

BEGINNING SOFTWARE ENGINEERING

INTRODUCTION . xxi

▸ PART I SOFTWARE ENGINEERING STEP‐BY‐STEP

CHAPTER 1 Software Engineering from 20,000 Feet. 3

CHAPTER 2 Before the Beginning . 15

CHAPTER 3 Project Management . 29

CHAPTER 4 Requirement Gathering . 53

CHAPTER 5 High‐Level Design . 87

CHAPTER 6 Low‐Level Design . 119

CHAPTER 7 Development . 143

CHAPTER 8 Testing . 173

CHAPTER 9 Deployment . 203

CHAPTER 10 Metrics . 215

CHAPTER 11 Maintenance . 241

▸ PART II PROCESS MODELS

CHAPTER 12 Predictive Models . 265

CHAPTER 13 Iterative Models . 283

CHAPTER 14 RAD . 303

APPENDIX Solutions to Exercises . 361

GLOSSARY . 417

INDEX . 437

BEGINNIIIIIIINNNNNNNGGGGGG

Software Engineering

Rod Stephens

Beginning Software Engineering

Published by
John Wiley & Sons, Inc.
10475 Crosspoint Boulevard
Indianapolis, IN 46256
www.wiley.com

Copyright © 2015 by John Wiley & Sons, Inc., Indianapolis, Indiana

Published simultaneously in Canada

ISBN: 978-1-118-96914-4

ISBN: 978-1-118-96916-8 (ebk)

ISBN: 978-1-118-96917-5 (ebk)

Manufactured in the United States of America

10 9 8 7 6 5 4 3 2 1

No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by any means,
electronic, mechanical, photocopying, recording, scanning or otherwise, except as permitted under Sections 107 or 108
of the 1976 United States Copyright Act, without either the prior written permission of the Publisher, or authorization
through payment of the appropriate per-copy fee to the Copyright Clearance Center, 222 Rosewood Drive, Danvers,
MA 01923, (978) 750-8400, fax (978) 646-8600. Requests to the Publisher for permission should be addressed to the
Permissions Department, John Wiley & Sons, Inc., 111 River Street, Hoboken, NJ 07030, (201) 748-6011, fax (201)
748-6008, or online at http://www.wiley.com/go/permissions.

Limit of Liability/Disclaimer of Warranty: The publisher and the author make no representations or warranties with
respect to the accuracy or completeness of the contents of this work and specifi cally disclaim all warranties, including
without limitation warranties of fi tness for a particular purpose. No warranty may be created or extended by sales or
promotional materials. The advice and strategies contained herein may not be suitable for every situation. This work
is sold with the understanding that the publisher is not engaged in rendering legal, accounting, or other professional
services. If professional assistance is required, the services of a competent professional person should be sought. Neither
the publisher nor the author shall be liable for damages arising herefrom. The fact that an organization or Web site is
referred to in this work as a citation and/or a potential source of further information does not mean that the author or the
publisher endorses the information the organization or Web site may provide or recommendations it may make. Further,
readers should be aware that Internet Web sites listed in this work may have changed or disappeared between when this
work was written and when it is read.

For general information on our other products and services please contact our Customer Care Department within the
United States at (877) 762-2974, outside the United States at (317) 572-3993 or fax (317) 572-4002.

Wiley publishes in a variety of print and electronic formats and by print-on-demand. Some material included with
standard print versions of this book may not be included in e-books or in print-on-demand. If this book refers to
media such as a CD or DVD that is not included in the version you purchased, you may download this material at
http://booksupport.wiley.com. For more information about Wiley products, visit www.wiley.com.

Library of Congress Control Number: 2015930533

Trademarks: Wiley, the Wiley logo, Wrox, the Wrox logo, Programmer to Programmer, and related trade dress are
trademarks or registered trademarks of John Wiley & Sons, Inc. and/or its affi liates, in the United States and other
countries, and may not be used without written permission. All other trademarks are the property of their respective
owners. John Wiley & Sons, Inc., is not associated with any product or vendor mentioned in this book.

http://www.wiley.com
http://www.wiley.com/go/permissions
http://booksupport.wiley.com
http://www.wiley.com

ABOUT THE AUTHOR

ROD STEPHENS started out as a mathematician, but while studying at MIT, he discovered how
much fun programming is and he’s been programming professionally ever since. During his career,
he has worked on an eclectic assortment of applications in such fi elds as telephone switching, billing,
repair dispatching, tax processing, wastewater treatment, concert ticket sales, cartography, and
training for professional football players.

Rod has been a Microsoft Visual Basic Most Valuable Professional (MVP) for more than a decade
and has taught introductory programming courses. He has written more than two dozen books
that have been translated into languages from all over the world, and he’s written more than
250 magazine articles covering Visual Basic, C#, Visual Basic for Applications, Delphi, and Java.

Rod’s popular VB Helper website (www.vb-helper.com) receives several million hits per month and
contains thousands of pages of tips, tricks, and example programs for Visual Basic programmers.
His C# Helper website (www.csharphelper.com) contains similar material for C# programmers.

You can contact Rod at RodStephens@CSharpHelper.com or RodStephens@vb-helper.com.

ABOUT THE TECHNICAL EDITOR

BRIAN HOCHGURTEL has been doing .NET development for over ten years, and actually started
his .NET experience with Rod Stephens when they wrote the Wiley book, Visual Basic.NET and
XML, in 2002. Currently Brian works with C#, SQL Server, and SharePoint in Fort Collins, CO.

http://www.vb-helper.com
http://www.csharphelper.com
mailto:RodStephens@CSharpHelper.com
mailto:RodStephens@vb-helper.com

EXECUTIVE EDITOR
Robert Elliott

PROJECT EDITOR
Adaobi Obi Tuiton

TECHNICAL EDITOR
Brian Hochgurtel

PRODUCTION MANAGER
Kathleen Wisor

COPY EDITOR
San Dee Phillips

MANAGER OF CONTENT DEVELOPMENT &
ASSEMBLY
Mary Beth Wakefi eld

MARKETING DIRECTOR
David Mayhew

MARKETING MANAGER
Carrie Sherrill

PROFESSIONAL TECHNOLOGY & STRATEGY
DIRECTOR
Barry Pruett

BUSINESS MANAGER
Amy Knies

ASSOCIATE PUBLISHER
Jim Minatel

PROJECT COORDINATOR, COVER
Brent Savage

PROOFREADER
Sarah Kaikini, Word One

INDEXER
Johnna VanHoose Dinse

COVER DESIGNER
Wiley

COVER IMAGE
p©iStock.com/Chris Hepburn

CREDITS

ACKNOWLEDGMENTS

THANKS TO BOB ELLIOTT, Adaobi Obi Tulton, San Dee Phillips, Katie Wisor, and all the others who
worked so hard to make this book possible. (Adaobi was this book’s project manager. You’ll learn
what a project manager does in Chapter 3. It’s a bit different for writing a book but not as different
as you might think. As always, many thanks for your hard work, Adaobi!)

Thanks also to technical editor Brian Hochgurtel for giving me the benefi t of his valuable
experience.

Special thanks to Mary Brodie at gearmark.blogs.com for letting me use her quote in Chapter 13,
“Iterative Models.”

CONTENTS

INTRODUCTION xxi

PART I: SOFTWARE ENGINEERING STEP‐BY‐STEP

CHAPTER 1: SOFTWARE ENGINEERING FROM 20,000 FEET 3

Requirements Gathering 4
High‐Level Design 5
Low‐Level Design 6
Development 6
Testing 6
Deployment 8
Maintenance 9
Wrap‐up 9
Everything All at Once 10
Summary 11

CHAPTER 2: BEFORE THE BEGINNING 15

Document Management 16
Historical Documents 18
E‐mail 19
Code 21
Code Documentation 22
Application Documentation 25
Summary 25

CHAPTER 3: PROJECT MANAGEMENT 29

Executive Support 30
Project Management 31

PERT Charts 33
Critical Path Methods 38
Gantt Charts 41
Scheduling Software 42
Predicting Times 42

Get Experience 44
Break Unknown Tasks into Simpler Pieces 44

xii

CONTENTS

Look for Similarities 45
Expect the Unexpected 45
Track Progress 46

Risk Management 47
Summary 49

CHAPTER 4: REQUIREMENT GATHERING 53

Requirements Defi ned 54
Clear 54
Unambiguous 55
Consistent 56
Prioritized 56
Verifi able 60
Words to Avoid 60

Requirement Categories 61
Audience‐Oriented Requirements 61

Business Requirements 61
User Requirements 62
Functional Requirements 63
Nonfunctional Requirements 63
Implementation Requirements 63

FURPS 64
FURPS+ 64
Common Requirements 66

Gathering Requirements 67
Listen to Customers (and Users) 67
Use the Five Ws (and One H) 68

Who 68
What 68
When 69
Where 69
Why 69
How 69

Study Users 70
Refi ning Requirements 71

Copy Existing Systems 71
Clairvoyance 73
Brainstorm 74

Recording Requirements 76
UML 77
User Stories 77

xiii

CONTENTS

Use Cases 78
Prototypes 78
Requirements Specifi cation 80

Validation and Verifi cation 80
Changing Requirements 80
Summary 81

CHAPTER 5: HIGH‐LEVEL DESIGN 87

The Big Picture 88
What to Specify 89

Security 89
Hardware 90
User Interface 91
Internal Interfaces 92
External Interfaces 93
Architecture 94

Monolithic 94
Client/Server 95
Component‐Based 96
Service‐Oriented 97
Data‐Centric 97
Event‐Driven 97
Rule‐Based 98
Distributed 98
Mix and Match 99

Reports 101
Other Outputs 102
Database 102

Audit Trails 103
User Access 103
Database Maintenance 104

Confi guration Data 104
Data Flows and States 105
Training 105

UML 105
Structure Diagrams 107
Behavior Diagrams 109

Activity Diagrams 110
Use Case Diagram 111
State Machine Diagram 112

Interaction Diagrams 113

xiv

CONTENTS

Sequence Diagram 113
Communication Diagram 114
Timing Diagram 115
Interaction Overview Diagram 115

Summary 116

CHAPTER 6: LOW‐LEVEL DESIGN 119

OO Design 120
Identifying Classes 121
Building Inheritance Hierarchies 122

Refi nement 123
Generalization 125
Hierarchy Warning Signs 126

Object Composition 127
Database Design 127

Relational Databases 128
First Normal Form 130
Second Normal Form 134
Third Normal Form 135
Higher Levels of Normalization 137

Summary 138

CHAPTER 7: DEVELOPMENT 143

Use the Right Tools 144
Hardware 144
Network 145
Development Environment 146
Source Code Control 147
Profi lers 147
Static Analysis Tools 147
Testing Tools 147
Source Code Formatters 147
Refactoring Tools 148
Training 148

Selecting Algorithms 148
Effective 149
Effi cient 149
Predictable 151
Simple 152
Prepackaged 152

Top‐Down Design 153

xv

CONTENTS

Programming Tips and Tricks 155
Be Alert 155
Write for People, Not the Computer 156
Comment First 157
Write Self‐Documenting Code 159
Keep It Small 160
Stay Focused 161
Avoid Side Effects 162
Validate Results 163
Practice Offensive Programming 165
Use Exceptions 166
Write Exception Handers First 167
Don’t Repeat Code 167
Defer Optimization 167

Summary 169

CHAPTER 8: TESTING 173

Testing Goals 175
Reasons Bugs Never Die 175

Diminishing Returns 175
Deadlines 175
Consequences 176
It’s Too Soon 176
Usefulness 176
Obsolescence 177
It’s Not a Bug 177
It Never Ends 177
It’s Better Than Nothing 178
Fixing Bugs Is Dangerous 178
Which Bugs to Fix 179

Levels of Testing 179
Unit Testing 179
Integration Testing 181
Automated Testing 182
Component Interface Testing 183
System Testing 184
Acceptance Testing 185
Other Testing Categories 185

Testing Techniques 186
Exhaustive Testing 186
Black‐Box Testing 187

xvi

CONTENTS

White‐Box Testing 188
Gray‐Box Testing 188

Testing Habits 189
Test and Debug When Alert 189
Test Your Own Code 189
Have Someone Else Test Your Code 190
Fix Your Own Bugs 192
Think Before You Change 193
Don’t Believe in Magic 193
See What Changed 193
Fix Bugs, Not Symptoms 194
Test Your Tests 194

How to Fix a Bug 194
Estimating Number of Bugs 195

Tracking Bugs Found 195
Seeding 197
The Lincoln Index 197

Summary 198

CHAPTER 9: DEPLOYMENT 203

Scope 204
The Plan 204
Cutover 206

Staged Deployment 206
Gradual Cutover 206
Incremental Deployment 208
Parallel Testing 209

Deployment Tasks 209
Deployment Mistakes 210
Summary 211

CHAPTER 10: METRICS 215

Wrap Party 216
Defect Analysis 216

Kinds of Bugs 217
Discoverer 217
Severity 217
Time Created 218
Age at Fix 218
Task Type 218

Ishikawa Diagrams 219

xvii

CONTENTS

Software Metrics 222
Qualities of Good Attributes and Metrics 223
Using Metrics 224

Process Metrics 226
Project Metrics 226

Things to Measure 227
Size Normalization 229
Function Point Normalization 231

Count Function Point Metrics 232
Multiply by Complexity Factors 232
Calculate Complexity Adjustment Value 233
Calculate Adjusted FP 235

Summary 235

CHAPTER 11: MAINTENANCE 241

Maintenance Costs 242
Task Categories 243

Perfective Tasks 244
Feature Improvements 245
New Features 245
The Second System Effect 245

Adaptive Tasks 247
Corrective Tasks 248
Preventive Tasks 251

Clarifi cation 252
Code Reuse 253
Improved Flexibility 254
Bug Swarms 254
Bad Programming Practices 255

Individual Bugs 256
Not Invented Here 256

Task Execution 256
Summary 257

PART II: PROCESS MODELS

CHAPTER 12: PREDICTIVE MODELS 265

Model Approaches 266
Prerequisites 267
Predictive and Adaptive 267

Success and Failure Indicators 268

xviii

CONTENTS

Advantages and Disadvantages 268
Waterfall 270
Waterfall with Feedback 271
Sashimi 272
Incremental Waterfall 273
V‐Model 275
Systems Development Life Cycle 276
Summary 280

CHAPTER 13: ITERATIVE MODELS 283

Iterative Versus Predictive 284
Iterative Versus Incremental 286
Prototypes 287

Types of Prototypes 288
Pros and Cons 289

Spiral 290
Clarifi cations 293
Pros and Cons 294

Unifi ed Process 295
Pros and Cons 296
Rational Unifi ed Process 297

Cleanroom 298
Summary 299

CHAPTER 14: RAD 303

RAD Principles 305
James Martin RAD 308
Agile 309

Self‐Organizing Teams 311
Agile Techniques 313

Communication 313
Incremental Development 314
Focus on Quality 316

XP 317
XP Roles 318
XP Values 319
XP Practices 319

Have a Customer On Site 320
Play the Planning Game 320
Use Standup Meetings 321
Make Frequent Small Releases 322

xix

CONTENTS

Use Intuitive Metaphors 322
Keep Designs Simple 322
Defer Optimization 322
Refactor When Necessary 323
Give Everyone Ownership of the Code 323
Use Coding Standards 324
Promote Generalization 324
Use Pair Programming 324
Test Constantly 324
Integrate Continuously 325
Work Sustainably 325
Use Test‐Driven and Test‐First Development 325

Scrum 327
Scrum Roles 327
Scrum Sprints 328
Planning Poker 329
Burndown 330
Velocity 331

Lean 332
Lean Principles 332

Crystal 333
Crystal Clear 335
Crystal Yellow 336
Crystal Orange 337

Feature‐Driven Development 338
FDD Roles 338
FDD Phases 340

Develop a Model 340
Build a Feature List 340
Plan by Feature 341
Design by Feature 341
Build by Feature 342

FDD Iteration Milestones 342
Agile Unifi ed Process 343
Disciplined Agile Delivery 345

DAD Principles 346
DAD Roles 346
DAD Phases 347

Dynamic Systems Development Method 348
DSDM Phases 348
DSDM Principles 349
DSDM Roles 350

xx

CONTENTS

Kanban 351
Kanban Principles 352
Kanban Practices 353
Kanban Board 353

Summary 355

APPENDIX: SOLUTIONS TO EXERCISES 361

GLOSSARY 417

INDEX 437

 INTRODUCTION

 Programming today is a race between software engineers striving to build bigger
and better idiot‐proof programs, and the universe trying to build bigger and
better idiots. So far the universe is winning.

 —Rick Cook

 With modern development tools, it’s easy to sit down at the keyboard and bang out a working
program with no previous design or planning, and that’s fi ne under some circumstances. My VB
Helper (www.vb‐helper.com) and C# Helper (www.csharphelper.com) websites contain thousands
of example programs written in Visual Basic and C#, respectively, and built using exactly that
approach. I had an idea (or someone asked me a question) and I pounded out a quick example.

 Those types of programs are fi ne if you’re the only one using them and then for only a short while.
They’re also okay if, as on my websites, they’re intended only to demonstrate a programming
technique and they never leave the confi nes of the programming laboratory.

 If this kind of slap‐dash program escapes into the wild, however, the result can be disastrous. At
best, nonprogrammers who use these programs quickly become confused. At worst, they can wreak
havoc on their computers and even on those of their friends and coworkers.

 Even experienced developers sometimes run afoul of these half‐baked programs. I know someone
(I won’t give names, but I also won’t say it wasn’t me) who wrote a simple recursive script to delete
the fi les in a directory hierarchy. Unfortunately, the script recursively climbed its way to the top of
the directory tree and then started cheerfully deleting every fi le in the system. The script ran for only
about fi ve seconds before it was stopped, but it had already trashed enough fi les that the operating
system had to be reinstalled from scratch. (Actually, some developers believe reinstalling the operating
system every year or so is character‐building. If you agree, perhaps this approach isn’t so bad.)

 I know another experienced developer who, while experimenting with Windows system settings,
managed to set every system color to black. The result was a black cursor over a black desktop,
displaying black windows with black borders, menus, and text. This person (who wasn’t me this
time) eventually managed to fi x things by rebooting and using another computer that wasn’t color‐
impaired to walk through the process of fi xing the settings using only keyboard accelerators. It was
a triumph of cleverness, but I suspect she would have rather skipped the whole episode and had her
two wasted days back.

 For programs that are more than a few dozen lines long, or that will be given to unsuspecting end
users, this kind of free‐spirited development approach simply won’t do. To produce applications that
are effective, safe, and reliable, you can’t just sit down and start typing. You need a plan. You need
… <drumroll> … software engineering.

 This book describes software engineering. It explains what software engineering is and how it helps
produce applications that are effective, fl exible, and robust enough for use in real‐world situations.

 This book won’t make you an expert systems analyst, software architect, project manager, or
programmer, but it explains what those people do and why they are necessary for producing

http://www.vb%E2%80%90helper.com
http://www.csharphelper.com

xxii

INTRODUCTION

high‐quality software. It also gives you the tools you need to start. You won’t rush out and lead a
1,000‐person effort to build a new air traffi c control system for the FAA, but it can help you work
effectively in small‐scale and large‐scale development projects. (It can also help you understand
what a prospective future boss means when he says, “Yeah, we mostly use Scrum with a few extra
XP techniques thrown in.”)

 WHAT IS SOFTWARE ENGINEERING?

 A formal defi nition of software engineering might sound something like, “An organized, analytical
approach to the design, development, use, and maintenance of software.”

 More intuitively, software engineering is everything you need to do to produce successful software.
It includes the steps that take a raw, possibly nebulous idea and turn it into a powerful and intuitive
application that can be enhanced to meet changing customer needs for years to come.

 You might be tempted to restrict software engineering to mean only the beginning of the process,
when you perform the application’s design. After all, an aerospace engineer designs planes but
doesn’t build them or tack on a second passenger cabin if the fi rst one becomes full. (Although I
guess a space shuttle riding piggyback on a 747 sort of achieved that goal.)

 One of the big differences between software engineering and aerospace engineering (or most
other kinds of engineering) is that software isn’t physical. It exists only in the virtual world of the
 computer. That means it’s easy to make changes to any part of a program even after it is completely
written. In contrast, if you wait until a bridge is fi nished and then tell your structural engineer that
you’ve decided to add two extra lanes, there’s a good chance he’ll cackle wildly and offer you all
sorts of creative but impractical suggestions for exactly what you can do with your two extra lanes.

 The fl exibility granted to software by its virtual nature is both a blessing and a curse. It’s a blessing
because it lets you refi ne the program during development to better meet user needs, add new features
to take advantage of opportunities discovered during implementation, and make modifi cations to meet
evolving business needs. It even allows some applications to let users write scripts to perform new tasks
never envisioned by developers. That type of fl exibility isn’t possible in other types of engineering.

 Unfortunately, the fl exibility that allows you to make changes throughout a software project’s life
cycle also lets you mess things up at any point during development. Adding a new feature can break
existing code or turn a simple, elegant design into a confusing mess. Constantly adding, removing,
and modifying features during development can make it impossible for different parts of the system
to work together. In some cases, it can even make it impossible to tell when the project is fi nished.

 Because software is so malleable, design decisions can be made at any point up to the end of the
project. Actually, successful applications often continue to evolve long after the initial release.
Microsoft Word, for example, has been evolving for roughly 30 years. (Sometimes for the better,
sometimes for the worse. Remember Clippy? I’ll let you decide whether that change was for the
 better or for the worse, but I haven’t seen him in a while.)

 The fact that changes can come at any time means you need to consider the whole development
process as a single, long, complex task. You can’t simply “engineer” a great design, turn the

xxiii

INTRODUCTION

programmers loose on it, and walk off into the sunset wrapped in the warm glow of a job well done.
The biggest design decisions may come early, and software development certainly has stages, but
those stages are linked, so you need to consider them all together.

WHY IS SOFTWARE ENGINEERING IMPORTANT?

 Producing a software application is relatively simple in concept: Take an idea and turn it into a
useful program. Unfortunately for projects of any real scope, there are countless ways that a simple
concept can go wrong. Programmers may not understand what users want or need (which may be
two separate things), so they build the wrong application. The program might be so full of bugs that
it’s frustrating to use, impossible to fi x, and can’t be enhanced over time. The program could be
completely effective but so confusing that you need a PhD in puzzle‐solving to use it. An absolutely
perfect application could even be killed by internal business politics or market forces.

 Software engineering includes techniques for avoiding the many pitfalls that otherwise might
send your project down the road to failure. It ensures the fi nal application is effective, usable, and
maintainable. It helps you meet milestones on schedule and produce a fi nished project on time and
within budget. Perhaps most important, software engineering gives you the fl exibility to make changes
to meet unexpected demands without completely obliterating your schedule and budget constraints.

 In short, software engineering lets you control what otherwise might seem like a random whirlwind
of chaos.

WHO SHOULD READ THIS BOOK?

 Everyone involved in any software development effort should have a basic understanding of software
engineering. Whether you’re an executive customer specifying the software’s purpose and features,
an end user who will eventually spend time working with (and reporting bugs in) the fi nished
application, a lead developer who keeps other programmers on track (and not playing too much
Flow Free), or the guy who fetches donuts for the weekly meeting, you need to understand how all
the pieces of the process fi t together. A failure by any of these people (particularly the donut wallah)
affects everyone else, so it’s essential that everyone knows the warning signs that indicate the project
may be veering toward disaster.

 This book is mainly intended for people with limited experience in software engineering. It doesn’t
expect you to have any previous experience with software development, project management,
or programming. (I suspect most readers will have some experience with donuts, but that’s not
 necessary, either.)

 Even if you have some familiarity with those topics, particularly programming, you may still fi nd
this book informative. If you’ve been focusing only on the pieces of a project assigned to you, you
still need to learn about how the pieces interact to help guide the project toward success.

 For example, I had been working as a programmer for several years and even taken part in some
fairly large development efforts before I took a good look at the development process as a whole. I
knew other people were writing use cases and deployment plans, but my focus was on my piece of

xxiv

INTRODUCTION

the project. It wasn’t until later, when I started taking a higher‐level role in projects that I actually
started to see the entire process.

 This book does not explain how to program. It does explain some techniques programmers can use
to produce code that is fl exible enough to handle the inevitable change requests, easy to debug (at
least your code will be), and easy to enhance and maintain in the future (more change requests), but
they are described in general terms and don’t require you to know how to program.

 If you don’t work in a programming role, for example if you’re an end user or a project manager,
you’ll hopefully fi nd that material interesting even if you don’t use it directly. You may also fi nd some
techniques surprisingly applicable to nonprogramming problems. For example, techniques for generating
problem‐solving approaches apply to all sorts of problems, not just programming decisions. (You can
also ask developers, “Are you using assertions and gray‐box testing methods before unit testing?” just
to see if they understand what you’re talking about. Basically, you’re using gray‐box testing to see if the
developers know what gray‐box testing is. You’ll learn more about that in Chapter 8 , “Testing.”)

 APPROACH

 This book is divided into two parts. The fi rst part describes the basic tasks you need to complete
and deliver useful software. Things such as design, programming, and testing. The book’s second
part describes some common software development models that use different techniques to perform
those tasks.

 Before you can begin to work on a software development project, however, you need to do some
preparation. You need to set up tools and techniques that help you track your progress throughout
the project. Chapter 1 , “Software Engineering from 20,000 Feet,” describes these “before‐the‐
beginning” activities.

 After you have the preliminaries in place, there are many approaches you can take to produce
software. All those approaches have the same goal (making useful software), so they must handle
roughly the same tasks. These are things such as gathering requirements, building a plan, and
actually writing the code. The fi rst part of this book describes these tasks. Chapter 1 explains those
tasks at a high level. Chapters 2 through 11 provide additional details about what these tasks are
and how you can accomplish them effectively.

 The second part of the book describes some of the more popular software development approaches.
All these models address the same issues described in the earlier chapters but in different ways.
Some focus on predictability so that you know exactly what features will be provided and when.
Others focus on creating the most features as quickly as possible, even if that means straying
from the original design. Chapters 12 through 14 describe some of the most popular of these
development models.

 That’s the basic path this book gives you for learning software engineering. First learn the tasks you
need to complete to deliver useful software. Then learn how different models handle those tasks.

 However, many people have trouble learning by slogging through a tedious enumeration of facts. (I
certainly do!) To make the information a bit easier to absorb, this book includes a few other elements.

xxv

INTRODUCTION

 Each chapter ends with exercises that you can use to see if you were paying attention while you read
the chapter. I don’t like exercises that merely ask you to repeat what is in the chapter. (Quick, what
are some advantages and disadvantages of the ethereal nature of software?) Most of the exercises
ask you to expand on the chapter’s main ideas. Hopefully, they’ll make you think about new ways to
use what’s explained in the chapter.

 Sometimes, the exercises are the only way I could sneak some more information into the chapter
that didn’t quite fi t in any of its sections. In those cases, the questions and answers provided in
Appendix A are like extended digressions and thought experiments than quiz questions.

 I strongly recommend that you at least skim the exercises and think about them. Then ask
 yourself if you understand the solutions. All the solutions are included in Appendix A,
“Solutions to Exercises.”

WHAT THIS BOOK COVERS (AND WHAT IT DOESN’T)

 This book describes software engineering, the tasks that you must perform to successfully complete
a software project, and some of the most popular developer models you can use to try to achieve
your goals. It doesn’t cover every last detail, but it does explain the overall process so that you can
fi gure out how you fi t into the process.

 This book does not explain every possible development model. Actually, it barely scratches the
surface of the dozens (possibly hundreds) of models that are in use in the software industry.
This book describes only some of the most popular development approaches and then only
 relatively briefl y.

 If you decide you want to learn more about a particular approach, you can turn to the hundreds
of books and thousands of web pages written about specifi c models. Many development models
also have their own organizations with websites dedicated to their promotion. For example, see
www.extremeprogramming.org, agilemanifesto.org , and www.scrum.org .

 This book also isn’t an exhaustive encyclopedia of software development tricks and tips. It describes
some general ideas and concepts that make it easier to build robust software, but its focus is on
higher‐level software engineering issues, so it doesn’t have room to cover all the clever techniques
developers use to make programs better. This book also doesn’t focus on a specifi c programming
language, so it can’t take advantage of language‐specifi c tools or techniques.

WHAT TOOLS DO YOU NEED?

 You don’t need any tools to read this book. All you need is the ability to read the book. (And
perhaps reading glasses. Or perhaps a text‐to‐speech tool if you have an electronic version that you
want to “read.” Or perhaps a friend to read it to you. Okay, I guess you have several options.)

 To actually participate in a development effort, you may need a lot of tools. If you’re working
on a small, one‐person project, you might need only a programming environment such as Visual
Studio, Eclipse, RAD Studio, or whatever. For larger team efforts you’ll also need tools for project

http://www.extremeprogramming.org
http://www.scrum.org

xxvi

INTRODUCTION

management, documentation (word processors), change tracking, software revision tracking, and
more. And, of course, you’ll need other developers to help you. This book describes these tools, but
you certainly don’t need them to read the book.

CONVENTIONS

To help you get the most from the text and keep track of what’s happening, I’ve used several
conventions throughout the book.

 WARNING Boxes like this one hold important information that is directly
relevant to the surrounding text. There are a lot of ways a software project can
fail, so these warn you about “worst practices” that you should avoid.

 NOTE These boxes indicate notes, tips, hints, tricks, and asides to the current
discussion. They look like this.

SPLENDID SIDEBARS

Sidebars such as this one contain additional information and side topics.

As for styles in the text:

➤ Important words are highlighted when they are introduced. d

➤ Keyboard strokes are shown like this: Ctrl+A. This one means you should hold down the Ctrl
key (or Control or CTL or whatever it’s labeled on your keyboard) and press the A key.

➤ This book includes little actual program code because I don’t know what programming
languages you use (if any). When there is code, it is formatted like the following.

 // Return true if a and b are relatively prime.
 private bool AreRelativelyPrime(int a, int b)
 {
 // Only 1 and -1 are relatively prime to 0.
 if (a == 0) return ((b == 1) || (b == -1));
 if (b == 0) return ((a == 1) || (a == -1));

 int gcd = GCD(a, b);
 return ((gcd == 1) || (gcd == -1));
 }

(Don’t worry if you can’t understand the code. The text explains what it does.)

xxvii

INTRODUCTION

➤ Filenames, URLs, and the occasionally piece of code within the text are shown like this:
www.csharphelper.com .

ERRATA

 I’ve done my best to avoid errors in this book, and this book has passed through the word processors
of a small army of editors and technical reviewers. However, as you’ll learn several times in this
book, no nontrivial project is ever completely without mistakes. The best I can hope for is that any
remaining errors are small enough that they don’t distract you from the meaning of the text.

 If you fi nd an error in one of my books (like a spelling mistake, broken piece of code, or something
that just doesn’t make sense), I would be grateful for your feedback. Sending in errata may save
other readers hours of frustration. At the same time, you’ll be helping me provide even higher
quality information.

 To fi nd the errata page for this book, go to www.wrox.com/go/beginningsoftwareengineering .
Then, on the book details page, click the Book Errata link. On this page you can view all the errata
submitted for this book and posted by Wrox editors. A complete book list including links to each
book’s errata is also available at www.wrox.com/misc‐pages/booklist.shtml.

 If you don’t spot “your” error on the Book Errata page, go to www.wrox.com/contact/
techsupport.shtml and complete the form there to submit the error you found. Highly trained
editors will spring into action and check the information (by sending me an e‐mail). If appropriate,
they will then post a message to the book’s errata page and fi x the problem in subsequent editions of
the book.

p2p.wrox.com
 Another excellent way to submit feedback and ask questions about the book is through the P2P
forums at p2p.wrox.com . (P2P stands for “Programmer to Programmer,” but because this book
isn’t just for programmers, I hereby declare that P2P stands for “Person to Person” in this context.)

 These forums are a web‐based system for you to post messages relating to Wrox books and related
technologies, and to interact with other readers, technology users, and authors (like me). The
forums offer a subscription feature to e‐mail you topics of interest of your choosing when new
posts are made to the forums. Wrox authors, editors, other industry experts, and readers are
present on these forums.

 To join the forums, just follow these steps:

1. Go to p2p.wrox.com and click the Register link.

2. Read the terms of use and click Agree.

3. Complete the required information to join as well as any optional information you want to
provide and click Submit.

4. You will receive an e‐mail with information describing how to verify your account and
complete the joining process.

http://www.csharphelper.com
http://www.wrox.com/go/beginningsoftwareengineering
http://www.wrox.com/misc%E2%80%90pages/booklist.shtml
http://www.wrox.com/contact/techsupport.shtml
http://www.wrox.com/contact/techsupport.shtml

xxviii

INTRODUCTION

After you join, you can post new messages and respond to messages the other readers post. You can
read messages at any time on the web. If you would like to have new messages from a particular
forum e‐mailed to you, click the Subscribe to this Forum icon by the forum name in the forum
listing.

Be sure to read the P2P FAQs for answers to questions about how the forum software works as well
as many common questions specifi c to P2P and Wrox books. To read the FAQs, click the FAQ link
on any P2P page.

Using the P2P forums allows other readers to benefi t from your questions and any answers they
generate. I monitor my books’ forums and respond whenever I can help.

IMPORTANT URLS

Here’s a summary of important URLs related to this book:

➤ www.wrox.com/go/beginningsoftwareengineering —This book’s web page.

➤ p2p.wrox.com —Wrox P2P forums.

➤ www.wrox.com —The Wrox website. Contains errata and other information. Search for books
by title or ISBN.

➤ RodStephens@CSharpHelper.com —My e‐mail address. I hope to hear from you!

➤ www.CSharpHelper.com —My C# website. Contains thousands of tips, tricks, and examples
for C# developers.

➤ www.vb‐helper.com —My Visual Basic website. Contains thousands of tips, tricks, and
examples for Visual Basic developers.

CONTACTING THE AUTHOR

If you have questions, suggestions, comments, just want to say “Hi,” want to exchange cookie
recipes, or whatever, e‐mail me at RodStephens@CSharpHelper.com . I can’t promise that I’ll be able
to help you with every problem, but I do promise to try.

JOIN THE FUN

You can read messages in the forums without joining P2P, but to post your own
messages, you must join. If you join, Wrox won’t spam you. (At least they never
have in the past.) They just want to make sure Internet trolls don’t make posts in
your name.

http://www.wrox.com/go/beginningsoftwareengineering
http://www.wrox.com
mailto:RodStephens@CSharpHelper.com
http://www.CSharpHelper.com
http://www.vb%E2%80%90helper.com
mailto:RodStephens@CSharpHelper.com
http://p2p.wrox.com

xxix

INTRODUCTION

DISCLAIMER

 Software engineering isn’t always the most exciting topic, so in an attempt to keep you awake, I
picked some of the examples in this book for interest or humorous effect. (If you keep this book on
your nightstand as a last‐ditch insomnia remedy, then I’ve failed.)

 I mean no disrespect to any of the many talented software engineers out there who work long weeks
(despite the call for sustainable work levels) to produce top‐quality applications for their customers.
(As for the untalented software engineers out there, their work can speak for them better than I can.)

 I also don’t mean to discount any of the development models described in this book or the people
who worked on or with them. Every one of them represents a huge amount of work and research,
and all of them have their places in software engineering, past or present.

 Because this book has limited space, I had to leave out many software development methodologies
and programming best practices. Even the methodologies that are described are not covered in full
detail because there just isn’t room.

 If you disagree with anything I’ve said, if you want to provide more detail about a topic, or if you
want to describe the techniques and variations that you use to build software, I beg you to join
this book’s Wrox P2P forum and tell everyone all about it. The people on that forum are trying to
improve their development skills, so we’d all love to hear what you have to say. (In fact, learning and
improving the development process is a stated requirement for many agile methodologies, so joining t
the forum is practically mandatory!)

 Finally I mean no disrespect to people named Fred, or anyone else for that matter. (Except for one
particular Fred, who I’m sure retired from software development long ago.)

 So get out your reading glasses, grab your favorite caffeinated beverage, and prepare to enter the
world of software engineering. Game on!

 PART I

Step‐by‐Step y

▸ CHAPTER 1 : Software Engineering from 20,000 Feet

▸ CHAPTER 2 : Before the Beginning

▸ CHAPTER 3 : Project Management

▸ CHAPTER 4 : Requirement Gathering

▸▸ CHAPTER 5 CHAPTER 5 : Hi h L l D i High‐Level Design

▸ CHAPTER 6 : Low‐Level Design

▸ CHAPTER 7 : Development

▸ CHAPTER 8 : Testing

▸ CHAPTER 9 : Deployment

▸ CHAPTER 10: Metrics

▸ CHAPTER 11: Maintenance

 The chapters in the fi rst part of this book describe those basic tasks that any successful software
project must handle in some way. They explain the main steps in software development and describe
some of the myriad ways a project can fail to handle those tasks. (The second part of the book
explains how different approaches such as waterfall and agile handle those tasks.)

 The fi rst chapter in this part of the book provides an overview of software development from a high
level. The subsequent chapters explain the pieces of the development process in greater detail.

 Software and cathedrals are much the same. First we build them, then we pray.

 —Samuel Redwine

 In principle, software engineering is a simple two‐step process: (1) Write a best‐selling program,
and then (2) buy expensive toys with the profi ts. Unfortunately, the fi rst step can be rather diffi cult.
Saying “write a best‐selling program” is a bit like telling an author, “Write a best‐selling book,” or
telling a baseball player “triple to left.” It’s a great idea, but knowing the goal doesn’t actually help
you achieve it.

 To produce great software, you need to handle a huge number of complicated tasks, any one of
which can fail and sink the entire project. Over the years people have developed a multitude of
methodologies and techniques to help keep software projects on track. Some of these, such as the
waterfall and l V‐model approaches, use detailed requirement specifi cations to exactly defi ne the l
wanted results before development begins. Others, such as Scrum and agile techniques , rely on
fast‐paced incremental development with frequent feedback to keep a project on track. (Still others
techniques, such as cowboy coding and g extreme programming , sound more like action adventure g
fi lms than software development techniques.)

Different development methodologies use different approaches, but they all perform roughly the
same tasks. They all determine what the software should do and how it should do it. They generate
the software, remove bugs from the code (some of the bugs, at least), make sure the software does
more or less what it should, and deploy the fi nished result.

 NOTE I call these basic items “tasks” and not “stages” or “steps” because
different software engineering approaches tackle them in different ways and at
different times. Calling them “stages” or “steps” would probably be misleading
because it would imply that all projects move through the stages in the same
predictable order.

2 ❘ CHAPTER 3 SOFTWARE ENGINEERING STEP-BY-STEP

 There are two ways of constructing a software design. One way is to make
it so simple that there are obviously no defi ciencies. The other way is to
make it so complicated that there are no obvious defi ciencies. The fi rst
method is far more diffi cult.

 —C.A.R. Hoare

 WHAT YOU WILL LEARN IN THIS CHAPTER:

➤ The basic steps required for successful software engineering

➤ Ways in which software engineering differs from other kinds of
engineering

➤ How fi xing one bug can lead to others

➤ Why it is important to detect mistakes as early as possible

 In many ways, software engineering is a lot like other kinds of engineering. Whether you’re
building a bridge, an airplane, a nuclear power plant, or a new and improved version of
Sudoku, you need to accomplish certain tasks. For example, you need to make a plan, follow
that plan, heroically overcome unexpected obstacles, and hire a great band to play at the
ribbon‐cutting ceremony.

 The following sections describe the steps you need to take to keep a software engineering
project on track. These are more or less the same for any large project although there are
some important differences. Later chapters in this book provide a lot more detail about
these tasks.

 1

4 ❘ CHAPTER 1 SOFTWARE ENGINEERING FROM 20,000 FEET

REQUIREMENTS GATHERING

No big project can succeed without a plan. Sometimes a project doesn’t follow the plan closely, but
every big project must have a plan. The plan tells project members what they should be doing, when
and how long they should be doing it, and most important what the project’s goals are. They give
the project direction.

One of the fi rst steps in a software project is fi guring out the requirements. You need to fi nd out
what the customers want and what the customers need. Depending on how well defi ned the user’s
needs are, this can be time‐consuming.

WHO’S THE CUSTOMER?

Sometimes, it’s easy to tell who the customer is. If you’re writing software for
another part of your own company, it may be obvious who the customers are. In
that case, you can sit down with them and talk about what the software should do.

In other cases, you may have only a vague notion of who will use the fi nished
software. For example, if you’re creating a new online card game, it may be hard to
identify the customers until after you start marketing the game.

Sometimes, you may even be the customer. I write software for myself all the time.
This has a lot of advantages. For example, I know exactly what I want and I know
more or less how hard it will be to provide different features. (Unfortunately, I also
sometimes have a hard time saying “no” to myself, so projects can drag on for a lot
longer than they should.)

In any project, you should try to identify your customers and interact with them as
much as possible so that you can design the most useful application possible.

After you determine the customers’ wants and needs (which are not always the same), you can turn
them into requirements documents. Those documents tell the customers what they will be getting,
and they tell the project members what they will be building.

Throughout the project, both customers and team members can refer to the requirements to see
if the project is heading in the right direction. If someone suggests that the project should include
a video tutorial, you can see if that was included in the requirements. If this is a new feature, you
might allow that change if it would be useful and wouldn’t mess up the rest of the schedule. If that
request doesn’t make sense, either because it wouldn’t add value to the project or you can’t do it
with the time you have, then you may need to defer it for a later release.

CHANGE HAPPENS

Although there are some similarities between software and other kinds of
engineering, the fact that software doesn’t exist in any physical way means there are
some major differences as well. Because software is so malleable, users frequently
ask for new features up to the day before the release party. They ask developers

High‐Level Design ❘ 5

 HIGH‐LEVEL DESIGN

 After you know the project’s requirements, you can start working on the high‐level design. The
high‐level design includes such things as decisions about what platform to use (such as desktop,
laptop, tablet, or phone), what data design to use (such as direct access, 2‐tier, or 3‐tier), and
interfaces with other systems (such as external purchasing systems).

 The high‐level design should also include information about the project architecture at a relatively
high level. You should break the project into the large chunks that handle the project’s major areas
of functionality. Depending on your approach, this may include a list of the modules that you need
to build or a list of families of classes.

 For example, suppose you’re building a system to manage the results of ostrich races. You might
decide the project needs the following major pieces:

➤ Database (to hold the data)

➤ Classes (for example, Race, Ostrich, and Jockey classes)

➤ User interfaces (to enter Ostrich and Jockey data, enter race results, produce result reports,
and create new races)

➤ External interfaces (to send information and spam to participants and fans via e‐mail, text
message, voice mail, and anything else we can think of)

 You should make sure that the high‐level design covers every aspect of the requirements. It should
specify what the pieces do and how they should interact, but it should include as few details as
possible about how the pieces do their jobs.

to shorten schedules and request last‐minute changes such as switching database
platforms or even hardware platforms. (Yes, both of those have happened to me.)
“The program is just 0s and 1s,” they reason. “The 0s and 1s don’t care whether
they run on an Android tablet or a Windows Phone, do they?”

 In contrast, a company wouldn’t ask an architectural fi rm to move a new
convention center across the street at the last minute; a city transportation
authority wouldn’t ask the builder to add an extra lane to a freeway bridge right
after it opens; and no one would try to insert an atrium level at the bottom of a
newly completed 90‐story building.

 TO DESIGN OR NOT TO DESIGN, THAT IS THE QUESTION

 At this point, fans of extreme programming, Scrum, and other incremental
development approaches may be rolling their eyes, snorting in derision and
muttering about how those methodologies don’t need high‐level designs.

continues

6 ❘ CHAPTER 1 SOFTWARE ENGINEERING FROM 20,000 FEET

Let’s defer this argument until Chapter 5 , “High‐Level Design,” which talks
about high‐level design in greater detail. For now, I’ll just claim that every design
methodology needs design, even if it doesn’t come in the form of a giant written
design specifi cation carved into a block of marble.

(continued)

LOW‐LEVEL DESIGN

After your high‐level design breaks the project into pieces, you can assign those pieces to groups
within the project so that they can work on low‐level designs. The low‐level design includes
information about how that piece of the project should work. The design doesn’t need to give every
last nitpicky detail necessary to implement the project’s major pieces, but they should give enough
guidance to the developers who will implement those pieces.

For example, the ostrich racing application’s database piece would include an initial design for the
database. It should sketch out the tables that will hold the race, ostrich, and jockey information.

At this point you will also discover interactions between the different pieces of the project that may
require changes here and there. The ostrich project’s external interfaces might require a new table to
hold e‐mail, text messaging, and other information for fans.

DEVELOPMENT

After you’ve created the high‐ and low‐level designs, it’s time for the programmers to get to work.
(Actually, the programmers should have been hard at work gathering requirements, creating the
high‐level designs, and refi ning them into low‐level designs, but development is the part that most
programmers enjoy the most.) The programmers continue refi ning the low‐level designs until they
know how to implement those designs in code.

(In fact, in one of my favorite development techniques, you basically just keep refi ning the design to give
more and more detail until it would be easier to just write the code instead. Then you do exactly that.)

As the programmers write the code, they test it to make sure it doesn’t contain any bugs.

At this point, any experienced developers should be snickering if not actually laughing out loud.
It’s a programming axiom that no nontrivial program is completely bug‐free. So let me rephrase the
previous paragraph.

As the programmers write the code, they test it to fi nd and remove as many bugs as they reasonably can.

TESTING

Effectively testing your own code is extremely hard. If you just wrote the code, you obviously didn’t
insert bugs intentionally. If you knew there was a bug in the code, you would have fi xed it before
you wrote it. That idea often leads programmers to assume their code is correct (I guess they’re just
naturally optimistic) so they don’t always test it as thoroughly as they should.

Testing ❘ 7

 Even if a particular piece of code is thoroughly tested and contains no (or few) bugs, there’s no
guarantee that it will work properly with the other parts of the system.

 One way to address both of these problems (developers don’t test their own code well and the pieces
may not work together) is to perform different kinds of tests. First developers test their own code. Then
testers who didn’t write the code test it. After a piece of code seems to work properly, it is integrated
into the rest of the project, and the whole thing is tested to see if the new code broke anything.

 Any time a test fails, the programmers dive back into the code to fi gure out what’s going wrong and
how to fi x it. After any repairs, the code goes back into the queue for retesting.

 A SWARM OF BUGS

 At this point you may wonder why you need to retest the code. After all, you just
fi xed it, right?

 Unfortunately fi xing a bug often creates a new bug. Sometimes the bug fi x is
incorrect. Other times it breaks another piece of code that depended on the original
buggy behavior. In the known bug hides an unknown bug.

 Still other times the programmer might change some correct behavior to a different
correct behavior without realizing that some other code depended on the original
correct behavior. (Imagine if someone switched the arrangement of your hot and
cold water faucets. Either arrangement would work just fi ne, but you may get a
nasty surprise the next time you take a shower.)

 Any time you change the code, whether by adding new code or fi xing old code, you
need to test it to make sure everything works as it should.

 Unfortunately, you can never be certain that you’ve caught every bug. If you run your tests and
don’t fi nd anything wrong, that doesn’t mean there are no bugs, just that you haven’t found them.
As programming pioneer Edsger W. Dijkstra said, “Testing shows the presence, not the absence of
bugs.” (This issue can become philosophical. If a bug is undetected, is it still a bug?)

 The best you can do is test and fi x bugs until they occur at an acceptably low rate. If bugs don’t bother
users too frequently or too severely when they do occur, then you’re ready to move on to deployment.

EXAMPLE Counting Bugs

 Suppose requirements gathering, high‐level design, low‐level design, and development works like this:
Every time you make a decision, the next task in the sequence includes two more decisions that depend
on the fi rst one. For example, when you make a requirements decision, the high‐level design includes
two decisions that depend on it. (This isn’t exactly the way it works, but it’s not as ridiculous as you
might wish.)

 Now suppose you made a mistake during requirements gathering. (The customer said the application
had to support 30 users with a 5‐second response time, but you heard 5 users with a 30‐second
response time.)

8 ❘ CHAPTER 1 SOFTWARE ENGINEERING FROM 20,000 FEET

In this example, you have 15 times as many decisions to track down, examine, and possibly fi x than
you would have if you had discovered the mistake right away during requirements gathering. That
leads to one of the most important rules of software engineering. A rule that is so important, I’ll
repeat it later in the book:

 The longer a bug remains undetected, the harder it is to fi x.

Some people think of testing as something you do after the fact to verify that the code you wrote is
correct. Actually, testing is critical at every stage of development to ensure the resulting application
is usable.

DEPLOYMENT

Ideally, you roll out your software, the users are overjoyed, and everyone lives happily ever after. If
you’ve built a new variant of Tetris and you release it on the Internet, your deployment may actually
be that simple.

Often, however, things don’t go so smoothly. Deployment can be diffi cult, time‐consuming, and
expensive. For example, suppose you’ve written a new billing system to track payments from your
company’s millions of customers. Deployment might involve any or all of the following:

➤ New computers for the back-end database

➤ A new network

➤ New computers for the users

➤ User training

If you detect the error during the requirements gathering phase, you need to fi x only that one error. But
how many incorrect decisions could depend on that one mistake if you don’t discover the problem until
after development is complete?

The one mistake in requirements gathering leads to two decisions in high‐level design that could be
incorrect.

Each of the two possible mistakes in high‐level design leads to
two new decisions in low‐level design that could also be wrong,
giving a total of 2 × 2 = 4 possible mistakes in low‐level design.

Each of the four suspicious low‐level design decisions lead to
two more decisions during development, giving a total of 4 × 2
= 8 possible mistakes during development.

Adding up all the mistakes in requirements gathering, high‐level
design, low‐level design, and development gives a total of 1 + 2 +
4 + 8 = 15 possible mistakes. Figure 1-1 shows how the potential
mistakes propagate.

Requirements

High-level Design

Low-level Design

Development

 FIGURE 1-1: The circles represent
possible mistakes at different stages of
development. One early mistake can
lead to lots of later mistakes.

Wrap‐up ❘ 9

➤ On-site support while the users get to know the new system

➤ Parallel operations while some users get to know the new system and other users keep using
the old system

➤ Special data maintenance chores to keep the old and new databases synchronized

➤ Massive bug fi xing when the 250 users discover dozens or hundreds of bugs that testing
didn’t uncover

➤ Other nonsense that no one could possibly predict

 WHO COULD HAVE PREDICTED?

 I worked on one project that assigned repair people to fi x customer problems for a
phone company. Twice during live testing the system assigned someone to work at
his ex‐wife’s house. Fortunately, the repair people involved recognized the address
and asked their supervisors to override the assignments.

 If psychics were more consistent, it would be worth adding one to every software
project to anticipate these sorts of bizarre problems. Failing that or a working
crystal ball, you should allow some extra time in the project schedule to handle
these sorts of completely unexpected complications.

 MAINTENANCE

 As soon as the users start pounding away on your software, they’ll fi nd bugs. (This is another
software axiom. Bugs that were completely hidden from testers appear the instant users touch the
application.)

 Of course, when the users fi nd bugs, you need to fi x them. As mentioned earlier, fi xing a bug
sometimes leads to another bug, so now you get to fi x that one as well.

 If your application is successful, users will use it a lot, and they’ll be even more likely to fi nd bugs.
They also think up a slew of enhancements, improvements, and new features that they want added
immediately.

 This is the kind of problem every software developer wants to have: customers that like an
application so much, they’re clamoring for more. It’s the goal of every software engineering project,
but it does mean more work.

 WRAP‐UP

 At this point in the process, you’re probably ready for a break. You’ve put in long hours of
planning, design, development, and testing. You’ve found bugs you didn’t expect, and the users are
keeping you busy with bug reports and change requests. You want nothing more than a nice, long
vacation.

10 ❘ CHAPTER 1 SOFTWARE ENGINEERING FROM 20,000 FEET

There’s one more important thing you should do before you jet off to Cancún: You need to
perform a post‐mortem. You need to evaluate the project and decide what went right and what
went wrong. You need to fi gure out how to make the things that went well occur more often in
the future. Conversely, you need to determine how to prevent the things that went badly in the
future.

Right after the project’s completion, many developers don’t feel like going through this exercise,
but it’s important to do right away before everyone forgets any lessons that you can learn from the
project.

EVERYTHING ALL AT ONCE

Several famous people have said, “Time is nature’s way to keep everything from happening all at
once.” Unfortunately, time doesn’t work that way in software engineering. Depending on how big
the project is and how the tasks are distributed, many of the basic tasks overlap—and sometimes in
big ways.

Suppose you’re building a huge application that’s vital to national security interests. For example,
suppose you want to optimize national energy drink ordering, distribution, and consumption. This
is a big problem. (Really, it is.) You might have some ideas about how to start, but there are a lot of
details that you’ll need to work out to build the best possible solution. You’ll probably need to spend
quite a while studying existing operations to develop the user requirements.

You could spend several weeks peppering the customers with questions while the rest of the
development team plays Mario Cart and consumes the drinks you’re studying, but that would bet
ineffi cient.

A better use of everyone’s time would be to put people to work with as much of the project that
is ready to roll at any given moment. Several people can work with the customers to defi ne the
requirements. This takes more coordination than having a single person gather requirements, but on
big projects it can still save you a lot of time.

After you think you understand some of the requirements, other team members can start working
on high‐level designs to satisfy them. They’ll probably make more mistakes than they would if you
waited until the requirements are fi nished, but you’ll get things done sooner.

As the project progresses, the focus of work moves down through the basic project tasks. For
example, as requirements gathering nears completion, you should fi nalize the high‐level designs, so
team members can move on to low‐level designs and possibly even some development.

Meanwhile, throughout the entire project, testers can try to shoot holes in things. As parts of
the application are fi nished, they can try different scenarios to make sure the application can
handle them.

Depending on the testers’ skills, they can even test things such as the designs and the requirements.
Of course, they can’t run the requirements through a compiler to see if the computer can make sense
of them. They can, however, look for situations that aren’t covered by the requirements. (“What
if a shipment of Quickstart Energy Drink is delayed, but the customer is on a cruise ship and just
crossed the International Date Line! Is the shipment still considered late?”)

Summary ❘ 11

 Sometimes tasks also fl ow backward. For example, problems during development may discover
a problem with the design or even the requirements. The farther back a correction needs to fl ow,
the greater its impact. Remember the earlier example where every problem caused two more? The
requirements problem you discovered during development could lead to a whole slew of other
undiscovered bugs. In the worst case, testing of “fi nished” code may reveal fundamental fl aws in the
early designs and even the requirements.

 REQUIREMENT REPAIRS

 The fi rst project I worked on was an inventory system for NAVSPECWARGRU
(Navy Special Warfare Group, basically the Navy SEALs). The application let you
defi ne equipment packages for various activities and then let team members check
out whatever was necessary. (Sort of the way a Boy Scouts quartermaster does
this. For this campout, you’ll need a tent, bedroll, canteen, cooking gear, and M79
grenade launcher.)

 Anyway, while I was building one of the screens, I realized that the requirements
specifi cations and high‐level design didn’t include any method for team members
to return equipment when they were done with it. In a matter of weeks, the
quartermaster’s warehouse would be empty and the barracks would be packed to
the rafters with ghillie suits and snorkels!

 This was a fairly small project, so it was easy to fi x. I told the project manager,
he whipped up a design for an inventory return screen, and I built it. That kind of
quick correction isn’t possible for every project, particularly not for large ones, but
in this case the whole fi x took approximately an hour.

 In addition to overlapping and fl owing backward, the basic tasks are also sometimes handled in very
different ways. Some development models rely on a specifi cation that’s extremely detailed and rigid.
Others use specifi cations that change so fl uidly it’s hard to know whether they use any specifi cation
at all. Iterative approaches even repeat the same basic tasks many times to build ever‐improving
versions of the fi nal application. The chapters in the second part of this book discuss some of the
most popular of those sorts of development approaches.

 SUMMARY

 All software engineering projects must handle the same basic tasks. Different development models
may handle them in different ways, but they’re all hidden in there somewhere.

 In fact, the strengths and weaknesses of various development models depend in a large part on
how they handle these tasks. For example, agile methods and test‐driven development use frequent
builds to force developers to perform a lot of tests early on so that they can catch bugs as quickly as
possible. (For a preview of why that’s important, see the “Counting Bugs” example earlier in this
chapter and Exercise 4.)

12 ❘ CHAPTER 1 SOFTWARE ENGINEERING FROM 20,000 FEET

 The chapters in Part II, “Development Models,” describe some of the most common development
models. Meanwhile the following chapters describe the basic software engineering tasks in greater
detail. Before you delve into the complexities of requirements gathering, however, there are a few
things you should consider.

 The next chapter explains some basic tools that you should have in place before you consider a new
project. The chapter after that discusses project management tools and techniques that can help you
keep your project on track as you work through the basic software engineering tasks.

EXERCISES

1. What are the basic tasks that all software engineering projects must handle?

2. Give a one sentence description of each of the tasks you listed for Exercise 1.

3. I have a few customers who do their own programming, but who occasionally get stuck and
need a few pointers or a quick example program. A typical project runs through the following
stages:

 a. The customer sends me an e‐mail describing the problem.

 b. I reply telling what I think the customer wants (and sometimes asking for clarifi cation).

 c. The customer confi rms my guesses or gives me more detail.

 d. I crank out a quick example program.

 e. I e‐mail the example to the customer.

 f. The customer examines the example and asks more questions if necessary.

 g. I answer the new questions.

 Earlier in this chapter, I said that every project runs through the same basic tasks. Explain
where those tasks are performed in this kind of interaction. (For example, which of those steps
includes testing?)

4. List three ways fi xing one bug can cause others.

5. List fi ve tasks that might be part of deployment.

Summary ❘ 13

▸ WHAT YOU LEARNED IN THIS CHAPTER
➤ All projects perform the same basic tasks:

1. Requirements Gathering

2. High‐level Design

3. Low‐level Design

4. Development

5. Testing

6. Deployment

7. Maintenance

8. Wrap‐up

➤ Different development models handle the basic tasks in different ways, such as making some
less formal or repeating tasks many times.

➤ The basic tasks often occur at the same time, with some developers working on one task
while other developers work on other tasks.

➤ Work sometimes fl ows backward with later tasks requiring changes to earlier tasks.

➤ Fixing a bug can lead to other bugs.

➤ The longer a mistake remains undetected, the harder it is to fi x.

➤ Surprises are inevitable, so you should allow some extra time to handle them.

 It’s not whether you win or lose, it’s how you place the blame.

 —Oscar Wilde

 WHAT YOU WILL LEARN IN THIS CHAPTER:

➤ The features that a document management system provides

➤ Why documentation is important

➤ How you can easily archive e‐mails for later use

➤ Typical types of documentation

 Before you start working on a software project, even before you dig into the details of what
the project is about, there are preparations you should make. In fact, some of these can be
useful even if you’re not considering a software project.

 These tools improve your chances for success in any complicated endeavor. They raise the
odds that you’ll produce something that will satisfy the application’s customers. They’ll also
help you survive the process so that you’ll still be working on the project when the accolades
start rolling in.

 Typically, you’ll use these tools and techniques throughout all of a project’s stages. You’ll
use them while you’re gathering requirements from the customer, during the design and
programming phases, and as you roll out the fi nal result to the users. You’ll even use them
after you’ve fi nished releasing an application and you’re considering enhancements for the next
version.

 The following sections describe some beginning‐to‐end tools that you can use to help keep
team members focused and the project on track.

 2

16 ❘ CHAPTER 2 BEFORE THE BEGINNING

DOCUMENT MANAGEMENT

A software engineering project uses a lot of documents. It uses requirements documents, use cases,
design documents, test plans, user training material, lunch menus for team‐building exercises,
resumes if the project doesn’t go well, and much more. (I’ll describe these kinds of documentation in
later chapters.) Even a relatively modest project could have hundreds or even thousands of pages of
documentation.

To make matters more confusing, many of those are “living” documents that evolve over time. In
some projects, the requirements are allowed to change as the project progresses. As developers get a
better sense for which tasks will be hard and which will be easy, the customers may want to revise
the requirements to include new, simple features and eliminate old, complicated features.

As the project progresses, the customers will also get a better understanding of what the system
will eventually do and they may want to make changes. They may see some partially implemented
feature and decide that it isn’t that useful. They may even come up with new features that they just
plain forgot about at the beginning of the project. (“I know we didn’t explicitly say you need a way
to log into the system, but I’m quite sure that’s going to be necessary at some point.”)

CHANGE CONTROL

If you let everyone make changes to the requirements, how can you meet them?
Just when you satisfy one requirement, someone can change it, so you’re not done
after all. (Imagine running after the bus in the rain while the driver cackles evilly
and checks the side mirror to make sure he’s going just a little faster than you’re
running.) Eventually, the requirements need to settle down so that you can achieve
them.

Allowing everyone to change the requirements can also result in muddled,
confl icting, and confusing goals and designs. This is more or less how laws and
government spending bills are written, so it shouldn’t be a surprise that the results
aren’t always perfect. (“Yes, you can have a $3,000 study to decide whether people
should carry umbrellas in the rain if I can have my $103,000 to study the effects
of tequila and gin on sunfi sh.” Someone really should spend a few dollars to study
whether that kind of budget process is effi cient.)

To keep changes from proliferating wildly and becoming hopelessly convoluted,
many projects (particularly large ones) create a change control board that reviewsd
and approves (or rejects) change requests. The board should include people who
represent the customers (“We really need to log in telepathically from home”) andd
the development team (“The best we can do is let you log in on your cell phone”).

Even on small projects, it’s usually worthwhile to assign someone as the fi nal
arbiter. Often that person is either a high‐ranking customer (such as the executive
champion) or a high‐ranking member of the development team (such as the
project lead).

Document Management ❘ 17

 Meanwhile, as you’re changing the font requirement to allow 12‐point Arial, one of your coworkers
might be changing some other part of the same requirement document (perhaps requiring that all
reports must be printed in renewable soy ink on 100% post‐consumer recycled paper). If you both
open the document at the same time, whichever change is saved second will overwrite the other
change, and the fi rst change will be lost. (In programming terms, this is a “race condition” in which
the second person wins.)

 During development, it’s important to check the documentation to see what you’re supposed
to be doing. You need to easily fi nd the most recent version of the requirements to see what the
application should do. Similarly, you need to fi nd the most recent high‐level and low‐level designs to
see if you’re following the plan correctly.

 Sometimes, you’ll also need to fi nd older versions of the documentation, to fi nd out what changes
were made, why they were made, and who made them.

 FONT FIASCO

 To understand the importance of historical documentation, suppose your
application produces quarterly reports showing projected root beer demand. At
some point the requirements were changed to require that the report be printed in
landscape mode with a 16‐point Arial font.

 Now suppose you’re working on the report to add new columns that group
customers by age, weight, ethnic background, car model, and hat size. That’s easy
enough, but now the report won’t fi t on the page. If you could bump the font size
down to 14‐point, everything would fi t just fi ne, but the 16‐point Arial requirement
is killing you.

 At this point, you should go back to the requirements documents and fi nd out why
the font requirement was added. If the requirement was added to make it easier to
include reports in PowerPoint slides, you may be able to reduce the font size and
your boss can live with slightly more crowded slides during his presentations to the
VP of Strategic Soft Drink Engineering.

 Another option might be to continue producing the original report for
presentations and create a new expanded report that includes the new columns for
research purposes.

 It’s even possible that the original issue was that some developers were printing
reports with the Comic Sans font. Management didn’t think that looked
professional enough, so it made a font requirement. They never actually cared
about the font size, just the typeface. In that case, you could probably ask to change
the requirement again to let you use a smaller font, as long as you stick with Arial.

 Unless you have a good document history, you may never know why and when the
requirement was changed, so you won’t know whether it’s okay to change it again.

18 ❘ CHAPTER 2 BEFORE THE BEGINNING

 To prevent this type of confl ict, you need a document control system that prevents two people from
making changes to the same document at the same time.

 To handle all these issues, you need a good document management system. Ideally, the system
should support at least the following operations:

➤ People can share documents so that they can all view and edit them.

➤ Only one person can edit a document at a given time.

➤ You can fetch the most recent version of a document.

➤ You can fetch a specifi c version of a document by specifying either a date or version number.

➤ You can search documents for tags, keywords, and anything else in the documents.

➤ You can compare two versions of a document to see what changed, who changed it, and
when the change occurred. (Ideally, you should also see notes indicating why a change was
made; although, that’s a less common feature.)

 Following are some other features that are less common but still useful:

➤ The ability to access documents over the Internet or on mobile devices.

➤ The ability for multiple people to collaborate on documents (so they can see each other
making changes to a shared document).

➤ Integration into other tools such as Microsoft Offi ce or project management software.

➤ Document branches so that you can split a document into two paths for future changes. (This
is more useful with program code where you might need to create two parallel versions of the
program. Even then it can lead to a lot of confusion.)

➤ User roles and restricted access lists.

➤ E‐mail change notifi cation.

➤ Workfl ow support and document routing.

 Some document management systems don’t include all these features, and some of these aren’t
necessary for smaller projects, but they can be nice to have.

 The following sections describe some special features of different kinds of documentation that you
should save.

HISTORICAL DOCUMENTS

 After you’ve installed some sort of document management system, you may wonder what documents
you should put in it. The answer is: everything . Every little tidbit and scrap of intelligence dealing g
with the project should be recorded for posterity. Every design decision, requirements change, and
memo should be tucked away for later use.

 If you don’t have all this information, it’s too easy for project meetings to devolve into
fi nger‐pointing sessions and blame-game tournaments. Let’s face it; people forget things.

E‐mail ❘ 19

 Sometimes, it’s hard for team members to easily fi nd project‐related e‐mails in the daily
spamalanche of offers for cheap Canadian prescriptions, low interest rates guaranteed by the
“U.S. National Bank,” letters from your long lost Nigerian uncle, and evacuation notices from your
Building Services department.

(I’m writing Chapter 2 and I’ve already forgotten what Chapter 1 was about.) Not every
disagreement has the vehemence of a blood feud between vampires and werewolves, but some can
grow that bad if you let them. If you have a good, searchable document database, you can simply
fi nd the memo where your customer said that all the monitors had to be pink, pick the specifi c
shade, and move on to discuss more important matters.

 Collecting every scrap of relevant information isn’t quite as big a chore as you might think. Most
of the information is already available in an electronic form, so you just need to save it. Whenever
someone sends an e‐mail about the project, save it. Whenever someone makes a change request, save
it. If someone creates a new document and doesn’t put it in the document repository, put it there
yourself or at least e‐mail it to yourself so that there’s a record.

 The only types of project activity that aren’t usually easy to record electronically are meetings and
phone calls. You can record meetings and phone calls if you want a record of everything (subject
to local law), but on most projects you can just type up a quick summary and e‐mail it to all the
participants. Anyone who disagrees about what was covered in the meeting can send a follow‐up
e‐mail that can also go into the historical documents.

 It’s also well worth your effort to thrash through any disagreements as soon as possible, and sending
out a meeting summary can help speed that process along. The biggest purpose of documentation is
to ensure that everyone is headed in the same direction.

 E‐MAIL

 Memos, discussions about possible change requests, meeting notes, and lunch orders are all easy to
distribute via e‐mail. Storing those e‐mails for historical purposes is also easy: Simply CC a selected
e‐mail address for every project e‐mail. For example, you could create an e‐mail address named after
the project and copy every project message to that account.

 Suppose you’re working on project CLASP (CLeverly Acronymed Software Project). Then you would
create an e‐mail account named CLASP and send copies of any project e‐mail to that account.

 TIP I’ve had project managers who extracted every project e‐mail into text fi les
and tucked them away in a folder for later use. That lets you perform all sorts
of other manipulations that are tricky inside an e‐mail system. For example,
you could write a program to search the fi les for messages from the user Terry
that include the words “sick” and “Friday.” I’ve even had project managers
who printed out every e‐mail; although, that seems a bit excessive. Usually just
having the e‐mails saved in a project account is good enough.

20 ❘ CHAPTER 2 BEFORE THE BEGINNING

 You could even break the identifi er further to indicate tasks within a message class. For example, the
string [CLASP.LLDesign.1001] might indicate a message regarding low‐level design task 1001.

 To make fi nding project e‐mails easier, you can prefi x their subjects with an identifi er. The following
text might show the subject line for an e‐mail about the CLASP project.

 [CLASP] This week’s meeting canceled because all tasks are ahead of schedule

 Of course, if you receive an e‐mail with this subject, you should suspect it’s a hoax because all tasks
have never been ahead of schedule in the entire history of software engineering. I think the day the
term “software engineering” was coined, its defi nition was already a week overdue.

 You can further refi ne the subject identifi er by adding classes of messages. For example, [CLASP.Design]
might indicate a message about design for the CLASP project. You can invent any message classes that
you think would be useful. Following is a list of a few that may come in handy.

➤ Admin —Administration

➤ Rqts —Requirements

➤ HLDesign —High‐level design

➤ LLDesign —Low‐level design

➤ Dvt —Development

➤ Test —Testing

➤ Deploy —Deployment

➤ Doc —Documentation

➤ Train —Training

➤ Maint —Maintenance

➤ Wrap —Wrap‐up

 If team members use those conventions consistently, any decent e‐mail system should make it easy
to fi nd messages that deal with a particular part of the project. To fi nd the test messages, you can
search for [CLASP.Test . To fi nd every CLASP e‐mail, search for [CLASP .

 TIP It doesn’t matter what subject line tags you use, as long as you’re
consistent. Make a list at the beginning of the project and make sure everyone
uses them consistently.

 TIP Some e‐mail systems can even use rules to route particular messages to
different folders. For example, the system might be able to copy messages with
the word CLASP in the title into a project e‐mail folder. (Just don’t spend more
time programming your e‐mail system than on the actual project.)

Code ❘ 21

 An alternative strategy is to include keywords inside the message body. You can use a naming
convention similar to the one described here, or you can use something more elaborate if you need
to. For example, a message might begin with the following text to fl ag it as involving the testing,
bug reports, and login screen.

 Key: Test

 Key: Bugs

 Key: Login

 Now you can search for strings like Key: Bugs to fi nd the relevant messages.

 In addition to making e‐mails easy to fi nd, you should take steps to make them easy to distribute.
Create some e‐mail groups so that you can distribute messages to the appropriate people. For
example, you may want groups for managers, user interface designers, customers, developers,
testers, and trainers—and, of course, a group for everyone.

 Then be sure you use the groups correctly! Customers don’t want to hear the developers argue
over whether a b+tree is better than an AVL‐tree, and user interface designers don’t want to hear
the testers dispute the fi ne points of white‐box versus beige‐box testing. (In one project I was on, a
developer accidentally included customers in an e‐mail that described them in less than fl attering
terms. Basically, he said they didn’t really know what they needed. It was true, but they sure didn’t
like hearing it!)

 CODE

 Program source code is different from a project’s other kinds of documents. Normally, you expect
requirements and design documents to eventually stabilize and remain mostly unchanged. In
contrast, code changes continually, up to and sometimes even beyond the project’s offi cial ending
date.

 That gives source code control systems a slightly different fl avor than other kinds of document
control systems. A requirements document might go through a dozen or so versions, but a code
module might include hundreds or even thousands of changes. That means the tools you use to store
code often don’t work particularly well with other kinds of documents and vice versa.

 Source code is also generally line‐oriented. Even in languages such as C# and Java, which are
technically not line‐oriented, programmers insert line breaks to make the code easier to read. If you
change a line of source code, that change probably doesn’t affect the lines around it. Because of that,
if you use a source code control system to compare two versions of a code fi le, it fl ags only that one
line as changed.

 In contrast, suppose you added the word “incontrovertibly” to the beginning of the preceding
paragraph. That would make every line in the paragraph wrap to the following line, so every
line in the paragraph would seem to have been changed. A document revision system, such as
those provided by Microsoft Word or Google Docs, correctly realizes that you added only a
single word. A source code control system might decide that you had modifi ed every line in the
paragraph.

22 ❘ CHAPTER 2 BEFORE THE BEGINNING

What this means is that you should use separate tools to manage source code and other kinds of
documents. This usually isn’t a big deal, and it’s easy to fi nd a lot of choices online. (In fact, picking
one that every developer can agree on may be the hardest part of using a source code control system.)

Ideally, a source code control system enables all the developers to use the code. If a developer needs
to modify a module, the system checks out the code to that developer. Other developers can still use
the most recently saved version of the code, but they can’t edit that module until the fi rst developer
releases it. (This avoids the race condition described earlier in this chapter.)

Some source code control systems are integrated into the development environment. They make
code management so easy even the most advanced programmers don’t mess it up too often.

CODE DOCUMENTATION

Something that most nonprogrammers (and quite a few programmers) don’t understand is that code
is written for people, not for the computer. In fact, the computer doesn’t execute the source code.
The code must be compiled, interpreted, and otherwise translated into a sequence of 0s and 1s that
the computer can understand.

The computer also doesn’t care what the code does. If you tell it to erase its hard disk (something I
don’t recommend), the computer will merrily try to do just that.

The reason I say source code is written for people is that it’s people who must write, understand,
and debug the code. The single most important requirement for a program’s code is that it be
understandable to the people who write and maintain it.

Now I know I’m going to get a lot of argument over that statement. Programmers have all sorts of
favorite goals like optimizing speed, minimizing bugs, and including witty puns in the comments.
Those are all important, but if you can’t understand the code, you can’t safely modify it and fi x it
when it breaks.

Without good documentation, including both design documents and comments inside the code, the
poor fool assigned to fi x your code will stand little or no chance. This is even more important when
you realize that the poor fool may be you. The code you fi nd so obvious and clever today may make
no sense at all to you in a year or even a few months. (In some cases, it may not make sense a few
hours later.) You owe it to posterity to ensure that your genius is properly understood throughout
the ages.

To that end, you need to write code documentation. You don’t need to write enormous tomes
explaining that the statement numInvoicesLost = numInvoicesLost + 1 means you are adding 1
to the value numInvoicesLost . You can probably fi gure that out even if you’ve never seen a line of
code before. However, you do need to give yourself and others a trail of breadcrumbs to follow on
their quest to fi gure out why invoices are being sent to employees instead of customers.

Code documentation should include high‐ and low‐level design documents that you can store in the
document repository with other kinds of documentation. These provide an overview of the methods
the code is using to do whatever it’s supposed to do.

Code documentation should also include comments in the code to help you understand what the
code is actually doing and how it works. You don’t need to comment every line of code (see the

Code Documentation ❘ 23

numInvoicesLost example again), but it should provide a fairly detailed explanation that even
the summer intern who was hired only because he’s the boss’s nephew can understand. Debugging
code should be an exercise in understanding the code and fi guring out why it isn’t doing what it’s
supposed to do. It shouldn’t be an IQ test.

 JBGE

 There’s a school of thought in software engineering that says you should provide
code documentation and comments that are “just barely good enough” (JBGE).
The idea is that if you provide too much documentation, you end up wasting a lot
of time updating it as you make changes to the code.

 This philosophy can reduce the amount of documentation you produce, but it’s
an idea that’s easy to take too far. Most programmers like to program (that’s why
they’re not lawyers or doctors) and writing and updating documentation and
comments doesn’t feel like writing code, so sometimes they skip it entirely.

 A software engineering joke says, “Real programmers don’t comment their code.
If it was hard to write, it should be hard to understand and harder to modify.”
Unfortunately I’ve seen plenty of code that proves the connection between poor
documentation and diffi cult modifi cation.

 I worked on one project that included more than 55,000 lines of code and fewer
than 300 comments. (I wrote a program to count them.) And if there were design
documents, I never heard about them. I’m sure the code made sense when it was
written, but modifying it was next to impossible. I sometimes spent 4 or 5 days
studying the code, trying to fi gure out how it worked before changing one or two
lines. Even after all that time, there was a decent chance I misunderstood something
and the change added a new bug. Then I got to remove the change and start over.

 I worked on another project that included tons of comments. Probably more than
80 percent of the lines of code included a comment. They were easy to ignore most
of the time, but they were always there if you needed them.

 After we transferred the project to the company’s maintenance organization, the
folks in the organization went on a JBGE bender and removed every comment that
they felt wasn’t absolutely necessary to understand the code. A few months later,
they admitted that they couldn’t maintain the code because —…drumroll…— they
couldn’t understand it. In the end, they put all the comments back and just ignored
them when they didn’t need them.

 Yes, excessive code documentation and comments are a hassle and slow you down, so
you can’t rush off to the next task, but suck it up and write it down while it’s still fresh
in your mind. You don’t need to constantly update your comments every time you
change a line of code. Wait until you fi nish writing and testing a chunk of code. Then
write it up and move on with a clear conscience. Comments may slow you down a bit,
but I’ve never seen a project fail because it contained too many comments.

24 ❘ CHAPTER 2 BEFORE THE BEGINNING

Some programming languages provide a special kind of comment that is intended to be pulled out
automatically and used in text documentation. For example, the following shows a snippet of C#
code with XML comments:

 /// <summary>
 /// Deny something bad we did to the media.
 /// </summary>
 /// <param name="type">What we did (Bug, Virus, PromisedBadFeature, etc.)</param>
 /// <param name="urgency">High, Medium, or Low</param>
 /// <param name="media">One or more of Blog, Facebook, Friendster, etc.</param>
 private void PostDenial(DenialType type, UrgencyType urgency, MediaType media)
 {
 . . .
 }

The comment’s summary token explains the method’s purpose. The param tokens describe the
method’s parameters. The Visual Studio development environment can automatically extract these
comments into an XML fi le that you can then process to produce documentation. The result doesn’t
explain how the code works, but if you do a good job writing the comments, it does explain the

JBGE, REDUX

 JBGE is mostly applied to code documentation and comments, but you could apply
the same rule to any kind of documentation. For example, you could write barely
enough documentation to explain the requirements. That’s probably an even bigger
mistake than skimping on code comments.

Documentation helps keep the whole project team working toward the same
goals. If you don’t spell things out unambiguously, developers will start working
at cross‐purposes. At best you’ll lose a lot of time arguing about what the
requirements mean. At worst you’ll face a civil war that will destroy your team.

As is the case with code documentation and comments, you don’t need to turn the
requirements into a 1,200‐page novel. However, if the requirements are ambiguous
or confusing, pull out your thesaurus and clarify them.

 JBGE is okay as long as you make sure your documentation actually is GE.

You can extend the JBGE idea even further and create designs that are just
barely good enough, write code that’s just barely good enough, and perform
tests that are just barely good enough. I’m a big fan of avoiding unnecessary
work, but if everything you do is just barely good enough, the result probably
won’t be anywhere near good enough. (Not surprisingly, no one advocates
that approach. The JBGE philosophy seems to be reserved only for code
comments.)

Summary ❘ 25

interface that the method displays to other pieces of code. (Visual Studio also uses these comments
to provide help pop‐ups called IntelliSense to other developers who call this code.)

 As is the case when you write code documentation and other comments, you don’t need to
constantly update this kind of information as you work on a method. Finish the method, test it, and
then write the comments once.

 APPLICATION DOCUMENTATION

 All the documentation described so far deals with building the application. It includes such items as
requirements and design documents, code documentation and comments, meeting and phone call
notes, and memos.

 At some point you also need to prepare documentation that describes the application. Depending
on the eventual number and kinds of users, you may need to write user manuals (for end users,
managers, database administrators, and more), quick start guides, cheat sheets, user interface maps,
training materials, and marketing materials. You may even need to write meta‐training materials to
teach the trainers how to train the end users. (No kidding, I’ve done it.)

 In addition to basic printed versions, you may need to produce Internet, screencast, video, and
multimedia versions of some of those documents. Producing this kind of documentation isn’t all
that different from producing requirements documents. You can still store documents in an archive.
(Although you may not be able to search for keywords in a video.)

 Although creating this material is just another task, don’t start too late in the project schedule. If
you wait until the last minute to start writing training materials, then the users won’t be able to use
the application when it’s ready. (I remember one project where the requirements and user interface
kept changing right up until the last minute. It was somewhat annoying to the developers, but it
practically drove our lead trainer insane.)

 SUMMARY

 Documentation is produced throughout a project’s lifespan, starting with early discussions of
the project’s requirements, extending through design and programming, continuing into training
materials, and lasting even beyond the project’s release in the form of comments, bug reports,
and change requests. To get the most out of your documentation, you need to set up a document
tracking system before you start the project. Then you can effectively use the project documents to
determine what you need to do and how you should do it. You can also fi gure out what was decided
in the past so that you don’t need to constantly rehash old decisions.

 Document control is one of the fi rst tools you should set up when you’re considering a new project.
You can use it to archive ideas before you know what the project will be about or whether there will
even be a project. Once you know the project will happen, you should start tracking the project with
project management tools. The next chapter describes project management in general and some of
the tools you can use to help keep a project moving in the right direction.

26 ❘ CHAPTER 2 BEFORE THE BEGINNING

EXERCISES

1. List seven features that a document management system should provide.

2. Microsoft Word provides a simple change tracking tool. It’s not a full‐featured document
management system, but it’s good enough for small projects. For this exercise, follow these
steps:

 a. Create a short document in Word and save it.

 b. Turn on change tracking. (In recent versions of Word, go to the Review tab’s Tracking
group and click Track Changes.)

 c. Modify the document and save it with a new name. (You should see the changes fl agged
in the document. If you don’t, go to the Review tab’s Tracking group and use the drop‐
down to select Final: Show Markup.)

 d. On the Review tab’s Tracking group, click the Reviewing Pane button to display the
reviewing pane. You should see your changes there.

 e. In the Review tab’s Tracking group, open the Track Changes drop‐down and select
Change User Name. Change your user name and initials.

 f. Make another change, save the fi le again, and see how Word indicates the changes.

3. Microsoft Word also provides a document comparison tool. If you followed the instructions
in Exercise 1 carefully, you should have two versions of your sample document. In the Review
tab’s Compare group, open the Compare drop‐down and select Compare. (I guess Microsoft
couldn’t think of synonyms for “compare.”) Select the two versions of the fi le and compare
them. How similar is the result to the changes shown by change tracking? Why would you use
this tool instead of change tracking?

4. Like Microsoft Word, Google Docs provides some simple change tracking tools. Go to
http://www.google.com/docs/about/ to learn more and to sign up. Then create a document,
save it, close it, reopen it, and make changes to it as you did in Exercise 1.

 To view changes, open the File menu and select See revision history. Click the See more
detailed revisions button to see your changes.

5. What does JBGE stand for and what does it mean?

http://www.google.com/docs/about/

Summary ❘ 27

▸ WHAT YOU LEARNED IN THIS CHAPTER
➤ Documentation is important at every step of the development process.

➤ Good documentation keeps team members on track, provides a clear direction for work, and
prevents arguments over issues that were previously settled.

➤ Document management systems enable you to:

➤ Share documents with other team members.

➤ Fetch a document’s most recent version.

➤ Fetch an earlier version of a document.

➤ Search documents for keywords.

➤ Show changes made to a document.

➤ Compare two documents to show their differences.

➤ Edit a document while preventing someone else from editing the document at the
same time.

➤ A simple way to store project history is to create an e‐mail account named after the project
and then send copies of all project correspondence to that account.

➤ You can use e‐mail subject tags such as [CLASP.Rqts] to make fi nding different types of
project e‐mails easy.

➤ Types of documentation may include:

➤ Requirements

➤ Project e‐mails and memos

➤ Meeting notes

➤ Phone call notes

➤ Use cases

➤ High‐level design documents

➤ Low‐level design documents

➤ Test plans

➤ Code documentation

➤ Code comments

➤ Extractable code comments

➤ User manuals

➤ Quick start guides

➤ Cheat sheets

28 ❘ CHAPTER 2 BEFORE THE BEGINNING

➤ User interface maps

➤ Training materials

➤ Meta‐training materials

➤ Marketing materials

➤ JBGE (Just Barely Good Enough) states that you should provide only the absolute minimum
number of comments necessary to understand the code.

 Effective leadership is putting fi rst things fi rst. Effective management is
discipline, carrying it out.

 —Stephen Covey

 WHAT YOU WILL LEARN IN THIS CHAPTER:

➤ What project management is and why you should care

➤ How to use PERT charts, critical path methods, and Gantt charts to
create project schedules and estimate project duration

➤ How you can improve time estimates

➤ How risk management lets you respond quickly and effectively to
problems

 Part of the reason you implemented all the change tracking described in the preceding chapter
is so that you have historical information when you’re writing your memoirs. It’s so you know
what happened, when, and why.

 In addition to this peek into the past, you also need to keep track of what’s going on in real
time. Someone needs to track what’s happening, what should be happening, and why the two
don’t match. That’s where project management comes in.

 Many software developers view management with suspicion, if not downright fear or
loathing. They feel that managers were created to set unrealistic goals, punish employees
when those goals aren’t met, and take credit if something accidentally goes right. There are
certainly managers like that, and Scott Adams has made a career out of making fun of them
in his Dilbert comic strip, but some management is actually helpful for producing good t
software.

 3

30 ❘ CHAPTER 3 PROJECT MANAGEMENT

 Management is necessary to ensure that goals are set, tracked, and eventually met. It’s necessary to
keep team members on track and focused on the problems at hand, without becoming distracted by
inconsequential side issues such as new unrelated technology, impending layoffs, and Angry Birds
tournaments.

 On smaller projects, a single person might play multiple management roles. For example, a single
technical manager might also handle project management tasks. On a really small project, a single
person might perform every role including those of managers, developers, testers, and end users.
(Those are my favorite kinds of projects because the meetings and arguments are usually, but not
always, short.)

 No matter how big the project is, however, management tasks must be performed. The following
sections describe some of the key management responsibilities that must be handled by someone for
any successful software development project.

 EXECUTIVE SUPPORT

 Lack of executive management support is often cited as one of the top reasons why software projects
fail. This is so important, it deserves its own note.

 NOTE To be successful, a software project must have consistent executive
management support.

 The highest‐ranking executive who supports your project is often known as an executive champion
or an executive sponsor.

 Robust executive support ensures that a project can get the budget, personnel, hardware, software,
and other resources it needs to be successful. It lets the project team specify a realistic schedule even
when middle management or customers want to arbitrarily shorten the timeline. Managers with
limited software development experience often don’t understand that writing quality software takes
time. The end result isn’t physical, so they may assume that you can compress the schedule or make
do with fewer resources if you’re properly motivated by pithy motivational slogans.

 Unfortunately, that usually doesn’t work well with software development. When developers work
long hours for weeks at a time, they burn out and write sloppy code. That leads to more bugs, which
slows development, resulting in a delayed schedule, greater expense, and a low‐quality result. Not
only do you fail to achieve the desired time and cost‐savings, but also you get to take the blame for
missing the impossible deadlines.

 Executive support is also critical for allowing a project to continue when it encounters unexpected
setbacks such as missed deadlines or uncooperative software tools. In fact, unexpected setbacks
are so common that you should expect some to occur, even if you don’t know what they will be.
(Donald Rumsfeld would probably consider them “known unknowns.”)

 Overall the executive champion provides the gravitas needed for the project to survive in the rough‐
and‐tumble world of corporate politics. It’s a sad truth that different parts of a company don’t

Project Management ❘ 31

always have the same goals. (In management‐speak, you might say the oars aren’t all pulling in the
same direction.) The executive champion can head off attempts to cancel a project and transfer its
resources to some other part of the company.

 In cases like those, work can be somewhat unnerving, even if you do have strong executive support.
I once worked on a project where both our executive champion and our arch nemesis were corporate
vice presidents directing thousands of employees. At times I felt like a movie extra hoping Godzilla
and Mothra wouldn’t step on us while they slugged it out over Japan. After two years of unfl agging
support by our champion, we fi nished the project and transferred it to another part of the company
where it was quite successful for many years.

 Executive champion duties include:

➤ Providing necessary resources such as budgets, hardware, and personnel

➤ Making “go/no-go” decisions and deciding when to cancel the project

➤ Giving guidance on high‐level issues such as how the project fi ts into the company’s overall
business strategy

➤ Helping navigate any administrative hurdles required by the company

➤ Defi ning the business case

➤ Working with users and other stakeholders to get buy‐in

➤ Providing feedback to developers about implemented features

➤ Buffering the project from external distractions (such as the rest of the company)

➤ Refereeing between managers, users, developers, and others interested in the project

➤ Supporting the project team

➤ Staying out of the way

 The last point deserves a little extra attention. Most executives are too busy to micromanage each of
the projects they control, but this can sometimes be an issue, particularly if the executive champion
is near the bottom of the corporate ladder. If you are an executive champion, monitor the project to
make sure it’s headed in the right direction and that it’s meeting its deadlines and other goals, but
try not to add extra work. As Tina Fey says in her book Bossypants , “In most cases being a good
boss means hiring talented people and then getting out of their way.”

 However, studies have shown that more engaged executives result in more successful projects, so
don’t just get things started and then walk away.

 PROJECT MANAGEMENT

 A project manager is generally the highest‐ranking member of the project team. Ideally, this person
works with the team through all stages of development, starting with requirements gathering,
moving through development and testing, and continuing until application rollout (and sometimes
even beyond into future versions).

32 ❘ CHAPTER 3 PROJECT MANAGEMENT

The project manager monitors the project’s progress to ensure that work is heading in the right
direction at an acceptable pace and meets with customers and other stakeholders to verify that the
fi nished product meets their requirements. If the development model allows changes, the project
manager ensures that changes are made and tracked in an organized manner so that they don’t get
lost and don’t overwhelm the rest of the team.

A project manager doesn’t necessarily need to be an expert in the users’ fi eld or in programming.
However, both of those skills can be extremely helpful because the project manager is often the
main interface between the customers and the rest of the project team.

Project manager duties include:

➤ Helping defi ne the project requirements

➤ Tracking project tasks

➤ Responding to unexpected problems

➤ Managing risk

➤ Keeping users (and the executive champion) up‐to‐date on the project’s progress

➤ Providing an interface between customers and developers

➤ Managing resources such as time, people, budget, hardware, and software tools

➤ Managing delivery

MYRIAD MANAGERS

There are a lot of kinds of project managers in addition to software project
managers. Construction, architecture, engineering, and other fi elds have project
managers. Just about any activity that involves more than a few people needs
someone to perform project management duties, even if that person isn’t called a
project manager.

This book even has a project manager extraordinaire, Adaobi Obi Tulton; although
her title is project editor. She makes sure I’m turning chapters in on time, passes
chapters to various technical and copy editors, and generally guides the book
during its development.

In practice, some project managers are promoted from the developer ranks, so they often have
good development skills but weak project management skills. They can give useful advice to
other programmers about how a particular piece of code should be written or how one subsystem
should interact with another. They can provide technical leadership, but they’re not always good at
recognizing and handling scheduling problems when something goes wrong.

For that reason, some larger projects divide the project manager’s duties among two or more people.
One project I worked on had a person dedicated to task tracking and making sure we kept to the
schedule. She had training in project management but no programming experience. If something

Project Management ❘ 33

started to slip, she immediately jumped all over the issue, fi gured out how much delay was required,
asked about contingencies in case the task couldn’t be fi nished, determined whether the delay would
affect other tasks, and did all the nontechnical things a project manager must handle.

 That person was called the “project manager,” in contrast with the other project manager who was
called the “project manager.” It got a little confusing at times. Perhaps we should have called the
task‐tracking person the “developer babysitter” or the “border collie” because she gently guided
us toward our goals by nipping at our heels. Often people call the other manager the “technical
project manager”; although, that person may also handle nontechnical tasks such as interaction with
customers and executives.

 Meanwhile the “main” project manager was freed up to attack the problem from the development
side. He could work with the developers to fi gure out what was wrong and how to fi x it.

 When I fi rst encountered this set up, I thought it was kind of silly. Couldn’t a single project manager
handle both technical and tracking tasks? In our project, the separation actually made things easier. This
may not be the right approach for every project, particularly small ones, but it was useful in our case.

 If you are a project manager or want to become one, you should do a lot more reading about specifi c
tools and techniques that are useful for keeping a project on track.

 Before moving on to other topics, however, I want to cover a few more project management issues
in greater detail. The next three sections describe PERT charts, the critical path method (CPM), and
Gantt charts. PERT charts and CPM are generally used together but are separated here so that you
can digest them in smaller pieces. Together these three tools can help you study the project’s total
duration, look for potential bottlenecks, and schedule the project’s tasks.

 However, you can’t understand how tasks fi t into a schedule unless you know how long those tasks
will take, so the last sections about project management deal with predicting task lengths and with
risk management.

 PERT Charts
 A PERT chart (PERT stands for Program Evaluation and Review Technique) is a graph that uses t
nodes (circles or boxes) and links (arrows) to show the precedence relationships among the tasks in
a project. For example, if you’re building a bunker for use during the upcoming zombie apocalypse,
you need to build the outer defense walls before you can top them with razor wire.

 PERT charts were invented in the 1950s by the United States Navy. They come in two fl avors:
activity on arrow (AOA), where arrows represent tasks and nodes represent milestones and activity
on node (AON), where nodes represent tasks and arrows represent precedence relations. Activity on
node diagrams are usually easier to build and interpret, so that’s the kind described here.

 To build an AON PERT chart, start by listing the tasks that must be performed, the tasks they must
follow (their predecessors), and the time you expect each task to take. (You can also add best‐case
and worst‐case times to each task if you want to perform more extensive analysis of the tasks and
what happens when things go wrong.)

 Note that you don’t need to include every possible combination of predecessors. For example, suppose
task C must come after task B, which must come after task A. In that case, task C must come after

34 ❘ CHAPTER 3 PROJECT MANAGEMENT

task A, but you don’t need to include that relationship in the table if you don’t want to. The fact that
task C must come after task B is enough to represent that relationship. However, you also don’t need
to remove every unnecessary relationship. Those extra relationships won’t hurt anything.

If you like, you can add a Start task as a predecessor for any other tasks that don’t have
predecessors. Similarly, you can add a Finish task for any other tasks that don’t have successors.

To make rearranging tasks easy, make an index card or sticky note for each task. (You can draw the
chart on a piece of paper or with a drawing tool, but index cards and sticky notes make it easy to
shuffl e tasks around if necessary.) Include each task’s name, predecessors, and expected time.

Then to build the chart, follow these steps:

1. Place the Start task in a Ready pile. Place the other tasks in a Pending pile.

2. Position the tasks in the Ready pile in a column to the right of any previously positioned
tasks. (The fi rst time through, the Ready pile only contains the Start task, so position it on
the left side of your desk.)

3. Look through the tasks in the Pending pile and cross out the predecessors that you just
positioned. (Initially that means you’ll be crossing out the Start task.) If you cross out a
card’s last predecessor, move it to the Ready pile.

4. Return to step 2 and repeat until you have positioned the Finish task.

PUZZLING PREDECESSORS

If you don’t move any tasks into the Ready pile during step 3, that means the tasks
have a predecessor loop. For example, task A is task B’s predecessor and task B is
task A’s predecessor.

For example, at my college, you needed to pay registration fees before you could
get your student ID; you needed a student ID to get fi nancial aid checks; and you
needed fi nancial aid checks to pay registration fees. (At least, you probably do if
you need fi nancial aid.) You needed to fi ll out extra paperwork to break out of the
predecessor loop.

After you fi nish positioning all of the cards, draw arrows representing the predecessor relationships.
(You may want to use a dry-erase marker so that you can get the arrows off your desk later.)

At this point, you have a chart showing the possible paths of execution for the tasks in the project.

EXAMPLE Building a PERT Chart

The steps for building a PERT chart are a bit confusing, so let’s walk through an example that
creates a PERT chart for a project that builds a bunker to protect you and your video games in case
of a zombie apocalypse. (The U.S. Strategic Command actually developed a plan for fi ghting off a
zombie apocalypse as part of a training exercise. You can read it at i2.cdn.turner.com/cnn/2014/
images/05/16/dod.zombie.apocalypse.plan.pdf.)

Project Management ❘ 35

 Start by building a table that lists the tasks, their predecessors, and the times you expect them to take.
Table 3-1 shows some of the tasks you would need to perform to build the bunker. To keep things
simple, I’ve omitted a lot of details such as installing sewer lines, building forms for pouring concrete,
and obtaining permits (assuming the planning offi cials haven’t been eaten yet).

 TABLE 3-1: Tasks for a Zombie Apocalypse Bunker

TASK TIME (DAYS) PREDECESSORS

A. Grade and pour foundation. 5 —

B. Build bunker exterior. 5 A

C. Finish interior. 3 B

D. Stock with supplies. 2 C

E. Install home theater system. 1 C

F. Build outer defense walls. 4 —

G. Install razor wire on roof and walls. 2 B, I

H. Install landmines (optional). 3 —

I. Install surveillance cameras. 2 B, F

 After you’ve built the task table, create index cards for the tasks
(or be prepared to draw them with a drawing tool). Figure 3-1
shows what the card for task I might look like.

 Next, start working through the four steps described earlier to
arrange the cards. This is a lot easier to understand if you go
to the trouble of creating index cards or sticky notes instead of
trying to imagine what they would look like. Trust me. If you
found the steps confusing, make the cards.

1. Place the Start task in a Ready pile. Place the other tasks in
a Pending pile.

 Figure 3-2 shows the initial positions of the cards. (I’ve
omitted the task names and abbreviated a bit to save space.)

2. Position the tasks in the Ready pile in a column to the right of any previously positioned tasks.
(The fi rst time through, the Ready pile contains only the Start task. Just position it on the left side
of your desk.)

3. Look through the tasks in the Pending pile and cross out the predecessors that you just positioned.
(Initially, that means you’ll be crossing out the Start task.) If you cross out a card’s last
predecessor, move it to the Ready pile.

 Referring to Figure 3-2 , you see that tasks A, F, and H have the Start task as predecessors. In fact,
the Start task is the only predecessor for those tasks, so when you cross out the Start task, you
move tasks A, F, and H into the Ready pile. Figure 3-3 shows the new arrangement.

I. Install surveillance cameras

Predecessors: B, F

Expected Time: 2 days

 FIGURE 3-1: Each task’s card
should hold its name, duration, and
predecessors. You’ll fi ll in the total
time later.

36 ❘ CHAPTER 3 PROJECT MANAGEMENT

4. Return to step 2 and repeat until you have positioned the Finish task.

 To do that, position tasks A, F, and H because they’re in the Ready pile. Then cross them out for
any tasks that are still in the Pending pile. When you cross out those tasks, task B loses its last
predecessor so move it into the Ready pile. Figure 3-4 shows the new arrangement.

5. Return to step 2 and repeat until you have positioned the Finish task.

 This time position task B and remove it from the remaining tasks’ predecessor lists. After you
cross task B off, tasks C and I have no more predecessors so move them to the Ready pile.
Figure 3-5 shows the new arrangement.

 By now you probably have the hang of it. Position tasks C and I, and remove them from the
Pending tasks’ predecessor lists. That removes the last predecessors from tasks D, E, and G, so
move them to the ready pile, as shown in Figure 3-6 .

 In the next round, position tasks D, E, and G, and move the Finish task to the Ready pile. Then one
fi nal round positions the Finish task.

Start

Positioned Ready Pending

Preds: —
Time: 0

A
Preds: Start
Time: 5

B
Preds: A
Time: 5

C
Preds: B
Time: 3

D
Preds: C
Time: 2

E
Preds: C
Time: 1

F
Preds: Start
Time: 4

G
Preds: B, I
Time: 2

H
Preds: Start
Time: 3

I
Preds: B, F
Time: 2

Finish
Preds: D, E, G, H
Time: 0

 Initially only the Start task is in the Ready pile.

Start

Positioned Ready Pending

Preds: —
Time: 0

A
Preds: Start
Time: 5

B
Preds: A
Time: 5

C
Preds: B
Time: 3

D
Preds: C
Time: 2

E
Preds: C
Time: 1

F
Preds: Start
Time: 4

G
Preds: B, I
Time: 2

H
Preds: Start
Time: 3

I
Preds: B, F
Time: 2

Finish
Preds: D, E, G, H
Time: 0

 FIGURE 3-3: After one round, the Start task is positioned and tasks A, F, and H are in the Ready pile.

Project Management ❘ 37

Start

Positioned Ready Pending

Preds: —
Time: 0

A
Preds: Start
Time: 5

F
Preds: Start
Time: 4

H
Preds: Start
Time: 3

B
Preds: A
Time: 5

C
Preds: B
Time: 3

D
Preds: C
Time: 2

E
Preds: C
Time: 1

G
Preds: B, I
Time: 2

I
Preds: B, F

Time: 2

Finish
Preds: D, E, G, H
Time: 0

 FIGURE 3-4: After two rounds, the Start task and tasks A, F, and H are positioned. Task B is in the Ready pile.

Start

Positioned Ready Pending

Preds: —
Time: 0

A
Preds: Start
Time: 5

F
Preds: Start
Time: 4

H
Preds: Start
Time: 3

B
Preds: A
Time: 5

C
Preds: B
Time: 3

D
Preds: C
Time: 2

E
Preds: C
Time: 1

G
Preds: B, I
Time: 2

I
Preds: B, F
Time: 2

Finish
Preds: D, E, G, H
Time: 0

 FIGURE 3-5: After three rounds, the Start task and tasks A, F, H, and B are positioned. Tasks C and I are in the
Ready pile.

Start

Positioned Ready Pending

Preds: —
Time: 0

A
Preds: Start
Time: 5

F
Preds: Start
Time: 4

H
Preds: Start
Time: 3

B
Preds: A
Time: 5

C
Preds: B
Time: 3

D
Preds: C
Time: 2

E
Preds: C
Time: 1

G
Preds: B, I
Time: 2

I
Preds: B, F
Time: 2

Finish
Preds: D, E, G, H
Time: 0

 FIGURE 3-6: After four rounds, only the Finish task is still in the Pending pile.

38 ❘ CHAPTER 3 PROJECT MANAGEMENT

 Now draw arrows showing the predecessor relationships between the tasks. You may need to adjust the
spacing and vertical alignment of the tasks to make the arrows look nice. Figure 3-7 shows the fi nal result.

 To check your work, you can verify that each task has one arrow entering it for each of its predecessors.
For example, task G has two predecessors, so it should have two arrows entering it.

 Critical Path Methods
 PERT charts are often used with the critical path method, which was also invented in the 1950s.
That method lets you fi nd critical paths through the network formed by a PERT chart.

 A critical path is a longest possible path through the network. (I say “a longest” instead of “the
longest” because there may be more than one path with the same longest length.)

 For example, refer to the PERT network shown in Figure 3-7 . The path Start➢H➢Finish has a total
time of 3 days. (No charge for the Start and Finish, plus 3 days for task H.)

 Similarly, the path Start➢F➢I➢G➢Finish has a total time of 0 + 4 + 2 + 2 + 0 = 8 days.

 With a little study of Figure 3-7 and some trial and error, you can determine that this network has
a single longest path: Start➢A➢B➢C➢D➢ Finish with a total length of 0 + 5 + 5 + 3 + 2 + 0 = 15
days. Because that’s the longest path, it is also the critical path.

 If any task along the critical path is delayed, the project’s fi nal completion is also delayed. For
example, if task C “Finish the interior” takes 5 days instead of 3 (perhaps you decided to add a nice
bar with beer taps), then the whole project will take 17 days instead of 15.

 For a simple project like this one, it’s fairly easy to fi nd the critical path. For projects containing
hundreds or even thousands of tasks, this could be a lot harder. Fortunately, there’s a relatively easy
way to fi nd critical paths.

 Start at the left with the Start task. It takes no time to start, so label that task with the total time 0.

 Now move to the right, one column at a time. For each task in the current column, set its total time
equal to that task’s time plus the largest total time for its predecessor tasks.

Start
Preds: —
Time: 0

A
Preds: Start
Time: 5

F
Preds: Start
Time: 4

H
Preds: Start
Time: 3

B
Preds: A
Time: 5

C
Preds: B
Time: 3

D
Preds: C
Time: 2

E
Preds: C
Time: 1

G
Preds: B, I
Time: 2

I
Preds: B, F
Time: 2 Finish

Preds: D, E, G, H
Time: 0

 FIGURE 3-7: This PERT chart shows the paths of execution of the project’s tasks.

Project Management ❘ 39

 While you’re at it, highlight the link that came from the predecessor with the greatest total cost. If
more than one predecessor is tied for the largest total time, highlight them both.

 When you’re done, the Finish task will be labeled with the total time to complete the project
(assuming nothing goes wrong, of course). You can follow the highlighted links back through the
network to fi nd the critical paths.

EXAMPLE Critical Paths

 In this example, let’s walk through the steps for adding total time and critical path information to the
zombie apocalypse bunker project PERT chart shown in Figure 3‐7.

 Start by setting the total time for the Start task to 0.

 Referring to Figure 3-7 , you can see that the next column of tasks holds tasks A, F, and H, which have
expected times 5, 4, and 3, respectively. Each has only Start as a predecessor, and that task has a total
time 0 (we just labeled it), so each of these tasks’ total time is the same as its own expected time. (So
far, not too interesting.)

 The next column holds only task B. It has an expected time of 5 and a single predecessor with time 5,
so its total time is 5 + 5 = 10. Figure 3-8 shows the network at this point. The new total times and the
selected links are highlighted in bold.

Start
Preds: —
Time: 0

A
Preds: Start
Time: 5

F
Preds: Start
Time: 4

H
Preds: Start
Time: 3
Total: 3

Total: 4Total: 0

Total: 5 Total: 10

B
Preds: A
Time: 5

C
Preds: B
Time: 3

D
Preds: C
Time: 2

E
Preds: C
Time: 1

G
Preds: B, I
Time: 2

I
Preds: B, F
Time: 2 Finish

Preds: D, E, G, H
Time: 0

 FIGURE 3-8: The total time for each task is its expected time plus the largest of its predecessors’ total times.

 Now things get a bit more interesting. The next column holds tasks C and I. Task C has an expected
time of 3 and a single predecessor with a total time of 10, so its total time is 3 + 10 = 13.

 Task I has an expected time of 2. It has two predecessors with total times of 10 and 4, so its total time
is 2 plus the larger of 10 and 4 or 2 + 10 = 12. Figure 3-9 shows the updated network.

 The next column holds tasks D, E, and G.

 Task D has an expected time of 2. Its single predecessor, C, has a total time of 13, so task D’s total time
is 2 + 13 = 15.

40 ❘ CHAPTER 3 PROJECT MANAGEMENT

 Task E has an expected time of 1. It also has the predecessor C with the total time 13, so task E’s total
time is 1 + 13 = 14.

 Task G has an expected time of 2. It has two predecessors: B with a total time of 10 and I with a total
time of 12. That means task G’s total time is 2 + 12 = 14.

 The fi nal column holds the Finish task. It has an expected time of 0, so its total time is the same as its
predecessor with the largest total time. That’s task D with a total time of 15. Figure 3-10 shows the
fi nal network.

Start
Preds: —
Time: 0

A
Preds: Start
Time: 5

F
Preds: Start
Time: 4

H
Preds: Start
Time: 3
Total: 3

Total: 4Total: 0

Total: 5 Total: 10 Total: 13

Total: 12

B
Preds: A
Time: 5

C
Preds: B
Time: 3

I
Preds: B, F
Time: 2

D
Preds: C
Time: 2

E
Preds: C
Time: 1

G
Preds: B, I
Time: 2 Finish

Preds: D, E, G, H
Time: 0

 FIGURE 3-9: Task I’s largest time predecessor is task B, so task I has a total time of 2 + 10 = 12.

Start
Preds: —
Time: 0
Total: 0

A
Preds: Start
Time: 5

F
Preds: Start
Time: 4

H
Preds: Start
Time: 3
Total: 3

Total: 4

Total: 5 Total: 10 Total: 13

Total: 15

Total: 14

Total: 14

Total: 15

B
Preds: A
Time: 5

C
Preds: B
Time: 3

Total: 12

I
Preds: B, F
Time: 2

D
Preds: C
Time: 2

E
Preds: C
Time: 1

G
Preds: B, I
Time: 2 Finish

Preds: D, E, G, H
Time: 0

 FIGURE 3-10: The complete zombie apocalypse bunker project has a total time of 15 days.

 You can trace the bold arrows backward from the Finish to the Start in Figure 3-10 to fi nd the critical
path. Those tasks are (in their forward order) Start➢A➢B ➢C➢D➢Finish (as we found earlier).

Project Management ❘ 41

 In addition to showing you the critical path, the PERT network with total times can help you study
the project for other possible problems. For example, Figure 3-10 holds two “almost critical paths.”
The paths through tasks E and G to the Finish task have total times of 14 days, which is only 1 day
less than the true critical path. That means if any tasks along those paths are delayed by more than
1 day, the project’s completion will be delayed.

 The fi nished network also shows that Tasks F and H don’t play a major role in the project’s fi nal
completion time. Task F could stretch out for up to 10 days without changing the critical path. Task
H could run even longer, lasting up to 15 days without impacting the fi nish date.

 To look at this another way, that means you have some fl exibility with tasks F and H. You can delay
their start a bit if you want without changing the critical path. Sometimes, delaying a task can be
useful to balance staffi ng levels. (After they fi nish building the bunker in task B, you may want to
use the same masons to build the outer defense walls in task F.)

 There may also be some reason to rearrange tasks slightly. For example, task H is a landmine
installation. The whole project will probably be a lot safer if you delay that as long as
possible so that people working on the project don’t need to worry about stepping in the
wrong places.

 Gantt Charts
 A Gantt chart is a kind of bar chart invented by Henry Gantt in the 1910s to show a schedule for a t
collection of related tasks. The fact that we’re still using them more than 100 years later shows how
useful they are for project scheduling.

 A Gantt chart uses horizontal bars to represent task activities. The bars’ lengths indicate the tasks’
durations. The bars are placed horizontally on a calendar to show their start and stop times.
Arrows show the relationships between tasks and their predecessors much as they do in a PERT
chart.

 Figure 3-11 shows a Gantt chart for the zombie apocalypse bunker project that I drew in Microsoft
Excel. I’ve followed a common practice and repeated the task names on the right to make it easier
to see which tasks start the arrows. Arrows lead from the end of each task to the beginning of
successor tasks.

 FIGURE 3-11: A Gantt chart shows task durations, start times, end times, and dependencies.

42 ❘ CHAPTER 3 PROJECT MANAGEMENT

Notice that some of the tasks have been extended to cover the gaps created by weekends. (Figure 3-11
ignores holidays such as New Year’s Day for simplicity, but in a real project you would need to
account for them.) Also notice that the weekends have extended the project’s total duration from
15 working days to 19 calendar days. (In case of a real zombie emergency, you might want to work
through the weekends and holidays. I’m sure the zombies will!)

To build a Gantt chart, list the tasks, their durations, and their predecessors on the left, as shown in
Figure 3-11 .

Next, cut out a thin rectangle for each task. Give each rectangle a width that represents its duration. (For
example, you could make each rectangle 1‐inch wide per day.) Write the tasks’ names on their rectangles.

Next, move from left to right through the columns in the PERT chart, placing each rectangle so
that its left edge lines up with the right edge of its rightmost predecessor rectangle. For example, in
Figure 3-11 the left edge of task G lines up with the right edge of task I.

If a rectangle includes a weekend, lengthen it so that it gets its required number of working days.

Finally, after you’ve positioned all the rectangles, add arrows to show the predecessor relationships.

