
1

 CHAPTER 9

 Branches

 When the APEX server receives a submit request from a browser, it performs the
validations and processes associated with that request. Its final task is to choose a target
page to send to the browser. By default, APEX chooses the page that was submitted, but it
is possible to specify another page by creating a branch .

 You have been able to get this far through the book without needing to use branches
because of the ease in which multiple regions can be created on a page and the way that
these regions can be conditionally rendered to give the effect of multiple pages. But there
are many situations in which an application will use multiple pages to implement a user
activity. In this chapter, you investigate the use of branches to support these situations.

 Separating Input from Output
 A common application design technique is to use separate pages for input and output .
A user enters input on a page and clicks a button; the application then branches to
another page that displays the output.

 As an example of this technique, consider the two pages shown in Figures 9-1
and 9-2 . The pages have a single region each and work similarly to the single Filter by
Job and Department page of Chapter 6 . In particular, a user begins on the Filter and
Branch page shown in Figure 9-1 , choosing a job and department from the select lists
and then clicking a button. The system then branches to the Filtered Employees page
of Figure 9-2 , which displays a report of employees who have that job and are in that
department.

BOOKS FOR PROFESSIONALS BY PROFESSIONALS®

www.apress.com

RE
LA

TE
D

TI
TL

ES

Apple Watch for Developers: Advice & Techniques from
Five Top Professionals gives you the base-knowledge

and valuable secrets you’ll need for your own projects
from a core team of successful, experienced Apple Watch
app-development experts. You’ll explore elements such
as branding within Watch apps, translating audio data
into visual information, taming complex data, mastering
environment-driven feature sets, and much more.

This book is for developers who already have basic
knowledge of developing with WatchKit and WatchOS 2,
and who are now interested in learning how to use them
to create cutting-edge Watch apps. It is written by five
experienced Apple Watch developers who have created
their apps as part of Apple’s beta program, and are now
ready to deconstruct examples to show you how to best
create your own Apple Watch app. This book will bring
your innovative Watch ideas to life!

You’ll learn how to:

• Accept and handle voice recognition on the
Apple Watch

• Best send data back and forth from iCloud
• Perform functions that take very few taps

of a screen
• Leverage frequency detection
• Run your apps natively on the Watch
• Work with App Groups to send and receive data
• Interface with synced Twitter accounts

Apple Watch for
Developers

Gary Riches Ruben Martinez Jr. Jamie Maison
Matt Klosterman Mark Griffin

Riches M
artinez Jr. M

aison
Klosterm

an Griffin
Apple W

atch for Developers

US $ 34.99

Shelve in
Mobile Computing

User level:
Intermediate–Advanced

Advice & Techniques from Five Top Professionals

SOURCE CODE ONLINE

9 781484 213391

53499
ISBN 978-1-4842-1339-1

For your convenience Apress has placed some of the front
matter material after the index. Please use the Bookmarks

and Contents at a Glance links to access them.

Apple Watch for
Developers

Advice & Techniques from Five

Top Professionals

G a r y R i c h e s
Ru b e n Ma r t i n e z Jr.
Ja m i e Ma i s on
Mat t K l o s t e r m a n
Ma r k G r i f f i n

Apple Watch for Developers: Advice & Techniques from Five Top Professionals
Copyright © 2015 by Gary Riches, Ruben Martinez Jr., Jamie Maison, Matt Klosterman, Mark Griffin

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of
the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed. Exempted from this legal reservation are brief excerpts in connection with
reviews or scholarly analysis or material supplied specifically for the purpose of being entered and executed
on a computer system, for exclusive use by the purchaser of the work. Duplication of this publication or parts
thereof is permitted only under the provisions of the Copyright Law of the Publisher's location, in its current
version, and permission for use must always be obtained from Springer. Permissions for use may be obtained
through RightsLink at the Copyright Clearance Center. Violations are liable to prosecution under the respective
Copyright Law.

ISBN-13 (pbk): 978-1-4842-1339-1

ISBN-13 (electronic): 978-1-4842-1338-4

Trademarked names, logos, and images may appear in this book. Rather than use a trademark symbol with
every occurrence of a trademarked name, logo, or image we use the names, logos, and images only in an edito-
rial fashion and to the benefit of the trademark owner, with no intention of infringement of the trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are
not identified as such, is not to be taken as an expression of opinion as to whether or not they are subject to
proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of publication,
neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or
omissions that may be made. The publisher makes no warranty, express or implied, with respect to the material
contained herein.

Managing Director: Welmoed Spahr

Lead Editor: Steve Weiss

Technical Reviewer: Iliya Yordanov

Editorial Board: Steve Anglin, Gary Cornell, Louise Corrigan, James T. DeWolf, Jonathan Gennick, Robert
Hutchinson, Michelle Lowman, James Markham, Matthew Moodie, Jeffrey Pepper, Douglas Pundick, Ben
Renow-Clarke, Gwenan Spearing, Matt Wade, Steve Weiss

Coordinating Editor: Kevin Walter

Project Editor: Troy Mott

Copy Editor: Christina Rudloff

Cover Designer: Crest

Distributed to the book trade worldwide by Springer Science+Business Media New York, 233 Spring Street,
6th Floor, New York, NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505, e-mail orders-ny@springer-
sbm.com, or visit www.springeronline.com. Apress Media, LLC is a California LLC and the sole member
(owner) is Springer Science + Business Media Finance Inc (SSBM Finance Inc). SSBM Finance Inc is a
Delaware corporation.

For information on translations, please e-mail rights@apress.com, or visit www.apress.com.

Apress and friends of ED books may be purchased in bulk for academic, corporate, or promotional use. eBook
versions and licenses are also available for most titles. For more information, reference our Special Bulk
Sales–eBook Licensing web page at www.apress.com/bulk-sales.

Any source code or other supplementary materials referenced by the author in this text is available to readers
at www.apress.com. For detailed information about how to locate your book’s source code, go to www.apress.
com/source-code/.

v

Contents at a Glance

About the Authors .. xiii

About the Technical Reviewer .. xv

Acknowledgments ... xvii

Chapter 1: An Apple Watch Introduction ... 19

Chapter 2: Examining the Stopwatch, Timer and Calendar 27

Chapter 3: Taming Complex Data for the Watch ... 53

Chapter 4: Examining Home Remote and its Components 123

Chapter 5: Developing Notation – Audio to Musical Score 163

Chapter 6: Building the Infinitweet Application .. 177

Chapter 7: Developing Apple Watch Cross-Platform Apps 207

Index ... 239

vii

Contents

About the Authors ...xiii

About the Technical Reviewer ...xv

Acknowledgments ..xvii

Chapter 1: An Apple Watch Introduction ... 19

Anatomy of a WatchKit App ... 20

The Interface Controller ..20

Glance Interfaces ..21

Notification Interfaces ...22

Interface Navigation .. 23

Context Menus .. 25

Summary ... 25

Chapter 2: Examining the Stopwatch, Timer and Calendar 27

Stopwatch .. 27

Creating the User Interface ...28

Outlets and Actions ...29

Triggering Timing ..29

Adding the Lap Functionality ...31

Timer ... 33

Creating the User Interface ...33

 Contentsviii

Outlets and Actions ...34

Initializing the Application ..35

Handling Text Input with WatchKit ...36

Start and Reset ..37

Creating our Timer Method ...38

Calendar .. 40

Introduction to iCloud ..40

Creating Calendars and Events in iOS Using EventKit and iCloud43

Creating an Apple Watch Calendar Application ..45

Summary ... 51

Chapter 3: Taming Complex Data for the Watch ... 53

Background ... 54

Find Your User’s Story .. 56

Maintain Simplicity Through Relevancy ... 77

Increase Recognition Through Repetition ... 108

Use Notifications as Punctuation ... 120

Looking Forward: Complications in watchOS 2 ... 120

Chapter 4: Examining Home Remote and its Components 123

The WatchKit Extension .. 124

The User Interface... 125

Populating the Table .. 127

Handling the Table’s Input ...127

Sharing Data Between Extension and App ... 128

App Groups ...129

iOS ...129

WatchKit ..130

 Contents ix

Glances and Extension Communication ... 132

The Home Remote Glance .. 132

The Glance .. 133

Handoff .. 135

Handoff Interactions ..136

The Handoff Code ...136

Modal Interface Controllers ...137

Navigation Types Available .. 139

Home Remote Navigation ... 140

Hierarchy and Page based Navigation .. 140

Page based Navigation ...143

Hierarchical Navigation ...144

Force Touch Menus ... 146

The Design of the Menu Items ..147

Apple Watch Settings .. 149

Home Remote and Voice Recognition .. 151

About Voice Dictation .. 153

Adding Voice Recognition to the Table .. 153

Submitting Your App for Review .. 157

App Identifiers ...158

Version Numbers ..158

App Name and Settings Name ...158

Assets Required for Submission ... 159

Screen Shots ..159

The Submission Process ... 160

Summary ... 162

 Contentsx

Chapter 5: Developing Notation – Audio to Musical Score 163

User Interface on the Apple Watch ... 164

Branding Within Apple Watch Applications ... 166

Design Considerations ..167

Working with App Groups .. 168

What are App Groups? ...168

Setting Up App Groups in Your Project ...168

Using the Apple Watch Microphone in watchOS 2 170

Swift ..171

Objective-C ...171

Translating Audio Data into Visual Information .. 172

Importing and Declaring Images ...172

Updating Our Image ..175

Summary ... 176

Chapter 6: Building the Infinitweet Application .. 177

Introducing Infinitweet ... 177

Environment-Driven Feature Sets ... 179

Infinitweet for iOS ..179

Infinitweet for Apple Watch ...180

So Where Does the Magic Happen? ..181

Building Infinitweet ... 182

Getting Started ..182

Creating the Infinitweet User Interface ..184

Communicating Between Storyboard and Code ...186

Capturing User Voice Input ...188

Navigating Between WKInterfaceControllers ..189

Working with Social and Account Frameworks ...190

Prompting the User With Options..193

 Contents xi

The Infinitweet Algorithm...197

Providing User Feedback ..201

Finishing Touches ...204

Additional Notes ..205

Chapter 7: Developing Apple Watch Cross-Platform Apps 207

The FAIRFX Watch Application ... 208

Building Watch Applications as a Cross-Platform Developer 209

Building Our Main Application with Cordova ... 209

Bridging the Gap ... 214

Getting a WatchKit App Up and Running .. 224

Linking the Applications Together.. 232

Common Pitfalls .. 234

Different Version Numbers ..234

Differing Deployment Targets ..234

Downgrading the Deployment Target ..235

Building Fine but Rejected at App Store ...235

Additional Features.. 235

Android Wear ..236

WatchKit for watchOS 2 ..237

Index ... 239

 Prefacexii

Preface

This book is for developers who already have a basic knowledge of developing with

WatchKit and watchOS 2, and who are now interested in learning how to use them

to create cutting-edge Watch apps. It is written by five experienced Apple Watch

developers who have created their own apps early on, and will now show you how to

best create your own Apple Watch apps.

The examples in this book use Objective-C and Swift version 1.2 and were tested

with Xcode 6.3 and 6.4.

If you are just starting out in this space, be sure to pick up and read the Apress

beginner’s book for Apple Watch development, “Learn WatchKit for iOS.” If you have

already read that, or have already gotten your feet wet, then this book is for you.

xiii

About the Authors

Gary Riches is a longstanding member of the iOS

developer community and is the founder of Bouncing

Ball, where he develops high quality iOS applications

and games incorporating augmented reality,

multiplayer, bluetooth communication, and interfacing

with hardware peripherals. Forbes profiled Riches as

having developed one of the “most anticipated Apple

Watch Apps.”

Ruben Martinez Jr. is a student at Bowdoin College,

where he studies Computer Science and Visual Arts

with the goal of learning to build products that can

improve people's lives. He has led a student group

that uses technology to improve student life, and has

built several iOS, Android, and web applications for

students. He also started the first student hackathon in

Maine, CBBhacks. During his free time, Ruben founded

a social-discovery startup for connecting people with

similar interests, built a fully-responsive web and mobile

application for a medical startup, and is currently

developing three apps for the iPhone: Infinitweet,

Twindr, and TouchLocker.

 About the Authorsxiv

Matt Klosterman hails from Dallas, TX and is an iOS

and Apple Watch app developer at Infofission LLC.

Klosterman got his first taste of mobile development in

2004 working with real-time weather data. He released

his first iOS app in 2008 and since 2010 has focused on

mobile consulting projects for Fortune 500 companies.

Jamie Maison is a British software engineer,

specialising in iOS development and UI/UX design

using Objective-c and Swift. After graduating from the

University of Kent with a degree in Music Technology

he founded Notation, an iOS app that converts audio

to musical score and guitar tablature. Jamie is an

advocate for utilizing the best practices in software

development, focusing on performance, usability and

function. He can be found at http://www.jamiemaison.

com and on twitter @jamiemaison

Mark Griffin has been developing various applications

across a number of devices and platforms including

web, mobile, wearable and interactive digital outdoor

installations. He has been involved in many cutting

edge campaigns and picked up many prestigious

awards along the way including Golden Cannes Cyber

Lions and D&AD Pencils.

 About the Technical Reviewer xv

About the Technical
Reviewer

Iliya Yordanov is the founder and CEO of SilverWiz,

a company that is building a portfolio of premium

productivity applications. His application, MileWiz, was

named one of the hottest Apple Watch apps from an

independent developer this year by Wearable.com.

 Acknowledgments xvii

Acknowledgments

Thanks to my wife, Sophie, for putting up with all the long hours, to my daughter, Evie,

for my allowing my constant trips to the study, and the bump for giving me the drive

and determination to keep on developing.

—Gary Riches

"To my friend Kaylee, who always had to write more than I did.

—Ruben Martinez

For my wife, Shaila, and my children, Madison, Jack, and Luke. Thank you for all of

your extra effort and understanding while I spent months away from home to pursue a

dream.

—Matt Klosterman

19

Chapter 1
An Apple Watch

Introduction

Back in September of 2014, Apple announced their first new product line since the

iPad in 2010. In an unusual move for Apple, they gave developers access to the

Apple Watch SDK, and the public information on a device that wasn’t to ship for

another seven months. The delay between announcement and release was important

because although it was most likely production issues that caused the delay, the

Apple Watch presents a new paradigm with different user interaction methods, and

usage levels measured in seconds rather than minutes. Developers were able to

start building apps for the Apple Watch with the SDK that Apple provided and quickly

realized that the traditional ways of planning and building iOS apps wouldn’t directly

translate to the Apple Watch, so the time would be required to get a feel for what

works and what doesn’t.

The Apple Watch still has touch input, but also a mechanical way of scrolling with

the Digital Crown and a new technology called Force Touch, which is able to detect

varying levels of pressure on the Watch’s screen. Some of the new technologies

present are not accessible via Apple’s APIs yet, and in general WatchKit, Apple’s

name for the Apple Watch-specific code, is a very cut down version of what it will

eventually be. This is most likely to preserve battery on the Apple Watch, but the

limitations should be embraced. The skills you will learn with WatchKit in terms of app

optimization can be moved back up into your iOS app development process.

By now you should hopefully have your Apple Watch devices because the

opportunity to test on real hardware is invaluable. If, however, you don’t, then do what

you can to simulate the Watch. There are some great paper templates available that

you can print out and use, or apps such as WatchSim by Danny Keogan, which allow

you to see a 1:1 image of the Watch on your iPhone that mirrors the Apple Watch

CHAPTER 1: An Apple Watch Introduction20

simulator. Indeed, sometimes it’s faster to do it this way rather than deploying to real

hardware each time.

Along with every major new Apple iOS or hardware release is the opportunity to be

first to market, to capture the eyes of users eager to test the features of the new iOS,

or to download apps that exploit the new device’s features. The Apple Watch is going

to be “new” for a good while yet, and the amount of apps currently in the App Store

with Apple Watch support is a fraction of that in the main iOS App Store. All of these

factors together mean that you’ll hopefully find more success, since there is a smaller

pool of apps to choose from. It will be easier to be the best.

Let’s look at the structure of an Xcode project to see what Xcode creates, where it

gets created, and why.

Note For Apple watchOS 2 the extension runs on the Apple Watch

instead of the iOS device, and App Groups no longer work. Home Remote

was written with Watch OS 1, and given that the feature list of watchOS 2

is not yet fully defined, we’ll be using Watch OS 1 for the example here.

Anatomy of a WatchKit App
A WatchKit app is always bolted on to an existing iOS project, it’s just a different

target. It has two distinct parts: the WatchKit extension and the WatchKit app, and

they are both bundled within the iOS app. The WatchKit extension remains on your

iOS device and does the work while the WatchKit app is copied to the Watch’s internal

storage along with the storyboard and any images or assets you included in the

WatchKit app extension.

Your WatchKit app storyboard can contain any of three different types of

controllers, and they are: Interface Controllers, Glance Interface Controllers, and

Notification Interface Controllers. Let’s look at these controllers one by one.

The Interface Controller

A single interface controller object manages each scene, which is an instance of the

WKInterfaceController class. A WatchKit interface controller performs the same tasks

as a view controller in iOS, it will present and manage content that is displayed on the

screen, and it handles user interactions with the on-screen content. However, unlike

a view controller, an interface controller doesn’t manage the actual views of your

interface-- all of that is handled for you behind the scenes by WatchKit. This is nice in

the respect that it’s very simple to put a scene together quickly, but can make creating

scenes more difficult if the layout you want doesn’t fit in to the restrictions placed upon

WatchKit apps.

21

CHAPTER 1: An Apple Watch Introduction

WatchKit apps typically contain multiple interface controllers, with each one

displaying some different information. The interface is primarily user input driven, in so

much that a new interface controller is typically presented after the user has interacted

with the screen or a button.

Figure 1.1. The interface of a WatchKit app

Glance Interfaces

A glance is a window into your app and should display an app’s most pertinent

information. Glances are named as such because they’re intended to be looked at

quickly by the user. They’re not made to scroll; the entire glance interface must fit on a

single screen and they cannot contain buttons, switches, or other interactive controls.

Xcode will throw an error if you do anything illegal with a glance. Glances appear

when you swipe up from your Watch face, which means they are a quick and easy

way to see part or all of your app. Tapping a glance launches your WatchKit app.

Even with all of the restrictions Apple places on glances, they are incredibly useful

as a shortcut in to the app, even though Apple says you shouldn’t create one solely

for this purpose. You can only have one glance in your storyboard, but you can

configure the information it displays based on context such as location, time of day, or

user settings.

CHAPTER 1: An Apple Watch Introduction22

Figure 1.2. The Home Remote configurable Glance interface

Notification Interfaces

The Apple Watch works with its paired iOS device to display local and remote

notifications. By default, the Apple Watch uses a minimal interface to display incoming

notifications. The user will receive Taptic feedback and upon raising their wrist they

will see a very brief snippet of information. If the user holds their arm in place so

that the display stays on, the minimal interface changes to a more detailed interface

displaying the contents of the notification. This detailed interface is customizable and

you can add your own graphics or arrange the notification data differently from the

default interface provided by the system.

The Apple Watch notification system has support for the actionable notifications

introduced in iOS 8 with no need for any extra work to implement. Actionable

notifications are a way to add buttons to your notification interface that reflect the

actions the user could take. For example, a notification for a Tweet directed at you

might include buttons to reply, retweet, or favorite a tweet. When your iOS app

registers support for actionable notifications, the Apple Watch automatically adds

appropriate buttons to the notification interfaces on the Apple Watch. All you need to

do is handle the actions that the user selects. You do this in your WatchKit extension.

CHAPTER 1: An Apple Watch Introduction 23

Figure 1.3. An example of Notifications on the Apple Watch

Interface Navigation
If your WatchKit app has more than one screen of content, you’ll need to work out

which navigation type is the best fit. There are two types of navigation for WatchKit

apps; you can use either one or the other, but not both.

Page based. This style of navigation is best suited for apps

with a simple flow where the data on each page isn’t too

closely related to the data on any other page, or the app

flow is very linear: you will always perform A, followed by B,

followed by C. It needs to contain two or more independent

interface controllers, and only one of those is displayed at any

given time. At runtime, the user navigates between interface

controllers by swiping left or right on the screen. A pagination

indicator control at the bottom of the screen indicates the user’s

current position among the pages. If you’re having trouble

visualizing this, it’s very similar to the home screen on iOS,

the one with all of your apps. The list of glances accessible

from the Watch face screen is a good example of page based

navigation.

CHAPTER 1: An Apple Watch Introduction24

Figure 1.4. The dots at the bottom indicate this is a page based navigation

Hierarchical. This style of navigation is suited for apps with

more closely related screens of information or apps whose data

is more hierarchical. The hierarchical interface always starts

with a single root interface controller, which provides controls

that, when pressed, will push related interface controllers on

to the screen showing more detailed information. The Photos

app on iOS is a good example of this, with screens of years,

collections, and moments, all relating to one another. The

Settings app on the Apple Watch is another good example of

hierarchical navigation.

Figure 1.5. A hierarchical navigation example can be seen in the Settings app

CHAPTER 1: An Apple Watch Introduction 25

Although you cannot mix page based and hierarchical navigation styles in your

app, you can present other interface controllers above the one currently displayed

by using modal presentations. Modal presentations will interrupt the current user

workflow and display information or choices to the user. You can present interface

controllers modally from both page based and hierarchical apps. The modal

presentation itself can be a single screen, or multiple screens arranged in a page

based layout, although if you’re going to go this route you should maybe see if it can

be achieved in a more intuitive way.

Context Menus
The Retina display on the Apple Watch features a new technology called Force

Touch, and provides a new way to interact with content. Previously, you only had a

press or a long press available, but now, pressing the screen with a small amount of

force activates the context menu if there is one associated with the current interface

controller. Context menus are optional but they are a great way to add common

controls, or you can use them to display actions related to the current screen.

WatchKit displays the menu over your content.

A context menu can display up to four actions, along with a title string and an

image to represent each action. Tapping an action’s image dismisses the menu

and runs the action method associated with that menu item. Tapping anywhere else

dismisses the menu without any further action.

Summary
That’s the basics. Hopefully now you’ll understand a little about how a watch app is

structured, the types of screens you can have, and how to move through them all.

We’ll cover most of the things mentioned here in greater detail through the following

chapters. Next up, we’re going to look at one of the major components in WatchKit,

the WKInterfaceTable, which is the WatchKit version of the UITableView.

27

Chapter 2
Examining the Stopwatch,

Timer and Calendar

By Jamie Maison, creator of the Notation Watch app

When the Apple Watch was announced, it became clear that the device’s strengths

would be in its quick, simple and functional applications. Users were not going to want

to spend a large amount of time on their watches and would instead rely on it as a

device that provides a quicker way of receiving notifications and performing functions.

With this is mind, this chapter seeks to explore three types of applications that the

Apple Watch will be successful for: the stopwatch, timer, and calendar. Each of these

applications provides quick functionality while remaining entirely useful to the user.

The best Apple Watch applications will perform functions that take very few taps of

a button. This chapter explains how these interactions are handled while exploring the

code behind timing something as accurately and as efficiently as possible.

We will also look at how users can program push notifications into their applications

much like the calendar application while using iCloud to send data back and forth. iCloud

is an essential part of application development on iOS these days, and this chapter will

help you by teaching you the fundamentals of using iCloud with the Apple Watch.

Stopwatch
In this tutorial we will create a simple stopwatch application that has a label for

displaying our time, a start button to trigger the function to begin timing, and a Lap

button that will allow us to record our lap times. We will look at the best practice for

CHAPTER 2: Examining the Stopwatch, Timer and Calendar 28

timing using Objective-C to the most precise value possible that the Apple Watch can

process. We will be creating this as a native watchOS app because the Apple Watch

can easily handle the processing we will be implementing.

Creating the User Interface

The very first step that we have to take is to create the user interface, which will

consist of three elements, a label, and two actions. To do this on the Apple Watch

the fist step is to simply head over to your Interface.storyboard within your watchOS

application and add a label from the object library. We may want to center the label to

make our application look a little more aesthetic. To do this we simply head over to our

Attributes Inspector and set the horizontal position to Center. Next we want to change

the text of the label to say 00:00.00. This is merely a placeholder text to indicate that

our timer has yet to begin timing.

The next step is to add two buttons that will sit side-by-side of each other. To do

this we need to add a Group by selecting the group object from the Object Library and

placing it underneath our label. Next we add two buttons and place them side-by-side.

You may notice that one of the buttons is not yet visible and the first button is taking

up 100 percent of the width of the screen. To remedy this, simply head over to the

Attributes Inspector and set the width of each button to 0.5. Finally, name one button

START, and the other LAP.

Later on we will also be creating a table to store and handle all of the lap results,

but for now your user interface should look like what is shown in Figure 2.1.

Figure 2.1. Starting our user interface

29

CHAPTER 2: Examining the Stopwatch, Timer and Calendar

Outlets and Actions

The next step we have to take is to link these elements within our application. The

best way to do this is to open the Assistant Editor by clicking the icon in the top

right hand corner of Xcode. This way we can create our IBOutlet and IBActions for

our label, and buttons by simply control clicking the element in our user interface

and dragging it over to our .h file. We want to create an IBOutlet for our label and

call it timeLabel, two IBActions for our buttons called startTime and lapTime. Your

InterfaceController.h file should now look like this.

#import <WatchKit/WatchKit.h>
#import <Foundation/Foundation.h>

@interface InterfaceController : WKInterfaceController
@property (weak, nonatomic) IBOutlet WKInterfaceLabel *timeLabel;
- (IBAction)startTime;
- (IBAction)lapTime;
@end

Here we can see that we have declared three things, an outlet for our label and our

two actions. We are now ready to start coding the timing part of our application!

We need to add two extra properties to our InterfaceController.h file as follows.

@property (strong, nonatomic) NSTimer *watchTimer;
@property (strong, nonatomic) NSDate *startDate;

These two properties will store the time and date so that we can later use these to

produce our accurate time.

Triggering Timing

The next step is to head over to our .m file to implement the code that will actually

keep time on our Apple Watch application. Firstly, we want to create a method that will

do our processing, which we will call updateTimer. Within this method we first want to

save the time each time the method is fired. To do this we use the NSDate startDate

that we created earlier.

NSDate *dateNow = [NSDate date];
NSTimeInterval interval = [dateNow timeIntervalSinceDate:self.startDate];
NSDate *timeDate = [NSDate dateWithTimeIntervalSince1970:interval];

Next we want to format this time into something that is easily readable and useful

for our users. I recommend formatting the time in hours, minutes and seconds

because it will look a whole lot better than cramming milliseconds into our user

interface for little gain. To do this we use NSDateFormatter and tell it to process the

time in the format HH:MM:SS.

NSDateFormatter *dateFormat = [[NSDateFormatter alloc] init];

CHAPTER 2: Examining the Stopwatch, Timer and Calendar 30

[dateFormat setDateFormat:@"HH:mm:ss"];
[dateFormat setTimeZone:[NSTimeZone timeZoneForSecondsFromGMT:0.0]];

Finally we want to take the NSDate and convert it into a string so that we can

easily push it to our label, providing our users with a way to see our output.

NSString *timeString = [dateFormat stringFromDate:timeDate];
self.timeLabel.text = timeString;

Altogether our method should now look like this.

- (void)updateTimer
{
 NSDate *dateNow = [NSDate date];
 NSTimeInterval interval = [dateNow timeIntervalSinceDate:self.
startDate];
 NSDate *timeDate = [NSDate dateWithTimeIntervalSince1970:interval];

 NSDateFormatter *dateFormat = [[NSDateFormatter alloc] init];
 [dateFormat setDateFormat:@"HH:mm:ss"];
 [dateFormat setTimeZone:[NSTimeZone timeZoneForSecondsFromGMT:0.0]];

 NSString *timeString = [dateFormat stringFromDate:timeDate];
 self.timeLabel.text = timeString;
}

Now that we have our method set up, we need to fire it off somehow. The best way

to do this is to use the NSTimer watchTimer that we set up earlier in order to trigger

the method every second.

Note It is important to note that if you wish to time in milliseconds, for

example, the Apple Watch can sometimes struggle to process this and it

is best to switch the processing over so that the iPhone handles this. The

Apple Watch copes perfectly with a timer firing off every second, however

any quicker than this and it starts to struggle and can provide inaccurate

timings.

Inside of our IBAction for our start button that we created earlier, we want to first

assign our NSDate startDate with our current time.

- (IBAction)startTime {
 self.startDate = [NSDate date];
}

Next we want to trigger our updateTimer method every second, which we do using

our NSTimer.

- (IBAction)startTime {
 self.startDate = [NSDate date];
 self.watchTimer = [NSTimer scheduledTimerWithTimeInterval:1.0
 target:self

CHAPTER 2: Examining the Stopwatch, Timer and Calendar 31

 selector:@selector(updateTimer)
 userInfo:nil
 repeats:YES];
}

Here we see that the timer is set with an interval of one second and we have set

repeats to YES in order to continually fire the timer. Now that we have a fully working

timer, you can now build and run the application, press START and you will get a fully

working timer!

Adding the Lap Functionality

Now that we have our working stopwatch timer, the last step is to add some code to

our Lap button in order to allow our application users to record their lap times.

The first step here is to add a label to our user interface, which will display our time

when the Lap button is pressed. Doing this is simple. Head over to your Interface.

storyboard and place a label from our object library below our Start and Lap buttons.

At this stage you may want to center your label by setting its horizontal position to

center in the Attributes Inspector (see Figure 2.2).

Figure 2.2. Adding lap functionality to our interface

Next we need to head over to our Assistant Editor by selecting the icon in the top

right hand corner of your Xcode window. As we did in previous sections, we want to

CHAPTER 2: Examining the Stopwatch, Timer and Calendar 32

link the label on our interface to our InterfaceController.h and we do this by control

clicking the label and dragging it into our .h file. Let’s call it lapLabel so that it is easy

to remember.

While we are in our InterfaceController.h file we want to create one more property,

an NSString that will remember our time values so that they can be assigned to our

label. At the bottom of our .h file, just before @end, add a new property.

@property (strong, nonatomic) NSString *lapTimeRecord;

Our InterfaceController.h file should now altogether look like this:

#import <WatchKit/WatchKit.h>
#import <Foundation/Foundation.h>

@interface InterfaceController : WKInterfaceController

@property (weak, nonatomic) IBOutlet WKInterfaceLabel *timeLabel;
- (IBAction)startTime;
- (IBAction)lapTime;
@property (strong, nonatomic) NSTimer *watchTimer;
@property (strong, nonatomic) NSDate *startDate;
@property (weak, nonatomic) IBOutlet WKInterfaceLabel *lapLabel;
@property (strong, nonatomic) NSString *lapTimeRecord;
@end

Now that we have our .h file set up, the rest of the code is easy to implement. The

first step is to head over to our InterfaceController.m and in our updateTimer method

we want to add the following line before our closing bracket.

 self.lapTimeRecord = timeString;

This is will save the current time elapsed into the string that we created a second

ago, lapTimeRecord. The last step is to head to our IBAction lapTime to update our

lap label when the button is pressed.

- (IBAction)lapTime {
 self.lapLabel.text = self.lapTimeRecord;
}

Now when the button is pressed, the lap label will update itself and display the lap

time. We now have a finished basic stopwatch application; make sure you head over

to Xcode and test out the application!

If you want to carry on from here and improve the application you may want to

consider the following:

Storing your lap times in an array and presenting them in a

table instead of a label.

Adding a pause button to the application.

Adding milliseconds to your time elapsed.

CHAPTER 2: Examining the Stopwatch, Timer and Calendar 33

Timer
Arguably the most important feature of a timing device is the facility to be able to set

a countdown timer. These kinds of timers become useful when you need to complete

something in a specific amount of time or as a reminder to the user that something

needs to be done at a specific time. A practical example is the age old one of cooking

an egg. Users want to be able to set the time it takes to cook an egg and be reminded

when it is finished. The Apple Watch is the perfect device to have such a timer and it

is easy to implement in Xcode. The following tutorial will walk you through how to built

a countdown timer application for your Apple Watch device.

Creating the User Interface

The first step is to create the user interface and lay out the various elements of the

application. To do this, head over to your Interface.Storyboard within your WatchKit

application. For this application we are going to have two buttons that allow the user

to select the hours and minutes of their timer. We want these buttons to sit side-by-

side each other so as explained in the previous Stopwatch tutorial, place a group

from the object library followed by two buttons with their widths set to 0.5. To finish off

the buttons change the first button’s label to say 0 and the second button’s to 00 to

indicate our hours and minutes.

Underneath the buttons we want to place a label. Don’t worry too much about

setting any placeholder text because this will initially be hidden and only appear when

we want it to. We’ll talk more about this later on in the tutorial.

Finally we want two more buttons: named START and a RESET. As above we’ll

want these to sit side-by-side, so hold them within a group to accomplish this.

We now have a user interface for our application! If you’ve laid it out correctly, you

should have something that looks like Figure 2.3.

CHAPTER 2: Examining the Stopwatch, Timer and Calendar 34

Figure 2.3. Our finished user interface

Outlets and Actions

Our next step is to hook up our interface elements into our application and set up

our InterfaceController.h file. To accomplish this simply open the Assistant Editor by

clicking the icon in the upper right hand corner, pressing control on each element, and

dragging them into our .h file. We want to give each of our four buttons both an Outlet

and an Action.

@property (weak, nonatomic) IBOutlet WKInterfaceButton *hourButton;
@property (weak, nonatomic) IBOutlet WKInterfaceButton *minButton;
@property (weak, nonatomic) IBOutlet WKInterfaceButton *startButton;
@property (weak, nonatomic) IBOutlet WKInterfaceButton *resetButton;

- (IBAction)hourButtonPress;
- (IBAction)minButtonPress;
- (IBAction)startButtonPress;
- (IBAction)resetButtonPress;

The last element that you have to hook up is the label, which will display the

countdown time. We will call this timeLabel.

@property (weak, nonatomic) IBOutlet WKInterfaceLabel *timeLabel;

There are a few more things that we should do at this stage while we are in our

InterfaceController.h file. The first of which is to create an NSTimer, which we will use

to trigger our countdown process. To do this we simply need to add another property

into our .h file.

@property (nonatomic, weak) NSTimer *timer;

CHAPTER 2: Examining the Stopwatch, Timer and Calendar 35

Lastly, we need to create an integer that will handle how many seconds there

are left remaining on our time and two NSStrings that will keep track of the hours

and minutes our users have selected. We want to put these within our @interface

declaration to ensure that this is made available globally across our class.

@interface InterfaceController : WKInterfaceController{
 int secondsRemaining;
 NSString *minValue;
 NSString *hourValue;
}

Altogether our InterfaceController.h file should now look something like this.

#import <WatchKit/WatchKit.h>
#import <Foundation/Foundation.h>

@interface InterfaceController : WKInterfaceController{
 int secondsRemaining;
 NSString *minValue;
 NSString *hourValue;
}
@property (nonatomic, weak) NSTimer *timer;

@property (weak, nonatomic) IBOutlet WKInterfaceButton *hourButton;
@property (weak, nonatomic) IBOutlet WKInterfaceButton *minButton;
@property (weak, nonatomic) IBOutlet WKInterfaceButton *startButton;
@property (weak, nonatomic) IBOutlet WKInterfaceButton *resetButton;
@property (weak, nonatomic) IBOutlet WKInterfaceLabel *timeLabel;
- (IBAction)hourButtonPress;
- (IBAction)minButtonPress;
- (IBAction)startButtonPress;
- (IBAction)resetButtonPress;

@end

Here we can see that we have declared each of our elements within our Apple

Watch application as well as creating an NSTimer to handle our countdown and an

integer to hold the time remaining, in seconds.

Initializing the Application

Now that we have a user interface and all of its elements declared, we can now

focus on our InterfaceController.m file and start processing our time. Before we start

processing we want to hide our label until it is necessary for it to appear. To do this

you want to set the label’s hidden property to YES in your awakeWithContext.

- (void)awakeWithContext:(id)context {
 [super awakeWithContext:context];
 _timeLabel.hidden = YES;
}

CHAPTER 2: Examining the Stopwatch, Timer and Calendar 36

By setting this hidden property to YES, we are telling the Apple Watch application

to hide the time label when it loads, ensuring that the user does not see the element

until it is neccesary.

Handling Text Input with WatchKit

We now have to find a way to allow users to enter the time that they wish to

countdown from into the application. Even though the Apple Watch itself is not meant

to be an input device, with developers favoring input to be done via iPhone, there is

a way we can efficiently enter data, WKTextInput. By using WKTextInput you set a

series of values that users can select, for instance for our timer give our users the

option to select a value of the hour to 1,2,3,4,5, and so on.

The first step in this process for our timer application is to set WKTextInput for

our hour button. To do this enter the code in Listing 2.1 into your hourButtonPress

IBAction.

Listing 2.1. Setting WKTextInput for our button

- (IBAction)hourButtonPress {
 NSArray* predefinedAnswer = @[@"1", @"2", @"3", @"4", @"5", @"6",
@"7",
 @"8", @"9", @"10", @"11", @"12", @"13", @"14", @"15", @"16", @"17",
@"18",
 @"19", @"20", @"21", @"22", @"23", @"24"];
 [self presentTextInputControllerWithSuggestions:predefinedAnswer
 allowedInputMode:WKTextInputModeAllowAnimatedEmoji
 completion:^(NSArray *results) {
 if (results && results.count >0) {
}

Here you can see that we are setting an array with all of our predefined selections

in it, our hours from 1 to 24. We are then calling the WKTextInput mode with the

suggestions from our array. The final part of the code tells the application that if a

selection has been made the hourButton title is to be changed to that selection value

and our NSString hourValue is to remember that result.

Note You can set a higher number of hours for your timer, however, for the

purposes of this tutorial we are choosing a maximum of 24.

We now want to repeat this process but this time for our minButtonPress

IBAction (see Listing 2.2). Because this is setting our minutes, we want to create our

predefined values to be our minutes from 1 to 59.

