■ HTML5 APIs

95

// Add a dragstart event handler to the drag target.
dragTarget.addEventListener('dragstart', function(event) {
 // Initialize the dataTransfer object for Firefox.
 event.dataTransfer.setData('text', 'Fix for Firefox');
 
 // Replace the default drag image with a small, transparent DIV.
 var dragImage = document.getElementById('helper');
 event.dataTransfer.setDragImage(dragImage, 0, 0);
 
 if (dragHelper == null) {
 // Create our own drag helper by cloning the target element. Note that when
 // we clone the element we need to do some cleanup, like removing the clone's
 // id attribute (so we do not introduce duplicate ids even temporarily) and
 // making not draggable.
 dragHelper = this.cloneNode(true);
 dragHelper.id = '';
 dragHelper.classList.add('drag-helper');
 dragHelper.draggable = false;
 dragContainer.appendChild(dragHelper);
 } else {
 // We've already created a clone, so let's just use it.
 dragHelper.classList.remove('hidden');
 }
}, false);
 
// Add a dragover event handler to the drag container.
dragContainer.addEventListener('dragover', function(event) {
 // Prevent the default action of the event.
 event.preventDefault();
 
 // Move the helper to the desired location.
 if (event.clientY < 485) {
 dragHelper.style.top = event.clientY + 'px';
 }
}, false);
 
// Add a dragend event handler to the target.
dragTarget.addEventListener('dragend', function(event) {
 // Dragging is done, so hide the clone.
 dragHelper.classList.add('hidden');
}, false);
 
// Add a drop event to the drag container.
dragContainer.addEventListener('drop', function(event) {
 event.preventDefault();
}, false);
 </script>
 </body>
</html>

Chapter 3 ■ HTML5 APIs

96

You’ll do all of your setup in the dragstart event handler. First is the fix for Firefox, otherwise the
example wouldn’t work in that browser. Then you hide the default helper image by getting a reference to a
small transparent div and using that as the new helper image. Next you clone the target element and set the
clone up to be your new helper, and append it to the DOM.

In your dragover event handler, all you have to do is move the helper to the desired position.
Remember that since the dragover event fires continuously throughout the drag process, you should keep
its event handler as lightweight as possible. That’s why you’re using a cached reference to the drag helper,
so you don’t have to query for it every time the event fires. As you use the example you’ll notice that because
you’re only listening for dragover events in the containing element, when you move the pointer outside of
that element the helper will stop moving. You could have delegated the dragover event handler to the body
element, which would allow the user to move the element from anywhere on the page.

You hide the custom helper in your dragend event handler. This is done so the helper will be hidden
regardless of where the user releases the mouse button. This is a common use of the dragend event.

As mentioned, this example won’t work in Internet Explorer, so while this example is interesting it’s
not very practical for the majority of situations. Unfortunately there’s no way to polyfill the setDragImage
method, either. So if this is the sort of interaction you need and you have to support Internet Explorer, you
probably need to look for another solution besides the HTML5 native Drag and Drop API.

Web Workers
SUPPORT LEVEL

Good

All modern browsers support these features and have for at least the last two versions.

WHATWG Living Standard: http://www.whatwg.org/specs/web-apps/current-work/multipage/
workers.html

W3C Draft: http://dev.w3.org/html5/workers/

One of the biggest criticisms leveled at web-based applications is speed: they’re just not fast enough,
particularly on mobile devices. And as much as I’m a fan of web technologies (and building applications
with those technologies), speed is admittedly a legitimate concern.

There are many reasons why web applications can run slowly, but one of the main issues is that scripts
running in the web browser can only do one thing at a time. For example, consider the common example of
fetching and parsing (or otherwise manipulating) a large file from the server. Using XMLHttpRequest it’s easy
to set up an asynchronous request that will load the file and then execute a callback function when ready.
Up until the callback function is called, your scripts can perform other tasks. But once the callback function
begins execution, everything has to wait while it handles the data in the way you specified. Your scripts can’t
update the UI or respond to user interaction or anything. This can be very frustrating for users.

The asynchronous environment of web browsers helped us create web applications that were more
responsive, but still didn’t allow us to perform multiple tasks at once. The HTML5 specification addresses
this limitation with Web Workers, which give us the ability to create and manipulate multiple separate tasks
simultaneously.

Under the hood, Web Workers give us access to the multithreading capabilities of modern browsers
and their host systems. A thread is a combination of operating system and program resources needed to
perform a specific task and manage the status of that task by starting, pausing, and stopping it and handling
its completion. Modern operating systems running on modern hardware with multiple processor cores can

http://www.whatwg.org/specs/web-apps/current-work/multipage/workers.html
http://www.whatwg.org/specs/web-apps/current-work/multipage/workers.html
http://dev.w3.org/html5/workers/

Chapter 3 ■ HTML5 APIs

97

handle many threads simultaneously. When you create a new Web Worker, the browser spawns a separate
thread for that task, and it executes at the same time as the main browser thread.

Multithreading is a powerful tool, and like all powerful tools it has some dangers. Web Workers have
some important restrictions designed to reduce those dangers:

•	 A Web Worker runs in its own independent JavaScript context. It has no direct access
to anything in any of the other execution contexts like other Web Workers, or the
main JavaScript thread.

•	 Communication between Web Worker contexts and the main JavaScript thread
is done via a postMessage interface similar to that used by Web Messaging. This
enables you to pass data into and out of Web Worker contexts, but because all
contexts are independent, any data passed between contexts is copied, not shared.

•	 A Web Worker cannot access the DOM. The only DOM methods available to a Web
Worker are atob, btoa, clearInterval, clearTimeout, dump, setInterval, and
setTimeout.

•	 Web Workers are bound by the Same Origin Policy, so you cannot load a worker
script from a different origin than the original script.

These are strong restrictions (particularly the lack of access to the DOM), but they help make Web
Workers a safer tool for you to use. If you’ve ever built multithreaded applications in other languages, you’re
probably familiar with all of the dangers inherent in that capability: concurrency, security, and so forth.
Because of their restrictions, Web Workers are mostly free of those dangers.

Another important feature of Web Workers is the fact that you have to manage your workers yourself.
You are responsible for creating them, starting them, stopping them, and disposing of them when their
tasks are done. Because Web Workers consume host system resources, it’s important that you manage them
correctly to avoid impacting the performance of the entire system.

Creating Web Workers
Creating and managing Web Workers follows three basic steps:

	 1.	 Create the new Web Worker.

	 2.	 Attach a message event handler to the new worker, assuming you are expecting
it to communicate results. You should also attach an error event handler so that
your script can react to any errors that happen during the worker’s execution.

	 3.	 Start the worker instance by posting a message to it. This will cause the worker
to start running, and will also trigger a message event within it so the worker can
process the message you just posted.

Step 1 is easy. The Web Workers specification creates a new Worker constructor in the global context.
You create a new instance of a Worker by specifying a JavaScript program for it to load and execute:

var myNewWorker = new Worker('my-new-worker.js');

The file 'my-new-worker.js' must be a valid JavaScript file, and it will be loaded as soon as the worker
is created.

The Worker instance myNewWorker will publish message and error events as it goes about its business,
so you can attach event handlers for those events. Listing 3-18 shows the basic pattern with stubbed
functions.

Chapter 3 ■ HTML5 APIs

98

Listing 3-18.  Stubbed Error and Message Event Handlers for a Web Worker

/**
 * Handles an error event from web worker.
 * @param {WorkerErrorEvent} event The error event object.
 */
function handleWorkerError(event) {
 // Handle the error here.
 console.warn('Error in web worker: ', event.message);
}
 
/**
 * Handles a message event from a web worker.
 * @param {WorkerMessageEvent} event The message event object.
 */
function handleWorkerMessage(event) {
 // Handle the message here.
 console.log('Message from worker: ', event.data);
}
 
// Create a new worker.
var myNewWorker = new Worker('my-new-worker.js');
 
// Register error and message event handlers.
myNewWorker.addEventListener('error', handleWorkerError);
myNewWorker.addEventListener('message', handleWorkerMessage);

In this basic example you have simple functions for handling the error and message events that simply
display the results in the JavaScript console. You register them as handlers using the addEventListener
method on the Worker instance myNewWorker. Note that you should always register your event handlers before
starting the worker. If you start the worker and then register the event handlers, something could happen in
the few milliseconds it takes to complete the registration and you could miss a message or an error.

To start the worker, simply post a message to it using the postMessage method:

myNewWorker.postMessage('start');

When you post the message to the worker instance, it will begin executing the script, and will also
trigger a message event within the worker’s execution context for the start message. (Note that while
the Worker.postMessage method is similar to the window.postMessage method you would use for Web
Messaging, it does not have the optional domain parameter of the latter.)

Inside a Web Worker
Inside a Web Worker, the environment for your script is a little different than in the main execution context.
As mentioned, the Web Worker has no access to the DOM, so any attempt to access the window object or its
children (such as the document object or any element in the DOM) will fail. Web Workers do have access to
the following standard properties and methods:

•	 The DOM methods atob, btoa, clearInterval, clearTimeout, dump, setInterval,
and setTimeout.

•	 The XMLHttpRequest constructor, so Web Workers can perform asynchronous
network tasks.

Chapter 3 ■ HTML5 APIs

99

•	 The WebSocket constructor, so Web Workers can create and manage WebSockets
(as of this writing, Firefox does not enable WebSocket for Web Workers; however,
this feature is being implemented and you can track its status at https://bugzilla.
mozilla.org/show_bug.cgi?id=504553)

•	 The Worker constructor, so Web Workers can spawn their own workers (which are
referred to as subworkers). As of this writing, Chrome and Safari do not implement
the Worker constructor for Web Workers. There is a bug filed for Chrome at
https://code.google.com/p/chromium/issues/detail?id=31666 and for Safari’s
WebKit at https://bugs.webkit.org/show_bug.cgi?id=22723. Internet Explorer
does support subworkers as of version 10.

•	 The EventSource constructor, so Web Workers can subscribe to Server-sent Event
streams. This appears to be a nonstandard feature, but seems to be available in all
major browsers as of this writing.

•	 A special subset of the Navigator properties, available through the navigator object:

•	 navigator.language: Returns the current language the browser is using.

•	 navigator.onLine: Returns a boolean indicating whether or not the browser is
online.

•	 navigator.platform: Returns a string indicating the platform of the host
system.

•	 navigator.product: Returns a string with the name of the current browser.

•	 navigator.userAgent: Returns the user agent string for the browser.

The implementation of these properties varies from browser to browser, so it
might be better to pass needed Navigator information into the Web Worker from
the main thread.

•	 A special subset of Location properties, available on the location object:

•	 location.href: The full URL of the script being executed by the Web Worker.

•	 location.protocol: The protocol scheme of the URL of the script being
executed by the Web Worker, including the final “:”.

•	 location.host: The host part of the URL (the hostname and port) of the script
being executed by the Web Worker.

•	 location.hostname: The hostname part of the URL of the script being executed
by the Web Worker.

•	 location.port: The port part of the URL of the script being executed by the
Web Worker.

•	 location.pathname: The initial ‘/’ followed by the path of the script being
executed by the Web Worker.

•	 location.search: The initial ‘?’ followed by the parameters (if any) of the URL
of the script being executed by the Web Worker.

•	 location.hash: The initial ‘#’ followed by the fragment identifier (if any) of the
URL of the script being executed by the Web Worker.

•	 There is also a method location.toString() that simply returns location.href.

https://bugzilla.mozilla.org/show_bug.cgi?id=504553
https://bugzilla.mozilla.org/show_bug.cgi?id=504553
https://code.google.com/p/chromium/issues/detail?id=31666
https://bugs.webkit.org/show_bug.cgi?id=22723

Chapter 3 ■ HTML5 APIs

100

The Web Worker execution context also has one new method available to it: importScripts. The
importScripts method takes a comma-separated list of one or more JavaScript file names that will be
loaded and executed in order. For example, this line

importScripts('script1.js', 'script2.js', 'subdirectory/script3.js');

will load and execute the three scripts specified, in order. Relative URLs are resolved as relative to the URL of
the script that was specified when you created the Web Worker instance. The importScripts method is also
bound by the Same Origin Policy, so you cannot import scripts from a different origin than the origin that
served the parent script for the Web Worker instance.

The importScripts method is a blocking method, meaning each script will be loaded and executed,
in order, and the worker will not continue to the next line until the last script has finished loading and
executing. If one of the scripts fails to load due to a network problem, or it loads but fails to run due to an
internal error, the Web Worker will stop executing and publish an error event.

Scripts loaded with importScripts are executed in the same context as the Web Worker. They cannot
access the DOM, but they do have access to all of the standard properties and methods listed above as well
as the importScripts method, so it is possible for imported scripts to import other scripts.

When a Web Worker is started, it follows these steps:

•	 It executes the script from start to finish, including any asynchronous tasks (such as
XMLHttpRequest calls).

•	 If part of its execution was to register a message event handler, it then goes into a
wait loop for incoming messages. The first message it receives will be the message
that was posted to start the worker. The worker will remain in wait mode until you
manually terminate it, or it terminates itself.

•	 If no message event handlers were registered, the worker thread will terminate
automatically.

This is an important point: if your Web Worker registers a message event handler, it will remain in wait
mode forever unless you terminate it. Again, because Web Workers consume system resources, you should
be sure to terminate any unneeded workers. You can terminate a worker in one of two ways:

•	 You can call the terminate method on the Worker instance:
myWebWorker.terminate();.

•	 The Web Worker can terminate itself by calling its close method:
self.close();.

Either method stops the worker immediately.

A Simple Example of a Web Worker
Listing 3-19 expands on the stubbed example in Listing 3-18.

■■ Note  The examples in this section will need to be run from a server.

Chapter 3 ■ HTML5 APIs

101

Listing 3-19.  Creating A Web Worker

<!DOCTYPE html>
<html>
 <head>
 <title>The HTML5 Programmer's Reference</title>
 </head>
 <body>
 <h1>Web Workers</h1>
 <div id="message-box"></div>
 <script>
// Get a reference to the target element.
var messageBox = document.getElementById('message-box');
 
/**
 * Handles an error event from web worker.
 * @param {WorkerErrorEvent} event The error event object.
 */
function handleWorkerError(event) {
 console.warn('Error in web worker: ', event.message);
}
 
/**
 * Handles a message event from a web worker.
 * @param {WorkerMessageEvent} event The message event object.
 */
function handleWorkerMessage(event) {
 messageBox.innerHTML = 'Message received from worker: ' + event.data;
}
 
// Create a new worker.
var myNewWorker = new Worker('web-worker.js');
 
// Register error and message event handlers on the worker.
myNewWorker.addEventListener('error', handleWorkerError);
myNewWorker.addEventListener('message', handleWorkerMessage);
 
// Start the worker.
myNewWorker.postMessage('begin');
 </script>
 </body>
</html>

As before, create two event handlers, one for an error event and one for a message event. The error
event handler simply logs the error to the console, while the message event handler appends the message
text to the DOM. Then create a new Web Worker, register your event handlers on it, and finally, post a
message to it to start it.

Listing 3-20 shows the code for the worker itself.

Chapter 3 ■ HTML5 APIs

102

Listing 3-20.  A Trivial Web Worker Script

/**
 * Handles a message event from the main context.
 * @param {WorkerMessageEvent} event The message event.
 */
function handleMessageEvent(event) {
 // Do something with the message.
 console.log('Worker received message:', event.data);
 
 // Send the message back to the main context.
 self.postMessage('Your message was received.');
}
 
// Register the message event handler.
self.addEventListener('message', handleMessageEvent);

This Web Worker creates a message event handler that logs the message to the console. It then sends a
confirmation message back to the parent thread, and registers the event handler on the execution context.

When you run this example, it will pass messages back and forth, but won’t demonstrate the true power
of Web Workers, which is that they execute at the same time as the main thread.

Common Use Cases
Web Workers allow you to restructure your applications in such a way that you have a single main thread that
handles the UI, and any other intensive or asynchronous action is handled by Web Worker threads. Good
examples include:

•	 Asynchronous Activities: Because Web Workers have access the XMLHttpRequest
constructor as well as WebSockets and theimportScripts method, they can be used
to load and parse data, or (even better) to send large amounts of data back to the
server.

•	 Computation-Intensive Activities: Anything that requires a great deal of computation
is an ideal candidate for a Web Worker. Cryptography is a great example, as are
physics engines for games.

•	 Image Processing: If you have a large amount of data to process from a canvas
element, you can make use of Web Workers to handle the number crunching.

•	 Divide and Conquer: I’ve already mentioned using Web Workers to handle
processing of large amounts of data. If you can divide the data in question up into
smaller pieces, you can give each piece its own Web Worker to process, thus making
things go even faster.

Chapter 3 ■ HTML5 APIs

103

Summary
In this chapter I’ve covered several of the HTML5 JavaScript APIs. Using these new APIs, your applications can:

•	 Communicate more efficiently and securely with the server. Rather than relying
on just XmlHttpRequest, your applications can now subscribe to Server-sent Event
streams, or even set up two-way communication with a server using WebSockets.
You can also use Cross Document Messaging for more secure communications
between script origins.

•	 Store information more efficiently on the client. Using the new Web Storage features,
your applications can easily store and retrieve information, including serialized
objects and data structures.

•	 Efficiently implement drag-and-drop interactions using the new Drag and Drop API.
Dragging and dropping items is a very common user interaction metaphor, and now
it’s easier to accomplish with the new API.

•	 Create and manage threads. Using Web Workers, your applications can now be
multithreaded.

Using these new APIs, your applications can be more efficient and easier to use as well as simpler to
create and maintain.

In the next chapter you will dive into one of the most exciting features of HTML5: the canvas element.

105

Chapter 4

Canvas

When HTML5 was first announced, the feature that drew the most excitement was probably the new canvas
element—an area on the page upon which you can draw bitmap graphics using the various commands
present in the drawing context API. This meant that for the first time there was an official way to create
dynamic graphics with JavaScript.

The canvas element was originally created by Apple in 2004 as a proprietary addition to WebKit. It was
later adopted by other browser manufacturers, and then by the W3C as a part of HTML5. Today, canvas
enjoys wide support in modern browsers.

SUPPORT LEVEL

Excellent

All modern browsers have supported canvas elements and all of the features covered in this chapter for
at least the last three versions.

WHATWG Living Standard: http://www.whatwg.org/specs/web-apps/current-work/multipage/
the-canvas-element.html

W3C Draft: http://www.w3.org/html/wg/drafts/2dcontext/html5_canvas_CR/

The Canvas Drawing Mode
If you’re familiar with graphics libraries, you probably have heard the terms immediate mode and retained
mode as descriptions for how things are rendered on the screen. In immediate-mode rendering, graphics are
rendered as the API calls are initiated, and nothing about them is stored by the drawing context.

In retained-mode rendering, calls to the API do not cause immediate rendering on the screen. Rather,
the results of the APIs are stored in an internal model maintained by the library, thus allowing the library to
do various optimizations when it does draw everything.

The canvas tag renders in immediate mode: as soon as you make a call to the API, the results will be
rendered on the screen, and the canvas will not store any information about whatever was just drawn. If you
wish to redraw the same thing, you will have to issue the same command(s) over again.

http://www.whatwg.org/specs/web-apps/current-work/multipage/the-canvas-element.html
http://www.whatwg.org/specs/web-apps/current-work/multipage/the-canvas-element.html
http://www.w3.org/html/wg/drafts/2dcontext/html5_canvas_CR/

Chapter 4 ■ Canvas

106

The Canvas Drawing Context
Canvas elements are accessible through the DOM just like any other HTML element. However, each canvas
element exposes one or more drawing contexts that can be used to draw on the canvas in various ways.
At the moment the only context specified in the standard and supported by browsers is the 2-dimensional
(or 2d) context.

The 2d context exposes an impressive API for drawing lines, curves, shapes, text, and so forth on the
canvas element. Each canvas has a coordinate system with the origin (0, 0) in the upper left corner. The 2d
drawing context uses an imaginary pen metaphor for its basic drawing functions, so the commands to draw
on the canvas are something like, “Move the pen to these coordinates, then draw this thing.” In addition,
drawing things and filling them in or stroking them are separate concepts and are carried out by separate
commands. When you first draw a path, it is not shown on the screen—you must apply a fill or stroke to
make it visible. This is for efficiency, because this way you can draw a complex path consisting of many parts,
and then stroke or fill the entire thing at once.

To get started, draw a simple line. The syntax for this is quite straightforward, as demonstrated
in Listing 4-1.

Listing 4-1.  The Basic Drawing Syntax for canvas

<!DOCTYPE html>
<html>
 <head>
 <title>The HTML5 Programmer's Reference</title>
 <style>
canvas {
 border: 1px solid #000;
 width: 200px;
 height: 200px;
}
 </style>
 </head>
 <body>
 <canvas id="myCanvas"></canvas>
 <script>
var myCanvas = document.getElementById('myCanvas');
var myContext = myCanvas.getContext('2d');
myContext.moveTo(0, 0);
myContext.lineTo(200, 200);
myContext.strokeStyle = '#000';
myContext.stroke();
 </script>
 </body>
</html>

This example has a basic canvas element on the page. It uses CSS to give the canvas dimensions and a
border so you can see it. The script gets a reference to the canvas element and then uses that reference to get
the drawing context. It then uses the moveTo method to move the pen to the upper left corner of the canvas,
and then instructs the context to draw a line (as a path) to the lower right corner at (200, 200). Last, it sets the
stroke style to black and instructs the context to stroke the path.

Chapter 4 ■ Canvas

107

You expected the line to go from 0, 0 to 200, 200 . . . and actually it did. The default size for a canvas
element is 200 pixels high by 400 pixels wide. You used CSS to specify the dimensions of the canvas, which
just made the canvas adjust its aspect ratio rather than actually reduce its default width. This brings us to an
important detail: in a canvas, the coordinate system does not necessarily correspond with screen pixels.

This is a common mistake with canvases, and it happens because we’re all trained to use CSS to change
the appearance of HTML elements. In the case of the canvas element, though, you need to specify its
dimensions using its width and height properties. Listing 4-2 adds those to the markup.

Listing 4-2.  Specifying the Width and Height for a Canvas Element

<!DOCTYPE html>
<html>
 <head>
 <title>The HTML5 Programmer's Reference</title>
 <style>
canvas {
 border: 1px solid #000;
}
 </style>
 </head>
 <body>
 <canvas id="myCanvas" width="200" height="200"></canvas>
 <script>
var myCanvas = document.getElementById('myCanvas');
var myContext = myCanvas.getContext('2d');
myContext.moveTo(0, 0);
myContext.lineTo(200, 200);
myContext.strokeStyle = '#000';
myContext.stroke();
 </script>
 </body>
</html>

Figure 4-1.  The results of Listing 4-1

The results shown in Figure 4-1 are somewhat unexpected.

Chapter 4 ■ Canvas

108

As you can see, this removed the width and height declarations from the CSS rule and instead directly
applied the dimensions to the canvas element using the width and height properties. Then it drew and
stroked the path, and the results were as expected, as shown in Figure 4-2.

Figure 4-2.  Small victories

As you can see, the canvas is now truly 200 pixels by 200 pixels, and your line draws exactly as you
expected.

The canvas tag is not self-closing, so the closing tag is mandatory. You can include alternate
content inside of the canvas tag, which will render if the browser does not support the canvas element.
You can easily extend this simple example to include some alternate content for older browsers, as
shown in Listing 4-3.

Listing 4-3.  Alternate Content for Browsers That Don’t Support Canvas

<!DOCTYPE html>
<html>
 <head>
 <title>The HTML5 Programmer's Reference</title>
 <style>
canvas {
 border: 1px solid #000;
}
 </style>
 </head>
 <body>
 <canvas id="myCanvas" width="200" height="200">Did You Know: Every time
 you use a browser that doesn't support HTML5, somewhere a kitten
 cries. Be nice to kittens, upgrade your browser!
 </canvas>
 <script>
var myCanvas = document.getElementById('myCanvas');
var myContext = myCanvas.getContext('2d');

Chapter 4 ■ Canvas

109

myContext.moveTo(0, 0);
myContext.lineTo(200, 200);
myContext.strokeStyle = '#000';
myContext.stroke();
 </script>
 </body>
</html>

As you can see, we should all think of the kittens.
Now that you have a basic idea of the canvas tag and the drawing context, you’ll dive into the available

drawing commands.

Basic Drawing Commands
Canvas provides a set of drawing commands that can be used to build complex graphics. Most of the drawing
commands are for building paths. In fact, canvas only includes commands for one shape primitive: the
rectangle. You will have to build any other shapes using a combination of simpler curves.

Given a drawing Context, the basic curves are:

•	 Context.lineTo(x, y): Draws a line from the current pen position to the specified
coordinates.

•	 Context.arc(x, y, radius, startAngle, endAngle, anticlockwise): Draws
an arc along a circle centered at (x, y) with the specified radius. The startAngle
and endAngle parameters are the start and end angles in radians, and the optional
anticlockwise parameter is a boolean indicating whether the curve should be
drawn anticlockwise (the default is false, so arcs by default are drawn clockwise).

•	 Context.quadraticCurveTo(cp1x, cp1y, x, y): Draws a quadratic curve starting
at the current pen location and ending at the coordinates (x, y), with the control
point at (cp1x, cp1y).

•	 Context.bezierCurveTo(cp1x, cp1y, cp2x, cp2y, x, y): Draw a bezier curve
starting at the current pen location and ending at the coordinates (x, y), with control
point 1 specified by (cp1x, cp1y) and control point 2 specified by (cp2x, cp2y).

•	 Context.rect(x, y, width, height): Draw a rectangle starting at (x, y) with the
width and height specified.

Declaring paths is done using two simple commands:

•	 Context.beginPath(): Starts a new path definition. All curves that follow until the
path is closed will be included in the path.

•	 Context.closePath(): Ends the path definition, and closes the path by drawing a
straight line from the current pen position to the starting point of the path.

By themselves, paths are invisible. You have to tell the canvas to either stroke them or fill them:

•	 Context.strokeStyle: This property defines the style that will be stroked on the
current path when the stroke method is called. This property can take any valid CSS
color string (e.g., 'red', '#000', or 'rgb(30, 50, 100)'), a gradient object, or a
pattern object.

•	 Context.stroke(): Strokes the current path with the style specified in
Context.strokeStyle.

Chapter 4 ■ Canvas

110

•	 Context.fillStyle: This property defines the style that will be filled into the current
path when the fill method is called. This property can take a CSS color string, a
gradient object, or a pattern object.

•	 Context.fill(): Fills the current path with the style specified in Context.fillStyle.

•	 Context.lineWidth: This property defines the thickness of the stroke applied to
paths. Defaults to 1 unit.

•	 Context.lineCap: This property defines how lines are capped. Valid values are:

•	 butt: The line ends are squared off and end precisely at the specified endpoint.
This is the default value.

•	 round: The line ends are rounded and end slightly over the specified endpoint.

•	 square: The line ends are squared by adding a box to the end of the line whose
width is equal to the width of the line and whose height is half of the width of
the line.

•	 Context.lineJoin: This property defines how connecting lines are joined together.
Valid values are:

•	 bevel: The joint is beveled.

•	 miter: The joint is mitered.

•	 round: The joint is rounded.

Listing 4-4 gives an illustration of the lineCap property.

Listing 4-4.  Line Caps

<!DOCTYPE html>
<html>
 <head>
 <title>The HTML5 Programmer's Reference</title>
 <style>
canvas {
 border: 1px solid #000;
}
 </style>
 </head>
 <body>
 <canvas id="myCanvas" width="200" height="200">Did You Know: Every time
 you use a browser that doesn't support HTML5, somewhere a kitten
 cries. Be nice to kittens, upgrade your browser!
 </canvas>
 <script>
// Get the context we will be using for drawing.
var myCanvas = document.getElementById('myCanvas');
var myContext = myCanvas.getContext('2d');
myContext.lineWidth = 20;
 

Chapter 4 ■ Canvas

111

// Set up an array of valid ending types.
var arrEndings = ['round', 'square', 'butt'];
var i = 0, arrEndingsLength = arrEndings.length;
 
for (i = 0; i < arrEndingsLength; i++){
 myContext.lineCap = arrEndings[i];
 myContext.beginPath();
 myContext.moveTo(50 + (i * 50), 35);
 myContext.lineTo(50 + (i * 50), 170);
 myContext.stroke();
}
 </script>
 </body>
</html>

This example uses the canvas to draw thick lines to better illustrate line caps. As always, begin by getting
the drawing context of your target canvas, and setting the lineWidth for the drawing. Then make use of an
array of line ending values and loop through the array to draw a line for each one, as shown in Figure 4-3.

Figure 4-3.  Canvas line caps

You can see that the rounded and squared caps take the line a bit over the actual end of the line.
Sometimes this can cause strange effects if your strokes need to be particularly tight. If that’s the case, just
reduce the length of the path a bit to account for the extra stroke.

Listing 4-5 illustrates the various values of the lineJoin property.

Chapter 4 ■ Canvas

112

Listing 4-5.  Line Joins

<!DOCTYPE html>
<html>
 <head>
 <title>The HTML5 Programmer's Reference</title>
 <style>
canvas {
 border: 1px solid #000;
}
 </style>
 </head>
 <body>
 <canvas id="myCanvas" width="200" height="200">Did You Know: Every time
 you use a browser that doesn't support HTML5, somewhere a kitten
 cries. Be nice to kittens, upgrade your browser!
 </canvas>
 <script>
// Get the context we will be using for drawing.
var myCanvas = document.getElementById('myCanvas');
var myContext = myCanvas.getContext('2d');
myContext.lineWidth = 20;
 
// Set up an array of valid ending types.
var arrJoins = ['round', 'miter', 'bevel'];
var i = 0, arrJoinsLength = arrJoins.length;
 
for (i = 0; i < arrJoinsLength; i++){
 myContext.lineJoin = arrJoins[i];
 myContext.beginPath();
 myContext.moveTo(55, 60 + (i * 60));
 myContext.lineTo(95, 20 + (i * 60));
 myContext.lineTo(135, 60 + (i * 60));
 myContext.stroke();
}
 </script>
 </body>
</html>

Similar to the previous example, Listing 4-5 uses an array of valid join values to provide the
structure for this demonstration. It loops through the array and draws an example of each one, as
shown in Figure 4-4.

Chapter 4 ■ Canvas

113

You can see that the round join provides a slightly rounded cap on the obtuse side of the joint, while the
miter join slightly squares the obtuse side.

Listing 4-6 shows using the stroke properties on arcs.

Listing 4-6.  Random Circle Generator

<!DOCTYPE html>
<html>
 <head>
 <title>The HTML5 Programmer's Reference</title>
 <style>
canvas {
 border: 1px solid #000;
}
 </style>
 </head>
 <body>
 <canvas id="myCanvas" width="200" height="200">Did You Know: Every time
 you use a browser that doesn't support HTML5, somewhere a kitten
 cries. Be nice to kittens, upgrade your browser!
 </canvas>
 <script>
// Get the context we will be using for drawing.
var myCanvas = document.getElementById('myCanvas');
var myContext = myCanvas.getContext('2d');
 
// Create a loop that will draw a random circle on the canvas.
var cycles = 10,
 i = 0;
for (i = 0; i < cycles; i++) {
 var randX = getRandomIntegerBetween(50, 150);
 var randY = getRandomIntegerBetween(50, 150);

Figure 4-4.  Canvas line joins

Chapter 4 ■ Canvas

114

 var randRadius = getRandomIntegerBetween(10, 100);
 myContext.beginPath();
 myContext.arc(randX, randY, randRadius, 0, 6.3);
 randStroke();
}
 
/**
 * Returns a random integer between the specified minimum and maximum values.
 * @param {number} min The lower boundary for the random number.
 * @param {number} max The upper boundary for the random number.
 * @return {number}
 */
function getRandomIntegerBetween(min, max) {
 return Math.floor(Math.random() * (max - min + 1)) + min;
}
 
/**
 * Returns a random color formatted as an rgb string.
 * @return {string}
 */
function getRandRGB() {
 var randRed = getRandomIntegerBetween(0, 255);
 var randGreen = getRandomIntegerBetween(0, 255);
 var randBlue = getRandomIntegerBetween(0, 255);
 return 'rgb(' + randRed + ', ' + randGreen + ', ' + randBlue + ')';
}
 
/**
 * Performs a randomized stroke on the current path.
 */
function randStroke() {
 myContext.lineWidth = getRandomIntegerBetween(1, 10);
 myContext.strokeStyle = getRandRGB();
 myContext.stroke();
}
 </script>
 </body>
</html>

In this example you are creating ten random circles on the canvas, each at a random location, with a
random radius, line width, and stroke color. The getRandomIntegerBetween function makes it easy to get the
numbers you need. You also have a randStroke function for stroking the current path with a random width
and color. The results are shown in Figure 4-5.

Chapter 4 ■ Canvas

115

I mentioned before that canvas can also draw rectangles. The commands are simple:

•	 Context.fillRect(x, y, width, height): Draw a rectangle at the specified
coordinates and with the specified width and height filled with the current fill style.

•	 Context.strokeRect(x, y, width, height): Draw a rectangle at the specified
coordinates and with the specified width and height stroked with the current
stroke style.

•	 Context.clearRect(x, y, width, height): Clears the specified rectangular area of
any other drawing.

Listing 4-7 illustrates drawing rectangles.

Listing 4-7.  Drawing Rectangles in a Canvas

<!DOCTYPE html>
<html>
 <head>
 <title>The HTML5 Programmer's Reference</title>
 <style>
canvas {
 border: 1px solid #000;
}
 </style>
 </head>
 <body>
 <canvas id="myCanvas" width="200" height="200">Did You Know: Every time
 you use a browser that doesn't support HTML5, somewhere a kitten
 cries. Be nice to kittens, upgrade your browser!
 </canvas>
 <script>

Figure 4-5.  The results of Listing 4-6

Chapter 4 ■ Canvas

116

// Get the context we will be using for drawing.
var myCanvas = document.getElementById('myCanvas');
var myContext = myCanvas.getContext('2d');
 
// Set a stroke style and stroke a rectangle.
myContext.strokeStyle = 'green';
myContext.strokeRect(30, 30, 50, 100);
 
// Set a fill style and fill a rectangle.
myContext.fillStyle = 'rgba(200, 100, 75, 0.5)';
myContext.fillRect(20, 20, 50, 50);
 
// Clear a rectangle.
myContext.clearRect(25, 25, 25, 25);
 </script>
 </body>
</html>

You’re not doing anything fancy with this example, just stroking, filling, and clearing rectangles.
The results look as you would expect (Figure 4-6).

Figure 4-6.  Rectangles—yay!

Gradients and Patterns
You’ve seen how canvas can set different stroke and fill styles, and I mentioned that those styles can be any
valid CSS color string (e.g. green or rgba(100, 100, 100, 0.3)). In addition, canvas can define gradient
and pattern objects that can be used to fill and stroke paths.

Chapter 4 ■ Canvas

117

Gradients
Canvas can create both linear and radial gradients:

•	 Context.createLinearGradient(x, y, x1, y1): Creates a linear gradient starting
at coordinates (x, y) and ending at coordinates (x1, y1). Returns a Gradient
object that can be used as a stroke or fill style.

•	 Context.createRadialGradient(x, y, r, x1, y1, r1): Creates a radial gradient
consisting of two circles, the first one centered at (x, y) with radius r, and the other
centered at (x1, y1) with radius r1. Returns a Gradient object that can be used as a
stroke or fill style.

•	 Gradient.addColorStop(position, color): Adds a color stop to the Gradient. The position
parameter must be between 0 and 1; it defines the relative position within the gradient of
the color stop. You can add as many color stops as you want to a particular Gradient.

Listing 4-8 shows a simple three-stop gradient being used to stroke rectangles.

Listing 4-8.  A Three-Stop Gradient

<!DOCTYPE html>
<html>
 <head>
 <title>The HTML5 Programmer's Reference</title>
 <style>
canvas {
 border: 1px solid #000;
}
 </style>
 </head>
 <body>
 <canvas id="myCanvas" width="200" height="200">Did You Know: Every time
 you use a browser that doesn't support HTML5, somewhere a kitten
 cries. Be nice to kittens, upgrade your browser!
 </canvas>
 <script>
// Get the context we will be using for drawing.
var myCanvas = document.getElementById('myCanvas');
var myContext = myCanvas.getContext('2d');
 
// Create a gradient object and add color stops.
var myGradient = myContext.createLinearGradient(0, 0, 200, 200);
myGradient.addColorStop(0, '#000');
myGradient.addColorStop(0.6, 'green');
myGradient.addColorStop(1, 'blue');
 
// Set the stroke styles and stroke some rectangles.
myContext.strokeStyle = myGradient;
myContext.lineWidth = 20;
myContext.strokeRect(10, 10, 110, 110);
myContext.strokeRect(80, 80, 110, 110);
 </script>
 </body>
</html>

Chapter 4 ■ Canvas

118

This example creates a linear gradient object and adds three color stops to it, then uses it as the stroke
style for two rectangles. The results are shown in Figure 4-7.

Figure 4-7.  A linear gradient

Patterns
Canvas also supports the concept of a pattern as a fill or stroke style:

•	 Context.createPattern(Image, repeat): Creates a Pattern object that can
be used as a fill or stroke style. The Image parameter must be any valid Image
(see “Images” section, next, for details). The repeat parameter specifies how the
pattern image is repeated.ust be one of the following:

•	 repeat: Tiles the image both horizontally and vertically.

•	 repeat-x: Repeats the image only horizontally.

•	 repeat-y: Repeats the image only vertically.

•	 no-repeat: Does not repeat the image at all.

Listing 4-9 illustrates using a simple image as a pattern.

Listing 4-9.  Creating a Pattern

<!DOCTYPE html>
<html>
 <head>
 <title>The HTML5 Programmer's Reference</title>
 <style>
canvas {
 border: 1px solid #000;
}
 </style>
 </head>

Chapter 4 ■ Canvas

119

 <body>
 <canvas id="myCanvas" width="200" height="200">Did You Know: Every time
 you use a browser that doesn't support HTML5, somewhere a kitten
 cries. Be nice to kittens, upgrade your browser!
 </canvas>
 <script>
// Get the context we will be using for drawing.
var myCanvas = document.getElementById('myCanvas');
var myContext = myCanvas.getContext('2d');
 
// Create a new image element and fill it with a kitten.
var myImage = new Image();
myImage.src = 'http://www.placekitten.com/g/50/50';
 
// We can't do anything until the image has successfully loaded.
myImage.onload = function() {
 // Create a pattern with the image and use it as the fill style.
 var myPattern = myContext.createPattern(myImage, 'repeat');
 myContext.fillStyle = myPattern;
 myContext.fillRect(5, 5, 150, 150);
};
 </script>
 </body>
</html>

This example creates a new image element and sets its URL to a placeholder image service. You have to
wait for the image to finish loading before continuing, so you attach an onload event handler to it, in which
you create the pattern and use it as the fill style for a rectangle.

The results look as cute as you would expect, as shown in Figure 4-8.

Figure 4-8.  A kitten as a pattern

http://www.placekitten.com/g/50/50

Chapter 4 ■ Canvas

120

Images
The canvas element can also load and manipulate images. Once an image is loaded into a canvas, you can
also draw on it with the drawing commands.

The canvas element can use these sources for images:

•	 an img element,

•	 a video element, and

•	 another canvas element.

Canvas has one method for drawing images, but it can take many different parameters and thus has
multiple capabilities:

•	 Context.drawImage(CanvasImageSource, x, y): Draw the image from
CanvasImageSource at the coordinates (x, y).

•	 Context.drawImage(CanvasImageSource, x, y, width, height): Draw the image
at coordinates (x, y), scaling the image to the specified width and height.

•	 Context.drawImage(CanvasImageSource, sliceX, sliceY, sliceWidth,
sliceHeight, x, y, width, height): Slice the area from the image specified by
the rectangle starting at (sliceX, sliceY) with sliceWidth and sliceHeight, and
then draw that slice on the canvas at (x, y), scaling the slice to the specified width
and height.

Listing 4-10 demonstrates the basic functionality of drawImage.

Listing 4-10.  Drawing an Image on a Canvas

<!DOCTYPE html>
<html>
 <head>
 <title>The HTML5 Programmer's Reference</title>
 <style>
canvas {
 border: 1px solid #000;
}
 </style>
 </head>
 <body>
 <canvas id="myCanvas" width="200" height="200">Did You Know: Every time
 you use a browser that doesn't support HTML5, somewhere a kitten
 cries. Be nice to kittens, upgrade your browser!
 </canvas>
 <script>
// Get the context we will be using for drawing.
var myCanvas = document.getElementById('myCanvas');
var myContext = myCanvas.getContext('2d');
 

Chapter 4 ■ Canvas

121

// Create a new image element and fill it with a kitten.
var myImage = new Image();
myImage.src = 'http://www.placekitten.com/g/150/150';
 
// We can't do anything until the image has successfully loaded.
myImage.onload = function() {
 myContext.drawImage(myImage, 25, 25);
};
 </script>
 </body>
</html>

In this example all you’re doing is creating a new img element of a placeholder image. Once the image is
loaded, draw it on your canvas, as shown in Figure 4-9.

Figure 4-9.  An image drawn in a canvas

Listing 4-11 demonstrates scaling an image on a canvas.

Listing 4-11.  Image Scaling with Canvas

<!DOCTYPE html>
<html>
 <head>
 <title>The HTML5 Programmer's Reference</title>
 <style>
canvas {
 border: 1px solid #000;
}
 </style>
 </head>

http://www.placekitten.com/g/150/150

Chapter 4 ■ Canvas

122

 <body>
 <canvas id="myCanvas" width="200" height="200">Did You Know: Every time
 you use a browser that doesn't support HTML5, somewhere a kitten
 cries. Be nice to kittens, upgrade your browser!
 </canvas>
 <script>
// Get the context we will be using for drawing.
var myCanvas = document.getElementById('myCanvas');
var myContext = myCanvas.getContext('2d');
 
// Create a new image element and fill it with a kitten.
var myImage = new Image();
myImage.src = 'http://www.placekitten.com/g/50/50';
 
// We can't do anything until the image has successfully loaded.
myImage.onload = function() {
 myContext.drawImage(myImage, 25, 25, 50, 150);
};
 </script>
 </body>
</html>

This example gives you a 100px by 100px placeholder, but when you draw it on the canvas, you scale it
to be 50px × 150px, as shown in Figure 4-10.

Figure 4-10.  Scaling an image in canvas

Finally, Listing 4-12 shows slicing a larger image and scaling the slice on the canvas.

http://www.placekitten.com/g/50/50

Chapter 4 ■ Canvas

123

Listing 4-12.  Slicing and Scaling an Image on canvas

<!DOCTYPE html>
<html>
 <head>
 <title>The HTML5 Programmer's Reference</title>
 <style>
canvas {
 border: 1px solid #000;
}
 </style>
 </head>
 <body>
 <canvas id="myCanvas" width="200" height="200">Did You Know: Every time
 you use a browser that doesn't support HTML5, somewhere a kitten
 cries. Be nice to kittens, upgrade your browser!
 </canvas>
 <script>
// Get the context we will be using for drawing.
var myCanvas = document.getElementById('myCanvas');
var myContext = myCanvas.getContext('2d');
 
// Create a new image element and fill it with a kitten.
var myImage = new Image();
myImage.src = 'http://www.placekitten.com/g/300/300';
 
// We can't do anything until the image has successfully loaded.
myImage.onload = function() {
 myContext.drawImage(myImage, 25, 25, 150, 150, 0, 0, 150, 50);
};
 </script>
 </body>
</html>

Here you are loading a 300px × 300px placeholder image, but slicing only a 75px × 75px portion of it
starting at (25, 25). Then you’re taking that slice and rendering it in the canvas, scaling it to be 150px × 50px.
The result is rather distorted, as Figure 4-11 shows.

http://www.placekitten.com/g/300/300

Chapter 4 ■ Canvas

124

Saving Canvas Contents
Once you have a drawing on a canvas, you might want to save it somehow. This would involve grabbing the
image data and transmitting it to a server from which it can be reconstituted and displayed. The canvas API
does provide a method for saving a rendered bitmap:

•	 Context.toDataUrl(opt_type, opt_quality): Translates the rendered bitmap to
a data URI. Data URIs are a way of embedding data directly into web pages and are
defined in RFC 2397, which you can read at http://tools.ietf.org/html/rfc2397.
Valid types include image/png (the default), image/jpeg, and (for Chrome and
Chromium-based browsers, image/webp). If the type is image/jpeg or image/webp,
an optional second parameter of between 0 and 1 can be provided to indicate the
quality. This method returns the rendered bitmap encoded as a data URI, which you
can then transmit back to the server, or even use elsewhere in the same page.

Note that if you have loaded an image into the canvas that is from a different origin than the hosting
page, or if you have loaded an image from your hard drive into the canvas, this method will throw a security
error. This is done to prevent information leakage via careless or malicious scripts.

Text
In addition to drawing and images, the canvas element can render text. The methods and properties for text
rendering are as follows:

•	 Context.fillText(textString, x, y, opt_maxWidth): Fills the textString on
the canvas starting at (x, y) with the current fill style. If the optional maxWidth
parameter is specified, and the rendered text would exceed that width, the browser
will attempt to render the text in such a way as to fit it within the specified width
(e.g., use a condensed font face if available, use a smaller font size, etc.).

•	 Context.measureText(textString): Measures the width that would result if
the specified textString were to be rendered using the current style. Returns a
TextMetrics object, which has a width property that contains the value.

Figure 4-11.  Poor kitty

http://tools.ietf.org/html/rfc2397

Chapter 4 ■ Canvas

125

•	 Context.strokeText(textString, x, y, opt_maxWidth): Strokes the textString
on the canvas starting at (x, y) with the current stroke style. If the optional
maxWidth parameter is specified, and the rendered text would exceed that width, the
browser will attempt to render the text in such a way as to fit it within the specified
width (e.g., use a condensed font face if available, use a smaller font size, etc.).

•	 Context.font: Sets the font that the text will be rendered in. Any valid CSS font string
is permitted.

•	 Context.textAlign: Aligns the text as specified. Valid values are:

•	 left: Left-aligns the text.

•	 right: Right-aligns the text.

•	 center: Centers the text.

•	 start: Aligns the text at the starting side for the current locale (i.e., left for left-
to-right languages and right for right-to-left languages). This is the default value.

•	 end: Aligns the text at the ending side for the current locale.

•	 Context.textBaseline: Sets the baseline for the text as specified. Valid values are:

•	 alphabetic: Uses the normal alphabetic baseline for the text. This is the
default value.

•	 bottom: The baseline is the bottom of the em square.

•	 hanging: Uses the hanging baseline for the text.

•	 ideographic: Uses the bottom of the body of characters (assuming they
protrude beneath the alphabetic baseline).

•	 middle: The text baseline is the middle of the em square.

•	 top: The text baseline is the top of the em square.

Listing 4-13 demonstrates how easy it is to draw text on a canvas.

Listing 4-13.  Rendering Text on Canvas

<!DOCTYPE html>
<html>
 <head>
 <title>The HTML5 Programmer's Reference</title>
 <style>
canvas {
 border: 1px solid #000;
}
 </style>
 </head>
 <body>
 <canvas id="myCanvas" width="200" height="200">Did You Know: Every time
 you use a browser that doesn't support HTML5, somewhere a kitten
 cries. Be nice to kittens, upgrade your browser!
 </canvas>

Chapter 4 ■ Canvas

126

 <script>
// Get the context we will be using for drawing.
var myCanvas = document.getElementById('myCanvas');
var myContext = myCanvas.getContext('2d');
 
// Draw some text!
myContext.font = '35px sans-serif';
myContext.strokeStyle = '#000';
myContext.strokeText('Hello World', 0, 40);
myContext.textAlign = 'center';
myContext.fillStyle = 'rgba(200, 50, 25, 0.8)';
myContext.fillText('HTML5', 100, 100);
 </script>
 </body>
</html>

This example both strokes and fills some text on the canvas. The font size is large enough to reveal the
actual stroke around the edges of the letters, as shown in Figure 4-12.

Figure 4-12.  Text rendered on a canvas

Shadows
The canvas element can also cast shadows based on the elements drawn upon it. This is most often used
with text, but it also works with shapes and paths. If you're already familiar with CSS drop shadows, then the
parameters for canvas shadows will be very familiar:

•	 Context.shadowBlur: The size of the blurring effect. The default value is 0.

•	 Context.shadowColor: The color of the shadow. Can be any valid CSS color string.
The default is 'rgba(0, 0, 0, 0)'.

•	 Context.shadowOffsetX: The x-offset of the shadow. The default value is 0.

•	 Context.shadowOffsetY: The y-offset of the shadow. The default value is 0.

Chapter 4 ■ Canvas

127

Listing 4-14 demonstrates casting drop shadows on some text.

Listing 4-14.  Drop Shadows

<!DOCTYPE html>
<html>
 <head>
 <title>The HTML5 Programmer's Reference</title>
 <style>
canvas {
 border: 1px solid #000;
}
 </style>
 </head>
 <body>
 <canvas id="myCanvas" width="200" height="200">Did You Know: Every time
 you use a browser that doesn't support HTML5, somewhere a kitten
 cries. Be nice to kittens, upgrade your browser!
 </canvas>
 <script>
// Get the context we will be using for drawing.
var myCanvas = document.getElementById('myCanvas');
var myContext = myCanvas.getContext('2d');
 
// Add some shadow!
myContext.shadowOffsetX = 2;
myContext.shadowOffsetY = 2;
myContext.shadowBlur = 2;
myContext.shadowColor = "rgba(0, 0, 0, 0.8)";
 
// Draw some text!
myContext.font = '35px sans-serif';
myContext.strokeStyle = '#000';
myContext.strokeText('Hello World', 0, 40);
myContext.textAlign = 'center';
myContext.fillStyle = 'rgba(200, 50, 25, 0.8)';
myContext.shadowOffsetX = 4;
myContext.shadowOffsetY = 4;
myContext.fillText('HTML5', 100, 100);
 </script>
 </body>
</html>

This example simply adds drop shadows to the code in Listing 4-13. It adds two different shadow offsets,
one quite close and then one farther away, as shown in Figure 4-13.

Chapter 4 ■ Canvas

128

Saving Drawing State
The canvas API provides a way to store some information about the current state of the drawing context.
The information is stored in a stack, and you can push and pull states from the stack as needed. The drawing
context properties that can be stored are as follows:

•	 The current value for globalAlpha

•	 The current strokeStyle and fillStyle

•	 The current line settings in lineCap, lineJoin, lineWidth, and miterLimit

•	 The current shadow settings in shadowBlur, shadowColor, shadowOffsetX, and
shadowOffsetY

•	 The current compositing operation set in globalCompositeOperation

•	 The current clipping path

•	 Any transformations that have been applied to the drawing context

Together these values all make up the drawing state. The methods for saving and restoring state are simple:

•	 Context.save(): Takes a snapshot of the current drawing state and save the values in
the stack.

•	 Context.restore(): Removes the most recently stored drawing state from the stack
and restores it to the context.

The drawing state is saved in a first-in, first-out stack. The save and restore methods are the only two
methods for accessing the stack and the states stored within.

Listing 4-15 provides a somewhat contrived demonstration of saving and restoring the drawing state.

Figure 4-13.  Shadows rendered on canvas

Chapter 4 ■ Canvas

129

Listing 4-15.  Saving and Restoring Drawing States

<!DOCTYPE html>
<html>
 <head>
 <title>The HTML5 Programmer's Reference</title>
 <style>
canvas {
 border: 1px solid #000;
}
 </style>
 </head>
 <body>
 <canvas id="myCanvas" width="200" height="210">Did You Know: Every time
 you use a browser that doesn't support HTML5, somewhere a kitten
 cries. Be nice to kittens, upgrade your browser!
 </canvas>
 <script>
// Get the context we will be using for drawing.
var myCanvas = document.getElementById('myCanvas');
var myContext = myCanvas.getContext('2d');
 
// Create an array of colors to load into the stack.
var allTheColors = ['#ff0000', '#ff8800', '#ffff00', '#00ff00', '#0000ff',
 '#4b0082', '#8f00ff'];
 
// Load the colors and stroke style into the stack.
for (var i = 0; i < allTheColors.length; i++) {
 myContext.strokeStyle = allTheColors[i];
 myContext.lineWidth = 30;
 myContext.save();
}
 
// Restore colors from the stack and draw.
for (var i = 0; i < 8; i++) {
 myContext.restore();
 myContext.beginPath();
 myContext.moveTo(0, ((30 * i) + 15));
 myContext.lineTo(200, ((30 * i) + 15));
 myContext.stroke();
}
 </script>
 </body>
</html>

This example programmatically creates a set of drawing states with different colors and a specific line
width. Then it restores each state one at a time and draws a line.

You’ll notice the y-coordinate for each line is based on the loop index. Each line is stroked 30 units wide:
15 units above the line and 15 units below the line. If you just drew the first line from (0, 0) to (200, 0)
and then stroked it, you would not see the top 15 units of the stroke. Shifting each line down by 15 units
assures that you will see the full stroke width of the first line and each subsequent line.

Chapter 4 ■ Canvas

130

Compositing
In all of your canvas examples so far, when you have drawn multiple items on the canvas they have just
layered one on top of the other. The canvas API provides the ability to composite items as they are drawn,
which gives you the ability to do some fairly sophisticated manipulations.

Whenever you draw a new element on the canvas, the compositor looks at what is already present on
the canvas. This current content is referred to as the destination. The new content is referred to as the source.
Then the compositor draws the source in reference to the destination according to the currently active
compositor.

Compositors are specified using the globalCompositeOperation property of the current context. The
available compositors are as follows:

•	 source-over: Draws source content over destination content. This is the default
compositor.

•	 source-atop: Source content is only drawn where it overlaps the destination content.

•	 source-in: Source content is only drawn where both source and destination content
overlap. Everything else is made transparent.

•	 source-out: Source content is only drawn where it does not overlap destination
content. Everything else is made transparent.

•	 destination-over: Source content is drawn underneath destination content.

•	 destination-atop: Source content is only kept where it overlaps the destination
content. The destination content is drawn underneath the source. Everything else is
made transparent.

•	 destination-in: Source content is only kept where it overlaps with the destination
content. Everything else is made transparent.

•	 destination-out: Source content is only kept where it does not overlap with the
destination content. Everything else is made transparent.

•	 copy: Only draws the destination content. Everything else is made transparent.

•	 lighter: Where destination content and source content overlap, the color is
determined by adding the values of the two contents.

•	 xor: The destination content is rendered normally except where it overlaps with
source content, in which case both are rendered transparent.

To specify a compositor, simply set Context.globalCompositeOperation to the desired value:

var myCanvas = document.getElementById('myCanvas');
var myContext = myCanvas.getContext('2d');
myContext.globalCompositeOperation = 'lighter';

Listing 4-16 provides a way to view the different compositors in action.