Scheduling Software
The preceding sections explained how you can build PERT charts, fi nd critical paths, and draw
Gantt charts by hand. The process isn’t too diffi cult, but the result isn’t fl exible. For example,
suppose you decide to add a gas‐powered generator and you want to run underground cables
between it and the bunker before you pour the foundation.

Or suppose you start work and building the bunker takes longer than expected. In both of those
cases, you need to shift some of the tasks farther to the right. Because I drew the schedule by hand,
rearranging those tasks can be a hassle. The problem would be much worse for larger projects.

Fortunately, there are lots of project scheduling tools available for your computer. They make
building schedules relatively easy and provide lots of extra features. For example, some enable you
to click and drag to connect two tasks or to change a task’s duration.

Some of those tools also enable you to defi ne other kinds of relationships between tasks. For
example, you might indicate that two tasks should start at the same time or that one task should
start fi ve days after another task starts.

If you need to manage a lot of project schedules or schedules with many tasks, you should try some
of these tools to fi nd one you like.

Predicting Times
PERT charts, critical path methods, and Gantt charts are great tools for fi guring out how long a
project will take, but they depend on your time estimates being accurate. If the times you assign
for the tasks aren’t reasonable, then those carefully built charts are nothing more than elaborate
examples of GIGO (garbage in, garbage out).

One of the hardest parts of software engineering is predicting how long each task will take. One
reason for this diffi culty is that you rarely need to do exactly the same thing on multiple projects.

Project Management ❘ 43

You may need to do something similar to something you did earlier, but the details are different
enough to add some uncertainty. If a project includes a task that is exactly the same as one you’ve
performed before, you can just copy the code you used before and you’re done.

 For example, suppose you’re building an inventory application for a unicycle store, and you want
to include screens that let the employees record daily timesheets. If you’ve build timesheet forms
in a previous application, you can probably copy most or all the forms and code you wrote for the
previous application and save a huge amount of time on that task.

 Even if you need to make some fairly major changes, you can probably still skip a lot of the database
design, form layout, and other pieces of this task that took up a lot of time when you built your fi rst
timesheet system.

 Sometimes, you can take this idea even further and avoid building an entire project, either by
reusing a previous project or by purchasing a commercial off‐the‐shelf (COTS) application.

 COTS

 CUSTOMER: I need to perform a lot of calculations, but they may change over
time. Can you build something where I can enter values and equations in some sort
of grid and make the program perform the calculations for me?

 CONSULTANT: I could, but it would probably take a month or so and cost
$20,000. What you should probably do is buy a COTS spreadsheet. It’ll save you
time and money and will probably be better in the long run.

 CUSTOMER: Hmm. Okay. How about a program that helps me track task
assignments for a long project? You know, to keep track of who’s falling behind
and how that will impact the fi nal schedule?

 CONSULTANT: Well, a basic program wouldn’t be too hard. Maybe three weeks and
$10,000 or $15,000. But you could just download some project management software.
There are even free versions available if you don’t need all the bells and whistles.

 CUSTOMER: I see. Is there anything you can do for me?

 CONSULTANT: I just saved you $30,000, didn’t I? Ha ha.

 CUSTOMER: Yes you did! Ha ha. You’re fi red.

 The fact that you can reuse code (to some extent anyway) if you’ve performed the same task before
means many software engineering tasks either have fairly short well‐defi ned times, or you have little
notion about how long they will take. In contrast, jobs that don’t live inside cyberspace often include
tasks that have well‐defi ned durations even if they take a long time.

 For example, suppose your company builds bee fences to keep elephants away from villages. You
know from years of experience that it takes one person 1 day to build 50 feet of fence. If you have
four employees and a customer wants a 400‐foot fence, you can do some simple math to fi gure out
how long it will take: 400 ÷ 50 ÷ 4 = 2 days.

44 ❘ CHAPTER 3 PROJECT MANAGEMENT

 If a new customer wants another 400‐foot fence, you still know with reasonable certainty that it
will take 2 days.

 In contrast, suppose you want to build a bee fence design program. It will enable the user to enter
some specifi cations and draw the fence on a map. The program will create a bill of materials, create
purchase orders for the materials and either print them or transmit them to suppliers electronically,
create a work schedule based on expected delivery dates, print (or transmit) an invoice for upfront
costs, and generate a fi nal invoice.

 If you’ve never built this kind of application before, you probably don’t know how long it will take
to build. After you’ve built it, however, you won’t need to build it again.

 So if you assume a task’s time estimate is either (1) short and well known or (2) long and highly
uncertain, how can you create usable time estimates? Or are you doomed to rely on uninformed
guesses? Fortunately, there are a few things you can do to minimize your risk even when you step
into the great unknown.

Get Experience
 One way to improve time estimates is to make the unknown known. If you can fi nd someone who has
done something similar to what you need to do, get that person to help. In smaller projects, you may be
unable to pull people from other parts of your company to bring much needed experience to your team,
but sometimes you can get them to help part time. They may give you time estimates that are better
than random guesses, and they may give your team members some guidance about how to do the work.

 Experience is even more important for long and diffi cult tasks. In a large project, it may be worthwhile
to hire new experienced team members to tackle tricky tasks. I worked on one algorithmic project where
we hired an algorithms specialist to help with maintenance. It was a good thing we did because he was
the only one on the maintenance team who could understand how that part of the program worked.

 Having people with previous experience can make or break a project. In fact, it’s a software
engineering best practice.

 TIP Create a team that includes people who have done something similar
before. This is particularly important for the project lead, who will give guidance
to the other team members.

 Using experienced team members is the single best way to make time estimates reasonable.

Break Unknown Tasks into Simpler Pieces
 Sometimes, you can break a complicated task into simple pieces that are easier to understand. In
fact, that’s basically what high‐level and low‐level designs are all about—breaking complicated tasks
into simpler pieces.

 For example, suppose the bee fence application needs an inventory component to track the materials
your company has on hand and to order more material as needed. You may not know exactly how
hard this is because you haven’t done it before, but with some work (and possibly some advice from

Project Management ❘ 45

someone who has done this sort of thing before), you can break the tasks into smaller pieces. Some
of the things you’ll need to do to build the inventory system include:

➤ Design an Inventory database table to store information about inventory items.

➤ Build a screen to let the user add and remove items from the Inventory table.

➤ Build an interface to let the program add and remove items from inventory as they are
ordered and used in projects.

➤ Create an alert system to let someone know when inventory levels fall below a certain amount.

 You may not know exactly how much time you’ll need for each of these subtasks, but you can
probably make better guesses than you could for the inventory subsystem as a whole.

 TIP If you have access to people experienced with the task, have them review
your breakdown before you fi nalize your time estimates. They may know from
experience that you’ll need to add a LeadTime fi eld to the Inventory table or that
creating an alert system takes a lot longer than you might expect. You’d probably
discover those things as the project continued anyway, but learning this at the
start will make your time estimates more accurate and may save you a lot of time
and frustration trying to overcome problems that have been solved before.

 Breaking a complex task lets you convert a large unknown into several smaller pieces, which may
individually be a bit less unpredictable.

 Look for Similarities
 Sometimes, tasks that you don’t understand are at least somewhat similar to tasks that you have
performed before. You may not have ordered live bees before, but you have ordered wire and fence
posts, so you know at least a little about how to order supplies from distributors.

 Obviously, there are some differences between bees and spools of wire, so you should expect to do
some extra research before making your time estimates: Should you buy packaged bees, nucs, or
established colonies? How early should you order the bees? They probably won’t last as long in the
warehouse as a pile of fence posts will.

 As is the case in which you break large tasks into smaller ones, you should run your ideas past
someone with experience if you can. They can tell you the things you missed and tell you where you
may fi nd unexpected problems.

 Expect the Unexpected
 Obviously, you can’t predict every problem that comes along, but there are some delays that are
reasonably predictable. For example, in any large project, some team members will become ill and
miss some work time. They’ll go on vacation and need time off for personal emergencies.

 One way to handle this sort of “lost” time is to expand each task’s time estimate by some amount. For
example, adding 5 percent to each task’s time allows for 2.6 weeks per year for vacation and sick leave.

46 ❘ CHAPTER 3 PROJECT MANAGEMENT

One drawback to this approach is that people tend to use up any extra time scheduled for a task.
For example, suppose a task should take 20 working days and you add an extra day to allow for
lost time. If there are no problems with the task, you should fi nish it in 20 days and save the extra
day for later in the project when you catch the plague and need to use it as sick leave. Unfortunately,
most people will use up all 21 days and save nothing for later. Instead of allowing a 5-percent
margin, you’ve basically just extended the project timeline by 5 percent.

Another approach is to add specifi c tasks to the project to represent lost time. If team members
schedule their vacations in advance, you can include those explicitly. (Be sure not to let one team
member volunteer for every “vacation time” task.)

You can also add tasks to represent sick time. Of course, you can’t predict when people will get
sick (with a few exceptions such as the days before and after long weekends), but you can add “sick
time” tasks to the end of the schedule. Then when someone contracts a bad case of “Sunny Friday‐
itis,” you can move the time from the “sick time” tasks to the tasks that are delayed.

Another kind of “lost time” problem occurs when your team is all geared up and raring to go but
can’t get anything done because of some other scheduling problem. The classic example is trying to get
management approval during the holiday season. You have your project schedule worked out to
the millisecond, but progress grinds to a halt because you need approval from the VP of Finance to
order more highlighters and he’s in Jamaica for two weeks. And don’t expect your developers to be
productive on August 20 if you order their computers on August 19. It’s going to take some time to
receive the computers, get the network running, test the e‐mail system, and install Call of Duty. y

You can avoid these kinds of problems by carefully planning for approvals, order lead times, and
setup. In fact, while you’re at it, you may as well make them tasks and put them in the schedule.

Track Progress
Even if you have previous experience with a type of task, break the task into smaller pieces, plan for
“lost time,” and allow a buffer for unexpected problems, sometimes things just take longer than you
expect. It’s extremely important to keep track of tasks as they progress and take action if one is not
going according to plan.

For example, suppose a task was scheduled to take 20 days. After fi ve days, you ask the developer
assigned to that task how much is done and he says he’s 25-percent complete and has 15 days of
work remaining. In another week, the developer says he’s 50-percent done and has 10 days of work
remaining. So far so good, but after another week, the developer says he’s 60-percent done (when he
should be 75-percent fi nished).

Initially, it seemed like he was making good progress but as the task’s completion date draws near,
the developer realizes how much work is left to do. This is normal and not necessarily a cause for
panic, but it does require attention. You need to dig deeper and fi nd out if the developer can actually
fi nish the task on time or if you need to adjust the schedule.

In reality the developer is just making the best guesses he can. If he hasn’t performed a task like this one
before, those guesses may not be perfect. In this example, the developer’s fi rst two estimates were probably
off, so he had actually completed only 20 percent of the task after one week and 40 percent after two
weeks. If that’s the case, he probably needs another two weeks to fi nish the task instead of the one week
that’s scheduled. (Of course, that assumes the third estimate of 60 percent is correct, and it may not be.)

Project Management ❘ 47

 Many developers are naturally optimistic and assume they can make up lost time, but they’re often
wrong. Or they can make up the time but only by working ridiculously long hours. Working extra
hours once in a while is okay, but developers who work extra hours too often eventually burn
out. (Keeping a sustainable pace is one of the core principles behind agile development, which is
discussed in Chapter 14 , “RAD.”)

 At this point, you may want to add the extra week to the task and see what happens to the rest of
the project’s schedule.

 80-PERCENT RIGHT, 50 PERCENT OF THE TIME

 The whole schedule depends on time estimates that are uncertain at best. You make
estimates for each task and, during development, the developers make estimates
about how much work they have fi nished and how much work they have left to do.

 It’s hard to make estimates more accurate (that requires experience), but it’s easy to
make estimates worse. All you need to do is to yell at the developers, draw lines in
the sand, talk about red lines and points of no return, brag about how you don’t misst
deadlines, and generally throw management‐speak at the developers. If you make it
clear that developers have to stay on track at all costs , their estimates will show that
they are on track… right up to the point at which they miss their deadlines.

 A much better approach is to encourage developers to give you estimates that are as
truthful and accurate as possible. Over time you’ll fi gure out who can make good
estimates and who’s always off by 15 percent. That improves your ability to plan
and that greatly increases your chances of success.

 If the developer can get the task back on schedule, that’s great, but you should pay extra attention to
that task to see if the latest 60 percent estimate is correct or if the task is really in more trouble than
the developer thinks. The biggest mistake you can make is to ignore the problem and hope you can
make up the time later. Unless you have a reason to believe you can catch up, you need to assume
you’ll fall farther behind. Working on a task that continues to slip week after week feels like you’re
trying to bail out a sinking lifeboat with a colander.

 Possibly the second biggest mistake you can make is to pile extra developers on the task and assume
they can reduce the time needed to fi nish it. As Fred Brooks said in his famous book The Mythical
Man‐Month , “adding manpower to a late software project makes it later.” Adding someone with
appropriate expertise to a task can sometimes help, but it takes time for new people to get up to
speed on any task, so you shouldn’t just throw more bodies at a task and hope that’ll help. This feels
like someone’s thrown more people into your sinking lifeboat. You may like the company, but unless
they have a working pump, their weight will just make you sink faster.

 Risk Management
 The preceding section talks about task‐tracking and how you can react if a task starts to slip. Often
you need to add extra time to the schedule and keep a close watch on that task. Sometimes, you can

48 ❘ CHAPTER 3 PROJECT MANAGEMENT

add extra people to the task; although, bringing them up to speed may actually slow the task down
if they don’t bring particularly useful expertise to the job.

 Risk management is more proactive. Instead of responding to problems after they occur, risk
management identifi es possible risks, determines their potential impacts, and studies possible
work-arounds ahead of time.

 For each task, you should determine:

➤ Likelihood —Do you know more or less how to perform this task? Or is this something
you’ve never done before so it might hold unknown problems?

➤ Severity —Can the users live without this feature if the task proves diffi cult? Can you cancel
this feature or push it into a future release?

➤ Consequences —Will problems with this task affect other tasks? If this task fails, will that
cause other tasks to fail or make other tasks unnecessary?

➤ Work-arounds —Are there work-arounds? What other approaches could you take to solve
this problem? For each work-around consider:

➤ Diffi culty —How hard will it be to implement this work-around? How long will it
take? What are the chances that this work-around will work?

➤ Impact —What affects do the work-arounds have on the project’s usability? Is this
going to make a lot of extra work for the users?

➤ Pros —What are the work-arounds’ advantages?

➤ Cons —What are the work-arounds’ disadvantages?

 You can use your analysis to study how different kinds of problems will affect the schedule.
For example, suppose a task is harder than you originally planned. You’ve used 5 of the 10
days allocated to the task but you haven’t really made any progress. If that task’s risk analysis
includes a sure‐fire work-around that provides an acceptable alternative and you’re quite
sure would take eight days to implement, you might want to switch to the work-around and
take the 3‐day schedule slip rather than following the original approach with its unknown
duration.

EXAMPLE Example Risky Reorders

 In this example, let’s perform risk analysis on a reordering feature for the bee fence design application.

 Suppose you want the bee fence application to automatically place orders for staples, envelopes, fence
posts, and other supplies whenever inventory runs low. Unfortunately, you’ve never written code to do
that before. This is a possible point of risk because you don’t know how to do it, and it may be much
harder to do than you think it is.

 In this case, you might use the following notes to describe this task’s risk:

➤ Task —Reorder inventory. (Reorder when inventory is low.)

➤ Likelihood —Medium. (We don’t really know whether this will be a problem, but the likelihood is
defi nitely not low.)

Summary ❘ 49

➤ Severity —High. (We need some way to reorder supplies or we’ll be out of business!)

➤ Consequences —None. (Except, obviously, for the company going bankrupt and all the employees
ending up on the street begging for spare change. By “None” I mean there are no other tasks that
depend on this one working as originally planned.)

➤ Work-around 1 —Send an e‐mail to an administrator who then places the order manually.

➤ Diffi culty —Easy. I’ve done this before and it’s not too hard. Estimated time: 3 days.

➤ Impact —This change would make about 1 hour more of work for the administrator per
month.

➤ Pros —Simple. Keeps a person in the loop. (A programming bug can’t make the
administrator accidentally order 1 million fence posts or 12,000 miles of wire.)

➤ Cons —Not automatic. The administrator needs to follow through. Will need some sort of
backup when the administrator is out of the offi ce.

➤ Work-around 2 —Send a text message to an administrator who then places the order manually.

➤ Diffi culty —Easy. (Similar to Work-around 1).

➤ Impact —Similar to Work-around 1.

➤ Pros —Similar to Work-around 1. The administrator receives notifi cation even if not at
work. Could be added in addition to Work-around 1 for little extra work.

➤ Cons —The administrator might forget to place the order, particularly if he receives the
message while away from work.

 After you’ve performed the risk analysis on the reorder inventory task, you can use it in your project
planning. For example, you could allow 5 days to do this task. If you haven’t made good progress in
the fi rst 2 days, you can drop back to Work-around 1 and push automatic reordering to the second
release.

 SUMMARY

 As much as some programmers might like to deny it, management is an important part of software
engineering. Executive management is essential for the project to succeed. Project management is
critical for scheduling and tracking tasks to make sure the project moves toward completion instead
of into a morass of side issues and never‐ending tasks.

 PERT charts, critical path methods, and Gantt charts can help a project manager keep things on
track, but they won’t do any good unless you have reasonable time estimates. Techniques such
as using experienced team members, breaking large tasks into smaller pieces, and allowing for
unexpected lost time can make time estimates more accurate.

 Even if you use every conceivable time estimation trick, unexpected surprises can throw a monkey
wrench into the works. Risk management lets you handle those sorts of unpredictable disasters

50 ❘ CHAPTER 3 PROJECT MANAGEMENT

quickly and effi ciently. If a task looks like it will be impossible or greatly delayed, you can switch to
a work-around to stay on track and still produce something usable.

 This chapter and the two previous ones provide background that you need before you move on to
actually starting a new software project. The next chapter describes the fi rst step in building a new
application: requirements gathering.

EXERCISES

 Okay, I admit the zombie apocalypse bunker project isn’t software‐related… unless you decide to write
a 3‐D computer game based on that concept! Sort of World of Warcraft meets t World War Z . You could
call it World of Z‐Craft. t

 Table 3-2 summarizes some of the classes and modules you might need (and their unreasonably
optimistic expected times) to develop players and zombies for the game. (The program would also need
lots of other pieces not listed here to handle other parts of the game.)

 TABLE 3-2: Classes and Modules for World of Z‐Craft

TASK TIME (DAYS) PREDECESSORS

A. Robotic control module 5 —

B. Texture library 5 C

C. Texture editor 4 —

D. Character editor 6 A, G, I

E. Character animator 7 D

F. Artifi cial intelligence (for zombies) 7 —

G. Rendering engine 6 —

H. Humanoid base classes 3 —

I. Character classes 3 H

J. Zombie classes 3 H

K. Test environment 5 L

L. Test environment editor 6 C, G

M. Character library 9 B, E, I

N. Zombie library 15 B, J, O

O. Zombie editor 5 A, G, J

P. Zombie animator 6 O

Q. Character testing 4 K, M

R. Zombie testing 4 K, N

Summary ❘ 51

1. Draw a PERT chart for these tasks. Include the tasks’ letters, predecessors, and expected times.

2. Use critical path methods to fi nd the total expected time from the project’s start for each
task’s completion. Find the critical path. What are the tasks on the critical path? What is the
total expected duration of the project in working days?

3. How long is the second‐shortest path in the PERT network you built for Exercise 2? What tasks
lie along a second‐longest path? By how much could the tasks on the path slip before impact-
ing the project’s total time?

4. Build a Gantt chart for the network you drew in Exercise 3. Start on Wednesday, January 1,
2020, and don’t work on weekends or the following holidays:

 HOLIDAY DATE

 New Year’s Day January 1

 Martin Luther King Day January 20

 President’s Day February 17

 (These are U.S. holidays. If you live somewhere else, feel free to use your own holidays.)

 On what date do you expect the project to be fi nished?

5. Download a trial version of the project management tool of your choice and use it to enter
the zombie apocalypse tasks. Does it agree with the end date you found in Exercise 4? (The
Internet is crawling with useful project management tools, so you have lots of choices. The
solution shown in Appendix A, “Solutions to Exercises,” uses OpenProj. It’s simple and you
can download it for free at OpenProj.org .) What are the advantages and disadvantages of
using the tool you selected over building a Gantt chart manually?

6. In addition to losing time from vacation and sick leave, projects can suffer from problems
that just strike out of nowhere. Sort of a bad version of deus ex machina . For example, senior
management could decide to switch your target platform from Windows desktop PCs to the
latest smartwatch technology. Or a strike in the Far East could delay the shipment of your new
servers. Or one of your developers might move to Iceland. How can you handle these sorts of
completely unpredictable problems?

7. What techniques can you use to make accurate time estimates?

8. What are the two biggest mistakes you can make while tracking tasks?

52 ❘ CHAPTER 3 PROJECT MANAGEMENT

▸ WHAT YOU LEARNED IN THIS CHAPTER
➤ Executive support is critical for project success.

➤ A project manager schedules and tracks tasks, and keeps developers moving forward.

➤ PERT charts show precedence relationships among tasks.

➤ While building a PERT chart, if you can’t fi nd a task with no unsatisfi ed predecessors, the
tasks contain a precedence loop and no schedule is possible.

➤ Critical path methods show the longest paths through a PERT network. If a task on one of
those paths is delayed, the project’s fi nal completion is delayed.

➤ Gantt charts show task durations, start time, and end times.

➤ You can improve time estimates by using experience, breaking complex tasks into smaller
tasks, and looking for similarities to previous tasks.

➤ You should plan for delays such as illness, vacation, and unexpected problems.

➤ Risk management lets you plan for problems so that you can react quickly when they occur.

 If you don’t know where you are going, you’ll end up someplace else.

 —Yogi Berra

 WHAT YOU WILL LEARN IN THIS CHAPTER:

➤ Why requirements are important

➤ The characteristics of good requirements

➤ The MOSCOW method for prioritizing requirements

➤ Audience‐oriented, FURPS, and FURPS+ methods for categorizing
requirements

➤ Methods for gathering customer goals and turning them into
requirements

➤ Brainstorming techniques

➤ Methods for recording requirements such as formal specifi cations,
user stories, and prototypes

 It’s tempting to say that requirement gathering is the most important part of a software
project. After all, if you get the requirements wrong, the resulting application won’t solve the
users’ problems. You’ll be like a tourist in Boston with a broken GPS. You may get somewhere
interesting, but you probably won’t get where you want to go.

 Even though requirements are important for setting a project’s direction, a project can fail at
any other stage, too. If you build a fl awed design, write bad code, fail to test properly, or even
provide incorrect training materials, the project can still fail. If any one of the links in the
development chain fails, the project will fail.

 4

54 ❘ CHAPTER 4 REQUIREMENT GATHERING

Let’s just say that requirement gathering is the fi rst link in the chain, so it’s the fi rst place where you
can screw things up badly. Requirements do set the stage for everything that follows, so while you
can argue over whether this is the most important step, it’s defi nitely an important step.

This chapter explains what requirement gathering is and lists some typical requirements that are
useful in many projects. It also describes some techniques you can use to gather requirements
effectively.

REQUIREMENTS DEFINED

Requirements are the features that your application must provide. At the beginning of the project,
you gather requirements from the customers to fi gure out what you need to build. Throughout
development, you use the requirements to guide development and ensure that you’re heading in
the right direction. At the end of the project, you use the requirements to verify that the fi nished
application actually does what it’s supposed to do.

Depending on the project’s scope and complexity, you might need only a few requirements, or you
might need hundreds of pages of requirements. The number and type of requirements can also
depend on the level of formality the customers want.

For example, if you’re working on a casual in‐house project, your boss may be satisfi ed with a few
blanket requirements such as “fi nd ways to improve order processing” or “write a tool to send spam
to customers.” As long as you create something vaguely useful, your project will probably be viewed
as a success. (If not, you’ll fi nd out at your annual review.) As you’ll see shortly, these sorts of vague
requirements have some problems.

Large projects with higher stakes typically have far more requirements that are spelled out much
more formally and in great detail. For example, if you’re building an autopilot system for 747s
or you’re writing software to control pacemakers, your requirements must be unambiguous. You
can’t wait until the fi nal weeks of testing to start thinking about whether “easy installation” means
patients should change their own pacemaker parameters from a cell phone.

The following sections describe some of the properties that requirements should have to be useful.

Clear
Good requirements are clear, concise, and easy to understand. That means they can’t be pumped
full of management‐speak, fl orid prose, and confusing jargon.

It is okay to use technical terms and abbreviations if they are defi ned somewhere or they are common
knowledge in the project’s domain. For example, when I worked at a phone company research
lab, we often used terms like POTS (plain old telephone service), PBX (public branch exchange),
NPA (numbering plan area, known to nontelephone people as an area code), and ISDN (integrated
services digital network, or as some of us used to call it, “I still don’t know”). The customers and
development team members all knew those terms, so they were safe to use in the requirements.

To be clear, requirements cannot be vague or ill‐defi ned. Each requirement must state in concrete,
no‐nonsense terms exactly what it requires.

Requirements Defi ned ❘ 55

 For example, suppose you’re working on a program to schedule appointments for utility repair
people. (Those appointments that typically say, “We’ll be there sometime between 6:00 a.m. and
midnight during the next 2 weeks.”) A requirement such as, “Improve appointment scheduling,”
is too vague to be useful. Does this mean you should tighten the appointment windows even if
it means missing more appointments? Does it mean repair people should leave and make a new
appointment if they can’t fi nish a job within 1 hour? Or does it mean something crazy like letting
customers tell you what times they can actually be home and then fi tting appointments to those
times?

 A better requirement would be, “Reduce appointment start windows to no more than 2 hours while
meeting 90 percent of the scheduled appointments.”

 Unambiguous
 In addition to being clear and concrete, a requirement must be unambiguous. If the requirement is
worded so that you can’t tell what it requires, then you can’t build a system to satisfy it. Although
this may seem like an obvious feature of any good requirement, it’s sometimes harder to guarantee
than you might think.

 For example, suppose you’re building a street map application for inline skaters, and you have a
requirement that says the program will, “Find the best route from a start location to a destination
location.” This can’t be all that hard. After all, Google Maps, Yahoo Maps, MapQuest, Bing Maps,
and other sites all do something like this.

 But how do you defi ne the “best” route? The shortest route? The route that uses only physically
separated bike paths so that the user doesn’t have to skate in the street? Or maybe the route that
passes the most Starbucks locations?

 Even if you decide the “best” route means the shortest one, what does that mean? The route
that’s the shortest in distance? Or the shortest in time? What if the route of least distance
goes up a steep hill or down a set of stairs and that increases its time? (In this example,
you might change the requirements to let the users decide how to pick the “best” route at
run time.)

 As you write requirements, do your best to make them unambiguous. Read them carefully to make
sure you can’t think of any way to interpret them other than the way you intend.

 Then run them past some other people (particularly customers and end user representatives) to see if
they agree with you.

 A TIMELY JOKE

 CUSTOMER: I need you to write a program to fi nd customers that haven’t paid
their bills within 5 seconds.

 DEVELOPER: Harsh! Most companies give their customers 30 days to pay their
bills.

56 ❘ CHAPTER 4 REQUIREMENT GATHERING

Consistent
A project’s requirements must be consistent with each other. That means not only that they cannot
contradict each other, but that they also don’t provide so many constraints that the problem is unsolvable.
Each requirement must also be self‐consistent. (In other words, it must be possible to achieve.)

Consider again the earlier example of utility repair appointments. You might like to include the
following two requirements:

➤ Reduce appointment start windows to no more than 2 hours.

➤ Meet 90 percent of the scheduled appointments.

It may be that you cannot satisfy these two requirements at the same time. (At least using only
software. You might do it if you hire more repair people.)

In a complex project, it’s not always obvious if a set of requirements is mutually consistent.
Sometimes, any pair of requirements is satisfi able but larger combinations of requirements are not.

A common software engineering expression is, “Fast, good, cheap. Pick two.” The idea is you can
trade development speed, development quality, and cost, but you can’t win in all three dimensions.
Only three possible combinations work:

➤ Build something quickly with high quality and high cost.

➤ Build something quickly and inexpensively but with low quality.

➤ Build with high quality and low cost but over a long time.

Try to keep new requirements consistent with existing requirements. Or rewrite older requirements
as necessary. When you fi nish gathering all the requirements, go through them again and look for
inconsistencies.

Prioritized
When you start working on the project’s schedule, it’s likely you’ll need to cut a few nice‐to‐haves
from the design. You might like to include every feature but don’t have the time or budget, so
something’s got to go.

At this point, you need to prioritize the requirements. If you’ve assigned costs (usually in terms of
time to implement) and priorities to the requirements, then you can defer the high‐cost, low‐priority
requirements until a later release.

Customers sometimes have trouble deciding which requirements they can live without. They’ll
argue, complain, and generally act like you’re asking which of their children they want to feed to the
dingoes. Unfortunately, unless they can come up with a big enough budget and timescale, they’re
going to need to make some sort of decision.

The exception occurs when you work on life‐critical applications such as nuclear reactor cooling,
air traffi c control, and space shuttle fl ight software. In those types of applications, the customer
may have a lot of “must have” requirements that you can’t remove without compromising the
applications’ safety. You may remove cosmetic requirements like a space shuttle’s automatic

Requirements Defi ned ❘ 57

 Let’s face it. If a feature isn’t a “must” or “should,” then its chances of ever being implemented
are slim. After this release has been used for a while, you’ll probably receive tons of bug reports,
requests for changes, and pleas for new features, so in the next release you still won’t have time for
the “could” and “won’t” features.

 (Unless you’re one of these big software companies, who shall remain nameless, that thinks it
needs to push a new version of its products out every 2 years to make customers buy something.
Sometimes those products reach deep into the “could” and “won’t” categories, and perhaps even the
“why?” and “you must be joking!” categories.)

EXAMPLE ClassyDraw

 For an example of using the MOSCOW method, consider a fi ctional drawing program named
ClassyDraw. It’s somewhat similar to MS Paint and allows you to draw line segments, ellipses,
polygons, text, and other shapes. The big difference is that ClassyDraw represents each shape you draw
as an object that you can later select, move, resize, modify, and delete.

 Here’s an initial requirement list:

 1. Draw: line segments, sequences of line segments, splines, polygons, ellipses, circles, rectangles,
rounded rectangles, stars, images, and other shapes.

 2. Save and load fi les.

turn-signal cancellation feature, but you’re probably going to need to keep the fuel monitor and
fl ight path calculator.

 THE MOSCOW METHOD

 MOSCOW is an acronym to help you remember a common system for prioritizing
application features. The consonants in MOSCOW stand for the following:

 M—Must. These are required features that must be included. They are necessaryd
for the project to be considered a success.

 S—Should. These are important features that should be included if possible. If t
there’s a work-around and there’s no room in the release 1 schedule, these may be
deferred until release 2.

 C—Could. These are desirable features that can be omitted if they won’t fi t in the
schedule. They can be pushed back into release 2, but they’re not as important as
the “should” features, so they may not make it into release 2, either.

 W—Won’t. These are completely optional features that the customers have agreedl
will not be included in the current release. They may be included in a future release
if time permits. (Or they may just be included in the requirements list to make
a particularly loud and politically connected customer happy, and you have no
intention of ever including these features.)

58 ❘ CHAPTER 4 REQUIREMENT GATHERING

 3. Protect the current drawing. For example, if the user tries to close the program while there are
unsaved changes, prompt the user.

 4. Let the user specify the line style and colors used to draw shapes.

 5. Let the user specify the fi ll style and colors used to draw shapes.

 6. Click to select an object.

 7. Click and drag to select multiple objects.

 8. Click or click and drag with the Shift key down to add objects to the current selection.

 9. Click or click and drag with the Ctrl key down to toggle objects in and out of the current selection.

 10. Click and drag the selected objects to move them.

 11. Edit the selected objects’ line and fi ll styles.

 12. Delete the selected objects.

 13. Select colors from a palette.

 14. Place custom colors in a custom palette.

 15. Support transparency.

 16. Copy and paste the entire drawing, a rectangular selection, or an irregular selection as a bitmapped
image.

 17. Copy, cut, and paste the currently selected objects.

 18. Allow the user to write scripts to add shapes to a drawing.

 19. Let the user rearrange the palettes and toolbars.

 20. Auto‐save the current drawing periodically. If the program crashes, allow the user to reload the
most recently saved version.

 21. Auto‐save the current drawing every time a change is made. If the program crashes, allow the user
to reload the most recently saved version.

 22. Provide online help.

 23. Provide online tutorials.

 Now you can use the MOSCOW method to prioritize these requirements.

Must. To identify the “must” requirements, examine each requirement and ask yourself: Could that
requirement be omitted? Would the program be usable without that feature? Will users give the product
1‐star reviews and say they wish they could give 0 stars? That the product would be overpriced if it
were freeware?

 The ClassyDraw application must be able to save and load fi les (2). You could build early test versions t
that couldn’t, but it would be unacceptable to users.

 Similarly the program must ensure the safety of the current drawing (3). The users would never forgive
the program if it discarded a complicated drawing without any warning.

Requirements Defi ned ❘ 59

 The program wouldn’t be useful if it didn’t draw, so the program must draw at least a few shapes (1).
For starters, it could draw line segments, rectangles, and ellipses. You could add more shapes in later
releases.

 The program should probably allow the user to click objects to select them. Otherwise, the user may
as well use MS Paint, so requirement 6 is a must. Of course, there’s little point in selecting an object if
you can’t do anything with it, so the program must let the user at least move (10) and delete (12) the
selected objects.

 The “must” requirements include 1 (partial), 2, 3, 6, 10, and 12.

Should. To identify the “should” requirements, examine each of the remaining requirements and ask
yourself, “Does that feature signifi cantly enhance the product? If it were omitted, would users be
constantly asking why it wasn’t included? Is the feature common in other, similar applications? Will
users give the product 2‐star and 3‐star reviews?”

 Several requirements that are fairly standard for drawing applications didn’t make the cut for the
“must” category. (You could say they didn’t pass muster.)

 Most (if not all) of the other shapes in requirement 1 should be included in this group. When drawing
new shapes, the user should also indicate the line and fi ll styles the new shapes should have (4, 5). That
will require specifying colors, at least from a palette (13).

 The click‐and‐drag selection technique (7) should be included, as should the ability to hold down the
Shift or Ctrl key while making selections (8, 9).

 Any decent application should have help (22) and documentation (23), so those should also be included.

 The “should” requirements include 1 (remaining), 4, 5, 7, 8, 9, 13, 22, and 23.

Could. To identify the “could” requirements, examine each of the remaining requirements and ask
yourself, “Would that requirement be useful to the users? Is it something special that other similar
applications don’t have? Will this help bump reviews up to 4 or 5 stars? Is this a feature that we should
include at some point, just not in the fi rst release?”

 Another way to approach this category is to ask: Which features will we need in the long term? Which
of the remaining features shouldn’t be dumped in the trash heap labeled “won’t”?

 Most of the remaining requirements should probably not go in the “won’t” pile. If they were that bad ,
they probably wouldn’t have made it into the requirements list in the fi rst place.

 The “could” category should defi nitely include the ability to edit selected objects (11). This is another of
the main reasons for allowing the user to select objects.

 Support for custom colors (14) and transparency (15) would also be nice, if time permits. Cut, copy,
and paste for images (16) and selected objects (17) would be useful, so they should be included.

 The “could” requirements include 11, 14, 15, 16, and 17.

Won’t. To identify the “won’t” requirements, examine the remaining requirements and ask yourself, “Is
this unnecessary, confusing, or just plain stupid? Will it be used only rarely? Does it add nothing useful
to the application?” If you can’t answer “yes” to those questions for a particular requirement, then you
should think about moving that requirement into one of the other categories.

60 ❘ CHAPTER 4 REQUIREMENT GATHERING

 For this application, allowing users to write scripts (18) would be cool but probably rarely used. Letting
the user rearrange palettes and toolbars (19) would be a nice touch, but isn’t important.

 Auto‐saving (20, 21) is also a nice touch, but probably unnecessary. We can look at user requests and
conduct surveys to see if this feature would be worth adding to a future release.

 The “won’t” requirements include 18, 19, 20, and 21.

 After you’ve assigned each requirement to a category, go back through them and make sure you’re
happy with their assignments. If a requirement in the “could” category seems more important than one
in the “should” category, switch them.

 Also make sure every requirement is in some category and that every category contains some
requirement. If every requirement is in the “must” category, then you may need to rethink your
priorities (or your customer’s priorities), or be sure you’ll have enough time to get everything done.

 Verifi able
 Requirements must be verifi able. If you can’t verify a requirement, how do you know whether you’ve
met it?

 Being verifi able means the requirements must be limited and precisely defi ned. They can’t be
open‐ended statements such as, “Process more work orders per hour than are currently being
processed.” How many work orders is “more?” Technically, processing one more work order per
hour is “more,” but that probably won’t satisfy your customer. What about 100? Or 1,000?

 A better requirement would say, “Process at least 100 work orders per hour.” It should be relatively
easy to determine whether your program meets this requirement.

 Even with this improved requirement, verifi cation might be tricky because it relies on some
assumptions that it doesn’t defi ne. For example, the requirement probably assumes you’re processing
work orders in the middle of a typical workday, not during a big clearance event, during peak
ordering hours, or during a power outage.

 An even better requirement might be, “Process at least 100 work orders per hour on average
during a typical work day.” You may want to refine the requirement a bit to try to say what a
“typical work day” is, but this version should be good enough for most reasonable customers.

 Words to Avoid
 Some words are ambiguous or subjective, and adding them to a requirement can make the whole
thing fuzzy and imprecise. The following list gives examples of words that may make requirements
less exact.

➤ Comparatives —Words like faster, better, more, and shinier. How much faster? Defi ne
“better.” How much more? These need to be quantifi ed.

➤ Imprecise adjectives —Words like fast, robust, user‐friendly, effi cient, fl exible, and glorious.
These are just other forms of the comparatives. They look great in management reports,
business cases, and marketing material, but they’re too imprecise to use in requirements.

Requirement Categories ❘ 61

➤ Vague commands —Words like minimize, maximize, improve, and optimize. Unless you use
these in a technical algorithmic sense (for example, if you optimize fl ow through a network),
these are just fancy ways to say, “Do your best.” Even in an algorithmic sense, these sorts of
words are often applied to hard problems where exact solutions may not exist. In any case,
you need to make the goals more concrete. Provide some numbers or other criteria you can
use to determine whether a requirement has been met.

 REQUIREMENT CATEGORIES

 In general, requirements tell what an application is supposed to do. Good requirements share certain
characteristics (they’re clear, unambiguous, consistent, prioritized, and verifi able), but there are
several kinds of requirements that are aimed at different audiences or that focus on different aspects
of the application. For example, business requirements focus on a project’s high‐level objectives and
functional requirements give the developers more detailed lists of goals to accomplish.

 Assigning categories to your requirements isn’t the point here. (Although there are two kinds of
people in the world: those who like to group things into categories and those who don’t. If you’re
one of the former, then you may need to do this for your own peace of mind.) The real point here is
that you can use the categories as a checklist to make sure you’ve created requirements for the most
important parts of the project. For example, if you look through the requirements and the reliability
category is empty, you might consider adding some new requirements.

 You can categorize requirements in several ways. The following sections describe four ways to
categorize requirements.

 Audience‐Oriented Requirements
 These categories focus on different audiences and the different points of view that each audience
has. They use a somewhat business‐oriented perspective to classify requirements according to the
people who care the most about them.

 For example, the corporate vice president of Plausible Deniability probably doesn’t care too much
about which button a call center clerk needs to press to launch a customer into a never‐ending call
tree as long as it works. In contrast, the clerk needs to know which button to press.

 The following sections describe some of the more common business‐oriented categories.

 Business Requirements
Business requirements lay out the project’s high‐level goals. They explain what the customer hopes
to achieve with the project.

 Notice the word “hopes.” Customers sometimes try to include all their hopes and dreams in the
business requirements in addition to verifi able objectives. For example, they might say the project
will “Increase profi ts by 25 percent” or “Increase demand and gain 10,000 new customers.”
Although those goals have numbers in them, they’re probably outside the scope of what you can
achieve through software engineering alone. They’re more like marketing targets than project
requirements. You can craft the best application ever put together, but someone still needs to use it
properly to realize the new profi ts and customers.

62 ❘ CHAPTER 4 REQUIREMENT GATHERING

 Sometimes, those vague goals are unavoidable in business requirements, but if possible you should
try to push them into the business case. The business case is a more marketing‐style document that
attempts to justify the project. Those often include graphs and charts showing projected costs,
demand, sales fi gures, and other values that aren’t known exactly in advance.

 To think of this another way, I have no qualms about promising to write a system that can pull up a
customer’s records in less than 3 seconds or fi nd the closest donut shop that’s open at 2 a.m. (if you
give me the data). But I wouldn’t want to promise to improve morale in the Customer Complaints
department by 15 percent. (What would that even mean?)

User Requirements
User requirements (which are also called stakeholder requirements by managers who like to use the
word “stakeholder”), describe how the project will be used by the eventual end users. They often
include things like sketches of forms, scripts that show the steps users will perform to accomplish
specifi c tasks, use cases, and prototypes. (The sections “Use Cases” and “Prototypes” later in this
chapter say more about the last two.)

 Sometimes these requirements are very detailed, spelling out exactly what an application must do
under different circumstances. Other times they specify what the user needs to accomplish but nott
necessarily how the application must accomplish it.

EXAMPLE Overly Specifi c Selections

In this example, you see how you can turn an overly specifi c requirement into one that’s fl exible
without making it vague.

Suppose you’re building a phone application that lets customers place orders at a sandwich and bagel
shop called The Loxsmith. The program should let customers select the toppings they want on their
bagels. They include lox (naturally), butter, cream cheese, gummy bears, and so on. Here’s one way you
could word this requirement:

 The toppings form will display a list of toppings. The user can check boxes next to the
toppings to add them to the bagel.

That’s a fi ne requirement. Clear, concise, verifi able. Everything you could want in a requirement.
Unfortunately, it’s also unnecessarily specifi c. It forces the designers and developers to use a specifi c
technique to achieve the higher‐level goal of letting the customer select toppings.

During testing, you might discover that The Loxsmith provides more than 200 toppings. In that
case, the program won’t be able to display a list of every topping at the same time. The user will
need to scroll through the list, and that will make it hard for the customer to see what toppings are
selected.

Here’s a different version of the same requirement that doesn’t restrict the developers as much.

 The toppings form will allow the user to select the toppings put on the bagel.

The difference is small but important. With this version, the developers can explore different methods
for selecting toppings. If you have user‐interface specialists on your team, they may create a variety of

Requirement Categories ❘ 63

possible solutions. For example, customers might drag and drop selections from a big scrollable list on
the left onto a shorter list of selected items on the right. Then they could always see what toppings were
selected. You might even display a cartoon picture of a bagel holding the user’s four dozen selected
toppings piled up like the Leaning Tower of Pisa.

 Vague requirements are bad, but fl exible requirements let you explore different options before you
start writing code. To keep requirements as fl exible as possible, try to make the requirements spell
out the project’s needs without mandating a particular approach.

 Functional Requirements
Functional requirements are detailed statements of the project’s desired capabilities. They’re
similar to the user requirements but they may also include things that the users won’t see
directly. For example, they might describe reports that the application produces, interfaces
to other applications, and workfl ows that route orders from one user to another during
processing.

 These are things the application should do.

 Note that some requirements could fall into multiple categories. For example, you could consider
most user requirements to be functional requirements. They not only describe a task that will be
performed by the user, but they also describe something that the application will do.

 Nonfunctional Requirements
Nonfunctional requirements are statements about the quality of the application’s behavior or
constraints on how it produces a desired result. They specify things such as the application’s
performance, reliability, and security characteristics.

 For example, a functional requirement would be, “Allow users to reserve a hovercraft online.”
A nonfunctional requirement would be, “The application must support 20 users simultaneously
making reservations at any hour of the day.”

 Implementation Requirements
Implementation requirements are temporary features that are needed to transition to using the new
system but that will be later discarded. For example, suppose you’re designing an invoice‐tracking
system to replace an existing system. After you fi nish testing the system and are ready to use it full
time, you need a method to copy any pending invoices from the old database into the new one. That
method is an implementation requirement.

 The tasks described in implementation requirements don’t always involve programming. For
example, you could hire a bunch of teenagers on summer break to retype the old invoices into
the new system. (Although you’ll probably get a quicker and more consistent result if you write a
program to convert the data into the new format. The program won’t get bored and stop coming to
work when the next release of Grand Theft Auto comes out.)

 Other implementation requirements include hiring new staff, buying new hardware, preparing
training materials, and actually training the users to use the new system.

64 ❘ CHAPTER 4 REQUIREMENT GATHERING

 FURPS
 FURPS is an acronym for this system’s requirement categories: functionality, usability, reliability,
performance, and scalability. It was developed by Hewlett‐Packard (and later extended by adding a +
at the end to get FURPS+).

 The following list summarizes the FURPS categories:

➤ Functionality —What the application should do. These requirements describe the system’s
general features including what it does, interfaces with other systems, security, and so forth.

➤ Usability —What the program should look like. These requirements describe user‐oriented
features such as the application’s general appearance, ease of use, navigation methods, and
responsiveness.

➤ Reliability —How reliable the system should be. These requirements indicate such things as
when the system should be available (12 hours per day from 7:00 a.m to 8:00 p.m.), how
often it can fail (3 times per year for no more than 1 hour each time), and how accurate the
system is (80 percent of the service calls must start within their predicted delivery windows).

➤ Performance —How effi cient the system should be. These requirements describe such things
as the application’s speed, memory usage, disk usage, and database capacity.

➤ Supportability —How easy it is to support the application. These requirements include such
things as how easy it will be to maintain the application, how easy it is to test the code, and
how fl exible the application is. (For example, the application might let users set parameters
to determine how it behaves.)

 FURPS+
 FURPS was extended into FURPS+ to add a few requirements categories that software engineers
thought were missing. The following list summarizes the new categories:

➤ Design constraints —These are constraints on the design that are driven by other factors
such as the hardware platform, software platform, network characteristics, or database. For
example, suppose you’re building a fi nancial application and you want an extremely reliable
backup system. In that case, you might require the project to use a shadowed or mirrored
database that stores every transaction off-site in case the main database crashes.

➤ Implementation requirements —These are constraints on the way the software is built. For
example, you might require developers to meet the Capability Maturity Model Integration
(CMMI) or ISO 9000 standards. (For more information on those, see www.cmmifaq.info
and www.iso.org/iso/iso_9000 respectively .)

➤ Interface requirements —These are constraints on the system’s interfaces with other systems.
They tell what other systems will exchange data with the one you’re building. They describe
things like the kinds of interactions that will take place, when they will occur, and the format
of the data that will be exchanged.

➤ Physical requirements —These are constraints on the hardware and physical devices that the
system will use. For example, they might require a minimum amount of processing power,
a maximum amount of electrical power, easy portability (such as a tablet or smartphone),
touch screens, or environmental features (must work in boiling acid).

http://www.cmmifaq.info
http://www.iso.org/iso/iso_9000

Requirement Categories ❘ 65

EXAMPLE FURPS+ Checklist

 In this example, we’ll use FURPS+ to see if any requirements are missing for the The Loxsmith ordering
application. Consider the following abbreviated list of requirements. The program should allow the user to:

 Start an order that might include multiple items.

 Select bagel type.

 Select toppings.

 Select sandwich bread.

 Select sandwich toppings.

 Select drinks.

 Select pickup time.

 Pay or decide to pay at pickup.

 I’ve left out a lot of details from this list such as the specifi c bagel, bread, and topping types that are
available, but at fi rst glance, this seems like a reasonable set of requirements. It describes what the
application should do but doesn’t impose unnecessary constraints on how the developers should build
it. It’s a bit more vague than I would like (how do you verify that the user can select toppings?), but you
can fl esh that out. (In fact, I’ll talk a bit about ways you can do that later in this chapter, particularly
when I talk about use cases in the section “Use Cases.”)

 For this example, assume the requirements are spelled out in specifi c (but fl exible) detail. Then use
FURPS+ to see if there’s anything important missing from this list. Spend a few minutes to decide in
which FURPS+ category each of the requirements belongs.

 Although the initial requirements all seem reasonable, they’re all functionality requirements. They
tell what the application should do but don’t give much information about usability, reliability,
performance, and other requirements that should belong to the other FURPS+ categories.

 You might think that a requirements list containing only functionality requirements would be an
unusual situation. However, left to their own devices, many programmers come up with exactly this
sort of list. They focus on the work they are going to do and how it will look to the users. That’s a good
place to start the design, but in the background they’re making a huge number of assumptions about
things they take for granted.

 For example, suppose you’re a developer who writes Java applications running on Android tablets.
In that case, you may think the previous list of requirements is just fi ne. Your version of the Eclipse
Java development environment is up to date, you’ve installed the Android Software Development Kit
(SDK), and you have “Eye of the Tiger” blasting on your headphones. You’re ready to start cranking
out code.

 Unfortunately you’re also making a ton of assumptions that may or may not sit well with the customer.
In this example, you’re assuming the application will be written in Java to run on Android tablets.
What if the customer wants the application to run on an iPhone, Windows Phone, mobile‐oriented web
page, Google Glass, or some sort of smart wearable ankle bangle device? Or maybe all of the above?

 Sometimes, you may not want any requirements in a particular category, but the fact that the preceding
list contains only functionality requirements is a strong hint that we’re doing something wrong. You

66 ❘ CHAPTER 4 REQUIREMENT GATHERING

should at least think about every category and either (1) come up with some new requirements that
belong there, or (2) write down why you don’t think you need any requirements for that category.

 So now look at the FURPS+ requirement categories:

Functionality —(What the program should do.) The initial list of requirements covers this category.

Usability —(What the program should look like.) You could add some requirements indicating how the
user navigates from starting an order to picking sandwich and bagel ingredients. You could also provide
details about login (should we create customer accounts?) and the checkout method. You should also
specify that each form will display The Loxsmith logo.

Reliability —(How reliable the system should be.) Should the application be available only while The
Loxsmith is open? Or should customers be able to pre‐order a morning jalapeno popper bagel and
double kopi luwak to pick up on the way in to work?

Performance —(How effi cient the system should be.) How quickly should the application respond to
customers (assuming they have a fast Internet connection)?

Supportability —(How easy should the system be to support?) The requirements should indicate that
The Loxsmith employees can edit the information about the types of breads, bagels, toppings, and
other items that are available. You might also want to add automated testing requirements, information
about help available to customers, and any plans for future versions of the project.

Design —(Design constraints.) Here’s where you would specify the target hardware and software
platforms. For example, you might want the program to run on iPhones (code written with Xcode) and
Windows Phones (code written in C#).

Implementation —(Constraints on the way the software is built.) You can specify software standards. For
example, you might require pair programming or agile methods. (Those are described in Chapter 14 , “RAD.”)

Interface —(Interfaces with other systems.) Perhaps you want the application to call web services that
use Simple Object Access Protocol (SOAP) to let other programs place sandwich orders. (Although it’s
not clear how many other companies will want an automated ordering interface to The Loxsmith, so
perhaps this category will be intentionally left blank.)

Physical —(Hardware requirements.) For this application, the customers provide their own hardware
(such as phones and tablets) so you don’t need to specify those. You might want to specify the server
hardware. Or you might want to lease space on an Internet service provider so that you don’t need to
buy your own hardware. (You should probably still study the available options so that you know how
powerful they are and how much they cost.)

 Using requirements categories as a checklist can help you notice if you are missing certain kinds of
requirements. In this example, it helped identify a lot of requirements that might have been missed or
hidden inside developer assumptions.

 Common Requirements
 The following list summarizes some specifi c requirements that arise in many applications.

➤ Screens —What screens are needed?

➤ Menus —What menus will the screens have?

Gathering Requirements ❘ 67

➤ Navigation —How will the users navigate through different parts of the system? Will they
click buttons, use menus, or click forward and backward arrows? Or some combination of
those methods?

➤ Work fl ow —How does data (work orders, purchase requests, invoices, and other data) move
through the system?

➤ Login —How is login information stored and validated? What are the password formats
(such as, must require at least one letter and number) and rules (as in, passwords must be
changed monthly)?

➤ User types —Are there different kinds of users such as order entry clerk, shipping clerk,
supervisor, and admin? Do they need different privileges?

➤ Audit tracking and history —Does the system need to keep track of who made changes to the
data? (For example, so you can see who changed a customer to premier status.)

➤ Archiving —Does the system need to archive older data to free up space in the database? Does
it need to copy data into a data warehouse for analysis?

➤ Confi guration —Should the application provide confi guration screens that let the system
administrators change the way the program works? For example, those screens might let
system administrators edit product data, set shipping and handling prices, and set algorithm
parameters. (If you don’t build these sorts of screens, you’ll have to make those changes for
the customers later.)

 GATHERING REQUIREMENTS

 At this point you know what makes a good requirement (clear, unambiguous, consistent, prioritized,
and verifi able). You also know how to categorize requirements using audience‐oriented, FURPS, or
FURPS+ methods. But how do you actually pry the requirements out of the customers?

 The following sections describe several techniques you can use to gather and refi ne requirements.

 Listen to Customers (and Users)
 Sometimes, customers come equipped with fully developed requirements spelling out exactly what
the application should do, how it should work, and what it should look like. More often they just
have a problem that they want solved and a vague notion that a computer might somehow help.

 Start by listening to the customers. Learn as much as you can about the problem they are trying to
address and any ideas they may have about how the application might solve that problem. Initially,
focus as much as possible on the problem, not on the customers’ suggested solutions, so you can
keep the requirements fl exible.

 If the customers insist on a particular feature that you think is unimportant, or if they request
something that just seems strange, ask them why they want it. Sometimes, the requirement may be a
random thought that isn’t actually important, but sometimes the customers have a good reason that you
just don’t understand. Often the reason is so obvious to them that it doesn’t occur to them to explain it
until you ask. The customers probably know a lot more about their business than you do, and they may
make assumptions about facts that are common knowledge to them but mysterious to you.

68 ❘ CHAPTER 4 REQUIREMENT GATHERING

Take lots of notes while you’re listening to the customers. They sometimes mention these important
but puzzling tidbits in passing. If a customer requirement seems odd, dig a bit deeper to fi nd out
what, if anything, is behind the request.

Use the Five Ws (and One H)
Sometimes customers have trouble articulating their needs. You can help by using the fi ve Ws (who,
what, when, where, and why) and one H (how).

Who
Ask who will be using the software and get to know as much as you can about those people. Find
out if the users and the customers are the same and learn as much about the users as you can.

For example, if you’re writing medical billing software, the users might be data entry operators who
type in patient data all day. In contrast, your customers may be corporate executives. They may
have worked their way up through the ranks (in which case they probably know everything about
medical data entry down to the last billing code) or they may have followed a more business‐school‐
oriented career path (in which case they may not know a W59.22 from a V95.43). (It’s worth the
time to look these up in your favorite browser.)

What
Figure out what the customers need the application to do. Focus on the goals as much as possible
rather than the customers’ ideas about how the solution should work. Sometimes, the customers
have good ideas about what the application should look like, but you should try to keep your
options open. Often the project members have a better idea than the customers of the kinds of
things an application can do, so they may come up with better solutions if they focus on the goals.

AN OFFER YOU CAN’T REFUSE

Suppose The Don’s Waste Removal Service asks you to write an application that
lets users plot out routes for garbage trucks. You’re working through the list of
requirements with the owner, Don, and he says, “A route that contains lots of left
turns should be given no respect.”

To most people, that may seem like a strange requirement. What has Don got
against left turns?

Don’s been working with garbage trucks for a long time so, like many people who
do a lot of vehicle routing, he knows that trucks turning left spend more time
waiting for cross traffi c, so they burn more fuel. They are also more likely to be
involved in accidents. (It always amazes me that people can fail to notice a 20‐ton
garbage truck stopped in front of them, but it happened in my neighborhood not
long ago.) Penalizing routes that contain left turns (and U‐turns) will save the
company money.

Gathering Requirements ❘ 69

 (Of course, the customer is always right, at least until your paycheck is signed, so if the customer
absolutely insists that the application must include a graphical slide rule instead of a calculator,
chalk it up as an interesting exercise in graphics programming and make it happen.)

 When
 Find out when the application is needed. If the application will be rolled out in phases, fi nd out
which features are needed when.

 When you have a good idea about what the project requires, use Gantt charts and the other
techniques described in Chapter 3 , “Project Management,” to fi gure out how much time is actually
needed. Then compare the customers’ desired timeline to the required work schedule. If the two
don’t match, you need to talk to the customers about deferring some features to a later release.

 Don’t let the customers assume they can get everything on their time schedule just by “motivating
you harder.” In Star Trek , Scotty can squeeze eight weeks’ worth of work into just two, but that
rarely works in real‐world software engineering. You’re far more likely to watch helplessly as your
best programmers jump ship before your project hits the rocky shoals of impossible deadlines.

 Where
 Find out where the application will be used. Will it be used on desktop computers in an air‐
conditioned offi ce? Or will it be used on phones in a noisy subway?

 Why
 Ask why the customers need the application. Note that you don’t need to be unnecessarily stupid.
If the customers say, “We want to automate our parts ordering system so that we can build custom
scooters more quickly,” you don’t need to respond with, “Why?” The customers just told you why.

 Instead, use the “why” question to help clarify the customers’ needs and see if it is real. Sometimes,
customers don’t have a well‐thought‐out reason for building a new system. They just think it will
help but don’t actually know why. (Or customers may have just received a new copy of Management
Buzzwords Monthly and they’re convinced they can crowdsource custom scooter design.)

 Find out if there is a real reason to believe a new application will help. Is the problem really that
ordering parts is ineffi cient? Or is the problem that each order requires a different set of parts that
have a long shipping time? If streamlining the ordering process will cut the ordering time from
2 days to 1.5 days, while still leaving 4–6 weeks of shipping delay, then a new software application
may not be the best place to spend your resources. (It might be better to maintain an inventory of
slow‐to‐order parts such as wheel spinners and spoilers.)

 How
 The “What” section earlier in this chapter said you should focus on the goals rather than the
customers’ ideas about the solution. That’s true, but you shouldn’t completely ignore the customers’
ideas. Sometimes, customers have good ideas, particularly if they relate to existing practices. If
the users are used to doing something a certain way, you may reduce training time by making the
application mimic that approach. Be sure to look outside the box for other solutions, but don’t
automatically think that software developers always make better decisions than the customers.

70 ❘ CHAPTER 4 REQUIREMENT GATHERING

Study Users
Interviewing customers (and users) can get you a lot of information, but often customers (and
users) won’t tell you everything they do or need to do. They often take for granted details that they
consider trivial but that may be important to the development team.

For example, suppose the users grind through long, tedious reports every day. The reports are so
long, they often end the day in the middle of a report and need to continue working on it the next
day. This may seem so obvious to the users that you don’t discuss the issue.

A typical reporting application might require the users to log in every day, search for a particular
report, and double‐click it to open it. That could take a while (particularly if the user forgets which
report it is). Fortunately, you know that users often start the day by reopening the last report of the
previous day, so you can streamline the process. Instead of making users remember what report
they last had open, the program can remember. You can then provide a button or menu item to
immediately jump to that report.

By studying users as they work, you can learn more about what they need to do and how they
currently do it. Then with your software‐engineering perspective, you can look for solutions that
might not occur to the users.

PRINTING PUZZLE

Watching users in their natural habitat often pays off. Many years ago, I was
visiting a telephone company billing center in preparation for a project that
automatically identifi ed customers who hadn’t paid their bills and so it could
disconnect their service. We spent a week there studying the existing software
systems and the users. It was interesting, but the reason I’m mentioning it now is a
small comment made by one of the managers. In passing, she said something like,
“I sure wish you could do something about the Overdue Accounts Report. Ha, ha.”

That’s the sort of comment that should make you dig deeper. What was this report
and why was it a problem? It turned out that the existing software system printed
out a list of every customer with an outstanding balance for every billing cycle.
This was a big billing center serving approximately 15 million customers, so every g
two days (there were 15 billing cycles per month) the printer spit out a 3‐foot tall
pile of paper listing every customer in the cycle with an outstanding balance.

Balances ranged from a few cents to tens of thousands of dollars, and the big‐balance
customers were costing the company tons of money. Unfortunately, the printout listed
the customers in some weird arrangement (sorted by customer ID or zodiac sign or
something), so the billing people couldn’t fi nd the customers with the big balances.

What the customers didn’t know (but we did) is that it’s relatively easy to build a
printer emulation program. It took approximately one week (mostly spent getting
management approval) to write a program that pretended to be a printer, sucked up
all the overdue account information, and sorted it by balance. It turned out that of

Refi ning Requirements ❘ 71

 The following two sections describe three approaches for converting goals into requirements.

 Copy Existing Systems
 If you’re building a system to replace an existing system or a manual process, you can often use
many of the behaviors of the existing system as requirements for the new one. If the old system
sends customers e‐mails on their birthdays, you can require that the new system does that,

 As you study the users, pay attention to how they do things. Look at the forms they fi ll out (paper
or online). Figure out where they spend most of their time. Look for the tasks that go smoothly and
those that don’t. You can use that information to identify areas in which your project can help.

 REFINING REQUIREMENTS

 After you’ve talked to the customers and users, and watched the users at work, you should have a
good understanding about the users’ current operations and needs. (If you don’t, ask more questions
and watch the users some more until you do.)

 Next, you need to use what you’ve learned to develop ideas for solving the user’s problems. You need
to distill the goals (what the customers need to do) into approaches (how the application will do it).

 At a high level, the requirement, “Process customer records” is fi ne. It’s also nice and fl exible, so it
allows you to explore many options for achieving that goal.

 At some point, however, you need to turn the goals into something that you can actually build.
You need to fi gure out how the users will select records to edit, what screens they will use, and how
they will navigate between the screens. Those decisions will lead to requirements describing the
forms, navigation techniques, and other features that the application must provide to let the users do
their jobs.

the thousands of pages of data produced every two days, the customers only needed
the fi rst two.

 The moral of the story is, you need to pay attention to the customers’ comments. They
don’t know what you can do with the computer, and you don’t know their needs.

 NOTE Moving from goals to requirements often forces you to make some
design decisions. For example, you may need to specify form layouts (at least
roughly) and the way work fl ows through the system.

 You might think of those as design tasks, but they’re really part of requirements
gathering. The following two chapters, which talk about design, deal with
program design (how you structure the code) not user interface design and the
other sorts of design described here.

72 ❘ CHAPTER 4 REQUIREMENT GATHERING

too. If the users currently fi ll out a long paper form, you can require that the new system has a
computerized form that looks similar—possibly with some tabs, scrolled windows, and other format
changes to make the form look a bit better on a computer.

This approach has a few advantages. First, it’s reasonably straightforward. It doesn’t take an
enormous amount of software engineering experience to dig through an existing application and
write down what it does. (If you’re lucky, you might even get the customers to do at least some of it
so that you can focus on software design issues.)

This approach also makes it more likely that the requirements can actually be satisfi ed, at least to
the extent the current system works. If an existing system does something, then you at least know
it’s possible.

Finally, this approach provides an unambiguous example of what you need to do. In the
specifi cation, you don’t need to write out in excruciating detail exactly how the “Lazy Backup”
screen works. Instead you can just say, “The Lazy Backup screen will work as it does in the
existing system with the following changes: ….”

Even though this approach is straightforward, it has some disadvantages. First, you probably
wouldn’t be building a new version of an existing system unless you planned to make some changes.
Those changes aren’t part of the original system, so there’s no guarantee that they’re even possible.
They may also be incompatible with the original system. (Not all pieces of software play nicely
together.)

A second problem with this approach is that users are often reluctant to give up even the tiniest
features in an existing program. In the projects I’ve worked on, I’ve found that no matter how
obscure and worthless a feature is, there’s at least one user willing to fi ght to the death to preserve
it. If the software has been in use for a long time, it may contain all sorts of odd quirks and
peccadillos. You might like to streamline the new system by removing the feature that changes the
program’s background color to match the weather each day, but that’s not always possible.

FOREVER FEATURES

I was once asked to help port part of an application to a new platform. The key
piece of the application that the customer wanted to keep was fairly small, and the
project manager estimated it would take a few hundred hours of work to get the
job done.

When I dug through the original application, however, I found that it included
more than 100 forms, each of which was moderately complicated. The system also
included interfaces to a number of external databases and automated systems.

At this point, we went back to the customer and asked if they were willing to give
up most of those 100+ forms and just keep the key tools we were trying to port.

By now you’ve probably guessed the punchline. The customer wouldn’t give up any
of the existing application’s features. The project’s estimated time jumped from a
few hundred hours to several thousand hours, and the whole thing was scrapped.

Refi ning Requirements ❘ 73

 The same holds true for the other project members. Programmers with previous experience with the
same kind of project will encounter fewer problems and meet their scheduled milestones more often.

 Using an existing system to generate requirements can be a big time-saver, as long as the
development team and the customers all agree on which parts of the existing system will be included
in the new one.

 Clairvoyance
 A lot more often than you might think, one or more people simply look at the project’s goals,
visualize a fi nished result, and start cranking out requirements. For example, the project lead
might use gut feelings, common sense, tea leaves, tarot cards, and other arcane techniques to
cobble together something that he thinks will work. If the project is large, pieces might be doled
out to team leads so that they can work on their own pieces of the system, but the basic approach
is the same: Someone sits down and starts churning out form designs, work fl ow models, login
procedures, and descriptions of reports.

 I’m actually being a bit unfair characterizing this approach as clairvoyance because it’s actually
quite effective in practice. Assuming the people writing the requirements understand the customers’
needs and have previous experience, they often produce a good result. Ideally team leads are chosen
for their experience and technical expertise (not because they’re the boss’s cousin), so they know
what the computer can do and they can design a system that works.

 This technique is particularly effective if the project lead has previously built a similar system. In
that case, the lead already knows more or less what the application needs to do, which things will
be easy and which will be hard, how much time everything requires, and which kinds of donuts
motivate the programmers the best.

 Having an experienced project lead greatly increases the chances that the requirements will include
everything you need to make the project succeed. It also greatly increases the chances that the team
will anticipate problems and handle them easily as development continues. In fact, this is such an
important point, it’s a best practice.

 There is some good news in this tale, however. We discovered the problem quickly
during initial requirements gathering, so we hadn’t wasted too much time before
the project was canceled. It would have been much worse if we had started work
only to have the requirements gradually expand to include everything in the
original application. Then we would have wasted hundreds of hours of work before
the project was canceled.

 BEST PRACTICE: EXPERIENCED PROJECT LEADS

 A project’s chances for success are greatly improved if the project lead has previous
experience with the same kind of project.

74 ❘ CHAPTER 4 REQUIREMENT GATHERING

Documenters who have written user manuals for similar applications will fi nd writing manuals for
the new project easier. Project managers with similar experience will know what tasks are likely to
be diffi cult. Even customers with previous software engineering experience will be better at creating
good requirements.

 If you have access to design specialists such as user interface designers or human factors experts,
get them to help. Any programmer can build forms, menus, and colorful labels, but some don’t do a
good job. A good user interface makes users productive. A bad one is frustrating and ineffective. (It’s
like trying to empty a bathtub with a teaspoon. You’ll eventually succeed, but you’ll spend the whole
time thinking, “This is stupid. There has to be a better way!”)

 Brainstorm
 Copying an existing application and clairvoyance are good techniques for generating requirements,
but they share a common disadvantage: They are unlikely to lead you to new innovative solutions that
might be better than the old ones. To fi nd truly revolutionary solutions, you need to be more creative.
One way to look for creative solutions is the group creativity exercise known as brainstorming.

 You’re probably somewhat familiar with brainstorming, at least in an informal setting, but there are
several approaches that you can use under different circumstances.

 The basic approach that most people think of as brainstorming is called the Osborn method because d
it was developed by Alex Faickney Osborn, an advertising executive who tried to develop new,
creative problem-solving methods starting in 1939. Basically, he was tired of his employees failing
to come up with new and innovative advertising campaigns. (As is the case with the Gantt charts
described in Chapter 3 , the fact that we’re still using Osborn’s techniques after all these years shows
how useful they are.) Osborn’s key observation is summed up nicely in his own words.

 It is easier to tone down a wild idea than to think up a new one.

 —Alex Faickney Osborn

 Basically, the gist of the method is to gather as many ideas as possible, not worrying about their
quality or practicality. After you assemble a large list of possible ideas, you examine them more
closely to see which deserve further work.

 To allow as many approaches as possible, you should try to get a diverse group of participants.
In software engineering, that means the group should include customers, users, user interface
designers, system architects, team leads, programmers, trainers, and anyone else who has an interest
in the project. Get as many different viewpoints as you can. (Although in practice brainstorming
becomes less effective if the group becomes larger than 10 or 12 people.)

 To keep the ideas fl owing, don’t judge or critique any of the ideas. If you criticize someone’s ideas, that
person may shut down and stop contributing. Even a truly crazy idea can spark other ideas that may
lead somewhere promising. Just write down every idea no matter how impractical it may seem. Even if
an idea is impossible to implement using today’s technology, it may be simple by next Wednesday.

 (It wasn’t that long ago that portable phones had the size, weight, and functionality of a brick. Now
they’re small enough to lose in the sofa cushions and have more computing power than NASA had
when Neil Armstrong fl ubbed his “one small step” line on the moon.)

Refi ning Requirements ❘ 75

 Osborn’s method uses the following four rules:

1. Focus on quantity. Do everything you can to keep the ideas fl owing. The more ideas you
collect, the greater your chances of fi nding a really creative and revolutionary solution.

2. Withhold criticism. Criticism can make people stop contributing. Early criticism can also
eliminate seemingly bad ideas that lead to better ideas.

3. Encourage unusual ideas . You can always “tone down a wild idea” but you may need to
think way outside of the box to fi nd really creative solutions.

4. Combine and improve ideas. Form new ideas by combining other ideas or using one idea to
modify another.

 Only after the fl ow of ideas is slowing to a trickle should you start evaluating the ideas to see what
you’ve got. At that point, you can pick out the most promising ideas to develop further (possibly
with more brainstorming).

 Many people are familiar with Osborn’s method (although they may not know its name), but there
are also several other brainstorming techniques, some of which can be even more effective. The
following list describes some of those techniques.

➤ Popcorn —(I think of this as the Mob technique.) People just speak out as ideas occur to them.
This works fairly well with small groups of people who are comfortable with each other.

➤ Subgroups —Break the group into smaller subgroups (possibly in the same room) and have
each group brainstorm. When the subgroups are fi nished, have the larger group discuss their
best ideas. This works well if the main group is very large, if some people feel uncomfortable
speaking in the larger group (the new developer in shorts and sandals may be afraid to speak
out in front of the corporate vice president in a thousand dollar suit), or if one or two people
are monopolizing the discussion.

➤ Sticky notes —Also called the nominal group technique (NGT). Participants write down their
ideas on sticky notes, index cards, papyrus, or whatever. The ideas are collected, read to the
group, and the group votes on each idea. The best ideas are developed further, possibly with
other rounds of brainstorming.

➤ Idea passing —Participants sit in a circle. (I suppose you could use some other arrangement
such as an ellipse, rectangle, or nonagon. As long as you have an ordering for the
participants.) Each person writes down an idea and passes it to the next person. The
participants add thoughts to the ideas they receive and pass them on to the next person. The
ideas continue moving around the circle until everyone gets their original idea back. At this
point, each idea should have been examined in great detail by the group. (Instead of a circle,
nonagon, or whatever, you can also swap ideas randomly.)

➤ Circulation list —This is similar to idea passing except the ideas are passed via e‐mail, enve-
lope, or some other method outside of a single meeting. This can take a lot longer than idea
passing but may be more convenient for busy participants.

➤ Rule breaking —List the rules that govern the way you achieve a task or goal. Then everyone
tries to think of ways to break or circumvent those rules while still achieving the goal.

76 ❘ CHAPTER 4 REQUIREMENT GATHERING

➤ Individual —Participants perform their own solitary brainstorming sessions. They can write
(or speak) their trains of thought, use word association, draw mind maps (diagrams relating
thoughts and ideas—search online for details), and any other technique they fi nd useful.
Some studies have shown that individual brainstorming may be more effective than group
brainstorming.

 The following list describes some tips that can make brainstorming more productive.

➤ Work in a comfortable room where everyone can feel at ease.

➤ Provide food and drinks. (I’ll let you decide what kinds of drinks.)

➤ Start by recapping the users’ current processes and the problems you are trying to solve.

➤ Use a clock to keep sessions short and lively. If you’re using an iterative approach such as
idea passing, keep the rounds short.

➤ Allow the group’s attention to wander a bit, but keep the discussion more or less on topic. If
you’re designing a remote mining rig control system, then you probably don’t need to be dis-
cussing Ouija boards or Monty Python quotes.

➤ However, a few jokes can keep people relaxed and help ideas fl ow, so a few Monty Python
quotes may be okay.

➤ If you get stuck, restate the problem.

➤ Allow silent periods so that people have time to think about the problem and their ideas.

➤ Reverse the problem. For example, instead of trying to think of ways to build better blogging
software, think of ways to build worse blogging software. (Obviously, don’t actually do them.)

➤ Write ideas in slightly ambiguous ways and let people give their interpretations.

➤ At the end, summarize the best ideas and give everyone copies so that they can think about
them later. Sometimes, a great idea pops into someone’s head after the offi cial brainstorming
sessions are over.

 Brainstorming is useful any time you want to fi nd creative solutions to complex problems, not just
during requirements gathering. You can use it to pick problems in your company that you might
solve with a new software project. You can use it to design user interfaces, explore possible system
architectures, create high‐level designs, and plan interesting exercises for training classes. (You can
even use brainstorming techniques outside of software engineering to decide where to go on your
next vacation, reduce pollution in your city, or pick a school science fair project.)

 Keep brainstorming in mind throughout the project as a technique you can use to attack diffi cult
problems.

 RECORDING REQUIREMENTS

 After you decide what should be in the requirements, you need to write them down so that everyone
can read them (and argue about whether they’re correct). There are several ways you can record
requirements so team members can refer to them throughout the project’s lifetime.

Recording Requirements ❘ 77

 Obviously, you can just write the requirements down as a sequence of commandments as in, “Thou
shalt make the user change passwords on every full moon.” There’s a lot to be said for writing down
requirements in simple English (or whatever your team’s native language is). For starters, the team
members already know that language and have been using it for many years.

 You can still mess things up by writing requirements ambiguously or in hard‐to‐understand formats
(such as limericks or haiku), but if you’re reasonably careful, requirements written in ordinary
language can be very effective.

 The following sections describe some other methods for recording requirements.

 UML
 The Unifi ed Modeling Language (UML) lets you specify how parts of the system should work. Despite
its name, UML isn’t a single unifi ed language. Instead it uses several kinds of diagrams to represent
different pieces of the system. Some of those represent program items such as classes. Others represent
behaviors, such as the way objects interact with each other and the way data fl ows through the system.

 I won’t bash UML (it’s too popular and I’m not famous enough to get away with it), but it does have
some drawbacks. Most notably it’s complicated. UML includes two main categories of diagrams
that are divided into more than a dozen specifi c types, each with its own complex set of rules.

 Specifying complex requirements with UML is only useful if everyone understands the UML.
Unfortunately, many customers and users don’t want to learn it. It’s not that they couldn’t. They just
usually have better things to do with their time, like helping you understand their needs. (I did actually
work on one project where the customers taught themselves how to use some types of UML diagrams
so that they could specify parts of the system. It worked reasonably well, but it took a long time.)

 I’ll talk more about UML in the next chapter. For now during requirement gathering, you probably
shouldn’t rely heavily on UML unless your customers are already reasonably familiar with it. (For
example, if you’re writing a library for use by other programmers who already use UML.)

 User Stories

 Storytelling strikes me as a more powerful tool than quantifi cation or
measurement for what we do.

 —Alan Cooper

 A user story is exactly what you might think: a short story explaining how the system will let the
user do something. For example, the following text is a story about a user searching a checkers
database to fi nd opponents:

 The user enters his Harkness rating (optional), whether moves should be timed or
untimed, and the variant (such as traditional, three‐dimensional, upside‐down,
or Gliński). When the user clicks Search, the application displays a list of possible
opponents that have compatible selections.

 Many developers write stories on index cards to encourage brevity. The scope of each story should
also be limited so that no story should take too long to implement (no more than a week or two).

78 ❘ CHAPTER 4 REQUIREMENT GATHERING

Notice that the story doesn’t contain a lot of detail about things like whether the game variants are
given in a list or set of radio buttons. The story lets you defer those decisions until later during design.

User stories should come with acceptance testing procedures that you can use at the end of
development to decide whether the application satisfi ed the story.

User stories may seem low‐tech, but they have some big advantages, not least of which is that people
are already familiar with them. They are easy to write, easy to understand, and can cover just
about any situation you can imagine. They can be simple or complex depending on the situation.
Unlike UML, your customers, developers, managers, and other team members already know how to
understand stories without any new training.

User stories give you a lot of expressiveness and fl exibility without a lot of extra work. (In management
speak, user stories allow you to leverage existing competencies to empower stakeholders.)

User stories do have some drawbacks. For example, you can easily write stories that are confusing,
ambiguous, inconsistent with other stories, and unverifi able. Of course, that’s true of any method of
recording requirements.

Use Cases
A use case is a description of a series of interactions between actors. The actors can be users or parts
of the application.

Often a use case has a larger scope than a user story. For example, a use case might explain how the
application will allow a user to examine cardiac ultrasound data for a patient. That user might need
to use many different screens to examine different kinds of recordings and measurements. Each of
those subtasks could be described by a user story, but the larger job of examining all the data would
be too big to describe on a single index card and would take longer to implement than a week or two.

Use cases also follow a template more often than user stories. A simple template might require a use
case to have the following fi elds:

➤ Title —The name of the goal as in, “User Examines Cardiac Data.” Usually, the title includes
an action (examines) and the main actor (user).

➤ Main success scenario —A numbered sequence of steps describing the most normal variation
of the scenario.

➤ Extensions —Sequences of steps describing other variations of the scenario. This may include
cases such as when the user enters invalid data or the application can’t handle a request. (For
example, if the user searches for a nonexistent patient.)

Other templates include a lot more fi elds such as lists of stakeholders interested in the scenario,
preconditions that must be met before the scenario begins, and success and failure variations.

Prototypes
A prototype is a mockup of some or all of the application. The idea is to give the customers a more
intuitive hands‐on feel for what the fi nished application will look like and how it will behave than
you can get from text descriptions such as user stories and use cases.

Recording Requirements ❘ 79

 A simple user interface prototype might display forms that contain labels, text boxes, and buttons
showing what the fi nished application will look like. In a nonfunctional prototype, the buttons,
menus, and other controls on the forms wouldn’t actually do anything. They would just sit there and
look pretty.

 A functional prototype (or working prototype) looks and acts as much like the fi nished application
will but it’s allowed to cheat. It may do something that looks like it works, but it may be incomplete
and it probably won’t use the same methods that the fi nal application will use. It might use less
effi cient algorithms, load data from a text fi le instead of a database, or display random messages
instead of getting them from another system. It might even use hard‐coded fake data.

 For example, the prototype might let you enter search criteria on a form. When you clicked the
Search button, the prototype would ignore your search criteria and display a prefi lled form showing
fake results. This gives the customers a good idea about how the fi nal application will work but it
doesn’t require you to write all the code.

 There are a couple of things you can do with a prototype after it’s built. First, you can use it to
defi ne and refi ne the requirements. You can show it to the customers and, based on their feedback,
you can modify it to better fi t their needs.

 After you’ve fi ne‐tuned the prototype so that it represents the customers’ requirements as closely as
possible, you can leave it alone. You can continue to refer to it if there’s a question about what the
application should look like or how it should work, but you start over from scratch when building
the application. This kind of prototype is called a throwaway prototype.

 Alternatively, you can start replacing the prototype code and fake data with production‐quality
code and real data. Over time, you can evolve the prototype into increasingly functional versions
until eventually it becomes the fi nished application. This kind of prototype is sometimes called an
evolutionary prototype. This approach is used by some of the iterative approaches described in
Chapter 13 .

 SURVIVAL OF THE LAZIEST

 You need to be careful if you use an evolutionary prototype. While throwing
together an initial version to show the customers what the fi nal application will do,
developers can (and should) take shortcuts to get things done as quickly as possible.
That can result in code that’s sloppy, riddled with bugs, and hard to maintain.

 As long as the prototype works, that’s fi ne. The prototype is only supposed to
give you an idea about how the program will work, so it doesn’t need to be as
maintainable as the fi nished application in the long run.

 That’s fi ne if you’re using the prototype only to defi ne requirements, but if you
try to evolve the prototype into a production application, you need to be sure to
go back and remove all the shortcuts and rewrite the code properly. If you don’t
remove all the prototype code, you’ll certainly pay the price later in increased bug
fi xes and maintenance.

80 ❘ CHAPTER 4 REQUIREMENT GATHERING

CHANGING REQUIREMENTS

In many projects, requirements evolve over time. As work proceeds, you may discover that
something you thought would be easy is hard. Or you may stumble across a technique that lets you
add a high‐value feature with little extra work.

Often changes are driven by the customers. After they start to see working pieces of the application,
they may think of other items that they hadn’t thought of before.

Requirements Specifi cation
How formally you need to write up the requirements depends on your project. If you’re building a
simple tool to rename the fi les on your own computer in bulk, a simple description may be enough.
If you’re writing software to fi ll out legal forms for a law fi rm, you probably need to be much more
formal. (And you might want to hire a different law fi rm to review your contract.)

If you search the Internet, you can fi nd several templates for requirement specifi cations. These
typically list major categories of requirements such as user documentation, user interface design,
and interfaces with other systems.

For example, Villanova University has an example template in Word format at tinyurl.com/
obqhatt . The North Carolina Enterprise Project Management Offi ce has another one at tinyurl
.com/n7ttqfh . (These are really long URLs so I used tinyurl to shorten them.)

 VALIDATION AND VERIFICATION

After you record the requirements (with whatever methods you prefer), you still need to validate
them and later verify them. The two terms validation and verifi cation are sometimes used
interchangeably. Here are the defi nitions I use. (I think these are the most common interpretations.)

Requirement validation is the process of making sure that the requirements say the right things.
Someone, often the customers or users, need to work through all the requirements and make sure that
they: (1) Describe things the application should do. (2) Describe everything the application should do. g

Requirement verifi cation is the process of checking that the fi nished application actually satisfi es the
requirements.

 VALIDATION VERSUS VERIFICATION

Another way to think of this is

Validation —Are we doing the right things?

Verifi cation —Are we doing the things right?

Those two statements are glib, but it’s hard to remember which is which. Perhaps a
better way to remember the difference is that “validation” comes before “verifi cation”
alphabetically and validation comes before verifi cation in a software project.

Summary ❘ 81

 Depending on the kind of project, you may accommodate some changes, as long as they don’t get out
of hand. You can help control the number of changes by creating a change control board. Customers
(and others) can submit change requests to this board (which might actually be a single person) for
approval. The board decides whether a change should be implemented or deferred to a later release.

 The development methods described in Chapters 13 and 14 are particularly good at dealing with
changing requirements because they tend to build an application in small steps with frequent
opportunities for refi nement. If you add new features in a mini‐project every two weeks, it’s easy
to add new requirements into the next phase. There’s still a danger of never fi nishing the project,
however, if the change requests keep trickling in.

 SUMMARY

 Requirements gathering may not be the most important stage of a project, but it certainly is t an
important stage. It sets the direction for future development. If you get the requirements wrong, you
may develop something but there’s no guarantee that it will be useful.

 Good requirements must satisfy some basic requirements of their own. For example, they must
be clear and consistent. Having hundreds of requirements won’t do you any good if no one can
understand what they mean or if they contradict each other.

 Some developers group requirements into categories. For example, you can use audience‐oriented
categories, FURPS, or FURPS+ to organize requirements. Categorizing requirements alone doesn’t
help you defi ne the project, but you can use the categories as a checklist to make sure you haven’t
forgotten anything obvious. (They also make it easier to understand other software engineers at
parties when they say, “This party has good functional requirements but the nonfunctionals could
use some work!”)

 There are several ways you can gather requirements. Obviously, you should talk with the customers
and, if possible, the users. You can use the fi ve Ws and one H to help guide the conversation.
Studying the users as they currently perform their jobs is often instructive. It can help clarify the
project’s goals, and occasionally you may discover simple things you can add to the project that will
make the users’ jobs a whole lot easier.

 After you understand the customers’ needs, you must refi ne those needs into requirements. Three
techniques that can help include: copying an existing system, using previous experience to just
write them down, and brainstorming. Brainstorming is often more work but can sometimes lead to
creative solutions that you might not have discovered otherwise.

 Finally, after you know what the requirements are, you need to record them so everyone can refer
to them as the project continues. Some ways you can record requirements include formal written
specifi cations, UML diagrams, user stories, use cases, and prototypes.

 Before you move on to the next phase of development, you should validate the requirements to
ensure that they actually meet the customers’ needs. (Later, near the end of the project, you’ll also
need to verify that the project has met the requirements.)

 If you think this seems like a lot of work before the project “actually” begins, you’re right. However,
it’s critical to the project’s eventual success. Without sound requirements, how will you know what

82 ❘ CHAPTER 4 REQUIREMENT GATHERING

to build? Unless the requirements are clear and verifi able, how will you know if you’ve achieved
your goals?

 After you gather, record, and validate the requirements, you’re ready to move on to the next stage of
development: high‐level design. You may have already incorporated some design decisions into the
requirements. For example, you might have made some user interface decisions or picked a system
architecture.

 The next chapter explains some of the high‐level design decisions you might need to make, whether
in the requirements phase or during a separate high‐level design step. It also provides some guidance
on how to make those decisions.

EXERCISES

1. List fi ve characteristics of good requirements.

2. What does MOSCOW stand for?

3. Suppose you want to build a program called TimeShifter to upload and download fi les at
scheduled times while you’re on vacation. The following list shows some of the application’s
requirements.

 a. Allow users to monitor uploads/downloads while away from the offi ce.

 b. Let the user specify website log-in parameters such as an Internet address, a port, a
username, and a password.

 c. Let the user specify upload/download parameters such as number of retries if there’s a
problem.

 d. Let the user select an Internet location, a local fi le, and a time to perform the upload/
download.

 e. Let the user schedule uploads/downloads at any time.

 f. Allow uploads/downloads to run at any time.

 g. Make uploads/downloads transfer at least 8 Mbps.

 h. Run uploads/downloads sequentially. Two cannot run at the same time.

 i. If an upload/download is scheduled for a time when another is in progress, it waits until the
other one fi nishes.

 j. Perform scheduled uploads/downloads.

 k. Keep a log of all attempted uploads/downloads and whether they succeeded.

 l. Let the user empty the log.

 m. Display reports of upload/download attempts.

 n. Let the user view the log reports on a remote device such as a phone.

Summary ❘ 83

 o. Send an e‐mail to an administrator if an upload/download fails more than its maximum retry
number of times.

 p. Send a text message to an administrator if an upload/download fails more than its
maximum retry number of times.

 For this exercise, list the audience‐oriented categories for each requirement. Are there
requirements in each category?

4. Repeat Exercise 3 using the FURPS requirement categories.

5. What are the fi ve Ws and one H?

6. List three techniques for gathering requirements from customers and users.

7. Explain why brainstorming can be useful in defi ning requirements.

8. List the four rules of the Osborn method.

9. Figure 4-1 shows the design for a simple hangman game that will run on smartphones. When
you click the New Game button, the program picks a random mystery word from a large list
and starts a new game. Then if you click a letter, either the letter is fi lled in where it appears
in the mystery word, or a new piece of Mr. Bones’s skeleton appears. In either case, the letter
you clicked is grayed out so that you don’t pick it again. If you guess all the letters in the
mystery word, the game displays a message that says, “Congratulations, you won!” If you
build Mr. Bones’s complete skeleton, a message says, “Sorry, you lost.”

FIGURE 4-1: The Mr. Bones application is a hangman word game for Windows Phone.

84 ❘ CHAPTER 4 REQUIREMENT GATHERING

 Brainstorm this application and see if you can think of ways you might change it. Use the
MOSCOW method to prioritize your changes.

10. (Instructors) Have the class brainstorm ideas to address a fairly diffi cult issue (such as reversing
global warming, ending global hunger, or making politicians honor their campaign promises).
If time permits, try a couple different brainstorming variations such as popcorn, subgroups,
and individual. Discuss what went well and what didn’t.

Summary ❘ 85

▸ WHAT YOU LEARNED IN THIS CHAPTER
➤ Requirements are important to a project because they set the project’s goals and direction.

➤ Requirements must be clear, unambiguous, consistent, prioritized, and verifi able.

➤ The MOSCOW method provides one way to prioritize requirements.

➤ FURPS stands for Functionality, Usability, Reliability, Performance, and Supportability.

➤ FURPS+ also adds design constraints, implementation requirements, interface requirements,
and physical requirements.

➤ You can gather requirements by talking to customers and users, watching users at work, and
studying existing systems.

➤ You can convert goals into requirements by copying existing systems and methods, using pre-
vious experience to write them down, and brainstorming.

➤ You can record requirements in written specifi cations, UML diagrams, user stories, use cases,
and prototypes.

➤ Requirements may change over time. That’s okay as long as it happens in a controlled
manner.

➤ Requirement validation is the process of checking that the requirements meet the customers’
needs.

➤ Requirement verifi cation is the process of checking that the fi nished project satisfi es the
requirements.

 Design is not just what it looks like and feels like. Design is how it works.

 —Steve Jobs

 Design is easy. All you do is stare at the screen until drops of blood form on
your forehead.

 —Marty Neumeier

 WHAT YOU WILL LEARN IN THIS CHAPTER:

➤ The purpose of high‐level design

➤ How a good design lets you get more work done in less time

➤ Specifi c things you should include in a high‐level design

➤ Common software architectures you can use to structure an application

➤ How UML lets you specify system objects and interactions

 High‐level design provides a view of the system at an abstract level. It shows how the major
pieces of the fi nished application will fi t together and interact with each other.

 A high‐level design should also specify assumptions about the environment in which the
fi nished application will run. For example, it should describe the hardware and software you
will use to develop the application, and the hardware that will eventually run the program.

 The high‐level design does not focus on the details of how the pieces of the application will
work. Those details can be worked out later during low‐level design and implementation.

 Before you start learning about specifi c items that should be part of the high‐level design,
you should understand the purpose of a high‐level design and how it can help you build an
application.

 5

88 ❘ CHAPTER 5 HIGH‐LEVEL DESIGN

THE BIG PICTURE

You can view software development as a process that chops up the system into smaller and smaller
pieces until the pieces are small enough to implement. Using that viewpoint, high‐level design is the
fi rst step in the chopping up process.

The goal is to divide the system into chunks that are self‐contained enough that you could give them
to separate teams to implement.

ADDING PEOPLE

Breaking an existing task into smaller pieces is one of the few ways you can
sometimes add people to a project and speed up development.

Adding new people to the same old tasks usually doesn’t help and often actually slows
development as the new people get up to speed and get in each other’s way. (It can
feel like you’re in a leaky lifeboat with a single bucket and more people are climbing
aboard. You may enjoy the company, but their extra weight will make you sink faster.)

However, if you can break a large task into smaller pieces and assign them to
different people, you may speed things up a bit. The new people still need time
come up to speed, so this won’t always help, but at least people won’t trip over each
other trying to perform the same tasks.

PARALLEL IMPLEMENTATION

Suppose you’re building a relatively simple application to record the results of Twister
games for a championship. It needs to store the names of the players in each match,
the date and time they played, and the order in which they fell over during play.

You might break this application into two large pieces: the database and the user
interface. You could then assign those two pieces to different groups of developers
to implement in parallel.

(You’ll see in the rest of this chapter that there are actually a lot of other pieces you
might want to specify even for this simple application.)

There are a lot of variations on this basic theme. On a small project, for example, the project’s
pieces might be small enough that they can be handled by individual developers instead of teams.

In a large project, the initial pieces might be so big that the teams will want to create their own
medium‐level designs that break them into smaller chunks before trying to write any code. This can
also happen if a piece of the project turns out to be harder than you had expected. In that case, you
may want to break it into smaller pieces and assign them to different people.

In some projects, you may want to assign multiple pieces of the project to a single team, particularly
if the pieces are closely related. For example, if the pieces pass a lot of data back and forth, it will
be helpful if the people building those pieces work closely together. (Multitier architectures, which

What to Specify ❘ 89

are described in the “Client/Server” section later in this chapter, can help minimize this sort of
interaction.)

 Another situation in which this kind of close cooperation is useful is when several pieces of the
application all work with the same data structure or with the same database tables. Placing the data
structure or tables under the control of a single team may make it easier to keep the related pieces
synchronized.

 WHAT TO SPECIFY

 The stages of a software engineering project often blur together, and that’s as true for high‐
level design as it is for any other part of development. For example, suppose you’re building an
application to run on the Windows phone platform. In that case, the fact that your hardware
platform is Windows phones should probably be in the requirements. (Although you may want to
add extra details to the high‐level design, such as the models of phones that you will test.)

 Exactly what you should specify in the high‐level design varies somewhat, but some things are
constant for most projects. The following sections describe some of the most common items you
might want to specify in the high‐level design.

 Security
 The fi rst thing you see when you start most applications is a login screen. That’s the fi rst obvious
sign of the application’s security, but it’s actually not the fi rst piece. Before you even log in to the
application, you need to log in to the computer.

 Your high‐level design should sketch out all the application’s security needs. Those needs may
include the following:

➤ Operating system security—This includes the type of login procedures, password expiration
policies, and password standards. (Those annoying rules that say your password must
include at least one letter, one number, one special character like # or %, and three Egyptian
hieroglyphs.)

➤ Application security—Some applications may rely on the operating system’s security and not
provide their own. Others may use the operating system’s security to make the user reenter
the same username and password. Still others may use a separate application username and
password. Application security also means providing the right level of access to different
users. For example, some users might not be allowed access to every part of the system. (I’ll
say more about this in the section “User Access” later in the chapter.)

➤ Data security—You need to make sure your customer’s credit card information doesn’t fall
into the hands of Eastern European hackers.

➤ Network security—Even if your application and data are secure, cyber banditos might steal
your data from the network.

➤ Physical security—Many software engineers overlook physical security. Your application
won’t do much good if the laptop it runs on is stolen from an unlocked offi ce.

90 ❘ CHAPTER 5 HIGH‐LEVEL DESIGN

 All these forms of security interact with each other, sometimes in non‐obvious ways. For example,
if you reset passwords too often, users will pick passwords that are easier to remember and possibly
easier for hackers to guess. You could add your name to the month number (Rod1 for January,
Rod2 for February, and so forth), but those would be easy to guess. If you make the password rules
too strict (requiring two characters from each row of the keyboard), users may write their passwords
down where they are easy to fi nd.

 Physical security also applies to passwords. I’ve seen large customer service environments in
which users often needed manager approval for certain kinds of common operations. In fact,
those overrides were so common that the manager didn’t have time to handle them and get any
other work done. The solution they adopted was to write the manager’s username and password
on a whiteboard at the front of the room so that everyone could use it to perform their own
overrides.

 The password was insecure, so any hacker who got into the room could do just about anything with
the system. (Fortunately, the room had no windows and was diffi cult to get into without the right
badge and passwords.)

 This also meant that any user could impersonate the manager and do just about anything. If that’s
the case, why bother having user permissions?

 If you need to make 50 exceptions per day, then they’re not actually exceptions. The solution would
have been to not require manager approval for such a common task. Then the manager could have
kept her password private and used overrides only for truly important stuff.

 Hardware
 Back in the old days when programmers worked by candlelight on treadle‐powered computers,
hardware options were limited. You pretty much wrote computers for large mainframes or desktop
computers. You had your pick of a few desktop vendors, and you could pick Windows or Macintosh
operating systems, but that was about it.

 These days you have a lot more choices and you need to specify the ones that you’ll be using. You
can build systems to run on mainframes (yes, they still exist), desktops, laptops, tablets, and phones.
Mini‐computers act sort of as a mini‐mainframe that can serve a handful of users. Personal Digital
Assistants (PDAs) are small computers that are basically miniature tablets.

 Wearable devices include such gadgets as computers strapped to the wearer’s wrist (sort of like
a PDA with a wrist strap and possibly extra keys and buttons), wristbands, bracelets, watches,
eyeglasses, and headsets.

 Additional hardware that you need to specify might include the following:

➤ Printers

➤ Network components (cables, modems, gateways, and routers)

➤ Servers (database servers, web servers, and application servers)

➤ Specialized instruments (scales, microscopes, programmable signs, and GPS units)

➤ Audio and video hardware (webcams, headsets, and VOIP)

What to Specify ❘ 91

 With all the available options (and undoubtedly many more on the way), you need to specify the
hardware that will run your application. Sometimes, this will be relatively straightforward. For
example, your application might run on a laptop or in a web page that could run on any web‐
enabled hardware. Other times the hardware specifi cation might include multiple devices connected
via the Internet, text messages, a custom network, or by some other method.

EXAMPLE Selecting a Hardware Platform

 Suppose you’re building an application to manage the fl eet of dog washing vehicles run by The
Pampered Poodle Emergency Dog Washing Service. When a customer calls in to tell you Fifi ran afoul
of a skunk, you dispatch an emergency dog-washer to the scene.

 In this case, your drivers might access the system over cell phones. A desktop computer back at the
offi ce would hold the database and provide a user interface to let you do everything else the business
needs such as logging customer calls, dispatching drivers, printing invoices, tracking payments, and
ordering doggy shampoo.

 For this application, you would specify the kind of phones the drivers will use (such as Windows, iOS,
or Android), the model of the computer used to hold the database and business parts of the application,
and the type of network connectivity the application will use. (Perhaps the database desktop serves data
on the Internet and the phones download data from there.)

 Another strategy would be to have the desktop serve information to the drivers as web pages. Then the
drivers could use any web‐enabled device (smartphone, tablet, Google Glass) to view their assignments.

 User Interface
 During high‐level design, you can sketch out the user interface, at least at a high level. For example,
you can indicate the main methods for navigating through the application.

 Older‐style desktop applications use forms with menus that display other forms. Often the user
can display many forms at the same time and switch between them by clicking with the mouse (or
touching if the hardware has a touch screen).

 In contrast, newer tablet‐style applications tend to use a single window (that typically covers the
entire tablet, or whatever hardware you’re using) and buttons or arrows to navigate. When you click
a button, a new window appears and fi lls the device. Sometimes a Back button lets you move back
to the previous window.

 Whichever navigational model you pick, you can specify the forms or windows that the application
will include. You can then verify that they allow the user to perform the tasks defi ned in the
requirements. In particular, you should walk through the user stories and use cases and make sure
you’ve included all the forms needed to handle them.

 In addition to the application’s basic navigational style, the high‐level user interface design can
describe special features such as clickable maps, important tables, or methods for specifying system
settings (such as sliders, scrollbars, or text boxes).

 This part of the design can also address general appearance issues such as color schemes, company
logo placement, and form skins.

92 ❘ CHAPTER 5 HIGH‐LEVEL DESIGN

You don’t need to specify every label and text box for every form during high‐level user interface
design. You can handle that during low‐level design and implementation. (Often the controls you
need follow from the database design anyway, so you can sometimes save some work if you do the
database design fi rst. Some tools can even use a database design to build the fi rst version of the
forms for you.)

Internal Interfaces
When you chop the program into pieces, you should specify how the pieces will interact. Then the
teams assigned to the pieces can work separately without needing constant coordination.

It’s important that the high‐level design specifi es these internal interactions clearly and
unambiguously so that the teams can work as independently as possible. If two teams that need
to interact don’t agree on how that interaction should occur, they can waste a huge amount of
time. They may waste time squabbling about which approach is better. They will also waste time
if one team needs to change the interface and that forces the other team to change its interface,
too. The problem increases dramatically if more than two teams need to interact through the same
interface.

FOLLOW EXISTING PRACTICES

Most users have a lot of experience with previous applications, and those
applications follow certain standardized patterns. For example, desktop
applications typically have menus that you access from a form’s title bar. The menus
drop down below and submenus cascade to the right. That’s the way Windows
applications have been handling menus for decades and users are familiar with how
they work.

If your application sticks to a similar pattern, users will feel comfortable with the
application with little extra training. They already know how to use menus, so they
won’t have any trouble using yours. Instead they can concentrate on learning how
to use the more interesting pieces of your system.

Now suppose your application changes this kind of standard interaction. Perhaps
you access the menus by clicking a little icon on the right edge of the toolbar and
then menus cascade out to the left instead of the right. Or perhaps there are no
menus, just panels fi lled with icons you can click to open new forms. In that case,
users will need to learn how to use your new system. That will at least lead to some
unnecessary confusion, and it might create a lot of annoyance for the users.

(I use one tool in particular, which I won’t name, that for some reason thinks it
knows a better way to handle menus, toolbars, and toolboxes. It’s frustrating,
incredibly annoying, and sometimes leads to major outbreaks of swearing.)

Unless you have a good reason to change the way most applications already work,
stick with what the users already know.

What to Specify ❘ 93

 It’s worth spending some extra time to defi ne these sorts of internal interfaces carefully before
developers start writing code. Unfortunately, you may not be able to defi ne the interfaces before
writing at least some code. In that case, you may need to insulate two project teams by defi ning a
temporary interface. After the teams have written enough code to know what information they need
to exchange, they can defi ne the fi nal interface.

 DEFERRED INTERFACES

 I worked on one project where two teams needed to pass a bunch of information
back and forth. Of course, at the beginning of the project, neither team had written
any code to work with the other team, so neither team could call the other. We also
weren’t sure what data the two teams would need to pass, so we couldn’t specify
the interface with certainty.

 To get both teams working quickly, the high‐level design specifi ed a text fi le format
that the teams could use to load test data. Instead of calling each other’s code,
the teams could read data from a test data fi le. They were also free to modify the
formats of their fi les as their needs evolved.

 After several months of work, the two teams had written code to process the data
and their needs were better defi ned. At that point, they agreed on a format for
passing data and switched from loading data from data fi les to actually calling each
other’s code.

 It would have been more effi cient to have defi ned the perfect interface at the
beginning during high‐level design, but that wasn’t an option. Using text fi les to act
as temporary interfaces allowed both teams to work independently.

 (The multitier design described in the “Architecture” section later in this chapter
does something similar.)

 External Interfaces
 Many applications must interact with external systems. For example, suppose you’re building a
program that assigns crews for a large chartered fi shing company. The application needs to assign
a captain, fi rst mate, and cook for each trip. Your program needs to interact with the existing
employee database to get information about crew members. (You don’t want to assign a boat three
cooks and no captain.) You might also need to interact with a sales program that lets salespeople
book fi shing trips.

 In a way, external interfaces are often easier to specify than internal ones because you usually don’t
have control over both ends of the interface. If your application needs to interact with an existing
system, then that system already has interface requirements that you must meet.

 Conversely, if you want future systems to interface with yours, you can probably specify whatever
interface makes sense to you. Systems developed later need to meet your requirements. (Try to make
your interface simple and fl exible so that you don’t get fl ooded with change requests.)

94 ❘ CHAPTER 5 HIGH‐LEVEL DESIGN

Architecture
 An application’s architecture describes how its pieces fi t together at a high level. Developers use
a lot of “standard” types of architectures. Many of these address particular characteristics of the
problem being solved.

 For example, rule‐base systems are often used to handle complex situations in which solving a
particular problem can be reduced to following a set of rules. Some troubleshooting systems use
this approach. You call in because your computer can’t connect to the Internet, and a customer rep
from some distant time zone asks you a sequence of questions to try to diagnose the problem. The
rep reads a question off a computer screen, you answer, and the rep clicks the corresponding button
to get to the next question. Rules inside the rep’s diagnostic system decide which question to give
you next.

 Other architectures attempt to simplify development by reducing the interactions among the
pieces of the system. For example, a component‐based architecture tries to make each piece
of the system as separate as possible so that different teams of developers can work on them
separately.

 The following sections describe some of the most common architectures.

Monolithic
 In a monolithic architecture , a single program does everything. It displays the user interface,
accesses data, processes customer orders, prints invoices, launches missiles, and does whatever else
the application needs to do.

 This architecture has some signifi cant drawbacks. In particular, the pieces of the system are tied
closely together, so it doesn’t give you a lot of fl exibility. For example, suppose the application stores
customer address data and you later need to change the address format. (Perhaps you add a fi eld to
hold suite numbers.) Then you also need to change every piece of code that uses the address. This
may not be too hard, but it means the programmers working on related pieces of code must stop
what they’re doing and deal with the change before they can get back to their current tasks. (The
multitier architectures described in the next section handle this better, allowing the different teams
of developers to work more independently.)

 A monolithic architecture also requires that you understand how all the pieces of the system fi t
together from the beginning of the project. If you get any of the details wrong, the tight coupling
between the pieces of the system makes fi xing them later diffi cult.

 Monolithic architectures do have some advantages. Because everything is built into a single
program, there’s no need for complicated communication across networks. That means you don’t
need to write and debug communication routines; you don’t need to worry about the network going
down; and you don’t need to worry about network security. (Well, you still need to worry about
some hacker sneaking in through your network and attacking your machines, but at least you don’t
need to encrypt messages sent between different parts of the application.)

 Monolithic architectures are also useful for small applications where a single programmer or team is
working on the code.

What to Specify ❘ 95

 Client/Server
 A client/server architecture separates pieces of the system that need to use a
particular function (clients) from parts of the system that provide those functions
(servers). That decouples the client and server pieces of the system so that
developers can work on them separately.

 For example, many applications rely on a database to hold information about
customers, products, orders, and employees. The application needs to display that
information in some sort of user interface. One way to do that would be to
integrate the database directly into the application. Figure 5-1 shows this situation
schematically.

 One problem with this design is that multiple
users cannot use the same data. You can fi x
that problem by moving to a two‐tier
architecture where a client (the user interface)
is separated from the server (the database).
Figure 5-2 shows this design. The clients and
server communicate through some network
such as a local area network (LAN), wide area
network (WAN), or the Internet.

 In this example, the client is the user interface
(two instances of the same program) and
the server is a database, but that need not
be the case. For example, the client could be a program that makes
automatic stock purchases, and the server could be a program that
scours the Internet for information about companies and their stocks.

 The two‐tier architecture makes it easier to support multiple clients
with the same server, but it ties clients and servers relatively closely
together. The clients must know what format the server uses, and if
you change the way the server presents its data, you need to change
the client to match. That may not always be a big problem, but it can
mean a lot of extra work, particularly in the beginning of a project
when the client’s and server’s needs aren’t completely known.

 You can help to increase the separation between the clients and server
if you introduce another layer between the two to create the three‐
tier architecture , as shown in Figure 5-3 .

 In Figure 5-3 , the middle tier is separated from the clients and the
server by networks. The database runs on one computer, the middle
tier runs on a second computer, and the instances of the client run on
still other computers. This isn’t the only way in which the pieces of
the system can communicate. For example, in many applications the
middle tier runs on the same computer as the database.

User
Interface

Database

 FIGURE 5-1: An
application can
directly hold its
own data.

DatabaseNetwork

User
Interface

User
Interface

 In a two‐tier architecture, the client is
separate from the server.

Middle Tier

User
Interface

User
Interface

Database

Network

Network

 FIGURE 5-3: A three‐tier
architecture separates clients
and servers with a middle tier.

96 ❘ CHAPTER 5 HIGH‐LEVEL DESIGN

In a three‐tier architecture, the middle tier provides insulation between the clients and server. In
this example, it provides an interface that can map data between the format provided by the server
and the format needed by the client. If you need to change the way the server stores data, you need
to update only the middle tier so that it translates the new format into the version expected by the
client.

Conversely, if the client’s data needs change, you can modify the middle tier to insert fake data until
you have a chance to update the server to provide the actual data.

The separation provided by the middle tier lets different teams work on the client and server without
interfering with each other too much.

In addition to providing separation, a middle tier can perform other actions that make the data
easier to use by the client and server. For example, suppose the client needs to display some sort
of aggregate data. Perhaps Martha’s Musical Mechanisms needs to display the total number of
carillons sold by each employee for each of the last 12 quarters. In that case, the server could store
the raw sales data, and the middle tier could aggregate the data before sending it to the client.

TIER TERMINOLOGY

Sometimes, the client tier is called the presentation tier (because it presents
information to the user); the middle tier is called the logic tier (because it contains
business logic such as aggregating data for the presentation tier); and the client tier
is called the data tier (particularly if all it does is provide data).

You can defi ne other multitier architectures (or N‐tier architectures) that use more than three tierss
if that would be helpful. For example, a data tier might store the data, a second tier might calculate
aggregates and perform other calculations on the data, a third tier might use artifi cial intelligence
techniques to make recommendations based on the second tier’s data, and a fourth tier would be a
presentation tier that lets users see the results.

BEST PRACTICE

Multitier architectures are a best practice, largely because of the separation they
provide between the client and server layers. Most applications don’t use more than
three tiers.

Component‐Based
In component‐based software engineering (g CBSE), you regard the system as a collection of loosely
coupled components that provide services for each other. For example, suppose you’re writing a
system to schedule employee work shifts. The user interface could dig through the database to
see what hours are available and what hours an employee can work, but that would tie the user
interface closely to the database’s structure.

What to Specify ❘ 97

 An alternative would be to have the user interface ask
components for that information, as shown in Figure 5-4 . (UML
provides a more complex diagram for services that is described in
the section “UML” later in this chapter.)

 The Assign Employee Hours user interface component would
use the Shift Hours Available component to fi nd out what hours
were not yet assigned. It would use the Employee Hours Available
component to fi nd out what hours an employee has available. After
assigning new hours to the employee, it would update the other
two components so that they know about the new assignment.

 A component‐based architecture decouples the pieces of code
much as a multitier architecture does, but the pieces are all contained within the same executable
program, so they communicate directly instead of across a network.

 Service‐Oriented
 A service‐oriented architecture (SOA) is similar to a component‐based architecture except the pieces
are implemented as services. A service is a self‐contained program that runs on its own and provides
some kind of service for its clients.

 Sometimes, services are implemented as web services . Those are simply programs that satisfy certain
standards, so they are easy to invoke over the Internet.

Assign
Employee

Hours
Employee

Hours
Available

Shift
Hours

Available

 FIGURE 5-4: In a component‐
based architecture, components
help decouple pieces of code.

 DEFINING SOA

 Some big software vendors such as IBM and Oracle also defi ne Service Component
Architecture (SCA). This is basically a set of specifi cations for SOA defi ned by those
companies.

 Data‐Centric
Data‐centric or database‐centric architectures come in a variety of fl avors that all use data in some
central way. The following list summarizes some typical data‐centric designs:

➤ Storing data in a relational database system. This is so common that it’s easy to think of as a
simple technique for use in other architectures rather than an architecture of its own.

➤ Using tables instead of hard‐wired code to control the application. Some artifi cial intelligence
applications such as rule‐based systems use this approach.