CHAPTER 2: Examining the Stopwatch, Timer and Calendar 37

Listing 2.2. Setting our predefined values

- (IBAction)minButtonPress {
 NSArray* predefinedAnswer = @[@"1", @"2", @"3", @"4", @"5", @"6",
@"7",
 @"8", @"9", @"10", @"11", @"12", @"13", @"14", @"15", @"16", @"17",
@"18",
 @"19", @"20", @"21", @"22", @"23", @"24", @"25", @"26", @"27",
@"28",
 @"29", @"30", @"31", @"32", @"33", @"34", @"35", @"36", @"37",
@"38",
 @"39", @"40", @"41", @"42", @"43", @"44", @"45", @"46", @"47",
@"48",
 @"49", @"50", @"51", @"52", @"53", @"54", @"55", @"56", @"57",
@"58",
 @"59"];
 [self
}

The only difference, apart from our predefined values, is that you have to set the

value to the minButton and minValue rather than our hour values, so make sure you

change that.

That is all there is to initializing WKTextInput on the Apple Watch. You can now

build and run your application and give it a test. You should be able to press either

hour or minute button and it should bring up a list of options for you to select!

Start and Reset

Following on from using WKTextInput for our input buttons we now want to write our

methods for both our start and reset buttons. When the start button is pressed we

want to hide both of our input buttons, start our timer, and display the remaining time

on screen for our users. Subsequently, we want our reset button to set our timer to 0

and reset the interface for our users.

The first step in writing our start button method is to hide our two buttons and bring

up the time label. We do this by using .hidden and setting its value to YES or NO

depending on whether we want to hide or show our element. Altogether our code is as

follows.

- (IBAction)startButtonPress {
 _timeLabel.hidden = NO;
 _minButton.hidden = YES;
 _hourButton.hidden = YES;
}

The next step requires some calculations because we want to convert our hours

and minutes set earlier into the number of seconds remaining. To calculate this we

CHAPTER 2: Examining the Stopwatch, Timer and Calendar 38

take our minute value and multiply it by 60 (the number of seconds in a minute) and

our hour value by 3600 (the number of seconds in an hour.

secondsRemaining = ([minValue intValue] * 60) + ([hourValue intValue] *
3600);

The final addition to our startButtonPress method we need to make is an IF

statement that triggers our timer at certain intervals. Because we want to update our

time every second, we are safe to select an interval time of 1.0. We will be creating a

timer method, which we will call runTimer proceeding this step so we should declare

that as our selector now. It is also important to set repeats to YES to ensure that the

timer continues to fire off after the button has been pressed.

if (secondsRemaining >0 && secondsRemaining <36000001) {
 _timer = [NSTimer scheduledTimerWithTimeInterval:1.0 target:self
selector:@selector(runTimer:) userInfo:nil repeats:YES];
 }

We now can create our reset button. The code for this is considerably simpler

than that of our start button because all we need to do is show/hide the appropriate

elements of our user interface and invalidate our timer object using the following.

[_timer invalidate];

Now that we have created both of our methods for our buttons the resulting code

should look like this.

- (IBAction)startButtonPress {
 _timeLabel.hidden = NO;
 _minButton.hidden = YES;
 _hourButton.hidden = YES;
 secondsRemaining = ([minValue intValue] * 60) + ([hourValue intValue] *
3600);
 if (secondsRemaining >0 && secondsRemaining <36000001) {
 _timer = [NSTimer scheduledTimerWithTimeInterval:1.0 target:self
selector:@selector(runTimer:) userInfo:nil repeats:YES];
 }
}

- (IBAction)resetButtonPress {
 _minButton.hidden = NO;
 _hourButton.hidden = NO;
 _timeLabel.hidden = YES;
 [_timer invalidate];
}

Creating our Timer Method

Carrying forward what we have already created, now comes the all important timer

method. This particular method is what counts down our time, updates our label, and

issues an action whenever the timer reaches 0. The first thing that we have to do is

create the method in our InterfaceController.m file. You should call it something that

you will remember because we’ll have to relate to it further on in the tutorial. For this

example we will call it runTimer.

CHAPTER 2: Examining the Stopwatch, Timer and Calendar 39

- (void)runTimer: (NSTimer *) runningTimer {}

Now that we have our method, we want to create two integers, hoursValue, and

minutesValue, which will store our hours and minutes figures respectively so that they

can be displayed on screen.

- (void)runTimer: (NSTimer *) runningTimer {
int hoursValue, minutesValue;
}

The next step is to countdown our timer by one each time the method is fired. To

do this we use the “--“ operator on our secondsRemaining value we created earlier.

- (void)runTimer: (NSTimer *) runningTimer {
 int hoursValue, minutesValue;
 secondsRemaining--;
}

Now we wish to update our time label every time this method fires, thus creating

the countdown effect visually for our users. To perform this action we first have to

calculate our hours and minutes value from the second we have. First we calculate

the hours value by dividing the seconds remaining by 3600, we then set this to our

hoursValue integer we created a second ago. Then work out how many minutes by

using the integer remaining operator, which in Objective-C we write as “%”. Finally we

set our label to display the correct time remaining using NSString stringWithFormat.

Altogether we should now have a method that looks like this.

- (void)runTimer: (NSTimer *) runningTimer {
 int hoursValue, minutesValue;
 secondsRemaining--;
 hoursValue = secondsRemaining / 3600;
 minutesValue = (secondsRemaining % 3600) / 60;
 _timeLabel.text =[NSString stringWithFormat:@"%02d:%02d", hoursValue,
minutesValue];
}

Every time this method runs it will deduct a second from our time and update the

display in our app accordingly.

The final part of this method is to perform some sort of action whenever the time

reaches 0. To accomplish this we simply use an IF statement to detect whether or

not the time has reached 0 and if this is true then it performs some kind of action. We

must be sure to invalidate the timer when the countdown reaches 0 to ensure that

our users can use the application as many times as they want. The result of our IF

statement is as follows.

if (secondsRemaining==0) {
 [_timer invalidate];
 //PERFORM YOUR ACTION HERE
 }

You can perform any kind of function when the timer reaches 0, you may want to

play an alert sound for instance, have an on-screen notification, or have the Watch

vibrate at the necessary time.

CHAPTER 2: Examining the Stopwatch, Timer and Calendar 40

Believe it or not, our entire timer application is now complete! You can now head

over to Xcode and test it out. If you are looking to work on this project further you may

want to consider the following areas of improvement:

Adding seconds to the timer

Enabling dictation for user input

Using force touch to tap the user on the wrist when the timer

reaches 0

Calendar
When the Apple Watch was brought to the forefront, a handful of applications were

announced that would be natively available on the device from day one. With time

very much the focus of a lot of people’s attentions, it wasn’t a far stretch to imagine

how useful a calendar application might be on the Apple Watch. In this section we will

look at how various elements of a calendar application are constructed including how

to effectively use iCloud and EventKit. We will also explore how to create a calendar

application from scratch, detailing the process of building a user interface and saving

an event to your iCloud calendar before exploring the different types of notification

available within WatchKit at your disposal.

Introduction to iCloud

When Apple first introduced the iCloud API alongside Cloudkit in 2014, it meant that

developers could unlock a lot of potential in their devices. For the first time there was

now one reliable, unified way of sharing information between devices and storing

information in a reliable and cohesive way. In this section we will go over the basics of

iCloud including how to configure your project for iCloud, and creating record types.

Outlined below are some of the many features of iCloud that help developers reach

their full potential within their applications.

Notifications

1 PB Asset Storage (Images, Audio, etc.)

10 TB Database Storage (Strings, Arrays, etc.)

Setting up your Xcode Project for iCloud

The first step that you have to do within your Xcode project is to enable iCloud for use.

To do this head over to the capabilities section and flick on the switch from OFF to

ON, this is enable iCloud. At this stage you will have to select your developer account

from the drop-down list. Once this is done, press OK. Within the iCloud settings,

underneath where it says Services, tick the box next to CloudKit to enable CloudKit for

your project (see Figure 2.4).

CHAPTER 2: Examining the Stopwatch, Timer and Calendar 41

Figure 2.4. iCloud Capabilities settings

Creating Record Types

Now that we have set up CloudKit we now want to create Records for the various

elements that we want to use within our application. You can think of records as

shelves in a library, they hold the data that you are going to store and are named in

accordance to the containing information.

Initially we want to click on the CloudKit Dashboard button, which will take us

to the iCloud webpage. At this stage you’ll be promoted to sign in using your Apple

Developer username and password. You will be presented with a page that looks like

Figure 2.5.

Figure 2.5. The CloudKit dashboard

CHAPTER 2: Examining the Stopwatch, Timer and Calendar 42

To create a new record type for CloudKit you must first select Record Types from the

left-hand menu, you may notice that you will already have a record named Users, which

you can ignore. We want to click the “+” icon to create a new record (see Figure 2.6).

Figure 2.6. Adding a new record

The next step is to enter your Record Type Name, think of this as your shelf in

your library, so you’ll want to keep your data types in mind and name it accordingly.

Proceeding on from this you now want to add in your various attributes or data types.

You can select from the drop-down menu next to the attribute what kind of data you’d

like to assign. You can assign the following types of attribute:

String

Date/Time

Integer

Double

Bytes

Location

Reference

Asset

A good example of a record would be a book (see Figure 2.7). Your record type

name would be Book and the attributes may be things like a string for title, a string for

author, an integer for pages, and a date/time for publish date. This is just an example,

however it gives you a good idea of the kinds of data you can store using CloudKit.

CHAPTER 2: Examining the Stopwatch, Timer and Calendar 43

Figure 2.7. Record example – Book

Now that we know the basics of iCloud and CloudKit we can use it to create our

calendar application using iCloud together with EventKit.

Creating Calendars and Events in iOS Using EventKit
and iCloud

Apple’s EventKit framework provides “classes for accessing and manipulating

calendar events and reminders.” When it was introduced, it allowed developers an

easy way to create and manage calendar applications, in a way that was easy than

previously possible. In this section we will look at EventKit and learn the basics,

including using EventKit with iCloud, with a view to using it later on in this chapter to

create a calendar application for the Apple Watch.

Creating a New Calendar

The first step that is vital when using EventKit is to enable the framework within

your Xcode project. To do this you simply need to head over to the General tab of

your Xcode target and click the “+” symbol under Linked Frameworks And Libraries.

Following on from that all you need to do is select EventKit.framework from the list

and click Add, you have now successfully added EventKit to your project. Whenever

you use EventKit you will also have to remember to add it to the headers of your

project by adding the following into your .h files.

#import <EventKit/EventKit.h>

Creating a new calendar using EventKit is far simpler than you would think. The

idea is that all you have to do is tell Xcode that you want to create a calendar, and

then indicate both the calendar title and the source. To do this you first need to create

the calendar within your onLoad or awakeWithContext method.

 EKEventStore *eventStore = [[EKEventStore alloc] init];
 EKCalendar *calendar = [EKCalendar calendarWithEventStore:eventStore];
 calendar.title = @"myCalendar";

Here you can see that we create a calendar and set its title to myCalendar. The

next step is to set the calendar source, which we do by looping through the existing

source types within the Event Store until we find the one we want, then all we have to

do is tell our calendar to use that source.

 EKSource *calSource = nil;
 for (EKSource *source in eventStore.sources) {
 if (source.sourceType == EKSourceTypeLocal) {
 calSource = source;
 break;
 }

CHAPTER 2: Examining the Stopwatch, Timer and Calendar 44

 }
 if (calSource) {
 calendar.source = calSource;
 }
 }

This code shows that you can set the calendar to be stored locally only on the

user’s device, but what if we want to create a calendar within iCloud? In this instance

all we have to replace is the sourceType we are looking for in our loop to iCloud,

which results in the following code.

Note You can only set a local calendar if iCloud is NOT ENABLED within

your application.

EKSource *calSource = nil;
 for (EKSource *source in eventStore.sources) {
 if (source.sourceType == EKSourceTypeCalDAV && [source.title
isEqualToString:@"iCloud"]) {
 calSource = source;
 break;
 }
 }
 if (calSource) {
 calendar.source = calSource;
 }
 }

Here you can see that we have replaced the sourceType from local to iCloud. This

will mean that your calendar is saved on iCloud and accessibile across any iOS or

OSX device.

Creating an Event

Now that we have learned how to create a calendar using the EventKit framework, we

can turn our attention to creating the events that exist within them. The first step is to

create an EKEvent by writing the following code.

 EKEvent *newEvent = [EKEvent eventWithEventStore:eventStore];

Following on from this you then want to set both your start and end dates of your

event.

NSDate *startDate = [NSDate date];
 newEvent.startDate = startDate;
 newEvent.endDate = [startDate dateByAddingTimeInterval:3600];

Here you can see that we’ve set the start date to the current date and the end

date to an hour after our start date. Obviously you can set the start and end date in

accordance with whatever event you are creating. After doing this you need to tell you

new event that it is part of the eventStore you wish to save to.

CHAPTER 2: Examining the Stopwatch, Timer and Calendar 45

 [newEvent setCalendar:[eventStore defaultCalendarForNewEvents]];

The final step when creating in an event is saving it to our calendar, which we do

by simply using saveEvent as follows.

[eventStore saveEvent:newEvent span:EKSpanThisEvent error:&err];

With this code we are telling our application to save our event to our calendar that

we created. That is all that there is to creating a calendar with EventKit and iCloud,

and creating an event. In the next section we will look at how we can use this to create

a functioning calendar application for Apple Watch that allows the user to receive

push notifications on their device.

Creating an Apple Watch Calendar Application

In this section we are going to utilize what we have learned in the previous sections

and create a calendar application for the Apple Watch. By the end of this tutorial

you will have learned everything there is to know about creating a basic calendar

application with the Apple Watch in mind. We will be using iCloud and EventKit in order

to create the application while exploring push notifications on the Apple Watch itself.

Enabling iCloud and EventKit

The very first step that we should take after creating our Xcode project and WatchKit

extension is to enable iCloud and EventKit for use within our application. The process

is identical to the previous chapters, however we will re-cap what needs to be done.

iCloud

Enable iCloud in the Capabilities section of your target.

Select your developer account from the drop-down list.

Enable CloudKit by ticking the box in the Services section.

EventKit

Click the “+” button underneath the Linked Frameworks and

Libraries segment under the General tab of your target.

Select the EventKit.framework from the list and click “Add”.

Remember to add #import <EventKit/EventKit.h> in every .h file

you wish to include EventKit in.

Note Remember to initiate both iCloud and EventKit for both your iPhone

application and WatchKit Extension target if you have decided to do your

processing on the iPhone.

CHAPTER 2: Examining the Stopwatch, Timer and Calendar 46

UI
Carrying on forward from our iCloud and EventKit initialization, we now want to set

up our user interface for our application. At this point it may be useful to understand

how this application will work. As it may be favorable to do the majority of the

processing on our iPhone companion application because it will be far more powerful,

we are going to set up an iPhone application that allows our users to enter a start

time and end time of their event, and then give them the option to save this event to

their Calendar. The Apple Watch application will then allow the users to receive a

notification when their event is triggered.

It is with this in mind that we can head over to our Main.Storyboard within our

iPhone application and start positioning our elements. The first objects that we

should place in from our Object Library are our two text fields. It may be useful to add

placeholder text to either field in order to make using the application easier. This can

be done by clicking the relevant object and navigating to the Attributes Inspector. From

there you can enter the placeholder text in the section marked Placeholder, something

like Start Time and End Time may be appropriate for our two text fields.

The final element in our user interface is a button that will save our event when

clicked. As before, drag this element over into your storyboard and you can give it a

title of Save, or something similar.

Now that we have added our elements into our storyboard we should have

something that looks similar to Figure 2.8.

Figure 2.8. Finished user interface

The final step in producing our user interface is to navigate over to our

ViewController.h and defining our elements. As in previous sections, all we have to

CHAPTER 2: Examining the Stopwatch, Timer and Calendar 47

do here is open the Assistant Editor by clicking the icon in the top right hand corner of

Xcode and keeping our storyboard and .h files side-by-side. Then all you have to do is

control click the elements and drag them over to your header file to include them. We

want to create two IBOutlets for our text fields, named something like startField and

endField. We also want to create an IBAction linked to our save button, which we can

call saveButton or similar. Our entire header file will now be laid out as follows.

#import <UIKit/UIKit.h>
#import <EventKit/EventKit.h>
@interface ViewController : UIViewController
@property (weak, nonatomic) IBOutlet UITextField *startField;
@property (weak, nonatomic) IBOutlet UITextField *endField;
- (IBAction)saveButton:(id)sender;
@end

Create Calendar

Since we have now set up the elements of our user interface we can move over to

the main code to be executed within our calendar application. The first component

that we should set up is creating a global variable for our eventStore, which we do by

including the following in our interface declaration.

@interface ViewController (){
 EKEventStore *eventStore;
}

This simply creates an EKEventStore for us to use throughout our application.

After this we need to initialize our calendar and store it in iCloud. Because we want

this to happen immediately after starting our application, we want to write the following

within our viewDidLoad.

 eventStore = [[EKEventStore alloc] init];
 EKCalendar *calendar = [EKCalendar calendarWithEventStore:eventStore];
 calendar.title = @"iCloudCalendar";

 EKSource *calSource = nil;
 for (EKSource *source in eventStore.sources) {
 if (source.sourceType == EKSourceTypeCalDAV && [source.title
isEqualToString:@"iCloud"]) {
 calSource = source;
 break;
 }
 }
 if (calSource) {
 calendar.source = calSource;
 }

When executed, this code creates a calendar with a title of iCloudCalendar

(You can name it whatever you wish) and assigns it the source type of iCloud; thus

indicating that it is an iCloud calendar. Believe it or not, that is all we have to do when

initializing our calendar for the first time!

CHAPTER 2: Examining the Stopwatch, Timer and Calendar 48

Saving Our Event

Arguably one of the most important aspects of your calendar application will be the

facility to create and save events reliably. With this in mind we can now begin working

on our all-important save button which, when pressed, will take the dates entered into

our startField and endField and create an event in reference to those dates.

The first part of our button’s code will be to convert the string entered into our

field into an NSDate. This is necessary in order for EventKit to process our dates

entered so that it can turn them into our event. To perform this task we want to use

NSDateFormatter, which will convert our string into a date. The code will look like this.

 NSDateFormatter *dateFormat = [[NSDateFormatter alloc] init];
 [dateFormat setDateFormat:@"dd-MM-yyyyz"];
 NSDate *startDate = [dateFormat dateFromString:_startField.text];

Here we can see that NSDateFormatter is taking the string from our startField

text field and converting it to an NSDate in the format dd-MM-yyyy. You may

notice the lowercase “z” at the end of the setDateFormat. All this does is ensure

that the date you have entered is in a non-location format ensuring that the time

doesn’t compensate for time zones GMT, BST, etc. Be sure to repeat this code for

both the startField and endField text fields so that both are formatted correctly for

further use.

The next part of our core relates to actually creating the event using EventKit

and saving it to our calendar. To do this we simply create a new event using

EKEvent, set our dates, and save the event to our calendar. This results in the

following code.

EKEvent *newEvent = [EKEvent eventWithEventStore:eventStore];

 newEvent.startDate = startDate;
 newEvent.endDate = endDate;

 [newEvent setCalendar:[eventStore defaultCalendarForNewEvents]];

 NSError *err;

 [eventStore saveEvent:newEvent span:EKSpanThisEvent error:&err];

If we look at this segment closer, we see that we are initially creating an EKEvent

called “newEvent” which we then reference to when setting our start and end dates.

We then set our newEvent to the eventStore that we created earlier. We will be using

the NSError in our code in the next part of our tutorial, however it is necessary to

define it here so it can be referenced to in our saveEvent. The last line of code here

simply tells our eventStore to save our new event to our iCloud calendar.

The last step is to use the NSError that we just created in order to create some alerts

that notify the user whether or not the event has saved. This is as simple as using an if

statement to determine if there is an error and showing a UIAlertView depending on the

result. You should end up with something that looks like what is shown in Listing 2.3.

CHAPTER 2: Examining the Stopwatch, Timer and Calendar 49

Listing 2.3. Creating alerts for saved events

if (err == noErr) {
 UIAlertView *alert = [[UIAlertView alloc]
 initWithTitle:@"New Event"
 message:[NSString
stringWithFormat:@"Successfully added to calendar!"]
 delegate:nil
 cancelButtonTitle:@"OK"
 otherButtonTitles:nil];
 [alert show];
 }
 else{
 UIAlertView *errorAlert = [[UIAlertView alloc]
 initWithTitle:@"Error Creating Event"
 message:[NSString stringWithFormat:@"There
has been an error creating your event"]
 delegate:nil
 cancelButtonTitle:@"OK"
 otherButtonTitles:nil];
 [errorAlert show];

 }

Now that we have set up the save button to handle our event, saving our

InterfaceController.m will be as shown in Listing 2.4.

Listing 2.4. Our new InterfaceController.m

#import "ViewController.h"

@interface ViewController (){

 EKEventStore *eventStore;
}

@end

@implementation ViewController

- (void)viewDidLoad {
 [super viewDidLoad];

 eventStore = [[EKEventStore alloc] init];
 EKCalendar *calendar = [EKCalendar calendarWithEventStore:eventStore];
 calendar.title = @"iCloudCalendar";

 EKSource *calSource = nil;
 for (EKSource *source in eventStore.sources) {
 if (source.sourceType == EKSourceTypeCalDAV && [source.title
isEqualToString:@"iCloud"]) {
 calSource = source;
 break;
 }
 }

CHAPTER 2: Examining the Stopwatch, Timer and Calendar 50

 if (calSource) {
 calendar.source = calSource;
 }
}

- (IBAction)saveButton:(id)sender {

 NSDateFormatter *dateFormat = [[NSDateFormatter alloc] init];
 [dateFormat setDateFormat:@"dd-MM-yyyyz"];
 NSDate *startDate = [dateFormat dateFromString:_startField.text];

 NSDateFormatter *dateFormat2 = [[NSDateFormatter alloc] init];
 [dateFormat setDateFormat:@"dd-MM-yyyyz"];
 NSDate *endDate = [dateFormat2 dateFromString:_endField.text];

 EKEvent *newEvent = [EKEvent eventWithEventStore:eventStore];

 newEvent.startDate = startDate;
 newEvent.endDate = endDate;

 [newEvent setCalendar:[eventStore defaultCalendarForNewEvents]];

 NSError *err;

 [eventStore saveEvent:newEvent span:EKSpanThisEvent error:&err];

 if (err == noErr) {
 UIAlertView *alert = [[UIAlertView alloc]
 initWithTitle:@"New Event"
 message:[NSString
stringWithFormat:@"Successfully added to calendar!"]
 delegate:nil
 cancelButtonTitle:@"OK"
 otherButtonTitles:nil];
 [alert show];
 }
 else {
 UIAlertView *errorAlert = [[UIAlertView alloc]
 initWithTitle:@"Error Creating Event"
 message:[NSString stringWithFormat:@"There
has been an error creating your event"]
 delegate:nil
 cancelButtonTitle:@"OK"
 otherButtonTitles:nil];
 [errorAlert show];
 }
}
@end

Now that we have set up the iPhone side of our calendar application, we can talk

about notifications on the Apple Watch and we can explore potential ways of how you

would go about delivering notifications for your calendar application.

CHAPTER 2: Examining the Stopwatch, Timer and Calendar 51

Notifications on the Apple Watch

When Apple announced the Apple Watch it became evident that the predominant

feature of the device would be in its user notifications, acting as a convenient and

easy to reach the notification center for iOS. With this in mind developers are always

interested to know about how notifications work on the Apple Watch. In this section we

will cover the different types of notification you can get on the Apple Watch, which you

may want to use in relation to your calendar application.

There are two types of notification in WatchKit, short-look and long-look. Each type

has its particular nuances, which are as follows:

Short-look notifications work in exactly the same way as

notifications work on the iPhone. As a developer we do not

have any control over the way that short-look notifications

are laid out and are therefore the easiest way of delivering a

notification on the Apple Watch. The way that they work is that

the short-look notification will appear on whichever is the active

device, the Apple Watch or the iPhone. They appear just like a

banner notification does on the iPhone.

Long-look notifications by nature can be categorized as either a

static or dynamic notification.

Static notifications have a single text field that is automatically

filled by the system. You can customize the title of the

notification and the sash color, but are otherwise entirely static.

Dynamic notifications, on the contrary, can have their own

custom interface, which can be created using your Interface.

storyboard.

Now that you understand the different types of notification you can have on the

Apple Watch, you can explore which one suits your application the best. Typically a

short-look notification is powerful when you want to quickly push a notification to the

user. A static long-look notification is useful when wanting to hold the users attention a

little longer and a dynamic notification allows you to adapt their experience.

Summary
Throughout the course of this chapter we have examined some of the apps that run

seamlessly on the Apple Watch and are fundamentally the type of applications that

will be successful on the platform. We have looked at the stopwatch together with

the art of timing accurately with WatchKit. We have built a basic timer application

while discussing text input on the Apple Watch. Finally we examined some of the

basic functions of the calendar, exploring upon iCloud, and how to save an event with

CHAPTER 2: Examining the Stopwatch, Timer and Calendar 52

EventKit. Hopefully you now have a good knowledge of some of the fundamentals

behind these types of WatchKit applications and that you can now explore these

features further and build yourself a functional and successful application on

watchOS.

53

Chapter 3
Taming Complex Data

for the Watch

By Matt Klosterman, creator of various Watch apps

Five seconds.

One. Two. Three. Four. Five.

Those five seconds are roughly the amount of time you have in your Watch

application to grab the attention of the user and fulfill the expectations they had when

they raised their wrist and opened your application.

It may seem like a daunting challenge. When creating a Watch experience for an

application that connects to any large data source, it is very likely that just describing

the types of information available to your users would take far, far longer than five

seconds.

What is a developer to do? How can you give a user the information or action they

need within such a short span of time?

This chapter will walk you through four techniques that were successful in taking

one such large system, an application for an airline, and turning it into a delightful

experience that could truly tell you what you needed to know in five quick seconds. As

the chapter progresses we’ll walk through a more general example of a complicated

application, a CRM system, and work through exercises that show you how to apply

these four techniques for creating simple and useful Watch applications for complex

information. These techniques are:

CHAPTER 3: Taming Complex Data for the Watch 54

1. Find your user’s story.

2. Maintain simplicity through relevancy.

3. Increase recognition through repetition.

4. Use notifications as punctuation.

Background
Before we tackle each of these techniques, let’s decide on the application we are

building. This application is going to be a CRM (Customer Relationship Management)

system that is aimed at commercial photographers. These are the types of

professional photographers whose specialty is taking photographs for usage in things

like advertising campaigns.

Five to 10 years ago, software that assisted this photographer may have ran on a

desktop computer. It may have looked something like Figure 3.1.

Figure 3.1. Wireframe of CRM software for photography niche on Mac

As iPhones and iPads became more prevalent over the last five years, that

software may have started to look more like Figure 3.2.

55

CHAPTER 3: Taming Complex Data for the Watch

Figure 3.2. Wireframe drawing of CRM software for photography niche on iPhone and iPad

What would that same information look like if you were trying to bring it to a Watch?

If we tried to directly translate what we had on the desktop and then on a phone or

tablet onto the Watch, we wouldn’t have a very useful application (see Figure 3.3).

Figure 3.3. Wireframe of native implementation of CRM software for photography niche on Watch

CHAPTER 3: Taming Complex Data for the Watch 56

One thing that should be clear is that simply taking an existing UI that successfully

navigates through a complex hierarchy of information and “shrinking it down” to fit on

the screen of the Watch is not going to be ideal. Two key factors contribute to this.

First, only small snippets of information are visible at a time. Second, holding both

of your hands up and navigating through different tiers of information would quickly

become awkward.

There must be a better way. In fact there is, and we are going to start walking

through one approach that does work better right now. To do so we’re going to

think like an assistant. For this particular application that we are building, a CRM

application for commercial photographers, we are going to pretend we are the

assistant to a photographer.

As their assistant, the photographer relies on you for information, instructions and

the handling of tasks. You provide them support in keeping their clients happy and

ensure their photo shoots happen on schedule and to the desired specifications.

How would you do this job if you were a piece of software? More precisely, how

would you do this job if every interaction you had with your boss was limited to, say,

five to twenty seconds? Could you get their attention within five seconds? Could you

keep their job flowing smoothly if there was a hard cap of twenty seconds each time

you talked? That’s the reality of what your users are going to expect when using

your Watch application. Interactions longer than that can quickly make the user feel

awkward or frustrated. So how do we proceed?

Find Your User’s Story
Our first goal is going to be to find the user’s story. What matters to them? What

problems are they having? What information or actions will we provide to solve those

problems?

Let’s continue by putting ourselves in the shoes of the assistant again. The

photographer you work for may be very busy. Between shoots they may ask you

questions about what they need to do. Questions like:

When is the next shoot?

Where is it at?

Who is it for?

What is it of?

What other questions could we anticipate? Let’s generalize the questions a bit further to:

Who?

What?

When?

CHAPTER 3: Taming Complex Data for the Watch 57

Where?

Why?

How?

In journalism, those six questions represent what must be answered to tell a

complete story. In this hypothetical job as an assistant, this is also a great place to

start for figuring out what information to focus on presenting to your employer. If the

photographer whom you work for rushes by you in the office and says, “get me up to

speed” what would you say? You might say something like:

 “In one hour, we need to leave to go across town to Acme’s design laboratory to

take some shots of their new widget for next month’s ad campaign.”

How would we take complexity out of some one else’s life? What questions would

we answer for them? That’s the heart of what we need to solve to successfully take a

system of complex data and distill it down into simple answers for the person. This is

the essential starting place for creating a successful Watch application.

For an application that is assisting a commercial photographer, the core answers at

a single point in time might look something like Figure 3.4.

Figure 3.4. Simple UI that answers the questions of where, when, what, and who

With this display we’ve answered the core questions that the photographer might

ask while running by us inside their office:

CHAPTER 3: Taming Complex Data for the Watch 58

Where is the next shoot?

When is it?

What is it of?

Who is it for?

Now that we’ve narrowed in on the questions we need to answer, let’s start

creating a simple project to display this information.

CREATE A SIMPLE APPLICATION TO DISPLAY ‘WHAT’S NEXT’

1. Start a new project in Xcode by choosing File New Project.

2. We are going to focus on the Watch side of the application so let’s just create

a simple Single View Application. If you are using Xcode 7 and building for

watchOS 2 you’ll choose watchOS Application iOS App with WatchKit

App (see Figure 3.5).

Figure 3.5. Creating a single view app

3. We’ll call this project Chapter6 (see Figure 3.6). If you are using Xcode 7 and

building for watchOS 2 you’ll choose to include a Notification Scene and a

Complication, but not a Glance Scene right now.

CHAPTER 3: Taming Complex Data for the Watch 59

Figure 3.6. Naming our project Chapter6

4. Navigate to where you wish to save the project and choose Create (see Figure

3.7).

Figure 3.7. Saving the project

CHAPTER 3: Taming Complex Data for the Watch 60

5. Next we’ll add a Watch target to the application. If you are using Xcode 7 and

building for watchOS 2 you’ll skip steps 5 through 10.

6. To add the Watch target, we will next choose the project at the top level of the

Project Navigator in Xcode (see Figure 3.8).

Figure 3.8. Selecting the project in Project Navigator

7. At the bottom left of the left hand pane in the project editor, we’ll press the “+”

button to create a new Target (Figure 3.9).

CHAPTER 3: Taming Complex Data for the Watch 61

Figure 3.9. Selecting our target

8. We will choose to create a WatchKit App target, and then press Next (Figure

3.10).

CHAPTER 3: Taming Complex Data for the Watch 62

Figure 3.10. Creating our WatchKit app

9. For now, we will choose to create both a Notification scene but not a Glance

scene, and then we will press Finish (see Figure 3.11).

Figure 3.11. Creating a Notification scene

10. When prompted we will choose to activate the Chapter 6 WatchKit App Scheme

(Figure 3.12).

CHAPTER 3: Taming Complex Data for the Watch 63

Figure 3.12. Activating the scheme

11. Next, we’ll navigate to the Interface.storyboard file for the Watch application.

12. Xcode created a Main interface for our Watch application as well as a

placeholder for our first notification (see Figure 3.13).

Figure 3.13. Our interface an notification placeholder

CHAPTER 3: Taming Complex Data for the Watch 64

13. Before we chose to not create a Glance when we were having Xcode set up

our initial WatchKit app. If we had there would also be a placeholder Glance

Interface Controller in Interface.storyboard (see Figure 3.14).

Figure 3.14. Note the Glance Interface Controller

14. To start with on our sample application, we are actually going to start by focusing

on the Glance. To make demonstrating some of the later exercises easier we are

actually going to create the Glance in a separate storyboard.

15. Right-click Chapter6 WatchKit App in the project navigator, and click New File

(Figure 3.15).

CHAPTER 3: Taming Complex Data for the Watch 65

Figure 3.15. Clicking our new file

CHAPTER 3: Taming Complex Data for the Watch 66

16. We are going to choose Storyboard under Apple Watch (see Figure 3.16).

Figure 3.16. Selecting Storyboard

CHAPTER 3: Taming Complex Data for the Watch 67

17. We are going to call this Storyboard Glance1. When you create multiple

Storyboards and include them all in an Apple WatchKit application they become

joined together in the final WatchKit application that is installed on the Watch.

This is an important distinction because each application can only have one

Glance interface specified in the application (Figure 3.17).

Figure 3.17. Naming the Storyboard Glance1

CHAPTER 3: Taming Complex Data for the Watch 68

18. After creating the Storyboard we will have a new, empty storyboard (Figure

3.18).

Figure 3.18. Our new empty Storyboard

19. We are going to create a new Glance by dragging a Glance Interface Controller

onto the Storyboard (Figure 3.19).

Figure 3.19.Creating a new Glance

CHAPTER 3: Taming Complex Data for the Watch 69

20. For this example we are going to stay with the default Glance template of a

group in the top section, and a group in the bottom section.

21. As a reminder, here is the UI we are aiming to create right now (Figure 3.20).

Figure 3.20. Our UI we are creating

22. To model this we are going to start by changing the Layout of the bottom Group

from Horizontal to Vertical (Figure 3.21).

Figure 3.21.Changing to vertical

CHAPTER 3: Taming Complex Data for the Watch 70

23. Next we are going to put four WKInterfaceLabels into that bottom group (Figure

3.22).

Figure 3.22. Adding four labels

24. For now, we will hard code the text in these labels (Figure 3.23).

CHAPTER 3: Taming Complex Data for the Watch 71

Figure 3.23.Temporarily hardcoding text on our labels

25. Right away we notice one issue. Some of our text may be too large to fit the

width of the display. To handle this we are going to change the labels to allow

text to shrink instead of clip if the text runs outside of the bounds of the labels.

For now, we’ll set the Min Scale on each label to .5 (Figure 3.24).

Figure 3.24. Setting our Min Scale to .5

26. With those settings we are still a little off from what our design called for though.

CHAPTER 3: Taming Complex Data for the Watch 72

The design called for a different font weight on the When? line, the 1 hour

value. To achieve that we are going to set the font style on that label to Headline

(Figure 3.25).

Figure 3.25. Setting our Headline font style

27. When we set a font to one of those preset Text Styles, it allows the user’s

Dynamic Type preferences in settings to change the size and weight of the

default system font settings to match the user’s preference for text sizes (Figure

3.26).

Figure 3.26. Dynamic text in action

28. To further emphasize that line of text we are going to set the other lines to use

CHAPTER 3: Taming Complex Data for the Watch 73

style Caption 2.

Figure 3.27. Setting font style to caption 2

29. Let’s run our application to get a sense of what our UI looks like as of right now.

30. To run our Glance we’ll want to pick it from the scheme list in Xcode.

31. At this point we’ll see a problem (see Figure 3.28).

Figure 3.28.We are missing our Glance scheme

32. Since we created our Glance by hand and didn’t have one when we created the

project, Xcode didn’t automatically create a scheme for our Glance. We’ll create

that now.

33. First we’ll choose Manage Schemes.

34. Next we’ll highlight our Chapter6 WatchKit App scheme (Figure 3.29).

CHAPTER 3: Taming Complex Data for the Watch 74

Figure 3.29. Highlighting our scheme

35. Next we’ll choose the gear icon near the bottom left of the window and click it.

We will then choose to Duplicate the highlighted scheme (see Figure 3.30).

Figure 3.30. Duplicating a scheme

36. After choosing Duplicate we will be prompted to edit settings for the new

Scheme (Figure 3.31).

CHAPTER 3: Taming Complex Data for the Watch 75

Figure 3.31. Edit the scheme settings

37. We will name our scheme Chapter6 WatchKit App - Glance and we will set the

Watch Interface setting to Glance. Then we’ll press Close (Figure 3.32).

CHAPTER 3: Taming Complex Data for the Watch 76

Figure 3.32. Setting the interface to Glance

38. Then we’ll press Close on the schemes Window as well.

39. Now we’ll run the application with our new Chapter6 Watch App - Glance

scheme.

40. We now have our simple UI running as a Glance (Figure 3.33).

Figure 3.33. Our running Glance

CHAPTER 3: Taming Complex Data for the Watch 77

Maintain Simplicity Through Relevancy
We’ve now created a simple application that displays a small sliver of data to our user

that answers their most immediate questions:

When is the next shoot?

Where is it at?

Who is it for?

What is it of?

The information we have to provide to the user could still be far more involved than

that. Let’s revisit again what the CRM software for this niche may have looked like as

a Mac application a number of years ago (see Figure 3.34).

Figure 3.34. Wireframe of CRM software for photography niche on Mac

CHAPTER 3: Taming Complex Data for the Watch 78

Is there a way we can make more of this information available to the user in a

Watch application? If we do attempt to display more information to the user, how can

we do so without making the software so complex that it takes minutes instead of

seconds to help the user?

To answer these questions, let’s think about those questions the photographer may

ask a bit more. What questions might the photographer ask if they were on location at

a shoot instead of in their studio? The questions on location might be more along the

lines of:

When does this shoot need to be completed by?