Chapter 4 ■ Canvas

131

Listing 4-16.  Canvas Compositor Demonstration

<!DOCTYPE html>
<html>
 <head>
 <title>The HTML5 Programmer's Reference</title>
 <style>
canvas {
 border: 1px solid #000;
}
 </style>
 </head>
 <body>
 <canvas id="myCanvas" width="200" height="200">Did You Know: Every time
 you use a browser that doesn't support HTML5, somewhere a kitten
 cries. Be nice to kittens, upgrade your browser!
 </canvas>

 <select id="compositor">
 <option value="source-over" selected>source-over</option>
 <option value="destination-atop">destination-atop</option>
 <option value="destination-in">destination-in</option>
 <option value="destination-out">destination-out</option>
 <option value="destination-over">destination-over</option>
 <option value="source-atop">source-atop</option>
 <option value="source-in">source-in</option>
 <option value="source-out">source-out</option>
 <option value="copy">copy</option>
 <option value="lighter">lighter</option>
 <option value="xor">xor</option>
 </select>
 <button id="toggle-triangle">Toggle Triangle</button>
 <script>
// Get the context we will be using for drawing.
var myCanvas = document.getElementById('myCanvas');
var myContext = myCanvas.getContext('2d');
 
// Get references to the form elements.
var mySelector = document.getElementById('compositor');
var toggleTriangle = document.getElementById('toggle-triangle');
 
/**
 * Draws the example shapes with the specified compositor.
 */
function drawExample() {
 // First set the compositing to source-over so we can guarantee drawing the
 // first shape.
 myContext.globalCompositeOperation = 'source-over';
 myContext.clearRect(0, 0, 200, 200);
 myContext.beginPath();
 

Chapter 4 ■ Canvas

132

 // Draw the circle first.
 myContext.arc(60, 100, 40, 0, 7);
 myContext.fillStyle = '#ff0000';
 myContext.fill();
 
 // Change the compositing to the chosen value.
 myContext.globalCompositeOperation = mySelector.value;
 
 // Draw a rectangle on top of the circle.
 myContext.beginPath();
 myContext.fillStyle = '#0000ff';
 myContext.rect(60, 60, 80, 80);
 myContext.fill();
}
 
/**
 * Whether or not to show the triangle.
 * @type {boolean}
 */
var showTriangle = false;
 
/**
 * Shows or hides the triangle.
 */
function showHideTriangle() {
 if (showTriangle) {
 myContext.fillStyle = '#00ff00';
 myContext.beginPath();
 myContext.moveTo(40, 80);
 myContext.lineTo(170, 100);
 myContext.lineTo(40, 120);
 myContext.lineTo(40, 80);
 myContext.fill();
 } else {
 drawExample();
 }
}
 
// Draw the example for the first time.
drawExample();
 
// Add a change event handler to the selector to redraw the example with the
// chosen compositor.
mySelector.addEventListener('change', function() {
 showTriangle = false;
 drawExample();
}, false);
 

Chapter 4 ■ Canvas

133

// Add a click event handler to the toggle button to show or hide the triangle.
toggleTriangle.addEventListener('click', function() {
 showTriangle = showTriangle ? false : true;
 showHideTriangle();
}, false);
 </script>
 </body>
</html>

This example has created a simple select field with all of the available compositors to choose from.
When you choose a compositor, shapes will redraw. The first shape (the red circle) will always draw with
source-over. The second shape (the blue square) will draw with the newly chosen compositor. You can
toggle the green triangle on and off to see how it will composite with the result of the first composition.

The compositors apply to anything that can be drawn on the canvas, even images, as demonstrated
in Listing 4-17.

Listing 4-17.  Compositing a Photograph

<!DOCTYPE html>
<html>
 <head>
 <title>The HTML5 Programmer's Reference</title>
 <style>
canvas {
 border: 1px solid #000;
}
 </style>
 </head>
 <body>
 <canvas id="myCanvas" width="200" height="200">Did You Know: Every time
 you use a browser that doesn't support HTML5, somewhere a kitten
 cries. Be nice to kittens, upgrade your browser!
 </canvas>
 <script>
// Get the context we will be using for drawing.
var myCanvas = document.getElementById('myCanvas');
var myContext = myCanvas.getContext('2d');
 
// Create a new image element and fill it with a kitten.
var myImage = new Image();
myImage.src = 'http://www.placekitten.com/g/150/150';
 
// We can't do anything until the image has successfully loaded.
myImage.onload = function() {
 // Create a simple gray linear gradient and set it to the fill style.
 var myGradient = myContext.createLinearGradient(25, 25, 25, 175);
 myGradient.addColorStop(0.1, '#000');
 myGradient.addColorStop(1, 'rgba(200, 200, 200, 1)');
 myContext.fillStyle = myGradient;
 

http://www.placekitten.com/g/150/150

Chapter 4 ■ Canvas

134

 // Draw a square that almost fills the region where the image will be rendered
 // and fill it with the gradient.
 myContext.beginPath();
 myContext.rect(30, 30, 140, 140);
 myContext.fill();
 
 // Set the compositor to lighter.
 myContext.globalCompositeOperation = 'lighter';
 
 // Draw the kitten.
 myContext.drawImage(myImage, 25, 25);
};
 </script>
 </body>
</html>

This example creates a simple linear gradient and uses it as the fill style for a square, then composites the
image of a kitten on top of it using the lighter compositor. An example of the results is shown in Figure 4-14.

Figure 4-14.  The results of compositing a gradient with an image

Using compositors with gradients, patterns, and images, you can create some very complex effects with
your canvas drawings.

Clipping
You can limit the drawing area of the canvas to any closed path that you have defined. This is referred to as
clipping. You create a clipping area by first drawing a path on the canvas, and then calling the Context.clip()
method, which will limit drawing to that area. You can still stroke and fill the path, or you can create new
paths or other drawings. Visibility will be limited to the clipping area.

There are three ways to reset the clipping area:

•	 You can define a path that encompasses the entire canvas, and then clip to that.

•	 You can restore to a previous drawing state with a different clipping area.

•	 You can reset the entire canvas by resizing it.

Chapter 4 ■ Canvas

135

Listing 4-18 demonstrates creating a clipping area to limit drawing.

Listing 4-18.  Creating a Clipping Area

<!DOCTYPE html>
<html>
 <head>
 <title>The HTML5 Programmer's Reference</title>
 <style>
canvas {
 border: 1px solid #000;
}
 </style>
 </head>
 <body>
 <canvas id="myCanvas" width="200" height="200">Did You Know: Every time
 you use a browser that doesn't support HTML5, somewhere a kitten
 cries. Be nice to kittens, upgrade your browser!
 </canvas>
 <script>
// Get the context we will be using for drawing.
var myCanvas = document.getElementById('myCanvas');
var myContext = myCanvas.getContext('2d');
 
// Create a square clipping area.
myContext.beginPath();
myContext.rect(50, 50, 50, 50);
myContext.clip();
 
// Draw a large circle in the canvas and fill it. Only the portion within
// the clipping area will be visible. myContext.beginPath();
myContext.arc(75, 75, 100, 0, 7);
myContext.fillStyle = 'red';
myContext.fill();
 </script>
 </body>
</html>

This simple example first creates a square path using the rect method, and then sets it as the clipping
area. Then it draws a large circle and fills it with red, but the only area that is visible is within the clipping
area, as shown in Figure 4-15.

Chapter 4 ■ Canvas

136

Transformations
The canvas API includes a set of methods for changing the way drawings are rendered upon the canvas:
rotating them, scaling them, or even arbitrary changes like reflection or shearing. These changes are referred
to as transformations. When a transformation is set, further drawings will be modified in the specified way.
The canvas API has a set of shorthand methods for a few common transformations:

•	 Context.translate(translateX, translateY): Moves the origin of the canvas
from its current position to the new x position translateX units from the current
origin and the new y position translateY units from the current origin.

•	 Context.rotate(angle): Rotates the canvas around the origin by the specified angle
in radians.

•	 Context.scale (scaleX, scaleY): Scales the canvas units by scaleX horizontally
and scaleY vertically.

In addition, you can specify an arbitrary transformation matrix using the transform method:

•	 Context.transform(scaleX, skewX, skewY, scaleY, translateX, translateY):
Transform the canvas by applying a transformation matrix specified as:

scaleX skewY translateX

scaleX skewY translateX .

0 0 1

é

ë

ê
ê
ê

ù

û

ú
ú
ú

The rotate, translate, and scale shorthand methods all map to transformation matrices and thus
calls to the transform method. For example, Context.translate(translateX, translateY) maps to
Context.transform(1, 0, 0, 1, translateX, translateY) and Context.scale(scaleX, scaleY) maps
to Context.transform(scaleX, 0, 0, scaleY, 0, 0).

■■ Note  If you’re a linear algebra buff, all canvas transforms are Affine transforms.

Figure 4-15.  The effects of clipping

Chapter 4 ■ Canvas

137

The important thing to remember about canvas transformations is that they affect the entire canvas—
once a transformation has been implemented, it affects everything that is drawn from that point on.
Canvas transformations also “stack” in that when you apply two different transforms, the second will base
its results on the first. This can lead to some unexpected results if you don’t carefully manage the active
transformations and reset them as needed. You can reset the transformation in one of three ways:

•	 Specify a special transform called the “unit transform matrix,” which has no
effect on drawing. You can specify this matrix using the transform method:
Context.transform(1, 0, 0, 1, 0, 0).

•	 Restore a previously saved drawing state, which will set the transform to the one
for that state.

•	 Reset the entire canvas by resizing it.

Take a look at some simple examples before exploring some of the more complex transformations.
Listing 4-19 demonstrates a simple translate transformation:

Listing 4-19.  A Simple Translate Transformation

<!DOCTYPE html>
<html>
 <head>
 <title>The HTML5 Programmer's Reference</title>
 <style>
canvas {
 border: 1px solid #000;
}
 </style>
 </head>
 <body>
 <canvas id="myCanvas" width="200" height="200">Did You Know: Every time
 you use a browser that doesn't support HTML5, somewhere a kitten
 cries. Be nice to kittens, upgrade your browser!
 </canvas>
 <script>
// Get the context we will be using for drawing.
var myCanvas = document.getElementById('myCanvas');
var myContext = myCanvas.getContext('2d');
 
/**
 * Draws a 100x100 square at (0, 0) in the specified color. Indicates the origin
 * corner with a small black square.
 * @param {string} color A valid CSS color string.
 */
function drawSquare(color) {
 myContext.fillStyle = color;
 myContext.beginPath();
 myContext.rect(0, 0, 100, 100);
 myContext.fill();
 myContext.fillStyle = '#000';
 myContext.beginPath();

Chapter 4 ■ Canvas

138

 myContext.rect(0, 0, 5, 5);
 myContext.fill();
}
 
// Draw a square, fill it with red.
drawSquare('rgba(255, 0, 0, 0.5)');
 
// Translate the canvas.
myContext.translate(20, 40);
 
// Draw the same square again, fill it with blue.
drawSquare('rgba(0, 0, 255, 0.5)');
 
// Translate the canvas again.
myContext.translate(50, -20);
 
// Draw the same square again, fill it with green.
drawSquare('rgba(0, 255, 0, 0.5)');
 
 </script>
 </body>
</html>

This example (which will form the basis of the next few examples) creates a simple method for drawing
a square at the origin of the canvas. The function fills the square with the specified color (or you could pass
in any valid fillStyle). To help keep track of the origin, the function also creates a small back notch in the
corner of the square at the origin.

First it draws a square at the origin and colors it red. Then it translates the canvas, and draw a blue
square. Finally, it translates the canvas again and draws a green square. The results are shown in Figure 4-16.

Figure 4-16.  The results of Listing 4-18

As you can see, the translation causes the origin of the canvas to move as specified.

Chapter 4 ■ Canvas

139

Next, Listing 4-20 builds on this example by applying a rotation as well as a transformation:

Listing 4-20.  Stacking a Rotation on a Translation

<!DOCTYPE html>
<html>
 <head>
 <title>The HTML5 Programmer's Reference</title>
 <style>
canvas {
 border: 1px solid #000;
}
 </style>
 </head>
 <body>
 <canvas id="myCanvas" width="200" height="200">Did You Know: Every time
 you use a browser that doesn't support HTML5, somewhere a kitten
 cries. Be nice to kittens, upgrade your browser!
 </canvas>
 <script>
// Get the context we will be using for drawing.
var myCanvas = document.getElementById('myCanvas');
var myContext = myCanvas.getContext('2d');
 
/**
 * Draws a 100x100 square at (0, 0) in the specified color. Indicates the origin
 * corner with a small black square.
 * @param {string} color A valid CSS color string.
 */
function drawSquare(color) {
 myContext.fillStyle = color;
 myContext.beginPath();
 myContext.rect(0, 0, 100, 100);
 myContext.fill();
 myContext.fillStyle = '#000';
 myContext.beginPath();
 myContext.rect(0, 0, 5, 5);
 myContext.fill();
}
 
// Draw a square, fill it with red.
drawSquare('rgba(255, 0, 0, 0.5)');
 
// Translate the canvas.
myContext.translate(20, 40);
 
// Rotate the canvas 45 degrees (about 0.785 radians).
myContext.rotate(0.785);
 
// Draw the same square again, fill it with blue.
drawSquare('rgba(0, 0, 255, 0.5)');
 

Chapter 4 ■ Canvas

140

// Translate the canvas again.
myContext.translate(50, -20);
 
// Rotate the canvas 45 degrees (about 0.785 radians).
myContext.rotate(0.785);
 
// Draw the same square again, fill it with green.
drawSquare('rgba(0, 255, 0, 0.5)');
 </script>
 </body>
</html>

It uses the same translations as before, but adds a rotation as well before drawing the new squares.
The results are shown in Figure 4-17.

Figure 4-17.  Rotations and translations

Here you can see the same translations, along with the rotations. You can see each square is rotated
around its origin corner.

Finally, you can look at some scale transformations in Listing 4-21.

Listing 4-21.  Scale and Translate Transformations

<!DOCTYPE html>
<html>
 <head>
 <title>The HTML5 Programmer's Reference</title>
 <style>
canvas {
 border: 1px solid #000;
}
 </style>
 </head>

Chapter 4 ■ Canvas

141

 <body>
 <canvas id="myCanvas" width="200" height="200">Did You Know: Every time
 you use a browser that doesn't support HTML5, somewhere a kitten
 cries. Be nice to kittens, upgrade your browser!
 </canvas>
 <script>
// Get the context we will be using for drawing.
var myCanvas = document.getElementById('myCanvas');
var myContext = myCanvas.getContext('2d');
 
/**
 * Draws a 100x100 square at (0, 0) in the specified color. Indicates the origin
 * corner with a small black square.
 * @param {string} color A valid CSS color string.
 */
function drawSquare(color) {
 myContext.fillStyle = color;
 myContext.beginPath();
 myContext.rect(0, 0, 100, 100);
 myContext.fill();
 myContext.fillStyle = '#000';
 myContext.beginPath();
 myContext.rect(0, 0, 5, 5);
 myContext.fill();
}
 
// Draw a square, fill it with red.
drawSquare('rgba(255, 0, 0, 0.5)');
 
// Translate the canvas.
myContext.translate(20, 40);
 
// Scale the canvas.
myContext.scale(1, 1.5);
 
// Draw the same square again, fill it with blue.
drawSquare('rgba(0, 0, 255, 0.5)');
 
// Translate the canvas again.
myContext.translate(50, -20);
 
// Scale the canvas again.
myContext.scale(1.5, 1);
 
// Draw the same square again, fill it with green.
drawSquare('rgba(0, 255, 0, 0.5)');
 </script>
 </body>
</html>

Chapter 4 ■ Canvas

142

Again this example builds on Listing 4-19 and uses the same function and translations. This time it adds
in a scale translation before drawing the second and third squares, as shown in Figure 4-18.

Figure 4-18.  Scaling and translating

If you look closely, you can see that the origin marker for the blue square is slightly elongated as per the
scale transformation you applied to it. And if you compare the origin marker for the green square with that of
the red square, you’ll see that the former is twice the size of the latter.

For a more practical example, consider creating dynamic reflections of elements. It’s quite easy with
transforms, as demonstrated in Listing 4-22.

Listing 4-22.  A Simple Text Reflection

<!DOCTYPE html>
<html>
 <head>
 <title>The HTML5 Programmer's Reference</title>
 <style>
canvas {
 border: 1px solid #000;
}
 </style>
 </head>
 <body>
 <canvas id="myCanvas" width="200" height="200">Did You Know: Every time
 you use a browser that doesn't support HTML5, somewhere a kitten
 cries. Be nice to kittens, upgrade your browser!
 </canvas>
 <script>
// Get the context we will be using for drawing.
var myCanvas = document.getElementById('myCanvas');
var myContext = myCanvas.getContext('2d');
 
// Draw some text!
myContext.font = '35px sans-serif';
myContext.fillStyle = '#000';
myContext.fillText('Hello World', 10, 100);
 

Chapter 4 ■ Canvas

143

// Set a reflection transform.
myContext.setTransform(1, 0, 0, -1, 0, 0);
 
// Set a slight scale transform.
myContext.scale(1, 1.2);
 
// Draw the text again with the transforms in place and a light gray fill style.
myContext.fillStyle = 'rgba(100, 100, 100, 0.4)';
myContext.fillText('Hello World', 10, -85);
 </script>
 </body>
</html>

This example draws some text, then applies a reflection transform and a scale transform to the canvas,
and then redraws the same text in a light gray. The result is shown in Figure 4-19.

Figure 4-19.  Text reflection

You could even use a gradient as the fill style for the reflected text, resulting in a shadow that fades from
top to bottom

Animation
The canvas API doesn’t offer any native support for animation. It has no methods for incrementally
animating its contents, and as you have seen it provides no way to reference the contents once they have
been rendered. However, the drawing tools that canvas does provide are so low-level and efficient that you
can create animations with canvas by literally drawing each animation frame separately.

As you will see in “Animation Timing” in Chapter 5, most JavaScript-based animation is done in
timed loops, and animating with canvas is no different. In fact, to simplify the animation examples, you
will use the DrawCycle constructor you built in Listing 5-5. That will allow you to create a draw cycle
manager that uses requestAnimationFrame for maximizing the efficiency of your animations. For details on
requestAnimationFrame, see “Animation Timing” in Chapter 5.

To animate with canvas you must draw each frame of your animation separately, clearing the canvas
(and saving/restoring animation state if needed) between frames. Listing 4-23 illustrates this cycle.

http://dx.doi.org/10.1007/9781430263678_5
http://dx.doi.org/10.1007/9781430263678_5

Chapter 4 ■ Canvas

144

Listing 4-23.  Animating with Canvas

<!DOCTYPE html>
<html>
 <head>
 <title>The HTML5 Programmer's Reference</title>
 <style>
canvas {
 border: 1px solid #000;
}
 </style>
 </head>
 <body>
 <canvas id="myCanvas" width="500" height="500">Did You Know: Every time
 you use a browser that doesn't support HTML5, somewhere a kitten
 cries. Be nice to kittens, upgrade your browser!
 </canvas>
 <script src="drawcycle.js"></script>
 <script>
// Get the context we will be using for drawing.
var myCanvas = document.getElementById('myCanvas');
var myContext = myCanvas.getContext('2d');
 
// Set the stroke style.
myContext.strokeStyle = '#000';
 
// Create a new draw cycle object that we can use for our animation.
var myDrawCycle = new DrawCycle();
 
/**
 * Draws a circle of specified radius at the specified coordinates.
 * @param {number} x The x-coordinate of the center of the circle.
 * @param {number} y The y-coordinate of the center of the circle.
 * @param {number} rad The radius of the circle.
 */
function drawCircle(x, y, rad) {
 myContext.beginPath();
 myContext.moveTo(x + rad, y);
 myContext.arc(x, y, rad, 0, 7);
 myContext.stroke();
}
 
// Counter for the x-coordinate.
var x = 0;
 
/**
 * Animates a circle from one corner of the canvas to another. Used as an
 * animation function for the draw cycle object.
 */

Chapter 4 ■ Canvas

145

function animateCircle() {
 if (x < 500) {
 myContext.clearRect(0, 0, 500, 500);
 drawCircle(x, x, 10);
 x++;
 } else {
 myDrawCycle.stopAnimation();
 }
}
 
// Add the animation function to the draw cycle object.
myDrawCycle.addAnimation(animateCircle);
 
// Begin the animation.
myDrawCycle.startAnimation();
 </script>
 </body>
</html>

As mentioned, you’ll load your draw cycle constructor before doing any animation. For details on how
the draw cycle constructor works, see Chapter 5. This example creates a new instance of the draw cycle, and
uses it to manage your animation timing for you.

Start by creating a function that draws a circle at a specified location. Then create your actual animation
function that draws the circle in a new location with each cycle. You then register that animation function
with the draw cycle, and start the animation. This example simply animates a circle from one corner of the
canvas to the other.

Because you have to draw each frame separately on the canvas, and because the timing of animation
frames is so fast, you will quickly run up against efficiency limits. To do complex animations you’ll
typically need a framework to help you manage efficiency, provide basic animation functions like physics
functions for movement, bouncing, and friction, and to just make it easier to create and manage individual
animations.

Interaction
Since canvas is an element in the DOM, users can interact with it just like any other DOM element. A canvas
element will dispatch all of the usual DOM events like mouse events and touch events; you can attach event
handlers just as with any other element. However, canvas does not dispatch any new events, nor does it
provide a way to access anything drawn within.

Using mouse events, it’s very easy to create an application that enables users to draw on a canvas, as
shown in Listing 4-24.

http://dx.doi.org/10.1007/9781430263678_5

Chapter 4 ■ Canvas

146

Listing 4-24.  Drawing on a Canvas with the Mouse

<!DOCTYPE html>
<html>
 <head>
 <title>The HTML5 Programmer's Reference</title>
 <style>
canvas {
 border: 1px solid #000;
 cursor: crosshair;
}
 </style>
 </head>
 <body>
 <canvas id="myCanvas" width="500" height="500">Did You Know: Every time
 you use a browser that doesn't support HTML5, somewhere a kitten
 cries. Be nice to kittens, upgrade your browser!
 </canvas>
 <script>
// Get the context we will be using for drawing.
var myCanvas = document.getElementById('myCanvas');
var myContext = myCanvas.getContext('2d');
myContext.strokeStyle = '#000';
 
// Whether or not the mouse button is being pressed.
var isMouseDown = false;
 
// Add a mousedown event listener that will set the isMouseDown flag to true,
// and move the pen to the new starting location.
myCanvas.addEventListener('mousedown', function(event) {
 myContext.moveTo(event.clientX, event.clientY);
 isMouseDown = true;
}, false);
 
// Add a mouseup event handler that will set the isMouseDown flag to false.
myCanvas.addEventListener('mouseup', function(event) {
 isMouseDown = false;
}, false);
 
// Add a mousemove event handler that will draw a line to the current mouse
// coordinates.
myCanvas.addEventListener('mousemove', function(event) {
 if (isMouseDown) {
 window.requestAnimationFrame(function() {
 myContext.lineTo(event.clientX, event.clientY);
 myContext.stroke();
 });
 }
}, false);
 </script>
 </body>
</html>

Chapter 4 ■ Canvas

147

To draw on the canvas, you want to start drawing when the user presses the mouse button, and
stop drawing when they release it. So you need mousedown and mouseup event handlers that set a
flag indicating the state of the mouse button. The mousedown event handler also moves the pen to the
new location, so that you don’t accidentally draw a line from the last stopping point to the new starting
point. Then you need a mousemove event handler that draws a line to the current mouse pointer
coordinates, assuming that the user is holding the mouse button down. To keep things efficient, use the
requestAnimationFrame method; see “Animation Timing” in Chapter 5 for details on how this method
works. Finally, you use a CSS to change the cursor to a crosshair for the canvas element.

As you use the example, you’ll notice that it doesn’t draw right at the middle of the cursor. Instead, it
draws near the lower right corner of the cursor. The mousemove event handler receives its coordinates from
the event object that is passed to it by the DOM, and those coordinates are off a bit because the size of the
cursor itself is nonzero. To account for this, all you have to do is offset the coordinates by a few pixels—half
the width and height of the cursor, to be precise. The new event handler looks like this:

// Add a mousemove event handler that will draw a line to the current mouse
// coordinates, with a slight offset.
myCanvas.addEventListener('mousemove', function(event) {
 if (isMouseDown) {
 window.requestAnimationFrame(function() {
 myContext.lineTo(event.clientX - 7, event.clientY - 7);
 myContext.stroke();
 });
 }
}, false);

Now the example will draw directly under the crosshairs.

Summary
This chapter dove deep into the HTML5 canvas element. It covered all of the important features, including:

•	 drawing shapes and lines

•	 drawing text

•	 using canvas elements with images

•	 clipping and masking

•	 transformations

•	 basic animation with canvas elements

•	 handling user interactions with canvas elements

The HTML5 canvas element provides a fairly low-level but flexible API for drawing directly on web
pages. It also enjoys wide support in both desktop and mobile browsers, making it a great candidate for
mobile applications.

In Chapter 5 you’ll take a look at some JavaScript APIs that are related to HTML5 but not a direct part of
the specification.

http://dx.doi.org/10.1007/9781430263678_5
http://dx.doi.org/10.1007/9781430263678_5

149

Chapter 5

Related Standards

The HTML5 standard covers a great deal of ground, but it isn’t the only new web technology that is being
developed by the W3C. There are a family of technologies that are also enhancements to the web platform
but don’t fall into the category of HTML5. In this chapter, I will cover some of the more exciting new
technologies, with a special focus on technologies designed for mobile devices.

Geolocation
SUPPORT LEVEL

Excellent

All modern browsers support these features and have for the last three versions.

W3C Recommendation: http://www.w3.org/TR/geolocation-API/

Geolocation is the ability to determine the physical location of the device hosting the browser, typically
in terms of latitude and longitude. Geolocation is very important for mobile devices, where it is used in
conjunction with mapping applications, reminders, emergency transponders, and even games (like Ingress;
see https://www.ingress.com/).

Devices can determine your location using a combination of technologies:

•	 GPS satellites: Almost all modern smartphones and other mobile devices have
transceivers capable of communicating with Global Positioning System satellites.

•	 Cellular towers: Using triangulation algorithms, it’s possible to determine the location
(broadly) of a cellular device based on its communications with cellular towers.

•	 Wi-Fi mapping: Wi-Fi access points tend to be quite stationary and limited in range,
so it is possible to create a “map” of Wi-Fi access points by simply driving around
with a Wi-Fi–enabled device. Using such a map, one can determine the approximate
location of a given device based on what Wi-Fi access points it has in range.

•	 Bluetooth mapping: Similar to Wi-Fi mapping; best for very close-range
geolocation.

•	 IP address mapping: For non-mobile devices, it is possible to determine their
location based on their external IP address. Several companies offer IP address
mapping services.

http://www.w3.org/TR/geolocation-API/
https://www.ingress.com/

Chapter 5 ■ Related Standards

150

All of these methods are imprecise and have their own limitations, but when employed together they
can provide an accurate location of the device. However, there is no guarantee that they will return the actual
location of the device, or do so with a useful level of accuracy.

When they work well together, though, it’s possible to locate devices quite accurately. This is why most
mobile devices will warn you when your Wi-Fi is off that geolocation accuracy will be affected. For example,
when you turn off the Wi-Fi radio on an iPhone, iOS will warn you that your location accuracy will be
reduced, as shown in Figure 5-1.

Figure 5-1.  iOS location accuracy

Privacy Considerations
Clearly geolocation has serious privacy implications. Locating and tracking devices—and the people
carrying them—is a powerful feature. As a result all browsers have implemented a warning system to inform
users that their location is about to be tracked. When your application first accesses the Geolocation API, the
browser will inform the user and give them the option to prevent location. These warnings are designed to
be conspicuous, but vary from browser to browser (Figure 5-2)

Chapter 5 ■ Related Standards

151

In all browsers, your script will pause and wait for the user to respond to the dialog. If the user opts to
allow geolocation, the script will continue. If the user decides to block geolocation, the API will throw an error.

As you are building a geolocation-capable application, it’s important that you consider the privacy and
security needs of your users:

•	 You should only request location data as needed. This is important for both privacy/
security and mobile device battery life, as geolocation queries activate multiple
radios in a mobile device and can thus be very draining on the battery.

•	 You should only request just enough geolocation information as needed to fulfill
your specific purpose.

Figure 5-2.  Geolocation warnings from various browsers

Chapter 5 ■ Related Standards

152

•	 You should only use the information for a specific purpose, and once the purpose is
fulfilled you should clear the geolocation data from memory.

•	 You should be careful how your application shares and transmits geolocation data.
Any transmission of geolocation data across any network should be secure to prevent
unauthorized access.

•	 If your application involves sending geolocation data to a server for further
processing, you should be even more careful how your server software handles and
stores the data, bearing in mind physical security and legal ramifications.

These may seem like obvious guidelines, and in fact they are the basic guidelines for handling any
sensitive information. But it’s easy to lose sight of these simple ideas while you’re busy coding, so be sure to
include them in your work from the start.

You should also be transparent with your users that your application collects and processes geolocation
data. You should tell them:

•	 what data you collect;

•	 why you collect it;

•	 whether or not you share or transmit the data, and what security measures you take
to secure that communication; and

•	 whether or not you store the data, and what security measures you take to secure
that storage. If you do store the information, you should tell them how you secure it
and how a user may remove their information from your storage.

If at all possible, you should also provide a way for users to opt out of the geolocation features of your
application. Sometimes that’s not practical, of course, but providing a way for users to control this feature
will do a great deal for establishing trust.

Geolocation API
The Geolocation API specifies a new navigator.geolocation object. This object has three new methods
that access the geolocation capabilities of the browser and the hosting device. Since it can take an unknown
amount of time to resolve the location of the device (the script will pause the first time and wait for the user
to respond to the permission dialog before continuing, and then the various location methods have to be
queried, each of which can take an unknown amount of time), the methods are asynchronous, and provide a
way to register success and error callback functions.

■■ Tip  You can use Promises (which are well-supported in mobile browsers) to help simplify the code for
asynchronous actions. See the section on Promises in Appendix A. 

•	 navigator.geolocation.getCurrentPosition(successCallback,
errorCallback, PositionOptions): Calls either the successCallback when the
location is successfully returned or the errorCallback if an error occurs. When
successCallback is called, it will receive a Position object as a parameter, and when
errorCallback is called it will receive a PositionError object as a parameter.

Chapter 5 ■ Related Standards

153

•	 navigator.geolocation.watchPosition(successCallback, errorCallback,
PositionOptions): Immediately returns a PositionWatch identifier, and then
calls the successCallback function every time the device’s position changes. Calls
errorCallback if an attempt to resolve the location fails. When successCallback is
called, it will receive a Position object as a parameter, and when errorCallback is
called it will receive a PositionError object as a parameter.

•	 navigator.geolocation.clearWatch(PositionWatch): Stops a watchPosition call
specified by the PositionWatch value.

In addition, the API defines three new object templates: the PositionOptions object, the Position
object, and the PositionError object. The PositionOptions object provides an interface for the
getCurrentPosition and watchPosition methods to fine-tune the query and results, as follows.

PositionOptions = {
 // Specifies whether the query should return the most accurate location possible
 boolean enableHighAccuracy,
 // The number of milliseconds to wait for the device to return a location
 number timeout,
 // The number of milliseconds a cached value can be used.
 number maximumAge
}

The Position object defines the response that will be returned by the getCurrentPosition and
watchPosition methods upon successfully resolving the location of the host device, as follows.

Position = {
 object coords : {
 // The latitude in decimal degrees.
 number latitude,
 // The longitude in decimal degrees.
 number longitude,
 // The altitude in meters above nominal sea level.
 number altitude,
 // The accuracy of the latitude and longitude values, in meters.
 number accuracy,
 // The accuracy of the altitude value, in meters.
 number altitudeAccuracy,
 // The current heading of the device in degrees clockwise from true north.
 number heading,
 // The current ground speed, in meters per second.
 number speed,
 },
 // The time when the location query was successfully created.
 date timestamp
}

Note that depending on the browser’s implementation of the Geolocation standard and the capabilities
of the host device, the values for altitude, accuracy, altitudeAccuracy, heading, and speed may return
as null.

Chapter 5 ■ Related Standards

154

The PositionError object defines the response that will be returned if the user refuses to allow
geolocation, or if somehow the device could not resolve its location, as shown here.

PositionError = {
 // The numeric code of the error (see table below).
 number code,
 // A human-readable error message.
 
 string message
}

Valid codes for PositionError.code are integers, as listed in Table 5-1.

Table 5-1.  Valid PositionError Codes

Code Constant Description

0 UNKNOWN_ERROR The device could not resolve its location due to an unknown error.

1 PERMISSION_DENIED The application does not have permission to use the geolocation
services, usually due to the user refusing permission.

2 POSITION_UNAVAILABLE The device could not resolve its location because the services are
unavailable. (Typically returned when the various required radios are
deactivated, as when a mobile device is in “airplane mode.”)

3 TIMEOUT The device could not resolve its location within the timeout limit
specified by PositionOptions.timeout.

The simplest example of using this API is to do a simple location query and show all of the values that
are returned, as demonstrated in Listing 5-1.

Listing 5-1.  A Basic Query of the Geolocation API

<!DOCTYPE html>
<html>
 <head>
 <title>The HTML5 Programmer's Reference</title>
 </head>
 <body>
 <h1>Geolocation Example</h1>
 <div id="locationValues">
 </div>
 <div id="error">
 </div>
 <script>
/**
 * The success callback function for getCurrentPosition.
 * @param {Position} position The position object returned by the geolocation
 * services.
 */

Chapter 5 ■ Related Standards

155

function successCallback(position) {
 console.log('success')
 // Get a reference to the div we're going to be manipulating.
 var locationValues = document.getElementById('locationValues');
 
 // Create a new unordered list that we can append new items to as we enumerate
 // the coords object.
 var myUl = document.createElement('ul');
 
 // Enumerate the properties on the position.coords object, and create a list
 // item for each one. Append the list item to our unordered list.
 for (var geoValue in position.coords) {
 var newItem = document.createElement('li');
 newItem.innerHTML = geoValue + ' : ' + position.coords[geoValue];
 myUl.appendChild(newItem);
 }
 
 // Add the timestamp.
 newItem = document.createElement('li');
 newItem.innerHTML = 'timestamp : ' + position.timestamp;
 myUl.appendChild(newItem);
 
 // Enumeration complete. Append myUl to the DOM.
 locationValues.appendChild(myUl);
}
 
/**
 * The error callback function for getCurrentPosition.
 * @param {PositionError} error The position error object returned by the
 * geolocation services.
 */
function errorCallback(error) {
 var myError = document.getElementById('error');
 var myParagraph = document.createElement('p');
 myParagraph.innerHTML = 'Error code ' + error.code + '\n' + error.message;
 myError.appendChild(myParagraph);
}
 
// Call the geolocation services.
navigator.geolocation.getCurrentPosition(successCallback, errorCallback);
 </script>
 </body>
</html>

First, this example creates a success callback function that enumerates the properties of the Position
object. As it does so it adds them to an unordered list that is appended to the DOM so you can see it. The
error callback behaves the same way, except instead of producing a list it simply updates the contents of a
paragraph.

The first time you run this example your browser should prompt you for permission to access the
geolocation APIs. The first time through, deny permission, so you can see what an error condition looks like.
Figure 5-3 shows what the resulting page looks like in Chrome.

Chapter 5 ■ Related Standards

156

You can see that the error handler was called with an error code of 1. The actual text for the error
message varies from browser to browser (Internet Explorer 11, for example, uses the error message “This site
does not have permission to use the Geolocation API.”) but the error code is the same.

The Geolocation specification does not define the permission model that must be presented to the user,
which is why every browser does it differently. The specification simply says,

User agents must not send location information to Web sites without the express permission
of the user. User agents must acquire permission through a user interface, unless they have
prearranged trust relationships with users, as described below. The user interface must
include the host component of the document’s URI. Those permissions that are acquired
through the user interface and that are preserved beyond the current browsing session
(i.e. beyond the time when the browsing context is navigated to another URL) must be
revocable and user agents must respect revoked permissions.

Some user agents will have prearranged trust relationships that do not require such user
interfaces. For example, while a Web browser will present a user interface when a Web site
performs a geolocation request, a VOIP telephone may not present any user interface when
using location information to perform an E911 function.

As a result, how a user can grant or refuse geolocation permission, how long that decision is
remembered, and how a user can change their mind later, are all up to the browser manufacturer to decide
and implement.

In Internet Explorer, for example, the user is presented with a pop-up that allows them some interesting
options, as shown in Figure 5-4.

Figure 5-3.  Error condition for Listing 5-1 in Chrome

Chapter 5 ■ Related Standards

157

If the user chooses “Allow once” or “Always allow”, the script will continue and the browser will attempt
to resolve the client’s location. The option “Allow once” should probably read “Allow for this browsing
session”, because the permission remains in effect until the user closes and restarts the browser. At that
point, revisiting the page will reprompt the user. The option “Always allow” functions as you would expect:
once the user picks it, they will never again be prompted for permission. The option “Always deny and don’t
tell me” denies permission at that point and every subsequent time the user visits that page. They are never
reprompted for permission, and the only way they can undo this decision is to open the Internet Options
dialog for Windows, choose the Privacy tab, and click the “Clear sites” button in the Location section—which
clears all permanent permissions granted or denied to all sites.

Firefox presents a completely different interaction to the user, as shown in Figure 5-5.

Figure 5-4.  Geolocation permission options in Internet Explorer 11

Figure 5-5.  Geolocation permission options in Firefox 29

Chapter 5 ■ Related Standards

158

If the user chooses “Share Location” the script will continue and the browser will attempt to resolve
the client’s location. Unlike with Internet Explorer, however, this permission is not for the current browser
session but only for the current visit to the web site. Reloading the page will immediately prompt the user
for permission again. The user does not have to restart the browser. The “Always Share Location” option
grants permanent permission to share location, and “Never Share Location” acts as a permanent denial
of permission for the page. Choosing “Not Now” or clicking on the × icon in the upper right corner of the
pop-up, or clicking anywhere outside of the pop-up, will close the pop-up without either granting or denying
permission and will leave your application hanging. The pop-up can be reopened by clicking the “target”
icon next to the URL, but that’s not necessarily immediately obvious. This behavior is by design; see the
relevant Bugzilla bug, https://bugzilla.mozilla.org/show_bug.cgi?id=675533, for an explanation.

Only in Safari Mobile on iOS is the permission pop-up an actual modal pop-up that requires the user
to respond and cannot be dismissed unless they make a choice. In all other cases, the user can ignore (and
in the case of Firefox completely dismiss) the pop-up and leave your script waiting to execute a callback.
To make matters worse, time spent in this undefined state does not count toward any timeout you may
have specified with PositionOption.timeout—that timer only begins running after the user has granted
permission and the browser has begun trying to resolve the location.

To get around this, you need to implement a global timeout timer that starts running as soon as the
script accesses the Geolocation API. If the user does grant (or deny) permission, our regular callbacks should
happen and this global timer should be canceled. If the user does not grant (or deny) permission, the global
timer should execute a callback that does something—for example, redirect the browser to an error page that
explains to the user what they need to do to continue. Or if your application doesn’t require GPS, the global
timer callback should cancel the success and error callbacks and your application can continue.

It’s easy to add such a global timer to Listing 5-1, as shown in Listing 5-2.

Listing 5-2.  Registering a Global Timeout

<!DOCTYPE html>
<html>
 <head>
 <title>The HTML5 Programmer's Reference</title>
 </head>
 <body>
 <h1>Geolocation Example</h1>
 <div id="locationValues">
 </div>
 <div id="error">
 </div>
 <script>
// Create the variable that will hold the timer reference.
var globalTimeout = null;
 
/**
 * The success callback function for getCurrentPosition.
 * @param {Position} position The position object returned by the geolocation
 * services.
 */
function successCallback(position) {
 // Check the state of the global timeout. If it is null, the application has
 // timed out and we should not continue. If it isn't null, the timeout timer
 // is still running, so we should cancel it and continue.

https://bugzilla.mozilla.org/show_bug.cgi?id=675533

Chapter 5 ■ Related Standards

159

 if (globalTimeout == null) {
 return;
 } else {
 clearTimeout(globalTimeout);
 }
 
 // Get a reference to the div we're going to be manipulating.
 var locationValues = document.getElementById('locationValues');
 
 // Create a new unordered list that we can append new items to as we enumerate
 // the coords object.
 var myUl = document.createElement('ul');
 
 // Enumerate the properties on the position.coords object, and create a list
 // item for each one. Append the list item to our unordered list.
 for (var geoValue in position.coords) {
 var newItem = document.createElement('li');
 newItem.innerHTML = geoValue + ' : ' + position.coords[geoValue];
 myUl.appendChild(newItem);
 }
 
 // Add the timestamp.
 newItem = document.createElement('li');
 newItem.innerHTML = 'timestamp : ' + position.timestamp;
 myUl.appendChild(newItem);
 
 // Enumeration complete. Append myUl to the DOM.
 locationValues.appendChild(myUl);
}
 
/**
 * The error callback function for getCurrentPosition.
 * @param {PositionError} error The position error object returned by the
 * geolocation services.
 */
function errorCallback(error) {
 // Check the state of the global timeout. If it is null, the application has
 // timed out and we should not continue. If it isn't null, the timeout timer
 // is still running, so we should cancel it and continue.
 if (globalTimeout == null) {
 return;
 } else {
 clearTimeout(globalTimeout);
 }
 var myError = document.getElementById('error');
 var myParagraph = document.createElement('p');
 myParagraph.innerHTML = 'Error code ' + error.code + '\n' + error.message;
 myError.appendChild(myParagraph);
}
 

Chapter 5 ■ Related Standards

160

/**
 * The callback to execute if the whole process times out, specifically in the
 * situation where a user ignores the permissions pop-ups long enough.
 */
function globalTimeoutCallback() {
 alert('Error: GPS permission not given, exiting application.');
 globalTimeout = null;
}
 
// Call the geolocation services.
navigator.geolocation.getCurrentPosition(successCallback, errorCallback);
 
// Start the timer for the global timeout call.
globalTimeout = setTimeout(globalTimeoutCallback.bind(this), 5000);
 </script>
 </body>
</html>

The first thing this example does is define a globalTimeout variable, which will hold the identifier for
the timer it will start when it initiates the geolocation request. Next, notice that in both the successCallback
and errorCallback functions, it checks the state of the globalTimeout variable. If the variable is null, the
global timeout has expired, and the code should not continue to execute those functions. If it isn’t null, the
timer is still active, so the code should cancel it and continue.

Next it provides a globalTimeoutCallback function that simply alerts a message to the user. In an
actual application you would want to do something more useful here—redirect the user to another page, for
example. The code also sets the globalTimeout variable to null so that if either of the callbacks should get
executed somehow, they will not continue past the initial global timeout check.

Finally, it sets the timer running immediately after it calls the geolocation API. The timer is set to five
seconds. When you load this page, you’ll see one of the following:

•	 If you have permanently denied geolocation permission to the page, the
errorCallback will execute and the global timer will be canceled. No permission
pop-up will be displayed.

•	 If you have permanently allowed geolocation permission to the page, the
successCallback will execute and the global timer will be canceled. No permission
pop-up will be displayed.

•	 If you haven’t permanently granted or denied permission, the permission pop-up
will display. You can choose to grant or deny permission before the global timeout
timer expires, in which case the appropriate callback will execute and the global
timer will be canceled. Or you can do nothing and wait for the global timer to expire.
When that happens, the alert message will appear.

In any case, you cannot programmatically force a permission choice for the user. They have to make
their permission choice through the browser-supplied dialog.

From a user interaction standpoint, this is a somewhat unfortunate state of affairs because it means
your application will cause the browser to display a notification over which you have no control. Some users
might find this alarming and choose to deny permission, or even shut down the browser entirely and never
return to your application. If you have been transparent with your users about how your application collects
and stores geolocation information, they will be prepared for this interaction and will be more willing to
grant permission, because they know what your application will be doing with the data.

Chapter 5 ■ Related Standards

161

Animation Timing
SUPPORT LEVEL

Good

All modern browsers support these features and have for the last two versions.

W3C Candidate Recommendation: http://www.w3.org/TR/animation-timing/

The Animation Timing standard is designed to help you build JavaScript-based visual animations.
If you have ever tried to build an animation by hand using JavaScript, you’re probably familiar with the
simple pattern of a draw cycle:

•	 Create a draw function that is responsible for incrementally “drawing” the animated
items: positioning elements, changing element properties, drawing on a canvas
element, and so forth. Each time this function is called, it produces an entire
animation “frame,” just as if you were drawing animation frames by hand that would
then be shown in a film.

•	 Call the draw function every few milliseconds.

A JavaScript draw cycle is typically implemented using a timer, which calls a drawing function every few
milliseconds. An example can be seen in Listing 5-3.

Listing 5-3.  A JavaScript Implementation of a Timer-Based Draw Cycle

<!DOCTYPE html>
<html>
 <head>
 <title>The HTML5 Programmer's Reference</title>
 <style>
#target-element {
 width: 100px;
 height: 100px;
 background-color: #ccc;
 position: absolute;
 top: 100px;
 left: 0px;
}
 </style>
 </head>
 <body>
 <h1>Simple Animation Example</h1>
 <div id="target-element"></div>
 <script>
// Get a reference to the element we want to move.
var targetEl = document.getElementById('target-element');
 
// Create a variable to keep track of its position.
var currentPosition = 0;
 

http://www.w3.org/TR/animation-timing/

Chapter 5 ■ Related Standards

162

/**
 * Draws the animation by updating the position on the target element and incrementing
 * the position variable by 1.
 */
function draw() {
 if (currentPosition > 500) {
 // Stop the animation, otherwise it would run indefinitely.
 clearInterval(animInterval);
 } else {
 // Update the element's position.
 targetEl.style.left = currentPosition++ + 'px';
 }
}
 
// Initiate the animation timer.
var animInterval = setInterval(draw, 17);
 </script>
 </body>
</html>

This example uses a JavaScript timer to update the position of a div on the page. The interval between
updates is 17 milliseconds. That’s not an arbitrary number. Most monitors refresh at 60Hz, and so most
browsers try and limit their screen repaints to no more than 60Hz. Sixty cycles per second is about
17 milliseconds between cycles. Any faster than that and you lose “frames.”

Depending on the browser you use to run this example, and the system you are using, this animation can
appear to be quite smooth or somewhat jerky. That’s because this is a brute-force method of animation, and
it doesn’t take into account how the browser redraws the page. It just commands the screen to be updated,
and the browser has to do the best it can. Also, there’s no guarantee that the time between animation updates
will be 17 milliseconds. The setInterval method just adds the updates to the browser’s UI queue, which can
easily become bogged down if the browser is busy doing something else (like resizing the window, or possibly
fetching and rendering other content in the background), thus delaying the screen render.

Overall this method doesn’t scale well. As animations increase in number and complexity, and the
pages they are in also increase in complexity and interactive capability, these timer-based animation queues
become more and more inefficient.

The Animation Timing specification addresses the problems with JavaScript-based timers by providing
a new timer: requestAnimationFrame. Syntactically this method is used similarly to the existing JavaScript
timer methods setInterval and setTimeout. Behind the scenes, though, the new method is tied to the
browser’s screen management algorithms. As a result, requestAnimationFrame has some important
benefits:

•	 Animations queued with requestAnimationFrame are optimized by the browser into
a single reflow/repaint cycle.

•	 Animations queued with requestAnimationFrame play well with animations from
other sources, like CSS transitions.

•	 The browser will stop animations in browser tabs that are not visible. This is
important on mobile devices, where intensive animations can rapidly consume
battery power.

Chapter 5 ■ Related Standards

163

The specification creates two new methods in the global context:

•	 requestAnimationFrame(callback): Request that the function callback be
executed as part of the next animation cycle. The callback will receive as a parameter
a timestamp. Like setTimeout and setInterval, requestAnimationFrame returns an
identifier that can be used to stop the cycle.

•	 cancelAnimationFrame(identifier): cancel the animation frame request identified
by the identifier.

Updating Listing 5-3 to use requestAnimationFrame is easy, as shown in Listing 5-4.

Listing 5-4.  Listing 5-3 Rewritten Using requestAnimationFrame

<!DOCTYPE html>
<html>
 <head>
 <title>The HTML5 Programmer's Reference</title>
 <style>
#target-element {
 width: 100px;
 height: 100px;
 background-color: #ccc;
 position: absolute;
 top: 100px;
 left: 0px;
}
 </style>
 </head>
 <body>
 <h1>Simple requestAnimationFrame Example</h1>
 <div id="target-element"></div>
 <script>
var targetEl = document.getElementById('target-element');
var currentPosition = 0;
 
/**
 * Updates the position on the target element, the increments the position
 * counter by 1.
 */
function animateElement() {
 // Stop the animation, otherwise it would run indefinitely.
 if (currentPosition <= 500) {
 requestAnimationFrame(animateElement);
 }
 // Update the element's position.
 targetEl.style.left = currentPosition++ + 'px';
}
 
// Initiate the animation timer.
animateElement();
 </script>
 </body>
</html>

Chapter 5 ■ Related Standards

164

This example updates the animateElement function to use requestAnimationFrame. Each time
that method is called, it updates the position of the element and increments the position counter. It also
schedules itself for calling again via requestAnimationFrame. Once the element reaches the position of
500px, the animation stops.

Building a draw cycle manager using Animation Timing is also quite easy. A draw cycle manager will
allow you to register animation functions (like the animateElement function in Listing 5-4), and start, stop,
and pause the draw cycle. Listing 5-5 shows a simple draw cycle manager.

Listing 5-5.  A Draw Cycle Manager

<!DOCTYPE html>
<html>
 <head>
 <title>The HTML5 Programmer's Reference</title>
 <style>
.animatable {
 width: 100px;
 height: 100px;
 background-color: #ccc;
 position: absolute;
 top: 110px;
 left: 0px;
}
#elementTwo {
 top: 220px;
}
 </style>
 </head>
 <body>
 <h1>Simple Animation Framework Example</h1>
 <div class="animatable" id="elementOne"></div>
 <div class="animatable" id="elementTwo"></div>
 <button id="startAnimation">Start Animation</button>
 <button id="togglePause">Toggle Pause</button>
 <button id="stopAnimation">Stop Animation</button>
 <button id="registerOne">Register Animation One</button>
 <button id="unregisterOne">Unregister Animation One</button>
 <button id="registerTwo">Register Animation Two</button>
 <button id="unregisterTwo">Unregister Animation Two</button>
 <script>
 
// Get references to the elements we will be animating, and create position
// tracking variables for them.
var elementOne = document.getElementById('elementOne');
var elOnePosition = 0;
var elementTwo = document.getElementById('elementTwo');
var elTwoPosition = 0;
 
/**
 * Animates Element One by incrementally updating its left position. Animation
 * stops at 500px.
 */

Chapter 5 ■ Related Standards

165

function animateElementOne() {
 if (elOnePosition <= 500) {
 elementOne.style.left = elOnePosition++ + 'px';
 } else {
 // Done animating, so remove this animation from the draw cycle manager.
 myCycle.removeAnimation(animateElementOne);
 // Reset the counter so we can animate again. The function can be
 // re-registered and will work as before.
 elOnePosition = 0;
 }
}
 
/**
 * Animates Element Two by incrementally updating its left position. Animation
 * stops at 500px.
 */
function animateElementTwo() {
 if (elTwoPosition <= 500) {
 elementTwo.style.left = elTwoPosition++ + 'px';
 } else {
 // Done animating, so remove this animation from the draw cycle manager.
 myCycle.removeAnimation(animateElementTwo);
 // Reset the counter so we can animate again. The function can be
 // re-registered and will work as before.
 elTwoPosition = 0;
 }
}
 
/**
 * Creates a draw cycle object that will repetitively draw animation functions.
 * @constructor
 * @returns {Object} A new draw cycle object.
 */
var DrawCycle = function() {
 var newCycle = {
 /**
 * The identifier for the current animation frame loop.
 * @type {Number}
 */
 animationPointer: null,
 
 /**
 * @type {Boolean}
 */
 isPaused: false,
 
 /**
 * The array of animation callbacks.
 * @type {!Array.<Function>}
 */
 arrCallbacks: [],
 

Chapter 5 ■ Related Standards

166

 /**
 * Starts the animation cycle.
 */
 startAnimation: function() {
 // Like other JavaScript timers, requestAnimationFrame sets the execution
 // context of its callbacks to the global execution context (the window
 // object). We need the execution context to be 'this', the newCycle
 // object we're creating. By using the bind method (which exists on
 // Function.prototype) we are able to override the default execution
 // context with the one we need.
 this.animationPointer = window.requestAnimationFrame(this.draw.bind(this));
 },
 
 /**
 * Stops the animation cycle.
 */
 stopAnimation: function() {
 window.cancelAnimationFrame(this.animationPointer);
 },
 
 /**
 * Pauses the invocation of the animation functions each draw cycle. If set
 * to true, the animation functions will not be invoked. If set to false,
 * the functions will be invoked.
 * @type {Boolean}
 */
 pauseAnimation: function(boolPause) {
 this.isPaused = boolPause;
 },
 
 /**
 * Adds an animation function to the draw cycle.
 * @param {Function}
 */
 addAnimation: function(callback) {
 if (this.arrCallbacks.indexOf(callback) == -1) {
 this.arrCallbacks.push(callback);
 }
 },
 
 /**
 * Removes an animation function from the draw cycle.
 * @param {Function}
 */
 removeAnimation: function(callback) {
 var targetIndex = this.arrCallbacks.indexOf(callback);
 if (targetIndex > -1) {
 this.arrCallbacks.splice(targetIndex, 1);
 }
 },
 

Chapter 5 ■ Related Standards

167

 /**
 * Draws any registered animation functions (assuming they are not paused)
 * and then kicks off another animation cycle.
 * You should not need to call this method directly.
 * @private
 */
 draw: function() {
 if (!this.isPaused) {
 var i = 0, arrCallbacksLength = this.arrCallbacks.length;
 for (i = 0; i < arrCallbacksLength; i++) {
 this.arrCallbacks[i]();
 }
 }
 this.startAnimation();
 }
 };
 return newCycle;
};
 
// Create a new draw cycle object.
var myCycle = new DrawCycle();
 
// Register a callback for the Start Animation button that starts the animation
// cycle.
var startAnimation = document.getElementById('startAnimation');
startAnimation.addEventListener('click', function() {
 myCycle.startAnimation();
}, false);
 
// Register a callback for the Pause Animation button that pauses/unpauses the
// animation cycle.
var pauseAnimation = document.getElementById('togglePause');
pauseAnimation.addEventListener('click', function() {
 myCycle.pauseAnimation(!myCycle.isPaused);
}, false);
 
// Register a callback for the Stop Animation button that stops the animation
// cycle.
var stopAnimation = document.getElementById('stopAnimation');
stopAnimation.addEventListener('click', function() {
 myCycle.stopAnimation();
}, false);
 
// Register a callback for the Register Animation One button that adds the
// animation function for element one to the draw cycle object.
var registerOne = document.getElementById('registerOne');
registerOne.addEventListener('click', function() {
 myCycle.addAnimation(animateElementOne);
}, false);
 

Chapter 5 ■ Related Standards

168

// Register a callback for the Unregister Animation One button that removes the
// animation function for element one from the draw cycle object.
var unregisterOne = document.getElementById('unregisterOne');
unregisterOne.addEventListener('click', function() {
 myCycle.removeAnimation(animateElementOne);
}, false);
 
// Register a callback for the Register Animation Two button that adds the
// animation function for element two to the draw cycle object.
var registerTwo = document.getElementById('registerTwo');
registerTwo.addEventListener('click', function() {
 myCycle.addAnimation(animateElementTwo);
}, false);
 
// Register a callback for the Unregister Animation Two button that removes the
// animation function for element two from the draw cycle object.
var unregisterTwo = document.getElementById('unregisterTwo');
unregisterTwo.addEventListener('click', function() {
 myCycle.removeAnimation(animateElementTwo);
}, false);
 </script>
 </body>
</html>

This example creates a constructor function that gives you a new draw cycle object, which provides a
simplified API for handling animations. The main API methods are:

•	 addAnimation(animationFunction): Registers an animation function with the draw
cycle. Every time the draw cycle runs, animationFunction will be invoked.

•	 removeAnimation(animationFunction): Deregisters an animation function with the
draw cycle.

•	 startAnimation(): Starts the animation drawing cycle. When called, this method
will call requestAnimationFrame with the object’s draw method as the callback, thus
initiating a single loop. The method stores the identifier for the loop so that it can
later be cancelled if desired.