➤ Using stored procedures inside the database to perform calculations and implement business
logic. This can be a lot like putting a middle tier inside the database.

 Event‐Driven
 In an event‐driven architecture (EDA), various parts of the system respond to events as they occur.
For example, as a customer order for robot parts moves through its life cycle, different pieces of
the system might respond at different times. When the order is created, a fulfi llment module might

98 ❘ CHAPTER 5 HIGH‐LEVEL DESIGN

notice and print a list of the desired parts and an address label. When the order has been shipped,
an invoicing module might notice and print an invoice. When the customer hasn’t paid the invoice
for 30 days, an enforcement module might notice and send RoboCop to investigate.

Rule‐Based
A rule‐based architecture uses a collection of rules to decide what to do next. These systems are
sometimes called expert systems or knowledge‐based systems .

The troubleshooting system described earlier in this chapter uses a rule‐based approach.

Rule‐based systems work well if you can identify the rules necessary to get the job done. Sometimes,
you can build good rules even for complicated systems; although that can be a lot of work.

Rule‐based systems don’t work well if the problem is poorly defi ned so you can’t fi gure out what
rules to use. They also have trouble handling unexpected situations.

ROTTEN RULES

For several years I had a fairly odd network connection leading directly to
my phone company’s central offi ce. One day it didn’t work, so I called tech
support, and the service rep started working through his troubleshooting rules.
Unfortunately, the phone company hadn’t offered my type of service for several
years, so the rules didn’t cover it.

Eventually, the rep reached a rule that asked me to unplug my modem and reconnect
it. I explained that the modem was in the central offi ce and that unplugging anything
on my end would also disconnect my phone. The rules didn’t give him any other
options, so he insisted. I unplugged my cable and predictably the phone call dropped.

I called back, got a different rep who was a little better at thinking outside of the rules,
and we discovered (as I had suspected) that the problem was at the central offi ce.

Rule‐based systems are great for handling common simple scenarios, but when they encounter
anything unexpected they’re quite useless. For that reason, you should always give the user a way to
handle special situations manually.

Distributed
In a distributed architecture , different parts of the application run on different processors and may
run at the same time. The processors could be on different computers scattered across the network,
or they could be different cores on a single computer. (Most modern computers have multiple cores
that can execute code at the same time.)

Service‐oriented and multitier architectures are often distributed, with different parts of the system
running on different computers. Component‐oriented architectures may also be distributed, with
different components running on different cores on the same computer.

In general, distributed applications can be extremely confusing and hard to debug. For
example, suppose you’re writing an application that sells offi ce supplies such as staples, paper

What to Specify ❘ 99

clips, and demotivational posters. You sell to companies that might have several authorized
purchasers.

 Now suppose your application uses the following steps to add the cost of a new purchase to a
customer’s outstanding balance:

1. Get customer balance from database.

2. Add new amount to balance.

3. Save new balance in database.

 This seems straightforward until you think about what happens if two people make purchases at
almost the same time with a distributed application. Suppose a customer has an outstanding balance
of $100. One purchaser buys $50 worth of sticky notes while another purchaser is buying a $10
trash can labeled “suggestions.” Now suppose the application executes the two purchasers’ steps in
the order shown in Table 5-1 .

 TABLE 5-1: Offi ce Supply Purchasing Sequence

PURCHASER 1 PURCHASER 2

Get balance. ($100)

Get balance. ($100)

Add to balance. ($150)

Add to balance. ($110)

Save new balance. ($150)

Save new balance. ($110)

 In Table 5-1 , time increases downward so Purchaser 1 gets the account balance fi rst and then
Purchaser 2 gets the account balance.

 Next Purchaser 1 adds $50 to his balance to get $150, and then Purchaser 2 adds $10 to his balance
to get $110.

 Purchaser 1 then saves his new balance of $150 into the database. Finally Purchaser 2 saves his
balance of $110 into the database, writing over the $150-balance that Purchaser 1 just saved. In the
end, instead of holding a balance of $160 ($100 + $50 + $10), the database holds a balance of $110.

 In distributed computing, this is called a race condition . The two processes are racing to see which
one saves its balance fi rst. Whichever one saves its balance second “wins.” (Although you lose.)

 A distributed architecture can improve performance as long as you don’t run afoul of race
conditions and other potential problems.

 Mix and Match
 An application doesn’t need to stick with a single architecture. Different pieces of the application
might use different design approaches. For example, you might create a distributed service‐oriented

100 ❘ CHAPTER 5 HIGH‐LEVEL DESIGN

application. Some of the larger services might use a component‐based approach to break their code into
decoupled pieces. Other services might use a multitier approach to separate their features from the data
storage layer. (Combining different architectures can also sound impressive at cocktail parties. “Yes, we
decided to go with an event‐driven multitier approach using rule‐based distributed components.”)

CLASSYDRAW ARCHITECTURE

Suppose you want to pick an architecture for the ClassyDraw application described
in Chapter 4 . (Recall that this is a drawing program somewhat similar to MS Paint
except it lets you select and manipulate drawing objects.) One way to do that is to
think about each of the standard architectures and decide whether it would make
sense to use while building the program.

1. Monolithic —This is basically the default if none of the more elaborate archi-
tectures apply. We’ll come back to this one later.

2. Client/server, multitier —ClassyDraw stores drawings in fi les, not a database,
so client/server and multitier architectures aren’t needed. (You could store
drawings in a database if you wanted to, perhaps for an architectural fi rm
or some other use where there would be some benefi t. For a simple drawing
application, it would be overkill.)

3. Component‐based —You could think of different pieces of the application as
components providing services to each other. For example, you could think of
a “rectangle component” that draws a rectangle. For this simple application,
it’s probably just as easy to think of a Rectangle class that draws a rectangle,
so I’m not going to think of this as a component‐based approach.

4. Service‐oriented —This is even less applicable than the component‐based approach.
Spreading the application across multiple computers connected via web services
(or some other kind of service) wouldn’t help a simple drawing application.

5. Data‐centric —The user defi nes the drawings, so there’s no data around which
to organize the program. (Although a more specialized program, perhaps a
drafting program for an architectural fi rm or an aerospace design program,
might interact with data in a meaningful way.)

6. Event‐driven —The user interface will be event‐driven. For example, the user
selects a tool and then clicks and drags to create a new shape.

7. Rule‐based —There are no rules that the user must follow to make a drawing,
so this program isn’t rule‐based.

8. Distributed —This program doesn’t perform extensive calculations, so distrib-
uting pieces across multiple CPUs or cores probably wouldn’t help.

Because none of the more exotic architectures applied (such as multitier or service‐
oriented), this application can have a simple monolithic architecture with an event‐
driven user interface.

What to Specify ❘ 101

 Reports
 Almost any nontrivial software project can use some kinds of reports. Business applications might
include reports that deal with customers (who’s buying, who has unpaid bills, where customers
live), products (inventory, pricing, what’s selling well), and users (which employees are selling a lot,
employee work schedules).

 Even relatively simple applications can sometimes benefi t from reports. For example, suppose you’re
writing a simple shareware game that users will download from the Internet and install on their
phones. The users won’t want reports (except perhaps a list of their high scores), but you may want to
add some reporting. You could make the game upload information such as where the users are, when
they use the game, how often they play, what parts of the game take a long time, and so forth. You
can then use that data to generate reports to help you refi ne the game and improve your marketing.

 AD HOC REPORTING

 A large application might have dozens or even hundreds of reports. Often
customers can give you lists of existing reports that they use now and that they
want in the new system. They may also think of some new reports that take
advantage of the new system’s features.

 However, as development progresses, customers inevitably think of more reports as
they learn more about the system. They’ll probably even think of extra reports after
you’ve completely fi nished development.

 Adding dozens of new reports throughout the development cycle can be a burden to
the developers. One way to reduce report proliferation is to forbid it. Just don’t allow
the customers to request new reports. Or you could allow new reports but require that
they go through some sort of approval process so you don’t get too many requests.

 Another approach is to allow the users to create their own reports. If the
application uses a SQL database, it’s not too hard to buy or build a reporting tool
that lets users type in queries and see the results. I’ve worked on projects where the
customers used this capability to design dozens of new reports without creating
extra work for the developers.

 If you use this technique, however, you may need to restrict access to it so the
users don’t see confi dential data. For example, a typical order entry clerk probably
shouldn’t be able to generate a list of employee salaries.

 Some SQL statements can also damage the database. For example, the SQL DROP
TABLE statement can remove a table from the database, destroying all its data.
Make sure the ad hoc reporting tool is only usable by trusted users or that it won’t
allow those kinds of dangerous commands.

 As is the case with high‐level user interface design, you don’t need to specify every detail for every
report here. Try to decide which reports you’ll need and leave the details for low‐level design and
implementation.

102 ❘ CHAPTER 5 HIGH‐LEVEL DESIGN

Other Outputs
In addition to normal reports, you should consider other kinds of outputs that the application might
create. The application could generate printouts (of reports and other things), web pages, data fi les,
image fi les, audio (to speakers or to audio fi les), video, output to special devices (such as electronic
signs), e‐mail, or text messages (which is as easy as sending an e‐mail to the right address). It could
even send messages to pagers, if you can fi nd any that aren’t in museums yet.

TIP Text (or pager) messages are a good way to tell operators that something
is going wrong with the application. For example, if an order processing
application is stuck and jobs are piling up in a queue, the application can send a
message to a manager, who can then try to fi gure out what’s wrong.

Database
Database design is an important part of most applications. The fi rst part of database design is to
decide what kind of database the program will need. You need to specify whether the application
will store data in text fi les, XML fi les, a full‐fl edged relational database, or something more exotic
such as a temporal database or object store. Even a program that doesn’t use any database still needs
to store data, perhaps inside the program within arrays, lists, or some other data structure.

If you decide to use an external database (in other words, more than data that’s built into the code),
you should specify the database product that you will use. Many applications store their data
in relational databases such as Access, SQL Server, Oracle, or MySQL. (There are dozens if not
hundreds of others.)

If you use a relational database, you can sketch out the tables it contains and their relationships
during high‐level design. Later you can provide more details such as the specifi c fi elds in each table
and the fi elds that make up the keys linking the tables.

DEFINING CLASSES

Often the tables in the database correspond to classes that you need to build in the
code. At this point, it makes sense to write down any important classes you defi ne.
Those might include fairly obvious classes such as Employee, Customer , r Order , r

WorkAssignment , and Report .

You’ll have a chance to refi ne those classes and add others during low‐level design
and implementation. For example, you might create subclasses that add refi nement
to the basic high‐level classes. You could create subclasses of the Customer class
such as PreferredCustomer , r CorporateCustomer , and r ImpulseBuyer. r

Use good database design practices to ensure that the database is properly normalized. Database
design and normalization is too big a topic to cover in this book. (For an introduction to
database design, see my book Beginning Database Design Solutions , Wiley, 2008.) Although

What to Specify ❘ 103

I don’t have room to cover those topics in depth, I’ll say more about normalization in the
next chapter.

 Meanwhile there are three common database‐specifi c issues that you should address during high‐
level design: audit trails, user access, and database maintenance.

 Audit Trails
 An audit trail keeps track of each user who modifi es (and in some applications views) a specifi cl
record. Later, management can use the audit trails to see which employee gave a customer a 120‐
percent discount. Auditing can be as simple as creating a history table that records a user’s name,
a link to the record that was modifi ed, and the date when the change occurred. Some database
products can even create audit trails for you.

 A fancier version might store copies of the original data in each table when its data is modifi ed.
For example, suppose a user changes a customer’s billing data to show the customer paid in full.
Instead of updating the customer’s record, the program would mark the existing (unpaid) record as
outdated. It would then copy the old record, update it to show the customer’s new balance, and add
the date of the change and the user’s name. Some applications also provide space for the users to add
a note explaining why they gave the customer a $12,000-credit on the purchase of a box of cereal.

 Later, you can compare the customer’s records over time to build an audit trail that re‐creates the
exact sequence of changes made for that customer. (Of course, that means you need to add a way for
the application to display the audit trail, and that means more work.)

 NOTE Some businesses have rules or government regulations that require
them to delete old data including audit trails.

 Many applications don’t need auditing. If you write an online multiplayer rock‐paper‐scissors game,
you probably don’t need an extensive record of who picked paper in a match two months ago.
You also may not need to add auditing to programs written for internal company use, and other
programs that don’t involve money, confi dential records, or other data that might be tempting to
misuse. In cases like those, you can simplify the application by skipping audit trails.

 User Access
 Many applications also need to provide different levels of access to different kinds of data. For
example, a fulfi llment clerk (who throws porcelain dishes into a crate for shipping) probably doesn’t
need to see the customer’s billing information, and only managers need to see the other employees’
salary information.

 One way to handle user access is to build a table listing the users and the privileges they should be
given. The program can then disable or remove the buttons and menu items that a particular user
shouldn’t be allowed to use.

 Many databases can also restrict access to tables or even specifi c columns in tables. For example,
you might be able to allow all users to view the Name , Office , and PhoneNumber fi elds in the
Employees table without letting them see the Salary fi eld.

104 ❘ CHAPTER 5 HIGH‐LEVEL DESIGN

 Database Maintenance
 A database is like a hall closet: Over time it gets disorganized and full of random junk like string,
chipped vases, and unmatched socks. Every now and then, you need to reorganize so that you can
fi nd things effi ciently.

 If you use audit trails and the records require a lot of changes, the database will start to fi ll up with
old versions of records that have been modifi ed. Even if you don’t use audit trails, over time the
database can become cluttered with outdated records. You probably don’t need to keep the records
of a customer’s gum purchase three years ago.

 In that case, you may want to move some of the older data to long‐term storage to keep the main
database lean and responsive. Depending on the application, you may also need to design a way to
retrieve the old data if you decide you want it back later.

 You can move the older data into a data warehouse , a secondary database that holds older data for
analysis. In some applications, you may want to analyze the data and store modifi ed or aggregated
forms in the warehouse instead of keeping every outdated record.

 You may even want to discard the old data if you’re sure you’ll never need it again.

 Removing old data from a database can help keep it responsive, but a lot of changes to the data
can make the database’s indexes ineffi cient and that can hurt performance. For that reason, you
may need to periodically re‐index key tables or run database tuning software to restore peak
performance. In large, high‐reliability applications, you might need to perform these sorts of tasks
during off‐peak hours such as between midnight and 2 a.m.

 Finally, you should design a database backup and recovery scheme. In a low‐priority application,
that might involve copying a data fi le to a DVD every now and then. More typically, it means
copying the database every night and saving the copy for a few days or a week. For high‐reliability
systems, it may mean buying a special‐purpose database that automatically shadows every change
made to any database record on multiple computers. (One telephone company project I worked on
even required the computers to be in different locations so that they wouldn’t all fail if a computer
room was fl ooded or wiped out by a tornado.)

 These kinds of database maintenance activities don’t necessarily require programming, but they’re
all part of the price you pay for using big databases, so you need to plan for them.

 Confi guration Data
 I mentioned earlier that you can save yourself a lot of time if you let users defi ne their own ad hoc
queries. Similarly, you can reduce your workload if you provide confi guration screens so that users
can fi ne‐tune the application without making you write new code. Store parameters to algorithms,
key amounts, and important durations in the database or in confi guration fi les.

 For example, suppose your application generates late payment notices if a customer has owed at
least $50 for more than 30 days. If you make the values $50 and 30 days part of the confi guration,
you won’t need to change the code when the company decides to allow a 5‐day grace period and
start pestering customers only after 35 days.

 Make sure that only the right users can modify the parameters. In many applications, only
managers should change these values.

UML ❘ 105

 Data Flows and States
 Many applications use data that fl ows among different processes.
For example, a customer order might start in an Order Creation
process, move to Order Assembly (where items are gathered for
shipping), and then go to Shipping (for actual shipment). Data
may fl ow from Shipping to a fi nal Billing process that sends an
invoice to the customer via e‐mail. Figure 5-5 shows one way
you might diagram this data fl ow.

 You can also think of a piece of data such as a customer order
as moving through a sequence of states. The states often
correspond to the processes in the related data fl ow. For this
example, a customer order might move through the states
Created, Assembled, Shipped, and Billed.

 Not all data fl ows and state transitions are as simple as this
one. Sometimes events can make the data take different paths
through the system. Figure 5-6 shows a state transition diagram
for a customer order. The rounded rectangles represent states.
Text next to the arrows indicates events that drive transitions.
For example, if the customer hasn’t paid an invoice 30 days
after the order enters the Billed state, the system sends a
second invoice to the customer and moves the order to the
late state.

 These kinds of diagrams help describe the system and the way processes interact with the data.

 Training
 Although it may not be time to start writing training materials, it’s never too early to think about
them. The details of the system will probably change a lot between high‐level design and fi nal
installation, but you can at least think about how you want training to work. You can decide
whether you want users to attend courses taught by instructors, read printed manuals, watch
instructional videos, or browse documentation online.

 Trainers may create content that discusses the application’s high‐level purpose, but you have to fi ll in
most of the details later as the project develops.

 UML

 As mentioned in Chapter 4 , “Requirement Gathering,” the Unifi ed Modeling Language (UML) isn’t
actually a single unifi ed language. Instead it defi nes several kinds of diagrams that you can use to
represent different pieces of the system.

 The Object Management Group (OMG, yes, as in “OMG how did they get such an
awesome acronym before anyone else got it?”) is an international not‐for‐profi t organization
that defi nes modeling standards including UML. (You can learn more about OMG and UML at
www.uml.org .)

Customer Create
Order

Assemble
Order

Ship
Order

Send
Invoice

 FIGURE 5-5: A data fl ow
diagram shows how data such as
a customer order fl ows through
various processes.

http://www.uml.org

106 ❘ CHAPTER 5 HIGH‐LEVEL DESIGN

Customer pays

Customer pays

Customer pays

Customer revises
order

Customer
creates order Created

Assembled

Shipped

Billed

Paid Late

 Delinquent

Closed

If unpaid after 90 days,
write off and close
customer account

If unpaid after 60 days,
program sends e-mail
begging and pleading

Program e-mails
invoice

Fullfillment clerk
assembles

Mailroom ships

If unpaid after 30 days,
program sends second

invoice

FIGURE 5-6: A data fl ow diagram shows how data such as a customer
order fl ows through various processes.

UML 2.0 defi nes 13 diagram types divided into three categories (and one subcategory) as shown in
the following list:

➤ Diagram

➤ Structure Diagram

➤ Class Diagram

➤ Composite Structure Diagram

➤ Component Diagram

➤ Deployment Diagram

UML ❘ 107

➤ Object Diagram

➤ Package Diagram

➤ Profi le Diagram

➤ Behavior Diagram

➤ Activity Diagram

➤ Use Case Diagram

➤ State Machine Diagram

➤ Interaction Diagram

➤ Sequence Diagram

➤ Communication Diagram

➤ Interaction Overview Diagram

➤ Timing Diagram

 Many of these are rather complicated so I won’t describe them all in excruciating detail here. Instead
the following sections give overviews of the types of diagrams in each category and provide a bit
more detail about some of the most commonly used diagrams.

 Structure Diagrams
 A structure diagram describes things that will be in the system you are designing. For example,
the class diagram (one type of structure diagram) shows relationships among the classes that
will represent objects in the system such as inventory items, vehicles, expense reports, and coffee
requisition forms.

 OBJECTS AND CLASSES

 I’ll say a bit more about classes and class diagrams shortly, but briefl y a class
defi nes a type (or class) of items, and an object is an instance of the class. Oftent
classes and objects correspond closely to real‐world objects.

 For example, a program might defi ne a Student class to represent students. The class
would defi ne properties that all students share such as Name , Grade , and HomeRoom .

 A specifi c instance of the Student class would be an object that represents a
particular student, such as Rufus T. Firefl y. For that object, the Name property would
be set to “Rufus T. Firefl y,” Grade might be 12, and HomeRoom might be “11‐B.” m

 The following list summarizes UML’s structure diagrams:

➤ Class Diagram—Describes the classes that make up the system, their properties and methods,
and their relationships.

➤ Object Diagram—Focuses on a particular set of objects and their relationships at a specifi c time.

108 ❘ CHAPTER 5 HIGH‐LEVEL DESIGN

➤ Component Diagram—Shows how components are combined to form larger parts of the
system.

➤ Composite Structure Diagram—Shows a class’s internal structure and the collaborations that
the class allows.

➤ Package Diagram—Describes relationships among the packages that make up a system. For
example, if one package in the system uses features provided by another package, then the
diagram would show the fi rst “importing” the second.

➤ Deployment Diagram—Describes the deployment of artifacts (fi les, scripts, executables, and
the like) on nodes (hardware devices or execution environments that can execute artifacts).

 The most basic of the structure diagrams is the class diagram. In a
class diagram, a class is represented by a rectangle. The class’s name
goes at the top, is centered, and is in bold. Two sections below the
name give the class’s properties and methods. (A method is a routined
that makes an object do something. For example, the Student class
might have a DoAssignment method that makes the Student object
work through a specifi c class assignment.) Figure 5-7 shows a simple
diagram for the Student class.

 Some people add annotations to class representations to give you more
detail. Most class diagrams include the data types of properties and
parameters passed into methods, as shown in Figure 5-7 . You can also add the symbols shown in
Table 5-2 to the left of a class member to show its visibility within the project.

 TABLE 5-2: Class Diagram Visibility Symbols

SYMBOL MEANING EXPLANATION

+ Public The member is visible to all code in the application.

− Private The member is visible only to code inside the class.

Protected The member is visible only to code inside the class and any
derived classes.

∼ Package The member is visible only to code inside the same package.

 Class diagrams also often show relationships among classes. Lines connect classes that are related
to each other. A variety of line styles, symbols, arrowheads, and annotations give more information
about the kinds of relationships.

 The simplest way to use relationships is to draw an arrow indicating the direction of the relationship
and label the arrow with the relationship’s name. For example, in a school registration application,
you might draw an arrow from the Student class to the Course class to indicate that a Student is
associated with the Course s that student is taking. You could label that arrow “is taking.”

 At the line’s endpoints, you can add symbols to indicate how many objects are involved in the
relationship. Table 5-3 shows symbols you can add to the ends of a relationship.

Student

Name: string
Grade: integer
HomeRoom: string

DoAssignment(title: string)

 FIGURE 5-7: A class diagram
describes the properties
and methods of classes.

UML ❘ 109

 TABLE 5-3: Class Diagram Multiplicity Indicators

MEANING

1 Exactly 1

0..1 0 or 1

0..* Any number (0 or more)

* Any number (0 or more)

1..* 1 or more

 The class diagram in Figure 5-8 shows the “is taking” relationship between the Student and Course
classes. In that relationship, 1 Student object corresponds to 1 or more Course objects.

Student Course

Name: string
Grade: integer
HomeRoom: string

1 1..*is taking

DoAssignment(title: string)

Name: string
Room: string

EmailAssignment(title: string)

 The relationship in this class diagram indicates that 1 Student takes
1 or more Courses.

 Another important type of class diagram relationship is inheritance. In object‐oriented
programming, one class can inherit the properties and methods of another. For example, an honors
student is a type of student. To model that in an object‐oriented program, you could defi ne an
HonorsStudent class that inherits from the Student class. The HonorsStudent class automatically
gets any properties and methods defi ned by the Student class (Name , Grade , HomeRoom , and
DoAssignment). You can also add new properties and methods if you like. Perhaps you want to add
a GPA property to the A HonorsStudent class.

 In a class diagram, you indicate inheritance by using a hollow arrowhead pointing from the child class
to the parent class. Figure 5-9 shows that the HonorsStudent class inherits from the Student class.

 Class diagrams for complicated applications can become cluttered and hard to read if you put
everything in a single huge diagram. To reduce clutter, developers often draw multiple class
diagrams showing parts of the system. In particular, they often make separate diagrams to show
inheritance and other relationships.

 For information about more elaborate types of class diagrams, search the Internet in general or the
OMG website www.omg.org in particular.

 Behavior Diagrams
 UML defi nes three kinds of basic behavior diagrams : activity diagrams, use case diagrams, and
state machine diagrams. The following sections provide brief descriptions of these kinds of diagrams
and give a few simple examples.

http://www.omg.org

110 ❘ CHAPTER 5 HIGH‐LEVEL DESIGN

 Activity Diagrams
 An activity diagram represents work fl ows for activities. They include several kinds of symbols
connected with arrows to show the direction of the work fl ow. Table 5-4 summarizes the symbols.

 TABLE 5-4: Activity Diagram Symbols

REPRESENTS

Rounded rectangle An action or task

Diamond A decision

Thick bar The start or end of concurrent activities

Black circle The start

Circled black circle The end

 Figure 5-10 shows a simple activity diagram for baking cookies.

 The fi rst thick bar starts three parallel activities: Start oven, mix dry ingredients, and mix wet
ingredients. If you have assistant cookie chefs (perhaps your children, if you have any), those steps
can all proceed at the same time in parallel.

 When the three parallel activities all are done, the work fl ow resumes after the second thick bar. The
next step is to combine all the ingredients.

 A test then checks the batter’s consistency. If the batter is too sticky, you add more fl our and recheck
the consistency. You repeat that loop until the batter has the right consistency.

 When the batter is just right, you roll out the cookies, wait until the oven is ready (if it isn’t already),
and bake the cookies for eight minutes.

Student

HonorsStudent

Course

Name: string
Grade: integer
HomeRoom: string

1 1..*is taking

DoAssignment(title: string)

GPA: double

Name: string
Room: string

EmailAssignment(title: string)

 FIGURE 5-9: A class diagram indicates inheritance with a hollow arrowhead.

UML ❘ 111

 After eight minutes, you check the cookies. If the cookies aren’t done, you bake them for one more
minute. You continue checking and baking for one more minute as long as the cookies are not done.

 When the cookies are done, you enter the stopping state indicated by the circled black circle.

 Use Case Diagram
 A use case diagram represents a user’s interaction with the system. Use case diagrams show stick fi gures
representing actors (someone or something that performs a task) connected to tasks represented by ellipses.

 To provide more detail, you can use arrows to join subtasks to tasks. Use the annotation
<<include>> to mean the task includes the subtask. (It can’t take place without the subtask.)

 If a subtask might occur only under some circumstances, connect it to the main task and add the
annotation <<extend>> . If you like, you can add a note indicating when the extension occurs.
(Usually both <<include>> and <<extend>> arrows are dashed.)

 Figure 5-11 shows a simple online shopping use case diagram. The customer actor performs the
“Search site for products” activity. If he fi nds something he likes, he also performs the “Buy
products” extension. To buy products, the customer must log in to the site, so the “Buy products”
activity includes the “Log on to site” activity.

Mix dry ingredients

Combine ingredients

Wait until oven is ready

Roll out cookies

Bake 8 minutes

Bake 1 minute
Cookies not done

Cookies done

Mix wet ingredientsStart oven

Add more flour
Batter too sticky

Batter okay

 FIGURE 5-10: An activity diagram is a bit like a fl owchart showing
how work fl ows.

112 ❘ CHAPTER 5 HIGH‐LEVEL DESIGN

 The website’s search engine also participates in the “Search site for products” activity. When the customer
starts a search, the engine performs the “Find matching products” activity. The “Search” activity cannot
work without the “Find” activity, so the “Find” activity is included in the “Search” activity.

 State Machine Diagram
 A state machine diagram shows the states through which an object passes in response to various
events. States are represented by rounded rectangles. Arrows indicate transitions from one state to
another. Sometimes annotations on the arrows indicate what causes a transition.

 A black circle represents the starting state and a circled black circle indicates the stopping state.

 Figure 5-12 shows a simple state machine diagram for a program that reads a fl oating point number
(as in –17.32) followed by the Enter key.

Shop online

<<include>>

<<include>>

<<extend>>

Search engine
Customer

Buy products

Log on to site

Search site for
products

Find matching
products

 FIGURE 5-11: A use case diagram shows actors and the tasks they perform
(possibly with subtasks and extensions).

Digit or decimal Digit after
decimal

Digit before
decimal

Digit

Enter

Enter

+ or -

Digit

Digit

Digit Decimal

 This state machine diagram represents reading a fl oating point
number.

 The program starts and can read a digit, +, or –. (If it reads any other character, the machine fails
and the program would need to take some action, such as displaying an error message.) If it reads a
+, or –, the machine moves to the state “Digit before decimal.”

UML ❘ 113

 From that state, the user must enter a digit, at which point the machine moves into state
“Digit or decimal.” The machine also reaches this state if the user initially enters a digit instead of
a +, or –.

 Now if the user enters another digit, the machine remains in the “Digit or decimal” state. When the
user enters a decimal point, it moves to the “Digit after decimal” state. If the user presses the Enter
key, the machine moves to its stopping state. (That happens if the user enters a whole number such
as 37.)

 The machine remains in the “Digit after decimal” state as long as the user types a digit. When the
user presses the Enter key, the machine moves to its stopping state.

 Interaction Diagrams
Interaction diagrams are a subset of activity diagrams. They include sequence diagrams,
communication diagrams, timing diagrams, and interaction overview diagrams. The following
sections provide brief descriptions of these kinds of diagrams and give a few simple examples.

 Sequence Diagram
 A sequence diagram shows how objects collaborate in a particular scenario. It represents the
collaboration as a sequence of messages.

 Objects participating in the collaboration are represented as rectangles or sometimes as stick fi gures
for actors. They are labeled with a name or class. If the label includes both a name and class, they
are separated by a colon.

 Below each of the participants is a vertical dashed line called a lifeline . The lifeline basically
represents the participant sitting there waiting for something to happen.

 An execution specifi cation (called an execution or informally an activation) represents a participant n
doing something. In the diagram, these are represented as gray or white rectangles drawn on top of
the lifeline. You can draw overlapping rectangles to represent overlapping executions.

 Labeled arrows with solid arrowheads represent synchronous messages. Arrows with open
arrowheads represent asynchronous messages. Finally, dashed arrows with open arrowheads
represent return messages sent in reply to a calling message.

 Figure 5-13 shows a customer, a clerk, and the Movie class interacting to print a ticket for a movie.
The customer walks up to the ticket window and requests the movie from the clerk. The clerk uses a
computer to ask the Movie class whether tickets are available for the desired show. The Movie class
responds.

 Notice that the Movie class’s response is asynchronous. The class fi res off a response and doesn’t
wait for any kind of reply. Instead it goes back to twiddling its electronic thumbs, waiting for some
other request.

 If the class’s response is false , the interaction ends. (This scenario covers only the customer
successfully buying a ticket.) If the response is true , control returns to the clerk, who uses the
computer to ask the Movie class to select a seat. This causes another execution to run on the Movie
class’s lifeline.

114 ❘ CHAPTER 5 HIGH‐LEVEL DESIGN

 The Movie class in turn asks the customer to pick a seat from those that are available. The customer
is still waiting for the initial request to fi nish, so this is an overlapping execution for the customer.

 After the customer picks a seat, the Movie class issues a ticket to the clerk. The clerk then prints the
ticket and hands it to the customer.

 The point of this diagram is to show the interactions that occur between the participants and
the order in which they occur. If you think the diagram is confusing, feel free to add some text
describing the process.

 Communication Diagram
 Like a sequence diagram, a communication diagram shows communication among objects during
some sort of collaboration. The difference is the sequence diagram focuses on the sequence
of messages, but the communication diagram focuses more on the objects involved in the
collaboration.

 The diagram uses lines to connect objects that collaborate during an interaction. Labeled arrows
indicate messages between objects. The messages are numbered that so you can follow the sequence
of messages.

Customer Clerk

request(movie)

seat

ticket

ticket

selectSeat(movie)

selectSeat(movie)

isAvailable(movie)

true

: Movie

FIGURE 5-13: A sequence diagram shows the timing of
messages between collaborating objects.

UML ❘ 115

 Following is the sequence of messages in Figure 5-14 :

1: The customer asks the clerk for a movie ticket.

1.1: The clerk asks the Movie class if a seat is available.

1.2: The clerk asks the Movie class to select a seat.

1.2.1: The Movie class asks the user to pick a seat.

1.2.2: The Movie class sends the clerk a ticket for the selected seat.

1.3: The clerk prints the ticket and hands it to the customer.

 The exact timing of the messages and some of the details (such as return messages) are not
represented well in the communication diagram. Those details are better represented by a sequence
diagram.

 Timing Diagram
 A timing diagram shows one or more objects’ changes in state over time. A timing diagram looks
a lot like a sequence diagram turned sideways, so time increases from left to right. These diagrams
can be useful for giving a sense of how long different parts of a scenario will take.

 More elaborate versions of the timing diagram show multiple participants stacked above each other
with arrows showing how messages pass between the participants.

 Interaction Overview Diagram
 An interaction overview diagram is basically an activity diagram where the nodes can be frames
that contain other kinds of diagrams. Those nodes can contain sequence, communication, timing,
and other interaction overview diagrams. This lets you show more detail for nodes that represent
complicated tasks.

1 request(m
ovie)

1.3 ticket
1.2.2 ticket

1.1 isAvailable(movie)
1.2: selectSeat(movie)

Clerk

1.2.1 selectSeat(movie)Customer

Movie

 FIGURE 5-14: A communication diagram emphasizes the objects participating in a
collaboration.

 Figure 5-14 shows a communication diagram for the movie ticket buying-scenario that was shown
in Figure 5-13 .

116 ❘ CHAPTER 5 HIGH‐LEVEL DESIGN

 SUMMARY

 High‐level design sets the stage for later software development. It deals with the grand decisions
such as:

➤ What hardware platform will you use?

➤ What type of database will you use?

➤ What other systems will interact with this one?

➤ What reports can you make the users defi ne so you don’t have to do all the work?

 After you settle these and other high‐level questions, the stage is set for development. However,
you’re still not quite ready to start slapping together code to implement the features described in
the requirements. Before you start churning out code, you need to create low‐level designs to fl esh
out the classes, modules, interfaces, and other pieces of the application that you identifi ed during
high‐level design. The low‐level design will give you a detailed picture of exactly what code you need
to write so you can begin programming.

 The next chapter covers low‐level design. It explains how you can refi ne the database design to
ensure the database is robust and fl exible. It also describes the kinds of information you need to add
to the high‐level design before you can start putting 0s and 1s together to make the fi nal program.

EXERCISES

1. What’s the difference between a component‐based architecture and a service‐oriented
architecture?

2. Suppose you’re building a phone application that lets you play tic‐tac‐toe against a simple
computer opponent. It will display high scores stored on the phone, not in an external data-
base. Which architectures would be most appropriate and why?

3. Repeat question 2 for a chess program running on a desktop, laptop, or tablet computer.

4. Repeat question 3 assuming the chess program lets two users play against each other over an
Internet connection.

5. What kinds of reports would the game programs described in Exercises 2, 3, and 4 require?

6. What kind of database structure and maintenance should the ClassyDraw application use?

7. What kind of confi guration information should the ClassyDraw application use?

8. Draw a state machine diagram to let a program read fl oating point numbers in scientifi c
notation as in + 37 or –12.3e + 17 (which means –12.3 × 10+17). Allow both E and e for the
exponent symbol.

Summary ❘ 117

▸ WHAT YOU LEARNED IN THIS CHAPTER
➤ High‐level design is the fi rst step in breaking an application into pieces that are small enough

to implement.

➤ Decoupling tasks allows different teams to work on them simultaneously.

➤ Some of the things you should specify in a high‐level design include:

➤ Security (operating system, application, data, network, and physical)

➤ Operating system (Windows, iOS, or Linux)

➤ Hardware platform (desktop, laptop, tablet, phone, or mainframe)

➤ Other hardware (networks, printers, programmable signs, pagers, audio, or video)

➤ User interface style (navigational techniques, menus, screens, or forms)

➤ Internal interfaces

➤ External interfaces

➤ Architecture (monolithic, client‐server, multitier, component‐based, service‐oriented,
data‐centric, event driven, rule‐based, or distributed)

➤ Reports (application usage, customer purchases, inventory, work schedules, produc-
tivity, or ad hoc)

➤ Other outputs (printouts, web pages, data fi les, images, audio, video, e‐mail, or text
messages)

➤ Database (database platform, major tables and their relationships, auditing, user
access, maintenance, backup, and data warehousing)

➤ Top‐level classes (Customer , Employee , and Order)

➤ Confi guration data (algorithm parameters, due dates, expiration dates, and
durations)

➤ Data fl ows

➤ Training

➤ UML diagrams lets you specify the objects in the system (including external agents such as
users and external systems) and how they interact.

➤ The main categories of UML diagrams are structure diagrams and behavior diagrams (which
includes the subcategory interaction diagrams).

 We try to solve the problem by rushing through the design process so that
enough time is left at the end of the project to uncover the errors that were
made because we rushed through the design process.

 —Glenford Myers

 WHAT YOU WILL LEARN IN THIS CHAPTER:

➤ How to use generalization and refi nement to build inheritance
hierarchies

➤ Warning signs of bad inheritance hierarchies

➤ How to use composition to build new classes without inheritance

➤ How normalization protects databases from anomalies

➤ Rules for fi rst, second, and third normal forms

 High‐level design paints an application’s structure in broad strokes. It identifi es the system’s
general environment (hardware, operating system, network, and so on) and architecture (such
as monolithic, client/server, and service‐oriented). It identifi es the system’s major components
such as reporting modules, databases, and top‐level classes. It should also sketch out how the
pieces of the system will interact.

 Low‐level design fi lls in some of the gaps to provide extra detail that’s necessary before
developers can start writing code. It gives more specifi c guidance for how the parts of the
system will work and how they will work together. It refi nes the defi nitions of the database,
the major classes, and the internal and external interfaces.

 High‐level design focuses on what . Low‐level design begins to focus on t how . w

 6

120 ❘ CHAPTER 6 LOW‐LEVEL DESIGN

As an analogy, if you were building a highway system, high‐level design would determine what
cities (and perhaps what parts of those cities) would be connected by highways. The low‐level design
would indicate exactly where the highways would be placed, where the ramps would be, and what
elementary schools would be surrounded by four‐lane traffi c circles.

The border between high‐level and low‐level design is often rather fuzzy. Typically, after a piece
of the system is added to the high‐level design, team members continue working on that piece to
develop its low‐level design. Particularly on a large project, some people will be working on high‐
level designs while others work on low‐level designs. Developers may even start implementing parts
of the system that have been adequately defi ned.

In a way, you can describe low‐level design as high‐level design for micro‐managers. You extend the
high‐level design by providing more and more detail until everything is specifi ed precisely enough to
start implementation.

However, refi ning a high‐level design isn’t necessarily easy. You may know generally what you
need in the database (customer data and stuff), but unless you refi ne that knowledge into a good
detailed database design, you may run into all sorts of problems later. The data may become
inconsistent, the program might lose critical information, and fi nding data may be slow. Different
database designs can make the difference between fi nding the data you need in seconds, hours, or
not at all.

The following sections describe some of the most important concepts you should keep in mind
during low‐level design. They explain how to refi ne an object model to identify the application’s
classes, how to use stepwise refi nement to provide additional detail for a task, and how to design a
database that is fl exible and robust.

OO DESIGN

The high‐level design should have identifi ed the major types of classes that the application will use.
Now it’s time to refi ne that design to identify the specifi c classes that program will need. The new
classes should include defi nitions of the properties, methods, and events they will provide for the
application to use.

A QUICK OO PRIMER

In object‐oriented (OO) development, classes defi ne the general properties and
behaviors for a set of objects. An instance of a class is an object with the class’s
type.

For example, you could defi ne an Author class to represent authors. An instance
of the class might represent the specifi c author William Shakespeare. After you
defi ne the Author class, you could create any number of instances of that class to
represent different authors.

Classes defi ne three main items: properties, methods, and events.

OO Design ❘ 121

 The following sections explain how you can defi ne the classes that an application will use.

 Identifying Classes
 The previous chapter tells you that you should identify the main classes that the application will use,
but it doesn’t tell you how to do that. One way to pick classes is to look for nouns in a description of
the application’s features.

 For example, suppose you’re writing an application called FreeWheeler Automatic Driver (FAD) that
automatically drives cars. Now consider the sentence, “The program drives the car to the selected
destination.” That sentence contains three nouns: program, car, and destination.

A property is something that helps defi ne an object. For example, the Author class
might have FirstName and LastName properties to identify the specifi c author
an instance represents. It might have other properties such as DateOfBirth ,
DateOfDeath , and WrittenWorks .

 A method is a piece of code that makes an object do something. The d Author class
might have a Search method that searches an object’s WrittenWorks values for a work
that contains a certain word. It might also have methods to print a formatted list of
the author’s works, or to search online for places to buy one of the author’s works.

 An event is something that occurs to tell the program that something interesting t
has happened. An object raises an event when appropriate to let the program
take some action. For example, an Author object might raise a Birthday event
to tell the program that today is the author’s birthday. (That would be hard for
Shakespeare because no one knows exactly he was born.) When the program
creates an Author object, that object would raise the Birthday event if it were the
author’s birthday. It would also raise that event if the object already existed and the
clock ticked over past midnight so that it became the author’s birthday.

 After you design a class, you can use it like a cookie cutter to make as many
instances of the class as you like. Each instance has the same properties, methods,
and events; although, the properties can have different values in different instances.

 Object‐oriented development involves lots of other details, but this should be
enough to get you through the following discussion. If you want more information
about object‐oriented programming, look for a book on the subject, either in
general or for your favorite programming language.

 Also look for books on design patterns. An object‐oriented design pattern is an
arrangement of classes that performs some common and useful task. For example,
the model‐view‐controller (MVC) pattern breaks a user interface interaction into
three pieces: a model object that represents some data, view objects that display a
view of the data to the user, and controller objects that control the model, possibly
allowing the user to manipulate the data. Design patterns can be useful in designing
the classes that make up an application, but they’re outside the scope of this book.

122 ❘ CHAPTER 6 LOW‐LEVEL DESIGN

 The program probably doesn’t need to directly manipulate itself, so it’s unlikely that you’ll need a
Program class. It will almost certainly need to work with cars and destinations, so you probably do
need Car and Destination classes.

 When you’re studying possible classes, think about what sorts of information the class needs
(properties), what sorts of things it needs to do (methods), and whether it needs to notify the
program of changing circumstances (events). For this example, the Car class is going to be fully
loaded, providing all sorts of properties (such as CurrentSpeed , CurrentDirection , and
FuelLevel), methods (such as Accelerate , Decelerate , ActivateTurnSignal , and HonkHorn), and
events (such as DriverPressedStart , FuelLevelLow , and CollisionImminent).

 The Destination class is probably a lot simpler because it basically just represents a specifi c
location. In fact, it may be that the application needs only a single instance of this class to record the
current destination.

 Making only a single instance of a class is a warning sign that perhaps the class isn’t necessary.
The fact that the Destination class doesn’t do anything or change on its own (so it doesn’t
provide methods or events) is another indication that you might not need that class. In this
example, you could store the destination information in a couple variables holding latitude and
longitude.

 Note that the class defi nitions depend heavily on how you will use the objects. For example, you
could defi ne a Passenger class to represent people riding in the car. A passenger has all sorts of
interesting information such as Name , Address , Age , and CreditScore . However, the FreeWheeler
program doesn’t need to know any of that information. It might not even need to know if the car
contains any passengers. (Although it probably needs to have a driver, at least until automated cars
become so good they can travel on their own.)

 Building Inheritance Hierarchies
 After you defi ne the application’s main classes, you need to add more detail to represent variations
on those classes. For example, FreeWheeler is going to need a Car class to represent the vehicle it’s
driving, but different vehicles have different characteristics. A 106‐horsepower Toyota Yaris handles
differently than a 460‐horsepower Chevrolet Corvette. It would be bad if the program told the Yaris
to pull out in front of a speeding tractor trailer, assuming it could go from 0 to 60 miles per hour in
3.7 seconds.

 You can capture the differences between related classes by deriving a g child class from a parent class .
In this example, you might derive the Yaris and Corvette child classes from the Car parent class.

 Child classes automatically inherit the properties, methods, and events defi ned by the parent
class. For example, the Car class might defi ne methods such as SetParkingBrake , TurnLeft , and
DeployDragChute . Because Corvette inherits from the Car class, a Corvette object automatically
knows how to perform those methods.

 This is one important way object‐oriented programming languages achieve code reuse. You write
code once in the parent class and any child classes use that same code without you rewriting it.

 The fact that Corvette inherits from Car also means that a Corvette is a kind of Car . Intuitively, r

that makes sense. In real life, a Corvette is a car, so it should do anything that any other car can do.

OO Design ❘ 123

 Because an instance of a child class also belongs to the parent class, the program should be able to
treat the object as if it were of the parent class if that would be helpful. In this example, that means
a program should be able to treat a Corvette object as either a Corvette or as a more generic
Car . For instance, the program could create an array of r Car objects and fi ll it with instances of the
Corvette , Yaris , VolkswagenBeatle , or DeLorean classes. The program should be able to treat all
those objects as if they were Car s without knowing their true classes. The capability to treat objects
as if they were actually from a different class is called polymorphism .

 You can derive multiple classes from a single parent class. For example, you could derive Corvette ,
Edsel , and Pinto all from the Car class.

 Conversely, most object‐oriented programming languages do not allow multiple inheritance , so a
class can have at most a single parent class. Because classes can have at most one parent but any
number of children, the relationships between classes form a tree‐like inheritance hierarchy. y

 There are a lot of ways you can modify basic inheritance relationships. For example, a child class
can add properties, methods, and events (which together are called members) that are not availables
in the parent class. A child class can also replace a parent class member with a new version.

 In some languages the child class can even defi ne a new version of a member that applies when
the program refers to an object by using the child class but not when it refers to it with a variable
that has the parent class’s type. For example, you might give the Car class a ParallelPark
method that carefully backs the car into a parking space. The Corvette class might defi ne a
new version that locks up the brakes and slides the car into the space sideways as if James Bond
were driving. Now if the program defi nes a variable of type Car that refers to a Corvette object
and invokes its ParallelPark method, you get the fi rst version. If the program defi nes a second
variable of type Corvette that refers to the same object and invokes its ParallelPark method,
you get the second version.

 The details of how you defi ne classes, build inheritance hierarchies, and add or modify their
members depend on the language you use, so those things aren’t covered in this book. Before
moving on to other topics, however, you should know about the two main ways for building
inheritance hierarchies: refi nement and generalization.

 Refi nement
Refi nement is the process of breaking a parent class into multiple subclasses to capture some t
difference between objects in the class. When I derived the Corvette , Edsel , and Pinto classes from
the Car class, that was refi nement.

 One danger to refi nement is overrefi nement , which happens when you refi ne a class hierarchyt
unnecessarily, making too many classes that make programming more complicated and confusing.
People are naturally good at categorizing objects. It takes only a few seconds of thought to break
cars into the classes shown in Figure 6-1 . The open arrowheads point from child classes to their
parent classes.

 With a bit more work, you can grow this hierarchy until it is truly enormous. There are a couple
hundred models of car on the roads in the United States alone. You could refi ne most of those
models with different options such as different engine sizes, radios, speakers, alloy wheels, spoilers,
and seat warmers. You could add still more subclasses to represent different colors.

124 ❘ CHAPTER 6 LOW‐LEVEL DESIGN

The resulting hierarchy would contain many thousands (possibly millions) of classes. Obviously, a
hierarchy that large wouldn’t be useful. There’s no way you could write enough code to actually use
each of the classes, and if you’re not going to use a class, why build it?

There are two main problems here. First, the classes are capturing data that isn’t relevant to the
application. The FreeWheeler application doesn’t care what color a car is or whether it has a CD
changer. It only cares about the car’s driving characteristics: mileage, maximum acceleration, turn
radius, and so forth. The hierarchy in Figure 6-1 doesn’t capture any of that information.

RISKY REFINEMENT

Even if the program cares about certain differences between objects, that doesn’t
mean those differences would make a good inheritance hierarchy. For example,
suppose you’re writing a car sales application. Customers often want to shop for
cars fi rst by make, then by model, and then by option packages and other features.
In that case, the customer’s search strategy looks a lot like Figure 6-1 .

Unfortunately, if you use those values to build the inheritance hierarchy, you get
a monstrously huge hierarchy. Even though the program cares a lot about those
differences, they’re better handled as properties rather than subclassing. It’s easy
enough for a program to search a database for specifi c property values such as
make or model without storing the data in a hierarchical format.

FordChevrolet

Corvette Camero Edsel Pinto Mustang DMC-12

DeLorean

Car

FIGURE 6-1: People are naturally good at building inheritance hierarchies.

The second problem with this hierarchy is that the differences between cars could easily be
represented by properties instead of by different classes. The differences identifi ed so far actually
are just different values for the same properties. For example, Chevrolet, Ford, and DeLorean are
all just different values for a Make property. You could eliminate that whole level of the hierarchy by
simply adding a Make property to the Car class.

Similarly, a car’s model (Corvette, Edsel, and Mustang) is just a name for a specifi c type of car.
You may have some expectations based on the name (you probably think a Corvette is faster than a
Pinto), but to the FreeWheeler program, those are just labels.

OO Design ❘ 125

 You can avoid these kinds of hierarchy problems if you focus on behavioral differences between the
different kinds of objects instead of looking at differences in properties.

 For example, what are the behavioral differences between a Corvette and a Pinto? The Corvette
accelerates quicker, but both cars can accelerate, just at different rates. They still have the same
acceleration behavior, so you can represent that difference as an Acceleration property in the Car
class.

 For an example where there is a behavioral difference, consider transmission type. To accelerate a
car with automatic transmission to freeway speeds, you simply stomp on the gas pedal until the car
is going fast enough. Bringing a manual transmission car up to speed is much more complicated,
requiring you to use the gas pedal, the clutch, and the gear shift. Both kinds of vehicles accelerate,
but the details about how they do it are different.

 In object‐oriented terms, the Car class might have an Accelerate method that makes the car
accelerate. The Automatic and Manual subclasses would provide different implementations of the
Accelerate method that handle the appropriate details.

 Figure 6-2 shows a revised inheritance hierarchy.
The fi rst section under a class’s name lists its
properties (just Acceleration in this example).
A subclass does not repeat items that it inherits
without modifi cation from its parent class. In
this example, the Automatic and Manual classes
inherit the Acceleration property.

 The second section below a class’s name shows
methods (Accelerate in this example). The
method is italicized in the Car class to indicate
that it is not implemented there and must be
overridden in the child classes.

 Generalization
 Refi nement starts with a single class and creates child classes to represent differences between
objects. Generalization does the opposite: It starts with several classes and creates a parent for them
to represent common features.

 For example, consider the ClassyDraw application in the examples in Chapter 4 , “Requirement
Gathering,” and Chapter 5 , “High‐Level Design.” This program is a drawing application somewhat
similar to MS Paint, except it allows you to manipulate drawn objects. It enables you to select an
object, drag it into a new position, stretch it, move it to the top or bottom of the stacking order,
delete it, copy and paste it, and so forth.

 The program represents drawn objects as (you guessed it) objects, so it needs classes such as
Rectangle , Ellipse , Polygon , Text , Line , Star , and r Hypotrochoid .

 These classes draw different shapes, but they also have a lot in common. They all let you click their
object to select it, move the object to the top or bottom of the drawing order, move the object, and
so forth.

 FIGURE 6-2: This hierarchy focuses on behavioral
differences between classes.

Car

Acceleration

Accelerate()

Manual

Accelerate()

Automatic

Accelerate()

126 ❘ CHAPTER 6 LOW‐LEVEL DESIGN

 Because all those objects share these features, it makes sense to create a parent class that defi nes
them. The program can build a big array or list to hold all the drawing objects represented by the
parent class and then use polymorphism to invoke the common methods as necessary.

 For a concrete example, suppose the user clicks part of a drawing to select a drawn object. Classes
such as Rectangle and Ellipse use different techniques to decide whether you clicked their
objects, but they both need a method to do that. You could call this method ObjectIsAt and
make it return true if the object is at a specifi c clicked location. The parent class, which I’ll call
Drawable , can defi ne the ObjectIsAt method. The child classes would then provide their own
implementations.

 Figure 6-3 shows the drawing class inheritance hierarchy.

 Just as you can go overboard with refi nement to build an inheritance hierarchy containing
thousands of car classes, you can also get carried away with generalization. For example, suppose
you’re building a pet store inventory
application. You defi ne a Customer
class and an Employee class. They
share some properties such as Name ,
Address, and ZodiacSign , so you
generalize them by making a Person
class to hold the common properties.

 Next, you defi ne various pet classes
such as Dog, Cat , Gerbil , and
Capybara . You generalize them to
make a Pet class.

 In a fi t of inspiration (possibly assisted by whatever you were drinking), you realize that people and
pets are all animals! So you make an Animal class to be a parent class for Person and Pet . They can
even share some properties such as Name .

 Logically, this makes sense. People and pets really are animals (as long as your pet store doesn’t sell
pet rocks or stuffed toys). However, it’s unlikely that the program will ever take advantage of this
fact. It’s hard to imagine the program building an array or list containing both employees and birds
and then treating them in a uniform way. In all likelihood, the program will treat people and pets in
different ways, so they don’t need to be merged into a single inheritance hierarchy.

Hierarchy Warning Signs
 The following list gives some questions you can ask yourself when trying to decide if you have an
effective inheritance hierarchy.

➤ Is it tall and thin? In general, tall, thin inheritance hierarchies are more confusing than shorter
ones. Tall hierarchies make it hard for developers to remember which class to use under
different circumstances. How tall an inheritance hierarchy can be depends on your application,
but if it contains more than three or four levels, you should make sure you really need them all.

➤ Do you have a huge number of classes? Suppose your car sales application needs to track
make, model, year, color, engine, wheel size, and motorized cup holders. If you try to use

 FIGURE 6-3: Generalization creates the Drawable parent class.

Drawable

PointIsAt()

Line

PointIsAt()

Ellipse

PointIsAt()

...

Rectangle

PointIsAt()

Database Design ❘ 127

classes to represent every possible combination, you’ll get a combinatorial explosion and
thousands of classes. If you have more than a dozen or so classes, see if you can replace some
with simple properties.

➤ Does a class have only a single subclass? If so, then you can probably remove it and move
whatever it was trying to represent into the subclass.

➤ If there a class at the bottom of the hierarchy that is never instantiated? If the Car hierarchy
has a HalfTrack class and the program never makes an instance of that class, then you
probably don’t need the HalfTrack class.

➤ Do the classes all make common sense? If the Car hierarchy contains a Helicopter class,
there’s probably something wrong. Either the class doesn’t belong there or you should
rename some classes so things make sense. (Perhaps you need a Vehicle class?)

➤ Do classes represent differences in a property’s value rather than in behavior or the presence
of properties? A simple sales program might not need separate classes to represent notebooks
and three‐hole punches because they’re both simple products that you sell one at a time. You
might want a separate class for more expensive objects like computers because they might
have a Warranty property that notebooks and hole punches probably don’t have.

 Object Composition
 Inheritance is one way you can reuse code. A child class inherits all of the code defi ned by its
parent class, so you don’t need to write it again. Another way to reuse code is object composition , a
technique that uses existing classes to build more complex classes.

 For example, suppose you defi ne a Person class that has FirstName , LastName , Address , and Phone
properties. Now you want to make a Company class that should include information about a contact
person.

 You could make the Company class inherit from the Person class so it would inherit the FirstName ,
LastName , Address , and Phone properties. That would give you places to store the contact person’s
information, but it doesn’t make intuitive sense. A company is not a kind of person (despite certain
Supreme Court rulings), so Company should not inherit from Person .

 A better approach is to give the Company class a new property of type Person called
ContactPerson . Now the Company class gets the benefi t of the code defi ned by the Person class
without the illogic and possible confusion of inheriting from Person .

 This approach also lets you place more than one Person object inside the Company class. For example,
if you decide the Company class also needs to store information about a billing contact and a shipping
contact, you can add more Person objects to the class. You couldn’t do that with inheritance.

 DATABASE DESIGN

 There are many different kinds of databases that you can use to build an application. For example,
specialized kinds of databases store hierarchical data, documents, graphs and networks, key/value
pairs, and objects. However, the most popular kind of databases are relational databases.

128 ❘ CHAPTER 6 LOW‐LEVEL DESIGN

Relational databases are simple, easy to use, and provide a good set of tools for searching,
combining data from different tables, sorting results, and otherwise rearranging data.

Like object‐oriented design, database design is too big a topic to squeeze into a tiny portion of
this book. However, there is room here to cover a few of the most important concepts of database
design. You can fi nd a book on database design for more complete information. (For example, see
my book Beginning Database Design Solutions , Wrox, 2008.)

The following section briefl y explains what a relational database is. The sections after that explain
the fi rst three forms of database normalization and why they are important.

Relational Databases
Before you learn about database normalization, you need to at least know the basics of relational
databases.

A relational database stores related data in tables . Each table holds records that contain pieces of
data that are related. Sometimes records are called tuples to emphasize that they contain a set of
related values.

The pieces of data in each record are called fi elds . Each fi eld has a name and a data type. All the
values in different records for a particular fi eld have that data type.

Figure 6-4 shows a small Customer table holding fi ve records. The table’s fi elds are CustomerId ,
FirstName , LastName , Street , City , yy State , and Zip . Because the representation shown in Figure 6-4
lays out the data in rows and columns, records are often called rows and fi elds are often called columns .

DATABASE RANKINGS

To see the top database engines ranked by popularity, go to db‐engines.com/en/
ranking. It’s a pretty interesting list.

CustomerId

1028

2918

7910

3198

5002

Veronica

Kirk

Lila

Deirdre

Alicia

Jenson

Wood

Rowe

Lemon

Hayes

176 Bradley Ave

61 Beech St

8391 Cedar Ct

2819 Dent Dr

298 Elf Ln

Abend

Bugsville

Cobblestone

Dove

Eagle

AZ

CT

SC

DE

CO

87351

04514

35245

29183

83726

FirstName LastName Street City State Zip

 FIGURE 6-4: A table’s records are often called rows and its fi elds are often called columns.

The “relational” part of the term “relational database” comes from relationships defi ned between the
database’s tables. For example, consider the Orders table shown in Figure 6-5 . The Customers
table’s CustomerId fi eld and the Orders table’s CustomerId fi eld form a relationship between the two
tables. To fi nd a particular customer’s orders, you can look up that customer’s CustomerId in the
Customers table in Figure 6-4 , and then fi nd the corresponding Orders records.

Database Design ❘ 129

 One particularly useful kind of relationship is a foreign key relationship. A foreign key is a set of
one or more fi elds in one table with values that uniquely defi ne a record in another table.

 For example, in the Orders table shown in Figure 6-5 , the CustomerId fi eld uniquely identifi es a
record in the Customers table. In other words, it tells you which customer placed the order. There
may be multiple records in the Orders table with the same CustomerId (a single customer can place
multiple orders), but there can be only one record in the Customers table that has a particular
CustomerId value.

 The table containing the foreign key is often called the child table , and the table that contains the
uniquely identifi ed record is often called the parent table . In this example, the Orders table is the
child table, and the Customers table is the parent table.

 FIGURE 6-5: The Customers table’s CustomerId column provides a link to
the Orders table’s CustomerID column.

CustomerId OrderId DateOrdered DateFilled DateShipped

1028

2918

3198

1028

1028

1298

1982

2917

9201

3010

4/1/2015

4/1/2015

4/2/2015

4/5/2015

4/9/2015

4/4/2015

4/3/2015

4/7/2015

4/6/2015

4/13/2015

4/4/2015

4/4/2015

4/9/2015

4/9/2015

4/14/2015

 LOOKUP TABLES

 A lookup table is a table that contains values just to use as foreign keys.

 For example, you could make a States table that lists the states that are allowed
by the application. If your company has customers only in New England, the
table might contain the values Maine, New Hampshire, Vermont, Massachusetts,
Connecticut, and Rhode Island.

 The Customers table would be a child table connected to the States table with a
foreign key. That would prevent a user from adding a new customer in a state that
wasn’t allowed.

 In addition to validating user inputs, lookup tables allow the users to confi gure
the application. If you let users modify the States table, they can add new records
when they decide to work with customers in new states.

 Building a relational database is easy, but unless you design the database properly, you may
encounter unexpected problems. Those problems may be that:

➤ Duplicate data can waste space and make updating values slow.

➤ You may be unable to delete one piece of data without also deleting another unrelated piece
of data.

130 ❘ CHAPTER 6 LOW‐LEVEL DESIGN

➤ An otherwise unnecessary piece of data may need to exist so that you can represent some
other data.

➤ The database may not allow multiple values when you need them.

The database‐speak euphemism for these kinds of problems is anomalies .

Database normalization is a process of rearranging a database to put it into a standard (normal)
form that prevents these kinds of anomalies. There are seven levels of database normalization that
deal with increasingly obscure kinds of anomalies. The following sections describe the fi rst three
levels of normalization, which handle the worst kinds of database problems.

 First Normal Form
First normal form (1NF) basically says the table can be placed meaningfully in a relational
database. It means the table has a sensible, down‐to‐earth structure like the kind your grandma
used to make.

Relational database products tend to enforce most of the 1NF rules automatically, so if you don’t do
anything too weird, your database will be in 1NF with little extra work.

The offi cial requirements for a table to be in 1NF are:

1. Each column must have a unique name.

2. The order of the rows and columns doesn’t matter.

3. Each column must have a single data type.

4. No two rows can contain identical values.

5. Each column must contain a single value.

6. Columns cannot contain repeating groups.

To see how you might be tricked into breaking these rules, suppose you’re a weapons instructor at a
fantasy adventure camp. You teach kids how to whack each other safely with foam swords and the
like. Now consider the signup sheet shown in Table 6-1 .

 TABLE 6-1: Weapons Training Signup Sheet

WEAPON WEAPON

Shelly Silva Broadsword

Louis Christenson Bow

Lee Hall Katana

Sharon Simmons Broadsword Bow

Felipe Vega Broadsword Katana

Louis Christenson Bow

Kate Ballard Everything

Database Design ❘ 131

 Here campers list their names and weapons for which they want training. You’ll call them in for
instruction on a fi rst‐come‐fi rst‐served basis.

 This signup sheet violates the 1NF rules in several ways.

 It violates Rule 1 because it contains two columns named Weapon . The idea is that a camper might
want help with more than one weapon. That makes sense on a signup sheet but won’t work in a
relational database.

 It violates Rule 2 because the order of the rows indicates the order in which the campers signed up
and the order in which you’ll tutor them. In other words, the ordering of the rows is important.
(The order of the columns might also be important if you assume the fi rst Weapon column holds the
camper’s primary weapon.)

 It violates Rule 3 because Kate Ballard didn’t enter the name of a weapon in the fi rst weapon
column. Ideally, that column’s data type would be Weapon and campers would just enter a weapon’s
name, not a general comment such as “Everything.”

 It violates Rule 4 because Louis Christenson signed up twice for tutoring with the bow. (I guess he
wants to get really good with the bow.)

 The signup sheet doesn’t violate Rule 5, but that’s mostly due to luck. There’s nothing (except
common sense) to stop campers from entering multiple weapons in each Weapon column, and that
would violate Rule 5.

 Here’s how you can put this signup sheet into 1NF.

Rule 1 —The signup sheet has two columns named Weapon . You can fi x that by changing their
names to Weapon1 and Weapon2 . (That violates Rule 6, but we’ll fi x that later.)

Rule 2 —The order of the rows in the signup sheet determines the order in which you’ll call campers
for their tutorials, so the ordering of rows is important. To fi x this problem, add a new fi eld that stores
the ordering data explicitly. One way to do that would be to add an Order fi eld, as shown in Table 6-2 .

 TABLE 6-2: Ordered Signup Sheet

ORDER NAME WEAPON1 WEAPON2

1 Shelly Silva Broadsword

2 Louis Christenson Bow

3 Lee Hall Katana

4 Sharon Simmons Broadsword Bow

5 Felipe Vega Broadsword Katana

6 Louis Christenson Bow

7 Kate Ballard Everything

 An alternative that might be more useful would be to add a Time fi eld instead of an Order fi eld,
as shown in Table 6-3 . That preserves the original ordering and gives extra information that the
campers can use to schedule their days.

132 ❘ CHAPTER 6 LOW‐LEVEL DESIGN

Rule 3—In Table 6-3 , the Weapon1 column holds two kinds of values: the name of a weapon or
“Everything” (for Kate Ballard).

Depending on the application, there are several approaches you could take to fi x this kind
of problem. You could split a column into two columns, each containing a single data type.
Alternatively, you could move the data into separate tables linked to the original record by a key.

In this example, I’ll replace the value “Everything” with multiple records that list all the possible
weapon values. The result is shown in Table 6-4 .

TABLE 6-3: Signup Sheet with Times

TIME NAME WEAPON1 WEAPON2

9:00 Shelly Silva Broadsword

9:30 Louis Christenson Bow

10:00 Lee Hall Katana

10:30 Sharon Simmons Broadsword Bow

11:00 Felipe Vega Broadsword Katana

11:30 Louis Christenson Bow

12:00 Kate Ballard Everything

TABLE 6-4: Signup Sheet with Explicitly Listed Weapons

TIME NAME WEAPON1 WEAPON2

9:00 Shelly Silva Broadsword

9:30 Louis Christenson Bow

10:00 Lee Hall Katana

10:30 Sharon Simmons Broadsword Bow

11:00 Felipe Vega Broadsword Katana

11:30 Louis Christenson Bow

12:00 Kate Ballard Broadsword

12:00 Kate Ballard Bow

12:00 Kate Ballard Katana

Rule 4 —The current design doesn’t contain any duplicate rows, so it satisfi es Rule 4.

Rule 5 —Right now each column contains a single value, so the current design satisfi es Rule 5. (The
original signup sheet would have broken this rule if it had used a single Weapons column instead of
using two separate columns and people had written in lists of the weapons they wanted to study.)

Rule 6—This rule says a table cannot contain repeating groups. That means you can’t have two
columns that represent the same thing. This means a bit more than two columns don’t have the
same data type . Tables often have multiple columns with the same data types but with different
meanings. For example, the Camper table might have HomePhone and CellPhone fi elds. Both of them
would hold phone numbers, but they represent different kinds of phone numbers.

Database Design ❘ 133

 In the current design, the Weapon1 and Weapon2 columns hold the same type and kind of data, so
they form a repeating group.

 ROTTEN REPETITION

 In general, adding a number to fi eld names to differentiate them is a bad idea. If
the program doesn’t need to differentiate between the two values, then adding a
number to their names just creates a repeating group.

 The only time this makes sense is if the two fi elds contain similar items that truly
have different meanings to the application. For example, suppose a space shuttle
requires two pilots: one to be the primary pilot and one to be the backup in case the
primary pilot is abducted by aliens. In that case, you could name the fi elds that store
their names Pilot1 and Pilot2 because there really is a difference between them.

 Usually in cases like this, you can give the fi elds more descriptive names such as
Pilot and Copilot .

 Another way to look at this is to ask yourself whether the record “Sharon Simmons, Broadsword,
Bow” and the rearranged record “Sharon Simmons, Bow, Broadsword” would have the same
meaning. If the two have the same meaning even if you switch the values of the two fi elds, then
those fi elds form a repeating group.

 The way to fi x this problem is to pull the repeated data out into a new table. Use fi elds in the
original table to link to the new one. Figure 6-6 shows the new design. Here the Tutorials and
TutorialWeapons tables are linked by their Time fi elds.

9:00

9:30

10:00

10:30

11:00

11:30

12:00

Shelly Silva

Louis Christenson

Lee Hall

Sharon Simmons

Felipe Vega

Louis Christenson

Kate Ballard

Tutorials

NameTime

9:00

9:30

10:00

10:30

10:30

11:00

11:00

Broadsword

Bow

Katana

Broadsword

Bow

Broadsword

Katana

11:30 Bow

12:00 Broadsword

12:00 Bow

12:00 Katana

TutorialWeapns

WeaponTime

 FIGURE 6-6: This design is in fi rst 1NF. Lines connect related records.

134 ❘ CHAPTER 6 LOW‐LEVEL DESIGN

 Second Normal Form
A table is in second normal form (2NF) if it satisfi es these rules:

1. It is in 1NF.

2. All non-key fi elds depend on all key fi elds.

Without getting two technical, a key is a set of one or more fi elds that uniquely identifi es a record. Anyy
table in 1NF must have a key because 1NF Rule 4 says, “No two rows can contain identical values.” That
means there must be a way to pick fi elds to guarantee uniqueness, even if the key must include every fi eld.

For an example of a table that is not in 2NF, suppose you want to schedule games for campers at the
fantasy adventure camp. Table 6-5 lists the scheduled games.

 TABLE 6-5: Camp Games Schedule

TIME GAME DURATION MAXIMUMPLAYERS

1:00 Goblin Launch 60 mins 8

1:00 Water Wizzards 120 mins 6

2:00 Panic at the Picnic 90 mins 12

2:00 Goblin Launch 60 mins 8

3:00 Capture the Castle 120 mins 100

3:00 Water Wizzards 120 mins 6

4:00 Middle Earth Hold’em Poker 90 mins 10

5:00 Capture the Castle 120 mins 100

The table’s primary key is Time+Game . It cannot have two instances of the same game at the same
time (because you don’t have enough equipment or counselors), so the combination of Time+Game
uniquely identifi es the rows.

You should quickly review the 1NF rules and convince yourself that this table is in 1NF. In case you
haven’t memorized them yet, the 1NF rules are:

1. Each column must have a unique name.

2. The order of the rows and columns doesn’t matter.

3. Each column must have a single data type.

4. No two rows can contain identical values.

5. Each column must contain a single value.

6. Columns cannot contain repeating groups.

Even though this table is in 1NF, it suffers from the following anomalies:

➤ Update anomalies —If you modify the Duration or MaximumPlayers value in one row, other
rows containing the same game will be out of sync.

Database Design ❘ 135

➤ Deletion anomalies —Suppose you want to cancel the Middle Earth Hold’em Poker game at
4:00, so you delete that record. Then you’ve lost all the information about that game. You no
longer know that it takes 90 minutes and has a maximum of 10 players.

➤ Insertion anomalies —You cannot add information about a new game without
scheduling it for play. For example, suppose Banshee Bingo takes 45 minutes and has
a maximum of 30 players. You can’t add that information to the database without
scheduling a game.

The problem with this table is that it’s trying to do too much. It’s trying to store information about
both games (duration and maximum players) and the schedule.

The reason it breaks the 2NF rules is that some non-key fi elds do not depend on all the key fi elds. l
Recall that this table’s key fi elds are Time and Game . A game’s duration and maximum number of
players depends only on the Game and not on the Time . For example, Water Wizzards lasts for 120
minutes whether you play at 1:00, 4:00, or midnight.

To fi x this table, move the data that doesn’t depend on the entire key into a new table. Use the key
fi elds that the data does depend on to link to the original table.

Figure 6-7 shows the new design. Here the ScheduledGames table holds schedule information and
the Games table holds information specifi c to the games.

1:00

1:00

2:00

2:00

3:00

3:00

4:00

Goblin Launch

Water Wizzards

Panic at the Picnic

Goblin Launch

Capture the Castle

Water Wizzards

Middle Earth Hold’em Poker

Goblin Launch

Water Wizzards

Panic at the Picnic

Capture the Castle

Middle Earth Hold’em Poker

Banshee Bingo

5:00 Capture the Castle

ScheduledGames

GameTime

Games

Game

60 min

120 min

90 min

120 min

90 min

45 min

Duration

8

6

12

100

10

30

MaximumPlayers

 FIGURE 6-7: Moving the data that doesn’t depend on all the table’s key fi elds puts this table in 2NF.l

 Third Normal Form
 A table is in third normal form (3NF) if:

1. It is in 2NF.

2. It contains no transitive dependencies.

 A transitive dependency is when a non-key fi eld’s value depends on another non-key fi eld’s value.

136 ❘ CHAPTER 6 LOW‐LEVEL DESIGN

For example, suppose the fantasy adventure camp has a library. (So campers have something to read
after they get injured playing the games.) Posted in the library is the following list of the counselors’
favorite books, as shown in Table 6-6 .

TABLE 6-6: Counselors’ Favorite Books

FAVORITEBOOK AUTHOR PAGES

Becky Dealing with Dragons Patricia Wrede 240

Charlotte The Last Dragonslayer Jasper Fforde 306

J.C. Gil’s All Fright Diner A. Lee Martinez 288

Jon The Last Dragonslayer Jasper Fforde 306

Luke The Color of Magic Terry Pratchett 288

Noah Dealing with Dragons Patricia Wrede 240

Rod Equal Rites Terry Pratchett 272

Wendy The Lord of the Rings Trilogy J.R.R. Tolkein 1178

This table’s key is the Counselor fi eld.

If you run through the 1NF rules, you’ll see that this table is in 1NF.

The table has only a single key fi eld, so a non-key fi eld cannot depend on only some of the key fi elds.
That means the table is also in 2NF.

When posted on the wall of the library, this list is fi ne. Inside a database, however, it suffers from
the following anomalies:

➤ Update anomalies —If you change the Pages value for Becky’s row (Dealing with Dragons),
it will be inconsistent with Noah’s row (also Dealing with Dragons). Also if Luke changes his
favorite book to Majestrum: A Tale of Hengis Hapthorn , the table loses the data it has about
The Color of Magic .

➤ Deletion anomalies —If J.C. quits being a counselor to become a professional wrestler and
you remove his record from the table, you lose the information about Gil’s All Fright Diner . r

➤ Insertion anomalies —You cannot add information about a new book unless it’s someone’s
favorite. Conversely, you can’t add information about a person unless he declares a favorite book.

The problem is that some non-key fi elds depend on other non-key fi elds. In this example, the Author
and Pages fi elds depend on the FavoriteBook fi eld. For example, any record with FavoriteBook
The Last Dragonslayer has Author Jasper Fforde and Pages 306 no matter whose favorite it is.

DIAGNOSING DEPENDENCIES

A major hint that there is a transitive dependency in this table is that there are lots
of duplicate values in different columns. Another way to think about this is that
there are “tuples” of data (FavoriteBook+Author+Pages) that go together.

Database Design ❘ 137

 You can fi x this problem by keeping only enough information to identify the dependent data and
moving the rest of those fi elds into a new table. In this example, you would keep the FavoriteBook
fi eld in the original table and move its dependent values Author and Pages into a new table.
Figure 6-8 shows the new design.

 FIGURE 6-8: Moving non-key fi elds that depend on other non-key fi elds into a separate table puts
this table in 3NF.

Becky

Charlotte

J.C.

Jon

Luke

Noah

Rod

Dealing with Dragons

The Last Dragonslayer

Gil’s All Fright Diner

The Last Dragonslayer

The Color of Magic

Dealing with Dragons

Equal Rites

Dealing with Dragons

The Last Dragonslayer

Gil’s All Fright Diner

The Color of Magic

Equal Rites

The Lord of the Rings Trilogy

Wendy The Lord of the Rings Trilogy

CounselorFavorites

FavoriteBookCounselor

BookInfo

Book

Patricia Wrede

Jasper Fforde

A. Lee Martinez

Terry Pratchett

Terry Pratchett

J.R.R. Tolkein

Author

240

306

288

288

272

1178

Pages

 Higher Levels of Normalization
 Higher levels of normalization include Boyce‐Codd normal form (BCNF), fourth normal form
(4NF), fi fth normal form (5NF), and Domain/Key Normal Form (DKNF). Some of these later
levels of normalization are fairly technical and confusing, so I won’t cover them here. See a book on
database design for details.

 Many database designs stop at 3NF because it handles most kinds of database anomalies without a
huge amount of effort. In fact, with a little practice, you can design database tables in 3NF from the
beginning, so you don’t need to spend several steps normalizing them.

 More complete levels of normalization can also lead to confusing database designs that may make
using the database harder and less intuitive, possibly giving rise to extra bugs and sometimes
reduced performance.

 One particular compromise that is often useful is to intentionally leave some data denormalized for
performance reasons. A classic example is in ZIP codes. ZIP codes and street addresses are related,
so if you know a street address, you can look up the corresponding ZIP code. For example, the ZIP
code for 1 Main St., Boston, MA is 02129‐3786.

 Ideally, normalization would tell you to store only the street address and then use it to look up the
ZIP code as needed. Unfortunately, these relationships aren’t as simple as, “All Main St. addresses in
Boston have the ZIP code 02129‐3786.” ZIP codes depend on which part of the street contains the
address and sometimes even which side of the street the address is on. That means you can’t build a
table to perform a simple lookup.

138 ❘ CHAPTER 6 LOW‐LEVEL DESIGN

You could build a much more complicated table to fi nd an address’s ZIP code, perhaps with some
confusing code. Or you might use some sort of web service provided by the United States Postal Service.

Usually, however, developers just include the ZIP code as a separate fi eld in the address. That means
there’s a lot of “unnecessary” duplication, but it doesn’t take up much extra room and it makes
looking up addresses much easier.

LOADS OF CODES

Addresses and postal codes are also related outside of the United States. For example,
the postal code for 1 Main St., Dungiven, Londonderry England is BT47 4PG, and
the postal code for 1 Main St., Vancouver, BC, Canada is V6A 3Y5. You can use
various postal websites to look up codes for different addresses in different countries.

In theory, you could look up the postal codes for any address. In practice, it’s a lot
easier to just include them in the address data.

SUMMARY

Low‐level design fi lls in some of the gaps left by high‐level design to provide extra guidance to
developers before they start writing code. It provides the level of detail necessary for programmers
to start writing code, or at least for them to start building classes and to fi nish defi ning interfaces.
Low‐level design moves the high‐level focus from what to a lower level focus on t how . w

Like most of the topics covered in this book, low‐level design is a huge subject. There’s no way to cover
every possible approach to low‐level design in a single chapter. However, this chapter does provide an
introduction to two important facets of low‐level design: object‐oriented design and database design.

Object‐oriented design determines what classes the application uses. Database design determines
what tables the database contains and how they are related. Object‐oriented design and database
design aren’t all you need to do to ensure success, but poor designs almost always lead to failure.

The boundary between high‐level and low‐level design is rather arbitrary. Low‐level design tasks are
similar to high‐level design tasks but with a greater level of detail. In fact, the same kinds of tasks
can slip into the next step in software engineering: development.

The next chapter provides an introduction to software development. It explains some general
methods you can use to organize development. It also describes a few useful techniques you can use
to reduce the number of bugs that are introduced during development.

EXERCISES

1. Consider the ClassyDraw classes w Line , Rectangle , Ellipse , Star , and Text . What properties do
these classes all share? What properties do they not share? Are there any properties shared by
some classes and not others? Where should the shared and nonshared properties be implemented?

2. Draw an inheritance diagram showing the properties you identifi ed for Exercise 1. (Create
parent classes as needed, and don’t forget the Drawable class at the top.)

Summary ❘ 139

3. The following list gives the properties of several business‐oriented classes.

➤ Customer—Name , Phone , Address , BillingAddress , CustomerId
➤ Hourly — Name , Phone , Address , EmployeeId , HourlyRate
➤ Manager— Name , Phone , Address , EmployeeId , Office , Salary , Boss , Employees
➤ Salaried — Name , Phone , Address , EmployeeId , Office , Salary , Boss
➤ Supplier — Name , Phone , Address , Products , SupplierId
➤ VicePresident — Name , Phone , Address , EmployeeId , Office , Salary , Managers

 Assuming a Supplier is someone who supplies products for your business, draw an inheritance
diagram showing the relationships among these classes. (Hint: Add extra classes if necessary.)

4. How would the inheritance hierarchy you drew for Exercise 3 change if you decide to add the
Boss property to the Hourly class?

5. How would the inheritance hierarchy you drew for Exercise 3 change if Supplier represents a
business instead of a person?

6. Suppose your company has many managerial types such as department manager, project
manager, and division manager. You also have multiple levels of vice president, some of
whom report to other manager types. How could you combine the Salaried , Manager , and
VicePresident types you used in Exercise 3? Draw the new inheritance hierarchy.

7. If a table includes a ZIP code with every address, what 1NF, 2NF, and 3NF rules does the table break?

8. What data anomalies can result from including postal codes in address data? How bad are
they? How can you mitigate the problems?

9. In the United States Postal Service’s ZIP+4 system, ZIP codes can include 4 extra digits as
in 20500‐0002. Suppose you store address data with a single Zip fi eld that has room for 10
characters. Some addresses include only a 5‐digit ZIP code and others include a ZIP+4 code.
Does that violate any of the 1NF, 2NF, or 3NF rules? Should you do anything about it?

10. Do telephone area codes face issues similar to those involving ZIP codes?

11. Suppose you’re writing an application to record times for dragon boat races and consider the
table shown in Figure 6-9 . Assume the table’s key is Heat . What 1NF, 2NF, and 3NF rules does
this design violate?

12. How could you fi x the table shown in Figure 6-9 ?

Buddhist Temple
Rainbow Energy
Math Dragons
Flux Lake Tritons

Distance Heat
500
500

1000
1000

Time Team

Wicked Wind
Rising Typhoon
Supermarines
Elf Power

Team

Buddhist Temple
Rising Typhoon
Math Dragons
Elf Power

Winner

2:55.372
3:10.201
5:52.029
6:08.480

Time

2:57.391
3:01.791
6:23.552
6:59.717

Time
9:00
9:20
9:40

10:00

1
2
3
4

 FIGURE 6-9: This table records dragon boat race results.

140 ❘ CHAPTER 6 LOW‐LEVEL DESIGN

▸ WHAT YOU LEARNED IN THIS CHAPTER
➤ A class defi nes the properties, methods, and events provided by instances of the class.

➤ Nouns in the project description make good candidates for classes.

➤ Inheritance provides code reuse.

➤ Polymorphism lets a program treat an object as if it had a parent class’s type.

➤ In refi nement, you add details to a general class to defi ne subclasses.

➤ In generalization, you extract common features from two or more classes to defi ne a parent
class.

➤ Inheritance hierarchy warning signs include:

➤ The hierarchy is tall and thin.

➤ The hierarchy contains a large number of classes.

➤ A class has a single subclass.

➤ A class at the bottom of the hierarchy is never instantiated.

➤ The classes don’t make common sense.

➤ Classes represent differences in property values, not different properties themselves or
different behaviors.

➤ Composition provides code reuse. It also lets you include multiple copies of a type of object
inside a class, something inheritance doesn’t do.

➤ Relational databases contain tables that hold records (or rows). The records in a table all
have the same fi elds (or columns).

➤ A foreign key forms a relationship between the values in a parent table and the values in a
child table. The child table’s fi elds must contain values that are present in the parent table.

➤ A lookup table is a foreign key parent table that simply defi nes values that are allowed in
other tables.

➤ Normalization protects a database from data anomalies.

➤ 1NF rules:

 1. Each column must have a unique name.

 2. The order of the rows and columns doesn’t matter.

 3. Each column must have a single data type.

 4. No two rows can contain identical values.

 5. Each column must contain a single value.

 6. Columns cannot contain repeating groups.

Summary ❘ 141

➤ 2NF rules:

 1. It is in 1NF.

 2. All non-key fi elds depend on all key fi elds.

➤ 3NF rules:

 1. It is in 2NF.

 2. It contains no transitive dependencies. (No non-key fi elds depend on other non-key
fi elds.)

 A good programmer is someone who always looks both ways before
crossing a one‐way street.

 —Doug Linder

 Always code as if the guy who ends up maintaining your code will be a
violent psychopath who knows where you live.

 —Martin Golding

 WHAT YOU WILL LEARN IN THIS CHAPTER:

➤ Tools that are useful to programmers

➤ How to decide which algorithms are better than others

➤ How to use top‐down design to turn designs into code

➤ Programming tips that can make code easier to debug and maintain

 To many programmers, development is the heart of software engineering. It’s where fi ngers
hit the keyboard and churn out the actual program code of the system. Without development,
there is no application.

 As is the case with other stages of software development, the edges of development are a bit
blurry. Low‐level design may identify the classes that a program will need, but it may not spell
out every method that the classes must provide and it might provide few details about how
those methods work. That means the development stage must still include some design work
as developers fi gure out how to build the classes.

 7

144 ❘ CHAPTER 7 DEVELOPMENT

Similarly, the next stage of software engineering, testing, often begins before development is
completely fi nished. In fact, it’s best to test software early and often. It’s widely known that bugs
are easiest to fi nd and fi x if they’re detected soon after they’re created, so if possible you should test
every method you write as soon as it’s fi nished (sometimes even before it’s fi nished).

Most developers write programs because they like to write code. (I know I do. For me, solving
a tricky programming problem is like solving a diffi cult Sudoku puzzle. I get a great feeling
of satisfaction from crunching a bunch of numbers and having a beautiful fractal or a three‐
dimensional game pop out.) Over the years, programmers have collectively spent a huge amount
of time programming, fi xing bugs in their code, and thinking of ways to avoid similar bugs in the
future. That has generated a huge number of books about programming style and techniques for
avoiding, detecting, and fi xing bugs.

This chapter provides an introduction to some of the techniques that I’ve found most useful over the
years. It begins by describing some tools and general problem‐solving approaches that you can use
to turn the description of a method into code. It then explains some specifi c techniques that you can
use to make your code easier to debug and maintain.

If you’re not a programmer, for example, if you’re a project manager or a customer, you may not
need to memorize every one of these rules and apply them to your daily life. However, it’s still worth
your time to read them so that you’ll know what’s involved in writing good code (and so you’ll
understand what the programmers are complaining about).

USE THE RIGHT TOOLS

Including overhead (offi ce space, computer hardware, network hardware, Internet service provider,
vacation, sick time, a well‐stocked soda machine, and so forth), employing a programmer can easily
cost more than $100,000 per year. Still I have seen managers refuse to spend a few hundred bucks
for proper programming tools. I’ve seen projects end the year with thousands of dollars left over for
hardware expenses, but not a nickel for software tools.

When you’re spending $50 per hour on each employee, you don’t have to save much of their time to
make a little extra expense worthwhile. You don’t need to go crazy and spend thousands of dollars
to buy everyone a high‐end video recording package (unless that’s what your business does), but you
should spend a little money to make sure your team has all the tools it needs.

The following sections describe some of the development tools that every programmer should have.

Hardware
Few things are as frustrating as trying to write software on inadequate hardware. Programmers
need fast computers with lots of memory and disk space. A programmer with an underpowered
computer or insuffi cient memory takes longer to do everything.

Even worse, waiting for slow compilations breaks the programmer’s train of thought. To write bug‐
free (or at least minimally buggy) code, a programmer must stay focused on a method’s design until it
has been completely written. Breaking the writing process into dozens of chunks separated by several
minutes of thumb twiddling (or more likely, trips to the water cooler) breaks the programmer’s

Use the Right Tools ❘ 145

train of thought, so he needs to re‐create an understanding of the code each time. If each new
understanding doesn’t match the previous ones, the result is far more likely to contain bugs.

 Make sure the programmers have all the hardware resources they need to do their jobs quickly and
effectively. If that means buying more memory, disk space, or even new computers, do it. It’s insane
to waste hundreds of hours a year of a programmer’s time to save a few hundred dollars. (Although
I’ve known managers who did exactly that. In fact, I’ve known managers who wouldn’t pay for
new hardware for their programmers, but who needed the absolute top‐of‐the line computers for
themselves so that they could fi ll out expense reports and answer e‐mail.)

 There are two drawbacks to buying the programmers everything they need. First, some
programmers will go overboard and buy all sorts of fun toys that they don’t actually need. Most
programmers don’t need a USB controlled NERF rocket launcher or a Darth Vader USB hub. If you
have the money, you might let some of those purchases slide in the interests of morale. Otherwise,
you might want to check the product SKUs on the purchase requisitions you’re signing. (I’ve known
people to try to requisition Dalmatian puppies and cars, mostly as jokes. Those were caught, but
I know of one lab that managed to buy a hot tub one piece at a time. They got in a whole lot of…
well…hot water.)

 The second and far more important drawback to giving developers everything they want is that
they sometimes forget that their users may not have such nice equipment. I’ve used applications that
were blazingly fast on the developers’ computer but that were painfully slow for the users. Modern
computers are fast enough and cheap enough that this isn’t the problem it used to be in the “old
days” two or three years ago, but you should always test applications with hardware that is similar
to whatever your end users will be stuck with.

 Network
 I’ve known development groups that didn’t allow access to external networks. I can understand
why that might be necessary if you’re designing a new Minecraft mod and are worried that foreignt

 THE TORTOISE AND THE SLOTH

 I once worked on an application using a slow development environment. I would
add the next feature to the code, press the Compile button, and wander off for fi ve
or six minutes to wait for the compilation to fi nish. It was just too frustrating to sit
there staring at the screen while the compiler slowly dribbled out periods to tell me
that it was working and not dead.

 Meanwhile my business partner was stuck on another project but with a similar
development cycle. We spent a lot of time in the hallway talking about vacations.

 After about a month of that, I got a new development environment that had a lot
fewer features but that was much faster. It let me reproduce everything I had done
in the previous month in just two days. As you can probably guess, I never used the
other environment again.

146 ❘ CHAPTER 7 DEVELOPMENT

hackers will steal your plans and sell them to terrorists, but if it’s at all possible, you should allow
programmers to have free access to the Internet. Often a quick search can fi nd a solution to a
programming problem that would otherwise take hours to solve.

For example, when I’m working on a tricky project, I often use my own websites (www.csharphelper
.com and m www.vb‐helper.com) to look up specifi c techniques. My sites are particularly useful to mem

because they hold solutions to lots of problems I’ve encountered in the past and because I know more
or less what they contain. I also often fi nd solutions on Wikipedia (www.wikipedia.org) and I fi nd a g

lot of mathematical solutions on Wolfram MathWorld (mathworld.wolfram.com). And, of course, I m

often use a search engine to look for other solutions.

You should gently encourage staff members not to spend their whole day playing Cookie Clicker
or in chat rooms arguing about who is better, Kirk or Picard, but try to provide a fast Internet
connection and the freedom to use it.

Development Environment
This is the absolute minimum necessary to make programming possible. It at least includes the
compiler or interpreter that translates program code into something the computer can execute.

An integrated development environment (t IDE) such as Eclipse (mostly for Java, although plug‐ins
let you write in other languages such as C++ or Ruby) or Visual Studio (for Visual C#, Visual Basic,
Visual C++, JavaScript, and F#) can also include much more. Depending on the version you have
installed, they can include debuggers, code profi lers, class visualization tools, auto‐completion when
typing code, context‐sensitive help, team integration tools, and more.

Note that you don’t always need the fanciest development environment possible. For example,
Visual Studio comes in many different versions, ranging from the free “express” edition designed
for individual users, to the “professional” and “ultimate” editions designed for large project teams,
which cost a whole lot (MSRP, prices in U.S. dollars). The more expensive versions include tools and
resources that are most useful for larger projects so, if you’re writing a small application by yourself,
you may do just as well with the free express edition.

Similarly, Eclipse comes in a variety of IDEs with a lot of different plug‐ins to meet the needs of
different kinds of users. For example, Eclipse for Testers is designed for testers. (Well, duh.) If you’re
not doing a lot of testing, you may want to use a different version.

WHO KNOWS

Most mature development environments include remarkably powerful tools for
writing code. They’re so effective for a very good reason: the programmers who
wrote them know what you need to write programs. In contrast, programmers may
not know a lot about court reporting software, medical diagnostics, or cabinet
design. However, if programmers know anything, they know what features make
development environments effective. There will always be some variation, and
you may need to pay extra to get the best features, but there are some amazingly
powerful tools out there if you’re willing to learn how to use them.

http://www.csharphelper.com
http://www.csharphelper.com
http://www.wikipedia.org
http://www.vb%E2%80%90helper.com

Use the Right Tools ❘ 147

 Source Code Control
 If your development environment doesn’t include source code control, a separate system is essential.
Chapter 2 , “Before the Beginning,” explains that a documentation management system is important
for letting you track the many documents that make up a project. Source code control is even more
important for program code where changing a single character can reduce a working program to a
worthless pile of gibberish.

 A good source code management system enables you to go back through past versions of the
software and see exactly what changes were made and when. If a program stops working, you can
pull out old versions of the code to see which changes broke the program. After you know exactly
what changes were made between the last working version and the fi rst broken one, you can fi gure
out which changes caused the bug and you can fi x them.

 Source code control programs also prevent multiple programmers from tripping over each other as
they try to modify the same code at the same time.

 Profi lers
 Profi lers let you determine what parts of the program use the most time, memory, fi les, or other
resources. These can save you a huge amount of time when you’re trying to tune an application’s
performance. (I’ll say more about this in the section “Defer Optimization” later in this chapter.)

 You may not need to buy every programmer a profi ler. Typically, a small part of a program’s code
determines its overall performance, so you usually don’t need to study every line’s performance
extensively. Still it’s important to have profi lers available when they are needed.

 Static Analysis Tools
 Profi lers monitor a program as it executes to see how it works. Static analysis tools study code
without executing it. They tend to focus on the code’s style. For example, they can measure how
interconnected different pieces of code are or how complex a piece of code is. They can also
calculate statistics that may indicate code quality and maintainability such as the number of
comments per line of code and average the number of lines of code per method.

 Testing Tools
 Testing tools, particularly automated tools, can make testing a whole lot faster, easier, and more
reliable. I’ll talk more about testing tools in the next chapter (which covers testing). For now, just be
aware that every programmer must perform at least some testing, so everyone should have access to
testing tools.

 Source Code Formatters
 Some development environments do a better job of formatting code than others. For example, some
environments automatically indent source code to show how code is nested in if‐then statements
and loops. That formatting makes code easier to read and understand. That in turn reduces the
number of bugs in the code and makes fi nding and fi xing bugs easier.

148 ❘ CHAPTER 7 DEVELOPMENT

Other development environments don’t provide much in the way of formatting. If you’re using that
kind of environment, a separate code formatter can standardize indentation, align and reformat
comments, break code so it fi ts on a printout, enforce some code standards, and more.

(Your team will need to decide on the level of code uniformity you want to enforce. Too much
standardization can be annoying to developers, but left to their own devices, a few programmers
will produce such free‐spirited results that their code looks more like an E.E. Cummings poem than
professional software.)

 Refactoring Tools
The term refactoring is programmer‐speak for “rearranging code to make it easier to understand, g
more maintainable, or generally better.” Some refactoring tools (which may be built into the IDE)
let you do things like easily defi ne new classes or methods, or extract a chunk of code into a new
method.

Refactoring tools can be particularly useful if you’re managing existing code (as opposed to writing
new code).

 Training
This is another category where some managers are penny-wise and pound-foolish. Training makes
programmers more effective and keeps them happy. A few thousand dollars spent on training can
greatly improve performance and help you retain your staff.

Online video training courses and books are often less effective than in‐person training, but they’re
also a lot less expensive and they let you study whenever you have the time. If a $50 book gives you
a single new tip, then it’s probably worth it.

You do need to be a little selective, however. If you buy too many books, you won’t have time to
read them all.

 SELECTING ALGORITHMS

After low‐level design is mostly complete (and you have all your tools in place), you should have a
good sense of what classes you need and the tasks those classes need to perform. The next step is
writing the code to perform those tasks.

For more complicated problems, the fi rst step is researching possible algorithms. An algorithm
is like a recipe for solving a hard programming problem. In the decades since computers were
invented, many effi cient algorithms have been developed to solve problems such as the following:

➤ Sorting and arranging pieces of data

➤ Quickly locating items in databases

➤ Finding optimal paths through street, power, communication, or other networks

➤ Designing networks to provide necessary capacity and redundancy to prevent single points
of failure

Selecting Algorithms ❘ 149

➤ Encrypting and decrypting data

➤ Picking optimal investment strategies

➤ Finding least cost construction and production strategies

➤ Many, many more

 For complicated problems like these, the difference between a good algorithm and a bad one can
make the difference between fi nding a good solution in seconds, hours, days, or not at all.

 Fortunately, these sorts of algorithms have been extensively studied for years, so you usually don’t
need to write your own from scratch. You can use the Internet and algorithm books to look for an
approach that fi ts your problem. (For example, see my introductory book Essential Algorithms: A
Practical Approach to Computer Algorithms , Wiley, 2013.)

 You’ll probably still need to do some work plugging the algorithm into your application, but
there’s no need for you to reinvent everything from scratch. However, even if you don’t need
to build an algorithm from the ground up, you should know some of the characteristics that
make an algorithm a good choice for you. The following sections describe some of those
characteristics.

 Effective
 Obviously, an algorithm won’t do you much good if it doesn’t solve your particular problem. An
algorithm that fi nds critical paths through a PERT chart (remember those from Chapter 3 , “Project
Management”?) won’t help you much with calculating the ideal maintenance schedule for a fl eet of
trucks. You need to pick the right algorithm for the job.

 If an algorithm doesn’t meet your needs exactly, look for an algorithm that does. If you can fi nd
something that only comes close but doesn’t quite fi t your situation, ask yourself whether the
algorithm’s result is good enough or if you can adjust your requirements a bit to make the available
algorithm usable.

 If you can’t fi nd an algorithm that fi ts your problem, and you can’t adjust your problem to fi t the
available algorithms, then you may need to write your own algorithm or modify an existing one.
Complicated algorithms often include some of the most highly studied and optimized code you
will ever encounter, so modifying them can be diffi cult. (That diffi culty can also make it a fun
challenge, but complicated algorithms should probably come with a sticker that says, “Modify at
your own risk.”)

 If you do need to write your own algorithm or modify an existing one, be sure to perform extra
testing to make sure it works correctly.

 Effi cient
 The best algorithm in the world won’t do you much good if it takes seven years to build the daily
production schedule or if it requires the users to have 3 petabytes (1 million gigabytes) of memory
on their cell phones. To be useful, an algorithm must satisfy your speed, memory, disk space, and
other requirements.

150 ❘ CHAPTER 7 DEVELOPMENT

 This is one of the reasons Chapter 4 said requirements must be verifi able. If you don’t know ahead
of time how quickly the program must fi nd a result, how can you know whether the algorithm
you’ve selected is fast enough?

 Note that some algorithms may be effi cient enough for one purpose but not for another. For
example, suppose you and your friend discover a pirate treasure. Each piece of treasure has a
different value, and you want to divide the treasure as equally as possible. (In the algorithm
literature, this is called the “partition problem”; although, I like to call it the “booty division
problem”).

 One algorithm for solving this problem is to simply try every possible division of the spoils and
see which combination gives you the best result. For example, if there are three pieces of treasure
labeled A, B, and C, then there are only eight possible ways to divide the treasure. Table 7-1 shows
the possible combinations.

 TABLE 7-1: Possible Divisions of 3 Items

YOU FRIEND

A, B, C —

A, B C

A, C B

B, C A

A B, C

B A, C

C A, B

— A, B, C

 Notice that for every possible division there is another division with the items swapped between you
and your friend. For example, in one division you get items A and B, and your friend gets item C.
In the swapped division, your friend gets items A and B, and you get item C. Both of the matching
divisions are equally even, so you can cut the number of possibilities you need to consider in half if
you ignore one of each pair of divisions. One way to do that is to arbitrarily assign item A to you.
Those sorts of tricks are what make algorithms fun!

 That algorithm works well for small problems, but if the number of treasures is large, the algorithm
will take too long. If there are N items, then there are 2 N possible ways to divide the treasure.
(2 N‐1 possible ways if you arbitrarily give yourself the fi rst item.)

 For large values of N, the value 2 N can be large, for example, if you fi nd a big treasure with
50 items, 2 N ≈ 1.1 × 1015 . If you had a computer that could examine 1 million possible treasure
divisions per second, it would take you almost 36 years to examine all the possibilities.

 If you do fi nd a larger treasure, you can’t use the simple “try every possible solution” approach. In
that case, you need to try a different algorithm.

Selecting Algorithms ❘ 151

 In fact, this is known to be a provably diffi cult problem, and there are no known algorithms that
can solve it exactly for large problem sizes. For large N, you need to turn to heuristics —algorithms
that give good solutions but that don’t guarantee to give you the best solution possible.

 For example, one heuristic would be to assign items randomly to you and your friend. The
odds of you randomly guessing a perfect solution would be very small, but this method would
be so fast you could perform several million or possibly even a billion trials and pick the best
result you stumble across. (I think this is how countries set their economic policies. They make
a bunch of random changes and, if any of them seem to work, they claim that was the plan all
along.)

 Another heuristic would be to give the next item to whichever of you currently has the smaller total
value. For 50 items, that would require only 50 steps so it would be incredibly fast. The odds of you
blundering across a perfect solution would still be fairly small; although the result would often be
better than purely random guessing.

 As this example shows, you need to understand how an algorithm will perform for your problem
before you decide to use it. Big O notation is a system for studying the limiting behavior of
algorithms as the size of the problem grows large. Search the Internet for “big O notation” or read
an algorithms book (like the one I mentioned earlier) for more information on big O notation and
algorithm complexity.

 NOTE I can think of three other ways to divide the treasure perfectly evenly,
and they don’t even require a computer. First, donate the treasure to a museum.
Second, auction off the treasure and split the proceeds. Finally, give it all to me
and let me worry about it!

 Predictable
 Some algorithms produce nice, predictable results every time they run. For example, if you search a
list of numbers, you can fi nd the largest one every time.

 Other algorithms may be less predictable. The heuristics described in the previous section can’t
always fi nd a perfect division of treasure. In fact, a perfect division may be impossible. (Suppose you
have four treasures with values 10, 10, 20, and 30.) For the booty division problem, you can’t even
tell whether a perfect division of the spoils is possible without fi nding one.

 Some algorithms may not produce the same results every time you run them. If you use the random
heuristic described in the previous section several times, you’ll probably get different answers each
time. In that case, it may be hard to tell if the algorithm is working correctly.

 It’s also nice to know that an algorithm eventually fi nishes. It’s a lot easier to tell that something’s
wrong when an algorithm takes twice as long to fi nish as you expect. Algorithms such as the
random guessing heuristic can run indefi nitely if you let them. In cases like that, you need to simply
build in a cutoff that stops the algorithm after some set amount of time and takes the best solution
found so far.

152 ❘ CHAPTER 7 DEVELOPMENT

Although some algorithms such as this heuristic are inherently unpredictable, you should favor
predictable algorithms if possible. It’s much easier to debug a broken algorithm if you can reliably
reproduce incorrect results whenever you need them.

Simple
Ideally an algorithm, like any other piece of code, should be elegantly simple. Simple code is easy to
understand and easy to debug. It’s easier to modify (if you decide to peel off the “Modify at your own
risk” sticker) and it’s easier to understand how the algorithm’s performance varies for different inputs.

Some remarkably clever algorithms are also extremely simple, whereas others are a lot more
involved. If you have a choice between a simple algorithm and a complex one that does the same job,
pick the simple one.

Prepackaged
If you can fi nd an algorithm that is implemented inside your programming language or in a library,
use it. There’s no need to write, test, debug, and maintain your own code if someone else can do it
for you.

Prepackaged algorithms also tend to be more thoroughly studied and tested than anything you have
time to write. A software vendor may spend hundreds of person‐hours testing code that you would
probably write, test, and shove out the door in a few hours. Its results may not always be better than
yours, but if there is a problem you can ask the vendor to fi x it instead of spending more time on it
yourself.

Sometimes, libraries can also give you better performance. A library vendor may write more highly
optimized code than you can. For example, its sorting routine might be written in assembly language
whereas your version would be written in a higher‐level language such as C++, C#, or Java.

In the end it may turn out that a prepackaged solution won’t work for you either because it doesn’t
have the features you need or because your specifi c problem allows you to greatly improve the
performance. However, it’s always worth looking for an easier solution.

STOPPING CRITERIA

Actually, there are several ways you can stop an algorithm that might otherwise run
indefi nitely. For example, you might run until you fi nd a solution of a particular
quality. For the booty division problem, you might run until the algorithm fi nds a
solution in which the two piles of treasure have values differing by no more than 10
percent. Of course, you’d still need to stop searching after some time period, just in
case you can’t fi nd a solution that meets that criterion.

You can also save the best solution found after some time period and let the
algorithm continue running in the background to look for better solutions. The
application has a solution at all times, but it may gradually improve over time.

Top‐down Design ❘ 153

 TOP‐DOWN DESIGN

 If you can’t fi nd an algorithm to handle your situation, you need to write some code of your own.
Even if you do fi nd an algorithm that can be useful, you’ll probably need to write some code to
prepare for the algorithm and to process the results. So how do you get from a big, intimidating task
like “design optimal routes for 300 delivery vehicles” or “schedule the classes for 1,200 middle-
school students” to actual working code?

 One useful approach is top‐down design , also called stepwise refi nement . In top‐down design,t
you start with a high‐level statement of a problem, and you break the problem down into more
detailed pieces.

 Next, you examine the pieces and break any that are too big into smaller pieces. You continue
breaking pieces into smaller pieces until you have a detailed list of the steps you need to perform to
solve the original problem.

 As you break a task into smaller pieces, you should be on the lookout for opportunities to save some
work. If you notice that you’re performing some chore more than once (perhaps while describing
multiple main tasks), you should think about pulling that chore out and putting it in a separate
method. Then all the tasks can use the same method. That not only lets you skip writing the same
code a bunch of times, it also lets you invest extra time testing and debugging the common code
while still saving time overall.

 If the main task’s description becomes too long, you should break it into shorter connected
tasks. For example, suppose you need to write a method that searches a customer database for
people who might be interested in golf equipment sales. You identify several dozen tests that
identify likely prospects: people who earn more than $50,000 per year, people who live near
golf courses, country club members, people who wear plaid shorts and sandals with spikes, and
so forth.

 If the list of tests is too long, it will be hard to read the full list of steps required to perform
the original task. In that case, you should pull the tests out, place them in a new task described
on a separate sheet of paper (or possibly several), and refer to the new task as a subtask of
the original.

 For example, suppose the original method is called PromoteSales . Originally, its description might
look like this:

PromoteSale()

1. Identify customers who are likely to buy items on sale and send them e‐mails, fl yers, or text
messages as appropriate.

 Now add some detail.

PromoteSale()

1. For each customer:

A. If the customer is likely to buy:

i. Send e‐mail, fl yer, or text message depending on the customer’s preferences

154 ❘ CHAPTER 7 DEVELOPMENT

Step A “If the customer is likely to buy” will be pretty long, so create a new
IsCustomerLikelyToBuy method. Similarly, step i will be fairly complicated, so create a new
SendSaleInfo method. Now the main task looks like the following.

PromoteSale()

1. For each customer:

A. If IsCustomerIsLikelyToBuy()

i. SendSaleInfo()

At this point, you need to write the IsCustomerLikelyToBuy and SendSaleInfo methods. Here’s
the IsCustomerLikelyToBuy method.

IsCustomerLikelyToBuy()

1. If (customer earns more than $50,000) return true .

2. If (customer lives within 1 mile of a golf course) return true .

3. If (customer is a country club member) return true.

4. If (customer wears plaid shorts and sandals with spikes) return true .

 …

 73. If (none of the earlier was satisfi ed) return false .

Here’s the SendSaleInfo method.

SendSaleInfo()

1. If (customer prefers e‐mail) send e‐mail message.

2. If (customer prefers snail‐mail) send fl yer.

3. If (customer prefers text messages) send text message.

You can add other contact methods such as voicemail, telegraph, or carrier pigeon if appropriate.

This version of the SendSaleInfo method may also need some elaboration to explain how to
determine which contact method the customer prefers.

SendSaleInfo()

1. Use the customer’s CustomerId to look up the customer in the database’s
Customers table.

2. Get the customer’s PreferredContactMethod value from the database record.

3. If (customer prefers e‐mail) send e‐mail message.

4. If (customer prefers snail‐mail) send fl yer.

5. If (customer prefers text messages) send text message.

Programming Tips and Tricks ❘ 155

 Continue performing rounds of refi nement, providing more detail for any steps that aren’t painfully
obvious, until the instructions are so detailed a fi fth-grader could follow them.

 At that point, sit down and write the code. If you’ve reached a suffi cient level of detail, translating
your instructions into code should be a mostly mechanical process.

 INSUFFICIENT DETAIL

 Some developers stop refi ning their code design when they think the list of
instructions is enough to get them started but before it provides a painful level of
detail. For example, many developers wouldn’t bother to spell out how to look up
the customer in the database and get the customer’s PreferredContactMethod
value.

 That’s probably okay in this example, at least if you’re an experienced developer.
That kind of design shortcut can lead to problems, however, if a step turns out to
be harder than you originally thought it would be.

 It can be disastrous if you turn the instructions over to someone else who doesn’t
have your background and some steps are harder for that person than they would
be for you. (I’ve worked on projects where the team lead gave a junior developer
instructions that were obvious to the lead but mystifying to the developer. Rather
than asking for help, the developer fl ailed about for weeks without making
any progress.)

 PROGRAMMING TIPS AND TRICKS

 Top‐down design gives you a way to turn a task statement into code, but there are still a lot of tricks
you can use to make writing code faster and easier. Other tips make it easier to test code, debug it
when a problem surfaces, and maintain the code in the long term.

 The following sections describe some of my favorite tips for writing good code.

 Be Alert
 Writing good code can be diffi cult. To know if you’re writing the code correctly, you need to
completely understand what you’re trying to do, what the code actually does, and what could go
wrong. You need to know in what situations the code might execute and how those situations could
mess up your carefully laid plan. You need to ask yourself, what if an important fi le is locked, a
needed value isn’t found in a parameter table, or if a user can’t remember his password.

 Keeping everything straight can be quite a challenge. You can make your life a little easier if you
write code only while you’re wide awake and alert.

156 ❘ CHAPTER 7 DEVELOPMENT

Most people have certain times of day when they’re most alert. Some people are natural morning
people and work best in the morning. Others work better in the afternoon. Some programmers do
their best work after midnight when the rest of the world is asleep.

Figure out when your most effective hours are and plan to write code then. Fill out progress reports
and timesheets during less productive hours.

Write for People, Not the Computer
Probably the most important tip in this chapter is to write code for people, not for computers. The
computer doesn’t care whether you use meaningful names for variables, indent your code nicely,
use comments, or spell words correctly. It doesn’t care how clever you are, and it doesn’t care if
your code produces a correct result.

In fact, the computer doesn’t even read your code. Depending on your programming language
and development environment, your code must be translated one, two, or more times before the
computer can read it. All the computer wants to see is a string of 0s and 1s. If you were really
writing code for the computer’s benefi t, your code would look like this:

10000000 00000000 00000000 00000000 00001110 00011111 10111010 00001110 00000000
10110100 00001001 11001101 00100001 10111000 00000001 01001100 11001101 00100001
01010100 01101000 01101001 01110011 00100000 01110000 01110010 01101111 01100111
01110010 01100001 01101101 00100000 01100011 01100001 01101110 01101110 01101111
01110100 00100000 01100010 01100101 00100000 01110010 01110101 01101110 00100000
01101001 01101110 00100000 01000100 01001111 01010011 00100000 01101101 . . .

The reason you write code in some higher‐level programming language is that 0s and 1s are
confusing for you. It would be incredibly diffi cult to remember the strings of 0s and 1s needed
to represent different programming commands. (Although I know someone who used to have a
computer’s boot sequence memorized in binary so that he could toggle it in using switches when the
computer needed to be restarted!)

Using a higher‐level language lets you tell the computer what to do in a way that you can
understand. Later, when your application is doing something wrong, it lets you trace through the
execution to see what the computer is doing and why.