Who is my point of contact for the client?

Why is the client doing the shoot?

What shots do I need to get?

For this scenario we may instead want our application to display the answers to

those questions. It may look something like what is shown in Figure 3.35.

Figure 3.35. Simple UI that answers the questions of why, when, who, and what for a photographer that

is on location at a shoot

With this modified layout of information for when the user is on location we now

have an interface that can still convey the most important thing the photographer

needs to know at that moment of time. It is also simple, clear and concise so that the

photographer can digest it in just a few seconds.

CHAPTER 3: Taming Complex Data for the Watch 79

Let’s look at the interfaces for these two scenarios side-by-side (see Figure 3.36).

Figure 3.36. Basic UI for two scenarios side-by-side

What we’ve accomplished with this design is to maintain the simplicity of the user

interface by varying the content that is displayed instead of expanding the amount

of content that is displayed. By focusing on displaying the most relevant information

we can maintain a user interface that is easily understood within seconds. What is

important right now is surfaces in front of the user. Everything else falls out of sight.

How would we go about implementing such a design? With our next exercise we’ll

start by modifying our application to support both types of scenarios: in studio and on

location.

MODIFY APPLICATION TO SUPPORT ‘ON-LOCATION’ SCENARIO

1. Open our Chapter 6 Project in Xcode.

2. We’re going to start by just creating a different hard coded Glance again for

demonstration purposes. To do this we will create a duplicate of our Glance

storyboard. Note that steps 3 through 16 aren’t actually required for the project

to function, and are instead a short detour to give a bit of insight into the fact that

WatchKit storyboard files get combined together at compile time before being

put into the application bundle that resides on the Watch.

CHAPTER 3: Taming Complex Data for the Watch 80

3. In Xcode, right-click on Glance1.storyboard and choose Show in Finder (Figure

3.37).

Figure 3.37. Selecting Show in Finder

4. In Finder, right-click Glance1.storyboard and click Duplicate In Finder. Right-click

Glance1.storyboard and click Duplicate (see Figure 3.38).

Figure 3.38. Choosing the duplicate

5. You will now have the Glance1.storyboard and Glance1 copy.storyboard files

(Figure 3.39).

CHAPTER 3: Taming Complex Data for the Watch 81

Figure 3.39.Both Glance1 copies

6. Rename Glance1 copy.storyboard to Glance2.storyboard (Figure 3.40).

Figure 3.40. Renaming the Glances

7. Drag Glance2.storyboard into your Xcode project below Glance1.storyboard.

When prompted add it to the Chapter6 WatchKit App target. Leave Copy Items

If Needed selected and click Finish. Drag Glance2.storyboard into your Xcode

project below Glance1.storyboard. When prompted add it to the Chapter6

WatchKit App target, and leave Copy Items If Needed selected, and click Finish

(see Figure 3.41).

Figure 3.41.Adding Glances to the WatchKit App

CHAPTER 3: Taming Complex Data for the Watch 82

8. If we ran the application now with both storyboard files in the project we

would get an error about the application having two Glances defined. For this

demonstration we’ll leave Glance2.storyboard enabled in the Chapter6 WatchKit

App target (Figure 3.42).

Figure 3.42. Keeping Glance2 enabled

9. We will disable the Glance1.storyboard in the Chapter6 WatchKit App target

(Figure 3.43).

Figure 3.43. Disabling Glance1

10. If we were to re-run our application now, we’d get the same UI as before (Figure

3.44).

Figure 3.44.The same UI

CHAPTER 3: Taming Complex Data for the Watch 83

11. But we want to visually inspect our alternate design for the application when the

user is on-location at a photo shoot (Figure 3.45).

Figure 3.45. Visual inspection

12. To do this we are simply going to edit the labels to have the new text, and then

we are going to set the color on the time label to be red (Figure 3.46).

Figure 3.46. Setting our time label to red

CHAPTER 3: Taming Complex Data for the Watch 84

13. When we run the application we will now see the alternate UI (Figure 3.47).

Figure 3.47. Our alternate UI

14. Two hard coded UIs aren’t particularly useful, so let’s clean up our project and

work on setting up the application to switch between scenarios programmatically.

15. First delete the Glance2.storyboard file.

16. Next select the Glance1.storyboard file in the project navigator.

17. Next select our Glance Interface Controller in Interface Builder (Figure 3.48).

Figure 3.48. Selecting the Glance Interface Controller

CHAPTER 3: Taming Complex Data for the Watch 85

18. Copy that controller by choosing Edit, and then Copy.

19. Now select our main Interface.storyboard file for our Watch application.

20. Click in an empty location in the Storyboard in Interface Builder.

21. Then paste in our Glance using Edit, and then Paste. We’ll now have four

interface controllers in our Storyboard. A main interface, a Glance, and a static

and dynamic notification interface controller for the myCategory notification

category (see Figure 3.49).

Figure 3.49. Our four interface controllers

22. Next, we’ll clean up our project by deleting the Glance1.storyboard file.

23. Now we’ll start on building out the code for our sample application. First, we’ll

right-click the Chapter6 WatchKit Extension group in the project navigation and

choose New File (Figure 3.50).

CHAPTER 3: Taming Complex Data for the Watch 86

Figure 3.50. Choosing a new file

24. We’ll choose to create a new iOS Cocoa Touch Class and then click Next

(Figure 3.51).

Figure 3.51. Creating a Cocoa Touch Class

25. We are going to name our new class GlanceController, and make it a Subclass

of WKInterfaceController. Then we will click Next (Figure 3.52).

CHAPTER 3: Taming Complex Data for the Watch 87

Figure 3.52. Our new class and subclass

26. We’ll double check that our new class is added to the WatchKit Extension, and

then we’ll click Create (Figure 3.53).

Figure 3.53. Adding our new class to the WatchKit extension

Xcode will create a new class that looks similar to this:

//
// GlanceController.m
// Chapter6

#import “GlanceController.h”

CHAPTER 3: Taming Complex Data for the Watch 88

@interface GlanceController ()

@end

@implementation GlanceController

- (void)awakeWithContext:(id)context {
 [super awakeWithContext:context];

 // Configure interface objects here.
}

- (void)willActivate {
 // This method is called when watch view controller is about to be
visible to user
 [super willActivate];
}

- (void)didDeactivate {
 // This method is called when watch view controller is no longer
visible
 [super didDeactivate];
}

@end

27. We are going to add four properties to match the WKInterfaceLabel views that

we are using to display our summary information to the user. We’ll add these

properties in the class extension at the top of GlanceController.m. The class

extension should now look like this:

@interface GlanceController ()

@property (nonatomic,weak) IBOutlet WKInterfaceLabel *userSummaryLine1;
@property (nonatomic,weak) IBOutlet WKInterfaceLabel *userSummaryLine2;
@property (nonatomic,weak) IBOutlet WKInterfaceLabel *userSummaryLine3;
@property (nonatomic,weak) IBOutlet WKInterfaceLabel *userSummaryLine4;

@end

28. Now we will go back to our Interface.storyboard and do two things. First, we’ll

click on our Glance and set the class to GlanceController in the identity inspector

(Figure 3.54).

CHAPTER 3: Taming Complex Data for the Watch 89

Figure 3.54. Setting the class to GlanceController

29. Next we will connect our labels in the storyboard to the outlets of the properties

we added to the Glance’s class extension (Figure 3.55).

Figure 3.55. Connecting our labels

30. Now we are going to create some sample data and set up our GlanceController

to support two different summary views of our user’s data. One for while the

user is on location at a shoot, and one for when the user is not on location at a

shoot.

31. We’re going to add four new classes to the project plus add a plist that we’ll

use as our data store for demonstration purposes. We’ll also need to add the

CoreLocation framework to the linked libraries and frameworks for our WatchKit

Extension’s target.

CHAPTER 3: Taming Complex Data for the Watch 90

32. We’ll add our sample data plist file first. Right-click the Chapter6 WatchKit

Extension group, and click New File.

33. Choose Property List in the iOS Resource section.

34. Click Next.

35. Name the file SampleData and click Create.

36. The contents of the plist should look like Figure 3.56.

Figure 3.56 The plist contents

37. Next we’ll create four new classes. For each class add a new file to the

WatchKit Extension and choose Cocoa Touch Class. All of them are going to

subclass NSObject. The four class names are Photoshoot, ShotInformation,

PhotoshootManager, and PhotoshootSummarizer. The code for each is as

follows.

//
// Photoshoot.h
// Chapter6

#import <Foundation/Foundation.h>
#import <CoreLocation/CoreLocation.h>

@interface Photoshoot : NSObject

@property (nonatomic,strong) NSString *locationName;

CHAPTER 3: Taming Complex Data for the Watch 91

@property (nonatomic,assign) CLLocationCoordinate2D locationCoordinate;
@property (nonatomic,strong) NSUUID *locationBeacon;

@property (nonatomic,strong) NSDate *beginTime;
@property (nonatomic,strong) NSDate *endTime;

@property (nonatomic,strong) NSString *shootDescription;
@property (nonatomic,strong) NSString *projectDescription;

@property (nonatomic,strong) NSString *clientContactName;

@property (nonatomic,strong) NSArray *plannedShots;

- (instancetype)initWithDictionary:(NSDictionary *)dictionary NS_
DESIGNATED_INITIALIZER;

@end

//
// Photoshoot.m
// Chapter6

#import “Photoshoot.h”
#import “ShotInformation.h”

@implementation Photoshoot

- (instancetype)initWithDictionary:(NSDictionary *)data
{
 self = [super init];

 if (!self) {
 return nil;
 }

 self.locationName = data[@”locationName”];
 self.locationCoordinate = CLLocationCoordinate2DMake([data[@”locati
onCoordinate”] [@”latitude”] doubleValue], [data[@”locationCoordinate”]
[@”longitude”] doubleValue]);
 self.locationBeacon = [[NSUUID alloc] initWithUUIDString:data[@”lo
cationBeacon”]];

CHAPTER 3: Taming Complex Data for the Watch 92

 self.beginTime = [self dateForRFC3339DateTimeString:data[@”beginTi
me”]] ?: [NSDate distantPast];
 self.endTime = [self dateForRFC3339DateTimeString:data[@”endTime”]]
?: [NSDate distantPast];
 self.shootDescription = data[@”shootDescription”];
 self.projectDescription = data[@”projectDescription”];
 self.clientContactName = data[@”clientContactName”];

 NSMutableArray *plannedShots = [NSMutableArray array];

 [data[@”plannedShots”] enumerateObjectsUsingBlock:^(NSDictionary
*shotData, NSUInteger idx, BOOL *stop) {
 ShotInformation *shot = [[ShotInformation alloc]
initWithDictionary:shotData];
 [plannedShots addObject:shot];
 }];

 self.plannedShots = plannedShots;

 return self;
}

// Modified example code from https://developer.apple.com/library/ios/
qa/qa1480/_index.html
- (NSDate *)dateForRFC3339DateTimeString:(NSString *)
rfc3339DateTimeString
// Returns a user-visible date time string that corresponds to the
// specified RFC 3339 date time string. Note that this does not handle
// all possible RFC 3339 date time strings, just one of the most common
// styles.
{
 static NSDateFormatter * sRFC3339DateFormatter;
 NSString * userVisibleDateTimeString;
 NSDate * date;

 // If the date formatters aren’t already set up, do that now and
cache them
 // for subsequence reuse.

 if (sRFC3339DateFormatter == nil) {

CHAPTER 3: Taming Complex Data for the Watch 93

 NSLocale * enUSPOSIXLocale;

 sRFC3339DateFormatter = [[NSDateFormatter alloc] init];

 enUSPOSIXLocale = [NSLocale localeWithLocaleIdentifier:@”en_US_
POSIX”];

 [sRFC3339DateFormatter setLocale:enUSPOSIXLocale];
 [sRFC3339DateFormatter setDateFormat:@”yyyy’-’MM’-
’dd’T’HH’:’mm’:’ss’Z’”];
 [sRFC3339DateFormatter setTimeZone:[NSTimeZone
timeZoneForSecondsFromGMT:0]];
 }

 // Convert the RFC 3339 date time string to an NSDate.
 // Then convert the NSDate to a user-visible date string.

 userVisibleDateTimeString = nil;

 date = [sRFC3339DateFormatter dateFromString:rfc3339DateTimeStri
ng];

 return date;
}

@end

//
// ShotInformation.h
// Chapter6

#import <Foundation/Foundation.h>

@interface ShotInformation : NSObject

@property (nonatomic,strong) NSString *shotDescription;
@property (nonatomic,assign,getter=hasBeenCompleted) BOOL completed;

- (instancetype)initWithDictionary:(NSDictionary *)shotData NS_
DESIGNATED_INITIALIZER;

CHAPTER 3: Taming Complex Data for the Watch 94

@end
//
// ShotInformation.m
// Chapter6

#import “ShotInformation.h”

@implementation ShotInformation

- (instancetype)initWithDictionary:(NSDictionary *)shotData
{
 self = [super init];

 if (!self) {
 return nil;
 }

 self.shotDescription = shotData[@”shotDescription”];
 self.completed = [shotData[@”completed”] boolValue];

 return self;
}

@end

//
// PhotoshootManager.h
// Chapter6
//

#import <Foundation/Foundation.h>

@interface PhotoshootManager : NSObject

+ (NSArray *)photoshoots;

@end

//
// PhotoshootManager.m
// Chapter6

CHAPTER 3: Taming Complex Data for the Watch 95

//

#import “PhotoshootManager.h”
#import “Photoshoot.h”

@implementation PhotoshootManager

+ (NSArray *)photoshoots
{
 // In a real application we would utilize Core Data or another data
storage approach.
 // In that case we may write out the shared data to an App Group
container directory
 // so that both the WatchKit extension and our main app can access
the data directly.
 NSString *sampleDataPath = [[[NSBundle mainBundle] resourcePath] st
ringByAppendingPathComponent:@”SampleData.plist”];
 NSDictionary *sampleData = [NSDictionary dictionaryWithContentsOfFi
le:sampleDataPath];

 NSArray *shootDictionaries = sampleData[@”photoshoots”];

 NSMutableArray *photoShoots = [NSMutableArray array];

 [shootDictionaries enumerateObjectsUsingBlock:^(NSDictionary
*shootDictionary, NSUInteger idx, BOOL *stop) {
 Photoshoot *shoot = [[Photoshoot alloc] initWithDictionary:sho
otDictionary];

 [photoShoots addObject:shoot];
 }];

 return photoShoots;
}

@end

//
// PhotoshootSummarizer.h
// Chapter6
//

CHAPTER 3: Taming Complex Data for the Watch 96

#import <Foundation/Foundation.h>

@interface PhotoshootSummarizer : NSObject

+ (NSDictionary *)currentSummaryInformation:(NSArray *)photoshoots;

@end

//
// PhotoshootSummarizer.m
// Chapter6
//

#import “PhotoshootSummarizer.h”

#import “Photoshoot.h”
#import “ShotInformation.h”

@implementation PhotoshootSummarizer

+ (NSDictionary *)currentSummaryInformation:(NSArray *)photoshoots
{
 Photoshoot *mostRelevantShoot = [self
mostRelevantShoot:photoshoots];

 // If there isn’t a relevant shoot we’ll return an information
summary
 if (mostRelevantShoot) {
 if (arc4random() % 2 == 0) {
 return [self summaryInformationForOnLocationShoot:mostRele
vantShoot];
 } else {
 return [self summaryInformationForShoot:mostRelevantShoot];
 }
 }
 return [self summaryInformationForNoRelevantShoot];
}

+ (Photoshoot *)mostRelevantShoot:(NSArray *)shoots
{
 // Initial rule: the most relevant shoot is the soonest to occur.

CHAPTER 3: Taming Complex Data for the Watch 97

 // Future rules could be added e.g. a shoot that is nearby is more
 // relevant than one schedule to happen soon
 return [shoots firstObject];
}

+ (NSDictionary *)summaryInformationForNoRelevantShoot
{
 return @{
 @”line1” : @”No photoshoots scheduled”,
 };
}

+ (NSDictionary *)summaryInformationForOnLocationShoot:(Photoshoot *)
shoot
{
 __block NSInteger completedShots = 0;
 [shoot.plannedShots enumerateObjectsUsingBlock:^(ShotInformation
*shot, NSUInteger idx, BOOL *stop) {
 if ([shot hasBeenCompleted]) {
 completedShots++;
 }
 }];

 NSInteger remainingShots = [shoot.plannedShots count] -
completedShots;

 return @{
 @”line1” : shoot.locationName,
 @”line2” : @”#countdown#”,
 @”line3” : shoot.clientContactName,
 @”line4” : [NSString stringWithFormat:@”%td shots
remaining”, remainingShots],
 @”relevantStart” : shoot.beginTime,
 @”relevantEnd” : shoot.endTime,
 };
}

+ (NSDictionary *)summaryInformationForShoot:(Photoshoot *)shoot
{
 return @{
 @”line1” : shoot.locationName,

CHAPTER 3: Taming Complex Data for the Watch 98

 @”line2” : @”#countdown#”,
 @”line3” : shoot.shootDescription,
 @”line4” : shoot.projectDescription,
 @”relevantStart” : shoot.beginTime,
 @”relevantEnd” : shoot.endTime,
 };
}

@end

38. Each of these classes has a purpose. Photoshoot and ShotInformation model

the data in our sample data. PhotoshootManager provides a way for us to get

our sample data out of our data store. The most important for this exercise is

PhotoshootSummarizer. Its job is to apply business rules to distill down all of our

data that we may have in our data store into a simple four line summary for the

user at any point in time.

39. To utilize PhotoshootSummarizer we are going to modify the code in

GlanceController. GlanceController.m should now look like this:

//
// GlanceController.m
// Chapter6

#import “GlanceController.h”

#import “Photoshoot.h”

#import “PhotoshootSummarizer.h”
#import “PhotoshootManager.h”

@interface GlanceController ()

@property (nonatomic,weak) IBOutlet WKInterfaceLabel *userSummaryLine1;
@property (nonatomic,weak) IBOutlet WKInterfaceLabel *userSummaryLine2;
@property (nonatomic,weak) IBOutlet WKInterfaceLabel *userSummaryLine3;
@property (nonatomic,weak) IBOutlet WKInterfaceLabel *userSummaryLine4;

@property (nonatomic,strong) NSDictionary *userSummaryInformation;

@end

CHAPTER 3: Taming Complex Data for the Watch 99

@implementation GlanceController

- (void)awakeWithContext:(id)context {
 [super awakeWithContext:context];

 [self.userSummaryLine1 setText:@””];
 [self.userSummaryLine2 setText:@””];
 [self.userSummaryLine3 setText:@””];
 [self.userSummaryLine4 setText:@””];
}

- (void)willActivate {
 // This method is called when watch view controller is about to be
visible to the user
 [super willActivate];

 [self refreshData];
}

- (void)refreshData
{
 NSDictionary *userSummary = [PhotoshootSummarizer currentSummaryInf
ormation:[PhotoshootManager photoshoots]];

 NSDictionary *lastSummaryInformation = self.userSummaryInformation;

 if (![lastSummaryInformation[@”line1”] isEqualToString:userSummary
[@”line1”]]) {
 [self.userSummaryLine1 setText:userSummary[@”line1”]];
 }
 if (![lastSummaryInformation[@”line2”] isEqualToString:userSummary
[@”line2”]]) {
 [self.userSummaryLine2 setText:userSummary[@”line2”]];
 }
 if (![lastSummaryInformation[@”line3”] isEqualToString:userSummary
[@”line3”]]) {
 [self.userSummaryLine3 setText:userSummary[@”line3”]];
 }
 if (![lastSummaryInformation[@”line4”] isEqualToString:userSummary
[@”line4”]]) {
 [self.userSummaryLine4 setText:userSummary[@”line4”]];

CHAPTER 3: Taming Complex Data for the Watch 100

 }

 self.userSummaryInformation = userSummary;
}

@end

40. What we’ve done in this exercise is create a glance that will show the user a

simple four-line summary of their data.

Right now our application supports both in-studio and on-location scenarios, but

they are just displayed at random. How can we make our application switch between

them? What signals are available to our application to allow it to determine relevancy?

There could be many. Some examples may be:

User’s location

Date/time of specific photo shoots

Unread messages from clients

Unread messages from vendors

For our example we are going to keep it simple and just determine which scenario

is relevant using the user’s location. With the next two exercises we’ll expand our

application to switch the content displayed based on two different location signals:

GPS coordinates and proximity to one or more iBeacons.

MODIFY APPLICATION TO AUTOMATICALLY
SWITCH SCENARIOS USING GPS

1. Add the following to the end of –[GlanceController awakeWithContext:].

 [self registerForNotifications];

2. Add the following methods to GlanceController.

- (void)registerForNotifications
{
 [[NSNotificationCenter defaultCenter] addObserver:self selector:@
selector(handleSummaryChange:) name:@”PhotoshootSummaryChanged”
object:nil];
}

- (void)unregisterForNotifications
{

CHAPTER 3: Taming Complex Data for the Watch 101

 [[NSNotificationCenter defaultCenter] removeObserver:self];
}

- (void)dealloc
{
 [self unregisterForNotifications];
}

- (void)handleSummaryChange:(NSNotification *)notification
{
 dispatch_async(dispatch_get_main_queue(), ^{
 [self refreshData];
 });
}

3. Add a new class, PhotoshootLocationManager with the following code.

//
// PhotoshootLocationManager.h
// Chapter6
//

#import <Foundation/Foundation.h>
#import <CoreLocation/CoreLocation.h>

@interface PhotoshootLocationManager : NSObject

+ (instancetype)sharedManager;

@property (nonatomic,strong) CLLocation *lastLocation;

@end

//
// PhotoshootLocationManager.m
// Chapter6
//

#import “PhotoshootLocationManager.h”

@interface PhotoshootLocationManager () <CLLocationManagerDelegate>

CHAPTER 3: Taming Complex Data for the Watch 102

@property (nonatomic,strong) CLLocationManager *manager;

@end

@implementation PhotoshootLocationManager

+ (instancetype)sharedManager {
 static dispatch_once_t pred;
 static PhotoshootLocationManager *shared = nil;
 dispatch_once(&pred, ^{
 shared = [[[self class] alloc] init];

 shared->_manager = [[CLLocationManager alloc] init];
 [shared->_manager setDelegate:shared];
 [shared->_manager startUpdatingLocation];
 });
 return shared;
}

- (void)locationManager:(CLLocationManager *)manager
didUpdateLocations:(NSArray *)locations
{
 self.lastLocation = [locations lastObject];
}

- (void)setLastLocation:(CLLocation *)lastLocation
{
 BOOL changed = !(_lastLocation.coordinate.latitude == lastLocation.
coordinate.latitude &&
 _lastLocation.coordinate.longitude ==
lastLocation.coordinate.longitude);

 _lastLocation = lastLocation;

 if (changed) {
 [[NSNotificationCenter defaultCenter] postNotificationName
:@”PhootshootLocationChange” object:nil userInfo:@{@”newLocation”:
lastLocation}];
 }
}

@end

CHAPTER 3: Taming Complex Data for the Watch 103

4. Add the following import to PhotoshootSummarizer.h.

#import “PhotoshootLocationManager.h”

5. Add the following methods to PhotoshootSummarizer.m.

+ (instancetype)sharedManager {
 static dispatch_once_t pred;
 static PhotoshootSummarizer *shared = nil;
 dispatch_once(&pred, ^{
 shared = [[[self class] alloc] init];
 [shared registerForNotifications];
 });
 return shared;
}

- (void)registerForNotifications
{
 [[NSNotificationCenter defaultCenter] addObserver:self selector:@
selector(handleLocationUpdate:) name:@”PhootshootLocationChange”
object:nil];
}

- (void)unregisterForNotifications
{
 [[NSNotificationCenter defaultCenter] removeObserver:self];
}

- (void)dealloc
{
 [self unregisterForNotifications];
}

- (void)handleLocationUpdate:(NSNotification *)notification
{
 [[NSNotificationCenter defaultCenter] postNotificationName:@”Photos
hootSummaryChanged” object:nil];
}

CHAPTER 3: Taming Complex Data for the Watch 104

6. In PhotoshootSummarizer.m change the following.

 if (arc4random() % 2 == 0) {
to
CLLocation *currentUserLocation = [[PhotoshootLocationManager
sharedManager] lastLocation];

 CLCircularRegion *testRegion = [[CLCircularRegion alloc] initW
ithCenter:currentUserLocation.coordinate radius:5000 identifier:@”Curr
entUserRegion”];

 if ([testRegion containsCoordinate:mostRelevantShoot.
locationCoordinate]) {

7. Add the following to the beginning of + [PhotoshootSummarizer

currentSummaryInformation].

// Behind the scenes we’ll instantiate an instance of
PhotoshootSummarizer that monitors data that can affect summaries
 [self sharedManager];

8. Add NSLocationAlwaysUsageDescription and

NSLocationWhenInUseDescription keys to the Info.plist files of the iOS

application and the WatchKit Extension.

9. Update the iOS application to call –[CLLocationManager

requestAlwaysAuthorization] at an appropriate time to allow the application and

the WatchKit Extension to receive location updates while the applications are

both in the foreground and background.

10. The above changes will set up our Glance to react to the user’s location to

customize the view of information displayed for a particular photo shoot. We

change our summary generator class (PhotoshootSummarizer) to test for a

region of 5km around the user to see if the photoshoot location is in the region.

If the photo shoot is located in that region, we display the on-site view of the

information to the user. Our location manager class posts notifications when the

user’s location changes. Our summarizer class listens for types of data changing

that can affect the summary (location in this state) and then posts a notification

to allow consumers of summary information to get update information to display

to the user.

11. To test this out we’ll run the application again. We should see what is shown in

Figure 3.57.

CHAPTER 3: Taming Complex Data for the Watch 105

Figure 3.57. Our app in action

12. Now we’ll tell the Simulator that we are located near the first photo shoot in our

sample data by going to the Debug menu highlighting Location, and choosing

Custom. When we do that we’ll enter these values for the custom location

(Figure 3.58).

Figure 3.58. Entering a custom location

CHAPTER 3: Taming Complex Data for the Watch 106

13. After entering these values, our Watch interface will change to the on-site view

(Figure 3.59).

Figure 3.59. The new on-site view

14. There are two things we still need to do in this example. First, we are still using

a placeholder token in the summary data to represent a countdown to an event

happening. We need to recognize that token in our user interface and replace it

with the correct user facing data. Second, for the on-site view our design calls

for the countdown text being in a red color instead of white.

15. To accomplish the first item, we’ll add a timer in a group along with our previous

Summary 2 label (Figure 3.60).

Figure 3.60. Adding a timer

CHAPTER 3: Taming Complex Data for the Watch 107

16. Then we’ll adjust our code to hook up this timer to data when appropriate, as

well as meet the goal of changing the text color.

17. We’ll create a new property to represent the timer interface object on

GlanceController.

@property (nonatomic,weak) IBOutlet WKInterfaceTimer
*userSummaryLine2Timer;

18. Then we’ll change the code that updates line 2 in GlanceController to be as

follows.

 if (![lastSummaryInformation[@”line2”] isEqualToString:userSummary
[@”line2”]] ||
 ![lastSummaryInformation[@”relevantStart”] isEqualToDate:userSu
mmary[@”relevantStart”]] ||
 ![lastSummaryInformation[@”relevantEnd”] isEqualToDate:userSumm
ary[@”relevantEnd”]] ||
 [lastSummaryInformation[@”onLocation”] boolValue] !=
[userSummary[@”onLocation”] boolValue]) {
 if ([userSummary[@”line2”] isEqualToString:@”#countdown#”]) {
 [self.userSummaryLine2 setHidden:YES];
 [self.userSummaryLine2Timer setHidden:NO];

 if ([userSummary[@”onLocation”] boolValue]) {
 NSDate *relevantDate = userSummary[@”relevantStart”];
 [self.userSummaryLine2Timer setDate:relevantDate];

 [self.userSummaryLine2Timer setTextColor:[UIColor
redColor]];
 } else {
 NSDate *relevantDate = userSummary[@”relevantEnd”];
 [self.userSummaryLine2Timer setDate:relevantDate];

 [self.userSummaryLine2Timer setTextColor:[UIColor
whiteColor]];
 }
 [self.userSummaryLine2Timer start];
 } else {
 [self.userSummaryLine2 setHidden:NO];
 [self.userSummaryLine2Timer setHidden:YES];
 [self.userSummaryLine2Timer stop];

CHAPTER 3: Taming Complex Data for the Watch 108

 [self.userSummaryLine2 setText:userSummary[@”line2”]];
 }
 }

19. Finally, in PhotoSummarizer.m we’ll modify

summaryInformationForOnLocationShoot and summaryInformationForShoot to

contain an additional key/value pair. The value for on location shoots will be @

YES and @NO for other shoots.

 @”onLocation” : @YES,

20. With these changes we now have an application that will switch between the

two designs we have for our user’s data depending on whether the user is on

location or not. From here we could extend the application to customize the

information further based on many other factors. The most relevant shoot that is

returned by the summarizer class could vary based on location, time, and many

other factors. Within the logic to displaying the most relevant shoot, we can have

the same factors impacting what the user sees just like in this example.

Increase Recognition Through Repetition
With the photographer’s CRM application that we’ve built through our exercises so

far, we’ve focused on building out just the Glance of our Watch application. This isn’t

by accident. The constrained nature of Glances has helped us hone in on what our

user’s story is at that moment of time in their life. With that figured out we’ve been

able to create an interface that answers the single most likely question the user will

have at a given moment in time. If we’ve done a good job at finding our user’s story

and maintaining simplicity through relevancy, we should now have an application that

grabs the user’s attention within those short five seconds.

What if our user has more than just five seconds? Put yourself back in the shoes of

an assistant to our photographer again. This time the photographer rushes up to you

and again says, “Get me up to speed.” This time though instead of looking like they

are ready to run across the room, they take a deep breath and pause while waiting for

your response. This time you might still say:

“In one hour, we need to leave to go across town to Acme’s design laboratory to

take some shots of their new widget for next month’s ad campaign.”

But then you too may pause for a moment and add:

“Tomorrow we are doing a shoot at the beach for WidgetCo. Then on Thursday you

have a consultation with WidgetMax to plan the theme for their Spring ads.”

If we were to take the work we’ve done to build a Glance so far and use it as the

basis for a Watch application UI that represents these answers for our user, it might

look something like Figure 3.61.

CHAPTER 3: Taming Complex Data for the Watch 109

Figure 3.61. Example UI for full Watch application that displays additional details for the user. The user

can scroll down to see additional information

What have we done here? In Figure 3.62, let’s take a look at this side-by-side with

our Glance from before.

Figure 3.62. Before and after view of our example UI

CHAPTER 3: Taming Complex Data for the Watch 110

If we were successful in grabbing the user’s attention in five seconds in the

information layout we produced earlier, we don’t want to produce something radically

different in another aspect of the Watch applications’ interface. Here we’ve repeated

the same basic structure from the Glance, the key who, what, when, where, why, and

how questions. Around that information we’ve slotted in additional information for the

user. If the user has twenty seconds instead of five, we want to give them the ability

to dive a little deeper into the information we have for them. A structure similar to this

allows the user to recognize the pattern of information to expect from our application

the moment they look at it. The additional details allow the user to capitalize on any

additional time they may have to probe us (their assistant) a bit further to find out what

else they want to know.

GOING FROM ONE SET OF ANSWERS TO MANY

1. To expand our application’s design to show additional details while maintaining a

core, recognizable structure we are going to start by setting up the storyboards

for our main Watch application (Figure 3.63).

Figure 3.63. Setting up our main Watch Storyboards

2. We’ll set up our Interface Controller to use the class InterfaceController.

For the row in the table we are going to set the class to

PhotoShootSummaryRowController and its identifier to photoshootsummary.

3. For the second interface controller we are going to set it to use the class

ShotDetailsInterfaceController. For the row type in its table we are going

to set it to use the class ShowInformationRowController, and the identifier

shotinformation.

4. For InterfaceController.m, we’ll use the following code.

CHAPTER 3: Taming Complex Data for the Watch 111

//
// InterfaceController.m
// Chapter6 WatchKit Extension

#import “InterfaceController.h”

#import “Photoshoot.h”

#import “PhotoshootSummarizer.h”
#import “PhotoshootManager.h”

#import “PhotoShootSummaryRowController.h”

@interface InterfaceController()

@property (nonatomic,weak) IBOutlet WKInterfaceLabel *userSummaryLine1;
@property (nonatomic,weak) IBOutlet WKInterfaceLabel *userSummaryLine2;
@property (nonatomic,weak) IBOutlet WKInterfaceTimer
*userSummaryLine2Timer;
@property (nonatomic,weak) IBOutlet WKInterfaceLabel *userSummaryLine3;
@property (nonatomic,weak) IBOutlet WKInterfaceLabel *userSummaryLine4;

@property (nonatomic,weak) IBOutlet WKInterfaceTable *shootListTable;

@property (nonatomic,strong) NSDictionary *userSummaryInformation;

@end

@implementation InterfaceController

- (void)awakeWithContext:(id)context {
 [super awakeWithContext:context];

 [self.userSummaryLine1 setText:@””];
 [self.userSummaryLine2 setText:@””];
 [self.userSummaryLine3 setText:@””];
 [self.userSummaryLine4 setText:@””];

CHAPTER 3: Taming Complex Data for the Watch 112

 [self registerForNotifications];
}

- (void)registerForNotifications
{
 [[NSNotificationCenter defaultCenter] addObserver:self selector:@
selector(handleSummaryChange:) name:@”PhotoshootSummaryChanged”
object:nil];
}

- (void)unregisterForNotifications
{
 [[NSNotificationCenter defaultCenter] removeObserver:self];
}

- (void)dealloc
{
 [self unregisterForNotifications];
}

- (void)handleSummaryChange:(NSNotification *)notification
{
 dispatch_async(dispatch_get_main_queue(), ^{
 [self refreshData];
 });
}

- (void)willActivate {
 // This method is called when watch view controller is about to be
visible to user
 [super willActivate];

 [self refreshData];
}

- (void)didDeactivate {
 // This method is called when watch view controller is no longer
visible
 [super didDeactivate];
}

CHAPTER 3: Taming Complex Data for the Watch 113

- (void)refreshData
{
 NSArray *photoshoots = [PhotoshootManager photoshoots];
 NSDictionary *userSummary = [PhotoshootSummarizer currentSummaryInf
ormation:photoshoots];

 NSDictionary *lastSummaryInformation = self.userSummaryInformation;

 Photoshoot *mostRelevantShoot = userSummary[@”relevantShoot”];

 NSMutableArray *tempShoots = [photoshoots mutableCopy];
 [tempShoots removeObject:mostRelevantShoot];
 NSArray *otherShoots = [tempShoots copy];

 if (![lastSummaryInformation[@”line1”] isEqualToString:userSummary
[@”line1”]]) {
 [self.userSummaryLine1 setText:userSummary[@”line1”]];
 }

 if (![lastSummaryInformation[@”line2”] isEqualToString:userSummary
[@”line2”]] ||
 ![lastSummaryInformation[@”relevantStart”] isEqualToDate:userSu
mmary[@”relevantStart”]] ||
 ![lastSummaryInformation[@”relevantEnd”] isEqualToDate:userSumm
ary[@”relevantEnd”]] ||
 [lastSummaryInformation[@”onLocation”] boolValue] !=
[userSummary[@”onLocation”] boolValue]) {
 if ([userSummary[@”line2”] isEqualToString:@”#countdown#”]) {
 [self.userSummaryLine2 setHidden:YES];
 [self.userSummaryLine2Timer setHidden:NO];

 if ([userSummary[@”onLocation”] boolValue]) {
 NSDate *relevantDate = userSummary[@”relevantStart”];
 [self.userSummaryLine2Timer setDate:relevantDate];

 [self.userSummaryLine2Timer setTextColor:[UIColor
redColor]];
 } else {
 NSDate *relevantDate = userSummary[@”relevantEnd”];
 [self.userSummaryLine2Timer setDate:relevantDate];

CHAPTER 3: Taming Complex Data for the Watch 114

 [self.userSummaryLine2Timer setTextColor:[UIColor
whiteColor]];
 }
 [self.userSummaryLine2Timer start];
 } else {
 [self.userSummaryLine2 setHidden:NO];
 [self.userSummaryLine2Timer setHidden:YES];
 [self.userSummaryLine2Timer stop];
 [self.userSummaryLine2 setText:userSummary[@”line2”]];
 }
 }

 if (![lastSummaryInformation[@”line3”] isEqualToString:userSummary
[@”line3”]]) {
 [self.userSummaryLine3 setText:userSummary[@”line3”]];
 }
 if (![lastSummaryInformation[@”line4”] isEqualToString:userSummary
[@”line4”]]) {
 [self.userSummaryLine4 setText:userSummary[@”line4”]];
 }

 self.userSummaryInformation = userSummary;

 [self.shootListTable setNumberOfRows:[otherShoots count] withRowTyp
e:@”photoshootsummary”];

 [otherShoots enumerateObjectsUsingBlock:^(Photoshoot *otherShoot,
NSUInteger idx, BOOL *stop) {
 PhotoShootSummaryRowController *rowController = [self.
shootListTable rowControllerAtIndex:idx];
 [rowController setLocationName:otherShoot.locationName];
 [rowController setProjectDescription:otherShoot.
projectDescription];
 [rowController setRelevantDate:otherShoot.beginTime];
 }];
}

- (id)contextForSegueWithIdentifier:(NSString *)segueIdentifier
{
 if ([segueIdentifier isEqualToString:@”shotInformationSegue”]) {
 Photoshoot *mostRelevantShoot = self.userSummaryInformation[@”

CHAPTER 3: Taming Complex Data for the Watch 115

relevantShoot”];
 NSDictionary *context = @{
 @”shotDetails” : mostRelevantShoot.plannedShots
 };
 return context;
 }

 return nil;
}

@end

5. We’ll also create the following classes: PhotoShootSummaryRowController,

ShotInformationRowController, and ShotDetailsInterfaceController. For those

classes we’ll use the following code.