•	 stopAnimation(): Stops the animation drawing cycle. When called, this method
calls cancelAnimationFrame with the identifier stored by startAnimation.

•	 pauseAnimation(boolPause): Pauses or unpauses calling the registered animation
functions. The draw cycle still runs but none of the animation functions are invoked.

Using this animation API is simple:

	 1.	 Create a new instance of a draw cycle using the constructor function.

	 2.	 Register one or more animation callbacks that you want to be called
every draw cycle.

	 3.	 Start the animation cycle.

When you call startAnimation it requests an animation frame from the browser, with draw method as
the callback. The browser invokes the draw method at the appropriate time. The draw method invokes all of
the registered animation functions (assuming animation is not paused), thus completing one cycle. It then
calls startAnimation to kick off a new cycle.

Chapter 5 ■ Related Standards

169

You can dynamically add new animation functions as desired; they will automatically be invoked in the
next draw cycle. You can also remove animation functions as needed. Each animation method also removes
itself from the draw cycle when it completes, and resets its counter. You can reregister the animation
functions at that point and the animations will happen again. Note that the draw cycle will continue to run
even if there are no animation functions registered, so when you remove the last animation function you
also should be sure to call the stopAnimation method.

Selectors
SUPPORT LEVEL

Excellent

All modern browsers support these features and have for the last four versions.

W3C Candidate Recommendation: http://www.w3.org/TR/selectors/

The new Selectors standard provides new ways for accessing elements in the DOM. Previously the main
ways for accessing elements in the DOM was either to use the getElementById method, to use traversal, or
some combination of the two. With the new Selectors standard, you can access elements directly based on
their CSS selectors.

The Selectors standard took cues from popular JavaScript frameworks like jQuery, which have made
heavy use of selectors. If you’re at all familiar with jQuery, Prototype, Dojo, or any other JavaScript library
that uses selectors, you’ll find the new Selectors API to be very familiar.

The Selectors standard defines two new methods on the Element abstract class:

•	 querySelector(cssSelectorList): Returns a direct reference to the first
element that matches all of the CSS selectors in the specified comma-delimited
cssSelectorList. If there is no match, return null.

•	 querySelectorAll(cssSelectorList): Returns a NodeList object containing all the
matches to the CSS selectors specified in the comma-delimited cssSelectorList.
If no elements match, return a NodeList with no members.

■■ Note  NodeList objects look a lot like arrays, in that they have member elements that can be accessed via
their numeric index, and a length property that reflects the number of members. However, NodeList objects
inherit directly from the Object prototype, rather than the Array prototype, so they do not have any of the array
methods you might expect (e.g., Array.forEach).

Using the new Selectors API you can easily get direct references to DOM elements without extensive
traversal, and without adding IDs to your markup that are only ever used for JavaScript selectors. This can
help you keep both your markup and JavaScript code clean. In addition, you’ll often find yourself using the
same selectors both in your JavaScript and in your CSS, because often the elements you need to style are the
same elements your scripts need to access.

I’ve been using the Selectors API throughout examples in the book. Here are some other examples that
help illustrate how powerful the API can be:

http://www.w3.org/TR/selectors/

Chapter 5 ■ Related Standards

170

•	 Attribute Selectors: [attribute=value] allows you to target DOM elements based
on their assigned attributes. This is particularly useful in selecting elements that have
data attributes assigned to them. You can also use pattern matching:

•	 [att^='val'] selects elements whose att attribute begins with the letters “val”

•	 [att$='lue'] selects elements whose att attribute ends with the letters “lue”

•	 [att*='val'] selects elements whose att attribute contains the letters “val”

•	 Element State Pseudo-classes allow you to target DOM elements based on their
state pseudo-classes. Particularly useful are :enabled (selects form fields that
are enabled), :disabled (selects disabled form fields), and :checked (selects
checkboxes and radio buttons that are checked).

•	 Negation Pseudo-class: not(selector) targets DOM elements that do not match the
specified selector.

•	 Structural Pseudo-classes allow you to target DOM elements based on their location
in the DOM structure. Particularly useful are:

•	 :nth-child(n) selects the element that is the nth child of its parent

•	 :nth-last-child(n) selects the element that is the nth child of its parent,
counting from the last child backward

•	 :nth-of-type(n) selects the element that is the nth sibling of its type

•	 :nth-last-of-type(n) selects the element that is the nth sibling of its type,
counting from the last sibling backward

•	 :last-child selects the last child element of a parent element

•	 :first-of-type and :last-of-type select the sibling element that is the first or
the last of its type

•	 :only-child selects elements that are the only child of their parents

Since the querySelector and querySelectorAll methods are Element methods, you can use them on
any element. This limits the search for matching selectors to the descendants of that element, as shown in
Listing 5-6.

Listing 5-6.  Limiting a Selector Query to a Containing Element

<!DOCTYPE html>
<html>
 <head>
 <title>The HTML5 Programmer's Reference</title>
 </head>
 <body>
 <p class="selectme">This has the selectme class, but will not be clickable.</p>
 <div class="noselect">
 <p class="selectme">This has the selectme class, but will not be clickable.</p>
 </div>
 <div class="selectable">
 <p class="selectme">This has the selectme class, and will be clickable.</p>
 </div>

Chapter 5 ■ Related Standards

171

 <script>
// Get a reference to the containing element we want to search.
var selectable = document.querySelector('.selectable');
 
// Get a reference to the paragraph.
var targetPar = selectable.querySelector('.selectme');
 
// Give the target paragraph an event handler for the click event.
targetPar.addEventListener('click', function() {
 alert('I was clicked!');
});
 </script>
 </body>
</html>

This simple example limits the search for the desired selector to the specified div element. This is the
equivalent of using the selector ".selectable .selectme". This technique is particularly useful for selecting
the descendants of event targets.

Device Orientation
SUPPORT LEVEL

Poor

This API is only useful on devices with necessary hardware, which are typically mobile devices. Support
for this API in mobile browsers is quite good, except for Internet Explorer Mobile, which does not
implement the API at all. Internet Explorer 11 does support the API, as do Chrome and Firefox, but Safari
does not.

W3C Working Draft: http://www.w3.org/TR/orientation-event/

Most mobile and handheld devices contain sensitive gyroscopes that enable the device to be aware of
its orientation in space. The Device Orientation API provides a standard API for host devices to share this
information with browser-based applications.

■■ Caution T his particular standard has undergone frequent changes in response to industry feedback. As a
result, most browser manufacturers have held back on full implementation. I’m presenting the standard in its
current incarnation at press time because I believe this is an important feature that deserves coverage despite
its draft status.

The standard specifies a new set of events that fire on the window object, as well as new data properties
on the resulting event object. By registering event listeners for these events, you can gain access to these data
properties.

http://www.w3.org/TR/orientation-event/

Chapter 5 ■ Related Standards

172

The compassneedscalibration Event
According to the standard, the compassneedscalibration event fires on the window object “when the
user agent determines that a compass used to obtain orientation data is in need of calibration.” However,
there is no instruction for what the user agent should do to calibrate itself, or how to communicate this
to either the developer or the end users. For this reason, this event is currently disabled in Firefox
(see https://bugzilla.mozilla.org/show_bug.cgi?id=738121). Other mobile user agents may fire this
event, though I have never seen it happen.

Like any other event, you simply register an event handler for it on the window object, as shown in this
code snippet:

window.addEventListener('compassneedscalibration', function(event) {
 alert('Your compass needs calibration. Wave your device in a figure-8 motion.');
}, false);

The deviceorientation Event
According to the standard, the deviceorientation event fires on the window object “whenever a significant
orientation change occurs,” but leaves the definition of “significant change” up to the browser manufacturer.
In practice, this event appears to fire regularly on the window object, even for devices that are completely at
rest on a table.

The event object for the deviceorientation event is a DeviceOrientationEvent object, which has the
following properties:

DeviceOrientationEvent.alpha: The alpha angle of rotation.

DeviceOrientationEvent.beta: The beta angle of rotation.

DeviceOrientationEvent.gamma: The gamma angle of rotation.

If you’re familiar with Euler Angles, the alpha, beta, and gamma angles are Tait-Bryan angles of the type
Z-X'-Y". To visualize these angles, imagine a device sitting flat on a table, as shown in Figure 5-6.

Figure 5-6.  A device sitting flat on a table

Rotating about the z axis will translate both the x and y axes by the amount of the rotation, as shown in
Figure 5-7.

https://bugzilla.mozilla.org/show_bug.cgi?id=738121

Chapter 5 ■ Related Standards

173

The resulting angle is referred to as the alpha angle.
Rotating about the x axis will translate both the z and y axes by the amount of the rotation, as shown in

Figure 5-8.

Figure 5-7.  Rotation about the z axis

Figure 5-8.  Rotation about the x axis

The resulting angle is referred to as the beta angle.
Finally, rotating about the y axis will translate both the x and z axes by the amount of the rotation, as

shown in Figure 5-9.

Figure 5-9.  Rotation about the y axis

The resulting angle is referred to as the gamma angle.
The definitive example of how to use these angles is to move a DOM element on the screen according

to the gamma and beta angles. Because the angles vary from positive to negative, you can simply add the
rounded value of the angle to the current value of the associated ordinate: for the x ordinate you use the
gamma angle, and for the y ordinate you use the beta angle. The more the device is tilted, the larger the angle,
the greater the increment on the coordinate, and the faster the element will move, as shown in Listing 5-7.

Chapter 5 ■ Related Standards

174

Listing 5-7.  Moving a Ball on the Screen

<!DOCTYPE html>
<html>
 <head>
 <meta name="viewport" content="width=device-width, user-scalable=no">
 <title>The HTML5 Programmer's Reference</title>
 <style>
#container {
 position: absolute;
 top: 220px;
 left: 50px;
 width: 204px;
 height: 204px;
 border: 1px solid red;
}
#ball {
 width: 10px;
 height: 10px;
 position: absolute;
 top: 0px;
 left: 0px;
 background-color: red;
 border-radius: 50%;
}
 </style>
 </head>
 <body>
 <h1>Device Orientation Demonstration</h1>

 Alpha:
 Beta:
 Gamma
 y-pos
 x-pos

 <div id="container">
 <div id="ball"></div>
 </div>
 <script>
// Get references to the various DOM elements we will be manipulating.
var alpha = document.getElementById('alpha');
var beta = document.getElementById('beta');
var gamma = document.getElementById('gamma');
var ypos = document.getElementById('ypos');
var xpos = document.getElementById('xpos');
var ball = document.getElementById('ball');
 
// Initialize x and y coordinates.
var yposit = 0;
var xposit = 0;
 

Chapter 5 ■ Related Standards

175

/**
 * Handles a deviceorientation event on the window object.
 * @param {DeviceOrientationEvent} event A standard device orientation event.
 */
function handleDeviceOrientation(event) {
 // Update the DOM with the raw event data.
 alpha.innerHTML = event.alpha;
 beta.innerHTML = event.beta;
 gamma.innerHTML = event.gamma;
 // Use the raw data to get x and y coordinates for the ball.
 xposit = getCoord(event.gamma, xposit);
 xpos.innerHTML = xposit;
 yposit = getCoord(event.beta, yposit);
 ypos.innerHTML = yposit;
 ball.style.top = yposit + 'px';
 ball.style.left = xposit + 'px';
}
 
/**
 * Increments a coordinate based on an angle from the device orientation event.
 * @param {number} angle The orientation angle.
 * @param {number} coord The coordinate to increment.
 */
function getCoord(angle, coord) {
 // First, get a delta value from the angle.
 var delta = Math.round(angle);
 var tempVal = coord + delta;
 // Limit the incremented value to between 0 and 194.
 if (tempVal > 0) {
 coord = Math.min(194, tempVal);
 } else {
 coord = 0;
 }
 return coord;
}
 
// Register the event handler.
window.addEventListener('deviceorientation', handleDeviceOrientation, false);
 </script>
 </body>
</html>

This example displays the raw event data on the screen, and uses that raw event data to determine the
coordinates of the element on the screen. In this case, it limits the position of the element so that it stays
inside of its containing element.

The devicemotion Event
The devicemotion event fires regularly on the window object, and produces an event of type
DeviceMotionEvent. The DeviceMotionEvent has four properties: acceleration (the values of which
represent the acceleration of the device along the x, y, and z axes, in meters per second squared),

Chapter 5 ■ Related Standards

176

accelerationIncludingGravity (the values of acceleration with the effects of the Earth’s gravity included,
if any), rotationRate (the rate of rotation of the alpha, beta, and gamma angles in degrees per second), and
interval (how often this information is refreshed from the hardware, in milliseconds). Overall the schema
of the DeviceMotionEvent looks like this:

object DeviceMotionEvent = {
 object acceleration: {
 number x,
 number y,
 number z
 },
 object accelerationIncludingGravity: {
 number x,
 number y,
 number z
 },
 object rotationRate: {
 number alpha,
 number beta,
 number gamma
 }
 number interval
}

You can easily display each of these values, as shown in Listing 5-8.

Listing 5-8.  Displaying the Values of a devicemotion Event

<!DOCTYPE html>
<html>
 <head>
 <meta name="viewport" content="width=device-width, user-scalable=no">
 <title>The HTML5 Programmer's Reference</title>
 </head>
 <body>
 <h1>Device Motion Demonstration</h1>

 acceleration:

 <li id="accX">x: ,

 max:
 <li id="accY">y: ,

 max:
 <li id="accZ">z: ,

 max:

 accelerationIncludingGravity:

 <li id="aigX">x: ,

 max:
 <li id="aigY">y: ,

Chapter 5 ■ Related Standards

177

 max:
 <li id="aigZ">z: ,

 max:

 rotationRate:

 <li id="rrAlpha">alpha: ,

 max:
 <li id="rrBeta">beta: ,

 max:
 <li id="rrGamma">gamma: ,

 max:

 <script>
// Create a data structure to store the references to the various DOM elements
// we will be manipulating, as well as associated maximum values. The structure
// also includes an interface method for processing incoming data and mapping
// it to the correct DOM elements.
var motionValues = {
 acceleration : {
 x : {
 domCurr : document.querySelector('#accX .current'),
 domMax : document.querySelector('#accX .max'),
 maxVal : 0
 },
 y : {
 domCurr : document.querySelector('#accY .current'),
 domMax : document.querySelector('#accY .max'),
 maxVal : 0
 },
 z : {
 selector : '#accZ',
 domCurr : document.querySelector('#accZ .current'),
 domMax : document.querySelector('#accZ .max'),
 maxVal : 0
 }
 },
 accelerationIncludingGravity : {
 x : {
 domCurr : document.querySelector('#aigX .current'),
 domMax : document.querySelector('#aigX .max'),
 maxVal : 0
 },
 y : {
 domCurr : document.querySelector('#aigY .current'),
 domMax : document.querySelector('#aigY .max'),
 maxVal : 0
 },

Chapter 5 ■ Related Standards

178

 z : {
 selector : '#accZ',
 domCurr : document.querySelector('#aigZ .current'),
 domMax : document.querySelector('#aigZ .max'),
 maxVal : 0
 }
 },
 rotationRate : {
 alpha : {
 domCurr : document.querySelector('#rrAlpha .current'),
 domMax : document.querySelector('#rrAlpha .max'),
 maxVal : 0
 },
 beta : {
 domCurr : document.querySelector('#rrBeta .current'),
 domMax : document.querySelector('#rrBeta .max'),
 maxVal : 0
 },
 gamma : {
 selector : '#accZ',
 domCurr : document.querySelector('#rrGamma .current'),
 domMax : document.querySelector('#rrGamma .max'),
 maxVal : 0
 }
 },
 
 /**
 * Processes an acceleration value object of a specific type. The values are
 * enumerated and mapped to their associated DOM elements for display.
 * @param {string} valueType The type of the value object, one of
 * 'acceleration', 'accelerationIncludingGravity', or 'rotationRate'.
 * @param {object} valueObject The object containing the acceleration data.
 */
 processValues : function(valueType, valueObject) {
 // First, get a reference to the subproperty of the motionValues object we
 // will be manipulating.
 var mvRef = this[valueType];
 // Enumerate the valueObject and process each property.
 for (property in valueObject) {
 // Convenience references to the current values we're working with.
 var currMVRef = mvRef[property];
 var currVal = valueObject[property];
 // Update the DOM to display the current value.
 currMVRef.domCurr.innerHTML = currVal;
 // If the current value is larger than the last stored maximum value,
 // update the stored max value to match and display it in the DOM.

Chapter 5 ■ Related Standards

179

 if (currVal > currMVRef.maxVal) {
 currMVRef.maxVal = currVal;
 currMVRef.domMax.innerHTML = currVal;
 }
 }
 }
};
 
/**
 * Handles a devicemotion event on the window object.
 * @param {DeviceMotionEvent} event A standard device motion event object.
 */
function handleDeviceMotion(event) {
 motionValues.processValues('acceleration', event.acceleration);
 motionValues.processValues('accelerationIncludingGravity',
 event.accelerationIncludingGravity);
 motionValues.processValues('rotationRate', event.rotationRate);
}
 
// Register the event handler.
window.addEventListener('devicemotion', handleDeviceMotion, false);
 </script>
 </body>
</html>

Because there are many values to display, and much of the data is specifically structured thanks to the
DeviceMotionEvent schema, Listing 5-8 begins this example by creating an object that has a similar schema.
For each individual property it stores a DOM reference to the element that will display its current value,
a DOM reference to the element that will display the maximum value achieved, and the maximum value
itself. It also includes a simple interface method that maps the DeviceMotionEvent subproperties to their
associated subproperties in the object, and updates the DOM to reflect the new information.

To use this example you need to move your device around. These values are for acceleration, which is
the rate of change of velocity (while velocity is the rate of change of position). In order to see appreciable
values you will need to move your device fairly quickly. It’s sufficient to shake your device along the
various axes of motion. Be careful to keep a firm grip on your device so you don’t accidentally throw it. The
maximum values of acceleration along the various axes will be recorded for you so you can see them after
you’re done moving your device around. You can also spin the device to see rotation rates.

WebGL
SUPPORT LEVEL

Good

All modern desktop browsers support these features for at least the last two versions, with the
exception of Internet Explorer, which has only supported them since version 11. Mobile support is poor,
as Mobile Safari for iOS does not currently support WebGL, though Apple has committed to full support
with iOS version 8.

Specifications: http://www.khronos.org/webgl/

http://www.khronos.org/webgl/

Chapter 5 ■ Related Standards

180

The Web Graphics Library (WebGL) is an API for drawing complex 2d and 3d graphics in HTML
canvas elements. The WebGL API is presented as a drawing context on a given canvas element, just like the
standard drawing context that you explored in Chapter 4. Just like the standard canvas drawing context, the
WebGL drawing context is accessible in JavaScript via an extensive API. Many WebGL tasks, such as image
processing, are delegated to the host system’s Graphics Processing Unit and are not handled by the system’s
main CPU, thus providing a significant speed boost.

Unlike most of the other standards covered in this book, the WebGL standard is not maintained by either
the W3C or the WHATWG. The standard is maintained by the nonprofit technology consortium Khronos
Group. The language itself is based on the OpenGL language, and grew out of experiments in 3d rendering
done at Mozilla in 2009. The current stable release of WebGL is 1.0.2. Work started on WebGL 2 in 2013.

Initializing a WebGL drawing context is very similar to initializing a standard drawing context in a
canvas element, as shown in Listing 5-9.

Listing 5-9.  Initializing a WebGL Drawing Context

<!DOCTYPE html>
<html>
 <head>
 <title>The HTML5 Programmer's Reference</title>
 <style>
canvas {
 border: 1px solid #000;
}
 </style>
 </head>
 <body>
 <canvas id="myCanvas" width="200" height="200">Did You Know: Every time
 you use a browser that doesn't support HTML5, somewhere a kitten
 cries. Be nice to kittens, upgrade your browser!
 </canvas>
 <script>
var myCanvas = document.getElementById('myCanvas');
var myGlContext = myCanvas.getContext('webgl');
 </script>
 </body>
</html>

This example uses the getContext method just as you did in Chapter 4. The difference is that instead
of providing a parameter of '2d' for a 2d drawing context, it provides the 'webgl' parameter to specify
a WebGL drawing context. You can easily expand this to be a function, which even provides a place for
initializing the context as needed, as shown in Listing 5-10.

Listing 5-10.  A WebGL Initialization Function

<!DOCTYPE html>
<html>
 <head>
 <title>The HTML5 Programmer's Reference</title>
 <style>
canvas {
 border: 1px solid #000;
}

http://dx.doi.org/10.1007/9781430263678_4
http://dx.doi.org/10.1007/9781430263678_4

Chapter 5 ■ Related Standards

181

 </style>
 </head>
 <body>
 <canvas id="myCanvas" width="200" height="200">Did You Know: Every time
 you use a browser that doesn't support HTML5, somewhere a kitten
 cries. Be nice to kittens, upgrade your browser!
 </canvas>
 <script>
/**
 * Returns a WebGL drawing context on a specified canvas element. If opt_setup
 * is provided and set to true, this method also performs some basic
 * initialization on the context.
 * @param {!Element} targetCanvas The reference to the desired canvas element.
 * @param {boolean} opt_setup Whether or not to perform additional setup on the
 * context.
 * @return {Object} The WebGL drawing context, or null if WebGL is not supported
 * or was otherwise unavailable.
 */
function initWebGLOnCanvas(targetCanvas, opt_setup) {
 // If opt_setup was not specified, set it to false. In JavaScript, null and
 // undefined are == to each other and nothing else, so:
 if (opt_setup == null) {
 opt_setup = false;
 }
 
 // Try and get the context.
 var glContext = targetCanvas.getContext('webgl');
 if (glContext == null) {
 // Try falling back to an experimental version, works on some older browsers.
 glContext = targetCanvas.getContext('experimental-webgl');
 if (glContext == null) {
 // We were unable to get a WebGL context. Provide a warning diagnostic
 // message on the console, in case anyone is looking.
 console.warn('WebGL is not supported in this browser.');
 }
 }
 
 // If there is a context and setup was requested, do the setup.
 if ((opt_setup === true) && (glContext != null)) {
 // Set the clear color to black (rgba).
 glContext.clearColor(0.0, 0.0, 0.0, 1.0);
 // Initialize the depth function so that objects that are closer in
 // perspective hide things that are further away.
 glContext.depthFunc(glContext.EQUAL);
 // Enable depth testing.
 glContext.enable(glContext.DEPTH_TEST);
 // Clear both the color and the depth buffer.
 glContext.clear(glContext.COLOR_BUFFER_BIT|glContext.DEPTH_BUFFER_BIT);
 }
 return glContext;
}
 

Chapter 5 ■ Related Standards

182

var myCanvas = document.getElementById('myCanvas');
var myGLContext = initWebGLOnCanvas(myCanvas, true);
 </script>
 </body>
</html>

This example expands the initialization function to detect if there has been a problem getting the WebGL
context, with a fallback to an older syntax that is present on older browsers. If the context cannot be fetched at
all, a warning is output to the console. Running this example will produce a black square in the browser.

As of this writing, Firefox is currently blacklisting a significant number of Windows, MacOS, Linux,
and Android graphics drivers in the WebGL initialization process. If you have one of these drivers, Firefox
by default will not initialize a WebGL drawing context. If you run this example in Firefox and you see the
warning message in the console, chances are your setup is blacklisted. For details and instructions on how
to override the block, see https://wiki.mozilla.org/Blocklisting/Blocked_Graphics_Drivers. Another
alternative is to use a browser that has a less brittle WebGL implementation (Chrome’s implementation of
WebGL is quite solid).

■■ Note  Up until recently, Safari Mobile on iOS did not support WebGL. Safari 8.1 introduced full WebGL
support.

WebGL is an extensive language, and fully covering it and everything you can do with it is beyond the
scope of this book. If you want to learn more, check out Beginning WebGL for HTML5 by Brian Danchilla
(Apress, 2012).

SVG
SUPPORT LEVEL

Excellent

All modern browsers support SVG and have for at least the last three versions.

W3C Recommendation: http://www.w3.org/TR/SVG11/

Scalable Vector Graphics (SVG) is a graphics format for creating raster graphics, vector graphics, and
text. Graphics objects (both defined in SVG and imported from external files, such as regular image files) can
be grouped and manipulated easily using SVG.

Most graphics formats (like the Portable Network Graphics [PNG] format) consist of binary data. SVG
graphics are defined using XML markup, and so can be easily created using simple text editors, just like web
pages. Since SVG graphics are defined in XML markup, the contents can easily be scanned and indexed. This
gives SVG the potential to be significantly more accessible than other graphics formats.

As mentioned, SVG markup can produce raster graphics just as canvas elements can. It can also
produce vector graphics, which are graphics defined by mathematical functions involving points, lines, and
curves. The primary difference between raster graphics and vector graphics is that vector graphics scale
better than raster graphics. SVG-defined vector graphics are therefore a great choice for mobile applications
because they will remain crisp at any resolution and size.

As with WebGL, SVG is a large standard, and fully covering it is beyond the scope of this text.

https://wiki.mozilla.org/Blocklisting/Blocked_Graphics_Drivers
http://www.w3.org/TR/SVG11/

Chapter 5 ■ Related Standards

183

Summary
In this chapter, I explored some of the JavaScript APIs that aren’t a part of the HTML5 standard but are often
used in conjunction with HTML5 features. Many of them have exciting mobile uses as well.

•	 The Geolocation API gives your JavaScript applications access to mobile devices’
geolocation features. You can use this API to write exciting new mobile apps that
are location aware. I also covered important privacy considerations when using
geolocation.

•	 Animation Timing provides tools for making smooth animations by giving new
timers that are directly related to the painting of the browser window.

•	 The Selectors API provides a way to easily access DOM elements using CSS selectors.

•	 The Device Orientation API gives your JavaScript applications access to the
orientation features of mobile devices. You can use this API to create applications
that respond to movements of the hosting mobile device.

•	 Finally, I briefly touched upon two new and exciting technologies, WebGL and SVG.

Using these APIs with HTML5 features will enable you to build exciting and dynamic applications on a
wide range of devices.

In Chapter 6 you’ll dive into practical development with HTML5, including building an entire HTML5
mobile game from scratch.

http://dx.doi.org/10.1007/9781430263678_6

185

Chapter 6

Practical HTML5

Now that I have covered HTML5 and its related technologies, it’s time for you to build something with them.
This chapter will focus on working with HTML5. It will cover issues of browser compatibility, including
feature detection, polyfills and shims, and libraries designed to work with HTML5. Last, you will work
through a full HTML5 project, from start to finish.

I will begin by defining the requirements for the project, work out how best to implement it, and then
break down the implementation method by method.

Browser Support
The biggest barrier to using HTML5 is browser support. If you’re working on a project that has to support a
lot of older browsers, you will rapidly run into lack of support in your major browsers. This is particularly a
problem for desktop browsers; Internet Explorer didn’t even support the basic semantic tags of HTML5 until
version 9. Mobile browsers have quite good implementation of HTML5 features because they tend to come
from newer code bases. However, even mobile browsers have support issues. For example, many phones
running the Android operating system earlier than version 4 will have browsers that don’t support several
modern features.

How your application handles browser support is an important decision. You could decide to support
only the latest version of every browser. This would guarantee that your application would have access
to the widest range of HTML5 features, but might shut out users who are stuck on older browsers or
operating systems.

Far more common is the requirement that your application support browser versions that go back a
few revisions at least. This means your users will be trying to use your application in browsers that might
not support the HTML5 features you need. In such a situation you will have to choose how your application
should behave, but the initial choice will be based on detecting whether or not the feature is supported.
Using scripts to determine if a given feature is supported is called “feature detection,” and you can easily test
most HTML5 features.

A Crash Course in Feature Detection
Feature detection is an important tool for HTML developers that allows you to customize your application
based on what the current browser is capable of doing. There are a variety of feature detection techniques
based on how the feature in question is implemented—for example, as a property or method on an existing
object or as a new element type.

Chapter 6 ■ Practical HTML5

186

Detecting JavaScript Properties and Methods
Many of the new HTML5 JavaScript APIs are implemented as new properties or methods on existing
objects such as window, document, or navigator. If you try and access these features in browsers that don’t
support them, the JavaScript engine will produce an error and your script will come to a grinding halt, as
demonstrated in Listing 6-1.

Listing 6-1.  Invoking a Method That Doesn’t Exist

<!DOCTYPE html>
<html>
 <head>
 <title>The HTML5 Programmer's Reference</title>
 </head>
 <body>
 <h1>Feature Detection</h1>
 <script>
// Attempt to invoke a fake method foo() on the window object
window.foo()
 </script>
 </body>
</html>

When you run this example, it will produce an error, which you can see if you have the browser’s
JavaScript console open. If this were in the middle of a larger script, it would bring the entire script to a halt,
which is a pretty catastrophic result.

When you attempt to access a property that doesn’t exist, the result is a little more subtle. Simply
reading a nonexistent property will return the value of undefined but will not actually crash the script, as
shown in Listing 6-2.

Listing 6-2.  Accessing a Property That Doesn’t Exist

<!DOCTYPE html>
<html>
 <head>
 <title>The HTML5 Programmer's Reference</title>
 </head>
 <body>
 <h1>Feature Detection</h1>
 <script>
// Attempt to access a fake property bar on the window object
alert(window.bar);
 </script>
 </body>
</html>

If you run this script it will work perfectly, and the alert pop-up will contain the text “undefined.” The
script will not throw an error and will continue to run. In JavaScript, however, undefined is a specific value
and its own data type, so if you attempt to manipulate it further (as you would if you were accessing a real
property), the results can be surprising, as demonstrated in Listing 6-3.

Chapter 6 ■ Practical HTML5

187

Listing 6-3.  What Exactly Is undefined?

<!DOCTYPE html>
<html>
 <head>
 <title>The HTML5 Programmer's Reference</title>
 </head>
 <body>
 <h1>Feature Detection</h1>
 <script>
// Compare undefined with basic data types
alert(window.bar + 5);
alert(window.bar + ' is its own data type');
alert(window.bar == true);
alert(window.bar == false);
if (window.bar) {
 alert('undefined is equal to true');
}
if (!window.bar) {
 alert('undefined is equal to false');
}
if (window.bar == null) {
 alert('undefined and null are equal');
}
if (!(window.bar === null)) {
 alert('undefined and null are not strictly equal');
}
 </script>
 </body>
</html>

When you run this script you’ll see that undefined doesn’t play well with numbers; even a simple
addition operation produces the value NaN (for “Not a Number”). And although undefined doesn’t exist it has
a string value of “undefined.” And while undefined is not equal to either true or false, it evaluates as false
for purposes of flow control. Finally, you can test how undefined and null equate to each other using both
the type-converting or “weak” equality operator (==) and the strict equality operator (===). The weak equality
operator automatically resolves type differences between the operands, while the strict equality operator does
not. In the case of undefined and null, the two values are equal to one another when using the weak operator,
but since they have different fundamental data types they fail to pass the strict equality test.

■■ Tip  undefined vs. null: It’s important to remember that while these behaviors may be counterintuitive,
they are in fact well defined by the ECMAScript Standard and are actual features of the language. Just
remember that undefined as a value is meant to indicate any property that has not been assigned a value,
while null is meant to indicate an intentional absence of value.

To fully explain these behaviors, I’d have to dive into a discussion of JavaScript data types and how the
language resolves data type differences for the weak equality operator ==, which is a bit beyond the scope
of this chapter. Regardless, Listing 6-3 does demonstrate a way to detect the presence of a property on a
JavaScript object with predictable results. As shown in Listing 6-4, this method also works for detecting
methods, and doesn’t throw an error.

Chapter 6 ■ Practical HTML5

188

Listing 6-4.  Detecting Properties and Methods on JavaScript Objects

<!DOCTYPE html>
<html>
 <head>
 <title>The HTML5 Programmer's Reference</title>
 </head>
 <body>
 <h1>Feature Detection</h1>
 <script>
// To check for a method foo() on the window object, check to see if it is
// defined
if (window.foo) {
 alert('Method foo() is available');
} else {
 alert('Method foo() is not available');
}
 
// To check for a property bar on the window object use the same test.
if (window.bar) {
 alert('Property bar is available');
} else {
 alert('Property bar is not available');
}
 </script>
 </body>
</html>

When you run Listing 6-4 it will show that neither window.foo() nor window.bar are available, and the
script will throw no errors. It’s easy to use this method to detect real HTML5 features, as shown in Listing 6-5.

Listing 6-5.  Detecting HTML5 JavaScript APIs

<!DOCTYPE html>
<html>
 <head>
 <title>The HTML5 Programmer's Reference</title>
 </head>
 <body>
 <h1>Feature Detection</h1>
 <script>
if (window.postMessage) {
 alert('The postMessage feature is available on this browser!');
} else {
 alert('The postMessage feature is not available on this browser');
}
 

Chapter 6 ■ Practical HTML5

189

if (window.localStorage) {
 alert('The localStorage feature is available on this browser!');
} else {
 alert('The localStorage feature is not available on this browser');
}
 </script>
 </body>
</html>

When you run this example you will find out whether or not the postMessage and localStorage
features are available on your browser.

This same method works to detect the new HTML5 event interfaces, such as the new device motion and
orientation events. Instead of checking for the presence of the event handler (e.g., ondevicemotion) directly,
check to see if the event interface is present (e.g., window.DeviceMotionEvent as shown in Listing 6-6).

Listing 6-6.  Detecting Support for Event Interfaces

<!DOCTYPE html>
<html>
 <head>
 <title>The HTML5 Programmer's Reference</title>
 </head>
 <body>
 <h1>Feature Detection</h1>
 <script>
if (window.DeviceMotionEvent) {
 alert('This browser supports the device motion API!');
} else {
 alert('This browser does not support the device motion API.');
}
 </script>
 </body>
</html>

Detecting Support for New HTML5 Elements
There are two main ways to detect support for the new elements:

•	 Create an instance of the element and then test the result for expected properties
and methods. If the browser does not know how to implement the element, then the
expected properties will be undefined. This test is useful for elements like canvas
and video, which implement their own unique properties and methods.

•	 Create an instance of the element and then test the interface it implements. If
the browser does not know how to implement the element, it will implement the
HTMLUnknownElement interface (see hereafter for details). This test is useful for
elements that do not implement unique properties and methods, such as structural
elements.

Chapter 6 ■ Practical HTML5

190

Listing 6-7 demonstrates the first method.

Listing 6-7.  Detecting Support for the Canvas Element

<!DOCTYPE html>
<html>
 <head>
 <title>The HTML5 Programmer's Reference</title>
 </head>
 <body>
 <h1>Feature Detection</h1>
 <script>
 
// Test for canvas support.
var testCanvas = document.createElement('canvas');
if (testCanvas.getContext) {
 alert('This browser supports the canvas element!');
} else {
 alert('This browser does not support the canvas element.');
}
 
// We are done with the test element, so delete it.
testCanvas = null;
 
 </script>
 </body>
</html>

This example creates a canvas element and then tests for the presence of the getContext method. If the
browser knows how to implement the canvas element properly, the method will be present, otherwise it will
be undefined.

■■ Tip  Creating elements for testing without attaching them to the DOM is a fairly safe thing to do. These
elements exist in memory (and thus take up physical memory space) but are not part of the DOM and will not
affect the rest of your document. Because they take up memory, it’s always a good idea to remove them when
they are no longer needed by setting their reference to null.

Detecting expected properties and methods only works for elements that implement properties or
methods that are unique outside of basic element properties and methods. What about elements like
article or aside that don’t implement unique properties or methods? The answer lies in the interface
hierarchy defined by the HTML standard.

The HTML standard defines a base interface called HTMLElement with a set of properties and methods
common to all HTML elements: title, lang, focus, blur, and so on. The standard also defines a set
of child interfaces that inherit from it, such as HTMLDivElement, HTMLTitleElement, and the like. Most
supported elements inherit from these child interfaces and so share the base properties and methods of
the HTMLElement interface. The standard also defines a child interface for unsupported elements called
HTMLUnknownElement. You can create any arbitrary element using document.createElement; if the element is
not supported it will inherit from the HTMLUnknownElement interface.

Chapter 6 ■ Practical HTML5

191

Determining which interface a particular element implements is a simple matter of checking the
element’s toString method. When you call that method on an element it will output the name of the
interface that it implements, as Listing 6-8 demonstrates.

Listing 6-8.  Determining the Interface That an HTML Element Implements

<!DOCTYPE html>
<html>
 <head>
 <title>The HTML5 Programmer's Reference</title>
 </head>
 <body>
 <h1>Feature Detection</h1>
 <script>
 
// Create a div.
var myDiv = document.createElement('div');
alert(myDiv.toString());
 
// Create a fake element.
var myFake = document.createElement('itsafake');
alert(myFake.toString());
 
// Delete elements now that they are no longer needed.
myDiv = myFake = null;
 </script>
 </body>
</html>

This example creates two elements, a div and a fake element, and then calls each element’s toString
method. As you can see, the itsafake element implements the HTMLUnknownElement interface. This gives
you an easy test for unsupported elements, as shown in in Listing 6-9.

Listing 6-9.  Testing for Supported Elements

<!DOCTYPE html>
<html>
 <head>
 <title>The HTML5 Programmer's Reference</title>
 </head>
 <body>
 <h1>Feature Detection</h1>
 <script>
 
// Test for support for the article element.
var myArticle = document.createElement('article');
if (myArticle.toString().indexOf('HTMLUnknownElement') > -1) {
 alert ('This browser does not support the article element.');
} else {
 alert('This browser supports the article element.');
}
 

Chapter 6 ■ Practical HTML5

192

// Create a fake element and test for support.
var myFake = document.createElement('itsafake');
if (myFake.toString().indexOf('HTMLUnknownElement') > -1) {
 alert('This browser does not support the itsafake element');
} else {
 alert('This browser supports the itsafake element');
}
 
myArticle = myFake = null;
 </script>
 </body>
</html>

In this example you test for support for the article element as well as for the itsafake element
by checking for the presence of the substring 'HTMLUnknownElement' within the value returned by each
element’s toString method.

Detecting Support for New Element Properties
HTML5 also defines a whole new set of properties that can be applied to elements, such as placeholder
or draggable. Detecting support for these properties is simple: just create an element and set the desired
property, then test to see if the property has maintained its value. When you set the value, be sure to set it to
the proper type; some properties (such as autocomplete and placeholder) will expect strings as values, and
others (such as autofocus and draggable) will require boolean values. If you set the incorrect type in the
test, it will produce a false negative. Listing 6-10 demonstrates using this technique to test for support for the
placeholder attribute on input elements.

Listing 6-10.  Testing for Attribute Support

<!DOCTYPE html>
<html>
 <head>
 <title>The HTML5 Programmer's Reference</title>
 </head>
 <body>
 <h1>Feature Detection</h1>
 <script>
 
// Test for support for the new placeholder attribute on input elements.
var testPlaceholderText = 'Test placeholder text';
var testInput = document.createElement('input');
testInput.setAttribute('placeholder', testPlaceholderText);
if (testInput.placeholder === testPlaceholderText) {
 alert ('This browser supports the placeholder attribute on input elements');
} else {
 alert ('This browser does not support the placeholder attribute on input elements');
}
 

Chapter 6 ■ Practical HTML5

193

// To prove the method works, test for an attribute we know doesn't exist.
testInput.setAttribute('fakeattr', testPlaceholderText);
if (testInput.fakeattr === testPlaceholderText) {
 alert ('This browser supports the fakeattr attribute on input elements');
} else {
 alert ('This browser does not support the fakeattr attribute on input elements');
}
 
// We are done with the test element, so delete it.
testInput = null;
 
 </script>
 </body>
</html>

This example also includes a demonstration that it will fail in the case of an unsupported attribute (in
this case you just make up a fake attribute and test for it).

Clearly this technique requires the target object to implement a setAttribute method. As a result it
cannot be used to detect features on the window or navigator elements, which do not have a setAttribute
method.

Building a Feature Detection Script
Now that you know how to test for various HTML5 features, you can build a single script that tests for
everything. Start by creating a constructor function that, when called, will run the feature detection tests
and return an object that contains all of the results. Each result will be a named property on the object set to
either true or false depending on the support for that feature. The object will also have three convenience
methods:

•	 getTests: This method will return an alphabetized array of all of the features that
were tested.

•	 getTestResults: This method will return an array consisting of all of the results
for all of the features that were tested. A single result will consist of an object with a
feature property set to the name of the feature and an isSupported property that
will be set to true or false depending on whether or not the feature is supported.

•	 getFailedTestResults: This method will return an array consisting of all of the
results for all of the features that failed their tests and are not supported in the
current browser.

Listing 6-11 gives the full listing of the detection script.

Chapter 6 ■ Practical HTML5

194

Listing 6-11.  HTML5 Feature Detection Script

<!DOCTYPE html>
<html>
 <head>
 <title>The HTML5 Programmer's Reference</title>
 <style>
 
table {
 font-family: verdana,arial,sans-serif;
 color: #333;
 border-width: 1px;
 border-color: #666;
 border-collapse: collapse;
}
th {
 border-width: 1px;
 padding: 8px;
 border-style: solid;
 border-color: #666;
 background-color: #dedede;
}
td {
 border-width: 1px;
 padding: 8px;
 border-style: solid;
 border-color: #666;
 background-color: #fff;
}
 
 </style>
 </head>
 <body>
 <h1>Feature Detection</h1>
 <table id="supported">
 <tr><th>Feature</th><th>Support</th></tr>
 </table>
 <script>
 
/**
 * Detects support for various HTML5 features.
 * @constructor
 * @returns {Object} An object with properties for each feature, each
 * set to true or false depending on support.
 */
function DetectHTML5Support() {
 var returnVal = {};
 
 // Test for HTML5 APIs on the window object.
 var apisToTest = ['EventSource', 'postMessage', 'sessionStorage',
 'localStorage', 'Worker', 'requestAnimationFrame',
 'cancelAnimationFrame', 'DeviceMotionEvent', 'DeviceOrientationEvent'];

Chapter 6 ■ Practical HTML5

195

 for (i = 0; i < apisToTest.length; i++) {
 var currApi = apisToTest[i];
 returnVal[currApi] = (window[currApi] != undefined);
 }
 
 // Test for HTML5 APIs on the navigator object.
 var apisToTest = ['geolocation'];
 for (i = 0; i < apisToTest.length; i++) {
 var currApi = apisToTest[i];
 returnVal[currApi] = (navigator[currApi] != undefined);
 }
 
 // Test for HTML5 APIs on the document object.
 var apisToTest = ['querySelector', 'querySelectorAll'];
 for (i = 0; i < apisToTest.length; i++) {
 var currApi = apisToTest[i];
 returnVal[currApi] = (document[currApi] != undefined);
 }
 
 // Test for suport for the new HTML5 elements.
 var unsupported = 'HTMLUnknownElement';
 var elementsToTest = ['article', 'aside', 'nav', 'footer', 'header',
 'section', 'figure', 'figcaption', 'main', 'bdi', 'data', 'mark',
 'ruby', 'rp', 'rt', 'time', 'wbr', 'dialog', 'details', 'summary',
 'datalist', 'meter', 'output', 'progress', 'audio', 'canvas', 'video'];
 for (i = 0; i < elementsToTest.length; i++) {
 var currItem = elementsToTest[i];
 var testEl = document.createElement(currItem);
 returnVal[currItem] = (testEl.toString().indexOf(unsupported) == -1);
 testEl = null;
 }
 
 // Test for support for new input properties that are booleans.
 var propsToTest = ['autofocus', 'draggable'];
 var inputEl = document.createElement('input');
 // For variety we'll use Array.forEach to run these tests instead of an
 // explicit for loop.
 propsToTest.forEach(function(currProp) {
 var testValue = true;
 inputEl.setAttribute(currProp, testValue);
 returnVal[currProp] = (inputEl[currProp] === testValue);
 }, this);
 
 // Test for support for new input properties that are strings.
 propsToTest = ['autocomplete', 'placeholder'];
 propsToTest.forEach(function(currProp) {
 var testValue = 'testval';
 inputEl.setAttribute(currProp, testValue);
 returnVal[currProp] = (inputEl[currProp] === testValue);
 }, this);
 inputEl = null;
 

Chapter 6 ■ Practical HTML5

196

 /**
 * Returns a sorted array of all features that were tested for.
 * @returns {Array.<string>}
 */
 returnVal.getTests = function() {
 // Get all of the properties and methods we've added to returnVal and
 // sort them.
 var allPropsAndMethods = Object.keys(this).sort();
 
 // This list will contain all the properties and methods, but we only want
 // properties, so filter out the methods.
 var allTests = [];
 allPropsAndMethods.forEach(function(currItem) {
 if (typeof this[currItem] != 'function') {
 allTests.push(currItem);
 }
 }, this);
 
 return allTests;
 };
 
 /**
 * Returns an array consisting of all test results. Each result is an object
 * with the feature property set to the name of the test and the isSupported
 * property set to true or false, depending on the support for that feature.
 * @returns {Array.<Object>}
 */
 returnVal.getTestResults = function() {
 var tests = this.getTests();
 var allResults = [];
 tests.forEach(function(currTest) {
 var currResult = {
 feature: currTest,
 isSupported: this[currTest]
 };
 allResults.push(currResult);
 }, this);
 return allResults;
 };
 
 /**
 * Returns an array of test results for all failed tests. Each result is an
 * object as described in getResults.
 * @returns {Array.<Object>}
 */
 returnVal.getFailedTestResults = function() {
 var tests = this.getTests();
 var failures = [];

Chapter 6 ■ Practical HTML5

197

 tests.forEach(function(currTest) {
 if (!this[currTest]) {
 var currResult = {
 feature: currTest,
 isSupported: this[currTest]
 };
 failures.push(currResult);
 }
 }, this);
 return failures;
 };
 
 // Return the object with all the results.
 return returnVal;
}
 
// Test for supported features.
var supportedFeatures = new DetectHTML5Support();
 
// Fill the table with support information.
var supportTable = document.getElementById('supported');
var allResults = supportedFeatures.getFailedTestResults();
allResults.forEach(function (currTest) {
 var newRow = document.createElement('tr');
 var featureCell = document.createElement('td');
 var supportCell = document.createElement('td');
 featureCell.innerHTML = currTest.feature;
 supportCell.innerHTML = currTest.isSupported;
 newRow.appendChild(featureCell);
 newRow.appendChild(supportCell);
 supportTable.appendChild(newRow);
});
 
 </script>
 </body>
</html>

The script groups together similar tests to make it easier to add or remove tests as fits your needs.
In each case you define a set of things to test as an array of simple strings that are the names of the feature
to test: the name of the API, the name of the element, or the name of the property. Then each section loops
through the arrays and applies the appropriate test and records the result. Note that throughout these
tests you are making use of the fact that in JavaScript you can access properties either by dot notation
(Object.property) or by bracket notation (Object['property']), as explained in Chapter 2.

The script demonstrates the detection process by calling the constructor to run the tests and get a new
results object, and then uses the getFailedTestResults method to fetch a list of unsupported features and
builds a table to show them. (You could easily alter this to use the getTestResults method instead to see all
the results.) If you run this in different browsers you’ll see variations in what isn’t supported, especially if you
have access to older versions of browsers . . . or Internet Explorer, as shown in Figure 6-1.

http://dx.doi.org/10.1007/9781430263678_2

Chapter 6 ■ Practical HTML5

198

As you can see, support for some features is still missing even in modern browsers. It’s particularly sad
that Firefox and Internet Explorer do not support the dialog, summary, or details elements; that Firefox
doesn’t support the autocomplete property; and that Internet Explorer doesn’t support server-sent events.

Working with Broken or Missing HTML5 Implementations
This brings us neatly to the next question: now that you can detect what HTML5 features are supported,
what do you do with that information? You want to use server-sent events, but Internet Explorer doesn’t
support them. You want to use autocomplete, but Firefox doesn’t know how to do that. Or a significant
portion of your users are stuck on older systems so you need to support a broad range of legacy browsers.

The bad news is there is no “one size fits all” solution to the problem of broken or missing
implementations. The good news is that many HTML5 features can be mimicked using JavaScript. A script
that reproduces a missing feature in this way is called a shim.

Consider for example the Web Storage feature (see the “Web Storage” section in Chapter 3). Older
browsers will not have the localStorage or sessionStorage methods available, but you can still store
information on the client using HTTP Cookies. With a bit of work you can implement localStorage and
sessionStorage in older browsers by using HTML Cookies as the storage mechanism. A solution like this
would enable you to use Web Storage in just about any browser.

Unfortunately, not everything can be completely reproduced with a shim. Features that require
access to underlying hardware, such as the Device Orientation API (see the “Device Orientation” section in
Chapter 5), which requires access to the host device’s accelerometer and gyroscope, can’t be reproduced
with JavaScript.

Figure 6-1.  The results of the feature detection script in Chrome, Firefox, and Internet Explorer

http://dx.doi.org/10.1007/9781430263678_3
http://dx.doi.org/10.1007/9781430263678_5

Chapter 6 ■ Practical HTML5

199

Returning to the question posed at the beginning of the section, it’s clear that if you know what isn’t
supported, you can load shim scripts to reproduce those features as needed. To do this, you’ll have to
dynamically load JavaScript files on demand. The technique for this is fairly simple: just create a script
element using document.createElement and then set the source attribute to the URL of the desired script.
When the script element is appended to the DOM, the browser will load and execute the script. Listing 6-12
demonstrates using this technique along with the feature detection script.

Listing 6-12.  Dynamically Loading Shims Based on Feature Support

<!DOCTYPE html>
<html>
 <head>
 <title>The HTML5 Programmer's Reference</title>
 </head>
 <body>
 <script src="../js-lib/detect-support.js"></script>
 <script>
/**
 * Dynamically load a script.
 * @param {string} srcUrl The URL of the script file to load.
 */
function loadScript(srcUrl) {
 var newScript = document.createElement(script);
 newScript.src = srcUrl;
 document.querySelector('head').appendChild(newScript);
}
 
// Test for supported features.
var supportedFeatures = new DetectHTML5Support();
 
if (!supportedFeatures.localStorage) {
 // The Web Storage is not supported, so load a shim.
 loadScript('../js-lib/webstorage-shim.js');
}
 </script>
 </body>
</html>

This example saves the feature detection script as a separate file and loads it on its own. Then it creates a
simple function that will dynamically load scripts on demand. Finally, it detects support for the Web Storage
feature, and if it is not present it loads a hypothetical shim script that reproduces the Web Storage methods.

Unfortunately, this simple technique doesn’t take into account two important issues. First, the
technique doesn’t allow for an error while the script is loading. What if the script file isn’t found? What if
the application is a mobile application and the user drops off the network? Your script needs to account
for these situations. Fortunately, when a script element encounters an error it publishes an error event for
which you can register an event handler.

The second issue this technique doesn’t account for is that the shim will take time to load. It may only
be a few seconds, but you don’t want to continue running your script until it has loaded and the methods
are available. Otherwise you might access the feature before it has been shimmed, which could result in a
serious error in your application. As with error conditions, when a script element loads it publishes an event
that you can listen for. Unfortunately, the event type varies depending on the browser. For Chrome, Firefox,
Opera, and Safari, the event is a load event, and you can register an event handler for it.

Chapter 6 ■ Practical HTML5

200

For Internet Explorer, however, the event is a readystatechange event. When the readystatechange
event fires, the value of the script element’s readyState property changes and the new value indicates what
stage of loading the script is in:

•	 uninitiated: This is the default state; the script element is doing nothing.

•	 loading: The script has begun downloading to the browser, but is not yet done.

•	 loaded: The script has completely downloaded to the browser.

•	 interactive: The script has completely downloaded but isn’t ready to be used.

•	 complete: The script is ready to be used.

To complicate matters, Internet Explorer doesn’t always dispatch readystatechange events for each
stage of the loading process. You should be most interested in the loaded and complete states, and Internet
Explorer might publish only one of these or both of them, so your readystatechange event handler will need
to check for both of them, and if one of them occurs the handler will need to do its job and then unregister
itself so that it won’t be called again if the browser fires another readystatechange event.

Listing 6-13 shows a new loadScript method that provides a way to register callbacks for both success
and error during the loading process.

Listing 6-13.  Waiting for a Shim to Load Before Continuing

<!DOCTYPE html>
<html>
 <head>
 <title>The HTML5 Programmer's Reference</title>
 </head>
 <body>
 <script src="../js-lib/detect-support.js"></script>
 <script>
/**
 * Dynamically loads a script and invokes an optional callback.
 * @param {string} srcUrl The URL of the script file to load.
 * @param {function=} onLoadCallback An optional function to call when the
 * script is loaded.
 * @param {function=} onErrorCallback An optional function to call if the script
 * fails to load.
 */
function loadScript(srcUrl, onLoadCallback, onErrorCallback) {
 
 // Create a script tag.
 var newScript = document.createElement('script');
 
 // Apply the load callback, if one was provided.
 if (onLoadCallback) {
 if (newScript.readyState) {
 // Internet explorer.
 newScript.onreadystatechange = function() {
 if (newScript.readyState == 'loaded' ||
 newScript.readyState == 'complete') {
 newScript.onreadystatechange = null;
 onLoadCallback.call();
 }
 };

Chapter 6 ■ Practical HTML5

201

 } else {
 // Every other browser in the universe.
 newScript.onload = onLoadCallback;
 }
 }
 
 // Apply the error callback, if one was provided.
 if (onErrorCallback) {
 newScript.onerror = onErrorCallback;
 }
 
 newScript.src = srcUrl;
 document.querySelector('head').appendChild(newScript);
}
 
// Test for supported features.
var supportedFeatures = new DetectHTML5Support();
 
if (!supportedFeatures.localStorage) {
 // The Web Storage is not supported, so load a shim.
 loadScript('../js-lib/webstorage-shim.js',
 initApplication,
 handleScriptLoadError);
} else {
 // Web Storage was supported, so continue with the application.
 initApplication();
}
 
/**
 * Handles an error during a script load.
 */
function handleScriptLoadError() {
 console.log('Script failed to load.');
 // Etc.
}
 
/**
 * Hypothetical function for initializing the application.
 */
function initApplication() {
 console.log('Application continues...');
 // Etc.
}
 </script>
 </body>
</html>

The new loadScript function now takes both onLoadCallback and onErrorCallback parameters. Call
the onLoadCallback function when the script is done loading, and the onErrorCallback function if the
script loading process fails. Both of these parameters are optional, but most likely you will need them. The
script checks for Web Storage support as before, and if present it simply continues. If not, it loads the shim
and then continues when the load is complete.

Chapter 6 ■ Practical HTML5

202

This is great if you only need one HTML5 feature, but your project will probably need to verify support
for multiple features. To make this easier, you can create a simple registry that contains the names of all of
the features you need, and the paths to shims that can be loaded if they’re not supported:

Object featureRegistryEntry {
 string 'featureName',
 string 'shim'
}
 
Array featureRegistry[featureRegistryEntry]

This registry then becomes a single place in your code to manage all of the features you need, making it
easier to add or remove features as your application changes and grows.

However, this means you will be checking multiple features, and could be loading multiple shims. Each
shim could take a different amount of time to load, and you wouldn’t want your script to continue until
all of the shims are done loading. And to complicate matters, one of the scripts might fail to load for some
reason. To keep track of what is loading and what has succeeded and failed, you will need to build a loading
queue. This queue can be a simple data structure that has a simple success condition boolean (set to true
by default, but as soon as a script fails to load you will set it to false) and an array that consists of entries for
each script currently loading:

Object loadQueue {
 boolean 'noErrorsOccurred',
 Array.<boolean> 'queue'
}

Each time a script starts loading, it adds an entry to loadQueue.queue. The actual entry itself doesn’t
matter, because we only care when all scripts are done loading, not when a particular script is done or the
order in which they complete. In this case an entry into the queue will be a simple true value. When a script
is done loading, you will remove an entry from the queue. If the queue is empty at this point, you know all
scripts are done.