Debugging and maintaining code is far more diffi cult and time‐consuming than writing code in
the fi rst place. The main reason is because you know what you are trying to do when you write
code. Later when you’re called upon to debug it, you might not remember exactly what the code is
supposed to do. That makes it harder to identify the difference between what the code is supposed
to do and what it actually does, so it’s harder to fi x.

Fixing a bug also has a much higher chance of adding a new bug than writing new code does, and
for the same reason. When you’re debugging, you don’t have as clear an understanding of what the
code is supposed to do. That makes it much easier to change the code in a way that breaks it.

To make debugging and maintaining code easier, you need to write code that is clear and easy to
understand. Hopefully, whoever is eventually forced to track down a bug in your code won’t be a
violent psychopath, but you can make that person’s job a lot easier if you remember it’s that person
you’re writing for, not the computer.

Programming Tips and Tricks ❘ 157

 When you write code, remember that you’re writing it for a possible future human reader (who
might be you) and not for the computer.

 Comment First
 There are a few things that most programmers instinctively avoid because they don’t feel like they’re
part of writing code. One of those is writing comments.

 Many programmers write the bare minimum of comments they think they can get away with and
then rush off to write more code. This is so common, in fact, that it has its own movement: just
barely good enough (JBGE). The idea is that writing lots of comments is a waste of time. Besides,
comments are usually wrong anyway, so rather than spending more time rewriting and fi xing them,
you should just write better code.

 You can read my rant about JBGE in the section “Code Documentation” in Chapter 2 . In this
section, I want to talk about why comments need to be revised so often.

 Many programmers use one of two models for writing comments. The fi rst approach is to write
comments as you code. You write a loop and then put a comment on top of it. Later you realize that the
loop isn’t quite right, so you change it and then update the comment. A bit later you realize that the loop
still isn’t right, so you change it again and revise the comment once more. After 37 rounds of revisions,
you’ve either spent a huge amount of time updating the comment, or you’ve given up (thinking you’ll
revise the comment later) and the comment is hopelessly disconnected from the fi nal code.

 The second strategy is to write all the code without comments. When you’re fi nished with your
37 revisions, you go back and insert the bare minimum number of comments that you think you
can get away with without getting yelled at by the lead developer. (The lead developer does the same
thing, so he doesn’t care all that much about comments anyway.)

 In both of these scenarios, the problem isn’t that you have too many comments. The real problem
is that you’re trying to write comments to explain what the code does and not what it should do .
When you tweak the code, you change what it does, so you need to update the comment. That
creates a lot of work and that makes programmers reluctant to write comments.

 If the code is well‐written, the future reader will read the code to see what it actually does. What
that person needs is comments to explain what the program is supposed to do. Then debugging
becomes an exercise in determining where the program isn’t doing what it’s supposed to be doing.

 IT COULD BE YOU!

 Always remember that the person debugging your code a year from now could be you!
After enough time has passed, there’s no way you’ll remember exactly how the code was
supposed to work. When you’re writing the code initially, it may seem obvious, but a
year or two later you’ll only have whatever clues you left for yourself in the code to go by.

 You can make your job easier by writing code that’s clear and lucid, or you can
learn to hate the younger you.

158 ❘ CHAPTER 7 DEVELOPMENT

 One way to write comments that explain what the program is supposed to be doing is to write the
comments fi rst. That lets you focus on the intent of the code and not get distracted by whatever
code is sitting actually there in front of you.

 It also means you don’t need to revise the comment a dozen times. The code itself might change a
dozen times, but the intent of the code better not! If it does, then you didn’t do enough planning in t
the high‐level and low‐level design phases.

 For example, consider the following C# code. (If you don’t know C# or some similar language like
C++ or Java, just focus on the comments.)

 // Loop through the items in the "items" array.
 for (int i = 0; i < items.Length − 1; i++)
 {
 // Pick a random spot j in the array.
 int j = rand.Next(i, items.Length);
 // Save item i in a temporary variable.
 int temp = items[i];
 // Copy j into i.
 items[i] = items[j];
 // Copy temp into position k.
 items[j] = temp;
 }

 The comments in this code explain what the code is doing, but they’re mostly redundant. For
example, the fi rst comment explains exactly what the line of code that follows it does: through
the array. That’s certainly true, but any programmer who can’t fi gure that out by looking at the
looping statement itself probably shouldn’t be debugging anyone’s code.

 Similarly, the other comments are just English versions of the programming statements that follow.
The comment Copy j into i is even a bit cryptic, and the comment Copy temp into position k
contains a typo, presumably because the code’s author changed the name of a variable and forgot to
update the comment.

 From a stylistic point of view, the comments are also distracting. They break up the visual fl ow and
make the code look cluttered and busy.

 Now that you’ve read the code, ask yourself, “What does it do?” Well yeah, it loops through the
array, moves values into a temporary variable, and then moves them back into the array, but why?
Does it accomplish what it was supposed to do? It’s kind of hard to tell because the comments don’t
actually tell you what the code is supposed to do.

 Now consider the following version of the code:

 // Randomize the array.
 // For each spot in the array, pick a random item and swap it into that spot.
 for (int i = 0; i < items.Length − 1; i++)
 {
 int j = rand.Next(i, items.Length);
 int temp = items[i];
 items[i] = items[j];
 items[j] = temp;
 }

Programming Tips and Tricks ❘ 159

 In this version, the comments tell you what the code is supposed to do, not what it actually does.
The fi rst comment gives the code’s goal. The second comment tells how the code does it.

 After you read the comments, you can read the code to see if it does what it’s supposed to do.
If you think there’s a bug, you can step through the code in the debugger to see if it works as
advertised.

 This code is less cluttered and easier to read. It doesn’t contain redundant comments that are
just English versions of the code statements. These comments also don’t need to be revised if the
developer had to modify the code while writing it.

 The best part of the comment-fi rst approach is that the comments pop out for free if you use top‐
down code design. In the top‐down method, you repeatedly break pieces of code into smaller and
smaller pieces until you reach the point where a trained monkey could implement the code.

 At that point, put whatever comment characters are appropriate for your language in front of the
steps you’ve created (// for C#, C++, or Java; ‘ for Visual Basic; * for COBOL, and so forth), and
drop them into the source code. Now fi ll in the code between the comments.

 If your top‐down design goes to a level of extreme detail, you may need to pull back a bit on
the level of commenting. There’s nothing wrong with the design going all the way to the level of
explicitly giving the if‐then statements you need to execute to perform a particular test, but that
level of detail isn’t necessary in the comments. Only include the comments that tell what the code is
supposed to do and not the ones that repeat the actual code.

 You may also need to add a few summary comments, particularly if your development team has
rules for things like standard class and method headers, but most of the commenting work should
be done.

 You may also need to add a few comments to code that is particularly obscure and confusing.
Remember, you might be debugging this code in a year or two.

 Write Self‐Documenting Code
 In addition to writing good comments, you can make the code easier to read if you make the code
self‐documenting. Use descriptive names for classes, methods, properties, variables, and anything
else you possibly can.

 One exception to this rule is looping variables. Programmers often loop through a set of values
and they use looping variables with catchy names like i or j . That’s such a common practice that
any programmer should be able to fi gure out what the variable means even though it doesn’t have a
descriptive name.

That doesn’t mean you should avoid descriptive names if they make sense. If you’re looping through
the rows and columns of a matrix, you can name the looping variables row and column . Similarly,
if you’re looping through the pixels in an image, you can name the looping variables x and y . Thosey

names give the reader just a little more information and make it easier to keep track of what the
code is doing.

You can also make your code easier to understand if you don’t use magic numbers. (A magic
number is a value that just appears in the code with no explanation. For example, it might represent

160 ❘ CHAPTER 7 DEVELOPMENT

an error code or database connection status.) Instead of using a magic number, use a named
constant that has the same value.

Better still, if your language supports enumerated types, use them. They also give names to magic
numbers and some development environments can use them to enforce type rules. For example, suppose
you create an enumerated type named MealSizes that defi nes the values Large , ExtraLarge , and
Colossal . Internally, the program might represent those values as 0, 1, and 2, but your code can use the
textual values. If you defi ne a variable selected _ size , then your code can’t give it the value 4 because
that isn’t an allowed value. (Actually, in many programs you can weasel around that check and force
the variable to have the value 4. That would defeat the purpose of the enumerated type, so don’t do it!)

Keep It Small
Write code in small pieces. Long pieces of code are harder to read. They require you to keep more
information in your head at one time. They also require you to remember what was going on at the
beginning of the code when you’re reading statements much later.

For example, suppose a piece of code loops through a set of customers. For each customer, it
loops through the customer’s orders. For each order, it loops through the order’s items. Finally, for
each item it loops through price points for that item. At some point later in the code, you’ll come
to statements that end each of those loops. For example, in C#, C++, or Java you’ll come to a }
character. If the code is short, you can look up a few lines to fi gure out which loop is ending. If the
loops started a few hundred lines earlier, it may be hard to decide which loop is ending.

You may also eventually come across code like the following.

 }
 }
 }
 }

There’s nothing here to tell you which loops are ending.

THIS IS THE END

If a closing brace } is far from its corresponding opening brace { , you can make the
code easier to understand by adding a comment after it explaining which loop is
ending. For example, the following statement shows how you might end a for loop
that’s looping through the X coordinates of an image.

 } // Next x

If you prefer more laconic comments, you could simply use // x .

I know some programmers loathe this style of comment, but if the start and end of
a loop are far apart, this can be helpful.

I think many of the programmers who hate this kind of comment do so because
they are forced to use it for every closing brace. You should use it only when it
helps, not make an annoying rule that drives programmers crazy.

Programming Tips and Tricks ❘ 161

 If a piece of code becomes too long, break it into smaller pieces. Exactly how long is “too long”
varies depending on what you’re doing. Many developers used to break up methods that didn’t fi t
on a one‐page printout. A more recent tree‐friendly rule of thumb is to break up a method if it won’t
fi t on your computer’s screen all at one time. (This may be why no one programs on smartphones.
You’d have thousands of 10‐line methods.)

 AVOIDING BREAKUPS

 Some complicated algorithms may be confusing enough that it’s hard to keep
everything they do in mind all at once, but splitting them can ruin performance. Or
there may be no good place to split them because all the pieces are interrelated. In
those cases, you may be stuck with a long chunk of code.

 Sometimes, a little extra documentation can act as a roadmap to help you keep
track of what the code is doing. (This should be documentation in a separate fi le,
not just more comments, which would make the code even longer.)

 You can also refer to external documentation inside the comments. For example,
if your code uses Newton’s method for fi nding the roots of a polynomial, don’t
embed a fi ve‐page essay in the comments. Instead add the following comment to the
code and move on to something more productive.

 // Use Newton’s method to find the equation’s roots. See:
 // http://en.wikipedia.org/wiki/Newton’s_method

 In general, if it’s hard to keep everything a method does in mind all at once, consider splitting it
apart.

 Stay Focused
 Each class should represent a single concept that’s intuitively easy to understand. If you can’t
describe a class in a single sentence, then it’s probably trying to do too much, and you should
consider splitting it into several related classes.

 For example, suppose you’re writing an application to schedule seminars for a conference and to
let people sign up for them. You probably shouldn’t have a single class to represent attendees and
presenters. Attendees and presenters may have a lot in common (they both have names, addresses,
phone numbers, and e‐mail addresses), but conceptually they are very different. Instead of creating a
single AttendeeOrPresenter class to represent both kinds of person, make separate Attendee and
Presenter classes. You can make them inherit from a common Person parent class, so you don’t
have to write the same name and address code twice, but making one mega‐class will only confuse
other developers. (Besides, the name AttendeeOrPresenter sounds wishy‐washy.)

 Just as a class should represent a single intuitive concept, a method should have a single clear
purpose. Don’t write methods that perform multiple unrelated tasks. Don’t write a method called
PrintSalesReportAndFetchStockPrices . The name might be nicely descriptive, but it’s also
cumbersome, so it’s a hint that the method might not have a single clear purpose.

http://en.wikipedia.org/wiki/Newton%E2%80%99s_method

162 ❘ CHAPTER 7 DEVELOPMENT

One of my favorite examples of this was the Line method in earlier versions of Visual Basic. As you
can probably guess, that method drew a line on a form or picture box. What’s not obvious from
the name is that it could also draw a box if you added the parameter B to the method call. I’m sure
there was some implementation reason why this method drew boxes as well as lines, but seriously?
A method named Line should draw lines not boxes.

Even if two tasks are related, it’s often better to put them in separate methods so that you can
invoke them separately if necessary.

Avoid Side Effects
A side effect is an unexpected result of a method call. For example, suppose you write at
ValidateLogin method that checks a username and password in the database to see if the
combination is valid. Oh, and by the way, it also leaves the application connected to the database.
Leaving the database open is a side effect that isn’t obvious from the name of the ValidateLogin
method.

Side effects prevent a programmer from completely understanding what the application is doing.
Because understanding the code is critical to producing high‐quality results, avoid writing methods
with side effects.

Sometimes, a method may need to perform some action that is secondary to its main purpose, such
as opening the database before checking a username/password pair. There are several ways you can
remove the hidden side effects.

First, you can make the side effect explicit in the method’s name. For example, you could call
this method OpenDatabaseAndLogin . That’s not an ideal solution because the method isn’t
performing one well‐focused task, but it’s better than having unexpected side effects. (Any
time you have “And” or “Or” in a method name, you may be trying to make the method do
too much.)

Second, the ValidateLogin method could close the database before it returns. That removes the
hidden side effect; although it may reduce performance because you may want the database to be
open for use by other methods.

Third, you could move the database opening code into a new method called OpenDatabase . The
program would need to call OpenDatabase separately before it called ValidateLogin , but the
process would be easy to understand.

Fourth, you could create an OpenDatabase method as before and make that method keep
track of whether the database was already open. If the database is open, the method
wouldn’t open it again. Then you could make every method that needs the database
(including ValidateLogin) call OpenDatabase . Methods such as ValidateLogin would
encapsulate the call to OpenDatabase so you wouldn’t need to think about it when you called
ValidateLogin . There’s still some extra work going on behind the scenes that you may not
know about, but with this approach you don’t need to keep track of whether the database is
open or closed.

It may take a little extra work to remove side effects from a method, but it’s worth it to make the
code that calls the method easier to understand.

Programming Tips and Tricks ❘ 163

 Validate Results
 Murphy’s law states, “Anything that can go wrong will go wrong.” By that logic, you should always
assume that your calculations will fail. Maybe not every single time, but sooner or later they will
produce incorrect results.

 Sometimes, the input data will be wrong. It may be missing or come in an incorrect format. Other
times your calculations will be fl awed. Values may not be correctly calculated or the results may be
formatted incorrectly.

 To catch these problems as soon as possible, you should add validation code to your methods. The
validation code should look for trouble all over the place. It should examine the input data to make
sure it’s correct, and it should verify that the result your code produces is right. It can even verify
that calculations are proceeding correctly in the middle of the calculation.

 The main tool for validating code is the assertion. An assertion is a statement about the program
and its data that is supposed to be true. If it isn’t, the assertion throws an exception to tell you that
something is wrong.

 EXCEPTIONAL TERMINOLOGY

 The term exception is programmer‐speak for an unexpected error caused by the
code. Exceptions can be caused by all sorts of situations such as trying to open
a fi le that doesn’t exist, trying to open a fi le that is locked by another program,
performing an arithmetic calculation that divides by zero, using up all the
computer’s memory, or trying to use an object that doesn’t exist.

 When an exception occurs, the program’s execution is interrupted. If you have
an error handler in place, it can examine the exception information to fi gure out
what went wrong and it can try to fi x things. For example, it might tell the user
to close the application that has a fi le locked and then it could try to open the
fi le again.

 If no error handler is ready to catch the exception, the program crashes.

 For example, suppose you’re writing a method to list customer orders sorted by their total cost.
When the method starts, you could assert that the list contains at least two orders. You could also
loop through the list and assert that every order has a total cost greater than zero.

 After you sort the list, you could loop through the orders to verify that the cost of each order is at
least as large as the cost of the one before it.

 One type of assertion that can sometimes be useful is an invariant. An invariant is a state of thet
program and its data that should remain unchanged over some period of time.

 For example, suppose you’re working on a work scheduling application that defi nes an Employee
class. You might decide that all Employee objects must always have at least 40 hours of work in any
given week. (Although some of those hours might be coded as vacation.)

164 ❘ CHAPTER 7 DEVELOPMENT

Here the invariant condition is that the Employee object must have at least 40 hours of worked
assigned to it. You could add assertions to the object’s properties and methods to periodically verify
that the invariant is still true. (Ideally, the class would provide only a few public properties and
methods that could change the Employee ’s work schedule and those would verify the invariant, at
least before and after they do their work.)

TIMELY ASSERTIONS

Most programming languages have a method for conditional compilation. By
setting a variable or fl ipping a switch, you can indicate that certain parts of the
code shouldn’t be compiled into the executable result. For example, the following
code shows some validation code in C#.

 #if DEBUG_1
 // Validate the sorted order data.
 . . .
 #endif

The code between the #if and #endif directives is compiled only if the debugging
symbol DEBUG_1 is defi ned. If that symbol isn’t defi ned, then the validation code is
ignored by the compiler.

You can use techniques such as this one to add tons of validation code to the
application. While you are testing and debugging the application, you can defi ne
the symbol DEBUG_1 (and any other debugging symbols) so the testing code is
compiled. When you’re ready to release the program, you can remove the debugging
symbols so that the program runs faster for the customers.

Later, if you discover a bug, you can redefi ne the debugging symbols to restore the
testing code to hunt for the bug.

Some languages such as C# also have built‐in conditional compilation for
assertions. For example, the following statement asserts that an order’s TotalCost
value is greater than 0.

 Debug.Assert(order.TotalCost > 0);

The compiler automatically includes this statement in debug builds and removes it
from release builds.

Assertions and other validation code can make it easy to fi nd bugs right after they are written when
they’re easest to fi x. Unfortunately, it’s hard to believe the code you just wrote isn’t perfect. After all,
you just spent hours slaving over a hot keyboard, pounding away with no breaks (maybe just one to
refresh your coffee). The code is still fresh in your mind, so you know exactly how it works (or at
least how you think it works). Obviously, there isn’t bug in it or you would have already fi xed it!

That thinking makes it hard for most programmers to write validation code. They just assume it
isn’t necessary.

Programming Tips and Tricks ❘ 165

 However, bugs do occur, so obviously they must be lurking in some of the code that was just
written. If only you could convince programmers to add validation code to their methods, you might
catch the bugs before they become established.

 One way to encourage programmers to write validation code is to have them write it before
writing the rest of a method’s code. (This is similar to the way you can often get better comments
if you write them before you write the code.) Writing the validation code fi rst ensures that
it happens.

 This also has the advantage that you probably don’t yet know exactly how the fi nal code will work.
You don’t have it all in your head whispering seductively, “You did a great job writing me. There’s
really no need to validate the results.” You also don’t have preconceptions about how the code
works, so you won’t be infl uenced in how you write the validation code. You can look for incorrect
results without making assumptions about where errors are impossible.

 Practice Offensive Programming
 The idea behind defensive programming is to make code work no matter what kind of garbage isg
passed into it for data. The code should work and produce some kind of result no matter what.

 For example, consider the following Factorial function written in C#. (In case you don’t
remember, the factorial of a number N is written N! and equals 1 × 2 × 3 × . . . × N.)

public int Factorial(int number)
{
 int result = 1;
 for (int i = 2; i <= number; i++) result *= i;
 return result;

}

 This code initializes the variable result to the value 1. It then multiplies that value by 2, 3, 4, and
so on up to the number passed into the method as a parameter. It then returns result .

 This code works well in most cases. The code even works for strange values of the input
parameter number . For example, if r number is 0 or 1, the method sets result to 1, the loop does
nothing, and the method returns the value 1. That happens to be correct because by defi nition
0! = 1 and 1! = 1.

 If the parameter number is negative, the code also sets result to 1, the loop does nothing, and the
method returns 1.

 In fact, due to a quirk in the way C# handles integer overfl ow, this method even returns a value
if number is really large. If number is 100, the loop causes result to overfl ow. The program sets
result equal to 0, ignores the overfl ow, and continues merrily crunching away. When it’s fi nished, it
returns the value 0.

 This is traditional defensive programming in action. No matter what value you pass into the
method, it continues running. It may not always return a meaningful result, but it doesn’t crash
either.

 Unfortunately this approach also hides errors. If the program is trying to calculate 100!, it’s
probably doing something wrong. At a minimum, it probably doesn’t want to get the value 0.

166 ❘ CHAPTER 7 DEVELOPMENT

 A better approach is to make the Factorial method throw a temper tantrum if its input is invalid.
That way you know something is wrong and you can fi x it. I call this, offensive programming. If g
something offends the code, it makes a big deal out of it.

 The following code shows an offensive version of the Factorial method:

public int Factorial(int number)
{
 Debug.Assert(number >= 0);
 checked
 {
 int result = 1;
 for (int i = 2; i <= number; i++) result *= i;
 return result;
 }
}

 The code begins with an assertion that verifi es that the input parameter is at least 0.

 The method includes the rest of its code in a checked block. The checked keyword tells C# to not
ignore integer overfl ow and throw an exception instead. That takes care of cases in which the input
parameter is too big.

 If the program passes the new version of the Factorial function an invalid parameter, you’ll know
about it right away so you can fi x it.

 Use Exceptions
 When a method has a problem, there are a couple ways to tell the program that something’s wrong.
Two of the most common methods are throwing an exception and passing an error code back to the
calling code.

 For example, the Factorial method shown in the previous section throws an exception if there’s an
error. The call to Debug.Assert throws an exception if its condition is false . The checked block
throws an exception if the calculations cause integer overfl ow.

 As mentioned earlier in this chapter, an exception interrupts the program’s execution and forces the
code to take action. If you don’t have any error handling code in place, the program crashes. That
means a lazy programmer can’t ignore a possible exception. If a method such as Factorial might
throw an exception, the code must be prepared to handle it somehow.

 In contrast, suppose the Factorial method indicated an error by returning an error code. For
example, when passed the number –300, it might return the value –1. The factorial of a number is
never negative, so the value –1 would indicate there is a problem.

 The trouble with this approach is the program could ignore the error code. In that case, the
program might end up displaying the bogus value –1 to the user or using that value in some other
calculation. The result will be gibberish that is at best unhelpful and at worst misleading and
confusing.

 In general it’s better to throw an exception to indicate an error instead of returning an error code.
That way the program can’t ignore a potentially confusing situation.

Programming Tips and Tricks ❘ 167

 Write Exception Handers First
 Now that you’re using assertions and exceptions to indicate errors, the code that calls your method
needs to use exception handling to deal with those exceptions.

 Unfortunately, error handlers are a bit like comments in the sense that many programmers fi nd
them boring and don’t like to write them. They’re also a bit like validation code because it’s easy to
assume that they’re not necessary because you know the code works.

 One way to create better error handlers is to follow the same strategy you can use when writing
comments and validation code: Do it fi rst. When you start writing a method, paste in all the
comments that you got from top‐down design, add code to validate the inputs and verify the
outputs, and then wrap error handling code around the whole thing.

 First, make the error handling code look for exceptions that you expect to happen occasionally and
that you can do something about (like trying to open a locked fi le).

 Next, add code that looks for other expected exceptions about which you can’t do anything except
complain to the user. That code should restate any exceptions in terms the user can understand. For
example, instead of telling the user, “Arithmetic operation resulted in an overfl ow,” you can present
a more meaningful message like, “All orders must include at least 1 item.”

 Don’t Repeat Code
 If you fi nd that you’re writing the same (or nearly the same) piece of code more than once, consider
moving it into a separate method that you can call from multiple places. That obviously saves you
the time needed to write the code more than once. More important, it lets you debug and maintain
the code in a single place.

 Later if you need to modify the code for some reason, you need to make the change only in one
method. If the code were duplicated, you would need to update it in every place it occurred. If you
forgot to update it in one place, the different copies of the code would be out of synch and that can
lead to some extremely confusing bugs. (Yes, I speak from experience here.)

 Defer Optimization
 One of my favorite rules of programming is:

 First make it work. Then make it faster if necessary.

 Highly optimized code can be a lot of fun to write, but it can also be very confusing. That means it takes
longer to write and test. It’s also harder to read, so it’s harder to debug and fi x if there is a problem.

 Meanwhile, even the least optimized code is usually fast enough to get the job done. If you’re
displaying a list of 10 choices to the user, it doesn’t matter if it takes 10 or 12 milliseconds to
display. The user is going to stare at the choices for 3 or 4 seconds anyway, so it’s not worth
spending a lot of extra programming effort to shave 0.05 percent off the total time.

 To program as effi ciently as possible, write code in the most straightforward way you can, even if
it’s not the fastest way you can imagine. After you get the code working, you can decide whether it is
so slow that it requires optimization.

168 ❘ CHAPTER 7 DEVELOPMENT

If you do discover that the program isn’t running fast enough, take some time to determine where
performance improvements will give you the most benefi t.

Typically 80 percent of a program’s time is spent in 10 percent of the code. (Or 90 percent is spent
in 10 percent of the code, or something. The idea is, the program spends most of its time executing
a small fraction of the code.) Time you spend optimizing the 80 percent that’s already fast enough
is time that would be better spent on the slow 20 percent. (Frankly, you’d be better off just wasting
that time by talking around the water cooler eating donuts. Time you spend messing about inside
the 80 percent of the code that’s already working fi ne can only make that code more confusing and
harder to debug and maintain over time.)

Before you start ripping the code apart, use a profi ler to see exactly where the problem code is. Then
attack only the problem and not the whole program. (So you don’t mess up the rest of the code with
friendly fi re.)

OPTIMIZATION OVERLOAD

I’ve never worked on a project that failed because the code was too slow. I’ve
worked on a couple projects that were initially too slow and we rewrote their
performance bottlenecks to bring them up to an acceptable speed. It really wasn’t
all that hard.

In contrast, I’ve worked on a couple projects that failed because their design was
too complicated. People spent so much time trying to optimize the design and come
up with the most effi cient approach possible that the code was too complicated to
implement and debug.

I’ll say it again: First make it work. Then make it faster if necessary.

PROFILERS PROFILED

In case you haven’t used one, a profi ler is a program that monitors the progress of a
program while it runs to identify the parts that are slow, that use the most memory,
or that otherwise might be bottlenecks. Different profi lers work in different ways.
For example, some add code (called instrumentation) to your program to record the n
number of times every method is called and the amount of time the program spends
in each method.

Profi lers are very handy for tracking performance problems. I worked on one program
that was taking approximately 20 minutes to load its data when it started. The project
manager refused to buy a profi ler (“real programmers don’t need them”) and had a
number of theories about where in the data processing algorithms the bottlenecks were.

I snuck off into my offi ce and installed a profi ler for a 30‐day free trial. Within a
few hours, I had discovered that the problem wasn’t in the main algorithms at all.
The problem was actually in some fairly trivial string‐processing code. Basically, the

Summary ❘ 169

 Before you start optimizing code, make sure it works properly. Then if you do fi nd that performance
is insuffi cient, carefully analyze the problem (using a profi ler if you can) so that you don’t waste time
optimizing code that is already fast enough.

 SUMMARY

 Most programmers love to program, but they can’t do a good job without the proper tools. If you
don’t have the right hardware, software, and network support, writing good code is slow and
frustrating. That leads to distraction and more bugs. Writing good code also requires debugging,
testing, and profi ling tools. Depending on the development environment, you may also need code
formatting and refactoring tools.

 Before you starting writing code, make sure you have the tools you need to do so effectively. If you
don’t write code, make sure those who do get the tools they need.

 Even if you’re using all the proper tools, writing good code isn’t guaranteed. There are dozens or
perhaps hundreds of tips and tricks you can use to make your code safer. This chapter describes a
few of my favorites. By using those techniques, you can make your programs more reliable, easier to
debug, and easier to modify in the future.

 Unfortunately, even the best program can still contain bugs. In fact, it’s common in software
engineering to assume that every nontrivial program contains some bugs. The only questions are,
“How many bugs?” and “How often will the bugs affect the users?”

 Testing lets you fi nd and fi x as many bugs as possible. If you test a program effectively, you can
eventually reduce the number and severity of the remaining bugs so that the program is still usable.
(Just as if you squash enough cockroaches, the rest eventually learn to hide better.)

 The next chapter explains software testing. It describes techniques you can use to fi nd bugs and
estimate the number of bugs that remain in an application.

EXERCISES

1. The greatest common divisor (GCD) of two integers is the largest integer that evenly divides
them both. For example, the GCD of 84 and 36 is 12 because 12 is the largest integer
that evenly divides both 84 and 36. You can learn more about the GCD and the Euclidean
algorithm, which you can fi nd at en.wikipedia.org/wiki/Euclidean_algorithm .

program was going back to a database hundreds of times to re-fetch values that it
had already loaded. I built a simple table to keep track of the values that had already
been fetched and cut the program’s startup time from 20 minutes to under 4.

 If I hadn’t used the profi ler, I would probably have wasted a week or two and
only shaved a minute or so off of the startup time. (After the fact the project lead
admitted that, okay, perhaps a profi ler was a good idea after all.)

170 ❘ CHAPTER 7 DEVELOPMENT

 Knowing that background, what’s wrong with the comments in the following code? Rewrite
the comments so that they are more effective. (Don’t worry about the code if you can’t
understand it. Just focus on the comments.) (Hint: It should take you only a few seconds to fi x
these comments. Don’t make a career out of it.)

// Use Euclid’s algorithm to calculate the GCD.
private long GCD(long a, long b)
{
 // Get the absolute value of a and b.
 a = Math.Abs(a);
 b = Math.Abs(b);

 // Repeat until we’re done.
 for (; ;)
 {
 // Set remainder to the remainder of a / b.
 long remainder = a % b;
 // If remainder is 0, we’re done. Return b.
 if (remainder == 0) return b;
 // Set a = b and b = remainder.
 a = b;
 b = remainder;
 };
}

2. Why might you end up with the bad comments shown in the previous code?

3. How could you add validation code to the method shown in Exercise 1? (If you don’t know
how to write the validation code in C#, just indicate where it should be and what it should do.)

4. How could you apply offensive programming to the modifi ed code you wrote for Exercise 3?

5. Should you add error handling to the modifi ed code you wrote for Exercise 4?

6. The following code shows one way to swap the values in two integers a and b . The ̂ operator
takes the “exclusive or” (XOR) of the two values. The comments to the right explain how this
method works.

// Swap a and b. Let A and B be the original values.
b = a ^ b; // b = A ^ B
a = a ^ b; // a = A ^ (A ^ B) = (A ^ A) ^ B = B
b = a ^ b; // b = B ^ (A ^ B) = (B ^ B) ^ A = A

 This is a clever piece of code. It lets you swap two values without needing to waste memory
for a temporary variable. So why isn’t it good code? Write an improved version.

7. Using top‐down design, write the highest level of instructions that you would use to tell
someone how to drive your car to the nearest supermarket. (Keep it at a very high level.) List
any assumptions you make.

Summary ❘ 171

▸ WHAT YOU LEARNED IN THIS CHAPTER
➤ Use the right tools:

➤ Fast development hardware and a fast Internet connection

➤ A good development environment and source code formatters (if necessary)

➤ Source code control

➤ Profi lers and static analysis tools

➤ Testing and refactoring tools

➤ Training

➤ Select algorithms that are effective, effi cient, predictable, simple and (if possible)
prepackaged.

➤ Use top‐down design to fi ll in code details.

➤ Programming tips:

➤ Program when you’re most alert.

➤ Write code for people, not for the computer.

➤ Write comments, validation code, and exception handlers before you start writing the
actual code.

➤ Use descriptive names, named constants, and enumerated types.

➤ Break long methods into manageable pieces.

➤ Make each class represent a single concept that’s intuitively easy to understand.

➤ Keep methods tightly focused on a single task and without side effects.

➤ Program offensively to expose bugs as quickly as possible.

➤ Signal problems with exceptions instead of error codes.

➤ If you’re writing the same piece of code for a second time, extract it into a method
that you can call repeatedly.

➤ Only optimize after you sure it’s necessary. Then use a profi ler to fi nd the code that
actually needs optimization.

 Testing is the process of comparing the invisible to the ambiguous, so as to
avoid the unthinkable happening to the anonymous.

 —James Bach

 WHAT YOU WILL LEARN IN THIS CHAPTER:

➤ Goals of testing

➤ Reasons why you might not want to remove a bug

➤ How to prioritize bugs

➤ Kinds of tests and testing techniques

➤ Good testing habits

➤ Methods for estimating number of bugs

 It’s a software engineering axiom that all nontrivial programs contain bugs. Actually, it’s
such an important point that it deserves to be put in its own note and explained with an
example.

 8

 NOTE All Nontrivial Programs Contain Bugs

 For example, Windows 2000 was said by some to contain a whopping 63,000+ known
bugs when it was shipped. Microsoft quickly retorted that this number didn’t actually

174 ❘ CHAPTER 8 TESTING

count bugs. It included feature requests, notes asking developers to make something work
better or more effi ciently than it already did, clarifi cation requests, and other nonbug issues.
The true bugs, Microsoft explained, were mostly minor issues that wouldn’t seriously
hurt users.

No matter how you count them, Windows 2000 contained a lot of “undesirable features” rangingt
from changes that should probably have been made to indisputable bugs.

You might think that’s the result of shoddy workmanship, but no project of that size could
possibly have shipped without any bugs. The industry average number of bugs per thousand lines
of code (kilo lines of code or KLOC) is typically estimated at about 15 to 50. When you consider
that Windows 2000 contained more than 29 million lines of code, it’s a miracle it works at all.
Even assuming 10 bugs per KLOC, Windows 2000 should contain approximately 290,000 bugs.
Suddenly 63,000 bugs is starting to look good, isn’t it?

NASA’s Goddard Space Flight Center, which takes bugs very seriously because a mistake in its code
could cost lives and hundreds of millions of dollars, is said to have reduced its number of bugs to
less than 0.1 per KLOC. Even if Microsoft could afford to follow Goddard’s practices (and getting
the number of bugs per KLOC down to that level is very expensive), Windows 2000 would still
contain 2,900 bugs.

I don’t know about you, but if I encountered 2,900 bugs on a daily basis, I’d toss my computer out a
window and start using a typewriter.

BIGGER AND BETTER?

Windows 8 is rumored to contain between 30 and 80 million lines of code, so
clearly Microsoft isn’t reducing its bug count by shrinking its operating system,
but don’t think this is just Microsoft’s problem. The Firefox browser contains
approximately 10 million lines of code, the Linux operating system contains more
than 50 million, Mac OS X Tiger has approximately 85 million, and Facebook
has approximately 60 million. It takes a lot of code to include something to annoy
everyone!

You can see an interesting chart showing the size of some big applications at
www.makeuseof.com/tag/million‐lines‐code‐lot .

Given that any nontrivial program contains bugs, what can you do about it? Are you doomed to
suffer the slings and arrows of outraged customers? Or should you just throw in the towel and open
a fl orist’s shop instead of writing software?

Even though you can’t wipe out every bug, you can catch the ones that will be most irritating to
users. You can reduce the number of high‐profi le bugs to the point where users see them only rarely.
If your program uses a good design, it should also recover from bugs gracefully so that the program
doesn’t crash.

http://www.makeuseof.com/tag/million%E2%80%90lines%E2%80%90code%E2%80%90lot

Reasons Bugs Never Die ❘ 175

 This chapter explains testing techniques you can use to fl ush out the majority of the most annoying
bugs. It explains kinds of tests you should run and when to run them. It also explains how to
estimate the number of bugs in the system so that you have some idea of whether you’re getting
closer to your goal of eliminating the high‐profi le bugs.

 TESTING GOALS

 Ideally you would sit down, write code that perfectly satisfies the requirements, and you’d
be done. Unfortunately that rarely happens. More often than not, the first attempt at the
software satisfies some but not all the requirements. It may also incorrectly handle situations
that weren’t specified in the requirements. For example, the code may not work in every
possible situation.

 That’s where testing comes in. Testing lets you study a piece of code to see whether it meets the
requirements and whether it works correctly under all circumstances. (Usually, the second goal
means a method works properly with any set of inputs.)

 To get a complete picture of how a piece of code performs, you can carry out several different
kinds of tests using a variety of techniques. Sections later in this chapter describe some of the
most important of those. Before you get to them, however, it’s worth knowing that it’s not always
worth removing every single bug from a program. Instead the goal is often to reduce the number
bugs and their frequency of occurrence so that users can get their jobs done with a minimum of
annoyance.

 REASONS BUGS NEVER DIE

 Simply put, a bug is a fl aw in a program that causes it to produce an incorrect result or to behave g
unexpectedly. Bugs are generally evil (although occasionally they make games more fun), but it’s
not always worth your effort to try to remove every bug. Removing some bugs is just more trouble
than it’s worth. The following sections describe some reasons why software developers don’t remove
every bug from their applications.

 Diminishing Returns
 Finding the fi rst few bugs in a newly written piece of software is relatively easy (and therefore
cheap). After a few months of testing, fi nding bugs may become extremely diffi cult. At some point,
fi nding the next bug would cost you more than you’ll ever earn by selling the software.

 Deadlines
 In a just and fair world, software would be released when it was ready. In the real world, however,
companies are often driven by deadlines imposed by management, competition, or a marketing
department.

 You might delay a release to fi x high‐profi le bugs, but if the remaining bugs aren’t too bad, you
might be forced to release before you would like.

176 ❘ CHAPTER 8 TESTING

Consequences
Sometimes a bug fi x might have undesirable consequences. For example, suppose you’re building
a drawing application and the tool that draws spirals isn’t saving the spirals’ colors correctly. You
could fi x it, but that would require changing the format of the saved picture fi les. That would force
the users to convert their data fi les, and that would make them storm your offi ce with torches and
pitchforks.

In this example, it might be better to leave the spiral‐saving code unfi xed for now and include
a fi x in the next major release. Users expect some pain in major releases, so you might get away
with it then. (But just in case, you should make sure the escape helicopter is fueled and ready
to go.)

It’s Too Soon
If you just released a version of a program, it may be too soon to give the users a new patch to fi x a
minor bug. Users won’t like you if you release new bug fi xes every 3 days. As a rule of thumb:

➤ If a bug is a security fl aw, release a patch immediately, even if you just released a patch
yesterday. (If you did release a patch yesterday, you better be sure the new patch fi xes things
correctly! Your reputation is at stake.) Include a note explaining how wonderful you are for
protecting the users’ valuable data.

➤ If a bug makes users swear at your program more than once a day, release a patch as soon as
possible (as often as monthly). Include a profuse apology.

➤ If a bug is annoying enough to make users smirk at your program occasionally, fi x it in a
minor release (as often as twice a year). Include a huge fanfare about how great you are for
looking after the users’ needs.

➤ If a bug is just a nice‐to‐have new feature or a performance improvement, fi x it in the next
major release (at most once per year). Explain how responsive you are and that the users’
needs are your number one concern.

Too many releases will annoy users, so you need to weigh the benefi t of any bug patch against the
inconvenience.

Usefulness
Sometimes users come to rely on a particular bug to do something sneaky that you didn’t intend
them to do. They won’t thank you if you remove their favorite feature, even if it started out as a bug.

 Any suffi ciently advanced bug is indistinguishable from a feature.

 —Bruce Brown

If the users have adopted a bug and are using it in their favor, formalize it and add it to the
application’s requirements. You may extend its behavior to give the users an even better feature and
take credit for it.

Reasons Bugs Never Die ❘ 177

 Obsolescence
 Over time, some features may become less useful. Eventually they may go away entirely. In that
case, it may be better to just let the feature die rather than spending a lot of time fi xing it.

 For example, if an operating system has a bug in a fl oppy drive controller that limits its
performance, it may be just as well to ignore it. Floppy drives are rare these days, so the bug
probably won’t inconvenience too many users. (In fact, some computers are shipping without CD
or DVD drives these days. As long as your network and USB devices work, you may cut back on
maintenance of your CD drivers. Of course, you still need to use a USB CD drive, at least for now.)

 It’s Not a Bug
 Sometimes users think a feature is a bug when actually they just don’t understand what the program
is supposed to do. (It seems like Facebook has perfected this problem. It moves its security settings
around and users complain that their cat pictures are visible to everyone in the world.)

 This is really a problem of user education. Sometimes the documentation isn’t correct and
sometimes it’s missing entirely. Sometimes the user isn’t willing to read all the way through both
paragraphs of documentation and see that the feature is clearly described.

 If the documentation is incomplete or unclear, this is a “documentation bug” that you can fi x the
next time you release a new version of the documentation.

 DOCUMENTATION DELETED

 Back in the old days, when you bought a piece of software, you also got a nice, fat book
explaining how to use it. Some particularly long user manuals came as a set of ring
binders with pages that you could replace when the vendor sent you manual updates.

 These days most application documentation comes electronically in text fi les, PDF
fi les, or online help applications. That allows vendors to update the documentation
any time it is necessary. (See the earlier section “It’s Too Soon.” The same ideas
apply to documentation as well as software. Your customers won’t thank you for
sending them daily documentation updates.)

 You can greatly decrease this problem by using a good user interface design. If the application
groups features logically so users can fi nd them easily, the users won’t complain that a feature
is missing when it isn’t. If features are named clearly so it’s obvious what they do, users won’t
complain that a feature doesn’t do what they think it’s supposed to do.

 It Never Ends
 If you try to fi x every bug, you’ll never release anything.

 This is similar a problem you may have when buying a new computer. If you just wait another
couple months, something faster will come out for the same price. If you do buy a nice, shiny, new
machine, something better instantly goes on sale. At some point, you just need to pry open your

178 ❘ CHAPTER 8 TESTING

wallet, buy something, and get on with your life. (It also helps to avoid looking at advertisements
afterwards, so you don’t see the faster machines going on sale.)

Similarly at some point you need to stop testing, cross your fi ngers, and publish your application. It’s
almost guaranteed to be imperfect, but hopefully it’s better than nothing.

It’s Better Than Nothing
As the previous section mentions, your application may not be perfect, but hopefully it’s better
than nothing. In some cases, it may be so much better than nothing that it’s worth releasing the
application even though it’s seriously fl awed.

This is particularly true if your application is for in‐house use. If you’re writing a tool for your fellow
employees to use, they may be willing to put up with some rough edges to get their jobs done more easily.

THE TOOLSMITH

If a software project is large enough, it may be worth having a dedicated toolsmith.
A toolsmith is someone whose job is to build tools for use by others on the project.
A tool might count the lines of code in the project’s modules, rearrange the controls
on a form in top‐down/left‐to‐right order, search customer data for patterns, build
a random test database, or just about anything else that makes the other team
members’ lives easier.

I spent a large chunk of time on one project writing a form handler that let the
other developers arrange labels and text boxes on forms. On another project I
built a tool that helped developers defi ne complex menu hierarchies more easily.
(The development environment we were using back then was bad at both designing
forms and building menus.)

The programs written by a toolsmith are often somewhat unfi nished. They may contain
bugs and may require their users to follow certain paths or risk falling into untested parts
of the program. Still, if the tool is useful enough, it’s worth living with a few quirks.

The reason you can get away with less‐than‐perfect applications in‐house is that future sales don’t
depend on the program working perfectly. Outside customers might refuse to buy later releases of
the program and may fl ame you in online discussion groups, but your coworkers are stuck with you.

Fixing Bugs Is Dangerous
When you fi x a bug, there’s a chance that you’ll fi x it incorrectly, so your work doesn’t actually help.
There’s also a chance that you’ll introduce one or more new bugs when you fi x a bug.

In fact, you’re signifi cantly more likely to add a bug to a program when you’re fi xing a code than
when you’re writing new code from scratch. When you write new code, you (hopefully) understand
what you want the code to do and how it should work. When you’re fi xing code sometime later, you
don’t have the same level of understanding.

Levels of Testing ❘ 179

 To reduce the problem, you need to study the code thoroughly to try to regain the understanding you
originally had. Hopefully, you were paying attention in Chapter 7 , “Development,” when I said you
should write code for people not the computer. If you did, then it will be much easier for you to fi gure
out what the broken piece of code is trying to do.

 Finally, whether you fi x the bug correctly, other pieces of code may rely on the buggy behavior. When
you change the code, you may break other pieces of code that were (at least apparently) working before.

 Which Bugs to Fix
 There may be some good reasons not to fi x every bug, but in general bugs are bad, so you should
remove as many of them as possible. So how do you decide which bugs to fi x and which to put in the
“fi x later” category?

 To decide which bugs you should fi x, you should use a simple cost/benefi t analysis to prioritize
them. For each bug, you should evaluate the following factors.

➤ Severity —How painful is the bug for the users? How much work, time, money, or other
resources are lost?

➤ Work-arounds —Are there work-arounds?

➤ Frequency —How often does the bug occur?

➤ Diffi culty —How hard would it be to fi x the bug? (Of course, this is just a guess.)

➤ Riskiness —How risky would it be to fi x the bug? If the bug is in particularly complex code,
fi xing it may introduce new bugs.

 After you evaluate all the bugs, you can assign them priorities. Note that you may want the
priorities to change over time. If your next release is a long time away, you can focus on the most
severe bugs without work-arounds. If your time is limited, you can focus on the least risky bugs so
that you don’t break anything else before the next release.

 LEVELS OF TESTING

 Bugs are easiest to fi x if you catch them as soon as possible. After a bug has been in the code for
a while, you forget how the code is supposed to work. That means you’ll need to spend extra time
studying the code so that you don’t break anything. The longer the bug has been around, the greater
the chances are that other pieces of code rely on the buggy behavior, so the longer you wait the more
things you may have to fi x.

 In order to catch bugs as soon as possible, you can use several levels of testing. These range from
tightly focused unit testing that examines the smallest possible pieces of code, to system and
acceptance testing that exercises the system as a whole.

 Unit Testing
 A unit test verifi es the correctness of a specifi c piece of code. As soon as you fi nish writing a piece of t
code, you should test it. Test it as thoroughly as possible because it will get harder to fi x later.

180 ❘ CHAPTER 8 TESTING

Usually unit tests apply to methods. You write a method and then test it. If you can, you may even
want to test parts of methods. That lets you catch bugs minutes or even seconds after they hatch,
while they’re still weak and easy to kill.

If you’re using an object‐oriented programming language, be sure to test code that doesn’t act like
a normal method. For example, be sure to test constructors (which execute when you make a new
object), destructors (which execute when you destroy an object), and property accessors (which
execute when the program gets or sets a property’s value).

Because unit tests are your fi rst chance to catch bugs, they’re extremely important. Unfortunately,
it’s also easy for programmers to assume the code they just wrote works. After all, if it didn’t work,
you would have fi xed it!

Chapter 7 said that you can write more effective validation code if you write it before you write the
routine it protects. The same applies here. You can often do a better job on a method’s unit tests if
you write them before you write the method. That way you won’t know what assumptions the code
makes, so you won’t make the same assumptions when you write the tests.

You may also want to add more test cases after you write the code, so you can look for situations
that the code might not handle correctly. The “Testing Techniques” section discusses some of the
kinds of tests you may want to write.

LITTLE TESTS AND BIG TESTS

It’s much easier to test a lot of little pieces of code rather than one big piece.
Combining many pieces of code can lead to a combinatorial explosion of the
number of paths through the code that you need to test.

For example, suppose you have a piece of code that performs 10 if‐then tests.
Depending on a set of values, the code takes one branch or another at each of the
10 decision points.

To follow every possible path through the code, you need to test every possible
combination of branches. For 10 branches with 2 paths each, that’s 2 10 = 1,024
possibilities. If you don’t check them all, you may have a combination that
doesn’t work.

Even if you do check them all, there’s a chance that there’s a bug in one of them,
and you just got unlucky and didn’t notice it. You should still at least touch every
possible path. (If you don’t walk down a path in a forest, you won’t notice the
snake sitting in the middle of it.)

Now suppose you break the big piece of code into 10 pieces, each containing a
single if‐then test. If you test the pieces separately, you need only two test cases
for each, making a total of 20 test cases.

This is a somewhat simplistic example, but breaking big chunks of code into
simpler pieces makes them much easier to test and debug.

Levels of Testing ❘ 181

 Typically, a test is another piece of code that invokes the code you are trying to test and then
validates the result. For example, suppose you’re writing a method that organizes Pokémon card
decks. It groups the cards by evolution chain (cards that are related) and then sorts the chains by
their total smart ratings (average of attack, defense, special attack, and special defense). A unit test
might generate a deck containing 100 random cards, pass them into the method, and validate the
sorted result. The test method could repeat the random deck test a few hundred times to make sure
the sorting method works for different random decks.

 Other tests may perform user actions such as opening forms, clicking on buttons, or clicking and
dragging on a window to see what happens.

 After you write the tests and use them to verify that your new code works, you should save the test
code for later use. Sometimes, you may want to incorporate some or all the unit tests in regression
testing (described in the next section).

 You also need the tests again if you discover a bug in this code. You may think the unit tests are
enough to fl ush out every bug so there won’t be any in the future, but that’s not the case. Bugs
eventually appear. If you’ve saved all your unit tests, you won’t need to write them again for the
routine that went wrong. You also won’t need to rewrite them if there’s no bug but you need to
modify the code.

 Of course, writing a bunch of tests can clutter up your artistically formatted code. Depending on
your programming environment, you may avoid that by moving the test code into separate modules.
You can also use conditional compilation to avoid compiling the test code in release builds so it
doesn’t make the fi nal executable bigger.

 Integration Testing
 After you write a chunk of code and use unit tests to verify that it works (or seems to work), it’s time
to integrate it into the existing codebase. An integration test verifi es that the new method works and t
plays well with others. It checks that existing code calls the new method correctly, and that the new
method can call other methods correctly.

 Integration typically focuses on the new code and other pieces of code that interact with it, but it
should also spend some time verifying that the new code didn’t mess up anything that seems unrelated.

 For example, suppose you’re building a program to help you design duct tape projects (things like
duct tape wallets, fl owers, suits of armor, and prom dresses). You just wrote a new method to build
parts lists giving the amount and kinds of duct tape you need for a particular project.

 The new method passes its unit tests with fl ying colors, so you integrate it into the existing
codebase. In integration tests, the main program can call the method successfully, and the new
method can call existing code to do things like fetch duct tape roll lengths and prices.

 Everything seems fi ne until you try to use the program to order new duct online. Suddenly that
part of the program is no longer working. That duct tape ordering module may seem completely
unrelated to the parts list method, but somehow it’s not.

 For example, the parts list code might open the pricing database and accidentally leave a price
record locked. You might not notice this during unit testing and integration testing, but the tape
ordering part of the program won’t work if that record is locked.

182 ❘ CHAPTER 8 TESTING

To discover this kind of bug, you use regression testing. In regression testing , you test the program’sg
entire functionality to see if anything changed when you added new code to the project. These tests
look for ways the program may have “regressed” to a less useful version with missing or damaged
features.

Ideally, when you fi nish unit testing a piece of code, you would then perform integration testing to
make sure it fi ts in where it should and that it didn’t break anything obvious. Then you perform
regression testing to see if it broke something non‐obvious.

Unfortunately, performing regression testing on a large project can take a lot of time, so developers
often postpone regression testing until a signifi cant amount of code has been added or modifi ed.
Then they run the regression tests. Of course, at that point there may be a lot of bugs and it may be
hard to fi gure out which change caused which bug. Some of the “new” code may also not be all that
new, so some of the bugs may be a bit older and therefore harder to fi x.

To fi x bugs as quickly as possible, you need to perform regression testing as often as possible.

Automated Testing
You might not have time to run through every test every day. After all, you need time to do other
things like write new code, perform code reviews, and eat donuts at staff meetings. However, a
good automated testing system may do it for you. Automated testing tools let you defi ne tests and
the results they should produce. Some of them let you record and replay keyboard events and mouse
movements so that a test can interact with your program’s user interface.

After running a test, the testing tool can compare the results it got with expected results. Some tools
can even compare images to see if a result is correct.

For example, to test a drawing program, you might record your actions as you draw, resize, and
color a polygon. Later the testing tool would repeat the steps you took and see if the resulting
picture matched the one you got when you did it interactively.

Some testing tools can run load tests that simulate a lot of users all running simultaneously to
measure performance. For example, load tests can tell if too many users trying to access the same
database will cause problems in your fi nal release.

A good testing tool should let you schedule tests so that you can run regression testing every night
after the developers all go home. (Or you could start the tests running before you leave for the night.)

When you come in the next morning, you can check the tests to see if there are any newly discovered
problems that you should fi x before you begin writing new code.

OUTSOURCING TESTS

One annoying feature of outsourcing is that there’s no good time for the clients and
suppliers to meet. If it’s during the middle of the work day here, it’s the middle of the
night there or vice versa. (I suppose that wouldn’t be a problem if you’re working in
San Jose and outsourcing to Los Angeles, but I don’t think that’s typical.)

Levels of Testing ❘ 183

 Component Interface Testing
Component interface testing studies the interactions between components. This is a bit like g
regression testing in the sense that both examine the application as a whole to look for trouble, but
component interface testing focuses on component interactions.

 A common strategy for component interface testing is to think of the interactions between
components as one component sending a message (a request or a response) to another. You can then
make each component record its interactions (plus a timestamp) in a fi le. To test the component
interfaces, you exercise the system and then review the timeline of recorded events to see if
everything makes sense.

 A friend of mine used the time difference to his advantage. His software development
team would write code during the day. They would perform their unit and integration
tests, and then ship their code to testers in India before they left for the day.

 When the Indian testers arrived in the morning, the new code would be waiting
for them. They would run the regression tests and send the results back to the
developers, who would see them fi rst thing the next day. (Or maybe fi rst thing on
the same day. It depends on how you look at time zones.)

 The result was a lot like what you would get from an automated testing tool, but
humans have a lot more fl exibility than automated tools, so they can follow much
more complicated instructions.

 THE BIG PICTURE

 I’ve done some work with a company that processes photographs taken at
popular tourist destinations such as amusement parks and sporting events. The
photographers take your picture and upload it to a local computer.

 Components in the application perform several processing steps such as moving
the picture into a (huge) database, turning the pictures right side up (sometimes the
photographers hold their cameras sideways), and creating smaller thumbnail images.

 For debugging purposes, the components can write messages with timestamps into
a log fi le so that you can see what’s going on and so that you can tell if one of the
components it stuck. This company processes tens of thousands of photographs
every day, so if a process gets stuck for a few hours, hundreds or thousands of
customers can’t buy pictures of themselves standing beside their favorite theme
park mascots.

 Because the company processes so many images, the log fi les can grow extremely
quickly. Depending on the level of information recorded, the logs can grow by
megabytes per hour.

continues

184 ❘ CHAPTER 8 TESTING

Planning ahead of time for component interface testing can also help with the application’s design.
Thinking in terms of loggable messages passed between components helps keep the components
decoupled and gives them a clearer separation. That makes them easier to implement and test
separately.

System Testing
As you may guess from its name, system testing is an end‐to‐end run-through of the whole system. g
Ideally, a system test exercises every part of the system to discover as many bugs as possible.

A thorough system test may need to explore many possible paths of interaction with the application.
Unfortunately, even simple programs usually contain a practically unlimited number of possible
paths of interaction.

For example, suppose you’re writing a program to keep track of dirt characteristics for hikaru
dorodango (dirt polishing) enthusiasts, things like color, amount available, and grain size. Also
suppose the program includes only a login screen and a single form that uses a grid to display dirt
information. Then you would need to try each of the following operations:

➤ Start the program and click Cancel on the login screen.

➤ Start the program, enter invalid login, click OK, verify that you get an error message, and
fi nally click Cancel to close the login screen.

➤ Start the program, enter invalid login, click OK, verify that you get an error message, enter
valid login information, and click OK. Verify that you can log in.

➤ Log in, view saved information, and close the program. Log in again and verify that the
information is unchanged.

➤ Log in, add new dirt information, and close the program. Login in again and verify that the
information was saved.

➤ Log in, edit some dirt information, and close the program. Login in again and verify that the
changes were saved.

➤ Log in, delete a dirt information entry, and close the program. Login in again and verify that
the changes were saved.

To prevent the log fi les from eventually gobbling up all the disk space on the planet,
the components were written so that they check systemwide settings when they
start to decide how much information to record. If something’s going wrong, you
change the settings and restart a component. (To make that possible, they’re also
good at picking up where they left off when you restart them.) After a few minutes,
you check the log fi les to see what’s wrong and you fi x the problem. When you’re
done, you change the settings back to allow little or no logging, and restart again.

The ability to quickly change the amount of information recorded without
recompiling has been extremely useful in keeping the process running smoothly.

(continued)

Levels of Testing ❘ 185

 You need all those tests for just two screens, neither of which can do much. (Even then, I’ve seen a lot
of applications where those tests wouldn’t be good enough. For example, some programs won’t save
changes in a grid control unless you move the cursor to another cell after changing a cell’s data.)

 For more complicated applications, the number of combinations can be enormous. In the end, you’ll
probably have to test the most common and most important scenarios, and leave some combinations
untested.

 Acceptance Testing
 The goal of acceptance testing is to determine whether the fi nished application meets the customers’ g
requirements. Normally, a user or other customer representative sits down with the application and
runs through all the user cases you identifi ed during the requirements gathering phase to make sure
everything works as advertised.

 Remember that the requirements may have changed after the requirements phase. In that case, you
obviously verify that the application satisfi es the revised requirements.

 Acceptance testing is usually straightforward; although, depending on the number of use cases, it can
take a long time. A fairly simple application might need only a few use cases. (The hikaru dorodango
example described in the preceding section might need only a few to check that you can log in, view,
add, edit, and delete data.) A large, complex application with detailed needs might have dozens or
hundreds of use cases. In that case it might take days or even weeks to go through them all.

 One mistake developers sometimes make is waiting until the application is fi nished before
starting acceptance testing. You do need to perform acceptance testing then, but if that’s the fi rst
time the customer sees the application, there may be problems. Customers may decide that their
interpretation of a use case is different from yours. Or they may decide that what they need is
different from what they thought they needed during requirements gathering.

 In those cases, you’re much better off if you do a quick run‐through of each use case as soon as the
application can handle it. Then if you need to change the requirements, you can do it while there’s
still some time left in the development schedule and not at the end of the project when all of the
programmers have scheduled overseas vacations.

 Other Testing Categories
 Unit test, integration test, component interface test, and system test categorize tests based on their
scale with unit test being at the smallest scale and system test including the entire application.
An acceptance test differs from a system test in the point of view of the tester: A system tester is
typically a developer, whereas an acceptance tester is a customer representative.

 The following list summarizes other categories of testing that differ in their scope, focus, or point
of view.

➤ Accessibility test —Tests the application for accessibility by those with visual, hearing, or
other impairments.

➤ Alpha test —First round testing by selected customers or independent testers. Alpha tests
usually uncover lots of bugs and defects, so they generally aren’t open to a huge number of
users because that might ruin your reputation for building good software.

186 ❘ CHAPTER 8 TESTING

➤ Beta tes t—Second round testing after alpha test. Generally, you shouldn’t give users beta
versions until the application is quite solid or you might damage your reputation for building
good software. Sometimes, beta tests are used as a sneaky form of a limited trial to build
excitement for a new release in the user community.

➤ Compatibility test —Focuses on compatibility with different environments such as computers
running older operating system versions. Also checks compatibility with older versions of the
application’s fi les, databases, and other saved data.

➤ Destructive test —Makes the application fail so that you can study its behavior when the
worst happens. (Obviously, if you have good backups, you won’t actually destroy the code.
You’ll destroy the application’s performance.)

➤ Functional test —Deals with features the application provides. These are generally listed in
the requirements.

➤ Installation test —Makes sure you can successfully install the system on a fresh computer.

➤ Internationalization test —Tests the application on computers localized for different parts of
the world. This should be carried out by people who are natives of the locales.

➤ Nonfunctional test —Studies application characteristics that aren’t related to specifi c
functions the users will perform. For example, these tests might check performance under
a heavy user load, with limited memory, or with missing network connections. These often
identify minimal requirements.

➤ Performance test —Studies the application’s performance under various conditions such
as normal usage, heavy user load, limited resources (such as disk space), and time of day.
Records metrics such as the number of records processed per hour under different conditions.

➤ Security test —Studies the application’s security. This includes security of the login process,
communications, and data.

➤ Usability test —Determines whether the user interface is intuitive and easy to use.

 TESTING TECHNIQUES

 The previous sections described some different levels of testing (unit, integration, component,
system, and acceptance) and alluded to some methods for testing (try out every combination of
actions that you can think of), but they didn’t explain specifi c techniques for performing actual tests.

 In particular, they didn’t discuss generating data for tests. For example, suppose a method organizes
Pokémon card decks as described earlier. You can test it by generating a random deck and seeing if
the method organizes it correctly, but how do you know it will work with every possible deck?

 The following sections describe some approaches to designing tests to fi nd as many bugs as possible.

 Exhaustive Testing
 In some cases, you may be able to test a method with every possible input. For example, suppose
you write a tic‐tac‐toe (noughts‐and‐crosses) program and one method is in charge of picking the

Testing Techniques ❘ 187

best move from a current board position. You could test the method by passing it a board position,
seeing what move it picks, and then verifying that there are no better moves that it could have
chosen instead.

 There are only 9! = 362,880 possible board arrangements, so you could pass the method every
possible combination of moves to see what it does. (In fact, many of the board arrangements are
impossible. For example, you can’t have three Os on the top row and three Xs on the middle row in
the same game. That means there are fewer than 9! possible arrangements to test.)

 This sort of exhaustive testing conclusively proves that a method works correctly under all
circumstances, so it’s the best you can possibly do. Unfortunately, most methods take too many
combinations of input parameters for you to exhaustively try them all.

 For a ridiculously simple example where an exhaustive test is impossible, suppose you write a
Maximum method that compares two 32‐bit integers and returns the one that’s larger. Each of the
two inputs can take roughly 4.3 × 109 values (between –2,147,483,648 and 2,147,483,647), so there
are approximately 1.8 × 10 19 possible combinations. Even if you had a computer that could call the
method and verify its results 1 billion times per second, it would take more than 570 years to check
every combination.

 Because most methods take too many possible inputs, exhaustive testing won’t work most of the
time. In those cases, you need to turn to one of the following methods.

 Black‐Box Testing
 In black‐box testing , you pretend the method is a black box that you can’t peek inside. You know g
what it is supposed to do, but you have no idea how it works. You then throw all sorts of inputs at
the method to see what it does.

 You can start black‐box testing by sending it a bunch of random inputs. Remember that you need
to perform these tests only occasionally, not every time the program runs, so you can test a lot of t
random values. For example, you might throw a few million random pairs of values at the Maximum
method described in the previous section. It doesn’t matter if it takes the test a few minutes to fi nish.

 Even if you don’t know how the method works, you can try to guess values that might mess it up.
Typically, those involve special values like 0 for numbers and blank for strings. They may also
include the largest and smallest possible values. For strings that might mean a string that’s all blanks
or all ∼ characters.

 Sometimes, you can trip up a method that expects to process names by using strings containing
numbers or special characters such as &#%!$ (which looks like a cartoon character swearing).

 Some methods don’t work well if their inputs include a lot of duplicates, so try that. For example,
quicksort is one of the fastest sorting algorithms usually, but it gives terrible performance if the
items it is sorting all have the same value. (Consult an algorithms book or search for quicksort
online if you want to see the details.)

 If a method takes a variable number of inputs, make sure it can handle 0 inputs and a really large
number of inputs. If it takes an array or list as a parameter, see what it does if the array or list is
empty or missing.

188 ❘ CHAPTER 8 TESTING

Finally, look at boundary values. If a method expects a fl oating point parameter between 0.0 and
1.0, make sure it can handle those two values.

White‐Box Testing
In white‐box testing , you get to know how the method does its work. You then use your extra g
knowledge to design tests to try to make the method crash and burn.

White‐box testing has the advantage that you know how the method works, so you can try to
pick particularly diffi cult test cases. Unfortunately it has the disadvantage that you know how the
method works, so you might skip some test cases that you assume work.

For example, you might know that a method would be confused by zero‐length strings. But you
knew that when you wrote the code, so you handled it. The problem is, you may not have handled
it correctly. If you handled everything correctly, then there wouldn’t be any bugs and you wouldn’t
need testing at all.

Use white‐box testing to create tests you know will be troublesome, but don’t skip tests that you
“know” the method can handle.

Gray‐Box Testing
Gray‐box testing is a combination of white‐box and black‐box testing. Here you know some but notg
all the internals of the method you are testing. Your partial knowledge of the method lets you design
specifi c tests to attack it.

For example, suppose a method examines test score data to fi nd students that might need extra
tutoring help. You don’t know all the details, but you do know that it uses the quicksort algorithm
to sort the students by their grades. In that case, you might want to see what the method does if
every student has the same grade because that might mess up quicksort. (Because you don’t know
what else is going on inside the method, you also need to write a bunch of black‐box styles tests.)

BLACK‐BOX AND WHITE‐BOX TESTING

With black‐box testing, if you truly don’t know how a method works, then it’s
harder to assume it handles specifi c cases correctly. Unfortunately with black‐box
testing, you don’t know where to look for weaknesses.

White‐box testing lets you specifi cally attack a method’s weaknesses, but as
mentioned a couple of times (both in this chapter and in Chapter 7) it’s easy for
programmers to assume their code works. (That’s the biggest drawback of white‐box
testing.) That can make them skip some test cases that might uncover a bug.

You can get the best of both worlds by combining black‐box and white‐box testing.
One way to do that is to have two different people test a method. The programmer
who wrote it can build some white‐box tests, and someone else can design some
black‐box tests.

Testing Habits ❘ 189

 TESTING HABITS

 Just as there are good programming habits, there are also good testing habits. These habits make
testing more effective so you’re more likely to fi nd bugs quickly and relatively painlessly. They also
make it less likely that new bugs will appear when you fi x a bug.

 The following sections describe some testing habits that can make you a better tester.

 Test and Debug When Alert
 In Chapter 7 , I said that you should write code when you’re most alert. That helps you understand
the code better so that it reduces the chances of you writing incorrect code and adding bugs to the
application.

 Similarly, you should test and debug when you’re alert. Then when something goes wrong, you’ll be
more likely to understand what the program is supposed to be doing, what it is actually doing, and
how to fi x it. Debugging while tired is a good way to add new bugs to the program.

 (DWT stands for “driving while texting” and is illegal in most U.S. states. DWT can also stand for
“debugging while tired,” and it should be illegal, too.)

 One nice thing about automated tests is that they don’t get tired. You may be exhausted after a long
day of coding, but a testing tool can exercise the application while you catch up on your sleep. Then
in the morning you can start refreshed chasing any bugs that were found.

 Test Your Own Code
 Before you check your code in and claim it’s ready for prime time, test it yourself. This is the last
chance you have to fi nd your own bugs before someone else does. Save yourself some embarrassment
and do your own work. If you make someone else do it for you, they may decide to rub your nose in
it for days or weeks to come.

 Stories abound that tell of programmers who don’t test their code before checking it into the project.
One of my friends who was a project manager hung a toy skunk outside the door of the developer

 Many software projects have designated testers who do nothing but try their
hardest to destroy their colleagues’ code. Sometimes their attitude can be a bit
adversarial, but the results can be remarkable if team members don’t take things
too seriously. (There’s a great short article about IBM’s Black Team at www.t3.org/
tangledwebs/07/tw0706.html .)

 Another approach that can give some of the same benefi ts is to have developers
write black‐box tests before they write a method’s code. (Okay, these might really
be more like “dark‐gray‐box” tests because a developer might have some idea about
how he will write the method. You can probably do even better if you have one
person write the black‐box tests and then have another write the code.) Then after
the method is written, its author can create white‐box tests to go with it.

http://www.t3.org/tangledwebs/07/tw0706.html
http://www.t3.org/tangledwebs/07/tw0706.html

190 ❘ CHAPTER 8 TESTING

who broke the weekly build. It stayed there until someone else broke a build. One time the skunk
stayed outside my friend’s door for more than a month, so no one was immune to the skunk. (That
sort of thing can be amusing, but only if everyone takes it with good humor. Some people couldn’t
handle that sort of thing.)

Another group I heard of had a programmer whose name happened to be Fred. Pretty much every
week Fred managed to break the build, so the other programmers would spend several hours
“de‐fredding” the code.

Lots of larger projects have that “one guy” who messes up the project build. Don’t be that guy.

Have Someone Else Test Your Code
It’s important to test your own code, but you’re too close to your code to be objective. You have
assumptions about how it works that unconsciously infl uence the tests you perform. To fi nd as many
bugs as possible, you also need someone with a fresh perspective to test it.

Even if you’re Super Programmer (faster than a speeding binary search, more powerful than a linked
list, and able to leap tall b‐trees with a single bound), you’re going to make mistakes every now and
then. You’ve spent a lot of time and effort on your code, so when someone gently points out your
mistakes, it’s easy to become defensive. Your feelings are hurt. You feel personally attacked. You
pull into yourself like a spurned teenager and start playing emo music on your earphones. (In the
worst case, you retreat into your fortress of solitude and become a super‐villain.)

In fact, all that actually happened is that someone else found a mistake that anyone could have
made. They didn’t cause the mistake; it was already sitting there waiting to pounce during a demo
for the company president. (And I’ve seen that happen! A lot!) You should be grateful that the
bug was caught before it escaped into a released product where it could embarrass your whole
programming team.

Mistakes happen all the time, particularly in software development. It’s important to thank the
tester for pointing out this fl aw, fi x it, and move on with no hard feelings.

The ability to take this kind of criticism can be such an important factor in software engineering
that Gerald Weinberg coined the term “egoless programming” in his book The Psychology of
Computer Programming . Even though he wrote that book way back in 1971, the term is stillg
important in programming today. (The latest edition of his book is The Psychology of Computer
Programming: Silver Anniversary Edition , Dorset House, 1998).

THE RULES OF EGOLESS PROGRAMMING

Here’s a summary of Gerald Weinberg’s Ten Commandments of Egoless
Programming:

1. Understand and accept that you will make mistakes. Everyone makes mistakes.
(Even me after 30+ years of programming experience.) Try to avoid mistakes,
but realize that they will occur anyway. No one else programs without any
mistakes, so why should you?

Testing Habits ❘ 191

2. You are not your code. Just because you wrote a piece of fl awed code, that
doesn’t make you a bad person. Don’t take the bug home with you and ruin
your weekend obsessing over it. Be glad the bug was found when it was. (And
wish it had been found sooner!)

3. No matter how much “karate” you know, someone else will always know

more. Even the greatest programmers of all time sometimes learn from others.
And chances are, some of the people around you have more experience, at
least in some facets of programming. Learn what Yoda has to offer.

4. Don’t rewrite code without consultation. By all means fi x bugs, but don’t
rewrite sections of code without consulting with your team. Bulk rewrites
should be performed only for good reasons (like replacing a buggy section of
code or rearranging code so that it can be broken up into separate methods),
not because you don’t like someone’s indentation or variable names. If it ain’t
broke, don’t fi x it.

5. Treat people who know less than you with respect, deference, and patience.

Even you started out as a programming novice. You made simple mistakes, did
things the hard way because you didn’t know better, and asked naive questions
(if you were smart enough to ask questions). Be patient and don’t reinforce
the stereotype that good programmers are all prima donnas. (Also see #3. You
may know more than someone, but not everyone.)

 One of the lessons I’ve learned over the years is that good ideas sometimes lie
behind bad code. A piece of code that you think is weird may be trying to address
an issue that isn’t obvious. Stay humble and fi nd out what the programmer was
trying to do. Then decide if there’s a better way to deal with the issue.

6. The only constant in the world is change. After a while, programmers tend to
become comfortable with what they know. Unfortunately, change happens anyway
whether you like it or not. Embrace change and see if it can work in your favor.

 (I worked on one project with about 25 programmers and around 100,000
lines of object‐oriented code. Unfortunately the project manager said fl at
out that he “didn’t get object‐oriented code.” He learned to program before
object‐oriented languages were invented and he didn’t see the point. That
made him practically useless in any technical discussion.)

 At the same time, don’t discard something just because something new has
come along. Like programmers, techniques that stand the test of time do so
because they’re useful.

7. The only true authority stems from knowledge, not from position. Don’t
use your position (as lead developer, senior architect, or even corporate
vice president) to force your point of view down others’ throats. Base your
decisions on facts and let the facts speak for you.

continues

192 ❘ CHAPTER 8 TESTING

Fix Your Own Bugs
When you fi x a bug, it’s important to understand the code as completely as possible. If you wrote
a piece of code, you probably have a greater understanding of it than your fellow programmers do.
That makes you the logical person to fi x it. Anyone else will need to spend more time coming up to
speed on what the code is supposed to do and how it works.

If someone else fi xes your code and does it wrong, your code looks bad. It may not be your fault
(well, ultimately it was because you made the initial mistake), but you’re the one who gets credit for
the new bug. You may end up having to fi x your own problem and the new one.

Besides, if you made a mistake, it may be useful to fi x it yourself so that you can learn how to avoid
that mistake in the future.

8. Fight for what you believe, but gracefully accept defeat. Programming
tasks rarely have a single unambiguous solution. There’s always more
than one way to tackle a problem. If the group doesn’t decide to take your
approach, don’t worry about it. If the result is good enough, then it’s
good enough.

 Later if it turns out you were right and the approach taken wasn’t good
enough, don’t rub it in. That attitude makes it harder for the group to make
good decisions in the future. (Besides, some day you’ll be on the wrong side
of a decision and your coworkers will be slow to forget the time you acted all
high and mighty.)

9. Don’t be “the guy in the room.” Sometimes you may need to close your
offi ce door and bang out some code, but don’t go into hibernation and
emerge only briefl y to restock your Twinkie and NOQ energy drink
supply. Stay engaged with the other developers so you can collaborate with
them effectively.

10. Critique code instead of people—be kind to the coder, not to the code. This
can be as simple as a subtle wording change. Instead of saying, “What were
you thinking you utter moron?” you could say, “It looks like this variable isn’t
being initialized before it’s passed into this routine.” Okay, that example is a
bit extreme, but you get the idea. Make comments that refer to what the code
is doing not to the person who wrote it.

 Comments should also be positive if possible and focus on improving the
code instead of dwelling on pointing out what’s wrong. Instead of, “This
variable isn’t being initialized,” you could say, “We should probably
initialize this variable.” (Notice how that comment also treats the code
as group property instead of one person’s mistake? It’s good to help
developers think of it as a joint project and not a collection of code owned
by specifi c people.)

(continued)

Testing Habits ❘ 193

 CARD COUNTING

 In college I had a roommate whose professor made everyone work with punched
cards. (If you don’t know what those are, see en.wikipedia.org/wiki/Punched_
card .) It took several minutes to an hour to get the Computer Center to run a deck
of cards, and the professor’s theory was that using cards instead of typing code into
the computer interactively would discourage people from trying to fi x a program by
trial‐and‐error.

 Of course, what students did was make four or fi ve copies of their decks
(which could contain several hundred cards each) so they could make four or
fi ve random changes per session. It just goes to show how clever people can be at
being stupid.

 Think Before You Change
 It’s common to see beginning programmers randomly changing code around hoping one of the
changes will make a bug go away. (Sadly, you sometimes also see those sorts of random changes in
experienced programmers.)

 I won’t say this is the worst way to debug code but only because I’m sure someone out there cant
come up with an even more terrible method. However, this is certainly an extremely bad way to fi x
software. If you’re making random changes, you’re not paying attention to what the changes are
doing. If a change makes a bug disappear, you don’t really know if it fi xed the bug or just hid it. You
don’t know if the change added a new bug (or several). You also missed out on an opportunity to
learn something so you won’t make the same mistake in the future.

 Don’t Believe in Magic
 Suppose you’ve spent hours chasing a bug. You’ve made some test changes and the bug has gone
away. It’s remarkable how many developers stop at that point, pat themselves on the back, and call
it a job well done.

 Unless you know why the changes you made fi xed the bug, you can’t assume the bug is really gone.
Sometimes you’ve just hidden it. Or perhaps it went away for completely unrelated reasons, like your
order processing center in New York just shut down for the evening and stopped sending you new
orders.

 Before you cross a bug off of your To Do list, make sure you understand exactly what changes you
made and why they worked. (Also ask yourself if the changes will have bad consequences.)

 See What Changed
 If you’re debugging new code, you can’t check an older version to see what changed, but if you’re
chasing a bug in code that has been recently modifi ed (perhaps due to a bug fi x), see what’s changed.
Sometimes the difference makes the bug pop out and saves you hours of work.

194 ❘ CHAPTER 8 TESTING

 Fix Bugs, Not Symptoms
 Sometimes developers focus so closely on the code that they don’t see the bigger picture. They fi nd a
line of code that contains a bug and fi x it without considering whether there’s a larger issue.

 For example, suppose you’re writing a method that calculates registration prices for a bull
riding competition. Unfortunately, the method is giving senior citizen discounts to people
who don’t deserve them. (People over 85 get $3 off, but the program is giving them to younger
contestants, too.)

 You step through the code for a few problem customers, and you discover the bug is in the following
calculation:

 age = current_year - birth_year

 It turns out some people have entered their birthdates in the format mm/dd/yy. For example,
assuming it’s 2015, someone born in 2005 who enters her age as 4/1/05 will have a calculated age
of 2015 − 05 = 2010. With an age of more than 2,000 years, she’s certainly old enough for the
discount.

 One way to fi x this would be to check the customer’s birthdate and, if the year doesn’t contain four
digits, not offer the discount. You might anger a few 104‐year‐olds, but at least you won’t have
parents accusing you of encouraging 12‐year‐olds to ride bulls.

 This fi x works (sort of), but it doesn’t address the real problem: Customers are entering their
birthdates in the wrong format. A better solution would be to modify the user interface to require
customers to enter their birthdates in the required format. (You could also add some assertions to
look for a valid format to make sure this sort of bug doesn’t reappear later.)

 Look at the entire context of the code that contains a bug and ask yourself whether you’re fi xing
a bug or a symptom of something bigger. Make sure you understand the whole problem before
you act.

 Test Your Tests
 If you write a bunch of tests for a method and those tests don’t fi nd any bugs, how do you know
they’re working? Perhaps the tests are fl awed and they don’t detect errors correctly.

 After you write your tests, add a few bugs to the code you’re testing and make sure the tests catch
them. (Basically you need to test the tests.)

 HOW TO FIX A BUG

 Obviously, when you fi x a bug you need to modify the code, but there are a few other actions you
should also take.

 First, ask yourself how you could prevent a similar bug in the future. What techniques could you use
in your code? What tests could you run to detect the bug sooner?

 Second, ask yourself if a similar bug could be lurking somewhere else. You just went to a lot of
trouble isolating this bug. If other pieces of code contain a similar problem, it will be easier if you

Estimating Number of Bugs ❘ 195

fi nd them now instead of waiting for them to break something else. Do a search of the rest of the
project’s code to see if you can fi nd this bug’s cousins.

 Third, look for bugs hidden behind this one. Sometimes, the symptoms of one bug mask the
symptoms of another. For example, suppose you write a method that fl ags customers who have
unpaid balances greater than $50.00. You write a second method that sends e‐mails to those
customers to nag them. Unfortunately, a missing decimal point in the fi rst method makes it
fi nd customers with balances greater than $5,000. Because you don’t have any customers with
such large balances, you never discover that the second method is sending e‐mails to the wrong
addresses. (This is sort of like asking a mechanic to fi x your car’s starter when you don’t realize the
engine is also missing.)

 Fourth, examine the code’s method and look for other possibly unrelated bugs. Bugs tend to travel
in swarms. A piece of code may be extra complicated, poorly organized, or cluttered with badly
conceived patches to previous bugs. Whatever the reason, some pieces of code are just buggier than
others. When you fi x a bug, look around for others. If you fi nd a nest of bugs, ask whether you
should refactor it to make it more maintainable.

 Finally, make sure your fi x doesn’t introduce a new bug. The chances of a line of modifi ed code
containing a bug are much higher than those for an original line of code. (That combined with the
fact that bugs tend to swarm means some piece of code can actually sprout bugs faster than you can
fi x them. It’s like playing a particularly annoying game of whack‐a‐mole.) Take extra care to try
to not cause more problems than you solve. Then thoroughly test your changes to make sure they
worked and that they didn’t break anything.

 ESTIMATING NUMBER OF BUGS

 One of the unfortunate facts about bugs is that you can never tell when they’re all gone. As Edsger
W. Dijkstra put it, “Testing shows the presence, not the absence of bugs.” You can run tests as long
as you like, but you can never be sure you’ve found every bug.

 Similarly you can’t know the number of bugs lurking in a project. (If you could, then you could just
keep testing until that number reached zero.) Fortunately, there are some techniques you can use
to estimate the number of bugs remaining in a program. They have some serious drawbacks, but
at least they’re better than nothing. (They also give you some actual, if not necessarily verifi able,
numbers to report at management presentations to prove that you’re doing something useful now
that programming is winding down.)

 Tracking Bugs Found
 One method for estimating bugs is to track the number of bugs found over time. Typically, when
testing gets started in a serious way, this number increases. After the testers have uncovered the
most obvious bugs, the number levels off. Hopefully, the number of bugs found eventually declines.
If you plot the number of bugs found per day, the graph should look more or less like the one in
Figure 8-1 .

 When you’re working out near the “getting close to zero” part of the graph, you have some reason
to believe that you’ve found most of the bugs.

196 ❘ CHAPTER 8 TESTING

This approach is easy, intuitive, and doesn’t require a lot of extra work (beyond fi nding the
bugs, which you need to do anyway), so it’s a good start. (Graphs are also good in management
presentations. You can make them colorful and people can pretend to understand them.)

Unfortunately, this approach has a couple of problems. First, it tends to track the easiest bugs to
fi nd. After 4 weeks of testing, you may have found 80 percent of the easy bugs but only 5 percent of
the tricky bugs. The graph declines because you’re running out of easy‐to‐fi nd bugs, but there may
still be plenty of sneakier bugs lying in wait.

Similarly, this kind of estimate assumes your test coverage is equally good on all parts of the
project. If you’ve neglected part of the application or failed to look for a particular kind of bug (for
example, invalid customer data), there may be a whole slew of bugs remaining that you don’t know
about. Sometimes, you can see this effect when you add a new test to your automated test suite and
suddenly a whole bunch of new bugs appear.

20

15

10

B
ug

s
D

is
co

ve
re

d
 P

er
 D

ay

Days of Testing

5

5 10 15 20 25 30

FIGURE 8-1: When you’re in the “getting close to zero” part of
the graph, you may be running out of bugs.

CODE COVERAGE

Some testing tools can measure code coverage , the lines of code that are executed
during a demonstration or a suite of tests. They can tell you how many times a
particular piece of code has been exercised.

You should use code coverage tools to make sure that every part of the system is
visited at least once by the tests. Executing a line of code doesn’t guarantee that
you’ve found any bug in that line. However, if you don’t execute a chunk of code,
you’re guaranteed not to fi nd any bugs hiding there.

Estimating Number of Bugs ❘ 197

 Seeding
 Another approach for estimating bugs is to “seed” the code with bugs. Simply scatter some bugs
throughout the application.

 Run your tests and see how many of the artifi cial bugs you fi nd. If the unintentional bugs are about as
good at hiding as the bugs you planted, you should be able to estimate the number of bugs remaining.

 For example, suppose you insert 40 bugs in the code and your tests fi nd 34 of them. That 85-percent
success rate implies that you may have found 85 percent of the real bugs. If you’ve found 135 real
bugs so far, then there may have originally been approximately 135 ÷ 0.85 ≈ 159 bugs. That means
there are about 159 – 135 = 24 bugs remaining.

 The previous approach (tracking found bugs) assumes the bugs you’ve found are representative of
the bugs as a whole. The seeding approach makes a similar assumption. It assumes the artifi cial
bugs can accurately represent the true bugs.

 Unfortunately, it’s a lot easier to create simple bugs by tweaking a line of code here and there than it is
to create complex bugs that involve interactions between several methods in different modules. That
means the seeding method can greatly underestimate the number of complicated and subtle bugs.

 The Lincoln Index
 Consider the following word problem.

 Suppose you have two testers Lisa and Ramon. After they bash away at the application for
a while, Lisa fi nds 15 bugs and Ramon fi nds 13. Of the bugs, they fi nd 5 in common. In
total, how many bugs does the application contain?

 The correct answer in this case is, “Wait, I thought this was a software engineering book, not a
mathematics text. You didn’t say I was going to have to solve word problems!”

 Of course you don’t really know how many bugs are in the application, but the Lincoln index gives
you a guess. In this example, the Lincoln index is 15 × 13 ÷ 5 = 39.

 More generally, if two testers fi nd E 1 and E2 errors respectively, of which S are in common, then the
Lincoln index is given by the following equation:

L =
E1 × E2

S

 Like all the other bug estimation techniques, this one isn’t perfect. It relies on the assumption that
the testers have an equal chance to fi nd any particular bug, and that’s probably not true. Both
testers are most likely to fi nd the easiest bugs, so the value S is probably larger than it would be if
fi nding bugs was completely random. That means the Lincoln index probably underestimates the
true number of bugs.

 Another way the Lincoln index can break down is if Lisa and Ramon have similar testing styles. In that
case, their common style may tend to lead them to fi nd the same bugs. Again the value S would be larger
than it would if bugs were found randomly, and the Lincoln index would be smaller than it should be.

198 ❘ CHAPTER 8 TESTING

SUMMARY

If all programs contain bugs, you may be tempted to throw your hands up in the air, walk away
from your software engineering job, and open a bakery. Even though you generally cannot remove
every bug from a program, you can usually remove enough bugs that the remaining ones don’t
appear too often and don’t inconvenience users too much.

The key to fi nding bugs so that you can remove them is testing. By constantly testing code at small,
medium, and large scales, you can fi nd bugs as soon as possible and make removing them easier.
Continue testing until bug estimation techniques indicate that you may have caught most of the
important bugs.

When your testing efforts aren’t fi nding much to fi x, it’s time to start deployment. The next chapter
describes typical deployment tasks and some of the things you should do to make deployment easier.

NOTE The Lincoln index was described by Frederick Charles Lincoln in 1930,
long before the invention of modern computers. He was an ornithologist
who used the method to estimate the number of birds in a given area
based on the number of birds counted by different observers. For more
information about the Lincoln index, see en.wikipedia.org/wiki/
Lincoln_index.

HOW DOES THE LINCOLN INDEX WORK?

Suppose the two testers have probabilities P 1 and P2 of fi nding any given bug and
assume the application contains B bugs. Then you would expect them to fi nd
E 1 = P 1 × B and E2 = P 2 × B bugs, respectively.

The chance of a particular bug being found by both testers would be P 1 × P 2 , so you
would expect them to fi nd S = P1 × P 2 × B bugs in common.

Plugging those values into the formula for the Lincoln index gives

E1 =

L =
E1 × E2

S

=
(P1 × B) (P2 × B)

P1 × P2 × B

When you get through canceling, all that’s left is B. That means you should expect
the Lincoln index to be about the same as B, the total number of bugs.

Summary ❘ 199

EXERCISES

1. Two integers are relatively prime (or coprime) if they have no common factors other than 1.
For example, 21 = 3 × 7 and 35 = 5 × 7 are not relatively prime because they are both divisiblet
by 7. By defi nition –1 and 1 are relatively prime to every integer, and they are the only
numbers relatively prime to 0.

 Suppose you’ve written an effi cient IsRelativelyPrime method that takes two integers
between –1 million and 1 million as parameters and returns true if they are relatively prime.
Use either your favorite programming language or pseudocode (English that sort of looks like
code) to write a method that tests the IsRelativelyPrime method. (Hint: You may fi nd it
useful to write another method that also tests two integers to see if they are relatively prime.)

2. What changes do you need to make to the IsRelativelyPrime method to test all the testing
code? In other words, what do you need to do to test the testing code?

3. What testing techniques did you use to write the test method in Exercise 1? (Exhaustive,
black‐box, white‐box, or gray‐box?) Which ones could you use and under what circumstances? d

4. What limitations do the tests you wrote for Exercise 1 have? Would a particular testing
technique help?

5. The following code shows a C# version of the AreRelativelyPrime method and the GCD
method it calls.

 // Return true if a and b are relatively prime.
 private bool AreRelativelyPrime(int a, int b)
 {
 // Only 1 and -1 are relatively prime to 0.
 if (a = = 0) return ((b = = 1) | | (b = = −1));
 if (b = = 0) return ((a = = 1) | | (a = = −1));

 int gcd = GCD(a, b);
 return ((gcd = = 1) | | (gcd = = -1));
 }

 // Use Euclid’s algorithm to calculate the
 // greatest common divisor (GCD) of two numbers.
 // See http://en.wikipedia.org/wiki/Euclidean_algorithm
 private int GCD(int a, int b)
 {
 a = Math.Abs(a);
 b = Math.Abs(b);

 // If a or b is 0, return the other value.
 if (a = = 0) return b;
 if (b = = 0) return a;

 for (; ;)
 {

http://en.wikipedia.org/wiki/Euclidean_algorithm

200 ❘ CHAPTER 8 TESTING

 int remainder = a % b;
 if (remainder = = 0) return b;
 a = b;
 b = remainder;
 };
 }

 The AreRelativelyPrime method checks whether either value is 0. Only –1 and 1 are
relatively prime to 0, so if a or b is 0, the method returns true only if the other value is –1 or 1.

 The code then calls the GCD method to get the greatest common divisor of a and b . If the
greatest common divisor is –1 or 1, the values are relatively prime, so the method returns
true . Otherwise, the method returns false .

 Now that you know how the method works, implement it and your testing code in your
favorite programming language. Did you fi nd any bugs in your initial version of the method or
in the testing code? Did you get any benefi t from the testing code?

 6. Write an exhaustive test for the AreRelativelyPrime method in pseudocode. What are the
benefi ts and drawbacks to this version?

 7. Write a version of the program you wrote for Exercise 5 that uses an exhaustive test. How large
can you make the range of values (to the nearest powers of 10) and still fi nish testing in under 10
seconds? Approximately how long would it take to test with the range –1 million to 1 million?

 8. Does all this this seem like a lot of work?

 9. Exhaustive testing actually falls into one of the categories black‐box, white‐box, or gray‐box.
Which one is it and why?

10. The section “The Lincoln Index” describes an application where Lisa found 15 bugs, Ramon
found 13 bugs, and they found 5 in common. The Lincoln index estimates that the application
might contain approximately 39 bugs in total. After you fi x all of the bugs that Lisa and Ramon
found, how many are left?

11. Suppose you have three testers: Alice, Bob, and Carmen. You assign numbers to the bugs so
the testers fi nd the sets of bugs {1, 2, 3, 4, 5}, {2, 5, 6, 7}, and {1, 2, 8, 9, 10}. How can you use
the Lincoln index to estimate the total number of bugs? How many bugs are still at large?

12. What happens to the Lincoln estimate if the two testers don’t fi nd any bugs in common? What
does it mean? Can you get a “lower bound” estimate of the number of bugs?

13. What happens to the Lincoln estimate if the two testers fi nd only bugs in common? What does y
it mean?

Summary ❘ 201

14. The Lincoln index has a statistical bias, so some people prefer to use the Seber estimator:

Bugs = (E1 + 1) × (E2 + 1)
− 1

(S + 1)

 Repeat Exercise 10 with the Seber estimator. How does it compare to the Lincoln index
estimate?

15. Suppose two testers fi nd 7 and 5 bugs respectively but none in common. Repeat Exercise 12
with the Seber estimator.

16. Suppose two testers fi nd only the same bugs. Repeat Exercise 13 with the Seber estimator.

202 ❘ CHAPTER 8 TESTING

▸ WHAT YOU LEARNED IN THIS CHAPTER
➤ Goals of testing

➤ Reasons not to remove a bug (diminishing returns, deadlines, it’s too soon since the last
release, the bug is useful, the code will soon be obsolete, it’s a feature not a bug, at some
point you need to release something, the program is already worth using, fi xing bugs is
dangerous)

➤ How to decide which bugs to fi x (severity, work-arounds, frequency, diffi culty, riskiness)

➤ Levels of testing (unit, integration, component interface, system, acceptance)

➤ Uses for automated testing

➤ Testing categories (accessibility, alpha, beta, compatibility, destructive, functional,
installation, internationalization, non‐functional, performance, security, usability)

➤ Testing techniques (exhaustive, black‐box, white‐box, gray‐box)

➤ Good testing habits (test when alert, test your own code, have someone else test your code,
use egoless programming, fi x your own bugs, think before you change, don’t believe in
magic, see what changed, fi x bugs not symptoms)

➤ How to fi x a bug (How can you prevent similar bugs in the future? Could the bug be
elsewhere? Look for bugs hidden by this bug. Look for unrelated bugs. Make sure your fi x
doesn’t introduce another bug.)

➤ Methods for estimating number of bugs (tracking, seeding, Lincoln index, Seber estimator)

 Plans are nothing; planning is everything.

 —Dwight D. Eisenhower

 WHAT YOU WILL LEARN IN THIS CHAPTER:

➤ What you should put in a deployment plan

➤ Why you need a rollback plan

➤ Cutover strategies

➤ Common deployment tasks

➤ Common deployment mistakes

 After you’ve built the next blockbuster fi rst‐person shooter, fi nancial projection tool, or
Goat Simulator, it’s time for deployment. Deployment is the process of putting the fi nishedt
application in the users’ hands and basking in their adulation.

 At least in theory. In reality deployment can be a nightmare unrivaled by any step in the
software engineering process. It can be the stage when you discover that the program that
worked perfectly in testing scenarios is a total failure in the real world. It can be the point
when you realize that all your months or years of labor slaving over an overclocked CPU has
been for naught. It can be when you and your coworkers learn how many resumes per hour
the laser printer down the hall can produce.

 Fortunately, the reality usually falls somewhere between the user adulation and nightmare
scenarios. Most things work, more or less, with a few notable exceptions that give you
interesting stories to tell later at the wrap party. (In the words of Captain Jack Sparrow in
Pirates of the Caribbean: Dead Man’s Chest, “Complications arose, ensued, were overcome.”)t

 9

204 ❘ CHAPTER 9 DEPLOYMENT

This chapter describes the deployment phase of a software engineering project. It explains
deployment scope and lists some of the things you should consider in a deployment plan.

SCOPE

A project’s scope can range from a small tool you wrote for your own use, to in‐house business
software that will be used by hundreds or thousands of users. Some of the largest projects (things
like operating systems, browsers, and game console games) might have millions of users.

In addition to the number of users, scope includes the size of the application. It includes the amount
of data involved, the number of external systems that are affected, and the sheer quantity of code
(all of which could fail).

As you can probably guess, larger deployments provide more opportunities for mistakes. Big
projects have more pieces that can go wrong. They also provide more combinations of little things
that can add up to big problems.

For those reasons, small deployments are usually the smoothest. If you write an application for your
own use and it doesn’t work, you’ve only inconvenienced yourself and you have no one else to blame.
If you roll out a new version of an operating system to millions of customers and then immediately
discover you need to send out a security fi x, you lose credibility. (Yes, that scenario happens all the time.)

Before you begin deployment planning, you should consider the scope of the deployment and plan
accordingly. How much pain will failure during deployment cause? How much of that pain will
come back to haunt you? If a failure will inconvenience a lot of users, or make the users unable to
help their customers, you should spend extra time writing the best deployment plan possible. The
next section explains in general what you need to put into a deployment plan.

THE PLAN

If everything went according to plan, you could write down a simple list of steps to follow and then
work through them with guaranteed success. Unfortunately, the real world rarely works that way.
Something always goes wrong. Perhaps not everything, but something.

IMPLEMENTATION AND INSTALLATION

In addition to the term “deployment,” some people use the terms implementation,
installation , and release . In this context, they all mean basically the same thing;
although they may show slight differences in the speaker’s background.

Programmers tend to think of “implementation” as writing code to do something.
(As in, “Did you implement the user validation module yet?”) “Installation” sounds
more humdrum than the other terms. You call an electrician or a plumber to install
something. Besides, “deployment” sounds more dynamic. You don’t “install” or
“implement” troops into a fi eld of battle.

Software developers do occasionally talk about releasing programs into the wild.

The Plan ❘ 205

 When the inevitable emergency occurs, how well you recover depends largely on how thoroughly
you planned for unexpected situations. If you have a backup plan ready to go, you may work around
the problem and keep moving forward. If you don’t have a backup plan, you may need to stop the
deployment and try again later.

 Even stopping a deployment can be diffi cult and dangerous if you don’t plan for it. After you drive
over a cliff, it’s a little late to say, “Oh wait. I forgot something. Let’s try this tomorrow.”

 To start deployment planning, list the steps that you hope to follow. Describe each step in detail as it
is supposed to work.

 Next, for every step, list the ways that step could fail. Then describe the actions that you will take if
one of those failures occurs. Describe work-arounds or alternative approaches that you could use.

 This part of planning can be extremely hard. It’s not always easy to think of work-arounds for every
possible disaster. Sometimes it may not even be possible.

 For example, suppose your application requires 40 new networked computers with 8 GB of
memory. What will you do if the network doesn’t work? Or if the computers don’t arrive from
the manufacturer? Or if the manufacturer sends you eight computers with 40 GB of memory? In
those cases, you may be unable to continue the deployment in any meaningful way. You may think
your software installation is bulletproof, but hardware issues bring deployment to a screeching
halt before it gets started. In that case, the “solution” to those problems might be to delay the
deployment and fi x the problems (or die trying).

 For a slightly less obvious example, suppose your computers arrive on schedule and they work just
fi ne, but there’s something wrong with the network and you’re not getting the bandwidth you should
so the users can only process four or fi ve jobs per day instead of the normal 15 to 20. You could
move the users onto the new system anyway, but that would cause unnecessary pain and suffering
(and you’ll get your fair share). At this point, it would be better to postpone the deployment for a
day or two, fi gure out what’s wrong with the network, and start over.

 After you’ve worked through all the plan’s desired steps and anticipated as many problems as
possible, write a rollback plan that lets you undo everything you’ve done. Be sure you can restore
any other applications that you’ve updated and any data that you’ve converted for the new system.

 Unfortunately, rolling back some of those sorts of changes can be diffi cult. For example, suppose
your new application will run on a new operating system. If something goes wrong, restoring the
older operating system can be a huge pain.

 There are a few things you can do to make such a major restoration possible. For example, you can
make complete images of the computers you’re updating so that you can put them back exactly as
you found them if necessary.

 At some point, the pain of retreat is greater than the pain of moving forward. Some call that the point
of no return . People often underestimate how painful moving forward can be, however, so it’s good
to delay the point of no return as much as possible. It’s one thing to say, “We’ll just press onward and
let the users deal with any problems that crop up.” It’s another thing entirely to face management
when the database fails and the users are reduced to writing customer orders on pieces of paper.

 Often the action that determines the point of no return is moving users to the new system. You can
set up networks, install new printers, and spray your company logo on new computers, but until

206 ❘ CHAPTER 9 DEPLOYMENT

people are using the new application, it’s relatively easy to go back. The next section discusses the
process of moving people to the new application.

 CUTOVER

Cutover is the process of moving users to the new application. There are several ways you can
manage cutover. For some applications, you can just post the new version on the Internet and let
users grab it. For other projects, you may be able to e‐mail a new version to users, or you may be
able to just install the new system on users’ computers.

 More interesting deployments require that you do a bunch of set up (upgrading operating systems,
converting data into new formats, and installing coffee machines) before you can move users to the
new system.

 During the setup time, the users may be unable to do their jobs. To minimize disruption, it’s
important that the whole process go as smoothly as possible. The following sections describe four
ways you can make life easier for all concerned: staged deployment, gradual cutover, incremental
deployment, and parallel testing.

 Staged Deployment
 If you can’t reduce the impact of catastrophic failures, you can sometimes reduce their likelihood
by using staged deployment. In staged deployment , you build a t staging area , a fully functional
environment where you can practice deployment until you’ve worked out all the kinks.

 After you have the installation working smoothly, you can test the new application in an
environment that’s more realistic than the one used by the developers. You can use the staging area
to fi nd and fi x a few fi nal bugs before you infl ict them on the users.

 If you can, use power users to help do the testing. They’ll know what problems the other users are
most likely to encounter. (Users can also break a system in ways no programmer or tester can.)
Staged testing will also give them a preview of what’s coming. Hopefully, they’ll like what they see
and tell the other users how wonderful their future lives will soon become.

 When you’re fairly certain that everything is ready for prime time, you sneak in at night and
perform the actual deployment on the user’s computers, like Santa leaving presents in children’s
stockings. Hopefully you leave presents and not a lump of coal. (You don’t really have to sneak in at
night, but many companies do basically that. They have IT personnel upgrade the users’ computers
at night or over the weekend to minimize disruption.)

 You still need a deployment plan in case something unexpected goes wrong. Just because everything
works fl awlessly in the staging environment doesn’t mean it will on the users’ machines. However,
staging should have reduced the number of major problems you encounter.

 Gradual Cutover
 In gradual cutover , you install the new application for some users while other users continuerr
working with their existing system. You move one user to the new application and thoroughly test it.

Cutover ❘ 207

When you’re sure everything is working well, you move a second user to the new system. When that
user is up and running, you install a third user, then a fourth, and so on until everyone is running
the new application.

 The advantage to this approach is that you don’t destroy every user’s productivity if something goes
wrong. The fi rst few guinea pigs may suffer a bit, but the others will continue with business as usual
until you work out any tangles in the installation procedure. Hopefully, you’ll stumble across most
of the unexpected problems with the fi rst couple of users, and deployment will be effortless for most
of the others.

 One big drawback to this approach is that the system is schizophrenic during deployment.
Some users are using one system while others are doing something different. Depending on the
application, that can be hard to manage. You may need to write extra tools to keep the two groups
logically separated, or you may need to impose temporary rules of operation on the users.

 For example, suppose you’re building version 2.0 of your AdventureTrek program, an application
that lets customers make reservations for adventure treks such as BASE jumping off of national
monuments, kayaking over waterfalls, and hang gliding over active volcanos. Unfortunately, the new
version uses an updated database format to accommodate your latest offering: wing-walking on jets.

 Now consider what happens when you move a user to the new system. The database is full of
records in the old format. Either the 2.0 user must work with the old records, or the system must
route the old records to users that are still on version 1.0. After the 2.0 user creates some new
records, the system must route those records only to that user because the others can’t read a version
2.0 record.

 Eventually you’ll move all the users to the new version and, at that point, no one will work with the
older records. Obviously you need to convert the older records into the new format at some time. Of
course, once you do, people using version 1.0 won’t be able to do anything, so you’ll need to switch
them all over to version 2.0 right away.

 Figure 9-1 shows a Gantt chart that gives one possible schedule for migrating all 20 users to the
new version.

 FIGURE 9-1: This schedule takes 11 work days to migrate all 20 users to AdventureTrek 2.0.

208 ❘ CHAPTER 9 DEPLOYMENT

 The schedule starts by moving one user to the new version. Pick one of the power users for this
so that user can help exercise the new version thoroughly. The schedule then calls for three days of
testing with this user on the new version.

 Next, the schedule moves a second user to version 2.0. Testing continues for two more days with
just two users on the new version.

 If everything is going smoothly after this point, the schedule starts moving groups of users to the
new version. It moves three more users to the new version, making a total of fi ve. The next day it
moves fi ve more users, and it moves fi ve again on the following day.

 At this point (Friday, April 12), 15 users are using version 2.0, fi ve users are using version 1.0, and
the database contains a mix of old and new record formats.

 If you move the last users to the new version, then no one will be able to work with the older
records, so it’s time to convert the database.

 Depending on the volume of business in the application, you may need to convert the database
before cutover is fi nished. For example, if the old records require a lot of maintenance, then fi ve t
users on the old version may not be enough. In that case, you might want to convert the data after
10 users are on the version 2.0.

 Now the schedule upgrades the fi nal fi ve users and converts the old data in the database. Because
database conversions often take longer than expected, the schedule places the conversion on a
Friday, so the database developers can work over the weekend if necessary. The extra time is
represented in the Gantt chart by a checkerboard pattern to indicate that it might not be necessary.

NOTE Working the occasional Friday night and weekend is the price many
software developers pay for keeping the users productive, but don’t abuse
them. If you make developers work too many evenings and weekends, their
work‐related productivity will drop and their resume‐polishing productivity
will soar.

 Incremental Deployment
 In incremental deployment , you release the new system’s features to the users gradually. First, you t
install one tool (possibly using staged deployment or gradual cutover to ease the pain). After the
users are used to the new tool, you give them the next tool.

 This method doesn’t work well with large monolithic applications because you usually can’t install
just part of such a system. (Imagine building a new air traffi c control system and installing only
the part that lets planes take off. You’d have to program really fast to get the landing parts of the
application in place before anyone runs out of fuel.)

 This method often works nicely with the iterated development approaches described in Chapters 13
and 14. There programmers build one feature at a time and, when a feature is ready, it’s released to
the users.

Deployment Tasks ❘ 209

Parallel Testing
 Depending on how complicated the new system is, you might want to run in parallel for a while to
shake the bugs out. For example, if you have enough users, you could have a handful of them start
using the new system in parallel with the old one. They would use the new system to do their jobs
just as if the new system were fully deployed.

 Meanwhile another set of users would continue using the old system. The old system is the one that
actually counts. The new one is used only to see what would happen if it were already installed.

 After a few days, weeks, or however long it takes to give you enough confi dence in the new system,
you start migrating the other users to the new system. You can ease the process by using staged
deployment and gradual cutover if you like.

DEPLOYMENT TASKS

 The tasks you need to perform for a successful deployment depend on the application you’re
installing. A simple program like FileZilla (a really nice, free FTP program) just installs a new
version of itself and you’re ready to go. If you’re building a customer support center from scratch,
you’ve got a lot more work to do.

 The following list itemizes some of the things you might need to deal with for a large deployment.

➤ Physical environment —These are physical things that the users need such as cubicles
or offi ces, desks, chairs, power, lighting, telephones (possibly including headsets), and
motivational posters (such as waterfalls, soaring eagles, and cats hanging from clotheslines).
Plus everything that goes into any work environment such as restrooms, coffee machines, and
supply closets (where employees can steal staples and rubber cement).

➤ Hardware —This includes network hardware (such as cables, fi ber, switches, routers, and
gateways), printers, scanners, CD or DVD burners, backup hardware, disk farms, database
hardware, external hard drives, call routers, and, of course, the users’ computers.

➤ Documentation —This can include some combination of physical and online documentation.
It might include training materials, user manuals, help guides, and cheat sheets listing
common commands.

➤ Training —If the application is complicated or very different from what users currently have
installed, you may need to train the users. For larger installations, developers may have to
train the trainers (either professional instructors or power users) who will then train the
users.

➤ Database —Most nontrivial applications include some sort of database. Depending on the
database, you may need to install database software on one or more central database servers
and on the users’ computers. You may also want extra hardware and software to provide
extra data security features such as backups, shadowing, and mirroring.

➤ Other people’s software —This is software that you didn’t write. It includes systems that
interact with your application (purchasing systems, web services, fi le management tools,
cloud services, and printing and scanning tools) and other software that users need to be

210 ❘ CHAPTER 9 DEPLOYMENT

productive (e‐mail, chat, browsers, search engines, trouble‐shooting databases, and word
processors). Plus, of course, the operating system.

➤ Your software —This is the application you’ve built. It includes the application itself, plus
any extra tools you’ve created. It also includes monitoring and testing tools that let you make
sure the application is working correctly.

Of course, your project’s needs will vary. You may not need telephone headsets and you may need
extra motivational posters.

 DEPLOYMENT MISTAKES

The basic steps for successful deployment are (1) make a plan, (2) anticipate mistakes, and (3) work
through the plan overcoming obstacles as they arise. If something goes wrong and you don’t have an
easy fi x, rollback whatever you’ve done, study the problem, and try again later. You can reduce the
inconvenience for users by using staged deployment, gradual cutover, incremental deployment, and
parallel testing.

If you do a good job of following those steps, you should eventually get even the most complicated
application up and running. Occasionally, however, a deployment fails so spectacularly that nothing
can save it. Or the deployment fi nishes, but with all the fun and carnival atmosphere of a root canal.

The following list summarizes some of the easiest ways to torpedo an otherwise viable project:

➤ Assume everything will work —This may seem like a rookie’s mistake, but many people
assume their deployment plan will just magically work. Maybe you’ll get lucky and that will
be true, but you should probably assume it won’t.

➤ Have no rollback plan —Rolling a deployment back can be a real hassle, but it’s usually
better than living with whatever damage you do during a failed deployment.

➤ Allow insuffi cient time —If everything goes smoothly, you won’t need much time, but when
something goes wrong, all bets are off. A deployment that should take hours could take
days or even weeks. Allow extra time for unexpected problems. Then hedge your bets by
scheduling the end of deployment on a Friday so that you can work into the weekend if the
plan goes off the rails.

➤ Don’t know when to surrender —It’s easy to work around one or two small issues that don’t
play out as expected, but how do you know when to stop? If you keep pushing through (or
around) little issues (and sometimes big ones), eventually all the compromises add up to give
you a terrible result. (Like a beginning poker player with a pair of threes being gradually
sucked into a huge pot.) Defi ne conditions under which you’ll fold and try again later. For
example, you might quit after 4 hours or after three things go wrong. Or you might use a
point system with 1 point for a trivial change, 2 points for a small work-around, and 5 points
if you can’t get something to work. When you get to 5 points, quit for the day.

➤ Skip staging —Staging can be time‐consuming and expensive, particularly if you need to
install new hardware and software. However, for a complicated deployment, staging is
crucial. It lets you work out all the deployment glitches so that you don’t need to completely
trash the users’ computers.

Summary ❘ 211

➤ Install lots of updates all at once —It’s tempting to install a lot of updates at the same time
so that you don’t need to inconvenience the users repeatedly. Unfortunately, the more things
you try to do at once, the more likely it is you’ll run into problems. Limit the number of
things you try to deploy all at once. Save the rest for a later deployment.

➤ Use an unstable environment —Have you ever used a computer where the scanning software
works (sometimes), the print queues seem to get stuck randomly, and your video editing
software sometimes won’t import certain kinds of fi les? If the tools you use don’t work
together consistently, then you have other problems you should fi x before you start a new
deployment. Sometimes fi nding the right combination of tools that can work together can be
challenging. Adding a new application will only make things worse.

➤ Set an early point of no return —If you explicitly set a point of no return, you don’t need to
fi gure out how to roll back any changes after that point. Unfortunately, you don’t always
know how bad things might get near the end of the deployment. The last installation task
could be a total disaster that takes you days to fi gure out. You should set the point of no
return as late as possible in the deployment schedule so that you can retreat whenever
necessary. Even better, don’t have a point of no return!

 There’s a common theme to these methods for failure. They all assume things will go well. Perhaps
this is more of the unbounded optimism that makes programmer’s fail to test their code. You just
wrote the deployment plan and you didn’t see anything wrong with it. If you had, you would have
fi xed it. The logical conclusion is that everything will work perfectly. That means you don’t need a
rollback plan, suffi cient time, surrender conditions, staging, and a late point of no return.

 Assume you will have problems. If you also assume that some of those problems may be big, you’ll
be ready in case you need to cancel the deployment and start over. If you prepare for the worst, the
worst that will happen is you’ll be pleasantly surprised when things go well.