//
// PhotoShootSummaryRowController.h
// Chapter6
//

#import <Foundation/Foundation.h>
#import <WatchKit/WatchKit.h>

@interface PhotoShootSummaryRowController : NSObject

- (void)setLocationName:(NSString *)locationName;
- (void)setProjectDescription:(NSString *)projectDescription;
- (void)setRelevantDate:(NSDate *)relevantDate;

@end

//
// PhotoShootSummaryRowController.m
// Chapter6
//

#import “PhotoShootSummaryRowController.h”

@interface PhotoShootSummaryRowController ()

@property (nonatomic,weak) IBOutlet WKInterfaceLabel *locationLabel;

CHAPTER 3: Taming Complex Data for the Watch 116

@property (nonatomic,weak) IBOutlet WKInterfaceLabel *projectLabel;
@property (nonatomic,weak) IBOutlet WKInterfaceLabel *dateLabel;

@end

@implementation PhotoShootSummaryRowController

- (void)setLocationName:(NSString *)locationName
{
 [self.locationLabel setText:locationName];
}

- (void)setProjectDescription:(NSString *)projectDescription
{
 [self.projectLabel setText:projectDescription];
}

- (void)setRelevantDate:(NSDate *)relevantDate
{
 [self.dateLabel setText:[relevantDate description]];
}

@end

//
// ShotInformationRowController.h
// Chapter6
//

#import <Foundation/Foundation.h>

#import “ShotInformation.h”

@interface ShotInformationRowController : NSObject

- (void)setShotInformation:(ShotInformation *)shotInformation;

@end

//

CHAPTER 3: Taming Complex Data for the Watch 117

// ShotInformationRowController.m
// Chapter6
//

#import “ShotInformationRowController.h”

#import <WatchKit/WatchKit.h>

@interface ShotInformationRowController ()

@property (nonatomic,weak) IBOutlet WKInterfaceLabel *shotDescription;

@end

@implementation ShotInformationRowController

- (void)setShotInformation:(ShotInformation *)shotInformation
{
 [self.shotDescription setText:shotInformation.shotDescription];
}

@end

//
// ShotDetailsInterfaceController.h
// Chapter6
//

#import <WatchKit/WatchKit.h>
#import <Foundation/Foundation.h>

@interface ShotDetailsInterfaceController : WKInterfaceController

@end
//
// ShotDetailsInterfaceController.m
// Chapter6
//

#import “ShotDetailsInterfaceController.h”

CHAPTER 3: Taming Complex Data for the Watch 118

#import “ShotInformationRowController.h”

@interface ShotDetailsInterfaceController ()

@property (nonatomic,strong) NSArray *shotDetails;

@property (nonatomic,weak) IBOutlet WKInterfaceTable *table;

@end

@implementation ShotDetailsInterfaceController

- (void)awakeWithContext:(id)context {
 [super awakeWithContext:context];

 // Configure interface objects here.
 NSArray *shotDetails = context[@”shotDetails”];
 self.shotDetails = shotDetails;
}

- (void)willActivate {
 // This method is called when watch view controller is about to be
visible to user
 [super willActivate];

 [self updateTable];
}

- (void)didDeactivate {
 // This method is called when watch view controller is no longer
visible
 [super didDeactivate];
}

- (void)updateTable
{
 [self.table setNumberOfRows:[self.shotDetails count] withRowType:@”
shotinformation”];

 for (NSInteger idx = 0; idx < [self.table numberOfRows] && idx <
[self.shotDetails count]; idx++) {

CHAPTER 3: Taming Complex Data for the Watch 119

 ShotInformationRowController *rowController = [self.table
rowControllerAtIndex:idx];

 [rowController setShotInformation:self.shotDetails[idx]];
 }
}

@end

6. Additionally, our sample data plist will now look like Figure 3.64.

Figure 3.64. Sample data plist

CHAPTER 3: Taming Complex Data for the Watch 120

7. After these changes we are left with a working application that can quickly grab

the user with a familiar structure that they can expect. When they utilize the full

application instead of the Glance, they are provided with additional content about

future photo shoots they have planned. For the current photo shoot they can dive

in another level deeper into the information and see a list of individual shots that

have been planned for the photo shoot.

There are still a few items at this point that deviate from our design. These gaps

are left as exercises for the reader. Can you modify the example to display friendlier

date and time strings for each future photo shoot in its button? Can you display the

completed status of individual shots on the shot details interface controller? Can you

modify the shot details controller to toggle the completed status of a shot?

Use Notifications as Punctuation
Now that we’ve worked through our example application, let’s put ourselves in the

shoes of our photographer’s assistant once again. Let’s say that our photographer

has asked us, as their assistant, to remind them to leave one hour prior to all off-

site shoots. As part of our job we would thus interrupt our employer one hour prior

to each shoot. With the notifications for a Watch application, this is what we should

attempt to model. Our job as the assistant is to provide the most relevant answers

to the questions on the mind of the photographer at any point in time. For the times

that the photographer isn’t actively managing their schedule, it is our job to let them

know that something is changing. We need to provide the punctuation as their story

is written. We could be providing statements (“Acme Design Lab shoot is in one

hour”), questions (“Acme is requesting to move their shoot outdoors. Is that OK?”),

or exclamations (“Acme Design Lab shoot is in 30 minutes, current driving time is 45

minutes!”). These interactions map into a Watch or iOS application as notifications.

A productive way to think about these are as punctuation within the story you are

telling your user. Do you have a statement to make to your user, a question, or an

exclamation? These are your notifications, and you need to use them carefully.

Looking Forward: Complications in watchOS 2
If you are familiar with the Apple Watch you’ve undoubtedly seen Complications on

the Watch faces that come with the Apple Watch. These include things like weather,

calendar, moon phase, activity, and more (see Figure 3.65).

CHAPTER 3: Taming Complex Data for the Watch 121

Figure 3.65. Moon phase Complication

Starting with watchOS 2, Complications can also be provided by applications that

you make. Despite their name, Complications are a great fit if you find yourself in the

situation of needing to tame complex data for an Apple Watch application.

Step back to our initial charge at the beginning of this chapter: how can we take a

complex situation and distill it down to a very small area to display to our user. How

do we make it relevant? How do we convey the information we need to convey? This

becomes even more challenging when you may have a truly small area of a watch

face to sum up the entirety of your data to a user. As you move forward with your own

Apple Watch application and try to simplify the data you are working with and the

story you need to tell your user, I encourage you to frame your thoughts with how the

data would be displayed as a Complication. If you can tell a compelling story to your

user in that tiny amount of space it becomes much easier to work backwards from

there and fill in details as you get a larger and larger amount of area, and larger and

larger amount of the user’s attention to work with.

123

Chapter 4
Examining Home Remote

and its Components

By Gary Riches, creator of the Home Remote Watch app

Home Remote is a universal iOS app that gives you control of your Internet-connected

devices from your Today Screen. It supports a wide range of equipment by mixing

native support for certain hardware with the ability to handle generic URLs, which

allows you to interface it with any other web service. The iOS app itself allows you

to configure the actions that will be displayed on the Today Screen, and the Today

Screen extension executes the actions (see Figure 4.1).

Figure 4.1. The Home Remote Watch app

CHAPTER 4: Examining Home Remote and its Components124

The app found moderate success, and requests for a version for the Pebble smart

watch started coming through. Interest in wearables was increasing and Apple had

already teased the Apple Watch in September of last year. We built the Pebble version

in C, keeping the Apple Watch in our minds at all times, and considering how code

could be re-used between the Pebble app and possibly what Apple would offer with

the WatchKit SDK.

The Today Screen extension is a list of buttons, displayed left to right, top to

bottom, and allows paging if there are more actions to display than there is space.

This translates very well in to Pebble’s equivalent of a UITableView, the MenuLayer

and also WatchKit’s WKInterfaceTable.

In this chapter we’ll create a basic WatchKit app that has a WKInterfaceTable and

populates it with data that is shared between the iOS app and the WatchKit extension,

similar to the process used in Home Remote.

The WatchKit Extension
Create a new Objective-C, single view application in Xcode called watchkitdemo,

noting the Bundle Identifier for later. Once your project is created and open in Xcode,

select the project file if it isn’t already selected and then, in the right-hand panel, click

the “+” to add a new target.

Note When you see {bundleid} written, substitute your own Bundle

Identifier.

You’ll be presented with the following dialog box, be sure to select iOS Apple

Watch WatchKit App, and then click Next.

125

CHAPTER 4: Examining Home Remote and its Components

Figure 4.2. Selecting the WatchKit App as the target

Another dialog box will appear and you can leave all of the default values except

for the check box that says Include Notification Glance, which will need to be

unchecked. We’ll cover adding a glance later in this chapter. Click Finish and you’ll

see that two new targets have been added; watchkitdemo WatchKit Extension and

watchkitdemo WatchKit App, along with corresponding groups in the project navigator

that contain the associated classes, storyboards, and plists.

Note Plist, short for Property List, are files that are used to store

serialized objects such as user settings.

The User Interface
Click the Interface.storyboard in the watchkitdemo WatchKit App group and you’ll

see an empty black box. From the utilities panel on the right of the Xcode window,

drag a Table component on to your Interface Controller Scene. Finally, drag a label

in to the Table Row that is showing.

We’ll have to create a class that represents the Table Row Controller that was

automatically created for you by Interface Builder as you set the interface up. Right-

click the watchkitdemo WatchKit Extension group in the navigator and select New
File, then select iOS Source Cocoa Touch Class followed by Next. The

Class should be named ListTableRowController and be a subclass of NSObject
(see Figure 4.3). Click Next and make sure the new file will only be added to the

watchkitdemo WatchKit Extension target.

CHAPTER 4: Examining Home Remote and its Components126

Figure 4.3. Creating the ListTableRowController class

Now that we have the basics of our Watch app display created with their

associated classes, we can address the UI components we have just created in

exactly the same way using WatchKit as we would for iOS, using IBOutlets.

1. Press the Show The Assistant Editor button in

Xcode and have the Interface.storyboard and

ListTableRowController.h file both visible.

2. Select the Table Row Controller in Interface Builder, and

then select the third tab in the utilities panel.

3. In the field where you can type a custom class, type

ListTableRowController.

4. Select the fourth tab and type ListTableRowController for

the Row Controller Identifier.

5. Select the label you created and select the fifth tab in the

utilities panel.

6. Drag a New Referencing Outlet from the panel to the

ListTableRowController.h file that you have open.

7. Call it name when prompted.

Note Feel free to set up your IBOutlets in whichever manner you

prefer. There are many ways to achieve the same result.

You’ll notice that we currently have an error in our code. Xcode is complaining

that it doesn’t know what a WKInterfaceLabel is but thankfully this is easy to

resolve, simply import the WatchKit framework with #import <WatchKit/WatchKit.
h> at the top of your file. We’ll also need to provide an IBOutlet for the table we’ve

created so go ahead and repeat these steps, but this time you need to have the

InterfaceController.m file open instead. Call the IBOutlet listTable. With that, our

user interface is complete for now.

CHAPTER 4: Examining Home Remote and its Components 127

Populating the Table
Even though the WKInterfaceTable looks quite like a UITableView and behaves quite

like a UITableView, unfortunately it isn’t coded like a UITableView. Although you will

lose the speed that familiarity with an API brings, WatchKit is so basic that it’s not

hard to pick up and understand the new concepts and APIs. We’re going to be using

the following to set up and populate our WKInterfaceTable:

- setNumberOfRows:withRowType: Creates the specified

number of row controllers of the same type to use in populating

the table with data.

- table:didSelectRowAtIndex: Called when a user has

selected a row in the table by tapping on it.

- rowControllerAtIndex: Returns the row controller for the

row at the specified index in the table.

To start with, let’s populate the table with some dummy data. At the top of your

InterfaceController.m file, type #import “ListTableRowController.h”. Now find the

method called awakeWithContext. This is where we will set up the table. First, to set

how many rows of information we’re going to display, type:

[self.listTable setNumberOfRows:10 withRowType:@"ListTableRowController"];

for (int i = 0; i < 10; i++) {

 ListTableRowController *row = [self.listTable
rowControllerAtIndex:i];
 [row.name setText:[NSString stringWithFormat:@"Label: %d", i]];
}

Go ahead and test your Watch app on the simulator by choosing the watchkitdemo
WatchKit App target and pressing the Build And Run button.

.

Note If you do not see the Apple Watch simulator, select Hardware

 External Displays Apple Watch – 42mm.

You will be able to scroll through the table with the touch screen or the Digital

Crown on the side of your Watch. WatchKit handles all of the input automatically.

Handling the Table’s Input

Now that our table is populated, we should handle the input. In the case of Home

Remote it calls the action associated with the row, but for the purpose of this

CHAPTER 4: Examining Home Remote and its Components128

demo we’ll just set up the handler and perform some basic logging to make sure

that we are getting the correct values back. We’re going to add the method now,

but we don’t need to set up the delegate of the table as we would do in iOS. The

WKInterfaceController that the table resides in will automatically become the

delegate for it. Above the awakeWithContext method add:

- (void)table:(WKInterfaceTable *)table didSelectRowAtIndex:(NSInteger)
rowIndex{

 NSLog(@"Selected: %ld", (long)rowIndex);
}

This method will be called whenever you tap a row in the table and log the number

of the row, starting from zero (see Figure 4.4). For the time being we’ll leave it at that.

Once we have more meaningful data we’ll come back to this method and update it.

Figure 4.4. Our example table

Sharing Data Between Extension and App
Since the WatchKit Extension runs as part of a different host application rather than

as part of the iOS app, data sharing doesn’t occur automatically. You possibly thought

that the two would share NSUserDefaults, but this unfortunately isn’t the case.

Thankfully, Apple has thought of this and adding a shared container for data between

the WatchKit Extension and the iOS app is relatively simple.

CHAPTER 4: Examining Home Remote and its Components 129

App Groups

To enable app group data sharing, use Xcode or the Developer portal to enable app

groups for the containing app and its contained app extensions.

1. Select the project file in the Project Navigator and, in the

central pane, select the watchkitdemo target.

2. Click the Capabilities tab.

3. Expand the App Groups section and switch it to ON. After

a few seconds the view will change and you will see a “+”

allowing you create a new group.

4. Press “+” and enter group.{bundleid}.

5. Repeat the process for your watchkitdemo WatchKit

Extension.

Note Remember, when you see {bundleid} written, substitute your

own Bundle Identifier. Last warning!

iOS

Now that’s set up, both your iOS app and WatchKit Extension can create or access an

NSUserDefaults suite that they both have read and write access to. Let’s write some

code to populate it from the iOS app and then read it from the WatchKit Extension to

test if it works. In your ViewController.m for iOS, in the viewDidLoad method, add the

following code:

 NSUserDefaults *sharedDefaults = [[NSUserDefaults alloc]
initWithSuiteName:@"group.{bundleid}"];

 NSArray *listOfActions =
 @[
 @{@"name": @"Lights On", @"description": @"Turns the lights on"},
 @{@"name": @"Lights Off", @"description": @"Turns the lights off"},
 @{@"name": @"Garage Open", @"description": @"Opens the garage
door"},
 @{@"name": @"Garage Close", @"description": @"Closes the garage
door"}
];

 [sharedDefaults setObject:listOfActions forKey:@"listOfActions"];
 [sharedDefaults synchronize];

 NSLog(@"Done");

The code above will load up the NSUserDefaults with the specified suite name. If

CHAPTER 4: Examining Home Remote and its Components130

none exists, it will be created. We create a basic array of dictionaries that will store

both a name and a description for each action. In the case of Home Remote we also

store a URL and any set up parameters, but looking at human readable data will make

the process easier.

Change the run target and run the iOS app. The iOS simulator should load up

a white screen and you should see “Done” in the Xcode console pane. The shared

defaults that we are going to read in the WatchKit Extension have now been filled. It’s

now safe to stop that process running by pressing the Stop button in Xcode.

WatchKit

Now we need to read that information into our WatchKit Extension, display it in the

table view, and access it when the table is pressed. The process of getting the values

out of the shared NSUSerDefaults is almost identical to adding them. Update your

awakeWithContext method to look like it is shown below. The parts that have changed

are in bold.

"- (void)awakeWithContext:(id)context {")

 [super awakeWithContext:context];

 NSUserDefaults *sharedDefaults = [[NSUserDefaults alloc]
 initWithSuiteName:@"group.{bundleid}"];

 NSArray *listOfActions = [sharedDefaults
objectForKey:@"listOfActions"];

 [self.listTable setNumberOfRows:listOfActions.count
 withRowType:@"ListTableRowController"];

 for (int i = 0; i < listOfActions.count; i++) {
 ListTableRowController *row = [self.listTable
 rowControllerAtIndex:i];
 [row.name setText:listOfActions[i][@"name"]];
 }
}

All we’ve done here is change the hard coded values to instead read from the

array length or data. Test the WatchKit app and you’ll see that the table reflects the

information we entered into the iOS app; it will be showing four rows with the names

we set earlier (see Figure 4.5). Now that’s all working well, let’s do something else

when a table row is selected. To do this we’ll modify our table:didSelectRowAtIndex

method. Update the method to be like this:

- (void)table:(WKInterfaceTable *)table didSelectRowAtIndex:(NSInteger)
rowIndex{

 NSUserDefaults *sharedDefaults = [[NSUserDefaults alloc]
 initWithSuiteName:@"group.{bundleid}"];

CHAPTER 4: Examining Home Remote and its Components 131

 NSArray *listOfActions = [sharedDefaults
objectForKey:@"listOfActions"];

 NSString *selectedActionDescription = listOfActions[rowIndex]
[@"description"];

 NSLog(@"%@", selectedActionDescription);
}

Figure 4.5. Our table now reflects the inputs

We fetch the list of actions from the shared NSUSerDefaults and read the

description dictionary value from the array. We make sure we’re using the correct

array entry by using the rowIndex that gets passed into the method.

Tip You could store a reference to your listOfActions array to avoid

getting it each time with the suite name.

You now have a table populated with data from an iOS app, and some WatchKit

apps consist of little more than this.

Home Remote is itself just a table that displays data configured from the iOS app,

and then calls a URL or sends data to a socket based on the parameters. To take

things a little further, try making it look a little nicer by adjusting the label positioning in

the row controller to be centered vertically.

CHAPTER 4: Examining Home Remote and its Components132

Glances and Extension Communication
Launching apps on the Apple Watch can be cumbersome at times, requiring at least

a press of the Digital Crown, a swipe of the screen, and then a tap. Apps that offer

a glance (the panels of information when you swipe up from a Watch face) can be

launched with just a swipe and a tap, which is much faster and more convenient.

Apple advises against having a glance in your app just to enable quick launching

in their Human Interface Guidelines (HIG), so some thought needs to go into your

glance to make it useful.

The Home Remote Glance
The first release of Home Remote didn’t include a glance, primarily because it was not

obvious that launching the app would become quite arduous after a while, especially

for an app that is intended to be launched multiple times per day. This was solved by

updating the app and providing a glance that was configurable, just launching the app

at its most basic, but offering the option to go right into the voice dictation mode of

the app (see Figure 4.6). Here are the two states of the glance for Home Remote for

Apple Watch.

Figure 4.6. The Glance can be used to launch the app in different configurations

For our demo, we’ll be pulling a random object from our shared list of actions that

we set up, displaying its name and description, and passing that to the WatchKit

Extension via Handoff. We have to use Handoff as the glance, although included as

part of our WatchKit Extension, Handoff runs separately.

CHAPTER 4: Examining Home Remote and its Components 133

The Glance
Open our project in Xcode and then select your Interface.storyboard from the

project navigator. Drag in a Glance Interface Controller from the Object library.

Unlike normal interfaces for WatchKit, glances follow a template-based system.

The Apple Watch Human Interface Guidelines offer the following guidance:

“The templates you use to design your glance promote a
consistent layout and structure. The upper and lower portions
of the glance provide standard baselines for content, and the
upper-right corner is reserved for system status indicators.
Creating a glance that is inconsistent with other glances
may make yours seem out of place and result in the wearer
removing it.”

To select the template you want to use, select the glance in the Interface Builder

navigator and show the attributes inspector (see Figure 4.7). You’ll be able to select

your templates from there. As we are only showing text, select Body 3 for the top

template, and Body 6 as the footer for your lower one.

Figure 4.7. This is how your Glance should be configured

Tip You can see the name of each template by leaving the mouse

pointer hovering over each one. The name will appear in the tooltip.

The labels can have text added manually if the information was going to remain

static, but because it’s not, we’ll have to create a class and assign IBOutlets.

1. Right-click the watchkitdemo WatchKit Extension group

in the project navigator and select New File, then iOS

CHAPTER 4: Examining Home Remote and its Components134

Source Cocoa Touch Class followed by Next.

2. Name the Class GlanceInterfaceController and make it a

subclass of WKInterfaceController.

3. Click Next and make sure the new file will only be added to

the watchkitdemo WatchKit Extension target.

4. Go back to your Interface.storyboard and set your

Glance Interface Controller’s custom class to be the

GlanceInterfaceController that we just created. You can

do this from the Identity Inspector tab.

5. Press the Show the Assistant editor button in

Xcode and have the Interface.storyboard and

GlanceInterfaceController.m file both visible.

6. Select the top Label in Interface Builder, and then select

the fifth tab in the utilities panel.

7. Drag a New Referencing Outlet from the panel to the

GlanceInterfaceController.m file that you have open, and

you can call it nameLabel when prompted.

8. Repeat the process for the lower Label and call it

descriptionLabel.

9. Finally, select the Footer and either empty it of text, or set

it to Hidden.

Open up GlanceInterfaceController.m and in the method called

awakeWithContext and change it to be like this:

- (void)awakeWithContext:(id)context {
 [super awakeWithContext:context];

 NSUserDefaults *sharedDefaults = [[NSUserDefaults alloc]
 initWithSuiteName:@"group.{bundleid}"];

 NSArray *listOfActions = [sharedDefaults
objectForKey:@"listOfActions"];

 NSUInteger randomIndex = arc4random() % listOfActions.count;

 NSString *selectedActionName = listOfActions[randomIndex][@"name"];
 NSString *selectedActionDescription = listOfActions[randomIndex]
[@"description"];

 [self.nameLabel setText:selectedActionName];
 [self.descriptionLabel setText:selectedActionDescription];
}

This code should be familiar by now; we get the shared NSUserDefaults and read

CHAPTER 4: Examining Home Remote and its Components 135

the array of actions from it. We then get a random index using the array length and

floor() to make sure we’re always in bounds. We then read the name and description

from the dictionary and set up our labels with the value.

We’re all good and ready to test, but you may have noticed that the Apple Watch

simulator doesn’t have the Watch face app, so we’re unable to load glances in the

standard way. We’ll have to create a scheme instead (see Figure 4.8).

1. Set the active scheme to watchkitdemo WatchKit App.

2. Select Product Scheme Edit Scheme A new screen

will appear.

3. Press Duplicate Scheme in the bottom left and call it Glance.

4. Select Run in the left hand panel and then Glance in the

right-hand panel for the Watch Interface option.

5. After this, press Close.

Figure 4.8. The final configuration for the Glance scheme

Run our newly created scheme and you should see our basic, but functioning,

glance.

Handoff
As we briefly touched upon earlier, the glance runs independently of the WatchKit

Extension, so to let the extension know we have interacted with it via the glance, we

need to use the Handoff ability, which is normally associated with moving between

devices, such as Apple Watch and iPhone, or iPhone and Mac.

CHAPTER 4: Examining Home Remote and its Components136

Handoff Interactions

Using a Handoff activity requires three steps:

1. Create a user activity object in your app.

2. Set the state of the user activity object with any information

you’d like to pass on to another machine or process.

3. Continue the user activity on a different device when the

user requests it.

The Handoff mechanism depends primarily on objects of a single class in

Foundation, NSUserActivity. Apps set the information about a user’s activities in

NSUserActivity object, and those activities can then be continued on other devices or

processes.

Upon continuing a Handoff activity on another device or process, the appropriate app

is launched and provided with the activity’s payload data. A user activity can be continued

only in an app that has the same developer Team ID as the activity’s source app.

The Handoff Code

We’re going to use Handoff just to pass the random number that we create in the

glance to the Extension so that we can pull out the same data, but you could pass a

reference to a news story, an image, or whatever you require.

Now that the theory is out of the way, let’s start adding the code. We’re going to be

modifying both the WatchKit Extension and the glance. Add the following code to your

awakeWithContext method in your GlanceInterfaceController.m:

[self updateUserActivity:@"glance.{bundleid}" userInfo:@{@"randomIndex" :
[NSNumber numberWithUnsignedInteger:randomIndex]} webpageURL:nil];

The first parameter we pass to the updateUserActivity method is a user-defined

string designating the type of activity to be continued. Because we’re interacting

with a glance here, we prefix the word glance to our Bundle ID. We also pass in an

NSDictionary with any pertinent information that we require carrying on the Handoff

activity on another device or process. If, at any point, you wanted to cancel the

Handoff activity you’d call invalidateUserActivity.

It’s a simple task to respond to this from the WatchKit Extension. Add the following

code to your InterfaceController.m file:

#pragma mark - Handoff -
- (void)handleUserActivity:(NSDictionary *)userInfo
{
 NSUInteger randomIndex = [userInfo[@"randomIndex"]
unsignedIntegerValue];

 NSUserDefaults *sharedDefaults = [[NSUserDefaults alloc]
 initWithSuiteName:@"group.{bundleid}"];

CHAPTER 4: Examining Home Remote and its Components 137

 NSArray *listOfActions = [sharedDefaults
objectForKey:@"listOfActions"];

 NSString *selectedActionDescription = listOfActions[randomIndex]
[@"description"];
}

When the glance opens the main WatchKit Extension it will call this method as part

of the Handoff process, passing in the userInfo dictionary we created in the glance’s

call to updateUserActivity method. We have to pass the randomIndex as an NSNumber

because an NSDictionary can’t contain a regular NSUInteger. We are now getting the

description of the action that was pressed in the glance, but ideally we want to display

it somewhere so that we can verify we are using Handoff correctly.

Modal Interface Controllers

To display the selected action that was passed in from Handoff, we’ll use a modal

interface controller. A modal interface controller is a way to interrupt the current

navigation flow temporarily to prompt the user or display other information. It’s

possible to present a modal interface controller from any interface controller,

regardless of the navigation style used by your app, if any. For us to display a modal

interface controller we need to do one of the following:

Create a modal segue in your storyboard file.

Call the presentControllerWithName:context: method to

present a single interface controller modally.

Call the presentControllerWithNames:contexts: method to

present two or more interface controllers modally using a page

based layout.

Because we only want to display just the one modal interface controller, we’ll be

using presentControllerWithName:context: so let’s create the class for the modal

interface controller and the associated interface.

1. Right-click the watchkitdemo WatchKit Extension group

in the project navigator and select New File…, then iOS
Source Cocoa Touch Class followed by Next.

2. The Class should be named ModalInterfaceController

and be a subclass of WKInterfaceController.

3. Click Next and make sure the new file will only be added to

the watchkitdemo WatchKit Extension target.

4. Next, open the Interface.storyboard and drag a new

Interface Controller on the screen, and then set its

custom class to be the ModalInterfaceController that we

CHAPTER 4: Examining Home Remote and its Components138

just created.

5. Finally, drag a label on the new interface controller and

connect it up with an IBOulet, calling it descriptionLabel
and set the number of lines to 0, allowing it to scale.

Your final storyboard should look like Figure 4.9, with our normal interface, the

glance, and the one we’ll present modally.

Figure 4.9. Interface Builder with all of our Interface Controllers assigned

You may have noticed that presentControllerWithName:context: takes a

name, and up to now we have not specified one. To remedy this, with the Modal
Interface selected in Interface Builder, open the Attributes inspector tab and enter

ModalInterfaceController for the Identifier.

Now that the user interface elements are complete, we’ll write the code to make

the modal interface controller appear. We’ll be calling presentControllerWithName
:context and passing in our description as the context. The context is type (id) so

you can pass whatever your app requires. In your handleUserActivity: method in

InterfaceController.m, at the bottom, add [self presentControllerWithName:@”Mod
alInterfaceController” context:selectedActionDescription];.

We are able to read this passed value in awakeWithContext in

ModalInterfaceController.m. Edit the method to look like this:

- (void)awakeWithContext:(id)context {
 [super awakeWithContext:context];

 [self.descriptionLabel setText:context];

CHAPTER 4: Examining Home Remote and its Components 139

}

Test your glance and click on it to advance to the main app. The modal view should

now appear, mirroring the description that was on the glance.

We’ve covered some useful topics in this section. We’ve learned that Handoff is a

powerful way of making sure your glances can show useful information, and that the

Watch app can contextually respond to interaction within the glance. Next, we’ll look at

how other navigation types can be used within the app.

Navigation Types Available
We covered how to add a modal interface controller to our app, but these are only

meant to be used if we want to interrupt an existing app flow with an alert, or a small

series of questions. But what if we want to show screens of unrelated information, or

show hierarchical information such as family, genus, and species of animal? WatchKit

has you covered with two different types of navigation for different scenarios.

Here is a summary of the two types of navigation:

Page based. This style is suited for apps with simple data

models where the data on each page is not closely related to

the data on any other page. A page based interface contains

two or more independent interface controllers, only one of

which is displayed at any given time. A user can manually

swipe between the pages, the page number indicated by the

pagination dots at the bottom of the display, or an interface

controller can request to become the current page by calling

the [self becomeCurrentPage] method.

Hierarchical. This style is suited for apps with more complex

data models, or apps whose data is more hierarchical. A

hierarchical interface always starts with a single root interface

controller. In that interface controller, you provide controls that,

when tapped, push new interface controllers onto the screen.

An example of this would be if you had a list of animal families,

and you wanted to drill down in to the subsequent genus and

species.

Note While you cannot have a page based navigation as part of a

hierarchical navigation, you can have both types in your app.

CHAPTER 4: Examining Home Remote and its Components140

Home Remote Navigation
Before the Apple Watch came out, Home Remote used page based navigation. The

first page displayed the list of actions you could call, much like our sample application

at the moment. The second screen had the voice recognition on it and would launch

the Apple Watch voice dictation feature as soon as the screen was displayed.

When testing in the simulator, this flow seemed fine, but after testing on the actual

Apple Watch I released, this was a sub-optimal implementation. Always test on real

hardware if you can, and don’t be afraid to throw away what you have if it doesn’t

work. It’s always better to restart earlier than later. Fail fast, don’t just keep digging a

hole. Figure 4.10 shows the flow of Home Remote before and after the changes.

Figure 4.10. A small change in your app can change the usability considerably

You can see that instead of offering a page based solution, a microphone button

was added to the top of the list of actions. This took the activation of voice recognition

to open app tap button speak, rather than open app swipe tap button
 speak. This improvement, combined with Handoff, allowed you to go directly to

voice recognition from tapping the glance. Using real hardware will really help you

work out what’s best for your app when you make it.

Hierarchy and Page based Navigation
In our test app that we’re creating, we so far have our table, the glance, and a modal

interface. We’re going to add a few different pages to the app now, allowing us to pick

either type of navigation type, along with a Force Touch menu that will allow us to

restart the choice.

CHAPTER 4: Examining Home Remote and its Components 141

Note Force Touch uses very small electrodes around the display to

detect between light and hard presses. It provides instant access to

contextually specific controls.

1. Right-click the watchkitdemo WatchKit Extension group

in the project navigator and select New File, then iOS
Source Cocoa Touch Class followed by Next.

2. Name the class NavigationChoiceInterfaceController

and make it a subclass of WKInterfaceController.

3. Click Next and make sure that the new file will only be

added to the watchkitdemo WatchKit Extension target.

4. Open the Interface.storyboard and drag a new

Interface Controller on to the screen.

5. Set its custom class to be the

NavigationChoiceInterfaceController that we just

created.

6. Drag two buttons on to the new interface and then set their

text to be Page based and Hierarchical.

7. Open the Attributes inspector tab with

NavigationChoiceInterfaceController selected and set

the identifier to NavigationChoiceInterfaceController.

We’re going to re-use our ModalInterfaceController as part of our page

based interface, so we should rename it. The refactor tool in Xcode is an easy

way of doing this. Open ModalInterfaceController.h and double-click the word

ModalInterfaceController in the line @interface ModalInterfaceController :
WKInterfaceController and then select Edit Refactor Rename.

Xcode will prompt you for a new name, type DescriptionInterfaceController and

then press Preview, followed by Save. If Xcode asks you if you want to take automatic

snapshots press Disable.

Note Refactor will also change your storyboards to use the new

class name, but they won’t change the Identifier. You should change

that for completeness to DescriptionInterfaceController.

CHAPTER 4: Examining Home Remote and its Components142

The starting point of our WatchKit app is going to change to the Navigation
Choice Interface Controller, and you can define that in Interface Builder.

1. Select the Navigation Choice Interface Controller in

Interface Builder.

2. Open the Attributes inspector tab.

3. Tick Is Initial Controller.

Because we’re going to be dynamically adding the original table interface controller

in code, we will need to refactor and set the identifier on this interface controller.

Open InterfaceController.h and double-click the word InterfaceController

in the line @interface InterfaceController : WKInterfaceController, and then

select Edit Refactor Rename.

Xcode will prompt you for a new name, type TableInterfaceController

and then press Preview, followed by Save. Finally, open the Attributes inspector

tab with TableInterfaceController selected, and set the identifier to

TableInterfaceController.

Your final storyboard should look like Figure 4.11.

Figure 4.11. The interface controllers have had their positions changed to better reflect the flow that the

app will take

We’re very nearly done with the Interface Builder sections of this chapter and

can soon dig in to the code. The last thing we need to do is hook up the buttons we

created in the NavigationChoiceInterfaceController to the methods they will call.

This is done in a very similar way to how we create IBOutlets.

1. In your Interface.storyboard select the Navigation
Choice Interface Controller.

2. Press the Show the Assistant editor button in Xcode and

CHAPTER 4: Examining Home Remote and its Components 143

have the Interface.storyboard and NavigationChoiceInte
rfaceController.m file both visible.

3. Select the Page based button in the Navigation Choice
Interface Controller and then select the fifth tab in the

utilities panel, the Connections inspector.

4. Drag a Sent Actions Selector from the panel to the

implementation section of your NavigationChoiceInterfa
ceController.m file that you have open, and you can call it

selectPageBased when prompted.

5. Repeat the process for the Hierarchical button and call it

selectHierarchical.

These actions will have created two empty methods ready to be filled with code

and should currently look like this:

 - (IBAction)selectPageBased {
 }

 - (IBAction)selectHierarchical {
 }

Page based Navigation

Let’s create the selectPageBased method first. We’ll go through the code after, but for

now type this:

- (IBAction)selectPageBased {

 NSMutableArray *pages = [NSMutableArray array];
 NSMutableArray *contexts = [NSMutableArray array];

 NSUserDefaults *sharedDefaults = [[NSUserDefaults alloc]
 initWithSuiteName:@"group.{bundleid}"];

 NSArray *listOfActions = [sharedDefaults
objectForKey:@"listOfActions"];

 for (int i = 0; i < listOfActions.count; i++) {
 NSString *selectedActionDescription = listOfActions[i]
[@"description"];
 [pages addObject:@"DescriptionInterfaceController"];
 [contexts addObject:selectedActionDescription];
 }

 [WKInterfaceController reloadRootControllersWithNames:pages
contexts:contexts];
}

First we start by creating two empty arrays; one for the page identifier strings and

one for the contexts we pass in to the DescriptionInterfaceController. The code

CHAPTER 4: Examining Home Remote and its Components144

for getting the list of actions should be familiar by now, and after that we loop through

the list. For every entry we add a DescriptionInterfaceController string along with

the description for the action defined at that array entry. We then pass both of these

arrays into the method reloadRootControllersWithNames:contexts.

Note You may have noticed we call reloadRootControllersWithNam
es:contexts on WKInterfaceController rather than on self. This is

because it is a class method, denoted by the “+” at the beginning of

the method signature in the documentation.

We already handled displaying a context in DescriptionInterfaceController,

so go ahead and test your project. Press the Page based button and you should see

what is shown in Figure 4.12.

Figure 4.12. We can now swipe from right to left to view the different action descriptions

After pressing the button you’ll see a list of all of your action descriptions that you

can swipe through easily. One issue we have with this setup is that we have no way

of getting back to the main menu without restarting the application. We’ll address this

issue later in this chapter, but for now, let’s get on with hooking up the Hierarchical

button.

Hierarchical Navigation

Hierarchical navigation works by pushing interface controllers on to the stack much in

the same way that a UINavigationController works for iOS. You’ll even get the back

button in the top left. Change your method to be like this:

CHAPTER 4: Examining Home Remote and its Components 145

- (IBAction)selectHierarchical {
 [self pushControllerWithName:@"TableInterfaceController" context:nil];
}

We’ll also need to update the table:didSelectRowAtIndex: method in our

TableInterfaceController.m to handle pushing a new interface controller onto the

screen. We simply need to add the line [self pushControllerWithName:@”Descrip
tionInterfaceController” context:selectedActionDescription]; to the bottom

of the method. Build and run the watch app and you’ll see that upon pressing the

Hierarchical button, we can progress from interface controller to interface controller,

using the button in the top left or swiping back (see Figure 4.13).

Figure 4.13. The hierarchical flow of the app, from left to right

Great work, but the top of the screen looks a little empty. We can fix that by setting

a title for each page. The title is best set in awakeWithContext: and is called with
[self setTitle:@”{name}”];.

1. Set the title for the NavigationChoiceInterfaceController

to Menu.

CHAPTER 4: Examining Home Remote and its Components146

2. Set the title for the TableInterfaceController to Actions.

3. Set the title for the DescriptionInterfaceController to Info.

Test your app again and look at the top of the screen. The change should be small,

but it’s the little details that really finish an app off.

TIp You can bring your Watch app inline with your brand or iOS

app using the Global Tint color. In Interface Builder, open the File

inspector tab in the Utilities pane and set the Global Tint color to

style your page titles.