When an individual script element load process finishes, it will invoke either the success callback or the
failed callback. In the case of a failed load, set the loadQueue.noErrorsOccurred value to false. That way,
when the queue is empty, you’ll know which final callback to invoke.

■■ Tip T his simple load queue data structure could be reworked as a formal class with methods for adding
and removing items as well as setting the error state, similar to what you did with the DrawCycle class in the
“Animation Timing” section of Chapter 3.

Listing 6-14 demonstrates these techniques.

Listing 6-14.  Loading Multiple Shims and Tracking Process Using a Queue

<!DOCTYPE html>
<html>
 <head>
 <title>The HTML5 Programmer's Reference</title>
 </head>

http://dx.doi.org/10.1007/9781430263678_3

Chapter 6 ■ Practical HTML5

203

 <body>
 <script src="../js-lib/detect-support.js"></script>
 <script>
// Create a registry of HTML features that we need and shims to apply if they
// are not present. The registry will be an array of objects; each object will
// consist of a feature name and a path to a shim to apply if that feature is
// not supported.
var featureRegistry = [
 {
 'featureName' : 'localStorage',
 'shim' : '../js-lib/webstorage-shim.js'
 },
 {
 'featureName' : 'requestAnimationFrame',
 'shim' : '../js-lib/animationframe-shim.js'
 }
];
 
/**
 * Dynamically loads a script and invokes an optional callback.
 * @param {string} srcUrl The URL of the script file to load.
 * @param {function=} onLoadCallback An optional function to call when the
 * script is loaded.
 * @param {function=} onErrorCallback An optional function to call if the script
 * fails to load.
 */
function loadScript(srcUrl, onLoadCallback, onErrorCallback) {
 
 // Create a script tag.
 var newScript = document.createElement('script');
 
 // Apply the load callback, if one was provided.
 if (onLoadCallback) {
 if (newScript.readyState) {
 // Internet explorer.
 newScript.onreadystatechange = function() {
 if (newScript.readyState == 'loaded' ||
 newScript.readyState == 'complete') {
 newScript.onreadystatechange = null;
 onLoadCallback.call();
 }
 };
 } else {
 // Every other browser in the universe.
 newScript.onload = onLoadCallback;
 }
 }

Chapter 6 ■ Practical HTML5

204

 // Apply the error callback, if one was provided.
 if (onErrorCallback) {
 newScript.onerror = onErrorCallback;
 }
 
 newScript.src = srcUrl;
 document.querySelector('head').appendChild(newScript);
}
 
/**
 * Verifies all features in the registry and applies shims as needed.
 * @param {function=} onLoadCallback An optional callback function. If no shims
 * were loaded this callback will be invoked immediately, otherwise it will
 * be invoked after all shims have successfully loaded.
 * @param {function=} onErrorCallback An optional callback function which will
 * be invoked if even one of the shim scripts fails to load.
 */
function verifyAllFeatures(onLoadCallback, onErrorCallback) {
 
 // Create loading queue. This queue consists of an error condition boolean
 // and a simple array of entries.
 window.loadQueue = {
 'noErrorsOccurred' : true,
 'queue' : []
 };
 
 // Flag for all feature support.
 var allFeaturesSupported = true;
 
 featureRegistry.forEach(function(currFeature) {
 if (!supportedFeatures[currFeature.featureName]) {
 // A feature is not supported.
 allFeaturesSupported = false;
 
 // Add an entry to the loading queue.
 window.loadQueue.queue.push(true);
 
 /**
 * Callback function that is invoked when the shim script is loaded.
 * Removes an entry from the loading queue and if the queue is then empty
 * invokes one of the callbacks. If the queue is in an error condition,
 * the error callback is invoked. Otherwise, the load callback is invoked.
 */
 var handleThisLoad = function() {
 // Remove entry from the loading queue.
 window.loadQueue.pop();
  
 // If the queue is empty, all scripts are loaded and we can invoke the
 // callback.

Chapter 6 ■ Practical HTML5

205

 if (window.loadQueue.queue.length === 0) {
 // Check for error condition.
 if (window.loadQueue.noErrorsOccurred) {
 // Everything loaded, so call the load callback, if one was
 // provided.
 if (onLoadCallback) {
 onLoadCallback.call();
 }
 } else {
 // At least one of the scripts failed to load, so call the error
 // callback, if one was provided.
 if (onErrorCallback) {
 onErrorCallback.call();
 }
 }
 }
 };
 
 /**
 * Callback function that is invoked when the shim script fails to load.
 * Places the load queue in an error state and removes an entry. If the
 * queue is then empty it invokes the final error callback.
 */
 var handleThisError = function() {
 // Immediately put the load queue into an error condition.
 window.loadQueue.noErrorsOccurred = false;
  
 // Remove entry from the loading queue.
 window.loadQueue.pop();
 
 // If the queue is empty, we need to invoke the error callback, if one
 // was provided.
 if (window.loadQueue.queue.length === 0 && onErrorCallback) {
 onErrorCallback.call();
 }
 };
 
 // Call the loadScript function with our custom handlers.
 loadScript(currFeature.shim, handleThisLoad, handleThisError);
 }
 }, this);
 if (allFeaturesSupported && onLoadCallback) {
 onLoadCallback.call();
 }
}
 
// Test for supported features.
var supportedFeatures = new DetectHTML5Support();
verifyAllFeatures(initApplication, handleScriptLoadError);
 

Chapter 6 ■ Practical HTML5

206

/**
 * Handles an error during a script load.
 */
function handleScriptLoadError() {
 console.log('A script failed to load.');
 // Etc.
}
 
/**
 * Hypothetical function for initializing the application.
 */
function initApplication() {
 console.log('Application continues...');
 // Etc.
}
 </script>
 </body>
</html>

In this example, you start by creating the registry of tests to check and shims to load. You’ve also added
a verifyAllFeatures function that performs the following operations:

	 1.	 It checks each feature for support.

	 2.	 For each unsupported feature it does the following:

a.	 It adds an entry to the loading queue.

b.	 It creates a load callback function for this script that removes an entry from
the loading queue and then invokes the final callback if the queue is then
empty. If the queue is in an error state, the final callback that is invoked is
the error callback, otherwise it is the load callback.

c.	 It creates an error callback function for this script that immediately sets the
queue in an error condition. It then removes an entry from the queue and, if
the queue is then empty, it invokes the final error callback.

d.	 Finally, it calls the loadScript function with the newly created callbacks.

	 3.	 If all features were supported, it calls the initApplication function to continue
the application.

When run, this script will verify all of the features specified in the registry and invoke the appropriate
callbacks depending on the results.

This technique has a major disadvantage: for each required shim, it will generate a separate script tag
and thus HTTP request. If you have several shims loading, this alone can cause a noticeable delay in your
application. If any of the shims are resource intensive, that will slow it further. To complicate this problem,
you will generally only need shims for older browsers, which usually will only be running on older hardware
with older operating systems, so they will already be resource constrained. This is particularly a problem for
mobile applications, where system resources are quite limited.

If you need the shims, there’s not much you can do about it and you should load them so your
application can work. One way to help mitigate the problem is to make sure you provide feedback in your
user interface that loading is happening, so users know that the application hasn’t just frozen. Another
way to mitigate the expense of loading shims is to spread it out. In all of these examples so far you’ve been
testing all features at once. However, one of the benefits of using a dynamic technique like this is you can

Chapter 6 ■ Practical HTML5

207

test for features as you need them. After all, if the user never goes into the part of the application that needs a
particular feature, there’s no need to load the shim for that feature. This is especially important if the shim is
a large file or otherwise resource intensive.

You can easily add a new function that checks a single feature in the registry, as shown in Listing 6-15.

Listing 6-15.  A Function for Checking a Single Feature

/**
 * Checks a single feature and applies a shim if needed.
 * @param {string} featureName The name of the feature to check.
 * @param {function=} onLoadCallback An optional function to call when the shim
 * is loaded.
 * @param {function=} onErrorCallback An optional function to call if the shim
 * fails to load.
 * @return {boolean} True if the feature was supported natively, or false if
 * the feature was not supported and a shim was applied.
 */
function verifyFeature(featureName, onLoadCallback, onErrorCallback) {
 var returnVal = true;
 featureRegistry.forEach(function(currFeature) {
 if ((currFeature.featureName === featureName) &&
 !supportedFeatures[currFeature.featureName]) {
 loadScript(currFeature.shim, onLoadCallback, onErrorCallback);
 returnVal = false;
 }
 });
 return returnVal;
}
 
// Test for supported features.
var supportedFeatures = new DetectHTML5Support();
 
// Verify the Animation Timing feature.
if (verifyAllFeatures('requestAnimationFrame', initApplication,
 handleScriptLoadError)) {
 initApplication();
}
 
/**
 * Handles an error during a script load.
 */
function handleScriptLoadError() {
 console.log('A script failed to load.');
 // Etc.
}
 
/**
 * Hypothetical function for initializing the application.
 */
function initApplication() {
 console.log('Application continues...');
 // Etc.
}

Chapter 6 ■ Practical HTML5

208

This function runs through the featureRegistry until it finds the entry corresponding to the desired
feature. It then checks for support and applies a shim if needed. For this function, if no shim was needed
it returns true rather than invoking the callback itself. This gives more flexibility in how the callback is
invoked, allowing you to call different functions depending on feature support.

Online Resources for Browser Support, Feature Detection, and Shims
Now that you can detect features and load shims as needed, you need to have shims to load. Building shims
for HTML5 features ranges from the simple (structural element shims) to the moderate (implementing the
Web Storage feature on top of HTTP Cookies) to the forbiddingly complex (implementing Web Sockets).
The good news is that shims have already been written for most HTML5 features.

Can I Use

The Can I Use database, located at www.caniuse.com, is probably the most important resource for
researching browser support and shims for not only HTML5 features, but also CSS3 and advanced JavaScript
features as well. The site has up-to-date tables of browser support indicating the level of support of the
feature in question, including how far back the browser supported it. Also included are global support
percentages, various ways of visualizing support data, links to relevant specifications, articles, shims, and a
brilliant custom-coded test suite.

Modernizr

Modernizr, located at www.modernizr.com, is a suite of feature detection scripts that detect support for
HTML5 and CSS3 features. Modernizr also implements dynamic loading of shims using YepNope
(www.yepnopejs.com); however, they recommend dynamically combining required shims on the server
into a single file, thus saving HTTP responses (which are very expensive in terms of application efficiency).
Modernizr also has a page devoted to shims for HTML5, CSS5, and JavaScript functions on their wiki,
located at https://github.com/Modernizr/Modernizr/wiki/HTML5-Cross-Browser-Polyfills.

HTML5 Rocks

The HTML5 Rocks website, located at www.html5rocks.com, is a great resource for articles on HTML5, CSS3,
and JavaScript features. Articles include tutorials, best practices, shims, and more.

Webshim

The Webshim library at http://afarkas.github.io/webshim/demos is a polyfill library that enables several
HTML5 features on older browsers.

Example Project: MobiDex, a Mobile Dexterity Puzzle
Dexterity puzzles are among the oldest puzzles in history. The simplest version of a dexterity puzzle consists
of a small board held flat in the palm of the hand, with a ball bearing or marble on top. The goal of the puzzle
is to guide the ball from one location to another without letting it fall through holes in the board. Other
dexterity puzzles include mazes and games with multiple balls where the goal is to get the balls to rest in
specific places, either to score points or to complete a picture.

http://www.caniuse.com/
http://www.modernizr.com/
http://www.yepnopejs.com/
https://github.com/Modernizr/Modernizr/wiki/HTML5-Cross-Browser-Polyfills
http://www.html5rocks.com/
http://afarkas.github.io/webshim/demos

Chapter 6 ■ Practical HTML5

209

Using HTML5 technologies, specifically the Device Motion and Animation Timing APIs, you can
easily implement a version of a dexterity puzzle on a mobile device. Your dexterity puzzle, called MobiDex
(for Mobile Dexterity), will consist of a square playing field. Within the playing field you will draw a “ball”
that will be animated as the user tilts their device. You will also draw a set of targets in the playing field as
well as a set of obstacles. The player will have a limited number of chances to collect all of the targets while
avoiding the obstacles. Every time the player runs into an obstacle, it will cost them one of their chances.
If they can collect all of the targets before running out of “lives” they win the game.

A game like this sounds pretty simple on the surface, but it has significant complexity once you think
about it. One of the biggest difficulties in a project like this is successfully capturing all of the requirements
so you have some idea of the tasks ahead of you. Since this project is a game it makes sense to approach
defining the project from a user’s point of view. A great tool for defining a user-centered project from the
user’s point of view is a technique called “user stories.” A user story is a simple statement that encapsulates a
single feature as described from the user’s point of view. User stories are similar to use cases, but are smaller
and more compact, and typically define a single feature as opposed to a workflow. The typical pattern of a
user story goes like this:

As a <type of user>, I want <functionality> so that <desired goal>.

The pattern isn’t set in stone and can be modified to be useful for the given project. For example, in
your project there’s only one type of user (the player), so there’s really no need to keep repeating it in each
user story. And occasionally the functionality specified is its own goal, so there’s no need for the desired
goal clause.

■■ Tip  User stories are a technique often employed in Agile software development.

A set of user stories for your game would be as follows:

•	 As a player, I want there to be a well-defined playing field for the game, so I know
what the boundaries are.

•	 I want the game to have a “ball” that responds to the tilting motion of my device, so
that I can play the game.

•	 I expect the “ball” to never leave the confines of the playing field.

•	 I want the game to have a set of targets on the field for me to pick up so that I can win
the game.

•	 I want the targets to disappear from the playing field when I touch them with the
“ball” so that I know how many targets are left.

•	 I want the game to have a set of obstacles on the field so that the game is challenging.

•	 I want the targets and obstacles to not be on top of one another, so that I can
successfully gather all of the targets without needing to hit an obstacle.

•	 I want to have a limited number of chances to collect all of the targets while avoiding
the obstacles, so that the game is more challenging.

•	 I expect to lose one of my chances each time my “ball” collides with an obstacle.

•	 I want the game to make it clear when I have collided with an obstacle.

Chapter 6 ■ Practical HTML5

210

•	 I expect to be able to see how many chances I have left to win the current game.

•	 I expect the game to tell me if I have won or lost.

•	 I expect to be able to restart the game when it is over, so that I can play again.

These user stories define a set of features to build: targets, obstacles, a ball, an indicator for the number
of chances remaining, the interactions the player expects, and so on.

You’ll need the following features:

•	 A UI capable of displaying a playing field, a ball, obstacles, targets, and the like.

•	 A method for generating random sets of targets and obstacles. The only difference
between a target and an obstacle is the color, so you should be able to write one set
of code to generate both.

•	 A method for moving the ball around on the screen. This will have to use the Device
Orientation API, similar to what we did in Listing 5-7 in Chapter 5. In your case,
though, we don’t want the deviceorientation event to drive the redrawing of the
screen; we want to use requestAnimationFrame from the Animation Timing API.

•	 A method for determining collisions between the ball and both targets and obstacles.
There’s a couple of ways you could do this; the easiest is to keep track of the
coordinates of each target and obstacle and compare them to the ball’s coordinates
as the game progresses.

•	 A unified way of indicating coordinates—you can create a simple class for this and
then instantiate it as needed.

•	 A way of initializing and resetting the game so that it can be replayed.

The Playing Field UI
To start, build the playing field user interface. The first decision you’ll have to make is the technology to use
to implement game’s UI. You could use Canvas, but you don’t really need to. Your game has a fairly simple
interface; all you need to do is display a playing field and some items on it. You can easily implement what
you need using HTML and CSS. This also has the virtue of being quite fast, which is good because this game
targets mobile devices.

Start by drawing a simple playing field on the screen. Within that field you’ll lay out the ball, obstacles,
targets, and the game over message. Above the field you’ll display the number of remaining lives. You’ll also
add a title above the playing field. The base markup is shown in Listing 6-16.

Listing 6-16.  Markup for MobiDex Playing Field

<h1>MobiDex</h1>
<div id="remaining-balls"></div>
<div id="container-field">
 <div id="game-field"></div>
 <div id="ball"></div>
 <div id="gameover" class="hidden"></div>
</div>

As you can see, there’s a container for the lives, a ball, the game over message (which can be used both
for winning or losing), and a field where the targets and obstacles will be drawn.

http://dx.doi.org/10.1007/9781430263678_5

Chapter 6 ■ Practical HTML5

211

Keep the styling simple for the sake of efficiency. Start with a field that is 200 pixels wide by 200 pixels
high. Draw a simple 1-pixel border around the field (so, according to the CSS box model, the dimensions for
the field will actually need to be 202 pixels wide by 202 pixels high). The field will be absolutely positioned
on the screen, which allows you to absolutely position elements inside of it relative to its coordinate origin.

The “ball” and the targets and obstacles will be div elements. They will all be 10 pixels wide by 10 pixels
high for uniformity. The ball will be blue, the targets will be green, and the obstacles will be red. Make all of
them look round by giving them a border-radius of 50%.

Each time the player runs into an obstacle it will cost them a ball. Their remaining number of balls will
be shown in the div above the playing field.

One of the user stories specified the requirement that the game distinctly let the player know when
they have hit an obstacle. Of course you’ll remove a ball from the display of remaining balls, but the player
will have their eyes on the playing field and might not notice that. An easy way to let the player know when
they’ve collided with an obstacle is to change the background color of the playing field while the collision is
in progress. That’s easy enough; all it requires is adding a CSS class to the container.

Finally, you’ll provide some styles to the game over message, and have different background colors for
it: one for winning and one for losing.

Listing 6-17 shows the resulting CSS for the entire game.

Listing 6-17.  CSS for MobiDex Playing Field

body {
 font-family: arial, helvetica, sans-serif;
}
 
h1 {
 text-align: center;
}
 
#remaining-balls {
 height: 10px;
 left: 50px;
 position: absolute;
 top: 109px;
}
 
#container-field {
 border: 1px solid red;
 height: 202px;
 left: 50px;
 position: absolute;
 top: 120px;
 width: 202px;
}
 
#game-field {
 height: 202px;
 left: 0px;
 position: absolute;
 top: 0px;
 width: 202px;
}
 

Chapter 6 ■ Practical HTML5

212

#ball,
.life {
 background-color: blue;
 height: 10px;
 left: 0px;
 position: absolute;
 top: 0px;
 width: 10px;
}
 
#gameover {
 border-radius: 5px;
 font-size: 2em;
 font-weight: bold;
 margin-left: 10px;
 margin-right: 10px;
 margin-top: 80px;
 padding: 5px 0;
 position: relative;
 text-align: center;
}
 
.obstacle,
.target {
 height: 10px;
 position: absolute;
 width: 10px;
}
 
.obstacle {
 background-color: red;
}
 
.target {
 background-color: green;
}
 
#ball,
.life,
.obstacle,
.target {
 border-radius: 50%;
}
 
.hidden {
 display: none;
}
 
.winner {
 background-color: rgb(116, 216, 94);
}
 

Chapter 6 ■ Practical HTML5

213

.loser {
 background-color: rgb(255, 85, 85);
}
 
.collision {
 background-color: rgba(215, 44, 44, 0.4);
}

When you render the game field, including sample targets and obstacles, the result will look like Figure 6-2.

Generating Obstacles and Targets
Probably the easiest place to start is to generate the obstacles and targets. From a high level, you need to
randomly generate a set of coordinates for each obstacle and target. That’s not hard to do, but if you just
generate random numbers chances are pretty good that some of your obstacles and targets will be very close
to one another, if not right on top of one another. That contravenes one of your user stories, which specifies
that targets and obstacles should not be on top of one another. So you’ll need a way of detecting when a
newly generated obstacle or target is colliding with an existing one. This is the same functionality you’ll need
to determine if the ball is colliding with an obstacle or target, so this code path can serve both purposes.

Figure 6-2.  A sample rendering of the MobiDex game

Chapter 6 ■ Practical HTML5

214

Since you’re dealing with coordinates, create a simple Coordinate class that you can use throughout
this process, as shown in Listing 6-18.

Listing 6-18.  A Simple Coordinate Class

/**
 * Coordinate class.
 * @param {number} xOrd The x ordinate of the coordinate.
 * @param {number} yOrd The y ordinate of the coordinate.
 * @constructor
 */
function Coordinate(xOrd, yOrd) {
 this.x = xOrd;
 this.y = yOrd;
}

This simple class records the x and y values (corresponding to the CSS properties left and top,
respectively). You could just save a reference to the element itself and get the left and top CSS properties
when you need to, but those properties are actually strings with units on them (e.g., "5px") so you would
need to recast them as numbers in order to compare them with one another as required for collision
detection. And since you’re generating these numbers ourselves, you can store them and have them handy
whenever you need them, no parsing required.

You’ll need a way to generate random numbers between upper and lower boundaries. Initially you
might think any value between 0 and 200 would be viable since the playing field is 200 × 200. However
that doesn’t take into account the width and height of the element; if you were to place a 10 × 10 div at
(200, 200) it would be outside the playing field. To avoid accidentally playing a target or obstacle outside
of the playing field, limit your random numbers to integers between 10 and 190. Listing 6-19 shows a utility
function for this.

Listing 6-19.  A Utility Function for Generating Random Integers Between Two Bounds

/**
 * Returns a random integer between the specified minimum and maximum values.
 * @param {number} min The lower boundary for the random number.
 * @param {number} max The upper boundary for the random number.
 * @return {number}
 */
getRandomIntegerBetween_ = function(min, max) {
 return Math.floor(Math.random() * (max - min + 1)) + min;
};

To generate a new Coordinate, do something like the following:

var target = new Coordinate(getRandomIntegerBetween(10, 190), getRandomIntegerBetween(10, 190));

You can store the Coordinates in arrays, one for targets and one for obstacles. That way you can
compare new Coordinates to determine if they’re too close to existing ones.

Chapter 6 ■ Practical HTML5

215

Comparing Coordinates
To detect collisions, you’ll need a Coordinate to check and an array of Coordinates to check it against. If the
Coordinate is too close to any of the Coordinates in the array, you can return a collision.

What determines “too close,” though? There’s a few ways you could determine this, but for the purposes
of your simple game you can just check to see if a given ordinate (x or y) of the target Coordinate is within a
defined range of the Coordinate you’re checking against. The range is defined by a sensitivity value. So given
a target Coordinate (x.t, y.t) and an original Coordinate (x.o, y.o) and a sensitivity s:

(x.o - s) < x.t < (x.o + s)
(y.o - s) < y.t < (y.o + s)

If both inequalities hold true, the target Coordinate is close enough to the original Coordinate that
their associated elements are visually colliding. This is an approximation, of course, but for such small
elements it should work.

Listing 6-20 shows a function that performs this check.

Listing 6-20.  Checking for Collisions Between a Target Coordinate and an Array of Existing Coordinates

/**
 * Check to see if the specified coordinates collide with an existing set of
 * coordinates.
 * @param {Coordinate} coordinate The coordinate to check.
 * @param {number} sensitivity The sensitivity for a collision. If coordinates
 * are within sensitivity distance of a target coordinate, a collision
 * will be registered.
 * @param {Array.<Coordinate>} arrTargetCoords An array of target coordinates
 * to check against.
 * @return {number} The index of the member of the target coordinates array
 * that is being hit, or -1 if no collision is detected.
 */
checkCollision_ = function(coordinate, sensitivity, arrTargetCoords) {
 // Loop through each target coordinate and compare the provided values.
 for (var i = 0; i < arrTargetCoords.length; i++) {
 var currObstacle = arrTargetCoords[i];
 var xcoll = false;
 var ycoll = false;
 
 // If the provided x coordinate is within range of the obstacle coordinate,
 // then there is an x collision.
 if (((currObstacle.x - sensitivity) < coordinate.x) &&
 (coordinate.x < (currObstacle.x + sensitivity))) {
 xcoll = true;
 }
  
 // If the provided y coordinate is within range of the obstacle coordinate,
 // Then there is a y collision.
 if (((currObstacle.y - sensitivity) < coordinate.y) &&
 (coordinate.y < (currObstacle.y + sensitivity))) {
 ycoll = true;
 }
 

Chapter 6 ■ Practical HTML5

216

 // If there is both an x and a y collision, then return true.
 if (xcoll && ycoll) {
 return i;
 }
 }
 return -1;
};

This function takes a Coordinate, a sensitivity value, and an array of Coordinates to check against.
It then loops through each Coordinate in the array and determines if a collision is occurring.

Now that you have a way of checking collisions, you can build a function for generating an array of
Coordinates. Your game will need two arrays of Coordinates, one for targets and one for obstacles. And you’ll
need to check both arrays when checking for collisions while generating new Coordinates for either array.

At this point you should start thinking about how you want to encapsulate these functions and the data
you’re going to be generating. It’s easy to create a simple class constructor that contains the functions you’ve
built so far, and adds in the arrays for targets and obstacles, as shown in Listing 6-21.

Listing 6-21.  The Beginnings of the MobiDex Class

/**
 * Creates a new game. Assumes that the required DOM elements are present.
 * @constructor
 */
function MobiDex() {
 
 /**
 * Array of obstacle coordinates.
 * @type {Array.<Coordinate>}
 * @private
 */
 this.arrObstacles_ = [];
 
 /**
 * Array of target coordinates.
 * @type {Array.<Coordinate>}
 * @private
 */
 this.arrTargets_ = [];
 
 /**
 * The number of obstacles to draw on the game field.
 * @type {number}
 * @private
 */
 this.numberOfObstacles_ = 10;
 
 /**
 * The number of targets to draw on the game field.
 * @type {number}
 * @private
 */
 this.numberOfTargets_ = 10;
 

Chapter 6 ■ Practical HTML5

217

 /**
 * Checks to see if the specified coordinates collide with an existing set of
 * coordinates.
 * @param {Coordinate} coordinate The coordinate to check.
 * @param {number} sensitivity The sensitivity for a collision. If coordinates
 * are within sensitivity distance of a target coordinate, a collision
 * will be registered.
 * @param {Array.<Coordinate>} arrTargetCoords An array of target coordinates
 * to check against.
 * @return {number} The index of the member of the target coordinates array
 * that is being hit, or -1 if no collision is detected.
 * @private
 */
 this.checkCollision_ = function(coordinate, sensitivity, arrTargetCoords) {
 // Loop through each target coordinate and compare the provided values.
 for (var i = 0; i < arrTargetCoords.length; i++) {
 var currObstacle = arrTargetCoords[i];
 var xcoll = false;
 var ycoll = false;
  
 // If the provided x coordinate is within range of the obstacle coordinate,
 // then there is an x collision.
 if (((currObstacle.x - sensitivity) < coordinate.x) &&
 (coordinate.x < (currObstacle.x + sensitivity))) {
 xcoll = true;
 }
  
 // If the provided y coordinate is within range of the obstacle coordinate,
 // Then there is a y collision.
 if (((currObstacle.y - sensitivity) < coordinate.y) &&
 (coordinate.y < (currObstacle.y + sensitivity))) {
 ycoll = true;
 }
  
 // If there is both an x and a y collision, then return true.
 if (xcoll && ycoll) {
 return i;
 }
 }
 return -1;
 };
 
 /**
 * Generates a set of random coordinates and adds them to the provided array.
 * Tries to avoid duplicating too closely any previously-generated
 * coordinates.
 * @param {number} numberOfCoords The number of coordinates to generate.
 * @param {Array} targetArray The array to fill with the new coordinates.
 * @private
 */

Chapter 6 ■ Practical HTML5

218

 this.generateCoords_ = function(numberOfCoords, targetArray) {
 for (var i = 0; i < numberOfCoords; i++) {
 var newCoord = new Coordinate(this.getRandomIntegerBetween_(10, 190),
 this.getRandomIntegerBetween_(10, 190));
 while (this.checkCollision_(newCoord, 15,
 this.arrObstacles_.concat(this.arrTargets_)) > -1) {
 newCoord.x = this.getRandomIntegerBetween_(10, 190);
 newCoord.y = this.getRandomIntegerBetween_(10, 190);
 }
 targetArray.push(newCoord);
 }
 };
 
 /**
 * Returns a random integer between the specified minimum and maximum values.
 * @param {number} min The lower boundary for the random number.
 * @param {number} max The upper boundary for the random number.
 * @return {number}
 * @private
 */
 this.getRandomIntegerBetween_ = function(min, max) {
 return Math.floor(Math.random() * (max - min + 1)) + min;
 };
};
 
/**
 * Coordinate class.
 * @param {number} xOrd The x ordinate of the coordinate.
 * @param {number} yOrd The y ordinate of the coordinate.
 * @param {Element} element A reference to the DOM element for these
 * coordinates.
 * @constructor
 */
function Coordinate(xOrd, yOrd, element) {
 this.x = xOrd;
 this.y = yOrd;
 this.element = element;
}

The new MobiDex class has your getRandomIntegerBetween and checkCollision methods, as well as
arrays for the obstacles and targets. It also has constants for the number of obstacles and targets that should
be generated.

The class also has a new method: generateCoords. This method takes two parameters: a number
(for the number of Coordinates to generate) and a target array to fill with the Coordinates it generates.
The method automatically checks both the existing target and obstacle arrays for collisions using the
checkCollisions method. If a collision is detected, a new Coordinate is generated and checked for
collision. The process continues until the new Coordinate is not colliding with any existing Coordinates.

This is enough functionality to actually generate the targets and obstacles and draw them in the
interface. To do that you’ll add a new method to the class, drawGameField, as shown in Listing 6-22.

Chapter 6 ■ Practical HTML5

219

Listing 6-22.  The drawGameField Method and Associated Properties

/**
 * Reference to the 'gamefield' DOM element.
 * @type {Element}
 * @private
 */
this.gameField_ = document.getElementById('game-field');
 
/**
 * Initializes the obstacles and targets and draws the UI.
 * @private
 */
this.drawGameField_ = function() {
 // Clear the game field.
 this.gameField_.innerHTML = '';
 
 // Fill up the obstacle and target arrays with random coordinates.
 this.generateCoords_(this.numberOfObstacles_, this.arrObstacles_);
 this.generateCoords_(this.numberOfTargets_, this.arrTargets_);
 
 // Create a div that can be used as a template for cloning.
 var templateDiv = document.createElement('div');
 
 // Add the obstacles to the playing field.
 this.arrObstacles_.forEach(function(currCoord) {
 var newObstacle = templateDiv.cloneNode();
 newObstacle.classList.add('obstacle');
 newObstacle.style.left = currCoord.x + 'px';
 newObstacle.style.top = currCoord.y + 'px';
 this.gameField_.appendChild(newObstacle);
 }, this);
 
 // Add the targets to the playing field.
 this.arrTargets_.forEach(function(currCoord) {
 var newTarget = templateDiv.cloneNode();
 newTarget.classList.add('target');
 newTarget.style.left = currCoord.x + 'px';
 newTarget.style.top = currCoord.y + 'px';
 this.gameField_.appendChild(newTarget);
 }, this);
};

Here you have added two new items to the class. The first is a reference to the game field DOM element,
since you’ll be using that throughout the game. (Because this class is going to get fairly large, this example,
and future examples, will only show what you’re adding to the class, rather than repeating everything each
time. At the end of the chapter I’ll provide a full, organized listing for study; you can also download the
examples.)

Chapter 6 ■ Practical HTML5

220

■■ Tip  Your DOM structure is quite simple. Fetching the element reference every time you needed it wouldn’t
necessarily be a performance problem, but the reference isn’t something that will change, so you might as well
fetch the reference and store it for later use. You’ll use this technique throughout the class.

The second is the drawGameField method, which clears the game field, generates the arrays of target
and obstacle Coordinates, and then draws them on the game field. You’ve used the technique of creating a
template element and cloning it for each new Coordinate.

■■ Tip I f you are in a situation where you are creating the same kind of element over and over again, it’s
often faster to make a template element like this and clone it rather than create each element anew. See
http://jsperf.com/clonenode-vs-createelement-performance/32 for various tests and results.

There’s one other thing you need to do in the drawGameField method, and that’s draw the initial
number of balls left. To do that you’ll create a generic function that you can call at any time to update that
part of the UI, since you’ll need it when collisions with obstacles occur (see Listing 6-23).

Listing 6-23.  The updateRemainingBalls Method

/**
 * Reference to the 'remaining-balls' DOM element.
 * @type {Element}
 * @private
 */
this.remainingBalls_ = document.getElementById('remaining-balls');
 
/**
 * The number of balls remaining.
 * @type {number}
 * @private
 */
this.balls_ = 3;
 
/**
 * Updates the number of remaining balls displayed.
 * @private
 */
this.updateRemainingBalls_ = function() {
 // Clear the current lives.
 this.remainingBalls_.innerHTML = '';
 // Create a template that we can clone and use multiple times.
 var lifeTemplate = document.createElement('div');
 lifeTemplate.classList.add('life');

http://jsperf.com/clonenode-vs-createelement-performance/32

Chapter 6 ■ Practical HTML5

221

 // Add an element for each life.
 for (var i = 0; i < this.balls_; i++) {
 var currLife = lifeTemplate.cloneNode();
 currLife.style.left = (i * 15) + 'px';
 this.remainingBalls_.appendChild(currLife);
 }
};

Here you’ve added two new constants: a reference to the remaining-balls DOM element (again cached
for future use) and the total number of balls each game starts with. You can add a call to this method at the
end of the drawGameField method.

The deviceorientation Event Handler
You will need to use the deviceorientation event for the Device Motion API to actually detect changes in
the orientation of the mobile device and use it to calculate where to move the ball. The deviceorientation
event fires continuously, so for the sake of efficiency the event handler for it should be as lean as possible.
For example, you don’t want to do any DOM manipulation within the event handler (that should be done in
the draw cycle, which I’ll discuss in the next section).

The event handler should do two things:

•	 it should determine the new coordinates of the ball and store that information in the
class, and

•	 it should check for collisions at the new coordinates and store that information
in the class.

Then the draw cycle can actually update the position of the ball and react to any collisions that have
occurred. This means the event handler is only doing some arithmetic and storing the results, which is pretty
efficient.

I will borrow a little code from Example 5-7 in Chapter 5, for calculating a new Coordinate based on
the Euler Angles published by the deviceorientation event. Listing 6-24 shows the new methods and their
associated properties.

Listing 6-24.  The deviceorientation Event Handler

/**
 * The current coordinate of the 'ball'.
 * @type {Coordinate}
 * @private
 */
this.currCoordinate_ = new Coordinate(0, 0);
 
/**
 * The index of the obstacle that the ball is currently colliding with.
 * @type {number}
 * @private
 */
this.currentObstacleIndex_ = -1;
 

http://dx.doi.org/10.1007/9781430263678_5

Chapter 6 ■ Practical HTML5

222

/**
 * The index of the target that the ball is currently colliding with.
 * @type {number}
 * @private
 */
this.currentTargetIndex_ = -1;
 
/**
 * Gets an ordinate based on a Euler Angle.
 * @param {number} angle The orientation angle that is inducing the change.
 * @param {number} ord The previous value of the ordinate.
 * @return {number} The new value of the ordinate.
 * @private
 */
this.getOrd_ = function(angle, ord) {
 var delta = Math.round(angle - (angle * 0.3));
 var tempVal = ord + delta;
 if (tempVal > 0) {
 ord = Math.min(192, tempVal);
 } else {
 ord = 0;
 }
 return ord;
};
 
/**
 * Handles a deviceorientation event from the window.
 * @param {DeviceOrientationEvent} event The device orientation event object.
 * @private
 */
this.handleDeviceOrientation_ = function(event) {
 // Get the x and y positions and update the current coordiate with them.
 this.currCoordinate_.x = this.getOrd_(event.gamma, this.currCoordinate_.x);
 this.currCoordinate_.y = this.getOrd_(event.beta, this.currCoordinate_.y);
 
 // Check for collisions.
 this.currentObstacleIndex_ = this.checkCollision_(this.currCoordinate_, 10,
 this.arrObstacles_);
 this.currentTargetIndex_ = this.checkCollision_(this.currCoordinate_, 10,
 this.arrTargets_);
};

This code adds some new constants: the current position Coordinate of the ball, which you’ll
manipulate with the event handler; and the indexes for the obstacle and target that are currently being
collided with. You’re using the checkCollision method to determine collisions, just like you did when
generating the obstacles and targets.

■■ Note T he delta calculation in the getOrd method here has been optimized for the Euler Angles published by
Safari Mobile. You might need to tweak the calculation for your particular browser/platform combination.

Chapter 6 ■ Practical HTML5

223

The Draw Cycle
Use the DrawCycle class you built in Chapter 5 for an easy way to manage a draw cycle using
requestAnimationFrame.

The draw cycle method will need to do three things:

•	 Position the ball at the Coordinates stored in the currCoordinate property by the
deviceorientation event handler.

•	 Check for a collision with an obstacle, and if one is happening:

•	 add the collision class to the container,

•	 remove a ball from the user’s remaining number and update the display, and

•	 if there are no more balls, end the game with a loss.

•	 Check for a collision with a target, and if one is happening,

•	 hide the target element, and

•	 check to see if all elements have been collected—if so, end the game with a win.

Dealing with obstacle collisions is a little complicated, because you could have a collision happening
with the same obstacle for multiple iterations of the draw cycle (e.g., imagine the player is being very careful
and is moving the ball very slowly, so it is in collision with an obstacle for a second or so). A collision with
an obstacle should only remove one ball from the user’s total no matter how long the ball is in collision with
that obstacle. To prevent problems like this, store a reference to the obstacle that is currently in collision
when the collision first happens. Then on subsequent draw cycles, ignore further collisions with the same
element. You’ll clear the reference when the collision ends.

When a collision with a target happens, you need to hide the associated target element on the game
field. The easiest way to do this is to store a DOM reference in the element’s Coordinate when you generate
it in the drawGameField method. This will require modifications to that method, as well as to the Coordinate
class, as shown in Listing 6-25.

Listing 6-25.  The Draw Cycle, the Associated Class Properties, and Updates to Class Methods

 /**
 * Reference to the 'gameover' DOM element.
 * @type {Element}
 * @private
 */
this.domGameOver_ = document.getElementById('gameover');
 
/**
 * Reference to the 'gamefield' DOM element.
 * @type {Element}
 * @private
 */
this.gameField_ = document.getElementById('game-field');
 
/**
 * Reference to the ball DOM element.
 * @type {Element}
 * @private
 */
this.ball_ = document.getElementById('ball');
 

http://dx.doi.org/10.1007/9781430263678_5

Chapter 6 ■ Practical HTML5

224

/**
 * The number of targets that have been collected.
 * @type {number}
 * @private
 */
this.collectedTargets_ = 0;
 
/**
 * Reference to the current obstacle during a collision event. Stored between
 * draw cycles to prevent firing multiple collisions.
 * @type {Coordinate}
 * @private
 */
this.currObstacle_ = new Coordinate(0, 0);
 
/**
 * Initializes the obstacles and targets and draws the UI.
 * @private
 */
this.drawGameField_ = function() {
 // Clear the game field.
 this.gameField_.innerHTML = '';
 
 // Fill up the obstacle and target arrays with random coordinates.
 this.generateCoords_(this.numberOfObstacles_, this.arrObstacles_);
 this.generateCoords_(this.numberOfTargets_, this.arrTargets_);
 
 // Create a div that can be used as a template for cloning.
 var templateDiv = document.createElement('div');
 
 // Add the obstacles to the playing field.
 this.arrObstacles_.forEach(function(currCoord) {
 var newObstacle = templateDiv.cloneNode();
 newObstacle.classList.add('obstacle');
 newObstacle.style.left = currCoord.x + 'px';
 newObstacle.style.top = currCoord.y + 'px';
 this.gameField_.appendChild(newObstacle);
 }, this);
 
 // Add the targets to the playing field.
 this.arrTargets_.forEach(function(currCoord, index) {
 var newTarget = templateDiv.cloneNode();
 newTarget.classList.add('target');
 newTarget.style.left = currCoord.x + 'px';
 newTarget.style.top = currCoord.y + 'px';
 this.gameField_.appendChild(newTarget);
 // Store a reference to the new element in the array, we will need it
 // later.

Chapter 6 ■ Practical HTML5

225

 currCoord.element = newTarget;
 this.arrTargets_.splice(index, 1, currCoord);
 }, this);
  
 // Update the lives displayed.
 this.updateRemainingBalls_();
};
 
/**
 * Draws the screen for the game: positions the 'ball' and updates the number
 * of lives as necessary. Registered in the draw cycle.
 * @private
 */
this.drawScreen_ = function() {
 // Move the "ball."
 this.ball_.style.top = this.currCoordinate_.y + 'px';
 this.ball_.style.left = this.currCoordinate_.x + 'px';
 
 // Check for obstacle collisions.
 if (this.currentObstacleIndex_ > -1) {
 // Yes, there is a collision active. Check to see if it is a new
 // collision.
 var obstacle = this.arrObstacles_[this.currentObstacleIndex_];
 if ((this.currObstacle_.x != obstacle.x) &&
 (this.currObstacle_.y != obstacle.y)) {
 // It is a new collision.
 // Add the collision class to the game field.
 this.gameField_.classList.add('collision');
 // Store the current obstacle for the next check.
 this.currObstacle_ = obstacle;
 // A collision with an obstacle costs a life.
 this.balls_--;
 this.updateRemainingBalls_();
 // If we're out of lives, the game is over.
 if (this.balls_ <= 0) {
 this.gameOver_(false);
 }
 }
 } else {
 // There is no collision active.
 // Remove the collision class from the game field.
 this.gameField_.classList.remove('collision');
 // Clear the current obstacle cache.
 this.currObstacle_ = new Coordinate(0, 0);
 }
 // Check for target collisions.
 if (this.currentTargetIndex_ > -1) {
 // A target has been hit! Get the reference to the DOM element.
 var hitEl = this.arrTargets_[this.currentTargetIndex_].element;

Chapter 6 ■ Practical HTML5

226

 // If the element is not hidden, we need to hide it.
 if (!hitEl.classList.contains('hidden')) {
 hitEl.classList.add('hidden');
 // Increment the collected targets counter.
 this.collectedTargets_++;
 // If that was the last target, the game is won!
 if (this.collectedTargets_ >= this. numberOfTargets_) {
 this.gameOver_(true);
 }
 }
 }
};
 
/**
 * Ends the game.
 * @param {boolean} isWon Whether the game was won or lost.
 * @private
 */
this.gameOver_ = function(isWon) {
 if (isWon) {
 this.domGameOver_.classList.remove('loser');
 this.domGameOver_.classList.add('winner');
 this.domGameOver_.innerHTML = 'Winner!';
 } else {
 this.domGameOver_.classList.remove('winner');
 this.domGameOver_.classList.add('loser');
 this.domGameOver_.innerHTML = 'Try Again!';
 }
 this.domGameOver_.classList.remove('hidden');
 };
};
 
/**
 * Coordinate class.
 * @param {number} xOrd The x ordinate of the coordinate.
 * @param {number} yOrd The y ordinate of the coordinate.
 * @param {Element=} element A reference to the DOM element for these
 * coordinates.
 * @constructor
 */
function Coordinate(xOrd, yOrd, element) {
 this.x = xOrd;
 this.y = yOrd;
 this.element = element;
}

The changes to the drawGameField method have been bolded to make them easier to see (the rest of
the method is the same as before). You’ve also updated the Coordinate class to include an optional element
property, which you use to store a reference to the element at those coordinates if the element is a target.

The drawScreen method behaves as outlined earlier, and calls the gameOver method if the user wins
or loses the game. The gameOver method shows the game over DOM element and updates its content and
styling to reflect the win or loss.

Chapter 6 ■ Practical HTML5

227

Initializing the Game
There are a few things missing from the MobiDex class:

•	 You need to register the deviceorientation event handler.

•	 You need to instantiate a DrawCycle object and start the animation.

•	 You need to publish a public method on the class that can be called to start the game.

•	 You need to have a way to reset the game so that it can be played again.

You can use the same public method to start and restart the game because those two code paths
are almost identical. The main difference is that the first two actions (creating the DrawCycle object and
registering the event handler) should only be done once, the first time the game is started. So you’ll have to
break those out into a separate method and only invoke that method once.

To reset the game, you’ll need to revert several of the class properties to their default values. To play the
game you’ll need to draw the playing field and then start the draw cycle, as shown in Listing 6-26.

Listing 6-26.  Game Initialization

/**
 * Whether or not the game has been initialized.
 * @type {boolean}
 * @private
 */
this.isInitialized_ = false;
 
/**
 * The draw cycle object for the game.
 * @type {DrawCycle}
 * @private
 */
this.drawCycle_ = new DrawCycle();
 
/**
 * Start the game. Initializes data structures, draws the UI, and starts the
 * animation cycle.
 */
this.startGame = function() {
 // Reset the game variables.
 this.reset_();
 
 // Hide the game over message.
 this.domGameOver_.classList.add('hidden');
 
 // Draw a random game field.
 this.drawGameField_();
 
 if (!this.isInitialized_) {
 this.init_();
 }
 

Chapter 6 ■ Practical HTML5

228

 // Start the draw cycle.
 this.drawCycle_.startAnimation();
};
 
/**
 * Resets game variables to their base state.
 * @private
 */
this.reset_ = function() {
 this.balls_ = 3;
 this.arrObstacles_ = [];
 this.arrTargets_ = [];
 this.collectedTargets_ = 0;
 this.currCoordinate_ = new Coordinate(0, 0);
 this.currentObstacleIndex_ = -1;
 this.currentTargetIndex_ = -1;
};
 
/**
 * Initialize the game for the first time.
 * @private
 */
this.init_ = function() {
 // Register the device orientation event handler on the window object.
 window.addEventListener('deviceorientation',
 this.handleDeviceOrientation_.bind(this),
 false);
 
 // Add the draw method to the draw cycle.
 this.drawCycle_.addAnimation(this.drawScreen_.bind(this));
 
 this.isInitialized_ = true;
};

Now there is one public method on the class, startGame, that can be called when you want to start a
new game, whether it’s the first or subsequent games. This method initializes the game if needed, updates
the default values, draws the game field, and kicks off the animation.

Assuming you have saved both the MobiDex and Coordinate classes in the file mobidex.js, you can now
load them into your HTML document, as shown in Listing 6-27.

Listing 6-27.  The Finished Game

<!DOCTYPE html>
<html>
 <head>
 <meta name="viewport" content="width=device-width, user-scalable=no">
 <title>The HTML5 Programmer's Reference</title>
 <style>
// [...]
 </style>
 <script src="../js-lib/drawcycle.js"></script>
 <script src="../js-lib/mobidex.js"></script>
 </head>

Chapter 6 ■ Practical HTML5

229

 <body>
 <h1>MobiDex</h1>
 <div id="remaining-balls"></div>
 <div id="container-field">
 <div id="game-field"></div>
 <div id="ball"></div>
 <div id="gameover" class="hidden"></div>
 </div>
 <script>
// Create a new instance of the game.
var myGame = new MobiDex();
 
// Attach an event handler to the game over message so that the user can restart
// the game.
document.getElementById('gameover').addEventListener('click', function() {
 myGame.startGame();
}, false);
 
// Start the game.
myGame.startGame();
 </script>
 </body>
</html>

Here again for the interests of saving space you have elided the CSS, which hasn’t changed. It not only
creates a new MobiDex instance and starts the game, it also fulfills your last requirement: that the user can
tap on the game over element and start a new game.

Additional Exercises
This is just the beginning for the MobiDex game. Here are some modifications you can make:

•	 Add scoring: For each target award a point. Carry points over through subsequent
rounds. The first loss ends the game with the final score. Save the final score in
local storage.

•	 Add a timer: Add a global timer to the game that counts down on screen. The player
has to complete as many rounds as possible before the timer runs out. Save the
highest number of rounds in local storage.

•	 Add customization: Add sliders to customize the delta calculation and make the ball
move faster or slower. Add sliders to control the number of obstacles and/or targets.
Save customizations in local storage.

Chapter 6 ■ Practical HTML5

230

The Full Listing
Listing 6-28 provides the entire MobiDex and Coordinate classes.

Listing 6-28.  Full Listing of the MobiDex and Coordinate Classes

/**
 * Creates a new game. Assumes that the required DOM elements are present.
 * @constructor
 */
function MobiDex() {
 
 /**
 * Whether or not the game has been initialized.
 * @type {boolean}
 * @private
 */
 this.isInitialized_ = false;
  
 /**
 * Reference to the 'gameover' DOM element.
 * @type {Element}
 * @private
 */
 this.domGameOver_ = document.getElementById('gameover');
  
 /**
 * Reference to the 'gamefield' DOM element.
 * @type {Element}
 * @private
 */
 this.gameField_ = document.getElementById('game-field');
  
 /**
 * Reference to the ball DOM element.
 * @type {Element}
 * @private
 */
 this.ball_ = document.getElementById('ball');
  
 /**
 * Reference to the 'remaining-balls' DOM element.
 * @type {Element}
 * @private
 */
 this.remainingBalls_ = document.getElementById('remaining-balls');
  
 /**
 * The current coordinate of the 'ball'.
 * @type {Coordinate}
 * @private
 */
 this.currCoordinate_ = new Coordinate(0, 0);
  

Chapter 6 ■ Practical HTML5

231

 /**
 * The index of the obstacle that the ball is currently colliding with.
 * @type {number}
 * @private
 */
 this.currentObstacleIndex_ = -1;
  
 /**
 * The index of the target that the ball is currently colliding with.
 * @type {number}
 * @private
 */
 this.currentTargetIndex_ = -1;
  
 /**
 * Reference to the current obstacle during a collision event. Stored between
 * draw cycles to prevent firing multiple collisions.
 * @type {Coordinate}
 * @private
 */
 this.currObstacle_ = new Coordinate(0, 0);
  
 /**
 * Array of obstacle coordinates.
 * @type {Array.<Coordinate>}
 * @private
 */
 this.arrObstacles_ = [];
  
 /**
 * Array of target coordinates.
 * @type {Array.<Coordinate>}
 * @private
 */
 this.arrTargets_ = [];
  
 /**
 * The number of targets that have been collected.
 * @type {number}
 * @private
 */
 this.collectedTargets_ = 0;
  
 /**
 * The number of 'lives' remaining.
 * @type {number}
 * @private
 */
 this.balls_ = 3;
  

Chapter 6 ■ Practical HTML5

232

 /**
 * The draw cycle object for the game.
 * @type {DrawCycle}
 * @private
 */
 this.drawCycle_ = new DrawCycle();
  
 /**
 * The number of obstacles to draw on the game field.
 * @type {number}
 * @private
 */
 this.numberOfObstacles_ = 10;
  
 /**
 * The number of targets to draw on the game field.
 * @type {number}
 * @private
 */
 this.numberOfTargets_ = 10;
  
 /**
 * Start the game. Initializes data structures, draws the UI, and starts the
 * animation cycle.
 */
 this.startGame = function() {
 // Reset the game variables.
 this.reset_();
  
 // Hide the game over message.
 this.domGameOver_.classList.add('hidden');
  
 // Draw a random game field.
 this.drawGameField_();
  
 if (!this.isInitialized_) {
 this.init_();
 }
  
 // Start the draw cycle.
 this.drawCycle_.startAnimation();
 };
  
 /**
 * Resets game variables to their base state.
 * @private
 */
 this.reset_ = function() {
 this.balls_ = 3;
 this.arrObstacles_ = [];
 this.arrTargets_ = [];

Chapter 6 ■ Practical HTML5

233

 this.collectedTargets_ = 0;
 this.currCoordinate_ = new Coordinate(0, 0);
 this.currentObstacleIndex_ = -1;
 this.currentTargetIndex_ = -1;
 };
  
 /**
 * Initialize the game for the first time.
 * @private
 */
 this.init_ = function() {
 // Register the device orientation event handler on the window object.
 window.addEventListener('deviceorientation',
 this.handleDeviceOrientation_.bind(this),
 false);
  
 // Add the draw method to the draw cycle.
 this.drawCycle_.addAnimation(this.drawScreen_.bind(this));
  
 this.isInitialized_ = true;
 };
  
 /**
 * Initializes the obstacles and targets and draws the UI.
 * @private
 */
 this.drawGameField_ = function() {
 // Clear the game field.
 this.gameField_.innerHTML = '';
  
 // Fill up the obstacle and target arrays with random coordinates.
 this.generateCoords_(this.numberOfObstacles_, this.arrObstacles_);
 this.generateCoords_(this.numberOfTargets_, this.arrTargets_);
  
 // Create a div that can be used as a template for cloning.
 var templateDiv = document.createElement('div');
  
 // Add the obstacles to the playing field.
 this.arrObstacles_.forEach(function(currCoord) {
 var newObstacle = templateDiv.cloneNode();
 newObstacle.classList.add('obstacle');
 newObstacle.style.left = currCoord.x + 'px';
 newObstacle.style.top = currCoord.y + 'px';
 this.gameField_.appendChild(newObstacle);
 }, this);
  
 // Add the targets to the playing field.
 this.arrTargets_.forEach(function(currCoord, index) {
 var newTarget = templateDiv.cloneNode();
 newTarget.classList.add('target');
 newTarget.style.left = currCoord.x + 'px';

Chapter 6 ■ Practical HTML5

234

 newTarget.style.top = currCoord.y + 'px';
 this.gameField_.appendChild(newTarget);
 // Store a reference to the new element in the array, we will need it
 // later.
 currCoord.element = newTarget;
 this.arrTargets_.splice(index, 1, currCoord);
 }, this);
  
 // Update the lives displayed.
 this.updateRemainingBalls_();
 };
  
 /**
 * Handles a deviceorientation event from the window.
 * @param {DeviceOrientationEvent} event The device orientation event object.
 * @private
 */
 this.handleDeviceOrientation_ = function(event) {
 // Get the x and y positions and update the current coordiate with them.
 this.currCoordinate_.x = this.getOrd_(event.gamma, this.currCoordinate_.x);
 this.currCoordinate_.y = this.getOrd_(event.beta, this.currCoordinate_.y);
  
 // Check for collisions.
 this.currentObstacleIndex_ = this.checkCollision_(this.currCoordinate_, 10,
 this.arrObstacles_);
 this.currentTargetIndex_ = this.checkCollision_(this.currCoordinate_, 10,
 this.arrTargets_);
 };
  
 /**
 * Draws the screen for the game: positions the 'ball' and updates the number
 * of lives as necessary. Registered in the draw cycle.
 * @private
 */
 this.drawScreen_ = function() {
 // Move the "ball."
 this.ball_.style.top = this.currCoordinate_.y + 'px';
 this.ball_.style.left = this.currCoordinate_.x + 'px';
  
 // Check for obstacle collisisons.
 if (this.currentObstacleIndex_ > -1) {
 // Yes, there is a collision active. Check to see if it is a new
 // collision.
 var obstacle = this.arrObstacles_[this.currentObstacleIndex_];
 if ((this.currObstacle_.x != obstacle.x) &&
 (this.currObstacle_.y != obstacle.y)) {
 // It is a new collision.
 // Add the collision class to the game field.
 this.gameField_.classList.add('collision');
 // Store the current obstacle for the next check.
 this.currObstacle_ = obstacle;

Chapter 6 ■ Practical HTML5

235

 // A collision with an obstacle costs a life.
 this.balls_--;
 this.updateRemainingBalls_();
 // If we're out of lives, the game is over.
 if (this.balls_ <= 0) {
 this.gameOver_(false);
 }
 }
 } else {
 // There is no collision active.
 // Remove the collision class from the game field.
 this.gameField_.classList.remove('collision');
 // Clear the current obstacle stored in the this.
 this.currObstacle_ = new Coordinate(0, 0);
 }
  
 // Check for target collisions.
 if (this.currentTargetIndex_ > -1) {
 // A target has been hit! Get the reference to the DOM element.
 var hitEl = this.arrTargets_[this.currentTargetIndex_].element;
 // If the element is not hidden, we need to hide it.
 if (!hitEl.classList.contains('hidden')) {
 hitEl.classList.add('hidden');
 // Increment the collected targets counter.
 this.collectedTargets_++;
 if (this.collectedTargets_ >= this.arrTargets_.length) {
 this.gameOver_(true);
 }
 }
 }
 };
  
 /**
 * Updates the number of remaining balls displayed.
 * @private
 */
 this.updateRemainingBalls_ = function() {
 // Clear the current lives.
 this.remainingBalls_.innerHTML = '';
 // Create a template that we can clone and use multiple times.
 var lifeTemplate = document.createElement('div');
 lifeTemplate.classList.add('life');
 // Add an element for each life.
 for (var i = 0; i < this.balls_; i++) {
 var currLife = lifeTemplate.cloneNode();
 currLife.style.left = (i * 15) + 'px';
 this.remainingBalls_.appendChild(currLife);
 }
 };
  

Chapter 6 ■ Practical HTML5

236

 /**
 * Check to see if the specified coordinates collide with an existing set of
 * coordinates.
 * @param {Coordinate} coordinate The coordinate to check.
 * @param {number} sensitivity The sensitivity for a collision. If coordinates
 * are within sensitivity distance of a target coordinate, a collision
 * will be registered.
 * @param {Array.<Coordinate>} arrTargetCoords An array of target coordinates
 * to check against.
 * @return {number} The index of the member of the target coordinates array
 * that is being hit, or -1 if no collision is detected.
 * @private
 */
 this.checkCollision_ = function(coordinate, sensitivity, arrTargetCoords) {
 // Loop through each target coordinate and compare the provided values.
 for (var i = 0; i < arrTargetCoords.length; i++) {
 var currObstacle = arrTargetCoords[i];
 var xcoll = false;
 var ycoll = false;
  
 // If the provided x coordinate is within range of the obstacle coordinate,
 // then there is an x collision.
 if (((currObstacle.x - sensitivity) < coordinate.x) &&
 (coordinate.x < (currObstacle.x + sensitivity))) {
 xcoll = true;
 }
  
 // If the provided y coordinate is within range of the obstacle coordinate,
 // Then there is a y collision.
 if (((currObstacle.y - sensitivity) < coordinate.y) &&
 (coordinate.y < (currObstacle.y + sensitivity))) {
 ycoll = true;
 }
  
 // If there is both an x and a y collision, then return true.
 if (xcoll && ycoll) {
 return i;
 }
 }
 return -1;
 };

 /**
 * Gets an ordinate based on a Euler Angle.
 * @param {number} angle The orientation angle that is inducing the change.
 * @param {number} ord The previous value of the ordinate.
 * @return {number} The new value of the ordinate.
 * @private
 */

Chapter 6 ■ Practical HTML5

237

 this.getOrd_ = function(angle, ord) {
 var delta = Math.round(angle - (angle * 0.3));
 var tempVal = ord + delta;
 if (tempVal > 0) {
 ord = Math.min(192, tempVal);
 } else {
 ord = 0;
 }
 return ord;
 };
  
 /**
 * Generates a set of random coordinates and adds them to the provided array.
 * Tries to avoid duplicating too closely any previously-generated
 * coordinates.
 * @param {number} numberOfCoords The number of coordinates to generate.
 * @param {Array} targetArray The array to fill with the new coordinates.
 * @private
 */
 this.generateCoords_ = function(numberOfCoords, targetArray) {
 for (var i = 0; i < numberOfCoords; i++) {
 var newCoord = new Coordinate(this.getRandomIntegerBetween_(10, 190),
 this.getRandomIntegerBetween_(10, 190));
 while (this.checkCollision_(newCoord, 15,
 this.arrObstacles_.concat(this.arrTargets_)) > -1) {
 newCoord.x = this.getRandomIntegerBetween_(10, 190);
 newCoord.y = this.getRandomIntegerBetween_(10, 190);
 }
 targetArray.push(newCoord);
 }
 };

 /**
 * Returns a random integer between the specified minimum and maximum values.
 * @param {number} min The lower boundary for the random number.
 * @param {number} max The upper boundary for the random number.
 * @return {number}
 * @private
 */
 this.getRandomIntegerBetween_ = function(min, max) {
 return Math.floor(Math.random() * (max - min + 1)) + min;
 };
  
 /**
 * Ends the game.
 * @param {boolean} isWinner Whether the game was won or lost.
 * @private
 */

Chapter 6 ■ Practical HTML5

238

 this.gameOver_ = function(isWon) {
 this.drawCycle_.stopAnimation();
 if (isWon) {
 this.domGameOver_.classList.remove('loser');
 this.domGameOver_.classList.add('winner');
 this.domGameOver_.innerHTML = 'Winner!';
 } else {
 this.domGameOver_.classList.remove('winner');
 this.domGameOver_.classList.add('loser');
 this.domGameOver_.innerHTML = 'Try Again!';
 }
 this.domGameOver_.classList.remove('hidden');
 };
};
 
/**
 * Coordinate class.
 * @param {number} xOrd The x ordinate of the coordinate.
 * @param {number} yOrd The y ordinate of the coordinate.
 * @param {Element} element A reference to the DOM element for these
 * coordinates.
 * @constructor
 */
function Coordinate(xOrd, yOrd, element) {
 this.x = xOrd;
 this.y = yOrd;
 this.element = element;
}

Summary
In this chapter I have discussed working with HTML5 in practical projects. I’ve covered:

•	 feature detection,

•	 dynamically responding to different levels of HTML5 support, and

•	 online resources for researching HTML5 support and locating shims.