 SUMMARY

 The basic strategy for successful deployment is straightforward. Make a plan that anticipates as
many problems as possible, and then follow the plan. If big unexpected problems occur, roll back
any changes you’ve made and try again later.

 There are still a few details to take care of. For example, you need to know when to abandon
a deployment attempt and try again another day. (He who quits and runs away, lives to deploy
another day.) You can also use cutover strategies to make things easier.

 As long as you make a plan and realize that some things will almost certainly go wrong, you should
do okay and eventually get the application up and running. After that (and perhaps a celebratory
team dinner at a nice restaurant), the application moves into maintenance. During this phase, your
application serves its intended purpose (drawing electronic schematics, tracking orders, posting
pictures of cats, or whatever), and the users send you comments, suggestions, change requests, and
bug reports. (And once in a great while, a “thank you” that makes the whole thing seem worthwhile.)

 At this point in your project, you’ve fi nished initial development. You gathered requirements,
created high‐ and low‐level designs, written tons of code, tested the code (and fi xed some bugs),
and deployed the application to the users. You’re probably more than ready for a break. All you

212 ❘ CHAPTER 9 DEPLOYMENT

want to do is run off to Disneyland, Aruba, or wherever you consider the happiest place on Earth.
Unfortunately, there are a few things you need to take care of before you disappear in addition to
arranging for a pet sitter. The next chapter describes tasks that you should perform at the end of a
project before all the developers go their separate ways.

EXERCISES

1. Suppose you’ve written a small tool for your own use that catalogues your collection of pogs.
You’re planning your third upgrade and you need to revamp the database design. Which
cutover strategy should you use?

2. Suppose you’re writing an application that includes a lot of separate tools. One creates work
orders, a second assigns jobs to employees, a third lets employees edit jobs to close them
out, and so forth. Which cutover strategies could you use when deploying a new version of
this application?

3. Suppose the application described in Exercise 2 uses a database. Each of the pieces needs
to use the database and you need to change the database structure for the new deployment.
Does that change your answer to Exercise 2?

4. Suppose you’re writing a large application with thousands of users scattered around different
parts of your company. Which cutover strategy would you use?

5. Suppose you’re building a new MMO (massively multi-player online game) and you expect to
have tens of thousands of users. (Your business plan says within the next 18 months.) Users
will download and install your program. What cutover strategy should you use?

6. President Eisenhower was big on planning. If you Google around a bit, you can fi nd several
quotes by Eisenhower extolling the virtues of planning (including the quote at the beginning
of this chapter). Here’s another quote from his remarks at the National Defense Executive
Reserve Conference on November 14, 1957.

 I tell this story to illustrate the truth of the statement I heard long ago in the
Army: Plans are worthless, but planning is everything. There is a very great
distinction because when you are planning for an emergency you must start
with this one thing: the very defi nition of "emergency" is that it is unexpected,
therefore it is not going to happen the way you are planning.

 If emergencies don’t happen the way you’re planning, then why make a plan in the fi rst place?
Does this apply to deployment plans?

Summary ❘ 213

7. Suppose you just released a version 3.0 of your popular shareware program Fractal Frenzy,
which lets users draw fractals, zoom in and save coordinates, make movies zooming in and
out, and generally make cool pictures. Unfortunately, the day after the release, you discover
a bug that prevents users from saving coordinates so that they can’t return to saved pieces of
a fractal. What should you do? Tell people right away? Wait until there’s a fi x? Wait until the
next release?

8. Suppose you’re the manager of the Internal Software Development department at a medical
device manufacturer. One of your projects, Test Track, records quality test results for the
devices your company makes. Depending on the device, testers record between a few dozen
and several hundred test measurements per week. Your software lets testers perform data
analysis to see whether the products are up to scratch.

 Unfortunately, you just learned about a bug that makes the product occasionally examine the
wrong device’s data. About once a month, for no obvious reason, a tester requests data on
one device but gets results about a different device. Repeating the query once or twice seems
to get the right results.

 What should you do? Should you rush out an emergency patch? Wait until the next major
update? Ignore the problem and hope it will go away?

214 ❘ CHAPTER 9 DEPLOYMENT

▸ WHAT YOU LEARNED IN THIS CHAPTER
➤ A project’s scope infl uences how thoroughly a plan must anticipate every possible problem.

➤ A deployment plan should include the steps needed for deployment, possible places where
things can go wrong, and work-arounds for them.

➤ You should be able to roll back any changes you make if a deployment becomes stuck.

➤ The point of no return is where it would be more painful to roll back a failing deployment
than to press ahead. (If you have a good rollback strategy, then you don’t need a point of no
return.)

➤ Three cutover strategies are staged deployment, gradual cutover, and incremental
deployment. Parallel testing can also help as a prelude to full deployment with one of the
three strategies.

➤ Deployment tasks may include:

➤ Physical environment

➤ Hardware

➤ Documentation

➤ Training

➤ Database

➤ Other people’s software

➤ Your software

➤ Common mistakes during deployment include:

➤ Assuming everything will work

➤ Having no rollback plan

➤ Allowing insuffi cient time

➤ Not knowing when to surrender

➤ Skipping staging

➤ Installing a lot of updates at once

➤ Using an unstable environment

➤ Setting an early point of no return

 You can’t control what you can’t measure.

 —Tom DeMarco

 Measuring programming progress by lines of code is like measuring aircraft
building progress by weight.

—Bill Gates

 WHAT YOU WILL LEARN IN THIS CHAPTER:

➤ Grouping defects by importance or task

➤ Using Ishikawa diagrams to discover root causes of problems

➤ Defi ning and using attributes, metrics, and indicators

➤ Understanding the difference between process and project metrics

➤ Using size and function point normalization to compare projects
with different sizes and complexities

 At this point, you’ve fi nished the project. Congratulations! Some of your team members are
probably itching to move on to whatever comes next, whether they plan to continue maintaining
this project, start a new one, or leave to achieve that lifelong ambition of becoming a barista.

 However, you should do a few more things before the team scatters to the four corners of the
IT industry. Chief among those is a discussion of the recently completed project to determine
what you can learn from your recent experiences. You need to analyze the project to see what
went well, what went badly, and how you can encourage the fi rst and discourage the second
in the future. To do that, you need to fi nd ways to measure the project. (Exactly how do you
measure the project’s “wonderfulness?”)

 10

216 ❘ CHAPTER 10 METRICS

This chapter describes tasks that you should perform after initial development is over. It discusses
methods you can use to analyze defects (which include change requests, bugs, and other vermin) so
that you can try to anticipate and minimize similar defects in the future. It also explains metrics
that you can use to measure the project’s characteristics and how you can use those metrics when
you work on future projects.

METICULOUS METRICS

Like most software engineering tasks, gathering metrics doesn’t happen only in one
place (in this case, at the end of the project). It’s easier to gather metrics throughout
the project rather than waiting until the end. For example, you should keep track
of the project’s status (lines of code written, bugs fi xed, milestones missed, and
so forth) as you go along. I’ve put metrics in this chapter because at the end of a
project you can look back with a new perspective and see how it all unfolded.

WRAP PARTY

You’ve fi nished the project! That’s no small feat, so you should do something as a team to celebrate.
Have a party, company picnic, trip to an amusement park, or some other wrap‐up activity. At least
have lunch together and joke about all the times the customers altered the specifi cations, changed
their minds about what hardware to use, and asked why you were using C++ instead of COBOL.
Let the healing begin.

Note that the wrap party cannot be just another project meeting but with cupcakes, balloons, and
“I Survived Project Ennui” T‐shirts. Feel free to gossip about company politics, argue about whether
the corporate vision statement makes sense if you read it backward, and speculate about whether
upper management will be indicted for insider trading. Don’t discuss outstanding bugs, analyze
metrics, or turn the party into a group performance review. Do that some other time.

It’s obvious that a software organization can’t succeed unless its customers are satisfi ed, but it also
can’t function unless its employees are happy. A wrap activity helps bring closure to the project and
makes people feel like they accomplished something.

DEFECT ANALYSIS

At a philosophical level, any time an application doesn’t do what it’s supposed to, you can consider
it a bug. For example, when you fi rst start a project, it doesn’t do anything. Unless that’s its desired
behavior, you could think of that as a bug. (If that is the desired behavior, let me know because I’ve
already written that application.)

 Some development methodologies actually come pretty close to that point of view.

➤ Task: Create a new Add Customer form.

➤ Bug: It doesn’t let you enter a customer name.

➤ Change: Add a Customer label and text box.

Defect Analysis ❘ 217

➤ Bug: It doesn’t let you enter a customer address.

➤ Change: Add an Address label and address text boxes.

➤ Bug: There’s no OK button.

➤ And so forth.

 However, when you’re thinking about bugs with an eye toward preventing them in the future, it’s
helpful to differentiate among different ways the program isn’t working correctly.

 Kinds of Bugs
 At the highest level, you can group all incorrect features into defects . You can then categorize
defects into bugs (code that was written incorrectly) and changes . (The code is doing what the
specifi cation said to do, but the specifi cation was wrong.)

 Note that it may not be anyone’s fault that the specifi cation was wrong. For example, the customers’
needs may have changed since the project started. Or the environment may have changed, as when
a new operating system is installed or management decides everything must move to the cloud.
(Hopefully they know what the cloud is.)

 The following sections describe several other ways you can categorize defects.

 Discoverer
 One important way to group defects is by who reported them. Bugs that are found and fi xed by
programmers are often invisible to the customers. The customers never need to know all the dirty
little secrets that went into building the fi nal application.

 In contrast, changes that are requested by customers are obviously visible to the customers. Generally
you should satisfy as many change requests as possible, as long as they don’t mess up the schedule. (They
give you brownie points you can spend later to resist the customers’ efforts to shorten the schedule.)

 The worst combination is a bug that is discovered by the customers. If a bug gets to the customers, it
must have snuck past code reviews, unit tests, and integration tests. They’re somewhat embarrassing
and reduce the customers’ confi dence in your team’s ability to produce a high‐quality application.
(They also reduce your brownie points.)

 For each defect, ask three questions:

➤ How could you have avoided the defect in the fi rst place?

➤ How could you have detected the defect sooner?

➤ For customer‐discovered defects, how could you have found the defect before the customers did?

 Severity
 This categorization is quite obvious. Assign a severity to each defect and focus on those that are most
severe. You can use a 1 to 10 scale (or 1 to 100 scale, or whatever) if you like, but you probably don’t
need that level of detail. Usually, you can simply assign each defect the severity Low, Medium, or High.

218 ❘ CHAPTER 10 METRICS

 Focus on the high severity defects, and for each one ask how you could have avoided it, how you
could have detected it sooner, and (for customer‐discovered defects) how you could have found it
before the customers did. (Do these questions seem familiar?)

Time Created
 You can further categorize defects by when they were created. Defects tend to snowball, so those
created earlier in the project usually have greater consequences than those created later. For
example, a defect added during high‐level design has a lot more potential to cause pandemonium
than a defect added in the last module written.

 By now you can probably guess what I’m going to say next. Focus on the defects that were created
earliest because they can cause the most damage. For each defect, ask how you could have avoided
it, how you could have detected it sooner, and (for customer‐discovered defects) how you could have
found it before the customers did.

Age at Fix
 Defects are like cancer: The longer they go undetected, the greater the potential consequences.
Group defects by the length of time they existed before they were detected and fi xed. Focus on those
that remained in hiding the longest and ask the usual three questions.

Task Type
 Another way to categorize defects is by the type of task you were trying to accomplish when it was
created. By the type of task I don’t mean “trying to write a for loop” or “writing a vibrant and
profound sentence for the specifi cation.” I mean things like Specifi cation, High‐Level Design, User
Interface Design, or Database Code.

 The types of tasks you should use will depend on the project. For example, if you’re writing a fi nance
application that will run on desktop systems, then you probably don’t need a Phone Interface category.

 Some typical task categories include the following:

➤ Specifi cation

➤ Design

➤ High‐Level

➤ Security

➤ User Interface

➤ External Interface

➤ Database

➤ Algorithm

➤ Input/Output

➤ Programming

➤ Tools

➤ Security

Defect Analysis ❘ 219

➤ User Interface

➤ External Interface

➤ Database

➤ Algorithm

➤ Input/Output

➤ Documentation

➤ Hardware

 The previous methods for categorizing defects focus on what’s most important. The errors
discovered by users, have high severity, were created early, and that remained undiscovered for a
long time tend to have the greatest impact, so they’re important. After you identify them, you can
ask the three questions to see how you can avoid the same problems in future projects.

 In contrast, task categories don’t identify the most important defects. Instead they try to group
defects by common causes. Defects that were added while performing similar tasks may have similar
causes and (hopefully) similar solutions.

 For example, suppose you discover that a lot of defects originated in the specifi cation. In that case,
many of them may have a common cause such as not paying attention to the customer, not studying
the user’s current process enough, or unrealistic customer requests. In that case, you may be able to
fi x a whole bunch of defects in future projects by addressing a single issue. Perhaps if you spend a bit
more time running through use cases with the customers before you fi nalize the specifi cation, you
can avoid some of these defects.

 Ishikawa Diagrams
 To fi gure out in which category a defect belongs, ask what task was being performed when the
defect was created. For example, suppose you discover a defect on the login screen. The code
incorrectly validates the user’s name and password. Password validation is a security feature, so this
task might fall into the Programming/Security category.

 Often, however, a defect is the end of a sequence of events that was started by some primordial
mistake. In this example, suppose the code does exactly what the security design said it should. In
that case, the error is actually in Design/Security, not in the code.

 It’s also possible that this defect has an even more distant cause. Perhaps the security design
correctly refl ected what was described by the specifi cation. In that case, the error is in the
specifi cation, not the design or the code.

 Perhaps the specifi cation, design, and code are all correct, and the error is in the database. Or worst
of all, perhaps two or more pieces of the puzzle contain errors that combine to create the defect.
(On television crime shows, a single murder leads to all the confusing clues. Imagine how much
more confusing things would be if multiple crimes occurred at the same spot and muddled each
other’s clues.) In this example, there could be problems with any combination of the login code, the
database code, the database design, the database itself, the database specifi cation, or the security
specifi cation.

220 ❘ CHAPTER 10 METRICS

Sometimes discovering the root the root cause of a defect can be challenging. One tool that can help
is the Ishikawa diagram (named after Kaoru Ishikawa). These are also called fi shbone diagrams
because they look sort of like a fi sh skeleton. (And Fishikawa diagrams are an amusing blend of
the two names. For your Word of the Day, look up “portmanteau” in the dictionary and ignore the
defi nitions that deal with luggage.) They’re also called cause and effect diagrams , but a name that
prosaic won’t impress anyone at IT cocktail parties.

QUALITY CONTROL

Kaoru Ishikawa used these diagrams in the late 1960s to manage quality in the
Kawasaki shipyards. They’ve been used extensively in quality management for
industrial processes.

This is another one of those tools like PERT charts and Gantt charts (see Chapter 3 ,
“Project Management”) that are so useful for managing projects in general that
they’ve been around far longer than software engineering has. (When the fi rst
colonists land on Tau Ceti e, they’ll probably use a PERT chart to order the tasks
they need to perform, a Gantt chart to schedule them, and an Ishikawa diagram to
fi gure out why the sunscreen was left behind on the kitchen counter on Earth.)

To make an Ishikawa diagram, write the name of the defect you’re trying to analyze (Incorrect
Username/Password Validation) on the right of a sheet of paper. (This is the head of the fi sh.)

Next draw a horizontal arrow pointing to the defect name from left to right. (This is the fi sh’s backbone.)

Now think of possible causes and contributing factors for the defect. Represent them with angled arrows
leading into the spine. (These are the fi sh’s ribs.) Label each arrow with the cause you identifi ed.

For each of the fi sh’s ribs, think about causes and contributing factors for that rib. Add them, again
with labeled arrows. Continue adding contributing factors to each of the factors you’ve already
listed until you run out of ideas. (I confess I haven’t seen a fi sh with this type of skeleton. Maybe you
can fi nd them in Lake Karachay, the world’s foremost duping site for radioactive waste.)

Figure 10-1 shows a sample Ishikawa diagram (although many people would omit the fi shy outline).

The exact format of the diagram doesn’t matter too much and there are several variations in style.
The only things that are really consistent among most diagrams are

➤ The effect or outcome is on the right.

➤ There’s a backbone.

➤ Arrows (or lines) lead from causes to intermediate causes or effects.

➤ Arrows (or lines) are labeled.

It doesn’t matter whether you use lines or arrows, and sometimes they may point from right to left if
that makes them fi t in the diagram better.

Figure 10-2 shows another version of the previous diagram with a different style.

Defect Analysis ❘ 221

 After you build an Ishikawa diagram for a defect, take a close look at each of the possible causes
and decide which ones actually helped cause the defect. Highlight causes that did play a role
and cross out those that didn’t. If you’re not sure about a cause, study it further, possibly adding
contributing causes to it.

Security Specification

Security Specification

Lo
gi

n
Co

de

Incorrect
Username/Password

Validation

Database

D
atabase Code

D
atabase D

esign

 FIGURE 10-1: An Ishikawa (or fi shbone) diagram shows causes leading to effects.

 FIGURE 10-2: The exact format of an Ishikawa diagram doesn’t matter as long as you can tell
what causes lead to what other causes and effects.

Database Specification

Employee Attributes

Job Attributes

Incorrect Work
Assignment

AlgorithmNetwork

Software Error

Network Failure

End Unit Failure

Database Code

Database Implementation

Database Design

Algorithm Design

High-level Design

Programming

Assignment Rules

Skill Rules

Tim
e Rules

Equipm
ent Rules

CAUSE EFFECT

222 ❘ CHAPTER 10 METRICS

When you’re fi nished, you should have discovered the root causes of the defect. You can then ask the
three magic questions about the defect.

You should also use the diagram to group the defect’s causes. In Figure 10-2 , for example,
you might fi nd that all the problems lay in the Specifi cation rib. In that case, you should look
more closely at your specifi cation process to see if there’s something you could do to make the
specifi cation more reliable in future projects.

SOFTWARE METRICS

The defect analysis techniques described in the previous sections are more or less qualitative. They
help you characterize defects based on their discoverer, severity, and age at time of removal.

In contrast, software metrics give you quantitative measurements of a project. Before you learn what
kinds of metrics you can analyze, you should know a few metric‐related terms.

An attribute is something you can measure. It could be the number of lines of code, the number of
defects, or the number of times the word “mess” appears in code comments.

A metric is a value that you use to study some aspect of a project. Sometimes a metric is the same as an c
attribute. For example, you might get useful information about a project from the number of bug reports
you have received. Often metrics are calculated values. For example, you may want to look at bug
reports per week or bug reports per line of code instead of just the total number of bug reports.

After you have metrics, you study them to see if any of them are good indicators of the project’s
future. For example, consider the metric “comments per thousand lines of code (KLOC).” If
comments per KLOC is 3, that may be an indicator that the project will be hard to maintain.

You can then do two things with your indicators. First, you can use them to predict the future of
your current project. For example, if you’ve been fi xing 10 defects per week for the last 2 weeks, and
you hope to clear your list of 875 defects before the initial release in just under a month, then you
could be in trouble.

The second thing you can do with indicators is make strategy improvements for future projects. For
example, if this project did fall into the “3 comments per KLOC” category, then you might want to
change your code review process to gently encourage programmers to add a few more comments.
(And to make sure they’re meaningful and not just statements such as Add 1 to num _ orders .)

SIMILAR SITUATIONS

Metrics and indicators sometimes apply only to similar projects. For example, your
programmers may crank out an average of 50 lines of code per day over the course
of a three‐month Visual Basic desktop project. That doesn’t necessarily mean
they can produce the same amount of code over a two‐year fi rmware project for a
particular phone.

Metrics and indicators will be most useful for projects that are most similar. They
may still be useful for other projects, but you should keep an eye on how well they are
predicting a new project’s future so that you can adjust your expectations if necessary.

Software Metrics ❘ 223

 To summarize:

➤ Measure relevant attributes.

➤ Use the attributes to derive meaningful metrics.

➤ Use metrics to create indicators.

➤ Use indicators to predict the project’s future.

➤ Use indicators to make process improvements.

 Now that you have a little background in software metrics, the following sections give some
additional details.

 COMMON COMPLAINTS

 Aside from the project manager, software engineers often resist tracking metrics.
Team members may feel that collecting metrics is hard and time‐consuming. They
may say they spend all their time measuring and counting instead of working. And
besides, metrics are subjective and don’t prove anything.

 Some people also think metrics will be used against them to measure how
productive (or unproductive) they are.

 Metrics are sometimes a bit subjective and ambiguous, but any measurements are
better than nothing. (Exploring a vast cavern with a book of matches isn’t as good
as using fl oodlights, but it’s better than wandering in the dark bumping into walls
and falling down pits.)

 You should try to explain to the team members that metrics really are useful. Try
to keep the extra work to a minimum and assure people that they are used to guide
the project and not to determine who writes the most documentation or lines of
code. It’s easy to write a lot of badly written code, so punishing someone who
writes less code but with higher quality doesn’t make sense anyway.

 The following sections explain more precisely what attributes might make good metrics, what you
can use metrics for, and how you can normalize metrics so they are meaningful for projects of
different sizes.

 Qualities of Good Attributes and Metrics
 You can measure many attributes of a software engineering project. You can measure the
number of lines of code, the customers’ satisfaction level, the hours the team members spent
playing Bouncing Balls , the font used in the specifi cation, or the team’s total number of trips to
the coffee pot.

224 ❘ CHAPTER 10 METRICS

Of course, some of those attributes are hard to measure (such as customer satisfaction) and others
are irrelevant. The following list gives characteristics that good attributes and metrics should ideally
have.

➤ Simple —The easier the attribute is to understand, the better.

➤ Measureable —To be useful, you must measure the attribute.

➤ Relevant —If an attribute doesn’t lead to a useful indicator, there’s no point measuring it.

➤ Objective —It’s easier to get meaningful results from objective data rather than subjective
opinions. The number of bugs is objective. The application’s “warmth and coziness” is
not.

➤ Easily obtainable —You don’t want to realize the team members’ fears by making them spend
so much time gathering tracking data that they can’t work on the actual project. Gathering
attribute data should not be a huge burden.

Sometimes it’s impossible to satisfy all these requirements. In particular, some important attributes
can be hard to measure. For example, customer satisfaction is extremely important, but it can be
hard to quantify.

For attributes such as this one, which are important but hard to measure, you may need to use
indirect measurements. For example, you can send out customer satisfaction surveys and track the
number of change requests you receive.

Using Metrics
Metrics have several possible uses. You can use them to

➤ Minimize a schedule.

➤ Reduce the number of defects.

➤ Predict the number of defects that will arise.

➤ Make defect removal easier and faster.

➤ Assess ongoing quality.

➤ Improve fi nished results.

➤ Improve maintenance.

➤ Make sure a project is on schedule.

➤ Detect risks such as schedule slip, excessive bugs, or features that won’t work and adjust
staffi ng and work effort to address them.

As I mentioned in the previous section’s tip, metrics and indicators work best for projects similar
to those during which you gathered your metric data. Two projects that use different development
methodologies, programming languages, or user environments may not always produce the same
results. That means you need to use some common sense when you use indicators to try to predict a
project’s future.

Software Metrics ❘ 225

 However, it’s probably a bigger mistake to completely ignore what an indicator is telling you.
Suppose in previous projects you’ve noticed that a low number of pages of program documentation
gave you lots of bugs. Just because your current project is using a different programming language,
that doesn’t mean this indicator is wrong. If the programmers are producing fewer pages of
documentation but the bug rate remains low, try to fi gure out why.

 It could be that the new language is more self‐documenting. (Previous projects used assembly
language but this one’s using Visual Basic.)

 It could be you have a really good programming team on this project. In that case, you’ll probably
need that extra documentation for long‐term maintenance when these programmers all wander off
to new projects.

 It could also be the case that the programmers have been working through the easy stuff fi rst and
work will become much harder later. In that case, you need to be sure the amount of documentation
picks up as the diffi culty level increases.

 Don’t ignore what your metrics are saying. If they contradict the facts, learn why so that you know
whether you need to adjust the metrics or the project.

 TIPS FOR USING INDICATORS

 You can use indicators to provide regular feedback to the team. If it looks like
some part of the project is wandering away from the practices suggested by your
indicators, gently nudge the project back on course.

 Don’t think of indicators just as harbingers of doom. (Abandon hope all ye who
stray from the required number of use cases per form.) Think of them as signposts
pointing in the right direction. If you get lost, use them to guide the project
back to the correct path. (It may sound like MBA doublespeak, but use them as
opportunities for improvement not reasons for despair.)

 Don’t use metrics and indicators to appraise individuals or the team as a whole. If
you yell and scream at team members because they’re messing up your indicators,
they’ll stop giving you accurate metric data. You can suggest that someone spend
more time working through use cases during requirements gathering, but if you
threaten them, they’re just as likely to tell you they’re doing the work when they
aren’t.

 For similar reasons, make sure people aren’t hideously overworked. If team
members don’t have time for all their assigned tasks, they’ll dump the ones they
consider the lowest priority. Usually that includes tracking metrics.

 Finally, don’t get stuck obsessing over a single metric. If you’re not spending much
time on code reviews and your indicator says you should be seeing a lot of bugs, but
the bugs aren’t there, then perhaps this isn’t a problem after all. By all means try to
fi gure out why things are going so smoothly, but don’t create a problem where one
doesn’t already exist.

226 ❘ CHAPTER 10 METRICS

 Metrics and indicators are often grouped into two categories depending on how you use them:
process metrics and project metrics. The following sections describe those categories.

 Process Metrics
Process metrics are designed to measure your organization’s development process. You collect them
over a long time period for many projects, and then use them to fi ne‐tune the way you do software
engineering.

 For example, suppose you collect data over a series of projects and you draw the graph in
Figure 10-3 showing hours of code review per KLOC versus number of bugs per KLOC.

 FIGURE 10-3: This graph shows the relationship between hours of
code review and bugs per KLOC.

20

15

10

N
um

b
er

 o
f

B
ug

s
P

er
 K

LO
C

Hours of Code Review Per KLOC

0.5 1.0 1.5 2.0 2.5 3.0 3.5

5

 Looking at the graph in Figure 10-3 , you might decide that you want to try to spend 1.5 to 2 hours
of code review per KLOC in future projects. That seems to let you fi nd most of the bugs that you
would catch even if you used a lot more time on reviews. (I’d also want to dig deeper to fi gure out
why the second project from the right had so many bugs despite the relatively large investment in
code reviews. Was it a different kind of project? Was it particularly large or small? Was it run by an
inexperienced technical lead?)

 Project Metrics
Project metrics (which are sometimes called product metrics because they are about a specifi c
software product) are intended to measure and track the current project. They let you use past
performance to predict future results. Based on your predictions, you can adjust your strategy to
improve those results.

 You can also use project metrics to set goals. For example, suppose you have three customer
representatives on your team writing use cases. Over the last week, they each managed to write an
average of 10 use cases per day. You want to have 10 to 20 (call it an average of 15) use cases for the
project’s more complicated forms, and you have 20 complicated forms to go.

Software Metrics ❘ 227

 If the numbers hold true (and they may not), you need to write 20 × 15 = 300 more use cases. At a
rate of 30 use cases per day (10 for each of the three customer representatives), you should fi nish in
about 300 ÷ 30 = 10 days. You can make that a goal: Finish writing the use cases in the next two
weeks.

 Things to Measure
 The things you can measure on a software project are practically limitless. Fortunately, you need to
track only a few metrics to get a good sense of how a project is progressing.

 At a high level there are two kinds of metrics you should track: inputs and outputs. Inputs are the
things you spend on the project. The following list describes some input metrics.

Cost —Money spent on the project for hardware, software, development tools, networking
services, paper, training, and so forth. (For business purposes, you may also want to track
salaries and overhead, but they’re not as directly related to the project’s performance. In
contrast, if you’re not spending anything on development tools, you’re probably not getting
the best result for your efforts.)

Effort —This is the amount of work being put into the project. It is usually measured in person‐
hours. Effort is relatively easy to measure.

Defect rates —The number of defects discovered over time. Defect rates are also fairly easy to
measure.

Lines of code (LOC) —The number of lines of code produced per day. You might think this would
be easy to measure, but it’s actually kind of hard to decide what to count as a line of code.
For example, do you count comments and blank lines? What about statements that are
split across multiple lines? All those things pump up the line count without adding anything
extra as far as the computer is concerned, but they also make the code easier to read and
understand, so you should encourage programmers to use them appropriately.

 Some development organizations treat a command split across multiple lines as a single
line of code. Some ignore comments and blank lines. Others count blank lines up to
25 percent of the total code and ignore any blank lines over 25 percent.

 It doesn’t matter too much which approach you take as long as your rules are consistent
across projects and the programmers don’t try to game the system. (If you count comments
and judge programmers on the number of lines of code they produce, you may get fi les with
dozens of comments per actual line of code.)

Pages of documentation —There are several kinds of documentation that you might want to
track. Project documentation (such as the specifi cation and design documents) are important
because they ensure that everyone is working toward a common vision. If you don’t have
enough of this kind of documentation, different team members may end up working at cross‐
purposes, resulting in extra defects and diffi cult long‐term maintenance.

 User documentation is obviously important to the end users. If you have too little, the
users won’t fi gure out how to use your program.

 User documentation also refl ects the complexity of the application. If you need a lot of
documentation to explain the program, that may mean the design is overly complicated, and
that may also indicate a lot of future defects and maintenance problems.

228 ❘ CHAPTER 10 METRICS

 You can measure all those attributes fairly directly. (At least if you can decide what to measure for
LOC.) Some other attributes are harder to measure directly. They’re either hard to quantify or they’re
subjective. The following list describes some of those items and how you might try to measure them.

➤ Functionality —How well does the application do what it is supposed to do? How well does
it let the users do their jobs? This is quite subjective, but you can measure things such as the
numbers of help requests, change requests, and user complaints.

➤ Quality —Do the users think of this as a high‐quality application? Is it relatively bug‐free?
Again, this is subjective, but you can track user complaints to get some idea. You can also
do user surveys. (You know, those annoying surveys that ask you how likely you are to
recommend a product to your friends.)

➤ Complexity —How complex is the project? This is hard to measure directly. The amount
of project documentation gives you a hint about the project’s complexity. Lots of
documentation may indicate a complex project that needs a lot of explaining. (Or it may just
indicate you have a team member who loves to write.)

 There are a lot of other ways to estimate complexity. You can count the if‐then statements
in the code because they determine the number of paths through the code. You could also
count the number of loops or other complicated code features such as recursion and particular
data structures. Unfortunately, making all those counts is a fair amount of extra work.

 Function points provide another method for estimating a project’s complexity. The section
“Function Point Metrics” later in this chapter explains them in detail.

➤ Effi ciency —How effi cient is the application? In rare cases, you can calculate the theoretical
maximum effi ciency possible and compare the application to that. For example, you might
determine that a routing program fi nds solutions within 15 percent of the optimal routes. In
general, however, this is hard to measure.

 You can compare the users’ performance to their performance before they started using
your application, but you won’t know if there could be an even better way to do things. (Of
course, if the users were more productive before they started using your application, you
might need to either write a second version or update your resume.)

➤ Reliability —How reliable is the application? This one is a little easier to measure. You can
keep track of the number of times the program crashes or produces an incorrect result.

➤ Maintainability —How easy will it be to maintain the application in the long term? You can
get some notion of how hard maintenance will be by looking at other metrics such as the
amount and quality of the project documentation, the number of comments, and the code
complexity, but usually you won’t really know how maintainable the project is until you’ve
been maintaining it for a while.

 One problem with all metrics is that they’re hard to apply to projects of different sizes. Studies have
shown that projects of different sizes have different characteristics. For example, in larger projects
team members spend more time coordinating activities than they do in smaller projects. That means
they may be unable to write and debug as much code per day.

 One way to make metrics a bit more meaningful for different project sizes is to normalize them
by performing some calculation on them to account for possible differences in project size. There

Software Metrics ❘ 229

are two general approaches for normalizing metrics: size normalization and function point
normalization. The following two sections describe those two approaches.

 Size Normalization
 Suppose you measure the number of developers, total time, effort (in person‐months), LOC, and
number of bugs for projects Ruction and Fracas. Table 10-1 shows the results.

 TABLE 10-1: Attributes for Projects Ruction and Fracas

PROJECT RUCTION PROJECT FRACAS

Developers 3 7

Time (months) 1 24

Effort (pm) 3 × 1 = 3 7 × 24 = 168

LOC 1,210 75,930

Bugs 6 462

 TABLE 10-2: Normalized Metrics for Projects Ructino and Fracas

PROJECT RUCTION PROJECT FRACAS

LOC / pm 1,210 ÷ 3 = 403 75,930 ÷ 168 = 452

Bugs / KLOC 6 ÷ 1.21 = 4.96 462 ÷ 75.93 = 6.08

 In which project were the developers more productive? Which project contained buggier code? Just
looking at the numbers in the table, it’s hard to tell. Project Fracas includes a lot more code, but it also t
took a lot more effort. Project Ruction contained far fewer bugs, but it also contained much less code.

 In size‐oriented normalization , you divide an attribute’s value by the project’s size to get some sort
of value per unit of size. Assuming everything about two projects is similar except for their sizes (a
big assumption), the normalized metrics should be comparable.

 For this example, you could divide total lines of code by the effort it took to produce the code.
Similarly, you could divide the number of bugs by the total number of lines of code. Table 10-2
shows the normalized values.

 The normalized values show that project Fracas was more productive in terms of lines of code for
the effort (452 versus 403 LOC per person‐month), but project Ruction had less buggy code (4.96
versus 6.08 bugs per KLOC).

 The following list gives some of the measurements of size that you can use to normalize values.

➤ Number of team members

➤ Effort (person‐months)

➤ KLOC or LOC

230 ❘ CHAPTER 10 METRICS

➤ Cost (dollars, euros, doubloons, or whatever)

➤ Pages of documentation

➤ Number of bugs

➤ Number of defects

➤ Time (days, months, years)

Divide an attribute value by the value that makes the most sense. For example, bugs are a feature of
code, so you should probably divide the number of bugs by LOC or KLOC, instead of the number
of team members or effort. Similarly lines of code are produced over time by team members, so you
should probably divide LOC by number of team members and number of months (which is the same
as dividing by person‐months).

Other combinations, such as dividing number of bugs by the number of team members, can also
have meaning hidden inside them, but they’re harder to interpret.

Size‐oriented metrics have a big advantage that they’re usually easy to calculate. It’s easy to count the
number of lines of code (assuming you can agree on how to count comments and blank lines) and it’s
easy to count the number of person‐months spent on the project, so it’s easy to calculate LOC / effort.
These metrics also have the advantage that a lot of project modeling applications use them as inputs.

These metrics also have a few disadvantages. One problem with normalized metrics is that you
can’t actually use them to predict the future unless you can already predict the future. For example,
LOC / effort lets you predict how long it takes to build a project, but only if you can predict how
many lines of code you need to write.

For a concrete example, suppose you know from past experience that your team can produce
approximately 400 LOC / pm. If you’re about to start project Rhubarb and you think it will require
roughly 11,000 lines of code, then you can predict that it will take approximately 11,000 ÷ 400 ÷ = 27.5=
person‐months of effort. The catch is you need to know that the project will need 11,000 lines of code.

GUESSING THE UNGUESSABLE

Although you can’t know how many lines of code you are going to need ahead of
time, you can make some educated guesses based on past experience. You should
at least take a stab at the worst case, best case, and average case of past scenarios.
Then you can take a weighted average of the three (perhaps giving them weights 1,
1, and 3, respectively) to make an “expected scenario.”

Feel free to fudge things a bit to take into account any extra information you may
have. For example, if a new project is fairly complicated and very different from
past projects, you may want to change the weighting factors a bit to give the worst
case a bit more pull.

(If you majored in Divinatory Statistics in college, feel free to calculate σ, μ, ρ, and
any other Greek letters that you think will help you to better predict the most likely
outcome.)

Software Metrics ❘ 231

 Another problem with size‐oriented metrics is that they’re language‐dependent. The same program
may require 1,700 lines of code if you write it in assembly but only 750 lines if you write it in Java.

 These metrics also penalize programs that use short but elegant solutions. Project Harmony might
do the same thing as project Fracas but using half as many lines of code written in the same amount
of time. If the result is better designed and more elegant, then it might be better code even though it
looks like the Harmony team was one‐half as productive.

 Function Point Normalization
 The real problem with size‐oriented normalization is that it’s tied to a particular implementation of
an application, not to the application’s inherent complexity. Function‐point (t FP) normalization tries
to fi x that by calculating a FP number to represent the application’s complexity. You then divide
various attributes such as lines of code or number of bugs by the FP value to get a normalized result.

 ANOTHER BLAST FROM THE PAST Function point analysis was developed in
the 1970s by Allan J. Albrecht in an attempt to measure application complexity
without counting lines of code. Like Ishikawa diagrams, function points are
useful enough that they’ve stuck around.

 Function points measure a project from the user’s point of view so they count what the application
does, not how it does it. Because they are measured from the user’s point of view, they should
be hardware‐independent and software‐independent. An application should do the same things
whether you build it in C++ on a Linux desktop system, in Java on an Android device, or in COBOL
on a mainframe.

 There are many different variations on function points that use various measures of the application’s
behavior to represent its complexity. For example, different versions count the number of forms,
external inputs, event triggers, and so forth. This section describes a version that is reasonably easy
to calculate and that seems to be fairly common.

 I’ll describe the calculation details shortly. First, here’s an overview of the process.

1. Count fi ve specifi c function point metrics that include such things as the number of inputs
and the number of outputs.

2. Multiply each of those values by a complexity factor to indicate how complicated each
activity is. Add up the results to get a raw FP value.

3. Calculate a series of complexity adjustment factors that take into account the importance of
general features of the application. (For example, how important is the transaction rate to the
application?) Add the complexity adjustment factors to get the complexity adjustment value
(CAV).V

4. Take a weighted average of the raw FP and the CAV and voilà! You get the fi nal FP value.

 Don’t worry if this seems complicated. It requires a lot of steps, but each of the steps is quite simple. The
following sections describe the four main steps in greater detail and show an example calculation.

232 ❘ CHAPTER 10 METRICS

Count Function Point Metrics
In this step, you estimate the number of the following items.

Inputs —The number of times data moves into the application and updates the application’s
internal data. This includes inputs the user enters on screens and inputs from other
applications and external fi les. An example would be a New Student form that lets the user
enter student ID, name, address, phone, and other information in the application’s database.

Outputs —The number of times outputs move out of the application. This includes outputs displayed
to the user as well as outputs sent to external systems or external fi les. An example would be
producing a Delinquent Account report that lists accounts with outstanding balances. The report
could be printed, sent to an external fi le, or sent to another program for processing.

Inquiries —The number of times the application performs a query/response action. This is different
from an input followed by an output because it doesn’t update the application’s internal
data. For example, the user might enter a customer ID and the application would display that
customer’s information, but it wouldn’t update the database.

Internal Files —The number of internal logical fi les used by the application. This includes things
such as confi guration fi les, data fi les, and database tables.

External Files —The number of fi les that the application uses that are maintained by some other
program. For example, the application might use an inventory database that is maintained by
a separate inventory tracking program.

The next step is to multiply the number of each kind of item by its complexity.

Multiply by Complexity Factors
As you count these metrics, you should estimate the complexity of each. For example, consider as
an input a New Student form that lets the user enter information about a new student. Suppose the
form contains 15 text boxes. You may decide that means this input has medium complexity.

COMPLEXITY CONUNDRUM

Different FP techniques use different methods for deciding whether a piece of the
system has low, medium, or high complexity. Some look at factors such as the
number of internal tables and the number of data values involved in an action. For
example, an Order Creation form might create records in three tables and include
20 fi elds where you enter data.

In this chapter, I’ll just assume you can use your intuition to assign complexity
values because that’s a lot simpler. The exact formula you use doesn’t matter too
much as long as you’re consistent across projects.

If you want to compare the FP values of your applications to those of programs
written by other groups, then you need to use one of the more precisely defi ned
methods for determining complexity. (For an example, see the tables at http://
www.softwaremetrics.com/fpafund.htm .)

http://www.softwaremetrics.com/fpafund.htm
http://www.softwaremetrics.com/fpafund.htm

Software Metrics ❘ 233

 After you calculate a complexity value for each of the items you’re counting, use them to get a sense
of the overall complexity for each of the metric categories. For example, if you have two low, fi ve
medium, and one high complexity inputs, then the inputs as a whole have medium complexity.

 Now multiply the number in each metric category by the appropriate values shown in Figure 10-4 .

 Figure 10-5 shows a sample raw function point calculation. For example, this application has 10
inputs with a relatively high complexity. In the fi rst line of the calculation, the number of inputs 10
is multiplied by the high complexity factor 6 to give the result 60.

 FIGURE 10-4: Use this table to calculate raw FP.

Inputs

Outputs

Inquiries

Internal Files

External Files

Category Number

3×

×

×

×

×

=

=

=

=

=

4

3

7

5

Low

4

5

4

10

7

Medium

Complexity

Total (raw FP)

6

7

6

15

10

High Result

 FIGURE 10-5: In this example, the application’s raw FP value is 267.

Inputs

Outputs

Inquiries

Internal Files

External Files

Category

10

5

4

23

2

Number

3×

×

×

×

×

=

=

=

=

=

4

3

7

5

Low

4

5

4

10

7

Medium

Complexity

Total (raw FP) 267

6

7

6

15

10

High

60

20

16

161

10

Result

 The next step is to apply complexity adjustment factors.

 Calculate Complexity Adjustment Value
 The function point metrics look at particular facets of the application. The complexity adjustment
factors include a series of indicators designed to measure the complexity of the application as a
whole.

234 ❘ CHAPTER 10 METRICS

C‐A‐V IS NOT FOR ME

Some developers use the raw FP and don’t bother with the CAV. The two main
reasons are that some cost estimation tools take the raw FP as an input and that
the CAV plays too big a role in the fi nal FP calculation. The web page http://
alvinalexander.com/FunctionPoints/node29.shtml has more information
about this issue (although it uses some different terminology).

To calculate the complexity adjustment factors, consider each of the following items.

1. Data communication

2. Distributed data processing

3. Performance

4. Heavily used confi guration

5. Transaction rate

6. Online data entry

7. End user effi ciency

8. Online update

9. Complex processing

10. Reusability

11. Installation ease

12. Operational ease

13. Multiple sites

14. Facilitate change

Rate the importance of each of the 14 factors according to Table 10-3 .

TABLE 10-3: CAV Ratings

IMPORTANCE RATING

Irrelevant 0

Minor 1

Moderate 2

Average 3

Signifi cant 4

Essential 5

http://alvinalexander.com/FunctionPoints/node29.shtml
http://alvinalexander.com/FunctionPoints/node29.shtml

Summary ❘ 235

 After you make these decisions, simply add the complexity adjustment factors to get the complexity
adjustment value.

 Table 10-4 shows a sample complexity adjustment calculation.

 The fi nal step is to use the raw FP and the CAV to calculate the adjusted FP value.

 Calculate Adjusted FP
 To calculate the fi nal FP, simply use the following formula.

FP = (raw FP) × (0.65 + 0.01 × CAV)

 For example, the calculation in Figure 10-5 got a raw FP of 267. The CAV in the preceding section
was 32. For those values, the fi nal FP result is:

FP = (267) ×(0.65 + 0.01 × 42) = 285.69

 SUMMARY

 Metrics enable you to characterize and track projects. Process metrics let you compare multiple
projects over a long period of time to see if you can improve your development process. For
example, if one project has fewer bugs per line of code than the others, you can study that project to
see why it is different and try to reproduce those results in future projects.

TABLE 10-4: Sample CAV Ratings

FACTOR RATING

Data communication 2

Distributed data processing 4

Performance 5

Heavily used confi guration 2

Transaction rate 3

Online data entry 5

End user effi ciency 5

Online update 1

Complex processing 1

Reusability 0

Installation ease 4

Operational ease 5

Multiple sites 5

Facilitate change 1

Total (CAV) 42

236 ❘ CHAPTER 10 METRICS

 Project metrics enables you to make predictions about a project that is still underway. For example,
if a project isn’t producing enough lines of code for where it is in its schedule, you can look for ways
to increase productivity. Without metrics, it’s often hard to tell when a project is going off course
until it’s too late to do anything about it.

 Size normalization enables you to compare projects of different sizes. Function point normalization
enables you to compare projects of different sizes and complexities. Comparisons are always better
if the projects are similar, but those two techniques enable you to get at least some meaningful
information from projects with some differences.

 This chapter focused mostly on lines of code and bugs, but the same techniques apply to every
output from software engineering. You can use metrics to track the specifi cations, use cases, design
documents, change requests, and number of donuts eaten. If any numbers wander away from what’s
normal, you can dig deeper to see if there’s a problem you can correct or perhaps an unexpected
benefi t you can exploit in the future.

 Tracking bugs is a good way to estimate the application’s maintainability. If the code is buggy, then
maintaining it will probably be hard. The next chapter focuses on maintenance. It explains what
the team’s role is during the maintenance phase and describes some of the directions the project can
take after its initial release.

EXERCISES

1. Suppose a project has a States table that lists the states where the customer does business.
A search dialog lets the user select one of the states from a drop‐down list to select accounts
from the selected state. Some of the use cases call for the states to be set to Maine, Vermont,
New Hampshire, and Massachusetts, but during tests New Hampshire doesn’t appear in the
drop‐down list.

 Draw an Ishikawa diagram showing possible causes for this problem. What steps would you
take to try to fi nd the root cause of the problem?

2. Compare size normalization and FP normalization. When would you use one or the other?

3. Are there times when you could use both size normalization and FP normalization to compare
two projects?

4. Assume a project has a raw FP score of 500. What are the largest and smallest fi nal FP values
the project might have? How would it achieve those values?

5. Give an example where project A has more bugs than project B but seems to be in better
shape according to size normalization. Assuming the projects are in roughly the same
development stage, what else do you need to know to decide whether project A will fi nish
before project B?

6. For the example you made for Exercise 5, what else do you need to know to estimate when
the two projects will fi nish fl ushing out all their bugs?

Summary ❘ 237

7. Calculate an FP value for Microsoft WordPad.

8. Calculate an FP value for Microsoft Word.

9. Judging from your experience solving Exercises 7 and 8, how consistent do you think FP
values will be when different people perform the calculations? (Compare your solutions to my
solutions in Appendix A, “Solutions to Exercises,” if you like.) What could you do to improve
consistency?

10. What do your solutions to Exercises 7 and 8 tell you about Microsoft WordPad and Microsoft
Word? Does that result agree with what you would expect?

11. Which do you think is better, size normalization or function point normalization?

12. Table 10-5 shows the number of programmers that worked on four projects.

TABLE 10-5: Number of Programmers

PROJECT # PROGRAMMERS

Unicorn 10

Pegasus 8

Griffi n 12

Jackalope 7

 Table 10-6 shows the cumulative numbers of lines of code written and bugs discovered
during each week of active coding for the four projects. For example, by the end of week 3,
project Griffi n contained 5,141 lines of code and 62 known bugs.

 TABLE 10-6: Lines of Code and Bugs

UNICORN PEGASUS GRIFFIN JACKALOPE

WEEK LOC BUGS LOC BUGS LOC BUGS LOC BUGS

1 1,107 0 542 0 450 3 126 5

2 2,349 2 1,374 12 2,392 17 1,201 27

3 3,482 7 2,759 37 5,141 62 3,515 60

4 4,272 30 4,680 61 6,008 102 5,176 72

5 6,009 72 6,012 89 7,817 156 88

6 7,522 110 104 9,750 160

7 9,759 156 175

8 11,895 207

9 273

238 ❘ CHAPTER 10 METRICS

 The fi nal bug numbers for each project include bugs found after initial programming
stopped.

 Assuming these projects have roughly similar complexity, how can you meaningfully
compare the programmers’ productivity and bug rates at the ends of the projects? What do
your calculations show? Can you think of any places to look for process improvements?

13. Suppose you’re tracking a new project (project Hydra) that you expect to include
approximately 7,000 lines of code. Assuming its progress is similar to the progress of the
projects described in Exercise 12, how many person‐weeks should this project’s programming
phase take? How many bugs do you expect to fi nd?

14. Seeing the results of Exercise 13, you decide you can fi nish the programming for project
Hydra in nine weeks with fi ve developers. Table 10-7 shows the project’s actual progress after
week 3.

 TABLE 10-7: PROJECT HYDRA PROGRESS

WEEK LOC BUGS

1 370 0

2 693 2

3 969 12

4 1,251 24

 Should you be concerned?

Summary ❘ 239

▸ WHAT YOU LEARNED IN THIS CHAPTER
➤ You can rate a defect’s importance by discoverer, severity, time created, and age at fi x.

➤ Group defects by task (specifi cation, design, programming, hardware, and so forth) to look
for common causes.

➤ An Ishikawa diagram can help you fi nd the root causes of a defect.

➤ Attributes are things you can measure; metrics are values you can use to evaluate a project;
and indicators give indications of a project’s state and future.

➤ Attributes→metrics→indicators→projections and process improvements.

➤ Software metrics let you characterize, track, and predict a project’s characteristics such as
defects, bugs, and lines of code written.

➤ Process metrics are used to improve your development process in the long run. Project (or
product) metrics are used to track and predict the current project’s progress.

➤ Size‐normalized metrics enable you to compare projects of different sizes but similar
complexities. These metrics are values divided by a measure of the project’s size. For
example, “bugs per KLOC” or “pages of documentation per person.”

➤ Function points enable you to estimate a project’s complexity.

➤ Function point normalization enables you to compare projects of different sizes and
complexities. Values are divided by the project’s FP value to give metrics such as “KLOC per
FP” or “bugs per FP.”

 Troutman’s Second Programming Postulate: The most harmful error will not
be discovered until a program has been in production for at least six months.

 —Anonymous

 All programming is maintenance programming, because you are rarely
writing original code.

 —Dave Thomas

 WHAT YOU WILL LEARN IN THIS CHAPTER:

➤ Why maintenance is a major percentage of total project cost

➤ The four categories of maintenance tasks

➤ What the “second system” and “third time’s a charm” effects are

➤ How to know when you should rewrite code to make it more
maintainable

➤ Bug tracking states

 So you fi nished the initial release of your application and held wrap‐up meetings to make your
team members better software engineers. Congratulations! On most projects, a fair number
of those people will now wander off to do other things. Some will join new projects and start
the whole process all over again. Others may take new roles on other projects. For example,
a programmer may become a team lead or a team lead may become a project manager. Still
others may leave to satisfy their life‐long dreams of becoming lobster fi shermen.

 Hopefully, a few team members will remain as the project moves into the maintenance phase.
Having some original team members during maintenance helps provide continuity for the
project so that its original vision isn’t lost.

 11

242 ❘ CHAPTER 11 MAINTENANCE

Some programmers dislike maintenance programming because they fi nd it boring. It can be a lot
of fun to write an application that fi nds the shortest route that visits all the ice cream stores in your
town for a bicycle ice cream crawl. It’s less fun to debug your application when you discover it is
telling people to bike on the highway. It can be downright painful to dive into someone else’s rat’s
nest of kludges, hacks, and bug fi xes to make major changes.

Maintenance may not always be a lot of fun, but it’s important because maintenance is often
relatively expensive. (In management‐speak, maintenance accounts for a large percentage of total
cost of ownership or TCO .) Often maintenance accounts for 75 percent of a project’s total cost.

This chapter describes the tasks that make up software maintenance. It explains why maintenance is
expensive and methods you can use to reduce maintenance costs.

MAINTENANCE COSTS

You may wonder why maintenance is such a large percentage of a project’s total cost. One reason
is that applications often live far longer than they were originally intended. A typical business
application might be in use years or even decades after it was written. Most businesses are stingy, so
writing a new program to replace an old one that still works is rarely an option. (Even if the existing
application is so old it measures lengths in cubits and lets you click a sundial to select times.) I
worked on one application 30 years ago that is still in use today, even though the company that
owns the code has been bought at least twice since then.

For further proof that applications often exceed their life expectancies by decades, consider the
Y2K problem. Programs written as far back as the 1950s and 1960s stored dates as 2‐digit numbers
to save space. For example, the year 1978 was stored as ’78. That worked pretty well until after
the year 2000 when dates became ambiguous. For example, if you’re working for a hospital in
2005 and one of your patients was born in ’03, should you schedule a pediatric appointment or a
geriatric appointment? I doubt many programmers in 1960 imagined their code would still be in
use 40 years later.

Contrary to the predictions of the pundits on the Y2K apocalypse lecture circuit, planes didn’t
fall from the sky like leaves in autumn; missiles didn’t decide they were past their expiration dates
and explode; and streets didn’t boil with lava. Still, retired BASIC and COBOL programmers from
around the world briefl y hung up their fi shing rods to help the $300 to $600 billion effort to fi x this
single problem. That’s a lot of money to keep decades‐old software running. (I’m not sure what will
happen when the Y3K problem hits and there are no COBOL programmers left.)

CHANGE FOR THE WORSE

On one project I worked on, the maintenance crew took over and made all sorts of
changes to improve the application. Then the users spent weeks forcing them to put
things back the way they were. If more of the maintenance group had been around
from the beginning, they would have understood the application better and been
more hesitant to make those changes in the fi rst place.

Task Categories ❘ 243

 The moral is, you should pretend you’re carving your code in stone to last for the ages. Chances are
it’ll last longer than you expect.

 A second important reason why maintenance costs often dwarf initial development costs is that it’s
much easier to write fresh code than it is to modify old code. To safely modify old code, you need
to spend time studying it. Because you didn’t just write the code, it’s not fresh in your mind. If you
don’t dig into the code and make sure you understand how it works, you’re just as likely to add bugs
to the code as remove them.

 After you make your changes, you need to test them to verify that they work. You also need to
thoroughly test the rest of the application to make sure your changes didn’t break anything.

 You can reduce maintenance costs by doing a good job when you write the initial code. For
example, develop simple but fl exible designs, use good programming practices, insert comments
to make the code easy to read, and provide documentation so future generations of maintenance
programmers can fi gure out what you were thinking when you wrote the code.

 TASK CATEGORIES

 At a high level, the tasks that go into long‐term maintenance are roughly the same as those that
go into initial development. You gather requirements, make designs, write some code, test the
code, and deploy a new version. Although the tasks are similar, the focus is different. During
maintenance, you tend to spend more time on bug fi xes and feature enhancements than on writing
completely new code.

 Generally maintenance tasks are grouped into the following four categories:

➤ Perfective —Improving existing features and adding new ones

➤ Adaptive —Modifying the application to meet changes in the application’s environment

➤ Corrective —Fixing bugs

➤ Preventive —Restructuring the code to make it more maintainable

 The relative effort spent on each of these categories depends on the project. For example, in a
relatively small phone app with a short lifespan, you might focus most of your energy on building
a new version (perfective) and not worry about making the current version compatible with future
phone operating systems (adaptive). For a larger project that you plan to use within your company
for many years, you might spend a lot more effort on bug fi xes (corrective).

 For a typical large application, the relative effort spent on each of the categories (out of the
75 percent of the project’s total cost represented by maintenance) might be:

➤ Perfective —50 percent

➤ Adaptive —25 percent

➤ Corrective —20 percent

➤ Preventive —5 percent

 The following sections describe these categories in more detail.

244 ❘ CHAPTER 11 MAINTENANCE

Perfective Tasks
For many applications, particularly large ones with long lifespans, this is often the biggest part of
maintenance. If you’ve done a good job building the initial application, the users may like it, but they
still want tweaks, adjustments, and improvements. (Although this doesn’t include bug fi xes, which are
tweaks of a different sort. I’ll talk about those in the “Corrective” section a bit later in this chapter.)

Sometimes, the specifi cation didn’t represent exactly what the users need to do. Maybe the
specifi cation didn’t explain the user’s needs correctly. (Although you should have caught that earlier
when the customers reviewed the specifi cations.) Or maybe the users didn’t quite understand what
they would need to do after the application was in place.

Sometimes, the tools you built let the users think of ways to do things that they hadn’t before. Often
the users don’t know exactly what’s possible until they see the program and have a chance to work
with it for a while. They know how they’re doing their jobs now, but sometimes no one actually
knows how they will do their jobs with your new tools.

Users may also want completely new features that weren’t in the original specifi cation. They may
have been left out of the fi rst release to save time. Sometimes, it’s another example of the “we didn’t
know this was possible until now” scenario.

Even you and your fellow developers can think of improvements and modifi cations based on the
users’ experiences. After you watch the users bashing away on your application, you may discover
whole new uncharted areas of new opportunities that the users can’t see because they don’t have
your software engineering background.

THE BIG PICTURE

One of the fi rst big projects I worked on was a dispatching system for telephone
repair people. You entered information about jobs and employees, and the system
assigned employees to appropriate jobs.

The program included a map that showed all the employees and their jobs on a
street map. It didn’t help the work assignment code, but we stuck it in anyway,
mostly because it had a high “gee whiz” factor for executive presentations (and
because it was fun to program).

After the users had been experimenting with the system for a while during parallel
testing, we noticed that the dispatchers used a map screen a lot more than we
expected. In fact, they used it all the time. We asked them why and they said it was
the only place in the system where they could see a list of every employee in the
system. We had all sorts of screens that let them look at a particular employee, an
employee’s assignments, jobs that had not been assigned, and so forth, but no place
where they could see every employee’s data at the same time.

So we added a screen to do that. (They still used the map screen a lot. I think they just
liked it. It also let them see if the employees were all assigned to jobs that happened to
be near the same restaurant around lunchtime. That really reduced productivity.)

Task Categories ❘ 245

 The tasks that fall into the perfective category tend to be one of two sorts: feature improvements
and new features.

 Feature Improvements
 Feature improvements involve modifying existing code, so in some ways they’re similar to bug fi xes.
That means you should be aware of the same issues when you handle them.

 You need to carefully study the existing code so that you’re sure you understand what it does and
how it works. You need to plan the modifi cations you’re going to make. Don’t just start ripping out
old code and typing in new. When you’re reasonably certain that your changes won’t break things
you can make your modifi cations.

 Remember that changing old code is more likely to introduce bugs than writing new code, so you
need to test your changes thoroughly. The users probably won’t like your modifi cation if it doesn’t
work or it breaks something else.

 New Features
 Adding new features to an application is a lot like writing code for the initial application, so you
should follow the same steps:

1. Make a specifi cation explaining what you will do.

2. Get the users to sign off on the specifi cation so that they agree that you’re doing the right
thing.

3. Create high‐level and low‐level designs.

4. Write the code.

5. Test, test, and test. (And save the tests in case you need to run them again later.)

6. Use good practices (such as staging and gradual cutover) to deploy the new version of the
program.

 Adding new features is almost like running a completely new mini‐project.

 If there are enough changes or the changes are big enough (for example, they require restructuring
the program’s class hierarchy or architecture), you may want to create a new major version of the
application.

 A new version is basically a whole new project. Start over from scratch and follow all the steps
described up to this part of the book. You can probably take a lot of shortcuts because of your
experience with the fi rst version of the program. For example, you may reuse most of the high‐level
design you wrote for the previous version.

 The Second System Effect
 In his book The Mythical Man‐Month (Addison‐Wesley, 1975), Frederick Brooks says, “…plan to
throw one away; you will anyhow.” The notion is that you will learn a lot about the system you
need to build when you build it. After you’re fi nished, you’ll discover that you could have done a lot
of things better, so you throw the fi rst version away and write a new one.

246 ❘ CHAPTER 11 MAINTENANCE

Some developers have suggested that you could crank out a hasty version of the application, throw it
away, and then build the real application. Perhaps then you can learn what you need to know without
spending all the effort needed to build a “real” fi rst version. (That’s sort of what prototyping is.)

Of course if you plan to throw away the fi rst version, you may do such a poor job of it that you
don’t learn the things you need to know to build the good second version. You may use so many
sloppy shortcuts that you don’t get any practice using the “real” techniques you’ll need to build a
solid second version.

That leads to the corollary, “If you plan to throw one away, plan to throw two away.” If you don’t
learn anything from the “quick and dirty” fi rst version, your second version is basically just a
delayed fi rst version. (By the process of mathematical induction, that means you should plan to
throw them all away.)

In the 1995 edition of his book, Brooks retracted his initial assertion, saying it was too simplistic
and implicitly assumes you’re using the waterfall model of development. (You’ll learn more about
models of development in Chapters 12 through 14.)

Still, Brooks’s notion of a “second system effect” has some merit. The fi rst time you build a system,
you don’t know everything you’ll need to do. You don’t necessarily have perfect specifi cations, and
you don’t know how to implement the features that are specifi ed correctly. You don’t know how the
pieces fi t together. Sometimes, you may not even know what the pieces are.

When you build the second system, you know a lot more about what you can do and how things
need to work. Unfortunately, that sometimes leads developers to throw in every conceivable cool
feature (plus the kitchen sink) to make the application the best software solution ever created by
programmer‐kind. As a result, the second version is confusing, hard to use, bloated, and generally
ineffi cient.

Finally, in the third version (if you have any customers left), you can build the application that
you should have built in the fi rst place. At this point, you’re a Master Craftsman at software
development, programming in general, and your application in particular. You know what the
application should do and (just as important) what is should not do. You know which user interfacet
features work and which don’t. You know what pieces are necessary and how they all fi t together.
You have become one with the development environment and are perfectly positioned to build the
best system possible.

THIRD TIME’S A CHARM

The third version of an application is often the fi rst version that’s really useful. In
fact, it’s so common that many users wait until the third version before they buy a
product. (I’ve done that several times.)

To prevent users from waiting (and depriving them of much‐needed revenue and
customer‐assisted debugging), some software companies give the fi rst release of a
product the version number 3.0, hoping users will buy it. Occasionally, you can
fi nd an application version 3.0, but there was never a version 1.0 or 2.0.

Task Categories ❘ 247

 It doesn’t always have to work like that. You can struggle against fate and make a real difference,
but it takes some effort. To avoid building one or more throwaway versions, you need to carefully
follow these steps.

1. Gather requirements, write a specifi cation, and thoroughly validate it with the users.

2. Make high‐level designs that provide a framework for development. It should keep pieces
loosely coupled and provide enough fl exibility to do what you need it to do.

3. Create low‐level designs that indicate how to create the features you need.

4. Write code while following good programming practices so that you don’t end up with a
tangled web of mysterious and uncommented code.

5. Test thoroughly to fl ush out bugs as quickly as possible.

6. Use good deployment techniques (such as staging and gradual cutover).

 In other words, follow all the normal steps of software development.

 Having developers who are experienced with the type of application you build can also help reduce
the “second system” and “third time’s a charm” effects. If they’ve already built their fi rst (and
possibly second) versions, you can build more useful versions.

 Iterative and RAD development models use other techniques to try to keep development moving
toward a useable application. (You’ll learn more about them in Chapters 13 and 14.)

 Adaptive Tasks
 Adaptive tasks help keep the application usable when the things around it change. If the users’
hardware, operating system (OS), database, other tools (such as spreadsheets or reporting tools),
network security, or other pieces of the users’ environment change, it could break your application,
so you have to fi x it.

 Unfortunately, the tools on which your application relies may also be interrelated, so changes to
one may affect the others. For example, suppose your application uses a graphics toolkit that uses a
particular database. Now the operating system changes so the toolkit no longer works. You upgrade
the toolkit so that it’s compatible with the new operating system, but the new version of the toolkit
isn’t compatible with the current version of the database it needs. Unfortunately, the database
vendor hasn’t fi nished building a version that’s compatible with the new version of the operating
system, so you’re stuck.

 There’s no combination of your application, the graphics toolkit, and the database that can run on
the new operating system. You can tell the users that it’s not your fault, but they still can’t process
orders, so customers can’t get their electric roller skates (or whatever).

 To make matters worse, the same scenario can arise if any one of the tools you use is updated. For
example, if a new version of the graphics toolkit is released, it may break your application. If a
new version of the database appears, it may break the graphics toolkit. Then you’re stuck waiting
for the graphics vendor to update its toolkit before you can even see if the changes will break your
application.

248 ❘ CHAPTER 11 MAINTENANCE

You can take a couple approaches to make these scenarios less likely. First, you can minimize the
use of external tools. If you don’t use a graphics toolkit, you don’t have to worry about a new
version breaking your application. If a new version of the operating system breaks your application,
at least you have only your own code to fi x. You don’t need to wait weeks or months for all your
tool vendors to revise their products until a workable combination is possible.

Second, you can just ignore new releases of operating systems, databases, toolkits, and any other
external tools that you use. I knew one company that had a single computer that ran a program to
control a robotic assembly line. Unfortunately, a vendor discontinued support for the programming
language used to write the program. After the next operating system release, programs written in
that language would no longer be supported. In some later operating system version, the program
would stop working completely.

As if that weren’t bad enough, new computer hardware wouldn’t support the older version of the
operating system needed by the program. (Just try to buy a modern computer running Windows
3.11 or OS/2.) Eventually, the computer running the program would die, and the assembly line
would be offl ine for good.

The company could rewrite the application in a new language, but that would be a lot work (in
other words, expensive). Besides, the program did what the company wanted and didn’t need any
new features.

To solve the problem cheaply, the company bought some inexpensive computers, installed the
current operating system on them, and added the assembly line program. Now when the computer
controlling the assembly line dies, the company pulls another computer from the closet and
the assembly line is back up and running. (Although the company is sort of stuck in the 1009s.
Eventually that program is going to need to be rewritten.)

Ignoring upgrades worked for that company, but it’s a strategy that’s getting harder to follow. These
days many products install new releases automatically, so it’s harder to avoid having some product
upgrade itself and break something.

Some companies fi ght that problem by explicitly prohibiting any upgrades. When a new version of the
operating system or some other important piece of the environment is available, the IT department
loads the latest version of everything on an isolated computer and tests it. If everything works, the new
confi guration is rolled out to the users’ computers. (Remember staging from Chapter 9 , “Deployment”?)

This tight control over the users’ computers often seems arbitrary and totalitarian to the users.
(Why can’t I install the latest version of Othello on my computer?) But you can understand what
they’re trying to accomplish.

Corrective Tasks
Corrective tasks are simply bug fi xes. You’ve probably been making them since you started
development, if not sooner. If you think of mistakes in the specifi cation, designs, documentation,
and other pieces of the program as bugs (and you should), then you’ve been fi xing bugs since the
project started. (If you extend that a bit to the world outside of work, then you’ve been fi xing bugs
since the day you were born. For example, being unable to walk and talk is a bug that takes a
newborn about two years to fi x.)

Task Categories ❘ 249

 You probably already know in general how to fi x a bug. Find it, study the code so that you’re sure
you understand it, fi x the bug, test, and release a new version of the application with the bug fi xed.

 There are several ways this process can go wrong. Perhaps the most obvious way is if you fi x the bug
incorrectly and don’t notice during your tests. In that case, you can add an additional step at the
end: fi le another bug report describing the mistake you made fi xing the original bug.

 One of the worst ways to fail to fi x a bug is to lose track of it. At least if you fi x a bug incorrectly
you have some record of the original bug. If you lose track of a bug, there’s little chance that it will
ever be fi xed (unless a user reports it again). What may be just one of dozens or hundreds of bugs to
you, might be really important to some user patiently waiting for you to fi x it.

 To avoid losing bugs, you need a bug tracking system. There are several kinds of bug tracking
systems you can use.

 INCIDENTALLY

 Some companies don’t like the term “bug” (maybe they’re insectophobic), so they
call these things “incidents.” They may also include change and enhancement
requests in the incident category, possibly so that they can deemphasize the number
of bugs. (Sure we have 3,000 incidents, but lots of them are change requests.)

 For really small projects, you can simply keep track of bugs in a spreadsheet. That works well if you
don’t have too many bugs but doesn’t work as well if you have many developers who need to update
the spreadsheet at the same time.

 You can store bug information in a directory hierarchy. You would create a text fi le describing each
bug and then move them from directory to directory to group them by status. For example, the
Bugs/New directory (or Bugs\New if you have a Windows accent) would contain new bugs that have
not yet been examined by the project team. The Bugs/Assigned/Rod directory would contain bugs
assigned to me.

 You can store bug information in a database. That works well, but building the database and tools
to work with it can be a lot of work. If you’re not a database developer who thinks of this as a fun
exercise to crank out over the weekend while your friends are off waterskiing, you might want to use
a prebuilt bug tracker instead.

 Finally, you can use a prebuilt bug tracking application. There are a lot of bug tracking applications
available ranging in price from $0 to a $1,000 or so per month. (The expensive ones are designed
for really big projects with up to a few thousand users.)

 Whichever method you use, you can assign a state to each bug to keep track of its status within the
system. The following list describes typical states that a bug tracking system might use:

➤ New —The bug has just arrived and has not yet been assigned to anyone.

➤ Assigned —The bug has been assigned to someone to fi x.

250 ❘ CHAPTER 11 MAINTENANCE

➤ Reproduced —The bug has been reproduced by a team member. The bug’s description
includes instructions for reproducing the bug. (It is sometimes called “verifi ed.”)

➤ Cannot Reproduce —A team member has examined the program and can’t make the bug
occur. Often a “we can’t reproduce the bug” message is sent back to the customer and the
bug is closed. (As a user, this is my least favorite status because I know the vendor will never
fi x this bug. Often it seems like they didn’t try very hard to reproduce it.)

➤ Pending —A request for more information has been sent to the customer who reported the
bug. Sometimes, this state is used before Cannot Reproduce.

➤ Fixed —The bug has been fi xed but not tested yet. (This is sometimes called “resolved.”)

➤ Tested —The fi x has been thoroughly tested and the bug is verifi ed as gone.

➤ Deferred —The bug should not be fi xed, or at least not yet. For example, you might want to
fi x it in the next major release because fi xing it now would be too hard.

➤ Closed —The bug has been either fi xed, deferred, or otherwise abandoned (see the Cannot
Reproduce status), and no further action will be taken on it. (This is sometimes called
“resolved.”)

➤ Reopened —The bug reappeared after being closed. The bug should probably be treated as if
it were a new bug. Although there may be some benefi t to reassigning it to the person who
originally worked on it, because that person may know more about the code containing the
bug. (And it seems like a fi tting punishment.)

Bug tracking applications typically come with an assortment of features. For example, they may
produce reports showing bugs in various states, bugs cleared over a period of time, and bugs
assigned to a particular developer. Some can notify developers via e‐mail or some other method
when bugs are assigned to them.

Some systems can automatically move bugs from one state to another. For example, when a new bug
report appears, the system might assign it to a developer chosen from a list of those who are allowed
to fi x bugs. It would assign the bug to that person and change the bug’s status to Assigned.

Another approach would be to have the system send the bug to a manager and ask the manager to
assign the bug to a developer.

Some systems also allow you to indicate who is allowed to make certain transitions. For example, if you
have separate bug fi xers and testers, you could allow the fi xers to move a bug from Assigned to Fixed,
and the testers would move the bug from Fixed to Tested (or send it back to Reproduced if the tests fail).

MY FAVORITE BUG

My favorite bug of all time appeared in a large application we developed for
internal company use. One of its forms let the user enter search criteria to build a
list of matching jobs. The user could then scroll through the list and double‐click
on jobs to get more information.

Task Categories ❘ 251

 One fi nal twist to an already complicated situation is priority. Some bugs are more important than
others. If one bug makes the application crash every day or two and a second bug is a typographical
error in the Swedish version of the program, the fi rst bug probably deserves higher priority. (Although
a typo may be easy to fi x, so you might want to bang it out to boost your productivity stats.)

 Preventive Tasks
 Preventive tasks involve restructuring the code to make it easier to debug and maintain in the future.
The fancy “impress them at cocktail parties” word for rewriting code to improve it is refactoring. g

 If you’ve been paying the least bit of attention, you know that modifying code is more likely to
introduce new bugs than writing new code is. If that’s true, then why would you ever mess around
inside working code? That would be like asking a mechanic with questionable skills to rebuild your

 During testing, one of our power users reported that this form occasionally made
the application crash. She didn’t know why and could not reproduce the crash
reliably, but it happened about once per day.

 We performed dozens of test queries, opened multiple detail screens, resized the
form, and did everything we could think of to test the program, but we couldn’t
make the crash happen even once.

 Finally, we both fl ew to Tampa (she from Fort Wayne, I from Boston) so I could
watch her crash the program. For about half an hour, she built lists, clicked
buttons, rearranged panels, and resized the form. Just as she was starting to doubt
her own sanity, the program crashed. It took me about another half an hour to
fi gure out how to reproduce the crash.

 It turned out that the form contained a splitter that you could use to make one
panel smaller (holding search criteria) and another larger (holding query results).
There was a bug in the splitter control we were using that made it crash if you made
one of the panels exactly 1 pixel tall. It was pretty hard to do. If the panel was
2 pixels tall, everything was fi ne. You had to be resizing the panels more or less
randomly and release the mouse at just the right instant.

 When I could reproduce the problem, it didn’t take long to fi gure out what was
happening and how to fi x it. I added a quick test in the code to ensure that the
panels were never less than 2 pixels tall and everything worked fi ne.

 The point of this story (aside from showing off my ninja debugging skills) is that
users are rarely crazy. If you can’t reproduce a bug, that doesn’t mean it isn’t there.
It is almost surely there, you just can’t fi nd it.

 So if you can’t instantly reproduce a bug, dig a bit deeper. By all means ask
for more information, but don’t be surprised if the user doesn’t have any more
information for you. Then dig even deeper. If you close the bug now, it’ll come back
to haunt you like the last Easter egg that you didn’t fi nd until June—and with the
associated smell.

252 ❘ CHAPTER 11 MAINTENANCE

Despite the dangers, there are several reasons why you might want to refactor code, and a few
reasons not to. The following sections describe some of the most important of those reasons.

Clarifi cation
If a piece of code is confusing, you should add comments to it explaining how it works. You should
do that as you’re writing the code or immediately after you fi nish writing it, while the code is still
fresh in your mind. Later, when people need to read the code (including you after you’ve forgotten
how it works), they have a chance of understanding how the code works.

Unfortunately, many programmers don’t include enough (or any) comments. Sometimes, they think
the code is obvious because it’s still fresh in their minds. Sometimes, they get pulled away for more
urgent tasks before they get around to writing comments and documentation. Sometimes, they’re just
plain lazy. In those cases, it may be worth adding comments to particularly confusing pieces of code.

It’s often not worth the effort to add comments to random pieces of code. To write good comments,
you need to spend a lot of time studying the code carefully so that you’re sure you understand how it
works. If you don’t know what the code is doing, you may insert misleading comments and they can
do more harm than good.

For that reason, I recommend that you add comments to code only when you need to modify it.
That gives you extra incentive to study the code carefully (or your modifi cations won’t work). You’ll
also need to test your changes to verify that they work, and that helps verify your understanding.

brand new car’s engine. It will be expensive, might not make things any better, and might make
them a whole lot worse.

If you look back at the “Task Categories” section earlier in this chapter, you’ll see that typically only
approximately 5 percent of a project’s maintenance cost is spent on preventive tasks. That number is
low largely because of the risk involved with modifying working code. (Companies also usually have
a strong “if it ain’t broke, don’t fi x it” bias, which is completely justifi ed here.)

WHAT’S PREVENTIVE?

The discussion of preventive maintenance doesn’t include adaptive tasks (modifying
or adding features) or corrective tasks (fi xing bugs). Those often require some
revision of the existing code. For example, you might need to rewrite a piece of
code to add a new feature to the program. If you make the fewest changes possible,
that doesn’t count as preventive maintenance.

I’m also not counting rewriting a piece of code right after you wrote it to make
it more elegant and fl exible. That’s part of the initial programming and, yes, you
should do it. Code is often pretty rough the fi rst time around, and you can often
make it more effi cient, easier to modify, and easier to understand if you rewrite it
right away. After you write a piece of new code, look it over (by yourself or in a
code review) and see if you can improve it before moving on.

This section focuses on changes you make to the code before you need to modify it
to make it easier to deal with later.

Task Categories ❘ 253

 No matter how thoroughly you study the code, however, there’s still a chance that you don’t really
get it, so your new comments should always be regarded with a bit of suspicion. Keep the following
quote in mind.

Don’t get suckered in by the comments—they can be terribly misleading. Debug
only code.

 —Dave Storer

 That doesn’t mean comments are completely useless, but they aren’t always correct. That’s
particularly true for comments added long after the code was written.

 Code Reuse
 Sometimes when you’re modifying code you realize you’ve done something similar before. Instead of
repeating yourself, it may make more sense to extract the common code into a new class or method
that you can call from multiple locations. Then when you need to do the same thing a third, fourth,
or fi fth time, you won’t need to write the same code all over again.

 Saving you the trouble of writing repeated code is nice, but the real benefi t here is in maintaining
the duplicated code. Suppose you have the same (or similar) piece of code repeated in several
places. What happens if you fi nd a bug in that code? Or if you just decide to change the way the
code works? Perhaps you decide to store values in meters instead of feet or you store some data in a
database instead of a fi le.

 In those cases, you need to modify the code in exactly the same way in every place that it occurs
throughout the program. If you miss any of the occurrences or make one of them incorrectly, the
code will be inconsistent. The resulting bugs can be extremely hard to fi nd. (I know that from
fi rsthand experience.)

 Making changes consistently is even harder if the pieces of code are similar but not exactly the same
because it makes it harder to fi nd the related pieces of code.

 The DRY (don’t repeat yourself) Y principle says you should extract common code any time you
repeat yourself.

 THERE’S NO SUCH THINGS AS 2

 One of my mottos is, “There’s no such thing as 2.” You can write a piece of code
once. If you write it a second time, how do you know you won’t then need to write
it a third or a fourth time?

 The same idea holds for user interface design. A customer record can hold a single
emergency contact phone number, but if users decide they want to allow a second,
how do you know they won’t then ask for a third, fourth, and fi fth?

 Start by assuming users can have only one emergency contact number. As soon as
users want to add a second, assume the customer might have any number of phone
numbers. That way you can modify the user interface once instead of several times.

254 ❘ CHAPTER 11 MAINTENANCE

 Improved Flexibility
 Sometimes, when you modify a piece of code, you realize the code isn’t as fl exible as you’d like.
It was written in a way that made sense at the time, but that prevents you from easily making the
changes you now need to make. If you need to make only a single change, you can simply make the
change, test it, fi x anything you’ve broken, and move on to the next item on your to‐do list.

 However, suppose you’re going to make similar changes in the future. In that case, it may be worth
spending a little extra time now to clean up the code so that it’s easier to make those changes later.
(This is a new version of “Fool me once, shame on you. Fool me twice, shame on me.”)

 For a concrete example, suppose you’ve written a perfectly good application that lets the user
control the lights in a high‐rise offi ce building. It lets you turn individual lights on and off so that
you can use the building as a 35‐story pixel display. After the fi rst release, the customers decide
they want a tool that lets them display the company logo. Unfortunately, you didn’t plan for that, so
adding it is a bit of a hassle.

 If you were paying attention when the preceding section talked about the DRY principle and
“there’s no such thing as 2,” you can probably guess where this story is headed. After you
write this tool, the customers are probably going to want another one. They’ll want new tools to
draw letters, words, and simple pictures. (They probably won’t ask for scrolling messages and
animation just yet because the lights don’t turn on and off fast enough to make those work very
well.)

 You could just write the logo tool, but it would probably be worthwhile to spend a little extra time
to refactor the code a bit to make building these sorts of tools easier. It’ll cost you more time now,
but will save time down the road. More important, it will make the code cleaner, so you’ll be less
likely to introduce bugs when you write new tools later.

 Bug Swarms
 As mentioned in Chapter 8 , “Testing,” bugs tend to travel in swarms. What that means is some
methods, modules, or classes tend to be buggier than others. That can happen for several reasons.
Perhaps that chunk of code is exceptionally complicated or confusing. Perhaps it wasn’t thought out
well in advance during high‐level and low‐level design. Perhaps the code was modifi ed several times
so its original elegant design has been shredded into confetti. Perhaps the code was written by a
beginning programmer who hadn’t learned about for loops yet.

 However they form, bug swarms are dangerous. A piece of code has produced a lot of bugs in the
past and is likely to continue spawning bugs in the future. At some point, it’s better to step back,
study the code so that you understand what it’s supposed to do, and rewrite it from scratch.

 This can be risky. Buggy as it is, the code probably does more or less what it’s supposed to do, so
there’s a chance you’ll replace ugly but working code with elegant but broken code.

 That means you should perform at least a quick cost‐benefi t analysis to decide whether it’s worth the
risk. For example, if you’ve wasted two or three hours per week for the last few months fi xing bugs
in a 30‐line method, it’s probably worth rewriting that method. In contrast, it’s less clear whether
you should completely rewrite a Customer class that contains 7,000+ lines of code just to chase a
couple bugs that you haven’t been able to reproduce.

Task Categories ❘ 255

 My rule of thumb is, if I’m sick and tired of fi xing bugs in a particular piece of code, then it’s time
to consider rewriting it.

 Bad Programming Practices
 Fixing bad programming practices is both a good reason and a bad reason to refactor code. It’s a good
reason because the result can be code that is easier to understand, test, debug, and modify. It’s a bad
reason because, in theory at least, you shouldn’t have any bad programming practices in your code.

 Ideally after you write a piece of code, you should review it (either yourself or in a formal code
review) and make sure you’ve followed good programming practices. Still, sometimes bad code slips
into a project.

 Even if the code starts out good, it can be modifi ed and remodifi ed until it no longer follows good
programming practices. Over time a method that was initially short, elegant, and tightly‐focused
can morph into an incomprehensible jungle of loops, branches, and unrelated tests.

 For example, suppose you write a nice, short, tightly focused method that takes a student ID as a
parameter and fetches that student’s data from a database. A few days later, the method’s requirements
change to make it select only students that are currently enrolled in classes. You modify the code to
add that check. No big deal. A week after that, someone else wants to search for students by name
instead of student ID, so you add a student name parameter and modify the code accordingly. After a
few other changes, the method that once was straightforward is a confusing mess. You used to be able
to view all of the code on a single screen, but now it contains hundreds of lines of code with if‐then
statements spanning several pages, so you have to scroll back and forth to fi gure out what’s happening.

 At that point, you should probably rewrite the method to restore its original tight focus. You
should break this frankenmethod into several separate methods, each of which performs a single,
unambiguous task. The result will be more methods and probably a larger total number of lines of
code, but the methods will each be easier to understand, use correctly, debug, and maintain.

 The following list shows some of the bad programming practices that you should avoid initially and
that might indicate a class, method, or other piece of code could benefi t from refactoring:

➤ The code is too long.

➤ The code is duplicated.

➤ A loop is too long.

➤ Loops are nested too deeply.

➤ It doesn’t do much.

➤ It’s never used.

➤ It has a vague or unfocused purpose.

➤ It performs more than one task.

➤ It takes a lot of parameters.

 If you see code that has changed over time to include some of these symptoms of bad code, consider
refactoring.

256 ❘ CHAPTER 11 MAINTENANCE

 Individual Bugs
 Finding an individual bug is not a good reason to rewrite code. If you fi nd a single bug in a method,
just fi x it and move on. One bug does not make a swarm. There’s no reason to rip a good piece of
code apart and risk breaking something just because it contains a single bug.

 Now if you discover another bug in the same piece of code next week and a third bug the week after
that (and you didn’t add them while fi xing the fi rst bug), then you should think about rewriting the
code to clean it up.

 Not Invented Here
 This is the worst reason for rewriting code, but it’s also probably the most common. When some
programmers see someone else’s code, it doesn’t look quite right. The structure is wrong, the names of
the variables are misleading (it should use num _ students instead of student _ count), the comments
don’t use proper grammar, and the indentation is off. Terrible code! Who wrote this gibberish?

 The problem isn’t actually the code; it’s that the second programmer didn’t write it. Everyone thinks their
approach, naming convention, commenting style, and everything else is the best. If you weren’t using
the best possible techniques for writing code, you’d do things differently. Thinking you need to rewrite a
piece of code just because someone else wrote it is called the not invented here syndrome (NIHS).

 When you’re in school, assignments tend to have a single correct answer. In contrast, in the real
programming world there’s never a single correct answer. There are always several (perhapsr
hundreds) of different ways to accomplish the same thing. Some ways may be better than others
(searching a database by using an index is a lot faster than pulling up random records hoping to get
the one you want), but there are usually lots of ways that are good enough to get the job done.

 When you see a piece of strange code, you shouldn’t ask yourself whether it’s the correct solution or the
best solution. Instead you should ask whether it satisfi es the criteria that mean it should be rewritten.
Just because it’s not the solution you would have chosen doesn’t mean it needs to be changed.

 That leads to one of my favorite mottos (which I learned the hard way).

If it’s good enough, it’s good enough.

 If the code works correctly, is fast enough to satisfy your needs, and doesn’t contain a swarm of
bugs, leave it alone.

 TASK EXECUTION

 Whether you need to modify existing code for perfective, adaptive, corrective, or preventive reasons,
you need to follow roughly the same steps to make useful changes without adding new bugs. At a
high level, the steps you follow are roughly the same as those that go into initial development:

➤ Requirement gathering

➤ High‐level design

Summary ❘ 257

➤ Low‐level design

➤ Development

➤ Testing

➤ Deployment

 For smaller maintenance tasks, you can probably abbreviate or skip some of those steps. For
example, if you need to change only a single line of code to fi x a bug, your requirement gathering
probably just includes the statement, “Fix the bug.” You also probably don’t need to spend a lot of
time on high‐level or low‐level design, and you may defer deployment until the application’s next
major release.

 You should never skimp on testing, though.

 After you make your changes, you need to perform maintenance on your maintenance. (New
features you add may contain bugs or need future modifi cation. Any bugs you fi x may be fi xed
incorrectly and need further repair. Of course, those bug fi xes may need fi xes, which need more
fi xes, and so on until you wonder if you’re trapped in the movie Inception . You better keep your
chess piece or spinning top handy.)

 Some maintenance tasks may be similar to regular development tasks, but their relative frequency
often changes. In an application for internal use that does a good enough job already, the focus
may be on bug fi xing instead of feature improvements and enhancements. That’s also often the case
with fi rst releases of consumer applications. No one is going to buy version 2.0 if the customers
universally hate version 1.0 for its bugginess.

 If you sell your application online and need a continuing stream of revenue to keep the creditors at
bay, you may decide to focus more on creating new and improved features for a new release. (Of
course, you still need to fi x any bugs. See the last sentence in the preceding paragraph.)

SUMMARY

 Maintenance is somewhat similar to normal development. You still need to perform roughly
the same tasks (requirement gathering, high‐level design, low‐level design, write code, test, and
deploy the results). Sometimes the focus is slightly different (you’ll probably spend more time
fi xing bugs than writing new code) and you might skimp on some of the steps (you probably
won’t need an extensive high‐level design to fi x a one‐line bug), but the basic approach is similar.
Testing is particularly important so that you don’t introduce too many new bugs when you fi x
old ones.

 This chapter fi nishes the introduction to basic software engineering tasks. All software development
projects include the basic tasks in one form or another with varying amounts of emphasis.

 The chapters in the next part of the book describe different models of software development. For
now, you can think of them as different ways to arrange the basic development steps. For example,
iterative models use the same steps but repeated many times to try to keep the project moving
toward a usable result.

258 ❘ CHAPTER 11 MAINTENANCE

EXERCISES

 1. Suppose your programming team writes an application with 10,000 lines of code. During
testing, you decide that the team generates roughly 20 bugs per KLOC (kilo‐lines of code) for
new code. (That’s probably a bit on the low side for a typical development team, but I’ll give
you the benefi t of the doubt.) During bug fi xing, you discover they generate about twice that
many bugs when they modify older code. How many lines of code will the team actually gener-
ate including original code, fi xes, fi xes to fi xes, and so forth?

2. After you write the lines of code you predicted in your answer to Exercise 1, are you done with
maintenance?

3. Consider your answer to Exercise 1. Suppose the number of lines of code the team members

can write for different kinds of code is given in the following table.

 CODE TYPE LINES PER DAY

 New code 20

 Fix a bug 4

 Fix a bug fi x 2

 Fix a fi xed bug fi x 1

 How many person‐days will it take to write all the code?

4. If you have two team members, approximately how many months will the project described in
Exercise 3 take? (Yes, I’m totally cheating here. You can look back on a project and calculate
the number of lines of code per day you wrote, but you generally can’t use imaginary produc-
tivity numbers to predict a project’s duration.) What if you have fi ve team members? 10? 111?

5. Draw a fl owchart showing how a bug report might move through the states New, Assigned,
Reproduced, Cannot Reproduce, Fixed, Tested, and Closed. Allow the bug to move into
Pending if it cannot be reproduced.

 Label the connecting arrows with the tasks that lead to the new state. For example, label the
arrow leading from New to Assigned “Assign.” Require approval before moving a bug into the
Closed state.

6. From which states could a bug move into the states Pending, Deferred, or Reopened?

7. Why might you want to move a bug from the Closed state to the Deferred state?

8. What are the total (approximate) percentages of cost spent on each of the four maintenance
categories over the life of an application?

Summary ❘ 259

9. Place the following situations in their correct maintenance task categories (perfective, adaptive,
corrective, or preventive).

 a. Change the SaveSnapshot method because it isn’t saving fi les in BMP format correctly.

 b. Change the SaveSnapshot method so that it can also save fi les in PNG format.

 c. Change the main program to restore the settings in use when the previous session ended.

 d. Add comments to a 200-line method that currently has the single comment CodeNinja was
here 4/1/2003 .

 e. Write documentation to clarify a module’s low‐level design.

 f. Remove the PremiumCustomer class because it isn’t used.

 g. Add icons to display on the new operating system’s startup page.

 h. Rewrite a method because the program grew so large the old version wasn’t fast enough.

 i. Rewrite a method because it uses an unnecessarily complicated algorithm.

 j. Rewrite a 15‐line method because it contained seven known bugs (now fi xed).

 k. Rewrite a 715‐line method to make it smaller.

 l. Rewrite a complicated method to see how it works. Then tuck the new code away for future
reference but don’t replace the original code in the application.

 m. Rewrite the logging method to use cloud services to store data instead of storing data locally.

 n. Rewrite the login screen to deal with the company’s new fi rewall.

 o. Change the Order List screen to let the user sort orders on any fi eld.

10. In which of the following situations should you consider rewriting a piece of code (preventive
maintenance)? If you can’t tell from just the description, what else would you need to know
before deciding?

 a. A method is 412 lines long.

 b. A method is 10 lines long but very confusing.

 c. A method uses for , while , and for‐each loops nested 12 levels deep.

 d. At one point the code makes a series of method calls 37 levels deep.

260 ❘ CHAPTER 11 MAINTENANCE

 e. A method violates the team’s variable naming conventions.

 f. A method draws a rectangle, line, or ellipse depending on its parameters.

 g. It takes 43 seconds to log in to the application.

 h. You’ve just discovered the fi fth bug in a 40‐line method.

 i. Roughly once per day, the program crashes and loses any work the user hasn’t already
saved.

 j. When the user tries to close the application, it crashes. Otherwise it seems to work just fi ne.

 k. A coworker (defi nitely not you) fi xed a bug in a method, but you later discovered that the
bug fi x caused another bug. The coworker fi xed it again, but that also caused another bug.

 l. A coworker fi xed a bug in a method and that caused another bug. A different coworker
fi xed that bug, but the fi x lead to yet another bug. A third coworker fi xes the latest bug
and (you guessed it) caused another bug.

 m. Roughly once per day, the program crashes, but the user can easily restart it without losing
any work.

Summary ❘ 261

▸ WHAT YOU LEARNED IN THIS CHAPTER
➤ Maintenance is expensive , sometimes accounting for up to 75 percent of a project’s total

cost.

➤ One reason why maintenance is expensive is that applications often live far longer than
expected.

➤ Maintenance tasks can be divided into four categories:

➤ Perfective tasks improve, modify, or add features to a project.

➤ Adaptive tasks modify an application to work with changing conditions in the
environment such as a new operating system version or changes to external interfaces.

➤ Corrective tasks are bug fi xes.

➤ Preventive tasks (refactoring) modify the code to make it easier to maintain in the
future.

➤ Sometimes developers learn what they need to do to build a system while making the fi rst
version, so the second version is the fi rst good one (the second system effect).

➤ Sometimes a system’s second version is bloated and full of unnecessary bells and whistles, so
the third version is the fi rst good one (the third time’s a charm effect).

➤ Bugs typically travel through some of the following states: New, Assigned, Reproduced,
Cannot Reproduce, Pending, Fixed, Tested, Deferred, Closed, and Reopened.

➤ You don’t always need to refactor code, even if it doesn’t follow good programming
guidelines. (If it ain’t broke, don’t fi x it.)

➤ To perform maintenance tasks successfully, you need to follow the normal software
engineering steps: requirement gathering, high‐level design, low‐level design, development,
testing, and deployment. (Although you can often abbreviate some of those steps. You
probably don’t need extensive high‐level design to fi x a one‐line bug.)

PART II

▸ CHAPTER 12: Predictive Models

▸ CHAPTER 13: Iterative Models

▸ CHAPTER 14: RAD

 The best way to predict your future is to create it.

 —Abraham Lincoln

 Prediction is very diffi cult, especially if it’s about the future.

 —Niels Bohr

 WHAT YOU WILL LEARN IN THIS CHAPTER:

➤ Predictive models, when they are useful, and when they probably
won’t work

➤ The waterfall, waterfall with feedback, and sashimi models

➤ Incremental waterfall variations

➤ V‐model and the software development life cycle

 The chapters before this one describe specifi c tasks that you must perform for any software
engineering project. In every project, you need requirements, design, testing, deployment, and
maintenance. Up to this point, I’ve sort of implied that you’ll follow those steps more or less in
order one at a time. (Although I’ve hinted several times that steps may overlap.)

 Exactly how you handle those tasks can vary depending on the scope of the project. For a
large traditional project, the specifi cation might include hundreds of pages of text, charts,
diagrams, and use cases. For a small project that you’re writing for your own use, the
specifi cation might be all in your head, and you might “write” it while walking the dog or
singing in the shower.

 12

266 ❘ CHAPTER 12 PREDICTIVE MODELS

 The “large traditional” approach and the “for my own use” approach are two models of software
development. The chapters in this part of the book describe some typical software development
models in a bit more detail.

 This chapter describes some predictive development models. The section “Predictive and Adaptive”
later in this chapter explains what a predictive model is.

 MODEL APPROACHES

 Over the years, software engineers have developed a lot of different development models, each witht
its own adherents who will fi ght to the death to prove their model is best. I have two theories about
why there are so many different models.

 First, developers may just be trying to come up with the coolest names and acronyms. Names
like Scrum and sashimi, and acronyms like RAD and LSD support this theory. And extreme
programming sounds like an obvious prelude to energy drink product placement ads. (Imagine a
programmer jumping off a cliff in a wingsuit with a laptop and a sports drink.)

 My second (and I admit more likely) theory is that a huge number of people have spent an enormous
amount of time (person‐millennia if not person‐eons) on software engineering. During that time,
some very smart people noticed that there were problems with the methods they were using.
Development wandered off on the wrong path, programmers didn’t test their code, or the project
took so long that by the time it was fi nished the customers’ needs had changed.

 Some of those smart people took the time to study their problems and came up with different
approaches to try to address those problems. The resulting development models tend to emphasize
one part of development or another. For example, agile methods allow a project’s goals to change
over time to track changing customer needs. Test‐driven development forces programmers to write
tests for their code. Extreme programming uses “pair programming” to ensure that every piece of
code goes through a kind of code review.

 There is a lot of overlap among the different models. For example, many developers noticed that
customer requirements sometimes change, so there are a lot of agile methods that all try to address
that issue.

 Each model has its own philosophy, set of rules, and lists of important principles. Acolytes of a
particular model may claim that you’re not following The One True Path if you’re skipping one of
the model’s steps. (If you don’t serve sprinkle donuts on Wednesdays, then you’re not really using
Crumb!)

 They can think that if they like, but I take a slightly less‐restrictive approach. In practice what
actually matters is whether you produce high‐quality software reasonably close to on time and
within your budget. A lot of development models use clever techniques to make development more
likely to produce a good result. Sometimes, it may be useful to borrow a technique from one model
and add it to another.

 Still, there’s some benefi t to picking a model and trying to follow its rules. That at least gives you
some guidelines you can follow. (It also helps with seating arrangements at dinner parties. Placing a
staunch waterfall supporter next to an extreme programmer could be dangerous!)

Predictive and Adaptive ❘ 267

 PREREQUISITES

 Before you start using a particular model, you need to be sure everyone on the team is on board.
Everyone needs to agree on what the rules are and what procedures you will use to make sure the
rules are followed. At fi rst, some of the techniques the models use (such as daily 15‐minute meetings
or pair programming) can seem strange or downright awkward. Unless everyone commits to the
model, you’re going to have trouble getting the most out of it.

 PREDICTIVE AND ADAPTIVE

 One way to categorize development models is by the way they handle requirements. In a predictive
development model , you predict in advance what needs to be done and then you go out and do it. l
You use the requirements to design the system, and you use the design as a blueprint to write the
code. You test the code, have customers sign off saying it really does what the specifi cation says it
should, and then pop the champagne.

 As an analogy, you build a brick wall with a predictive model. Based on past experience, you know
exactly how long it will take to build a wall of the desired size. You can easily calculate how many
bricks you’ll need. Then you can order the bricks, schedule some masons, and get the job done.

 Unfortunately, it’s often hard to predict exactly what a software application needs to do and how
you should build it ahead of time. Sometimes, particularly if you’re working with new technology,
you just don’t know what the program should do. Sometimes, if you’re unfamiliar with a particular
programming technique, your design doesn’t work. And sometimes changing business situations
mean what you thought the customers needed at the beginning isn’t what they need at the end.

 An adaptive development model enables you to change the project’s goals if necessary duringl
development. Instead of picking a design at the outset and doggedly plodding toward it even when
the design is no longer relevant, an adaptive model lets you periodically reevaluate and decide
whether you need to change direction.

 That doesn’t mean you can’t predict the fi nal requirements if your Ouija board lets you. You can
start with a good idea of what the fi nal application should look like. The adaptive model just gives
you chances to fi ne‐tune the project if necessary.

 For an analogy for an adaptive model, consider a typical TV detective show. It starts with a murder.
(Your goal is to fi nd the killer.) You know some of the things you need to do (interview witnesses,
check cell phone records, whip off your sunglasses and squint meaningfully into the distance, say
pithy things by the coffee machine), but you don’t know exactly where the case will lead. You follow
the fi rst clue, and it leads to a second, which leads to a third, and so forth. Each time you fi nd a new
clue, you update the direction of the investigation.

 Admittedly, the detective show is an extreme example in which you have no real idea what’s going
on until the last few minutes of the show when the hero tricks the villain into confessing during a
tape‐recorded phone conversation. In an adaptive software project, you usually know more or less
what you need to build, but you can change direction if necessary.

 You might think that an adaptive model is always better than a predictive one, but there are cases
in which a predictive model works quite well. For example, predictive models work well when the

268 ❘ CHAPTER 12 PREDICTIVE MODELS

project is relatively small; you know exactly what you need to do, and the timescale is short enough
that the requirements won’t change during development.

Success and Failure Indicators
 The following list describes some indicators that mean a predictive project may be successful.

➤ User involvement —If the users help defi ne the requirements, they’re more likely to be correct.

➤ Clear vision —If the customers and developers have the same clear vision about the project’s
goals, development will stay on track.

➤ Limited size —A small size helps the customers and team members see the whole picture all at
once. Requirements won’t have time to change.

➤ Experienced team —Experienced team members are less likely to design something they
can’t build. They also won’t wander off writing code that doesn’t work out. (Of course, an
experienced team is helpful for any project.)

➤ Realistic —If the users ask for a telepathic user interface, a guess‐what‐I‐want‐to‐do module,
and the ability to predict tomorrow’s lotto numbers, they’re going to be disappointed.

➤ Established technology —If you stick to technology that you’ve used before, you’ll understand
how to use it correctly.

 Of course, each of those success indicators can also be a failure indicator. If users aren’t involved,
the vision is unclear, or you’re using untried technology, the project is more likely to fail.

 The following list describes a few other things that might indicate a predictive project won’t
succeed:

➤ Incomplete requirements —In a predictive project, if the requirements don’t say you should
do something, it won’t get done.

➤ Unclear requirements —If the customers and developers don’t all have the same vision of
what the application should do, you’ll have trouble satisfying everyone.

➤ Changing requirements —The requirements are like railroad tracks: After they’re set,
changing course is diffi cult.

➤ No resources —Even if you have clear requirements and a perfect design, a single programmer
can’t write a 10,000‐line program in a week.

 Before you launch a predictive project, make sure these and other omens are favorable.

Advantages and Disadvantages
 Adaptive models can handle the most reasonable of those problems (no model will let a single user
write a 10,000-line program in a week), but there are still some advantages to predictive models.
The following list summarizes some of the greatest benefi ts.

➤ Predictability —If everything goes according to plan (and you sort of have to make that
assumption if you’re going to use a predictive model), then you know exactly when different

Predictive and Adaptive ❘ 269

stages will occur. In particular, you know when you’ll be fi nished and how much effort (aka
money) you’ll need.

➤ Stability —Because the requirements are “set in stone” at the beginning of the project, the
customers know exactly what they are getting. That’s particularly important for life‐critical
systems such as systems that control medical devices, automobiles, and airplanes.

➤ Cost‐savings —If the design is clear and correct, you won’t waste time following development
paths that turn out to be dead ends.

➤ Detailed design —If you design everything correctly up front, then you shouldn’t need to
waste time making a lot of decisions during later development. You just follow the plan.
That makes programming faster (and therefore cheaper).

➤ Less refactoring —Adaptive projects tend to require refactoring. A programmer writes some
code. Sometime later, the requirements change and the code needs to be modifi ed. The
result may need to be refactored to make it more effi cient or to satisfy code standards. These
problems don’t occur as often in predictive projects.

➤ Fix bugs early —If the requirements and design are correct and complete, then you won’t
have to fi x any bugs they would have caused later. Because it’s easier to fi x bugs early on,
that saves you more time.

➤ Better documentation —Some of the adaptive models deemphasize documentation to the
point where there is very little (if any). Predictive models require a lot of documentation
before programming starts, so you at least have some documentation. That makes it easier
to move new people into the project because they can read the documentation to get up to
speed. (You’ll still need to keep an eye on the programmers if you want comments in the
code.)

➤ Easy maintenance —Because you can consider the application from a broader
perspective, you can create a more elegant design that’s more consistent and easier to
maintain.

 Even if everything works perfectly, a predictive project still has some disadvantages.

➤ Infl exible —Just because you thought the requirements wouldn’t change, that doesn’t mean t
they won’t. If they do, accommodating them can be hard. (Basically, a predictive model is a
gamble that requirements won’t change too much.) That lack of fl exibility also means you
can’t take advantage of new opportunities. If someone invents a new easier way to display
sales reports, you won’t be able to take advantage of it.

➤ Later initial release —Many adaptive models enable you to give the users a program as soon
as it does something useful. With a predictive model, the users don’t get anything until
development is fi nished.

➤ Big Design Up Front (BDUF) —You need to defi ne everything up front. You can’t start
development until you know everything you’re going to need to do. You can’t start
development until you understand all the nooks and crannies of the application. That may
mean some team members are stuffi ng the suggestion box or playing mahjong while others
are still working on requirements.

270 ❘ CHAPTER 12 PREDICTIVE MODELS

 The waterfall analogy is actually fairly clever. The water represents information and the stages act
like buckets. When one bucket is full (you’ve fi nished fi lling it up with information), the information
fl oods from that bucket into the next so that it can direct the following task.

 The most “pure” predictive models assume that each stage of development is fi nished completely and
correctly before the next stage begins. (I’ll describe some models that bend that assumption later in
this chapter.) In particular, you can’t start cranking out code until the requirements and designs are
fi nished. For that reason, these models are sometimes called Big Design Up Front (t BDUF) models.

 For example, a typical waterfall model project might spend 20–40 percent of its time on
requirements and design, 30–40 percent of its time on programming, and the rest of its time on
testing and deployment. If you don’t spend a lot of time on the design, then the requirements and
design won’t be clear and correct, and you don’t get the predictive model benefi ts.

 One of the biggest ideas of BDUF projects is that the time spent on design up-front saves you time
later in the project. You don’t get that it you skimp on the early project’s phases.

 There’s still a lot of argument about whether all these benefi ts are real. Adaptive model fans argue
that they save more time and money because predictive projects often produce an unusable result.
That’s probably true, but to be fair you need to compare times when the models work. Obviously, a
working adaptive project is better than a broken predictive one.

 That’s enough discussion about predictive models in general. The next chapter says more about the
advantages and disadvantages of adaptive models. Meanwhile the rest of this chapter describes some
particular predictive models.

 WATERFALL

Waterfall is the plain vanilla of the predictive model world. It assumes that you fi nish eachl
step completely and thoroughly before you move on to the next step. Figure 12-1 shows the
quintessential picture of the waterfall model. Imagine water cascading from one step to the next.

Requirements

Design

Implementation

Verification

Deployment

Maintenance

 FIGURE 12-1: In the waterfall model, each step follows the one before in a strict order.

Waterfall with Feedback ❘ 271

 The waterfall model can work reasonably well if all the following assumptions are satisfi ed:

➤ The requirements are precisely known in advance.

➤ The requirements include no unresolved high‐risk items.

➤ The requirements won’t change much during development.

➤ The team has previous experience with similar projects so that they know what’s involved in
building the application.

➤ There’s enough time to do everything sequentially.

 You can add additional steps or split steps to give more detail if you like. For example, you could
break Verifi cation into Testing and Validation, or you could break Design into High‐Level Design
and Low‐Level Design.

 You can also elaborate on a step. For example, you could break Design into User Interface Design,
High‐Level Design, Low‐Level Design, and possibly other pieces.

 Few developers use the pure waterfall model these days, but some of its variations are quite useful.

 WATERFALL WITH FEEDBACK

 If you assume that you can carry out each step perfectly (and nothing changes during development),
then the waterfall model leads to inevitable success. Unfortunately, it’s hard to perform every
step of development perfectly. Because the model doesn’t allow you to go back to earlier steps, if
you fail at any step, all the later steps will be wrong. For example, if the requirements are wrong,
the development team plods along anyway, headed in the wrong direction like a cabbie trying to
navigate in Singapore with a street map of London.

 The waterfall with feedback variation enables you to move backward from one step to the previous
step. (Like a salmon leaping up a fi sh ladder.) Figure 12-2 shows this model.

Requirements

Design

Implementation

Verification

Deployment

Maintenance

 FIGURE 12-2: In the waterfall with feedback model, you can go back to the previous step.

272 ❘ CHAPTER 12 PREDICTIVE MODELS

 In a project’s fi rst phase, some requirements will be defi ned while you’re still working on others. At
that point, some of the team members can start designing the defi ned features while others continue
working on the remaining requirements.

 A bit later, the design for some parts of the application will be more or less fi nished but the design
for other parts of the system won’t be. At that point, some developers can start writing code for
the designed parts of the system while others continue working on the rest of the design tasks, and
possibly even on remaining requirements.

 Now if you’re working on design and you discover that there was a problem in the requirements,
you can briefl y go back to the requirements and fi x them.

 The farther you have to go back up the cascade, the harder it is. For example, if you’re working on
implementation and discover a problem in the requirements, it’s hard to skip back up two steps to
fi x the problem.

 It’s also less meaningful to move back up the cascade for the later steps. For example, if you fi nd
a problem during maintenance, then you should probably treat it as a maintenance task instead of
moving back into the deployment stage.

 Because moving back up the cascade is hard, you still need to be good at making predictions. You
can fi x some mistakes, but the goal is still to complete each step completely and effectively before
moving on.

 SASHIMI

Sashimi (also called sashimi waterfall and l waterfall with overlapping phases) is similar to the s
waterfall model except the steps are allowed to overlap. (Much as the thin slices of fi sh overlap in
the Japanese dish sashimi.) Figure 12-3 shows the stages of a sashimi project.

Requirements

Design

Implementation

Verification

Deployment

Maintenance

 FIGURE 12-3: In the sashimi model, development phases overlap.

Incremental Waterfall ❘ 273

 Similarly other parts of the development process might overlap, although there are probably limits.
For example, you may want to delay deployment until the application is tested and verifi ed.

 You can even allow greater overlap between project phases. For example, you could have people
working on requirements, design, implementation, and testing all at the same time.

 There are several advantages to allowing stages to overlap. First, it means people with different
skills can focus on their specialties without waiting for others. For example, a database designer can
start laying out tables and indexes even if the user interface requirements aren’t fi nished. This kind
of overlap keeps the team members more productive.

 A second advantage is that it lets you perform a spike or deep dive into a particular topic to learn
more about it. For example, suppose you’re working on requirements and the customers ask if you can
incorporate an EEG headset into the program to let you control the application with your thoughts.
You haven’t done that before, so you assign some team members to give it a try. They quickly design
and implement a prototype to see what would be involved and to let the users see what it would look
like. At that point, you have people working on requirements, design, and implementation all at the
same time. Based on what you learn from the prototype, you can refi ne the requirements.

 A third advantage to overlapping phases is it lets later phases modify earlier phases. If you discover
during design that the requirements are impossible or need alterations, you can make the necessary
changes.

 To avoid unnecessary work, you may want to encourage team members not to get too far ahead
(unless they’re performing an exploratory spike). That way if you need to change the requirements,
you won’t need to discard or rewrite a lot of code.

 INCREMENTAL WATERFALL

 The incremental waterfall model (also called the l multi‐waterfall model) uses a series of separatel
waterfall cascades. Each cascade ends with the delivery of a usable application called an increment . t
Each increment includes more features than the previous one, so you’re building the fi nal application
incrementally. (Hence the name “incremental waterfall.”)

 Figure 12-4 shows the stages in an incremental waterfall project.

 During each increment, you’ll get a better understanding of what the fi nal application should look
like. You’ll learn what did and didn’t work well in the previous increment. The users will also
probably give you a long laundry list of new features they want added. All of that helps you prepare
for the next increment.

 Notice in Figure 12-4 that the different increments overlap in the time dimension. If you understand
what you need to do in the next iteration, you don’t need to wait until the current iteration is
completely fi nished before you start writing new requirements documents. Of course, if you start the
next increment before the users have had a chance to work with the current one, you won’t get as
much feedback from them.

 You can use any of the waterfall variations for each of the increments. For example, you could use a
series of waterfalls with feedback or a sashimi series, as shown in Figure 12-5 .

274 ❘ CHAPTER 12 PREDICTIVE MODELS

Increment 2

1. Requirements
2. Design
3. Implementation
4. Verification
5. Deployment
6. Maintenance

Increment 3

Time

Increment 1
1

2
3

4
5

6

1
2

3
4

5
6

1
2

3
4

5
6

FIGURE 12-4: In the incremental waterfall model, a series of waterfall cascades provide an
increasing level of functionality.

1. Requirements
2. Design
3. Implementation
4. Verification
5. Deployment
6. Maintenance

Increment 1

Increment 2

Increment 3

Time

1
2

3
4

5
6

1
2

3
4

5
6

1
2

3
4

5
6

FIGURE 12-5: This incremental waterfall project uses a series
of sashimi waterfalls.