Force Touch Menus
Force Touch, found on Apple Watch, provides a new way to interact with content.

Instead of just tapping items on the screen, we now have a second form of touch

input. Pressing the screen with a small amount of force activates a context menu, if

one is defined for the current interface controller. Context menus are optional. You can

use them to display actions related to the current screen.

Here are a couple of examples, shown in Figure 4.14, of Force Touch menus from

the Mail app and Calendar app on the Apple Watch.

Figure 4.14. The information is always context sensitive and provides a way of having plenty of options

available without cluttering the main interface of your Apple Watch app

A context menu is able to display a total of four actions, with each action represented

by a string and an image. Tapping an action’s image dismisses the menu and calls the

method associated with that item. Tapping elsewhere dismisses the menu.

CHAPTER 4: Examining Home Remote and its Components 147

The Design of the Menu Items

Each menu item has an image and a title. The image is different in that it must be

a template image, where the alpha channel defines the shape to draw on top of the

background. Opaque portions of the image appear as black, and fully or partially

transparent portions let the background color show through.

The template images you provide should be smaller than the circular background

on which they sit.

TIp You can learn more about the required sizes and best

practices for Apple Watch elements by visiting the Human Interface

Guidelines for Apple Watch at https://developer.apple.com/watch/

human-interface-guidelines

Apple offers three methods to populate your contextual menu:

- (void)addMenuItemWithImage:(UIImage *)image title:(NSString *)title
action:(SEL)action;

- (void)addMenuItemWithImageNamed:(NSString *)imageName title:(NSString *)
title action:(SEL)action;

- (void)addMenuItemWithItemIcon:(WKMenuItemIcon)itemIcon title:(NSString *)
title action:(SEL)action;

The first, addMenuItemWithImage:title:action, is for adding a single image to a

menu. You just provide an image, the title and the method to call.

The second is very similar to the first, the only difference being you pass in the

name of the image rather than the image itself.

We’re interested the third one. Rather than use an image, we’ll be using one of the

presets that Apple offers, very much like with their default button styles they offer in

iOS. The default ones they offer are:

Accept: a checkmark

Add: a ‘+’

Block: a circle with a slash

Decline: a ‘x’

Info: an ‘i’

Maybe: a ‘?’

More: a ‘...’

CHAPTER 4: Examining Home Remote and its Components148

Mute: a speaker with a slash

Pause: a pause button

Play: a play button

Repeat: looping arrows

Resume: a circular arrow

Share: a share icon

Shuffle: swapped arrows

Speaker: a speaker icon

Trash: a trash icon

The context menu is set up in the interface controller where it will be displayed,

which for us is the DescriptionInterfaceController. Open the file in Xcode and add

the following to the bottom of your awakeWithContext method:

[self addMenuItemWithItemIcon:WKMenuItemIconRepeat
title:@"Restart"
action:@selector(restart)];

As you can see from the arguments we pass in, we want the button to show the

repeat image. It most matches our requirements, will have the text “Restart,” and call

a method named restart, which we’ll create now:

- (void)restart {
[WKInterfaceController reloadRootControllersWithNames: @
[@"NavigationChoiceInterfaceController"]
 contexts:nil];
}

We simply reload the root interface controller, just as we did

to create the page based navigation system, but we only load the

NavigationChoiceInterfaceController.

Test your app and press the Page based button. On the following screen, the

DescriptionInterfaceController, you can either press and hold the mouse button

down if using the simulator, or, if using real hardware, just Force Touch the screen. A

menu should appear and look like the one shown in Figure 4.15.

CHAPTER 4: Examining Home Remote and its Components 149

Figure 4.15. Using Force Touch will bring up this menu

When you press the button, you should be taken back to the menu choice of

whichever navigation style you’d like to see.

Apple Watch Settings
We’ve seen how some context sensitive menus or settings can be displayed on the

Watch using Force Touch, but what about more general settings or configurations?

For those we will use WatchKit settings bundles.

The settings you store in your settings bundle are ideally suited to values that

change infrequently and that you will use to configure your app’s behavior or

appearance. The settings bundle is contained inside of your containing iOS app, and

the settings themselves are displayed by the Apple Watch app on the user’s iPhone.

A WatchKit settings bundle works in the same way as an iOS settings bundle.

The settings bundle defines the controls you want displayed by the system and the

name of the preference that each control modifies. The Apple Watch app on the

user’s iPhone takes the settings bundle information and uses it to display the controls

to the user. When the user changes the value of a control, the system updates the

underlying value.

We’re going to add a selection into our settings that will launch the app directly in

to one of our navigation types. Let’s start by creating our WatchKit settings bundle.

1. Right-click the watchkitdemo group in the project navigator

and select New File…, then iOS Apple Watch
WatchKit Settings Bundle followed by Next.

2. Name the file Settings-Watch.

CHAPTER 4: Examining Home Remote and its Components150

3. Click Next and make sure that the new file will only be

added to the watchkitdemo target, and then click Create.

In your project navigator you’ll see the Settings-Watch.bundle with a small arrow

next to it. Click the arrow to show the settings bundle contents and then click on the

Root.plist.

Note We must add the WatchKit Settings Bundle to the main target

because although the settings are for the Watch, they are displayed

in the Apple Watch iOS app.

Your plist file will be populated with some examples already. Delete everything

under the Preference Items group, then select the empty group and click the “+” icon.

A menu will appear and you should select Multi Value from the list. Set it up so that it

mirrors what is shown in Figure 4.16.

Figure 4.16. Plist files are a way of configuring the settings for your iOS and Apple Watch apps

You will see from the plist configuration that we have three items listed: Default,

Page based and Hierarchical with corresponding values of 0, 1 and 2. Also important

to note is the ApplicationGroupContainerIdentifier field that has a value of group.
{bundleid}. This is because the settings bundle resides within the iOS app itself, so

it will need to use the application group’s capabilities to share the data between the

application and the associated extension.

Go ahead and test your WatchKit application. After it has opened, select the Apple
Watch app on your iOS device of the iOS simulator, and then select watchkitdemo. You

should see an entry titled Menu Style. Tap it, select Hierarchical and then back out

of the menu. We can read this value from out of our shared NSUserDefaults in the

CHAPTER 4: Examining Home Remote and its Components 151

app. To do this, edit the awakeWithContext method in your NavigationChoiceInterfa
ceController.m to look like this:

 - (void)awakeWithContext:(id)context {
 [super awakeWithContext:context];

 [self setTitle:@"Menu"];

 NSUserDefaults *sharedDefaults = [[NSUserDefaults alloc]
 initWithSuiteName:@"group.mobi.bouncingball.watchkitdemo"];

 int menuStyle = [[sharedDefaults objectForKey:@"menuStyle"] intValue];

 if (menuStyle == 1) {
 [self selectPageBased];
 } else if (menuStyle == 2) {
 [self selectHierarchical];
 }
}

You know the shared settings code by now so we’ll skip over that. The new code is

fetching the value of our menu settings and then just calling the methods we assigned

to our menu choice buttons before. Go ahead and change that value, and then re-

launch the app. You will see the menu choice reflected.

Note If you’re testing the app on an Apple Watch you may have to

quit the Watch app and re-launch it to see the change.

We’ve covered a lot of the building blocks of WatchKit apps now. You should

hopefully be getting a feel for what it takes to tie all of the different components

together by now. The keen-eyed among you may have noticed we’ve broken our

glance during the refactor. We’ll address that next by modifying our app to accept

voice input for selecting the navigation type, and provide customization options to

configure the glance.

Home Remote and Voice Recognition
Due to the limited nature of input on the Apple Watch, voice input is becoming an

increasingly used method of input. From Siri, which can be activated without any

button presses, to textual input via speech, voice is the most commonly used method

of input for messaging on the Apple Watch. Because of this, it made sense to have

voice recognition in the launch version of Home Remote. As the app was available for

launch, all development had been done on the simulator. Without having the hardware

in-hand, it was decided to use a page based navigation; the first page being the list of

actions and the second page being the launcher for voice recognition.

CHAPTER 4: Examining Home Remote and its Components152

While this worked well on the simulator, on actual hardware it felt cumbersome

and unwieldy. It was decided, based on customer feedback, that the voice recognition

be moved to a button that sits with the actions you can call, bringing the app all on

one screen (see Figure 4.17). The app flow then became: launch app tap voice

recognition button speak tap Done. Once this functionality was complete it

became very easy to tie that functionality in to the glance that we had created, so the

flow became: Tap glance speak tap Done. This made the app feel much more

responsive, something that is required with the current way Apple has the Watch

Extension on the phone.

Figure 4.17. The flow of Home Remote after adding the configurable Glance for voice recognition

CHAPTER 4: Examining Home Remote and its Components 153

About Voice Dictation
WatchKit provides the modal interface for using voice dictation as text input. When

presented, the interface allows the user to enter text via dictation, or to select from

a standard set of phrases or emoji. The interface is presented by calling the method

presentTextInputControllerWithSuggestions: allowedInputMode: completion:.

Let’s look at the types of arguments you can provide:

presentTextInputControllerWithSuggestions: The first

parameter is an NSArray of possible options you can present

the user with on the voice dictation screen. For Home Remote

we already have a list of options on the screen before the voice

dictation so we pass in nil. As the simulator doesn’t support

voice dictation, you’ll need to pass in something if you’re using it.

allowedInputMode: The type of input to allow, this can be either

plain, plain with emojis, or plain with animated emojis. For our

sample app we’ll be using plain.

Completion: An array that contains the voice input from the

user, or nil if the voice dictation was cancelled. The result of the

voice dictation is an array rather than a string so as to provide

support for returning an NSData object for any emojis that were

used in the message.

Adding Voice Recognition to the Table
First things first, let’s start by adding a voice recognition button to our

TableInterfaceController.m file. This button will instantiate an instance of the in-built

TextInputController and wait for input from the user (see Figure 4.18).

Open the Interface.storyboard in Interface Builder and then select the

NavigationChoiceInterfaceController scene from the Document Outline pane.

Drag a button from the Object library and place it below the two existing ones. Set

its text to Voice. The final interface should look like this.

CHAPTER 4: Examining Home Remote and its Components154

Figure 4.18. Creating and connecting the Voice button to use the Apple Watch voice recognition func-

tionality

Finally, we need to hook up the buttons to the methods that they will call.

1. Press the Show the Assistant editor button in Xcode and

have the Interface.storyboard and NavigationChoiceInte
rfaceController.m file both visible.

2. Select the Voice button in the Navigation Choice
Interface Controller and then select the fifth tab in the

utilities panel, the Connections inspector.

3. Drag a Sent Actions Selector from the panel to the

implementation section of your NavigationChoiceInte
rfaceController.m file that you have open, and call it

selectVoice when prompted.

Now that our button is hooked up to the selectVoice method, we’ll need to add the

following code:

- (IBAction)selectVoice {

 [self presentTextInputControllerWithSuggestions:nil
allowedInputMode:WKTextInputModePlain
completion:^(NSArray *results) {

 if (results != nil) {

 NSString *dictation = [results[0] lowercaseString];

 if ([dictation isEqualToString:@"page based"]) {
 [self selectPageBased];

CHAPTER 4: Examining Home Remote and its Components 155

 } else if ([dictation isEqualToString:@"hierarchical"]) {
 [self selectHierarchical];
 }
 }
 }];
}

There’s quite a lot there so let’s go through it line by line. The first method called is

presentTextInputControllerWithSuggestions, passing in nil for the suggestions. If

you’re using the simulator then you will need to pass in an array of strings. The array,

@[@”page based”, @”hierarchical”], instead of nil will work.

We are also passing in WKTextInputModePlain for the allowedInputMode. This

means that no emojis, animated or otherwise, will be permitted.

Finally, we define the completion block of the

presentTextInputControllerWithSuggestions method.

We check if the array of results is not nil. This would be the

case if the action was cancelled.

We get the first results of the array. There would only be

multiple results if we allowed using emojis.

We convert the string to lowercase. This is always good

practice if comparing strings.

We see if the dictated text matched the words “page based,”

and if so, we call the selectPageBased method.

If not, we see if the dictated text matched the word

“hierarchical,” and if so, we call the selectHierarchical
method.

Go to your app’s settings on the Apple Watch app and set the Menu Style back to

Default, and then test your Watch app. Press the Voice button and dictate the words

“page based” or “hierarchical” (pronounced hire-ark-ick-all) followed by pressing Done.

Your app should call the associated method and change the navigation style.

Note Blocks, like the one we used here, are an incredibly powerful,

and useful, tool. You can read more about them here: https://
developer.apple.com/library/ios/documentation/Cocoa/
Conceptual/ProgrammingWithObjectiveC/WorkingwithBlocks/
WorkingwithBlocks.html.

CHAPTER 4: Examining Home Remote and its Components156

Modifying the Settings and Glance

You may feel that there are too many steps to changing the navigation type using

voice, similar to Home Remote. We’re going to add a new setting to our WatchKit

bundle that will enable us to configure the glance to launch right in to the voice

dictation interface controller. To start with, we’ll add the setting into the settings

bundle.

1. Open the Root.plist inside of the Settings-Watch.bundle.

2. Select Preference Items and click the “+”.

3. Select Toggle Switch from the drop-down menu.

4. Set the Title to Voice for Glance.

5. Finally, set the Identifier to voiceForGlance.

We’ll be reading that value in our GlanceInterfaceController.m to establish what

text we should display. Open the GlanceInterfaceController.m and change the

awakeWithContext to be like the following:

- (void)awakeWithContext:(id)context {
 [super awakeWithContext:context];

 NSUserDefaults *sharedDefaults = [[NSUserDefaults alloc]
 initWithSuiteName:@"group.
mobi.bouncingball.watchkitdemo"];

 NSArray *listOfActions = [sharedDefaults
objectForKey:@"listOfActions"];

 NSUInteger randomIndex = arc4random() % listOfActions.count;

 NSString *selectedActionName = listOfActions[randomIndex][@"name"];
 NSString *selectedActionDescription = listOfActions[randomIndex]
[@"description"];

 if ([sharedDefaults boolForKey:@"voiceForGlance"]) {
 [self.nameLabel setText:@"Voice Recognition"];
 [self.descriptionLabel setText:@"Tap to start"];

 [self updateUserActivity:@"glance.mobi.bouncingball.watchkitdemo"
userInfo:@{@"voiceRecognition" : [NSNumber numberWithBool:TRUE]}
webpageURL:nil];
 } else {
 [self.nameLabel setText:selectedActionName];
 [self.descriptionLabel setText:selectedActionDescription];

 [self updateUserActivity:@"glance.mobi.bouncingball.watchkitdemo"
userInfo:@{@"randomIndex" : [NSNumber numberWithUnsignedInteger:randomInd
ex]}
webpageURL:nil];
 }
}

CHAPTER 4: Examining Home Remote and its Components 157

You’ll see that only the bottom of the method has changed, where we check for the

boolean value of the voiceForGlance key we have in our settings. We can re-purpose the

two labels we already have for the text. Also, if we’re using voice recognition, we update

the userInfo dictionary we pass in to the updatedUserActivity that gets used in Handoff.

Now we just need to read the values in the userInfo and establish whether the

app was activated from the voice recognition glance, or the more general one. We

previously handled the glance Handoff in our TableInterfaceController.m with the

handleUserActivity method. We’ll need to move that code now to our first Interface

Controller, so cut the whole method from the TableInterfaceController.m and paste

it into the NavigationChoiceInterfaceController.m. Because we now have a choice

of two different actions that we can perform, we’ll add an if statement in there:

- (void)handleUserActivity:(NSDictionary *)userInfo
{
 if ([userInfo[@"voiceRecognition"] boolValue]) {
 [self selectVoice];
 } else {
 NSUInteger randomIndex = [userInfo[@"randomIndex"]
unsignedIntegerValue];

 NSUserDefaults *sharedDefaults = [[NSUserDefaults alloc]
 initWithSuiteName:@"group.mobi.bouncingball.watchkitdemo"];

 NSArray *listOfActions = [sharedDefaults
objectForKey:@"listOfActions"];

 NSString *selectedActionDescription =
 listOfActions[randomIndex][@"description"];

 [self presentControllerWithName:@"ModalInterfaceController"
context:selectedActionDescription];
 }
}

We can hook in to our existing method, selectVoice, so there are very few lines

to change. Give your app a test, configure the glance in settings, and then launch the

app from it. You’ll briefly see the navigation choice menu and then the app will bring

up the voice dictation screen.

You’ve now been exposed to many different WatchKit topics, and are hopefully

thinking about your own Apple Watch app. Remember to test on real hardware where

possible, be as creative as you can, and don’t be afraid to fail. Now le’ts go over what

you’ll need to do to submit your new app.

Submitting Your App for Review
Now that your app is completed and you’ve tested it on hardware, it is time to submit

it to Apple. This section will guide you through the submission process, adding

screenshots and some of the common “gotchas” that you might come across.

CHAPTER 4: Examining Home Remote and its Components158

App Identifiers

Your iOS app, Apple Watch App and Apple Watch Extension all need their own unique

App Identifiers. These can be configured in the iOS Developer Center. You can also

create the provisioning files for them here or let Xcode handle that automatically – if it

throws an error just select Fix Issue in the dialogue that appears.

Version Numbers

In our sample project we have three targets. In a real project you might have even

more, such as a Today Screen extension. When submitting your app to Apple, you

must make sure that your version and build numbers match across all targets. If they

don’t match you’ll still be able to archive the app, but the submission process will fail,

which is a real time waster, especially if the app is a large one.

You can edit the values of the version and build numbers in the General tab of

each target, or in the Info.plist of each target.

App Name and Settings Name

Our app name when installed on the iOS device and in the Apple Watch app

settings has so far been watchkitdemo. This doesn’t have a great ring to it.

To change the name displayed on the screen and in the settings, select the Info

tab of the iOS app’s target, and change the Bundle name field to something you like

(see Figure 4.19).

Figure 4.19. The Bundle name is the name your app will display to users on the iOS device home screen

or the Watch settings

Note If you don’t see the name change reflected on the app or in the

settings app, delete the app from the device and reinstall it.

CHAPTER 4: Examining Home Remote and its Components 159

Assets Required for Submission
You should keep your WatchKit app icon visually similar to your iOS app icon to show

users that they are connected. All icons should be square, with no transparency. iOS

will apply the circular mask. There are many different size requirements for different

instances of your Apple Watch icon, so it’s recommended to use something such as a

template to generate all of the icons and name them. One such example is the Apple

Watch App Icon Template at http://appicontemplate.com/watch (see Figure 4.20).

Figure 4.20. The Apple Watch App Icon Template by Danish designer Michael Flarup is a real time saver

Screen Shots

You can upload up to five screenshots of your Apple Watch app. They should be 312

x 390 pixels and have no transparency. Use the full space for the screenshot. Do not

frame the screenshot in an Apple Watch. You should also avoid placing your Apple

Watch app within your iPhone app screenshots.

Two screenshots are initially visible in the screenshot carousel, so those should

feature the best parts of your app.

CHAPTER 4: Examining Home Remote and its Components160

Note You can take a screenshot of your Apple Watch in the Apple

Watch simulator by pressing Command + S. If you are using an Apple

Watch you can press the Digital Crown and the side button at the

same time. The screenshot will appear in your Photos app.

The Submission Process
When you’re finally ready to submit your app to iTunes Connect for review, set the

active scheme to be your main iOS app. Make sure either your connected device or

iOS Device is selected in the active scheme too.

From the top menu select Product Archive. After the app has compiled, which

may take a little while, you’ll be presented with the Organizer window and your app’s

archive (see Figure 4.21).

Figure 4.21. From the iOS organizer you can submit, validate or export your app

Press the Submit to App Store button and then select your Development Team

from the drop-down menu that has appeared. You’ll have a final opportunity to check

the signing and entitlements on everything before pressing the final Submit button

(see Figure 4.22).

CHAPTER 4: Examining Home Remote and its Components 161

Figure 4.22. The profiles used to sign your app will be shown here

After pressing Submit, Xcode will build the package to send to iTunes Connect and

notify you if it was a success or a failure. Be sure to read any warnings that you get

back. They may only be warnings rather than errors but should normally be addressed

if possible. Ideally, you’ll see the sweet submission successful screen shown in Figure

4.23.

Figure 4.23. This screen is when you crack open your beverage of choice, sit back and bask in your

glory

CHAPTER 4: Examining Home Remote and its Components162

Now that the build has gone to iTunes Connect, you need to head on over there

and depending on whether it’s a new app or an update, complete the final steps.

Summary
That’s it! You’ve gone through all of the steps from building an app to submitting it.

After spending so much time building your app, don’t throw it all away:

Take the time to prepare nice screenshots. Sites like http://

launchkit.io/ can really help.

Spend some time on your app’s copy. If you feel you’re not up

to the job, then getting a professionally written app description

isn’t as expensive as you’d think.

Make sure your icon is visually appealing. A lot of people only

look at the icon and first two screenshots.

Best of luck in your apps, and I’d be super keen to see them. You can find me on

Twitter for any questions, information or help, I’m @Gary_BBGames.

163

Chapter 5
Developing Notation –

Audio to Musical Score

By Jamie Maison, creator of the Notation Watch app

When the Apple Watch was released, it became apparent that the device would allow

users to perform specific tasks far quicker than they ever could on the iPhone. It was

with this in mind that I decided to create an Apple Watch version of my application

Notation, which converts the regular audio from your iPhone’s microphone into

musical score and guitar TAB.

The idea behind Notation in the first place was to bring a tool to the hands of

musicians that takes the unnecessary complications out of writing music, leaving the

user to focus solely on the content. So when the opportunity came to allow users to

detect notes even quicker than they could before using the Apple Watch, I decided to

get to work making this a reality. Today the Apple Watch version allows users to detect

individual notes, right on their wrists, both easier and quicker than ever before.

This chapter looks to outline some of the various features that make up Notation,

talking about the problems faced in the development of the Apple Watch application

and how I overcame them. To start with I will outline how to go about setting out

your user interface while including a few workarounds for common problems. I will

then outline how some of the core functionality is processed within the Apple Watch

application.

CHAPTER 5: Developing Notation – Audio to Musical Score164

User Interface on the Apple Watch
The very first thing that users will ever notice about your Apple Watch application

is the user interface. It is arguably the most important aspect of creating a good

impression of your application. In this section we will look to analyze some important

things to remember when creating user interfaces on the Apple Watch, as well as

looking at some solutions to common challenges you might face.

When creating user interfaces for Apple Watch, Xcode fundamentally behaves in

a different way compared to that of the iPhone or iPad. You may be used to placing

elements of your UI wherever you desire ordinarily, however Xcode makes use of

what Apple calls “groups,” which are essentially containers for sets of elements.

Groups have a few benefits such as:

Allowing users to easily arrange elements horizontally or

vertically in their view.

They can be placed inside of each other allowing for easy

management of more complex layouts.

They have a number of settings that can be configured via

the Attributes Inspector such as layout, background image,

and positioning. These setting can be especially useful for a

number of reasons; we’ll talk more about those in a second.

When WatchKit was first introduced, many developers were apprehensive to the

changes that Apple made to the way user interfaces were constructed. In particular,

many felt that not being able to stack elements on top of each other hindered the

design and feel of their UI. There is, however, one solution that is easy to implement

that allows developers to stack images on top of each other, and it uses the “groups”

that we talked about earlier.

165

CHAPTER 5: Developing Notation – Audio to Musical Score

Figure 5.1. The Group Attributes Inspector

USING GROUPS TO STACK UI IMAGES

1. Open your application’s Apple Watch Interface.storyboard and

place within it a group by dragging it onto your storyboard from

the object library (see Figure 5.2).

2. Inside that group, add an Image object. This will hold the image

that you want to be foremost in the stack. To select which image

you want to display, simply type the image name in the section

marked appropriately, “Image.”

For the image that you want to be behind the image that you just placed, click the

group we created earlier in the document outline and click the icon to bring up the

Attributes Inspector. Look for the section that says “Background” and type in the name

CHAPTER 5: Developing Notation – Audio to Musical Score166

of the image you want to be the background image. Now we have two images stacked

on top of each other and your screen should look like this.

Figure 5.2. Finished stacked images

Branding Within Apple Watch Applications
Apple’s Human Interface Guidelines state that developers should:

Avoid displaying your logo in your app. Space is limited.
Use that space for content, not for non-functional branding
elements.

Apple’s guidelines have always been there to help developers create the best

looking applications possible and I certainly agree that space is at a premium on the

Apple Watch, particularly with the 38mm version. However, in my opinion, branding is

fundamental in order to promote sales of your application so when designing Notation,

I made a conscious decision to find a way to include my branding in the Apple Watch

application.

The solution I came up with is fairly simple but allows users to see the Notation

logo without taking up valuable space. To achieve this, when Notation on the Apple

Watch loads, the Image has a default image of the Notation logo. However when

Notation detects its first note, the UIImage is hidden and is instead replaced with the

note that was just found. The code behind this function looks like this:

if(noteValue >= 42 && noteValue < 78) {
 _notationLogo.hidden = YES;
 _noteImage.hidden = NO;
 }

CHAPTER 5: Developing Notation – Audio to Musical Score 167

Here we see that if the note value goes between 42 or 78 (our lowest and highest

notes) then the Notation Logo is hidden and the note image is unhidden, thus

including the application’s branding without taking up valuable space.

Other ways you may include branding may be:

Making your logo disappear on a button press or after a certain

amount of time.

Using your brand’s color as the global tint color of your

application.

Using transitions to segue from your brand to the main content.

Alternatively, include all of your branding on your companion

iPhone application.

Design Considerations

There is no doubting that the design of an application plays a large part in whether it

is successful or not. Coming up with a good looking and intuitive design can’t always

be easy, however there are a few things you can keep in mind that will help you create

a great looking application as well as a functional one.

Remember that space on the Apple Watch is at a premium. We

want to fill the screen with useful elements. If it doesn’t perform

a function or have a use, try not to include it.

Try and lay out buttons the full width of the screen. With the

width of the Apple Watch in mind, the UI will always look

cleaner if you do not cram too many elements side by side. At

the very most only use two or three buttons side by side.

Consider making the background of your application black. The

Apple Watch’s bezel is black and having a black background

will ensure that there is a seamless transition between

the Watch and the application, which is altogether more

aesthetically pleasing.

Use negative space effectively. Blank space can lend itself

really well to UI design because it leaves the content to stand

out and be altogether more noticeable.

Consider using color to help users differentiate between

elements in your application. If all of your text is the same

color, users may find it hard to initially navigate around your

application. Try changing the text color of certain elements to

help differentiate them from others.

CHAPTER 5: Developing Notation – Audio to Musical Score168

Working with App Groups
When Apple announced that the Apple Watch would support native development

at WWDC in June 2015, it meant that developers could finally break free from

being tethered to the iPhone and create watchOS apps that ran by themselves. It is

important to note, however, that in certain circumstances it would be beneficial for the

bulk of an Apple Watch application’s processing to be done on the iPhone instead of

the Apple Watch target. Fundamentally, the iPhone is a much more powerful device

than the Apple Watch and your application will perform faster (and more accurately) if

some of the more complex tasks where processed on the iPhone.

With this in mind you may be wondering: how can a developer then transfer

information between the iPhone and the Apple Watch? In this chapter we will explore

using a capability that Apple calls App Groups that will allow you to communicate

between your iPhone and Apple Watch device.

What are App Groups?

Despite your Apple Watch application being nestled within your application project,

the two targets have no way of accessing each other’s information, and this is where

App Groups come into play. Once enabled, App Groups allow developers to share

information between application extensions and its parent application.

Setting Up App Groups in Your Project

The first step when using App Groups to transfer data between one another is

enabling the App Group capability in both your extension and your containing app.

To do this, first you must open Xcode and navigate to the Capabilities tab of your

containing application. Next, scroll down to the App Groups section and switch it from

OFF to ON (shown in Figure 5.3). You then need to choose your development team

from the drop-down menu. Once selected this will add the App Groups entitlement to

your Apple App ID.

Figure 5.3. The App Groups switch

The next step is to click the “+” icon and name your App Group. It must be in the

format group.company.name. As an example for Notation we used group.notation.

applewatch (See Figure 5.4). Once you’ve chosen a name, click OK and you’ve

successfully completed the first part of the setup!

CHAPTER 5: Developing Notation – Audio to Musical Score 169

Figure 5.4. Choosing a name

The next step is to repeat the process above for your Apple Watch extension

target. This time you won’t have to click the “+” symbol to create a new group because

we have already created one. Instead simply ensure that the box next to your

previously created group is ticked.

Figure 5.5. This is how your App Groups section should look now

That is it for the setup part, now you have a fully functioning App Group set up and

you can use it to transfer all manner of information between your WatchKit application

and your containing application.

STORING INFORMATION WITH APP GROUPS

We now have an App Group set up, but it is not much good to us without knowing how to use it.

If you are at all familiar with using NSUserDefaults within your standard iPhone

application development, you’ll be pleased to know that there is very little difference

between the code you are familiar and the code within your Apple Watch extension.

Principally they are the same, however instead of using standardUserDefaults you

now are using your App Group. There are three steps to storing data into your App

Group:

1. First you must create your NSUserDefaults object.

NSUserDefaults *notationAppGroup = [[NSUserDefaults alloc]
initWithSuiteName: @”group.notation.applewatch”];

2. Now you can store your data and assign it a key. Think of keys as

unique identifiers that allow your app to understand what data you

CHAPTER 5: Developing Notation – Audio to Musical Score170

would like to access.

[notationAppGroup setObject:noteName forKey:@"noteName"];
[notationAppGroup setInteger:noteValue forKey:@"noteValue"];

3. It is important to synchronize your NSUserDefaults App Group at

the end of your function.

[notationAppGroup synchronize];

RETRIEVING INFORMATION WITH APP GROUPS

Now you have saved your data to your App Group and it is available universally across your

container application and your WatchKit application, but how can we access this data?

1. As before, create your NSUserDefaults object.

NSUserDefaults *notationAppGroup = [[NSUserDefaults alloc]
initWithSuiteName: @"group.notation.applewatch"];

2. Retrieve your data by using the relevant key that we set earlier.

NSString *noteName = [defaults objectForKey:@"noteName"];
int noteValue = [notationAppGroup integerForKey:@"noteValue"];

And there we have it! You can use your App Group to store all sorts of data,

strings, integers, images, etc.

Using the Apple Watch Microphone
in watchOS 2
Since the announcement of native Apple Watch support at WWDC in June 2015,

developers are now able to work with the hardware available in the device itself.

This means that developers can now access the Apple Watch’s microphone. In this

section we will run through how to use the device’s microphone using both Swift and

Objective-C.

The first step in using the Apple Watch’s microphone is to create a file where a

recording will be stored. This is neccesary so that the app knows where to store the

audio information produced by the microphone. Currently you can store the recording

in the following formats:

.wav – An uncompressed format that allows for near-lossless

audio quality.

.mp4 – A compressed format that allows for smaller file sizes

but a decrease in quality.

.m4a – Almost identical to an .mp4 however an .m4a is the

CHAPTER 5: Developing Notation – Audio to Musical Score 171

default format recognised by Apple devices and iTunes.

In order to set the path where the recording will be stored, you create a file URL

using NSURL.

 NSArray *filePaths = NSSearchPathForDirectoriesInDomains(NSDocumentDire
ctory,

NSUserDomainMask,YES);
 NSString *path = [[filePaths firstObject] stringByAppendingPathComponen
t:@"recording.wav"];
 NSURL *fileUrl = [NSURL fileURLWithPath:path];

Because you have now set the NSURL where your recording is to be saved within

your application, you can move on to calling the method that requests access to the

Watch’s microphone. You do this as follows.

Swift
self.presentAudioRecordingControllerWithOutputURL(
 self.recFileURL(),
 preset: WKAudioRecordingPreset.HighQualityAudio,
 maximumDuration: 5.0,
 actionTitle: "SomeTitle") { (didSave, error) -> Void in
 }

Objective-C
[self presentAudioRecordingControllerWithOutputURL:fileUrl
 preset:WKAudioRecording
 PresetHighQualityAudio
 maximumDuration:5.0
 actionTitle:@"Title"
 completion:^(BOOL
 didSave, NSError * __nullable error) {
}];

It is important to note that there are three presets in which you

can choose, which are WKAudioRecordingPresetHighQualityAudio,

WKAudioRecordingPresetWideBandSpeech, and

WKAudioRecordingPresetNarrowBandSpeech, which have their own benefits:

WKAudioRecordingPresetHighQualityAudio – For high fidelity

audio applications whereby you want to keep as much quality

as possible.

WKAudioRecordingPresetWideBandSpeech – Allows for a

wide band permitting the capture of speech across a wider

frequency spectrum.

WKAudioRecordingPresetNarrowBandSpeech – Has a narrow

frequency band allowing for more precise speech recordings.

CHAPTER 5: Developing Notation – Audio to Musical Score172

You can now use the Apple Watch’s microphone for audio purposes without the

need of relying on the iPhone’s microphone. It is important to note however that the

iPhone has a much more accurate microphone so it may be necessary to keep that in

mind when creating audio applications!

Translating Audio Data into Visual Information
So far we’ve learned how to transfer information from the iPhone to the Apple Watch.

How then, you may ask, can we use this information within our application to provide

a useful function? After all, applications should always perform some sort of function

to be of any use to the user!

In this section we will use the example of Notation taking the note that is being

detected and translating that information into the corresponding image of the note on

the Apple Watch’s screen.

Importing and Declaring Images

The first thing we should do is import our images into our WatchKit extension’s assets

folder within our Xcode project. To do this simply select your Images.xcassets folder

under your WatchKit Extension folder, click the “+” icon and click “import.” Then all you

have to do is simply select the images that you are going to use, and click open.

Now that Xcode recognizes our image files, we need to declare them as a global

variable (see Listing 5.1). To do this, open up your InterfaceController.m file and inside

of your @interface create a UIImage for each image that you are going to use. For

instance with Notation we want to create a UIImage for each possible note.

Listing 5.1 Creating UIImages

@interface InterfaceController() {
 UIImage *A3StaveCrotchet;
 UIImage *A4StaveCrotchet;
 UIImage *A5StaveCrotchet;

 UIImage *B3StaveCrotchet;
 UIImage *B4StaveCrotchet;
 UIImage *B5StaveCrotchet;

 UIImage *BFlat3StaveCrotchet;
 UIImage *BFlat4StaveCrotchet;
 UIImage *BFlat5StaveCrotchet;

 UIImage *C3StaveCrotchet;
 UIImage *C4StaveCrotchet;
 UIImage *C5StaveCrotchet;

 UIImage *CSharp3StaveCrotchet;

CHAPTER 5: Developing Notation – Audio to Musical Score 173

 UIImage *CSharp4StaveCrotchet;
 UIImage *CSharp5StaveCrotchet;

 UIImage *D3StaveCrotchet;
 UIImage *D4StaveCrotchet;
 UIImage *D5StaveCrotchet;

 UIImage *DSharp3StaveCrotchet;
 UIImage *DSharp4StaveCrotchet;
 UIImage *DSharp5StaveCrotchet;

 UIImage *E3StaveCrotchet;
 UIImage *E4StaveCrotchet;

 UIImage *F3StaveCrotchet;
 UIImage *F4StaveCrotchet;

 UIImage *FSharp3StaveCrotchet;
 UIImage *FSharp4StaveCrotchet;

 UIImage *G2StaveCrotchet;
 UIImage *G3StaveCrotchet;
 UIImage *G4StaveCrotchet;

 UIImage *GSharp2StaveCrotchet;
 UIImage *GSharp3StaveCrotchet;
 UIImage *GSharp4StaveCrotchet;
}

Here you can see that we have created several UIImages that are available

globally throughout our class, each appropriately named in order for it to be easier for

us to recall them later.

Once this is done, the next step is to assign each of these UIImages an image

that we imported into our Asset catalog earlier. The best practice for this is to load

your images in the class’s awakeWithContext object, which is almost identical to the

iPhone’s viewDidLoad that you are most likely familiar with.

Inside of your awakeWithContext, assign each of the UIImages you declared

earlier an Image from your Asset catalog in the following format.

UIImage = [UIImage imageNamed:@"IMAGENAME"];

For Notation we would write this for every note and awakeWithContext will look

something like Listing 5.2.