You have also built an entire HTML5 mobile game from scratch, starting with user stories and ending
with working code.

This concludes the discussion chapters for the book. The next chapters will all be reference chapters for
HTML5 features, starting with the HTML5 Element Reference.

Part II

HTML5 Reference

241

Chapter 7

HTML5 Element Reference

This chapter provides a detailed reference for all of the new HTML5 elements. The elements are grouped
semantically, so all of the elements that provide sectioning semantics are together, all of the elements that
provide grouping semantics are together, etc. Each element entry will have the following:

•	 A brief description of the element and its function.

•	 A Usage section that includes the syntax of the element and a brief example.

•	 A Properties section that lists all of the properties that can be set on the element.

•	 A table with all of the relevant standards for the element.

All of these same elements are covered in more detail in Chapter 2. You can find in-depth discussions
there as well as many more examples and browser support at time of press.

Sections
HTML5 defines several new elements for marking up sections of content within a larger document. These
sections are typically self-contained or distinct groups of content. Some sections are repeatable within a
single document. Section elements help provide an overall structure to the document.

The article Element
The article element is used to denote a section of self-contained, stand-alone content within a larger
document: a single blog post within a page of blog posts, a single story within a newspaper page, or a single
advertisement on a larger page.

Usage
The element is used to denote a block section of content, and is rendered as a block element in the
document flow (like a div or heading element). The closing tag is required.

Syntax
<article>...</article>

http://dx.doi.org/10.1007/9781430263678_2

Chapter 7 ■ HTML5 Element Reference

242

Listing 7-1.  The article Element

<!DOCTYPE html>
<html>
 <head>
 <title>The HTML5 Programmer's Reference</title>
 </head>
 <body>
 <article>
 <h1>First Article Title</h1>
 <p>Lorem ipsum dolor sit amet, consectetur adipiscing elit. Vestibulum
 tempus in nisi id gravida. Nullam vitae velit tincidunt, vulputate
 arcu nec, ullamcorper velit. In in nulla tellus.</p>
 <p>Lorem ipsum dolor sit amet, consectetur adipiscing elit. Vestibulum
 tempus in nisi id gravida. Nullam vitae velit tincidunt, vulputate
 arcu nec, ullamcorper velit. In in nulla tellus.</p>
 </article>
 <article>
 <h1>Second Article Title</h1>
 <p>Lorem ipsum dolor sit amet, consectetur adipiscing elit. Vestibulum
 tempus in nisi id gravida. Nullam vitae velit tincidunt, vulputate
 arcu nec, ullamcorper velit. In in nulla tellus.</p>
 <p>Lorem ipsum dolor sit amet, consectetur adipiscing elit. Vestibulum
 tempus in nisi id gravida. Nullam vitae velit tincidunt, vulputate
 arcu nec, ullamcorper velit. In in nulla tellus.</p>
 </article>
 </body>
</html>

Properties
•	 accesskey

•	 class

•	 classlist

•	 contenteditable

•	 contextmenu

•	 dataset

•	 dir

•	 draggable

•	 dropzone

•	 hidden

•	 id

•	 lang

•	 spellcheck

Chapter 7 ■ HTML5 Element Reference

243

•	 style

•	 tabindex

•	 title

•	 translate

Table 7-1.  Standards for the article Element

Specification Status URL

W3C Candidate Recommendation www.w3.org/TR/html5/sections.html#the-article-
element

WHATWG Living Standard www.whatwg.org/specs/web-apps/current-work/
multipage/semantics.html#the-article-element

The aside Element
The aside element denotes content that is tangential or loosely related to its containing content: a sidebar,
note, or comment. Omission of the content within the aside element should not affect the meaning of the
containing content.

Usage
The element is used to denote a block section of content, and is rendered as a block element in the
document flow (like a div or heading element). The closing tag is required.

Syntax
<aside>...</aside>

Listing 7-2.  The aside Element

<!DOCTYPE html>
<html>
 <head>
 <title>The HTML5 Programmer's Reference</title>
 </head>
 <body>
 <article>
 <h1>Article Title</h1>
 <p>Lorem ipsum dolor sit amet, consectetur adipiscing elit. Vestibulum
 tempus in nisi id gravida. Nullam vitae velit tincidunt, vulputate
 arcu nec, ullamcorper velit. In in nulla tellus.</p>
 <aside>
 <h2>Aside Title</h2>
 <p>Lorem ipsum dolor sit amet, consectetur nisi id gravida.</p>

 Item
 Item

https://www.w3.org/TR/html5/sections.html#the-article-element
https://www.w3.org/TR/html5/sections.html#the-article-element
https://www.whatwg.org/specs/web-apps/current-work/multipage/semantics.html#the-article-element
https://www.whatwg.org/specs/web-apps/current-work/multipage/semantics.html#the-article-element

Chapter 7 ■ HTML5 Element Reference

244

 Item

 </aside>
 <p>Lorem ipsum dolor sit amet, consectetur adipiscing elit. Vestibulum
 tempus in nisi id gravida. Nullam vitae velit tincidunt, vulputate
 arcu nec, ullamcorper velit. In in nulla tellus.</p>
 </article>
 </body>
</html>

Properties
This element can have any of the “global” properties, which are standard for all HTML elements. These
properties include:

•	 accesskey

•	 class

•	 contenteditable

•	 contextmenu

•	 dataset

•	 dir

•	 draggable

•	 hidden

•	 id

•	 lang

•	 spellcheck

•	 style

•	 tabindex

•	 title

Table 7-2.  Standards for the aside Element

Specification Status URL

W3C Candidate Recommendation www.w3.org/TR/html5/sections.html#the-aside-
element

WHATWG Living Standard www.whatwg.org/specs/web-apps/current-work/
multipage/semantics.html#the-aside-element

https://www.w3.org/TR/html5/sections.html#the-aside-element
https://www.w3.org/TR/html5/sections.html#the-aside-element
https://www.whatwg.org/specs/web-apps/current-work/multipage/semantics.html#the-aside-element
https://www.whatwg.org/specs/web-apps/current-work/multipage/semantics.html#the-aside-element

Chapter 7 ■ HTML5 Element Reference

245

The footer Element
The footer element is used to denote content that comes at the end of the containing section. Footers
typically provide information about their containing sections. Each section should have at most one footer.

Usage
The element is used to denote a block section of content, and is rendered as a block element in the
document flow (like a div or heading element). The closing tag is required. The footer element may not
contain header, footer, or main elements.

Syntax
<footer>...</footer>

Listing 7-3.  The footer Element

<!DOCTYPE html>
<html>
 <head>
 <title>The HTML5 Programmer's Reference</title>
 </head>
 <body>
 <article>
 <h1>Article Title</h1>
 <p>Lorem ipsum dolor sit amet, consectetur adipiscing elit. Vestibulum
 tempus in nisi id gravida. Nullam vitae velit tincidunt, vulputate
 arcu nec, ullamcorper velit. In in nulla tellus.</p>
 <p>Lorem ipsum dolor sit amet, consectetur adipiscing elit. Vestibulum
 tempus in nisi id gravida. Nullam vitae velit tincidunt, vulputate
 arcu nec, ullamcorper velit. In in nulla tellus.</p>
 <footer>
 <p>Sitemap:</p>

 link
 link
 link

 <p>Copyright notice.</p>
 </footer>
 </article>
 </body>
</html>

Properties
This element can have any of the “global” properties, which are standard for all HTML elements. These
properties include:

•	 accesskey

•	 class

Chapter 7 ■ HTML5 Element Reference

246

•	 classlist

•	 contenteditable

•	 contextmenu

•	 dataset

•	 dir

•	 draggable

•	 dropzone

•	 hidden

•	 id

•	 lang

•	 spellcheck

•	 style

•	 tabindex

•	 title

The header Element
The header element is used to denote a set of introductory content at the beginning of a section. Each
section should have at most one header.

Usage
The element is used to denote a block section of content, and is rendered as a block element in the
document flow (like a div or heading element). The closing tag is required. The header element may not
contain header, footer, or main elements.

Syntax
<header>...</header>

Table 7-3.  Standards for the footer Element

Specification Status URL

W3C Candidate Recommendation www.w3.org/TR/html5/sections.html#the-footer-
element

WHATWG Living Standard www.whatwg.org/specs/web-apps/current-work/
multipage/semantics.html#the-footer-element

https://bugzilla.mozilla.org/show_bug.cgi?id=738121
https://bugzilla.mozilla.org/show_bug.cgi?id=738121
http://www.whatwg.org/specs/web-apps/current-work/multipage/semantics.html#the-footer-element
http://www.whatwg.org/specs/web-apps/current-work/multipage/semantics.html#the-footer-element

Chapter 7 ■ HTML5 Element Reference

247

Listing 7-4.  The header Element

<!DOCTYPE html>
<html>
 <head>
 <title>The HTML5 Programmer's Reference</title>
 </head>
 <body>
 <article>
 <header>
 <h1>Article Title</h1>

 navlink 1
 navlink 2
 navlink 3

 </header>
 <p>Lorem ipsum dolor sit amet, consectetur adipiscing elit. Vestibulum
 tempus in nisi id gravida. Nullam vitae velit tincidunt, vulputate
 arcu nec, ullamcorper velit. In in nulla tellus.</p>
 <p>Lorem ipsum dolor sit amet, consectetur adipiscing elit. Vestibulum
 tempus in nisi id gravida. Nullam vitae velit tincidunt, vulputate
 arcu nec, ullamcorper velit. In in nulla tellus.</p>
 </article>
 </body>
</html>

Properties
This element can have any of the “global” properties, which are standard for all HTML elements. These
properties include:

•	 accesskey

•	 class

•	 classlist

•	 contenteditable

•	 contextmenu

•	 dataset

•	 dir

•	 draggable

•	 dropzone

•	 hidden

•	 id

•	 lang

•	 spellcheck

Chapter 7 ■ HTML5 Element Reference

248

•	 style

•	 tabindex

•	 title

Table 7-4.  Standards for the header Element

Specification Status URL

W3C Candidate Recommendation www.w3.org/TR/html5/sections.html#the-
header-element

WHATWG Living Standard www.whatwg.org/specs/web-apps/current-
work/multipage/semantics.html#the-header-
element

The nav Element
The nav element is used to denote a navigation section with major navigation links to other pages or to
content or sections within the current document.

Usage
The element is used to denote a block section of content, and is rendered as a block element in the
document flow (like a div or heading element). The closing tag is required.

Syntax
<nav>...</nav>

Listing 7-5.  The nav Element

<!DOCTYPE html>
<html>
 <head>
 <title>The HTML5 Programmer's Reference</title>
 </head>
 <body>
 <article>
 <header>
 <h1>Article Title</h1>
 <nav>

 navlink 1
 navlink 2
 navlink 3

 </nav>
 </header>
 <p>Lorem ipsum dolor sit amet, consectetur adipiscing elit. Vestibulum
 tempus in nisi id gravida. Nullam vitae velit tincidunt, vulputate
 arcu nec, ullamcorper velit. In in nulla tellus.</p>

https://www.w3.org/TR/html5/sections.html#the-header-element
https://www.w3.org/TR/html5/sections.html#the-header-element
http://www.whatwg.org/specs/web-apps/current-work/multipage/semantics.html#the-header-element
http://www.whatwg.org/specs/web-apps/current-work/multipage/semantics.html#the-header-element
http://www.whatwg.org/specs/web-apps/current-work/multipage/semantics.html#the-header-element

Chapter 7 ■ HTML5 Element Reference

249

 <p>Lorem ipsum dolor sit amet, consectetur adipiscing elit. Vestibulum
 tempus in nisi id gravida. Nullam vitae velit tincidunt, vulputate
 arcu nec, ullamcorper velit. In in nulla tellus.</p>
 </article>
 </body>
</html>

Properties
This element can have any of the “global” properties, which are standard for all HTML elements. These
properties include:

•	 accesskey

•	 class

•	 classlist

•	 contenteditable

•	 contextmenu

•	 dataset

•	 dir

•	 draggable

•	 dropzone

•	 hidden

•	 id

•	 lang

•	 spellcheck

•	 style

•	 tabindex

•	 title

Table 7-5.  Standards for the nav Element

Specification Status URL

W3C Candidate Recommendation www.w3.org/TR/html5/sections.html#the-nav-
element

WHATWG Living Standard www.whatwg.org/specs/web-apps/current-work/
multipage/semantics.html#the-nav-element

https://www.w3.org/TR/html5/sections.html#the-nav-element
https://www.w3.org/TR/html5/sections.html#the-nav-element
http://www.whatwg.org/specs/web-apps/current-work/multipage/semantics.html#the-nav-element
http://www.whatwg.org/specs/web-apps/current-work/multipage/semantics.html#the-nav-element

Chapter 7 ■ HTML5 Element Reference

250

The section Element
The section element is used to indicate a generic group of content, typically covering one specific theme.
Often, the theme of the section is denoted by a child header element.

Usage
The usage element is used to denote a block section of content, and is rendered as a block element in the
document flow (like a div or heading element). The closing tag is required.

Syntax
<section>...</section>

Listing 7-6.  The section Element

<!DOCTYPE html>
<html>
 <head>
 <title>The HTML5 Programmer's Reference</title>
 </head>
 <body>
 <article>
 <section>
 <h1>Introduction</h1>
 <p>Lorem ipsum dolor sit amet, consectetur adipiscing elit. Vestibulum
 tempus in nisi id gravida. Nullam vitae velit tincidunt, vulputate
 arcu nec, ullamcorper velit. In in nulla tellus.</p>
 </section>
 <section>
 <h1>First Section</h1>
 <p>Lorem ipsum dolor sit amet, consectetur adipiscing elit. Vestibulum
 tempus in nisi id gravida. Nullam vitae velit tincidunt, vulputate
 arcu nec, ullamcorper velit. In in nulla tellus.</p>
 </section>
 <section>
 <h1>Second Section</h1>
 <p>Lorem ipsum dolor sit amet, consectetur adipiscing elit. Vestibulum
 tempus in nisi id gravida. Nullam vitae velit tincidunt, vulputate
 arcu nec, ullamcorper velit. In in nulla tellus.</p>
 </section>
 </article>
 </body>
</html>

Chapter 7 ■ HTML5 Element Reference

251

Properties
This element can have any of the “global” properties, which are standard for all HTML elements. These
properties include:

•	 accesskey

•	 class

•	 classlist

•	 contenteditable

•	 contextmenu

•	 dataset

•	 dir

•	 draggable

•	 dropzone

•	 hidden

•	 id

•	 lang

•	 spellcheck

•	 style

•	 tabindex

•	 title

Table 7-6.  Standards for the section Element

Specification Status URL

W3C Candidate Recommendation www.w3.org/TR/html5/sections.html#the-
section-element

WHATWG Living Standard www.whatwg.org/specs/web-apps/current-work/
multipage/semantics.html#the-section-element

Grouping
The HTML5 standard defines a new set of elements to group data together by type, as distinguished from the
section elements, which are used to provide overall document structure.

The figure and figcaption Elements
The figure element is used to group together a self-contained group of data that is referenced as a single set
from the main content of the document. Typical uses are for illustrations, diagrams, code samples, and so
on. The figcaption element is optionally used to provide a caption for a figure element.

http://www.w3.org/TR/html5/sections.html#the-section-element
http://www.w3.org/TR/html5/sections.html#the-section-element
http://www.whatwg.org/specs/web-apps/current-work/multipage/semantics.html#the-section-element
http://www.whatwg.org/specs/web-apps/current-work/multipage/semantics.html#the-section-element

Chapter 7 ■ HTML5 Element Reference

252

Usage
The elements are used to denote block sections of content, and are rendered as a block element in
the document flow (like a div or heading element). The closing tag is required for both elements. The
figcaption element is optional, but must be a child of a figure element.

Syntax
<figure>
 <figcaption>...</figcaption>
 ...
</figure>

Listing 7-7.  The figure and figcaption Elements

<!DOCTYPE html>
<html>
 <head>
 <title>The HTML5 Programmer's Reference</title>
 </head>
 <body>
 <article>
 <h1>Title</h1>
 <figure>
 <figcaption>Caption: Source Information</figcaption>

 </figure>
 </article>
 </body>
</html>

Properties
This element can have any of the “global” properties, which are standard for all HTML elements. These
properties include:

•	 accesskey

•	 class

•	 classlist

•	 contenteditable

•	 contextmenu

•	 dataset

•	 dir

•	 draggable

•	 dropzone

Chapter 7 ■ HTML5 Element Reference

253

•	 hidden

•	 id

•	 lang

•	 spellcheck

•	 style

•	 tabindex

•	 title

Table 7-7.  Standards for the figure and figcaption Elements

Specification Status URL

W3C Candidate Recommendation www.w3.org/TR/html5/grouping-content.html#the-
figure-element
www.w3.org/TR/html5/grouping-content.html#the-
figcaption-element

WHATWG Living Standard www.whatwg.org/specs/web-apps/current-work/
multipage/semantics.html#the-figure-element
www.whatwg.org/specs/web-apps/current-work/
multipage/semantics.html#the-figcaption-element

The main Element
The main element is used as a container for the dominant contents of another element. The main element
itself does not provide structure or contribute to the document’s outline. It only provides a grouping
container.

Usage
The element is used to denote a block section of content, and is rendered as a block element in the
document flow (like a div or heading element). The closing tag is required.

Syntax
<main>...</main>

Listing 7-8.  The main Element

<!DOCTYPE html>
<html>
 <head>
 <title>The HTML5 Programmer's Reference</title>
 </head>
 <body>
 <article>
 <h1>Article Title</h1>
 <main>
 <p>Lorem ipsum dolor sit amet, consectetur adipiscing elit. Vestibulum
 tempus in nisi id gravida. Nullam vitae velit tincidunt, vulputate

http://www.w3.org/TR/html5/grouping-content.html#the-figure-element
http://www.w3.org/TR/html5/grouping-content.html#the-figure-element
https://www.w3.org/TR/html5/grouping-content.html#the-figcaption-element
https://www.w3.org/TR/html5/grouping-content.html#the-figcaption-element
http://www.whatwg.org/specs/web-apps/current-work/multipage/semantics.html#the-figure-element
http://www.whatwg.org/specs/web-apps/current-work/multipage/semantics.html#the-figure-element
http://www.whatwg.org/specs/web-apps/current-work/multipage/semantics.html#the-figcaption-element
http://www.whatwg.org/specs/web-apps/current-work/multipage/semantics.html#the-figcaption-element

Chapter 7 ■ HTML5 Element Reference

254

 arcu nec, ullamcorper velit. In in nulla tellus.</p>
 <p>Lorem ipsum dolor sit amet, consectetur adipiscing elit. Vestibulum
 tempus in nisi id gravida. Nullam vitae velit tincidunt, vulputate
 arcu nec, ullamcorper velit. In in nulla tellus.</p>
 </main>
 <aside>
 <p>Lorem ipsum dolor sit amet, consectetur adipiscing elit.</p>
 </aside>
 </article>
 </body>
</html>

Properties
This element can have any of the “global” properties, which are standard for all HTML elements. These
properties include:

•	 accesskey

•	 class

•	 classlist

•	 contenteditable

•	 contextmenu

•	 dataset

•	 dir

•	 draggable

•	 dropzone

•	 hidden

•	 id

•	 lang

•	 spellcheck

•	 style

•	 tabindex

•	 title

Table 7-8.  Standards for the main Element

Specification Status URL

W3C Candidate Recommendation www.w3.org/TR/html5/grouping-content.html#the-
main-element

WHATWG Living Standard www.whatwg.org/specs/web-apps/current-work/
multipage/semantics.html#the-main-element

https://www.w3.org/TR/html5/grouping-content.html#the-main-element
https://www.w3.org/TR/html5/grouping-content.html#the-main-element
https://www.whatwg.org/specs/web-apps/current-work/multipage/semantics.html#the-main-element
https://www.whatwg.org/specs/web-apps/current-work/multipage/semantics.html#the-main-element

Chapter 7 ■ HTML5 Element Reference

255

Semantics
The HTML5 standard specifies several new elements designed to provide more capabilities for defining
the semantic purposes of portions of data. Because they are meant to provide semantic detail rather than
structure, these tags are rendered as inline elements.

Unfortunately, there is little support for many of these tags in current browser implementations.

The bdi Element
The bdi element (bdi is an abbreviation for “bi-directional isolation”) is used to isolate a portion of text that
might be formatted in a different direction than the surrounding text—for example, when directly including
Arabic text in an otherwise English page.

Usage
The element is used to denote a portion of text contained within other text, and as such is rendered as an
inline element.

Syntax
<bdi>...</bdi>

Listing 7-9.  The bdi Element

<!DOCTYPE html>
<html>
 <head>
 <title>The HTML5 Programmer's Reference</title>
 </head>
 <body>
 <article>
 <h1>Article Title</h1>
 <p>Lorem ipsum dolor sit amet, <bdi>consectetur adipiscing elit</bdi>. Vestibulum
 tempus in nisi id gravida. Nullam vitae velit tincidunt, vulputate
 arcu nec, ullamcorper velit. In in nulla tellus.</p>
 </article>
 </body>
</html>

Properties
This element can have any of the “global” properties, which are standard for all HTML elements. These
properties include:

•	 accesskey

•	 class

•	 classlist

•	 contenteditable

•	 contextmenu

Chapter 7 ■ HTML5 Element Reference

256

•	 dataset

•	 dir

•	 draggable

•	 dropzone

•	 hidden

•	 id

•	 lang

•	 spellcheck

•	 style

•	 tabindex

•	 title

Table 7-9.  Standards for the bdi Element

Specification Status URL

W3C Candidate Recommendation www.w3.org/TR/html5/text-level-semantics.
html#the-bdi-element

WHATWG Living Standard www.whatwg.org/specs/web-apps/current-work/
multipage/semantics.html#the-bdi-element

The data Element
The data element is used to denote machine-readable data embedded in a document. Typically the data will
be embedded in the element using a type or data attribute.

Usage
This element is used to embed machine-readable data into a document. It is not typically rendered.
A closing tag is not required.

Syntax
<data value="someval">

Listing 7-10.  The data Element

<!DOCTYPE html>
<html>
 <head>
 <title>The HTML5 Programmer's Reference</title>
 </head>

https://www.w3.org/TR/html5/text-level-semantics.html#the-bdi-element
https://www.w3.org/TR/html5/text-level-semantics.html#the-bdi-element
https://www.whatwg.org/specs/web-apps/current-work/multipage/semantics.html#the-bdi-element
https://www.whatwg.org/specs/web-apps/current-work/multipage/semantics.html#the-bdi-element

Chapter 7 ■ HTML5 Element Reference

257

 <body>
 <article>
 <h1>Article Title</h1>

 <data value="ser-123-456">Serial Number 1
 <data value="ser-123-856">Serial Number 2
 <data value="ser-123-204">Serial Number 3

 </article>
 </body>
</html>

Properties
This element can have any of the “global” properties, which are standard for all HTML elements. These
properties include:

•	 accesskey

•	 class

•	 classlist

•	 contenteditable

•	 contextmenu

•	 dataset

•	 dir

•	 draggable

•	 dropzone

•	 hidden

•	 id

•	 lang

•	 spellcheck

•	 style

•	 tabindex

•	 title

Table 7-10.  Standards for the data Element

Specification Status URL

W3C Candidate Recommendation www.w3.org/TR/html5/text-level-semantics.
html#the-data-element

WHATWG Living Standard www.whatwg.org/specs/web-apps/current-work/
multipage/semantics.html#the-data-element

https://www.w3.org/TR/html5/text-level-semantics.html#the-data-element
https://www.w3.org/TR/html5/text-level-semantics.html#the-data-element
https://www.whatwg.org/specs/web-apps/current-work/multipage/semantics.html#the-data-element
https://www.whatwg.org/specs/web-apps/current-work/multipage/semantics.html#the-data-element

Chapter 7 ■ HTML5 Element Reference

258

The mark Element
The mark element is used to denote occurrences within a set of data. The occurrence itself is context specific.

Usage
This element is used to denote portions of data within larger contents, and as such is rendered as an inline
element. The closing tag is required.

Syntax
<mark>...</mark>

Listing 7-11.  The mark Element

<!DOCTYPE html>
<html>
 <head>
 <title>The HTML5 Programmer's Reference</title>
 </head>
 <body>
 <article>
 <h1>Article Title</h1>
 <p>Lorem ipsum dolor sit amet, <mark>consectetur</mark> adipiscing elit. Vestibulum
 tempus in nisi id gravida. Nullam vitae velit tincidunt, vulputate
 arcu nec, ullamcorper velit. In in nulla tellus.</p>
 <p>Lorem ipsum dolor sit amet, <mark>consectetur</mark> adipiscing elit. Vestibulum
 tempus in nisi id gravida. Nullam vitae velit tincidunt, vulputate
 arcu nec, ullamcorper velit. In in nulla tellus.</p>
 </article>
 </body>
</html>

Properties
This element can have any of the “global” properties, which are standard for all HTML elements. These
properties include:

•	 accesskey

•	 class

•	 classlist

•	 contenteditable

•	 contextmenu

•	 dataset

•	 dir

•	 draggable

•	 dropzone

Chapter 7 ■ HTML5 Element Reference

259

•	 hidden

•	 id

•	 lang

•	 spellcheck

•	 style

•	 tabindex

•	 title

Table 7-11.  Standards for the mark Element

Specification Status URL

W3C Candidate Recommendation www.w3.org/TR/html5/text-level-semantics.
html#the-mark-element

WHATWG Living Standard www.whatwg.org/specs/web-apps/current-work/
multipage/semantics.html#the-mark-element

The ruby, rp, and rt Elements
The ruby, rp, and rt elements are used for creating Ruby annotations, which are short runs of text presented
next to main text. Typically Ruby annotations are used to indicate pronunciation in East Asian languages.
For details about Ruby annotations, see www.w3.org/TR/ruby/ and http://en.wikipedia.org/wiki/Ruby_
character.

Usage
A ruby element typically consists of a set of content surrounded by a ruby tag, with one or more rp or rt
annotations.

Syntax
<ruby>base<rt>annotation</ruby>
<ruby><rb>base<rt>annotation</ruby>

Listing 7-12.  The ruby, rt, and rp Elements

<!DOCTYPE html>
<html>
 <head>
 <title>The HTML5 Programmer's Reference</title>
 </head>
 <body>
 <article>
 <h1>Article Title</h1>
 <ruby>B<rt>a<rt>a</ruby><ruby>A<rt>a<rt>a</ruby>
 <ruby>S<rt>a<rt>a</ruby><ruby>E<rt>a<rt>a</ruby>

http://www.w3.org/TR/html5/text-level-semantics.html#the-mark-element
http://www.w3.org/TR/html5/text-level-semantics.html#the-mark-element
http://www.whatwg.org/specs/web-apps/current-work/multipage/semantics.html#the-mark-element
http://www.whatwg.org/specs/web-apps/current-work/multipage/semantics.html#the-mark-element
http://www.w3.org/TR/ruby/
http://en.wikipedia.org/wiki/Ruby_character
http://en.wikipedia.org/wiki/Ruby_character

Chapter 7 ■ HTML5 Element Reference

260

 <ruby>BASE<rt>annotation 1<rt>annotation 2</ruby>
 </article>
 </body>
</html>

Properties
These elements can have any of the “global” properties, which are standard for all HTML elements. These
properties include:

•	 accesskey

•	 class

•	 classlist

•	 contenteditable

•	 contextmenu

•	 dataset

•	 dir

•	 draggable

•	 dropzone

•	 hidden

•	 id

•	 lang

•	 spellcheck

•	 style

•	 tabindex

•	 title

Table 7-12.  Standards for the ruby, rt, and rp Elements

Specification Status URL

W3C Candidate
Recommendation

www.w3.org/TR/html5/text-level-semantics.html#the-ruby-
element

www.w3.org/TR/html5/text-level-semantics.html#the-rt-element

www.w3.org/TR/html5/text-level-semantics.html#the-rp-element

WHATWG Living Standard www.whatwg.org/specs/web-apps/current-work/multipage/
semantics.html#the-ruby-element

www.whatwg.org/specs/web-apps/current-work/multipage/
semantics.html#the-rt-element

www.whatwg.org/specs/web-apps/current-work/multipage/
semantics.html#the-rp-element

http://www.w3.org/TR/html5/text-level-semantics.html#the-ruby-element
http://www.w3.org/TR/html5/text-level-semantics.html#the-ruby-element
http://www.w3.org/TR/html5/text-level-semantics.html#the-rt-element
https://www.w3.org/TR/html5/text-level-semantics.html#the-rp-element
http://www.whatwg.org/specs/web-apps/current-work/multipage/semantics.html#the-ruby-element
http://www.whatwg.org/specs/web-apps/current-work/multipage/semantics.html#the-ruby-element
http://www.whatwg.org/specs/web-apps/current-work/multipage/semantics.html#the-rt-element
http://www.whatwg.org/specs/web-apps/current-work/multipage/semantics.html#the-rt-element
http://www.whatwg.org/specs/web-apps/current-work/multipage/semantics.html#the-rp-element
http://www.whatwg.org/specs/web-apps/current-work/multipage/semantics.html#the-rp-element

Chapter 7 ■ HTML5 Element Reference

261

The time Element
Similar to the data element, the time element is used to denote machine-readable date/time data
embedded in a document.

Usage
This element is used to embed machine-readable data into a document. A closing tag is required.

Syntax
<time>...</time>

Listing 7-13.  The time Element

<!DOCTYPE html>
<html>
 <head>
 <title>The HTML5 Programmer's Reference</title>
 </head>
 <body>
 <article>
 <h1>Article Title</h1>
 <time>2011-11-12T14:54</time>
 <time>2011-11-12T14:54:39</time>
 <time>2011-11-12T14:54:39.929</time>
 <time>2011-11-12 14:54</time>
 <time>2011-11-12 14:54:39</time>
 <time>2011-11-12 14:54:39.929</time>
 </article>
 </body>
</html>

Properties
This element can have any of the “global” properties, which are standard for all HTML elements. These
properties include:

•	 accesskey

•	 class

•	 classlist

•	 contenteditable

•	 contextmenu

•	 dataset

•	 dir

•	 draggable

•	 dropzone

Chapter 7 ■ HTML5 Element Reference

262

•	 hidden

•	 id

•	 lang

•	 spellcheck

•	 style

•	 tabindex

•	 title

Table 7-13.  Standards for the time Element

Specification Status URL

W3C Candidate Recommendation www.w3.org/TR/html5/text-level-semantics.
html#the-time-element

WHATWG Living Standard www.whatwg.org/specs/web-apps/current-
work/multipage/semantics.html#the-time-
element

The wbr Element
The Word Break Opportunity tag is used to indicate a position in the document flow where the browser may
initiate a line break though its internal rules might not otherwise do so. It has no effect on bidi-ordering, and
if the browser does initiate a break at the tag, a hyphen is not used.

Usage
This element is used to indicate word break opportunities in text, and so is only rendered if a word break is
needed. As such, it is expected to be contained within other block elements such as paragraphs. A closing
tag is not required.

Syntax
<wbr>

Listing 7-14.  The wbr Element

<!DOCTYPE html>
<html>
 <head>
 <title>The HTML5 Programmer's Reference</title>
 </head>
 <body>
 <article>
 <h1>Article Title</h1>

http://www.w3.org/TR/html5/text-level-semantics.html#the-time-element
http://www.w3.org/TR/html5/text-level-semantics.html#the-time-element
https://www.whatwg.org/specs/web-apps/current-work/multipage/semantics.html#the-time-element
https://www.whatwg.org/specs/web-apps/current-work/multipage/semantics.html#the-time-element
https://www.whatwg.org/specs/web-apps/current-work/multipage/semantics.html#the-time-element

Chapter 7 ■ HTML5 Element Reference

263

 <p>Supercali<wbr>fragilistic<wbr>expialidocious and
 antidis<wbr>establishment<wbr>arianism.</p>
 </article>
 </body>
</html>

Properties
This element can have any of the “global” properties, which are standard for all HTML elements. These
properties include:

•	 accesskey

•	 class

•	 classlist

•	 contenteditable

•	 contextmenu

•	 dataset

•	 dir

•	 draggable

•	 dropzone

•	 hidden

•	 id

•	 lang

•	 spellcheck

•	 style

•	 tabindex

•	 title

Table 7-14.  Standards for the wbr Element

Specification Status URL

W3C Candidate Recommendation www.w3.org/TR/html5/text-level-semantics.
html#the-wbr-element

WHATWG Living Standard www.whatwg.org/specs/web-apps/current-work/
multipage/semantics.html#the-wbr-element

https://www.w3.org/TR/html5/text-level-semantics.html#the-wbr-element
https://www.w3.org/TR/html5/text-level-semantics.html#the-wbr-element
https://www.whatwg.org/specs/web-apps/current-work/multipage/semantics.html#the-wbr-element
https://www.whatwg.org/specs/web-apps/current-work/multipage/semantics.html#the-wbr-element

Chapter 7 ■ HTML5 Element Reference

264

Audio and Video Content
The audio Element
The audio element is used to embed sound content (typically audio files) in web pages.

In the past, embedding audio content in documents typically required the use of a plug-in (most
typically Flash). This had the benefit of being fairly ubiquitous because as long as the target browser had
the plug-in installed, it would be able to play the content. All of the complexity around the user interface
controls, handling different file formats, and special features like dynamic streaming were all handled by the
plug-in software.

When implementing the ability to embed sound content, web browser manufacturers had to handle
these issues themselves. As a result, the appearance and functionality of the user interface controls for the
audio player vary from browser to browser.

Each browser also supports different file formats due to patent encumbrances, and some browsers
support different file formats on different operating systems depending on locally installed software. An
in-depth discussion of audio file formats, their patent issues, and operating system support is beyond the
scope of this book, but you can find a great deal of information on the Web. Specifically:

•	 https://developer.mozilla.org/en-US/docs/Web/HTML/Supported_media_
formats The Mozilla Developer Network has a good page that discusses the various
audio formats and their support in major browsers.

•	 http://hpr.dogphilosophy.net/test/index.php is a page you can visit to test
the support of various audio formats in your browsers. The page also has some
good information on the various formats and the state of their support in the major
browsers.

•	 www.jwplayer.com/html5/formats/ The JW Player is a proprietary audio/video
player based on HTML5 technology (the core of the player is open source). The
company has an obvious interest in the state of HTML5 audio and video support,
and they maintain their own statistics on the topic.

There are other sources available on the Web, but many of them seem to be out of date (or it wasn’t
possible to verify when they were last updated).

Usage
The element is used to embed sound content in documents. The content can be specified using either the
src attribute or by using source elements contained within the audio element. For details on using source
elements, see the next section.

The element can also contain zero or more track elements to specify time-based data for the audio
content (such as captions). See the section on the track element for details.

Additionally, the element can optionally contain other elements that will be rendered if the browser
does not support the audio element.

The <audio> tag is not self-closing so both the start and end tags are required.

Syntax
<audio></audio>

https://developer.mozilla.org/en-US/docs/Web/HTML/Supported_media_formats
https://developer.mozilla.org/en-US/docs/Web/HTML/Supported_media_formats
http://hpr.dogphilosophy.net/test/index.php
http://www.jwplayer.com/html5/formats/

Chapter 7 ■ HTML5 Element Reference

265

Listing 7-15.  The audio Element

<!DOCTYPE html>
<html>
 <head>
 <title>The HTML5 Programmer's Reference</title>
 </head>
 <body>
 <p>Basic</p>
 <audio controls="true" src="../media/winamp-llama.mp3">
 <p>Your browser does not support the HTML5 audio tag.</p>
 </audio>
 <p>Using source Elements</p>
 <audio controls="true">
 <source src="testfile.mp3" type="audio/mpeg">
 <source src="testfile.ogg" type="audio/ogg">
 <p>Your browser does not support the HTML5 audio tag.</p>
 </audio>
 </body>
</html>

Properties
The audio element supports the following properties:

•	 autoplay: This is a boolean flag that, when set (to anything, even false), will cause
the browser to immediately begin playing the audio content as soon as it can without
stopping for buffering.

•	 controls: If this attribute is set, then the browser will display its default user
interface controls for the audio player (volume controls, progress meter/scrub bar,
etc.).

•	 loop: If this attribute is set, the browser will loop playback of the specified file.

•	 muted: This attribute specifies that the playback should be muted by default.

•	 preload: This attribute is used to give the browser a hint for how to provide the best
user experience for the specified content. It can take three values:

•	 none specifies that the author wants to minimize the download of the audio
content, possibly because the content is optional, or because the server
resources are limited.

•	 metadata specifies that the author recommends downloading the metadata
for the audio content (duration, track list, tags, etc.) and possibly the first few
frames of the content.

•	 auto specifies that the browser can put the user’s needs first without risk to the
server. This means the browser can begin buffering the content, download all
the metadata, and so on.

•	 src: This attribute specifies the source of the content, just as with an img element.
If desired, this attribute can be omitted in favor of one or more source elements
contained within the audio element.

Chapter 7 ■ HTML5 Element Reference

266

In addition, the audio element supports the following global attributes:

•	 accesskey

•	 class

•	 classlist

•	 contenteditable

•	 contextmenu

•	 dataset

•	 dir

•	 draggable

•	 dropzone

•	 hidden

•	 id

•	 lang

•	 spellcheck

•	 style

•	 tabindex

•	 title

The source Element
The source element is used to specify a single content source for its parent element. As a result, source
elements must always be contained within either audio or video elements. It does not represent anything on
its own.

Table 7-15.  Standards for the audio Element

Specification Status URL

W3C Candidate Recommendation www.w3.org/TR/html5/embedded-content-0.
html#the-audio-element

WHATWG Living Standard www.whatwg.org/specs/web-apps/current-work/
multipage/semantics.html#the-video-element

https://www.w3.org/TR/html5/embedded-content-0.html#the-audio-element
https://www.w3.org/TR/html5/embedded-content-0.html#the-audio-element
https://www.whatwg.org/specs/web-apps/current-work/multipage/semantics.html#the-video-element
https://www.whatwg.org/specs/web-apps/current-work/multipage/semantics.html#the-video-element

Chapter 7 ■ HTML5 Element Reference

267

Usage
The source element is used to specify a single content source for an audio or video element. Multiple
source elements are permitted. If multiple source elements are contained within an audio or video
element, the browser will examine each one in order and fetch and play the first one that specifies content
encoded in a manner it supports. This provides a workaround for the fragmented support for audio and
video formats in various browsers: simply encode the desired content in the required formats, and specify
the location of the different encodings using as many source elements as are required.

The <source> tag does not require a closing tag, and is not otherwise rendered in the document. All
source elements must come before any track elements.

Syntax
<source src="testfile.mp3">

Listing 7-16.  The source Element

<!DOCTYPE html>
<html>
 <head>
 <title>The HTML5 Programmer's Reference</title>
 </head>
 <body>
 <audio controls="true">
 <source src="testfile.mp3" type="audio/mpeg">
 <source src="testfile.ogg" type="audio/ogg">
 <p>Your browser does not support the HTML5 audio tag.</p>
 </audio>
 <video controls="true">
 <source src='video.mp4' type='video/mp4; codecs="avc1.42E01E, mp4a.40.2"'>
 <source src='video.mp4' type='video/mp4; codecs="avc1.58A01E, mp4a.40.2"'>
 <source src='video.3gp' type='video/3gpp; codecs="mp4v.20.8, samr"'>
 <p>Your browser does not support the HTML5 video tag.</p>
 </video>
 </body>
</html>

Properties
A source element has two properties:

•	 src: The src property is used to provide an address of a media resource appropriate
for the containing element. This property is required.

•	 type: The type property is used to specify the MIME type of the media resource. This
type attribute is used by the browser to determine if it can play the media resource.
If it can’t play the media resource, the browser will not attempt to fetch it and will
move on to the next source element (if any). The type property may contain an
optional codec parameter that specifies the codec(s) used to create the specified
media. The syntax of the codec parameter is governed by RFC6381, “The codecs and
profiles Parameters for Bucket Media Types.”

Chapter 7 ■ HTML5 Element Reference

268

The track Element
The track element is used to specify time-based data for an audio or video element, such as closed
captioning or subtitles. Like source elements, track elements do not define any content on their own, and
must be children of audio or video elements. The time-based data specified by the track element could be
formatted in any way supported by the browser; the most common format is the new WebVTT format.

WebVTT-Formatted Data
The Web Video Text Tracks Format (WebVTT) standard specifies a specific schema or format for a text
file (UTF-8 encoded) that associates arbitrary data with points in time. Typically the data is captioning
information, but it could be any data in any desired format, including XML, HTML, or even JSON.

A valid WebVTT file consists of the WEBVTT declaration, an optional description next to the declaration,
and zero or more cues or comments. Thus the file

WEBVTT

is a valid WebVTT file.
A valid cue consists of an optional cue identifier, followed on the next line by cue timings (which may

also include cue settings), followed on the next line by the contents of the cue. A simple example would look
as shown in Listing 7-17.

Listing 7-17.  A Sample WebVTT Closed Captioning File for King Lear

WEBVTT
 
1 - Act 1, Scene 1
00:00:1.000 --> 00:00:1.500
Scene: King Lear's Palace
Enter Kent, Gloucester, and Edmund.
 
00:00:1.500 --> 00:00:2.000 position:10% size:50%
<v Kent> I thought the king had more affected the Duke of
Albany than Cornwall.
 

Table 7-16.  Standards for the source Element

Specification Status URL

Internet Engineering Taskforce
(IETF)

Proposed Standard http://tools.ietf.org/html/rfc6381

W3C Language Reference www.w3.org/TR/html-markup/source.html

WHATWG Living Standard www.whatwg.org/specs/web-apps/
current-work/multipage/embedded-
content.html#the-source-element

http://tools.ietf.org/html/rfc6381
http://www.w3.org/TR/html-markup/source.html
http://www.whatwg.org/specs/web-apps/current-work/multipage/embedded-content.html#the-source-element
http://www.whatwg.org/specs/web-apps/current-work/multipage/embedded-content.html#the-source-element
http://www.whatwg.org/specs/web-apps/current-work/multipage/embedded-content.html#the-source-element

Chapter 7 ■ HTML5 Element Reference

269

00:00:2.100 --> 00:00:3.500 position:10% size:50%
<v Gloucester> It did always seem so to us: but now, in the
division of the kingdom, it appears not which of
the dukes he values most; for equalities are so
weighed, that curiosity in neither can make choice
of either's moiety.

In this example there are three separate cues, each with a timestamp range. As the video plays, each
cue is displayed at the appropriate time. The WebVTT standard includes the ability to format the resulting
captions; in this example the dialog cue boxes are limited to 50% of the width of the video viewport and are
positioned 10% of the total viewport width away from the left of the viewport.

The WebVTT standard is extensive, and I’m not going to cover it fully here. For details, see the W3C
standard at http://dev.w3.org/html5/webvtt/. There is also a great tutorial at the HTML5 Doctor web site
available at http://html5doctor.com/video-subtitling-and-webvtt/.

Usage
The track element is used to specify a file containing time-based data for the containing audio or video
element. Multiple track elements are permitted for the same audio or video element.

The track tag is self-closing and does not require a closing tag, and track tags must come after any
source tags.

Syntax
<track src="karaoki.vtt">

Listing 7-18.  The track Element

<!DOCTYPE html>
<html>
 <head>
 <title>The HTML5 Programmer's Reference</title>
 </head>
 <body>
 <audio controls="true">
 <source src="testfile.mp3" type="audio/mpeg">
 <source src="testfile.ogg" type="audio/ogg">
 <track src="karaoki.vtt" kind="captions" label="Karaoki Cues">
 <p>Your browser does not support the HTML5 audio tag.</p>
 </audio>
 <video controls="true">
 <source src='thetwotowers.mp4' type='video/mp4; codecs="avc1.42E01E, mp4a.40.2"'>
 <source src='thetwotowers.mp4' type='video/mp4; codecs="avc1.58A01E, mp4a.40.2"'>
 <source src='thetwotowers.3gp' type='video/3gpp; codecs="mp4v.20.8, samr"'>
 <track src="closed-captioning.vtt" kind="captions" label="Closed Captioning">
 <track src="peter_fran_philippa.vtt" kind="subtitles" src="en" label="Director and
 Writer Scene Notes">
 <p>Your browser does not support the HTML5 video tag.</p>
 </video>
 </body>
</html>

http://dev.w3.org/html5/webvtt/
http://html5doctor.com/video-subtitling-and-webvtt/

Chapter 7 ■ HTML5 Element Reference

270

Properties
The track element has the following properties:

•	 default: Indicates that this is the default track for the content and should be the one
that is displayed unless overridden by the user.

•	 kind: Indicates what kind of data is contained within the file. Valid values are:

•	 captions: Indicates that the data is a transcription or translation of the content
(e.g., closed captioning).

•	 chapters: Indicates that the data is a set of chapter titles or other sectional
information used when navigating the content.

•	 descriptions: The data is a description of the video or audio content, suitable
for people who are blind (in the case of video) or deaf (in the case of audio).

•	 metadata: The data is meant to be used by scripts and not shown directly
to the user.

•	 subtitles: Subtitles are additional content for the parent content, such as scene
information, extra narrative background, and so forth. If this kind is specified,
the srclang attribute must also be specified for the content.

•	 label: A user-readable label for the track that can be presented when the user is
browsing available tracks.

•	 src: The URI for the content.

•	 srclang: The language of the track data, in a BCP 47 language tag (see the BCP 47
standard at http://tools.ietf.org/html/bcp47). If the kind is set to subtitles, this
attribute must be specified.

Table 7-17.  Standards for the track Element

Specification Status URL

IETF Best Current Practice http://tools.ietf.org/html/bcp47

W3C Editor’s Draft http://dev.w3.org/html5/webvtt/

W3C Language Reference www.w3.org/html/wg/drafts/html/master/embedded-
content.html#the-track-element

WHATWG Living Standard www.whatwg.org/specs/web-apps/current-work/
multipage/embedded-content.html#the-track-element

The video Element
The video element is used to embed video content (typically video files) in web pages.

In the past, embedding video content in documents typically required the use of a plug-in (most
typically Flash). This had the benefit of being fairly ubiquitous because as long as the target browser had
the plug-in installed, it would be able to play the content. All of the complexity around the user interface
controls, handling different file formats, and special features like dynamic streaming were all handled by the
plug-in software.

http://tools.ietf.org/html/bcp47
https://http://tools.ietf.org/html/bcp47
https://http://dev.w3.org/html5/webvtt/
https://www.w3.org/html/wg/drafts/html/master/embedded-content.html#the-track-element
https://www.w3.org/html/wg/drafts/html/master/embedded-content.html#the-track-element
https://www.whatwg.org/specs/web-apps/current-work/multipage/embedded-content.html#the-track-element
https://www.whatwg.org/specs/web-apps/current-work/multipage/embedded-content.html#the-track-element

Chapter 7 ■ HTML5 Element Reference

271

When implementing the ability to embed video content, web browser manufacturers had to handle
these issues themselves. As a result, the appearance and functionality of the user interface controls for the
video player vary from browser to browser.

Each browser also supports different file formats due to patent encumbrances, and some browsers
support different file formats on different operating systems depending on locally installed software. An
in-depth discussion of video file formats, their patent issues, and operating system support is beyond the
scope of this book, but you can find a great deal of information on the Web. Specifically:

•	 https://developer.mozilla.org/en-US/docs/Web/HTML/Supported_media_
formats The Mozilla Developer Network has a good page that discusses the various
video formats and their support in major browsers.

•	 blog.zencoder.com/2013/09/13/what-formats-do-i-need-for-html5-video/
Zencoder is a cloud-based transcoding service provider. Since their bread and butter
is video transcoding, they have a good understanding of what formats are necessary
for various levels of support.

•	 www.jwplayer.com/html5/formats/ The JW Player is a proprietary audio/video
player based on HTML5 technology (the core of the player is open source). The
company has an obvious interest in the state of HTML5 audio and video support,
and they maintain their own statistics on the topic.

There are other sources available on the Web, but many of them seem to be out of date (or it wasn’t
possible to verify when they were last updated).

Usage
The element is used to embed video content in documents. The content can be specified using either the
src attribute or by using source elements contained within the video element. For details on using source
elements, see the source Element section in this chapter.

The element can also contain zero or more track elements to specify time-based data for the video
content (such as captions). For details on using track elements, see the track Element section in this
chapter.

Additionally, the element can optionally contain other elements that will be rendered if the browser
does not support the audio element.

The <video> tag is not self-closing so both the start and end tags are required.

Syntax
<video></video>

Listing 7-19.  The video Element

<!DOCTYPE html>
<html>
 <head>
 <title>The HTML5 Programmer's Reference</title>
 </head>
 <body>
 <p>Basic</p>
 <video controls="true" src="../media/lotr_thetwotowers.mp4">
 <p>Your browser does not support the HTML5 video tag.</p>

https://developer.mozilla.org/en-US/docs/Web/HTML/Supported_media_formats
https://developer.mozilla.org/en-US/docs/Web/HTML/Supported_media_formats
http://www.jwplayer.com/html5/formats/

Chapter 7 ■ HTML5 Element Reference

272

 </video>
 <p>Using source Elements</p>
 <video controls="true">
 <source src="../media/video-1.mp4" type="video/mp4">
 <source src="../media/video-1.ogv" type="video/ogg">
 <p>Your browser does not support the HTML5 video tag.</p>
 </video>
 </body>
</html>

Properties
The video element supports the following properties:

•	 autoplay: This is a boolean flag that when set (to anything, even false) will cause
the browser to immediately begin playing the video content as soon as it can without
stopping for buffering.

•	 controls: If this attribute is set, then the browser will display its default user interface
controls for the video player (volume controls, progress meter/scrub bar, etc.).

•	 height: This attribute can be used to specify the height, in pixels, of the video player.

•	 loop: If this attribute is set, the browser will loop playback of the specified file.

•	 muted: This attribute specifies that the playback should be muted by default.

•	 poster: This attribute can be used to specify a URL to a poster to display before the
video is played. If no poster is specified, then the player will show the first frame of
the video by default, once it has loaded.

•	 preload: This attribute is used to provide to the browser a hint for how to provide the
best user experience for the specified content. It can take the following values:

•	 none: specifies that the author wants to minimize the download of the video
content, possibly because the content is optional, or because the server
resources are limited.