V‐model ❘ 275

 The incremental waterfall model is actually somewhat adaptive because it lets you reevaluate your
direction at the start of each increment, but I’ve included it in this chapter for three reasons. First,
this is a waterfall variation, so I want to put it with the other waterfall models.

 Second, it’s not all that adaptive. You can change direction when you start a new increment, butt
within each increment the model runs predictively. You can make only small changes allowed
by whichever particular waterfall model you use for the increments (waterfall with feedback or
sashimi).

 The fact that you’re building on a previous increment also gives the project some inertia that limits
the amount of change you can add to the next release. For example, you can add, remove, and
tweak features in a new increment, but you probably shouldn’t radically change the user interface.
That would be more like a completely new project rather than an incremental change to the ongoing
series.

 Finally, increments tend to run over a longer scale than the stages in most adaptive models. For
example, a long‐running project might use a new increment every year or two. That gives the users
a nice, steady, predictable release schedule. In contrast, some adaptive models produce new builds
of an application every month or even every week. You probably wouldn’t release all of those builds
to the users, but the pace is defi nitely more frenetic. The incremental waterfall model is somewhat
adaptive, but usually over long timescales.

 V‐MODEL

V‐model is basically a waterfall that’s been bent into a V shape, as shown in Figure 12-6 .l

 The tasks on the left side of the V break the application down from its highest conceptual level into
more and more detailed tasks. This process of breaking the application down into pieces that you
can implement is called decomposition .

 Figure 12-4 and Figure 12-5 show projects that use three increments, but you can use as many
as you like. In fact, for an application with a long useful life, you could use an open‐ended series
of increments. You would just keep adding new increments whenever you wanted to make a new
version of the application to add new features.

 REFACTORING REQUIRED

 Sometimes, programs that grow incrementally become strange creatures with
illogical interfaces, inconsistent mechanisms, and code as strange as anything
H.P. Lovecraft could have written (if he’d been a programmer). I’ve worked
with programs that had been used and modifi ed for decades, and it was nearly
impossible to make any signifi cant changes without breaking something.

 At some point, you may need to slip in a refactoring increment to clean house. That
increment might add little or no new functionality, but it will let you move forward
with future increments more effi ciently.

276 ❘ CHAPTER 12 PREDICTIVE MODELS

The tasks on the right side of the V consider the fi nished application at greater and greater levels of
abstraction. At the lowest level, testing verifi es that the code works. At the next level, verifi cation
confi rms that the application satisfi es the requirements, and validation confi rms that the application
meets the customers’ needs. This process of working back up to the conceptual top of the
application is called integration .

Each of the tasks on the left corresponds to a task on the right with a similar level of abstraction.
At the highest level, the initial concept corresponds to operation and maintenance. At the next level,
the requirements correspond quite directly to verifi cation and validation. Testing confi rms that the
design worked. (Like the cheese, implementation stands alone, so it doesn’t correspond to another
task.)

 SYSTEMS DEVELOPMENT LIFE CYCLE

The software development life cycle (SDLC), which is also called the application development
life cycle , is exactly what it sounds like. It covers all the tasks that go into a software engineering
project from start to fi nish: requirements, design, implementation, and so forth. This is similar to
the waterfall model (actually the waterfall model is one version of SDLC), but I want to present two
new ideas here.

First, check out Figure 12-7 . This fi gure emphasizes that the end of one project can feed directly
into the next project in a never‐ending circle of life. (Cue The Lion King music.) The incremental g
waterfall model is basically just a series of SDLCs fl attened out and possibly with some overlap, so
one project starts before the previous one is completely fi nished. (Actually, the picture is a lot like a
complete metamorphic life-cycle diagram. The application goes through the stages: egg, larva, pupa,
and adult.)

Concept

Requirements Verification
& Validation

Operation &
Maintenance

Design

D
ecom

position

Implementation

In
te

gr
at

io
n

Time

Testing

 In V‐model, each of the tasks on the left corresponds
to a task on the right.

Systems Development Life Cycle ❘ 277

The second new idea is that you can break down the basic steps in a lot more detail if you like. (You
should for bigger projects, at least.) The following list describes tasks that are commonly represented
as part of the SDLC. Some of them are even broken down into subtasks. (I would have included
them all in Figure 12-7 , but I would have had to use a 2‐point font and you would have needed a
microscope to read everything.)

➤ Initiation —An initiator (often a customer, executive champion, or software manager looking
for something to charge on his time card) comes up with the initial idea.

➤ Concept development —The initiator, usually with help from others who might be interested
in the project, explores the concept to see if it’s worthwhile and to evaluate possible
alternatives. This step includes an initial project defi nition, a feasibility analysis, a cost‐benefi t
analysis, and a risk analysis.

 You can make “go/no go” decisions at any step in the project, but the decision you make
at this point is a big one. After concept development, you should have enough information
to make an informed decision. After this point, it gets harder and more expensive to cancel
the project as it starts to staff up and gain momentum. (Sometimes, careers are tied to the
success of big projects, and anyone in that position will tenaciously resist any attempt to end
the project after it gets rolling. They’ll cling desperately to the sinking project like a barnacle
stuck to the Titanic.)

Requirements

Design

Implementation

Verification

Deployment

Maintenance

 FIGURE 12-7: In the software development life cycle, project
phases feed into each other in a potentially infi nite loop.

278 ❘ CHAPTER 12 PREDICTIVE MODELS

➤ Preliminary planning —A project manager (PM) and technical lead are assigned to the
project, and they start planning. If it’s a big project, the project might be broken into teams
and team leads would be assigned. All these leaders make preliminary plans to estimate
necessary resources such as staffi ng, computers, network, development tools, and microwave
popcorn.

This is when the leaders gather the tools they’ll need to track and manage the project, tools
such as those described in Chapter 2 , “Before the Beginning,” and Chapter 3 , “Project
Management,” for document tracking, building PERT and Gantt charts, and tracking tasks.
The technical managers also decide on the development model, programming language,
development environment, coding tools, and code conventions (if those things aren’t already
specifi ed by the company).

If it hasn’t already, the team starts gathering metrics so the project manager can keep an eye
on the project to make sure it remains headed in the right direction.

➤ Requirements analysis —The team studies the user’s needs and creates requirement
documents. Those may include text, pictures, use cases, prototypes, and long‐winded
descriptions of business rules. It may also include UML diagrams showing application
structure, user behavior, and anything else that helps the users understand what the team will
be building. (See Chapter 4 , “Requirement Gathering.”)

The team also builds technical requirements that let the developers know what they need to
build.

➤ High‐level design —The team creates high‐level designs that specify major subsystems, data
fl ow, database needs, and the rest of the application’s high‐level structure. (See Chapter 5 ,
“High‐Level Design.”)

➤ Low‐level design —The team creates low‐level designs that explain how to build the
application’s pieces. The designs provide enough detail that a second‐shelf programmer
would have a chance of building the right thing. (See Chapter 6 , “Low‐Level Design.”)

➤ Development —The team writes the program code. They follow good programming practices.
They perform unit tests, regression tests, and system tests. They fi x the bugs that inevitably
appear and handle any change requests that are approved by the change committee. The team
also prepares user documentation and training materials. (See Chapter 7 , “Development,”
and Chapter 8 , “Testing.”)

➤ Acceptance testing —The customers fi nally get a chance to take the application for a test drive
in its (almost) fi nal form. Traditionally, the application breaks at this point when the users do
something completely reasonable that the developers never thought about. After a few bug
fi xes and perhaps a small change or two, the customers agree that the application satisfi es
the requirements. (Acceptance testing can be in the staging environment that will be used to
prepare for rollout in the next phase.)

➤ Deployment —The team rolls out the application. (See Chapter 9 , “Deployment.”)

➤ Maintenance —The application allows the users to do their jobs better than ever before, and
everyone lives happily ever after (aside from the inescapable bug fi xes and change requests).
(See Chapter 11 , “Maintenance.”)

Systems Development Life Cycle ❘ 279

➤ Review —The team uses metrics (which hopefully they remembered to gather throughout the
project) to assess the project and decide whether the development process can be improved in
the future. (See Chapter 10 , “Metrics.”)

➤ Disposal —Eventually, the application’s usefulness comes to an end. (Or perhaps not, as the
Y2K problem proved.) During this stage, the cleanup crew plans the application’s removal
and possibly its replacement by something else. They need to decide what data needs to be
archived and how to protect it so that a hacker can’t break in and steal sensitive data.

 Like the waterfall model and other purely predictive models, the unadulterated SDLC probably isn’t
used by many developers these days. It’s still useful occasionally, basically in the same situations in
which the waterfall model and its variants are useful. It’s also an important term to know during
those late‐night programming jam sessions at conferences.

 The team continues to track the application’s usefulness throughout its lifetime to determine
whether it needs repair, enhancement, or replacement with a new version or with something
completely different.

 Keep in mind that even an application that’s working perfectly needs periodic maintenance
and upgrades. Every two years or so a new version of the operating system will appear, and
many companies will require that all applications be upgraded to the new version. Also
roughly two years after you install the application, computer power will have doubled.
Eventually, the application will seem so slow compared to the users’ home computers,
laptops, tablets, phones, phablets, and other gizmos, they’ll want new hardware. And
don’t forget new monitors. Eventually, everyone will want 32” Ultra HD 4 K monitors (or
possibly 8 K or 16 K, although I’ve seen the 4 K televisions, and they may have a higher
resolution than real life). You may think users can live with their existing hardware, but
have you noticed how few of them are still using 1980s era CRTs, even though they were as
indestructible as battleships? When Ultra HD 4 K monitors become reasonably common,
everyone is going to want one.

 Eventually, the maintenance team needs to fi gure out how to upgrade the application to
the latest hardware and operating system, and how to dispose of the old hardware. (If the
hardware isn’t too out of date, see if any of your neighborhood schools want a donation.)

 CERTAIN DESTRUCTION

 Some companies have security policies that indicate how to dispose of old
hardware, so any data it contains can’t be scraped off by cyber criminals. I knew
of one company working on high‐security government projects that had a special
policy for decommissioning disk drives. Erasing the disk or passing it through
a strong magnetic fi eld wasn’t good enough. A fi eld technician had to come to
the site, take the drive apart, and manually remove the platters so they could be
physically shredded. The process cost about $5,000 per drive. (Then I think the
pieces were sprinkled with holy water and buried under a crossroad.)

280 ❘ CHAPTER 12 PREDICTIVE MODELS

SUMMARY

 Predictive models are useful primarily because they give a lot of structure to a project. For
many customers, it’s nice to have a fully developed plan that you can follow throughout the
project’s lifetime. A predictive project makes scheduling simpler, includes documentation that
makes it easier to add new people to the project, and can cost less (if everything goes according
to plan).

 Predictive models have some advantages, but they also have some big disadvantages. Probably the
biggest problem with predictive models is that they don’t handle change well. In today’s constantly
changing business world, projects often have fuzzy, incomplete, or changing requirements. Even the
best predictive project can fail if it results in a powerful application that doesn’t fi t the customers’
needs when it’s fi nished.

 The next chapter describes adaptive development models that handle those kinds of uncertainty
better than predictive models do. They allow you to reassess the customers’ needs and the project’s
status to change direction if necessary.

EXERCISES

1. Indicate which of the following tasks would be better handled predictively or adaptively and
briefl y say why.

 a. Building a pedestrian bridge over a river

 b. Following a series of clues in a scavenger hunt

 c. Making a scavenger hunt for others to follow

 d. Planning a picnic

 e. Planning a picnic in Seattle

 f. Planning a major motion picture

 g. Teaching an introductory programming course

 h. Finding a specifi c restaurant while visiting an unfamiliar city before 1990

 i. Finding a specifi c restaurant while visiting an unfamiliar city with a GPS

 j. Finding a specifi c restaurant while visiting an unfamiliar city in a few years when cars
drive themselves and are plugged into a smart street network

2. Briefl y explain why each of the following projects might be risky predictive projects.

 a. The Federal Aviation Administration (FAA) wants you to rewrite the U.S. air traffi c control
system.

 b. A small archery supply store wants you to write some sales software, but the
two partners can’t agree on exactly what it should do.

Summary ❘ 281

 c. Your customer wants you and your team of fi ve intrepid developers to write a word
processing application as powerful as Microsoft Word in the next three months. (At
double your normal rates!)

 d. A real estate developer wants to build an application that helps design large housing
developments. (Your team just fi nished building a vacation costing application.)

 e. Your customer dumped a 10‐page software specifi cation on your desk and then left on
a 3‐week vacation.

 f. Your customer wants to build a 3‐D printing application that lets you make buildings out
of concrete. (Really, search the Internet for “3‐D printer castle Andrey Rudenko” to see
what one bored contractor did with this idea in his spare time.)

3. Under what circumstances would a predictive model cost less in time and effort than an
adaptive model? Under what circumstances would it cost more?

4. How does waterfall with feedback differ from sashimi?

5. How many increments could you use in an incremental waterfall project?

6. Explain how each of the V‐model decomposition tasks correspond to the integration tasks.
(For example, why does Requirements correspond to Verifi cation and Validation?)

282 ❘ CHAPTER 12 PREDICTIVE MODELS

▸ WHAT YOU LEARNED IN THIS CHAPTER
➤ Predictive development models:

➤ Anticipate the work to be done, schedule it, and then do it.

➤ Work well for short projects where you know in advance everything that you’ll need
to do.

➤ Work poorly if requirements are uncertain or change during the project.

➤ Can be cheaper than adaptive models if everything goes according to plan but can be
much more expensive if you need to make extensive changes.

➤ Adaptive models:

➤ Give you opportunities to change direction.

➤ Work well with changing or uncertain requirements.

➤ In a waterfall model, one phase “pours into” the next. The phases are done in order one after
another.

➤ In a waterfall with feedback, one phase can feed back into the previous phase to make corrections.

➤ In the sashimi model, multiple phases can overlap. Some developers can be working on one
phase while others move ahead to other phases.

➤ The incremental waterfall model uses a series of waterfalls. Each waterfall produces an
increment , a new version of the application that is incrementally improved over the previoust
version.

➤ V‐model shows the correspondence between integration tasks and decomposition tasks.

➤ The software development life cycle includes all the tasks that go into a predictive
development model.

 When to use iterative development? You should use iterative development
only on projects that you want to succeed.

 —Martin Fowler

 Control is for beginners.

 —Deborah Mills‐Scofield

 Iteration is truly the mother of invention.

 —Mary Brodie

 WHAT YOU WILL LEARN IN THIS CHAPTER:

➤ Differences between predictive, iterative, incremental, and agile
approaches

➤ Benefi ts of prototyping and kinds of prototypes

➤ Spiral, Unifi ed Process (plus variations), and Cleanroom
development models

 Predictive software development has some big advantages. It’s predictable, encourages a lot
of up‐front design (hence the nickname big design up front or BDUF), and gives a certain
inevitability to a project.

 Unfortunately, that inevitably can lead to either success or failure. If the design is correct and
everything stays on track, the project is like a luxury train coasting majestically into Grand
Central Station. However, if something goes wrong, the project is more like a train engulfed in
fl ames and speeding toward a dynamited bridge.

 13

284 ❘ CHAPTER 13 ITERATIVE MODELS

 In recent years, software organizations have spent a lot of effort developing techniques that help
keep projects headed in the right direction. Lumping all those models and techniques together would
make for a bloated chapter, so I decided to split them up a bit.

 This chapter discusses one of the techniques that is easiest to apply to any other development model:
iteration. In an iterative model, you build the fi nal application incrementally. You start with a
minimally working program and then add pieces to it, making it better and better, until you decide
the application is as good as it can be (or at least good enough).

 I actually snuck a little iteration into the preceding chapter with the incremental waterfall model.
This chapter focuses on other iterative variations. The next chapter introduces a bunch of other
techniques and approaches that can help keep software engineering efforts on track.

 ITERATIVE VERSUS PREDICTIVE

 The problem with predictive models is that they are ill‐suited to handle unexpected change. They
can deal with small changes (such as customers deciding they want combo boxes instead of list
boxes on their forms), but they don’t handle big changes well (such as customers deciding they want
20 extra reports that are all viewable on a desktop computer, tablet, or smartphone).

 Predictive projects spend a lot of effort at the beginning fi guring out exactly what they will do.
After you gather requirements and commit to a schedule, it’s hard to change course. In theory
you could stop the project at any point and head in a new direction. In practice that rarely
happens. Changing direction in a big way would essentially mean starting over. You would have
to go through the requirements and design phases again. You would also have to abandon all
the work you did in those phases the fi rst time around. If the changes are big enough, this is
practically the same as declaring the project a failure (no one wants to do that) and starting a
new one.

 Even if you manage to point the project in a new direction, there’s no guarantee that you won’t need
to do it all over again. Actually, because your customers have already shown that they’re willing to
put you through all that pain and inconvenience, further changes seem if anything more likely.

 One of the biggest reasons why those changes are so painful is the size of the commitment you’ve
made. If you’re three years into a fi ve‐year schedule, you’ve already invested a lot of effort in the
project and you have a lot to lose. But what if you were only three months into a fi ve‐month plan?
Scrapping the work‐to‐date and starting over would still be annoying, but it would be much less
painful. (You might even get to keep your job.)

 Predictive models also don’t handle fuzzy requirements well. Unless you nail down the requirements
precisely at the beginning of the project, it’s impossible to create a solid schedule. How can you plan
to build something with unknown requirements? (Imagine what would happen if you went to a real
estate developer and said, “We want to build a new shopping mall. We don’t know exactly where it
will be or what it will look like, but start building it and we’ll work out the details later.”)

 Iterative models address those problems by building the application incrementally. They start by
building the smallest program that is reasonably useful. Then they use a series of increments to add
more features to the program until it’s fi nished (if it is ever fi nished).

Iterative Versus Predictive ❘ 285

 Other models also use iterative approaches. Many of the models described in the next chapter use
iterative techniques to help stay on the right track.

 You can even use iterative methods for just one part of a project. For example, you can use iterative
prototyping to refi ne a project’s requirements. After that, you could use waterfall, sashimi, or some
other model to fi nish development.

 Because each increment has a relatively small duration (compared to a predictive project), you’re
committed to a smaller amount of work. If you decide that the project is heading in the wrong
direction, you need to stop only the most recent increment and start a new one instead of canceling
the whole project and starting over.

 Better still, because you can reorient the project before each new increment, you’re less likely to need
to cancel anything.

 You may have trouble foreseeing the direction a predictive project should take four years from now.
It’s much easier to guess where you should be headed four months from now. Even if you decide that
you need to adjust course, you can probably fi nish the current iteration and make the adjustments in
the next one.

 Iterative models also handle fuzzy requirements reasonably well. If you’re unsure of some of the
application’s requirements, you can start building the parts you do understand and fi gure out the
rest later. Sometimes, you’ll learn things building the fi rst part of the system that will make the rest
of the requirements clear. Other times the requirements clarify themselves over time.

 The preceding chapter described an iterative waterfall model that uses a series of waterfall‐style projects
to incrementally refi ne an application. Figure 13-1 shows the stages in an iterative waterfall project.

Increment 2

1. Requirements
2. Design
3. Implementation
4. Verification
5. Deployment
6. Maintenance

Increment 3

Time

Increment 1
1

2
3

4
5

6

1
2

3
4

5
6

1
2

3
4

5
6

 FIGURE 13-1: Iterative models use a series of development efforts to incrementally refi ne an
application.

286 ❘ CHAPTER 13 ITERATIVE MODELS

 The following sections describe some common iterative techniques that you can use to improve a
project’s chance of success.

ITERATIVE VERSUS INCREMENTAL

 Normally, you think of an iterative project as running through several cycles, each of which provides
an incremental improvement over the preceding version. Technically, however, that’s not necessarily
the case, so an iterative project might not be incremental.

 For example, suppose in version 1 of a project you produce a usable application, but its code doesn’t
follow good programming standards. In version 2 you rewrite the code to make the project more
maintainable. Version 2 doesn’t add any new features to the application, so in some sense you might not
think of it as an incremental improvement over version 1. The process is iterative but not incremental.

 Karl Scotland provides an interesting perspective on this issue at availagility.co.uk/2009/12/22/
fidelity‐the‐lost‐dimension‐of‐the‐iron‐triangle . He argues that the difference between
iterative and incremental development is clear if you consider the fi delity of a project’s features. By
fi delity he means the completeness of the feature. For example, a low‐fi delity real‐estate search screen
might let you search for houses by price. A high‐fi delity version would let you search by price, square
feet, number of bedrooms, number of bathrooms, availability of high‐speed Internet, and distance to
the nearest ice cream store. (Karl explicitly avoids the term “quality” for this because he doesn’t want
to get into an argument about releasing low‐quality code. All the code is assumed to be high quality.
It’s just some versions of a feature might do more than others.)

 Now suppose you’re working on a project that provides three features. Here’s how you might use
fi delity to describe different development approaches:

➤ Predictive —Provides all three features at the same time with full fi delity.

➤ Iterative —Initially provides all three features at a low (but usable) fi delity. Later iterations
provide higher and higher fi delity until all the features are provided with full fi delity.

➤ Incremental —Initially provides the fewest possible features for a usable application, but all
the features present are provided with full fi delity. Later versions add more features, always
at full fi delity.

➤ Agile —Initially provides the fewest possible features at low fi delity. Later versions improve
the fi delity of existing features and add new features. Eventually all the features are provided
at full fi delity. (The next chapter says more about agile development models.)

 Figure 13-2 shows a representation of these approaches. The rectangles represent the application’s
features. In the predictive model, the users don’t receive any program until the application is
completely fi nished. The iterative model starts with low‐fi delity versions of every feature and then
improves them over time. The incremental model starts with nothing and then adds new features
with full fi delity. Finally, the agile model starts with some features of low fi delity and over time
improves fi delity and adds more features.

 All four of those approaches end with an application that includes all the features at full fi delity. It’s
the routes they take to get to their fi nal solutions that differ.

Prototypes ❘ 287

 The difference is somewhat pedantic, but it’s probably worth knowing just so you’re not confused
when a senior executive starts throwing around terms he doesn’t really understand.

 PROTOTYPES

 The section “Prototypes” in Chapter 4 briefl y described prototypes. This section provides some
additional details and focuses on how prototypes can be useful in iterative development.

 A prototype is a simplifi ed model that demonstrates some behavior that you want to study.
Typically, a software prototype is a program that mimics part of the application you want to build.

 Two important facts about prototypes are that they don’t need to work the same way the fi nal
application will, and they don’t need to implement all the features of the fi nal application. They just
give you a glimpse of a piece of the fi nal application.

 For example, suppose you’re building a product ordering system. You enter some parameters such as a
date range or a customer ID number, and click a List button to make the system display a list of matching
orders. You can then double‐click to view an order’s details. From the order detail, you can click links to
jump to detailed information about the items in the order or to see the customer’s contact information.

 During the requirements gathering phase, you might build a prototype to let the customers see what
the fi nished application will look like. When you click the List button, the prototype displays a

Version 1

Fi
d

el
it

y
Fi

d
el

it
y

Fi
d

el
it

y
Fi

d
el

it
y

A
g

ile
In

cr
em

en
ta

l
It

er
at

iv
e

P
re

d
ic

ti
ve

Version 2 Version 3 Version 3

 FIGURE 13-2: Different development approaches add features and increase
fi delity in different ways.

288 ❘ CHAPTER 13 ITERATIVE MODELS

The following sections explain some additional details about prototypes.

Types of Prototypes
There are several ways you can use a prototype. Chapter 4 mentioned two important types of
prototypes: throwaway prototypes and evolutionary prototypes. In a throwaway prototype, you use

predefi ned list of orders. When you double‐click an order, the prototype doesn’t display information
for that order. Instead it displays information about a preselected order. Finally, if you click a link
on the order, you can see information about the preselected customer.

This prototype doesn’t work exactly the same way the fi nished application will work. If it did, it
would be the actual application and not just a prototype. However, it lets the customers see what
the application will look like. It lets them click some buttons and links so that they can try out the
program’s method for interacting with users.

After the customers experiment with the prototype, they can give you feedback to help refi ne the
requirements. For example, when they see the order list, they may think of other fi elds they want to
display. After they try double‐clicking to open an order’s detail information, they may decide they
would rather check boxes next to one or more orders and then click a Detail button to open detail
pages for all the selected orders. When they view a customer’s information, they may decide they
want a quick way to see that customer’s order history.

Although software prototypes are often programs, you can make other kind of prototypes using
less sophisticated techniques. For example, you might mock up some screens using pieces of paper
to show customers what the application will look like as they navigate through the system. (A
slightly more high‐tech version might use a PowerPoint slide show instead of pieces of paper.) If an
application includes special hardware, such as a fi ngerprint scanner, you could tape a cardboard
version onto a laptop to show customers what it will look like.

Sometimes, prototypes don’t even have a user interface. For example, suppose you’re writing a
billing application that will process customer charges to generate invoices. You could write a
prototype that fetches a particular customer’s data, calculates outstanding charges, and prints an
invoice. That would let programmers study how the data processing code works before they try to
do the same thing for the entire customer database.

HORIZONTAL AND VERTICAL PROTOTYPES

A horizontal prototype is one that demonstrates a lot of the application’s features
but with little depth. For example, the prototype described earlier that lets a user
pretend to navigate through customer orders is a horizontal prototype. Horizontal
prototypes are often user interface prototypes that let customers see what the
fi nished application will look like.

In contrast, a vertical prototype is one that has little breadth but great depth. The
example described earlier that has no user interface and generates an invoice for a
single customer is a vertical prototype.

Prototypes ❘ 289

the prototype to study some aspect of the system and then you throw it away and write code from
scratch.

 In an evolutionary prototype, the prototype demonstrates some of the application’s features. As the
project progresses, you refi ne those features and add new ones until the prototype morphs into the
fi nished application.

 A third kind of prototyping is incremental prototyping. In incremental prototyping , you build ag
collection of prototypes of that separately demonstrate the fi nished application’s features. You then
combine the prototypes (or at least their code) to build the fi nished application. As is the case with an
evolutionary prototype, the prototype code becomes part of the fi nal application, so you need to use
good programming techniques for all the prototypes. That means coding is slower than it is with a
throwaway prototype. Because the pieces of the system are built from separate prototypes, it may be
easier for different programmers or teams to work on the pieces at the same time. That may let you
fi nish the combined application sooner—although, you do need to allow time to integrate the pieces.

 Pros and Cons
 The following list summarizes prototyping’s main benefi ts:

➤ Improved requirements —Prototypes allow customers to see what the fi nished application will
look like. That lets them provide feedback to modify the requirements early in the project.
Often customers can spot problems and request changes earlier so the fi nished result is more
useful to users.

➤ Common vision —Prototypes let the customers and developers see the same preview of the
fi nished application, so they are more likely to have a common vision of what the application
should do and what it should look like.

➤ Better design —Prototypes (particularly vertical prototypes) let the developers quickly explore
specifi c pieces of the application to learn what they involve. Prototypes also let developers
test different approaches to see which one is best. The developers can use what they learn
from the prototypes to improve the design and make the fi nal code more elegant and robust.

 Programming, like the rest of life, follows the rule of TANSTAAFL: There ain’t no such thing as a
free lunch. Prototyping comes with some disadvantages to go with its advantages:

➤ Narrowing vision —People tend to focus on a prototype’s specifi c approach rather than on
the problem it addresses. When you show customers (and developers) a prototype, they’ll be
less likely to think about other solutions that might do a better job.

 To avoid this problem, either don’t build a prototype until you’ve considered possible
alternatives, or build several prototypes to choose from.

➤ Customer impatience —A good prototype can make customers think that the fi nished
application is just around the corner. They’ll say things like, “The prototype looks good.
Can’t you just add a little error handling and a few extra features and call it done?”

 To avoid this, make sure customers realize that the prototype isn’t anywhere close to the
fi nished application. It’s like a realistically painted cruise ship made out of papier‐mâché. It
may look ready to set sail, but you wouldn’t want to put it in the ocean and climb aboard.

290 ❘ CHAPTER 13 ITERATIVE MODELS

➤ Schedule pressure —This goes with the preceding issue. If customers see a prototype that they
think is mostly done, they may not understand that you need another year to fi nish and may
pressure you to shorten the schedule.

 To avoid this problem, the project manager, executive champion, and other management
types need to manage customer expectations so that they know what will be ready and when.

➤ Raised expectations —Sometimes, a prototype may demonstrate features that won’t be included
in the application. For example, those features might turn out to be too hard. Sometimes,
features are included to assess their value to users, and the features are dropped if they don’t
have enough benefi t. Other times a feature may be present just to show a possible future
direction. In those cases, users may be disappointed when their favorite features are missing
from the fi nished application. This can be a particular problem with projects that release a
series of versions of the application and someone’s pet feature isn’t included in release 1.0.

 To avoid this, make sure customers understand which features will be included and when.

➤ Attachment to code —Sometimes, developers become attached to the prototype’s code. That
can make them follow the methods used by that code (or even reuse the code wholesale) even
if a better design exists. This can be a particularly bad problem with throwaway prototypes
where the initial code might have low quality.

 To avoid this, make sure developers understand that the code should change if a better
design is available. Hold design reviews and code reviews to make sure no one is stuck
following a prototype approach if there’s a better alternative.

➤ Never‐ending prototypes —Throwaway prototypes are supposed to be built relatively quickly
to provide fast feedback. Sometimes, developers spend far too much time refi ning a prototype
to make it look better and include more features that aren’t actually necessary.

 To avoid this, make sure the prototype doesn’t include any more than is necessary to give
customers a feel for how the program will work. Don’t waste time making the prototype
more fl exible than necessary. Do the least amount of work you can get away with. For
example, a prototype rarely needs to use a database. Usually you can just hard‐wire data
into the program to get a feel for how the fi nal program will look. If customers decide they
need to see more, they can say so.

 Prototypes are great for helping you decide on the direction you should take. They can help defi ne
the user interface and other features, make sure customers and developers are on the same page, and
let developers explore different solutions.

SPIRAL

 The spiral model (not to be confused with a “death spiral” or “circling the drain”) was fi rst
described in 1986 by Barry Boehm. He describes it as a “process model generator.” It uses a
risk‐driven approach to help project teams decide on what development approach to take for various
parts of the project. For example, if you don’t understand all the requirements, then you might use
an iterative approach for developing them.

 The general spiral approach shown in Figure 13-3 consists of four basic phases.

Spiral ❘ 291

 In the fi rst phase (which some call the planning phase), you determine the objectives of the current
cycle. You defi ne any alternatives and constraints on the objectives.

 In the second phase (which some call the risk analysis phase), you perform a risk analysis to
determine what the biggest risk factors are that could prevent you from achieving this cycle’s
objectives. You resolve the risks and build a prototype to achieve your objectives. (Note that this
may not be a program. For example, if the goal of the current cycle is to build requirements, then
this will be a set of prototype requirements.)

 In the third phase (which some call the engineering phase), you use the prototype you just built to
evaluate your solution. You perform simulations and model specifi c problems to see if you’re on the
right track. (For example, you might run through a bunch of operational scenarios to see if your
prototype requirements can handle them.) You use what you learn to achieve the original objectives.
After this phase, you should have something concrete to show for your efforts.

 In the fourth phase (which some call the evaluation phase), you evaluate your progress so far and
make sure the project’s major stakeholders agree that the solution you came up with is correct and
that the project should continue. If they decide you’ve made a mistake, you run another lap around
the spiral to fi x whatever problems remain. (You identify the missed objectives, evaluate alternatives,
identify and resolve risks, and produce another prototype.) After you’re sure you’re on the right
track, you plan the next trip around the spiral.

Prototype 2

Prototype 3

2. Risk analysis. Evaluate
alternatives. Identify
and resolve risks. Build a
prototype.

3. Use the prototype to
perform simulations and
model problems. Fix
problems and produce a
result.

1. Determine objectives,
alternatives, and
constraints.

4. Plan the next
iteration.

Prototype 1

 FIGURE 13-3: The spiral process uses four phases.

292 ❘ CHAPTER 13 ITERATIVE MODELS

 The next trip around the spiral builds the application design. The team evaluates design alternatives,
identifi es and resolves the major risks, and builds a prototype design. Team members analyze the
design and verify that it makes sense. The prototype design then becomes the design.

 For a concrete example, consider Figure 13-4 . The fi rst trip around the spiral builds the project
requirements. The team examines alternatives, identifi es the largest risks (perhaps the customers’
performance requirements are unclear), resolves the risks, and builds a prototype set of
requirements. Team members then use the prototype to analyze the requirements and verify that
they are correct. At that point, the verifi ed requirements become the actual requirements.

Design

Requirements

Objective:
Requirements

Objective:
Design

Objective:
Implementation

Application

Im
plem

entation

Alte
rnative

s

Re

quire
ments

Alte
rnative

s Requirem
ents

Prototype

D
esign

Prototype

A
pp

lication

Prototyp
e

Program

ming

D
etailed

D
esign

Unit

Testing

Integration

Testing
D

esign Verification

and Validation

Acceptance

Testing

Requirements

Validation
Desig

n

Alte
rnative

s

RiskAnalysis

RiskAnalysis

A
nalysis

RiskAnalysis

A
nalysis

A
nalysis

 FIGURE 13-4: In this project, the major risks were requirements, design, and implementation.

Spiral ❘ 293

 The fi nal trip around the spiral drives the application’s implementation. The team evaluates
implementation alternatives (although they’re probably used to a particular development approach
already). They identify risks (perhaps previous projects have had maintenance issues) and resolve
them (they decide to have more code reviews). The team then builds an operational prototype
that shows how the program will work. They use the prototype to verify that everything is
on track, and then they actually build the application. In this cycle, the implementation steps
are broken down into detailed design, programming, unit testing, integration testing, and
acceptance testing.

 This example doesn’t include every cycle that you might want to perform. For example, you might
want to make separate user interface design or database design cycles.

 Clarifi cations
 Since he initially described the spiral approach, Boehm has made several clarifi cations mostly to
correct mistakes people made interpreting the method. Those clarifi cations include the following:

➤ This is not simply a series of waterfall models drawn in a spiral and executed one after
another to form an incremental approach. In fact, you could use multiple spirals to build
different versions of an application.

➤ The activities need not follow a single spiral sequence. For example, you could spin the user
interface design and database design off into completely separate spirals that both feed into
an overall project cycle.

➤ You can add items, remove items, or perform items in different orders in a specifi c spiral
model as needed. The activities you need to perform depend on the project.

 Boehm further defi ned six characteristics that spiral development cycles should follow:

1. Defi ne tasks concurrently. There’s no need to perform everything sequentially.

2. Perform the following four tasks in each cycle. (Basically they are goals of the four phases.)

a. Consider the goals of all stakeholders.

b. Identify and evaluate alternative approaches for satisfying the stakeholders’ goals.

c. Identify and resolve risks in the selected approach.

d. Make sure the stakeholders agree that the results of the current cycle are correct. Get
the stakeholders’ approval to continue the project into the next cycle.

3. Use risk to determine the level of effort. For example, perform enough code reviews to
minimize the risk of buggy code, but don’t perform so many reviews that you risk fi nishing
late.

4. Use risk to determine the level of detail. For example, put enough work into the requirements
to minimize the risk of the application not satisfying the customers, but don’t over‐specify
requirements to the point where they restrict the developers’ fl exibility.

5. Use anchor milestones. Boehm later added the following anchor milestones to track the
project’s progress.

294 ❘ CHAPTER 13 ITERATIVE MODELS

a. Life Cycle Objectives (LCO) —When the stakeholders agree that the project’s technical
and management approach is defi ned enough to satisfy all the stakeholders’ goals, then
it has reached its LCO milestone.

b. Life Cycle Architecture (LCA) —When the stakeholders agree that the project’s
approach can satisfy the goals and all signifi cant risks have been eliminated or
mitigated, then it has reached its LCA milestone.

c. Initial Operational Capability (IOC) —When there has been suffi cient preparation to
satisfy everyone’s goals, then the project has reached its IOC milestone and should be
installed. The preparations include everything needed to make the project a success. For
example, the application is ready and tested, the user site is set up, the users have been
trained, and the maintenance programmers are ready to take over.

6. Focus on the system and its life cycle rather than on short‐term issues such as writing an
initial design or writing code. This is intended to help you focus on the big picture.

 Pros and Cons
 The spiral approach is considered one of the most useful and fl exible development approaches. The
following list summarizes some of its main advantages:

➤ Its spiral structure gives stakeholders a lot of points for review and making “go” or “no-go”
decisions.

➤ It emphasizes risk analysis. If you identify and resolve risks correctly, it should lead to
eventual success.

➤ It can accommodate change reasonably well. Simply make any necessary changes and then
run through a cycle to identify and resolve any risks they create.

➤ Estimates such as time and effort required become more accurate over time as cycles are
fi nished and risks are removed from the project.

 The following list summarizes some of the spiral approach’s biggest disadvantages:

➤ It’s complicated.

➤ Because it’s complicated, it often requires more resources than simpler approaches.

➤ Risk analysis can be diffi cult.

➤ The complication isn’t always worth the effort, particularly for low‐risk projects.

➤ Stakeholders must have the time and skills needed to review the project periodically to make
sure each cycle is completed satisfactorily.

➤ Time and effort estimates become more accurate as cycles are fi nished, but initially those
estimates may not be good.

➤ It doesn’t work well with small projects. You could end up spending more time on risk
analysis than you’d need to build the entire application with a simpler approach.

Unifi ed Process ❘ 295

For those reasons, the spiral approach is most useful with large high‐risk projects and projects with
uncertain or changeable requirements.

 UNIFIED PROCESS

Despite its name, the Unifi ed Process (UP) isn’t actually a process. Instead it’s an iterative and
incremental development framework that you can customize to fi t your business and projects.

The Unifi ed Process approach is divided into the following four phases:

➤ Inception —During this phase you come up with the project’s idea. (Or as in the movie,
someone else comes up with the project’s idea and makes you think it’s yours.) This should
be a short phase where you provide a business case, identify risks, provide an initial schedule,
and sketch out the project’s general goals. It should not include detailed requirements that
might restrict the developers.

➤ Elaboration —During this phase you create the project requirements. You build use cases,
architectural diagrams, and class hierarchies. You need to specify the system, but you still
don’t want to restrict developers with unnecessarily detailed requirements. The main goals
are to identify and address risks so that the project doesn’t fail later. Normally, this phase is
divided into several iterations with the fi rst addressing the most important risks.

➤ Construction —During this phase you write, test, and debug the code. This phase is divided
into several iterations, each of which ends with a tested, high‐quality working executable
program that you can release to the users. The iterations implement the most important
features fi rst.

➤ Transition —During this phase you transfer the project to customers and the long‐term
maintenance team. Based on feedback from users, you might make changes and refi nements
and then release a new version, so this phase can include several iterations. This phase
includes all the usual transitioning tasks such as staging, building the user environment
(computers, networks, coffee machines, and so forth), user documentation, and user
training.

You can add more phases if you like. For example, you might add the following two phases to model
the application’s life cycle after transition:

➤ Production —During this phase users use the application. The normal Unifi ed Process
assumes that the development team doesn’t continue producing new versions of the
application during this phase.

➤ Disposal —During this phase you remove the application and move users to a replacement
system. If you’re building the replacement, then this phase overlaps with the new project’s
transition phase.

Figure 13-5 shows the relative sizes of the Unifi ed Process phases. A rectangle’s height represents
the resources (mostly the number of people in the development team) required for that phase. A
rectangle’s width represents the amount of time spent on that phase.

296 ❘ CHAPTER 13 ITERATIVE MODELS

The project shown in Figure 13-6 had three elaboration iterations, four construction iterations, and
two transition phases.

Pros and Cons
The following list summarizes some of the main advantages of the Unifi ed Process approach:

➤ The iterative approach to the elaboration, construction, and transition phases enables you to
incrementally defi ne the requirements and assemble the application.

Figure 13-6 shows the relative amounts of different kinds of work during the project’s phases and the
iterations within those phases. For example, implementation work (programming) is relatively light during
inception and elaboration, picks up during the construction iterations, and then tapers off during transition.

C
o

ns
tr

uc
ti

o
n

Tr
an

si
ti

o
n

P
ro

d
uc

ti
o

n

D
is

p
o

sa
l

In
ce

p
ti

o
n

E
la

b
o

ra
ti

o
n

R
es

o
ur

ce
s

Time

FIGURE 13-5: In the Unifi ed Process, construction takes more time and effort than
the other phases.

C2 C3 C4 T1 T2C1E1 E2 E3

Iterations

Inception

Deployment

Test

Implementation

Analysis and Design

Requirements

 Business Modelling

Inception Elaboration Construction

Phases

Transition

FIGURE 13-6: In the Unifi ed Process, the amounts of different kinds of work grow and
shrink during different project phases.

Unifi ed Process ❘ 297

 As you might expect, the advantages and disadvantages of RUP are similar to those for UP.

 There are several variations on UP and RUP. For example, the Open Unifi ed Process (OpenUP) is
a tool that makes using the Unifi ed Process easier. To make OpenUP more accessible to its target

➤ The elaboration iterations focus on risks and risk mitigation to improve the project’s chance
of success.

➤ It can accommodate different development models fl exibly. For example, you could use a
series of waterfalls or an agile approach to the construction phase.

➤ The inception and elaboration phases generate a lot of documentation that can help new
developers join the team later.

➤ It can enable incremental releases if wanted.

 Some of the Unifi ed Process approach’s disadvantages are similar to those of the spiral approach.
The following list summarizes some of the biggest Unifi ed Process disadvantages:

➤ It’s complicated (although not quite as confusing as the spiral approach).

➤ Because it’s complicated, it often requires more resources than simpler approaches.

➤ Risk analysis can be diffi cult.

➤ The complication isn’t always worth the effort, particularly for low‐risk projects.

➤ It doesn’t work well with small projects. You could end up spending more time on inception
and elaboration than you’d need to build the entire application with a simpler approach.

 Like the spiral approach, the Unifi ed Process approach is most useful with large high‐risk projects
and projects with uncertain or changeable requirements.

 Rational Unifi ed Process
 The Rational Unifi ed Process (RUP) is IBM’s version of the Unifi ed Process. It uses the same four
basic phases defi ned by UP: inception, elaboration, construction, and transition.

 It also uses the same standard engineering disciplines (on the left in Figure 13-6): business modeling,
requirements, analysis and design, implementation, test, and deployment. It also adds three “supporting
disciplines”: confi guration and change management, project management, and environment.
(Environment refers to customizing the process for the development organization and the current project.)

 The main advantages to RUP over UP are the tools provided by IBM that make using the process
easier. Those tools include artifact templates, document production and sharing, change request
tracking, visual modeling, performance profi ling, and more.

 ARTIFACTUALLY

 In RUP an artifact is a fi nal or intermediate result that is produced by the project. t
The RUP includes documents (such as design documents and deployment plans),
models (such as use cases and design models), and model elements (pieces of models
such as classes or subsystems).

298 ❘ CHAPTER 13 ITERATIVE MODELS

audience (smallish projects with 3–6 team members working on projects lasting 3–6 months), it
omits most of the optional features provided by RUP, so it’s easier to use.

 OpenUP is part of the open source Eclipse Process Framework. For more information on OpenUP,
see epf.eclipse.org/wikis/openup . For more information on the Eclipse Process Framework, see
www.eclipse.org/epf .

 The Agile Unifi ed Process (AUP) is another simplifi ed version of RUP. It brings agile methods such
as test‐driven development and agile modeling to UP. In 2012, AUP was superseded by Disciplined
Agile Delivery (DAD, not to be confused with your father).

DAD has a structure that’s somewhat similar to UP. In particular, it has the three phases: inception,
construction, and transition. (Elaboration is divided between inception and construction.) DAD
also borrows many techniques from different agile development approaches such as Scrum, Extreme
Programming, Kanban, and others. I won’t say any more about DAD until the next chapter, after
you’ve learned more about those agile approaches.

 CLEANROOM

The Cleanroom model emphasizes defect prevention rather than defect removal. The idea is to
build the application in steps that are carefully monitored and tested to prevent anything bad from
entering into the application. (The name is inspired by the way a manufacturing clean room prevents
dust and other gunk from getting into the manufacturing process.)

The following list summarizes Cleanroom’s basic principles:

➤ Formal methods —Code is produced using formal mathematical methods that help ensure
that the code satisfi es the design models. Code reviews also help verify that the code correctly
implements the required behavior.

➤ Statistical quality control —Code is produced incrementally. Each increment’s quality is
measured to ensure that the project is making acceptable progress.

➤ Statistical testing —Testing uses statistical experiments to estimate the application quality.
(This requires some serious statistical analysis so that you can estimate not only the
application’s quality but so that you can also calculate a level of confi dence for that estimate.)

 Unfortunately, the mathematics needed to do the statistical analysis is quite intimidating. I like
math more than most people (my C# Helper website www.csharphelper.com is littered with
mathematical examples for C# developers) but even I hesitate when faced with statistical testing
models. Some of them are seriously complicated and confusing.

Still, the basic ideas behind Cleanroom are excellent. First, if you don’t let bad code sneak into the
application, then you won’t need to fi x it later.

Second, if you evaluate the quality of the application after every iteration, you can track how
effective your development effort is. You can also fi ne‐tune development if the number of defects
increases in a particular iteration.

Even if you don’t have the tools or expertise to follow the Cleanroom process in every detail, it’s
worth borrowing those two principles.

http://www.eclipse.org/epf
http://www.csharphelper.com

Summary ❘ 299

SUMMARY

 Iterated development is one technique for trying to keep a software engineering project on track.
It lets you periodically review your progress to ensure that the application is heading toward a
result that satisfi es the requirements. It also lets you refi ne and correct the requirements over time if
necessary.

 Prototyping lets you study pieces of an application so that you can make adjustments. Models
such as spiral and Unifi ed Process (and its variants) use iteration to help the development and
requirements eventually meet. Some of those models also place an emphasis on risk management to
reduce the chances of the project failing.

 In addition to keeping a project heading in the right direction, iterative and incremental methods
allow you to release partial implementations of the application if they are useful. The next chapter
describes other techniques that let you give the users partial functionality as soon as possible.

EXERCISES

1. Suppose your customer wants an application with 10 features and insists that the application is
completely useless unless all 10 are implemented with full fi delity. Would there be any benefi t
to iterative, incremental, or agile approaches?

2. Explain why a throwaway prototype inherently uses an agile approach.

3. How does an incremental prototype differ from an incremental project? What would you need
to do to use an incremental prototype in an incremental project?

4. Can you use an evolutionary prototype in a predictive project (such as waterfall)?

5. Can you use an incremental prototype in a predictive project?

6. Look at the project shown in Figure 13-6 . Why might the deployment tasks start during the
elaboration phase instead of at the beginning of the transition phase? What deployment tasks
might you be performing during elaboration? What tasks might you be performing during
construction?

7. Look at the project shown in Figure 13-6 . The testing tasks begin in the inception phase
before the implementation tasks start. What are you testing during inception if there isn’t any
code yet?

8. Look at the project shown in Figure 13-6 . What kinds of code are the team members writing
during the elaboration phase? What kinds of tests are they performing during that phase?

9. Add a new row to the bottom of Figure 13-6 that shows the amount of customer interaction
required during different phases of development for an in‐house project.

300 ❘ CHAPTER 13 ITERATIVE MODELS

10. Draw a diagram showing how the phases of the waterfall model match up with those of
Unifi ed Process. What are the main differences?

11. Indicate whether the following items describe the predictive, iterative, incremental, or agile
approaches.

 a. Features are released as soon as they are useful. Over time, existing features are
improved and new features are added.

 b. Features are released one at a time with full fi delity.

 c. All the application’s features are released at the same time with full fi delity.

 d. Every feature is released quickly with low fi delity and then improved over time.

12. Which approach (predictive, iterative, incremental, or agile) gets a working program to users
the soonest? Latest? What can you say about the timing of the other two approaches?

13. Suppose you’re a real estate developer building a neighborhood containing 100 houses. How
would each of the predictive, iterative, incremental, and agile approaches correspond to home
sales? Assume the “features” of the project are the houses and “releasing a feature” means
allowing people to move into a home. Which of the approaches could work? Which approach
do developers actually use?

14. Suppose you’re a different real estate developer who specializes in more interesting projects.
This time you’re building an amusement park. How would each of the predictive, iterative,
incremental, and agile approaches correspond to opening the park? The “features” of the
project are the rides, snack shops, and games of “chance” (which actually leave little to
chance). “Releasing a feature” means allowing people to ride on a ride, buy greasy food at
high prices, or use darts to try to pop balloons that seem to be made of Kevlar. Which of the
approaches could work?

Summary ❘ 301

▸ WHAT YOU LEARNED IN THIS CHAPTER
➤ Predictive approaches make one big release when everything is done.

➤ Iterative approaches release every feature with low fi delity and then improve fi delity over
time.

➤ Incremental approaches release features as they are fi nished with high fi delity.

➤ Agile approaches combine iterative and incremental approaches. They release features when
they are usable. Over time they improve existing features and add new ones.

➤ A prototype is a simplifi ed model that lets you study the behavior of some part of an
application.

➤ Horizontal prototypes have breadth but little depth. They are typically used to study user
interfaces and show customers what the application will look like.

➤ Vertical prototypes have little breadth and great depth. They are typically used to study
architecture and programming issues.

➤ You don’t reuse the code in a throwaway prototype.

➤ Over time an evolutionary prototype is refi ned and improved until it becomes the fi nished
application.

➤ In incremental prototyping, you build separate prototypes of the application’s features and
then combine them to form the fi nished application.

➤ The spiral model uses a sequence of repeating phases (planning, risk analysis, engineering,
and evaluation) to identify and neutralize project risks.

➤ Unifi ed Process is an iterative and incremental approach that uses the phases’ inception,
elaboration, construction, and transition. The last three phases are iterative.

➤ Rational Unifi ed Process is IBM’s version of Unifi ed Process. Other versions include OpenUP,
Agile Unifi ed Process, and Disciplined Agile Delivery.

➤ Cleanroom uses formal methods, statistical quality control, and statistical testing to prevent
defects from entering an application’s code. Its two principles, “Don’t let bad code into the
application,” and “Evaluate the quality of the application after each iteration,” are worth
using in any development approach.

➤ You shouldn’t ride roller coasters that don’t have full fi delity.

 The problem with quick and dirty, as some people have said, is that the
dirty remains long after the quick has been forgotten.

 —Steve McConnell

 Excellent fi rms don’t believe in excellence–only in constant improvement
and constant change.

 —Tom Peters

 WHAT YOU WILL LEARN IN THIS CHAPTER

➤ General RAD principles

➤ Agile methods

➤ James Martin RAD, XP, Scrum, Lean, Crystal, FDD, AUP, DAD,
DSDM, and Kanban

➤ Principles, roles, and values that are common to several RAD
development approaches

 When you boil down software engineering to its most fundamental level, its goals are simply
to produce useful software as quickly as possible.

 All the software development models described so far focus on the fi rst of those goals:
producing useful applications. They try to ensure that the result meets the specifi cations and
that the specifi cations actually specify something useful. Iterative models such as iterated
waterfall and Unifi ed Process even allow you to change the project’s course of direction in case
it wanders off track or the requirements change over time.

 14

304 ❘ CHAPTER 14 RAD

Techniques such as prototyping help ensure that the specifi cation gives the customer a result that is
useful. Models such as Unifi ed Process emphasize risk management to ensure that the development
effort succeeds. All the models spend at least some effort encouraging good programming
techniques so that the result is robust and maintainable.

None of the models described so far actually focus on the second goal of software engineering:
producing software quickly. That’s not to say those models encourage a lackadaisical approach.
None of them say developers should sit around doing nothing. (Although I’ve met a few developers
who would have done more for their projects if they had done nothing.) Many models help youd
track tasks so that you can quickly decide if a task is falling behind and jeopardizing the project’s
schedule.

However, the models discussed so far don’t focus on increasing development speed. They implicitly
do things to limit the number of bugs, which can save you time in the long run, but they don’t
provide techniques for accelerating development.

This chapter describes rapid application development (t RAD) models. These models incorporate
some of the best features of the models described in the preceding chapters, plus new features that
help developers give useful results to the end user quickly.

RAD VERSUS RAD

 James Martin, one of the pioneers of RAD in the 1980s, described a specifi c
development methodology in his book Rapid Application Development
(Macmillan, 1991). Later the terms rapid application development and RAD
expanded to include a variety of other models that favor rapid development, so
there’s sometimes confusion about the two uses of the term.

This chapter uses rapid application development and t RAD to mean the more
general genre of models. James Martin RAD means his specifi c model.

Some tools also bill themselves as RAD tools. Some of them do provide a
framework that you can use to follow a particular RAD development model.
Others are merely tools that you can use to do things rapidly. For example, rapid
prototyping tools can help you build user interface prototypes relatively quickly
and easily. Those tools can be useful in a RAD project, but they don’t give you a
RAD project.

To see the difference, ask yourself whether you could apply a tool to a non‐RAD
project. For example, could you use a prototyping tool in a waterfall project? Sure.
Could you use James Martin RAD in a waterfall project? Not really.

Similarly, some development environments claim to be RAD environments. For
example, some people consider the Visual Studio development environment to be
a RAD tool. It certainly lets you build programs rapidly and you can easily use it
in a RAD project, but it isn’t inherently RADish, and you could easily use it in a
waterfall project. (In fact, I’ve done that many times.)

RAD Principles ❘ 305

 The techniques used by RAD models push developers to generate as much high‐quality code as
possible as quickly as possible. Some of the techniques may seem a bit strange. They may seem even
stranger if you have experience with software engineering, depending on which development models
you’ve used before.

 Some of the methods may seem counterintuitive or some sort of “touchy‐feely” new age nonsense
focused more on the developers than on the code. Remember that the code is written for the
programmers, not for the computer. The computer can read any gibberish you dump into the
compiler. Code must be written for people if you want them to read, understand, debug, modify,
and maintain it. That means it’s essential to keep the developers happy and productive.

 RAD PRINCIPLES

 One of the driving forces behind RAD is the idea that things always change. As Heraclitus said,
“The only thing that is constant is change.” He didn’t mention software requirements because he
lived roughly between 535 BC and 475 BC, but if he had known about software engineering, he
probably would have pointed out that requirements change often.

 Sometimes, at the end of a project, the customers realize that the requirements didn’t accurately describe
their needs. Even though the application satisfi es the requirements, it doesn’t satisfy their needs.

 Other times the customers’ needs change during the project’s development. The company’s goals,
competition, or customer desires change, so by the time the application is ready, no one wants it.

 Those facts lead to an obvious problem with big design upfront (BDUF) models: by the time an
application is fi nished, it doesn’t satisfy the customers’ needs. Iterative models help keep a project on
track, but they have their limits. If you perform a new iteration every year or so, you could wander
far off track before you realize you’re heading in the wrong direction.

 RAD methods take iterative ideas to the extreme. Instead of using iterations lasting a year or two,
their iterations last a month, a week, or even less. Some RAD techniques also apply iteration to
everything, not just to programming. They apply iteration to requirement gathering, requirement
validation, and design.

 The following list summarizes some of the most common techniques used in RAD development models:

➤ Small teams (approximately one‐half a dozen people or fewer). That leads to projects of
limited scope. (Six people probably can’t write a million‐line application in a year.)

➤ Requirement gathering through focus groups, workshops, facilitated meetings, prototyping,
and brainstorming.

➤ Requirement validation through iterated prototypes, use cases, and constant customer testing
of designs.

➤ Repeated customer testing of designs as they evolve.

➤ Constant integration and testing of new code into the application.

➤ Informal reviews and communication among team members.

➤ Short iterations lasting between a few months and as little as a week.

306 ❘ CHAPTER 14 RAD

As with all software engineering approaches, RAD models have their share of advantages and
disadvantages. The following list shows some general RAD advantages:

➤ More accurate requirements. The customers can adjust the requirements as needed during the
project.

➤ The ability to track changing requirements. If requirements must change (within reason), the
project can start tracking the new requirements in the next iteration.

➤ Frequent customer feedback and involvement. In addition to helping keep the project on
track, this keeps the users engaged with the project.

➤ Reduced development time. If everything goes smoothly, you don’t spend as much time
writing requirements in excessive detail.

➤ Encourages code reuse. One of the key RAD ideas is to do whatever it takes to get the
current iteration done. If an existing piece of code does what you need it to do (or even
almost what you need it to do), timeboxing encourages you to use that code instead of
writing something new.

➤ Deferring complicated features for later releases. Doing just enough work to get the job done.

➤ Timeboxing , which is RADspeak for setting a tight delivery schedule for producing something,g
usually the next iteration of the application. The scope can change (for example, you might
defer a feature to the next iteration), but the completion date for the iteration cannot.

ITERATION 0

Agile models sort of assume the project begins in the middle. The project starts and
you’re immediately zipping through iterations producing high‐quality increments
for the customers.

In practice, projects generally need some startup time to put things in place for
later development. During that period, you’ll set up the team’s hardware, install the
development environment, and fi nd out which local restaurants provide late night
delivery.

You’ll also meet the customers and fi nd out generally what the project is about.
You’ll probably build different kinds of models describing the system you’re going
to build, gather requirements, and do everything else that needs to be done before
you actually start iterations.

You can think of those activities as a separate stage before the project starts if you like
(or if that lets you claim those tasks shouldn’t count toward your budget), but some
developers call those startup‐oriented boot‐strapping kinds of activities iteration 0 .

While you’re performing those startup tasks, you’re not delivering value to the
customer, so agile projects generally try to keep iteration 0 as short as possible.
These tasks are important, but the sooner you start iteration 1, the sooner you can
deliver something to the customers. So keep iteration 0 simple.

RAD Principles ❘ 307

➤ Possible early releases with limited functionality.

➤ Constant testing promotes high‐quality code and eases integration issues.

➤ Risk mitigation. Before each iteration, you can look for potential risks and handle them.

➤ Greater chance of success. BDUF projects sometimes spend a lot of time following an
incorrect path before discovering they’re heading in the wrong direction and they need to
be radically redone or even canceled. Frequent increments allow RAD projects to detect and
correct problems quickly before they become insurmountable.

 The following list summarizes some general RAD disadvantages.

➤ Resistance to change. It can be hard to get existing software engineering groups to
adopt new RAD models, particularly given how odd some of their techniques can seem.
(A nineteenth‐century blacksmith’s apprentice would be more comfortable with pair
programming than many BDUF programmers.)

➤ Doesn’t handle large systems well. Big systems require a lot of effort, and that usually means
a lot of people. The communication overhead alone makes it hard to run large projects in a
RAD model. (If you can partition the project into nicely disconnected pieces, you may have a
chance.)

➤ Requires more skilled team members. Every team member does not need to be a
programming Obi Wan Kenobi, but small RAD teams can’t include too many complete
beginners.

➤ Requires access to scarce resources. Frequent customer interaction is essential to keep the
project on track. Often that interaction must be with customers who are experts in their
fi elds, and those people tend to be in high demand.

➤ Adds extra overhead if the requirements are known completely and correctly in advance.

➤ Less managerial control. Many managers have trouble allowing a project to head off in its
own ever‐changing direction. (If you think of the project as a hunting pack chasing a fox
wherever it leads, a manager may wonder what happens if the pack scents a rabbit.)

➤ Sometimes results in a less than optimal design. (See the following text.)

➤ Unpredictability. Some customers just want to know how much and how long, and they
really aren’t interested in shaping the application throughout its development.

 A RAD project’s small iterations occasionally lead to a suboptimal design. Sometimes, the best design
is too big to implement in a single iteration, so a RAD approach won’t get there incrementally.

 As an analogy, consider the International Space Station (ISS). Because it was built from pieces that
had to squeeze into a rocket, it was constructed incrementally over many years involving more
than 115 space fl ights and 180 spacewalks. It’s amazingly complicated and a remarkable feat of
engineering, but I can’t help thinking it would be different if it hadn’t been built incrementally.
Perhaps something more like the torus‐shaped Elysium habitat from the movie of the same name.
(And what would Apple have designed if they’d been given the job? I’m sure it would have been
elegantly beautiful, cost fi ve times as much, and been called the iStation or perhaps iISS.)

308 ❘ CHAPTER 14 RAD

 JAMES MARTIN RAD

 James Martin’s original RAD model uses the following four phases.

➤ Requirements planning —During this phase, the users, executive champion, management,
team leaders, and other stakeholders agree on the project’s general goals and requirements.
The requirements should be specifi ed in a general way so that they don’t restrict later
development unnecessarily. When the stakeholders agree on the requirements and the project
receives approval to continue, the user design phase begins.

➤ User design —The users and team members work together to convert the requirements into
a workable design. They use techniques such as focus groups, workshops, prototyping, and
brainstorming to come up with a workable design.

➤ Construction —The developers go to work building the application. The users continue to
review the pieces of the application as the developers build them to make corrections and
suggestions for improvements.

➤ Cutover —The developers deliver the fi nished application to the users. (You can use the usual
cutover strategies such as staged delivery, gradual cutover, or incremental deployment.)

The user design and construction phases overlap with the users constantly providing adjustments
to the developers in a sort of continuous feedback loop. The project iterates the user design and
construction phases as needed. When the application has met all the requirements, it is delivered to
the users.

Figure 14-1 shows the way a James Martin RAD project moves through its four phases.

Requirements
Planning

Construction
User

Design

Cutover

 FIGURE 14-1: In James Martin RAD, the user design and
construction phases iterate until the application meets its
requirements.

Agile ❘ 309

 AGILE

 Agile development is more a set of guidelines than an actual development model. It includes a
set of principles that its founders believe can help with any development effort. Because it’s a
set of guidelines, there are many ways you can interpret its rules. For example, people often say
a particular method is “an agile technique” because it attempts to address one or more of the
guidelines.

 In 2001 a group of developers got together at Snowbird resort in Utah to talk about lightweight
alternatives to BDUF methodologies such as waterfall and Spiral. After their discussions (and
I suspect a lot of skiing), they published the Manifesto for Agile Software Development. Thet
following text shows the manifesto (which you can also read at agilemanifesto.org):

 We are uncovering better ways of developing software by doing it and helping others do it.
Through this work we have come to value:

Individuals and interactions over processes and tools

Working software over comprehensive documentation

Customer collaboration over contract negotiation

Responding to change over following a plan

 That is, while there is value in the items on the right, we value the items on the left more.

 Kent Beck James Grenning Robert C. Martin

 Mike Beedle Jim Highsmith Steve Mellor

 Arie van Bennekum Andrew Hunt Ken Schwaber

 Alistair Cockburn Ron Jeffries Jeff Sutherland

 Ward Cunningham Jon Kern Dave Thomas

 Martin Fowler Brian Marick

 © 2001, the above authors
this declaration may be freely copied in any form, but only in its entirety through this notice.

 Some of the original authors later formed the nonprofi t Agile Alliance (www.agilealliance.org) to
promote agile development ideas.

 Like any good manifesto, this one’s values are general enough to apply to just about any situation.
Of course, that also makes them fl exible enough to use in support of all sorts of arguments that may
not make sense.

 For example, the value “Working software over comprehensive documentation” is sometimes used
to justify providing little or no documentation. (“But the Agile Manifesto says I don’t have to write
any documentation!” See my tirade about just‐barely‐good‐enough documentation in the section
“Code Documentation” in Chapter 2 , “Before the Beginning.”)

 The manifesto’s site and the Agile Alliance site provide some elaboration to make it a bit easier
to understand exactly what the authors had in mind. For example, the following paragraph by

http://www.agilealliance.org

310 ❘ CHAPTER 14 RAD

Jim Highsmith from the manifesto history page (agilemanifesto.org/history.html) clarifi es
some of the authors’ ideas:

The Agile movement is not anti‐methodology, in fact, many of us want to restore
credibility to the word methodology. We want to restore a balance. We embrace modeling,
but not in order to fi le some diagram in a dusty corporate repository. We embrace
documentation, but not hundreds of pages of never‐maintained and rarely‐used tomes. We
plan, but recognize the limits of planning in a turbulent environment. Those who would
brand proponents of XP or Scrum or any of the other Agile Methodologies as "hackers"
are ignorant of both the methodologies and the original defi nition of the term hacker.

From this paragraph and the manifesto, you can take a couple of useful tidbits of information.

➤ Agile is not a methodology. You can use it to enhance methodologies.

➤ Modeling is okay but not just for the sake of crossing off some item required by management.

➤ Documentation is great but not hundreds of pages that will never be used. (So you probably
shouldn’t pay documenters by the number of pounds of documentation they generate.)

➤ Planning is good, but be aware that plans don’t always work out in a changing environment.

➤ Some of the authors were tired of being called hackers.

In addition to the manifesto itself, the manifesto’s website lists the following 12 guiding principles
(at www.agilemanifesto.org/principles.html).

 1. Our highest priority is to satisfy the customer through early and continuous
delivery of valuable software.

 2. Welcome changing requirements, even late in development. Agile processes
harness change for the customer’s competitive advantage.

 3. Deliver working software frequently, from a couple of weeks to a couple of
months, with a preference to the shorter timescale.

 4. Business people and developers must work together daily throughout the project.

 5. Build projects around motivated individuals. Give them the environment and
support they need, and trust them to get the job done.

 6. The most effi cient and effective method of conveying information to and
within a development team is face‐to‐face conversation.

 7. Working software is the primary measure of progress.

 8. Agile processes promote sustainable development. The sponsors, developers,
and users should be able to maintain a constant pace indefi nitely.

 9. Continuous attention to technical excellence and good design enhances agility.

http://www.agilemanifesto.org/principles.html

Agile ❘ 311

 Self‐Organizing Teams
 The eleventh agile principle touts the wonders of self‐organizing teams. So what is a self‐organizing
team and how can you organize one (so to speak)?

 A self‐organizing team is one that has the fl exibility and authority to fi nd its own methods for
achieving its goals. Teams with different levels of authority may also set their own goals, track their
progress, and even pick the team members.

10. Simplicity—the art of maximizing the amount of work not done—is essential.

11. The best architectures, requirements, and designs emerge from
self‐organizing teams.

12. At regular intervals, the team refl ects on how to become more effective, then
tunes and adjusts its behavior accordingly.

 Most of these are reasonably self‐explanatory, so they don’t need further explanation, although I
will say a bit about self‐organizing teams shortly.

 Notice that the agile values and principles don’t actually tell you how to implement them. For
example, the second principle says you should welcome changing requirements, but it doesn’t say
whether you should do that with Sashimi, James Martin RAD, or some other approach. You could
even use an incremental waterfall; although accommodating change late in the development process
would be harder. Methodologies such as Scrum and Extreme Programming, which are described
later in this chapter, were designed with the agile values and principles in mind, so they generally do
a good job of following them.

 WHAT’S AGILE ENOUGH?

 The fact that you can apply the agile values and principles to different development
models makes them useful in a lot of situations. Unfortunately, it also can make it
diffi cult to decide whether a particular development approach is “agile enough.”

 Suppose you’re at a job interview and your prospective boss asks, “Have you ever
worked on an agile project?” If you’ve used Scrum, Kanban, or one of the other
well‐known agile methods, then you can safely say “yes.”

 If you’ve used James Martin RAD, which by my reckoning gets a grade of B on the agile
scale, then it’s probably safe to say “yes” and then add a few words of explanation.

 If you added only a few agile techniques such as pair programming and test‐driven
development (described later in this chapter) to a waterfall project, then you should
probably say, “No but…” and then explain exactly what you did. It’s better to leave the
interviewer thinking, “Well, he didn’t use an agile model, but he understands some of
the agile techniques,” instead of, “The fool thinks waterfall is agile! Next applicant!”

312 ❘ CHAPTER 14 RAD

For comparison, the opposite of a self‐organizing team is a micromanaged team where the manager
tells everyone else exactly what to do and when. (For more information on micromanagement, read
some Dilbert cartoons.) t

The members of a self‐organizing team are motivated so they take on work without waiting for it to
be assigned. They take responsibility for their work and track their own progress. If problems arise,
they aren’t afraid to ask for help either inside or outside of the team.

The increased sense of ownership the members feel often makes them more enthusiastic and effective
at fi nding good solutions to problems. Ideally, they’ll attack any problem that stands in their way
eagerly and relentlessly. In practice, you may need to draw straws to see who gets stuck with that
one messy chore no one wants, but most of the time the team members can divide up the work in a
way that makes everyone more or less happy.

The members communicate as a team to ensure that the group is working toward its goals (which
may be set outside of the team, at least at a high level). To communicate effectively, the team
members must feel safe. They need to trust each other to use feedback constructively. One way to
help make that kind of trust possible is to adopt the rules of egoless programming described in the
section “Have Someone Else Test Your Code” in Chapter 8 , “Testing.”

STORMING THE RIDGE

For an example of a self‐managing team, imagine a common scene in war movies.
The platoon’s advance is stymied by enemy fi re and the sergeant yells, “Johnson,
I need you and two ‘volunteers’ to take out that machine gun nest!” The sergeant
doesn’t care how the job gets done or who does it as long as the problem is eliminated.

 Johnson might pick his two closest buddies and run screaming up the hill, fi ring from the
hip, only to be gunned down just as he drops a satchel charge into the enemy emplacement.
Or he and his comrades might lob a few RPGs over the ridge until they get lucky and hit
the target. Or he might say, “Sarge, let’s retreat a mile or two and call in an airstrike.” It’s
up to Johnson and his two unfortunate friends to come up with a solution. (As the most
dramatic, the fi rst solution would probably be the one picked by the movie’s director.)

TRUST ME

If you don’t think this kind of trust is essential, try this experiment. Hold a meeting
and ask for ideas about some company issue—how to improve the cafeteria food,
keep the lunch room clean, chase the geese off the lawns, whatever. The instant
someone offers a suggestion, shout them down and tell them how stupid their idea
is. Then see if you can get any suggestions out of the others.

Actually you should probably skip that experiment. You may never gain everyone’s
trust. Although it’s amazing how many annual company meetings I attended that
had more or less that format. People would make suggestions and then upper
management would explain why it was a bad idea and dodge any questions.

Agile ❘ 313

 Unfortunately, self‐organizing teams don’t always arise spontaneously. Even if you assemble a group
of competent, motivated people and tell them to organize themselves, you’ll probably need to keep
an eye on them. Instead of guiding them like a traditional manager would, you can encourage them
to take the initiative and then offer support when they need it. Hopefully, they’ll eventually leave
you behind and start running the show on their own.

 For some more information on self‐organizing teams, search the Internet. Following are two articles
that can get you started:

➤ “What Are Self‐Organizing Teams?” at www.infoq.com/articles/
what‐are‐self‐organising‐teams

➤ “Self‐Organizing Teams: What and How” at https://www.scrumalliance.org/
community/articles/2013/january/self‐organizing‐teams‐what‐and‐how

 Agile Techniques
 Although the agile manifesto doesn’t tell you how to implement the values and principles, there are
several techniques that are fairly common to most agile methods. The following sections describe
some of those techniques.

 Communication
 Agile projects use frequent (sometimes practically continuous) customer communication to keep
the project on track. The customers examine the most recent iteration and then offer corrections,
suggestions, and change requests. The developers adjust the next iteration accordingly.

 Unfortunately, if every customer is talking constantly to every developer, no one has time to get
anything done. To improve effi ciency, most methods appoint a primary customer representative who
becomes the main point of contact between the customers and the developers.

 Sometimes, the development team also has a primary contact, often the project manager or
technical lead. If the customer contact and developer contact have the authority to make decisions
for their respective groups, they can handle most of the communications and leave everyone else free
to perform their other duties.

 CUSTOMER MANAGEMENT

 I was once on one project that started to have a communication avalanche near the
end of the development phase. The customers were excited and eager to see what
was happening, so they started calling the developers to get progress reports. At
one point, every developer could expect one or two calls every day and we were
losing about 10 developer‐hours per day.

 At that point the project manager made some new rules. At 3:00 p.m. each day,
he held a conference call to update any customers who wanted to hear about the
project’s status. Then he would answer any questions they had.

continues

http://www.infoq.com/articles/what-are-self-organising-teams
https://www.scrumalliance.org/community/articles/2013/january/self%E2%80%90organizing%E2%80%90teams%E2%80%90what%E2%80%90and%E2%80%90how
http://www.infoq.com/articles/what-are-self-organising-teams
https://www.scrumalliance.org/community/articles/2013/january/self%E2%80%90organizing%E2%80%90teams%E2%80%90what%E2%80%90and%E2%80%90how

314 ❘ CHAPTER 14 RAD

Because each iteration is thoroughly tested, bugs are caught as quickly as possible. That makes them
easier to fi x because they’re most likely to be in the current iteration’s code. It also means the code
has high quality, so you don’t need to waste time fi xing old bugs in later iterations.

The goal of each iteration is to have a fully tested application that has high enough quality that you
could release it to users. You may not want to actually do that, however, if the iteration doesn’t add
enough new features to the project. It’s often better to save up the changes and make fewer bigger
releases every few months rather than bombarding the users with a new version every week. For
example, Table 14-1 shows a possible build schedule for a three‐month project.

Many methods use one or more big boards to display the project’s current status. The boards are
placed where everyone can see them frequently, so everyone knows exactly where the project stands
at all times. (Some people call this board the information radiator or just the big board.)d

Some development models use frequent meetings to make it easier for the developers to
communicate. For example, in Scrum the team meets every day in a “daily standup” where everyone
reviews what they did since the last meeting, what they plan to do before the next meeting, and
what might stand in their way. Because there are so many meetings, they must start on time and be
short to avoid wasting a lot of precious developer time.

Incremental Development
Agile projects are iterative and incremental. The iterations are relatively short, with durations of a
week to a couple months. Iterations are timeboxed to keep the project moving briskly along.

Each iteration incorporates every development step, including requirements analysis, design,
programming, testing, and verifi cation. An iteration is basically a mini‐project all by itself.

CROSS‐FUNCTIONAL TEAMS

It’s also helpful if every team member has a good understanding of every part of the
iteration process. In other words, everyone should understand requirement analysis,
design, programming, testing, and the rest. That way anyone can spot a problem
with any piece of the development process and fi x it.

If every member of the team understands all the development functions, the team is
called cross‐functional. l

We didn’t really need a single customer contact at that point because the project
was settling down into its fi nal form, so communication was mostly one‐way from
the team to the customers. That approach may not work on every project, but it
worked well for that one.

(continued)

Agile ❘ 315

 TABLE 14-1: Release Schedule for a Three Month Project

WEEK BUILD TYPE VERSION

1 Test 0.1

2 Test 0.2

3 Test 0.3

4 Test 0.4

5 Release 1.0

6 Test 1.1

7 Test 1.2

8 Release 2.0

9 Test 2.1

10 Test 2.2

11 Test 2.3

12 Release 3.0

 VERSION SCHEMES

 Different development environments have different version numbering schemes. For
example, Visual Studio breaks version information into four pieces. Version 1.2.3.4
means major version 1, minor version 2, build 3, and revision 4.

 You can use those fi elds to give meaning to an application’s versions. For example,
you could use the fi elds for the following purposes:

➤ Major —This represents a new major release with signifi cant new features.
Major releases come out once or twice a year.

➤ Minor—All nonmajor releases are minor releases.
continues

 Every week the developers build, test, and debug the application. The builds made at the end of
weeks 5, 8, and 12 are released to the customers. Note that you don’t necessarily need to decide
which builds will be released when you start the project. You can just wait until the application has
enough new and useful features to justify a new release.

 The test builds are point releases , so the application’s minor version number increases by 1. In the
release builds, the application’s major version number increases by 1.

316 ❘ CHAPTER 14 RAD

After each iteration, the customers (or customer representatives) review the build to see if the project
is still heading in the right direction. Then they can provide feedback.

The most critical type of feedback is a “go/no go” decision. If the project has been hopelessly
derailed, it may be best to cancel it and move on, possibly to a new project that takes a different
approach.

In some sense, deciding to cancel a project is similar to deciding whether to fold in poker. The goal
in poker isn’t to build the best possible hand. The goal is actually to decide as quickly as possible
whether you’re going to beat the other players’ hands. If you don’t think you can win, you should
fold as quickly as possible before you put too much money in the pot.

Similarly, if a software project won’t succeed, it’s better to decide that as early as possible so that
you can cancel it before you waste a lot of time and resources on it.

(Bluffi ng isn’t supposed to be part of the metaphor. In poker, you can try to convince the other
players that you have a winning hand even though you don’t, hoping they’ll all fold and leave you
the pot. In software development, you generally shouldn’t try to keep a dying project alive, but
I have seen managers keep a project alive long enough to jump to another project and dump the
zombie project on someone else.)

Focus on Quality
I’ve said it before but I’ll say it again (and probably again until you’re sick of hearing about it): In
agile projects, all development must have high quality. Because of the fast iteration cycle, developers
don’t have time to spend chasing down bugs that entered the code months ago.

It’s much better to take a little extra time to write good, solid code than it is to rush through the
programming and have to fi x it later—and then fi x the fi xes—and then fi x those fi xes. As Lewis
Carroll wrote, “The hurrier I go, the behinder I get.”

Programming takes up a large percentage of an agile project’s time, so agile methodologies
have developed many techniques for making it easier and faster to write solid code. The section
“Incremental Development” earlier in this chapter explained how rapid iteration helps lead to high‐
quality code. Other agile techniques that improve code quality include unit and integration testing,
pair programming, and test‐driven development. (I’ll say more about pair programming in the
next section. I’ll say more about test‐driven development in the section “Test‐Driven and Test‐First
Development” later in this chapter.)

➤ Build —Each weekly build gets a new build number.

➤ Revision —Builds that are not fi nal weekly builds get a new revision number.

For example, suppose you released version 3.0.0.0 last month, and version 3.1.0.0 last
week. During this week’s testing, you make builds 3.1.0.1 through 3.1.0.13. After you
get a fi nal weekly build properly tested and debugged, you rename it 3.1.1.0.

(continued)

XP ❘ 317

 XP

Extreme Programming (g XP) isn’t called extreme because you do it while hang gliding, ice climbing,
or base jumping. It’s called extreme because it takes normal programming practices to extreme levels.

 For example, consider code reviews. Traditional programming models use periodic code reviews
to improve code quality. Every week or so, some or all the developers get together to walk through
someone’s code to look for problems and possible improvements. Code reviews also let you
determine whether the code satisfi es its design requirements. Code reviews are a good practice, but
they have a couple of drawbacks (even if everyone programs egolessly).

 For one thing, code reviews can take a lot of time. If everyone on the team spends a couple hours
every week in code reviews, that’s time they aren’t writing code. To save time, code reviews often
cover only a small fraction of the code. The team members can apply the ideas and techniques
discussed during a review to other pieces of code, but it would be better if every piece of code were
reviewed.

 Another drawback to traditional code reviews is that they aren’t held right after the code is written. If
you hold reviews weekly, some of the code could be a week old by the time it’s reviewed. That’s better
than not reviewing the code at all, but the code isn’t completely fresh in the programmer’s mind.

 You can improve code reviews by examining more of the code and doing it closer to the time it
was written. Instead of reviewing 20 percent of the new code weekly, what if you could review
40 percent of the code twice a week? Or 75 percent of the code every other day? Taking this idea to
the extreme, what if you could review every single comment and line of code as it was being written
when the digital ink wasn’t even dry? Sounds ridiculous, doesn’t it?

 Actually, that’s just what the Extreme Programming technique of pair programming does. In pair
programming , two (or possibly even three) programmers sit in front of the same monitor and workg
on a piece of code together. One of them (called the driver or pilot) controls the keyboard. As he t
types, the driver keeps up a steady monologue explaining what he’s doing. Or more properly, the
monologue explains what the driver thinks he’s doing.

 One benefi t of the stream-of-consciousness monologue is that it slows the driver down and forces
him to think about his own code. Often when I’ve taught programming classes, simply making
students explain what their code is doing is enough for them to fi nd their own mistakes.

 The second programmer of the pair (called the observer , rr navigator, or rr pointer) watches andr
reviews each line of code as it is typed. The observer makes sure the code makes sense and does
what the driver thinks it does. The observer can also think about possible improvements or future
changes. Basically, the observer performs an extreme, real‐time, line‐by‐line code review. The
two programmers switch roles frequently so they both stay fresh.

 In practice, pair programming has been shown to have several advantages. It improves quality,
largely because the code is constantly reviewed by two programmers with slightly different points
of view. Pair programming takes more time (in person‐hours), but it more than compensates
by reducing the number of bugs. The programmers are more confi dent in their code, learn to
communicate more easily, and share knowledge constantly so that they can learn new skills. Most
programmers even fi nd pair programming more fun.

318 ❘ CHAPTER 14 RAD

XP Roles
Many agile models defi ne specifi c roles for the people participating in the project. The following list
summarizes the most common XP roles:

➤ Customer —Defi nes the requirements, verifi es that the application meets the users’ needs, and
provides frequent feedback to keep development on track. Sometimes, several customers may
be involved, but on a daily basis, a single on‐site customer usually plays the main customer
role.

➤ Tracker —Monitors the team members’ progress and provides useful metrics.

➤ Programmer —Defi nes the application’s architecture and writes the code.

➤ Coach —Helps the team work effectively, self‐organize, and use good XP practices.

➤ Tester —Helps the customer write and perform acceptance tests for use cases; looks for
missing requirements and holes in the design.

➤ Administrator —Sets up and maintains the team members’ computers, network, and
development tools.

Exactly which roles are used on different projects varies somewhat. For example, some teams add
extra roles such as a doomsayer who looks for trouble and a manager who goes to meetings and
generally acts as an interface between the team and the outside world.

Some of these roles can also be combined. For example, the administrator is usually also a
programmer, and the manager might also be the tracker.

Some combinations of roles should not be allowed. For example, a programmer probably shouldn’t
be combined with the customer, tester, or tracker.

PAIR PROGRAMMING PROBLEMS

Earlier in this chapter, I said that one disadvantage to RAD techniques is resistance
to change. It’s often hard to get people to adopt new techniques, and pair
programming is a good example.

Programmers who have worked alone often fi nd it hard to switch to pair
programming. It feels unnatural having someone constantly looking over your
shoulder. Some programmers eventually get used to it, but it may be a tough transition.

Pair programming is also sometimes used by management as an excuse for removing
the developers’ personal space. Anyone who does more than performing simple
implementation tasks sometimes needs somewhere quiet to sit and think without
interruption. (And I don’t mean the library.) They need an offi ce where they can shut
out the world and focus on complex problems. If developers spend all their time in
shared offi ces or large group areas, they won’t fi nd the best solutions to tough problems.

Communication is important but not to the point of distraction.

XP ❘ 319

 XP Values
 Like agile, XP has a collection of values and principles. Following are the values:

➤ Communication —The requirements must be communicated from the customers to the
developers so that everyone acquires a common vision of the system’s goals. Communication
is aided by simple designs, extensive collaboration, frequent interaction, shared metaphors,
and regular feedback.

➤ Simplicity —XP encourages simple designs. The application should start with the simplest
possible approach, and then more features are added later only if necessary. Sometimes, this
approach is referred to as “you ain’t gonna need it” (YAGNI, pronounced YAG‐nee).

➤ Feedback —Frequent unit and integration tests provide feedback about the code’s quality.
Customers give feedback through periodic reviews (every couple weeks) about the
application’s direction and usability. The developers give feedback to customers about how
diffi cult and time‐consuming changes will be. Finally, pair programmers give each other
feedback on their designs and code constantly.

➤ Courage —Developers must have the courage to:

➤ Start with simple solutions even when they know of more complicated approaches.
(Solve the problems of today, not those of tomorrow.)

➤ Refactor code when necessary.

➤ Throw away code when necessary.

➤ Provide feedback.

➤ Respect —This value was added in the second edition of the book Extreme Programming
Explained: Embrace Change by Kent Beck and Cynthia Andres (Addison‐Wesley, 2004).
This includes respect for others as well as self‐respect. Team members respect the project by
striving for higher quality and never committing code to the project that will break the build.
They respect others and consider their feedback.

 XP Practices
 XP projects use an assortment of practices to satisfy the XP values. There are some variations in the
specifi c practices used by different XP projects, but they all have more or less the same fl avor. The
following list gives some of the most common of those practices:

➤ Have a customer on site.

➤ Play the planning game.

➤ Use standup meetings.

➤ Make frequent small releases.

➤ Use intuitive metaphors.

➤ Keep designs simple.

➤ Defer optimization.

320 ❘ CHAPTER 14 RAD

➤ Refactor when necessary.

➤ Give everyone ownership of the code.

➤ Use coding standards.

➤ Promote generalization.

➤ Use pair programming.

➤ Test constantly.

➤ Integrate continuously.

➤ Work sustainably.

➤ Use test‐driven and test‐fi rst development.

The following sections provide more detail about those practices.

Have a Customer On Site
If possible, keep a customer on site so that the developers can ask questions whenever necessary.
Ideally, that customer should have the authority to make decisions so that work can keep moving
without waiting for management approval. (You don’t want to try to get three levels of management
to sign off on a design change during the winter holiday season! You may as well go home until the
middle of January.)

Give the customer an offi ce, cubicle, futon, or whatever work space is appropriate for your
environment. Make sure the customer feels like a team member and not an interloper trespassing on
your territory.

Play the Planning Game
The planning game has two parts: release planning and iteration planning.

During release planning, the team focuses on the next customer release. To do that (and to make the
process more like a game and less like work), user stories are written on cards. The team shuffl es the
cards around and tries to determine how many of the cards can be implemented in time for the next
customer release.

Developers ensure that the time estimates for the stories are reasonable. Customers help decide
which stories are most important. Together the developers and customers create a release plan that
is realistic and that gives the customers the functionality they need most as quickly as possible.

You need to create a realistic release plan. Sometimes, the customers may pressure the developers to
reduce the time allowed for crucial tasks. The developers need to resist to ensure that the fi nal plan
is sensible. An unrealistic release plan will only cause headaches for everyone later.

The second part of the planning game is iteration planning. At the beginning of each iteration
(usually every 1 to 3 weeks), the team gets together to develop a plan for that iteration. The team
selects user stories from the current release plan, starting with the most important outstanding
stories.

XP ❘ 321

 The team can adjust the tasks to give the iteration a reasonably short length. If the task estimates
make the iteration too short, you can add a few more tasks from the release plan. If the iteration
seems too long, you can defer a few tasks until the next iteration. You can also break a task into
smaller subtasks if necessary to achieve the right iteration length.

 Use Standup Meetings
 Start each day with a standup meeting , a brief meeting that lasts 15 minutes or less. All team g
members (including the onsite customer) must attend the standup meeting and briefl y tell what they
did since the last meeting, what they hope to achieve before the next meeting, and any problems
they foresee in getting that work done.

 The meeting is called a standup meeting because typically the participants remain standing to
encourage brevity. If you have a fi ve‐person team and you want to hold the meeting to 15 minutes,
everyone needs to stay focused. (You do the math.)

 You can hold the meeting in front of the Big Board and refer to it if necessary. You may also want
to hold the meeting fi rst thing in the morning while everyone is fresh and before people get deeply
involved in their tasks. (Of course, people may have different ideas about what “fi rst thing in the
morning” means and not everyone is fresh at 8:00 a.m. Use some self‐organized negotiation.)

 The iteration plan should also include any items from the previous iterations that haven’t passed
their acceptance tests. For example, if the customers decide they want a particular feature changed,
that change goes in the current iteration plan.

 After the team has picked the most critical tasks to add to the next iteration, the developers pick the
tasks they will perform (in good self‐organizing fashion). Each developer estimates the amount of
time needed for the tasks he picked. (Note that different people may need different amounts of time
for the same tasks.) Ideally, each task should take no more than one to three days.

 SPIKE IT

 In XP, a spike or spike solution is a quick throwaway prototype used to explore a
solution to a particular problem. You can use a spike to study a possible approach
to see if it will work, to compare different approaches, or to make a better estimate
of how diffi cult a task will be to reduce planning risk. If you’re unsure about how
to do something or how long something will take, spike it.

 ADDING VARIETY

 If weather permits, try occasionally turning a standup meeting into a short walk
outside (as long as you don’t need to refer to the Big Board). You can adjust the
duration and speed of the walk according to the team members’ physical condition
and enthusiasm.

322 ❘ CHAPTER 14 RAD

Standup meetings have the nice side effect of keeping developers focused on their tasks. If you
tell everyone you’re going to design the vehicle inventory tables today, you either need to do it or
tomorrow you’ll need to admit to everyone that you didn’t.

The standup meeting removes the need for most other meetings, but you can have others if you need
to address a particular problem. For those meetings, only the people directly involved should attend,
so the rest of the team can keep working on their tasks.

As any effective manager can tell you, you should try to keep all meetings focused and on track. A
meeting should have a purpose other than running out the clock until quitting time.

Make Frequent Small Releases
Ideally, each release should have a relatively short timeframe so that you can give the customers
useful software as soon as possible. This also lets you get frequent feedback from the
customers. The longer it is between releases, the farther off course the project can wander before
it’s corrected.

You can think of each release as checking a roadmap. If you don’t check the map often enough, then
your trip from Indiana to Mississippi might take you through North Carolina.

Frequent iterations also force you to perform integration tests so that you can fl ush out bugs sooner.

Use Intuitive Metaphors
If possible, use easy‐to‐understand metaphors to describe the system. If the customers and
developers share a common metaphor, they are more likely to share a common vision of the
application.

For example, many websites use a shopping cart metaphor. Just telling visitors they have a shopping
cart lets them make several reasonable assumptions. For example, they know they can add things
to the cart, remove things from the cart, and go to the checkout area to buy whatever is in the cart
at the time. Other common programming metaphors include the waste basket, desktop, fi le, and
document. If you can describe your system with an intuitive metaphor, it will be easier for the users
to learn.

Keep Designs Simple
Use the simplest design that can handle the immediate task. If you have to, you can modify the
design later to satisfy later needs. If you make the design overly complicated now, you may end up
wasting a lot of time building fl exibility that you never use.

Defer Optimization
This is a hard rule for many developers to accept. You spend years in school learning the most
effi cient ways to store data, sort numbers, and search databases. Now you’re told to throw all that
away and ignore optimization.

Unfortunately, highly optimized code is often complicated, confusing, hard to debug, and even
harder to modify later. Combine that with the fact that few software engineering projects fail due to
slow performance, and it’s clear that you shouldn’t optimize code unless it’s absolutely necessary.

XP ❘ 323

 Give Everyone Ownership of the Code
 The team should have the sense that everyone owns all the code so anyone can change any piece of
code as necessary. In a self‐organizing team, you have the power to modify all the code if you need to.

 Most code doesn’t actually need to be all that fast. Modern computers, memory, databases,
networks, and other pieces that make up a system are so fast that they spend most of their time
sitting around twiddling their electronic thumbs waiting for the user to do something anyway. Does
it really matter whether a screen pops up in 10 milliseconds or 2 milliseconds if it then takes the
user one‐half a second to notice it’s even there? Probably not.

 In most projects, a relatively small amount of the code (as low as 5 or 10 percent) determines
the overall speed of the application. Start with no optimization. Later if the performance is
unacceptable (and only if it’s unacceptable), use a code profi ler to fi gure out which parts of the code
are wasting the users’ time and optimize only those pieces of code.

 I have seen several projects fail because they didn’t work. I’ve never worked on a project that failed
because it worked correctly but too slowly.

 I worked on one project that was so slow a user could make a single change to a sales model and
then wait 20 minutes for the analysis to update. The user would review the results, make another
change, and then wait another 20 minutes. The company continued using the application for years
despite its amazingly bad performance!

 First make the application work. Then make it work faster only if absolutely necessary.

 Refactor When Necessary
 Because you’re keeping the design simple, you’ll sometimes need to rework old code to make it do
new things. Don’t be afraid to refactor when necessary.

 This is one of the places where you may lose time over a BDUF project. If a BDUF design is correct,
you can start by implementing the fi nal design. XP tells you to use the simplest possible design to
handle your current needs and then refactor it later if necessary, so you sort of sneak up on the fi nal
design. The refactoring takes extra time that the BDUF project doesn’t spend (at least in theory).

 GETTING A JUMP ON REFACTORING

 I’m not a big fan of being intentionally stupid. (That’s why I seldom listen to
politicians’ speeches.) The idea behind the “start simple and refactor if necessary”
approach is that most of the time you’ll avoid doing unnecessary work and you’ll
need to refactor only occasionally.

 If you’re absolutely positive that you’re going to need some other design feature
at a later point, you should at least write the code so that it’ll be easier to refactor
later. In particular, the observer can tell the driver to insert comments in the code
indicating where that refactoring might occur.

 Better still, move the feature that will later require refactoring into the current
iteration. Then the simplest design possible will not require refactoring later.

324 ❘ CHAPTER 14 RAD

Use Coding Standards
To make it easier for every team member to modify any piece of code, the team should adopt coding
standards and conventions. If all the code uses a consistent style, it’s easier for anyone to read,
understand, and modify.

Promote Generalization
Encourage team members to learn about every piece of the system. Ideally, everyone should know
as much as possible about every nook and cranny in the application. That helps with the preceding
goal of allowing anyone to work on any piece of code. It also lets all the team members acquire new
skills and become more valuable team members. Some day you may want to offer the summer intern
a permanent job.

Again on the theme of not being intentionally stupid, if your team includes a Ph.D. in algorithms
research, the other team members may have some trouble following all the details about how your
MMO’s differential intelligence swarming algorithm makes the zombies chase the players. That
doesn’t mean you shouldn’t try. You may not fi gure it all out, but you can probably learn something.

For more typical programming tasks, such as database design, user interface creation, and
integration with external systems, everyone should at least pick up the basics.

Use Pair Programming
This gives you constant code reviews. See the earlier description of pair programming for details.

Test Constantly
Test thoroughly, test everything, test often. Even if a piece of code passes all its tests in one iteration,
keep testing it in future iterations. You may not fi nd a mistake in that piece of code, but its tests mayt
uncover a problem in some other related piece of code.

Automate as much of the testing as possible so it’s easier to run the tests. Tests that are easy to run
are more likely to be run and run more frequently.

However, there’s sometimes an advantage to having a particular person work on a piece of code. For
example, it might be better if the senior algorithms expert works on the tricky algorithm that forms
the heart of your application instead of letting the high school summer intern mess up the code.
That shouldn’t be a problem because the algorithm guru will probably pick that task during the
planning game.

In general, however, no one should need to wait for someone else to work on a particular piece of code.

CODE COORDINATION

Use document and code management systems to ensure that only one team member
works on a particular document or piece of code at any given time. You want
everyone to be able to modify any piece of code, but not at the same time.

XP ❘ 325

 When you fi nd a bug, add a new test that would detect the bug sooner in that code and in other
pieces of code if possible. Add it to the test suite so that you can catch similar bugs in the future.

 Test, test, test!

 Integrate Continuously
 The entire application should be rebuilt, integrated, and tested as frequently as possible to fl ush
out bugs. Many teams rebuild and test the system weekly or even every night. If the testing is
automated, you can kick it off before you turn out the lights on your way out the door and then
review the test log fi rst thing in the morning.

 That doesn’t mean developers will never have unfi nished code lying around. If a task will take three
days, it won’t be ready for two nightly builds. In cases like that, you should keep your new code in
your own separate directory and add it to the project’s main code repository only after you have it
fi nished and thoroughly tested so that you don’t break the project’s build.

 You can make integration testing a bit easier if you dedicate a computer to just that purpose. None of
the developers should use it for day‐to‐day programming chores, so it doesn’t become cluttered with
the developers’ unfi nished novels, fantasy football playoff brackets, and pictures of cats using poor
grammar. You may even want a separate staging computer where you can prepare for release deliveries.

 Having a dedicated integration computer also ensures that only one programming pair can integrate
at a time, so pairs don’t trip over each other.

 Work Sustainably
 This doesn’t mean you should use computers made only from bamboo and powered by solar panels.
(Although that would be very cool!) It means you need to set a working pace that all the team members
can keep up indefi nitely. Short release and iteration cycles provide a lot of benefi ts, but you should keep
them short by not including too much in each cycle, not by making the developers work 60‐hour weeks.

 Encourage (by force if necessary) developers to work only 40‐hour weeks and discourage overtime.

 Pushing the team to meet arbitrarily shortened deadlines leads to burnout, crankiness, and employee
turnover. Rested developers are more enthusiastic and productive.

 Use Test‐Driven and Test‐First Development
 In test‐driven development (t TDD), you start with a piece of code, which might initially be empty
or a stub that doesn’t do anything. You then pick a function that the code should perform and you
write a test that would verify that the function worked properly if the code did it.

 Next, you see if it passes the test. Normally, the code fails because you haven’t yet given it any code
to perform the function you’re testing. If the code does somehow pass the test, then it was a crummy
test because the code doesn’t perform the function yet! In that case, write another test and try again
until the code fails.

 After the code fails, write new code to perform the function. Add the simplest piece of code that can
satisfy the test and nothing extra. Don’t anticipate future functions by writing code to handle them,
too. You’ll get to that later.

326 ❘ CHAPTER 14 RAD

Now run the new test(s) plus any previous tests that you wrote for earlier functions. If all goes well, the
code passes all the tests this time. If the code fails, fi x the code and try again until it passes all the tests.

When the code passes all the tests, refactor if necessary to clean up the code and move to the next
function. Because each incremental piece of code you added satisfi es only the current test and does
nothing more, you’ll often need to refactor to integrate the separate pieces into a maintainable
section of code.

Figure 14-2 shows the TDD process in a fl owchart.

FIGURE 14-2: In test‐driven development, you write a test for each
function before you write the code to perform the function.

Pick a new
function

Write a test for
the function

Does the code
pass the test?

Refactor as
neededWrite code

Does the code
pass all tests?

Yes

Yes

No

No

Test‐fi rst development is closely related to test‐driven development. In test‐fi rst development (t TFD),
you write all the unit tests for a piece of code before you write the code. You then write all the code.
You can add more tests if you think of them while you’re writing the code. After you write the code,
run the tests and fi x the code if it doesn’t pass.

IS TDD TFD?

Some developers use test‐fi rst development to mean any method where you write
tests before you write code. By that defi nition, test‐driven development is one kind
of test‐fi rst development. I prefer the “write all the unit tests fi rst” defi nition.

The difference is that in TDD you sneak up on the fi nished code a bit at a time in the smallest
possible steps. In TFD you write all the tests at once and then you write all the code at once.

The main advantage to TFD is that it enables you write the unit tests before your brain is
contaminated with knowledge about how the code works. That means you’re more likely to build

Scrum ❘ 327

tests that look for correct and incorrect results instead of testing to see if the code works the way you
think it does. After all, the code may work the way you think it does and still not do the right thing.

 SCRUM

 Scrum was named after a procedure in rugby that the teams use to put the ball back into play after
an accidental rule violation such as the ball going out of bounds. The players huddle together in a
big interlocked mob, and then someone throws the ball under the players’ legs. The players try to
hook the ball out with their feet and take possession of it.

 I actually think it’s a strange word to use for a software development method. In rugby both teams
are locked in the scrum and fi ghting against each other for control of the ball, which is hardly a
model for the kinds of cooperation you’d like in a software development team. Perhaps it’s the way
something useful pops out of a big chaotic pile of people pushing against each other that reminds
people of software engineering.

 Scrum Roles
 The members of a Scrum team play three roles.

➤ Product owner —Represents the customers, users, and other stakeholders. The product
owner writes user stories to describe the project’s goals and then prioritizes them. The
resulting prioritized list of wanted features is called the product backlog . (I’ve always thoughtg
“backlog” was a somewhat harsh term implying you’re already behind and playing catch‐up.
Starting a project with a huge backlog feels kind of like being born owing back taxes.)

 As the liaison between the development team and the stakeholders, the product owner has
the following duties.

➤ Defi nes the requirements and verifi es that the product meets those requirements

➤ Sets requirement priorities; helps determine which requirements make it into the next
iteration given resource constraints

➤ Keeps the stakeholders posted on the project’s status; demonstrates the product to
the stakeholders

➤ Plans and announces releases

➤ Provides a point of contact between the stakeholders and developers

 The product owner generally shouldn’t modify an iteration while it is underway; although,
he can make changes in the next iteration and can cancel an iteration if necessary (for
example, if the product owner decides the biggest goal of the sprint is obsolete).

➤ Team member —These are the self‐organized cross‐functional team members who build the
application. During each iteration, each team member helps handle all the typical tasks you need
to write a decent piece of software (analysis, design, program, test, document, and so forth).

➤ Scrum Master —The Scrum Master acts as a remover of obstacles for the team. This person
also ensures that the team follows good Scrum practices, challenges the team to improve,

328 ❘ CHAPTER 14 RAD

and sometimes leads meetings. Typically, a Scrum Master isn’t a project manager because the
team is self‐organizing, so it guides itself. Some even say that adding a project manager to a
Scrum project makes things harder. (Note that most Scrum Masters don’t like being called
Scrum Bags; although some might be okay with the title Scrum Lord.)

 Notice how homogenous most of the team members are. The product owner and Scrum Master
are different, but everyone else is part of the same egalitarian team, sharing duties and guiding
themselves in a good self‐organizing manner.

 Scrum Sprints
 A Scrum project creates a series of timeboxed incremental iterations, which are usually called
sprints . In traditional Scrum, a sprint is 30 days long; although some people prefer shorter sprints of
one, two, or three weeks.

 The result of each sprint is a fully tested and approved piece of software, which is sometimes called
a potentially shippable increment (t PSI). You could actually deploy a PSI to the users; although, you
may want to wait and release a version of the application only when there are enough new features
to justify the inconvenience to the users.

 Before each sprint begins, the team holds a sprint planning meeting . Typically, that meeting is g
timeboxed to four hours so that it doesn’t take up too much time.

 During that meeting, the product owner decides which user stories should be selected for the
upcoming sprint. The goal is to provide the greatest benefi t to the users in each iteration, so the most
useful items should be selected. Fixes for any outstanding bugs should also be included.

 The developers can ask for clarifi cation and point out any potential problems. When the meeting is
done, the selected items are moved from the product backlog into the sprint backlog . The product g
owner is then usually asked to disappear (but stay close in case of questions) while the developers
break the user stories into tasks.

 After the sprint’s goals and tasks have been defi ned, the developers roll up their sleeves, divide up
the tasks, and really get to work. They analyze the tasks, design solutions, write code, and test.

 During the sprint, the team holds a quick 10–15 minute daily scrum (sometimes called a “standup,”
although “scrum” seems more scrummy) where each developer answers the Three Questions of
Agile Development:

➤ What did you do since the last scrum?

➤ What do you hope to accomplish before the next scrum?

➤ What obstacles do you see in your way?

 If a developer sees looming obstacles, the Scrum Master looks into them (to earn the coveted title
Remover of Obstacles.)

 After all the work is done, the sprint ends with a sprint review meeting . The development team g
presents the current PSI to the product owner, who checks the results against the items that were
originally selected for the sprint to make sure the sprint’s goals have been met. If the application can’t
handle even part of any of the user stories, the product owner can fl ag that story as unfi nished.

Scrum ❘ 329

 After the sprint review meeting, the Scrum Master and the development team hold a retrospective
meeting where they discuss the recent sprint. Here they discuss the three big questions about anyg
development method and particularly any iterative method:

➤ What went well and how can we make it happen again?

➤ What went poorly and how can we avoid that in the future?

➤ How can we improve the next sprint?

 Planning Poker
 In Scrum, planning poker (also called Scrum poker) is a game you can play to decide how muchr
work a particular task might be. Each team member gets a deck of cards with values based roughly
on the Fibonacci sequence. In that sequence, each number is the sum of the two previous numbers:
0, 1, 1, 2, 3, 5, 8, 13, 21, etc.

 The cards used for the planning game are modifi ed somewhat, but the idea is that task lengths
typically follow a distribution similar to the numbers in the Fibonacci sequence.

 What that means is that fi ne distinctions between the durations of large tasks aren’t very
meaningful. For example, the difference between a one‐hour task and a two‐hour task is quite large,
but the difference between a 21‐hour task and a 22‐hour task isn’t. The difference is still one hour,
but the uncertainty in estimating the task’s duration is likely to be more than an hour anyway, so
you can’t really tell which of the two large tasks is harder.

 Some teams use actual playing cards and give each player an ace, 2, 3, 5, 8, and king, where the
king represents a task too big or too complicated to talk about presently.

 You can also make your own decks or buy commercially available decks. Some decks use the values
0, 1, 2, 3, 5, 8, 13, 21, 34, 55, and 89. Others use qualitative values such as extra‐small, small,
medium, large, and extra‐large.

 Other decks use 0, ½, 1, 2, 3, 5, 8, 13, 20, 40, and 100. Those are similar to the Fibonacci numbers
with some rounding to make them a bit more palatable. (It’s more intuitive to tell the customers that
a feature will take a nice round 40‐hour week instead of 34 hours because a value such as 34 implies
an unrealistic level of certainty.)

 Some decks also include a question mark card to indicate that an item will take an unknown
amount of time, and a coffee cup card to indicate that you need a break.

 After everyone has a card deck, the game begins. The meeting moderator, who normally doesn’t
play the game, reads a user story and then leads a brief discussion of restrictions, risks, and
assumptions. (Some teams use an egg timer to ensure that the team doesn’t spend too much time on
any single story.)

 The players select cards from their decks and place them face‐down on the table. When everyone is
ready, they turn their cards over simultaneously.

 Having the players turn their cards over at the same time helps prevent anchoring , a phenomenon ing
which early decisions anchor later decisions. For example, suppose you’re trying to decide whether
you want to assign a task a 2 or 3, but then another team member plays a 34. You might decide that

330 ❘ CHAPTER 14 RAD

you grossly underestimated the task and decide to bump up to an 8. Playing your cards at the same
time gets more honest estimates from everyone.

After everyone plays a card, the people with the highest and lowest estimates are given a soapbox
to explain why they feel their estimate is correct. Who knows? The guy who played a 34 when
everyone else played 2 or 3 might know something that everyone else doesn’t.

After the soapboxing, you gather up your cards and do it again. You repeat the process until the
group reaches a consensus for that item. Write down the number of points for that story (called its
number of story points) and move on to the next item. s

When you’re done, you’ll have a list showing estimates of the diffi culty of all of the project’s user stories.

Burndown
Scrum uses burndown charts to measure progress. A burndown chart shows the amount of work t
remaining plotted over time. A sprint burndown chart shows the amount of work for a sprint.t
A product burndown chart (also called a t release burndown chart) shows the amount of workt
remaining for the whole project.

 You can measure the amount of work in story points, expected number of hours of work, or any
other measurement you fi nd useful. You can let the chart’s X‐axis show the date or, for a project
burndown chart, the sprint number.

 Figure 14-3 shows a product burndown chart. When you know the total amount of work and the
project’s planned duration, you can calculate an ideal burndown by assuming you can do the same
amount of work in every sprint.

80

70

60

50

40

30

20

10

0
0 1 2 3 4 5

Sprint

St
o

ry
 P

o
in

ts
 in

 B
ac

kl
o

g

6 7

Ideal

Actual

8 9 10 11

 FIGURE 14-3: A project burndown chart shows the amount of work remaining for each sprint.

Scrum ❘ 331

 As the project continues, some sprints will be more productive than others, so the actual progress
won’t follow the ideal burndown exactly. You can use the burndown charts (which should be posted
on the project’s big board so that everyone can see them) to decide if the project is getting too far off
of its targets.

 In Figure 14-3 , the project started a bit slowly but caught up to the ideal burndown and even pulled
ahead after sprints 3 and 4. During sprint 5, the project lost ground, either because new goals were
added to the project backlog or because some tasks turned out to be harder than expected. The
project caught up again during sprint 9 but then slowed down a bit and fi nished one sprint later
than planned.

 Velocity
 A project’s velocity represents the amount of work the team can perform during a sprint. To
calculate the velocity during a sprint, simply add up the number of features the sprint delivered. To
calculate the number of features, you can use story points, backlog items, or any other measure that
you fi nd useful.

 For example, suppose your team implements 12 story points during a sprint. Then the velocity
during that sprint is 12.

 Usually, after a few sprints the team’s velocity becomes relatively stable and you can use it to estimate
how much work future sprints can accomplish. However, there are a couple of reasons why velocity
might fl uctuate. For example, Scrum teams are usually fairly small (somewhere around three to nine
people), so adding or removing a single person can make a big difference. Removing one person from
a four‐person project means losing 25 percent of your staff. Because the sprints are relatively short,
you may even see this effect if a single developer takes a week’s vacation or is sick for a few days.

 Velocity will also vary if you change the length of the sprints; for example, switching from four
weeks to two weeks.

 Because Scrum focuses on project management and not developmental details, you can combine
it with other development methodologies. For example, you can use Scrum to set up the iterations
used in an XP project.

 BOOK BURNDOWN

 Sometimes, I use a chart similar to the one in Figure 14-3 to track my progress
while writing a book. I plot the average number of pages I need to have written for
each day plus the number of actual pages I’ve written. That lets me see at any point
whether I’m on schedule or falling behind. Unless I keep a careful track constantly,
it’s easy to fall far behind, and then catching up can be hard.

 In practice, rather than telling me how far behind I am, the chart usually shows
me how far ahead I am. That lets me decide how much goofi ng off I can do (things
like maintaining the C# Helper website www.csharphelper.com , making audio
training lessons, answering e‐mail, eating, and sleeping).

http://www.csharphelper.com

332 ❘ CHAPTER 14 RAD

LEAN

Lean Software Development (also called simply t Lean or LSD) isn’t a much‐needed attempt to help
programmers lose weight. (Actually, all agile methods should help by maintaining a sustainable
pace, so programmers have time to get some exercise instead of sitting in front of their keyboards
all day. Whether they decide to actually go out and get that exercise instead of going home to watch
YouTube videos is their decision.)

 Instead, Lean is an application of principles learned in lean manufacturing to software engineering.
The idea behind Lean is to keep the application as lean and fat‐free as possible. Nothing should go
into the application that isn’t there for a good reason.

 Like Scrum, Lean focuses on managing iterations of development. Lean focuses more closely
on gathering the right requirements and ensuring that only essential ingredients get into each
iteration.

Lean Principles
 Like some other agile methods, Lean defi nes a set of guiding principles.

➤ Eliminate waste —Anything that doesn’t contribute directly to the project should be regarded
as waste and eliminated. That may include such items as:

➤ Unclear requirements. (Clarify or eliminate them.)

➤ Unnecessary features and code. (Don’t make the code unnecessarily fl exible.)

➤ Unnecessary repetition. (Some ways to avoid repetition include refactoring to make
methods that perform common tasks, automating testing, and keeping records so
that you don’t need to make the same decisions twice.)

➤ Unnecessary meetings and bureaucracy. (It’s every developer’s dream to eliminate
those!)

 If something doesn’t add to customer value, leave it out. If you can leave something out and
still achieve the project’s goals, leave it out.

➤ Respect the team —Give the team the respect and authority it needs to work effectively. Help
the team self‐organize.

➤ Defer commitment —Don’t make decisions until you know enough to make them
intelligently. If you can’t make a decision on a feature, design, or other element without
making a lot of assumptions, defer the feature until a later iteration. Don’t start building
grand designs until the customers know what they need. Explore alternatives before deciding
on which approach to use.