Listing 5.2. Applying UIImages to awakeWithContext

- (void)awakeWithContext:(id)context {

 [super awakeWithContext:context];

 A3StaveCrotchet = [UIImage imageNamed:@"A3StaveCrotchet.png"];

CHAPTER 5: Developing Notation – Audio to Musical Score174

 A4StaveCrotchet = [UIImage imageNamed:@"A4StaveCrotchet.png"];
 A5StaveCrotchet = [UIImage imageNamed:@"A5StaveCrotchet.png"];

 B3StaveCrotchet = [UIImage imageNamed:@"B3StaveCrotchet.png"];
 B4StaveCrotchet = [UIImage imageNamed:@"B4StaveCrotchet.png"];
 B5StaveCrotchet = [UIImage imageNamed:@"B5StaveCrotchet.png"];

 BFlat3StaveCrotchet = [UIImage imageNamed:@"BFlat3StaveCrotchet.png"];
 BFlat4StaveCrotchet = [UIImage imageNamed:@"BFlat4StaveCrotchet.png"];
 BFlat5StaveCrotchet = [UIImage imageNamed:@"BFlat5StaveCrotchet.png"];

 C3StaveCrotchet = [UIImage imageNamed:@"C3StaveCrotchet.png"];
 C4StaveCrotchet = [UIImage imageNamed:@"C4StaveCrotchet.png"];
 C5StaveCrotchet = [UIImage imageNamed:@"C5StaveCrotchet.png"];

 CSharp3StaveCrotchet = [UIImage imageNamed:@"CSharp3StaveCrotchet.
png"];
 CSharp4StaveCrotchet = [UIImage imageNamed:@"CSharp4StaveCrotchet.
png"];
 CSharp5StaveCrotchet = [UIImage imageNamed:@"CSharp5StaveCrotchet.
png"];

 D3StaveCrotchet = [UIImage imageNamed:@"D3StaveCrotchet.png"];
 D4StaveCrotchet = [UIImage imageNamed:@"D4StaveCrotchet.png"];
 D5StaveCrotchet = [UIImage imageNamed:@"D5StaveCrotchet.png"];

 DSharp3StaveCrotchet = [UIImage imageNamed:@"DSharp3StaveCrotchet.
png"];
 DSharp4StaveCrotchet = [UIImage imageNamed:@"DSharp4StaveCrotchet.
png"];
 DSharp5StaveCrotchet = [UIImage imageNamed:@"DSharp5StaveCrotchet.
png"];

 E3StaveCrotchet = [UIImage imageNamed:@"E3StaveCrotchet.png"];
 E4StaveCrotchet = [UIImage imageNamed:@"E4StaveCrotchet.png"];

 F3StaveCrotchet = [UIImage imageNamed:@"F3StaveCrotchet.png"];
 F4StaveCrotchet = [UIImage imageNamed:@"F4StaveCrotchet.png"];

 FSharp3StaveCrotchet = [UIImage imageNamed:@"FSharp3StaveCrotchet.
png"];
 FSharp4StaveCrotchet = [UIImage imageNamed:@"FSharp4StaveCrotchet.
png"];

 G2StaveCrotchet = [UIImage imageNamed:@"G2StaveCrotchet.png"];
 G3StaveCrotchet = [UIImage imageNamed:@"G3StaveCrotchet.png"];
 G4StaveCrotchet = [UIImage imageNamed:@"G4StaveCrotchet.png"];

 GSharp2StaveCrotchet = [UIImage imageNamed:@"GSharp2StaveCrotchet.
png"];
 GSharp3StaveCrotchet = [UIImage imageNamed:@"GSharp3StaveCrotchet.
png"];
 GSharp4StaveCrotchet = [UIImage imageNamed:@"GSharp4StaveCrotchet.
png"];

CHAPTER 5: Developing Notation – Audio to Musical Score 175

}

So now we have each of the UIImages we created earlier matched up to their

appropriate image in our Assets catalog. We use “=” to tell our application that the

variable is equal to something and the imageNamed syntax to tell our application that

that particular something is an image out of our Asset catalog.

Updating Our Image

Since Apple announced in June that developers could now create Native Apple

Watch applications that do not rely on the iPhone, it is possible to do the processing

on the Apple Watch itself. There are a number of benefits for doing this, however it

is important to remember that the iPhone is a much more powerful device and can

therefore process complex things in a much more powerful way. With this in mind it

may be recommended to do any large processing tasks on the iPhone.

Now that we have all of our images declared and ready to use we can move

on to using them to perform the main function of our application. Inside your

InterfaceController.m, create an object called imageUpdate. This will be where the

majority of our code handling the changing of our image will be written.

-(void)imageUpdate{ }

In the last section we explored how to recall information from your App Group.

We will start off this function by accessing that data and storing it in our Apple Watch

Extension as a float.

-(void)imageUpdate{
NSUserDefaults *notationAppGroup = [[NSUserDefaults alloc]
initWithSuiteName: @"group.notation.applewatch"];

float noteValue = [notationAppGroup integerForKey:@"noteValue"];
}

Now that we have the note value stored in a float we can use that information

to tell our application which image we would like to display in our UIImage. In our

example we want to change the image in reference to the different note values we

are getting from the iPhone application. Because these values are stored as a float,

we can use comparison operators in Objective-C in order to create an IF statement

that determines which note is displayed on our Watch screen. Within our function

imageUpdate we want to write the following.

if(noteValue >= 42.50 && noteValue < 43.50) {
[_watchImage setImage:G2StaveCrotchet];
}

Here we can see that in our statement above we are looking at the note value, and

if it is between 42.50 and 43.50 then we are setting the WKInterfaceImage (named

in our example watchImage) to be our G2StaveCrotchet note icon. You would then

CHAPTER 5: Developing Notation – Audio to Musical Score176

repeat this process for each individual note, resulting in a method like this.

-(void)imageUpdate{
if(noteValue >= 42.50 && noteValue < 43.50) {
 [_watchImage setImage:G2StaveCrotchet];
 }
else if(noteValue >= 43.50 && noteValue < 44.50) {
 [_watchImage setImage:GSharp2StaveCrotchet]'
 }
else if(noteValue >= 44.50 && noteValue < 45.50) {
 [_watchImage setImage:A3StaveCrotchet];
 }
else if(noteValue >= 45.50 && noteValue < 46.50) {
 [_watchImage setImage:B3StaveCrotchet];
 }
and so on…
}

And there we have it! We now have a WatchKit extension that can take a

value given to it from its container application and translate that value into visual

information. From here we would work out a way of triggering our imageUpdate

function, possible methods include:

Trigger on a button press.

Using a for(;;) loop to constantly trigger.

Using a listener delegate to listen for changes to the note.

Summary
Over the course of this chapter we have discussed some of the pitfalls you can

encounter when developing an application for the Apple Watch and ways to overcome

them. In addition, we have talked about App Groups and how they can be used to

share information between the Watch and the iPhone while looking at some of the

fundamentals behind Notation. Hopefully you can use this information to start creating

a watchOS application of your own and publishing it to the wide and wonderful

community of applications on the App Store!

177

Chapter 6
Building the Infinitweet

Application

By Ruben Martinez, creator of the Infinitweet Watch app

So far you have learned a lot about the different ways you can go about building

Apple Watch apps, and now it is time to actually build a fully-functioning one called

Infinitweet. This chapter will introduce you to Infinitweet, a social app for iOS and

the Apple Watch. After discussing what the Infinitweet application does and how it is

structured, this chapter will then walk you through how to create your first Apple Watch

app, a slightly simplified version of the Infinitweet app currently on the App Store.

Though iOS apps can be incredibly complex, Apple Watch apps by comparison

are, at this point in time, rather limited in what they can do and how they do it. This

chapter will discuss the pros and cons of the limitations of the WatchKit SDK as it

pertains to building a real-world app, as well as some creative ways of filling in the

gaps ourselves where WatchKit falls short. It will guide you through creating an iOS

app and adding an Apple Watch companion app. We will create user interfaces in

Storyboard, and learn how to link them back to code. We will discuss the modes

of navigating between screens on the Apple Watch, and learn to work with Apple’s

Social and Accounts frameworks to post to Twitter. Finally, we will learn the magic

behind creating Infinitweet. By the end of this chapter, you will have pieced together a

fully-functioning, App Store ready app for the Apple Watch.

Introducing Infinitweet
One of the great social media titans to dominate the industry, Twitter has exploded

in popularity since it was founded in 2006. As an active Twitter user since joining

CHAPTER 6: Building the Infinitweet Application178

in 2011, I had been closely watching a trend in recent months towards sharing

screenshots of text on the social media website. Through this method, users of Twitter

were able to share more content on Twitter, bypassing the infamous 140 character

limit, created for a time when tweets were primarily sent through SMS. Though this

method was functional, it was often inelegant, and resulted in shots of text that were

either cropped due to Twitter’s own image guidelines, or too small to comfortably read.

In January 2015, I set off to work on Infinitweet. Infinitweet is a Twitter app that can

take text, along with formatting, such as fonts and colors, and convert it into an image.

It leverages many of iOS’s built-in frameworks to draw text within a container and

allows the user to share it to Twitter. This way, tweets can be as long as the user wants

them to be without getting in the way of character limits! Best of all, Infinitweet is smart

enough to resize the image to fit perfectly within the bounds of Twitter’s image previews,

meaning there is no cropped text. As an example of an Infinitweet, see Figure 6.1.

Figure 6.1. An Infinitweet as seen on Twitter

Though the original target audience was people who tend to be a bit long-winded

in tweets, or just people who needed to share longer-than-usual tweets, Infinitweet

for the Apple Watch took on a whole new role. The Watch app is much simpler and

more streamlined than the phone app. To create an Infinitweet, the user simply taps

the new tweet icon, speaks their tweet, approves the previewed image, and voila!

Whereas the iPhone app’s aim is to maximize customizability of a tweet of any length,

the Watch app uses default settings from the parent iOS app to maximize simplicity

and prevent the user from having to worry about going over any character limits. The

last thing a user wants to be thinking about while they tweet from their wrist is whether

they are going over 140 characters.

After being endorsed by the notorious “tweet-storming” venture capitalist Marc

Andreesen on Twitter, Infinitweet made it to #6 on ProductHunt when it launched its

most recent iteration in April, and it has since been downloaded thousands of times

across iOS, Android, and Chrome. Around the same time as Infinitweet launched,

similar apps like OneShot popped up as well, and the popular blogging site, Medium,

built in a web tool that lets users highlight text to share it as an image to Twitter.

179

CHAPTER 6: Building the Infinitweet Application

Environment-Driven Feature Sets
Apple Watch apps are quite often much more limited than iOS apps, both due to

constraints set by Apple, as well as limitations inherent to the device itself. The

two most important of these limitations are the smaller screen real-estate and the

presumably shorter user attention span. However, rather than being a burden, these

limitations both create the opportunity for simplification of advanced features and

streamlining, and also make things easier for new developers to pick up.

Infinitweet for iOS

Figure 6.2. A promotional image for Infinitweet

As evidenced by Figure 6.2, a priority from day one for the Infinitweet app for iOS was

keeping the user interface as simple and uncluttered as possible. First and foremost,

the goal was to eliminate any and all friction between the user’s thoughts and their

ability to send a tweet of any length. Because this is an app for sharing potentially

sizeable chunks of text, it made sense to make the primary focus of this app an empty

UITextView, a blank canvas for the user to craft their tweet on.

When the user opens the app, the UITextView is made the first responder; this

means that they can immediately use the keyboard to enter in any text they want

to share. They can then use the buttons in the UIToolbar above the UITextView

to change things like font, font color, background, alignments, bold, italics, and

underlining in any piece of text by highlighting it. The app automatically backs up any

changes locally until the user is ready to share their creation, so in the event of an app

crash or other error, whatever the text or formatting is on screen is backed up. When

the user is ready to send their Infinitweet off to Twitter, they can press the share button

in the UINavigationBar.

CHAPTER 6: Building the Infinitweet Application180

This fires off the Infinitweet algorithm, which converts the text into an image. We

will discuss how this algorithm works in further detail in a later section. Once the

Infinitweet we created is ready, the user is presented with a Share Sheet, which lets

them choose what to do with the final image. If there are certain fonts or styles they

like to use all the time, there is an option to set these as Defaults. As we will see in a

moment, these options are able to propagate themselves to the Apple Watch.

Infinitweet for Apple Watch

Figure 6.3. Infinitweet for Apple Watch

When designing for the Watch, less is more. For centuries, watchmakers have

referred to additional features on a watch, like a chronograph or different time zone

feature as “complications.” It is good to adopt a similar philosophy when developing

for Apple Watch because more complications are more of a burden for the user

to work through. The Infinitweet Apple Watch app, then, excludes many of the

complications central to the phone app.

The Watch app does not let the user change fonts, colors, styling, layouts, etc. of

the Infinitweet that they create. Instead, these are preset according to the Defaults

they have set in the parent iOS app. To do this, Infinitweet takes advantage of a

feature called App Groups, which let the developer, among other things, share data

using NSUserDefaults between an iOS app, an App Extension, and/or an Apple

Watch app. So, because we know what we want the Infinitweet to look like ahead of

time, there is no need for context menus, toolbars, or overly-complex settings; we just

take the input, run the Infinitweet algorithm, and present the Infinitweet image to the

user for sharing.

More generally, when building apps for Apple Watch, the aim should be to simplify

the interface for the user as much as possible without losing core functionality. One of

the aims I had while building the Infinitweet app for the Apple Watch was to keep the

CHAPTER 6: Building the Infinitweet Application 181

number of taps required as low as possible in order to make sending an Infinitweet

as simple and easy as possible, even if that meant cutting super-user features. If the

user had to press through ten different screens to do what they came to the app to do,

they will reach for their phone and won’t bother opening the Watch app the next time

they need to use your service.

In addition to the above user experience constraints, the Apple Watch developer

needs to keep in mind the user interface. Here is another area where we strive for

clarity and simplicity, perhaps even more so than on the phone. On the Apple Watch’s

38mm or 42mm display, it is paramount that text and buttons be as large as possible

in order to make using your app a painless experience for the user. If you make

your touch targets too small, it could create a frustrating experience for the user.

Fortunately, Apple makes this part easy for us by creating well-sized default button

sizes. Though we can change the size of these some, it is often better to trust Apple’s

defaults.

The Infinitweet Watch app, then, keeps things simple in terms of the options

presented, and keeps them clear and readable. Additionally, as seen in Figure 6.3,

it is limited to three primary screens: the initial home screen, the input screen where

we take text input, and the preview screen where we see the resulting Infinitweet and

have the option to share it. However, because in WatchOS there is no built-in way to

do social media sharing, unlike with Share Sheets on iOS, the developer is tasked

with leveraging a slightly more low-level approach to sharing to social media sites

like Twitter. Using the Social framework and Accounts framework, we have to first get

permissions from the user on their iOS device to use their social media account (only

once per user), present the user with options to share from any of their linked Twitter

accounts, and share from the selected account.

So Where Does the Magic Happen?

Part of the beauty of Infinitweet is that it all happens locally on the phone—not

remotely on a server. While there is no network access involved in creating the

Infinitweet, we of course need network access to share to Twitter, Facebook, or

anywhere else online. However, the creation of the Infinitweet happens on the iOS

device regardless of where the Infinitweet gets its input. In other words, the creation

and processing of Infinitweet happens on the iPhone, even with the Apple Watch app.

The Apple Watch “app” is purely front-end, and handles basic display logic; any heavy

processing happens on the WatchKit Extension, and the division is clean enough

that the developer does not usually have to think about it while making the app.

While native apps that run exclusively on the Watch are coming in watchOS 2 , the

Infinitweet algorithm requires heavy enough processing that it will always be beneficial

to have it run on the beefier phone processor.

CHAPTER 6: Building the Infinitweet Application182

Building Infinitweet
So let’s get started building our Apple Watch app, Infinitweet. This guide will walk

through creating an iOS app in Xcode, creating an Apple Watch app, and then

incrementally adding features to the Watch app. Ensure you have the latest Xcode

installed on your Mac before you begin.

Getting Started

Open Xcode and create a new Project (File New Project). Since we are going

to keep the iOS portion of the application as simple as possible in order to focus on

the Apple Watch app, ensure the Single View Application option is selected, as shown

in Figure 6.4, and press the Next button to continue.

Figure 6.4. Creating a new application

Once on the next screen, you can fill out the necessary fields and name the

application as you like. For our purposes, we will call the application Infinitweet.

Ensure that Swift is selected for the language and iPhone for devices because we will

not bother making this a universal application. When you are ready, the screen should

look like Figure 6.5. Press Next, select a place to store your project, and continue on

to the main development environment.

CHAPTER 6: Building the Infinitweet Application 183

Figure 6.5. Creating a new application (continued)

Congratulations, we have an iOS app! Our next step is to create a companion

Apple Watch app. Go to File New Target. Select Apple Watch from the sidebar

and ensure WatchKit App is selected before pressing Next.

Figure 6.6. Adding a WatchKit app to our application

CHAPTER 6: Building the Infinitweet Application184

Before you press Finish on the next screen, uncheck the options for Notification

screens and Glance screens because we will not need those. Your screen should now

look like Figure 6.6. We’re now ready to get started building our Apple Watch app!

Creating the Infinitweet User Interface

As discussed earlier, Infinitweet for the Apple Watch has a very simple user interface.

Now we can begin to recreate it! Within the left-hand sidebar in Xcode, also known as

the Navigator, and under the “Infinitweet Watchkit App” folder, click on the file named

Interface.storyboard. Here we will recreate the user interface that we see above

in Figure 6.3. The three primary stages of the app will here translate to our first three

Interface Controllers.

The first is the simplest. All we have is a centered button prompting the user to

begin an Infinitweet. From the bottom portion of the right-hand sidebar, also known as

Utilities, ensure the Object Library is shown by clicking on the circular icon as shown

in Figure 6-7. Then, click and drag a Button from the Object Library into the empty

Interface Controller visible in the main window.

Figure 6.7. Dragging a Button from the Object Library

Now, the Attributes inspector within the top part of Utilities should automatically

be selected, but if not, click it. Ensuring the Button is selected in the Storyboard

workspace, change the Title attribute to “Infinitweet.” Make the color of the text black,

and the color of the background white. Finally, change the horizontal and vertical

Position attributes to both be Center.

Note Unlike in iOS apps, WatchKit apps are more restrictive as to where

you can place things within a controller. Though you can fix the widths

of UI elements, all positioning is relative. After this step, your Attributes

should look like those in Figure 6.8.

CHAPTER 6: Building the Infinitweet Application 185

Figure 6.8. Infinitweet Button attributes

The second of Infinitweet’s Interface Controllers is the voice input controller,

and we will be creating it later in this tutorial in code, so that brings us to the last of

the primary controllers, the Infinitweet preview controller. This Interface Controller

shows the user a preview of the Infinitweet we generated before it is posted to Twitter.

Drag another Interface Controller from the Object Library to the

Storyboard area. Go to the Attributes Inspector and set the Identifier attribute to

PreviewController. This will let us show this controller from the code later on. As you

can see in Figure 6.3, this controller has two parts: a Button in the lower half, and an

Image in the top half.

First, drag an Image into the PreviewController. Center it vertically and

horizontally like we did with the Infinitweet Button earlier, by changing the horizontal

and vertical Position attributes to Center.

Next, drag a Button into the PreviewController. By default, the button and

anything else you drag will have a position of top-left, so it will appear above the

Image initially. To position it where we want it, set the vertical Position attribute to

bottom, and the horizontal to center for good measure. Change the Title attribute to

“Share,” and set the text color to black and background to white so it is consistent with

our Infinitweet Button from the first controller.

After this controller, your workspace should look like Figure 6.9. We’re not done

with Interface Controllers just yet, but for now let’s get this interface to talk with our

code.

CHAPTER 6: Building the Infinitweet Application186

Figure 6.9. The main Interface Controller and PreviewController

Communicating Between Storyboard and Code

Now for the fun part: getting the interface we just created to communicate with

the code so that it can actually work. Under Navigator, go to the folder “Infinitweet

WatchKit Extension” and click on the file InterfaceController.swift. This

InterfaceController class, a subclass of WKInterfaceController, will control the

behavior of the Interface Controller view we made a few moments ago.

To begin, we need to create a reference to the Infinitweet button we added to this

Interface Controller in Storyboard. We do this using an IBOutlet, which connects

a user interface element in Storyboard with a particular class. Their companions,

IBActions, connect user interface actions with methods in a class. We will create

some of these in just a moment as well.

For now, double-click on the Interface.Storyboard file in Navigator to open

the file in a new window. You should now have both the Storyboard visible in one

window, and the InterfaceController.swift file visible in another. While pressing

and holding the control button, click and drag from the Infinitweet button to the top of

the InterfaceController class file; position your mouse within the class, but outside

of the methods. You should see a blue line following your mouse. Once you release,

you will have the option to add in IBOutlet, as in Figure 6.10. Name this button

tweetButton, and press Connect. This should give you a line like the following:
 @IBOutlet weak var tweetButton: WKInterfaceButton!

CHAPTER 6: Building the Infinitweet Application 187

Figure 6.10. Creating an IBOutlet

This IBOutlet will allow us to reference and manipulate the Infinitweet button the

user sees on screen. In order to get the button to execute an action when tapped,

however, we need to create an IBAction. Repeat the same series of steps we used

to create an IBOutlet, except this time, change the Connection option as visible

in Figure 6.10 from Outlet to Action. We can call this action captureTweet. The

method this creates will control what the button does when pressed by the user.

Before we implement the details of this behavior, however, we should wire up the

PreviewController we created earlier.

While the Interface Controller’s class file was given to us, we must create a new

WKInterfaceController subclass for our PreviewController. First, ensure the

Infinitweet WatchKit Extension folder is selected, so that the file we create ends

up within the Extension. Go to File New File. Select the Source option on

the left sidebar, and choose Cocoa Touch Class within the window before clicking

the Next button. Make the file a subclass of WKInterfaceController, name it

PreviewController, and then click Next. Choose a location to save the file (the

default is usually fine) and then finish. We now have our new class skeleton in a file,

PreviewController.swift.

Our next step is to tell the PreviewController we created in Storyboard earlier that

it is of the same class PreviewController that we just created. To do this, navigate to

the Interface.Storyboard file and click on the outer frame of the PreviewController

so that it is selected. This should feature a blue outline when it is selected. Then, in

the Utilities sidebar, click on the Identity Inspector icon. Here we can set a custom

class; in our case, we wish to set the Class attribute to PreviewController. The

CHAPTER 6: Building the Infinitweet Application188

Storyboard and Identity Inspector should now look like Figure 6.11.

Our PreviewController in Storyboard features an Image and a Button. Following

the steps we used to create an IBOutlet for the last button, create an IBOutlet for

the Image, which we will call imageDisplay, and an IBAction method for the Button,

which we will simply call share. We have completed the basic wiring of the first two

controllers!

Figure 6.11. Setting a Custom Class for an Interface Controller

Capturing User Voice Input

As you will recall, the missing controller we did not create was for capturing voice

input from the user and needed to be made in code. We will do this from the

InterfaceController, specifically in the captureTweet method. To prompt the user

for voice input, we use the built-in TextInputController, which we can activate

using the function: presentTextInputControllerWithSuggestions(suggestions:
[AnyObject]?, allowedInputMode inputMode: WKTextInputMode, completion:
([AnyObject]!) -> Void). This function lets us ask the user for input and provide the

user with suggestions. Now, populate the captureTweet method as follows:

@IBAction func captureTweet() {
 self.presentTextInputControllerWithSuggestions(["Infinitweeting via
Apple Watch!"], allowedInputMode: WKTextInputMode.Plain) { (results) ->
Void in
 // Ensure we received user input
 if results != nil && results.count > 0 {
 let text = results.first as! String //the user input as
text

 // TODO: create infinitweet here

 // We don't need this controller anymore
 self.dismissTextInputController()

CHAPTER 6: Building the Infinitweet Application 189

 // TODO: navigate to next controller
 }
 }
 }

Let’s break down what this brief chunk of code does. First, we present the

TextInputController with the suggestion “Infinitweeting via Apple Watch!” and

only allow plain text to be input using the option WKTextInputMode.Plain. We could,

alternatively, have allowed for things like Apple Watch’s animated emoji, but that is not

a desirable input form in our case. Within the closure we pass as an argument, we

first ensure that we got some sort of input from the user, and if we did, we store that

input within the constant text. After that, we need to turn the input to an Infinitweet,

which we will do later, dismiss the TextInputController, which takes us back to the

home screen, and finally, navigate to the next controller, which we will discuss in the

next section.

Navigating Between WKInterfaceControllers

Navigation in the Apple Watch user interface often takes one of two forms: presenting

and dismissing, or pushing and popping. We will use mostly pushing and popping,

which is the primary mode of hierarchical navigation. Presenting and dismissing is

used primarily for interstitial controllers, like the TextInputController we just used.

Now that we have each of our Interface Controllers set up, the next step is to

connect them to each other. The first connections were already put in place above:

tapping the Infinitweet button presents the TextInputController, and successfully

capturing voice input dismisses it. The next step is pushing our PreviewController

onto the stack and passing it the Infinitweet we generate.

To begin, let’s replace the TODO’s we left above with actual code. In place of the

line:

// TODO: create infinitweet here

Insert the following lines:

// TODO: actually create infinitweet here
let infinitweet = nil

This will give us an error at first, but it’s okay. This is just so we can use the

Infinitweet variable in the next TODO we replace. We will do the actual work of

creating an Infinitweet a bit later, in the Infinitweet Algorithm section. For now, let’s

replace our next to do. Replace the line:

 // TODO: navigate to next controller

with the working lines:

// Passes Infinitweet to PreviewController and presents it
self.pushControllerWithName("PreviewController", context: ["infinitweet":
infinitweet.image])

This line pushes the next controller, the PreviewController, onto the user interface

stack, and passes it the dictionary containing the Infinitweet we have created, so that

CHAPTER 6: Building the Infinitweet Application190

it can display it to the user for approval.

Now that the initial InterfaceController’s navigation is set up, let’s do the same

for the PreviewController. First, we should store the Infinitweet we just passed the

PreviewController. We need to create a global variable to store the Infinitweet image

so that we can use it in different parts of our code. At the top of the class, after our

IBOutle imageDisplay, add the following line:

var imageToShare : UIImage?

Note It is important to remember that imageToShare contains the actual

UIImage we will be displaying and sharing, whereas the IBOutlet we

created earlier is a reference to the user interface element we created in

Storyboard that will merely display the UIImage.

The awakeWithContext method that was created automatically for you when you

created the PreviewController class contains a local copy of the context that we

passed the PreviewController from InterfaceController. Extract the Infinitweet

from that dictionary and store the image by adding the following lines at the end of the

awakeWithContext method:

if context != nil && context!.objectForKey("image") != nil {
 self.imageToShare = (context!.objectForKey("image") as? UIImage)
 self.imageDisplay.setImage(self.imageToShare)
}

This checks to make sure we were passed a context with an image, and if so,

stores it and adds it to the imageDisplay, making it visible to the user.

Now that we have the transition to the PreviewController handled, we need to

handle the transition away from it. Within the share method, which we will fill in more

in the next section, simply add the following line:

self.popToRootController()

This line makes it so that once the PreviewController is shown, pressing

the share button will bring us back to the InterfaceController we pushed the

PreviewController from, though at this point, nothing is actually shared. We will

handle that in the next section. This completes the basic navigation between

controllers in the Infinitweet app!

Working with Social and Account Frameworks

The next step is where we get a bit more code intensive: working with the Social

and Account frameworks to post to the user’s Twitter account. Unlike on the iPhone

or iPad, where we have Share Sheets to allow the user to select the account that

they want to share things from, on the Apple Watch we have to take matters into

our own hands. The key ingredients here are the Social and Account frameworks,

which allow us access to the user’s synced social media accounts (e.g. Facebook,

CHAPTER 6: Building the Infinitweet Application 191

Twitter, etc.) and let us share things through those channels without the need for user

authentication on every share and without having to store any credentials ourselves.

To begin using the Social and Account frameworks, we must first import them into

code; in our case, we want the following two lines at the very top of PreviewController.
swift, the file controlling the view in which the user approves the Infinitweet for sharing:

import Social
import Accounts

Now that we can access the methods within these frameworks, let’s replace our

current share method with a little more logic:

@IBAction func share() {
 // Load Synced Account Database
 let accountStore = ACAccountStore()

 // Specify Type of Account we want to use
 let accountType = accountStore.
accountTypeWithAccountTypeIdentifier(ACAccountTypeIdentifierTwitter)

 // TODO: Determine whether we already have access to the user's
Twitter account
 // Prompt user for permission to use their Twitter account
 accountStore.requestAccessToAccountsWithType(accountType, options:
nil) {
 granted, error in

 if granted {
 let twitterAccounts = accountStore.accountsWithAccountType(
accountType)

 if twitterAccounts.count == 0 {
 // TODO: No Twitter accounts synced by user
 }
 else if twitterAccounts.count > 1 {
 // TODO: User has more than one Twitter account
 }
 else {
 // TODO: User has one Twitter account, post to that one
 }
 }
 else {
 // TODO: Access not granted by user
 }
 }
 }

That’s a lot to take in at first, but it’s actually all fairly straight forward. The first thing we

do is create an ACAccountStore object, which allows us to access any accounts stored

on the user’s iOS device. In the next line, we define a constant accountType, which

stores the account type that matches the identifier (in this case, the Twitter identifier,

ACAccountTypeIdentifierTwitter). We use this in the following line to request access to

any accounts that have this type. This prompts the user to give us access to their account,

but unfortunately, it does so on the iOS device, not the watch. We will handle that later.

CHAPTER 6: Building the Infinitweet Application192

In the following if…else, we deal with whether or not the user gives us access to

their account. If the user does give us access, we store an array of all their Twitter

accounts, and have to deal with a few edge-cases: namely, what to do when a user

gives us access but doesn’t have any accounts, or has more than one account.

Additionally, we must define the normal behavior when a user only has one account.

Let’s start by defining the normal behavior. Outside of the share function entirely, create

a new method called postImageToAccount(account : ACAccount). This method will take

care of posting the image we stored in imageToShare earlier. Fill out the method as follows:

func postImageToAccount(account : ACAccount) {
 if let image = self.imageToShare {
 // URL for posting an image, according to Twitter API
 let requestURL = NSURL(string: "https://api.twitter.com/1.1/
statuses/update_with_media.json")

 // Prepare image posting request
 var postRequest = SLRequest(forServiceType: SLServiceTypeTwitter,
requestMethod: SLRequestMethod.POST, URL: requestURL, parameters: nil)
 postRequest.addMultipartData(UIImageJPEGRepresentation(image 1.0),
withName: "media[]", type: "multipart/form-data", filename: nil)
 postRequest.addMultipartData("".dataUsingEncoding(NSUTF8StringEnco
ding, allowLossyConversion: false), withName: "status", type: "multipart/
form-data", filename: nil)
 postRequest.account = account

 postRequest.performRequestWithHandler({ (responseData, urlResponse,
error) -> Void in
 if error == nil {
 // TODO: We succeeded!
 } else {
 // TODO: We ran into an error
 }
 })
 }
}

Let’s break this up the same way we broke up the share method. The first thing

we do in postImageToAccount is check whether the image we will be posting actually

exists. It should, as we filled stored it in the awakeWithContext method earlier, but

better safe than sorry. If it does, we store it in the constant image and proceed.

Next, we define requestURL, the URL we will be making the request to post the

image to as per the Twitter API. This URL will vary depending on the type of request

you want to make, the API version you are using, and the service you are requesting

to. In our case, this is the proper URL for posting an image to Twitter as of API version

1.1. In the following few lines, we define an SLRequest object, which allows us to make

an HTTP request. In the initialization of the SLRequest, we specify that we want to

make a POST request to the Twitter service at requestURL.

The addMultiPartData calls allow us to specify parameters we want for the

request; the Twitter API tells us posts to the requestURL require the parameters

CHAPTER 6: Building the Infinitweet Application 193

“media[]” and “status,” the former containing the image we want to post and the latter

containing any text accompanying the image. In order to attach the image, we have

to convert it to a JPEG, so we use the function UIImageJPEGRepresentation, which

takes a UIImage and a value from 0.0 to 1.0 that gives the compression quality of the

resulting JPEG. We then associate this with the “media[]” parameter and add it to the

request. For the “status” parameter, we similarly wrap a string in UTF8 encoding and

attach it to the request. In this example, it is left blank, though it could contain any text

you wish to attach to the Infinitweet image such as, “Posted via Infinitweet!”

The next line simply tells the SLRequest to use the ACAccount we were passed

to authenticate. In that simple line, we avoid having to deal with usernames or

passwords because Apple does all the hard work for us without us ever having to

handle sensitive information.

Finally, the performRequestWithHandler call tells the request to execute and

provides a closure for handling the response. We will handle this at a later point, but

for now we simply divide it into an if…else of whether or not we have an error.

To recap this section, we have now implemented the majority of the logic for

sharing an Infinitweet to Twitter. We can now, for a given UIImage and ACAccount,

post the image to Twitter. To tie it all together, however, we need one more line. Within

the share method, replace the line:

// TODO: User has one Twitter account, post to that one

with the working call to the method we just created:

self.postImageToAccount(twitterAccounts.first as! ACAccount)

In the next section, we will add code that handles one of our edge cases: users

with more than one Twitter account.

Prompting the User With Options

Many users of Twitter, including myself, tend to have multiple Twitter accounts synced

to their phone. How do we know which one the user wants to post to? This is a non-

issue on the iPhone or iPad, where we simply summon a ShareSheet to take care of

the hard work. Still, some apps will use the first Twitter account synced to the phone,

a crude solution that works, but which doesn’t let the user decide. We will approach

this issue by creating an entirely new Interface Controller that will ask the user which

account they want to share from using a new UI tool, WKInterfaceTables.

Navigate to the Interface.Storyboard file. From the Object Library, drag in a

brand new Interface Controller. In the Attributes Inspector, set the Identifier of this

controller to “AccountsController” so that we can refer to it from the code later. Drag

into the AccountsController a Label and set the Position attributes in the Attributes

Inspector to horizontal Center, vertical Top. Change the Text Alignment to Centered

and set the label Text to “Select a Twitter Account.” Unfortunately, this will cut off the

text because it does not all fit on one line. To fix this, change the Lines attribute value

to 0; this will tell the Label to use as many lines as it needs to fit the text.

CHAPTER 6: Building the Infinitweet Application194

Next, add in a Table. We will use this to display the user’s Twitter accounts as

options. In the Attributes Inspector, set the Position to horizontal Center, vertical

Bottom. Into the Table, drag in a Label. This will automatically create a Table Row

Controller. Click on it and set the Identifier attribute to “AccountRow.” That will allow

us to reference it as a row prototype from the code. Next, click on the Group nested

in the AccountRow controller and set the Background Color to White; then, click on

the Label we just dragged in, set the Text Color to Black, and change the vertical

Position attribute to Center. When finished, your AccountsController should look like

Figure 6.12. We’ve completed the Storyboard portion of the Interface Controller and

can transition back to the code!

Figure 6.12. Completed AccountsController

Now, let’s create a new WKInterfaceController subclass using the same method

we used for the PreviewController. Call this one AccountsController. This class

will control the behavior of the Table we created earlier, presenting the user with the

option to post from any of their accounts, and using the selected account to post our

Infinitweet. Before we jump into the code, we need to link the AccountsController

we created in Storyboard with the new AccountsController class. In the right

sidebar, under the Identity Inspector for our AccountsController, set the Class to

AccountsController. Now, open up the recently created AccountsController.swift

file in a new window. Like we did earlier, hold down the control key and drag from

the Table (ensure the Table is selected, not the group or the label) we created in

Storyboard into the Swift file to create an IBOutlet of type WKInterfaceTable which

we will call accountsTable.

The accountsTable will have multiple rows, each of which will display a

different account the user has synced to their device. In order to do this, we

must additionally create a new NSObject subclass the same way we just created

a WKInterfaceController subclass, and call this class AccountRow. Back in

Storyboard, we must change the Class of the Table Row Controller to AccountRow.

Now, opening the Storyboard in a new window, hold the control key and drag from

the Label we added earlier into the AccountRow class to create an IBOutlet for the

WKInterfaceLabel we will simply call name. Now each instance of AccountRow has

CHAPTER 6: Building the Infinitweet Application 195

a name attribute that we can modify to be the name of the account. Before this will

work, we must add the statement import WatchKit to the top of the class, so the

AccountRow class knows what a WKInterfaceLabel is. With this, we can begin filling in

our code.

Navigate to the PreviewController class file. Remove the line:

// TODO: User has more than one Twitter account

We can instead handle the edge case by prompting the user to select a Twitter

account, which we will do in the AccountsController. Add the line:

self.presentControllerWithName("AccountsController", context: ["accounts":
twitterAccounts])

This will present our AccountsController to the user, passing it an array

with all of the Twitter accounts the user has synced to the device. Back in the

AccountsController file, we must import the Accounts framework into the

AccountsController by adding the statement import Accounts to the top of the file.

Then, declare an array to store the passed Twitter accounts by adding the following

line after the accountsTable IBOutlet declaration:

var accounts : [ACAccount]?

Then, within the awakeWithContext method, add the following lines:

if context != nil {
 // Store the list of accounts
 self.accounts = context!.objectForKey("accounts") as? [ACAccount]

 if self.accounts != nil {
 // Set number of rows to number of Accounts
 self.accountsTable.setNumberOfRows(self.accounts!.count,
withRowType: "AccountRow")
 //Populate rows with Account usernames
 for var i = 0; i < self.accountsTable.numberOfRows; i++ {
 var row = self.accountsTable.rowControllerAtIndex(i) as!
AccountRow
 row.name.setText("@\(self.accounts![i].username)")
 }
 }
}

This first stores the list of accounts passed to the AccountsController for later use.

Then, checking that the list of accounts exists, it populates the Table by setting the

number of rows in the table to the number of accounts in our list. Finally, it sets the

name attribute of each row in the table to correspond to the username associated with

each account.

Now that we’ve shown the user a list of the accounts they have synced to their

device, we must define the behavior that happens when one of these rows is selected.

Add in the following method to the AccountsController class:

override func table(table: WKInterfaceTable, didSelectRowAtIndex rowIndex:
Int) {
 // TODO: Post Infinitweet to selected account

CHAPTER 6: Building the Infinitweet Application196

}

This method, which overrides the default method for describing what happens

on row selection, is the final piece of the WKInterfaceTable puzzle. It will post the

Infinitweet image that we created earlier to the Twitter account corresponding to the

selected row. In order to do this, however, we need to define a delegate protocol that

will allow us to call the postImageToAccount method we defined earlier.

At the end of the file, after the final close bracket, paste in the following code:

protocol AccountSelectionDelegate {
 func postImageToAccount(account : ACAccount)
}

This definition allows us to call the method postImageToAccount on any class that

implements the AccountSelectionDelegate protocol. In order to do that, we must

give our AccountsController class access to this delegate class. But first thing’s first:

navigate to the PreviewController and change the class definition to read:

class PreviewController: WKInterfaceController, AccountSelectionDelegate

We already have the only delegate method, postImageToAccount, defined, so we

have already adhered to the protocol. Now, we need to pass our PreviewController

to our AccountsController so that it can set it as its delegate. Modify the line within

the share method that reads:

self.presentControllerWithName("AccountsController", context: ["accounts":
twitterAccounts])

to instead read:

self.presentControllerWithName("AccountsController", context: ["accounts":
twitterAccounts, "delegate" : self])

This will pass the PreviewController to the AccountsController as part of the

context dictionary we are already using to pass the array of Twitter accounts. Now, at

the top of the AccountsController class, add in the line:

var delegate : AccountSelectionDelegate?