•	 metadata: specifies that the author recommends downloading the metadata
for the video content (duration, track list, tags, etc.) and possibly the first few
frames of the content.

•	 auto: specifies that the browser can put the user’s needs first without risk to the
server. This means the browser can begin buffering the content, download all
the metadata, etc.

•	 src: This attribute specifies the source of the content. If desired, this attribute can be
omitted in favor of one or more <source> tags contained within the <video> tag.

•	 width: This attribute can be used to specify the width of the video player, in pixels.

In addition, the video element supports the following global attributes:

•	 accesskey

•	 class

•	 classlist

Chapter 7 ■ HTML5 Element Reference

273

•	 contenteditable

•	 contextmenu

•	 dataset

•	 dir

•	 draggable

•	 dropzone

•	 hidden

•	 id

•	 lang

•	 spellcheck

•	 style

•	 tabindex

•	 title

Table 7-18.  Standards for the video Element

Specification Status URL

W3C Candidate Recommendation www.w3.org/TR/html5/embedded-content-0.
html#the-video-element

WHATWG Living Standard www.whatwg.org/specs/web-apps/current-work/
multipage/semantics.html#the-video-element

Interactive Elements
The details and summary Elements
The details and summary elements are used to provide a basic solution for progressive disclosure. By
clicking on the contents of a summary element, the content within the associated details element is shown
(or hidden). This particular kind of user interface widget is often referred to as an “expando” and is a
common UI component across both web-based and native applications.

There is currently no support for these elements in Internet Explorer, IE Mobile
(see http://status.modern.ie/detailssummary), Firefox, or Firefox for Android (see https://bugzilla.
mozilla.org/show_bug.cgi?id=591737). However, the IE team is considering implementation, and the
Firefox team is actively developing the feature. Otherwise the feature is well supported in Chrome, Chrome
for Android, Android Browser, Safari, and Safari Mobile.

Usage
The tags are meant to be used together. The details tag is the parent tag, with the summary tag as the first
element. Content that appears after the summary tag (but still inside the details tag) will be shown or hidden
as the user clicks on the contents of the summary tag.

Both tags are rendered as block elements. The tags are not self-closing, so the closing tag is required for
both elements.

https://www.w3.org/TR/html5/embedded-content-0.html#the-video-element
https://www.w3.org/TR/html5/embedded-content-0.html#the-video-element
https://www.whatwg.org/specs/web-apps/current-work/multipage/semantics.html#the-video-element
https://www.whatwg.org/specs/web-apps/current-work/multipage/semantics.html#the-video-element
http://status.modern.ie/detailssummary
https://bugzilla.mozilla.org/show_bug.cgi?id=591737
https://bugzilla.mozilla.org/show_bug.cgi?id=591737

Chapter 7 ■ HTML5 Element Reference

274

Syntax
<details>
 <summary>...</summary>
 ...
</details>

Listing 7-20.  The details and summary Elements

<!DOCTYPE HTML>
<html>
 <head>
 <title>The HTML5 Programmer's Reference</title>
 </head>
 <body>
 <article>
 <h1>Using the <summary> and <details> tags</h1>
 <details>
 <summary>Item 1</summary>
 <p>Lorem ipsum dolor sit amet, consectetur adipiscing elit. Phasellus
 accumsan orci nec justo rhoncus facilisis. Integer pellentesque
 ipsum vitae semper lacinia. Quisque non nisl rutrum, porta est at,
 ultrices neque. Aenean consequat, lacus vulputate vestibulum
 faucibus, turpis magna mollis quam, a congue neque lorem at
 justo.</p>
 </details>
 <details>
 <summary>Item 2</summary>
 <p>Lorem ipsum dolor sit amet, consectetur adipiscing elit. Phasellus
 accumsan orci nec justo rhoncus facilisis. Integer pellentesque
 ipsum vitae semper lacinia. Quisque non nisl rutrum, porta est at,
 ultrices neque. Aenean consequat, lacus vulputate vestibulum
 faucibus, turpis magna mollis quam, a congue neque lorem at
 justo.</p>
 </details>
 <details open>
 <summary>Item 3--this one will be open by default</summary>
 <p>Lorem ipsum dolor sit amet, consectetur adipiscing elit. Phasellus
 accumsan orci nec justo rhoncus facilisis. Integer pellentesque
 ipsum vitae semper lacinia. Quisque non nisl rutrum, porta est at,
 ultrices neque. Aenean consequat, lacus vulputate vestibulum
 faucibus, turpis magna mollis quam, a congue neque lorem at
 justo.</p>
 </details>
 <details>
 <summary>Item 3</summary>
 <p>Lorem ipsum dolor sit amet, consectetur adipiscing elit. Phasellus
 accumsan orci nec justo rhoncus facilisis. Integer pellentesque
 ipsum vitae semper lacinia. Quisque non nisl rutrum, porta est at,

Chapter 7 ■ HTML5 Element Reference

275

 ultrices neque. Aenean consequat, lacus vulputate vestibulum
 faucibus, turpis magna mollis quam, a congue neque lorem at
 justo.</p>
 </details>
 </article>
 </body>
</html>

Properties
The details element has an open attribute, which when present (even when set to false) will cause the associated
content to be visible by default. Otherwise, both elements support the following standard global attributes:

•	 accesskey

•	 class

•	 classlist

•	 contenteditable

•	 contextmenu

•	 dataset

•	 dir

•	 draggable

•	 dropzone

•	 hidden

•	 id

•	 lang

•	 spellcheck

•	 style

•	 tabindex

•	 title

Table 7-19.  Standards for the details and summary Elements

Specification Status URL

W3C Candidate Recommendation www.w3.org/html/wg/drafts/html/master/
interactive-elements.html#the-details-element

www.w3.org/html/wg/drafts/html/master/
interactive-elements.html#the-summary-element

WHATWG Living Standard www.whatwg.org/specs/web-apps/current-work/
multipage/forms.html#the-details-element

www.whatwg.org/specs/web-apps/current-work/
multipage/forms.html#the-summary-element

http://www.w3.org/html/wg/drafts/html/master/interactive-elements.html#the-details-element
http://www.w3.org/html/wg/drafts/html/master/interactive-elements.html#the-details-element
https://www.w3.org/html/wg/drafts/html/master/interactive-elements.html#the-summary-element
https://www.w3.org/html/wg/drafts/html/master/interactive-elements.html#the-summary-element
http://www.whatwg.org/specs/web-apps/current-work/multipage/forms.html#the-details-element
http://www.whatwg.org/specs/web-apps/current-work/multipage/forms.html#the-details-element
https://www.whatwg.org/specs/web-apps/current-work/multipage/forms.html#the-summary-element
https://www.whatwg.org/specs/web-apps/current-work/multipage/forms.html#the-summary-element

Chapter 7 ■ HTML5 Element Reference

276

Form Elements
The datalist Element
The datalist element provides a way of associating a list of data with a standard input element. As the
user begins to type in the input field, the list appears beneath, and as the user continues to type the choices
narrow. At any time the user can use the arrow keys to select an item from the list.

This sort of input field is typically referred to as a “combobox,” and is a common user interface element
found in web and native applications.

Note that support for this feature is currently quite limited. Internet Explorer lists it as “shipped” but
there are significant bugs in the implementation (see http://playground.onereason.eu/2013/04/ie10s-
lousy-support-for-datalists/ for a discussion and example). Safari currently does not support the
feature either on desktop or mobile.

Usage
The datalist element provides a way of associating a filterable list of default items for an input field. As the
user types in the field, the list appears and narrows in choices to those that match the characters that have
been entered. The user can select an item from the list at any time, or keep typing to enter a custom option.

The datalist element takes as children a set of option elements, rather like the form select element.
In browsers that support the element, a datalist element is not rendered in the document and can appear
anywhere in the markup. To associate a given datalist with a particular input field, set the input’s list
attribute to match the id attribute of the desired datalist element.

Syntax
<datalist id="example">
 <option value="val1">
 <option value="val2">
 ...
</datalist>
<input list="example" />

Listing 7-21.  The datalist Element

<!DOCTYPE html>
<html>
 <head>
 <title>The HTML5 Programmer's Reference</title>
 </head>
 <body>
 <!-- Note the datalist can be anywhere -->
 <datalist id="browsers">
 <option value="Chrome">
 <option value="Firefox">
 <option value="Internet Explorer">
 <option value="Opera">
 <option value="Safari">
 </datalist>

http://playground.onereason.eu/2013/04/ie10s-lousy-support-for-datalists/
http://playground.onereason.eu/2013/04/ie10s-lousy-support-for-datalists/

Chapter 7 ■ HTML5 Element Reference

277

 <article>
 <h1>Using the <datalist> tag</h1>
 <input list="browsers" />
 </article>
 </body>
</html>

Properties
The datalist element supports the following properties:

•	 accesskey

•	 class

•	 classlist

•	 contenteditable

•	 contextmenu

•	 dataset

•	 dir

•	 draggable

•	 dropzone

•	 hidden

•	 id

•	 lang

•	 spellcheck

•	 style

•	 tabindex

•	 title

Table 7-20.  Standards for the datalist Element

Specification Status URL

W3C Candidate Recommendation www.w3.org/html/wg/drafts/html/master/forms.
html#the-datalist-element

WHATWG Living Standard www.whatwg.org/specs/web-apps/current-work/
multipage/forms.html#the-datalist-element

https://www.w3.org/html/wg/drafts/html/master/forms.html#the-datalist-element
https://www.w3.org/html/wg/drafts/html/master/forms.html#the-datalist-element
https://www.whatwg.org/specs/web-apps/current-work/multipage/forms.html#the-datalist-element
https://www.whatwg.org/specs/web-apps/current-work/multipage/forms.html#the-datalist-element

Chapter 7 ■ HTML5 Element Reference

278

The meter Element
The meter element provides a visual meter or gauge as a filled bar on the page. The bar is meant to model
a measurement with a known range, or a fraction of a known range (e.g., disk usage or volume loudness). It
should not be used to show progress; for that use the progress element.

Usage
The meter element provides a way of modeling a measurement, and as such has attributes that allow you to
define the current value as well as minimum and maximum values and even ranges. The appearance of the
bar will vary depending on these settings.

The <meter> tag is not self-closing and the closing tag is required. The <meter> tag can contain other
content that will be rendered if the browser does not support the <meter> tag.

Syntax
<meter></meter>

Listing 7-22.  The meter Element

<!DOCTYPE html>
<html>
 <head>
 <title>The HTML5 Programmer's Reference</title>
 </head>
 <body>
 <article>
 <h1>Using the <meter> tag</h1>
 <p>Simple meter from 1 to 100, value set to 25:

 <meter min="1" max="100" value="25"></meter>
 </p>
 <p>Simple meter from 1 to 100, low range from 1 to 25, high range from
 75 to 100, value set to 90:

 <meter min="1" max="100" low="25" high="75" value="90"></meter>
 </p>
 <p>Simple meter from 1 to 100, low range from 1 to 25, high range from
 75 to 100, value set to 10:

 <meter min="1" max="100" low="25" high="75" value="10"></meter>
 </p>
 <p>Simple meter from 1 to 100, low range from 1 to 25, high range from
 75 to 100, optimum set to 10, value set to 10:

 <meter min="1" max="100" low="25" high="75" optimum="10" value="10"></meter>
 </p>
 <p>Simple meter from 1 to 100, low range from 1 to 25, high range from
 75 to 100, optimum set to 10, value set to 10:

 <meter min="1" max="100" low="25" high="75" optimum="10" value="90"></meter>
 </p>
 </article>
 </body>
</html>

Chapter 7 ■ HTML5 Element Reference

279

Attributes
The meter element supports the following attributes:

•	 value: The current value to be displayed. This value must be within the min and max
values, if specified. If no value is set, or if it is malformed, the browser will default to
0. If specified but the value is greater than the max attribute, the value will be set to
the value of the max attribute. And if the value is less than the min attribute, the value
will be set to the value of the min attribute.

•	 min: The minimum value of the range. Defaults to 0 if not specified.

•	 max: The maximum value of the range. Must be greater than the value of the min
attribute (if specified). Defaults to 1.

•	 low: The highest value of the low range. When the value attribute is within the low
range, the bar will render yellow by default.

•	 high: The lowest value of the high range, which ranges from this value to the value
of the max attribute. When the value attribute is within the high range, the bar will
render yellow by default.

•	 optimum: Indicates an optimum value for the range. The value must be between the
min and max values of the range. If the low and high ranges are used, specifying an
optimum value within one of them will indicate which of those ranges is preferred.
When the value is within the preferred range, the bar will render green. When it is in
the other range, it will render red.

In addition, the meter element supports the following global attributes:

•	 accesskey

•	 class

•	 classlist

•	 contenteditable

•	 contextmenu

•	 dataset

•	 dir

•	 draggable

•	 dropzone

•	 hidden

•	 id

•	 lang

•	 spellcheck

•	 style

•	 tabindex

•	 title

Chapter 7 ■ HTML5 Element Reference

280

The output Element
The output element provides a way of indicating the output of a calculation done as part of a form (e.g., an
interest calculation). The element has no special capabilities and is merely a way of semantically indicating
the output of a calculation.

Usage
The element is rendered as an inline element by default. It is not self-closing and the closing tag is required.

Syntax
<output>...</output>

Listing 7-23.  The output Element

<!DOCTYPE html>
<html>
 <head>
 <title>The HTML5 Programmer's Reference</title>
 </head>
 <body>
 <input name="operand1" id="operand1" /> +
 <input name="operand2" id="operand2" /> =
 <output></output>

 <button>Add</button>
 <script>
// Get references to the elements we will need.
var myOutput = document.querySelector('output');
var in1 = document.getElementById('operand1')
var in2 = document.getElementById('operand2')
var myButton = document.querySelector('button');
 
// Add a click event handler to the button that adds the contents of the two
// fields. We'll use parseFloat to cast the value to a number; experiment by
// entering various values including numbers, characters, and combinations of
// characters and numbers. Especially try combinations that start with numbers.
myButton.addEventListener('click', function() {
 myOutput.innerText = parseFloat(in1.value) + parseFloat(in2.value);
}, false);

Table 7-21.  Standards for the meter Element

Specification Status URL

W3C Candidate Recommendation www.w3.org/html/wg/drafts/html/master/forms.
html#the-meter-element

WHATWG Living Standard www.whatwg.org/specs/web-apps/current-work/
multipage/forms.html#the-meter-element

https://www.w3.org/html/wg/drafts/html/master/forms.html#the-meter-element
https://www.w3.org/html/wg/drafts/html/master/forms.html#the-meter-element
https://www.whatwg.org/specs/web-apps/current-work/multipage/forms.html#the-meter-element
https://www.whatwg.org/specs/web-apps/current-work/multipage/forms.html#the-meter-element

Chapter 7 ■ HTML5 Element Reference

281

 </script>
 </body>
</html>

Properties
The output element supports the following properties:

•	 accesskey

•	 class

•	 classlist

•	 contenteditable

•	 contextmenu

•	 dataset

•	 dir

•	 draggable

•	 dropzone

•	 hidden

•	 id

•	 lang

•	 spellcheck

•	 style

•	 tabindex

•	 title

Table 7-22.  Standards for the output Element

Specification Status URL

W3C Candidate Recommendation www.w3.org/html/wg/drafts/html/master/forms.
html#the-output-element

WHATWG Living Standard www.whatwg.org/specs/web-apps/current-work/
multipage/forms.html#the-output-element

https://www.w3.org/html/wg/drafts/html/master/forms.html#the-output-element
https://www.w3.org/html/wg/drafts/html/master/forms.html#the-output-element
https://www.whatwg.org/specs/web-apps/current-work/multipage/forms.html#the-output-element
https://www.whatwg.org/specs/web-apps/current-work/multipage/forms.html#the-output-element

Chapter 7 ■ HTML5 Element Reference

282

The progress Element
The progress element is used to provide a progress meter on the page. It is used to indicate progression or
completion of a task, and provides the user with an idea of how much has been done and what still remains.
It should not be used for visualizing a measurement within a known range; for that use the meter element.

Usage
The progress element provides a way of modeling the completion of an ongoing process, and as such has
attributes that allow you to define the current value as well as a maximum value. The appearance of the bar
will vary depending on these settings.

The <progress> tag is not self-closing and the closing tag is required. The <progress> tag can contain
other content that will be rendered if the browser does not support the <progress> tag.

Syntax
<progress></progress>

Listing 7-24.  The progress Element

<!DOCTYPE html>
<html>
 <head>
 <title>The HTML5 Programmer's Reference</title>
 </head>
 <body>
 <article>
 <h1>Using the <progress> tag</h1>
 <p>Downloading file1

 <progress max="100" value="10">10/100</progress> 10%</p>
 </article>
 </body>

Properties
The progress element supports the following properties:

•	 max: The maximum value of the activity. This value must be a valid positive floating
point number. If max is not specified, the maximum value defaults to 1.

•	 value: The current value of the progress. This value must be a valid floating point
number between 0 and max (if specified) or 1 (if max is not specified). If value is not
specified, then the progress bar is considered indeterminate, meaning the activity
it is modeling is ongoing but gives no indication of how much longer it will take to
complete.

In addition, the progress element supports the standard global properties:

•	 accesskey

•	 class

•	 classlist

•	 contenteditable

Chapter 7 ■ HTML5 Element Reference

283

•	 contextmenu

•	 dataset

•	 dir

•	 draggable

•	 dropzone

•	 hidden

•	 id

•	 lang

•	 spellcheck

•	 style

•	 tabindex

•	 title

Table 7-23.  Standards for the progress Element

Specification Status URL

W3C Candidate Recommendation www.w3.org/html/wg/drafts/html/master/forms.
html#the-progress-element

WHATWG Living Standard www.whatwg.org/specs/web-apps/current-work/
multipage/forms.html#the-progress-element

http://www.w3.org/html/wg/drafts/html/master/forms.html#the-progress-element
http://www.w3.org/html/wg/drafts/html/master/forms.html#the-progress-element
http://www.whatwg.org/specs/web-apps/current-work/multipage/forms.html#the-progress-element
http://www.whatwg.org/specs/web-apps/current-work/multipage/forms.html#the-progress-element

285

Chapter 8

HTML5 API Reference

This chapter provides a detailed reference for all of the new HTML5 JavaScript APIs. For a detailed
discussion of these APIs, including examples and support level at time of press, see Chapter 3.

Server-sent Events
The Server-sent Events API enables an HTML5 client to subscribe to an event service published by a server.
The server can then transmit events to the HTML5 client.

The API for server-sent events is an EventSource constructor in the global JavaScript scope.
EventSource objects implement the EventTarget interface, similar to DOM elements (so events can be
published on them, and event handlers registered on them). When a new EventSource is instantiated, a URL
for an event service is specified. This instructs the browser to establish a connection to the specified URL
and begin polling it regularly for new events. When an event is received, the EventSource object will publish
an event containing the data that was transmitted.

The server can publish events to the service by providing a standard HTTP response to a polling query
using the text/event-stream MIME type (if that MIME type is not used, the EventSource object associated
with the service will publish an error event).

The JavaScript API for the EventSource constructor is:

constructor EventSource(DOMString url)
interface EventSource implements EventTarget: {
 readonly DOMString url;
 readonly unsigned short readyState;
 EventHandler onopen;
 EventHandler onmessage;
 EventHandler onerror;
 void close();
}

Syntax

var myEventSource = new EventSource('http://www.example.com:8030/event-stream/');

http://dx.doi.org/10.1007/9781430263678_3
http://www.example.com:8030/event-stream/

Chapter 8 ■ HTML5 API Reference

286

The EventSource constructor takes a single parameter of a valid URL indicating an event service. The
resulting interface has the following properties:

•	 url: The URL for the service.

•	 readyState: The current ready state of the interface in the form of an integer:

•	 0: Connecting to the service.

•	 1: Connected to the service and actively listening for events.

•	 2: Closed (as in after the close method is called, or a fatal error has occurred in
the connection).

•	 onopen: The open event interface.

•	 onmessage: The message event interface.

•	 onerror: The error event interface.

•	 close(): The close method. Calling this method will close the connection to the
service.

Listing 8-1 shows a basic example of using the EventSource constructor (note that you will need to run
this example from a server, rather than just loading it directly into the browser).

Listing 8-1.  Using the EventSource Constructor

<!DOCTYPE html>
<html>
 <head>
 <title>The HTML5 Programmer's Reference</title>
 </head>
 <body>
 <h1>Server-sent Events Reference</h1>
 <script>
/**
 * Handles message events published by the EventSource.
 * @param {EventSourceEvent} event
 */
function handleMessage(event) {
 // Handle message.
 console.log('A message was sent from the server: ', event.data);
}
 
/**
 * Handles error events published by the EventSource.
 * @param {EventSourceEvent} event
 */
function handleError(event) {
 // Handle an error.
 console.error('An error happened on the EventSource: ', event.data);
}
 

Chapter 8 ■ HTML5 API Reference

287

/**
 * Handles an open event published by the EventSource.
 * @param {EventSourceEvent} event
 */
function handleOpen(event) {
 // Handle the open event.
 console.log('The connection is now open.');
}
 
// Create a new connection to the server.
var targetUrl = 'http://www.service.com/my-event-service';
var myEventSource = new EventSource(targetUrl);
 
// Attach event handlers. Here we are using the addEventListener method.
// You could also directly attach the event handlers using the event interfaces,
// e.g. myEventSource.onmessage = handleMessage.
myEventSource.addEventListener('message', handleMessage);
myEventSource.addEventListener('error', handleError);
myEventSource.addEventListener('open', handleOpen);
 </script>
 </body>
</html>

An event sent from the server takes the form of a simple HTTP response sent with the text/event-stream
MIME type. Events consist of multiline key: value pairs, and are terminated by a double line feed. Valid
keys are as follows:

•	 data: Specifies a line of arbitrary data to be sent to the client, which will receive it
as the data property of the event object. Terminating a data value with a double
line feed ('\n\n') signifies the end of a particular event. Multiple data values are
permitted in a single event; just terminate each one with a single line feed ('\n') and
the last with a double line feed.

•	 event: Specifies an arbitrary event type associated with this server-sent event.
This will cause an event of the same name to be dispatched from the associated
EventTarget object, thus enabling arbitrary events beyond open, message, and error
to be fired from the server. If no event type is specified, the event will just trigger a
message event on the EventTarget.

•	 id: Specifies an arbitrary ID to associate with the event sequence. Setting an ID on
an event stream enables the browser to keep track of the last event fired, and if the
connection is dropped it will send a last-event-ID HTTP header to the server.

•	 retry: Specifies the number of milliseconds before the browser should requery
the server for the next event. By default this is set to 3000 (three seconds). This
enables the server resource to throttle browser queries and prevent itself from being
swamped.

http://www.service.com/my-event-service

Chapter 8 ■ HTML5 API Reference

288

Any arbitrary text can be transmitted as a server-sent event: HTML, CSS, XML, JSON, and so on.
A single response can contain multiple events, and a given event can contain multiple data attributes.
For example:

event: watch\n
data: {\n
data: "type":"flash flood",\n
data: "counties":"['Jefferson', 'Arapahoe', 'Douglas', 'Broomfield']",\n
data: "from":"12:30 pm June 12, 2015",\n
data: "to":"7:00 am June 13, 2015",\n
data: "details":"The National Weather Service has issued a flash flood watch."\n
data: }\n
event: warning\n
data: {\n
data: "type":"severe thunderstorm",\n
data: "counties":"['Jefferson']",\n
data: "from":"12:30 pm June 12, 2015",\n
data: "to":"1:00 pm June 12, 2015",\n
data: "details":"The National Weather Service has issued a severe thunderstorm warning."\n
data: }\n\n

This single server-sent event would trigger both a watch event and a warning event on the associated
EventTarget object. The data for the watch event would be the JSON-formatted text:

{
 "type":"flash flood",
 "counties":"['Jefferson', 'Arapahoe', 'Douglas', 'Broomfield']",
 "from":"12:30 pm June 12, 2015",
 "to":"7:00 am June 13, 2015",
 "details":"The National Weather Service has issued a flash flood watch."\n
}

And the data for the warning event would be the JSON-formatted text:

{
 "type":" severe thunderstorm ",
 "counties":"['Jefferson']",
 "from":"12:30 pm June 12, 2015",
 "to":"1:00 pm June 12, 2015",
 "details":" The National Weather Service has issued a severe thunderstorm warning."\n
}

Table 8-1.  Standards for Server-sent Events

Specification Status URL

W3C Draft http://dev.w3.org/html5/eventsource/

WHATWG Living Standard www.whatwg.org/specs/web-apps/current-work/multipage/
comms.html#server-sent-events

http://http://dev.w3.org/html5/eventsource/
http://www.whatwg.org/specs/web-apps/current-work/multipage/%0acomms.html%23server-sent-events
http://www.whatwg.org/specs/web-apps/current-work/multipage/%0acomms.html%23server-sent-events

Chapter 8 ■ HTML5 API Reference

289

WebSockets
The WebSockets API provides a way of full duplex communication between client and server through a
maintained network connection.

The API for WebSockets is a WebSocket constructor in the global JavaScript scope. WebSocket objects
implement the EventSource interface, similar to DOM elements (meaning that events can be dispatched on
them, and event handlers registered on them). The constructor requires a URL (the protocol for which must
be either ws:// or wss://), and may also take an optional protocol parameter. The protocol is either a string
or an array of strings, each string representing the name of a protocol.

When a new WebSocket is instantiated, the client immediately sends a standard HTTP 1.1 GET request to
the server, and the server then upgrades the connection from HTTP to the WebSocket network protocol. The
connection is then ready to send and receive data.

Strings, Blobs, and ArrayBuffers may all be transmitted through the socket. Communication from the
server dispatches events on the EventTarget interface. Communication to the server is done via the send
method of the WebSocket object.

The definition of the API is:

constructor WebSocket(DOMString url, optional (DOMString or DOMString[]) protocols)
interface WebSocket implements EventTarget {
 readonly DOMString url;
 readonly unsigned short readyState;
 readonly unsigned long bufferedAmount;
 EventHandler onopen;
 EventHandler onerror;
 EventHandler onclose;
 readonly DOMString extensions;
 readonly DOMString protocol;
 void close(optional unsigned short code, optional USVString reason);
 EventHandler onmessage;
 BinaryType binaryType;
 void send(USVString|Blob|ArrayBuffer data);
};

Syntax

// Create a web socket without specifying protocols.
var myWebSocket = new WebSocket('ws://www.example.com/');
 
// Create a web socket and specify one or more protocols.
var myChatWebSocket = new WebSocket('ws://www.example.com/', chat');
var myWebSocket = new WebSocket('ws://www.example.com/', ['chat', 'json']);

The properties of the interface are:

•	 url: The URL of the service, set when the WebSocket object was constructed.

•	 readyState: An integer value representing the communication state of the connection:

•	 0: The client is still in the process of connecting to the service.

•	 1: The connection is open and ready to use.

•	 2: The connection is closing.

•	 3: The connection is closed and no longer active.

Chapter 8 ■ HTML5 API Reference

290

•	 bufferedAmount: The number of bytes that are queued for sending back to the server,
but haven’t been sent yet.

•	 onopen: The open event interface.

•	 onerror: The error event interface.

•	 onclose: The close event interface.

•	 onmessage: The message event interface.

•	 extensions: The name of any file extensions in use by the server (e.g., zip)

•	 protocol: The name of the protocol that is in use.

•	 binaryType: What type of data is being transmitted (e.g. 'blob' or 'arraybuffer').

•	 send: The send method, used for transmitting data back to the server. Takes one
parameter, which is the data to be sent.

•	 close: The close method, which closes the connection. Can take two optional
parameters, which are typically defined by the protocol in use:

•	 code: An optional number representing the closing code.

•	 reason: A string containing the reason for closing the connection.

Listing 8-2 shows a simple implementation of a WebSocket, including stubbed event handlers (note that
you will need to run this example from a server).

Listing 8-2.  Using the WebSocket Constructor

<!DOCTYPE HTML>
<html>
 <head>
 <title>The HTML5 Programmer's Reference</title>
 </head>
 <body>
 <h1>Web Sockets Reference</h1>
 <script>
// Create a new web socket connection.
var socketUrl = 'ws://www.fgjkjk4994sdjk.com/';
var validProtocols = ['chat', 'json'];
var myWebSocket = new WebSocket(socketUrl, validProtocols);
 
/**
 * Handles an error event on the web socket object.
 */
function handleError() {
 console.log('An error occurred on the web socket.');
}
 
/**
 * Handles a close event on the web socket object.
 * @param {CloseEvent} event The close event object.
 */

http://www.fgjkjk4994sdjk.com/

Chapter 8 ■ HTML5 API Reference

291

function handleClose(event) {
 console.log('The web socket connection was closed because ', event.reason);
}
 
/**
 * Handles an open event on the web socket object.
 * @param {OpenEvent} event The open event object.
 */
function handleOpen(event) {
 console.log('The web socket connection is open.');
}
 
/**
 * Handles a message event on the web socket object.
 * @param {MessageEvent} event The message event object.
 */
function handleMessage(event) {
 console.log('A message event has been sent.');
 
 // The event object contains the data that was transmitted from the server.
 // That data is encoded either using the chat protocol or the json protocol,
 // so we need to deterine which protocol is being used.
 if (myWebSocket.protocol === validProtocols[0]) {
 console.log('The chat protocol is active.');
 console.log('The data the server transmitted is: ', event.data);
 // etc...
 } else {
 console.log('The json protocol is active.');
 console.log('The data the server transmitted is: ', event.data);
 // etc...
 }
}
 
// Register the event handlers on the web socket.
myWebSocket.addEventListener('error', handleError);
myWebSocket.addEventListener('close', handleClose);
myWebSocket.addEventListener('open', handleOpen);
myWebSocket.addEventListener('message', handleMessage);
 </script>
 </body>
</html>

■■ Tip  Building a WebSocket server from scratch is a complex task. There are, however, several open source
web socket servers available that you can use in your projects. If you would like to tackle building one from
scratch, see Sections 4, 5, and 6 in the WebSocket Protocol RFC.

Chapter 8 ■ HTML5 API Reference

292

Cross-Document Messaging/Web Messaging
Browsers will allow you to open documents from different origins in iframes, but if a script from one origin
attempts to interact with the content from another origin, the browser will throw an error. The Cross-
Document Messaging API (also known as Web Messaging) defines a secure way for scripts from one origin
in one frame to communicate with scripts from another origin in another frame. This allows scripts from
multiple origins to more safely interact with one another.

The Cross-Document Messaging specification defines a both a new method and a new event on the
window object. The new method is postMessage, and it takes three parameters:

•	 message: The message you want to transmit from the current context to the target
context. The message is serialized using the structured clone algorithm, unless you
specify that the objects should instead be transferred using the transfer parameter.

•	 origin: The origin you expect the resources in the target context to have. If the
resources in the target context do not have the specified origin, the method will have
no effect.

•	 transfer: an array of objects that are part of the message that should have their
ownership transferred to the new context. Transferring ownership means that the
objects will be bound to the origin of the target context. Transferring ownership is
limited to ArrayBuffer and MessagePort objects.

■■ Note T he structured clone algorithm is defined as part of the HTML5 specification. You can read it at
www.w3.org/TR/html5/infrastructure.html#safe-passing-of-structured-data. Basically this algorithm
allows you to transmit just about anything from one context to another. The exceptions are functions, DOM
elements, and Error objects, which will throw a DATA_CLONE_ERROR if you attempt to transmit them.

The new event is the message event, which is dispatched on the window object when the postMessage
method is used to transmit a message. The resulting event object will have two important attributes:

•	 data: This attribute will contain the message that was sent from the other context.

•	 source: This attribute will contain the origin of the sending context. You should
always double-check the origin of message sources to prevent accidentally capturing
and processing events from unexpected (and possibly malicious) origins.

Table 8-2.  Standards for WebSockets

Specification Status URL

W3C Candidate Recommendation www.w3.org/TR/websockets/

WHATWG Living Standard https://html.spec.whatwg.org/multipage/
comms.html#network

RFC Complete https://tools.ietf.org/html/rfc6455

http://www.w3.org/TR/html5/infrastructure.html#safe-passing-of-structured-data
http://www.w3.org/TR/websockets/
http://html.spec.whatwg.org/multipage/%0acomms.html%23network
http://html.spec.whatwg.org/multipage/%0acomms.html%23network
http://tools.ietf.org/html/rfc6455

Chapter 8 ■ HTML5 API Reference

293

Syntax

var targetIframe = document.getElementById('my-iframe');
targetIframe.contentWindow.postMessage('hello world', 'apress.com');
 
window.addEventListener('message', function(event) {
 if (event.source === 'apress.com') {
 console.log('A message was received: ', event.data);
 }
});

To demonstrate using the API, you need two pages served from different origins: a host page and a
target page. The host page will contain an iframe that will load the target page. The host page will dispatch
events to the target page, and the target page will listen for message events and alert their contents.
Listing 8-3 is the host page.

Listing 8-3.  The Host Page

<!DOCTYPE HTML>
<html>
 <head>
 <title>The HTML5 Programmer's Reference</title>
 </head>
 <body>
 <h1>Cross-Domain Messaging</h1>
 <iframe id="target-iframe" src="target-page.html"></iframe>
 <p><button id="clickme">Click to send a message to the iframe.</button></p>
 <script>
// Create some objects to transfer.
var testBlob = new Blob(['some data']);
var testBuffer = new ArrayBuffer(100);
var testBuffer2 = new ArrayBuffer(8);
 
// To transfer multiple objects, we need to wrap them in a single carrier. The
// names of the properties don't matter, they're just serving as a place to
// store references to the buffer objects.
var transferObject = {
 buffer1: testBuffer,
 buffer2: testBuffer2
};
 
var targetFrame = document.getElementById('target-iframe');
 
// Reference to the button.
var clickme = document.getElementById("clickme");
 
// Add a click event handler to the button.
clickme.addEventListener("click", function() {
 // Send a simple text string to the target frame.
 targetFrame.contentWindow.postMessage('hello world', '*');
 // Send a Blob to the target frame.
 targetFrame.contentWindow.postMessage(testBlob, '*');

Chapter 8 ■ HTML5 API Reference

294

 // Transfer multiple array buffers to the target frame.
 targetFrame.contentWindow.postMessage(transferObject, '*',
 [transferObject.buffer1, transferObject.buffer2]);
});
 </script>
 </body>
</html>

Note that the iframe element’s src is set to load the target page from the same context. If you have
access to a different domain (or even another web server on the same domain running on a different port)
you can serve the target page from there and thus fully demonstrate that the API allows for sending messages
across origins.

Listing 8-4 contains the target page.

Listing 8-4.  The Target Page

<!DOCTYPE html>
<html>
 <head>
 <title>The HTML5 Programmer's Reference</title>
 </head>
 <body>
 <h1>Target iframe</h1>
 <script>
/**
 * Handles a message event on the window object.
 * @param {MessageEvent} event A message event object.
 */
function handleMessage(event) {
 // Create a string for alerting.
 var strAlert = "Target iframe:\n";
 
 if (event.data.buffer1) {
 // The two buffers have been transferred.
 strAlert += event.data.buffer1 + '\n';
 strAlert += event.data.buffer2 + '\n';
 } else {
 // Just alert the data.
 strAlert += event.data;
 }
 alert(strAlert);
}
 
// Register the event handler.
window.addEventListener("message", handleMessage, false);
 </script>
 </body>
</html>

To run the example, click the button. The host page will send three messages to the target page,
resulting in three alerts.

Chapter 8 ■ HTML5 API Reference

295

Web Storage
The new Web Storage API specifies a new way to store information on the client. Before Web Storage,
the standard way of storing information on the client was with HTTP cookies, which was messy and
inconvenient. Web Storage provides an easier-to-use storage feature.

Web Storage defines two new interface objects in the global context: sessionStorage and
localStorage. The sessionStorage interface is for storing data for a single browsing session. When the user
closes their browser, the data will automatically be deleted. The localStorage interface is for storing data
across sessions. Even if the user closes their browser, the data stored in localStorage will persist.

■■ Caution A ll browsers have implemented some form of “private browsing.” When using this feature,
localStorage data is removed when the user ends the session. In addition, many browsers now have
features that will automatically clear localStorage when the browser is closed even for regular sessions.
Your application should not assume that any data stored in localStorage will always be available, and should
respond appropriately if the expected data is not present.

The API also defines the storage event, which is dispatched on the window object of all documents
that are the same as the document where the storage change occurred, but not the window document
where the change occurred. For other DOM events, if you have a page loaded and an event is dispatched,
it is dispatched on the current page. The storage event does not dispatch on the current page. If you have
multiple versions of the same page open in tabs, the event will dispatch on every window object except the
one that is currently active.

■■ Caution  Currently Internet Explorer dispatches the storage event in all documents, not just inactive ones.
There is a bug filed for the behavior at https://connect.microsoft.com/IE/feedback/details/774798/
localstorage-event-fired-in-source-window that is currently postponed.

The API definition is:

interface Storage {
 readonly unsigned long length;
 DOMString? key(unsigned long index);
 getter DOMString? getItem(DOMString key);
 setter creator void setItem(DOMString key, DOMString value);
 deleter void removeItem(DOMString key);
 void clear();
};

Table 8-3.  Standards for Cross-Document Messaging

Specification Status URL

W3C Candidate
Recommendation

www.w3.org/TR/webmessaging/

WHATWG Living Standard www.whatwg.org/specs/web-apps/current-work/multipage/
web-messaging.html#crossDocumentMessages

https://connect.microsoft.com/IE/feedback/details/774798/localstorage-event-fired-in-source-window
https://connect.microsoft.com/IE/feedback/details/774798/localstorage-event-fired-in-source-window
http://www.w3.org/TR/webmessaging/
http://www.whatwg.org/specs/web-apps/current-work/multipage/%0aweb-messaging.html%23crossDocumentMessages
http://www.whatwg.org/specs/web-apps/current-work/multipage/%0aweb-messaging.html%23crossDocumentMessages

Chapter 8 ■ HTML5 API Reference

296

interface WindowSessionStorage {
 readonly attribute Storage sessionStorage;
};
interface WindowLocalStorage {
 readonly attribute Storage localStorage;
};

Both localStorage and sessionStorage implement the Storage interface, and thus have the same
methods:

•	 getItem(key): Returns the data associated with the specified key.

•	 removeItem(key): Removes the data associated with the specified key.

•	 setItem(key, data): Stores the data in storage with the specified key.

•	 clear(): Clears the storage of all contents.

Whenever localStorage is changed using any of those methods, a storage event is dispatched on the
window object of any document that is the same as the current document. The associated event object is a
StorageEvent object, and it has the following properties:

•	 target: The target property is a reference to the DOM element on which the event
was dispatched. In this case, that is the window object.

•	 type: The type property is set to storage.

•	 key: The key property contains the key that had its associated data changed.

•	 oldValue: The oldValue property contains the previous value of the data.

•	 newValue: The newValue property contains the new value of the data.

•	 url: The url property contains the URL of the hosting document.

•	 storageArea: The storageArea property will be a reference to the actual
localStorage object.

Listing 8-5 demonstrates using Web Storage.

Listing 8-5.  Using Web Storage

<!DOCTYPE html>
<html>
 <head>
 <title>The HTML5 Programmer's Reference</title>
 </head>
 <body>
 <h1>Web Storage Example</h1>
 <script>
 
/**
 * Handles a storage event.
 * @param {StorageEvent} event The storage event object.
 */
function handleStorageEvent(event) {
 var alertMsg = 'Storage event!\n';
 alertMsg += 'key: ' + event.key + '\n';

Chapter 8 ■ HTML5 API Reference

297

 alertMsg += 'oldValue: ' + event.oldValue + '\n';
 alertMsg += 'newValue: ' + event.newValue + '\n';
 alert(alertMsg);
}
 
// Register the event handler on the window object.
window.addEventListener('storage', handleStorageEvent, false);
 
// Check to see if we've visited this page before.
var myValue = localStorage.getItem('myKey');
if (myValue == null) {
 alert('This is the first time you loaded this page! Now reload this page.');
 localStorage.setItem('myKey', 'true');
} else {
 alert('You have loaded this page before!');
 localStorage.removeItem('myKey');
}
 </script>
 </body>
</html>

The first time you load the example, it will tell you this is the first time you have loaded the page.
When you reload, it will detect the stored information and then delete it, thus resetting the test. If you open
the example in two tabs you will see the alerts resulting from the storage events being dispatched on the
inactive tabs.

Table 8-4.  Standards for Web Storage

Specification Status URL

W3C Candidate Recommendation www.w3.org/TR/webstorage/

WHATWG Living Standard www.whatwg.org/specs/web-apps/current-work/
multipage/webstorage.html

Drag and Drop
The new HTML5 Drag and Drop specification provides a native API for handling drag-and-drop interactions
in the browser. The API is event driven, and using it involves these steps:

•	 Declare one or more objects as draggable, and attach desired event handlers.

•	 Attach drop event handlers to target elements.

•	 As the user drags items and drops them on targets, the various events are dispatched.

http://www.w3.org/TR/webstorage/
http://www.whatwg.org/specs/web-apps/current-work/multipage/webstorage.html
http://www.whatwg.org/specs/web-apps/current-work/multipage/webstorage.html

Chapter 8 ■ HTML5 API Reference

298

Specifying Draggable Elements: The draggable Property
The draggable property is a new property for DOM elements that indicates the availability of the element for
being a drag target. The property can be set to three values:

•	 true: Indicates that the element is draggable.

•	 false: Indicates that the element is not draggable.

•	 auto: The browser’s default rules apply. For most elements, the default rule is false.
(The exception is selected text, which can always initiate a drag interaction.)

Handling the Interactions: Drag-and-Drop Events
The API specifies several new events that occur on either the dragging element or the elements it is
dragged over:

•	 dragstart: Dispatched from the element being dragged.

•	 dragenter: Dispatched from any element when a draggable item is dragged into it.

•	 dragover: Dispatched continuously from any element as long as a draggable item
is over it. Note that this event fires continuously regardless of whether or not the
draggable item is moving.

•	 dragleave: Dispatched from an element when a draggable item leaves its boundary.

•	 drag: Dispatched from the element being dragged throughout the drag sequence.
Like dragover this event is fired continuously regardless of whether the pointer is
being moved.

•	 dragend: Dispatched from the element being dragged when the mouse button is
released.

•	 drop: Dispatched from an element when the user drops a draggable item on it by
releasing the mouse button.

Specifying Drop Targets
The API specifies a dropzone attribute that is supposed to indicate that an element can be a drop target.
However, the dropzone attribute is not widely supported, so the only way to specify a given element is a valid
target is through the event handlers.

Generally speaking, the majority of elements in the DOM should not be valid drop targets, so the default
action of the dragover event is to cancel drops. As a result, to indicate a valid drop target you have to cancel
the default action of the dragover event by calling the preventDefault() method on the event object within
the event handler.

The dataTransfer Object
All of the drag-and-drop events can be handled with standard event handlers, and those event handlers
will receive an event object as a parameter. One of the properties on drag-and-drop event objects is the
dataTransfer object. This object is used to control the appearance of the drag-and-drop helper (the ghosted
visual element that follows the cursor during the drag-and-drop operation), to indicate what the drag-and-
drop process is doing, and to easily transfer data from the dragstart event to the drop event.

Chapter 8 ■ HTML5 API Reference

299

The dataTransfer object has the following methods:

•	 Event.dataTransfer.addElement(HtmlElement): Specify the source element of the
drag sequence. This affects where the drag and dragend events are fired from. This
is set automatically at the beginning of the drag interaction, so you probably won’t
need to change it.

•	 Event.dataTransfer.clearData(opt_DataType): Clear the data associated with a
specific DataType (see setData in this list). If the DataType is not specified, all data is
cleared.

•	 Event.dataTransfer.getData(DataType): Get the data associated with a specific
DataType (see setData, next).

•	 Event.dataTransfer.setData(DataType, data): Associates the specified data
with the DataType. Valid DataTypes depend on the browser. Internet Explorer only
supports DataTypes of text and url. Other browsers support standard MIME types
and even arbitrary types. The data has to be a simple string but could conceivably
be a JSON-formatted serialized object. Note that Firefox requires the dataTransfer
object to be initialized with data during the dragstart event in order for drag and
drop events to fire correctly.

•	 Event.dataTransfer.setDragImage(HtmlElement, opt_offsetX, opt_offsetY):
Sets the drag helper image to the specified HTML element. By default the upper left
corner of the helper image is placed under the mouse pointer, but that can be offset
by specifying the optional parameters opt_offsetX and opt_offsetY, in pixels.
This method is not available in Internet Explorer and apparently never will be;
see http://connect.microsoft.com/IE/feedback/details/804304/implement-
datatransfer-prototype-setdragimage-method.

The dataTransfer object also has the following properties:

•	 Event.dataTransfer.dropEffect: The drop effect that is being performed by the
drag-and-drop sequence. Valid values are copy, move, link, and none. This value
is automatically initialized in the dragenter and dragover events based on what
interaction the user has requested through a combination of mouse actions and
modifier keys (e.g., Ctrl-drag, Shift-drag, Option-drag, etc.). These are platform
dependent. Only values specified by effectAllowed (see next) will actually initiate
drag-and-drop sequences.

•	 Event.dataTransfer.effectAllowed: Specifies which dropEffects are permitted
for this drag-and-drop sequence. Valid values and the effects they permit are:

•	 copy: Allow a copy dropEffect.

•	 move: Allow a move dropEffect.

•	 link: Allow a link dropEffect.

•	 copyLink: Allow both a copy and a link dropEffect.

•	 copyMove: Allow both a copy and a move dropEffect.

•	 linkMove: Allow both a link and a move dropEffect.

•	 all: All dropEffects are permitted. This is the default value.

•	 none: No dropEffects are permitted (the item cannot be dropped).

http://connect.microsoft.com/IE/feedback/details/804304/implement-datatransfer-prototype-setdragimage-method
http://connect.microsoft.com/IE/feedback/details/804304/implement-datatransfer-prototype-setdragimage-method

Chapter 8 ■ HTML5 API Reference

300

•	 Event.dataTransfer.files: Contains a list of all the files available on the data
transfer. Will only have values if files are being dragged from the desktop to the
browser.

•	 Event.dataTransfer.types: Contains a list of all the DataTypes that have been
added to the dataTransfer object, in the order in which they were added.

Listing 8-6 demonstrates the Drag and Drop API.

Listing 8-6.  The Drag and Drop API at Work

<!DOCTYPE html>
<html>
 <head>
 <title>The HTML5 Programmer's Reference</title>
 <style type="text/css">
#drag-target,
#drop-target {
 float: left;
 padding: 10px;
 margin: 10px;
 box-sizing: border-box;
}
#drag-target {
 background-color: #008000;
 width:75px;
 height:75px;
}
#drop-target {
 background-color: #0000FF;
 width:150px;
 height:150px;
}
.drag-over {
 border: 5px solid #FF0000;
}
</style>
 </head>
 <body>
 <h1>Drag and Drop Example</h1>
 <div id="drop-target">Target</div>
 <div id="drag-target" draggable="true">Drag me!</div>
 <script>
/**
 * Handles a dragStart event.
 * @param {DragEvent} event The event object.
 */
function handleDragStart(event) {
 // Set the data in the dataTransfer object to the id of the element being
 // dragged.
 event.dataTransfer.setData("Text", event.target.getAttribute('id'));
}
 

Chapter 8 ■ HTML5 API Reference

301

/**
 * Handles a dragenter event.
 * @param {DragEvent} event The event object.
 */
function handleDragEnter(event) {
 // Apply a class to the element.
 event.target.classList.add('drag-over');
}
 
/**
 * Handles a dragleave event.
 * @param {DragEvent} event The event object.
 */
function handleDragLeave(event) {
 // Remove the class from the element.
 event.target.classList.remove('drag-over');
}
 
/**
 * Handles a dragover event.
 * @param {DragEvent} event The event object.
 */
function handleDragOver(event) {
 // Indicates this element is a valid drop target.
 event.preventDefault();
}
 
/**
 * Handles a drop event.
 * @param {DragEvent} event The event object.
 */
function handleDrop(event) {
 // Get a reference to the dragging element and append it to the drop target.
 var src = event.dataTransfer.getData("Text");
 event.target.appendChild(document.getElementById(src));
 event.preventDefault();
}
 
// Register event handlers.
var dragTarget = document.getElementById('drag-target');
dragTarget.addEventListener('dragstart', handleDragStart);
 
var dropTarget = document.getElementById('drop-target');
dropTarget.addEventListener('dragenter', handleDragEnter);
dropTarget.addEventListener('dragleave', handleDragLeave);
dropTarget.addEventListener('dragover', handleDragOver);
dropTarget.addEventListener('drop', handleDrop);
 </script>
 </body>
</html>

Chapter 8 ■ HTML5 API Reference

302

When you run this example, you’ll be able to drag the drag target (labeled “Drag me!”) into the drop
target (labeled “Target”). It sets the data in the dataTransfer object to the ID of the drag target during the
dragstart event, and then retrieves it during the drop event and uses it to fetch a reference to the element
and move it in the DOM. This is a very common use case for the Drag and Drop API.

Table 8-5.  Standards for Drag and Drop

Specification Status URL

W3C Recommendation www.w3.org/TR/html5/editing.html#dnd

WHATWG Living Standard www.whatwg.org/specs/web-apps/current-work/multipage/
dnd.html

Web Workers
The Web Workers API enables you to create threaded JavaScript applications by creating (or “spawning”)
subprocesses to handle certain tasks. Each of these workers runs its own JavaScript context and performs
whatever tasks you set to it. Web Workers can also spawn other Web Workers.

Communication between Web Worker contexts and the main JavaScript thread is done via a
postMessage interface similar to that used by Web Messaging. This enables you to pass data into and out of
Web Worker contexts, but because all contexts are independent, any data passed between contexts is copied
unless you specifically transfer it. (See the “Cross-Document Messaging/Web Messaging” section earlier for
more details on sending and transferring data using postMessage).

When you create a new Web Worker, you specify a JavaScript file for it to load and run. To start it, send
a message to it (any message will do). The worker can post messages back to the parent context or any other
Web Workers it has access to.

Web Workers have some important limitations, which are designed to help avoid the usual pitfalls
inherent in writing multithreaded applications:

•	 A Web Worker runs in its own independent JavaScript context. It has no direct access
to anything in any of the other execution contexts like other Web Workers, or the
main JavaScript thread.

•	 Communication between Web Worker contexts and the main JavaScript thread
is done via a postMessage interface similar to that used by Web Messaging. This
enables you to pass data into and out of Web Worker contexts, but because all
contexts are independent, any data passed between contexts is copied, not shared.

•	 A Web Worker cannot access the DOM. The only DOM methods available to a Web
Worker are atob, btoa, clearInterval, clearTimeout, dump, setInterval, and
setTimeout.

•	 Web Workers are bound by the Same Origin Policy, so you cannot load a worker
script from a different origin than the original script.

The Web Workers API takes the form of a new WebWorker constructor in the global JavaScript scope:

constructor WebWorker(DOMstring url)
interface WebWorker implements EventTarget {
 readonly WorkerLocation location;
 void terminate();
 OnErrorEventHandler onerror;
 EventHandler onlanguagechange;

http://www.w3.org/TR/html5/editing.html%23dnd
http://www.whatwg.org/specs/web-apps/current-work/multipage/dnd.html
http://www.whatwg.org/specs/web-apps/current-work/multipage/dnd.html

Chapter 8 ■ HTML5 API Reference

303

 EventHandler onoffline;
 EventHandler ononline;
 EventHandler onmessage;
};

Syntax

var myWorker = new WebWorker('worker-script.js');

The constructor returns a WebWorker object, which implements the EventTarget interface. The
properties are:

•	 location: The location property is similar to the document.location object but
contains information specific to the Web Worker (see hereafter for details).

•	 terminate(): The terminate method will end the thread for the worker. Once a
worker has been terminated it is not possible to restart it.

•	 onerror: The onerror event handler is called when an error event is dispatched on
the worker.

•	 onlanguagechange: The onlanguagechange handler is dispatched on the worker
when the user changes their preferred language in the browser.

•	 onoffline: The onoffline event handler is called when an offline event is
dispatched on the worker. This occurs when the browser loses network connectivity
and the value of navigator.onLine is changed to false.

•	 ononline: The ononline event handler is called when an online event is dispatched
on the worker. This occurs when the browser regains network connectivity.

•	 onmessage: The onmessage event handler is called when a message event is
dispatched on the worker.

The execution context inside of a Web Worker is significantly different than the global execution
context. Web Workers have no access to the DOM, but they do have access the following properties and
methods:

•	 The DOM methods atob, btoa, clearInterval, clearTimeout, dump, setInterval,
and setTimeout.

•	 The XMLHttpRequest constructor, so Web Workers can perform asynchronous
network tasks.

•	 The WebSocket constructor, so Web Workers can create and manage Web
Sockets (as of this writing, Firefox does not enable WebSocket for Web Workers;
however, this feature is being implemented and you can track its status at
https://bugzilla.mozilla.org/show_bug.cgi?id=504553)

•	 The Worker constructor, so Web Workers can spawn their own workers (which are
referred to as “subworkers”). As of this writing, Chrome and Safari do not implement
the Worker constructor for Web Workers. There is a bug filed for Chrome at
https://code.google.com/p/chromium/issues/detail?id=31666 and for Safari’s
WebKit at https://bugs.webkit.org/show_bug.cgi?id=22723. Internet Explorer
does support subworkers as of version 10.

https://bugzilla.mozilla.org/show_bug.cgi?id=504553
https://code.google.com/p/chromium/issues/detail?id=31666
https://bugs.webkit.org/show_bug.cgi?id=22723

Chapter 8 ■ HTML5 API Reference

304

•	 The EventSource constructor, so Web Workers can subscribe to Server-sent Event
streams. This appears to be a nonstandard feature, but seems to be available in all
major browsers as of this writing.

•	 A special subset of the Navigator properties, available through the navigator object:

•	 navigator.language: Returns the current language the browser is using.

•	 navigator.onLine: Returns a boolean indicating whether or not the browser is
online.

•	 navigator.platform: Returns a string indicating the platform of the host
system.

•	 navigator.product: Returns a string with the name of the current browser.

•	 navigator.userAgent: Returns the user agent string for the browser.

	 The implementation of these properties varies from browser to browser, so it might
be better to pass needed Navigator information into the Web Worker from the main
thread.

•	 A special subset of Location properties, available on the location object:

•	 location.href: The full URL of the script being executed by the Web Worker.

•	 location.protocol: The protocol scheme of the URL of the script being
executed by the Web Worker, including the final “:”.

•	 location.host: The host part of the URL (the hostname and port) of the script
being executed by the Web Worker.

•	 location.hostname: The hostname part of the URL of the script being executed
by the Web Worker.

•	 location.port: The port part of the URL of the script being executed by the
Web Worker.

•	 location.pathname: The initial ‘/’ followed by the path of the script being
executed by the Web Worker.

•	 location.search: The initial ‘?’ followed by the parameters (if any) of the URL
of the script being executed by the Web Worker.

•	 location.hash: The initial ‘#’ followed by the fragment identifier (if any) of the
URL of the script being executed by the Web Worker.

In addition, Web Workers have one special method available only to them: importScripts. The method
takes either a single URL or a comma-delimited list of URLs of JavaScript files to load and execute in order.
The importScripts method is a blocking method and is bound by the Same Origin Policy.

Syntax

importScripts('test.js');
importScripts('polymer.js', 'custom-element.js', 'jquery.js');

Chapter 8 ■ HTML5 API Reference

305

When a Web Worker is started, it follows these steps:

•	 It executes the script from start to finish, including any asynchronous tasks (such as
XMLHttpRequest calls).