➤ Deliver quickly —Use frequent short iterations to deliver value to the customers as quickly as
possible.

➤ Build knowledge —Learn as much as possible. Use prototypes and other methods to learn
requirements. Use early testing to learn about bugs before they’re hard to fi nd. Use short
iterations to ensure that development is on the right track.

Crystal ❘ 333

➤ Build quality in —Validate assumptions throughout the project. If an old assumption no
longer applies, discard it. If new assumptions arise, add them. Ensure the project has an
integrated, consistent feel. Refactor if the code loses its integrity and becomes hard to
maintain and modify.

➤ See the whole —The team should be cross‐functional so everyone can work on every step
of development (analysis, design, programming, and so forth). Everyone should see the
big picture, and spot and fi x problems in any part of the system. No one should think of a
problem as someone else’s problem. If the project has a problem, everyone has a problem.

 Like Scrum, Lean focuses on project management and not developmental details. That means you
can combine it with other development methodologies. For example, you can use Lean ideas to set
the goals for an XP project’s iterations.

 CRYSTAL

 Crystal isn’t actually a development model. Instead it’s a family of development methodologies
developed by Alistair Cockburn in the 1990s that all have the word “Crystal” in their names. The
rest of each method’s name is a color that indicates a project’s size. For example, Crystal Clear (the
most popular color) is intended for small projects.

 The following list shows the Crystal method names and the numbers of developers they generally support:

➤ Crystal Clear (1–6)

➤ Crystal Yellow (7–20)

➤ Crystal Orange (21–40)

➤ Crystal Orange Web (21–40)

➤ Crystal Red (41–80)

➤ Crystal Maroon (81–200)

➤ Crystal Diamond (201–500)

➤ Crystal Sapphire (501–1,000)

 The project’s criticality is gauged by the types of items that are at risk:

➤ Comfort

➤ Discretionary money

➤ Essential money

➤ Life

 For example, a game would have comfort criticality and a nuclear power plant control system would
have life criticality.

 Figure 14-4 shows the possible combinations of the two dimensions: color and criticality.

334 ❘ CHAPTER 14 RAD

All the Crystal methods have the following seven common features.

➤ Frequent iterations —Frequent iterations result in releases. In critical projects, only some of
the releases might be delivered to the users; although the customers can view the others to
provide feedback.

➤ Constant feedback —The team meets regularly to discuss development and ways it can be
improved. The team also meets with customers to keep the project on track.

➤ Constant communication —Team members should be located at the same location so that
they can communicate easily and frequently. For small projects, they should ideally be in the
same room (which the developers will probably give an amusing name such as The Pit, The
Clubhouse, or The Thunderdome).

➤ Safety —Crystal projects defi ne three kinds of safety. First, team members can express their
opinions safely without fear of blame. Second, the project should be safe in the sense that it
should fi nish on time and within budget. Third, you need to consider the project’s criticality
(comfort, discretionary money, essential money, and life). That kind of safety is more crucial
in medical and fl ight software than it is in an online game.

➤ Focus —Team members should be given enough time to focus on their key items without
interruptions such as phone calls, meetings, or requests to help the boss set up a printer.

The values in the table’s body show an abbreviation that tells you a project’s criticality and size.
For example, a project involving discretionary money with 35 project members would be a D35
(Orange) project.

Comfort

Clear
1-6

Discretionary
Money

Essential
Money

Life

C6

D6

E6

L6

Yellow
7-20

C20

D20

E20

L20

Orange
21-40

C40

D40

E40

L40

Red
41-80

C80

D80

E80

L80

Maroon
81-200

C200

D200

E200

L200

Diamond
201-500

C500

D500

E500

L500

Sapphire
501-1,000

C1000

D1000

E1000

L1000

FIGURE 14-4: Crystal defi nes a matrix of color and criticality combinations.

WHERE’S CRYSTAL ORANGE WEB?

Crystal Orange Web was a special case designed by Alistair Cockburn to produce a
continuing stream of applications for public use in an E50 project. (Yes, I know the
table would make that a Red project, but Cockburn decided to call it Orange.) The
Orange Web model doesn’t seem to have been used much, but Cockburn believes it
may have some value because many businesses seem to be headed toward this sort
of never‐ending development cycle.

Crystal ❘ 335

(The Crystal rules say developers should be guaranteed at least two uninterrupted hours per
day, and that they should remain with a project for at least two days before being moved to
another project—although both of those seem minimal to me.) The focus of the project should
also be clearly stated so that everyone knows exactly what the goals are. The project leader
should prioritize tasks so that team members know what their highest priority tasks are.

➤ Easy access to expert users —The developers should be able to talk to the expert users to ask
questions and request feedback. The Crystal rules say the expert should be available to meet
at least two hours per week and be available for phone calls.

➤ Testing support —The team’s environment should include automated testing and continuous
integration to spot problems quickly. It should also include code management so that
problematic code can be isolated and replaced with an earlier working version if necessary.

 A key assumption in the Crystal family is that larger projects need more formalization to keep the
developers organized. In a small four‐developer Crystal Clear project, you can usually get away with
a verbal understanding of the customers’ needs, informal developer meetings, and a cross‐functional
team where everyone pitches in on everything.

 That approach won’t work with a 150‐developer Crystal Maroon project. For such a large project,
you’ll need to add extra management tools such as a project hierarchy with multiple teams, more
specialized roles (such as team leaders, a project manager, and testers), and progress tracking.

 You also need to adjust the amount of control the project uses depending on its criticality. For
example, a Crystal Clear online game project could have fairly fl exible requirements and play
testing. In contrast, a similarly sized life‐critical project would need formal requirements, extensive
testing, and rigorous verifi cation.

 However, given that different projects need different amounts of management and different levels of
formality, the Crystal philosophy is that you should pick the minimal combination that can still do
the job.

Everything should be made as simple as possible, but not simpler.

 — Albert Einstein

 Crystal’s lightest colors are the most studied and used, so they’re the ones described in the following
sections.

 Crystal Clear
 Crystal Clear is a relatively relaxed and easy‐going approach. You can probably get some idea of the
general Crystal Clear ambiance from the following Cockburn quote:

The difference between Crystal Clear and Extreme Programming is that XP is
much more disciplined, Crystal Clear is much more tolerant, even sloppy‐looking.
I would say XP is more productive, Crystal Clear more likely to get followed.

 —Alistair Cockburn

336 ❘ CHAPTER 14 RAD

 One way to differentiate the Crystal methods is to look at the team member roles that are required.
Crystal Clear requires only three roles.

➤ Sponsor —The person for whom the software is developed and who will ultimately sign off
on the fi nished application.

➤ Senior designer —Someone who knows how to design the software and make any necessary
technical decisions.

➤ Programmer —Someone who can write the code.

 A project can have more than one person in each role (usually in the programmer role). Any other
roles (such as project manager, tester, database administrator, or caterer) are played by the team
members. For example, some or all the programmers could share the testing role, and the senior
designer might also cater team meetings by buying donuts.

 Because this is a relatively small project, the team can informally discuss the project’s goals and keep
them in mind fairly easily. The team may write use cases to ensure that specifi c goals are met.

 Crystal Clear projects are expected to deliver production releases every two or three months,
possibly with shorter nonreleased development iterations.

 The main measure of progress is released software.

Crystal Yellow
 With 7 to 20 team members, Crystal Yellow projects are slightly bigger than Crystal Clear projects.
Because the team is a bit bigger, the project needs slightly more management.

 For example, it’s probably impractical to have 20 developers all work in the same room and
constantly interrupt each other. It would also be hard (although perhaps not impossible)
for everyone to work cross‐functionally on every aspect of the application. (It would also
be impossible to get 20 developers to agree on the same radio station to play in their shared
workspace.)

 To ease coordination for the larger group, a Crystal Yellow project might adopt the following
practices.

➤ Easy communication —Even if the team isn’t all squeezed into the same room, they still need
to communicate easily.

➤ Code ownership —Teams could each own an area of the project. This lets each team focus on
its own piece so that they don’t need to know everything about everything. (Each team might
work in a single room to improve its internal communication.)

➤ Feedback —End users provide frequent feedback. This reduces the need for detailed
requirements.

➤ Automated testing —This is always a good idea, but with multiple teams working on the
same project, it’s even more important.

➤ Mission statement —This helps give everyone the same vision of the project. (This doesn’t
need to be a vacuous management‐speak statement like, “Manifest box‐externalized criteria

Crystal ❘ 337

going forward to leverage end-of-play synergy and maximize stakeholder competencies.” It
should be a clear, verifi able statement.)

➤ More formal increments —Iterations should be timeboxed to a month and begin with a list of
the features that will be included. The team still doesn’t necessarily need to release the result
of every increment.

 The team still uses relatively informal communication to avoid extensive requirement documentation
and to keep everyone headed in the same direction. (For those with a management‐speech impediment,
you could say “rowing in the same direction.”)

 Crystal Orange
 Crystal Orange projects have 21 to 40 team members and typically last one to two years. They
require even more management support to prevent people from tripping over each other.

 These projects may add some of the following new roles:

➤ Business analyst —A domain expert to help defi ne the application’s purpose and provide
feedback during development.

➤ Project manager —You might handle tracking for a Crystal Yellow project without at
dedicated project manager, but a Crystal Orange project needs someone dedicated to
tracking the project’s progress.

➤ Architect —Someone to focus on the application’s overall high‐level design.

➤ Team leader —The project is broken into areas that are assigned to separate teams.
Hopefully, they’ll be self‐organizing, but usually each team needs someone with a bit more
experience to guide the team and to act as the team’s point of contact with the rest of the
project.

 Projects this large may require specialized skills, so the team might include other specialists as
needed. For example, it might include a requirements gatherer, database designer, user interface
designer, mentor, toolsmith, technical writer, system manager, or tester. (It’s unlikely that a project
could get by with one business analyst, one project manager, one architect, and 37 programmers.)

 The following tasks add more formality to the project to help keep it on track.

➤ Requirements —Smaller Crystal projects may not need requirements documents, but a project
this size has too many details to handle informally.

➤ Tracking —The project manager (with help from everyone else) tracks tasks, progress,
milestones, and potential risks. The project manager should produce status reports so
everyone (including the customers) can see how the project is progressing.

➤ Release schedule —The schedule should indicate when production releases occur and
(tentatively at fi rst) what they contain.

➤ Object models —The architect needs to do something to justify the title.

➤ Code reviews —Designs and code need more formal review. This is a bigger project so design
and code problems can cause a lot more trouble and be much harder to fi x later.

338 ❘ CHAPTER 14 RAD

➤ Acceptance testing —The customers should provide a more formal level of acceptance than is
required by smaller projects.

➤ Delivery —These are more formal, so you should use good release techniques such as staged
delivery and incremental rollout. Delivery may require user setup, documentation, and training.

 By now I’m sure you get the idea. The “harder” members of the Crystal family require more
formality and management overhead. The informal approach used by a four‐person Crystal Clear
project just won’t work with a 40‐person Crystal Orange project.

 Projects larger than Crystal Orange seem to be rare (I haven’t heard of any) but would require even
more overhead, planning, and tracking if they were to get anything done (other than generating
an avalanche of unread e‐mail). Such large projects might need to split into teams composed of
subteams, possibly with their own feature teams or working groups.

 I shudder to think what a Crystal Sapphire project would be like. Even if you had seven teams with
seven subteams of 10 developers, each would still get you only to Diamond size. You’d have to rent
a convention center to hold a whole‐project meeting. You might have easy communication locally,
but you could spend years working on a 1,000 person project and not even meet everyone, much less
communicate freely with them all.

 Those giant Crystal projects seem to be as common as politicians voting themselves pay cuts, so I
won’t speculate about what they would look like.

 FEATURE‐DRIVEN DEVELOPMENT

Feature‐Driven Development (t FDD) is another iterative and incremental development model.
Unlike most of the other agile models, FDD was created to work with large teams. (Originally, Jeff
De Luca designed FDD to meet his needs on a 15‐month, 50 person project in 1997.)

 Where other models use risk, customer value, waste, or some other theme to guide development,
FDD focuses on application features. At a high level, an FDD project builds a list of wanted features
and then iteratively adds those features to the application until every feature has been added.

 A more detailed view of FDD involves several roles, fi ve phases, and milestones to ensure the
iterations run smoothly. The following sections describe those pieces of FDD.

 FDD Roles
 FDD defi nes six main roles and a bunch of secondary roles. The following list summarizes the
primary roles.

➤ Project manager —This is the project’s administrative leader. The project manager tracks the
project’s progress, budget, and other resources. She handles all the administrative nonsense
that companies typically try to infl ict on employees so that the team can work effectively.

➤ Chief architect —This person is responsible for the project’s overall programmatic design.
The chief architect doesn’t write the design but instead helps the team come up with a design
cooperatively.

Feature‐Driven Development ❘ 339

➤ Development manager —This person manages day‐to‐day development activities. The
development manager resolves confl icts, makes sure the development teams have the
resources they need, and referees if the chief programmers have disagreements they can’t
resolve.

➤ Chief programmers —These are experienced developers who are familiar with all the
functions of development (design, analysis, coding, and so on). They lead teams of
programmers who work on a set of assigned programming tasks. The chiefs help their teams
solve design problems, and they resolve any issues that get in the way of their teams.

➤ Class owner —In many agile models, the code is jointly owned by the entire development
team, so any member can modify anyone else’s code. In contrast, FDD assigns ownership
of each class to a specifi c developer. If a feature requires changes to several classes, the
class owners get together to form a feature team that works to make the needed changes.
The members of the feature team work closely together in a sort of many‐headed pair
programming group.

➤ Domain expert —These are customers, users, executive champions, and others who know
about the project domain and how the fi nished application should work. They are the
source of information for the developers. They are sometimes called Subject Matter Experts
(SME s).

 The following list briefl y describes secondary roles that an FDD project may have (mostly in larger
projects).

➤ Build engineer —Sets up and controls the build process. This may include source code
control.

➤ Deployer —Handles deployment. This may include tasks such as staging, setting up the users’
environment, and converting old data into new formats.

➤ Domain manager —Leads the domain experts and provides a single point of contact to
resolve domain issues.

➤ Language guru or language lawyer —Someone who is an expert in the programming
language, technology, and other arcane items used by the team. Other developers can go to
this person for help if necessary.

➤ Release manager —Gathers information from the chief programmers to track the project’s
progress.

➤ System administrator —Maintains the team’s computers and network.

➤ Technical writer —Writes online and printed documentation and training materials.

➤ Internaler —Runs internal scripts to look for trouble. Verifi es that the application meets the
requirements.

➤ Toolsmith —Creates tools for the other developers.

 Smaller projects may not need some of these roles. Often one person can play multiple roles. For
example, an “ordinary” developer could also be the language guru or toolsmith.

340 ❘ CHAPTER 14 RAD

 FDD Phases
 FDD projects move through fi ve phases. The fi rst three occur at the start of the project (during
iteration 0, if you like that term) and the last two phases are repeated iteratively until the application
is complete.

 The following sections describe the fi ve FDD phases.

 Develop a Model
 When the project starts, the team builds an object model for the application. To some, this may
smell suspiciously like big design upfront. In FDD, however, the model is built quickly and iteratively
with the assistance of domain experts (also called Subject Matter Experts or SME s).

 The model’s goal is to give the customers and the development team a common vision of the
application’s scope and goals. It should help everyone understand the domain’s key concepts,
interactions with other systems, potential problems, and ways the application will be used.

 At this point, the model paints a broad picture, focusing on the application’s breadth. Later it will
be refi ned iteratively to provide the detail needed to actually implement the project’s features.

 Build a Feature List
 The next step is to build a list of the features that make up the application. FDD technically defi nes
a feature as an action/result/object triple where the t action generates the result related to the t object. t

 For example, a feature might be “calculate the customer’s outstanding balance.” Here the action is
“calculate,” the result is “outstanding balance,” and the object is “the customer.”

 To help with large projects, FDD organizes the feature into a three‐level hierarchy with the levels
corresponding to areas, activities, and features.

 The top‐level groups the features by domain area. For example, an order‐processing system might
have the areas Order Tracking, Inventory, Billing, and Reporting.

 The areas are divided into activities that represent things the user might need to do. For example,
Order Tracking might be divided into the activities Create Order, View Order, Modify Order, Delete
Order, and so on.

 The activities are divided into features. These are the atomic operations that make up the activities
expressed in FDD’s action/result/object style. For example, the following list shows some of the
features you might include for the Create Order activity:

➤ Find customer record (fi nd/record/customer)

➤ Create new customer record (create/record/customer)

➤ Check order items’ inventory availability (check/availability/item)

➤ Calculate order subtotal (calculate/subtotal/order)

➤ Calculate order shipping (calculate/shipping/order)

➤ Set order status to pending (set/status pending/order)

Feature‐Driven Development ❘ 341

 Converting the object model into a feature list is mostly mechanical (although it can take a while for
a large project). The resulting hierarchy is called the feature list . (It may not be as snappy a name ast
“backlog,” but at least it’s descriptive.)

 Plan by Feature
 During this phase, the planning team prioritizes the features and builds an initial schedule. Groups
of related features are assigned to the chief programmers and become their teams’ feature lists.

 Because FDD uses class ownership, the features assigned to a team also assign the classes that
provide those features to the team. For example, if you assign a bunch of customer‐related features
to a team, then you’ll probably want to assign the Customer class to that team. In that case, it also
makes sense to assign the other Customer class features to the team.

 In that way the object model helps group the features. Usually, the resulting groups are quite natural
and intuitive, at least for features that are visible to the users. More esoteric features used internally
by the application such as database tools, external interfaces, and scheduling systems may have little
intuitive meaning to anyone other than the developers. In those cases, you can still use the object
model to group related features.

 Design by Feature
 In this phase, the chief programmer selects a collection of features to be implemented in the next
two‐week iteration. For each selected feature, the chief programmer gathers the owners of the
classes that will be involved into a feature team.

 If the chief programmer thinks it’s necessary, a domain expert can perform a domain walkthrough
to review the feature. The expert can describe the feature’s intent, requirements, side effects, data
needs, and anything else that can help the feature team understand what the feature should do.

 Next, the feature team (with guidance from the chief programmer as needed) creates sequence
diagrams representing the feature. (Look at the “Sequence Diagram” section in Chapter 5 , “High‐
Level Design,” if you don’t remember what those are.)

 The class owners then write method prologues. A method prologue is a description of a method
that includes its purpose, input and output parameters, return type, possible exceptions (ways the
method can fail), and assumptions.

 During the design phase, the feature team hopefully adds new details to the project’s classes. The chief
programmer updates the project’s object model to show the new detail. (Remember the “Develop a
Model” phase created only an initial model without a lot of detail. This phase fi lls out the model.)

 Finally, the chief programmer holds a design inspection to make sure the new feature design didn’t omit
anything. The inspection can involve the feature team and possibly other project members, depending on
what the chief programmer thinks would be most effective. For example, if someone outside of the feature
team has experience doing something similar, it might be wise to include that person in the inspection.

 When this phase is fi nished, the result is a design package that includes:

➤ A description of the package

➤ Sequence diagrams showing how the features will work

342 ❘ CHAPTER 14 RAD

 FDD Iteration Milestones
 In an FDD project, the features must be implemented in no more than two weeks, so they are
necessarily fairly small. Although the iterations are quick, they include a fair number of tasks.

 To keep track of everything that’s going on during an iteration, FDD defi nes six milestones.
Table 14-2 shows the six milestones and the completion percentage each represents.

➤ Alternatives (if any)

➤ Updated object models

➤ Method prologues

 The result is sort of like the start of a big design upfront project, but on a smaller scale. It may seem
like a lot of overly formal work just to plan the implementation of a single feature, but the goal is for
the chief programmer to prepare the other team members to move forward into the next phase with
a good chance of success. All this setup is particularly necessary if the project is large and includes
developers with varying degrees of skill and experience.

 Build by Feature
 Armed with the completed design packages, the class owners build the methods that implement the
iteration’s selected features. The new code is unit tested and run through a code inspection (held by
the chief programmer). If everything looks good, the code is promoted to the project’s build.

 Figure 14-5 shows the relationships among the FDD project’s fi ve phases at a high level.

Iteration 0

Develop
Model

Build
Feature List

Build by
Feature

Other Iterations

Plan by
Feature

Completed
Feature

Design by
Feature

 FIGURE 14-5: In FDD, the last two phases repeat for each feature iteration. The Design
by Feature phase feeds changes back to the object model.

Agile Unifi ed Process ❘ 343

TABLE 14-2: FDD Milestones

PHASE MILESTONE PERCENTAGE

Design by Feature Domain Walkthrough 1%

Design 40%

Design Inspection 3%

Build by Feature Code 45%

Code Inspection 10%

Promote to Build 1%

For example, after the domain walkthrough (which is optional), design, and design inspection, an
iteration is considered 1 + 40 + 3 = 44% complete.

 Notice that the percentages give almost one‐half of the iteration’s credit to the Design by Feature
phase. This refl ects the importance of design, particularly for large projects with developers of
varying skills. As mentioned earlier, the chief programmer (who is more experienced) uses the design
phase to set up the team members for success during the build phase.

 AGILE UNIFIED PROCESS

 The Agile Unifi ed Process (AUP) is an agile version of the Unifi ed Process (UP) described in
Chapter 13 , “Iterative Models.” Scott Ambler, who led the development of AUP (and who has
written several books about agile development and UP), describes AUP as “serial in the large” and
“iterative in the small.”

 By “serial in the large,” he means AUP sequentially follows the normal four phases of the Unifi ed
Process: inception, elaboration, construction, and transition. By “iterative in the small,” he means
that AUP performs each of those phases iteratively.

 Throughout its lifespan, the project involves the following seven disciplines:

➤ Model —Attempts to understand the problem being addressed, its restrictions and
assumptions, and possible solutions. The result should be a model of a solution.

➤ Implementation —Converts the model into an executable program. It also includes basic
testing such as unit testing. (You haven’t fi nished implementation if your code doesn’t work.)

➤ Test —Involves more testing to fi nd bugs. It also validates the implementation to ensure that
it satisfi es the requirements. It may include normal validation tests such as user validation in
a staging area.

➤ Deployment —Delivers the result. This may include any of the usual deployment tasks such as
setting up the users’ work environment, training, and actual installation.

➤ Confi guration management —Manages the items produced by the project such as
requirement documents, designs, and, of course, source code. It not only tracks versions of

344 ❘ CHAPTER 14 RAD

 If you were paying attention when you read about UP in Chapter 13 , this should be familiar. One
big difference is that UP is designed to produce a single release. In contrast, AUP can produce many
agile releases. Typically, an AUP project will have many more iterations that are shorter than those
used in UP.

 Usually, most of the iterations end with a development build that isn’t released to the users.
(Although, it may be placed on a demo computer for the users to play with.) Only some of the
iterations end in production builds that are deployed.

those artifacts, but it also controls changes to them (so that one annoying customer can’t
make 20 changes to the requirements every day before breakfast).

➤ Project management—Guides the rest of the project. It includes identifying and mitigating
risks, assigning tasks, tracking progress, and interacting with forces outside of the project
team (and panicking when the team misses milestones).

➤ Environment —Supports the project by making sure the team has everything it needs such
as hardware, software, training, manuals, caffeine, and administrative support. (It’s well
known that many developers who can type 74 words of code per minute can’t write a simple
business letter.)

 Usually all these disciplines are going on simultaneously in varying amounts. For example, early
on, the model discipline plays a major role while the deployment discipline is almost nonexistent.
Figure 14-6 shows the general idea.

Phases

Inception

Inception

Elaboration

E1 E2 E3 C1

Iterations

Model

Implementation

Test

Deployment

Configuration Management

Project Management

Environment

C2 C3 C4 T1 T2

Construction Transition

 FIGURE 14-6: All the seven AUD disciplines occur simultaneously in different amounts.

Disciplined Agile Delivery ❘ 345

For example, Table 14-3 shows a possible AUP release schedule. The internal builds are iterations
that aren’t released to the users.

TABLE 14-3: AUP Project Release Schedule

ITERATION BUILD TYPE VERSION

1 Development 0.1

2 Development 0.2

3 Development 0.3

4 Production 1.0

5 Development 1.1

6 Development 1.2

7 Development 1.3

8 Development 1.4

9 Production 2.0

10 Development 2.1

11 Development 2.2

12 Development 2.3

13 Development 2.4

14 Development 2.5

15 Production 3.0

 In a particular project, you might have more or fewer development builds for every production
build. You’ll have to weigh the features provided by a new release to the inconvenience to the users.

 In 2012, Scott Ambler stopped work on AUP in favor of DAD, which is described in the next
section.

DISCIPLINED AGILE DELIVERY

 In the words of its inventor Scott Ambler, “The Disciplined Agile Delivery (DAD) decision process
framework is a people‐fi rst, learning‐oriented hybrid agile approach to IT solution delivery. It has
a risk‐value delivery life cycle, is goal‐driven, is enterprise aware, and is scalable.” (Any description
that contains so many management‐speak terms must be good!)

By now, most of those terms should be familiar to you and you can probably guess what they mean.
The following section briefl y describes the key pieces of that description.

346 ❘ CHAPTER 14 RAD

 DAD Principles
 Here’s a brief summary of the key terms in Scott Ambler’s defi nition of DAD.

➤ People‐fi rst —In the DAD philosophy, the interactions among people play a critical role in
the project’s success. The DAD roles described shortly help defi ne how people interact. DAD
also uses typical agile ideas about allowing the team members to express themselves freely
without fear of censorship or retribution.

➤ Learning‐oriented —Throughout the project the team members should learn from each other
to improve their cross‐functionality. They should also constantly review their development
practices and improve them if possible.

➤ Hybrid —DAD is based on Scrum but also takes ideas from Extreme Programming, Unifi ed
Process, Kanban, Lean, and others.

➤ Agile —Like most agile methodologies, DAD uses iterated development and delivers
“consumable solutions” as they are ready. DAD encompasses the entire delivery life cycle
(unlike some agile methods that focus mostly on development); although it doesn’t actually
require you to use a particular life cycle model, so you can keep your options open for some
of the details.

➤ Risk‐value delivery life cycle —During the inception phase, the team identifi es risks. The team
addresses risks throughout the project.

➤ Goal‐driven —During each iteration, the highest priority requirements are pulled into the
goals for that iteration.

➤ Enterprise aware —DAD emphasizes several levels of awareness (individual, team, enterprise,
and community) that developers should keep in mind as they work. Enterprise awareness
encourages the team to consider the business’s overall goals and strategy. It also allows the
team to identify similar work being performed within the business and look for ways to
collaborate.

➤ Scalable —DAD’s goal‐driven approach makes it easier to scale than some approaches.

 The following section describes the roles defi ned by DAD.

 DAD Roles
 One of DAD’s key principles is “people fi rst.” To help defi ne the interactions among team members,
DAD defi nes 10 roles: fi ve primary and fi ve secondary.

 Four of the primary roles (product owner, team lead, team member, and architecture owner) are
considered team roles. The fi fth primary role is stakeholder.

 The secondary roles are specialist, domain expert, technical expert, integrator, and independent
tester. The following list shows the roles’ descriptions grouped by their categories:

➤ Primary Roles :

➤ Stakeholder —Someone who will be affected by the project. (Users, managers, the
executive who staked her career on the project, and so forth.)

Disciplined Agile Delivery ❘ 347

➤ Team Roles :

➤ Product owner —The point of contact on the team who represents the
stakeholders. This person has authority to make decisions for the stakeholders.

➤ Architecture owner —Makes architectural decisions for the team.

➤ Team lead —The agile coach. (No, not someone good at running obstacle
courses. Someone with experience at DAD projects.) This person helps the
team improve its processes during development, ensures that the team has any
needed resources, and generally helps keep things moving.

➤ Team member —A cross‐functional developer who focuses on analysis, design,
programming, testing, and all the other typical development tasks.

➤ Secondary Roles :

➤ Domain expert—Provides additional detailed knowledge of the user domain in
 addition to the expertise provided by the product owner.

➤ Technical expert—An expert in a particular technical area such as database design,
mobile platforms, or cloud storage.

➤ Integrator—Helps integrate the pieces of the system. Helps to integrate the
 application with other external systems.

➤ Independent tester—The developers perform most of the testing, but for a
 particularly complicated or critical application, you may want independent testers.

➤ Specialist—Someone who specializes in a particular part of development such as user
interface design or human factor research.

 DAD Phases
 DAD uses three big phases taken from UP. (Not surprising given that Scott Ambler developed UP.)
Those phases are inception, construction, and transition. The UP elaboration phase is divided
between inception and construction in DAD.

 The inception phase is similar to the one used by UP. Here, you fi gure out the project’s main goals,
develop a common vision, build a business case, and beg for funding. You also identify risks, create
an initial design, and make an initial schedule.

 In addition to tasks similar to those used by the UP inception phase, you also consider the new
project in the enterprise environment. You make sure the project is aligned with the larger business
goals, and you look for similar work being done elsewhere in the company.

 During the construction phase, you use iterated development to produce potentially consumable
solutions. (Something you wouldn’t be embarrassed to give to the customers.) The early iterations
should test the application’s architecture so that you don’t run into nasty surprises later.

 The project also has a few higher‐level goals throughout the construction phase. The team members
should learn from each other to improve their skills. They should identify and remove risks, focus
on quality (so ongoing testing is a must), look for ways to improve the development process, and use
customer feedback to track changing goals.

348 ❘ CHAPTER 14 RAD

 The transition phase is fairly standard. You ensure that the application is usable and that it meets
the customers’ goals. Then you deliver the application using good deployment techniques such as
staged delivery or incremental cutover.

DYNAMIC SYSTEMS DEVELOPMENT METHOD

Dynamic Systems Development Method (d DSDM) is an agile framework managed by the DSDM
Consortium (www.dsdm.org). It is one of the heavier agile methodologies. It also has one of the
longest and most “management‐friendly” names, and has one of the most unpronounceable
abbreviations. (If you really want to pronounce DSDM, I recommend the pronunciation DIZ‐dim
so that it rhymes with “wisdom.”) All those facts may be the result of the method being invented by
people with a business perspective instead of a software development background.

 DSDM was originally invented in an attempt to bring some business discipline to the relatively
untamed RAD wilderness. It attempts to bring a higher‐level project focus to sit above other RAD
models such as Scrum.

 The following sections describe the DSDM phases, principles, and participant roles.

DSDM Phases
 DSDM uses the three phases (with various substages and steps) described in the following list:

➤ Pre‐project —These are things that need to happen before the project can even start. They include
identifying possible projects, getting executive approval and commitment, and receiving funding.

➤ Project life cycle —This is where the application is actually built. DSDM defi nes four stages
within this phase.

➤ Study —This includes a feasibility study (to determine whether the project is possible)
and a business study (to decide whether the project is worth the expense). During
these studies, facts are usually gathered through facilitated workshops. Requirements
are prioritized using the MOSCOW method. (See the “Prioritized” section in
Chapter 4 , “Requirement Gathering.”)

➤ Functional modeling—Here the team builds one or more working prototypes and
models to describe the pieces of the system. This phase uses four steps that are repeated
as often as necessary: identify a prototype, make a plan, create the prototype, and
review the prototype. The team uses feedback from these cycles to iteratively improve
the prototypes and models. The result is used to refi ne and prioritize the requirements.

➤ Design and build —In this stage, the team integrates the models built in the preceding
stage to form a single prototype that satisfi es all the requirements. This stage includes
four steps that are similar to those used in the preceding stage: Identify the features
of the prototype, make a plan, create the prototype, and review the prototype. Those
steps are repeated as often as necessary until the prototype evolves into the fi nal
working system. This stage also includes creating user documentation.

➤ Implementation —This is where the team deploys the system. Like the other life cycle
stages, it too includes four steps: Seek user approval and guidelines, train users,

http://www.dsdm.org

Dynamic Systems Development Method ❘ 349

DSDM Principles
 Like many RAD development models, DSDM has a set of guiding principles. Those principles are
described in the following list.

➤ Active user involvement —Users must be involved to provide guidance and feedback.

➤ Team empowerment —The team must have the authority to make design decisions
throughout development. Users can request changes to correct decisions in later iterations

implement, and review business results. If the review shows that the system meets the
requirements, the project leaves the life cycle phase and moves into post‐project.

➤ Post‐project —This phase includes typical maintenance tasks such as bug fi xes and making changes. tt

 Figure 14-7 shows the normal fl ow for the project life cycle phase. The arrows show the normal
sequence of events; although the project can move between any of the functional model, design and
build, and implementation stages if necessary. For example, if the design and build stage uncovers a
fundamental problem, the project could move back to the functional model stage.

Feasibility Study

Business Study

Study

Review
Functional
Prototype

Review
Design

Prototype

Identify
Design

Prototype

Create
Design

Prototype

Create
Functional
Prototype

Agree
on a
Plan

Agree
on a
Plan

Design
and

Build

Functional
Model

Implement

Train
Users

Review
Business
Results

User Approval
and

Guideliness

Implementation

 FIGURE 14-7: The DSDM life cycle includes the four stages: study, functional model, design and build, and
implementation.

350 ❘ CHAPTER 14 RAD

if necessary. (That doesn’t mean developers should blindly make arbitrary decisions all
over the place. Active user involvement means users can ask for guidance whenever they
need it.)

➤ Frequent delivery —Frequent delivery moves the project toward its fi nal form.

➤ Meeting business needs —The main criterion for acceptance is delivery of software that
satisfi es business needs (which should be in the requirements).

➤ Iterative and incremental —These provide quicker delivery and feedback. (Without these, it
would be harder to think of DSDM as agile.)

➤ Reversible changes —All the changes made during the project life cycle should be reversible.
(This makes good source code control essential.)

➤ Constant testing —Constant testing uncovers bugs quickly and gives the code higher quality.

➤ Collaboration and cooperation —All the stakeholders need to work together throughout the
project.

➤ Requirements are refi ned —Initially, the requirements are written at a high level without a lot
of encumbering details. Details are worked out during development.

➤ The 80/20 rule —It is assumed that 80 percent of the project’s features can be satisfi ed in
20 percent of the total time you would need to fi nish the project. The project focuses on that
80 percent to provide the most features as quickly as possible. The remaining 20 percent of
the features are left for later releases.

DSDM Roles
 Like other RAD models, DSDM defi nes a set of roles for the team members. (I think the fi rst things
you need to do when you invent a new methodology are to create a set of principles and a set of
roles.) The following list describes the roles:

➤ Executive sponsor —The executive champion who protects the project from outside
interference. This person should have the authority to provide funds and has ultimate
decision‐making power.

➤ Visionary —The person who has a clear vision of what the application should be, particularly
early on when the requirements are fuzzy. This person also tracks the project to make sure it
is converging on the vision.

➤ Ambassador user —Acts as a liaison between the users and the developers. Provides the users
with project updates and provides the developers with user feedback.

➤ Technical coordinator—Manages the project’s overall design and architecture. Monitors the
project’s technical quality.

➤ Developer —Writes and tests the code.

➤ Tester —Tests the code to uncover bugs. Verifi es that the code meets the requirements.

➤ Project manager —Does all the usual project manager things such as tracking deadlines to
make sure teams stay within their timeboxes.

Kanban ❘ 351

 DSDM projects may also defi ne many secondary roles depending on the size of the project and the
number of interested stakeholders. Those roles may include the following:

➤ Advisor user —Any user who brings a useful viewpoint to the project.

➤ Architect —Specializes in developing the application architecture.

➤ Business advisor —Provides business knowledge to the developers. For example, this person
may help ensure that the project satisfi es business rules, company policies, and regulatory
requirements.

➤ Business ambassador —Provides business information from the viewpoint of the users.

➤ Business analyst —Provides day‐to‐day business focus for the development team. Helps
ensure that the daily decisions made by the developers support the project’s business goals.

➤ Business visionary —The person who holds a clear vision of the application’s business role,
particularly early in the process when that role isn’t clearly written down. Ensures that the
project’s requirements help meet the business goals.

➤ DSDM coach —Helps the project team use the DSDM methodology properly.

➤ Quality manager —Ensures the application’s quality. Tracks bug reports, testing, reviews, and
other techniques used to improve quality. Uses statistical methods to estimate quality. Defi nes
the project’s quality procedures (such as testing review guidelines).

➤ Scribe —Keeps records of requirements, agreements, assumptions, and other key facts
discovered at workshops.

➤ Senior developer —A software engineering ninja that other developers can call when they
need help.

➤ System integrator —Builds and tests the interfaces between the application and other
applications.

➤ Team lead —Leads a team of developers.

➤ Workshop facilitator —Plans, runs, and encourages participation at workshops. (This may
sound like a silly role, but in the meetings I’ve had with facilitators, they’ve been surprisingly
useful. They basically did the corny everyone‐get‐to‐know‐each‐other thing, got some
conversation started, and then got out of the way.)

 KANBAN

Kanban (which is Japanese for “signboard” or “billboard”) is a just‐in‐time (JIT) production T
methodology for controlling logistics in a production chain. The basic idea is to use cards (not
coincidentally called kanban s) on each station in the chain to represent the inventory of parts at that
station. When that station runs out of parts, its kanban is sent to the supplier to indicate a need for more.

 Basically the kanban acts as a message saying, “This station needs more parts.” The kanban “pulls”
new parts from the supplier as needed. In practice there are a few variations on Kanban. For
example, you could keep a small backup bucket of parts to use while you’re waiting for new parts.

352 ❘ CHAPTER 14 RAD

 For another example, some books of checks contain a sheet inserted near the end of the book that
says, “Reorder checks now.” That’s basically a Kanban‐style warning that you are about to run
out of checks and that you should reorder. You still have a few checks to go, just in case you need
to write more checks before you get the new supply. (Of course, these days you can make all your
payments electronically or with credit cards. I think the occasional tax payment is just about all I
still use checks for.)

 For a fi nal example (which you probably have seen, even if you don’t have a checking account so the
previous example was confusing), you can think of the little “out of gas” symbol next to your car’s
gas gauge as a Kanban‐style warning that you’re about to run out of gas. When it lights up, you still
have some gas (otherwise, it would be hard to drive to the gas station to get more), but you should
refuel soon.

 In a production environment, kanbans make it easy to track parts inventory and supply, so you can
optimize the process. For example, you can discover exactly how many M12 torq‐set screws you use
per month, so you can preorder accordingly.

 In software engineering, Kanban is a translation of the production Kanban into a software
development environment. At this point, you would probably expect to see a list of principles,
practices, and roles, and you’d be mostly right. The following sections describe Kanban principles
and practices, although Kanban doesn’t defi ne roles. (Shocking, I know!)

 Kanban Principles
 Like many agile methodologies, Kanban has a set of heartwarming guiding principles designed to
create a healthy and productive workplace. Of the four basic principles, three are aimed directly
at the fact that Kanban may initially seem weird to development organizations. They help make
moving to Kanban practices as simple and unobtrusive as possible. (If you’re lucky, you can sneak in
some of the Kanban practices without upper‐management noticing.)

 The following list describes the Kanban principles.

➤ Start with current practices —Kanban doesn’t explicitly mandate every part of the
development process, so you can work it into whatever system you’re using now.

➤ Seek incremental change —Add Kanban principles to your current practices gradually. If you
try to jump to Kanban all at once, you may face resistance to change. (I’ve seen people fi ght
tooth and nail against a change to the day on which timecards were processed. Imagine the
fuss you could get if you told people they had to switch from their venerated waterfall model
to something agile!)

➤ Respect the current process —Your current system probably has some benefi ts, so you
shouldn’t just throw it away even if you can. Keep your current roles and responsibilities. (I
told you Kanban didn’t defi ne any roles.) Over time you can let those roles morph (in a self‐
organizing way, of course).

➤ Encourage leadership in everyone —Like many other agile models, Kanban encourages
everyone to take ownership of the project and their duties. Don’t wait for someone else to
decide to tackle a task or fi x a bug. Show some leadership and do it yourself.

Kanban ❘ 353

 Kanban Practices
 Although Kanban is intended to sift gently down over your existing practices, it does defi ne some
practices.

➤ Visualize workfl ow —Kanban enables you to visualize the work you are doing today in the
context of other tasks. This encourages free communication and collaboration among the
team members.

➤ Limit work in progress ((WIP)P —The JIT nature of production‐line Kanban means the
production chain holds as little inventory as possible. In software engineering, Kanban
limits the amount of work that is being done at any moment. In contrast, you might pull too
much or too little work into a Scrum sprint. By reducing multitasking, Kanban removes the
inherent penalty for task switching and makes developers more productive.

➤ Enhance fl ow —When you fi nish one task, you pull the next‐highest priority item from the
backlog. (This is similar to the way a production‐line kanban “pulls” new inventory from
a supplier.) Instead of using sprints that involve planning, design, estimating, and testing
of a set of features, you perform those same steps for each individual feature when you get
to it.

 In general, Kanban works a lot like Scrum. The biggest difference (aside from Kanban’s lack of
predefi ned roles) is that Scrum works in sprints and Kanban works continuously one feature at a
time.

 Recall that at the beginning of a new Scrum sprint, the sprint planning meeting pulls an assortment
of high‐priority items from the project backlog into the sprint backlog. The sprint (which is typically
30 days) works through its backlog to produce a potentially shippable increment. When the project
includes enough new features to be worth the hassle, it is delivered to the users.

 In contrast, Kanban developers pull the highest priority item from the project backlog one at a time
whenever they fi nish a task. (This is a good opportunity for everyone to demonstrate the fourth
principle and show some leadership.) It’s a bit like having a Scrum project where every item is in its
own sprint. That lets Kanban deliver increments more often (when it’s worthwhile). It also makes
Kanban extremely responsive to rapidly changing user priorities.

 Kanban Board
 The Kanban board is one of the more unique Kanban features. The board is a form of big board or
information radiator that shows all the project’s tasks and their current statuses.

 The board can have many forms. The simplest might have only three columns labeled To Do, In
Progress, and Done. As tasks move from one status to another, you move sticky notes, cards, or
whatever you’re using to represent the tasks from one column to the next.

 To get a more detailed view of exactly where the tasks are, Kanban boards for software projects
typically use more columns. For example, you could use the columns Backlog, Ready, Coding,
Testing, Approval, and Done. Feel free to change the names and add or remove columns if you like.
You can even group the columns, as shown in Figure 14-8 .

354 ❘ CHAPTER 14 RAD

 I fi lled the Design, Coding, Unit Test, and Integration Test columns with a hatch pattern to indicate
that they are WIP columns. Remember that one of the Kanban practices is to limit the WIP. If there
are too many cards in the WIP columns, there may be a problem. For example, if the project has
four team members but 27 cards in the WIP columns, the developers might be taking on too many
tasks to focus on them properly.

 The cards shown in Figure 14-8 are too small to hold much information, so they just show task
numbers. In practice the cards might also include information such as the title of the task, a brief
description, and the person working on the task.

 Some Kanban boards use rows in the “in progress” columns to show who’s working on which tasks.
For example, the tasks in the top row might be owned by Alice, those in the second row might be
owned by Bob, and so forth.

 Tasks in the non‐WIP columns wouldn’t belong to anyone. For example, tasks in the Backlog
column are waiting for someone to pick them. Tasks in the Acceptance Test column are waiting for
the users to verify that they meet the requirements. (At least in my imaginary project—the person
who performs acceptance testing might vary depending on your development model.)

 On a large project, you’ll probably need to use a computerized board. That seems more fi tting for a
software engineering effort; although, it would make it a bit harder to grasp the project’s status at
a glance as you walk by. (Plus I think there’s something kind of fun about posting sticky notes on a
whiteboard. Maybe it’s just me.)

Inception

B
ac

kl
o

g

D
es

ig
n

C
o

d
in

g

U
ni

t
Te

st

In
te

g
ra

ti
o

n
Te

st

A
cc

ep
ta

nc
e

Te
st

R
ea

d
y

D
ep

lo
ye

d

Construction Transition

117

98

134 72 37 19 1

2

29

101

16

12

 FIGURE 14-8: The Kanban board lets everyone see the status of the
project’s tasks at a glance.

Summary ❘ 355

 A computerized board can handle a huge number of tasks (it would also be hard to fi t 1,237 sticky
notes in the Backlog column at the start of a large project), could automatically keep the tasks sorted
by priority, and could provide hyperlinks to let you easily get more information about the tasks.

 There are many variations on the Kanban board, each tailored to suit a particular development
team’s practices. It’s interesting to search the Internet for images of Kanban boards and see some of
the alternatives.

 SUMMARY

 As long as it is, this chapter merely touched on a few of the more common RAD methodologies. If
you want more information about any of them, you should search the Internet or buy a book about
them. A lot of them have books that explain exactly how their original versions work.

 There are also dozens (if not hundreds) of other methodologies. Some methods descended from
others, and there are even methods built as mashups of other methods. For example, DAD (which
descended from AUP, which descended from RUP, which descended from UP) includes elements of
Scrum, XP, UP, Kanban, Lean, and other methodologies that aren’t described in this chapter.

 Each one of those methodologies has countless variations, adaptations, and customizations used
by different development teams. That may make it hard to understand the “offi cial” version of
a particular methodology, but that kind of customization lies at the heart of agile development.
Different agile methods may use different approaches, but they all ask you to constantly look for
ways to improve your project and the development process. Because no two projects are exactly
alike, it makes sense that no two development models would be exactly alike, either. If you haven’t
made any modifi cations to the development model, then you’re probably not doing it right.

 If you’re thinking about joining a development team, hopefully this chapter and the previous ones
will help you understand in general what your potential new teammates mean when they say they
use waterfall, Cleanroom, Crystal Orange, or Kanban. At least you’ll know enough to ask the right
questions to learn more about their customizations and additions.

EXERCISES

1. Suppose you’re working for Stodgy Megacorp, an old‐fashioned company that calls employees
“assets,” puts Suggestion Box labels on its wastebaskets, and uses a classic one‐pass waterfall
model for software development. Which of the four agile values does that model violate?

2. Which of the 12 agile principles does Stodgy Megacorp’s waterfall model violate?

3. Given your answers to Exercises 1 and 2, should you forget the waterfall model as a possible
approach to software engineering?

4. Which of the four agile values does James Martin RAD satisfy?

5. Which of the 12 agile principles does James Martin RAD satisfy?

356 ❘ CHAPTER 14 RAD

 6. Explain why Scrum velocity isn’t quite the same as the difference between the amount of work
in the project backlog before and after a sprint. When will velocity equal that difference?

7. You can directly measure the amount of person‐hours spent on a sprint, but story points are
just a guess. Why might it be more useful to calculate velocity in story points per sprint instead
of actual work performed per sprint even though you’re using guesses instead of facts?

8. If your story points measure the estimated number of days for each user story (instead of
using another metric such as small, medium, and large), what does it mean if the number of
actual person‐days spent on sprints is consistently lower than the number of story points
assigned to the sprints? What if actual days is higher than story points? In those cases, do you
need to revise your story point estimates?

9. Is maximizing a Scrum project’s velocity the most important goal? Why or why not?

10. The term “lean software development” was introduced by Mary Poppendieck and Tom
Poppendieck in their book Lean Software Development (Addison‐Wesley Professional, 2003). t
In that book, they use the slogan, “Think big, act small, fail fast; learn rapidly.” Briefl y explain
what each of those phrases means.

11. Which of the following scenarios is similar to Kanban in a production line setting? Why or
why not?

 a. The last few feet of a cash register tape have red edges.

 b. The same situation as Exercise 11a, except on a self‐service register.

 c. When your light bulb burns out, you replace it with a bulb stored in the closet.

 d. The same situation as Exercise 11c, except when you take a bulb from the closet you
see how many bulbs are left. If there are no more bulbs, you write “Light Bulbs” on your
shopping list.

 e. When your pen runs out of ink, it stops working.

Summary ❘ 357

▸ WHAT YOU LEARNED IN THIS CHAPTER
➤ RAD techniques include:

➤ Small teams

➤ Requirement gathering through focus groups and workshops

➤ Requirement validation through prototypes, use cases, and customer testing

➤ Repeated customer testing

➤ Constant integration and testing

➤ Testing, testing, and more testing

➤ Informal reviews and communication

➤ Short iterations

➤ Deferring complicated features to later releases

➤ Timeboxing

➤ RAD advantages include:

➤ More accurate requirements

➤ Ability to handle changes

➤ Frequent customer involvement encourages engagement

➤ Reduced development time and early releases

➤ Code reuse

➤ Constant testing leads to high‐quality code

➤ Risk mitigation

➤ Greater chance of success

➤ RAD disadvantages include:

➤ Resistance to change

➤ Doesn’t work well with large systems

➤ Requires skilled team members

➤ Requires access to scarce resources such as expert users

➤ Adds extra overhead

➤ Less managerial control

➤ May give a less-than-optimal design

➤ Unpredictable

358 ❘ CHAPTER 14 RAD

➤ The Agile Manifesto defi nes four rules to make an agile‐friendly environment:

➤ Individuals and interactions over processes and tools

➤ Working software over comprehensive documentation

➤ Customer collaboration over contract negotiation

➤ Responding to change over following a plan

➤ Agile techniques include:

➤ Provide early and continuous delivery

➤ Welcome changing requirements

➤ Have developers and stakeholders work closely together

➤ Use motivated team members

➤ Convey information with conversations

➤ Measure progress by working software

➤ Use sustainable development

➤ Pay continuous attention to excellence

➤ Keep things as simple as possible

➤ Use self‐organizing teams

➤ Refl ect on the development process and improve it

➤ Deliver incremental and evolutionary results

➤ Different agile methods use the same techniques organized in different ways:

➤ Extreme Programming practices include:

➤ Customer on site

➤ Planning game

➤ Standup meetings

➤ Frequent small releases

➤ Intuitive metaphors

➤ Simple designs

➤ Deferred optimization

➤ Refactoring

➤ Shared code ownership

➤ Coding standards

➤ Promoting generalization

Summary ❘ 359

➤ Pair programming

➤ Constant testing

➤ Constant integration

➤ Sustainable pace

➤ Test‐driven and test‐fi rst development

➤ James Martin RAD uses four phases: requirements planning, user design, construction, and
cutover.

➤ Scrum uses short sprints to produce potentially shippable increments. A backlog contains the
prioritized tasks that need to be accomplished. Planning poker helps estimate task diffi culty.
Burndown charts show how many tasks are completed over time. Velocity indicates how
many story points the team completes per sprint.

➤ Lean focuses on waste and removes everything wasteful.

➤ The Crystal methods address projects of different sizes. Crystal colors include Clear, Yellow,
Orange, Orange Web, Red, Maroon, Diamond, and Sapphire. Criticality is measured as
comfort, discretionary money, essential money, and life. Larger projects require more
formality. More critical projects require more control and testing.

➤ Feature‐Driven Development focuses on features. It uses fi ve phases. The fi rst three phases
(develop a model, build a feature list, and plan by feature) occur in iteration 0. The
remaining two phases (design by feature, and build by feature) occur repeatedly in other
iterations.

➤ Agile Unifi ed Process is an agile version of Unifi ed Process. It is serial in the large (it follows
the four phases of UP: inception, elaboration, construction, and transition), and iterative in
the small (it performs those phases iteratively). Throughout the project, different disciplines
occur in different amounts.

➤ To summarize Disciplined Agile Delivery, Scott Ambler says, “The Disciplined Agile Delivery
(DAD) decision process framework is a people‐fi rst, learning‐oriented hybrid agile approach
to IT solution delivery. It has a risk‐value delivery lifecycle, is goal‐driven, is enterprise
aware, and is scalable.” It uses the AUP phases’ inception, construction, and transition.

➤ Dynamic Systems Development Method adds more business controls to an agile process. Its
major phases are pre‐project, project life cycle, and post‐project. Project life cycle includes
study, functional modeling, design and build, and implementation.

➤ Kanban in a production chain uses kanban cards to “pull” new inventory when a parts
station is empty (or running low). Kanban software development uses cards on a Kanban
board to show the states the tasks are in. When a developer fi nishes a task, he pulls the
highest priority task from the project backlog. Kanban limits the amount of work in
progress.

 Some of the exercises in this book have many possible solutions. For example, Exercise 4-7
asks you to think of ways to modify the Mr. Bones application. With a little creativity, you
could probably come up with hundreds of possible modifi cations, so your answer probably
won’t match mine.

 In ambiguous cases like that one, look over the solution to see if it makes sense to you. If it
doesn’t, you might want to review the material in the corresponding chapter. (Or you might
like to e-mail me and ask, “What on earth were you thinking?”)

 You can also start a discussion on the book’s P2P forum about any of these solutions.
Sometimes, those kinds of discussions are fascinating.

CHAPTER 1

1. The basic tasks that all software engineering projects must handle are:

1. Requirements Gathering

2. High-Level Design

3. Low-Level Design

4. Development

5. Testing

6. Deployment

7. Maintenance

8. Wrap-up

APPENDIX

362 ❘ APPENDIX SOLUTIONS TO EXERCISES

2. The following list gives a one sentence description of each of the tasks listed for Exercise 1.

a. Requirements Gathering —Learn the customer’s wants and needs.

b. High-Level Design —Describe the major pieces of the application and how they interact.

c. Low-Level Design —Provide more detail about how to build the pieces of the
application so that the programmers can actually implement them.

d. Development —Write code to implement the application.

e. Testing —Use the application under different circumstances to try to detect any fl aws or
bugs.

f. Deployment —Roll out the application to the users.

g. Maintenance —Implement bug fi xes, additions, enhancements, and future versions of
the program.

h. Wrap-up —Evaluate the project’s history to determine what went right and what
went wrong so that you can repeat the good things and avoid the bad things in future
projects.

3. The reason the tasks don’t stand out is that this kind of project is small and fast, so many of
the tasks occur only in my head.

 Steps 1 through 3 (customer sends me a request, I reply saying what I think the customer
wants, and the customer confi rms) are clearly requirements gathering.

 Step 4 (I crank out a quick example program) combines high-level design, low-level design,
development, and testing all in one step. For most small questions, I do these all in my head.
For larger questions, I sometimes need to pull out paper and pencil and scribble out a bit of
design before I start coding. (Coding without proper design is a bad habit. I get away with it
only for small examples.)

 Step 5 (I e-mail the example to the customer) is deployment.

 Step 6 (the customer examining the example) is also part of deployment, which includes
normal operation of the program. If the customer asks more questions, that’s essentially
revising the requirements.

 Step 7 (I answer the new questions) is maintenance because the customer is asking for
changes to the original example. Usually in practice the fi rst example is either good enough
or almost good enough, so there’s not much else to do.

 The one missing task here is wrap-up. The fi rst several times I built this sort of quick
example for a customer, I learned from the experience and adjusted the way things worked
in the future. Probably the most important thing I learned was the level of detail the
customers need. These customers are smart and like to do their own work so that they can
learn new techniques, so over time I learned to make the examples a lot less detailed. The
customer just wants the basic techniques and can fi ll in things such as error handling, big
user interfaces, and documentation. Making less complete examples saves me time and them
money.

Chapter 2 ❘ 363

4. First, the bug fi x may be incorrect. Second, the fi x may break other code that depended on
the original buggy behavior. Third, the fi x might change some correct behavior to a new
correct behavior, but another piece of code might depend on the original behavior.

5. Here are some of the things you might need during deployment:

➤ New computers for the back-end database

➤ New network

➤ New computers for the users

➤ User training

➤ On-site support while the users get to know the new system

➤ Parallel operations while some users get to know the new system and other users
keep using the old system

➤ Special data maintenance chores to keep the old and new databases synchronized

➤ Bug fi xes

➤ Unexpected tasks

 CHAPTER 2

1. Seven features that a document management system should provide are the ability to:

➤ Share documents.

➤ Prevent multiple users from changing a document at the same time.

➤ Fetch the latest version of a document.

➤ Fetch earlier versions of a document.

➤ Search documents for keywords.

➤ See the changes made to a document.

➤ Compare two versions of a document to see their differences.

2. This is an exercise, not a question, so just follow the instructions. Figure A-1 shows the
document I created for this exercise. The deletion is lined-out in red and the insertion is
underlined in blue. (You can’t see the colors in this book, but you should see them in your
fi le.) You can experiment with the other change tools such as the Accept and Reject drop-
downs if you like.

3. The Compare tool produces a result that looks a lot like the change tracking tool. It doesn’t
know who made the changes or when, so in that sense it’s not as good as the change tracking
tool. It also doesn’t know the document’s complete change history. For example, if you add a
word and later remove it, the Compare tool doesn’t know that word ever existed.

 The Compare tool is useful, however, if you have multiple versions of a document that
doesn’t contain change tracking information.

364 ❘ APPENDIX SOLUTIONS TO EXERCISES

4. This is another exercise, not a question, so follow the instructions and you should be alright.
Figure A-2 shows a Google Docs fi le I created for this exercise.

5. JBGE stands for Just Barely Good Enough. It’s the philosophy that you shouldn’t write any
more code documentation or comments than absolutely necessary.

FIGURE A-1: Microsoft Word has revision-tracking tools that let you see who has modifi ed a
document and when.

FIGURE A-2: Google Docs also has revision-tracking tools that let you see who has modifi ed
a document and when.

Chapter 3 ❘ 365

CHAPTER 3

1. Figure A-3 shows one possible PERT chart for part of the zombie apocalypse software project.

2. Figure A-4 shows a PERT network with its critical path highlighted with bold, black arrows
for the zombie apocalypse software project. Bold gray arrows show the greatest cost paths
into each node.

 FIGURE A-3: This PERT chart includes tasks needed to build a small part of a 3-D zombie
apocalypse game.

A
Preds:
Time:

Start
5

C
Preds:
Time:

Start
4

B
Preds:
Time:

C
5

F
Preds:
Time:

Start
7

G
Preds:
Time:

Start
6

H
Preds:
Time:

Start
3

I
Preds:
Time:

H
3

L
Preds:
Time:

C,G
6

D
Preds:
Time:

A, G, I
6

O
Preds:
Time:

A, G, J
5

K
Preds:
Time:

L
5 Q

Fi
ni

sh

St
ar

t

Preds:
Time:

K, M
4E

Preds:
Time:

D
7

M
Preds:
Time:

B, E, I
9

P
Preds:
Time:

O
6

N
Preds:
Time:

B, O, J
15

K
Preds:
Time:

K, N
4

J
Preds:
Time:

H
3

Time:
Total:

5
5

A

Time:
Total:

4
4

C

Time:
Total:

7
7

F

Time:
Total:

6
6

G

Time:
Total:

3
3

H

Time:
Total:

3
6

J

Time:
Total:

3
6

Time:
Total:

5
11

I
O

Time:
Total:

6
12

D

Time:
Total:

6
12

L

Time:
Total:

6
17

P

Time:
Total:

15
26

N
Time:
Total:

4
30

R

Time:
Total:

9
28

M
Time:
Total:

4
32

Q

Time:
Total:

7
19

E

Time:
Total:

5
17

K
Time:
Total:

5
9

B

St
ar

t

Fi
ni

sh
To

ta
l:

 3
2

 FIGURE A-4: The critical path for this piece of the zombie apocalypse game includes tasks G, D, E,
M, and Q.

366 ❘ APPENDIX SOLUTIONS TO EXERCISES

 The critical path passes through the tasks G, D, E, M, and Q and has a total expected
length of 32 working days.

3. The PERT network shown in Figure A-4 has two second-shortest paths: G ➢ O ➢ N ➢ R
and H ➢ J ➢ O ➢ N ➢ R. They both have a length of 30 days. The tasks on those paths
could slip up to 2 days before changing the project’s total expected time.

4. Figure A-5 shows a Gantt chart for the PERT network referred to in Figure A-4 . According
to Figure A-5 , this part of the game should be fi nished in the evening of February 18.

 FIGURE A-5: This Gantt chart shows this piece of the zombie apocalypse game fi nished at the end of the
day February 18.

5. Figure A-6 shows OpenProj displaying the tasks for the zombie apocalypse project. You enter
the task data in this worksheet area.

 To get OpenProj to build a correct schedule, you need to mark the dates January 1,
January 20, and February 17 as holidays. To do that, select Tools Change ➢ Working
Calendar. Select each date and click its Non-working time option. Figure A-7 shows the
resulting Gantt chart in OpenProj.

 OpenProj has the disadvantage that it isn’t quite as fl exible as a Gantt chart you draw by
hand. For example, when you draw a chart by hand, you can adjust the arrows to make
everything fi t exactly the way you want.

 However, OpenProj and other project management tools have the huge advantages that they
are simple and they give you far fewer chances to make mistakes. They may also provide
other features such as work assignment tracking. For those reasons, you should use some
sort of tool if you plan to manage a lot of projects or projects with many tasks.

6. You can treat deus ex machina problems the same way you handle unexpected sick leave.
Add tasks at the end of the schedule to account for completely unexpected problems. When
one of these problems does occur, insert its lost time into the schedule.

Chapter 3 ❘ 367

 FIGURE A-6: Enter the task data into OpenProj’s worksheet area.

 FIGURE A-7: OpenProj uses the task data to generate a Gantt chart.

368 ❘ APPENDIX SOLUTIONS TO EXERCISES

7. Techniques that help you make accurate time estimates include:

➤ Gaining experience in this type of task

➤ Breaking large tasks into smaller pieces

➤ Looking for similarities with tasks you have performed before

➤ Allowing for unexpected delays such as time lost to sickness, vacation, and
completely unpredictable causes

➤ Planning for tasks with lead times such as management approvals and ordering times

➤ Asking for advice and assistance from people with experience

8. The biggest mistake you can make while tracking tasks is not taking action when a task slips.
At a minimum, you need to pay closer attention to the task so that you can take action if it’s
in trouble.

 The second biggest mistake is piling more people on the task and assuming they can cut the
total time. Unless the new people have particularly useful expertise, bringing them up to
speed may make the task take even longer.

 CHAPTER 4

1. Five characteristics of good requirements are clear (easy to understand), unambiguous,
consistent, prioritized, and verifi able.

2. MOSCOW stands for Must (must be included), Should (should be included if possible),
Could (could be included if we have the resources), and Won’t (won’t be included).

3. The following lists show the TimeShifter requirements with their audience-oriented categories
shown in parentheses. (B = Business, U = User, F = Functional, N = Nonfunctional, and
I = Implementation.)

a. Allow users to monitor uploads/downloads while away from the offi ce. (B)

b. Let the user specify website log-in parameters such as an Internet address, a port, a
username, and a password. (U, F)

c. Let the user specify upload/download parameters such as number of retries if there’s a
problem. (U, F)

d. Let the user select an Internet location, a local fi le, and a time to perform the upload/
download. (U, F)

e. Let the user schedule uploads/downloads at any time. (N)

f. Allow uploads/downloads to run at any time. (N)

g. Make uploads/downloads transfer at least 8 Mbps. (N)

h. Run uploads/downloads sequentially. Two cannot run at the same time. (N)

i. If an upload/download is scheduled for a time when another is in progress, the new
task waits until the other one fi nishes. (N)

Chapter 4 ❘ 369

j. Perform scheduled uploads/downloads. (F)

k. Keep a log of all attempted uploads/downloads and whether they succeeded. (F)

l. Let the user empty the log. (U, F)

m. Display reports of upload/download attempts. (U, F)

n. Let the user view the log reports on a remote device such as a phone. (U, F)

o. Send an e-mail to an administrator if an upload/download fails more than its maximum
retry number of times. (U, F)

p. Send a text message to an administrator if an upload/download fails more than its
maximum retry number of times. (U, F)

 All the categories include at least one requirement except for implementation requirements,
which is empty. You might need to buy new hardware or network bandwidth to support the
application, but you’re presumably performing uploads and downloads now, so you may
already have everything you need. In that case, there are no implementation requirements.

4. The following lists show the TimeShifter requirements with their FURPS categories shown
in parentheses. (F = Functionality, U = Usability, R = Reliability, P = Performance, and
S = Supportability.)

 The listed requirements don’t say much about what the application should look like, so I
stretched the usability category a bit to include requirements that describe user tasks, even
though they don’t say much about how those tasks will be accomplished.

a. Allow users to monitor uploads/downloads while away from the offi ce. (F)

b. Let the user specify website log-in parameters such as an Internet address, a port, a
username, and a password. (F, U, S)

c. Let the user specify upload/download parameters such as number of retries if there’s a
problem. (F, U, S)

d. Let the user select an Internet location, a local fi le, and a time to perform the upload/
download. (F, U, S)

e. Let the user schedule uploads/downloads at any time. (R)

f. Allow uploads/downloads to run at any time. (R)

g. Make uploads/downloads should transfer at least 8 Mbps. (P)

h. Run uploads/downloads sequentially. Two cannot run at the same time. (F)

i. If an upload/download is scheduled for a time when another is in progress, the new
task waits until the other one fi nishes. (F)

j. Perform scheduled uploads/downloads. (F)

k. Keep a log of all attempted uploads/downloads and whether they succeeded. (F)

l. Let the user empty the log. (F, U, S)

m. Display reports of upload/download attempts. (F, U)

370 ❘ APPENDIX SOLUTIONS TO EXERCISES

n. Let the user view the log reports on a remote device such as a phone. (F, U)

o. Send an e-mail to an administrator if an upload/download fails more than its maximum
retry number of times. (F, U, S)

p. Send a text message to an administrator if an upload/download fails more than its
maximum retry number of times. (F, U, S)

 All the FURPS categories include at least one requirement.

5. The fi ve W’s and one H are who, what, when, where, why, and how.

6. Three specifi c techniques for gathering requirements include:

➤ Listen to customers and users.

➤ Use the fi ve W’s and one H (who, what, when, where, why, and how).

➤ Study users. Watch them at work. Study current practices.

7. Brainstorming lets you search for creative and novel solutions to problems.

8. Alex Osborn’s four rules are:

a. Focus on quantity.

b. Withhold criticism.

c. Encourage unusual ideas.

d. Combine and improve ideas.

9. Here are some changes that you could make to the Mr. Bones application. (Your results are
likely to differ.) The letters in parentheses indicate their MOSCOW priorities.

➤ Advertising (M) —A phone application typically costs money to install or displays
advertising. Currently, the program does neither. It could be modifi ed to display
advertising.

➤ Scoring (S) —Right now you either win or lose. The program could be changed to
calculate a score.

➤ Score keeping (S) —If the program calculates scores, it could keep track of them so
that the user can try to beat the previous best score.

➤ Multiple high scores (S) —If the program tracks high scores, it could be modifi ed to
track high scores for multiple users.

➤ Different fonts (C) —The program could allow users to pick different fonts. (This
could be useful if the buttons are too small for users to touch on a phone.)

➤ Quick win (C)—The program could allow the user to type a guess for the whole
word to get extra points. (For example, if you have fi lled in A_A_E_T_C , you might
guess ANAPESTIC all at once.)

➤ Multiple skill levels (C) —The program could allow users to pick a skill level. An
algorithm would use word length and the letters in a word to estimate diffi culty.

Chapter 5 ❘ 371

➤ Different backgrounds (C) —The program could let the users pick different
backgrounds (in addition to the shaded background).

➤ Different pictures (C) —The program could let the users pick different pictures (in
addition to the cartoonish skeleton).

➤ Random pictures (C) —The program could display random pictures (in addition to
the cartoonish skeleton).

➤ Animated win (C) —When the user wins, the program could display an animation.

➤ Animated loss (C) —When the user loses, the program could animate the fi nished
skeleton (or other picture).

➤ Report high score (W) —The program could let users report their high scores to a
central database so that other users can view them on a web page.

➤ Animated pictures (W) —The program could display animated pictures that wave,
wink, roll their eyes, and so on.

➤ Word diffi culty tracking (W) —The program could track the number of incorrect
guesses for each word to determine its diffi culty. It would periodically report values
to a central database for distribution during later updates.

➤ Different letter selection mechanisms (W) —The program could allow users to pick
letters in different ways. For example, by dragging and dropping letters into specifi c
positions.

➤ Time limits (W) —The program could display a countdown. Each correct guess
would increase the time available.

10. Your results may vary.

 CHAPTER 5

1. A component-based architecture regards pieces of the system as loosely coupled components
that provide services for each other. A service-oriented architecture is similar except the
pieces are implemented as services, often running on separate computers communicating
across a network. The two are similar, but the pieces are more separated in a service-oriented
architecture.

2. This is a simple, self-contained application so no remote services or database is required.
That means client-server, multitier, component-based, and service-oriented architectures are
probably overkill. You could use them internally within the phone, but a simple computer
opponent probably isn’t complicated enough to make them necessary.

 For this application, a monolithic architecture would probably work well because it’s a
relatively small, self-contained application.

 A data-centric approach also works well in this example. For tic-tac-toe in particular, it’s
easy to build tables of moves and the best responses, so it will probably use some data-
centric or rule-based techniques.

372 ❘ APPENDIX SOLUTIONS TO EXERCISES

 The user interface will be event-driven, at least in terms of responding to user events. You
could also make the computer opponent raise events when it makes moves, so you might
make that part of the system event-driven, too. However, for this simple application that’s
probably not necessary.

 Finally, you could use distributed components to make different processes explore different
sequences of moves simultaneously, but again tic-tac-toe just isn’t that complicated an
application, so it’s probably not necessary.

 In conclusion, this application would probably be easiest to build as a simple monolithic
rule-based (data-centric) application.

3. A chess program is similar in many ways to a tic-tac-toe program, so its architecture can be
similar. Like the tic-tac-toe program, the chess program won’t need to interact with remote
processes. Chess programs also use tables of typical moves and precalculated responses, so
this application will still have rule-based (data-centric) pieces.

 Because searching for optimal moves is so diffi cult in chess, this program could include
distributed pieces running on different cores simultaneously. That would make this a
monolithic rule-based (data-centric) application with distributed pieces.

4. This scenario may seem a lot more complicated than the previous one, but it’s not too bad.
The user interface is basically the same. The only changes are: (1) The program needs to
exchange information with another instance of the program across the Internet, and (2)
There’s no computer opponent.

 Removing the computer opponent means the program doesn’t need distributed pieces.

 You could use web services to allow two programs to communicate over the Internet.
That would make the application a monolithic rule-based (data-centric) service-oriented
application.

5. The games described in Exercises 2 and 3 are self-contained. They could produce reports on
high scores stored on the local hardware (phone, laptop, and so on). They could also keep
track of high scores reported by users from all over the Internet. (Although that would add
Internet access to the program’s requirements and require a lot of work that would otherwise
be unnecessary, so you might want to skip this at least for the fi rst release.)

 Those programs might also produce reports on the automated opponent such as its
diffi culty level and how far down the game tree it searches. Usage reports might be handy
for marketing purposes, but you should allow the users to disable them.

 The two-player game used in Exercise 4 could provide reports showing the user’s results
versus other players. Those reports could include information about the other players
such as their ranking (either using standard chess rankings or rankings determined by this
program). It could also provide leaderboards and challenge ladders to help users interact
with each other.

6. The ClassyDraw application can store each drawing in a separate fi le, so it doesn’t need
much of a database. Operating system tools can let the user manage fi les. For example, they
let the user delete old fi les and make backup copies of fi les.

Chapter 5 ❘ 373

 The program could create a temporary fi le while the user is editing a drawing. Then if
the program crashes or is ended prematurely, it could ask the user if it should restore the
temporary fi le the next time it starts.

7. At fi rst you might think ClassyDraw wouldn’t need confi guration information, but it has a
few pieces of confi gurable data. For example, it should keep track of its current directory.
Many similar programs use the last directory they used to load or save a fi le as their current
directory, so that information is stored implicitly and not in a confi guration screen.

 The program could also keep track of defaults such as its initial color palette, drawing size,
and object characteristics. (When the user draws a new circle, what color and line style
should it use?) You could use whatever settings were used for the most recently created
object (that’s the way MS Paint does it), or you could let the user tell the program to use a
particular object as a template for future objects. (That’s the way Microsoft Word’s drawing
canvas does it.)

8. Figure A-8 shows a state machine diagram for reading a fl oating point value in scientifi c
notation.

Digit

Digit

Digit

Digit
Digit

Digit

Digit

Enter

Enter

Enter

E or e

E or e
Digit

Digit or decimal Digit after
decimal

Digit before
decimal

Decimal

Mantissa

Exponent

Sign or digit Digit after E

+ or –

+ or –

 FIGURE A-8: This state machine diagram shows how a program could read a fl oating
point number in scientifi c notation as in –12.3e + 17.

374 ❘ APPENDIX SOLUTIONS TO EXERCISES

 CHAPTER 6

1. Those classes all represent things that are drawn, so they share properties needed for
drawing. Those include foreground color and background color. All the classes can
also defi ne their drawing position by storing an upper-left corner, a width, and
a height.

Some classes need extra data to draw their particular type of shape, and the classes won’t
share that data. For example, the Text class needs font information and the string to draw.
The Star class needs to know how many points to give the star.

Some properties can be shared by some classes and not others. Rectangle , Ellipse ,
and Star can be fi lled, so they need a fi ll color. The classes that draw lines (Line ,
Rectangle , Ellipse , and Star) also need line properties (such as line thickness and
dash style).

Table A-1 summarizes the shared, partially shared, and nonshared properties.

2. Figure A-9 shows an inheritance hierarchy for the properties listed for Exercise 1.

3. Figure A-10 shows the inheritance diagram.

4. You could simply move the Boss property from the Salaried class to the Employee class.
The structure of the hierarchy wouldn’t change.

 TABLE A-1: Properties Shared by ClassyDraw Classes

PROPERTY USED BY

ForeColor All

BackColor All

UpperLeft All

Width All

Height All

Font Text

String Text

NumPoints Star

FillColor Rectangle , Ellipse , Star

LineThickness Rectangle , Ellipse , Star , Line

DashStyle Rectangle , Ellipse , Star , Line

 FIGURE A-9: This inheritance hierarchy represents shape classes in the
ClassyDraw application.

ForeColor
BackColor
UpperLeft
Width
Height

LineThickness
DashStyle

FillColor

NumPoints Font
String

Drawable

LineDrawable

Fillable

Line Rectangle Ellipse Star Text

 This inheritance hierarchy represents business
classes.

Name
Phone
Address

Person

BillingAddress
Customerld

Customer

Employeeld

Employee

Products
Supplierld

Supplier

HourlyRate

Hourly

Office
Salary

HasSalary

Boss

Salaried

Managers

VicePresident

Employees

Manager

376 ❘ APPENDIX SOLUTIONS TO EXERCISES

5. If Supplier represents a business instead of a person, it doesn’t make sense to have it inherit
from a Person class, even though it does need the properties provided by Person .

 If you want to store information for a company contact person, a better approach would
be to use composition to make the Company class include a ContactPerson property of
type Person .

 If you just want to store the company’s name, phone number, and address without
associating it with a contact person, then you could rename the Person class to something
that applies to both people and companies. For example, you might call it HasAddress .
That would be less intuitive than using composition, however.

6. To represent all the managerial types, you could give the Salaried class the properties
Office , Salary , Boss , and Employees . The Boss property would not be fi lled in for top-
level vice presidents who don’t report to anyone. The Employees property would be empty
for bottom-level employees who are not managers of anything.

 Figure A-11 shows the new inheritance hierarchy.

 FIGURE A-11: This inheritance hierarchy represents
business classes.

Name
Phone
Address

Person

BillingAddress
Customerld

Customer

Employeeld

Employee

Products
Supplierld

Supplier

HourlyRate

Hourly

Office
Salary
Boss
Employees

Salaried

7. Storing ZIP codes in this way violates the 3NF rule, “It contains no transitive dependencies,”
because a non-key fi eld (ZIP code) depends on other non-key fi elds (the entire address).

8. Including postal codes in address data leads to insertion, update, and deletion anomalies.

➤ Insertion anomalies —You cannot store information about a postal code unless there
is an address that uses it. This is usually no big deal because you generally don’t need
to do anything with a postal code unless it is part of some address.

Chapter 6 ❘ 377

➤ Update anomalies —There are several ways this could be a problem:

➤ If you change one record’s postal code, it could become inconsistent with
other neighboring addresses. For example, if you change the ZIP code for 1
Main St, Boston, MA to 92123, then it won’t match the ZIP code for 2 Main
St, Boston, MA. Then again, that may be correct, so you probably shouldn’t
update any other ZIP codes.

➤ A bigger problem would be if the Postal Service changes a ZIP code to a new
value. Then you need to update all the records with the old ZIP code. This
might be time-consuming if the database is big, but it shouldn’t be too hard to
treat it as a one-time conversion.

➤ Probably the worst case scenario is when the Postal Service splits a ZIP code
into two or more new ones. In that case, you’d need to check every address
in the original ZIP code and fi gure out its new one. In some applications,
it might be better to just invalidate the ZIP codes (for example, set them
to 00000) and make users enter their new values the next time they place
an order.

➤ Deletion anomalies —If you delete the last record with a particular ZIP code, you
lose any information about that ZIP code. As is the case with insertion anomalies,
this probably isn’t a big deal because you don’t do anything with the ZIP code
information itself.

 Even though you probably shouldn’t make a separate table to hold ZIP code information, it
may still be worth making a lookup table that lists the allowed ZIP codes. If your customers
have only a handful of ZIP codes, a lookup table can catch data entry typos.

9. You could think of this as breaking the 1NF rule, “Each column must have a single data
type,” or “Each column must contain a single value.” That would be true only if you think
of the pieces of the ZIP code as separate values with their own meaning. Most applications
treat the two possible pieces of a ZIP code as a single value, so putting them in the same
fi eld is okay.

 The fi eld still breaks the 3NF rule, “It contains no transitive dependencies,” as described in
the solution to Exercise 7.

 It’s probably not worth any extra effort to handle this fi eld differently. Just make the
program validate the fi eld that so the user doesn’t enter bogus values such as “20500-12” or
“1924-12920.”

10. Once upon a time, area codes mapped fairly closely to geographic areas, so if you had an
address, you could fi gure out the corresponding area code. These days when you move, you
can keep your old cell phone number, so you can’t rely on any relationship between area
code and address. In fact, you could have two phones at the same address with just about
any area codes.

 I don’t know enough about non-U.S. phone numbering plans to know if there is any
relationship between address and parts of non-U.S. phone numbers, but my guess is
cell phones have made any such relationship obsolete.

378 ❘ APPENDIX SOLUTIONS TO EXERCISES

 The only part of a phone number that I know you can store separately to improve
normalization is country code. For example, the code for the United States is +1, the code
for the United Kingdom is +44, and the code for Svalbard is +47 79. That means you could
move the country code into a separate table and look up the values you need based on an
address. That’s a lot of work for little benefi t (it seems unlikely that the country codes will
change), so it’s probably better to store country codes as part of phone numbers. (If you
need them at all. If you don’t have customers outside of your country, then you probably
don’t need to store country codes.)

11. This table design violates the following normalization rules:

➤ 1NF rules:

a. Each column must have a unique name. (There are multiple Team and Time
columns.)

b. The order of the rows and columns doesn’t matter. (The order of the Team and
Time columns matters.)

c. Columns cannot contain repeating groups. (The Team and Time columns are
repeating groups.)

➤ 2NF rules:

a. It is in 1NF.

b. All non-key fi elds depend on all key fi elds. (Winner depends on the two Time
fi elds, not on the Heat fi eld. In other words, you can deduce Winner without
knowing Heat .)

➤ 3NF rules:

a. It is in 2NF.

b. It contains no transitive dependencies. (Winner depends on the non-key Team
and Time fi elds.)

12. You could satisfy the rules about nonrepeating column names and the columns ordering not
mattering by renaming the Team and Time fi elds to be Team1 , Team2 , Time1 , and Time2 , but
that would still leave the table holding repeating groups.

 Note that the fi rst Time fi eld holds the heat’s starting time. That is a different kind of value
than the other Time fi elds, so it doesn’t form a repeating group. Renaming it to StartTime
would fi x its name.

 To solve the problem, you should create a new Heats table to hold heat numbers, distances,
and start times. Then create a second HeatParticipants table to hold information about
the teams that participated in each heat. Figure A-12 shows the new design.

 Notice that the new design doesn’t have a Winner fi eld in either table. You can deduce
a heat’s winner by fetching the data for the two participating teams and comparing
their times.

Chapter 7 ❘ 379

CHAPTER 7

1. The problem with the original GCD code’s comments is that they just say what the code does
and not why it does it. They don’t add anything that isn’t obvious from the code itself. For
example, the following three lines leave you with the feeling of, “Well, duh!”

 // Get the absolute value of a and b.
 a = Math.Abs(a);
 b = Math.Abs(b);

 This algorithm is short but tricky to understand. You could include a big explanation of
how it works, but that would clutter the code and make it harder to read. Besides, there’s
already a perfectly good description of the algorithm online.

 The following code shows a version with much better comments:

 // Use Euclid's algorithm to calculate the GCD.
 // See en.wikipedia.org/wiki/Euclidean_algorithm.
 private long GCD(long a, long b)
 {
 a = Math.Abs(a);
 b = Math.Abs(b);

 for (; ;)
 {
 long remainder = a % b;
 if (remainder == 0) return b;
 a = b;
 b = remainder;
 };
 }

 All you need is the reference to the URL where you can fi nd a description of the algorithm.

2. There are two likely reasons why the original GCD code ended up with bad comments.
First, the programmer may have taken a top-down design to its logical conclusion where
the code is described in excruciating detail. That’s good programming practice, but it

500
500

1000

1000

1 1 Buddhist Temple 2:55.372

1 Wicked Wind 2:57.391

2 Rainbow Energy 3:10.201

2 Rising Typhoon 3:01.791

3 Math Dragons 5:52.029
3 Supermarines 6:23.552

4 Flux Lake Tritons 6:08.480

4 Elf Power 6:59.717

Heat Heat Team TimeDistance StartTime
Heats HeatParticipants

2

3

4

9:00
9:20

9:40

10:00

 These tables hold information about dragon boat races.

380 ❘ APPENDIX SOLUTIONS TO EXERCISES

can result in these kinds of redundant comments because each comment describes a
code statement.

 When using top-down design to generate comments, you need to stop one step before the actual
code. In this example, the last step before writing out the code would be here:

➤ Use Euclid’s algorithm to calculate the GCD.

➤ See en.wikipedia.org/wiki/Euclidean_algorithm .

 The second way this kind of comment sometimes occurs is if the programmer added the
comments after writing the code. After the code is written, it’s easy to just say what each
line of code does and not why it is doing it. (It’s sort of like a third-grade book report.
You tend to get a repetition of the story and not the deeper insights you might get from a
professional book reviewer.)

3. The parameters a and b should be greater than 0. (Actually, the algorithm works if a is 0,
but that’s a weird case that probably indicates an error in the calling code, so we’ll fl ag that
as an error.)

 If you verify that the values are greater than 0, then you can remove the calls to Math.Abs
that convert a and b into their absolute values.

 The method can also verify that the return value actually divides both the a and b evenly. It
should, but this is a good chance to check for bugs.

 The following code shows the revised GCD method. The validation code is highlighted:

 // Use Euclid's algorithm to calculate the GCD.
 // See en.wikipedia.org/wiki/Euclidean_algorithm.
 private long GCD(long a, long b)
 {
 // Verify that a and b are greater than 0.
 Debug.Assert(a > 0);
 Debug.Assert(b > 0);

 // Save the original values for later validation.
 long original_a = a;
 long original_b = b;

 for (; ;)
 {
 long remainder = a % b;
 if (remainder == 0)
 {
 // Verify that the result evenly divides the original values.
 Debug.Assert(original_a % b == 0);
 Debug.Assert(original_b % b == 0);

 return b;
 }
 a = b;
 b = remainder;
 };
 }

Chapter 7 ❘ 381

 You could also check that the result is the smallest even divisor of t a and b . That’s a bit
trickier and more time-consuming, so you can include it in a conditional compilation block
to make it easy to remove from release versions of the program.

 The following snippet shows the new version of the code that validates the result with the
new lines of code highlighted. That code is included in the compilation only if the symbol
DEBUG _ 1 is defi ned:

 if (remainder == 0)
 {
 // Verify that the result evenly divides the original values.
 Debug.Assert(original_a % b == 0);
 Debug.Assert(original_b % b == 0);

#if DEBUG_1
 // Verify that there are no larger common divisors.
 long max_value = Math.Min(original_a, original_b);
 for (long test_value = b + 1; test_value <= max_value; test_value++)

 {

 Debug.Assert(
 (original_a % test_value != 0) ||
 (original_b % test_value != 0));
 }
#endif

 return b;
 }

 The new loop runs from the result plus 1 to the minimum of the original a and b values. It
asserts that the values in that range do not evenly divide both a and b because any value that
did would be a larger common divisor than the one found by the method.

4. The validation code written for Exercise 3 is already fairly offensive. It validates the inputs
and the result, and the Debug.Assert method throws an exception if there is a problem.

5. You could add error handling code to the GCD method, but you actually want the calling
code to handle any errors. As it is, if the code throws any exceptions, they are passed up to
the calling code so that they can be handled there. That means you don’t need to add error
handling code here.

6. This isn’t good code because it’s clever. That makes it harder to understand (most people
take a while to fi gure out how this swap works) and, remember, you should be writing code
for people to understand, not for the computer’s convenience.

 For all its obscurity, this code doesn’t buy you much. It saves you from allocating a 4-
or 8-byte temporary variable, but if one more variable is going to ruin your program’s
performance, your application has some serious problems.

 The following code shows a version that’s much easier to understand:

 // Swap a and b.
 long temp = a;
 a = b;
 b = temp;

382 ❘ APPENDIX SOLUTIONS TO EXERCISES

7. Your answer will be different from mine, but here’s how to get to my nearest supermarket, to
give you an idea of the level of detail required.

a. Find the car.

b. Open the car.

c. Start the car.

d. Back out of the parking space.

e. Turn to the left (as you look at the parking space). Drive out of the parking lot to the
cross street.

f. Turn left. Drive until the street ends.

g. Turn right. Drive to the stop sign.

h. Turn left. Drive to the fi rst stoplight.

i. Turn right. Drive until you see the supermarket.

j. Turn into the supermarket parking lot.

k. Find an empty parking space and park in it.

l. Stop the car and get out.

m. Go buy Twinkies and Red Bull.

 This description makes the assumptions:

a. The car is parked head-fi rst (which should be true for my car).

b. You properly adjust the seat and mirrors when you enter the car.

c. There’s gas in the car. (Another reasonable assumption.)

d. You know how to drive a manual transmission. (I bet you didn’t see that one coming!)

e. There’s nothing behind the car when you pull out.

f. You can safely drive when instructed. No cars, people, dogs, trees, or other objects
jump in the way.

g. You know how to shift gears as needed.

h. There are empty parking spaces in the supermarket parking lot.

i. The supermarket is open.

 The lesson here is that even the most mundane chores can involve a huge number of steps,
each of which can rely on a lot of assumptions. When broken down, some of the steps can
also lead to a lot of smaller steps. For example, it takes a lot of instructions to explain how
to start a car that has manual transmission if you don’t know how to do it, particularly if
you assume anything could go wrong.

CHAPTER 8

1. To test a method, you need a way to verify that the results it returns are correct.
Sometimes, that’s easiest if you write another method that performs the same

Chapter 8 ❘ 383

calculation in a different way. Then you can pass inputs to both methods and verify that
they agree.

 For this example, I wrote a Validate _ AreRelativelyPrime method that uses an
ineffi cient algorithm for determining whether two values are relatively prime. The
following C# code shows the method. (If you don’t know C#, just read the description
that follows the code.)

 // Return true if a and b are relatively prime.
 // This is a test method that is less efficient than
 // AreRelativelyPrime and is used only to validate that method.
 private bool Validate_AreRelativelyPrime(int a, int b)
 {
 // Use positive values.
 a = Math.Abs(a);
 b = Math.Abs(b);

 // If either value is 1, return true.
 if ((a == 1) || (b == 1)) return true;

 // If either value is 0, return false.
 // (Only 1 and -1 are relatively prime to 0.)
 if ((a == 0) || (b == 0)) return false;

 // Loop from 2 to the smaller of a and b looking for factors.
 int min = Math.Min(a, b);
 for (int factor = 2; factor <= min; factor++)
 {
 if ((a % factor == 0) && (b % factor == 0)) return false;
 }
 return true;
 }

 This code fi rst converts a and b into positive values. Then if either value is 1, it returns true
because 1 and –1 are relatively prime to every number.

 Next if a or b is 0, the method returns false because only 1 and –1 are relatively prime to 0
and the code already checked whether a or b is 1.

 The code then makes the value factor loop from 2 to the smaller of a and b . The code takes
the values a and b modulus factor to see if factor divides evenly into a and b . (The modulus
is the remainder after division. For example, 14 % of 5 is 4 because 14 divided by 5 is 2 with a
remainder of 4. If a % factor is 0, then factor divides into a evenly so factor is a factor of a .)

 If factor divides into both a and b evenly, then a and b are not relatively prime so the
method returns false .

 Finally, if none of the values of factor divide into both a and b , then the numbers are
relatively prime so the method returns true .

 Having written the Validate _ AreRelativelyPrime method, you can use it to test the original
AreRelativelyPrime method. I wrote a C# method named Test _ AreRelativelyPrime
to perform a series of tests. The method is quite long (and unless you speak C# or a related

384 ❘ APPENDIX SOLUTIONS TO EXERCISES

language, it would probably be confusing), so I won’t repeat it here. The following text shows
the tests that the method performs in pseudocode:

 For 1,000 trials, pick random a and b and:
 Assert AreRelativelyPrime(a, b) =
 Validate_AreRelativelyPrime(a, b)

 For 1,000 trials, pick random a and:
 Assert AreRelativelyPrime(a, a) =
 Validate_AreRelativelyPrime(a, a)

 For 1,000 trials, pick random a and:
 Assert AreRelativelyPrime(a, 1) relatively prime
 Assert AreRelativelyPrime(a, -1) relatively prime
 Assert AreRelativelyPrime(1, a) relatively prime
 Assert AreRelativelyPrime(-1, a) relatively prime

 For 1,000 trials, pick random a (not 1 or -1) and:
 Assert AreRelativelyPrime(a, 0) relatively prime
 Assert AreRelativelyPrime(0, a) relatively prime

 For 1,000 trials, pick random a and:
 Assert AreRelativelyPrime(a, -1,000,000) =
 Validate_AreRelativelyPrime(a, -1,000,000)
 Assert AreRelativelyPrime(a, 1,000,000) =
 Validate_AreRelativelyPrime(a, 1,000,000)
 Assert AreRelativelyPrime(-1,000,000, a) =
 Validate_AreRelativelyPrime(-1,000,000, a)
 Assert AreRelativelyPrime(1,000,000, a) =
 Validate_AreRelativelyPrime(1,000,000, a)

 Assert AreRelativelyPrime(-1,000,000, -1,000,000) =
 Validate_AreRelativelyPrime(-1,000,000, -1,000,000)
 Assert AreRelativelyPrime(1,000,000, 1,000,000) =
 Validate_AreRelativelyPrime(1,000,000, 1,000,000)
 Assert AreRelativelyPrime(-1,000,000, 1,000,000) =
 Validate_AreRelativelyPrime(-1,000,000, 1,000,000)
 Assert AreRelativelyPrime(1,000,000, -1,000,000) =
 Validate_AreRelativelyPrime(1,000,000, -1,000,000)

 This code verifi es the method’s results for pairs of random values, pairs of identical numbers,
1, –1, 0, and the smallest and largest values supported by the AreRelativelyPrime method
–1 million and 1 million.

2. The testing code checks a lot of special cases, so you need to insert a lot of bugs into the
AreRelativelyPrime method to test each special case. I added the following code to break
each of the tests:

 #if TEST_TESTS
 if (a == -1000000) return true;
 if (a == 1000000) return true;
 if (a == b) return true;
 if (a == 1) return false;
 if (b == 1) return false;

Chapter 8 ❘ 385

 if (a == -1) return false;
 if (b == -1) return false;
 if (a == 0) return true;
 if (b == 0) return true;

 #endif

 This code made the method return incorrect answers for each of the tests so the testing code
could catch the errors. Note that the method didn’t always return an incorrect answer. For
example, the fi rst statement says –1,000 is relatively prime to the number a . That’s correct
for some values of a but not for all values. Because the testing method runs 1,000 trials of
most tests, it better fi nd a number for which this is wrong and it better detect that error.

 Notice that the code is enclosed in an #if…#endif conditional compilation block. That lets
me easily disable the test-breaking code without removing it so that I can turn it on again
later if I need to. (Actually, after you test the testing code, you can probably remove this.
You probably won’t need it again and it clutters up the original method.)

3. Because the statement of Exercise 1 doesn’t say how the AreRelativelyPrime method
works, this must be a black-box test.

 If I told you how the AreRelativelyPrime method works, you could write white-box and
gray-box tests for it.

 You could try to perform an exhaustive test, but with allowed values ranging from –1
million and 1 million, there would be (1,000,000 – –1,000,000 + 1)2 = 2,000,001 2 ≈ 4
trillion pairs of values to test, which is probably too many. If the allowed values ranged
from –1,000 to 1,000, you would have only approximately 1 million pairs to test, so this
would be possible.

4. The tests I wrote for Exercise 1 use the Validate_AreRelativelyPrime method to test
the AreRelativelyPrime method. Because we don’t know how the AreRelativelyPrime
method works, there’s a chance that the two methods use the same technique. In that case,
we might be using an incorrect method to validate another incorrect method, so they could
be both wrong in the same way.

 If you knew how the AreRelativelyPrime method works, then you could write white-
box tests that you know use a different method for determining whether two integers are
relatively prime. That would increase your certainty that the tests work.

5. You can download an example C# program at www.csharphelper.com/examples/howto_
test_isrelativelyprime.zip .

 When I wrote this program, I did fi nd some problems in the AreRelativelyPrime method.
The initial version didn’t have restrictions on the values a and b , and the method had
trouble handling the maximum and minimum possible integer values. That inspired me to
restrict the allowed values. Testing often leads to restrictions such as this one.

 Other than that, the AreRelativelyPrime method worked well. It took a bit of effort to get
the Validate _ AreRelativelyPrime method and the test-breaking code to work exactly as
I wanted. It wasn’t really hard, but it did force me to think carefully about the weird values
–1, 0, and 1. That’s another benefi t of writing tests: It makes you think harder about special
cases that might trip up the application.

http://www.csharphelper.com/examples/howto_test_isrelativelyprime.zip
http://www.csharphelper.com/examples/howto_test_isrelativelyprime.zip

386 ❘ APPENDIX SOLUTIONS TO EXERCISES

6. The following text shows an exhaustive test for the AreRelativelyPrime method in pseudocode:

For a = -1,000,000 to 1,000,000
 For b = -1,000,000 to 1,000,000
 Assert AreRelativelyPrime(a, b) =
 Validate_AreRelativelyPrime(a, b)

This version is much simpler than the previous test code. It also checks every possible
combination, so it’s guaranteed to fl ush out any bugs (as long as the Validate _

AreRelativelyPrime method is correct).

It has the big drawback that it’s slow, so it can handle only relatively limited ranges of values.

7. You can download an exhaustive version of the program at www.csharphelper.com/
examples/howto_test_isrelativelyprime2.zip .

On my computer, this program can handle the range –1,000 to 1,000 (approximately
4 million pairs) in roughly 9 seconds. The range –1 million to 1 million includes
approximately 1 million times as many pairs, so it should take approximately 9 million
seconds or around 104 days.

8. Yes, this is a lot of work. That’s the price you pay for some assurance that the code works as
advertised. Fortunately, most of the work is reasonably straightforward.

9. Exhaustive tests are black-box tests because they don’t rely on knowledge of what’s going on
inside the method they are testing.

10. Lisa found 15 – 5 = 10 bugs that Ramon didn’t, plus the 5 in common. Ramon found
13 – 5 = 8 bugs of his own, plus the 5 in common. That means:

 [Total found] = [Lisa only] + [Ramon only] + [Common]

= 10 + 8 + 5

= 23

That means the number of remaining bugs is roughly 39 – 23 = 16. (Of course, this assumes
you don’t add any new bugs while fi xing the ones that have been found.)

11. You can use each pair of testers to calculate three different Lincoln indexes.

➤ Alice/Bob: 5 × 4 ÷ 2 = 10

➤ Alice/Carmen: 5 × 5 ÷ 2 = 12.5

➤ Bob/Carmen: 4 × 5 ÷ 1 = 20

You could take an average of the three to get a rough estimate of (10 + 12.5 + 20) ÷ 3 ≈ 14
bugs. Alternatively, you could assume the worst and plan for 20 bugs. In either case, you
should continue to track the number of bugs found, so you can revise your estimate when
you have more information.

12. If the testers don’t fi nd any bugs in common, then the equation for the Lincoln index divides by 0,
giving you an infi nite result. What this means is you have no clue about how many bugs there are.

You can get a sort of lower bound for the number of bugs by pretending the testers found
1 bug in common. For example, if the testers found 5 and 6 bugs, respectively, then the
lower bound index would be (5 × 6) ÷ 1= 30 bugs.

http://www.csharphelper.com/examples/howto_test_isrelativelyprime2.zip
http://www.csharphelper.com/examples/howto_test_isrelativelyprime2.zip

Chapter 9 ❘ 387

13. If the testers fi nd only bugs in common, then the equation for the Lincoln index gives (E1

× E1) ÷ E1 = E1 bugs, so the result assumes they have found every bug. That seems unlikely,
particularly if the testers have found only a few bugs so far.

14. Here E1 = 15, E 2 = 13, and S = 5, so the Seber estimator is:

Bugs = (15 + 1) × (13 + 1) − 1
(5 + 1)

= 16 × 14 − 1
6

≈ 36

 This is slightly less than the 39 bugs predicted by the Lincoln index.

15. Here E1 = 7, E 2 = 5, and S = 0, so the Seber estimator is:

Bugs = (7 + 1) × (5 + 1) − 1
(0 + 1)

= 8 × 6 − 1
1

= 47

 This is a lot of bugs but fewer than the infi nite number estimated by the Lincoln index.

16. If E 1 = E2 = S, the Seber estimator:

Bugs =
(E1 + 1) × (E1 + 1)

− 1
(E1 + 1)

 If you cancel one set of (E1 + 1) terms, you get:

Bugs = (E1 + 1) − 1 = E1

 Like the Lincoln index, the Seber estimator predicts that every bug has been found. This
still seems unlikely, particularly if the testers have found only a few bugs so far.

CHAPTER 9

1. In this case, it doesn’t matter too much because any mistakes you make will affect only you and
not thousands of other users. To make your own life easier, however, you might start with staging
so that you can test the new version before you start using it. Gradual cutover doesn’t make
sense in this example because there’s only one user. Incremental deployment also seems like more
trouble than it’s worth. I would just make a backup of the data and start using the new version.

2. Staged deployment, gradual cutover, and parallel testing work for just about any project. Incremental
deployment also works in this example because the application is already broken into separate pieces.

3. Yes. Because each of the pieces needs to use the database, you can’t simply install the pieces one
at a time. That makes incremental deployment harder. It may not be practical for some parts
of the system to use the old database and other parts to use the new one. For example, you

388 ❘ APPENDIX SOLUTIONS TO EXERCISES

probably couldn’t create new orders using the new database but have the order-editing tool use
the older database. That probably eliminates incremental deployment as a viable option.

Staged deployment, gradual cutover, and parallel testing would still work.

4. Because mistakes could affect so many users, you should do as much testing beforehand as
possible. Use staged deployment so that you can work out as many kinks as possible before
you start installing for users. After you understand deployment in the staging environment, use
gradual cutover. Install one user and make sure everything works. Then install another user
or two and make sure things still look good. When you’re confi dent that you won’t leave your
thousands of users twiddling their thumbs, start deploying the application in larger batches.

5. A huge initial release with great fanfare that fl ops will destroy your company, so it’s
important that deployment goes smoothly. It must also continue to go smoothly after the
initial installations as other users join in the fun.

To minimize risk, you should start with a staging area in which you test installation and
the application itself thoroughly. In fact, you probably need multiple staging computers so
that you can test in Windows 7, Windows 8, Windows 8.1, Linux, OS X, and any other
operating systems you plan to support. If the game is browser-based, you also need to test
the browsers you support such as Internet Explorer, Firefox, Chrome, and others.

After you’ve thoroughly tested installation on all the supported platforms, it’s time to invite the
customers to give it a try. You might like to do a gradual cutover, but as soon as you post the
installation package on the Internet, you may have thousands of users installing the program.

One way to reduce your risk in this situation is to offer a limited beta. Users can sign up for
a beta version of the game, to give you feedback. This lets you control the number of users
who install the program (so you can still have a gradual deployment), and it gives you some
cover if things go wrong. (Users don’t expect betas to be perfect.)

After your limited beta test, you can release the fi nal application to everyone. This still
works sort of like a staged delivery. If the users fi nd a problem, you can place a moratorium
on new installs until you work it out.

You also need to keep a close eye on performance as the number of users increases. A
program that works with 10 or 100 or even 1,000 users may swamp your servers when there
are 10,000 users.

6. The process of planning helps you think about what should happen and what can go wrong.
Sometimes, you can guess the most likely ways a step will fail and you can have a work-around
ready. Even if an emergency is completely unexpected, your planning will probably give you
information that can help you deal with whatever weirdness actually occurs.

A deployment plan doesn’t plan only for emergencies. It’s also a script of things that may
very well go right. Having a plan ahead of time can help you coast through the easy stuff so
that you can focus your energy on the hard parts.

7. These sorts of decisions are not cut and dried, so your answer may be different from mine,
but here are my thoughts. This is a shareware application, so users probably don’t expect the
level of sophistication they require from the Big Dogs of software such as Microsoft, Apple,
and Google. That means admitting a mistake isn’t as earth-shattering as it would be for
bigger companies.

Chapter 10 ❘ 389

 This is a big problem for this program because it greatly reduces the program’s usefulness.
That means you can’t hush things up and hope no one will notice. Users will probably start
complaining as soon as they use the new version.

 Start by taking down the broken version 3.0 installer so that no one else installs it. Where
the download should be, post a notice explaining the problem and telling users how hard
you’re working on fi xing it.

 Next, burn the midnight oil to get the program working correctly. When the problem
is fi xed, test it thoroughly so that you don’t release a new buggy version. Nothing is as
embarrassing as fi xing a bug with another bug. (Okay, I can think of a few things more
embarrassing, but that’s about as bad as it gets with software releases.)

 After you’re sure it’s working, release version 3.1 into the wild. Post a letter announcing
the fi x, explaining how hard you work to make users’ lives better and saying how generally
wonderful you are. If you have customer e-mail addresses, send them a copy of the letter.
This isn’t an ideal situation, but you can get some goodwill and publicity out of it.

8. Because this happens only about once a month, and because there’s a work-around, this isn’t
a super high-priority issue. It could be a problem if a tester gets the wrong results and doesn’t
notice, so you need to warn users about the problem. However, this is an internal software
project, so your sales are not at risk, and your testers probably won’t quit because the
software is a little off. (If this greatly annoys the testers and they start to grumble, you may
need to reevaluate that assumption.)

 Meanwhile, tracking down a bug that has no apparent cause can be time-consuming. A
programmer could spend days or weeks chasing this bug and still not fi nd it. Probably it
won’t take that long, but even the simplest bug takes a day or two to fi x once all is said and
done. (After all, you need to read the documentation, which you hopefully took the time to
write; check out the code from source control; study the code; fi nd, fi x, test, and document
the bug; check the code back into source control; and release the new version.)

 You’re left with a choice: Have users waste a few minutes per month, or have a programmer
spend at least a day or two fi nding and possibly weeks fi xing the problem. The obvious
choice is to ignore the problem, cover your ears, and say “la la la” whenever someone points
it out to you.

 Unfortunately, as mentioned in Chapter 8 , bugs often travel in swarms. This bug could hide
the presence of others. Besides, it should offend the sensibilities of any developer to leave
known bugs like this in an application.

 What I would do is warn the users, tell them about the work-around, and fi x the bug when
time permits . Then I would wait until the next scheduled release to provide the fi x.

CHAPTER 10

1. Figure A-13 shows my Ishikawa diagram.

 Because it would be easy, I would fi rst check the database contents to see if New Hampshire
is in the States table. (Cross your fi ngers because this will be the easiest problem to fi x.
Simply add New Hampshire to the table and test again.)

390 ❘ APPENDIX SOLUTIONS TO EXERCISES

It seems unlikely that the database design or implementation could be at fault because
the database contains the other values required by the use cases (Maine, Vermont, and
Massachusetts).

That leaves only problems with the database code or the user interface code. I would check
each of those and then follow whichever of those is wrong upstream. For example, if the
database code isn’t returning the right values, I’d check the low-level database code design.
If the problem were obviously there, I’d be done. If the problem didn’t obviously start in the
low-level database code design, I’d check the high-level database code design.

2. Size normalization is useful when you’re trying to compare two projects of different sizes but
roughly similar complexities. In contrast, FP normalization lets you compare projects that
differ in complexity.

3. Size normalization takes into account project size. FP normalization takes into account both
project size and complexity. That means you can use FP normalization any time you can use
size normalization but not vice versa. In other words, you can use either method when the
projects have roughly the same complexity.

4. You use the following equation to perform the fi nal FP calculation:

 FP = (raw FP) × (0.65 + 0.01 × CAV)

Database

Database Code

Database Data

User Interface Code DB High-level Design

New Hamsphire
Missing from

Drop-down list

CAUSE EFFECT

UI
 L

ow
-le

ve
l D

es
ig

n

D
B

Co
de

Lo
w

-le
ve

l D
es

ig
n

Program Code

UI High-level Design

Database Implementation

Database Design

FIGURE A-13: This Ishikawa diagram shows possible causes for New Hampshire not
being listed in the states’ drop-down list.

Chapter 10 ❘ 391

 This has its largest value if CAV is as large as possible. That happens when you assign all
the complexity adjustment factors the weight Essential, so they all get the value 5. There are
14 of those values, so you add them up to get 14 × 5 = 70. The calculation becomes:

 FP = (500) × (0.65 + 0.01 × 70) = 675

 The fi nal FP has the smallest value if all the complexity adjustment values are 0. Then the
calculation becomes:

 FP = (500) × (0.65 + 0.01 × 0) = 325

5. Suppose project A has 12,500 LOC and 158 bugs so it has 12.6 bugs/KLOC. Project B has
3,250 LOC and 47 bugs so it has 14.4 bugs/KLOC. In this case, project A has more bugs in
total but fewer bugs per KLOC, so it’s doing better in that sense.

 Assuming everything else is roughly equal for the two projects, you need to know how
many developers they each have. Then you can calculate bugs per developer to decide which
project will need more time to fi nish clearing out the bugs.

 For example, suppose project A has 10 developers so it has 15.8 bugs per developer, and
project B has 5 developers so it has 9.4 bugs per developer. In that case, project B has fewer
bugs per developer so it will probably fi nish fi rst.

6. If you know from past experience either in those projects or previous projects about how
many bugs per day each developer can fi x, then you can multiply that value by the number of
bugs per developer to get the number of days remaining.

 Days/Bug × Bugs/Developer = Days/Developer

 Of course, you can never really fi nd every bug, so this probably tells you only when you’ve
found enough of the bugs to have a reasonably stable application.

7. The way you count an application’s inputs, outputs, and other complexity values can vary
greatly, so if you’re doing this for actual applications, you may want to develop some
guidelines about what to count. That means your result may differ greatly from mine. Here
are the values I used.

Inputs —WordPad can open approximately six kinds of fi les. The user can also type inputs
into a document, so I’ll make this count seven. (For some applications, you might want to
make this the number of different fi les the application uses instead of the number of types
of fi les it can open. WordPad can open a practically unlimited number of different fi les, so
counting the number of fi le types seems more meaningful.)

 Loading text fi les isn’t too hard, but loading .rtf, .docx, and .odt fi les would be tricky.
(There are tools that could make these a lot easier, but remember we’re trying to assess the
complexity of the application from the user’s point of view, not from the programmer’s
point of view. The results of these operations are complex, even if tools make them easier.)
Working with the user’s current fi le could also be hard. I’ll give this category an average of
medium complexity.

Outputs —WordPad can save approximately six kinds of fi les and it can print the current
document, so I’ll make this count seven. (Again, WordPad can save an unlimited number of
different fi les, so I’ll count types of fi les.)

392 ❘ APPENDIX SOLUTIONS TO EXERCISES

 Saving text fi les isn’t hard, but saving .rtf, .docx, and .odt fi les is. Printing could also be
complex. I’ll give this category an average of medium complexity.

Inquiries —WordPad doesn’t handle inquiries so I’ll make this 0.

Internal Files —WordPad works on one fi le at a time, so I’ll count its current document as
one internal fi le. The program doesn’t save confi guration information, so that doesn’t add to
the internal fi le count.

 It lets the user set a fair number of values (such as font face, size, style, and color), so I’ll
give this high complexity.

External Files —WordPad doesn’t use any external fi les.

 Figure A-14 shows my fi nal counts.

Inputs

Outputs

Inquiries

Internal Files

External Files

Category

7

7

0

1

0

Number

3×

×

×

×

×

=

=

=

=

=

4

3

7

5

Low

4

5

4

10

7

Medium

Complexity

Total (raw FP) 78

6

7

6

15

10

High

28

35

0

15

10

Result

 FIGURE A-14: This table shows Microsoft WordPad’s raw FP value.

 Table A-2 shows my complexity adjustment factors for WordPad.

 The following equation shows the fi nal FP calculation.

 FP = (raw FP) × (0.65 + 0.01 × CAV) = 78 × (0.65 + 0.01 × 27) = 71.76

8. Your result may differ greatly from mine, but here are the values I used.

Inputs —Word can open approximately 16 kinds of fi les. Many of those fi le types (such as
.docx, .xlsx, .wps, .odt) are complicated, so I’ll give this category high complexity.

Outputs —Word can save approximately 16 kinds of fi les and it can print the current
document, so I’ll make this count 17. Again, some of the fi le formats are complicated, so I’ll
give this category high complexity.

Inquiries —Word doesn’t handle inquiries exactly, but it does have an automation server
mode that lets other programs use it to open, manipulate, print, and save fi les. You could
count those actions as more inputs and outputs and increase the count of those categories
by 16. However, the server feature doesn’t actually double the complexity.

Chapter 10 ❘ 393

Internal Files —Word works on one fi le at a time, so I’ll count its current document as
1 internal fi le. It also saves a lot of confi guration and customization information. If you
select File ➢ Options, you’ll see approximately 10 pages of options, so I’ll count this as
10 additional items for a total of 11. The confi guration information includes low, medium,
and high-complexity items, so I’ll give this category an average of medium complexity.

External Files —Word uses external document templates to determine a document’s initial
layout and properties. You can actually use Word to modify those templates, but in that
case it’s being used as a separate application. For example, when I select File ➢ New (don’t
press Ctrl+N), the program shows me a list of more than 30 Office.com templates. Thosem

aren’t maintained by me, so I’m counting them as external fi les.

 You could have access to a practically unlimited number of templates, so you can’t actually
count individual templates here. Instead I’ll do the same thing I did for inputs and outputs
and count the template fi le type as a single complex item.

 Figure A-15 shows my fi nal counts.