This will allow us to store the delegate as a global variable. In the
awakeWithContext method, below the initialization of self.accounts, add in
the line:
self.delegate = (context!.objectForKey("delegate") as! PreviewController)

This will store the PreviewController we passed as a global delegate to the

AccountsController class. Finally, within the tableDidSelectRowAtIndex, replace the

//TODO comment with the following lines:

delegate?.postImageToAccount(self.accounts![rowIndex])
self.dismissController()

This will call the postImageToAccount method of the PreviewController class and

pass it the account at the selected index, taking care of our edge case. It will then

dismiss the AccountsController, bringing focus back to our PreviewController. Our

app now handles users with multiple Twitter accounts!

CHAPTER 6: Building the Infinitweet Application 197

The Infinitweet Algorithm

Believe it or not, our Infinitweet app for Apple Watch is almost complete! However, we

are still missing a few crucial parts, one of which is actually generating Infinitweets.

Let’s create a new class called Infinitweet. Go to File New File. Select Swift

File, and press Next. Name the file Infinitweet.Swift and continue. Replace any code

in the Swift file with the following:

import Foundation
import UIKit

class Infinitweet {
 // Will store Infinitweet image after initialization
 var image : UIImage

 // TODO: Define default Infinitweet Properties

 init(text : String) {
 let ratio = 2 as CGFloat // Twitter images in stream appear in 2:1
aspect ratio
 let delta = 10 as CGFloat // Amount to adjust image width by per
cycle
 let maxCycles = 1000 // After this many cycles, give up

 // TODO: Set text properties

 // TODO: Set initial image attempt properties

 // TODO: Approximate Infinitweet image ratio

 // TODO: Get final Infinitweet size

 // TODO: Generate image
 }

 // Tells us which way the Infinitweet was adjusted
 enum InfinitweetDelta {
 case Positive, Negative
 }
}

This basic template will allow us to get started building up our Infinitweet algorithm.

Let’s walk through what we want the Infinitweet algorithm to do. In place of the line:

// TODO: Define default Infinitweet Properties

Add the code:

// Default Infinitweet Properties
let defaultFont = UIFont.systemFontOfSize(16)
let defaultColor = UIColor.blackColor()
let defaultBackground = UIColor.whiteColor()
let defaultPadding = 20.0 as CGFloat

CHAPTER 6: Building the Infinitweet Application198

This will define all of the properties the Infinitweet image will have. In a more

complete version of the Infinitweet app, we could make these properties user

adjustable, but for now we will hard code them.

At the top of the class we have an image property, which will store the Infinitweet

image we will create. The custom initializer we defined takes a string, text, and will

generate the image to be stored.

One of the key features of Infinitweet is its ability to generate text images that fit

within Twitter’s image preview windows. In order to do this, it has to make the images

fit a 2 by 1 width to height aspect ratio. Though iOS has built-in tools for converting

text to images, there is no way to predefine an aspect ratio. We can, however, set a

fixed width and test the resulting height to see if it meets our desired aspect ratio. We

can then adjust this width by a certain delta until we have the aspect ratio we want.

Though there are faster ways to reach this ratio, for this example we will simply adjust

the width incrementally. In place of our next TODO, add the following code:

// Set text properties
let options = unsafeBitCast(NSStringDrawingOptions.UsesLineFragmentOrigin.
rawValue | NSStringDrawingOptions.UsesFontLeading.rawValue,
NSStringDrawingOptions.self)
let textAttributes = [NSFontAttributeName: defaultFont,
NSForegroundColorAttributeName: defaultColor]

The first line is a set of options that will define how the text will draw onto the

image. The second line describes what the text will look like by giving it a font and

color. Now, replace the next TODO with the following lines:

// Set initial image attempt properties
var currentWidth = 200 as CGFloat
var imageSize = (text as NSString).boundingRectWithSize(CGSizeMake(currentW
idth, CGFloat.max), options: options, attributes: textAttributes, context:
nil)

var currentHeight = imageSize.height
var lastRatio = currentWidth/currentHeight
var lastDelta = InfinitweetDelta.Positive

The first statement stores the initial test width into a variable called currentWidth.

The second line calculates a size for the rectangle encompassing the given text

constrained to that width. It also takes into account the options and attributes we

defined above. Next, we store the calculated height of the rectangle into a variable,

currentHeight, and store the width to height ratio into a variable lastRatio. Finally,

the variable lastDelta will tell us whether we just increased the width or decreased it,

so we can backtrack if necessary. We set it to positive, or increased, as default.

The next step is the bulk of the algorithm: approximating a 2 by 1 aspect ratio in a

loop. In place of the line:

// TODO: Approximate Infinitweet image ratio

add the following code:

CHAPTER 6: Building the Infinitweet Application 199

var cycleCount = 0
while cycleCount++ < maxCycles {
 if lastRatio >= ratio {
 currentWidth -= delta
 lastDelta = InfinitweetDelta.Negative
 } else {
 currentWidth += delta
 lastDelta = InfinitweetDelta.Positive
 }

 // Recalculate size based off new width
 imageSize = (text as NSString).boundingRectWithSize(CGSizeMake(currentW
idth, CGFloat.max), options: options, attributes: textAttributes, context:
nil)

 // Recalculate width:height ratio
 currentHeight = imageSize.height
 let currentRatio = currentWidth/currentHeight

 // If last change didn't improve, revert and give up
 if abs(ratio-lastRatio) < abs(ratio-currentRatio) {
 currentWidth = (lastDelta == InfinitweetDelta.Positive) ?
currentWidth - delta : currentWidth + delta
 imageSize = (text as NSString).boundingRectWithSize(CGSizeMake(c
urrentWidth, CGFloat.max), options: options, attributes: textAttributes,
context: nil)
 currentHeight = imageSize.height
 break
 }

 // If we're already near our target, give up
 if abs(ratio-currentRatio) < 0.05 {
 break
 } else { // Else keep going
 lastRatio = currentRatio
 }
}

As described earlier, this loop will adjust the currentWidth and recalculate the

imageSize until the width to height ratio is either close to 2, we cannot make it any

closer, or we run out of cycles. Once we have approximated the ratio as best as

possible, we can base the size of our Infinitweet off of this. Replace the line:

// TODO: Get final Infinitweet size

with the following:

// Round sizes for Infinitweet
let minSize = (width : CGFloat(440), height : CGFloat(220))
let adjustedWidth = max(CGFloat(ceilf(Float(currentWidth))), minSize.
width)
let adjustedHeight = max(CGFloat(ceilf(Float(currentHeight))), minSize.
height)

CHAPTER 6: Building the Infinitweet Application200

// Outer rect is overall image size, Inner rect contains text
let outerRect = CGRectMake(0, 0, adjustedWidth + 2*defaultPadding,
adjustedHeight + 2*defaultPadding)
let innerRect = CGRectMake(defaultPadding, defaultPadding, adjustedWidth,
adjustedHeight)

The first set of constants define the width and height our Infinitweet will have

according to the most recently calculated currentWidth and currentHeight, unless

they are smaller than the given minimum size (below which the text becomes harder

to read). The second set of constants define the sizes we will use for our Infinitweet;

outerRect is the overall size of the image, whereas innerRect defines the bounds the

text will occupy.

Once we know what size we want the image to be, the next step is to actually

create a canvas using UIGraphics. After the canvas is created, we can draw the text

onto it, export it as a UIImage, and store it in the self.image variable. To complete the

Infinitweet algorithm, replace the line:

// TODO: Generate image

with the following lines of code:

// Generate image
UIGraphicsBeginImageContextWithOptions(outerRect.size, true, 0.0)
var image = UIGraphicsGetImageFromCurrentImageContext()

image.drawInRect(CGRectMake(0,0,outerRect.size.width,outerRect.size.
height))

// Set Background Color
defaultBackground.set()

// Fill background
CGContextFillRect(UIGraphicsGetCurrentContext(), outerRect)

// Draw text
text.drawInRect(CGRectIntegral(innerRect), withAttributes: textAttributes)

// Save new image
self.image = UIGraphicsGetImageFromCurrentImageContext()
UIGraphicsEndImageContext()

These will create a canvas for Infinitweet. For any given text string, we can now

generate an Infinitweet. The next step is to integrate this into our app. Navigate to the

PreviewController and replace the line:

var infinitweet = nil

with the line:

let infinitweet = Infinitweet(text: text)

With the exception of our remaining TODOs, this completes the bulk of the Infinitweet

app for the Apple Watch. If you build and run the app at this point, assuming you have a

synced Twitter account, it should work. However, there is still work to be done to let the

user know when the app works and when it doesn’t. We will cover that in the next section.

CHAPTER 6: Building the Infinitweet Application 201

Providing User Feedback

Now that we have completed most of the behind-the-scenes work, our next step is

providing the user helpful feedback: success messages when things go right, error

messages when things go wrong. While on the iPhone or iPad you might be able

to rely on UIAlertControllers to do the heavy lifting, the Apple Watch has no such

equivalent in watchOS 1.x, though support is introduced in watchOS 2. As a stop-gap

solution, we will have to create our own controller to handle the situation.

Navigate again to our Storyboard, and drag in a fourth Interface Controller.

Under the Attributes Inspector, change the identifier of this controller to

AlertViewController, so we can reference it as such from the code later. To this

controller, let’s first drag in a Group. Groups are typically used for containing certain

portions of the layout on your app, but in our case, we will use it to change the

background of the alert to let the user know whether or not the alert is good, bad, or

something else. Change the Group’s Height attribute to Relative to Container. It

should now take up the whole controller, with the exception of the time. Additionally,

change the Radius attribute value to 0. This will get rid of the rounded corners of the

group.

Now, drag a Label into the Group. Again under the Attributes Inspector, change

the Horizontal and Vertical attributes to Center, and make the Text Alignment

centered. Finally, change the Lines attribute to 0, so it can fit any text we want to

display. When complete, the controller should be similar to Figure 6.13.

Figure 6.13. Completed AlertController

Now that our Storyboard is ready, we need to create another

WKInterfaceController subclass to wire it to. Complete the usual steps for doing

this, and name this controller AlertController. Then, navigate back to Storyboard

and under Identity Inspector, set the class to our newly created AlertController
class. Open the AlertController.Swift file in a new window, and control-drag from

storyboard to the AlertController class to create IBOutlets for both the Group and

CHAPTER 6: Building the Infinitweet Application202

the Label like we have done before. Let’s uncreatively call the WKInterfaceLabel

label, and the WKInterfaceGroup group. We’ve wired up our last Interface Controller!

Within the awakeWithContext method, add in the following code:

if context != nil {
 if let text = context!.stringForKey("alert") {
 label.setText(text)
 let positive = context!.boolForKey("positive")

 if positive {
 group.setBackgroundColor(UIColor.greenColor())
 } else {
 group.setBackgroundColor(UIColor.redColor())
 }
 }
 // TODO: Dismiss controller after interval
}

Breaking it down, if we passed a context dictionary with a String variable, text,

this code will set the label’s text to be that String. Then, depending on whether we

receive a truthy value for a Boolean, positive, we decide whether to make the Group

background green, for good, or red, for bad.

Now that we can show a message, the next step is to make it disappear after a

given time interval. At the end of your AlertController class, add the following code:

func delay(delay:Double, closure:()->()) {
 dispatch_after(
 dispatch_time(
 DISPATCH_TIME_NOW,
 Int64(delay * Double(NSEC_PER_SEC))
),
 dispatch_get_main_queue(), closure)
}

This is a helper function I wrote that uses Grand Central Dispatch, Apple’s

threading system, to run a closure after a given number of seconds. It is simple

enough to understand but going into detail is outside of the scope of this walkthrough.

Now, in place of the TODO in the awakeWithContext method, add the following code:

delay(1, { () -> () in
 // TODO: Perform Additional Steps
 self.dismissController()
})

This will delay 1 second and then dismiss our AlertController. However, before

we dismiss the AlertController, we may in some cases want to do other behaviors

like returning to the app’s home screen. In order to accomplish this, we need to

create a delegate for the AlertController. At the top of the class, define the following

delegate protocol:

protocol AlertControllerDelegate {
 func alertControllerDidCompleteDestructively(destructively : Bool)
}

CHAPTER 6: Building the Infinitweet Application 203

This allows us to have our AlertControllerDelegate specify what actions we

want to exhibit once we are ready to dismiss the AlertController. We will use the

parameter destructively to tell us whether we want to return to the root controller

after completion. Now, replace the new TODO in awakeWithContext with the following:

let delegate = context!["delegate"] as? AlertControllerDelegate
let destructively = context!["destructive"] as? Bool
if delegate != nil && destructively != nil {
 delegate!.alertControllerDidCompleteDestructively(destructively!)
}

This grabs the delegate passed in the context dictionary and then runs its

delegate method, before proceeding to dismiss the AlertController. With this, we

are ready to use our new AlertController!

Navigate to the PreviewController. First, make the PreviewController a

AlertControllerDelegate by changing the class definition to the following:

class PreviewController: WKInterfaceController, AccountSelectionDelegate,
AlertControllerDelegate {

Then, in the postImageToAccount method, replace the line:

// TODO: We succeeded!

with the line:

self.presentControllerWithName("AlertController", context: ["delegate" :
self, "text" : "Success!", "positive" : true, "destructive" : true])

This will summon the AlertController, make it green, and display the text

“Success!” when we’ve successfully posted the Infinitweet to Twitter. Let’s do

something similar for the error TODO below. Replace it with:

self.presentControllerWithName("AlertController", context: ["delegate" :
self, "text" : "Error", "positive" : false, "destructive" : true])

This will make a red AlertController with the text “Error” whenever we get an

error trying to post. Now, in the share method, replace the line:

// TODO: No Twitter accounts synced by user

with the line:

self.presentControllerWithName("AlertController", context: ["delegate" :
self, "text" : "No Twitter Accounts", "positive" : false, "destructive" :
true])

This will alert the user saying “No Twitter Accounts” if they do not have any

accounts synced to their device. Finally, replace the last TODO in the share method

with the line:

self.presentControllerWithName("AlertController", context: ["delegate" :
self, "text" : "Access Denied", "positive" : false, "destructive" : true])

This notifies if they denied us access to their Twitter accounts for whatever reason.

That’s it! We should now be able to successfully build, run, and post Infinitweets from

the Infinitweet Apple Watch app.

CHAPTER 6: Building the Infinitweet Application204

Finishing Touches

Now that we have a working Infinitweet Apple Watch app, we should clean up a few

details. Right now, our app requires user approval from their iPhone before we can

use their Twitter account. There is no way around this, but we can do a better job of

letting the user know this is going to happen.

Navigate to our PreviewController class. In order to let the user know we

need their approval, we need to check if we have the user’s permission to post to

their account. To do this, we need to remember when we get the user’s approval

using NSUserDefaults. If we do, then we proceed to pick an account to post from.

If we don’t, then we notify the user to check their iOS device, request approval,

and remember we’ve gotten the approval if it is granted. In this case will pass the

AlertController a false value for “destructive,” indicating that we should wait for the

user to handle this rather than exiting the current Infinitweet creation process. Replace

all of the code in our share method with the following:

// Load Synced Account Database
let accountStore = ACAccountStore()

// Specify Type of Account we want to use
let accountType = accountStore.
accountTypeWithAccountTypeIdentifier(ACAccountTypeIdentifierTwitter)

// Check if we already have permission
var defaults = NSUserDefaults.standardUserDefaults()
if defaults.boolForKey("permissionsGranted") {
 chooseAccount(accountType, fromStore: accountStore)
} else {
 // Ask User to Check Device
 self.presentControllerWithName("AlertController", context: ["delegate"
: self, "text" : "See iOS Device", "positive" : false, "destructive" :
false])

 // Prompt user for permission to use their Twitter account
 accountStore.requestAccessToAccountsWithType(accountType, options: nil)
{
 granted, error in

 if granted {
 // Check if we have the user's permission
 defaults.setBool(true, forKey: "permissionsGranted")
 defaults.synchronize()

 self.chooseAccount(accountType, fromStore: accountStore)
 } else {
 self.presentControllerWithName("AlertController", context:
["delegate" : self, "text" : "Access Denied", "positive" : false,
"destructive" : true])
 }
 }
}

CHAPTER 6: Building the Infinitweet Application 205

Most of the logic here is the same, except now we check NSUserDefaults in order

to find out whether we have the user’s permission to post.

Note Though in this case we use the standardUserDefaults, we could

alternatively define a set of user defaults that could be shared across all

user devices. We can do this using an iOS feature called App Groups,

which among other things, allows us to share settings between different

portions of the app (such as the iPhone, the Watch, and other extensions).

Because we are not developing a full iPhone companion app, this is

outside of the scope of this tutorial, but it is a good thing to keep in mind.

Additionally, we have also abstracted the account selection process into another

function, which we will define after share:

// Choose account to post from
func chooseAccount(type : ACAccountType, fromStore store : ACAccountStore)
{
 let twitterAccounts = store.accountsWithAccountType(type)

 if twitterAccounts.count == 0 {
 self.presentControllerWithName("AlertController", context:
["delegate" : self, "text" : "No Twitter Accounts", "positive" : false,
"destructive" : true])
 } else if twitterAccounts.count > 1 {
 self.presentControllerWithName("AccountsController", context:
["accounts": twitterAccounts, "delegate" : self])
 } else {
 self.postImageToAccount(twitterAccounts.first as! ACAccount)
 }
}

You will recognize all of this code as the logic for selecting a Twitter account to post

from (or presenting the AccountsController if we need the user to decide) that we

wrote earlier. With these two changes, we will now have told the user to check their

device for permission approval, and have removed our last TODO!

Additional Notes

Our Infinitweet app’s code is now finished. However, that does not mean the app is

complete; though this walkthrough exercise ends here, there is still plenty of room

for improvement. Ideally, we would also create an iOS interface for users to send

Infinitweets, allowing for much more room for customization when they do. This would

also open up the road for more communication between the iPhone and Apple Watch

app; sharing user preferences like default font settings and colors are all possible

using App Groups, which we briefly described above.

CHAPTER 6: Building the Infinitweet Application206

Additionally, before this app is App Store ready, we would also need to give the UI

more polish—improved font choices where necessary, ensure our color schemes are

consistent, as well as add assets to our app—things like app icons and other images

we may want to use in place of text. All of these are important to creating a beautiful

app that encourages users to return.

As you have seen, Apple Watch apps have a number of limitations compared

to iOS apps. These limitations have helped us along the way by simplifying the

number of options we have available to us, but they also meant we had to improvise

replacements for things like UIAlertControllers and Share Sheets. We have also

seen that all of the behind-the-scenes action for Apple Watch apps takes place on the

iPhone, not the Watch itself.

As you go forward building your own Apple Watch apps, always keep in mind

simplicity, ease of use, and unobtrusiveness. Though apps on desktop or even mobile

platforms aim to increase the amount of time a user is using their app, Apple Watch

apps have the opposite aim: get a user in and out as fast as possible, and give them

a sense of accomplishment for using your app. Following these principles will ensure

not only that your users are pleased, but also that they keep returning to use your app.

207

Chapter 7
Developing Apple Watch

Cross-Platform Apps

By Mark Griffin, creator of the FAIRFX Watch app

When smart phones became common place just a few years ago, there weren’t

many options when making applications for them. You could write code native to

the device itself, whether that was Objective-C for iOS or Java for Android. As the

platforms matured, more options became available to developers. One option was

that developers could write code in a different language of their choice, and another

option was the ability to export their code to multiple platforms.

With the advent of wearable technology, we’ve moved a bit back into the past

when it comes to developing for these new platforms. Developers are required to

build applications in whatever language is native for the new platform. This presents a

challenge to those of us who are using one of the alternative tools. We might not have

experience using the native languages, we might already have an application built to

take advantage of cross-platform code, or we might prefer a different tool as personal

preference.

This chapter will be helpful if you are not using native tools to link between your

non-native application and the native tools of the wearable application. By building

a cross-platform application we will look at how to communicate between native and

hybrid code, and how to embed the native application into our project.

Our application will be built in Ionic and Cordova, which is a way of building

applications using HTML that comes with its own set of native feeling components,

however this section should keep it fairly easy for users of other platforms to follow

along with little changes to the plugin and native code to adapt it for their needs.

CHAPTER 7: Developing Apple Watch Cross-Platform Apps208

Our application is pretty simple. It loads a data feed of currency rates and allows

users to customize the base currency so they can see rates specific to them. They

are able to make changes on either the Watch or their phone and the change will be

reflected back on the other platform. Although this is a simple application, it will give

you many of the tools you need to make a far more complicated application using

the same techniques and expanding on the methods used to handle more complex

interactions.

Even if your platform is different to the one we are using for this chapter, I suggest

you follow along first with the guide so that you can be familiar with how and why the

different elements interact together, which should then give you an understanding

of how to approach your own issues. We will also outline many of the problems and

pitfalls that might be presented along the way.

The FAIRFX Watch Application
FAIRFX is an international payment services provider, offering services to over half

a million customers in the UK since 2007. The Group has developed a cloud-based

peer-to-peer payments platform that enables personal and business customers to

make easy, low-cost multi-currency payments in a broad range of currencies and

countries and across a range of FX products via one integrated system. The FAIRFX

platform facilitates payments either direct to bank accounts, or at over 30 million

merchants and over 30 million ATMs in a broad range of countries globally via mobile

applications, the Internet, SMS, wire transfer, and MasterCard/VISA debit cards.

I lead the mobile team at FAIRFX where I’m responsible for the application portfolio

and ownership of mobile technical delivery, line managing the mobile engineering

team, and ensuring an excellent customer experience across tablets to phones to

wearable devices that enable our customers to manage their travel money. I want to

ensure that a perfect union of the visible and invisible details of our services arrives

seamlessly in the right place at the right time across all devices. Securely, discreetly,

and intuitively. My intention is to show you how the FAIRFX mobile and Watch offering

works by building both an iOS application and a WatchKit app.

The main FAIRFX mobile application is built in Cordova and the key features are

allowing customers to top-up their travel card balance and transfer money to other

bank accounts abroad. The application currently has a user base of over 50,000

customers (see Figure 7.1).

We recently launched an Apple Watch application to go along side the mobile

application, which can help our customers have instant access to our services notably

viewing transfer rates at a glance, as well as having up to the minute data on their

wrist about their card balances. As part of our roadmap, we plan to develop a system

of alerts and notifications to tell our customers when rates or balances change.

209

CHAPTER 7: Developing Apple Watch Cross-Platform Apps

Figure 7.1. Screenshots of the FAIRFX Application

Building Watch Applications as a Cross-
Platform Developer
The standard way to make an application for iOS devices is to use Apple’s own

Xcode along with either Objective-C or Swift, however many developers are taking to

using other tools to make their apps. There are many reasons to do so. Some prefer

a different language such as Xamarin offering C#, some prefer an interface that

makes a particular task easier, such as Unity3D, and some people like to bring their

applications to multiple platforms easily using something like Cordova.

The Apple Watch has been a very exciting addition for developers because it could

be the device that pushes wearable technology into the mainstream. The good news

is that the Apple Watch is relatively simple for a native Apple developer to pick up.

But for those who are more familiar with some of these other tools opening up Xcode

and trying to get something going can be challenging in multiple ways, such as not

knowing the language, being unfamiliar with how the tooling works together, or just

communicating between their main application and the Watch application.

Almost all of the tools mentioned allow you to create your own plugins to run native

code directly from your main application so in this section we are going to look at how

you can create a Watch application with little to no knowledge of the native tools. To

do this we are going to be using Ionic as our tool of choice, but the methods used

should be fairly similar between other platforms.

Building Our Main Application with Cordova
Our first step is to create a simple application setup that we can add our Watch

application to further down the line. As previously mentioned, we’re going to use Ionic

to do this, which is a framework for creating mobile applications with HTML5. The first

CHAPTER 7: Developing Apple Watch Cross-Platform Apps210

thing you’ll need to do is install Node.js, which will provide us with the npm package

manager. You can download and install it from here (https://nodejs.org/).

Once that is all set up, we need to go about installing Ionic. We can do this from

the terminal by running the following.

 sudo npm install –g cordova ionic

Our next step is to create the project. For this we are going to use a blank template

and name our application watchDemo.

 ionic start watchDemo blank

This will create a selection of starter files for you, which will contain your web

application. I do not want to spend too much on this part of the application because

you most likely already have your own application. For the purpose of this guide, we

are going to create a very simple application, which loads the latest exchange rates

from some json and lists them out so that we have a basic application to interact with

our example Watch application.

Our first step should be to make sure everything is setup correctly, so let us run our

blank application via a web browser.

 cd watchDemo
ionic serve

This should have opened a web browser with Ionic Blank Starter in a header bar

and not much else. Let us get started with adding a template for our loaded feed.

Grab the code editor of your choice and open up watchDemo/www/index.html. You

can change the page title here if you feel like it.

First, we are going to create a template for us to load a select set of data into. Find

the ion-content tag and insert the following.

<ion-item ng-repeat="rate in rates">
 1 {{base}} = {{rate.amount}} {{rate.rate}}
</ion-item>

We also need to add a controller to load and manipulate the data. You need to

change the ion-content tag so it reads:

<ion-content ng-controller="AppControl">

Next we are going to get our application loading data. At first we will do this

statically but we can move to a dynamic feed further down the line. Open up the file

watchApp/www/js/app.js. Within the basic application, this contains all of the code

to control our application, now let us add our controller. At the end of the file add the

following in Listing 7.1.

Listing 7.1. Loading data

.controller("AppControl", function($scope) {
 var json = {
 "EUR": {
 "AUD":1.4338,
 "CAD":1.365,
 "GBP":0.719,

CHAPTER 7: Developing Apple Watch Cross-Platform Apps 211

 "USD":1.097
 }
 };
 $scope.base = "EUR";
 var rates = [];
 var choice = json[$scope.base];
 for(var s in choice) {
 rates.push({
 rate: s,
 amount: choice[s]
 });
 }
 $scope.rates = rates;
})

I’m not going to go into too much detail for this code because this book is about

Apple Watch development and we are just building a quick application for us to work

with, but hopefully it’s simple enough to follow on. If you now run this code, as when

you first tested the project, you should see a list of exchange rates (see Figure 5-2).

Figure 7.2. Exchange rates in our sample app

JSON does not tend to be too useful when it is embedded directly into the app,

so let us both expand the data we are using and load the data remotely. In a real

application you would likely have some server side logic to generate your JSON

feeds, but for our purposes please copy Listing 7.2 below into a text file and upload it

to some web space somewhere. We are naming ours rates.json.

Listing 7.2. Text file for our app

{
 "AUD": {
 "CAD":0.952,
 "EUR":0.6974,
 "GBP":0.5015,
 "USD":0.7651
 },

CHAPTER 7: Developing Apple Watch Cross-Platform Apps212

 "CAD": {
 "AUD":1.0504,
 "EUR":0.7326,
 "GBP":0.5267,
 "USD":0.8037
 },
 "EUR": {
 "AUD":1.4338,
 "CAD":1.365,
 "GBP":0.719,
 "USD":1.097
 },
 "GBP": {
 "AUD":1.9942,
 "CAD":1.8985,
 "EUR":1.3908,
 "USD":1.5257
 },
 "USD": {
 "AUD":1.307,
 "CAD":1.2443,
 "EUR":0.9116,
 "GBP":0.6554
 }
}

Now let us change the application so that it uses this data instead of the static

JSON. The Ionic way to do this is by using a service. To do this, enter the following

just after the closing bracket of the controller. I’m just loading the local JSON file here,

but remember to change the path to wherever you uploaded your file.

.factory('RatesService', function($http) {
 return $http.get('rates.json');
})

Back in the controller we can now access this data by calling the getRates function

of the RatesService. We are going to modify our controller a little so that the loading

of data and processing of it are in their own functions. Here we are watching for any

changes to the value $scope.json. When it changes we run the same processing code

we were using before.

Listing 7.3. Wathcing for $scope.json changes

.controller("AppControl", function($scope, RatesService) {
 $scope.base = "EUR";
 $scope.$watch('json', function() {
 if($scope.json != undefined) $scope.updateRates();
 });

 $scope.loadRates = function() {
 RatesService.success(function(data) {
 $scope.json = data;
 });
 }

CHAPTER 7: Developing Apple Watch Cross-Platform Apps 213

 $scope.updateRates = function() {
 var rates = [];
 var choice = $scope.json[$scope.base];
 for(var s in choice) {
 rates.push({
 rate: s,
 amount: choice[s]
 });
 }
 $scope.rates = rates;
 }

 $scope.loadRates();
})

Our final step before moving on to the Watch application is to export and build this

project for iOS. Before doing this, now is a good time to set up the config settings for

your project. You can do this by editing config.xml in the root of the project. In here

you should customize the application id within the widget section. There are various

other options that you can have a poke around in here with too. You should have

something roughly like what is shown in Listing 7.4.

Listing 7.4. Editing config.xml

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<widget id="com.fairfx.watchdemo" version="1.0" xmlns="http://www.w3.org/
ns/widgets" xmlns:cdv="http://cordova.apache.org/ns/1.0">
 <name>watchDemo</name>
 <description>
 An Ionic Framework and Cordova project.
 </description>
 <author email="info@fairfx.com" href="http://fairfx.com/">
 Ionic Framework Team
 </author>
 <content src="index.html"/>
 <access origin="*"/>
 <preference name="webviewbounce" value="false"/>
 <preference name="UIWebViewBounce" value="false"/>
 <preference name="DisallowOverscroll" value="true"/>
 <preference name="android-minSdkVersion" value="16"/>
 <preference name="BackupWebStorage" value="none"/>
 <feature name="StatusBar">
 <param name="ios-package" value="CDVStatusBar" onload="true"/>
 </feature>
</widget>

Now we can create an export of our application so that it’s ready for iOS. This will

package everything up into an Xcode project, which we can then use for adding our

WatchKit functionality. To do this, perform the following from the command line.

ionic platform add ios
ionic build

This will now go ahead and create an Xcode project for us in the following folder,

watchDemo/platforms/ios. Open it up and it should look something like what is shown

CHAPTER 7: Developing Apple Watch Cross-Platform Apps214

in Figure 7.3.

Figure 7.3. Exporting our app

Bridging the Gap
Now that we have our main application up and running, we can jump into making

the Watch application more robust. At this stage, you could use the iOS project from

earlier in this chapter and add a WatchKit target to it, but then you would have two

stand-alone applications. What we really want to do is interact between our main

application and the application on the watch, so first we are going to create some

plugins that will enable us to do so.

First up, let’s make sure everything is working with the iOS build. If you browse to

the iOS folder you should find a file in there named WatchDemo.xcodeproj. Double-

click this and it will open up with the Ionic application you made, ready to be exported

to a phone or a tablet. Just to confirm that everything is working, tap the play button in

the top left and you should have something similar to what you see in Figure 7.4.

CHAPTER 7: Developing Apple Watch Cross-Platform Apps 215

Figure 7.4. Our watch demo app

Jump back to your Xcode project now and expand the Classes folder. There should

be a few other bits and pieces in here, but what we want to do is add a new Swift file.

You can create your plugins in either Swift or Objective-C. For this demo I’ve decided

to go with Swift because it shares more similarities with JavaScript, but feel free to

use Objective-C. Things will be relatively similar, but you’ll have to do some research

as to what the alternative commands would be. Right-click the Classes folder, and

select New File. Make sure iOS is selected on the left and that you are under Source,

then select Swift File, as shown in Figure 7.5.

Figure 7.5. Selecting our Swift File

CHAPTER 7: Developing Apple Watch Cross-Platform Apps216

You will then get a dialog box for saving this new file. I’m calling mine

CommincationPlugin. Type in the name you like and then click Create. You will then

be asked if you’d like to configure an Objective-C bridging header. This is an essential

item so make sure that you select Yes to this. This will generate two files, firstly

the CommunicationPlugin.swift that we asked it to create, and also a WatchDemo-

Bridging-Header.h, which was created to allow the main application to access the

plugins code.

Our first step is to add the Cordova communication library, so open up your

bridging header, which is WatchDemo-Bridging-Header.h and add the following.

 #import <Cordova/CDVPlugin.h>

If you now try and build this project you should run into an error. By default, Ionic

and Cordova were built for iOS 6. Swift only works with iOS 7 and above, and we

are using some features that are only available in newer versions of iOS so we just

need to change our settings slightly to make sure it’ll work. Select the main project file

within Xcode. It should be called WatchDemo. You should have a long list of settings

broken down into different groups. We are looking for the Deployment Info group, and

we want to change the Deployment Target from 6.0 to 8.0.

Once you’ve updated that variable, have a quick look down the project structure for

CordovaLib.xcodeproj and carry out the same change there. This will be displayed in

a different way, but you are looking for the variable iOS Deployment Target. To make it

easier you can type that name into the search box at the top of this section and it will

only show you options that will match. Change this to 8.0 and you’re good to move on.

Let’s start off just testing if we have all of the linkage working correctly. First up,

let’s deal with the iOS side. Open up the CommunicationPlugin.swift file that we

created earlier. First thing is to make sure we are extending the Cordova plugin.

import Foundation
@objc(CommunicatePlugin) class Communicate : CDVPlugin {
}

The import Foundation line brings in the basic Swift functionality. The next line sets

up the class for our plugin, extending CDVPlugin so that Cordova can find our code,

and @objc(CommunicatePlugin) is how Objective-C and, in turn, Cordova will see the

name of our plugin. The class Communicate is setting the internal Swift name of our

class.

For our test function we are going to take a value sent from our main application,

convert it to uppercase, and then send it back to our application to do with as we

please. Go inside the class and enter the following.

func echo(command:CDVInvokedUrlCommand) {
}

This is our function we are going to call from Cordova to process our text. You can

name it whatever you like and have many functions within this class for your application

to communicate with. The CDVInvokedUrlCommand is the information we have sent

from our main application. Let’s add some code inside the newly created function.

CHAPTER 7: Developing Apple Watch Cross-Platform Apps 217

var message = command.arguments[0] as! String
message = message.uppercaseString

var pluginResult = CDVPluginResult(status: CDVCommandStatus_OK,
messageAsString: message)
commandDelegate.sendPluginResult(pluginResult, callbackId:command.
callbackId)

Going through line by line, we first take the value passed into our function,

command, and cast the first index of that property to a string. Next we take that string

and convert it to uppercase. We then create our result object as a CDVPluginResult,

passing in the converted string. Last, we use the commandDelegate to send the result

back to Cordova.

Let’s move over to the Cordova side. Just to test this code we’ll put it in the

$ionicPlatform.ready function to make sure all of Cordova and Ionic have loaded

before trying to use the plugin. If you look at the top of app.js you should find the

$ionicPlatform.ready function. After everything else is in the function, go ahead and

put the following.

cordova.exec(function(val) {
 console.log('success: ' + val);
}, function() {
 console.log('fail');
}, "Communicate", "echo", ["Rates are loaded"]);

We start here by calling exec, or the main Cordova object. This is what looks for

plugins. We then set up each of our success (which logs out the data we got back)

and our failure functions. Next, we specify the name of the plugin we are using in our

main application, Communicate, and which function to call Echo. Last, we send in our

array of options.

Our final step to get this plugin up and running is to let Cordova know how our

main application and our iOS app call our plugin. Open up plugins/ios.json and look

for a bunch of elements, which start with <feature name=. We want to add our own

one of these for our plugin. After the last of these elements, add the following.

,{
 "xml": "<feature name=\"Communicate\"><param name=\"ios-package\"
value=\"CommunicatePlugin\" /><param name=\"onload\" value=\"true\" /></
feature>",
 "count": 1
}

First note, remember to use a comma at the start as we are adding a new

value to the array. Here we are specifying the names used by Cordova <feature

name=”Communicate”> and the name of the class used by iOS <param name=”ios-

package” value=”CommunicatePlugin” />. It’s worth noting that this section of XML

should be included in your config.xml, and this plugin file should update from there

but there is currently a bug with Ionic and it doesn’t pick it up so we have to add it

manually.

CHAPTER 7: Developing Apple Watch Cross-Platform Apps218

Save up, build your project for iOS again from the command line (Ionic build ios)

and then jump back into Xcode and hit the play button. If all is going well, you should

see the same application as before, but if you look at the output window you’ll notice

something similar to the following.

2015-06-01 03:50:01.305 watchDemo[4403:330267] success: RATES ARE LOADED

You can see that it has taken our string from JavaScript, sent it to iOS and

converted it to an uppercase string via Swift before returning the result to our main

application for the JavaScript to console.log out. Let’s move on to using this plugin to

save some data for our Watch application to read.

When running different applications on iOS they are all sandboxed into their own

unique area so they can’t affect anything else. This is even true for different targets

embedded in the same application. This can make it complicated when trying to

communicate back and forth between the Apple Watch and your main application.

There is a way around this however, and that is called App Groups.

App Groups are a fairly recent feature in iOS, which allow you to share some data

between any applications that belong to the same group. It requires a little bit of setup

to do, which you’ll need to jump over to Xcode for.

Select the main settings at the root of your project called WatchDemo. From here

we need to make sure we have the Target selected as WatchDemo, and then we

can select Capabilities along the top bar. Scroll down here until you find App Groups,

and tap the on/off switch to enable the feature. Xcode will go off and check online for

any App Groups you already have prompting for you to select the correct developer

account. Once that is complete you can tap the little ‘+’ icon just below the App

Groups box (see Figure 7.6). You’ll be prompted to enter a new container name here,

the best approach is usual to use the same id as your main application, but start that

name with Group. Click OK and your group should now be good to go.