•	 If part of its execution was to register a message event handler, it then goes into a
wait loop for incoming messages. The first message it receives will be the message
that was posted to start the worker. The worker will remain in wait mode until you
manually terminate it, or it terminates itself.

•	 If no message event handlers were registered, the worker thread will terminate
automatically.

To demonstrate a Web Worker you will need two files: a host page that will create and run the worker,
and a stand-alone JavaScript script for the worker to execute. Listing 8-7 shows a basic host page.

Listing 8-7.  Creating and Using a Web Worker

<!DOCTYPE html>
<html>
 <head>
 <title>The HTML5 Programmer's Reference</title>
 </head>
 <body>
 <h1>Web Workers</h1>
 <div id="message-box"></div>
 <script>
 
/**
 * Handles an error event from web worker.
 * @param {WorkerErrorEvent} event The error event object.
 */
function handleWorkerError(event) {
 console.warn('Error in web worker: ', event.message);
}
 
/**
 * Handles a message event from a web worker.
 * @param {WorkerMessageEvent} event The message event object.
 */
function handleWorkerMessage(event) {
 displayMessage('Message received from worker: ' + event.data);
}
 
/**
 * Displays a message in the message box.
 * @param {string} message The message to display.
 */
function displayMessage(message) {
 // Get a reference to the target element.
 var messageBox = document.getElementById('message-box');
 

Chapter 8 ■ HTML5 API Reference

306

 // Create a new paragraph and set its content to the message.
 var newParagraph = document.createElement('p');
 newParagraph.innerHTML = message;
 
 // Append the new paragraph to the target element.
 messageBox.appendChild(newParagraph);
}
 
// Create a new worker.
var myNewWorker = new Worker('example8-8.js');
 
// Register error and message event handlers on the worker.
myNewWorker.addEventListener('error', handleWorkerError);
myNewWorker.addEventListener('message', handleWorkerMessage);
 
// Start the worker.
myNewWorker.postMessage('begin');
 </script>
 </body>
</html>

Listing 8-8 is a very basic stand-alone script for a Web Worker.

Listing 8-8.  A Simple Web Worker Script

/**
 * Handles a message event from the main context.
 * @param {WorkerMessageEvent} event The message event.
 */
function handleMessageEvent(event) {
 // Do something with the message.
 console.log('Worker received message:', event.data);
 
 // Send the message back to the main context.
 self.postMessage('Your message was received.');
}
 
// Register the message event handler.
self.addEventListener('message', handleMessageEvent);
 
// Dispatch 10 events to the host document.
var counter = 0;
var timer = setInterval(function() {
 counter++;
 self.postMessage('Message #' + counter);
 if (counter == 10) {
 // Stop the timer.
 clearInterval(timer);
 
 // Throw an error.
 throw new Error();
 }
}, 1000);

Chapter 8 ■ HTML5 API Reference

307

■■ Note  The files for this example will need to be served on a regular server for the code to function. If you
simply load the host file in the browser from the filesystem the browser will throw a cross origin violation error. 

Table 8-6.  Standards for Web Workers

Specification Status URL

W3C Recommendation http://dev.w3.org/html5/workers/

WHATWG Living Standard www.whatwg.org/specs/web-apps/current-work/multipage/
workers.html

http://dev.w3.org/html5/workers/
http://www.whatwg.org/specs/web-apps/current-work/multipage/workers.html
http://www.whatwg.org/specs/web-apps/current-work/multipage/workers.html

Chapter 9

Canvas Reference

This chapter will provide a detailed reference for the canvas element and the 2D drawing context API.
For detailed discussions about these features and more examples, see Chapter 4.

The canvas Element
The HTML5 canvas element enables you to draw bitmaps on web pages by providing a blank “canvas” to
work on. The canvas element itself is a block-level DOM element. To use a canvas element for drawing,
you have to fetch a drawing context reference from the element. The context exposes an extensive API for
drawing that you can use in your scripts.

The API definition for the canvas element itself is:

Interface HTMLCanvasElement implements HTMLElement {
 unsigned long width;
 unsigned long height;
 renderingContext? getContext(DOMString contextId);
 DOMString toDataURL(optional DOMString type);
}

Syntax

<canvas id="myCanvas" width="100" height="100"></canvas>
 
<script>
var myCanvas = document.getElementById('myCanvas');
var myContext = myCanvas.getContext('2d');
</script>

The properties are

•	 width: The layout width of the element.

•	 height: The layout height of the element.

http://dx.doi.org/10.1007/9781430263678_4

Chapter 9 ■ Canvas Reference

310

•	 getContext(): Returns the requested rendering context. All browsers support the
'2D' context, and many support the 'webgl' (in older browsers, 'experimental-
webgl') context.

•	 toDataURL(): Returns a data URI representation of the canvas bitmap. The optional
type parameter is used to specify the format of the encoded data. Valid options are
"image/jpeg", "image/gif", or "image/png". If no type parameter is specified, the
default is "image/png". The resolution of the encoded image is 96dpi.

■■ Tip T he data URI scheme is a way of encoding data directly into a document. You can encode anything in
a data URI, but it is most commonly used to encode images. When an image is encoded as a data URI you can
then use that data URI where you would use a regular URL (e.g., in the src attribute for an image tag). Data
URIs are defined in RFC 2397, at tools.ietf.org/html/rfc2397.

You need to specify the width and height of a canvas element using the width and height properties on
the tag itself and not with CSS. If you use CSS, the aspect ratio of the drawing context will be incorrect (unless
you are specifying the default size of the canvas element, which is 200 pixels high by 400 pixels wide).

Listing 9-1 shows a basic implementation of a canvas element.

Listing 9-1.  A canvas Element

<!DOCTYPE html>
<html>
 <head>
 <title>The HTML5 Programmer's Reference</title>
 <style>
canvas {
 border: 1px solid #000;
}
 </style>
 </head>
 <body>
 <canvas id="myCanvas" width="200" height="200"></canvas>
 <script>
// Get a DOM reference to the canvas element.
var myCanvas = document.getElementById('myCanvas');
 
// Get a reference to the 2d drawing context from the canvas element.
var myContext = myCanvas.getContext('2d');
 </script>
 </body>
</html>

http://tools.ietf.org/html/rfc2397

Chapter 9 ■ Canvas Reference

311

The Drawing Context
Once you have created a canvas element and retrieved the drawing context from it, you can use the API on
the drawing context to begin drawing. The 2d drawing context is the most commonly used drawing context,
and its API is what this chapter will cover. The commands provided by the API are simple but provide all the
tools you need to create complex drawings.

The 2d drawing context uses a pen metaphor for drawing, meaning that most commands to draw
something take the form of “From the current position of the pen, draw this item” or “Draw this item from
this position to the current position of the pen.” The 2d context also employs the concept of paths. A path is
an invisible representation of the item you have just drawn, whether it be a line, a circle, or complex drawing
made up of multiple items. Paths can be stroked (meaning the path is drawn as if a pen stroke followed it
exactly) or filled (meaning all the area contained by the path is filled). Paths can be stroked and filled with
solid colors, gradients, or patterns generated from images. Paths can be open (different starting and ending
points) or closed (same starting and ending points). They need not be continuous; you can have a single
path that has several “pieces” that do not connect. The 2d drawing context only supports having one path
active at a time.

Defining Paths
The 2d drawing context provides a few simple commands for defining paths.

The beginPath Method
This command specifies that you are defining a new path. The previous path will be cleared from the
drawing context.

Syntax

Context.beginPath();

Example

var myCanvas = document.getElementById('myCanvas');
var myContext = myCanvas.getContext('2d');
 
myContext.beginPath();

Table 9-1.  Standards for the canvas Element

Specification Status URL

W3C Candidate Recommendation www.w3.org/TR/2dcontext/

WHATWG Living Standard www.whatwg.org/specs/web-apps/current-work/
multipage/the-canvas-element.html

http://www.w3.org/TR/2dcontext/
http://www.whatwg.org/specs/web-apps/current-work/multipage/the-canvas-element.html
http://www.whatwg.org/specs/web-apps/current-work/multipage/the-canvas-element.html

Chapter 9 ■ Canvas Reference

312

The closePath Method
This command closes the current path. If the beginning point and the ending point of the current path are
not identical (in other words, if the current path isn’t already closed visually), this command will close the
path by extending it along a straight line between the two points.

Syntax

Context.closePath();

Example

var myCanvas = document.getElementById('myCanvas');
var myContext = myCanvas.getContext('2d');
 
myContext.closePath();

The moveTo Method
This command moves the pen to the specified coordinates. This provides a way to create
noncontiguous paths.

Syntax

Context.moveTo(x, y);

Table 9-2.  Parameters for the moveTo Method

Parameter Type Explanation

x Number The x coordinate of the new location.

y Number The y coordinate of the new location.

Example

var myCanvas = document.getElementById('myCanvas');
var myContext = myCanvas.getContext('2d');
 
myContext.moveTo(10, 10);

Listing 9-2 demonstrates creating and managing paths in the drawing context.

Listing 9-2.  Managing Paths

<!DOCTYPE html>
<html>
 <head>
 <title>The HTML5 Programmer's Reference</title>
 <style>

Chapter 9 ■ Canvas Reference

313

canvas {
 border: 1px solid #000;
}
 </style>
 </head>
 <body>
 <canvas id="myCanvas" width="200" height="200">Did You Know: Every time
 you use a browser that doesn't support HTML5, somewhere a kitten
 cries. Be nice to kittens, upgrade your browser!
 </canvas>
 <script>
// Get the context we will be using for drawing.
var myCanvas = document.getElementById('myCanvas');
var myContext = myCanvas.getContext('2d');
 
// Set the stroke style.
myContext.strokeStyle = '#000000';
myContext.lineWidth = 5;
 
// Create a closed path.
myContext.beginPath();
// Start the path at (30, 10).
myContext.moveTo(30, 10);
// Draw a line from the current pen location at (30, 10) to (50, 50).
myContext.lineTo(50, 50);
// Draw a line from current pen location at (50, 50) to (10, 50);
myContext.lineTo(10, 50);
// The pen is now currently at (10, 50). Closing the path will draw a straight
// line from (10, 50) back to the beginning point of the path at (30, 10).
myContext.closePath();
// We can't see the path without stroking it.
myContext.stroke();
 
// Create a new path.
myContext.beginPath();
// Start the path at (60, 10).
myContext.moveTo(60, 10);
// Draw a line from the current pen location at (60, 10) to (100, 10).
myContext.lineTo(100, 10);
// Move the pen from its current location at (100, 10) to (100, 50).
myContext.moveTo(100, 50);
// Draw a line from the current pen location at (100, 50) to (60, 50).
myContext.lineTo(60, 50);
// Give the new shape a different color.
myContext.strokeStyle = '#ff0000';
myContext.stroke();
 
// Creating a new path will clear the current path from memory without closing
// the previous one. We can demonstrate this by changing the stroke style and
// calling stroke again. The previous shape should remain red.
myContext.beginPath();

Chapter 9 ■ Canvas Reference

314

myContext.strokeStyle = '#00ff00';
myContext.stroke();
 </script>
 </body>
</html>

Basic Drawing Commands
The 2d drawing context provides a set of methods for drawing curves: lines, arcs, and so forth.

The lineTo Method
This command draws a path from the current pen position to the specified coordinates.

Syntax

Context.lineTo(x, y);

Table 9-3.  Parameters for the lineTo Method

Parameter Type Explanation

x Number The x coordinate of the desired endpoint.

y Number The y coordinate of the desired endpoint.

Example

var myCanvas = document.getElementById('myCanvas');
var myContext = myCanvas.getContext('2d');
 
myContext.lineTo(10, 10);

The arc Method
Draws an arc from startAngle to endAngle along a circle centered at coordinates (x, y) with radius radius.

Syntax

Context.arc(x, y, radius, startAngle, endAngle, opt_isAnticlockwise);

Chapter 9 ■ Canvas Reference

315

Example

var myCanvas = document.getElementById('myCanvas');
var myContext = myCanvas.getContext('2d');
 
// Draw an arc starting from 0 to 3 radians.
myContext.arc(50, 50, 10, 0, 3);

The quadraticCurveTo Method
This command draws a quadratic curve starting at the current pen location and ending at the coordinates
(x, y), with the control point at (cp1x, cp1y).

Syntax

Context.quadraticCurveTo(cplx, cply, x, y);

Table 9-4.  Parameters for the arc Method

Parameter Type Explanation

x Number The x coordinate of the desired center.

y Number The y coordinate of the desired center.

radius Number The radius of the arc, in pixels.

startAngle Number The start angle in radians.

endAngle Number The end angle in radians.

opt_isAnticlockwise Boolean If true the arc will be drawn anticlockwise. Optional; if not provided
the default is false.

Table 9-5.  Parameters for the quadraticCurveTo Method

Parameter Type Explanation

cplx Number The x coordinate of the control point.

cply Number The y coordinate of the control point.

x Number The x coordinate of the end of the curve.

y Number The y coordinate of the end of the curve.

Example

var myCanvas = document.getElementById('myCanvas');
var myContext = myCanvas.getContext('2d');
 
myContext.quadraticCurveTo(50, 50, 10, 10);

Chapter 9 ■ Canvas Reference

316

The bezierCurveTo Method
Draws a bezier curve starting at the current pen location and ending at the coordinates (x, y), with control
point 1 specified by (cp1x, cp1y) and control point 2 specified by (cp2x, cp2y).

Syntax

Context.bezierCurveTo(cp1x, cp1y, cp2x, cp2y, x, y);

Table 9-6.  Parameters for the bezierCurveTo Method

Parameter Type Explanation

cp1x Number The x coordinate of control point 1.

cp1y Number The y coordinate of control point 1.

cp2x Number The x coordinate of control point 2.

cp2y Number The y coordinate of control point 2.

x Number The x coordinate of the end point.

y Number The y coordinate of the end point.

Table 9-7.  Parameters for the rect Method

Parameter Type Explanation

x Number The x coordinate of the upper left corner.

y Number The y coordinate of the upper left corner.

width Number The width of the rectangle, in pixels.

height Number The height of the rectangle, in pixels.

Example

var myCanvas = document.getElementById('myCanvas');
var myContext = myCanvas.getContext('2d');
 
myContext.bezierCurveTo(50, 50, 10, 10);

The rect Method
This comand draws a rectangle starting at coordinates (x, y) with the width and height specified.

Syntax

Context.rect(x, y, width, height);

Chapter 9 ■ Canvas Reference

317

Example

var myCanvas = document.getElementById('myCanvas');
var myContext = myCanvas.getContext('2d');
 
myContext.rect(50, 50, 10, 10);

Stroking and Filling Paths
As mentioned, the basic drawing commands create paths on the canvas that aren’t visible. To make paths
visible, you have to use the commands for stroking or filling. The 2d drawing context also provides a set of
properties for defining the styles of strokes and fills.

The strokeStyle Property
This property specifies the style that should be applied in subsequent calls to the stroke method. This
property can take any valid CSS color string (e.g., 'red', '#ff0000', 'rgb(255, 0, 0)', etc.), a Gradient
object, or a Pattern object. (See hereafter for how to define Gradient and Pattern objects.)

Syntax

Context.strokeStyle = StrokeStyleValue;

Example

var myCanvas = document.getElementById('myCanvas');
var myContext = myCanvas.getContext('2d');
 
myContext.strokeStyle = '#FF0000';

The stroke Method
This command strokes the current path with the currently set stroke style.

Syntax

Context.stroke();

Example

var myCanvas = document.getElementById('myCanvas');
var myContext = myCanvas.getContext('2d');
 
myContext.strokeStyle = '#FF0000';
myContext.strokePath();

Chapter 9 ■ Canvas Reference

318

The fillStyle Property
This property specifies the style that should be applied in subsequent calls to the fill method. The property
can take any valid CSS color string (e.g., 'red', '#ff0000', 'rgb(255, 0, 0)', etc.), a Gradient object, or a
Pattern object. (See hereafter for how to define Gradient and Pattern objects.)

Syntax

Context.fillStyle = FillStyleValue;

Example

var myCanvas = document.getElementById('myCanvas');
var myContext = myCanvas.getContext('2d');
 
myContext.fillStyle = '#FF0000';

The fill Method
This command fills the current path with the currently set fill style.

Syntax

Context.fill();

Example

var myCanvas = document.getElementById('myCanvas');
var myContext = myCanvas.getContext('2d');
 
myContext.fillStyle = '#FF0000';
myContext.fillPath();

The lineWidth Property
This property defines the thickness in units of the stroke applied to paths. If not set this property defaults to 1.

Syntax

Context.lineWidth = Number;

Table 9-8.  Values for the lineCap Property

Value Explanation

butt The line ends are squared off and end precisely at the specified endpoint. This is the default
value.

round The line ends are rounded and end slightly over the specified endpoint.

square The line ends are squared by adding a box to the end of the line whose width is equal to the
width of the line and whose height is half of the width of the line.

Chapter 9 ■ Canvas Reference

319

Example

var myCanvas = document.getElementById('myCanvas');
var myContext = myCanvas.getContext('2d');
 
myContext.lineWidth = 2;

The lineCap Property
This property defines how lines are capped. Valid values are 'butt', 'round', or 'square'.

Syntax

Context.lineCap = LineCapValue;

Table 9-9.  Values for the lineJoin Property

Value Explanation

bevel The joints are beveled.

miter The joints are mitered.

round The joints are rounded.

Example

var myCanvas = document.getElementById('myCanvas');
var myContext = myCanvas.getContext('2d');
 
myContext.lineCap = 'round';

The lineJoin Property
This property defines how connecting lines are joined together. Valid values are 'bevel', 'miter', or
'round'.

Syntax

Context.lineJoin = LineCapValue;

Example

var myCanvas = document.getElementById('myCanvas');
var myContext = myCanvas.getContext('2d');
 
myContext.lineJoin = 'round';

Listing 9-3 provides an example of using the basic drawing commands and fill and stroke commands to
create functions that will easily draw circles.

Chapter 9 ■ Canvas Reference

320

Listing 9-3.  Circles Yay

<!DOCTYPE html>
<html>
 <head>
 <title>The HTML5 Programmer's Reference</title>
 <style>
canvas {
 border: 1px solid #000;
}
 </style>
 </head>
 <body>
 <canvas id="myCanvas" width="200" height="200">Did You Know: Every time
 you use a browser that doesn't support HTML5, somewhere a kitten
 cries. Be nice to kittens, upgrade your browser!
 </canvas>
 <script>
// Get the context we will be using for drawing.
var myCanvas = document.getElementById('myCanvas');
var myContext = myCanvas.getContext('2d');
 
/**
 * Draws a circle of the specified dimensions at the target coordinates and
 * fills it with the current fill style.
 * @param {number} x The x coordinate of the center of the circle.
 * @param {number} y The y coordinate of the center of the circle.
 * @param {number} radius The radius of the circle.
 */
function fillCircle(x, y, radius) {
 myContext.beginPath();
 myContext.arc(x, y, radius, 0, 6.3);
 myContext.fill();
 myContext.closePath();
}
 
/**
 * Draws a circle of the specified dimensions at the target coordinates and
 * strokes it with the current stroke style.
 * @param {number} x The x coordinate of the center of the circle.
 * @param {number} y The y coordinate of the center of the circle.
 * @param {number} radius The radius of the circle.
 */
function strokeCircle(x, y, radius) {
 myContext.beginPath();
 myContext.arc(x, y, radius, 0, 6.3);
 myContext.stroke();
 myContext.closePath();
}
 

Chapter 9 ■ Canvas Reference

321

// Set a fill style and draw a filled circle.
myContext.fillStyle = 'rgb(0, 0, 0)';
fillCircle(65, 65, 50);
 
// Set a stroke style and draw a stroked circle.
myContext.strokeStyle = 'rgb(0, 0, 0)';
myContext.lineWidth = 2;
strokeCircle(135, 135, 50);
 </script>
 </body>
</html>

Drawing Rectangles
In addition to basic paths, the 2d drawing context has a few functions for drawing simple rectangles. You
could draw these with the basic path commands, but these convenience methods make it easier.

The fillRect Method
This command draws a rectangle at the specified coordinates and with the specified width and height, filled
with the current fill style.

Syntax

Context. fillRect(x, y, width, height);

Table 9-10.  Parameters for the fillRect Method

Parameter Type Explanation

x Number The x coordinate of the upper left corner.

y Number The y coordinate of the upper left corner.

width Number The width of the rectangle in pixels.

height Number The height of the rectangle in pixels.

Example

var myCanvas = document.getElementById('myCanvas');
var myContext = myCanvas.getContext('2d');
 
myContext.fillStyle = '#000000';
myContext.fillRect(50, 50, 10, 10);

Chapter 9 ■ Canvas Reference

322

The strokeRect Method
This command draws a rectangle at the specified coordinates and with the specified width and height
stroked with the current stroke style.

Syntax

Context. strokeRect(x, y, width, height);

Table 9-11.  Parameters for the strokeRect Method

Parameter Type Explanation

x Number The x coordinate of the upper left corner.

y Number The y coordinate of the upper left corner.

width Number The width of the rectangle in pixels.

height Number The height of the rectangle in pixels.

Example

var myCanvas = document.getElementById('myCanvas');
var myContext = myCanvas.getContext('2d');
 
myContext.strokeStyle = '#000000';
myContext.strokeRect(50, 50, 10, 10);

The clearRect Method
This command clears the specified rectangular area of any other drawing.

Syntax

Context. clearRect(x, y, width, height);

Table 9-12.  Parameters for the clearRect Method

Parameter Type Explanation

x Number The x coordinate of the upper left corner.

y Number The y coordinate of the upper left corner.

width Number The width of the rectangle in pixels.

height Number The height of the rectangle in pixels.

Chapter 9 ■ Canvas Reference

323

Example

var myCanvas = document.getElementById('myCanvas');
var myContext = myCanvas.getContext('2d');
 
myContext.clearRect(50, 50, 10, 10);

Listing 9-4 demonstrates drawing rectangles.

Listing 9-4.  Random Rectangles

<!DOCTYPE html>
<html>
 <head>
 <title>The HTML5 Programmer's Reference</title>
 <style>
canvas {
 border: 1px solid #000;
}
 </style>
 </head>
 <body>
 <canvas id="myCanvas" width="200" height="200">Did You Know: Every time
 you use a browser that doesn't support HTML5, somewhere a kitten
 cries. Be nice to kittens, upgrade your browser!
 </canvas>
 <script>
// Get the context we will be using for drawing.
var myCanvas = document.getElementById('myCanvas');
var myContext = myCanvas.getContext('2d');
 
// Create a loop that will draw a random rectangle on the canvas.
var cycles = 10,
 i = 0;
for (i = 0; i < cycles; i++) {
 var randX = getRandomIntegerBetween(0, 150);
 var randY = getRandomIntegerBetween(0, 150);
 var randWidth = getRandomIntegerBetween(10, 100);
 var randHeight = getRandomIntegerBetween(10, 100);
 myContext.beginPath();
 myContext.strokeRect(randX, randY, randWidth, randHeight);
 randStroke();
 myContext.closePath();
}
 
/**
 * Returns a random integer between the specified minimum and maximum values.
 * @param {number} min The lower boundary for the random number.
 * @param {number} max The upper boundary for the random number.
 * @return {number}
 */

Chapter 9 ■ Canvas Reference

324

function getRandomIntegerBetween(min, max) {
 return Math.floor(Math.random() * (max - min + 1)) + min;
}
 
/**
 * Returns a random color formatted as an rgb string.
 * @return {string}
 */
function getRandRGB() {
 var randRed = getRandomIntegerBetween(0, 255);
 var randGreen = getRandomIntegerBetween(0, 255);
 var randBlue = getRandomIntegerBetween(0, 255);
 return 'rgb(' + randRed + ', ' + randGreen + ', ' + randBlue + ')';
}
 
/**
 * Performs a randomized stroke on the current path.
 */
function randStroke() {
 myContext.lineWidth = getRandomIntegerBetween(1, 10);
 myContext.strokeStyle = getRandRGB();
 myContext.stroke();
}
 </script>
 </body>
</html>

Gradients and Patterns
Canvas has great support for gradients and patterns. Both patterns and gradients are represented by objects
returned from construction functions. These objects can then be used as the values for fill or stroke styles.

The createLinearGradient Method
This method creates a linear gradient starting at coordinates (startX, startY) and ending at coordinates
(endX, endY). Returns a Gradient object that can be used as a stroke or fill style.

Syntax

Context.createLinearGradient(startX, startY, endX, endY);

Table 9-13.  Parameters for the createLinearGradient Method

Parameter Type Explanation

startX Number The x coordinate of the start of the gradient.

startY Number The y coordinate of the start of the gradient.

endX Number The x coordinate of the end of the gradient.

endY Number The y coordinate of the end of the gradient.

Chapter 9 ■ Canvas Reference

325

Example

var myCanvas = document.getElementById('myCanvas');
var myContext = myCanvas.getContext('2d');
 
var myGradient = myContext.createLinearGradient(50, 50, 10, 10);

The createRadialGradient Method
This method creates a radial gradient consisting of two circles, the first one centered at (x, y) with radius r,
and the other centered at (x1, y1) with radius r1. Returns a Gradient object that can be used as a stroke or
fill style.

Syntax

Context.createRadialGradient(x, y, r, x1, y1, r1);

Table 9-14.  Parameters for the createRadialGradient Method

Parameter Type Explanation

x Number The x coordinate of the center of the first circle.

y Number The y coordinate of the center of the first circle.

r Number The radius of the first circle.

x1 Number The x coordinate of the center of the second circle.

y1 Number The y coordinate of the center of the second circle.

r1 Number The radius of the second circle.

Example

var myCanvas = document.getElementById('myCanvas');
var myContext = myCanvas.getContext('2d');
 
var myGradient = myContext.createRadialGradient(50, 50, 50, 50, 50, 100);

The addColorStop Method
This command adds a color stop to a Gradient. The position parameter must be between 0 and 1 and
defines the relative position within the gradient of the color stop. The color can be any valid CSS color value.
You can add as many color stops as you want to a particular Gradient.

Syntax

Gradient.addColorStop(position, color);

Chapter 9 ■ Canvas Reference

326

Example

var myCanvas = document.getElementById('myCanvas');
var myContext = myCanvas.getContext('2d');
 
var myGradient = myContext.createRadialGradient(50, 50, 50, 50, 50, 100);
myGradient.addColorStop(0, '#FF0000');
myGradient.addColorStop(1, '#000000');

The createPattern Method
This command creates a Pattern object that can be used as a fill or stroke style. The Image parameter must
be any valid Image (see “Images” section next for details). The repeat parameter specifies how the pattern
image is repeated, and must be one of 'repeat', 'repeat-x', 'repeat-y', or 'no-repeat'.

Syntax

Gradient.createPattern(position, color);

Table 9-15.  Parameters for the lineTo Method

Parameter Type Explanation

position Number The position of the color stop.

color CssColorValue The color of the color stop.

Table 9-16.  Parameters for the createPattern Method

Parameter Type Explanation

image Image The image to use to create the pattern.

repeat string How to repeat the image to create the pattern.

Table 9-17.  Valid Values for the Repeat Parameter

Value Explanation

repeat Tile the image both horizontally and vertically.

repeat-x Repeat the image only horizontally.

repeat-y Repeat the image only vertically.

no-repeat Do not repeat the image at all.

Chapter 9 ■ Canvas Reference

327

Example

var myCanvas = document.getElementById('myCanvas');
var myContext = myCanvas.getContext('2d');
 
var myImage = document.getElementById('myImage');
 
var myPattern = myContext.createPattern(myImage, 'repeat');

Listing 9-5 demonstrates using radial gradients to fill random circles.

Listing 9-5.  Generating and Using Radial Gradients to Fill Shapes

<!DOCTYPE html>
<html>
 <head>
 <title>The HTML5 Programmer's Reference</title>
 <style>
canvas {
 border: 1px solid #000;
}
 </style>
 </head>
 <body>
 <canvas id="myCanvas" width="200" height="200">Did You Know: Every time
 you use a browser that doesn't support HTML5, somewhere a kitten
 cries. Be nice to kittens, upgrade your browser!
 </canvas>
 <script>
// Get the context we will be using for drawing.
var myCanvas = document.getElementById('myCanvas');
var myContext = myCanvas.getContext('2d');
 
/**
 * Draws a circle of the specified dimensions at the target coordinates and
 * fills it with the current fill style.
 * @param {number} x The x coordinate of the center of the circle.
 * @param {number} y The y coordinate of the center of the circle.
 * @param {number} radius The radius of the circle.
 */
function fillCircle(x, y, radius) {
 myContext.beginPath();
 myContext.arc(x, y, radius, 0, 6.3);
 myContext.fill();
 myContext.closePath();
}
 
/**
 * Returns a random integer between the specified minimum and maximum values.
 * @param {number} min The lower boundary for the random number.
 * @param {number} max The upper boundary for the random number.
 * @return {number}
 */

Chapter 9 ■ Canvas Reference

328

function getRandomIntegerBetween(min, max) {
 return Math.floor(Math.random() * (max - min + 1)) + min;
}
 
/**
 * Returns a random color formatted as an rgb string.
 * @return {string}
 */
function getRandRGB() {
 var randRed = getRandomIntegerBetween(0, 255);
 var randGreen = getRandomIntegerBetween(0, 255);
 var randBlue = getRandomIntegerBetween(0, 255);
 return 'rgb(' + randRed + ', ' + randGreen + ', ' + randBlue + ')';
}
 
// Create a loop that will draw a random circle on the canvas.
var cycles = 10,
 i = 0;
for (i = 0; i < cycles; i++) {
 // Get a random set of coordinates for the new circle.
 var randX = getRandomIntegerBetween(50, 150);
 var randY = getRandomIntegerBetween(50, 150);
 // Get a random radius.
 var randRadius = getRandomIntegerBetween(10, 50);
 // Create a gradient object based on the coordinates we just generated.
 var randGrad = myContext.createRadialGradient(randX, randY, 0, randX, randY,
 randRadius);
 // Create some random colors and add them as color stops to the gradient.
 var randColor1 = getRandRGB();
 var randColor2 = getRandRGB();
 randGrad.addColorStop(0, randColor1);
 randGrad.addColorStop(1, randColor2);
 // Set the fill style and draw the circle.
 myContext.fillStyle = randGrad;
 fillCircle(randX, randY, randRadius);
}
 </script>
 </body>
</html>

Images
The 2d drawing context can also load and manipulate images. Valid image sources are an img element,
a video element, or another canvas element. An image source doesn’t have to be rendered as part of
the DOM, so you can dynamically create tags and load content as needed without necessarily having to
attach them to the DOM. Once an image is loaded into a canvas, you can also draw on it with the drawing
commands.

Canvas has one method for drawing images, drawImage, but it can take many different parameters and
thus has multiple capabilities.

Chapter 9 ■ Canvas Reference

329

Drawing an Image
When you provide drawImage with an image source, an x coordinate, and a y coordinate, it will draw the
image at the coordinates.

Syntax

Context.drawImage(image, x, y);

Table 9-18.  Parameters for the drawImage Method When Simply Drawing an Image

Parameter Type Explanation

image CanvasImageSource A valid canvas image source.

x Number The x coordinate of the image.

y Number The y coordinate of the image.

Table 9-19.  Parameters for the drawImage Method When Scaling an Image

Parameter Type Explanation

image CanvasImageSource A valid canvas image source.

x Number The x coordinate of the image.

y Number The y coordinate of the image.

width Number The desired width of the image, in pixels.

Height Number The desired height of the image, in pixels.

Example

var myCanvas = document.getElementById('myCanvas');
var myContext = myCanvas.getContext('2d');
var myImage = document.getElementById('myImage');
 
myContext.drawImage(myImage, 10, 10);

Scaling an Image
When you provide drawImage with an image source, an x coordinate, a y coordinate, a width, and a height,
it will draw the image at the coordinates and scale the image to the specified width and height.

Syntax

Context.drawImage(image, x, y, width, height);

Chapter 9 ■ Canvas Reference

330

Example

var myCanvas = document.getElementById('myCanvas');
var myContext = myCanvas.getContext('2d');
var myImage = document.getElementById('myImage');
 
myContext.drawImage(myImage, 10, 10, 50, 50);

Drawing a Slice of an Image
You can also select a specific area on an image (a “slice”) and draw just that on the canvas.

Syntax

Context.drawImage(image, sliceX, sliceY, sliceWidth, sliceHeight, x, y);

Table 9-20.  Parameters for the drawImage Method When Drawing a Slice of an Image

Parameter Type Explanation

image CanvasImageSource A valid canvas image source.

sliceX Number The x coordinate on the image of the upper left corner of the slice.

sliceY Number The y coordinate of the image of the upper left corner of the slice.

sliceWidth Number The desired width of the slice, in pixels.

sliceHeight Number The desired height of the slice, in pixels.

x Number The x coordinate at which to draw the image slice.

y Number The y coordinate at which to draw the image slice.

Example

var myCanvas = document.getElementById('myCanvas');
var myContext = myCanvas.getContext('2d');
var myImage = document.getElementById('myImage');
 
myContext.drawImage(myImage, 10, 10, 50, 50, 0, 0);

Listing 9-6 demonstrates loading an image into our basic canvas template.

Listing 9-6.  Loading an Image into a canvas Element

<!DOCTYPE html>
<html>
 <head>
 <title>The HTML5 Programmer's Reference</title>
 <style>
canvas {
 border: 1px solid #000;
}
 </style>
 </head>

Chapter 9 ■ Canvas Reference

331

 <body>
 <canvas id="myCanvas" width="200" height="200">Did You Know: Every time
 you use a browser that doesn't support HTML5, somewhere a kitten
 cries. Be nice to kittens, upgrade your browser!
 </canvas>
 <script>
// Get the context we will be using for drawing.
var myCanvas = document.getElementById('myCanvas');
var myContext = myCanvas.getContext('2d');
 
// Create a new image element and fill it with a kitten.
var myImage = new Image();
myImage.src = 'http://lorempixel.com/g/200/200/cats';
 
// We can't do anything until the image has successfully loaded.
myImage.onload = function() {
 myContext.drawImage(myImage, 0, 0);
};
 </script>
 </body>
</html>

Here you’re simply loading a random placeholder image into the canvas at position (0, 0).
Listing 9-7 shows a more complex manipulation of an image.

Listing 9-7.  Manipulating an Image Using Canvas

<!DOCTYPE html>
<html>
 <head>
 <title>The HTML5 Programmer's Reference</title>
 <style>
canvas {
 border: 1px solid #000;
}
 </style>
 </head>
 <body>
 <canvas id="myCanvas" width="200" height="200">Did You Know: Every time
 you use a browser that doesn't support HTML5, somewhere a kitten
 cries. Be nice to kittens, upgrade your browser!
 </canvas>
 <script>
// Get the context we will be using for drawing.
var myCanvas = document.getElementById('myCanvas');
var myContext = myCanvas.getContext('2d');
 
// Create a new image element and fill it with a kitten.
var myImage = new Image();
myImage.src = 'http://lorempixel.com/g/300/300/cats';
 

http://lorempixel.com/g/200/200/cats
http://lorempixel.com/g/300/300/cats

Chapter 9 ■ Canvas Reference

332

// We can't do anything until the image has successfully loaded.
myImage.onload = function() {
 myContext.drawImage(myImage, 25, 25, 150, 150, 0, 0, 150, 50);
};
 </script>
 </body>
</html>

Here you’re loading a 300 × 300 placeholder image, but slicing only a 75 × 75 portion of it starting at
(25, 25). Then you take that slice and render it in the canvas, scaling it to be 150 × 50.

Text
The 2d drawing context can also be used to render text.

The fillText Method
This method fills the specified text on the canvas starting at the specified coordinates with the current fill
style. If the optional maxWidth parameter is specified, and the rendered text would exceed that width, the
browser will attempt to render the text in such a way as to fit it within the specified width (use a condensed
font face if available, use a smaller font size, etc.).

Syntax

Context.fillText(textString, x, y, opt_maxWidth);

Table 9-21.  Parameters for the fillText Method When Scaling an Image

Parameter Type Explanation

textString string A text string.

x Number The x coordinate at which the text should be rendered.

y Number The y coordinate at which the text should be rendered.

opt_maxWidth Number A maximum width, in pixels.

Example

var myCanvas = document.getElementById('myCanvas');
var myContext = myCanvas.getContext('2d');
 
myContext.fillText('Hello world!', 10, 10, 200);

The measureText Method
This method measures the width that would result if the specified text were to be rendered using the current
style. Returns a TextMetrics object that has a width property that contains the value. This provides a way for
you to test how well text will fit in a given area without actually having to render it.

Chapter 9 ■ Canvas Reference

333

Syntax

Context.measureText(textString);

Table 9-22.  Parameters for the measureText Method When Scaling an Image

Parameter Type Explanation

textString string A text string.

Table 9-23.  Parameters for the strokeText Method When Scaling an Image

Parameter Type Explanation

textString string A text string.

x Number The x coordinate at which the text should be rendered.

y Number The y coordinate at which the text should be rendered.

opt_maxWidth Number A maximum width, in pixels.

Example

var myCanvas = document.getElementById('myCanvas');
var myContext = myCanvas.getContext('2d');
 
var textMetric = myContext.measureText('Hello world!');
var calculatedWidth = textMetric.width;

The strokeText Method
This method strokes the specified text on the canvas starting at specified coordinates with the current stroke
style. If the optional maxWidth parameter is specified, and the rendered text would exceed that width, the
browser will attempt to render the text in such a way as to fit it within the specified width (use a condensed
font face if available, use a smaller font size, etc.).

Syntax

Context.strokeText(textString, x, y, opt_maxWidth);

Example

var myCanvas = document.getElementById('myCanvas');
var myContext = myCanvas.getContext('2d');
 
myContext.strokeText('Hello world!', 10, 10, 200);

The font Property
This property defines the font that the text will be rendered in. Any valid CSS font string is permitted, but
note that the user has to have the specified font installed on their system.

Chapter 9 ■ Canvas Reference

334

Syntax

Context.font = CssFontString; 

Example

var myCanvas = document.getElementById('myCanvas');
var myContext = myCanvas.getContext('2d');
 
myContext.font = 'arial, helvetica, sans-serif';

The textAlign Property
This property defines how the text is aligned when it is rendered. Valid values are 'left', 'right', 'center',
'start', and 'end'.

Syntax

Context.textAlign = AlignValue;

Table 9-24.  Values for the textAlign Property

Value Explanation

left Left-align the text.

right Right-align the text.

center Center the text.

start Align the text at the starting side for the current locale (that is, left for left-to-right languages
and right for right-to-left languages). This is the default value.

end Align the text at the ending side for the current locale.

Example

var myCanvas = document.getElementById('myCanvas');
var myContext = myCanvas.getContext('2d');
 
myContext.textAlign = 'center';

The textBaseline Property
This property defines the baseline of the text when it renders. Valid values are 'alphabetic', 'bottom',
'hanging', 'ideographic', 'middle', and 'top'.

Syntax

Context.textAlign = AlignValue;

Chapter 9 ■ Canvas Reference

335

Example

var myCanvas = document.getElementById('myCanvas');
var myContext = myCanvas.getContext('2d');
 
myContext.textAlign = 'center';

Listing 9-8 demonstrates rendering text using the text commands.

Listing 9-8.  Rendering Text in Canvas

<!DOCTYPE html>
<html>
 <head>
 <title>The HTML5 Programmer's Reference</title>
 <style>
canvas {
 border: 1px solid #000;
}
 </style>
 </head>
 <body>
 <canvas id="myCanvas" width="200" height="200">Did You Know: Every time
 you use a browser that doesn't support HTML5, somewhere a kitten
 cries. Be nice to kittens, upgrade your browser!
 </canvas>
 <script>
// Get the context we will be using for drawing.
var myCanvas = document.getElementById('myCanvas');
var myContext = myCanvas.getContext('2d');
 
myContext.font = '35px sans-serif';
myContext.strokeStyle = '#000';
myContext.lineWidth = 2;
myContext.textAlign = 'center';
myContext.strokeText('Hello World', 100, 100);
 </script>
 </body>
</html>

Table 9-25.  Values for the textBaseline Property

Value Explanation

alphabetic Use the normal alphabetic baseline for the text. This is the default value.

bottom The baseline is the bottom of the em square.

hanging Use the hanging baseline for the text.

ideographic Use the bottom of the body of characters (assuming they protrude beneath the
alphabetic baseline).

middle The text baseline is the middle of the em square.

top The text baseline is the top of the em square.

Chapter 9 ■ Canvas Reference

336

Shadows
The canvas element can also cast shadows based on the elements drawn upon it. This is most often used
with text, but it also works with shapes and paths. If you're already familiar with CSS drop shadows, the
parameters for canvas shadows will be very familiar.

The shadowBlur Property
This property defines the size of the blurring effect. Valid values are 0 (no blur, which is the default) or any
positive integer.

Syntax

Context.shadowBlur = ShadowBlurValue;

Example

var myCanvas = document.getElementById('myCanvas');
var myContext = myCanvas.getContext('2d');
 
myContext.shadowBlur = 5;

The shadowColor Property
This property defines the color of the shadow. Any CSS color string is a valid value. The default is
'rgba(0, 0, 0, 0)'.

Syntax

Context.shadowColor = CssColorValue;

Example

var myCanvas = document.getElementById('myCanvas');
var myContext = myCanvas.getContext('2d');
 
myContext.shadowColor = '#00FF00';

The shadowOffsetX Property
This property defines the x-offset of the shadow. Valid values are any positive or negative integer, or 0
(which is the default).

Syntax

Context.shadowOffsetX = OffsetValue;

Chapter 9 ■ Canvas Reference

337

Example

var myCanvas = document.getElementById('myCanvas');
var myContext = myCanvas.getContext('2d');
 
myContext.shadowOffsetX = 5;

The shadowOffsetY Property
This property defines the y-offset of the shadow. Valid values are any positive or negative integer, or 0 (which
is the default).

Syntax

Context.shadowOffsetY = OffsetValue;

Example

var myCanvas = document.getElementById('myCanvas');
var myContext = myCanvas.getContext('2d');
 
myContext.shadowOffsetY = 5;

Listing 9-9 demonstrates creating a drop shadow on text.

Listing 9-9.  Drop Shadows in Canvas

<!DOCTYPE html>
<html>
 <head>
 <title>The HTML5 Programmer's Reference</title>
 <style>
canvas {
 border: 1px solid #000;
}
 </style>
 </head>
 <body>
 <canvas id="myCanvas" width="200" height="200">Did You Know: Every time
 you use a browser that doesn't support HTML5, somewhere a kitten
 cries. Be nice to kittens, upgrade your browser!
 </canvas>
 <script>
// Get the context we will be using for drawing.
var myCanvas = document.getElementById('myCanvas');
var myContext = myCanvas.getContext('2d');
 
// Define a shadow.
myContext.shadowBlur = 2;
myContext.shadowColor = 'rgba(0, 100, 0, 0.5)';
myContext.shadowOffsetX = 5;
myContext.shadowOffsetY = 5;
 

Chapter 9 ■ Canvas Reference

338

myContext.font = '35px sans-serif';
myContext.strokeStyle = '#000';
myContext.lineWidth = 2;
myContext.textAlign = 'center';
myContext.strokeText('Hello World', 100, 100);
 </script>
 </body>
</html>

Compositing
Whenever you draw a new element on the canvas, the compositor looks at what is already present on
the canvas. This current content is referred to as the destination. The new content is referred to as the
source. Then the compositor draws the source in reference to the destination according to the currently
active compositor.

The globalCompositeOperation Property
This property specifies which compositor is currently active.

Syntax

Context.globalCompositeOperation = CompositorValue;

Table 9-26.  Values for the globalCompositeOperation Property

Value Explanation

source-over Draw source content over destination content. This is the default compositor.

source-atop Source content is only drawn where it overlaps the destination content.

source-in Source content is only drawn where both source and destination content overlap.
Everything else is made transparent.

source-out Source content is only drawn where it does not overlap destination content.
Everything else is made transparent.

destination-over Source content is drawn underneath destination content.

destination-atop Source content is only kept where it overlaps the destination content. The
destination content is drawn underneath the source. Everything else is made
transparent.

destination-in Source content is only kept where it overlaps with the destination content.
Everything else is made transparent.

destination-out Source content is only kept where it does not overlap with the destination content.
Everything else is made transparent.

copy Only draws the destination content. Everything else is made transparent.

lighter Where destination content and source content overlap, the color is determined by
adding the values of the two contents.

xor The destination content is rendered normally except where it overlaps with source
content, in which case both are rendered transparent.

Chapter 9 ■ Canvas Reference

339

Example

var myCanvas = document.getElementById('myCanvas');
var myContext = myCanvas.getContext('2d');
 
myContext.globalCompositeOperation = 'source-atop';

Listing 4-16 in Chapter 4 provides a dynamic example of all of these properties.

Clipping
You can limit the drawing area of the canvas to any closed path that you have defined. This is referred to as
clipping.

The clip Method
This command allows you to create a clipping area based on the current path. Only content contained
within the clipping area will display. To reset the clipping area, you can do one of three things:

•	 You can define a path that encompasses the entire canvas, and then clip to that.

•	 You can restore to a previous drawing state with a different clipping area. This is the
most common solution. You can save the drawing state before clipping, then restore
it when you’re done. See the “Saving and Restoring Canvas State” section hereafter
for details on how to save state.

•	 You can reset the entire canvas by resizing it.

Syntax

Context.clip();

Example

var myCanvas = document.getElementById('myCanvas');
var myContext = myCanvas.getContext('2d');
 
myContext.clip();

Listing 9-10 demonstrates creating a clipping area and using it to clip off the corners of a square.

Listing 9-10.  Creating a Clipping Area

<!DOCTYPE html>
<html>
 <head>
 <title>The HTML5 Programmer's Reference</title>
 <style>
canvas {
 border: 1px solid #000;
}
 </style>
 </head>

http://dx.doi.org/10.1007/9781430263678_4

Chapter 9 ■ Canvas Reference

340

 <body>
 <canvas id="myCanvas" width="200" height="200">Did You Know: Every time
 you use a browser that doesn't support HTML5, somewhere a kitten
 cries. Be nice to kittens, upgrade your browser!
 </canvas>
 <script>
// Get the context we will be using for drawing.
var myCanvas = document.getElementById('myCanvas');
var myContext = myCanvas.getContext('2d');
 
// Create a circular clipping area.
myContext.beginPath();
myContext.arc(100, 100, 50, 0, 7);
myContext.clip();
 
// Draw a square in the canvas and fill it. Only the portion within the clipping
// area will be visible, so the corners will be cut off.
myContext.beginPath();
myContext.rect(60, 60, 80, 80);
myContext.fillStyle = 'black';
myContext.fill();
 </script>
 </body>
</html>

Transformations
The 2d drawing context supports various types of transformations. Once a transformation is set it will be
applied to everything that is rendered from that point on.

The translate Method
This method moves the origin of the canvas from its current position to the new position specified by the
coordinates.

Syntax

Context.translate(translateX, translateY);

Table 9-27.  Parameters for the translate Method When Scaling an Image

Parameter Type Explanation

translateX Number The new x coordinate of the origin.

translateY Number The new y coordinate of the origin.

Chapter 9 ■ Canvas Reference

341

Example

var myCanvas = document.getElementById('myCanvas');
var myContext = myCanvas.getContext('2d');
 
myContext.translate(10, 50);

The rotate Method
This method rotates the canvas clockwise around the origin by the specified angle in radians.

Syntax

Context.rotate(angle);

Table 9-28.  Parameters for the translate Method When Scaling an Image

Parameter Type Explanation

angle Number The angle of the rotation, in radians.

Table 9-29.  Parameters for the scale Method When Scaling an Image

Parameter Type Explanation

scaleX Number The amount to scale the x axis.

scaleY Number The amount to scale the y axis.

Example

var myCanvas = document.getElementById('myCanvas');
var myContext = myCanvas.getContext('2d');
 
myContext.rotate(2);

The scale Method
This method scales the canvas units by scaleX horizontally and scaleY vertically.

Syntax

Context.scale(scaleX, scaleY);

Example

var myCanvas = document.getElementById('myCanvas');
var myContext = myCanvas.getContext('2d');
 
myContext.translate(10, 50);

Chapter 9 ■ Canvas Reference

342

The transform Method
This method allows you to specify a generic transformation matrix:

scaleX skewY translateX

scaleX skewY translateX

0 0 1

é

ë

ê
ê
ê

ù

û

ú
ú
ú
×

The rotate, translate, and scale shorthand methods all map to transformation matrices and thus
calls to the transform method. For example, Context.translate(translateX, translateY) maps to
Context.transform(1, 0, 0, 1, translateX, translateY) and Context.scale(scaleX, scaleY) maps
to Context.transform(scaleX, 0, 0, scaleY, 0, 0).

Syntax

Context.transform(scaleX, skewX, skewY, scaleY, translateX, translateY);

Table 9-30.  Parameters for the bezierCurveTo Method

Parameter Type Explanation

scaleX Number The amount to scale the x axis.

skewX Number The amount to skew the x axis.

skewY Number The amount to skew the y axis.

scaleY Number The amount to scale the y axis.

translateX Number The x coordinate of the new origin.

translateY Number The y coordinate of the new origin.

Example

var myCanvas = document.getElementById('myCanvas');
var myContext = myCanvas.getContext('2d');
 
// Reset all transformations.
myContext.transform(0, 0, 0, 0, 0, 0);

Listing 9-11 demonstrates using the scale and translate transforms.

Listing 9-11.  Using the scale and translate Transforms

<!DOCTYPE html>
<html>
 <head>
 <title>The HTML5 Programmer's Reference</title>
 <style>
canvas {
 border: 1px solid #000;
}
 </style>
 </head>

Chapter 9 ■ Canvas Reference

343

 <body>
 <canvas id="myCanvas" width="200" height="200">Did You Know: Every time
 you use a browser that doesn't support HTML5, somewhere a kitten
 cries. Be nice to kittens, upgrade your browser!
 </canvas>
 <script>
// Get the context we will be using for drawing.
var myCanvas = document.getElementById('myCanvas');
var myContext = myCanvas.getContext('2d');
 
/**
 * Draws a 100x100 square at (0, 0) in the specified color. Indicates the origin
 * corner with a small black square.
 * @param {string} color A valid CSS color string.
 */
function drawSquare(color) {
 myContext.fillStyle = color;
 myContext.beginPath();
 myContext.rect(0, 0, 100, 100);
 myContext.fill();
 myContext.fillStyle = '#000';
 myContext.beginPath();
 myContext.rect(0, 0, 5, 5);
 myContext.fill();
}
 
// Draw a square, fill it with red.
drawSquare('rgba(255, 0, 0, 0.5)');
 
// Translate the canvas.
myContext.translate(20, 40);
 
// Scale the canvas.
myContext.scale(1, 1.5);
 
// Draw the same square again, fill it with blue.
drawSquare('rgba(0, 0, 255, 0.5)');
 
// Translate the canvas again.
myContext.translate(50, -20);
 
// Scale the canvas again.
myContext.scale(1.5, 1);
 
// Draw the same square again, fill it with green.
drawSquare('rgba(0, 255, 0, 0.5)');
 </script>
 </body>
</html>

Chapter 9 ■ Canvas Reference

344

Saving and Restoring Canvas State
The 2d drawing context includes a basic state management system. A given state is made up of the following
properties in the context:

•	 The current value for globalAlpha

•	 The current strokeStyle and fillStyle

•	 The current line settings in lineCap, lineJoin, lineWidth, and miterLimit

•	 The current shadow settings in shadowBlur, shadowColor, shadowOffsetX, and
shadowOffsetY

•	 The current compositing operation set in globalCompositeOperation

•	 The current clipping path

•	 Any transformations that have been applied to the drawing context

State is saved in a last-in first-out stack, so the last state you saved will be the first one available for
retrieving. There is no way to skip around in the stack.

The save Method
This command saves the current context to the stack.

Syntax

Context.save();

Example

var myCanvas = document.getElementById('myCanvas');
var myContext = myCanvas.getContext('2d');
 
// Saves an initial "blank" canvas state before anything has been drawn or set.
myContext.save();

The restore Method
This command removes the most recently stored state from the stack and restores it to the context.

Syntax

Context.restore();

Example

var myCanvas = document.getElementById('myCanvas');
var myContext = myCanvas.getContext('2d');
 
// Saves an initial "blank" canvas state before anything has been drawn or set.
myContext.restore();

Chapter 9 ■ Canvas Reference

345

Listing 9-12 demonstrates saving and restoring state.

Listing 9-12.  Saving and Restoring Drawing Context State

<!DOCTYPE html>
<html>
 <head>
 <title>The HTML5 Programmer's Reference</title>
 <style>
canvas {
 border: 1px solid #000;
}
 </style>
 </head>
 <body>
 <canvas id="myCanvas" width="200" height="210">Did You Know: Every time
 you use a browser that doesn't support HTML5, somewhere a kitten
 cries. Be nice to kittens, upgrade your browser!
 </canvas>
 <script>
// Get the context we will be using for drawing.
var myCanvas = document.getElementById('myCanvas');
var myContext = myCanvas.getContext('2d');
 
// Create an array of colors to load into the stack.
var allTheColors = ['#ff0000', '#ff8800', '#ffff00', '#00ff00', '#0000ff',
 '#4b0082', '#8f00ff'];
 
// Load the colors and stroke style into the stack.
for (var i = 0; i < allTheColors.length; i++) {
 myContext.strokeStyle = allTheColors[i];
 myContext.lineWidth = 30;
 myContext.save();
}
 
// Restore colors from the stack and draw.
for (var i = 0; i < 8; i++) {
 myContext.restore();
 myContext.beginPath();
 myContext.moveTo(0, ((30 * i) + 15));
 myContext.lineTo(200, ((30 * i) + 15));
 myContext.stroke();
}
 </script>
 </body>
</html>

347

Appendix A

JavaScript Tips and Techniques

JavaScript is the de facto programming language of the Web, and is the primary tool you’ll be using to
interact with the HTML5 features covered in this book. In this chapter I’ll cover a few tips on organizing the
JavaScript for your applications, and some more powerful techniques you can use to simplify your scripts.
This brief chapter isn’t meant to be a full JavaScript reference—for that, you can consult other Apress titles,
such as JavaScript Programmer’s Reference.

Code Formatting
Generally speaking, I avoid holy wars about code formatting styles such as bracketing and indentation.
Usually the individual choices don’t matter because what is more important is consistency throughout
your code. You should always use the same bracketing style, comment style, indentation choice, and so on
because it will help keep your code readable. Even if you’re the only one who will ever look at your code, it’s
still important.

With JavaScript, however, these choices can matter. Bracket placement, for example, matters in certain
cases in JavaScript. Consider this code snippet:

function test1tbs() {
 return {
 objectLiteral: 'value',
 isExpected: true
 };
}

This example follows the so-called One True Brace Style (occasionally abbreviated as 1TBS), in which
the opening bracket of a function definition (and an object literal) is on the same line as its declaration. This
is the style I’ve used in the examples throughout the book. However, the same example could be written
using Allman-style bracket placement:

function testAllman()
{
 return
 {
 objectLiteral: 'value',
 isExpected: false
 };
}

Appendix A ■ JavaScript Tips and Techniques

348

These two functions will have vastly different results. The test1tbs function will return the object
literal that is defined inline as part of the return statement, while code containing the testAllman function
won’t even run (the JavaScript engine will throw an error). In other languages these two functions would be
identical.

In addition, the ECMAScript standard that governs the behavior of JavaScript also defines rules about
how missing semicolons should be interpreted. This is called Automatic Semicolon Insertion (ASI) and is a
feature of the language, but it can occasionally lead to surprising results. This is why the de facto bracketing
style in JavaScript code is the 1TBS style and not the more spacious Allman style.