 TABLE A-2: Complexity Adjustment Factors for WordPad

FACTOR RATING

Data communication 0

Distributed data processing 0

Performance 5

Heavily used confi guration 0

Transaction rate 0

Online data entry 5

End user effi ciency 5

Online update 0

Complex processing 3

Reusability 0

Installation ease 4

Operational ease 5

Multiple sites 0

Facilitate change 0

Total (CAV) 27

The program can already open and save the 16 fi le types, so this is just another way to use
that same capability. For that reason, I’m going to count this as 1 very complex feature.

394 ❘ APPENDIX SOLUTIONS TO EXERCISES

Inputs

Outputs

Inquiries

Internal Files

External Files

Category

16

17

1

11

1

Number

3×

×

×

×

×

=

=

=

=

=

4

3

7

5

Low

4

5

4

10

7

Medium

Complexity

Total (raw FP)

6

7

6

15

10

High

338

96

119

6

110

7

Result

FIGURE A-15: This table shows Microsoft Word’s raw FP value.

 TABLE A-3: Complexity Adjustment Factors for Microsoft Word

FACTOR RATING

Data communication 0

Distributed data processing 0

Performance 5

Heavily used confi guration 5

Transaction rate 0

Online data entry 5

End user effi ciency 5

Online update 4

Complex processing 5

Reusability 5

Installation ease 4

Operational ease 5

Multiple sites 0

Facilitate change 0

Total (CAV) 43

 Table A-3 shows my complexity adjustment factors for Microsoft Word.

 Before making the fi nal calculation, I want to briefl y explain the reusability value. As mentioned
earlier, Microsoft Word can act as an automation server. When it acts as a server, it can do just
about anything it can do interactively. To allow it to do the same things both interactively and as
a server, the code must be written in a reusable style, so I’m giving this factor high importance.

Chapter 10 ❘ 395

 The following equation shows the fi nal FP calculation.

 FP = (raw FP) × (0.65 + 0.01 × CAV) = 338 × (0.65 + 0.01 × 43) = 365.04

9. In performing those FP calculations, I had to make a lot of assumptions about what
should be counted and how. It’s unlikely that someone else will make exactly the same
assumptions, so our FP results may differ greatly. (How closely did your calculations agree
with mine?)

 You could improve consistency by writing a lot of rules about what should be counted and
how. For example, how do you count the number of input fi les when a program could open
a practically unlimited number of different fi les? This could be a lot of work but it would be
important.

 You would probably even need that kind of documentation even if the same person were
calculating FP for all your projects. Otherwise, when I perform the calculation for a project
a year from now, I may not remember exactly how I made my decisions today.

10. Microsoft WordPad’s FP of 71.76 and Microsoft Word’s FP of 365.04 tell you that Word is
a lot more complicated than WordPad. t

 This agrees with what I would expect; although, my calculations made me realize how
much more complicated Word is than WordPad. Both programs enable you to edit fi les,
format documents, and open and save .docx fi les, so you might think their complexities are
similar. However, Word provides an abundance of extra features that you might not think
about until you try to count them for the calculation.

11. Of course, “better” is a subjective term. Function point normalization lets you compare very
different projects, but it’s much harder to apply consistently. Size normalization doesn’t help
you compare projects with different complexities, but it’s much easier to use. So I would
use size normalization if possible and function-point normalization when the projects’
complexities vary greatly.

12. Because the projects have similar complexities, you can use size normalization.

 If you divide total LOC by number of weeks, you’ll get lines of code per week.
That’s still not a great way to compare the projects, because ten developers can
probably produce a lot more code than five programmers. To get the number of
lines of code produced per developer per week, divide total LOC by number of
person-weeks (pw).

 You could similarly divide the total number of bugs by person-weeks to get number of bugs
per developer per week.

 Another (and simpler) method for thinking about the number of bugs is to look at the
number of bugs per KLOC.

 Table A-4 shows those three calculations.

 The LOC/pw values show that project Griffi n was least productive and project Jackalope
was most productive.

396 ❘ APPENDIX SOLUTIONS TO EXERCISES

 The Bugs/pw values show that project Jackalope produced the most bugs and project Griffi n
produced the fewest per person-week. That’s a bit misleading, however, because the teams
didn’t all generate code at the same rate. Project Jackalope created a lot of bugs per person-
week because the developers generated a lot of code quickly. Project Griffi n created fewer
bugs per person week because the developers wrote code relatively slowly.

 A better measure of code quality is bugs/KLOC. Those numbers show that projects Pegasus,
Griffi n, and Jackalope produced roughly the same numbers of bugs per line of code, and
project Unicorn produced signifi cantly more bugs.

 To make process improvements, you could try to fi gure out how project Jackalope increased
productivity without sacrifi cing quality. Perhaps you can use whatever the magical factor
was in future projects.

 Similarly, you can look at project Unicorn to see why their bugs/KLOC was higher. Perhaps
there’s something they did (or someone on the team did) that you should avoid in the future.

13. The projects described in Exercise 12 produced between 135 and 185 LOC/pw, with an
average of approximately 155 LOC/pw. Dividing 7,000 lines of code by those numbers gives
the following estimates.

 TABLE A-4: Normalized LOC and Bugs

PROJECT PW LOC/PW BUGS/PW BUGS/KLOC

Unicorn 80 149 3.41 22.95

Pegasus 40 150 2.60 17.30

Griffi n 72 135 2.43 17.95

Jackalope 28 185 3.14 17.00

CASE EXPECTED TIME

Best Case 7,000 LOC ÷ 185 LOC/pw ≈ 37.8 pw

Average Case 7,000 LOC ÷ 155 LOC/pw ≈ 46.2 pw

Worst Case 7,000 LOC ÷ 135 LOC/pw ≈ 51.9 pw

 Similarly the previous projects produced between 17.00 and 22.95 bugs/KLOC with an
average of 18.80. Multiplying those values by 7,000 lines of code gives the following
estimates.

 CASE EXPECTED BUGS

 Best Case 7 KLOC × 17.00 Bugs/KLOC ≈ 119.0 bugs

 Average Case 7 KLOC × 18.80 Bugs/KLOC ≈ 131.6 bugs

 Worst Case 7 KLOC × 22.95 Bugs/KLOC ≈ 160.7 bugs

Chapter 10 ❘ 397

14. It’s a bit harder to evaluate a project in the middle (project metrics) than it is to compare
projects after the fact (process metrics). One way to do this is to graph the project’s progress
(LOC and number of bugs) over time and compare it to similar values for other projects.

 However, unless the projects just happen to have the same durations, they won’t line up
properly. In other words, you can’t directly compare a 5-week project and a 10-week project
week by week.

 Instead you can compare the percentage of the project that’s fi nished with the percentage
of the time that has elapsed. For example, consider a typical 10-week project. Suppose
after week 5, the team has written 40 percent of the total code. Then you would expect
future projects to also have written 40 percent of the code when one-half of the project’s
time has elapsed.

 Table A-5 shows the percentages of LOC and time for each of the projects during their
durations.

 TABLE A-5: Project LOC and Percentage of Time for Previous Projects

UNICORN PEGASUS GRIFFIN JACKALOPE

WEEK LOC TIME LOC TIME LOC TIME LOC TIME

1 9.3 12.5 9.0 20.0 4.6 16.7 2.4 25.0

2 19.7 25.0 22.9 40.0 24.5 33.3 23.2 50.0

3 29.3 37.5 45.9 60.0 52.7 50.0 67.9 75.0

4 35.9 50.0 77.8 80.0 61.6 66.7 100.0 100.0

5 50.5 62.5 100.0 100.0 80.1 83.3

6 63.2 75.0 100.0 100.0

7 82.0 87.5

8 100.0 100.0

 Figure A-16 shows a graph of the percent of LOC versus percent of elapsed time for the four
previous projects.

 Table A-6 shows the percent of LOC and percent of elapsed time values for project Hydra
after 4 weeks. (Remember, this project is expected to include 7,000 LOC and take 9 weeks.)

 Figure A-17 shows the graph from Figure A-16 with project Hydra’s data added.

 Referring to Figure A-17 you can see that project Hydra is generating code more slowly than
the previous projects. If you extend its curve to the right, only approximately 40 percent of
the project’s code will be written by the end of week 9.

398 ❘ APPENDIX SOLUTIONS TO EXERCISES

 All the projects started off relatively slowly and then picked up speed, but project Hydra
shows no signs of an increase yet. If it doesn’t pick up the pace soon, it won’t fi nish
on time.

 So the answer to the original question is yes, you should be concerned about this project. It’s
not hopeless yet, but if something doesn’t change soon, it will be. I would keep a close eye
on it for the next couple weeks.

 You can perform a similar analysis on the project’s known bug data if you like. For example,
you can graph bugs/LOC versus percent of time. If the graph shows that project Hydra’s
bugs/LOC is much lower than the other projects’ values approximately 44.4 percent of the
way through the project, then the project team may not be detecting bugs as effectively.
(Or they may just be writing extra good code with fewer bugs. You’ll have to dig deeper if
you want to know exactly what’s happening.)

Unicorn
Pegasus
Griffin
Jackalope

1009080706050403020100
0

10

20

30

40

50

60

70

80

90

100

 FIGURE A-16: This graph shows percent of LOC versus percent of elapsed time for
previous projects.

 TABLE A-6: Project LOC and Percentage of Time for Project Hydra

WEEK LOC TIME

1 5.3 11.1

2 9.9 22.2

3 13.8 33.3

4 17.9 44.4

Chapter 11 ❘ 399

 CHAPTER 11

1. In percentages, the chance of a new line of code creating a bug is roughly 2 percent. The
chance of a modifi ed line of code generating a bug is approximately 4 percent. In writing
10 KLOC, the team generates around 10,000 × 0.02 = 200 bugs. Fixing those 200 bugs
generates 200 × 0.04 = 8 additional bugs. Fixing 8 bugs generates 8 × 0.04 = 0.32 new bugs.
Let’s pessimistically round that up to 1.

 After this point, the number of expected new bugs is small, so there’s a chance that you’re
actually fi xing something without adding new bugs. Adding up the numbers gives 10,000 +
200 + 8 + 1 = 10,209 total lines of code.

2. Of course, maintenance isn’t done! If you keep careful track during development and testing,
you can estimate the number of bugs per KLOC, but it’s always an estimate. You can never
be sure of exactly how many bugs are present.

 Besides, maintenance includes adding new features and improving old ones, so maintenance
is never done for successful applications.

3. This is simply a matter of dividing the number of lines of each type of code by the
appropriate number lines of code per day. Those numbers are:

➤ 10,000 lines / 20 lines per day = 500

➤ 200 lines / 4 lines per day = 50

➤ 8 lines / 2 lines per day = 4

➤ 1 line / 1 lines per day = 1

 Adding the numbers of days gives 500 + 50 + 4 + 1 = 555 days.

Unicorn
Pegasus
Griffin
Jackalope
Hydra

1009080706050403020100
0

10

20

30

40

50

60

70

80

90

100

 FIGURE A-17: Project Hydra is generating code slowly compared to the previous
projects.

400 ❘ APPENDIX SOLUTIONS TO EXERCISES

4. If the whole project requires 555 days and you have two team members, then you should
expect the project to take approximately 277.5 days. There is an average of approximately
21 working days per month, so the project should take around 277.5 ÷ 21 ≈ 13.2 months.

If you have fi ve team members, the project should take around 555 ÷ 5 = 111 days or
111 ÷ 21 ≈ 5.3 months.

If you have 10 team members, the project should take around 555 ÷ 10 = 55.5 days or
55.5 ÷ 21 ≈ 2.6 months.

Finally, if you have 111 team members, the project should take approximately 555 ÷ 111 =
5 days or 1 week. Wait, what? That doesn’t make any sense! There’s no way any number of
developers can write 10,209 lines of code in a week and produce an application that can do
something useful. As the team grows large, communication and administrative tasks will
start to dominate the total amount of time. Eventually, you’ll spend all your time bickering
about what kinds of bagels to serve at team meetings. (What about those on low-carb diets?
And those who are gluten-free? And the vegans will veto cream cheese or lox.)

Larger projects defi nitely have extra overhead. The optimal team size for a project depends
on a lot of factors such as the project’s size and complexity, and the skills of the team
members. In general, it seems that projects start to pay a signifi cant size penalty when they
grow to more than seven or more members.

5. Figure A-18 shows the fl owchart.

New Assigned
Assign Reproduce

Test

Tested
Approve

Closed

No

No
Tests Passed?Reproduced Fixed

Fix

Cannot
Reproduce

Pending

R
eq

uest
Info

Yes
Yes

Reproducible?

 This fl owchart shows the states through which most bugs pass.

6. A bug could enter the Pending state from almost any other state because a team member might
want more information at any time. Technically, a bug probably shouldn’t go directly from
Closed to Pending but should pass through Reopened fi rst. However, that’s a technicality. If a
bug needs to be reopened for more information, so be it. But you might want to require that
the bug fi rst go through Reopened just to add that transition to the bug’s history.

Chapter 11 ❘ 401

 A bug can move to Deferred from any state except Closed if the team decides that bug
won’t be fi xed right away. A bug probably won’t move from Tested or Closed into Deferred
because in those states the bug is already fi xed.

 A bug can only move into the Reopened state from the Closed state. (You can’t reopen a bug
that is still open.)

7. This would be unusual because the bug is already fi xed, but there might be a reason why you
don’t want to release the fi x to users. For example, if the bug fi x is a breaking change so it
would mess up work users have previously done, you might want to wait until a later release.

8. These values are simply the percentages for the maintenance task (Perfective—50%,
Adaptive—25%, Corrective—20%, Preventive—5%) multiplied by the 75% allowed for
maintenance. The results are Perfective—37.5%, Adaptive—18.75%, Corrective—15%, and
Preventive—3.75%.

9. The following list gives the tasks’ categories.

a. Corrective.

b. Perfective (adding a new feature).

c. Perfective (adding a new feature).

d. Preventive.

e. Preventive.

f. Preventive.

g. Adaptive (dealing with a change to the environment).

h. Perfective (improving an existing feature). You could consider this as corrective
depending on whether you think of the slow performance as a bug.

i. This is probably a bad idea. If the code works, leave it alone. (You could also add
comments or documentation if they are currently insuffi cient.)

j. Preventive (removing a bug swarm).

k. Preventive (making the code easier to maintain). You might want to defer this until you
need to modify the code anyway. If it ain’t broke, don’t fi x it.

l. Preventive (understanding the code). You should also write documentation and comments
if they are currently insuffi cient. (This can be a good exercise for understanding the code.)

m. Perfective (adding a new feature).

n. Adaptive (dealing with a change to the environment).

o. Perfective (adding a new feature).

10. Most of these are bad signs, but you could probably leave most of them alone as long as
they’re working correctly.

a. That’s too long. Consider rewriting the method the next time you need to modify it.

b. Don’t change the code. The next time you need to modify it, add comments and
documentation to make it easier to understand.

402 ❘ APPENDIX SOLUTIONS TO EXERCISES

c. That’s too deep to understand easily. Consider rewriting the method the next time you
need to modify it.

d. This is a tough situation. Ideally, you would consider rewriting the next time you
had to modify the code. Unfortunately, with so many methods involved (assuming
it’s not one method calling itself in deep recursion), you’ll probably have to modify
something at some point. Also unfortunately this will probably be confusing and hard
to rewrite successfully. This may require a major rebuild. (I’ve worked with code like
that and it’s practically impossible to keep track of what’s happening, so you have
my sympathy.)

e. As long as it works, I would ignore this. If you have nothing better to do, you should
think about perfective tasks.

f. This method doesn’t have a tightly focused purpose, so it should be rewritten as three
separate methods. You might invoke the “if it ain’t broke, don’t fi x it” rule, but this
method’s lack of focus makes it hard to use correctly. That means if you write new
code that uses the method, that code is at risk. So the real question is, “Are you going
to need to write a lot of new code that uses this method?” If you will use it with new
code, rewrite it. If you won’t need to write new code that calls this method, you can
leave it alone (and feel slightly guilty).

g. This probably violates the nonfunctional specifi cations, so you may be forced to fi x it
regardless if you think it’s a good idea. This is a big burden on the users, so I would fi x
it if at all possible. (Otherwise users will start the login process and then wander off to
get coffee while they wait for it to fi nish.)

h. This is a bug swarm. You should rewrite the method.

i. This is a bad bug. That means it’s a corrective tasks, not a preventive task. Whatever
you call it, you should fi x it.

j. This is also a bug and hence a corrective task. However, because the program crashes
only when it’s shutting down anyway, it should have low priority. I would fi x it, but I
would fi x other bugs fi rst.

k. This doesn’t mean there’s anything wrong with the method, other than the initial
bug. I would carefully review and test the latest bug fi x to make sure it actually
works. I would also review the method as a whole to see if it’s particularly
confusing and needs extra comments or documentation to prevent this from
 happening again.

l. As in the preceding case, the method itself is only responsible for the single original
bug. In this case, however, three different people (again, defi nitely not you) had
problems fi xing bugs in this method, so there may be a bigger problem here. You
should examine the method and try to fi gure out what the problem is. If your
coworkers are just making silly mistakes, they may be burned out. (Have they been
working too many late nights?) If the method is particularly confusing, it may need
more study, comments, and documentation. (It’s also a good idea to have developers
fi x their own bugs, so ideally this series of bugs should have been handled by a single
person. That person should have a better idea of what’s going wrong here.)

Chapter 12 ❘ 403

m. This is a bug so it’s a corrective task, not a preventive one. Because users can easily
recover, this is a low-priority bug if the application is used in-house. If the program
is sold to customers, however, any crash looks extremely bad, so this would be a
 high-priority bug.

CHAPTER 12

1. The following list explains whether the tasks would be better handled predictively or adaptively.

a. This is a well-understood task, so you can do it predictively. (Unless you’re doing
something weird like trying an experimental architectural technique or building an
art project.)

b. Because you don’t know where the clues will lead you, you’re going to have to be
adaptive. You might not even know how many clues there will be.

c. When you follow a scavenger hunt, you don’t know where each clue will lead. When
you’re building a scavenger hunt, however, you have control over the clues, so you can
handle it predictively.

d. This is a mostly well-understood task, so you can do it predictively. There may be some
uncertainty about the weather, so you should use risk management to have a backup
plan in place.

e. In Seattle, there’s less question about the weather: It will be wet. You can still do this
predictively, but now the dry weather plan should probably be the backup plan instead
of the primary plan.

f. A major motion picture is a huge undertaking involving hundreds of people and
months or even years of work. Sometimes things go wrong during shooting, but the
basic schedule is more or less fi xed, so this is a predictive task.

g. This is mostly predictive because you need to hit certain milestones within a set period
of time. For example, in a semester you need to cover a certain number of chapters,
giving a reasonable number of tests, and regularly hold offi ce hours. Those tasks all fi t
nicely into a predictive model.

 At the same time, a class’s focus often wanders around a bit depending on the
students’ interests, how well they can sit still for certain subjects, and the instructor’s
creativity. Students learn best if the subject is something that interests them personally.
For example, you might ask students to build a simple database application but let
them pick the domain. They could store car specifi cations, football team statistics,
dessert recipes, or information about their DVD collections. This requires the
instructor to be adaptive.

 To handle both the predictive and adaptive needs, the instructors I know use
predictive lesson plans that explain more or less what will happen during class with
varying levels of detail depending on the instructor. Then they adjust the lesson in
progress and sometimes modify future lessons if necessary.

h. Without GPS you would look up where the restaurant is on a map (or call it and
get directions), plan out a route, and follow it. If something went wrong (like a

404 ❘ APPENDIX SOLUTIONS TO EXERCISES

DeLorean breaking down in front of you), you would be more or less stuck. You
could reroute (if you didn’t leave the map at the hotel), but it would take signifi cant
time and effort.

i. This would still be predictive, only this time the GPS would plan the route. If
something went wrong (like an SUV running out of gas and blocking the road in
front of you), you could make the GPS plan a new route. However, the GPS unit’s
user interface can make it cumbersome to plan a new route that avoids a particular
blockage.

j. This would probably still feel predictive to you because people like to know what’s
going to happen. (This is one of the more attractive features of predictive models,
particularly for management and customers.) However, the car and its computer
systems could handle this completely adaptively. The car would plot a route and
present it to you for your piece of mind. Then as the drive progresses, the car could
watch for blockages (like a fl ying saucer landing in front of you and blocking the
road) and instantly revise the route if necessary. That means this would probably look
predictive to you, and you would follow the original plan most of the time, but behind
the scenes the car could handle this adaptively.

2. All these projects have trouble indicators for predictive projects.

a. This is an incredibly large and complex project. A predictive project would provide
a level of control that the FAA would probably like, but the sheer size of the project
would make it diffi cult.

b. Lack of clear vision. If you do pry requirements out of the partners, they’ll probably be
inconsistent and unclear.

c. Unrealistic expectations and lack of resources. It might be possible to build this
application predictively, but probably not in 15 person-months.

d. Lack of experience. Your team has experience with vacation-costing not housing
development. (Unless you’re not telling me about a previous project.)

e. Lack of user involvement. Unless the customer is willing to help defi ne the
requirements, it will be hard to satisfy the specifi cation you’ve been given. (Although
you could spend the 3 weeks working on requirements and then fi nish them up after
the customer returns from vacation. That would probably work, all else being equal,
but it doesn’t seem like a promising start to a new project.)

f. Unestablished technology. Perhaps 3-D concrete printers will be common in a year or
two, but until then, this would be very speculative. (However, it would also be very
fun! I’d be tempted to take the project anyway, although perhaps with a different
development model.)

3. A predictive model can save money if you correctly plot out the development effort’s path.
Adaptive models sometimes take extra time chasing unprofi table lines of development and
refactoring.

 However, if you don’t map out the development plan correctly and need to make major
changes, a predictive project can cost much more than an adaptive approach.

Chapter 13 ❘ 405

4. Waterfall with feedback and Sashimi are very similar. In fact, some developers use the names
more or less interchangeably. Both allow some overlap of project phases, but they have
different intent.

 Waterfall with feedback enables you to move backward to a previous phase if you need to
make corrections and adjustments. In contrast, Sashimi enables some developers to move
ahead of other developers so they can get a jump on future tasks.

5. As many as you like. In theory, the project could run indefi nitely adding new features with
each increment.

6. Operation and Maintenance ➢ Concept: The concept represents the way users see the
application. After the application is built, users see its operation and (to a lesser extent)
maintenance.

 Verifi cation and Validation ➢ Requirements: The requirements represent the customers’
needs and the behavior that the application should have. Verifi cation confi rms that the
application provides the behavior described in the requirements. Validation confi rms that
the application satisfi es the customers’ needs, which are represented in the requirements.

 Testing ➢ Design: In a sense, testing validates the design. If the design is correct, then testing
should show that the application works properly. (In practice, testing may uncover problems
and fi xing them may require you to make the program deviate from the design. In that case,
you should go back and update the design to refl ect the program’s actual structure, so the
maintenance crew can use the design to understand how the application works.)

CHAPTER 13

1. The iterative, incremental, and agile approaches enable you to release partial applications as
soon as you’ve implemented enough features with enough fi delity to be useful. However, you
don’t have to take advantage of that capability if you don’t want to. You could still use those
approaches to build the application and give the customer the application only when it was
complete. Then you would still get the other benefi ts of those techniques. For example, those
approaches would help you refi ne the requirements throughout the project.

2. The point of a throwaway prototype is to quickly demonstrate one or more features so that
you can decide where to go from there. To avoid wasting a lot of time building features you
don’t need, a throwaway prototype should start with the fewest features and the lowest
fi delity possible. If a feature isn’t demonstrated adequately and customers want to see a more
realistic version, you can improve its fi delity. If customers want to see other features, they can
request them and you can add them. Starting with minimal features of low fi delity, improving
them, and adding more features are the characteristics of an agile approach.

3. In an incremental prototype, you build the application’s features in separate prototypes and
then integrate them to create the fi nal application. If you don’t release anything to the users
before you fi nish integrating these features, then the project isn’t incremental.

 To make the project incremental, you would simply release the program any time its current
set of integrated features was usable.

406 ❘ APPENDIX SOLUTIONS TO EXERCISES

4. Sort of. In a predictive project, you fi x the requirements and build a design before you start
programming. An evolutionary prototype continues to grow and evolve throughout the
project’s lifetime. Normally, the prototype continues to refi ne the project’s features as it
grows, so the requirements and design are not fi xed up-front.

 However, you could fi x the requirements and design in the beginning and then implement the code
with an evolutionary prototype approach. That kind of subverts the purpose of the prototype (to
help refi ne the requirements), so most people don’t do it that way. If the requirements and design
are fi xed, you can just write the code and skip the evolutionary prototype.

5. This question’s answer is similar to the answer for Exercise 4. Normally in an incremental
prototype, you build prototypes for the application’s pieces and you use them to refi ne the
requirements for those pieces. In that case, the requirements are not fi xed up-front, so that’s
not predictive development.

 However, if you really want to, you could fi x the requirements and design in advance and
then build the application through an incremental prototype. It would be an unusual way to
look at things, but it should work.

6. The deployment tasks include everything necessary for deployment. You can start working
on some of those tasks as soon as you know what’s necessary. If you wait until the start of
the transition phase, you’ll probably be late because you can’t purchase and install things
such as desks and computers instantly.

 During elaboration, the requirements start to coalesce, so you can start writing user
documentation. You can also start planning the physical setup (items such as desks, chairs,
computers, printers, and networks). However, you shouldn’t commit to those items too early in
case plans change later. (It would be expensive to buy 1,000 computers early in the project only
to discover later that you need a different type of computer or that you need only 150 of them.)

 So you can start planning the installation of the physical equipment during elaboration,
but you generally won’t actually start installing that equipment until the later iterations of
construction when plans are more concrete.

7. During the inception phase, the team can test the project’s general ideas, assumptions, and
approach. Team members can think of scenarios that need to be handled and decide whether
the requirements can handle them. Those thought experiments can help refi ne the project’s
overall shape.

8. Code written during the elaboration phase is usually exploratory. It is written to try out
new techniques and ideas that may be used in the application’s design. The results of those
experiments help refi ne the requirements.

 You don’t need to do a lot of testing on exploratory code because that code won’t be used in
the fi nal application. Tests performed during elaboration are more likely to be applied to the
requirements and design. For example, you can create and walk through use cases to verify
that the application’s design can handle them.

9. Figure A-19 shows my drawing.

 Your results may differ, but here’s the general idea. Customer representatives play a big role
during inception and elaboration when the basic requirements are determined.

Chapter 13 ❘ 407

 During construction, customers play a relatively small role; although, they pop up to review
each of the iterations to make sure the project is still on track.

 Depending on the division of duties, the customer organization may also play a large role
in deployment, taking on tasks such as preparing the users’ environment and training
the users.

10. Figure A-20 shows how waterfall tasks match up with Unifi ed Process tasks.

 The waterfall requirements phase corresponds mostly to the Unifi ed Process inception and
elaboration phases; although, elaboration includes some architectural design so it also
overlaps the waterfall design phase. The waterfall design, implementation, and verifi cation
phases mostly correspond to the Unifi ed Process construction phase. The two approaches’
deployment and transition phases are reasonably comparable.

Phases

Inception

Inception

Elaboration

E1 E2 E3 C1

Iterations

Business Modelling

Requirements

Analysis and Design

Implementation

Test

Deployment

User Involvement

C2 C3 C4 T1 T2

Construction Transition

 FIGURE A-19: Users play a large role as requirements are created and refi ned and a
smaller role during development. They may play a larger role during deployment.

Waterfall Requirements Design Implementation Verification Deployment Maintenance

TransitionConstruction

Time

ElaborationInceptionUnified Process

 FIGURE A-20: This diagram shows how waterfall tasks match up with Unifi ed Process tasks.

408 ❘ APPENDIX SOLUTIONS TO EXERCISES

 Aside from the minor misalignment of the design and elaboration phases, the biggest difference
between the two approaches is the iterative nature of the Unifi ed Process elaboration, construction,
and transition phases. The iterations help keep the project moving in the right direction. (There’s
also no maintenance phase in the standard Unifi ed Process. You can add it if you like. Or you can
consider ongoing transition iterations to be maintenance.)

11. Those sentences describe:

a. Agile

b. Incremental

c. Predictive

d. Iterative

12. The agile approach gives the users a working program soonest because it releases a version
as soon as any of its features are usable. The predictive approach releases its application the
latest because it waits until every feature is fully implemented.

 Without more information, you can’t know whether the iterative or incremental approach
will release a working program sooner. The iterative approach will release sooner if you can
quickly implement all the features with low (but usable) fi delity. The incremental approach
will release sooner if you can quickly implement a single feature with full fi delity.

13. In a predictive model, you wouldn’t let anyone move in until every house was complete. That
would work.

 In an iterative approach, people would immediately move into every house but with limited
fi delity. Here “limited fi delity” would mean the houses initially wouldn’t have water, sewer,
electricity, appliances, or (worst of all) cable TV and Internet access! This wouldn’t work
very well. (Although it seems to have been the approach the Russians used when they built
the athlete housing for the 2012 Olympics.)

 In an incremental approach, people would move into each house as soon as it was
completely fi nished. Some people would move in relatively early and some would move in
later. This would work well.

 In an agile approach, people would move into each house as soon as it was partly fi nished
with low fi delity. Over time, the occupied houses would be improved and new houses would
be started. This wouldn’t work. (Unless, perhaps, you’re building a refugee camp.)

 In practice, developers want to get money out of the project as soon as possible, so it’s
natural to try for an agile approach. Unfortunately, people can’t move into houses that
aren’t fi nished. Not only would people refuse (at least I would), but it’s a lot easier to install
carpeting, paint walls, and fi nish hardwood fl oors before people move all their junk into a
house. However, it’s not too hard to do the landscaping while people live in the house.

 So here’s the typical approach. First, specialized teams move through the development.
First, one team pours the foundations. After the foundations are dry, another team does
the framing. Electricians and plumbers move through next, and so on with other teams
installing drywall, roofi ng, carpeting, appliances, and everything else in waves. Sometimes,
the teams can even work at the same time. For example, one team might be installing
plumbing on one house while another installs drywall on another house.

Chapter 14 ❘ 409

 The result is that the houses are all in different stages of construction. As soon as a house is
habitable, people move in. Later, as weather and scheduling permit, the fi nal teams do the
landscaping, paint house numbers on the curbs, and do anything else that can wait for this
late stage.

 The result is most similar to incremental development with a dash of agile thrown in at the end.

14. In a predictive model, you wouldn’t let anyone into the park until every ride, snack shack, and
game was fully complete and tested. Then you would hold a grand opening. That would work.

 In an iterative approach, you would allow people to use the facilities when they had limited
fi delity. You probably shouldn’t allow people to ride a half-fi nished Tilt-A-Whirl or untested
roller coasters (I’ve seen the Final Destination 3 movie), so this wouldn’t work.

 In an incremental approach, people would be allowed to use any facilities that were
completely fi nished. For example, during the fi rst few weeks of operation, you might have
only two rides, a Guess-Your-Weight attraction, and one restroom. This would work, but
it would probably be better to wait until everything (or at least almost everything) was
fi nished so that you can hold a grand opening to build excitement.

 In an agile approach, you would let people use facilities as soon as they were partly
functional. This won’t work. (I won’t spoil the plot of Final Destination 3, but I will say it
involves a roller coaster and the result isn’t pretty.)

 CHAPTER 14

1. The following list explains how the four agile values apply to the one-pass waterfall model.

➤ Individuals and interactions over processes and tools —The waterfall model doesn’t
necessarily violate this value. There’s nothing in the waterfall model that says you
can’t value individuals and interactions highly. However, waterfall is process-
oriented, so the project manager will have to work hard to make sure processes don’t
come fi rst. Also Stodgy Megacorp doesn’t sound like a company that values people
over processes.

➤ Working software over comprehensive documentation —The intent of this value is to
represent the application’s functionality with the evolving application. The main way
information passes from one waterfall stage to the next is thorough documentation,
not a working application. In fact, you can’t actually have much in the way of
working software until the implementation stage.

➤ Customer collaboration over contract negotiation —The waterfall model goes directly
against this. It assumes the requirements are negotiated and carved in granite in the
fi rst stage of the project.

➤ Responding to change over following a plan —As the Brits would say, “Pull the
other one, it’s got bells on!” The waterfall model is all about making the best
possible plan and then following it to the (possibly bitter) end. It doesn’t respond
well to change.

 To summarize, the Stodgy Megacorp waterfall model can sort of satisfy the fi rst value, but it
doesn’t fulfi ll the others at all.

410 ❘ APPENDIX SOLUTIONS TO EXERCISES

2. The following list explains how the 12 agile principles apply to the one-pass waterfall model.

a. Our highest priority is to satisfy the customer through early and continuous delivery of
valuable software.

 The waterfall model’s goal is also to satisfy the customer, but it doesn’t provide early
and continuous delivery.

b. Welcome changing requirements, even late in development. Agile processes harness
change for the customer’s competitive advantage.

 The waterfall model doesn’t handle change well, particularly later in the development
process.

c. Deliver working software frequently, from a couple of weeks to a couple of months,
with a preference to the shorter timescale.

 Most waterfall projects have longer timespans than a couple weeks or even a couple
months.

d. Business people and developers must work together daily throughout the project.

 Business people (such as customers, domain experts, and other stakeholders) can work
together throughout a waterfall project, but the benefi t is limited because the plan can’t
change signifi cantly later in the process. It is sometimes useful to have domain experts
work with developers to help them understand the fi ner details of how the application
should work, but most of the design should be wrapped up in the requirements and
design phases so that interactions after that point aren’t super helpful.

e. Build projects around motivated individuals. Give them the environment and support
they need, and trust them to get the job done.

 This is always a good idea in anything, not just software engineering. Motivated
people can achieve remarkable things if they’re given the freedom to do so.

 Like everything else, the waterfall model works best with motivated people.

f. The most effi cient and effective method of conveying information to and within a
development team is face-to-face conversation.

 A waterfall project can use face-to-face meetings to convey information, but they also
need written records. Documentation helps keep everyone focused on the same vision.
It also helps bring new team members up to speed if they join the project after it has
begun. (And these tend to be large projects that last for a long time, so that’s defi nitely
a concern.)

g. Working software is the primary measure of progress.

 In a waterfall project, there usually isn’t much working software until the
implementation phase. You can use working software to measure progress during that
phase, but it’s not too helpful during the other phases.

h. Agile processes promote sustainable development. The sponsors, developers, and users
should be able to maintain a constant pace indefi nitely.

Chapter 14 ❘ 411

 This is another sensible goal in anything, not just software engineering, and the
waterfall model is no exception. Management can occasionally bully developers into
working extra hours to meet a deadline, but there’s a limit to how many late nights
they can work without their quality suffering no matter how many pizzas and energy
drinks you provide. Eventually, the best people will leave for companies with better
working environments and Stodgy Megacorp will be left with only the dregs who
can’t get jobs elsewhere. Artifi cially compressing the development schedule isn’t worth
permanently destroying your development capabilities.

i. Continuous attention to technical excellence and good design enhances agility.

 This is another good idea in anything, not just software engineering. It’s almost
always better to do something right the fi rst time than to have to go back and fi x it
later, and that’s particularly true in software engineering.

 Because the waterfall model makes it hard to go back and fi x earlier mistakes, this is
particularly important. You don’t want to get to the deployment phase and discover
there was a mistake all the way back in the requirements phase.

j. Simplicity—the art of maximizing the amount of work not done—is essential.

 This is also a great idea for just about anything. In software engineering, the simpler
something is, the fewer chances you have to mess it up. That applies to the waterfall
model as well as any other development methodology.

k. The best architectures, requirements, and designs emerge from self-organizing teams.

 You could probably use self-organizing teams in a waterfall project; although it’s
more normal for everyone’s role to be decided at the beginning and remain unchanged
throughout the project. That seems like the approach Stodgy Megacorp would take.

l. At regular intervals, the team refl ects on how to become more effective, then tunes and
adjusts its behavior accordingly.

 One more piece of advice that can apply to just about anything. It’s always good
to refl ect on what you’re doing and how you’re doing it to see if you can make
improvements. (For example, after the fi rst three chapters, I stopped writing this book
by candlelight with a quill and scrolls of papyrus and started using a computer.)

 You can use this kind of refl ection in a waterfall project; although, you may be
unable to act on some of your insights. For example, you might be able to increase
the number of code reviews if you think that would help improve the code. In
contrast, you probably couldn’t decide in the verifi cation phase to switch to Unifi ed
Process if you decided that would be better than waterfall.

 In summary, the waterfall model is reasonably compatible with principles 5, 8, 9, 10, and
12. With a score of 5 out of 12, it would receive an F on the agile fi nal exam.

3. No. Agile models don’t work well with all projects. For example, big-design-up-front models
tend to work better with large projects that last longer, that have specifi c requirements,
and that are well understood. For those kinds of projects, waterfall (or Sashimi or iterated
waterfall) might work better than agile approaches.

412 ❘ APPENDIX SOLUTIONS TO EXERCISES

4. The following list explains how the four agile values apply to James Martin RAD.

➤ Individuals and interactions over processes and tools —As is the case with the Stodgy
Megacorp waterfall model, James Martin RAD can embrace this value. The way
the user design and construction phases overlap with the users constantly providing
guidance and feedback gives the users a position of respect and importance.

➤ Working software over comprehensive documentation —In James Martin RAD,
you start by writing requirements. After that, the overlapping user design and
 construction phases make the application evolve to suit the changing requirements.
The initial requirements are important, but not as important as the changes requested
by the users.

➤ Customer collaboration over contract negotiation —The initial requirements
represent negotiation. After that, customer collaboration (in the form of user design)
guides development (in the form of the construction phase).

➤ Responding to change over following a plan —The overlapping user design and
construction phases makes it reasonably easy to respond to change.

➤ In summary, James Martin RAD satisfi es all four agile values fairly well, so it
deserves the agile stamp of approval.

5. The following list explains how the 12 agile principles apply to James Martin RAD.

a. Our highest priority is to satisfy the customer through early and continuous delivery of
valuable software.

 The goal of James Martin RAD is also to satisfy the customer, but it doesn’t provide
early and continuous delivery. It provides one delivery at the end.

b. Welcome changing requirements, even late in development. Agile processes harness
change for the customer’s competitive advantage.

 James Martin RAD handles changes relatively easily during the user design and
construction phases.

c. Deliver working software frequently, from a couple of weeks to a couple of months,
with a preference to the shorter timescale.

 James Martin RAD is aimed at producing a single delivery. A short project might
span only a few months or weeks, but it isn’t intended to produce multiple incremental
releases.

d. Business people and developers must work together daily throughout the project.

 Business people and developers work closely during all four phases of James Martin
RAD.

e. Build projects around motivated individuals. Give them the environment and support
they need, and trust them to get the job done.

 This is always a good idea in anything, including James Martin RAD.

Chapter 14 ❘ 413

f. The most effi cient and effective method of conveying information to and within a
development team is face-to-face conversation.

 James Martin RAD doesn’t require you to use extensive documentation for
communication, so you can make it meet this principle if you try. You’ll still
want to create written requirements during the requirements planning phase, but
communication between customers and developers during the user design and
construction phases is faster and more effective face-to-face.

g. Working software is the primary measure of progress.

 During the user design and construction phases, you can measure progress by the
growing application. You still need to keep an eye on the project to ensure that
it’s headed somewhere and not just undergoing a never-ending series of change
requests. However, as long as the application is growing toward a useful end, then
it’s a reasonable measure of progress.

h. Agile processes promote sustainable development. The sponsors, developers, and users
should be able to maintain a constant pace indefi nitely.

 This applies to James Martin RAD as well as it applies to anything else.

i. Continuous attention to technical excellence and good design enhances agility.

 This is another principle that applies to everything, including James Martin RAD.

j. Simplicity—the art of maximizing the amount of work not done—is essential.

 To paraphrase Leonardo da Vinci, “Simplicity is the ultimate sophistication, including
in James Martin RAD.”

k. The best architectures, requirements, and designs emerge from self-organizing teams.

 There’s no reason why you can’t use a self-organizing team in James Martin RAD,
particularly in the iterations of user design and construction.

l. At regular intervals, the team refl ects on how to become more effective, then tunes and
adjusts its behavior accordingly.

 Again, this applies to everything including James Martin RAD.

 In summary, James Martin RAD doesn’t actually follow principles 1 or 3, which deal with
frequent releases. It handles the other principles very well, particularly those that mention
constant interaction between the users and the developers. With a score of 10 out of 12, it
would receive a solid B on the agile fi nal exam.

6. Velocity won’t equal the difference in the size of the backlog if anything is added, removed, or
modifi ed in the backlog. For example, suppose the backlog contains 100 story points. A sprint
delivers 10 of them, but you add 10 more story points in new features to the backlog. In that
case, the velocity for the sprint was 10 but there has been no change in the backlog’s size.

 The velocity will match the backlog difference if you don’t add, remove, or modify anything
in the backlog.

414 ❘ APPENDIX SOLUTIONS TO EXERCISES

7. The quick and glib answer is that all sprints have the same duration, so velocity would
always be the same if you measure actual hours. For example, if you have four people
working one-week sprints, then every sprint should have a velocity of 4 × 5 = 20 days. If the
sprint includes too many features, you might need to drop some of them to fi t in the one-
week time box, but the velocity would always be the same.

What you actually want to know is not how many hours the developers work, but how
many user stories they completed. If it turns out that you put too many stories into a sprint
and you remove some, then the number of story points implemented during that sprint does
change, and the velocity would be lower than you had hoped.

8. If the number of actual days is lower than the number of story points, that means your story
point estimates are too high. For example, you predicted that a story would take eight hours
but it took only six.

Conversely, if actual days is higher than story points, that means your story point
estimates are too low. For example, you predicted that a story would take three hours
but it took eight.

In either case, you could revise your story point estimates, but you don’t need to. The sprint
velocity tells you how many story points you can implement during a sprint. As long as
you use the measured velocity to plan the following sprints, you can pick roughly the right
amount of work for each sprint. The velocity implicitly corrects for imperfect estimates, as
long as all the estimates are incorrect in the same way.

9. Improving velocity allows the team to add more features to each iteration, but it’s important
not to sacrifi ce quality. You could increase velocity by skimping on unit tests, but you’d pay
a price later in increased debugging time.

10. The following list summarizes those phrases:

➤ Think big —See the whole. Keep the customers’ needs in mind and make sure
whatever you’re doing adds value for the customer.

➤ Act small —Keep things simple. Only make them more complicated later if it turns
out that you must.

➤ Fail fast —Discovering that some approach won’t work isn’t itself a bad thing. In
particular, test code as soon as it is written, so you can learn whether it works
correctly as quickly as possible. If you’re going to fail, fail quickly, learn from it, and
move on.

➤ Learn rapidly —Learn from mistakes and the changing environment and take action
accordingly. If your iteration process isn’t working well, fi x it right away. If the
customers’ needs change, change the project’s direction before you waste any more
time building features no one needs.

11. The following list explains whether the situations are Kanban-like:

➤ This is Kanban-like. When the red edges appear, the cashier knows it’s time to put in
a new tape.

Chapter 14 ❘ 415

➤ This actually isn’t Kanban-like because the customer won’t replace the register tape
when the red edges appear. (Many customers don’t even know what the red edges
mean.)

➤ This is only Kanban-like in the vaguest sense. The burned out bulb sort of tells you
that you need to get a new one, but calling this Kanban is a stretch.

➤ This is Kanban-like. The entry on the shopping list is similar to a Kanban card sent
to a supplier.

➤ This isn’t Kanban-like. A Kanban-friendly pen would give you some warning,
perhaps switching to red ink when it was running low.

 GLOSSARY

 1NF See fi rst normal form.

 2NF See second normal form.

 3NF See third normal form.

 80/20-rule In the Dynamic Systems Development Method, the assumption that 80-percent
of an application’s features will take 20-percent of the project’s total time to implement. (The
80/20-rule often applies to other situations, too. For example, 80-percent of the bugs are
 usually contained in 20-percent of the code.)

 acceptance test A test to determine whether the fi nished application meets the requirements.
Normally, a user or other customer representative sits down the with application and runs
through all the use cases you identifi ed during the requirements gathering phase to make sure
everything works as advertised.

 activation See execution specifi cation.

 activity diagram In UML, a diagram that represents work fl ows for activities. They include
several kinds of symbols connected with arrows to show the direction of the work fl ow.

 adaptive development model A development model that enables you to change the
 project’s goals if necessary during development.

administrator Someone who manages the development team’s computers, network, and other
tools. Also called a system administrator.

 advisor user Any user who brings an important viewpoint to the project.

 agile development A development model where you initially provide the fewest possible
 features at the lowest fi delity to still have a useful application. Over time, you add more
 features and improve existing features until all features have been implemented at full fi delity.

 Agile Manifesto A set of four guiding principles for agile development. In brief the
principles are:

➤ Individuals and interactions over processes and tools

➤ Working software over comprehensive documentation

➤ Customer collaboration over contract negotiation

➤ Responding to change over following a plan

418 ❘ GLOSSARY

 Agile Unifi ed Process (AUP) A simplifi ed version of Rational Unifi ed Process that includes
agile methods such as test‐driven development and agile modeling. In 2012 AUP was
 superseded by Disciplined Agile Delivery.

algorithm A software recipe that explains how to solve a particular programming problem.

 ambassador user Someone who acts as a liaison between the users and the developers.

 anchoring A phenomenon where an early decision made by one person infl uences later
 decisions by others.

 anomaly In a relational database, an error caused by a design fl aw such as records holding
inconsistent values or being unable to delete a piece of data because it is necessary to record
some unrelated piece of information.

 architect Someone who focuses on the application’s overall high‐level design.

artifact In a UML deployment diagram, a fi le, a script, an executable program or another
item that is deployed. In development models, something generated by the model such as a
requirements document, user story, or piece of code.

 assertion A statement about the program and its data that is supposed to be true. If the
 statement isn’t true, the assertion throws an exception to tell you that something is wrong.

 attribute Some feature of a project that you can measure such as the number of lines of code,
the number of defects, or the number of times the word “mess” appears in code comments. See
also metric and indicator .

 audit trail A record of actions taken by an application’s users for security auditing purposes.

AUP See Agile Unifi ed Process.

 BDUF See big design up front.

 behavior diagram In UML, a diagram that shows the behavior of some entity. There are
three kinds of behavior diagrams: activity diagrams, use case diagrams, and state machine
diagrams.

 Big Board A large board used by many agile models that is posted in a visible location so that
everyone can see the project’s status at a glance. Also called an information radiator.

big design up front (BDUF) See predictive development model .l

 big O notation A system for studying the limiting behavior of algorithms as the size of the
problem grows large.

 black‐box test A test designed by someone who doesn’t know how the code works internally.

 brainstorming A group technique for discovering creative solutions to a problem.

 bug A fl aw in a program that causes it to produce an incorrect result or to behave
 unexpectedly. Bugs are generally evil.

 build engineer In Feature‐Driven Development, someone who sets up and controls the
build process.

GLOSSARY ❘ 419

burndown chart In Scrum, a graph showing the amount of work remaining over time.

business advisor See business analyst.

business ambassador Someone who provides business information from the viewpoint of
the users.

business analyst A domain expert who helps defi ne the application’s purpose and who
provides feedback during development. Also called a business advisor.

business requirements The project’s high‐level business goals. They explain what the
customer hopes to achieve with the project.

business visionary Someone who has a clear vision of the application’s business role,
particularly early in the process when that role isn’t clearly written down.

cause-and-effect diagram See Ishikawa diagram .

CAV See complexity adjustment value.V

CBSE See component‐based software engineering.

change A change to an application that is requested by customers. This may happen when
customers understand the application better, when customers think of a new feature or a
modifi cation they want, or when the users’ environment changes so the application needs to be
changed to be useful.

change control board A group of project members, possibly including one or two customers,
that reviews and approves or rejects change requests.

change management See version management. t

change tracking See version management. t

chief architect In Feature‐driven Development, the person responsible for the project’s
overall programmatic design.

chief programmer In Feature‐driven Development, an experienced developer who is familiar
with all the functions of development (design, analysis, coding, and so on). Chief programmers
lead project teams.

child class A class derived from a parent class. The child class inherits properties, methods,
and events from the parent class.

child table See foreign key .

class In object‐oriented programming, a construct that defi nes a type (or class) of items.
For example, if you defi ne a Customer class, you can then create many Customer objects
representing different real‐world customers.

class diagram In UML, a diagram that describes the classes that make up the system, their
properties and methods, and their relationships.

class owner In Feature‐driven Development, the person who is responsible for a particular
class’s code.

420 ❘ GLOSSARY

 Cleanroom A development model that emphasizes defect prevention rather than defect
removal. It uses formal methods, statistical quality control, and statistical testing to prevent and
detect bugs.

client tier The tier in a multitier architecture that consumes a service. This is often an
application’s user interface.

 client‐server architecture A design that separates pieces of the system that need to use a
particular function (clients) from parts of the system that provide those functions (servers).
That decouples the client and server pieces of the system so that developers can work on
them separately.

 coach Someone who helps a development team follow its chosen path (XP, Scrum, Lean, and
so forth).

 code coverage The lines of code that are executed during a demonstration or a suite of tests.

 code inspection See code review .

 code review When two or more programmers walk through a piece of code to look for
problems. Also called a code inspection .

 coding standards Standards used by a development team to ensure consistency. Standards
may defi ne conventions for variable names, comments, documentation, specifi c code style, and
more. Coding standards make the code easier to read and debug.

 column See fi eld. d

 communication diagram In UML, a diagram that shows communication among objects
during some sort of collaboration. This is similar to a sequence diagram except a sequence
diagram focuses on the sequence of messages, and a communication diagram focuses more on
the objects involved in the collaboration.

 complexity adjustment factors In function point calculations, values that take into account
the importance of general features of the application (such as transaction rate).

 complexity adjustment value (CAV) In function point calculations, the sum of the
complexity adjustment factors.

 complexity factor In function point calculations, you multiply each function point metric by
a complexity factor to indicate how complex each activity is.

 component diagram In UML, a diagram that shows how components are combined to form
larger parts of the system.

 component interface test A test that studies the interactions between components. This is a
bit like regression testing in the sense that both examine the application as a whole to look for
trouble, but component interface testing focuses on component interactions.

 component‐based software engineering (CBSE) A design that regards the system as a
collection of loosely coupled components that provide services for each other.

 composite structure diagram In UML, a diagram that shows a class’s internal structure and
the collaborations that the class allows.

GLOSSARY ❘ 421

 confi guration management Managing the items produced by the project such as
requirements documents, designs, and, of course, source code. This may include controlling
changes to those items so that changes don’t happen willy‐nilly.

 coprime See relatively prime.

 COTS Commercial off‐the‐shelf as in a COTS application.

 cowboy coding A development methodology where the programmers have complete control
over the process and generally do what they want. This is often a derogatory term, although for
very small projects and very experienced developers it can sometimes produce good results.

 critical path A longest path through a PERT chart network. If any task along a critical path is
delayed, the project’s fi nal completion is also delayed. Note that a network may have multiple
critical paths.

 cross‐functional team A team where every member can play every role. Every member can
participate in requirements analysis, design, programming, testing, and the rest.

 Crystal A family of development methodologies that take into account a project’s team size
and criticality. Team size determines the project’s “color” and can be Clear (1–6), Yellow
(7–20), Orange (21–40), Orange Web (21–40 with ongoing releases), Red (41–80), Maroon
(81–200), Diamond (201–500), and Sapphire (501–1,000). Criticality is measured by the type
of thing that could be at risk. Criticality values include comfort, discretionary money, essential
money, and life.

 Crystal Clear A relatively relaxed and easy‐going approach to development using a small
team and low criticality. Crystal Clear defi nes only three required roles: sponsor, senior
designer, and programmer. See also Crystal. l

 Crystal Orange A development approach that is slightly more formal than Crystal Yellow.
Projects may add the new roles business analyst, project manager, architect, and team leader.
They also add requirements, tracking, a release schedule, object models, code reviews,
acceptance testing, and more formal delivery.

 Crystal Yellow A development approach that is slightly more formal than Crystal Clear.
These projects adopt new practices above the roles defi ned by Crystal Clear including easy
communication, code ownership, feedback, automated testing, a mission statement, and more
formal increments.

 customer A person for whom a project is being built. Typically, the customer defi nes
requirements and verifi es that the fi nished application meets those requirements. In some
models, the customer also provides feedback during development.

 cutover The process of moving users to a new application.

DAD See Disciplined Agile Delivery.

 daily scrum Scrum’s version of a daily standup meeting. Also simply called a scrum. See also
standup meeting. g

 data tier The server tier in a three‐tier architecture.

422 ❘ GLOSSARY

 data warehouse A secondary database that holds older data for analysis. In some
applications, you may want to analyze the data and store modifi ed or aggregated forms in the
warehouse instead of keeping every outdated record.

 database‐centric architecture See data‐centric architecture .

 data‐centric architecture A design where the application is centered around some kind of
database.

 decomposition In a V‐model project, the steps on the left side of the V that break the
application down into pieces that you can implement.

 deep dive See spike .

 defect Incorrect feature in an application. Defects can be broadly grouped into two
categories: bugs and changes.

 defensive programming The idea that the code should work no matter what kind of
garbage is passed into it for data. The code should work and produce some kind of result no
matter what. See also offensive programming. g

 deployer In Feature‐driven Development, someone who handles deployment.

 deployment The process of delivering a fi nished application to the users. Also called
implementation or installation.

 deployment diagram In UML, a diagram that describes the deployment of artifacts (fi les,
scripts, executables, and the like) on nodes (hardware devices or execution environments that
can execute artifacts).

derive To subclass a child class from a parent class. The child class inherits properties,
methods, and events from the parent class.

 design inspection A review of a design to look for problems before writing code to
implement the design. In Feature‐Driven Development, a chief programmer holds a design
inspection before the team implements the design.

 design package In Feature‐Driven Development, the result of a design‐by‐feature phase.
The design package includes a description of the package, sequence diagrams showing how the
features will work, alternatives, an updated object model, and method prologues.

 design pattern In object‐oriented programming, an arrangement of classes that interact to
perform some common and useful task. Similar to an object‐oriented algorithm.

 developer Someone who participates in the project development. Sometimes this term is used
interchangeably with programmer.

development manager In Feature‐Driven Development, someone who manages day‐to‐day
development activities.

 Disciplined Agile Delivery (DAD) A development framework that incorporates features of
UP, Scrum, XP, Kanban, Lean, and others. It uses the three UP phases: inception, construction,
and construction.

GLOSSARY ❘ 423

 distributed architecture A design where different parts of the application run on different
processors and may run at the same time. The processors could be on different computers
scattered across the network, or they could be different cores on a single computer.

 domain expert A customer, user, executive champion, or other person who knows about
the project domain and how the fi nished application should work. Also called subject matter
expert (SME).

 domain manager In Feature‐Driven Development, someone who leads the domain experts
and provides a single point of contact to resolve domain issues.

domain walk-through In Feature‐Driven Development, a walk-through of a scenario by a
domain expert to verify that the scenario is correct and to answer questions for the developers
about the scenario.

 don’t repeat yourself principle (DRY) In programming, a rule of thumb that says if you
need to write the same piece of code twice, you should extract it into a separate method that
you can call from multiple places so you don’t have to write it a third time. (Or a fourth time,
or a fi fth time, and so on.)

 driver In pair programming, the programmer who types.

 DRY See Y don’t repeat yourself principle .

 DSDM See Dynamic Systems Development Method. d

 Dynamic Systems Development Method (DSDM) An agile framework designed with a
more business‐oriented focus. It can be used to add extra business control to other development
models. It uses the phase’s pro‐project, project life cycle (which includes study, functional
modeling, design and build, and implementation) and post‐project.

 EDA See event‐driven architecture .

 environment The environment in which the application will run. This includes the users’
computers, networks, printers, other applications, and physical environment (chairs, lamps,
coffee machines, and so forth).

 event In object‐oriented programming, an event occurs to notify the application that
something interesting occurred. For example, the user might have clicked a button or a timer
might have expired.

 event‐driven architecture (EDA) A design where various parts of the system respond to
events as they occur.

 evolutionary prototype A prototype that evolves over time with new features added and the
existing features improved until the prototype eventually becomes the fi nished application.

 exception An unexpected condition in a program such as a divide by zero or trying to access
a missing fi le. If the code doesn’t catch and handle the exception, the program crashes.

 execution See execution specifi cation .

 execution specifi cation In a UML sequence diagram, a gray or white rectangle that
represents a participant doing something. Also called an execution or activation .

424 ❘ GLOSSARY

 executive champion The highest‐ranking executive who supports the project.

 executive sponsor See executive champion .

 expert system See rule‐based architecture .

 Extreme Programming (XP) A development model that takes typical programming practices
(such as code reviews) to extremes (pair programming).

 FDD See Feature‐Driven Development. t

 feature list In Feature‐Driven Development, a prioritized list of features that the application
should have.

 feature team In Feature‐Driven Development, when a new feature requires changes to several
classes, the class owners are assembled into a feature team to study and implement the changes.

Feature‐Driven Development (FDD) An iterative and incremental development model that
was designed to work with large teams. The large teams mean this model requires more roles. It
starts with two phases: develop model and build feature list. It then iterates three more phases:
plan-by feature, design-by feature, and build-by feature.

 fi eld In a relational database, a single piece of data in a record. For example, each record in a
Students table would contain a FirstName fi eld. Also called a column.

 fi rst normal form (1NF) The least normalized level of a table in a relational database. To be
in 1NF:

1. Each column must have a unique name.

2. The order of the rows and columns doesn’t matter.

3. Each column must have a single data type.

4. No two rows can contain identical values.

5. Each column must contain a single value.

6. Columns cannot contain repeating groups.

 fi shbone diagram See Ishikawa diagram .

 Fishikawa diagram See Ishikawa diagram .

foreign key In a relational database, a set of one or more fi elds in one table with values that
uniquely defi ne a record in another table. The table containing the foreign key is the child table,
and the table that contains the uniquely identifi ed record is the parent table. See also foreign
key constraint. t

 foreign key constraint When two tables are related by a foreign key, a foreign key constraint
requires that a child record cannot exist unless the corresponding record exists in the parent
table. For example, a StudentAddress record might not be allowed to contain a State value
that isn’t defi ned in the States lookup table.

 function point metric In function point calculations, a metric used to calculate a project’s
function points such as the number of inputs and the number of outputs.

GLOSSARY ❘ 425

function point normalization Dividing a metric by the project’s function points to allow you
to compare projects of different sizes and complexities.

 function point value Calculated as a weighted average of the raw FP and the CAV.

 functional prototype A prototype that looks like a fi nished application (or part of one) but
that doesn’t necessarily work the way the real application will. For example, it could use faked
data or predetermined responses to user actions.

 functional requirements Detailed statements of the project’s wanted capabilities. They’re
similar to the user requirements but may also include things that the users won’t see directly
such as interfaces to other applications.

 Gantt chart A kind of bar chart that shows a schedule for a collection of related tasks. Bar
lengths indicate task durations. Arrows show the relationships between tasks and their predecessors.

gradual cutover Deployment technique where you install the new application for some users
while others continue working with the existing system. You test the system for the fi rst users
and when everything’s working correctly, you start moving other users to the new system until
everyone has been moved.

 gray‐box test A combination white‐box test and black‐box test. The tester knows some but
not all of the internals of the method being tested. The partial knowledge lets the tester design
some specifi c tests to attack the code.

 heuristic An algorithm that gives a good solution for a problem but that doesn’t guarantee to
give you the best solution possible.

 horizontal prototype A prototype that demonstrates a lot of the application’s features but
with little depth.

 IDE See integrated development environment. t

 implementation When used by programmers, this term usually means writing the code.
When used by managers, this often means deployment.

 implementation requirements Temporary features that are needed to transition to using the
new system but that will be later discarded.

 increment The result of a single iteration of an incremental development model. The
increment is a fully tested piece of software suitable for release to the users.

 incremental deployment Deployment where you release the new system’s features to the
users gradually. First, you install one tool (possibly using staged deployment or gradual cutover
to ease the pain). After the users are used to the new tool, you give them the next tool. You
continue until all the tools have been deployed.

 incremental development A development model where you initially provide only some
features at full fi delity. Over time, you add more features (always at full fi delity) until all
features have been implemented at full fi delity.

 incremental prototyping A development model where you build a collection of prototypes
that separately demonstrate the fi nished application’s features. You then combine the
prototypes (or at least their code) to build the fi nished application.

426 ❘ GLOSSARY

 incremental waterfall model A development model that uses a series of waterfall cascades.
Each cascade ends with the delivery of a usable application called an increment. Also called the
multiwaterfall model.

 indicator A metric that you can use to predict the project’s future. For example, if the metric
“comments per KLOC” is 3, that may be an indicator that the project will be hard to maintain.

 information radiator See big board. d

inheritance hierarchy In object‐oriented programming, a “family tree” showing inheritance
relationships among classes. In a language that doesn’t support multiple inheritance, the
relationships form a hierarchy.

 installation See deployment. t

 instrumentation Code added to a program by a profi ler to allow it to track the program’s
performance.

 integrated development environment (IDE) An environment for building, compiling, and
debugging software. An IDE may include other tools such as source code control, profi ling,
code editors with syntax highlighting and auto‐completion, and more.

 integration In a V‐model project, the steps on the right side of the V that work back up to
the conceptual top of the application.

 integration test A test that verifi es that a new piece of code works with the rest of the system.
It checks that the new code can call existing code and that the existing code can call the new code.

 interaction diagram In UML, a category of activity diagram that includes sequence
diagrams, communication diagrams, timing diagrams, and interaction overview diagrams.

 interaction overview diagram In UML, basically an activity diagram where the nodes
can be frames that contain other kinds of diagrams. Those nodes can contain sequence,
communication, timing, and other interaction overview diagrams. That lets you show more
detail for nodes that represent complicated tasks.

 invariant A state of the program and its data that should remain unchanged over some period
of time. Often used in assertions.

 Ishikawa diagram Named after Kaoru Ishikawa, a diagram that shows possible causes of
effects that you want to study such as excessive bugs, delays, and other failures in the development
process. Also called fi shbone diagrams, Fishikawa diagrams, and cause-and-effect diagrams.

 iteration 0 A pseudo‐iteration that includes startup tasks that must be performed before the
project’s code development starts such as planning, initial requirements gathering, and building
the development environment.

 iterative development A development model where you initially provide all the application’s
features at a low fi delity. Over time, you improve the features’ fi delity, occasionally releasing
improved versions of the application until all features have been implemented at full fi delity.

 James Martin RAD A specifi c RAD development model that uses four phases: requirements
planning, user design, construction, and cutover. The user design and construction phases iterate.

GLOSSARY ❘ 427

 JBGE See just barely good enough .

JIT See just‐in‐time .

 joint code ownership See shared code ownership .

 just barely good enough (JBGE) The idea that you should include only the bare minimum
of comments and documentation to get the job done.

 just‐in‐time (JIT) An inventory management practice where inventory items are supplied just
in time for use to minimize inventory levels.

Kanban (production chain) A just‐in‐time technique that uses kanban cards to indicate when
a production station needs more parts. When a station is out of parts (or is running low), a
kanban card is sent to a supply station to request more parts.

 Kanban (software engineering) An agile methodology where a team member who fi nishes
his current item takes the next highest priority item from the project’s backlog. Kanban seeks to
restrict the amount of work in progress at any given time.

 Kanban board A big board. (See big board .) Typically, columns indicate each task’s status.d
Columns might be labeled Backlog, Ready, Coding, Testing, Approval, and Done. In some
variations, rows indicate the person assigned to each task.

 key In a relational database, a set of one or more fi elds that uniquely identifi es a record.

 KLOC Kilo lines of code.

 knowledge base system See rule‐based architecture .

 language guru Someone who is an expert in the programming language, technology, and
other arcane items being used by the team. The other developers call on this person as needed.
Also called a language lawyer.

 language lawyer See language guru .

 Lean See Lean Software Development.t

 Lean Software Development (LSD) An agile development methodology that focuses on
removing waste (such as unclear requirements, repetition, and unnecessary meetings) from the
development process.

 lifeline In a UML sequence diagram, a vertical dashed line that represents an object’s existence.

 load test A test that simulates a lot of users all running simultaneously to measure the
application’s performance under stress.

 logic tier The middle tier in a three‐tier architecture. This tier usually contains business logic.

lookup table In a relational database, a table that contains values just to use as foreign keys.

 LSD See Lean Software Development. t

 magic number A value that just appears in the code with no explanation. For example, it
might represent an error code or database connection status. Use constants and named variables
instead of magic numbers to make the code easier to read and understand.

428 ❘ GLOSSARY

 member In object‐oriented programming, a general name for a class’s properties, methods,
and events.

 method In object‐oriented programming, a piece of code that makes an object do something.

 method prologue A description of a method that includes its purpose, input and output
parameters, return type, possible exceptions (ways the method can fail), and assumptions.

 metric A value that you use to study some aspect of a project. A metric can be an attribute
(such as the number of bugs) or a calculated value (such as the number of bugs per line of
code). See also attribute and indicator .

 monolithic architecture A design where a single program does everything.

 MOSCOW (or MoSCoW) A scale for prioritizing application features. The initials stand for
Must, Should, Could, and Won’t.

 multiple inheritance In object‐oriented programming, when a child class inherits from
multiple parent classes. (Most object‐oriented languages do not support multiple inheritance.)

 multitier architecture A design that uses multiple tiers to allow a client to use services
provided by a server. Examples include client‐server architectures, two‐tier architectures, and
three‐tier architectures.

 multiwaterfall model See incremental waterfall model.l

 navigator In pair programming, the programmer who watches as the driver types.

node In a UML deployment diagram, a hardware device on which an artifact is deployed.

 nonfunctional prototype A prototype that looks like an application but that doesn’t actually
do anything.

 nonfunctional requirements Statements about the quality of an application’s behavior
or constraints on how it produces a wanted result such as the application’s performance,
reliability, and security characteristics.

 normalization For metrics, performing some calculation on a metric to account for possible
differences in project size or complexity. Two general approaches are size normalization and
function point normalization. (See also function point normalization and size normalization .)
In database design, the process of rearranging tables to put them into standard (normal) forms
that prevent anomalies.

not invented here syndrome (NIHS) In programming, the mistake of thinking you need
to rewrite a piece of code just because someone else wrote it and it doesn’t work the way you
would have written it.

 N‐tier architecture See multitier architecture .

 object An instance of a class.

 object composition In object‐oriented programming, a technique where an object is
composed of other objects, sometimes used to simulate multiple inheritance.

GLOSSARY ❘ 429

 object diagram In UML, a diagram that focuses on a particular set of objects and their
relationships at a specifi c time.

 object model A model showing the classes that make up an application, the class details
(such as properties, methods, and events), and interactions among the classes.

 observer See navigator .

 offensive programming The idea that the code immediately fl ags an error if it receives
unexpected inputs so that you can decide whether they are valid. See also defensive programming. g

 Open Unifi ed Process (OpenUP) An open source tool built by the Eclipse Foundation to
help in using the Unifi ed Process development model.

 OpenUP See Open Unifi ed Process .

 Osborn method A basic brainstorming approach developed by Alex Faickney Osborn.

 over refi nement In object‐oriented programming, a design problem that occurs when you
refi ne a class hierarchy unnecessarily, making too many classes that make the code complicated
and confusing.

 package diagram In UML, a diagram that describes relationships among the packages that
make up a system. For example, if one package in the system uses features provided by another
package, then the diagram would show the fi rst “importing” the second.

pair programming An Extreme Programming practice where two (or three) programmers
work together at the same computer. The driver or pilot types while the observer, navigator, or
pointer watches and reviews each line of code as it is typed.

 parent class A class from which a child class is derived. The child class inherits properties,
methods, and events from the parent class.

 parent table See foreign key .

 PERT Program Evaluation and Review Technique. See PERT chart .t

PERT chart A graph that uses nodes (circles or boxes) and links (arrows) to show the
precedence relationships among the tasks in a project.

 pilot See driver .

 planning game A game where team members use cards containing user stories and try to
see how many cards they can fi t into a release. There are two kinds of planning games: release
planning and iteration planning.

 planning poker In Scrum, a game where developers use card decks based on the Fibonacci
numbers to estimate the amount of work for the project’s tasks. Cards might have numbers ace,
2, 3, 5, 8, and king; or 0, 1, 2, 3, 5, 8, 13, 21, 34, 55, and 89; or 0, ½, 1, 2, 3, 5, 8, 13, 20, 40,
and 100. Also called Scrum poker.

 point of no return The point during a project where the expense of canceling a project is
greater than the expense of moving forward.

430 ❘ GLOSSARY

 pointer See navigator .

 point‐release A minor application build that isn’t necessarily released to the customers.

 polymorphism The ability to treat a child object as if it were actually from a parent class. For
example, it lets you treat a Student object as if it were a Person object because a Student is a
type of Person .

 potentially shippable increment (PSI) In Scrum, the result of a sprint. This is a fully tested
application that could be shipped to the users.

 predictive development model A development model where you predict in advance what
needs to be done and then you go out and do it. Also called big design up front (BDUF).

 presentation tier The client tier in a multi‐tier architecture.

 process metric A metric designed to measure your organization’s development process.
They are collected over a long period across many projects and used to fi ne‐tune the software
engineering process.

product backlog In Scrum, the list of features not yet implemented by the application.

 product burndown chart In Scrum, a graph showing the amount of work remaining in a
whole project over time. Also called a release burndown chart.

 product metric See project metric .

 product owner Someone who represents the customers, users, and other stakeholders and for
whom the application is being built. Sometimes called the sponsor.

 profi ler A program that monitors another program to identify the parts that are slow, that
use the most memory, or that otherwise might be bottlenecks.

 programmer An underpaid, overworked person who writes the code and complains about
excessive management and restrictive coding standards.

 project manager Monitors the project’s progress to ensure that work is heading in the right
direction at an acceptable pace. Meets with customers and other stakeholders to verify that the
fi nished product meets their requirements. If the development model allows changes, the project
manager ensures that changes are made and tracked in an organized manner so they don’t get
lost and don’t overwhelm the rest of the team.

 project metric Metrics that measure and track the current project to predict future results for
that project.

 property In object‐oriented programming, an attribute of an object that helps defi ne the
object’s characteristics.

 prototype A mockup of some or all of the application to let the developers and customers
study an aspect of the system. Typically a software prototype is a program that mimics part of
the application you want to build.

 pseudocode Text that looks a lot like a programming language but isn’t one. You can use
pseudocode to see how a piece of code would work if you wrote it in an actual programming
language such as C#, Java, or Visual Basic.

GLOSSARY ❘ 431

 PSI See potentially shippable increment . t

 quality manager Someone who ensures the application’s quality. This person tracks bug
reports, test results, and reviews; uses statistical methods to estimate quality; defi nes the
project’s quality procedures (such as testing and review guidelines); and uses other techniques
used to improve quality.

 race condition In distributed computing, a situation in which multiple processes interfere
with each other when one incorrectly overwrites the results of another.

RAD See rapid application development. t

 raise In object‐oriented programming, an object raises an event to notify the application that
something interesting occurred.

 rapid application development (RAD) Development models that emphasize producing code
and deemphasize planning. These models produce code iteratively and incrementally as quickly
as possible. RAD principles include small teams, frequent customer interaction, frequent
integration and testing, and short time-boxed iterations.

 Rational Unifi ed Process (RUP) IBM’s version of the Unifi ed Process.

 raw FP value In function point calculations, the sum of the function point metrics multiplied
by their complexity factors.

 record In a relational database, a single set of values in a table. For example, a particular
student’s data would be contained in a record in the Students table. Also called rows or tuples.

 refactor The process of rearranging and rewriting code to make it easier to understand,
debug, and maintain.

 refi nement In object‐oriented programming, the process of breaking a parent class into
multiple subclasses to capture some difference between objects in the class.

 regression test A test that exercises the entire application to verify that a new piece of code
didn’t break anything.

relational database A database that stores related data in rows and columns in tables.

 relatively prime Two integers are relatively prime (or coprime) if they have no common
factors other than 1. For example, 21 = 3 × 7 and 8 = 2 × 2 × 2 are relatively prime because
they have no common factors other than 1. By defi nition –1 and 1 are relatively prime to every
integer, and they are the only numbers relatively prime to 0.

 release burndown chart See product burndown chart . t

 release manager In Feature‐Driven Development, someone who gathers information from
the chief programmers to track the project’s progress.

 requirement validation The process of making sure that the requirements say the right things.

 requirement verifi cation The process of checking that the fi nished application actually
satisfi es the requirements.

 requirements The features an application must provide to be successful.

432 ❘ GLOSSARY

 retrospective meeting In Scrum, a meeting after a sprint where the Scrum Master and the
project team discuss the sprint and ask the questions: (1) What went well and how can we make
that happen again? (2) What went poorly and how can we avoid that in the future? (3) How
can we improve future sprints?

 row See record.

 rule‐based architecture A design that uses a collection of rules to decide what to do next.
These systems are sometimes called expert systems or knowledge‐based systems.

 RUP See Rational Unifi ed Process .

 sashimi A variation on the waterfall model where phases overlap. Also called sashimi
waterfall and waterfall with overlapping phases.

 SCA Service Component Architecture.

 scribe Someone who keeps records of requirements, agreements, assumptions, and other
important facts discovered at meetings, particularly at DSDM workshops.

scrum See daily scrum .

 Scrum A development methodology that uses frequent small increments to build an
application iteratively and incrementally.

 Scrum Master In Scrum, someone who helps the team follow Scrum practices, challenges the
team to improve itself, and removes obstacles for the team.

 Scrum poker See planning poker .

 SDLC See software development life cycle .

 second normal form (2NF) The second level of normalization for a table in a relational
database. A table is in 2NF if:

1. It is in 1NF.

2. All nonkey fi elds depend on all key fi elds.

 self‐organizing team A team that has the fl exibility and authority to fi nd its own methods
for achieving its goals. Team members are motivated to take work without waiting for it to be
assigned. They take responsibility for their work and track their own progress.

 senior developer A software engineering ninja that other developers can call when they
need help.

 sequence diagram In UML, a diagram that shows how objects collaborate in a particular
scenario. This is similar to a communication diagram except a sequence diagram focuses on the
sequence of messages, and a communication diagram focuses more on the objects involved in
the collaboration.

 service A self‐contained program that runs on its own and provides some kind of service for
its clients.

 Service Component Architecture (SCA) A set of specifi cations for service‐oriented
architecture defi ned by vendors such as IBM and Oracle. See service‐oriented architecture .

GLOSSARY ❘ 433

 service‐oriented architecture (SOA) A design similar to a component‐based architecture
except the pieces are implemented as services.

 shared code ownership In Extreme Programming, code ownership is joint so anyone can
modify any piece of code if necessary to make changes or fi x bugs. In contrast, in Feature‐
Driven Development, each class is owned by a class owner.

side effect A non‐obvious result of a method call that makes using the method confusing.

 size normalization For metrics, dividing a metric by an indicator of size such as lines of code
or days of work. For example, bugs/KLOC tells you how buggy the code is normalized for the
size of the project.

 size‐oriented normalization See size normalization .

 SME Subject matter expert.

 soapbox In planning poker, after each hand the people with the highest and lowest estimates x
are given a brief soapbox to explain why they feel their estimates are correct.

 SOA Service‐oriented architecture.

 software development life cycle (SDLC) All the tasks that go into a software engineering
project from start to fi nish: requirements, design, implementation, and so forth. Also called the
application development life cycle.

 spike A quick prototype, design, or piece of code that lets you explore some feature of an
application in depth. Also called a deep dive.

 spike solution See spike .

spiral development model A development model that uses a risk‐driven approach to decide
what development approach to take for each stage of the project. It uses four phases: planning,
risk analysis, engineering, and evaluation.

 sponsor See product owner .

 sprint In Scrum, the name given to the time-boxed incremental iterations. Typically a sprint is
30 days; although, some projects use shorter sprints of one, two, or three weeks.

 sprint backlog In Scrum, the list of features not yet implemented by a sprint.

 sprint burndown chart In Scrum, a graph showing the amount of work remaining in a sprint
over time.

 sprint planning meeting In Scrum, a time boxed (typically a maximum of four hours)
meeting before a sprint begins to decide what features should move from the project backlog
into the sprint backlog so that they will be implemented during the sprint.

 sprint review meeting In Scrum, after a sprint ends, this is the meeting where the team
presents the potentially shippable increment to the product owner, who verifi es that it meets the
sprint’s goals.

 staged deployment Deployment that begins with building the application in a fully functional
staging environment, so you can practice deployment until you’ve worked out all the kinks.

434 ❘ GLOSSARY

 stakeholder Someone who has a stake in the outcome of the project. Typically, this includes
users, customers (if those are different from users), sponsors, managers, and development team
members.

 stakeholder requirements These describe the goals of the project from the stakeholders’
point of view. This term is often used interchangeably with “user requirements.”

 standup See standup meeting. g

 standup meeting in Extreme Programming, a brief (15 minutes or less) daily meeting where
team members say what they did since the last meeting, what they hope to do before the next
meeting, and any problems they foresee in getting that work done.

 state In bug tracking, a bug’s state tracks its progress through the system. Example states
include New, Assigned, Reproduced (or Verifi ed), Cannot Reproduce, Pending, Fixed, Tested,
Deferred, Closed, and Reopened.

 state machine diagram In UML, a diagram that shows the states through which an object
passes in response to various events. States are represented by rounded rectangles. Arrows
indicate transitions from one state to another. Sometimes annotations on the arrows indicate
what causes a transition.

stepwise refi nement See top‐down design .

 story points The number of points assigned to a story by planning poker. See planning poker .r

 structure diagram In UML, a diagram that describes things that will be in the system you are
designing. For example, a class diagram shows relationships among the classes that will be used
to represent objects in the system such as inventory items, customers, and invoices.

 subject matter expert (SME) See domain expert. t

 system administrator See administrator .

 system integrator Someone who builds and tests the interfaces between the application and
other applications.

 system test An end‐to‐end run‐through of the whole system. Ideally, a system test exercises
every part of the system to discover as many bugs as possible.

 table In a relational database, a set of records that all contain the same fi elds; although, each
record’s fi elds may contain different values. For example, a Student table would contain data
about students.

 TCO See total cost of ownership .

 TDD See test‐driven development. t

 team lead See team leader .

team leader The leader of a programming team, particularly if a large project is broken into
separate teams. Typically, a team leader is a more experienced developer. Also called a team lead.

 team member A member of the development team. Depending on the development
model, this can include many different kinds of participants. The team may include customer
representatives in addition to developers.

GLOSSARY ❘ 435

 technical writer Someone who writes online and printed documentation and training materials.

 test‐driven development (TDD) A programming technique where you; (1) Write a test
to verify a feature; (2) Verify that the program fails the test; (3) Write code to implement the
feature; and (4) Verify that the code passes the test.

 tester Someone designated to test the application and look for holes in the design. Often
programmers perform their own unit testing and the tester focuses on acceptance testing.

test‐fi rst development (TFD) A programming technique where you write all the unit tests
for a piece of code before you write the code. You then write all the code, run the tests, and fi x
the code if it doesn’t pass the tests.

 TFD See test‐fi rst development. t

 third second normal form (3NF) The third level of normalization for a table in a relational
database. A table is in 3NF if:

1. It is in 2NF.

2. It contains no transitive dependencies.

 three‐tier architecture A design where a middle tier provides insulation between client and
server tiers. The middle tier can map data between the format provided by the server and the
format needed by the client.

 throwaway prototype A prototype that is used to study some aspect of a system and is then
discarded.

 timing diagram In UML, a diagram that shows one or more objects’ changes in state over
time.

 toolsmith Someone whose job is to build tools for use by other developers.

 top‐down design A design process where you start with a high‐level statement of a problem
and then successively break the problem into more detailed and smaller pieces until the pieces
are small enough to implement. Also called stepwise refi nement.

 total cost of ownership (TCO) The total expected cost of a software application including
development costs, deployment costs, and maintenance costs over the expected lifetime of the
application. (Often maintenance costs account for 75 percent of TCO.)

 tracker In XP, someone who monitors the team’s progress and the team members’ progress,
and who calculates metrics.

 transitive dependency In a relational database, when a nonkey fi eld’s value depends on
another nonkey fi eld’s value.

 tuple See record . d

 two‐tier architecture A design where a client (often the user interface) is separated from the
server (normally the database).

UML See Unifi ed Modeling Language .

 Unifi ed Modeling Language (UML) A collection of diagramming techniques for describing
different aspects of a system.

436 ❘ GLOSSARY

Unifi ed Process (UP) An iterative and incremental development framework that involves four
stages: inception, elaboration, construction, and transition.

unit test A test that verifi es the correctness of a specifi c piece of code.

UP See Unifi ed Process .

use case A description of a series of interactions between actors. The actors can be users or
parts of the application. A simple template might include a title, main success scenario, and
extensions (other variations on the scenario).

use case diagram In UML, a diagram that represents a user’s interaction with the system.
Use case diagrams show stick fi gures representing actors (someone or something that performs
a task) connected to tasks represented by ellipses.

user requirements These describe how the project will be used by the eventual end users.

user story A short story explaining how the system will let the user do something.

velocity In Scrum, the amount of work the team can perform during a sprint, usually
measured in story points per sprint.

version management Managing the versions of items produced by the project such
as requirements documents, designs, and, of course, source code. You should be able to
retrieve any earlier version of those items if necessary. Also called version tracking, change
management, and change tracking.

version tracking See version management. t

vertical prototype A prototype that has little breadth but great depth.

 visionary Someone who has a clear vision about what the application should do.

 V‐model Basically, a waterfall model that’s been bent into a V shape to emphasize that each
task on the left side of the V corresponds to a task on the right side.

 waterfall A predictive development where each project phase fl ows into the next.

 waterfall with feedback A variation on the waterfall model where each phase is allowed to k
feed information back to the preceding phase.

 web service A service that provides a standardized web‐based interface so that it is easy to
invoke over the Internet.

 white‐box test A test designed by someone who knows how the code works internally. That
person can guess where problems may lie and create tests specifi cally to look for those problems.

 WIP See work in progress .

 work in progress (WIP) The work being done at a given moment, particularly in a Kanban
project.

 working prototype See functional prototype .

workshop facilitator Someone who plans, runs, and encourages participation at workshops,
particularly DSDM workshops.

 XP See Extreme Programming. g

437

INDEX

Numbers

1NF (fi rst normal form), 130–133
2NF (second normal form), 134–135
3NF (third normal form), 135–137

A

acceptance testing, 185
accessibility testing, 185
activity diagrams, 110–111
ad hoc reporting, 101
adaptive models versus predictive, 266–270
adaptive tasks (maintenance), 247–248
agile development

AUP (Agile Unifi ed Process), 343–345
communication and, 313–314
cross-functional teams, 314
DAD (Disciplined Agile Delivery), 345–348
incremental development, 314–316
information radiator, 314
Manifesto for Agile Software Development,

309–311
point releases, 315
quality focus, 316
self-organizing teams, 311–313
version schemes, 315–316

algorithms, 148–149
effectiveness, 149
effi ciency, 149–151
predictability, 151–152
prepackaged, 152
simplicity, 152

alpha testing, 185
AOA (activity on arrow), 33

AON (activity on node), 33
application development life cycle, 276–279
applications

COTS (commercial off-the-shelf), 43
documentation, 25
security, 89

architecture
ClassyDraw, 100
client-server, 95–96
component-based, 96–97
data-centric, 97
distributed, 98–99
event-driven, 97–98
mix and match, 99–100
monolithic, 94
multitier, 96
N-tier, 96
rule-based, 98
service-oriented, 97
three-tier, 95–96

archiving, requirement gathering and, 67
attributes, 222
audience-oriented requirements

businesses, 61–62
functional, 63
implementation, 63
nonfunctional, 63
users, 62–63

audio hardware, 90
audit tracking and history, requirement gathering

and, 67
audit trails, 103
AUP (Agile Unifi ed Process), 298,

343–345
automated testing, 182–183

438

b h d d f lbehavior diagrams – defect analysis

B

behavior diagrams, 109–110
activity diagrams, 110–111
state machine diagrams, 112–113
use case diagrams, 111–112

beta testing, 186
black-box testing, 187–188
bug fi xing, 194–195
bugs

code coverage, 196
counting, 7–8
Lincoln index, 197–198
maintenance tasks, 256
reasons to leave some, 175–179
seeding, 197
testing, 7
tracking, 195–196
Windows, 173–175

burndown, Scrum and, 330–331
business requirements, 61–62

C

cause and effect diagrams, 220
CBSE (component-based software engineering),

96–97
change control, 16–18
charts

Gantt charts, 41–42
PERT charts, 33–41

child classes, 122–123
Class Diagrams, 107, 108–109
classes

defi ning, 102
object-oriented development, 121–122

ClassyDraw program, 57–60
architecture, 100

Cleanroom model, 298
client-server architecture, 95–96
code. See also programming; source code

documentation, 22–25
KLOC (kilo lines of code), 174
ownership, XP and, 323–324

coding standards, XP and, 324

comments in code, 157–159
self-documenting code, 159–160

communication diagrams, 114–115
compatibility testing, 186
Component Diagrams, 108
component interface testing, 183–184
component-based architecture, 96–97
Composite Structure Diagrams, 108
confi guration

high-level design, 104
requirement gathering and, 67

corrective tasks (maintenance), 248–251
COTS (commercial off-the-shelf) applications, 43
critical path methods, PERT charts, 38–41
Crystal, 333–335

Crystal Clear, 335–336
Crystal Orange, 337–338
Crystal Yellow, 336–337

customers
requirements gathering and, 4–5, 67–68
XP and, 320

cutover, 206
gradual, 206–208

D

DAD (Disciplined Agile Delivery), 298, 345–348
data fl ows, 105
data security, 89
data tier, 96
data types, 132
data warehouses, 104
databases

audit trails, 103
classes, defi ning, 102
data types, 132
design, 127–128

normalization, 130–137
relational, 128–130

maintenance, 104
user access, 103

data-centric architecture, 97
decomposition, V-models, 275–276
defect analysis, 216–217

bug types, 217–219

439

deferred interfaces – DSDMdeferred interfaces – DSDM

deferred interfaces, 93
deployment, 8–9, 203–204

cutover, 206
gradual, 206–208

databases and, 209
documentation, 209
hardware and, 209
incremental, 208
mistakes, 210–211
parallel testing, 209
physical environment and, 209
planning, 204–206
scope, 204
staged, 206
tasks, 209
training and, 209

Deployment Diagrams, 108
design

databases, 127–128
normalization, 130–138
relational, 128–130

detail level, 155
high-level, 5–6

architecture, 94–100
confi guration data, 104
data fl ows, 105
databases, 102–104
existing practices, 92
external interfaces, 93
hardware, 90–91
internal interfaces, 92–93
parallel implementation, 88
reports, 101
security, 89–90
states, 105
training, 105
UML, 105–115
user interface, 91–92

low-level, 6, 119
object-oriented development, 121
team, adding to, 88–89
top-down, 153–155
XP and, 322

design (FURPS+), 66
destructive testing, 186

detail level, 155
development, 6, 143–144

algorithms, 148–149
effectiveness, 149
effi ciency, 149–151
predictability, 151–152
prepackaged, 152
simplicity, 152

environment, 146
hardware, 144–145
networks, 145–146
profi lers, 147
refactoring tools, 148
source code formatters, 147–148
source code management, 147
static analysis tools, 147
testing tools, 147
tools

environment, 146
hardware, 144–145
networks, 145–146
profi lers, 147
refactoring tools, 148
source code formatters, 147–148
source code management, 147
static analysis tools, 147
testing tools, 147
training, 148

top-down design, 153–155
training, 148

Dijkstra, Edsger W., 7
distributed architecture, 98–99
document management, 16–18

change control, 16
e-mail, 19–21
historical documents, 18–19
keywords, 21
sharing, version control, 16–17
source code, 21–22

documentation
applications, 25
code documentation, 22–25
self-documenting code, 159–160

DSDM (Dynamic Systems Development Method),
348–351

440

Eclipse – implementation

E

Eclipse, 146
EDA (event-driven architecture),

97–98
e-mail, 19–21
environment, development and, 146
event-driven architecture, 97–98
events, object-oriented development, 121
evolutionary prototypes, 79, 288–289
exception handlers, 167
exceptions, 163, 166
executive support, project management and,

30–31
exhaustive testing, 186–187
expert systems, 98
external interfaces, 93

F

FAD (FreeWheeler Automatic Driver),
121–122

FDD (Feature-Driven Development),
338–339

iteration milestones, 342–343
phases, 340–342

fi shbone diagrams, 220
Fishikawa diagrams, 220
fi xing bugs, 194–195
fonts, requirements and, 16–17
function point normalization, 231–235
functional prototypes, 79
functional requirements, 63
functional testing, 186
functionality (FURPS+), 66
FURPS+, 64–66
FURPS (functionality, usability, reliability,

performance, scalability), 64

G

Gantt charts, 41–42
generalization, XP and, 324
gradual cutover, 206–208
gray-box testing, 188–189

H

hardware
design and, 90–91
development and, 144–145
platform selection, 91

heuristics, 151
high-level design, 5–6

architecture
client-server, 95–96
component-based, 96–97
data-centric, 97
distributed, 98–99
event-driven, 97–98
mix and match, 99–100
monolithic, 94
rule-based, 98
service-oriented, 97

confi guration data, 104
data fl ows, 105
database, 102–103

audit trails, 103
maintenance, 104
user access, 103

existing practices, 92
hardware, 90–91
interfaces

external, 93
internal, 92–93

parallel implementation, 88
reports, 101
security, 89–90
states, 105
training, 105
UML, 105–107

structure diagrams, 107–109
user interface, 91–92

historical documents, 18–19
horizontal prototypes, 288

I

IDE (integrated development environment), 146
implementation, 204

FURPS+, 66

441

incremental deployment – methods

parallel, 88
requirements, 63

incremental deployment, 208
incremental models versus iterative,

286–287
incremental prototyping, 289
incremental waterfall models, 273–275
inerfaces, external, 93
information radiator, agile development, 314
inheritance

child classes, 122–123
generalization, 125–126
hierarchies, 122–123

warning signs, 126–127
multiple, 123
parent classes, 122–123
refi nement, 123–125

input metrics, 227–229
installation, 204
installation testing, 186
instances, 120
integration

V-models, 276
XP and, 325

integration testing, 181–182
interaction diagrams

communication diagrams, 114–115
interaction overview diagrams, 115
sequence diagrams, 113–114
timing diagrams, 115

interaction overview diagrams, 115
interface (FURPS+), 66
interfaces

deferred, 93
internal, high-level design and, 92–93

internal interfaces, high-level design, 92–93
internationalization testing, 186
invariants, 163
IOC (Initial Operational Capability), 294
Ishikawa diagrams, 219–222
iterative models

Cleanroom, 298
versus incremental, 286–287
versus predictive, 284–286
prototypes, 287–290

spiral, 290–293
UP (Unifi ed Process), 295–298

J

JBGE (just barely good enough), 23–24
programming and, 157

K

Kanban, 351–355
keywords, document management and, 21
KLOC (kilo lines of code), 174
knowledge-based systems, 98

L

LAN (local area network), 95
LCA (Life Cycle Architecture), 294
LCO (Life Cycle Objectives), 294
LEAN (Lean Software Development), 332–333
Lincoln index, 197–198
login, requirement gathering and, 67
lookup tables, 129
low-level design, 6, 119

OO (object-oriented) development, 120–127

M

maintenance, 9, 241–242
costs, 242–243
tasks, 243

adaptive tasks, 247–248
bugs, individual, 256
corrective tasks, 248–251
execution, 256–257
NIHS, 256
perfective tasks, 244–247
preventive tasks, 251–255

Manifesto for Agile Software Development,
309–311

Martin, James, RAD and, 304, 308
menus, requirement gathering and, 66
metaphors, XP and, 322
methods, object-oriented development, 121

442

metrics – passwords

metrics, 215–216
cause and effect diagrams, 220
defect analysis, 216–217

bug types, 217–219
defi nition, 222
fi shbone diagrams, 220
Fishikawa diagrams, 220
Ishikawa diagrams, 219–222
software metrics, 222–223

complexity, 232–233
function point normalization, 231–235
input metrics, 227–229
process metrics, 226
project metrics, 226–227
qualities, 223–224
size normalization, 229–231
uses, 224–227

wrap activity, 216
mix and match architecture, 99–100
models

iterative
Cleanroom, 298
versus incremental, 286–287
versus predictive, 284–286
prototypes, 287–290
spiral, 290–293
UP, 295–298

predictive, 265–266
versus adaptive, 266–270
application development life cycle, 276–279
sashimi, 272–273
SDLC (software development life cycle),

276–279
V-model, 275–276
waterfall, 270–271

monolithic architecture, 94
MOSCOW method for prioritization, 57
multiple inheritance, 123
multitier architecture, 96
multi-waterfall model, 273–275

N

navigation, requirement gathering and, 67
networks

components, 90

development and, 145–146
security, 89

NIHS (not invented here syndrome), 256
nonfunctional prototypes, 79
nonfunctional requirements, 63
nonfunctional testing, 186
normalization

function point, 231–235
size-oriented, 229–231

N-tier architecture, 96

O

object composition, 127
Object Diagrams, 107
OO (object-oriented) development

classes, 121–122
design patterns, 121
events, 121
inheritance

child classes, 122–123
generalization, 125–126
hierarchies, 122–127
multiple, 123
parent classes, 122–123
refi nement, 123–125

instances, 120
methods, 121
objects, composition, 127
overview, 120–121
properties, 121

operating system, security, 89
optimization

deferred, 167–169
XP and, 322–323

P

Package Diagrams, 108
pair programming, XP and, 324
parallel implementation, 88
parallel testing, 209
param token, 24
parent classes, 122–123
passwords, 90

443

perfective tasks – RADperfective tasks – RAD

perfective tasks (maintenance), 244–247
performance (FURPS+), 66
performance testing, 186
PERT (Program Evaluation and Review

Technique), 33
PERT charts, 33–38

AOA (activity on arrow), 33
AON (activity on node), 33
critical path methods, 38–41

physical (FURPS+), 66
physical security, 89
planning, XP and, 320–321
planning poker, Scrum and, 329–330
point releases, agile development, 315
predictions, 42–43

experience and, 44
similarities, 45
task breakdown, 44–45
tracking progress, 46–47
unexpected delays, 45–46

predictive models, 265–266
versus adaptive, 266–270
application development life cycle, 276–279
versus iterative, 284–286
sashimi, 272–273
SDLC (software development life cycle),

276–279
V-model, 275–276
waterfall, 270–271

with feedback, 271–272
incremental, 273–275
multi-waterfall, 273–275

prepackaged algorithms, 152
presentation tier, 96
preventive tasks (maintenance), 251–255
printers, 90
prioritization, 56–60
process metrics, 226
profi lers, 168

development and, 147
programming

code repetition, 167
commenting, 157–159

self-documenting code, 159–160
defensive, 165

exception handlers, 167
exceptions, 166
focus, 161–162
offensive, 165–166
optimization, deferred, 167–169
profi lers, 168
results validation, 163–165
self-documenting code, 159–160
side effects, 162
size, 160–161
writing for people not computer, 156–157

progress, tracking, 46–47
project management

executive support, 30–31
PERT charts, 33–41
predictions, 42–47
project manager position, 31–33
risk management, 47–49
scheduling software, 42

project metrics, 226–227
properties, object-oriented development, 121
prototypes, 287–290

evolutionary, 288–289
horizontal, 288
requirements recording, 78–79
throwaway, 288–289
vertical, 288

PSI (potentially shippable increment), 328

R

race condition, 99
RAD (rapid application development), 304

advantages, 306–307
agile development

communication and, 313–314
cross-functional teams, 314
incremental development, 314–316
information radiator, 314
Manifesto for Agile Software

Development, 309–311
point releases, 315
quality focus, 316
self-organizing teams, 311–313
version schemes, 315–316

444

RAD – requirement gathering

RAD (rapid application development) (continued)
AUP (Agile Unifi ed Process), 343–345
Crystal, 333–335

Crystal Clear, 335–336
Crystal Orange, 337–338
Crystal Yellow, 336–337

DAD (Disciplined Agile Delivery), 345–348
disadvantages, 307
DSDM (Dynamic Systems Development

Method), 348–351
FDD (Feature-Driven Development), 338–339

iteration milestones, 342–343
phases, 340–342

Kanban, 351–355
LEAN (Lean Software Development), 332–333
Martin, James, 304, 308
Scrum

burndown, 330–331
planning poker, 329–330
roles, 327–328
sprints, 328–239
velocity, 331

techniques, 305–306
timeboxing, 306
XP (Extreme Programming), 317–318

code ownership, 323–324
coding standards, 324
customers, 320
design, 322
generalization, 324
integration, 325
metaphors, 322
optimization, 322–323
pair programming, 324
planning, 320–321
refactoring, 323
releases, 322
roles, 318
standup meetings, 321–322
sustainability, 325
TDD (test-driven development),

325–327
testing, 324–325
TFD (test-fi rst development), 326–327
values, 319

recording requirements, 76–77
prototypes, 78–79
specifi cation, 80
UML, 77
use cases, 78
user stories, 77–78

refactoring
tools, development and, 148
XP and, 323

refi nement, inheritance, 123–125
relational databases

child tables, 129
design, 128–130
fi elds, 128
foreign keys, 129
lookup tables, 129
parent tables, 129
tuples, 128

releases, XP and, 322
reliability (FURPS+), 66
reports, 101
requirement gathering

amiguity, 55
archiving, 67
audit tracking and history, 67
brainstorming and, 74–76
categories

audience-oriented, 61–63
FURPS, 64
FURPS+, 64–66

changing requirements, 80–81
clairvoyance and, 73–74
clarity, 54–55
common, 66–67
confi guration, 67
consistency, 56
customers, 67–68
existing systems and, 71–73
How, 69
login, 67
menus, 66
navigation, 67
prioritization, 56–60
recording requirements, 76–77

prototypes, 78–79

445

requirement repairs – supportability

specifi cation, 80
UML, 77
use cases, 78
user stories, 77–78

requirements, specifi c, 66–67
requirements defi nition, 54
screens, 66
specifi city, 62–63
user types, 67
users, 67–68, 70–71
validation, 80
verifi ability, 60
verifi cation, 80
What, 69
When, 69
Where, 69
Who, 68
Why, 69
words to avoid, 60–61
work fl ow, 67

requirement repairs, 11
requirements gathering, 4–5
results, validation, 163–165
risk analysis, 48–49
risk management, 47–49
rule-based architecture, 98
RUP (Rational Unifi ed Process), 297–298

S

sashimi model, 272–273
saving, version control, 16–17
SCA (Service Component Architecture), 97
scheduling software, 42
scope, 204
screens, requirement gathering and, 66
Scrum

burndown, 330–331
planning poker, 329–330
velocity, 331

SDLC (software development life cycle),
276–279

second system effect, 245–246
security

applications, 89

data security, 89
design and, 90–91
network security, 89
operating system, 89
physical security, 89
testing, 186

seeding bugs, 197
self-documenting code, 159–160
self-organizing teams, agile development and,

311–313
sequence diagrams, 113–114
servers, 90
service-oriented architecture, 97
sharing documents, version control, 16–17
SOA (service-oriented architecture), 97
software metrics, 222–223

complexity, 232–233
function point normalization, 231–235
input metrics, 227–229
process metrics, 226
project metrics, 226–227
qualities, 223–224
size normalization, 229–231
uses, 224–227

source code, 21–22
formatters, development and, 147–148
management, development and, 147

specifi city in requirements, 62–63
spiral models, 290–293
staged deployment, 206
stakeholder requirements, 62
standup meetings, XP and, 321–322
state machine diagrams, 112–113
states, 105
static analysis tools, development and, 147
stepwise refi nement, 153–155
structure diagrams, 107–109

Class Diagrams, 107
Component Diagrams, 108
Composite Structure Diagrams, 108
Deployment Diagrams, 108
Object Diagrams, 107
Package Diagrams, 108

summary token, 24
supportability (FURPS+), 66

446

sustainability – users

sustainability, XP and, 325
system testing, 184–185

T

TCO (total cost of ownership), maintenance and,
242

TDD (test-driven development), XP and,
325–327

testing, 6–8
acceptance testing, 185
accessibility testing, 185
alpha testing, 185
automated testing, 182–183
best practices, 189–194
beta testing, 186
bug fi xing, 194–195
bugs and, 7
compatibility testing, 186
component interface testing, 183–184
destructive testing, 186
functional testing, 186
goals, 175
installation testing, 186
integration testing, 181–182
internationalization testing, 186
nonfunctional testing, 186
parallel, 209
performance testing, 186
security testing, 186
system testing, 184–185
techniques

black-box, 187–188
exhaustive, 186–187
gray-box, 188–189
white-box, 188

tools, development and, 147
unit testing, 179–181
usability testing, 186
XP and, 324–325

TFD (test-fi rst development), XP and, 326–327
three-tier architecture, 95–96
throwaway prototypes, 79, 288–290
timeboxing, 306

timing diagrams, 115
tokens

param, 24
summary, 24

toolsmith, 178
top-down design, 153–155
tracking bugs, 195–196
tracking progress, 46–47
training, 105

development and, 148

U

UML (Unifi ed Modeling Language),
105–107

behavior diagrams, 109–110
activity diagrams, 110–111
state machine diagrams, 112–113
use case diagrams, 111–112

interaction diagrams
communication diagrams, 114–115
interaction overview diagrams, 115
sequence diagrams, 113–114
timing diagrams, 115

requirements recording and, 77
structure diagrams, 107–109

Class Diagrams, 107
Component Diagrams, 108
Composite Structure Diagrams, 108
Deployment Diagrams, 108
Object Diagrams, 107
Package Diagrams, 108

unit testing, 179–181
UP (Unifi ed Process), 295–298
usability (FURPS+), 66
usability testing, 186
use case diagrams, 111–112
use cases, requirements recording, 77–78
user access, databases, 103
user requirements, 62
user types, requirement gathering and, 67
users, requirement gathering and, 67–68,

70–71
recording requirements, 77–78

447

validation – XP

V

validation
programming results, 163–165
requirements, 80

velocity, Scrum and, 331
verifi cation, requirements, 80
version control, 16–18
version schemes, 315–316
vertical prototypes, 288
video, hardware, 90
V-models, 275–276

W

WAN (wide area network), 95
waterfall models, 270–271

with feedback, 271–272
incremental, 273–275
multi-waterfall, 273–275
with overlapping phases, 272–273

web services, 97
white-box testing, 188
Windows, bugs, 173–175
work fl ow, requirement gathering and, 67

working prototypes, 79
wrap activity, 216

X-Y-Z

XP (Extreme Programming)
code ownership, 323–324
coding standards, 324
customers, 320
design, 322
generalization, 324
integration, 325
metaphors, 322
optimization, 322–323
pair programming, 324
planning, 320–321
refactoring, 323
releases, 322
roles, 318
standup meetings, 321–322
sustainability, 325
TDD (test-driven development), 325–327
testing, 324–325
TFD (test-fi rst development), 326–327
values, 319

WILEY END USER LICENSE
AGREEMENT

Go to www.wiley.com/go/eula to access Wiley’s ebook
EULA.

http://www.wiley.com/go/eula

	BEGINNING Software Engineering
	CONTENTS
	INTRODUCTION
	PART I: SOFTWARE ENGINEERING STEP-BY-STEP
	CHAPTER 1: SOFTWARE ENGINEERING FROM 20,000 FEET
	Requirements Gathering
	High-Level Design
	Low-Level Design
	Development
	Testing
	Deployment
	Maintenance
	Wrap-up
	Everything All at Once
	Summary

	CHAPTER 2: BEFORE THE BEGINNING
	Document Management
	Historical Documents
	E-mail
	Code
	Code Documentation
	Application Documentation
	Summary

	CHAPTER 3: PROJECT MANAGEMENT
	Executive Support
	Project Management
	PERT Charts
	Critical Path Methods
	Gantt Charts
	Scheduling Software
	Predicting Times
	Get Experience
	Break Unknown Tasks into Simpler Pieces
	Look for Similarities
	Expect the Unexpected
	Track Progress

	Risk Management

	Summary

	CHAPTER 4: REQUIREMENT GATHERING
	Requirements Defined
	Clear
	Unambiguous
	Consistent
	Prioritized
	Verifiable
	Words to Avoid

	Requirement Categories
	Audience-Oriented Requirements
	Business Requirements
	User Requirements
	Functional Requirements
	Nonfunctional Requirements
	Implementation Requirements

	FURPS
	FURPS+
	Common Requirements

	Gathering Requirements
	Listen to Customers (and Users)
	Use the Five Ws (and One H)
	Who
	What
	When
	Where
	Why
	How

	Study Users

	Refining Requirements
	Copy Existing Systems
	Clairvoyance
	Brainstorm

	Recording Requirements
	UML
	User Stories
	Use Cases
	Prototypes
	Requirements Specification

	Validation and Verification
	Changing Requirements
	Summary

	CHAPTER 5: HIGH-LEVEL DESIGN
	The Big Picture
	What to Specify
	Security
	Hardware
	User Interface
	Internal Interfaces
	External Interfaces
	Architecture
	Monolithic
	Client/Server
	Component-Based
	Service-Oriented
	Data-Centric
	Event-Driven
	Rule-Based
	Distributed
	Mix and Match

	Reports
	Other Outputs
	Database
	Audit Trails
	User Access
	Database Maintenance

	Configuration Data
	Data Flows and States
	Training

	UML
	Structure Diagrams
	Behavior Diagrams
	Activity Diagrams
	Use Case Diagram
	State Machine Diagram

	Interaction Diagrams
	Sequence Diagram
	Communication Diagram
	Timing Diagram
	Interaction Overview Diagram

	Summary

	CHAPTER 6: LOW-LEVEL DESIGN
	OO Design
	Identifying Classes
	Building Inheritance Hierarchies
	Refinement
	Generalization
	Hierarchy Warning Signs

	Object Composition

	Database Design
	Relational Databases
	First Normal Form
	Second Normal Form
	Third Normal Form
	Higher Levels of Normalization

	Summary

	CHAPTER 7: DEVELOPMENT
	Use the Right Tools
	Hardware
	Network
	Development Environment
	Source Code Control
	Profilers
	Static Analysis Tools
	Testing Tools
	Source Code Formatters
	Refactoring Tools
	Training

	Selecting Algorithms
	Effective
	Efficient
	Predictable
	Simple
	Prepackaged

	Top-Down Design
	Programming Tips and Tricks
	Be Alert
	Write for People, Not the Computer
	Comment First
	Write Self-Documenting Code
	Keep It Small
	Stay Focused
	Avoid Side Effects
	Validate Results
	Practice Offensive Programming
	Use Exceptions
	Write Exception Handers First
	Don’t Repeat Code
	Defer Optimization

	Summary

	CHAPTER 8: TESTING
	Testing Goals
	Reasons Bugs Never Die
	Diminishing Returns
	Deadlines
	Consequences
	It’s Too Soon
	Usefulness
	Obsolescence
	It’s Not a Bug
	It Never Ends
	It’s Better Than Nothing
	Fixing Bugs Is Dangerous
	Which Bugs to Fix

	Levels of Testing
	Unit Testing
	Integration Testing
	Automated Testing
	Component Interface Testing
	System Testing
	Acceptance Testing
	Other Testing Categories

	Testing Techniques
	Exhaustive Testing
	Black-Box Testing
	White-Box Testing
	Gray-Box Testing

	Testing Habits
	Test and Debug When Alert
	Test Your Own Code
	Have Someone Else Test Your Code
	Fix Your Own Bugs
	Think Before You Change
	Don’t Believe in Magic
	See What Changed
	Fix Bugs, Not Symptoms
	Test Your Tests

	How to Fix a Bug
	Estimating Number of Bugs
	Tracking Bugs Found
	Seeding
	The Lincoln Index

	Summary

	CHAPTER 9: DEPLOYMENT
	Scope
	The Plan
	Cutover
	Staged Deployment
	Gradual Cutover
	Incremental Deployment
	Parallel Testing

	Deployment Tasks
	Deployment Mistakes
	Summary

	CHAPTER 10: METRICS
	Wrap Party
	Defect Analysis
	Kinds of Bugs
	Discoverer
	Severity
	Time Created
	Age at Fix
	Task Type

	Ishikawa Diagrams

	Software Metrics
	Qualities of Good Attributes and Metrics
	Using Metrics
	Process Metrics
	Project Metrics

	Things to Measure
	Size Normalization
	Function Point Normalization
	Count Function Point Metrics
	Multiply by Complexity Factors
	Calculate Complexity Adjustment Value
	Calculate Adjusted FP

	Summary

	CHAPTER 11: MAINTENANCE
	Maintenance Costs
	Task Categories
	Perfective Tasks
	Feature Improvements
	New Features
	The Second System Effect

	Adaptive Tasks
	Corrective Tasks
	Preventive Tasks
	Clarification
	Code Reuse
	Improved Flexibility
	Bug Swarms
	Bad Programming Practices

	Individual Bugs
	Not Invented Here

	Task Execution
	Summary

	PART II: PROCESS MODELS
	CHAPTER 12: PREDICTIVE MODELS
	Model Approaches
	Prerequisites
	Predictive and Adaptive
	Success and Failure Indicators
	Advantages and Disadvantages

	Waterfall
	Waterfall with Feedback
	Sashimi
	Incremental Waterfall
	V-Model
	Systems Development Life Cycle
	Summary

	CHAPTER 13: ITERATIVE MODELS
	Iterative Versus Predictive
	Iterative Versus Incremental
	Prototypes
	Types of Prototypes
	Pros and Cons

	Spiral
	Clarifications
	Pros and Cons

	Unified Process
	Pros and Cons
	Rational Unified Process

	Cleanroom
	Summary

	CHAPTER 14: RAD
	RAD Principles
	James Martin RAD
	Agile
	Self-Organizing Teams
	Agile Techniques
	Communication
	Incremental Development
	Focus on Quality

	XP
	XP Roles
	XP Values
	XP Practices
	Have a Customer On Site
	Play the Planning Game
	Use Standup Meetings
	Make Frequent Small Releases
	Use Intuitive Metaphors
	Keep Designs Simple
	Defer Optimization
	Refactor When Necessary
	Give Everyone Ownership of the Code
	Use Coding Standards
	Promote Generalization
	Use Pair Programming
	Test Constantly
	Integrate Continuously
	Work Sustainably
	Use Test-Driven and Test-First Development

	Scrum
	Scrum Roles
	Scrum Sprints
	Planning Poker
	Burndown
	Velocity

	Lean
	Lean Principles

	Crystal
	Crystal Clear
	Crystal Yellow
	Crystal Orange

	Feature-Driven Development
	FDD Roles
	FDD Phases
	Develop a Model
	Build a Feature List
	Plan by Feature
	Design by Feature
	Build by Feature

	FDD Iteration Milestones

	Agile Unified Process
	Disciplined Agile Delivery
	DAD Principles
	DAD Roles
	DAD Phases

	Dynamic Systems Development Method
	DSDM Phases
	DSDM Principles
	DSDM Roles

	Kanban
	Kanban Principles
	Kanban Practices
	Kanban Board

	Summary

	APPENDIX: SOLUTIONS TO EXERCISES
	GLOSSARY
	INDEX
	EULA