Figure 7.6. Sharing data with App Groups

With that set up, we can now look at saving and reading data. To do so we’re

going to create our own class, which we can use for both the Watch and the main

CHAPTER 7: Developing Apple Watch Cross-Platform Apps 219

application. Let’s first create a new Swift file named CommunicateData.swift.

import Foundation
public class CommunicateData:NSObject {
 public static let groupID = "group.com.fairfx.watchdemo"
 public let data = NSUserDefaults(suiteName: groupID)
}

Here we are creating our Swift class, importing Foundation as usual. We have just

used a plain name for the class name unlike last time because we don’t need this

code to be accessible from Objective-C. We next set our group id to be the same as

the App Group ID we set earlier, and then we create our data object that we’ll use for

storing our data, which is an instance of NSUserDefaults.

 public var userCurrency:String {
 set {
 data?.setObject(newValue, forKey: "userCurrency")
 data?.synchronize()
 }
 }

The primary step is to save some data. We create a public variable called

userCurrency, and in here we’re going to store the most recent value the user selected

within the main application as their currency (we’ll add that actual functionality in

a bit). To do this we then add a setter within the object, which takes the passed in

newValue and assigns it to our userCurrency key. After this we then synchronize this

data so that it’s then accessible elsewhere. Add this next bit of code after the closing

brace for the setter.

get {
 if data?.objectForKey(dataKey) == nil {
 data?.setObject("EU", forKey: dataKey)
 data?.synchronize()
 }
 return data?.objectForKey(dataKey) as! String
}

So here is the code for our getter. We first check if the key exists. If it does not,

then we need to set it to a default. In this case, the default is Euros. We sychronize

as before because we have had to update the data. Next we return whatever is in our

key. The complete code should look like Listing 7.5.

Listing 7.5. Our getter code

import Foundation
public class CommunicateData:NSObject {
 public static let groupID = "group.com.fairfx.watchdemo"
 public let data = NSUserDefaults(suiteName: groupID)
 private let dataKey = "userCurrency"

 public var userCurrency:String {
 set {
 data?.setObject(newValue, forKey: dataKey)
 data?.synchronize()
 }

CHAPTER 7: Developing Apple Watch Cross-Platform Apps220

 get {
 if data?.objectForKey(dataKey) == nil {
 data?.setObject("EU", forKey: dataKey)
 data?.synchronize()
 }

 return data?.objectForKey(dataKey) as! String
 }
 }
}

Let’s jump over to our CommunicatePlugin.swift class to hook everything up that is

ready for adding to our application. You can keep the echo function here if you’d like,

or get rid of it because we’re unlikely to use it again. We’re going to make two new

functions, one for saving data and one for reading it. Let’s start with reading.

func readCurrency(command:CDVInvokedUrlCommand) {
 var currencyData = CommunicateData()
 var currency = currencyData.userCurrency
 var pluginResult = CDVPluginResult(status: CDVCommandStatus_OK,
messageAsString: currency);
 commandDelegate.sendPluginResult(pluginResult, callbackId: command.
callbackId)
}

This should all be pretty simple based on the code we already had. We first create

an instance of our CommunicateData class, we then grab whatever the value is of

the userCurrency variable. Then, just like the echo function, we return that data via a

CDVPluginResult to our main application.

func saveCurrency(command:CDVInvokedUrlCommand) {
 var currency = command.arguments[0] as! String
 var currencyData = CommunicateData()
 currencyData.userCurrency = currency;
 var pluginResult = CDVPluginResult(status: CDVCommandStatus_OK)
 commandDelegate.sendPluginResult(pluginResult, callbackId: command.
callbackId)
}

Our save function is very similar to the load, except we grab the passed in data

first as a String and then set it to our userCurrency value in our CommunicateData

class. Lastly we let our calling function know that everything went fine. Your

CommunicatePlugin should look like this in full.

Listing 7.6. The full CommunicatePlugin

import Foundation
@objc(CommunicatePlugin) class Communicate : CDVPlugin {
 func readCurrency(command:CDVInvokedUrlCommand) {
 var currencyData = CommunicateData()
 var currency = currencyData.userCurrency
 var pluginResult = CDVPluginResult(status: CDVCommandStatus_OK,
messageAsString: currency);
 commandDelegate.sendPluginResult(pluginResult, callbackId: command.
callbackId)

CHAPTER 7: Developing Apple Watch Cross-Platform Apps 221

 }
 func saveCurrency(command:CDVInvokedUrlCommand) {
 var currency = command.arguments[0] as! String
 var currencyData = CommunicateData()
 currencyData.userCurrency = currency;
 var pluginResult = CDVPluginResult(status: CDVCommandStatus_OK)
 commandDelegate.sendPluginResult(pluginResult, callbackId: command.
callbackId)
 }
}

Let’s get this all hooked up to our main application. First open up the index.html file

so we can add the ability to pick and change currencies. Locate the ion-item element

and add the following to it after it’s repeated.

ng-click="changeBase(rate.rate)"

Now let’s jump back over to the app.js file to add some code to control this and

some other business. First, we should remove our old call to the echo function within

the opening run section. We also want to make sure that our main controller knows

when the application has finished loading so we can check if there is any data in our

plugin. At the top of the run function add $rootScope after $ionicPlatform. Then within

the ready function set $rootScope.loadComplete to true. Your run function should read

like this:

.run(function($ionicPlatform, $rootScope) {
 $ionicPlatform.ready(function() {
 if(window.cordova && window.cordova.plugins.Keyboard) {
 cordova.plugins.Keyboard.hideKeyboardAccessoryBar(true);
 }
 if(window.StatusBar) {
 StatusBar.styleDefault();
 }
 $rootScope.loadComplete = true;
 });
})

Next, let’s add a watch for this loadComplete. To get set, first add $rootScope to

our AppControl, then enter the following code.

var loadInterval = setInterval(function() {
 if($rootScope.loadComplete) {
 }
 clearInterval(loadInterval);
}, 500);

This will let us run some code only when the app has fully loaded. Let’s first add

some code to read our App Group object, within the if statement checking for the

loadComplete to be set to true add the following.

try {
 cordova.exec($scope.currencyLoaded, function(){}, "Communicate",
"readCurrency", []);
} catch(e) {
 $scope.currencyLoaded("USD");
}

CHAPTER 7: Developing Apple Watch Cross-Platform Apps222

We’ve wrapped this code in a try/catch block to make sure when running in a

browser or on a device without the plugin that we still have something to fall back to.

This is very important with cross-platform applications because you need to think

about what will happen to customers who are on a different platform to the extension

you are making. You can either make a plugin specific to that platform as well, or you

can just make sure you can handle instances where the plugin doesn’t exist.

The code above calls our Communicate plugin and asks for the readCurrency

function within there. We’re passing an empty array because we don’t have any

data that we need to send. $scope.currencyLoaded is a function we will create in a

moment and the second function here is used if cordova.exec fails. We’re not using

it here, but depending on what your plugin is doing, you might need to have some

fallback code to handle any issues it might have with the results.

After the loadInterval we’ll add the $scope.currencyLoaded function to handle the

result from the previous function. This is pretty simple.

$scope.currencyLoaded = function(val) {
 $scope.base = val;
 $scope.loadRates();
}

This just changes the current base value in use and then calls our existing

loadRates function to populate the data for our application. Lastly, we’ll send some

data back to our plugin so that we can save the currency value to the App Group

and then read it both back in the application and in the Watch application. Add the

following after the last function you made.

$scope.changeBase = function(newBase) {
 $scope.base = newBase;
 $scope.updateRates();
 try {
 cordova.exec($scope.currencyLoaded, function(){}, "Communicate",
"saveCurrency", [newBase]);
 } catch(e) {}
}

This is the code to handle when a user taps on one of the currency values. We

take the currency type that was tapped and set it as the base value on our scope. We

then call the updateRates function to reload the display with the new data. After this

we call our saveCurrency function within the Communicate plugin, passing in the new

base value.

If you save up, build, and then run the app in Xcode, you should get the rates for

Euros at first (this is the default value from the plugin when nothing is set). If you tap

a couple of fields and quit the application and reopen it, you should see it load with

whatever the last value selected was. This is all loading the data from the App Group.

This is the same data we’ll use for loading data for the Watch. Here is the full code for

the controller (in Listing 7.7).

CHAPTER 7: Developing Apple Watch Cross-Platform Apps 223

Listing 7.7. Our controller

.controller("AppControl", function($scope, RatesService, $rootScope) {
 var loadInterval = setInterval(function() {
 if($rootScope.loadComplete) {
 try {
 cordova.exec($scope.currencyLoaded, function(){},
"Communicate", "readCurrency", []);
 } catch(e) {
 $scope.currencyLoaded("USD");
 }
 clearInterval(loadInterval);
 }
 }, 500);
 $scope.currencyLoaded = function(val) {
 $scope.base = val;
 $scope.loadRates();
 }
 $scope.changeBase = function(newBase) {
 $scope.base = newBase;
 $scope.updateRates();
 try {
 cordova.exec($scope.currencyLoaded, function(){},
"Communicate", "saveCurrency", [newBase]);
 } catch(e) {}
 }
 $scope.$watch('json', function() {
 if($scope.json != undefined) $scope.updateRates();
 });

 $scope.loadRates = function() {
 RatesService.success(function(data) {
 $scope.json = data;
 });
 }
 $scope.updateRates = function() {
 var rates = [];
 var choice = $scope.json[$scope.base];
 for(var s in choice) {
 rates.push({
 rate: s,
 amount: choice[s]
 });
 }
 $scope.rates = rates;
 }
})

CHAPTER 7: Developing Apple Watch Cross-Platform Apps224

Getting a WatchKit App Up and Running
Now we can get on to the part that most cross-platform developers dread, working

with Xcode. Don’t worry, it’s not that bad; I promise. Let’s now add our WatchKit target

so we can begin some Watch development. To do this, in Xcode, go to File New

Target. This will open a dialog box with quite a few options, which could be confusing

to the non-native developer. We’re not interested in most of what you see here. On the

left hand side of the dialog box you have iOS and OS X main sections, then a number

of sub-categories. Under the iOS section we want to select Apple Watch (see Figure

7.7). You should now only have one option on the right-hand side, which conveniently

is the one we want, WatchKit App for watchOS 1. Make sure this is highlighted, and

click Next.

Figure 7.7. Accessing our WatchKit app

The next screen lets us set up some options for our new target. You probably

will not need to change too much within here. The main things to look at are the tick

boxes just a little over half way down. These let you decide if you’d also like to include

Notifications and Glance scenes along with your main application. For our demo

application, we’re just creating the main application, so leave both unchecked. When

you’re done, click Finish (see Figure 7.8).

CHAPTER 7: Developing Apple Watch Cross-Platform Apps 225

Figure 7.8. Setting up options for our target

We are now set up to start developing a Watch application, which we can release

along side our main application written in Cordova. Xcode has generated a couple

of things for you, but first of all, let’s test our newly set up WatchKit application to

see what’s been created for us already. Xcode should automatically set the WatchKit

application as the build target, but just to make sure, you need to select it from a little

drop-down menu just to the right of the Play and Stop buttons at the top left of the

Xcode window. From here select WatchDemo WatchKit App, then tap on the Play

button (see Figure 7.9).

Figure 7.9. Running the WatchKit app

Most likely, not much will happen. If you are running Xcode 6, the iOS emulator

doesn’t actually launch the Apple Watch emulator part while testing a WatchKit

application. To do this, make sure you have the emulator selected and go to Hardware

CHAPTER 7: Developing Apple Watch Cross-Platform Apps226

 External Displays Apple Watch (38mm). This should pop up a little companion

window ready to emulate the Watch, but it will not be running anything (see Figure

7.10). Now you’ve got the window open go back to Xcode and press the Play button

again. On newer versions of Xcode you should have the option to run the application

with both an iOS device and a Watch.

Figure 7.10. Launching the Apple Watch simulator

A black screen isn’t perhaps the most exciting thing, but you’ve now created

your first WatchKit application. Let’s go and add something just to show that it’s fully

working, then we can get on with making it more functional.

Jump back over to Xcode and take a look at the project files. You should have

two folders that were created when you added the WatchKit target, a watchDemo

WatchKit Extension folder and a watchDemo WatchKit App folder, both of these are

required when making an application (see Figure 7.11). The way it works is that the

App target contains everything that will be shown on the Watch itself. Any kind of logic

and functionality will be carried out by the companion Extension, which is run on the

phone. Data is then communicated via Bluetooth. For most of what you’re doing you

shouldn’t have to worry about the two targets any more than knowing visuals go in the

App folder, and logic goes in the Extension folder.

CHAPTER 7: Developing Apple Watch Cross-Platform Apps 227

Figure 7.11. The new project folders

Let’s add something visual and then jump into the App folder and click Interface.

storyboard. This file is used to describe the different screens our WatchApp will have and

how they link together. You should have two notification scenes and then the main scene

called Interface Controller Scene. This is the one we’re going to be working with for now.

Make sure you have all of the extra tools windows open in Xcode by clicking the

icons at the top right. We specifically need the right-hand panel, which provides us

with the different UI elements we can add to our Watch.

At the bottom of this right-hand panel, make sure the Object Library is selected,

select the Label item (see Figure 7.12), and drag it over onto our Scene.

Figure 7.12. Selecting the label for dragging

CHAPTER 7: Developing Apple Watch Cross-Platform Apps228

Now double-click inside the window and type something suitable. I’m going to stick

with Hello World. Clicking on Play again should show your new content running within

the application and prove to you it can be more than just a blank screen that tells the

time.

Figure 7.13. Our Hello World message is running

Let’s tweak our Storyboard so we can use it to display rates much like in the

application. Drag over a Table element from the Object Library. This will create a

Table element with a Table Row Controller inside of it, and a Group inside of that.

Inside of the Group, drag over a Label field again. Make sure this goes inside of the

Group object.

Feel free to now tweak the Attributes inspector to align the text how you’d like it.

I’m going to change the old Hello World text to say CUR, which we’ll populate with

information later. You should end up with something like what is shown in Figure 7.14.

CHAPTER 7: Developing Apple Watch Cross-Platform Apps 229

Figure 7.14. We’ve added CUR as a label

Next up, we need to find a way to code these elements. For this we should do a

bit of prep first so there is something there to link to. The first thing we want to do is

load some data, just like the main app does. We can connect to the same JSON feed

we used before. There’s always the option to save all of that data to the App Group

we used before, but this would have the limitation that it was only as up to date as the

last time we used the application, so we’ll grab the files each time the user opens the

application just to make sure we’re using the latest data.

Loading JSON in Swift is a bit difficult. My personal recommendation is to use an

open source library called SwiftyJSON. This makes working with XML much nicer

and closer to how we worked with JSON in our main application. You can download

SwiftyJSON from here.

https://github.com/SwiftyJSON/SwiftyJSON/blob/master/Source/SwiftyJSON.
swift

Download that file and drag it straight into you WatchKit Extension folder, and then

select Finish for accepting the default options. Now we also want to add a class to

manage each of our table cells. To do so, right-click the WatchKit Extension folder,

select New File, and then select an iOS, Swift File. Name this CurrencyRowController.

swift and tap create. We’ll now drop in a basic class so we can see the controller

when we do the linkage. Add the following to the file you just made.

import Foundation
import WatchKit
class CurrencyRowController: NSObject {
}

This is similar to the classes we’ve made before, but you’ll notice that this time

we’ve also imported the WatchKit libraries. Now we’re all set to create our linkages.

CHAPTER 7: Developing Apple Watch Cross-Platform Apps230

Head back to the WatchKit App and open up the Interface.storyboard again. Select

the Assistant Editior at the top right-hand corner of the screen. This should open the

InterfaceController.swift file next to the Storyboard that you just opened. If not, then

use the drop-down menus to browse to the correct file.

Now, using your right mouse button, drag the Label at the top of your storyboard

to the inside of the WKInterfaceController class. It should show you a highlighted line

when you’re in the correct spot. Name it baseRate and tap Connect (see Figure 7.15).

This will add some code for you to reference the element, and it will connect the item

in your Storyboard to that variable. Now let’s do the same with the Table element and

name this one currencyTable.

Figure 7.15. Connecting the label to our WKInterfaceController class

Last, we want to link up our Label element with our CurrencyRowController class.

To do this, first select the Currency Row Controller on our Storyboard, and select

the Identity Inspector on the far right hand panel. At the top of this panel is a field for

you to put the Class you want to use, so type CurrencyRowController. It should offer

you an auto-complete if it recognizes the file. Next, change the tab to the Attributes

Inspector and set the Identifier to be CurrencyRow. Now you can drag the Label

element into the CurrencyRowController class and name it to labelText.

Let’s move on to getting some data in. Open up InterfaceController.swift from the

WatchKit Extension. You can return your view to the standard editor if you like in the

top right. Create a function called loadData and put the following in:

let base = "AUD"
baseRate.setText(base)
let url = NSURL(string: "rates.json")
let task = NSURLSession.sharedSession().dataTaskWithURL(url!) {
 (data, response, error) in let json = JSON(data: data)
 self.currencyTable.setNumberOfRows(json[base].count, withRowType:
"CurrencyRow")
 var index = 0
 for(key: String, subJson: JSON) in json[base] {
 let row = self.currencyTable.rowControllerAtIndex(index++) as!
CurrencyRowController

CHAPTER 7: Developing Apple Watch Cross-Platform Apps 231

 let amount = String(format: "%.4f", subJson.floatValue)
 println(amount + " " + key)
 }
}
task.resume()

Going through this quickly, we’re first hardcoding the base value to AUD. We’re

then using that value to set the text of the label at the top of our display to show what

currency is currently selected (see Figure 7.16). Our next step is to set the URL to our

JSON file. Remember to set this to where ever you have your service or file uploaded.

We create a task for loading the JSON and then parse that into a JSON object.

We set the number of rows based on the number of results we got back and told

them to be an instance of our CurrencyRow object that we created earlier in the

Storyboard. We then loop through all of the elements in the JSON result set, and print

out the result. Lastly, we call the resume function on our task to actually set everything

into gear. If you add a call to the loadData function from the willActivate one, you can

run the application and start seeing a more productive application.

Figure 7.16. Hardcoding the base value of AUD

Let’s finish this part off so we can hook our Watch application and our main

application together. Jump over to the CurrencyRowController.swift file and within the

setCurrency function we made earlier, add the following:

labelText.setText(amount + " " + base)

Now jump back over to our InterfaceController and call this function. Open up

InterfaceController.swift and locate the following println(amount + “ “ + key). We can

change this like the following.

row.setCurrency(key, amount: amount)

If you run the application again you should now get the values actually filled in.

CHAPTER 7: Developing Apple Watch Cross-Platform Apps232

Linking the Applications Together
Now that we have our applications up and running on both the phone and the Watch,

let’s look at linking them together. Our first step should be to take the value we saved

into our App Group and to show and use it in the Apple Watch application.

First up, in our main Classes folder, select the CommunicateData.swift class that

we made for our main application. In the panel on the right side find the section called

Target Membership. Here you should click the tick box next to watchDemo WatchKit

Extension so that the class is shared by both of our applications (see Figure 7.17).

Figure 7.17. Sharing our class with both apps

We now also need to set up our WatchKit application to use the same App Group

as the main application. Go to the watchDemo main settings file in the root of our

project and make sure watchDemo WatchKit Extension is selected under Targets.

Now move over to Capabilities along the top tab and and find the App Groups

section and expand it. Flick the little On/Off switch and you should be presented with

a list of your available App Groups. Select the same one that we created before, and

we can now jump back to our WatchKit Extension code.

Open the InterfaceController.swift and take a look down at our loadData function.

We currently have a hard coded base value set. Let’s edit this. Replace this code with

the following.

var currencyData = CommunicateData()
var base = currencyData.userCurrency

If you run the WatchApp you will likely now see a different currency loaded to the

one that was selected by default. If not, open the main application in the simulator and

change the currency, then quit and reopen the Watch application (see Figure 7.18).

CHAPTER 7: Developing Apple Watch Cross-Platform Apps 233

Figure 7.18. Our new currencies are now showing

Now we should look at going the other way. Allow a user to change the currency on

their Watch and have that same change show up in the main application. To do this

we need to tweak Storyboard a little bit, so go back to the WatchKit App folder and

open the Interface.storyboard.

To add interaction we need a button, so drag a button component within the

CurrencyRow object and select it. On the Attributes Inspector, change the Content

from Text to Group and then drag our Label into the new Group that is created. Again,

feel free to amend any positioning or layout you’d like to do.

If you run this you should get something that looks almost exactly the same as

before, except if you tap one of the rates you should get a little depress animation

showing that the elements are actually buttons now. Let’s move on to linking them up.

Go back to the Assistant Editor and make sure you still have the storyboard on one

side and CurrencyRowController on the other, and then right drag your button object

to somewhere within your code.

This one will be slightly different to the last linkages we’ve set up. This time change

the Connection drop-down at the top to Action and name it updateRate. This will

create a function that will run every time the button is clicked. We want to call our

parent object instead in this case so we’re going to add a delegate. At the top of the

document after the public var base = “EU” code add the following variable.

weak var delegate: InterfaceController?

Now within the function we created, let’s access this delegate. Your IBAction

function should look like this.

@IBAction func updateRate() {
 delegate?.updateRate(base)

}
You’ll likely get an error at first because we haven’t created this new updateRate

function on the parent. Open the InterfaceController and add the following function at

the end.

CHAPTER 7: Developing Apple Watch Cross-Platform Apps234

func updateRate(base: String) {
 var currencyData = CommunicateData()
 currencyData.userCurrency = base
 loadData()
}

If you now run your code you should see that the Watch acts just like the main

application and you can tap one of the rates and it will update to show the specific

rates for that base. This is done by using our CommunicateData class to save the

value to our AppGroup. This means if you now open your main application you’ll

notice it’s also now showing the same data as the Watch application.

You should now able to go backwards and forwards between both the Watch and

the main application with changes being reflected in both. This can be used for far

more powerful information allowing a rich set of interactions to users.

Ideally you’d expand this application further so that when the App Group changes,

the other applications will automatically read the new variable. The best way to do this

would be to use a timer in both the JavaScript and on the Watch, but we will leave this

as an exercise for the reader.

Common Pitfalls
Hopefully after following along you have both the application and the Watch

application running well, however, during the process of trying to get things to play

nicely between native and hybrid code I have encounterd various little issues. These

problems can lead to you tearing your hair out until you find them. I’ll try and outline a

couple here to save you time in the future if you get stuck.

Different Version Numbers

One early pitfall is differing version numbers. All three targets that you are using need

to be on the same version number. This can be confusing since earlier versions of

Xcode used to let you have a different version number for the Watch application as

well as your main application, but now you need to make sure they are all the same.

This includes both the WatchKit Extension and the WatchKit application.

Differing Deployment Targets

Just because you’re building for the Apple Watch, doesn’t mean you are stuck with

building your application for the latest devices. To hit the most users you should take

into account what features your main application uses. If those are available with older

deployment targets, you should drop it down. In our application, App Groups require

a target of 8.0 while the WatchKit stuff is in 8.2. If we were to remove the App Group

functionality, we could bring our target down to 7.0, targeting more users.

CHAPTER 7: Developing Apple Watch Cross-Platform Apps 235

Downgrading the Deployment Target

At the time of writing, Apple Watch applications have to be set to deploy to a target

of 8.2 and no higher. The latest version of Xcode however sets this value to be 8.3

by default. Luckily it throws an error but it can be quite confusing because you would

assume it’s due to something you’ve done.

Building Fine but Rejected at App Store

This is an issue that seems to mainly be related to Cordova applications. When

adding the WatchKit application it seems that somewhere the Targeted Device Family

can be reset to both the iPhone and the Apple Watch. This doesn’t cause any issues

when testing, but when submitting to the store you may get an error that your Watch

application cannot be installed. This threw me for a long time because everything

seemed to be correct.

To fix the issue you need to change the Targeted Device Family value for the

Release version of the app. This should be set only to ‘4,’ which represents the Apple

Watch family. If you check your Build Settings tab of the WatchKit App you’ll need

to make this fix if the value is 1,4. Making the change can be fairly difficult because

you can’t edit the value within Xcode. The easiest way I have found is to get a finder

window on your project. Right-click the xcodeproj file and select Show Package

Contents. You can then open the project.pbxproj in any text editior and find the

Targeted Device Family value there (see Figure 7.19).

Figure 7.19. Displaying the Targeted Device Family value

So now we have our application up and running on both the phone and the Watch.

We have data communicating back and forth between both devices and hopefully

it’s given you an idea about how you can now go further and add more complicated

interactions using the same techniques we have used here.

Additional Features
There are many other features available to you that we haven’t covered so far in this

chapter. Hopefully with your new understanding, it should be more approachable to

you. The two main ones are Notifications and Glances.

CHAPTER 7: Developing Apple Watch Cross-Platform Apps236

Notifications

Notifications work much the same way as they do on an iOS device. The notification is

fired off either locally or remotely and your phone will decide if the Watch should show

that notification or not. Notifications come in two stages. The first is a brief message to

let the user know something has happened. Second, if a user continues to look at the

notification, it can expand into a more detailed message where a user can then act on

the notification either directly from their Watch, or by opening the phone application.

Glances

Glances are relatively similar except they aren’t prompted from a sent message.

Instead, a user is able to look at a short piece of relavent data that your application

provides. In our application for example, we could show their most popular currencies

compared to each other. If a user decides to interact with a Glance, it will then take

them through to the application.

Android Wear

As this section is about cross-platform development we should probably spend a

little time thinking about what happens to your code when you are running on a

different platform, and what you can do to offer your users a similar experience. The

Android platform has their own alternative to the Apple Watch in Android Wear. While

conceptually you can use the same techniques we have used in this chapter to create

a plugin for Andorid, which could perform much of the same functionality, some of the

ways Android Wear works is conceptually different.

Like you can now do with watchOS 2 (see the next section), Android Wear

applications run on the watch itself. This allows apps to keep running even if the

phone connection is lost, however, it adds some complications when trying to interact

backwards or forwards between the watch and phone applications. This also causes

an issue when trying to load remote data, because you have to send a request to the

phone for the data, which will then load it for you and send it back.

Notifications also work a little differently with Android Wear. All notifications that

are displayed on the phone are also sent to the Watch. You can customize these

with additional information on your Watch and add different interactions for them to

choose from.

Android Wear’s other major feature is the ability to create custom watch faces,

which at the time of writing Apple Watches do not allow. These can be very simple

things or you can basically have a full application running, which gives the user a

loads of extra information or animations.

CHAPTER 7: Developing Apple Watch Cross-Platform Apps 237

WatchKit for watchOS 2

Shortly before the release of this book, Apple announced WatchKit for watchOS 2

with a few new features that have been added to Xcode 7. The good news is that all

points raised in this chapter are still current and unchanged, but it does offer some

alternative ways to work.

One of the key additions is that applications are now able to run on applications

directly. When adding a target you can instead choose from the watchOS section and

select a Watch application from there. This is good for applications that can be self

contained and don’t require too much interaction with the iOS device itself. The main

feature that we were using, App Groups, are still fully compatible and would be my

recommended method for communicating between the two different applications.

The other major addition to watchOS 2 is the introduction of ClockKit. While

not fully giving the ability to make your own Watch faces, it does allow a degree of

customization by allowing you to add bits of information known as Complications. For

example, in our application we could show when a rate changes during the day. One

of the nice features of this is that using the Digital Crown a user can scroll back in

time through their Complications and see what happened and when.

239

Index

Symbols
38mm

display
Apple Watch 183

42mm
display

Apple Watch 183
$scope.json

value 214
.m4a

file
recording 170

.mp4
file

recording 170
.wav

file
recording 170

A
Action 34
alerts and notifications 210
Android Wear

Android 238
animated emojis 153
App Groups

data sharing 129
App Identifiers

Apple Watch Extension 158
Apple Watch App Icon Template 159
Apple Watch simulator

WatchSim
Danny Keogan 19

Apple Watch’s microphone
watchOS 2

recording 170
Assistant Editor 47
Attributes Inspector 31, 165
Audio Data 172

B
bezel

black
Watch 167

Blocks
tool 155

branding
Apple Human Interface Guidelines 166

Bundle Identifier 124

C
C#

Xamarin 211
calendar

application
Apple Watch 27

ClockKit
watchOS 2 239

Cloudkit
iCloud API 40

Cocoa Touch Class
Cocoa Touch 86

Communicate
plugin 224

CommunicateData
class 222

Index240

Complication 121
config.xml 215
context menu

interface controller 148
WatchKit 25

Cordova
cross-platform 209–212
main application 227

CordovaLib.xcodeproj 218
CRM

Customer Relationship Management
54–55

cross-platform
iOS

Android 209
CurrencyRowController class 232

D
data types 42
Deployment Target 218
destructive

value 206
Differing Deployment Targets

pitfall 236
differing version numbers

pitfall 236
Dynamic text 72

E
EKEvent 45
electrodes

Force Touch 141
emojis

animated 153
empty array 224
EventKit

iCloud calendar 40
Event Store 44
exchange rates

application 213

F
FAIRFX 209–213
float

extension 175
Force Touch

Digital Crown 19
Foundation 221

G
glance

glance interfaces 21
glance interface

glance 21
Grand Central Dispatch

threading system
Apple 204

Groups 164

H
Handoff

ability 135
Handoff Code 136
Hello World

Apple Watch 230
hierarchical

navigation interface 24
Home Remote 123
Home Remote Glance 132–134
hoursValue

timer 39
HTML5

application 211
Human Interface Guidelines

HIG 132

I
IBActions 29
iBeacons

GPS 100
IBOutlet 29

Index 241

iCloud
Apple Watch

data 27
iCloud calendar 48
Icon Template

application 159
IF statement 38
images

importing
declaring 172

imageSize 201
Infinitweet 179–183
Interface Builder

storyboard 85
interface controller

WKInterfaceController class
WatchKit interface controller 20

InterfaceController.h 35
international payment services provider

FAIRFX watch app 210
Ionic

cross-platform
HTML 209

iPhone 173
iTunes Connect 160

J
JavaScript

Swift
application 220

JSON 213
JSON object 233

L
labels

connecting 89
Lap button

functionality 31
Linked Frameworks And Libraries

EventKit 43
listOfActions

array 131

long-look
notifications 51

M
Marc Andreesen

venture capitalist 180
menus

Force Touch 146
milliseconds

problems processing 30
minutesValue

timer 39
modal interface controller

navigation flow
controllers 137

myCalendar 44

N
navigation

navigation types
page based navigation

hierarchical navigation 23
Navigator

Xcode 186
Node.js

JavaScript 212
Notation 163–167
notification

interfaces
iOS 8 22

NSArray 153
NSDateFormatter 29
NSDate startDate 29
NSUserDefaults 150

O
Objective-C 39
Objective-C bridging header

essential 218
Object Library 46
Outlet 34

Index242

P
Page based

interface navigation 23
Pebble

watch 124
plist

sample data 119
popping

hierarchical navigation 191
presets

Apple 147
PreviewController 191
PreviewController class 206
Project Navigator

Xcode 60
pushing

hierarchical navigation 191

R
Radius

attribute 203
Record Type Name

attributes 42
Referencing Outlet 134
requestURL

Twitter 194
reset

buttons 37
root interface controller 148
runTimer

method 39

S
save events 48
scheme

duplicating 74
selectVoice

method 157
Share Sheet

Infinitweet 182

short-look
notifications 51

Show in Finder 80
simulator

iOS 130
single view app 58
Siri

voice input 151
SMS

Twitter 179
Social and Account frameworks 192
start

buttons 37
startButtonPress

method 38
stopwatch

application
Apple Watch 27

storyboard 46
submit

application
review 157

Swift 170–172
JSON

SwiftyJSON 231
SwiftyJSON

JSON
Swift 231

T
Table Row Controller 196
Targeted Device Family value 237
template

Xcode 133
timer

application
Apple Watch 27

timing device
countdown timer 33

tweet-storming
Marc Andreesen 180

Twitter API 194

Index 243

U
UI

user interface 46
UIAlertControllers 203
UITextView

blank canvas
tweet 181

UIToolbar 181
Unity3D 211
userCurrency

variable 221
user interface

application 46
label

actions 28
user’s story 56

V
viewDidLoad

iphone 173
Visual inspection 83
voice dictation 153

feature
Apple Watch 140

W
watchOS 2 20
WatchKit app

WatchKit extension
iOS device 20

watchkitdemo
single view app 124

Wireframe 77
WKInterfaceTables

UI tool 195
WKTextInput

text input 36
WWDC

Apple
developer conference 168

X
Xamarin

C# 211
Xcode

project 41
project files 228

Get the eBook for only $5!
Why limit yourself?

Now you can take the weightless companion with you wherever
you go and access your content on your PC, phone, tablet,
or reader.

Since you’ve purchased this print book, we’re happy to offer
you the eBook in all 3 formats for just $5.

Convenient and fully searchable, the PDF version enables you
to easily find and copy code—or perform examples by quickly
toggling between instructions and applications. The MOBI format
is ideal for your Kindle, while the ePUB can be utilized on a
variety of mobile devices.

To learn more, go to www.apress.com/companion or contact
support@apress.com.

All Apress eBooks are subject to copyright. All rights are reserved by the Publisher,
whether the whole or part of the material is concerned, specifically the rights of
translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction
on microfilms or in any other physical way, and transmission or information storage
and retrieval, electronic adaptation, computer software, or by similar or dissimilar
methodology now known or hereafter developed. Exempted from this legal
reservation are brief excerpts in connection with reviews or scholarly analysis or
material supplied specifically for the purpose of being entered and executed on a
computer system, for exclusive use by the purchaser of the work. Duplication of this
publication or parts thereof is permitted only under the provisions of the Copyright
Law of the Publisher’s location, in its current version, and permission for use must
always be obtained from Springer. Permissions for use may be obtained through
RightsLink at the Copyright Clearance Center. Violations are liable to prosecution
under the respective Copyright Law.

	Apple Watch forDevelopers
	Contents at a Glance
	Contents
	Preface
	About the Authors
	About the TechnicalReviewer
	Acknowledgments
	Chapter 1:An Apple Watch Introduction
	Anatomy of a WatchKit App
	The Interface Controller
	Glance Interfaces
	Notification Interfaces

	Interface Navigation
	Context Menus
	Summary

	Chapter 2:Examining the Stopwatch, Timer and Calendar
	Stopwatch
	Creating the User Interface
	Outlets and Actions
	Triggering Timing
	Adding the Lap Functionality

	Timer
	Creating the User Interface
	Outlets and Actions
	Handling Text Input with WatchKit
	Start and Reset
	Creating our Timer Method

	Calendar
	Introduction to iCloud
	Setting up your Xcode Project for iCloud
	Creating Record Types

	Creating Calendars and Events in iOS Using EventKitand iCloud
	Creating a New Calendar
	Creating an Event

	Creating an Apple Watch Calendar Application
	Enabling iCloud and EventKit
	iCloud
	EventKit

	UI
	Create Calendar
	Saving Our Event
	Notifications on the Apple Watch

	Summary

	Chapter 3: Taming Complex Data for the Watch
	Background
	Find Your User’s Story
	Maintain Simplicity Through Relevancy
	Increase Recognition Through Repetition
	Use Notifications as Punctuation
	Looking Forward: Complications in watchOS 2

	Chapter 4: Examining Home Remote and its Components
	The WatchKit Extension
	The User Interface
	Populating the Table
	Handling the Table’s Input

	Sharing Data Between Extension and App
	App Groups
	iOS
	WatchKit

	Glances and Extension Communication
	The Glance
	Handoff
	Handoff Interactions
	The Handoff Code
	Modal Interface Controllers

	Navigation Types Available
	Home Remote Navigation
	Hierarchy and Page based Navigation
	Page based Navigation
	Hierarchical Navigation

	Force Touch Menus
	The Design of the Menu Items

	Apple Watch Settings
	Home Remote and Voice Recognition
	About Voice Dictation
	Adding Voice Recognition to the Table
	Modifying the Settings and Glance
	Submitting Your App for Review
	App Identifiers
	Version Numbers
	App Name and Settings Name

	Assets Required for Submission
	Screen Shots

	The Submission Process
	Summary

	Chapter 5: Developing Notation – Audio to Musical Score
	User Interface on the Apple Watch
	Branding Within Apple Watch Applications
	Design Considerations

	Working with App Groups
	What are App Groups?
	Setting Up App Groups in Your Project

	Using the Apple Watch Microphone in watchOS 2
	Swift
	Objective-C

	Translating Audio Data into Visual Information
	Importing and Declaring Images
	Updating Our Image

	Summary

	Chapter 6: Building the Infinitweet Application
	Introducing Infinitweet
	Environment-Driven Feature Sets
	Infinitweet for iOS
	Infinitweet for Apple Watch
	So Where Does the Magic Happen?

	Building Infinitweet
	Getting Started
	Creating the Infinitweet User Interface
	Communicating Between Storyboard and Code
	Capturing User Voice Input
	Navigating Between WKInterfaceControllers
	Working with Social and Account Frameworks
	Prompting the User With Options
	The Infinitweet Algorithm
	Providing User Feedback
	Finishing Touches
	Additional Notes

	Chapter 7: Developing Apple Watch Cross-Platform Apps
	The FAIRFX Watch Application
	Building Watch Applications as a Cross-Platform Developer
	Building Our Main Application with Cordova
	Bridging the Gap
	Getting a WatchKit App Up and Running
	Linking the Applications Together
	Common Pitfalls
	Different Version Numbers
	Differing Deployment Targets
	Downgrading the Deployment Target
	Building Fine but Rejected at App Store

	Additional Features
	Android Wear
	WatchKit for watchOS 2

	Index

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Remove
 /UsePrologue false
 /ColorSettingsFile (Color Management Off)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 290
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 290
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.03333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 800
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 2400
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200038002000280038002e0032002e00310029000d00500072006f00640075006300650073002000500044004600200062006f006f006b00200069006e006e006500720077006f0072006b002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f0072002000680069006700680020007100750061006c0069007400790020007000720069006e00740069006e0067002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f0061006400650064002000610074002000680074007400700073003a002f002f0070006f007200740061006c002d0064006f0072006400720065006300680074002e0073007000720069006e006700650072002d00730062006d002e0063006f006d002f00500072006f00640075006300740069006f006e002f0046006c006f0077002f00740065006300680064006f0063002f00640065006600610075006c0074002e0061007300700078000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c00200030003800200061006e0064002000500069007400530074006f0070002000530065007200760065007200200030003800200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e000d>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [594.720 841.680]
>> setpagedevice