JavaScript Rewards Verbosity
As you’ve read the examples throughout this book, you’ve probably noticed that the code style is fairly
verbose. There are expansive comments, variable and function names tend to be long and descriptive, and
so forth. This is partially because the code samples are designed to be easy to read and understand, but
overall this level of verbosity isn’t that much higher than the code I write on a daily basis.

JavaScript has several convenience features such as ASI, type coercion (which comes into play when
you compare two variables of different types), and so forth. Sometimes these features can cause surprising
results. Verbose code helps avoid these surprises by reminding you what your variables and functions are
supposed to be doing, and by providing documentation of logical flow and expected behaviors. It also
makes debugging easier, and if you’re collaborating with other people it will help them learn your code more
quickly.

Comment Annotations
Also, in the book’s examples I’ve been annotating code using a specific comment format. If you’re familiar
with either JSDoc or JavaDoc, these comments will look familiar, because the format is derived from JSDoc.
If you’re not familiar with JSDoc, it’s a standard for comments in JavaScript code that not only provides a
great way of explaining the code, but also allows you to use parsing tools to generate actual documentation
from the comments. In the examples, I haven’t been using the full capabilities of JSDoc—I’ve just been
focusing on providing type annotations. If you’re familiar with annotating code for the Closure JavaScript
compiler, these comments will be quite familiar.

■■ Tip T o learn more about annotating code for the Closure compiler, and using the Closure compiler in your
projects, see https://developers.google.com/closure/compiler/docs/js-for-compiler. You can learn
more about JSDoc and automatic documentation generators at www.usejsdoc.org/.

For every function, the comments specify the following:

•	 A description of what the function is supposed to do.

•	 The expected data type of each parameter for the function (if any).

•	 The data type of the return value (if any).

•	 Whether or not the function is meant to be private (only applicable for members of a
class).

https://developers.google.com/closure/compiler/docs/js-for-compiler
http://www.usejsdoc.org/

Appendix A ■ JavaScript Tips and Techniques

349

For example, consider this function from Chapter 4:

/**
 * Returns a random integer between the specified minimum and maximum values.
 * @param {number} min The lower boundary for the random number.
 * @param {number} max The upper boundary for the random number.
 * @return {number}
 */
function getRandomIntegerBetween(min, max) {
 return Math.floor(Math.random() * (max - min + 1)) + min;
}

You may be wondering what the value is of defining a parameter’s expected type in a dynamically
typed language like JavaScript. Obviously you can pass in any values you want and the JavaScript engine
will coerce the values as best it can, which could possibly cause the function to return an unexpected result.
By defining expected data types in the function definition, you not only indicate what the function needs in
order to avoid unexpected results—you also make it easier to use the function later after you have forgotten
the details yourself. Further, if you’re collaborating with a team, you make it easier for them to use the
function. In the particular case of this book, my intention is that the type annotations will help make the
examples easier to understand.

JavaScript doesn’t directly support the concept of public or private properties or methods. Specifying the
@private tag on a property or method helps define class structures in a more traditional way and can make
JavaScript code a little more palatable to people used to languages with more rigorous encapsulation features.
I also find it helpful to keep in mind what interfaces I intend to be public or private, because if I then find
myself needing to change those decisions it often indicates that the underlying class structure needs revision.

In this book I’ve used these tags:

•	 @private: Indicates that the property or method is considered private to its context.
Typically this isn’t enforced in any way and only helps clarify intent.

•	 @constructor: Indicates that the function is a JavaScript constructor, which will
instantiate and return the specified object type when used in conjunction with the
new keyword.

•	 @param: Indicates a parameter for a function or method. A @param definition will
include a type definition in brackets, the name of the parameter as used throughout
the function, and an optional description of what the parameter is. Optional
parameters are indicated with the Optional operator (see hereafter for details).

•	 @return: Indicates that the function returns a value. A @return tag will include a type
definition in brackets, indicating the data type of the return value.

•	 @type: Indicates the type of a variable or property as it is being defined.

Type definitions are an important part of the annotations. All type definitions are enclosed in curly
brackets. Since JavaScript is dynamically typed, type annotations can specify multiple data types, with each
data type separated by a vertical slash. For example:

{boolean}

specifies a boolean type, while

{boolean|number}

specifies that the type can be either a boolean or a number.

http://dx.doi.org/10.1007/9781430263678_4

Appendix A ■ JavaScript Tips and Techniques

350

Compound types are specified using angular brackets. For example:

{Array<boolean>}

specifies that the type is an array of booleans, while

{Object<string, number>}

specifies that the object has keys that are strings and the associated values are numbers.
There are also a few operators used in type definitions:

•	 Nullable: The ? operator indicates that the type can be the specified data type or
null. Thus {?Object} is the equivalent of {Object|null}. I haven’t used the nullable
operator in the examples in this book; instead I’ve made the assumption that all
types are nullable by default unless specified otherwise using the non-nullable
operator.

•	 Non-nullable: The ! operator indicates that the type cannot be null. For example,
{!Array<!string>} specifies that the type must be an array of strings. An empty
array, or an array of other types, is not permitted.

•	 Optional: The = operator used in a @param type definition indicates that the
parameter is optional. I amplify this by prepending the prefix opt_ to the name of all
optional parameters. For example, @param {boolean=} opt_isActive specifies that
the parameter opt_isActive is optional, but if it is present it must be a boolean
(or null).

Using Objects as Event Handlers
One of my favorite little-known features of the DOM is the EventListener interface. We all know how to
attach an event listener to a DOM element using Element.addEventListener method, which takes three
parameters:

•	 eventType: a string that indicates the type of event

•	 handler: a function to execute when the event happens

•	 bubble: whether or not to execute the function during the bubble phase

What’s little known is that the DOM specifies you can use any object as the handler, as long as it
implements the EventListener interface. According to the DOM Level 2 standard:

The EventListener interface is the primary method for handling events. Users implement
the EventListener interface and register their listener on an EventTarget using the
AddEventListener method. The users should also remove their EventListener from its
EventTarget after they have completed using the listener.

An EventListener interface is defined as a method called handleEvent on any object:

interface EventListener {
 void handleEvent(in Event evt);
};

Appendix A ■ JavaScript Tips and Techniques

351

This means that any object that implements a handleEvent method can be used as an event handler,
as demonstrated in Listing A-1.

Listing A-1.  Using an Object As an Event Handler

<!DOCTYPE html>
<html>
 <head>
 <title>The HTML5 Programmer's Reference</title>
 </head>
 <body>
 <p id="targetElement">Click me!</p>
 <script>
var targetElement = document.getElementById('targetElement');
 
var eventObject = {
 handleEvent: function(event) {
 console.log(event.type);
 }
};
 
targetElement.addEventListener('click', eventObject, true);
 </script>
 </body>
</html>

In this example you’ve created a simple eventObject that implements the EventListener interface in
the form of a method called handleEvent. You then bind it to the target element’s click event, and when you
click on the “click me” text you will see “click” appear in the console.

This technique is useful for encapsulating event handlers in objects and classes, rather than having
them as separate functions. You can even create a single event handler object that has multiple event
handlers on it, and use the EventListener interface to delegate activity as needed. For example, recall the
WebSockets example (Listing A-7) in Chapter 3, which had separate functions for handling error, close,
open, and message events, all bound to the WebSocket interface. You could easily create all of those event
handlers as methods on a single object, as shown in Listing A-2.

Listing A-2.  Rewriting Listing A-7 to use a Generic EventListener Interface

<!DOCTYPE HTML>
<html>
 <head>
 <title>The HTML5 Programmer's Reference</title>
 </head>
 <body>
 <h1>Web Sockets Demonstration</h1>
 <script>
// Create a new web socket connection to the chat service.
var chatUrl = 'ws://www.fgjkjk4994sdjk.com/chat';
var validProtocols = ['chat', 'json'];
var chatSocket = new WebSocket(chatUrl, validProtocols);
 

http://dx.doi.org/10.1007/9781430263678_3
http://www.fgjkjk4994sdjk.com/chat

Appendix A ■ JavaScript Tips and Techniques

352

/**
 * Creates an error handling class that implements the EventListener interface.
 * @constructor
 * @returns {Object}
 */
function CreateWebSocketEventObject() {
 /**
 * Handles an error event on the chat socket object.
 * @private
 */
 this.handleError_ = function() {
 console.log('An error occurred on the chat connection.');
 };
 
 /**
 * Handles a close event on the chat socket object.
 * @param {CloseEvent} event The close event object.
 * @private
 */
 this.handleClose_ = function(event) {
 console.log('The chat connection was closed because ', event.reason);
 };
  
 /**
 * Handles an open event on the chat socket object.
 * @param {OpenEvent} event The open event object.
 * @private
 */
 this.handleOpen_ = function(event) {
 console.log('The chat connection is open.');
 };
  
 /**
 * Handles a message event on the chat socket object.
 * @param {MessageEvent} event The message event object.
 * @private
 */
 this.handleMessage_ = function(event) {
 console.log('A message event has been sent.');
  
 // The event object contains the data that was transmitted from the server.
 // That data is encoded either using the chat protocol or the json protocol,
 // so we need to deterine which protocol is being used.
 if (chatSocket.protocol === validProtocols[0]) {
 console.log('The chat protocol is active.');
 console.log('The data the server transmitted is: ', event.data);

Appendix A ■ JavaScript Tips and Techniques

353

 // etc...
 } else {
 console.log('The json protocol is active.');
 console.log('The data the server transmitted is: ', event.data);
 // etc...
 }
 };
 
 /**
 * Implements the EventListener interface for the object and invokes the
 * correct handler based on the event type.
 * @param {SocketEvent} event
 */
 this.handleEvent = function(event) {
 switch (event.type) {
 case 'error':
 this.handleError_();
 break;
 case 'close':
 this.handleClose_(event);
 break;
 case 'open':
 this.handleOpen_(event);
 break;
 case 'message':
 this.handleMessage_(event);
 break;
 default:
 console.warn('Unknown event of type ', event.type);
 }
 };
}
 
// Create a new event object using the constructor.
var eventHandlerObject = new CreateWebSocketEventObject();
 
// Bind the event object to the chat socket.
chatSocket.addEventListener('error', eventHandlerObject);
chatSocket.addEventListener('close', eventHandlerObject);
chatSocket.addEventListener('open', eventHandlerObject);
chatSocket.addEventListener('message', eventHandlerObject);
 </script>
 </body>
</html>

In this version of the example you have built a constructor function that returns an object that
implements the EventListener interface. Within that interface method it checks the incoming event’s type
property and invokes the correct handler method. This gives you better encapsulation of the event handlers,
and opens up the possibility of easily opening multiple Web Sockets and using the same constructor to build
event handlers for all of them.

Appendix A ■ JavaScript Tips and Techniques

354

Promises
Asynchronous activities are quite common in JavaScript applications, and the standard way of handling
them is with callback functions. As an example, consider the dynamic script loading that you were doing
in Chapter 6. Listing A-13 had a function that dynamically loaded a specified script and executed either a
success or error callback function depending on the result:

/**
 * Dynamically loads a script and invokes an optional callback.
 * @param {string} srcUrl The URL of the script file to load.
 * @param {function=} opt_onLoadCallback An optional function to call when the
 * script is loaded.
 * @param {function=} opt_onErrorCallback An optional function to call if the
 * script fails to load.
 */
function loadScript(srcUrl, opt_onLoadCallback, opt_onErrorCallback) {
 
 // Create a script tag.
 var newScript = document.createElement('script');
 
 // Apply the load callback, if one was provided.
 if (opt_onLoadCallback) {
 if (newScript.readyState) {
 // Internet explorer.
 newScript.onreadystatechange = function() {
 if (newScript.readyState == 'loaded' ||
 newScript.readyState == 'complete') {
 newScript.onreadystatechange = null;
 opt_onLoadCallback.call();
 }
 };
 } else {
 // Every other browser in the universe.
 newScript.onload = opt_onLoadCallback;
 }
 }
 
 // Apply the error callback, if one was provided.
 if (opt_onErrorCallback) {
 newScript.onerror = opt_onErrorCallback;
 }
 
 newScript.src = srcUrl;
 document.querySelector('head').appendChild(newScript);
}

This function takes three parameters: the URL of the script it needs to load, and the success and error
callback functions.

The problem with using callbacks is that they result in convoluted code. And if you have nested
callbacks—for example, if the success callback function also executes another asynchronous task—the
callbacks can become difficult to manage and the code difficult to read.

http://dx.doi.org/10.1007/9781430263678_6

Appendix A ■ JavaScript Tips and Techniques

355

Promises provide a different way of handling asynchronous actions in JavaScript code. A Promise is an
object that represents the result of an asynchronous action. The actual result (success or failure) doesn’t
need to be known at the time that the Promise is created; instead the asynchronous action will return a
Promise object like any other synchronous action. This allows you to simplify your asynchronous code and
reduce or even eliminate your need for nested callbacks.

A Promise object is in one of four states:

•	 fulfilled: The asynchronous action that the Promise represents has finished and was
successful.

•	 rejected: The asynchronous action that the Promise represents has finished but
resulted in an error.

•	 pending: This is the initial state of the Promise when it is created. A Promise in the
pending state is neither fulfilled nor rejected.

•	 settled: The Promise is no longer pending and has either fulfilled or rejected.

Once a Promise has entered a fulfilled or rejected state it cannot change, so a fulfilled promise can never
later become rejected and vice versa.

A Promise is created using the Promise constructor:

var myPromise = new Promise(executor)

The executor is a function with two parameters: resolve and reject. When you create the new
Promise, these resolve and reject parameters will be placeholders for functions you’ll be specifying later.
Typically they’re functions that you will be calling as the asynchronous action succeeds or fails.

A Promise object exposes an API for accessing the state of the asynchronous action and anything it
might return.

•	 Promise.then(resolve, reject): The then method enables you to specify the
resolve and reject functions that will be called when the Promise is settled.

•	 Promise.catch(reject): The catch method allows you to specify just the reject
function that will be called when the promise is rejected.

To demonstrate creating a basic Promise and then assigning resolve and reject handlers, Listing A-3
shows Listing A-13 rewritten to use a Promise.

Listing A-3.  Using a Promise to Represent Dynamically Loading a Script

<!DOCTYPE html>
<html>
 <head>
 <title>The HTML5 Programmer's Reference</title>
 </head>
 <body>
 <script src="../js-lib/detect-support.js"></script>
 <script>
/**
 * Dynamically loads a script and invokes an optional callback.
 * @param {string} srcUrl The URL of the script file to load.
 * @return {Promise<null>}
 */
function loadScript(srcUrl) {
 var myPromise = new Promise(function(resolve, reject) {
 var newScript = document.createElement('script');

Appendix A ■ JavaScript Tips and Techniques

356

 if (newScript.readyState) {
 // Internet explorer.
 newScript.onreadystatechange = function() {
 if (newScript.readyState == 'loaded' ||
 newScript.readyState == 'complete') {
 newScript.onreadystatechange = null;
 resolve();
 }
 };
 } else {
 // Every other browser in the universe.
 newScript.onload = resolve;
 }
 newScript.onError = reject;
 newScript.src = srcUrl;
 document.querySelector('head').appendChild(newScript);
 });
 return myPromise;
}
 
// Test for supported features.
var supportedFeatures = new DetectHTML5Support();
 
if (!supportedFeatures.localStorage) {
 // The Web Storage is not supported, so load a shim. The loadScript function
 // now returns a Promise.
 loadScript('../js-lib/webstorage-shim.js').then(function() {
 initApplication();
 }, function() {
 console.log('Script failed to load.');
 });
} else {
 // Web Storage was supported, so continue with the application.
 initApplication();
}
 
/**
 * Hypothetical function for initializing the application.
 */
function initApplication() {
 console.log('Application continues...');
 // Etc.
}
 </script>
 </body>
</html>

You’ll notice that the loadScript function now constructs and returns a Promise using placeholders for
the resolve and reject functions that will be specified later. When the function is called, the code applies
the resolve and reject functions using the Promise.then method.

Appendix A ■ JavaScript Tips and Techniques

357

Chaining Promises
Promises provide a lot of flexibility for dealing with situations involving multiple asynchronous actions.
For example, if you return a Promise from the Promise.then method, you can chain Promises together. To
illustrate this, you can use the loadScript function to load three different scripts one after the other. Since
the loadScript function returns a Promise, you can simply chain the calls to Promise.then together. To do
that you’ll need to start the chain with an empty Promise that will always succeed:

var promiseChain = Promise.resolve();
promiseChain.then(function() {
 return loadScript('script1.js');
}).then(function() {
 return loadScript('script2.js');
}).then(function() {
 return loadScript('script3.js');
}).catch(function() {
 console.log('An error occurred when loading the scripts.');
});

If you use the feature registry pattern mentioned in the “Working with Broken or Missing HTML5
Implementations” section of Chapter 6, you can reduce this even further to a simple for loop. Listing A-4
demonstrates using this technique to rewrite Listing A-14.

Listing A-4.  Chaining Promises to Load Multiple Shims in Sequence

<!DOCTYPE html>
<html>
 <head>
 <title>The HTML5 Programmer's Reference</title>
 </head>
 <body>
 <script src="../js-lib/detect-support.js"></script>
 <script>
// Create a registry of HTML features that we need and shims to apply if they
// are not present. The registry will be an array of objects; each object will
// consist of a feature name and a path to a shim to apply if that feature is
// not supported.
var featureRegistry = [
 {
 'featureName' : 'sessionStorage',
 'shim' : '../js-lib/webstorage-shim.js'
 },
 {
 'featureName' : 'requestAnimationFrame',
 'shim' : '../js-lib/animationframe-shim.js'
 }
];
 
/**
 * Dynamically loads a script and invokes an optional callback.
 * @param {string} srcUrl The URL of the script file to load.
 * @return {Promise<null>}
 */

http://dx.doi.org/10.1007/9781430263678_6

Appendix A ■ JavaScript Tips and Techniques

358

function loadScript(srcUrl) {
 var myPromise = new Promise(function(resolve, reject) {
 var newScript = document.createElement('script');
 if (newScript.readyState) {
 // Internet explorer.
 newScript.onreadystatechange = function() {
 if (newScript.readyState == 'loaded' ||
 newScript.readyState == 'complete') {
 newScript.onreadystatechange = null;
 resolve();
 }
 };
 } else {
 // Every other browser in the universe.
 newScript.onload = resolve;
 }
 newScript.onError = reject;
 newScript.src = srcUrl;
 document.querySelector('head').appendChild(newScript);
 });
 return myPromise;
}
 
// Test for supported features.
var supportedFeatures = new DetectHTML5Support();
 
// Go through the registry and for each item load a shim if it isn't supported.
var promiseChain = Promise.resolve();
featureRegistry.forEach(function(currFeature) {
 if (!supportedFeatures[currFeature.featureName]) {
 promiseChain = promiseChain.then(function() {
 return loadScript(currFeature.shim);
 });
 }
});
 
promiseChain.then(function() {
 initApplication();
}, function() {
 console.log('A shim failed to load.');
});
 
/**
 * Hypothetical function for initializing the application.
 */

Appendix A ■ JavaScript Tips and Techniques

359

function initApplication() {
 console.log('Application continues...');
 // Etc.
}
 
 </script>
 </body>
</html>

The first thing you will probably notice about this example is it is considerably more compact than the
original example in Chapter 6. Simpler code is one of the benefits of using Promises.

In this example you start by creating a fulfilled Promise as the first link in your Promise chain. You then
loop through the feature registry and test each feature. Unsupported features have shims loaded, and their
Promises added to the chain. When then use the Promise.then method on the chain. If all the required
features are supported, then the chain will consist of just the initial fulfilled promise, so the resolve handler
will be invoked immediately. If there are unsupported features, then the chain will consist of multiple
Promises, each of which will execute in turn.

Returning Values from Promises
In my examples so far, the asynchronous actions haven’t returned any values. They’ve just succeeded or
failed. Many asynchronous actions will return a value that you’ll need to access within your resolve and
reject methods. To do this, you can specify parameters for your resolve and reject methods. For example,
imagine a situation where you fetch data from a server using a fetchData method that returns a promise:

function fetchData() {
 var myPromise = new Promise(function(resolve, reject) {
 var client = new XMLHttpRequest();
 client.open('POST', 'http://www.fakeservice.com/myservice');
 client.send();
 
 client.onload = function () {
 if (this.status == 200) {
 // Successfully fetched information from the service. Resolve the
 // promise with the information.
 resolve(this.response);
 } else {
 // Did not successfully fetch information from the service. Reject the
 // promise with the error message.
 reject(this.statusText);
 }
 };
 client.onerror = function () {
 reject(this.statusText);
 };
 });
 return myPromise;
}
 

http://dx.doi.org/10.1007/9781430263678_6
http://www.fakeservice.com/myservice

Appendix A ■ JavaScript Tips and Techniques

360

fetchData().then(function(serviceResponse) {
 console.log('The service returned ', serviceResponse);
}, function(errorMessage) {
 console.error(errorMessage);
});

In this example function you create a new XMLHttpRequest object to asynchronously fetch data from
a server, but return a Promise that wraps the response value. You can then access the response value in the
Promise.then callbacks.

Browser Support for Promises
Promises are a relatively new feature for JavaScript. As of this writing, all browsers except Internet Explorer
support Promises, and Internet Explorer Edge will have full support when it is released. In the meantime
there is a good shim for Promises available at https://github.com/jakearchibald/es6-promise.

Further Reading
This is just a brief introduction to Promises. There’s a lot more you can do with them. Many of the examples
in this book can be rewritten using Promises, resulting in simpler code.

To learn more about Promises, check out these resources:

•	 The Promises/A+ specification at https://promisesaplus.com/

•	 The Mozilla Developer Network reference for Promises at
https://developer.mozilla.org/en-US/docs/Web/JavaScript/
Reference/Global_Objects/Promise

•	 The Promises tutorial at HTML5Rocks, www.html5rocks.com/en/tutorials/es6/
promises/

https://github.com/jakearchibald/es6-promise
https://promisesaplus.com/
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise
http://www.html5rocks.com/en/tutorials/es6/promises/
http://www.html5rocks.com/en/tutorials/es6/promises/

361

�       � A
Animation

draw cycle constructor, 145
JavaScript-based, 143
with canvas, 144

Animation timing
API methods, 168
benefits, 162
brute-force method, 162
draw cycle manager, 164–167
frames, 162
global context, 163
JavaScript implementation of a timer-based

draw cycle, 161–162
requestAnimationFrame, 163
startAnimation, 168

APIs. See Application programming
interfaces (APIs)

Application programming interfaces (APIs)
audio and video tags, 55
cross document messaging/web messaging

handleMessage event handler, 81
main and target page, 80–81
postMessage method, 79
RFC 6454, 79
Same Origin Policy, 79

DOM, 55
Drag and Drop (see Drag-and-Drop

interactions, APIs)
Server-sent events

application, 64–66
EventSource object, 60–61
handleUpdates method, 58
JSON-formatted text, 62
one-way communication, 56
origin limitations, 63
polling script, 56–57
race condition, 58–59
security, 63
stock ticker, 62
stock values, 56

text/event-stream MIME type, 61
timer, 58
timer-based polling scripts, 59
XHR object, 58
XMLHttpRequest, 58

WebSockets (see WebSocket, APIs)
Web storage (see Web storage, APIs)
web worker

asynchronous activity, 102
computation-intensive activity, 102
creation, 97–98, 101–102
divide and conquer, 102
image processing, 102
location object and properties, 99
multithreading, 97
navigator object and property, 99
web applications, 96
XMLHttpRequest, 96

Article element
properties, 242–243
standards, 243
usage, 241–242

ASI. See Automatic Semicolon
Insertion (ASI)

Aside element
properties, 244
standards, 244
usage, 243–244

Audio and video content, HTML5
codecs parameter, 31
multimedia, 26
Shadow DOM APIs, 28
software capabilities, 26
src attribute, 30

Audio element
global attributes, 266
information, web, 264
properties, 265
standards, 266
usage, 264

Automatic semicolon
insertion (ASI), 348

Index

■ index

362

�       � B
bdi element

properties, 255–256
standards, 256
usage, 255

beginPath method, 311
Browser support

broken/missing HTML5 implementations
array featureRegistry, 202
checking single feature, 207
Internet Explorer, 200
loading shims, 199
multiple shims and tracking

process, 202, 204–206
onLoadCallback function, 201
readystatechange event handler, 200
registering callbacks,

loading process, 200–201
unsupported feature, 206
verifyAllFeatures function, 206

Can I Use database, 208
canvas element, 190
feature detection, 185
feature detection script

Chrome, Firefox, and Internet
Explorer, 198

getFailedTestResults, 193
getTestResults, 193
listing, 193–197

HTML5 Rocks website, 208
interface, HTML Element, 190
Internet Explorer, 185
JavaScript properties and methods

detection, 188
event interfaces detection, 189
HTML5 features detection, 188–189
nonexistent property, 186
non supporting browsers, 186
undefined, 186–187
undefined vs. null, 187

MobiDex (see MobiDex)
mobile browsers, 185
Modernizr, 208
Promises, 360
testing

attribute support, 192–193
supported elements, 191–192

Webshim library, 208
Browser wars, 13

�       � C
Callback functions, 354
Can I Use database, 208

Canvas
animation, 143–145
clipping, 134–135, 339–340
compositing, 130–134, 338
drawing commands

arc method, 314–315
bezierCurveTo method, 316
Context.fill(), 110
Context.fillStyle, 110
Context.lineCap, 110
Context.lineJoin, 110
Context.lineWidth, 110
Context.stroke(), 109
Context.strokeStyle, 109
curves, 109
declaring paths, 109
drawing rectangles, 115–116
lineCap property, 110–111
lineJoin property, 111–113
lineTo method, 314
quadraticCurveTo method, 315
random circle generator, 113–115
rect method, 316–317

drawing context
alternate content, older

browsers, 108–109
API, 311
pen metaphor, 106, 311
small victories, 108
syntax, 106
width and height, 107

drawing mode, 105
gradients (see Gradients, HTML5

canvas element)
gradients and patterns

addColorStop method, 325
createLinearGradient method, 324–325
createPattern method, 326–328
createRadialGradient method, 325

images (see Images, canvas; Images,
HTML5 canvas element)

implementation, 310
interaction

drawing with mouse, 146
event handler, 147
requestAnimationFrame method, 147

patterns (see Patterns, HTML5 canvas element)
properties, 309–310
restore method, 344–345
save method, 344
saving, 124
saving and restoring, properties, 344
saving drawing state

and restoring, 129
properties, 128

■ Index

363

shadows, 126–128
shadowBlur property, 336
shadowColor property, 336
shadowOffsetX property, 336
shadowOffsetY

property, 337
standards, 311
stroking/filling

clearRect method, 322–324
drawing rectangles, 321
fill method, 318
fillRect method, 321
fillStyle property, 318
lineCap property, 319
lineJoin property, 320
lineWidth property, 318
stroke method, 317
strokeRect method, 322
strokeStyle property, 317

text (see Text, 2d drawing context;
Text, canvas)

Cascading style sheets (CSS), 10
Clipping

clip method, 339–340
creation, 135
definition, 134
effects of, 136
resetting, 134

closePath method, 312
Code formatting, 347–348
Comment annotations

@constructor, 349
@param, 349
@private, 349
@return, 349
@type, 349
type definitions, 349–350

Compositing
demonstration, 131–133
destination, 130
globalCompositeOperation

property, 130, 338–339
gradient, 134
photograph, 133–134

�       � D
Data element

properties, 257
standards, 257
usage, 256

Datalist element
properties, 277
usage, 276

2D drawing context
API, 311
defining paths

beginPath method, 311
closePath method, 312
moveTo method, 313–314

drawing commands
arc method, 314–315
bezierCurveTo method, 316
lineTo method, 314
quadraticCurveTo method, 315
rect method, 316

drawing rectangles
clearRect method, 322–323
fillRect method, 321
strokeRect method, 322

path, 311
pen metaphor, 311
rendering text

fillText method, 332
transformations (see Transformations)

Details and summary elements
properties, 275
usage, 273, 275

Device orientation
Chrome and Firefox, 171
compassneedscalibration event, 172
devicemotion event, 175, 177–179
deviceorientation event, 172–175

Dexterity puzzles (see MobiDex)
Drag-and-Drop interactions, APIs

CSS class, 91
dataTransfer object, 88–89
dataTransfer.setDragImage(), 94
draggable property, 87
event.preventDefault(), 93
preventDefault(), 88
updation, script, 91–92
visual clipboard, 92–93

�       � E
Embedded audio content

autoplay, 26
Chrome browser, 28
controls, 26
loop, 27
muted, 27
preload, 27
src, 27
web page, 27

Embedded video content
autoplay, 29
controls, 29

■ index

364

height, 29
loop, 29
muted, 29
poster, 29
preload, 29
src, 29
web page, 29
width, 29

�       � F
Feature detection, 185
Figure and figcaption elements

properties, 252
standards, 253
usage, 252

Footer element
properties, 245–246
standards, 246
usage, 245

Form element attributes
autocomplete, 45–46
autofill, 46
autofocus, 46, 48
placeholder text, 48–49

Form elements
datalist element, 276–277
meter element, 278–280
output element, 280–281
progress element, 282–283

�       � G
Generalized markup language (GML), 6
Geolocation

API
browser and hosting device, 152
callback function, 155
Chrome, 156
globalTimeout variable, 158–160
globalTimeoutCallback function, 160
navigator.geolocation.clearWatch, 153
navigator.geolocation.getCurrent

Position, 152
navigator.geolocation.watchPosition, 153
object templates, 153
permission options in Firefox 29, 157
permission options, internet

explorer, 156–157
PositionError object, 154
position object, 153
Safari Mobile on iOS, 158
“Share Location”, 158
simple location query, 154–155

timer running, 160
transparent, 160
user interaction standpoint, 160
valid PositionError codes, 154

application collects and processes, 152
Bluetooth mapping, 149
cellular towers, 149
GPS satellites, 149
iOS location accuracy, 150
IP address mapping, 149
mobile devices, 149
privacy and security, 151
Wi-Fi mapping, 149

Gradients, HTML5 canvas element
Context.createLinearGradient, 117
Context.createRadialGradient, 117
linear gradient object, 118
Gradient.addColorStop, 117
three-stop, 117

Grouping
figure and figcaption elements, 251–253
main element, 253–254

�       � H
Header element

properties, 247
standards, 248
usage, 246–247

HTML
anchor tags, 7
browser wars

internet explorer, 8
libwww, 8
Lynx browser, 8
Mosaic code, 8
mozilla foundation, 9
NCSA, 8
netscape navigator, 8

document markup languages, 6
ENQUIRE, 4–5
GML, 6
HTML5, 12
hyperlinks, 4
hypermedia, 4
hypertext, 4
IETF, 7
information sharing, 3
markup languages

descriptive, 6
presentation, 6
procedural, 6

markup tags, 3
oNLine System/NLS, 5
pilot project, 7

Embedded video content (cont.)

■ Index

365

Project Xanadu, 4
SGML

applications, 7, 10
tags, 3

simple client/server network protocol, 7
XHTML, 10
zippered lists, 4

HTML5
canvas, 12
browser support (see Browser support)
features, 12
JavaScript APIs, 12
tags, 12

HTML5 API
cross-document dessaging

attributes, 292
host page, 293–294
parameters, 292
structured clone algorithm, 292
syntax, 293
target page, 294

dataTransfer object, 299
drag and drop, 298, 300–302
draggable property, 298
drop targets, 298
event.dataTransfer.files and types, 300
server-sent events

EventSource constructor, 285, 287
JSON-formatted text, 288
multiline key, 287
multiple data attributes, 288

WebSockets
API, 289
constructor, 290–291
communication, 289
full duplex communication, 289
interface, 289–290

web storage
API definition, 295
interface objects, 295
localStorage and sessionStorage

implement, 296
StorageEvent object, 296

web workers
blocking method and origin

policy, 304–305
communication, 302
creation, 305–306
EventTarget interface, 303
execution context, 303–304
global JavaScript scope, 302
stand-alone script, 306
threaded JavaScript applications, 302
writing multithreaded

applications, 302

HTML5 canvas element (see Canvas)
HTML5 elements

audio, video content (see Audio, video content,
HTML5)

automatic rendering, browsers, 18
deprecated elements, 53
functionality, 13
grouping content, tags, 19–20
interactive elements

CSS rules, progress, 43–44
CSS styles, web dialogs, 33–34
data lists, 37
dialogs, 31–33
forms, 36–37
meter, 38–40
output, form, 40–42
progress bar, 42–43
progressive disclosure, 34–36
timer, progress, 44–45

nonsemantic tags
div-it/divitis, 14
old and busted markup, 15–16

obsolete parameters, 53–54
semantic markup, 13
semantic tags

bi-directional isolation, 22
data, 22
hotness markup, 16–17
line breaks, 25–26
mark, 22
Ruby annotations, 22
time, 22
word break, 22–23
words marking, document, 22

HTML5 Rocks website, 208

�       � I
IETF. See Internet engineering task force (IETF)
Images, canvas

drawing, 329
drawing slice of image, 330–332
scaling, 329–330

Images, HTML5 canvas element
Context.drawImage, 120
parameters, 120
scaling, 121–122
slicing and scaling, 123–124
sources, 120

Input types
application, Chrome, 51–52
color, 50
dates and times, 50
email, 50
number, 51

■ index

366

range, 51
search, 51
tel, 51
url, 51

Interactive elements, 273–275
Internet engineering task force (IETF), 7

�       � J, K, L
JavaScript

code formatting, 347–348
Promises (see Promises)
verbosity, 348

JavaScript APIs, 12

�       � M
Main element

properties, 254
standards, 254
usage, 253

Mark element
properties, 258–259
standards, 259
usage, 258

Meter element
attributes, 279
standards, 280
usage, 278

MobiDex
Add a timer, 229
Add customization, 229
Add scoring, 229
comparing coordinates

checking collisions, 215–216
drawGameField method and associated

properties, 219–220
MobiDex Class, 216–218
updateRemainingBalls method, 220–221

deviceorientation event handler, 221–222
Draw Cycle, 223–226
finished game, 228–229
full listing and coordinate classes, 230–238
game initialization, 227–228
obstacles and targets

simple coordinate class, 214
generating random integers, 214

playing field UI
CSS, 211–212
markup, 210
rendering, 213

user story (see User story)
Modernizr, 208
moveTo method, 312–313
Mozilla foundation, 9

�       � N
National center for supercomputing

applications (NCSA), 8
Nav element

properties, 249
standards, 249
usage, 248

NCSA. See National center for supercomputing
applications (NCSA)

Netscape navigator, 8

�       � O
Objects, as event handlers, 350–351, 353
Output element

properties, 281
standards, 281
usage, 280

�       � P, Q
Patterns

Context.createPattern, 118
creation, 118–119
kitten as pattern, 119

Progress element
properties, 282
standards, 283
usage, 282

Promises
browser support, 360
chaining

loadScript function, 357
multiple shims loading, 357–358

constructor, 355
creation, 355
definition, 355
loading script, 355–356
returning values, 359
states, 355

�       � R
Ruby, rp, and rt elements

properties, 260
standards, 260
usage, 259

�       � S
Scalable vector graphics (SVG), 182
Section elements

article element, 14, 241–243
aside element, 14, 243–244
footer element, 14, 245–246

Input types (cont.)

■ Index

367

header element, 14, 246–248
nav element, 248–249
properties, 251
standards, 251
usage, 250

Selectors
accessing elements, 169
attribute, 170
element abstract class, 169
element state pseudo-classes, 170
JavaScript frameworks, 169
negation pseudo-class, 170
NodeList objects, 169
querySelector and querySelectorAll

methods, 170–171
structural pseudo-classes, 170

Semantics
bdi element, 255–256
data element, 256–257
mark element, 258–259
ruby, rp, and rt elements, 259–260
time element, 261–262
wbr element, 262–263

Shadows
shadowBlur property, 336
shadowColor property, 336
shadowOffsetX property, 336
shadowOffsetY property, 337–338

Shadows, canvas
drop shadows, 127
parameters, 126
rendering, 128

Source element
properties, 267
standards, 268
usage, 267

Standard generalized markup language (SGML)
CERN, 6
SGMLguid, 6

stopAnimation method, 169

�       � T
Text, 2d drawing context

fillText method, 332
font property, 333–334
measureText method, 332–333
strokeText method, 333
textAlign property, 334
textBaseline property, 334–335

Text, canvas
Context.fillText, 124
Context.font, 125
Context.measureText, 124
Context.strokeText, 125
Context.textAlign, 125

Context.textBaseline, 125
rendering, 125–126

Time element
properties, 261
standards, 262
usage, 261

Track element
properties, 270
standards, 270
usage, 269
WebVTT (see Web Video Text Tracks

Format (WebVTT))
Transformations

arbitrary transformation matrix, 136
Context.rotate, 136
Context.scale, 136
Context.translate, 136
definition, 136
resetting, 137
rotate method, 341
scale method, 341
scale and translate, 140–142
stacking rotation, 139–140
text reflection, 142–143
transform method, 342–343
translate method, 340–341
translate transformation, 137–138

Type definitions
non-nullable, 350
nullable, 350
optional, 350

�       � U
User story

agile software development, 209
definition, 209
features, 210

�       � V
Verbosity, 348
Video element

global attributes, 272
information, web, 271
properties, 272
standards, 273
usage, 271–272

�       � W, X, Y, Z
W3C. See World Wide Web Consortium (W3C)
Wbr element

properties, 263
standards, 263
usage, 262

■ index

368

Web Applications standard
data storage, 11
draft proposal, 11
semantic markup tags, 11
server-pushed events, 11
state management, 11

Web Graphics Library (WebGL), 180–182
Web hypertext application technology working

group (WHATWG), 11
Webshim library, 208
WebSocket, APIs

close method, 72
demonstration class, 74–77
full duplex communication, 67
handshake process

‘chat’ and ‘json’ protocols, 68
GET query, 67
two-way connection, 67

headers, 68
HTTP, 67
information receiving

binary large objects, 71
Blobs and ArrayBuffers, 71
connection object, 69
error event connection, 70
stubbed event handlers, 69–70

information transmitting, 72
network protocol, 67
sendDataAndClose_, 77
subprotocol, 78
url parameter, 67

Web storage, APIs
custom storage methods, 84–85
Evercookies, 86
HTTP Cookies, 82
JSON string, 83
localStorage, 82
privacy concerns, 86
sessionStorage, 82
sessionStorage.getItem, 84
sessionStorage.setItem, 84

Web Video Text Tracks Format (WebVTT)
closed captioning file, 268

WebVTT (see Web Video Text Tracks Format
(WebVTT))

WHATWG. See Web hypertext application
technology working group (WHATWG)

World Wide Web Consortium (W3C), 9
CSS, 10
HTML 4.0, 10
standards process, 9
XML-based solutions, 11

HTML5 Programmer’s
Reference

Jonathan Reid

HTML5 Programmer’s Reference

Copyright © 2015 by Jonathan Reid

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed. Exempted from this legal reservation are brief excerpts in connection with
reviews or scholarly analysis or material supplied specifically for the purpose of being entered and executed
on a computer system, for exclusive use by the purchaser of the work. Duplication of this publication or
parts thereof is permitted only under the provisions of the Copyright Law of the Publisher’s location, in its
current version, and permission for use must always be obtained from Springer. Permissions for use may be
obtained through RightsLink at the Copyright Clearance Center. Violations are liable to prosecution under
the respective Copyright Law.

ISBN-13 (pbk): 978-1-4302-6367-8

ISBN-13 (electronic): 978-1-4302-6368-5

Trademarked names, logos, and images may appear in this book. Rather than use a trademark symbol with
every occurrence of a trademarked name, logo, or image we use the names, logos, and images only in an
editorial fashion and to the benefit of the trademark owner, with no intention of infringement of the trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are
not identified as such, is not to be taken as an expression of opinion as to whether or not they are subject to
proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of publication,
neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or
omissions that may be made. The publisher makes no warranty, express or implied, with respect to the
material contained herein.

Managing Director: Welmoed Spahr
Lead Editor: Ben Renow-Clarke
Technical Reviewer: Victor Sumner
Editorial Board: Steve Anglin, Mark Beckner, Gary Cornell, Louise Corrigan, Jim DeWolf,

Jonathan Gennick, Robert Hutchinson, Michelle Lowman, James Markham, Susan McDermott,
Matthew Moodie, Jeffrey Pepper, Douglas Pundick, Ben Renow-Clarke, Gwenan Spearing,
Matt Wade, Steve Weiss

Coordinating Editor: Christine Ricketts and Melissa Maldonado
Copy Editor: James Fraleigh
Compositor: SPi Global
Indexer: SPi Global
Artist: SPi Global

Distributed to the book trade worldwide by Springer Science+Business Media New York,
233 Spring Street, 6th Floor, New York, NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505, e-mail
orders-ny@springer-sbm.com, or visit www.springeronline.com. Apress Media, LLC is a California LLC
and the sole member (owner) is Springer Science + Business Media Finance Inc (SSBM Finance Inc).
SSBM Finance Inc is a Delaware corporation.

For information on translations, please e-mail rights@apress.com, or visit www.apress.com.

Apress and friends of ED books may be purchased in bulk for academic, corporate, or promotional use.
eBook versions and licenses are also available for most titles. For more information, reference our Special
Bulk Sales–eBook Licensing web page at www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this text is available to
readers at www.apress.com. For detailed information about how to locate your book’s source code, go to
www.apress.com/source-code/.

http://orders-ny@springer-sbm.com
www.springeronline.com
http://rights@apress.com
www.apress.com
www.apress.com/bulk-sales
www.apress.com
wwww.apress.com/source-code/

For my husband Steve, who is always there for me.

vii

Contents

About the Author��xv

About the Technical Reviewer��xvii

Acknowledgments���xix

Introduction���xxi

■■Part I: HTML5 in Depth��� 1

■■Chapter 1: Welcome to HTML5�� 3

What Is HTML5?�� 3

A Brief History of HTML��� 3

Enter Hypertext�� 4

Enter Markup Languages�� 6

Hypertext Markup Language Is Born��� 7

The Browser Wars��� 8

Standards to the Rescue��� 9

The Continuing Evolution of HTML��� 10

The Formation of the WHATWG and the Creation of HTML5�� 11

HTML5 Features�� 12

New Tags��� 12

JavaScript APIs�� 12

Related Standards��� 12

Summary��� 12

viii

■ Contents

■■Chapter 2: HTML5 Elements��� 13

Functionality, Semantics, and the Evolution of HTML�� 13

Sections�� 14

Grouping ��� 19

Semantics��� 21

Audio and Video Content��� 26

Embedded Audio Content�� 26

Embedded Video Content��� 29

Specifying Multiple Sources�� 30

Interactive Elements�� 31

Dialogs��� 31

Progressive Disclosure�� 34

Forms ��� 36

New Form Elements ��� 36

New Form Element Attributes�� 45

New Input Types�� 50

Deprecated Elements and Obsolete Parameters��� 53

Summary��� 54

■■Chapter 3: HTML5 APIs��� 55

Server-sent Events�� 56

Client Setup��� 60

Sending Events from the Server�� 61

Origin Limitations�� 63

Security��� 63

An Example Application��� 64

WebSockets��� 67

Connecting to the Server: Inside the WebSocket Handshake�� 67

Receiving Information from the Server��� 69

Sending Information to the Server�� 72

ix

■ Contents

Closing the Connection�� 72

An Example WebSocket Application�� 72

Cross Document Messaging/Web Messaging��� 78

Web Storage�� 82

Methods and Syntax�� 82

Privacy and Web Storage��� 86

Drag and Drop��� 86

The draggable Property��� 87

Drag-and-Drop Events��� 87

The dataTransfer Object�� 88

Drag-and-Drop API Examples�� 89

Web Workers��� 96

Creating Web Workers��� 97

Inside a Web Worker�� 98

A Simple Example of a Web Worker��� 100

Common Use Cases��� 102

Summary��� 103

■■Chapter 4: Canvas�� 105

The Canvas Drawing Mode�� 105

The Canvas Drawing Context�� 106

Basic Drawing Commands�� 109

Gradients and Patterns�� 116

Gradients��� 117

Patterns��� 118

Images��� 120

Saving Canvas Contents�� 124

Text�� 124

Shadows�� 126

Saving Drawing State�� 128

x

■ Contents

Compositing�� 130

Clipping��� 134

Transformations�� 136

Animation�� 143

Interaction��� 145

Summary��� 147

■■Chapter 5: Related Standards��� 149

Geolocation��� 149

Privacy Considerations�� 150

Geolocation API�� 152

Animation Timing�� 161

Selectors��� 169

Device Orientation��� 171

The compassneedscalibration Event��� 172

The deviceorientation Event�� 172

The devicemotion Event�� 175

WebGL��� 179

SVG�� 182

Summary��� 183

■■Chapter 6: Practical HTML5�� 185

Browser Support��� 185

A Crash Course in Feature Detection��� 185

Building a Feature Detection Script��� 193

Working with Broken or Missing HTML5 Implementations�� 198

Example Project: MobiDex, a Mobile Dexterity Puzzle��� 208

The Playing Field UI��� 210

Generating Obstacles and Targets��� 213

Summary��� 238

xi

■ Contents

■■Part II: HTML5 Reference��� 239

■■Chapter 7: HTML5 Element Reference�� 241

Sections�� 241

The article Element�� 241

The aside Element��� 243

The footer Element�� 245

The header Element�� 246

The nav Element�� 248

The section Element�� 250

Grouping�� 251

The figure and figcaption Elements��� 251

The main Element�� 253

Semantics��� 255

The bdi Element��� 255

The data Element��� 256

The mark Element��� 258

The ruby, rp, and rt Elements��� 259

The time Element��� 261

The wbr Element��� 262

Audio and Video Content��� 264

The audio Element��� 264

The source Element��� 266

The track Element��� 268

The video Element��� 270

Interactive Elements�� 273

The details and summary Elements��� 273

Form Elements�� 276

The datalist Element�� 276

The meter Element�� 278

The output Element��� 280

The progress Element�� 282

xii

■ Contents

■■Chapter 8: HTML5 API Reference�� 285

Server-sent Events�� 285

WebSockets��� 289

Cross-Document Messaging/Web Messaging��� 292

Web Storage�� 295

Drag and Drop��� 297

Specifying Draggable Elements: The draggable Property�� 298

Handling the Interactions: Drag-and-Drop Events��� 298

Specifying Drop Targets��� 298

The dataTransfer Object�� 298

Web Workers��� 302

■■Chapter 9: Canvas Reference��� 309

The canvas Element�� 309

The Drawing Context��� 311

Defining Paths��� 311

Basic Drawing Commands�� 314

Stroking and Filling Paths�� 317

Drawing Rectangles�� 321

Gradients and Patterns�� 324

Images��� 328

Text�� 332

Shadows�� 336

Compositing��� 338

Clipping�� 339

Transformations��� 340

Saving and Restoring Canvas State��� 344

■■Appendix A: JavaScript Tips and Techniques��� 347

Code Formatting�� 347

JavaScript Rewards Verbosity��� 348

Comment Annotations��� 348

xiii

■ Contents

Using Objects as Event Handlers��� 350

Promises��� 354

Chaining Promises��� 357

Returning Values from Promises��� 359

Browser Support for Promises�� 360

Further Reading��� 360

Index�� 361

xv

About the Author

Jonathan Reid has been building web applications professionally for almost two decades. He has
built everything from simple informational websites all the way up to complex scientific and business
applications, all using HTML, CSS, and JavaScript. In addition, Jon has worked at some of the top interactive
agencies in the United States (EffectiveUI, Crispin Porter + Bogusky), so he knows what it is like to
implement difficult and complex requirements with web technologies on a tight deadline. He currently
works for Google, where he is a Senior User Experience Engineer on Google Web Designer, an HTML5
authoring tool. Jon lives in Sunnyvale with his husband of 15 years.

xvii

About the Technical Reviewer

Victor Sumner is a senior software engineer at D2L Corporation, where he helps to build
and maintain an integrated learning platform. As a self-taught developer, he is always
interested in emerging technologies and enjoys working on and solving problems that are
outside his comfort zone.

When not at the office, Victor has a number of hobbies, including photography,
horseback riding, and gaming. He lives in Ontario, Canada, with his wife, Alicia, and their
two children.

xix

Acknowledgments

Writing a book is never a solitary activity. I had a lot of help along the way.
Pushkar Joshi, my colleague at Google, provided input on the Canvas chapter as well as some great

suggestions for topics to include in the chapter. He was also kind enough to look through the chapters and
provide feedback.

Victor Sumner did a great job as the technical reviewer, going through every line of code in this book
and testing them thoroughly. Code reviews are practically a way of life for me, so I value my reviewers
greatly, and Victor did a great job.

The rest of the Google Web Designer team, led by Sean Kranzberg, Tony Mowatt, and San Khong, put up
with me obsessing about this book off and on for over a year. Thanks, everyone.

My husband, Steve, was patient while I barricaded myself in our home office on Saturdays to write.
And as always, my editors at Apress were supportive, patient, and diligent.

	Contents at a Glance
	Contents
	About the Author
	About the Technical Reviewer
	Acknowledgments
	Introduction
	Part I: HTML5 in Depth
	Chapter 1: Welcome to HTML5
	 What Is HTML5?
	 A Brief History of HTML
	 Enter Hypertext
	 Enter Markup Languages
	 Hypertext Markup Language Is Born
	 The Browser Wars
	 Standards to the Rescue
	 The Continuing Evolution of HTML
	 The Formation of the WHATWG and the Creation of HTML5

	 HTML5 Features
	 New Tags
	Canvas

	 JavaScript APIs
	 Related Standards

	 Summary

	Chapter 2: HTML5 Elements
	 Functionality, Semantics, and the Evolution of HTML
	 Sections
	 Grouping
	 Semantics
	 Audio and Video Content
	 Embedded Audio Content
	 Embedded Video Content
	 Specifying Multiple Sources

	 Interactive Elements
	 Dialogs
	 Progressive Disclosure

	 Forms
	 New Form Elements
	Data Lists
	Meter
	Output
	Progress

	 New Form Element Attributes
	Autocomplete
	Autofocus
	Placeholder

	 New Input Types

	 Deprecated Elements and Obsolete Parameters
	 Summary

	Chapter 3: HTML5 APIs
	 Server-sent Events
	 Client Setup
	 Sending Events from the Server
	 Origin Limitations
	 Security
	 An Example Application

	 WebSockets
	 Connecting to the Server: Inside the WebSocket Handshake
	 Receiving Information from the Server
	 Sending Information to the Server
	 Closing the Connection
	 An Example WebSocket Application

	 Cross Document Messaging/Web Messaging
	 Web Storage
	 Methods and Syntax
	 Privacy and Web Storage

	 Drag and Drop
	 The draggable Property
	 Drag-and-Drop Events
	 The dataTransfer Object
	 Drag-and-Drop API Examples

	 Web Workers
	 Creating Web Workers
	 Inside a Web Worker
	 A Simple Example of a Web Worker
	 Common Use Cases

	 Summary

	Chapter 4: Canvas
	 The Canvas Drawing Mode
	 The Canvas Drawing Context
	 Basic Drawing Commands
	 Gradients and Patterns
	 Gradients
	 Patterns

	 Images
	 Saving Canvas Contents
	 Text
	 Shadows
	 Saving Drawing State
	 Compositing
	 Clipping
	 Transformations
	 Animation
	 Interaction
	 Summary

	Chapter 5: Related Standards
	 Geolocation
	 Privacy Considerations
	 Geolocation API

	 Animation Timing
	 Selectors
	 Device Orientation
	 The compassneedscalibration Event
	 The deviceorientation Event
	 The devicemotion Event

	 WebGL
	 SVG
	 Summary

	Chapter 6: Practical HTML5
	 Browser Support
	 A Crash Course in Feature Detection
	Detecting JavaScript Properties and Methods
	Detecting Support for New HTML5 Elements
	Detecting Support for New Element Properties

	 Building a Feature Detection Script
	 Working with Broken or Missing HTML5 Implementations
	Online Resources for Browser Support, Feature Detection, and Shims
	Can I Use
	Modernizr
	HTML5 Rocks
	Webshim

	 Example Project: MobiDex, a Mobile Dexterity Puzzle
	 The Playing Field UI
	 Generating Obstacles and Targets
	Comparing Coordinates
	The deviceorientation Event Handler
	The Draw Cycle
	Initializing the Game
	Additional Exercises
	The Full Listing

	 Summary

	Part II: HTML5 Reference
	Chapter 7: HTML5 Element Reference
	 Sections
	 The article Element
	Usage
	 Properties

	 The aside Element
	Usage
	 Properties

	 The footer Element
	Usage
	 Properties

	 The header Element
	Usage
	 Properties

	 The nav Element
	Usage
	Properties

	 The section Element
	Usage
	 Properties

	 Grouping
	 The figure and figcaption Elements
	Usage
	 Properties

	 The main Element
	Usage
	 Properties

	 Semantics
	 The bdi Element
	Usage
	 Properties

	 The data Element
	Usage
	 Properties

	 The mark Element
	Usage
	 Properties

	 The ruby, rp, and rt Elements
	Usage
	 Properties

	 The time Element
	Usage
	 Properties

	 The wbr Element
	Usage
	 Properties

	 Audio and Video Content
	 The audio Element
	Usage
	 Properties

	 The source Element
	Usage
	 Properties

	 The track Element
	WebVTT-Formatted Data
	 Usage
	Properties

	 The video Element
	Usage
	 Properties

	 Interactive Elements
	 The details and summary Elements
	Usage
	 Properties

	 Form Elements
	 The datalist Element
	Usage
	 Properties

	 The meter Element
	Usage
	Attributes

	 The output Element
	Usage
	Properties

	 The progress Element
	Usage
	 Properties

	Chapter 8: HTML5 API Reference
	 Server-sent Events
	 WebSockets
	 Cross-Document Messaging/Web Messaging
	 Web Storage
	 Drag and Drop
	 Specifying Draggable Elements: The draggable Property
	 Handling the Interactions: Drag-and-Drop Events
	 Specifying Drop Targets
	 The dataTransfer Object

	 Web Workers

	Chapter 9: Canvas Reference
	The canvas Element
	The Drawing Context
	Defining Paths
	The beginPath Method
	The closePath Method
	The moveTo Method

	Basic Drawing Commands
	The lineTo Method
	The arc Method
	The quadraticCurveTo Method
	The bezierCurveTo Method
	The rect Method

	Stroking and Filling Paths
	The strokeStyle Property
	The stroke Method
	The fillStyle Property
	The fill Method
	The lineWidth Property
	The lineCap Property
	The lineJoin Property

	Drawing Rectangles
	The fillRect Method
	The strokeRect Method
	The clearRect Method

	Gradients and Patterns
	The createLinearGradient Method
	The createRadialGradient Method
	The addColorStop Method
	The createPattern Method

	Images
	Drawing an Image
	Scaling an Image
	Drawing a Slice of an Image

	Text
	The fillText Method
	The measureText Method
	The strokeText Method
	The font Property
	The textAlign Property
	The textBaseline Property

	Shadows
	The shadowBlur Property
	The shadowColor Property
	The shadowOffsetX Property
	The shadowOffsetY Property

	Compositing
	The globalCompositeOperation Property

	Clipping
	The clip Method

	Transformations
	The translate Method
	The rotate Method
	The scale Method
	The transform Method

	Saving and Restoring Canvas State
	The save Method
	The restore Method

	Appendix A: JavaScript Tips and Techniques
	 Code Formatting
	 JavaScript Rewards Verbosity
	 Comment Annotations
	 Using Objects as Event Handlers
	 Promises
	 Chaining Promises
	 Returning Values from Promises
	 Browser Support for Promises
	 Further Reading

	Index

